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Preface

The nonlinear seismic dynamic response analysis of slopes is challenged by the
coupled effects of geological parameter uncertainties, dynamic nonlinearity, and the
randomness of ground motion. An effective method to accurately describe the influ-
ence of these coupled phenomena has therefore become an important research focus
in academic and industrial circles to effectively evaluate the seismic dynamic stability
and seismic dynamic performance of natural and artificial slopes. The core diffi-
culty of this problem is that slopes under seismic dynamic action are an extremely
complex nonlinear stochastic dynamic system. Traditional classical deterministic
slope seismic response analysis theory and probability theory are poorly suited
to accurately and effectively simulate, analyze, and assess the nonlinear seismic
dynamic stability of this complex object within a unified framework.

Numerous years of extensive effort have been devoted to resolve this problem
with extensive engineering applications and theoretical studies based on free theory
exploration and practical experience of slope engineering anti-seismic analysis. A
new theoretical tool of stochastic dynamics is introduced in this book to access the
seismic dynamic stability performance of slopes and explore a unified technical route
of stochastic dynamics. In this regard, a new framework and method are introduced
to model, analyze, and evaluate the nonlinear random seismic dynamic response of
slopes using a systematic combination and development of previous research results.
A full intensity-frequency non-stationary stochastic ground motion model is prelim-
inarily established to characterize the randomness of earthquakes based on the time-
domain stochastic process description. A spatial distribution random field model of
rock and soil materials is established to characterize the spatio-temporal variability
of the geotechnical parameters. A new nonlinear stochastic seismic dynamic perfor-
mance assessment method is introduced, and a nonlinear seismic dynamic stability
assessment framework of slope engineering based on dynamic reliability is estab-
lished according to the basic theory of stochastic dynamics. Slope seismic dynamic
model tests are performed based on physical simulations and large complex shaking
table experiments to verify and modify the proposed framework, and some practical
application studies are carried out.

v



vi Preface

This book discusses the source and characterization of randomness and the anal-
ysis of the nonlinear stochastic seismic dynamic response of slope seismic dynamic
systems from the basic viewpoint of nonlinear stochastic dynamics.

Chapter 1 introduces and summarizes the latest progress in seismic design and
evaluation in slope engineering, especially the development of slope seismic reli-
ability in the field. The main dynamic analysis methods and currently developed
impact factors are reviewed.

Chapter 2 presents a reasonable description of groundmotion randomness at slope
sites and the characterization of spatio-temporal variability of the slope geotechnical
parameters. This chapter introduces the main theoretical framework of stochastic
dynamics for nonlinear stochastic seismic dynamic response analysis of slope
systems and its general process.

Chapters 3 and 4 present the numerical simulations and applications of the above
theory on slope engineering, such as slope and earth dams for nonlinear stochastic
seismic dynamic response and dynamic stability performance analysis.

Chapter 5 describes the large-scale seismic table shaking test performed to verify
the simulation results.

Chapter 6 summarizes the main conclusions of this book and presents future
prospects for slope nonlinear stochastic seismic dynamics.

This book presents a condensed and improved summary of previous research
results. Standing upon the shoulders of predecessors in the field, previous studies
are systematically sorted out and the most relevant research results are presented as
a form of inheritance and ongoing development of predecessors’ research, to whom
my heartfelt thanks are sincerely conveyed. This book includes awealth of references
to help readers better understand the history and scope of the topic.

The research invested in the development of this book has received support
from the National Science Fund for Distinguished Young Scholars (41625011), the
National Natural Science Foundation for Young Scientists of China (41902274), the
National Natural Science Foundation of China (51778467), the State Key Program
of National Natural Science of China (Grant No. 41831291), the National Key
Research and Development Program of China (2017YFC1501304), and the Sino-
German mobility programme (NSFC/DFG) (M-0129). The authors thank the related
publishers, including Springer, Elsevier, and the American Society of Civil Engi-
neers for their kind authorization to reuse some of the content presented herein. The
authors would like to convey their sincere thanks and respect for the aforementioned
support.

I would like to thank the joint research group of graduate students who have made
their own contributions, including Dr. Min Xiong, Dr. Liuyuan Zhao, Dr. Hongqiang
Hu, Mr. Xuri Li, Ms. Lu Zhao, Ms. Guiying Dong, Ms. Lingling Zeng, Ms. Geye
Li, Ms. Wenwen Wang, Ms. Mi Zhou, Ms. Ying Luo, Ms. Cuizhu Zhao, and Mr.
Zhiming Peng. Their long-term beneficial discussions and pondering are ultimately
what led to the development of this book, and I would like to take this opportunity
to express my sincere appreciation for their creative work.

It is my hope that this book will provide theoretical and technical reference for
geotechnical engineers and researchers in the anti-seismic slope engineering practice,



Preface vii

as well as serve as a milestone for further research and development of slope seismic
nonlinear stochastic dynamics.Moreover, I hope readers will obtain a genuine under-
standing of slope nonlinear stochastic dynamics, not just in terms of knowledge and
facts of slope seismic dynamic response. Although the basic theoretical framework of
nonlinear stochastic seismic dynamic response analysis of slope systems is system-
atically established, it remains impossible to indefinitely solve all problems in light
of the complexity and difficulty of nonlinear dynamic response of slope engineering
under earthquake excitation conditions. The research content of this book is therefore
open, and suggestions and criticism from readers are welcomed.

Shanghai, China
October 2021

Yu Huang
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Chapter 1
Introduction

Abstract How to evaluate the geological hazards triggered by earthquakes has
always been the top priority in the study of seismic engineering geology. This
chapter introduces the main methods of seismic design and evaluation in slope engi-
neering, including the latest progress of slope seismic reliability, and reviews the
main dynamic analysis methods and the currently developed random factors to hope
that through the above introduction, readers of this book can better understand the
main framework of this book and the main content to be covered in the subsequent
chapters.

Keywords Earthquakes · Slope seismic reliability · Impact factors

1.1 Background

Earthquakes are a natural disaster that can cause serious human and infrastructural
losses, and are characterized by their suddenness and wide distribution worldwide.
Nearly one-third of the largest historic earthquakes occurred from 2000 to 2020
(Hayes et al., 2020).

Earthquakes can trigger a variety of devastating secondary disasters related to
major soil deformation and flow, such as soil liquefaction, landslides, and debris
flows. Large seismic-induced deformation and flow disasters are typically character-
ized by their rapid occurrence, widespread range, and strong disaster-causing ability.
Natural soil structures can be easily destroyed to form complex flow characteristics,
which makes it difficult to control their movement and deformation, thus resulting
in large-scale infrastructural damage, heavy casualties, economic losses, and serious
social impacts.

For example, damage owing to landslides triggered by the 1984Alaska earthquake
accounted for more than 50% of the total losses (Keefer, 1984). Numerous landslides
were triggered by the Loma Prieta earthquake within a sphere of approximately
15,000 km2 in California (Keefer, 2000), and more than 200 homes and many roads
were destroyed, resulting in approximately $30 million in property damage. More
than 10,000 landslide disasters occurred after the 1999 Chi-Chi earthquake within
a distance of nearly 11,000 km2 to the high and steep mountainous areas in central
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Taiwan (Hung, 2000). The 2005 Pakistan earthquake directly causedmore than 2,400
landslides within a sphere of 128 km2, leading to more than 1000 deaths and massive
property losses (Dunning et al., 2007; Sato et al., 2007). The Wenchuan earthquake
in China triggered approximately 15,000 landslides, collapses, and mudslides and
other geological disasters, resulting in the death of approximately 20,000 people (Yin
et al., 2009).

In view of these tremendous hazards, slope seismic response evaluations and
safety assessments are of great significance in the fields of slope stability and geolog-
ical disaster prevention, and are a key research direction for the future. Reasonable
earthquake excitation predictions, slope material constitutive descriptions, and high-
precision seismic dynamic response analysis methods are required to accurately
understand the slope seismic dynamic response for seismic design and performance
evaluation purposes, which form the basis of slope engineering.

1.2 Slope Seismic Dynamic Response Analysis Methods

Earthquake excitations are an important factor that can induce slope instability, and
the resulting losses are typically high. The comprehensive analysis of slope stability
is therefore especially important to mitigate losses caused by seismic geological
hazards. Two types of quantitative slope seismic dynamic analysis methods have
been well developed: (1) deterministic seismic dynamic analysis methods; and (2)
stochastic seismic dynamic analysis methods, which are introduced in the following
two subsections.

1.2.1 Deterministic Slope Seismic Dynamic Response
Analysis Methods

The deterministic seismic analysismethods that have been developedmainly include:
the pseudo-static method; the nonlinear dynamic time-history analysis method; the
Newmark sliding block displacement method; and the physical experiment method.

(1) Pseudo-static method

Slope stability analysis is a classic problem in soil mechanics that has undergone
long-term development, and uses the factor of safety as the stability evaluation index.

The limit equilibrium method is a common evaluation approach that applies the
Mohr–Coulomb model as the strength failure criterion, assumes that soil materials
only transmit force without deformation, and determines the reaction force of the
sliding surface under static balance conditions to then calculate the slope safety factor.
Limit equilibrium methods often introduce some simplifying assumptions to avoid
solving statically indeterminate problems by transforming the problem into statically
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indeterminate solvable problems. Several limit equilibrium calculationmethods have
been used to assess slope overall stability. Improvements to limit equilibrium analysis
have mainly included the simplification or hypothetical treatment of unknowns in
the balance equation of the slice method using the Bishop, Janbu, Morgenstern and
Price, or Spence slice methods, which differ only slightly in their solution of static
problems (Griffiths & Lane, 1999; Zhang, 1999).

The pseudo-static methodwas developed based on dynamic time-history analysis,
where the equivalent inertial body force is regarded as a simplified form of the
seismic load applied to the slope model. The safety factor is calculated using the
limit equilibrium method for slope safety assessment.

The ratio of the designed ground motion acceleration to the gravitational acceler-
ation is called the seismic coefficient, which is an important parameter in the pseudo-
staticmethod. Extensive research has been performed to determine a reasonable value
for the seismic coefficient. Terzaghi (1950) proposed specified values of 0.1, 0.2,
and 0.5 to represent severe, destructive, and catastrophic earthquakes, respectively
in the pseudo-static method. Seed (1979) analyzed the quasi-static design criteria
of 14 dams in 10 seismically active countries using the pseudo-static method, and
summarized that 13%–20% of the peak acceleration should be taken as the design
seismic acceleration. Marcuson (1981) suggested the design seismic acceleration of
dams should be taken as 1/2–1/3 of the peak acceleration, whereas Kramer (1996)
proposed that 1/2 was reasonable for the aseismic design of most slopes.

The pseudo-static analysis method is simple in principle, easy to execute, conve-
nient in calculation, and can realize the overall dynamic stability analysis of a slope
in a relatively short time. This approach has therefore frequently been used in theo-
retical analysis and engineering practices of slope dynamic analysis. However, this
method converts seismic time histories into equivalent static forces for analysis,
which ignores the time effect of seismic excitations.

(2) Newmark sliding block displacement method

Owing to its shortcomings, the pseudo-static analysis method can be difficult to
completely realize the dynamic analysis and performance evaluation of slopes during
strong earthquake processes. To overcome this limitation, Newmark (1965) proposed
the sliding block displacement method.

The Newmark sliding block displacement method is a slope stability evaluation
methodbasedon earthquakepermanent displacement. Thismethod assumes that even
if the slope safety factor is temporarily less than 1 during the earthquake process, it
will not necessarily lead to slope failure, but only a certain amount of slope permanent
displacement. In this case, the evaluation of slope dynamic stability no longer depends
on theminimum safety factor, but rather on the permanent displacement accumulated
during the earthquake, which can be obtained by calculating the acceleration integral
when the safety factor is less than 1.

This method assumes that the slider is completely rigid, and considers an ideal
plastic behavior relationship between the slider and sliding surface, which is referred
to as the Newmark rigid slider method. However, deformation of the slider itself on
the permanent displacement is not considered. Many scholars have thus improved
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this aspect, including the decoupled earthquake permanent displacement method
(Makdisi & Seed, 1978; Bray&Rathje, 1998) and the coupled earthquake permanent
displacement method (Macedo et al., 2018; Wartman et al., 2003).

The decoupled earthquake permanent displacement method incorporates numer-
ical methods (e.g., finite element) to perform dynamic analysis and failure surface
tracking. The permanent displacement is then calculated using the stress field
obtained from the seismic dynamic analysis, which accounts for the influence of the
seismic dynamic response results. Because dynamic response analysis and sliding
analysis are performed separately and in an orderly manner, this method is referred
to as a decoupled analysis method. For example, Bray and Rathje (1998) combined
the Newmark rigid slider method with fully nonlinear seismic dynamic response
analysis to analyze seismic-triggered landfill instability.

The coupled earthquake permanent displacement method is more reasonable yet
relatively complicated. The dynamic response analysis and permanent displacement
calculation of a sliding body are coupled, thus it not only considers the impact
of the seismic response on permanent displacement but also the impact of plastic
deformation on the slope seismic dynamic response.

In this approach, the time-domain characteristics of earthquakes and nonlinear
characteristics of soils are partially considered using the permanent seismic displace-
ment to evaluate the overall seismic performance or failure state of slopes and
supporting structures, which is generally more intuitive, reliable, and reasonable
than a safety factor index. However, this method assumes that slope soils lie within a
rigid plastic body during earthquake activity and that the soil strength is not signifi-
cantly reduced, both of which are incompatible with the actual soil state. The overall
dynamic behavior of a slope affected by earthquake activity is therefore not truly
reflected. A considerable range of different threshold selections used to identify
slope instability owing to a lack of uniform standards can also exist.

In summary, for seismic dynamic stability assessment of slope, Newmark sliding
block displacement method can overcome the limitations of pseudo-static analysis in
the definition of seismic excitations. This method takes the seismic force as a short-
term changing direction load, accounts for slope deformation caused by seismic
shaking, and proposes the concepts of yield acceleration and cumulative displace-
ment, all of which promote the development of slope dynamic stability analysis
methods under seismic loads.

(3) Nonlinear seismic dynamic time history analysis

Compared with the pseudo-static and Newmark sliding block displacement methods,
the nonlinear dynamic time history analysis method can be used to embed different
constitutive models to reasonably characterize the deformation behavior of rock-
soil mass and slope supporting structures under earthquake events and other loads,
to evaluate the seismic dynamic response information of slopes. In the nonlinear
analysis process, seismic excitations are input in the form of seismic accelerations,
velocities, or displacement time histories, which better reflect the effect of earthquake
duration on the slope system. The nonlinear dynamic time history analysis method is
alsomore accurate, convenient, and efficient than the previouslymentionedmethods.
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It can simulate the spatial variability of rock and soil materials and consider elastic–
plastic characteristics and pore water effects to a certain extent, and has thus become
an important tool for slope dynamic response and stability analysis. Several numerical
simulation methods have been applied to the nonlinear dynamic analysis of slope
engineering. For example, commercial software (e.g., ABAQUS, FLAC3D, Geo-
studio) can be used to conduct slope dynamic time history stability analysis based on
continuummechanics.Discontinuous deformation analysis (DDA), universal distinct
element code, and particle flowcode (PFC) can be used for non-continuummechanics
analysis and other purposes.

a. Slope dynamic time history analysis based on continuum mechanics

The advantage of slope dynamic time history analysis based on continuummechanics
lies in the analysis of the dynamic response and failure surface formation process.
For example, FLAC3D was used to calculate dynamic deformation to analyze the
seismic instability process of the Wangjiayan landslide (Yin et al., 2015), analyze
the seismic displacement of an associated dam (Liu et al., 2016), and investigate the
historical stress state of each element by obtaining the dynamic penetration process
of the slope plastic zone (Wang et al., 2010). Similar research using Geo-studio
software has also been applied to carry out dynamic finite element calculations of
seismic amplification effects (Zhao et al. 2015a).

b. Slope dynamic time history analysis based on non-continuum mechanics

Dynamic time history analysis based on non-continuum mechanics can be used in
the initiation, movement, and accumulation process of seismic-induced landslides.
For example, DDA can be used to study the initiation and movement process of land-
slides induced by seismic activity. Zhang et al. (2013, 2015) pointed out that seismic
activity, especially vertical activity, induced the Donghekou and Daguangbao land-
slides, and had a strong influence on the initial and movement stages of the landslide
disaster. Other particle flow analysis methods can also be used to analyze the move-
ment process of seismic-induced landslides by applying the seismic acceleration
or velocity time histories as boundary conditions. For example, Tang et al. (2009)
used the seismic information of the Chi-Chi earthquake CHY080 station to study
the Tsaoling landslide by the program PFC2D and reported a maximum landslide
velocity of 50 m/s due to seismic excitations.

(4) Physical experiment method

The use of physical model experiments (e.g., centrifugal tests, 1 g shaking table tests)
is becoming increasingly common in the field of seismic stability and the overall
performance analysis of slopes and supporting structures. Physical model experi-
ments, such as shaking table tests, can be used to verify the accuracy and effectiveness
of slope supporting structure seismic design theory at relatively low cost and with
repeatable observations. The complexmechanisms of earthquake-induced landslides
can also be solved using shaking table tests by investigating actual seismic damage
phenomena or analyzing seismic measured data, using concrete or generalized slope
models to determine the seismic dynamic response laws by considering seismic
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factors that influence the slope stability. Numerous studies have performed shaking
table tests, the existing shaking table test literature is thus thoroughly presented
herein.

The first slope shaking table test recognized by the academic community was
successfully carried out by (Clough & Pirtz, 1956). This new method is of far-
reaching significance to seismic-related research in engineering geology andgeotech-
nical engineering (Fan et al., 2016; Wartman et al., 2005). In recent decades, the
overall bearing capacity of shaking tables has gradually increased and the experi-
mental model size has also correspondingly increased to better simulate the proto-
type size. The development of large-scale shaking table tests is very helpful to further
study the dynamic response behavior of slopes. A large number of shaking table tests
are introduced and summarized in this section. Tests regarding slope model response
havemainly concentrated on seismic related factors, such as amplitude and frequency
characteristics, slope structure, rock mass structure, seismic design measures, and
related reinforcement measures.

The acceleration response is an important aspect of slope dynamic response
research. The magnification effect of the stochastic dynamic response of a slope
with increasing elevation cannot be ignored, especially that of the horizontal seismic
component (Zhang et al., 2017). However, ground motion in other directions also
has a certain impact on the slope dynamic response. The vertical acceleration ampli-
fication factor has been shown to increase when a horizontal wave is simultane-
ously applied (Liu et al., 2013). Ground motion therefore affects the slope dynamic
response, and provides helpful information to further track the slope seismic dynamic
response laws.

Slope acceleration amplification owing to topography has been confirmed by
actual earthquake observations (Harp & Jibson, 2002; Sepúlveda et al., 2005). The
amplification of four-sided slopes has been shown to be the largest in response to
seismic acceleration, followed by two-sided slopes and lastly single-sided slopes
(Yang et al., 2015). Slope lithology also has an impact. The relationship between
the acceleration amplification effect and slope lithology (soft versus hard rock) is
variable. For example, Liu et al. (2014b) studied the shaking table test results of
measured waves with respect to the Wenchuan earthquake and found that the hori-
zontal acceleration magnification factor of soft rock is larger than that of hard rock.
The slope structure also affects the acceleration response of a slope. For example, the
amplification effect of a layered slope is greater than that of a homogeneous slope
(Liu et al., 2014b) possibly because of the reflection and refraction of the structure
facing the seismic wave, which enhances the slope dynamic response (Dong et al.,
2011). Topography, slope lithology, and slope structure therefore exert a certain
degree of influence on the slope acceleration amplification effect. The amplification
effect itself affects the slope stability, thus influencing the slope seismic dynamic
response.

Shaking table tests can also be applied to better understand the physical mecha-
nism of slopes by supplying a better reference basis for slope seismic performance
design (e.g., slope support structure and reinforcement research). For example, in
the case of the Northridge earthquake, studies have shown that retaining walls and
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reinforced soils have good seismic performance (Sandri, 1997), whereas the Jiji
earthquake led to the damage of slope support structures (Ling et al., 2001). Exper-
iments have shown that the natural frequency of slope itself significantly decreases
under earthquake action, the final basic frequency may be only approximately half
of the initial model value (Fan et al., 2016; Liu et al., 2013), and the damping
ratio is enhanced. Some previous studies have therefore proposed a reinforcement
mechanism in which vibration causes the model stiffness to decrease, whereas rein-
forcement increases the stiffness, which drives the higher natural frequency of the
slope itself (Lin et al., 2015). In general, more reinforcement measures are more
likely to be associated with a greater increase in natural frequency. Reinforcement
not only changes the slope frequency but also alters the failure surface location,
thus resulting in different failure modes (Hong et al., 2005). Furthermore, although
reinforced slopes still have a certain degree of amplification effect, the overall slope
performance can also be satisfactory (Huang et al., 2010). Reinforcing only 1/5 of a
dam top can also significantly enhance the overall dam stability (Liu et al., 2014a).

Most supporting slope model soils have been made of geosynthetic materials and
silica sand (i.e., geosynthetic reinforced slopes). Reinforcement methods include
piles, soil nails, reinforced retaining walls, and expanded polystyrene (Gao et al.,
2017; Hong et al., 2005; Panah et al., 2015; Srilatha et al., 2013; Yang et al., 2017).
Hong et al. (2005) carried out shaking table tests on soil–nail-supported slopes and
demonstrated the advantage of this support design for improving the seismic perfor-
mance of steep slopes. For solid slopes, the acceleration magnification factor of
horizontal seismic activity is very small, and the maximum possible acceleration
is only 1.35 under 0.86 g of shaking, which ensures the slope stability(Ling et al.,
2005). Tests have shown that the seismic performance of supported slopes is good
(Lin et al., 2015), and various supporting shaking table models have demonstrated a
substantial reduction of the acceleration amplification effect and slope displacement
(Panah et al., 2015; Srilatha et al., 2013; Yang et al., 2017).

Shaking table tests not only are useful for studying the slope seismic dynamic
response (e.g., acceleration response and amplification effect) but also can be applied
to study physical failure mechanisms, and are therefore an important experimental
research method.

1.2.2 Stochastic Slope Seismic Dynamic Response Analysis
Methods

Traditional deterministic differential equations have been widely used in the fields
of physics, engineering technology, biology, and economic systems. However, the
description of actual problems requires increasingly high accuracy. The influence
of random factors in a system can therefore not be ignored, and it is necessary to
adjust the analysis of some actual processes from the typical deterministic view to a
random view, and from a deterministic system to a random system.
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Most of the traditional and existing performance-based seismic evaluation and
design methods for slope engineering are based on deterministic theory. However,
different uncertainty sources can affect the seismic dynamic performance in the
design service period of a slope project, including the spatial uncertainty of geotech-
nicalmaterial property parameters,which are affected by the geological and sedimen-
tary history, the uncertainty of external environment excitations (e.g., earthquakes,
rainfall), and slope geometry, size, and structural material uncertainties. The geom-
etry and size of slopemodels are affected by excavation andweathering.Conventional
deterministic analysis and design methods often fail to account for the influence of
uncertainties on the seismic performance of slopes.

Different probability analysis methods and reliability theories have recently
provided new ideas for quantitatively characterizing these uncertainties and their
effects on slope stability and seismic performance. The relatively mature slope
reliability analysis methods under earthquake action mainly include: approximate
momentmethods based on the sampling of several criticalmoment points (mainly the
first-order and second-moment method);Monte Carlo stochastic simulationmethods
for random sampling in probability space; functional response surface methods for
determining complex geotechnical structures; and the pseudo-excitation method
(PEM), which is highly efficient and can rapidly solve the response of a linear
stochastic dynamical system.

(1) First-order second-moment method.

The basic principle of the first-order second-moment (FOSM) method is to use a
Taylor series to expand the functional function at a certain point, take its linear
first-order term, and solve the reliability index based on the first second-moment of
the random variable (i.e., mean value and variance). This is further divided into the
central point method and checking point method according to the different expansion
points of the Taylor series.

a. Central point method

The central point method is also known as the mean first-order second-moment
(MFOSM) method (Hasofer & Lind, 1974). In this approach, the functional function
Z is expanded by a Taylor series at the central point (i.e., mean point) to obtain the
first-order term, namely:

Z ≈ g(μX ) +
n∑

i=1

(
∂g

∂Xi

)

μX

(
Xi − μXi

)
(1.1)

where the components of the basic random vector X = (X1, X2, . . . , Xn)
T are

independent of each other with a mean of μX = (μX1 , μX2 , . . . , μXn )
T and stan-

dard deviation of σX = (σX1 , σμX2
, . . . , σXn )

T , and (
∂g
∂Xi

)
μX

is the derivative of the

function at the mean point.



1.2 Slope Seismic Dynamic Response Analysis Methods 9

The central point method directly describes the relationship between the statis-
tical parameters of random variables and the reliability index of functional func-
tions. The central point method has a clear concept, simple calculation, and certain
practicability. However, this method also has the following drawbacks.

(1) The central point method is based on the assumption that random variables
obey a normal or lognormal distribution, and other probability distributions
cannot be directly used.

(2) The essence of expanding the functional function at the center and taking the
first term is the linearization of the limit state function. When the limit state
function is nonlinear, the calculation error cannot be ignored.

(3) For limit state equations of the same mechanical significance but different
forms, their reliability indexes are different.

b. Advanced first-order second-moment method

The advanced FOSM method selects the Taylor series expansion point of the func-
tional function on the failure surface and considers the actual distribution type of the
basic random variable, which overcomes the above limitations of the central point
method (Hasofer & Lind, 1974).

Let us assume that the basic random variable is subject to an independent normal
distribution. Expand the functional function at the point in accordancewith the Taylor
series x∗ = (x∗

1 , x
∗
2 , . . . , x

∗
n )

T and take the first-order term:

Z ≈ g
(
x∗) +

n∑

i=1

(
∂g

∂Xi

)

x∗

(
Xi − x∗

i

)
(1.2)

Equation (1.2) corresponds to the tangent plane of the limit state surface at the
crossing point x∗ in the space of random variable X. The point y∗ in the space of the
standard normal random variable Y corresponding to the point x∗ in the space of the
random variable X is called the checking point.

The iterative algorithm is usually applied to solve the checking points and their
corresponding reliability indexes. The specific steps are as follows.

(1) Assume that the initial value of x∗ is generally the mean value point.
(2) Insert the initial value of x∗ into Eq. 1.2 and calculate αXi and β in turn.
(3) Use the calculated value of β to obtain the new x∗.
(4) Repeat the above steps until the error on x∗ before and after is less than the

accuracy requirement.

Rüdiger and Bernd (1978) proposed a method based on equivalent normaliza-
tion to include the non-normal distribution of random variables. The basic idea is to
normalize the equivalent variable of the non-normal distribution, and then calculate
the reliability index based on the mean value and variance of the equivalent normal-
ized variable. According to the conditions of equivalent normalization, at checking
point x∗

i , the cumulative distribution function and probability density function of the
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equivalent normalized variable and original non-normal distributed variables should
be equal, respectively.

The actual distribution of random variables is considered in the checking point
method, and the expansion points are located on the limit state plane. The calculation
accuracy is thus higher than that of the center point method. However, the essence
of this approach still involves the linear approximation of the limit state equation
(i.e., taking the first-order term), and the calculation error is large when the degree
of nonlinearization of the functional function is high.

Although a second-order reliability method (SORM) has been developed by some
scholars based on the FOSMmethod, it is seldom used in engineering because of the
calculation complexity. Furthermore, themost fundamental defect of the approximate
moment method represented by the FOSM method is that the probability density
function of the system response cannot be obtained, rather only the finite order
statistical moment of the functional function. It is therefore impossible to accurately
grasp the evolution of the probability density of the system at the probability density
level.

(2) Monte Carlo simulation method

Although several methods have been applied to problems with uncertain parame-
ters described by the stochastic process, the Monte Carlo simulation (MCS) method
is generally accepted as the only accurate method with universality, and thus is
commonly applied to uncertainty stochastic mechanics problems with any dimen-
sions of nonlinearity, randomness, stochastic stability, parametric excitation, and/or
variability.

The MCS method (also known as the stochastic simulation method) is a numer-
ical analysis method based on statistical sampling theory that uses a computer to
study random variables. The MCS method is a widely used and relatively accurate
approach in reliability analysis, and is the only method for testing the accuracy of
other reliability methods in some cases (Schuell�r, 1997, 2006) (e.g., perturbation,
statistical linearization, and random average methods).

Many scholars have performed Monte Carlo stochastic simulations to address
geological engineering problems. For example, Monte Carlo stochastic simulations
have been applied to evaluate the seismic performance and aseismic reliability of a
slope after reinforcement considering the uncertainty of slope rock mass parameters
(e.g., internal friction angle, yield strength, and rigidity of the reinforced material)
and deterministic seismic input. Monte Carlo stochastic simulation analysis has also
been used to obtain the power spectral density function of the slope seismic response
(e.g., slope displacement, stress) considering both the randomness of ground motion
and uncertainty of the rock and soil mass parameters, and the slope seismic reliability
has been investigated based on the first pass failure theory (Hayashi & Tang, 1994).

On the basis of the modal perturbation analysis method, Pan and Lou (2008)
assumed that the stratified earth is equivalent to a uniform shear beam and bedrock
ground motion is a stationary stochastic process with the mean value of zero. They
inputted the corresponding power spectral density function, obtained the corre-
sponding modal and frequency based on the frequency domain analysis method,
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transferred the differential equations that describe the stochastic response of stratified
earth into an algebraic equation, and proposed the approximate analysis method.

Z = g(R, Q) = g(X) = FS(X) − 1 (1.3)

where, X is a random vector, Fs is the expression of slope stability by safety factor,
Q is the load, R is resistance, Z is the functional function of slope stability, and g(·)
is the functional function characterized by resistance and external excitations.

With reference to the definition of frequency,MCS can be performed to determine
the failure probability. After determining the basic probability distribution of random
variables (e.g., slope geotechnical mechanics parameters, load) according to the
functional Eq. (1.3), the random sampling method can be used to produce a set
of random vectors that conform to the distribution of the random variables. The
generated result is substituted into the functional equation to calculate a response
value of the functional equation. In the same way, N sample response values can be
generated.According to the large number theorem, If the number of sample responses
less than zero (i.e., failure zone) isM, when the sampling timesN is sufficiently large,
the probability can be approximately estimated by the frequency as follows.

P̂ f = P(Z < 0) = M

N
(1.4)

where P
∧

f represents the estimated value of the failure probability Pf . The mean
value and standard deviation of the functional function Z can be further calculated
according to the N calculated values of the functional functions, and its probability
distribution function can be fitted.

Random sampling is the basis of the MCS method and is also the key to deter-
mine the computational efficiency. There are many sampling methods to improve
computational efficiency, such as importance sampling, Latin hypercube sampling,
and direction sampling. Latin hypercube sampling is a multi-dimensional stratified
sampling technique that is widely used in slope reliability analysis because of its
advantages of high sampling efficiency and good sampling effects (Li et al., 2013).
The Latin hypercube sampling method evenly divides the value range of the proba-
bility distribution function of basic random variables Xi into N sections. The inverse
function of the probability distribution is then used to obtain N equal probability
intervals of the domain of the basic random variable Xi , and select one point from
every equal probability interval, which are composed ofN sample values of the basic
random variables Xi (Olsson & Sandberg, 2002).

The calculation accuracy of the MCS method is only related to the number of
samples, and insensitive to the number of random variables. According to the prin-
ciple of mathematical statistics, the coefficient of variation of the failure probability
estimate P

∧

f can be expressed as:
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δP̂ f
≈

√√√√
(
1 − P̂ f

)

N P̂f

(1.5)

It is easy to show from Eq. (1.5) that under the specific calculation accuracy
requirements, the number of samples required by the stochastic simulations rapidly
increases with decreasing failure probability, which leads to a large calculation
amount. For example, when P

∧

f = 10–4 and δ
P
∧

f

= 0.1, the number of required

simulations N is 106.
It is generally believed that the biggest advantage of the Monte Carlo stochastic

simulation method is that it offers sufficient accuracy for any dimension of a random
problem. The only disadvantage is the very large calculation cost and machine
capacity consumption. The large amount of required computing power to accu-
rately estimate the failure probability has thus become the bottleneck that restricts
the method from practical application, especially for functions without an analytic
expression and a relatively small failure probability.

The theoretical basis of theMonteCarlo stochastic simulationmethod also follows
the law of large numbers, and the calculation results should be a randomvariable. The
method to develop the calculation accuracy of MCS is therefore to control the simu-
lation variance. Notably, a variance, instead of truncation errors, exists, which also
leaves theMCSmethodwith an innate defect, namely randomconvergence problems.
Some studies have shown that even if the variance of Monte Carlo random simula-
tions is less than 5%, the accuracy of the calculation results cannot be guaranteed to
be less than 5% (Engelund & Rackwitz, 1993).

a. Response surface method

The response surface method (RSM) was first proposed by mathematicians Box
and Wilson in 1951 (Box & Wilson, 1951). The basic idea is to approximately
construct a functional function that contains some unknown parameters to replace
the implicit functional function. This approximate functional function is called the
response surface function.

Under the premise to fulfill both the calculation accuracy and efficiency require-
ments, a quadratic polynomial without cross terms is typically adopted as the
response surface function for a function containing n random variables Z =
g(X1, X2, . . . , Xn), namely:

Z̃ = a +
n∑

i=1

bi xi +
n∑

i=1

ci x
2
i (1.6)

where a, bi, and ci are undetermined coefficients with totally 2n + 1 numbers. The
specific method is as follows.
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(1) Obtain 2n + 1 sampling points according to the sampling point design.
(2) Use the deterministic method to calculate the slope stability 2n + 1 times.

The deterministic method can be a simple limit equilibrium method or mature
numerical methods.

(3) Substitute the sampling points and their corresponding response values into
Eq. (1.6) and use the least square method to determine the undetermined
coefficient.

(4) After determining the approximate explicit expression of the functional func-
tion, the FOSM orMCSmethod can be used to calculate the failure probability
and reliability indexes of the slope.

b. Pseudo-excitation method

The pseudo-excitation method (PEM) was proposed by Lin and Zhang (2004), and
is very efficient and precise for determining the stable response of linear stochastic
systems. It is also an importantmethod for complete quadratic combination in seismic
design code for building construction as well as the square root of the sum of squares,
which provide a complete theoretical basis. This section briefly introduces the basic
theory of the PEM for linear stationary stochastic systems, and analyzes its appli-
cation in the analysis of the linear stationary random seismic response of a slope.
This method greatly reduces the calculation of linear stochastic dynamical systems,
and thus makes it possible to design and evaluate large complex structures based on
stochastic vibration theory.

The following is divided into two types of PEM: stationary random response
and non-stationary random response. For a linear stationary stochastic system, when
a single-point excitation is received, the power spectral density (PSD) function of
excitation X(t) is assumed to be SXX (ω), and the self-power spectral density function
of response y is SYY (ω):

SYY (ω) = |H |2SXX (ω) (1.7)

where H is based on the frequency response function of the frequency domain anal-
ysis method. If the single-point random excitation is the unit harmonic excitation
exp(iωt), the corresponding harmonic response is y = Hexp(iωt).

If the excitation is assumed to be the product of constant
√
Sxx and exp(iωt), the

following virtual excitation can be constructed, where x̃(t) is
√
Sxxeiωt .

(a)Sxx ⇒ H(ω) ⇒ Syy = ∣∣H 2
∣∣Sxx (1.8)

(b)x = exp(iωt) ⇒ H(ω) ⇒ y = Heiωt (1.9)

(c)x̃ =
√

(Sxx )eiωt ⇒ H(ω) ⇒ Syy = H 2Sxx (1.10)
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(d)x̃ =
√

(Sxx )eiωt ⇒ H(ω)
⇒ ỹ1 = √

(Sxx )H1eiωt

⇒ ỹ2 = √
(Sxx )H2eiωt

(1.11)

x̃(t) =
√

(Sxx )eiωt (1.12)

In the stochastic seismic response analysis of engineering structures, we are
concerned with quantities such as the displacement structure U, internal force F,
stress σ , and strain response ε, among others. According to the PEM and Eq. (1.12),

Ũ ,F̃ ,
∼
σ , and

∼
ε are the responses to the amount of virtual response, and can be directly

obtained from the PSD or mutual power spectral density of the physical quantity of
interest.

ThePEMcanvery conveniently obtain thePSD function of the structural response,
and the formulas for calculating the self-power spectrum and cross-power spectrum
of the response are simple and unified. It should be emphasized that as long as the
relationship between the excitation and response can be described by a linear random
frequency response function, the random response solution of the structure can be
solved using the PEM. In the calculation process of the self-power spectrum and
cross-power spectral density function, the virtual external excitation exp(iωt) and
its complex conjugate always appear in pairs and their product cancels each other.
This characteristic indicates that the self-power spectrum andmutual PSD function of
the stationary random excitation response are time-invariant. The PEM can similarly
be used to obtain the self-power spectrum and cross-power spectral density functions
of each order of the stationary random process.

It is unreasonable to assume a stationary excitation because there are notable
intensity variations and stationary and attenuation periods during a given loading
period, such as earthquakes, explosions, and gusts. With the construction of long
flexible structures in recent years (e.g., long bridge structures, large buildings, and
high dams), the natural vibration period of some engineering structures can reach
more than 10 s or even longer than 20 s because the displacement of long-period
structures is mainly controlled by transient vibrations. The displacement of a long-
period structure may occur not only at the resonance time of the structure, but also
after the disappearance of the external excitation.

According to Yeh andWen (1990), the influence of non-stationary characteristics
of groundmotion on engineering structures is mainly concentrated on structures with
stiffness and strength degradation. Li et al. (2016) showed that a structure’s period
is longer after earthquake-induced damage. If the natural vibration frequency of the
damaged structure is similar to the ground motion frequency after the strong earth-
quake, the seismic response of the structure will be large or even exceed the damage
caused by the strong earthquake. The reason is that such structures have accumulated
a considerable amount of damage, and this scenario is called the “instantaneous reso-
nance”.Thenon-stationary characteristics of groundmotion are therefore particularly
important for the seismic response of engineering structures, especially long-period
flexible structures.
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Numerous studies have addressed non-stationary random processes (Douglas &
Edwards, 2016). In the field of earthquake engineering, the evolutionary power spec-
trum model proposed by (Priestley, 1967) has attracted substantial research atten-
tion. On the basis of the Priestley power spectrum model, this kind of non-stationary
random vibration process with an evolving power spectral density function can be
represented by the Riemann–Stieltjes integral:

X(t) =
+∞∫

−∞
A(ω, t) exp(iωt)dα(ω) (1.13)

This represents a non-uniformly modulated evolutionary random ground motion
process. Solving the random seismic response of engineering structures excited by
non-stationary random earthquakes can be very difficult. The approximate method is
generally adopted, and the non-stationary characteristics of the intensity-frequency
energy distribution with non-stationary random excitation frequency are ignored.
This can thus be simplified to stationary random excitation. Although this simpli-
fication is unreasonable and it is difficult to accurately grasp the precise response
of engineering structures under earthquake action, even the simplification is quite
difficult to calculate for actual engineering (Schuell�r, 1997).

Theultimate goal of thePEMis to solve thedynamic system responsewith thePSD
level,whether linear or nonlinear.However, a slope under dynamic seismic conditions
represents a nonlinear stochastic dynamic system owing to the strong nonlinear
dynamic behavior of the slope soil material. Calculating the dynamic reliability of
a slope under earthquake action by only obtaining a solution for the power spectral
density hierarchy is therefore quite difficult. As a result, it is challenging to obtain
the stochastic seismic response and reliable seismic slope analysis of a slope under
earthquake action using the PEM.

1.3 Limitations and Deficiencies of Existing Methods

The previous section briefly introduced the existing slope seismic dynamic stability
analysis methods. However, these methods still face certain limitations, and the
uncertainties involved in slope engineering continue to lack complete and compre-
hensive consideration. There are several uncertain factors that require additional
study in slope engineering. For example, seismic excitation randomness is complex
and remain poorly understood. Housner (1947) first regarded ground motion as a
stochastic process. Furthermore, geotechnical materials are often affected by geolog-
ical conditions and human activities. The physical and mechanical parameters of
slope soil materials thus present spatial uncertainties.

The randomness of seismic excitations and geotechnical material uncertainties
constitute the main sources of uncertainties in slope systems. To accurately grasp the
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slope seismic dynamic response, the potential uncertainties of slope dynamic anal-
ysis must be discussed in terms of the slope stochastic seismic dynamic response
and seismic stability from a stochastic perspective (Al-Homoud & Tahtamoni,
2001, 2002; Shinoda et al., 2006; Tsompanakis et al., 2010). Studies regarding the
uncertainties in slope engineering are discussed in the following subsections.

1.3.1 Spatial Variability of Rock and Soil Parameters

The key to slope seismic performance and safety evaluation is to accurately grasp
and evaluate the deformation characteristics and seismic stability of the slope under
possible future earthquake conditions at an engineering site. In dynamic time history
analysis, an approach to select the appropriate dynamic constitutive models and
corresponding parameter calibration are the two major bottlenecks that restrict
geotechnical engineering.

The rock-soil materials that make up a slope are also generally highly nonlinear
materials that assume various deformation characteristics under different forces.
Rock-soil materials are highly sensitive to ground motion, and slopes tend to have
very different seismic dynamic responses under different earthquake conditions. The
seismic dynamic response of a slope exhibits considerable variability owing to the
randomness of the rock and soil parameters even for the same groundmotion because
of the sensitivity differences of the non-linear part of the rock and soil parameters to
seismicity.

Crawford and Eden (1967) first regarded soil parameters as variables, and
pioneered the use of the reliability method to obtain probabilistic information of
slope stability. This set off an upsurge in reliability research regarding the spatial
differences of rock and soil materials. Related research considering the uncertainty
of geotechnical materials is herein roughly divided into slope reliability analysis
based on the random variable model and random field model according to different
spatial variability models of rock and soil materials.

The random variable model regards the physical or mechanical parameters of
rock or soil as random variables that obey a certain probability distribution. The
quantitative description of the uncertainty of rock and soil parameters in this approach
uses a marginal probability distribution function (single variable) or joint probability
distribution function (multivariate).

Some research regarding slope reliability analysis is summarized here. Malkawi
et al. (2000) regarded the soil cohesion, internal friction angle, gravity, and other
parameters as random variables, and used the FOSM and MCS methods to compare
and analyze the reliability of homogeneous and nonhomogeneous soil slopes.
Dodagoudar and Venkatachalam (2000) introduced fuzzy sets based on random vari-
able models to further consider the ambiguity of soil parameters, and proposed the
fuzzy point estimate method (FPEM), which they applied to a double-layer soil
slope. Tan et al. (2003) later improved the FPEM, and Giasi et al. (2003) put forward
a FOSM method that considers the randomness and ambiguity of soil parameters.
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According to the graphical meaning of the reliability index, Low and Tang (2007)
regarded the relevant soil parameters as random variables, and proposed a slope reli-
ability analysis data table method by using a first order reliability method (FORM)
in Microsoft Excel. Low et al. (2011) further developed this reliability calculation
method within the data table method for the SORM, and calculated the system reli-
ability of slopes with retaining walls. Tan and Wang (2009) considered the uncer-
tainties of soil mechanical parameters and used the FOSM method based on the
nonlinear finite element method to obtain the slope system reliability. With the aim
to reduce the amount of calculation required for MCS in cases of low failure prob-
ability, Johari and Javadi (2012) evaluated the reliability of infinite slopes using the
joint distributed random variable method. Development of artificial intelligence and
machine learning methods has led many scholars to begin using genetic algorithms
(Xue & Gavin, 2007), support vector machines (Chen et al., 2011; Zhao, 2008), arti-
ficial neural networks (Cho, 2009), particle swarm optimization (Taha et al., 2012),
and other advanced algorithms, which have been introduced into the field of slope
reliability analysis to improve the reliability calculation efficiency.

Babu andMurthy (2003) evaluated the dynamic reliability of slopes by introducing
an amplification factor and peak acceleration based on the random variable descrip-
tion of soil parameters. Peng et al. (2005) combined the FOSM method, quasi-static
method, and artificial neural network algorithm, and proposed a slope seismic relia-
bility calculation method that considers the randomness of soil parameters. Shinoda
et al. (2006) proposed a new MCS method with low deviation and combined the
Newmark sliding block displacement method to study the slope dynamic reliability
with reinforced measures.

Notably, in the random variable model, the geotechnical materials are regarded
as a homogeneous material. This assumes that the parameter values at each point
in the space are exactly the same, and the stochastic characteristics of the rock and
soil materials are only shown for the values of different samples generated in the
random variable model. However, the material properties of even homogeneous rock
and soil often exhibit certain spatial variability and stratification owing to geolog-
ical processes, natural conditions, human activities, and other factors (Vanmarcke,
1977). The random field model was developed to describe the internal characteristics
and spatial variability of geotechnical materials. It is believed that for the random
field model, the physical and mechanical parameters of rock and soil materials differ
at different positions in space and have a certain correlation with each other. This
correlation is usually described by indicators such as the correlation distance, corre-
lation function, and variance reduction function. Research related to slope reliability
analysis based on random field theory has been gradually carried out.

For example, Li and Lumb (1987) used the FOSM method to analyze the influ-
ence of relative distance on the slope reliability index. Auvinet and Gonzalez (2000)
studied reliability of a three-dimensional cohesive slope and analyzed the influence
of the mean value, variance, and correlation distance of soil parameters on the failure
mechanism and its corresponding reliability index. Hicks and Samy (2004) simu-
lated the variability of anisotropic undrained shear strength, achieved the generation
of a random field, and combined with the MCS method to analyze its influence on
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the reliability of heterogeneous slopes. Griffiths et al. (2004, 2009a) proposed the
random finite element method (RFEM) based on random field theory. This method
uses the local averaging method to simulate random fields, and is combined with the
elastic–plastic strength reduction method and MCS method to determine the failure
probability (Griffiths & Fenton, 2004; Griffiths et al. 2009a). Shortly thereafter,
Griffiths et al. (2009b) successfully applied the RFEM to calculate the reliability
of three-dimensional soil slopes. Cho (2007, 2010) used the local average method
and Karhunen-Loève expansion method to calculate the slope stability probability
in combination with the MCS method. Srivastava et al. (2010) combined random
field model, finite difference numerical analysis, and MCS method to analyze how
the spatial variability of the permeability coefficient affects the slope stability and
seepage flow behavior. Wang et al. (2011) improved the calculation efficiency of
MCS method in slope reliability analysis by subset simulations, and analyzed how
the soil parameters and spatial variability of the critical slip surface affect reliability
indicators. Li et al. (2014) obtained the reliability of infinite slopes by analyzing a
random field of geotechnical parameters that linearly increase with depth. Jha (2015)
successfully compared and analyzed the differences among the FOSM, improved
FOSM, and RFEMmethods, and suggested the advantage of RFEM in the slope reli-
ability analysis. Kasama and Whittle (2016) regarded undrained shear strength and
soil weight as random variables with a lognormal distribution and studied the slope
stability by combining Cholesky decomposition with numerical analysis. Michael
et al. (2016) generated an anisotropic non-Gaussian random field of shear module
using the expansion optimal linear estimation method, and calculated the reliability
of slope dynamic response combined FLAC software and MCS method.

1.3.2 Randomness of Seismic Ground Motion

Parameters related to groundmotion include frequency, strength, andduration.Actual
measured records show that even for the same location, ground motion information
is not completely identical, as shown in Fig. 1.1, and has notable randomness, which
will affect the slope dynamic stability and make it difficult to accurately command
the ground motion information for future events. It is therefore reasonable to regard
ground motion as a stochastic process to analyze slope stochastic dynamic stability
under stochastic seismic activity.

Hayashi and Ang (1992) considered a sliding block in a single degree of freedom
system and analyzed the slope reliability under seismic action using the stochastic
vibration theory and first-passage failure theory. Huang and Xiong (2017) analyzed
the stochastic dynamic reliability of homogeneous slopes based on the power
spectrum probability model using the probability density evolution method.
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Fig. 1.1 Acceleration (a) and frequency spectrum information (b) of two earthquakes at the same
site (data from the PEER database)

1.3.3 Compound Randomness

The slope uncertainty analysis introduced in this bookmainly addresses two respects:
parameter uncertainty and groundmotion randomness. However, the above introduc-
tion only includes a single uncertainty factor and lacks a more comprehensive multi-
factor discussion. The above two factors should be comprehensively considered in
slope uncertainty analysis to fully analyze the uncertain factors in slope systems. The
coupling of randomness of rock and soil parameters and groundmotions has been the
focus of numerous studies. Al-Homoud and Tahtamoni (2000, 2002) considered the
above two factors in the analysis of safety factor and permanent displacement, and
proposed a three-dimensional model of dynamic reliability analysis. Kim and Sitar
(2013) used the stochastic process and random field to describe the stochastic char-
acteristics of ground motions and geotechnical parameters, and combined Newmark
sliding block displacement and MCS methods to study the dynamic reliability of
slopes.
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1.4 Aim of This Book

Upon summarizing the above research, it is clear that slope stability analysis remains
an active research hot spot. Especially in slope dynamic analysis, the stochastic
dynamic stability of slopes is still in the initial stage. Various simplified analysis
methods have to be sought to account for the complexity of dynamic problems.
The increased number of dimensions of stochastic variables introduces a geometric
increase in the calculation amount. As a result, unsolved problems still exist in slope
dynamic reliability research. Comprehensive hazard analysis on slope stochastic
dynamic stability problems is therefore necessary to reduce losses and casualties
caused by seismic geological disasters.

This book establishes a basic theoretical frameworkof stochastic dynamic analysis
for slope engineering by quantifying uncertain factors in slope engineering stability
analysis, and provides a reference for slope risk assessment based on stochastic
dynamics. The book outline is introduced here.

In this chapter, the background of this book is introduced in detail, including
earthquake and geological disasters that have occurred in recent years, existing
slope seismic stability analysis methods, their current advantages and limitations,
and uncertainties that are not covered in these evaluation methods. The overarching
hope is to establish a new century-breaking slope stochastic dynamics framework.

Chapter 2 pertains to the basic framework and general process of the stochastic
dynamic theory of slope engineering. The basic application of the slope stochastic
dynamic theoretical framework is introduced by means of slope seismic dynamic
nonlinear time history analysis and applied to slope stochastic stability analysis in
Chap. 3 as a reference. On the basis of slope instability analysis and numerical
simulations, failure mode, failure mechanism, and post-failure behavior analysis of
slope after failure based on stochastic dynamics are also important, which will be
clearly defined and described in Chap. 4.

The validity and accuracy of the theorical framework and slope stochastic
nonlinear dynamic response law and characteristic are classified using a physical
model experiment in Chap. 5. However, considering the limitations of the experi-
ment itself, no experimental discussion is provided here for the study of slopes after
failure, which will hopefully be continuously improved in future research.

Chapter 6 summarizes the conclusions of this book and presents future prospects
for slope nonlinear stochastic dynamics analysis. For convenience, Fig. 1.2 illustrates
the basic contents of this book.
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Fig. 1.2 Basic logical framework of this book
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Chapter 2
Theoretical Framework of Slope
Stochastic Dynamics

Seismic engineering design and a large number of slope engineering tests have
shown that slopes under seismic dynamic action behave as a nonlinear random
dynamic system. Associated uncertainties arise from the rock and soil materials,
slope geological conditions, geometric dimensions, and external excitation (mainly
ground motion), among others. The uncertainty and randomness must be considered
to more accurately grasp the dynamic response of slope engineering under possible
groundmotion conditions. The basic theory of slope stochastic dynamics is therefore
established.

Slope stochastic dynamics includes a nonlinear seismic dynamic stability assess-
ment framework formodeling, analysis, and evaluation of the slope stochastic seismic
dynamic response based on dynamic reliability. The stochastic dynamic analysis
method uses the dynamic time history analysis method to solve the associated
equations and obtain the probability density function (PDF) solution of the slope
random seismic response. Many different methods are available within the field
of stochastic dynamics to handle stochastic dynamic problems whose uncertainties
are derived from random initial conditions, random parameters, random excitation,
and compound random factors. These random sources are usually characterized by
random variables, random processes, random fields, and random waves.

In this book, the probability density evolution method (PDEM) is selected as a
part of the theoretical framework of slope stochastic dynamics. Its main advantages
are that the PDF of the nonlinear stochastic dynamic system can be obtained and less
calculation is required. The PDEM follows the principle of probability conservation,
which overcomes the difficulty of solving the general stochastic dynamic system for
the high-dimensional and high-order Fokker–Planck-Kolmogorov (FPK) equation.
It also overcomes the large amount of required calculation and random convergence
of Monte Carlo random simulations.

The emergence and development of the PDEM therefore provide a theoretical
basis for the random seismic response and seismic dynamic stability reliability anal-
ysis of slope. The concept of performance-based seismic design also provides a
reference for the seismic evaluation and design of slopes.
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2.1 General Process of Stochastic Seismic Dynamic
Response Analysis

The theoretical framework and research contents of the stochastic dynamic analysis
method are presented in detail in Fig. 2.1. The purpose of stochastic dynamic analysis
includes three aspects: (1) solve the probability information of the slope dynamic
stochastic system; (2) achieve a quantitative randomness characterization; and (3)
verify and apply the stochastic dynamic analysis method.

A large number of slope engineering tests and seismic engineering design indicate
that the response of slope under seismic dynamic action is related to the uncertainty
of the rock and soil mass material, slope geological conditions, geometric size, and
external excitation (mainly seismic ground motion excitation). In related studies,
this has mainly been regarded as a nonlinear stochastic dynamical system composed
of various randomness. In deterministic seismic dynamic analysis, the slope safety
factor is a function of several geotechnical parameters and loads. Owing to the vari-
ability of the geotechnical parameters and randomness of the seismic excitations, it
is clearly unreasonable to assess the slope safety degree based on the safety factor
obtained from deterministic theory. There are some cases of slope failure in which
the safety factor meets the slope engineering design requirements, for which the
slope reliability analysis method based on uncertainty theory is presented.

The transition from certainty theory to uncertainty theory is the second theoret-
ical leap from qualitative analysis to quantitative analysis in the process of slope
stability research. To accurately grasp the dynamic response of slope engineering
under unexpected ground motion, the above uncertainties and randomness must be
considered and the seismic dynamic response of slope must be studied from the
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Fig. 2.1 Theoretical framework and research contents of stochastic dynamic analysis of slope under
seismic activity
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perspective of seismic dynamic reliability. The stochastic seismic dynamic response
analysis method based on the PDEM is used to analyze the slope response from a
random viewpoint.

At present, stochastic seismic dynamic response analysis mainly includes slope
stochastic dynamic analysis based on rock and soil parameter uncertainties and/or
ground motion uncertainties. The randomness of ground motion and geotechnical
parameter uncertainties constitute the main sources of the uncertainty factors of a
slope system. These two uncertainties can be quantified using a groundmotionmodel
and random field model. The random ground motion model selected in this book
is the power spectrum model with a gradual evolution of intensity and frequency
of non-stationary ground motion, which considers the non-stationary characteris-
tics of ground motion, and the selected field parameters and model parameters are
time-varying. A spatial random field model of slope rock and soil parameters are
established based on the Karhunen-Loève (K-L) decomposition method to quantita-
tively characterize the spatial variabilities of the soil parameters. This method is an
efficient way to compress the data and extract the essential features of the stochastic
processes.

The stochastic dynamic analysis method for slope seismic dynamic response anal-
ysis is composed of a probabilistic information solution and quantitative characteri-
zation of randomness. In this book, the stochastic dynamic analysismethod is applied
to study the stochastic seismic response and seismic dynamic reliability analysis of
slope. The numerical simulation process includes model building, stochastic seismic
response analysis, reliability analysis, and results verification. The results obtained
using the stochastic dynamic analysis method are compared and verified by shaking
table tests. The results show that the stochastic dynamic analysis method has good
accuracy for site evaluation, slope response, slope instability conditions, and slope
reliability.

2.2 Probability Density Evolution Method

The description of the PDF is the most intrinsic expression of physical events.
The PDEM follows the principle of probability conservation and overcomes the
difficulty of obtaining a solution of a general stochastic dynamic system for the
high-dimensional and high-order FPK equation (Boyadjiev, 1975).

After obtaining the PDF solution of the slope seismic response (e.g., displacement,
acceleration, stress, and strain), the second-order statistics (e.g., mean and standard
deviation) and higher-order statistics of the response can be further obtained by the
integration of the PDF, which also overcomes the defects ofMonte Carlo simulations
(MCS), such as the large calculation amount and random convergence (Schuell�r,
1997).

The emergence and development of PDEM theory therefore provide a theo-
retical basis for the random seismic response and reliability analysis of seismic
dynamic stability of slope. Furthermore, because it can be combinedwith the concept
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of performance-based seismic design, the PDEM provides a reference for slope
evaluation and design.

PDEM theory has benefited from the development of stochastic dynamic system
analysis. In the past half century, extensive studies have made numerous fruitful
advances in stochastic vibration theory and stochastic structural analysis theory.

From the aspect of stochastic vibration theory, which mainly considers load
randomness, the theory of stationary response analysis of linear systems represented
by the pseudo-excitation method is well suited and has been applied in engineering.
For nonlinear dynamic systems, Zhu (2003) obtained a stationary analytical solution
of the FPK equation based onHamiltonian theory. The stochastic simulationmethod,
stochastic perturbation method, and orthogonal polynomial expansion theory have
been developed based on stochastic structural analysis theory, and good results have
been achieved in solving linear stochastic structural systems (Schuell�r, 1997).

ThePDEMtheory can effectively consider the randomness from initial conditions,
system parameters, and external loads. The stochastic and nonlinear state equations
are decoupled using the stochastic event description of the probability conservation
principle. The nonlinearity of the system is then handled based on the existing deter-
ministic theory.After solving the generalizedprobability evolution equation (GDEE),
the PDFof the nonlinear system is obtained. Because the PDF contains all the random
information of the system, this method can realize the full-time refinement analysis,
which covers the entire process of a slope system from static to vibration, and the
final state is analyzed.

2.2.1 Principle of Probabilistic Conservation

The response of the slope dynamic system must be described as a stochastic process
regardless of whether the randomness of a seismic dynamical system is derived
from the initial conditions, external excitation, or system parameters. The statistical
characteristics of these dynamical systems are completely dependent on the initial
conditions, external excitation, and randomness of the system parameters. The influ-
ence of random factors must therefore be considered to analyze the seismic dynamic
response of the slope. The stochastic vibration of the structure is divided into the
stochastic dynamic response and seismic reliability analysis.

Similar to the conservation of energy, mass, andmomentum in the physical theory
of continuum mechanics, the conservation of probability is the basic principle of
stochastic dynamical systems. The definition of probability conservation is that in
a conservative stochastic system, the probability is conserved during the evolution
of the state. A conservative stochastic system implies that no new random factors
are added or existing ones disappear in the evolution process. There are two ways to
describe the probability conservation principle: random event description and state
space description (Chen & Li, 2009).

The probability conservation principle is described by a random event having the
same probability in different moments of the system evolution. From the perspective
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of state space, this principle is described that the increasedprobability of afixed region
in any time period is equal to the probability of crossing the boundary and entering
the region in that time period. The basic principle of random event description is
introduced according to the purpose of this book, and the GDEE is deduced.

On the basis of the probability conservation principle, the physical relationship
between samples is reflected by the physical equations and evolution equation used
to control the probability transfer process of the physical stochastic system.

An n-dimensional dynamical system is taken as an example to elaborate the prob-
ability conservation principle. For an n-dimensional stochastic dynamical system,
this can be expressed as:

Ẋ = A(X, t), X(t0) = X0 (2.1)

where X = (X1, X2, . . . , Xn)
T is the n-dimensional state vector, X0 =

(X0,1, X0,2, . . . , X0,n)
T is the initial state vector, and A(·) is the deterministic

operator vector.
When the initial condition X0 is given, the solution X in Eq. (2.1) exists uniquely

and continuously depends on the initial condition X0, denoted as:

X(t) = g(X0, t) (2.2)

X0 is a random vector, and therefore the event {X0 ∈ �0} is a random event, where
�0 is any region in the initial state space. When X0 evolves from time t0 to X(t) at
time t , �0 also evolves over time to the region �t belonging to X (t), that is:

�t = g(�0, t) (2.3)

Random events {X0 ∈ �0} accordingly change with t for {X (t) ∈ �t }, as shown
in Fig. 2.2. These two random events are an equivalent random event, thus their
probabilities must be equal, that is:

o o
Randomness of slope

seismic dynamic system
Nonlinear stochastic seismic

dynamic response

X Y

D0 D1

Pf(x) Pf(y)

Fig. 2.2 From the randomness of a slope seismic dynamic system to the nonlinear stochastic
seismic dynamic response of a slope
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Pf (x) = Pf (y){X (t) ∈ �t } (2.4)

Let us assume that the joint PDF of the initial random vector X0 is Px0(x0)
and the joint PDF of X (t) is Px (x, t), where x0 = (x0,1, x0,2, . . . , x0,n)

T and x =
(x1, x2, . . . , xn)

T . Equation (2.3) then changes to:

∫
�t

pX (x, t)dx =
∫

�t

pX (x, t0)dx (2.5)

For convenience, �0 is changed to �t0, then PX (x, t)=Px0(x0, t).
Equation (2.5) is valid for any t , thus:

D

Dt

∫
�t

pX (x, t)dx = 0 (2.6)

where D(·)
Dt represents the total derivative, and its exact meaning is:

D

Dt

∫
�t

pX (x, t)dx = lim
�t→0

1

�t

(∫
�t+�t

pX (x, t + �t)dx −
∫

�t

pX (x, t)dx
)

(2.7)

Equations (2.6) and (2.7) are mathematical expressions that describe random
events under the principle of probability conservation.

2.2.2 Generalized Probability Density Evolution Equation

Randomness in engineering systemsmainly originates from the parameters and load.
The randomness of the parameters is noted as η. The project of the dynamic load
incentives (e.g., excitation of an earthquake, wind, and waves) is also considered a
random process and the basic random variables are noted as � .

To unify the symbols, all the basic random variables in the system are written as:

� = (η,� ) = (
η1, η2, · · · ηs1 ,�1,�1 · · · ,�s2

) = (�1,�2, · · · �s) (2.8)

In the practice of slope seismic design and evaluation, the physical quantities of
interest are not only the acceleration, velocity, and displacement of the system, but
also the stress, strain, internal forces of the control interface, and the safety factor.
These physical quantities can be precisely expressed as functions of velocity and
displacement.

A random system composed of (Fs(t),�) is considered conservative because
all of the random factors are included. Following the random event description of
probability conservation (Eq. (2.6)) yields:
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⎞
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(
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)

∂
(
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)
⎤
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=
∫

�t0×��

|J |
⎛
⎝∂pFs,�

∂t
+

m∑
j=1

r j
∂pFs,�

∂ fs, j

⎞
⎠d f sdθ

=
∫

�t0×��

⎛
⎝∂pFs,�

∂t
+

m∑
j=1

r j
∂pFs,�

∂ fs, j

⎞
⎠d f sdθ = 0 (2.9)

where |J| is the Jacobian determinant and PFs,�

(
f s, θ , t

)
is the joint PDF of

(FS(t),�). Because �t can be a region at any time, the following can be obtained
according to Eq. (2.9):

∂pFs ,�( f s, θ , t)

∂t
+

m∑
j=1

r j
∂pFs,�( f s, θ , t)

∂ fs, j
= 0 (2.10)

The above equation is the generalized probability density evolution equation,
which is a partial differential equation and its initial condition is:

pFs,�

(
f s, θ , t

)∣∣
t=t0

= δ
(
f s − f s0

)
p�(θ) (2.11)

where fS0 is the deterministic initial value and δ(·) is the Dirichlet function.

2.2.3 Numerical Solution of the GDEE

The closed analytical solution of the GDEE can be obtained for some simple prob-
lems. However, approximate solutions are generally adopted for most practical slope
engineering problems, which are obtained using numerical methods. The specific
implementation steps are as follows.

(1) A series of discrete points is selected on behalf of the probability distribution of
randomvariables� in space�θ , namely θq = (

θq,1, θq,2, . . . , θq,s
)
, where q =
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1, 2, . . . , nsel, nsel is the number of discrete sample points. The assigned prob-
ability Pq of each discrete representative point can then calculated according
to:

Pq =
∫

Vq p�(θ)dθ (2.12)

where Vq is the representative volume.

(2) The time derivative of the safety factor,Ḟs, j (θ , t), can be obtained for a given
Θ = θ q , using the deterministic dynamic equation numerical solution method,
such as the Newmark-β and Wilson-θ method.

(3) The Ḟs, j (θ, t) obtained in step 2 is substituted into the generalized probability
density evolution in Eq. (2.10). The finite difference numerical method is used
to solve the problem combined with the initial conditions in Eq. (2.19).

(4) After all values of PFs ,�( fs, θ, t) are determined, the numerical solution of the
PDF PFs ( f s,t) can be obtained by summation:

PFs

(
f s, t

) =
nsel∑
q=1

PFs ,�( fs, θ, t) (2.13)

2.3 Random Field Expression of Spatial Variability
of Slope Rock and Soil Parameters

The uncertainty of geotechnical parameters in the stochastic dynamic analysis of
slope refers to the spatial variability of geotechnical parameters. Numerous studies
have addressed the variability of geotechnical parameters mainly because those
obtained from geotechnical and in situ tests inevitably have certain variability. These
include the strength parameters obtained from indoor geotechnical tests, geotech-
nical parameters obtained from cross-plate shear tests, shear wave velocities obtained
from in situ tests, and supporting structure parameters (Al-Homoud & Tahtamoni,
2000, 2001; Kramer & Paulsen, 2004; Tsompanakis et al., 2010). The study of slope
geotechnical parameter variability has important practical significance in engineering
(Wu, 2015).

The first-order second-moment method or MCS method are used to calculate the
failure probability when considering the variation of rock and soil parameters of a
slope (Griffiths et al., 2009; Jiang et al., 2017; Peng et al., 2005). If the PDF of the
parameters is known, the MCS method can be used to generate random analysis
samples of the slope, after which the quasi-static method or Newmark rigid slider
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method can be used for the seismic dynamic analysis to obtain a dynamic solution.
It should be pointed out that these two methods are slightly oversimplified to handle
earthquake action. For example, quasi-static analysis may only be able to consider
earthquake action for the earthquake of magnitude 7–8. The non-linearity of rock
and soil materials and magnifying effect of the slope on ground motion can therefore
not be well considered (Johari & Khodaparast, 2015).

Several studies have considered the spatial variability of slopegeotechnical param-
eters but mainly focused on the static problem, and the dynamic response of slope
has not yet been considered. This results in inconsistencies between the analysis
and actual response of the slope. The spatial variability of geotechnical parameters
refers to rock mass parameters that are related to the spatial location, which is mainly
considered to be influenced by the deposition and consolidation history.

Random field theory is introduced to study the uncertainty of rock and soil
parameters.

The proper orthogonal decomposition (POD)method is an efficient data compres-
sion and extraction method for stochastic processes, and is closely related with prin-
cipal component analysis, also known as the K-L decomposition method, which is
adopted in this book. Higher accuracy is achieved and fewer items must be expanded
for specific accuracywhenusing theK-Ldecompositionmethod to simulate a random
field (Ghiocel & Ghanem, 2002). The K-L decomposition method is introduced to
establish the randomfieldmodel and quantitatively characterize the spatial variability
of rock and soil mass parameters.

In K-L decomposition theory, a random field can be described by a series of
random variables and deterministic spatial correlation functions. Two-dimensional
random fields can be expanded as:

Rk(x, y;ϑ) = μk +
∞∑
i=1

λi∅i (x, y)ξk,i (ϑ), (x, y) ∈ � (2.14)

whereμk and σk are the mean and standard deviation of the geotechnical engineering
parameter, respectively, ξk,i (ϑ) is the mutually independent standard normal random
variable, ϑ is outer space coordinates, (x, y) is a two-dimensional random field
model of structural system � coordinates, and λi and φi (x y) are the eigenvalues of
the autocorrelation function and characteristic function, respectively, which can be
determined by:

∫
�ρ

(
x, x ′)φi

(
x ′)d�x ′ = λiφi (x) (2.15)

where ρ (x, x’) is the autocorrelation function. The exponential autocorrelation
function is adopted here, which is given as:
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ρ(x, y) = exp

(
−
∣∣x − x ′∣∣

lx
−

∣∣y − y′∣∣
ly

)
(2.16)

where lx and ly are horizontal and vertical components the autocorrelation distance,
respectively. Considering the anisotropy of rock and soil mass materials, different
autocorrelation distances are adopted in the horizontal and vertical directions (i.e.,
different lx and ly values). To ensure accuracy, the first n items in Eq. (2.14) can be
intercepted as:

R
∧

k(x, y;ϑ) = μk +
n∑

i=1

σk

√
λiϕi (x, y)ξk,i (ϑ), (x, y) ∈ � (2.17)

where n is the number of terms in the expanded series and a parameter that controls
the random field expansion depending on the required precision and selected auto-
correlation function. To guarantee the accuracy of the generated random fields, n is
set here to 150 according to the suggestion by Cho (2010).

Previous studies showed that the different parameters in geotechnical engineering
are relevant. For considering the relationship between the parameters of rock body,
according to Vorechovsky (2008), the independent standard normal distribution and
related random variables in Eq. (2.17) not associated with the Gaussian random field
can be converted into the following Gaussian correlation random field model:

R
∧C

k (x, y;ϑ) = μk +
n∑

i=1

σk

√
λiϕi (x, y)χk,i (ϑ), (x, y) ∈ � (2.18)

A Gaussian distribution may be not applicable in engineering practice because
the physical and mechanical parameters of rock and soil are all positive. Geotech-
nical parameters can generally be assumed to have a lognormal distribution with a
relatively large distribution range. The uncertainty of geotechnical parameters with
relatively large variability can thus be analyzed (Nour et al., 2003). The Gaussian
correlation randomfield can therefore be transformed into a non-Gaussian correlation
random field model according to:

R
∧CN

k (x, y; θ) = exp

(
μlnk +

n∑
i=1

σlnk

√
λiϕi (x, y)χk,i (ϑ)

)
, (x, y) ∈ � (2.19)

The POD method was first applied to the study of fluid dynamics and turbu-
lence by Lumley (1967), who investigated the deterministic function to describe
a random process and proved that using the characteristic function of the covari-
ance function of the random process can directly describe the random process itself.
Aubry et al. (1993) proposed that the POD symmetry must be retained even if the
energy is zero. The eigen orthogonal expansion method was first applied to structural
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dynamics by Masri et al. (1998), who proposed a mathematical analytical expres-
sion of the linear response covariance function of a single degree of freedom system
through the progressive spectral decomposition of the covariance function of a non-
stationary random process. Masri et al. (1998) used the eigen orthogonal expansion
method to analyze the seismic non-stationary responses of single-degree-of-freedom
and multi-free systems. Gullo et al. (1998) decomposed the stationary process into
the sum of several sub-vector processes, and established the response moment of
wind-earthquake excitation for systems with multiple degrees of freedom. Tubino
et al. (2003) used the POD method of ground motion to decouple the quasi-static
and dynamic parts of a multi-point support structure. Cusumano and Bai (1993)
proposed that the eigen orthogonal expansion method should be used to identify
the base-dimensional subspace. Rathinam and Petzold (2003) proposed a theoretical
framework of an eigen orthogonal expansionmethod for nonlinear dynamic systems.

DiPaola and Pisano (1996) embedded the spectral decomposition of the cross PSD
matrix of a multivariable random process into a MCS to simulate the wave random
field, and pointed out that the combination of random and spectral decomposition
is necessary to a considerable extent. Grigoriu (2004) evaluated the advantages and
disadvantages of the eigen orthogonal expansion method and pointed out that the
spectrum representation method is a special case in the analysis of problems related
to stationary random processes. Phoon et al. (2005) implemented the simulation
analysis of strongly non-Gaussian stochastic processes through the eigen orthogonal
expansion method. Chen and Kareem (2005) embedded the POD method into the
autoregressive method, and pointed out its advantages in wind-load random field
simulations. Carassale andSolari (2006) used the PODmethod to simulate a turbulent
field in complex regions.

The most important point in the generation of a random field model is to estimate
and obtain the required statistical parameters, including the mean value, standard
deviation, autocorrelation distance, and autocorrelation function. However, field data
are often limited and difficult to obtain. Moreover, the data obtained by conventional
geotechnical engineering investigation methods are insufficient, and it can be diffi-
cult to obtain a reliable statistical distribution law of geotechnical body parameters
using these data. It is also impossible to evaluate the variability of the geotechnical
body parameters with a reasonable confidence interval (Montoya-Noguera et al.,
2019). However, sparsely measured data can also be used to estimate the probability
distribution model of the parameters based on reasonable distribution assumptions.
In the simulation of random fields, most studies have therefore been based on the
distribution hypothesis and available data in the literature.

Figure 2.3. The values of the rock and soil mass parameters clearly differ in
different spatial positions, and the spatial variation forms and rules also vary in
different random fields.
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Fig. 2.3 Examples of two
cross-correlated
non-Gaussian random fields
of the cohesion (a) and
friction angle (b)
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2.4 Seismic Ground Motion Models

Research on the randomness of ground motion in stochastic dynamic analysis of
slopes mainly includes the randomness of the input parameters of ground motion
and the randomness of the time history of ground motion samples. The randomness
of input parameters of groundmotion refers to the uncertainty of considering seismic
action in quasi-static analysis or theNewmark rigid slidermethod. The randomness of
input parameters refers to the randomness of ground action in quasi-static analysis
or Newmark analysis. For example, Al-Homoud and Tahtamoni (2001) assumed
the distribution of physical quantities such as epicenter distance, strong earthquake
duration, and peak acceleration (e.g., uniform distribution, normal distribution) when
studying the variability of groundmotion. Tsompanakis et al. (2010) used the pseudo-
static method to analyze slope dynamic vulnerability, but the horizontal seismic
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action coefficient had a certain variability. Strenk and Wartman (2011) showed that
there is a certain variability of the false seismic yield acceleration when applying the
Newmark rigid slider method to calculate the permanent displacement of a slope.

An appropriate number of measured ground motion data can be selected from
the available seismic database (Rathje et al. 2010), and the generation of the time
history of ground motion samples can depend on random vibration theory (Huang &
Xiong, 2017a, b; Kim & Sitar, 2013; Pang et al., 2018a, b), which is an advanced
researchmethod to generate the time history of groundmotion samples using random
vibration theory in dynamic analysis.

The development of seismic engineering and random vibration theory has allowed
non-stationary characteristics to be considered in the stochastic dynamic analysis of
slopes. Related random vibration theories, such as the pseudo-excitation method
and PDEM, have been gradually applied in slope engineering (Huang et al., 2018,
2019; Huang & Xiong, 2017a, b). For example, some scholars have considered the
randomness of ground motion in seismic studies of earth-rock dams and concrete
face rockfill dams. Dynamic time history analysis has indicated that ground motion
randomness is an important factor that affects the dynamic response and reliability
of slopes (Pang et al., 2018a, b).

2.4.1 Stochastic Seismic Ground Motion Model

The randomness of earthquake activity occurs not only in time and space, but also
in the focal mechanism, propagation route, and site conditions. The randomness of
both the seismicity and ground motion are two parts that contribute to the overall
randomness of ground motion. An approach to reasonably simulate and predict the
randomness of ground motion is a popular yet difficult problem in ground motion
input research. The first step of seismic design in slope engineering is to determine
the ground motion. Reasonable ground motion input is a necessary condition to
ensure the correct design result. Without a reasonable ground motion model design,
the seismic resistance of slope engineering can only remain in the seismic damage
investigation stage and be tested or numerical analyzed using strong earthquake data.
Since Housner (1947) first proposed stochastic processes to simulate seismic ground
motion in 1947, stochastic ground motion models and their engineering applications
have been studied in depth.

Stochastic ground motion models are divided into three categories: stationary
random vibration models; intensity single non-stationary random vibration models;
and intensity-frequency non-stationary stochastic ground motion models.

(1) Stationary random vibration model

a. White noise model

White noise is a stationary random process with a zero mean value and constant
power spectral density (PSD) function. This approach was first used to simulate the
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random process of ground motion following the ideal white noise model proposed
by Housner (1947), which simulates the process of ground motion as a random
pulse according to the limited acceleration records of strong earthquakes. The PSD
function of ground motion can be expressed as:

S(ω) = S0, −∞ < ω < ∞ (2.20)

σ 2 =
∞∫

−∞
S(ω)dω = ∞ (2.21)

where S0 is a constant that reflects the ground motion intensity. This model assumes
the power spectrum is a specific constant, which can reflect the engineering char-
acteristics to a certain extent, such as the ground motion amplitude. However, it
has infinite variance, and thus infinite total energy, which is purely theoretical and
contrary to actual situations. Although the white noise model is only based on math-
ematical considerations, it has no specific physical meaning. Nevertheless, it has laid
a useful theoretical foundation for the study of random ground motion modeling.

b. Kanai-Tajini model—filter white noise model

Tajimi (1960) regarded the ground motion of bedrock as white noise and the over-
burden of bedrock as a linear filter of a single degree of freedom. The smooth white
noise process is linearly filtered to obtain the filtered white noise model (K-Tmodel),
and the acceleration power spectrum is expressed as follows:

Sk−T (ω) =
(
ω4
g + 4ξ 2

gω
2
gω

2
) · S0(

ω2 − ω2
g

)2 + 4ξ 2
gω

2
gω

2
(2.22)

This model considers the physical nature of ground motion, such as the influence
of soil layer characteristics on the spectral characteristics of ground motion, and can
effectively simulate the ground motion characteristics of an earthquake. However,
the final velocity and displacement power spectrum exist in singularity at the zero
frequency, and the mean square velocity are unbounded. This effect may not be
particularly good when applying the K-T model to analyze the response of low-
frequency structures with ground motion because it enhances the influence of the
low-frequency ground motion content.

c. Clough-Penzien model—double filter white noise model

To solve the singular point problem, Clough and Penzien (1975) modified the low-
frequency energy of the K-T model and proposed a double-filter white noise model
(C-P model), in which the foundation rock and site soil are assumed as second-order
linear filters. In the second filtration, the appropriate frequency and damping param-
eters are selected for the required filtering characteristics to eliminate extremely low
frequencies. The PSD function of the improved C-P model is:
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SC−P(ω) =
(
ω4
g + 4ξ 2

gω
2
gω

2
) · ω4 · S0((

ω2 − ω2
g

)2 + 4ξ 2
gω

2
gω

2
)

·
((

ω2 − ω2
f

)2 + 4ξ 2
f ω

2
f ω

2

) (2.23)

ω f = 0.1 0.2ωg; ξ f = ξg (2.24)

where ωg and ξg are the prominent circular frequency and site damping ratio of the
site soil, respectively, ω f and ξ f are the secondary filtration frequency parameters
and damping ratio parameters, respectively, that control the variation of the low-
frequency ground motion energy, and S0 is the spectral intensity of white noise on
the bedrock.

d. Other improved filter white noise models based on the K-T model

Numerous earthquake engineering studies have improved the shortcomings of the
K-T model from different angles, as shown in Table 2.1.

In view of the two classical filter white noise models, namely the C-P model and
improvedfilterwhite noisemodel 1, it has been pointed out that theC-Pmodel ismore
reasonable for seismic random response analysis of long-period structures because it
can more fully reflect the possible variation of low-frequency ground motion energy.

(2) Intensity single non-stationary earthquake ground motion model

The measured earthquake time-history record reflects a non-stationary process that
consists of three parts: a strengthening stage; a stationary stage; and a weak-
ening stage. Strictly speaking, intensity varies with time and its non-stationarity
is mainly reflected in the two dimensions of the time domain and frequency
domain, including intensity non-stationarity (time-domain non-stationarity) and
frequency non-stationarity (frequency-domain non-stationarity characteristics). The
frequency composition of the ground motion process exhibits notable time-varying
characteristics.

a. Intensity non-stationary earthquake ground motion model

The ground motion model of a stationary earthquake only describes the statistical
characteristics of the stationary phase. Thus, in engineering applications, the intensity
non-stationarity of ground motion is mainly reflected by multiplying the stationary
model by the time-varying intensity envelope function.

The non-stationarity of ground motion has been extensively studied and a corre-
sponding non-stationarity model of intensity has been proposed, as shown in Table
2.2. Among them, the Bolotin model is widely used and plays a crucial role in the
field of engineering.

On the basis of the power spectrum evolution theory of the non-stationary random
process of ground motion, the power spectrum density function of the evolution of
the non-stationary process of ground motion acceleration intensity can be expressed
as:

S(t, ω) = | f (t)|2 · S(ω) (2.25)
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Table 2.1 Improved filter white noise models

White noise model PSD function Description

Improved filter white
noise Model 1 (Hu &
Zhou, 1962)

S(ω) =
(
ω4
g+4ξ2gω2

gω
2
)
·ωn ·S0((

ω2−ω2
g

)2+4ξ2gω2
gω

2

)
·(ωn+ωn

c )
ωc is the low-frequency
content and the value
range of parameter n is 4
~ 6

Improved filter white
noise Model 2
(Matsushima, 1986)

S
′
0(ω) = S0

1+ ω2

ω2k

Markov spectrum

S(ω) =
(
ω4
g+4ξ2gω2

gω
2
)
·S′

0(ω)((
ω2−ω2

g

)2+4ξ2gω2
gω

2
ωk is the spectral
parameter representing
ground motion parameters

Improved filter white
noise Model 3 (Hong
et al., 1994)

S(ω) =
(
ω4
g+4ξ2gω2

gω
2
)
·ω2·S0((

ω2−ω2
g

)2+4ξ2gω2
gω

2

)
·(ω2+ω2

c)
ωc is the filter parameter

Improved filter white
noise Model 4 (Du &
Chen, 1994a, b)

L(ω) = 1
1+(Dω)2

Low pass and high pass
filters are introduced, and
D is the source parameterH(ω) = ω4

ω2+ω2
0

S(ω) =
(
ω4
g+4ξ2gω2

gω
2
)
·L(ω)·H(ω)·S0((

ω2−ω2
g

)2+4ξ2gω2
gω

2

)

Improved double filter
white noise Model (Lai
et al., 1995)

S(ω) =
(
ω4
1+4ξ21 ω2

1ω
2)·(ω4

2+4ξ22 ω2
2ω

2)·S0((
ω2−ω2

1

)2+4ξ21 ω2
1ω

2
)
·
((

ω2−ω2
2

)2+4ξ22 ω2
2ω

2
)

ω1,ξ1 and ω2,ξ2 are
respectively the circular
frequency and damping
ratio of surface soil and
bedrock

Matsuda-Asano model
(Matsuda & Asano,
2006)

S(ω) = ω2
gω

2·S0(
ω2−ω2

g

)2+4ξ2gω2
gω

2
Only have ωg(Superior
circle
frequency),ξg(Damping

ratio) and S0 (Spectral
intensity factor) three
parameters

where S(ω) is the acceleration PSD function of the stationary random groundmotion
model.

Numerous strength envelope functions have been proposed in the literature, which
can be divided into two categories: (1) a piecewise expression of curvilinear enve-
lope functions; and (2) continuous curvilinear unimodal envelope functions. Four
commonly used strength envelope functions are listed in Table 2.3.

The non-stationary characteristics of ground motion are realized by the intensity
envelope function. This means that the amplitude of the ground motion acceleration
time history varies with time, but its frequency component remains the same in each
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Table 2.2 Intensity non-stationary random vibration model

Intensity non-stationary
model

Functional expression Description

Cornell model (Cornell,
1960)

a(t) = ∑
j V j f

(
τ j
)
h

′(
t − τ j

)
H(t) is Heaviside step
function, Vj is random
variable; The strength is
nonstationary through f (t)

f (t) = e−αt H(t)

h∗(t) = sin2π t/ l

Bolotin model (Bolotin,
1960)

a(t) = f (t) · x(t) f (t) is the deterministic
envelope function, and x(t)
is the stationary vibration
model

Goldberg model
(Goldberg et al., 1964)

a(t) =∑
j V a j te−α j t H(t)cos

(
ω j t + ϕ j

) Attenuated trigonometric
superposition model,
ω j , ϕ j ∈ (0, 2π)

Amin and Ang model
(Amin & Ang, 1968)

a(t) = f (t) · x0(t) f (t) is the deterministic
envelope function, x0(t) is a
standardized high stage
process

Ruiz and Penzien model
(Ruiz & Penzien, 1969)

a(t) = f (t) · W (t) Bedrock acceleration
filtering granular noise
model, W (t) has granular
noise characteristics

Table 2.3 Commonly used strength envelope functions

Expression of strength envelope function Parametric description

f (t) =

⎧⎪⎪⎨
⎪⎪⎩

(
t
t1

)2
t ≤ t1

1t1 < t ≤ t2

exp([−c(t − t2)])t > t2

t1 and t2 are the first and last moments of the peak
stationary period, and the speed of attenuation can be
controlled by c (Amin & Ang, 1968)

f (t) = a(t)exp(−bt)a > 0,b > 0 b is the number at which the peak acceleration
arrives: a is the cross product of b and the Euler
number e (Bogdanoff et al., 1961)

f (t) = [ t
c exp

(
1 − t

c

)]d
d = 1 ∼ 3 c control the arrival time of peak ground motion

acceleration (Ou & Wang, 1998)

f (t) = I0
(
e−at − e−bt

)
I0 is the intensity factor, and a,b control the peak
point and shape of the function (Hu & Zhou, 1962)t∗ = lnb−lna

b−a ; I0 = 1
e−at∗ −e−bt∗

time period and the frequency remains stable. However, different frequency compo-
nents have a significant influence on the analysis of the random dynamic response
of strongly nonlinear structure ground motion, thus both intensity and frequency
non-stationarity should be considered in random ground motion models.
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b. Intensity-frequency non-stationary earthquake ground motion model

There are presently two effective ways to fully consider the intensity and frequency
non-stationary aspects of random ground motion models. The first is to consider the
frequency content in the intensity envelope function mentioned in the intensity non-
stationary earthquake ground motion model. In the second one, the time variation is
considered in the frequency parameters of the stationary power spectrum model.

The first type of intensity-frequency non-stationary earthquake ground motion
models considers the frequency content in the intensity envelope function. Kameda
(1975) described the random process of intensity-frequency non-stationary ground
motion acceleration as follows:

a(t) =
∞∫

−∞
A(t, ω)e−iwtd Z(ω) (2.26)

Its evolutionary PSD function is:

SA(t, ω) = |A(t, ω)|2S(ω) (2.27)

is the PSD function of the stationary random process of ground motion acceleration,
awhere A(t, ω) is the time–frequency modulation function determined at time t and
frequency ω.

The study of the time–frequency modulation function A(t, ω) is the key to realize
the intensity-frequency non-stationary model. To solve this problem, many scholars
have constructed the frequency modulation function based on the existing intensity
envelope function, and jointly constituted the time–frequency modulation function.

Hu and Chen (2008) proposed a dual-modulation function model:

A(t, ω) = I0

[
exp

(
−b1

ωt

ωata

)
− exp

(
−b2

ωt

ωata

)]
f (t) (2.28)

where I0 is the intensity factor, f (t) is the intensity envelope function, and b1 and b2
are the shape parameters that control the frequency modulation function. The value
of parameters ωa and ta is related to the ground motion condition.

The second type of intensity-frequency non-stationary earthquake ground motion
model takes into account the variation of the frequency parameter time. The process
of temporal change is considered in the frequency parameters of the stationary power
spectrum model, and the function is expressed as:

SA(t, ω) = | f (t)|2S(t, ω) (2.29)

where f (t) is the intensity envelope function and SA(t, ω) is the time–frequency
power spectrum model that accounts for the frequency variation.
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On the basis of the Clough-Penzien power model, Deodatis (1996) proposed
that the frequency and damping ratio of the site prominent circle evolve over time.
Cacciola and Deodatis (2011) made further modifications and its PSD function is
expressed as:

SA(t, ω) = f 2(t) ·
(
ω4
g(t) + 4ξ2g (t)ω2

g(t)ω
2
)

· ω4 · S0(t)((
ω2 − ω2

g(t)
)2 + 4ξ2g (t)ω2

g(t)ω2
)

·
((

ω2 − ω2
f (t)

)2 + 4ξ2f (t)ω
2
f (t)ω

2
)

(2.30)

ωg(t) = 20 − 7
t

30
; ξg(t) = 0.6 − 0.2

t

30
(2.31)

ω f (t) = 0.1ωg(t); ξ f (t) = ξg(t) (2.32)

S0(t) = s2

γ 2πωg(t)
(
2ξg(t) + 1

2ξg(t)

) ; s = 1m/s2 (2.33)

where f (t) is the intensity envelope function. As shown in Table 2.3, parameter s can
be modified to the mean value of ground motion peak acceleration, and parameter r
is the effective peak factor.

The random ground motion model adopted in this book is an intensity-frequency
non-stationary model, and the selection of model parameters accounts for the char-
acteristics of the slope engineering site (Huang et al., 2018; Huang &Xiong, 2017a).
As a relatively advanced seismic dynamic model, this approach considers the non-
stationary characteristics of ground motion and the selected site parameters and
model parameters are time-varying.

The adopted random groundmotionmodel is an evolutionary rate spectrummodel
based on the modified C-P spectrum (Cacciola & Deodatis, 2011). The C-P power
spectrum and modified evolutionary power spectrum are respectively given as:

S(ω) = ω4
g + 4ξ 2

gω
2
gω

2

(
ω2
g − ω2

) + 4ξ 2
gω

2
gω

2
× ω4(

ω2
f − ω2

)
+ 4ξ 2

f ω
2
f ω

2
· S0 (2.34)

S(t, ω) = ω4
g(t) + 4ξ 2

g (t)ω
2
g(t)ω

2

[
ω2 − ω2
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]2 + 4ξ 2

g (t)ω
2
g(t)ω

2
× ω4 · S0(t)[

ω2 − ω2
f (t)

]2 + 4ξ 2
f (t)ω

2
f (t)ω

2

(2.35)

where ωg(t) and ξg(t) are functions of the circular frequency and damping ratio
of the slope site with time, respectively, and ω f (t) and ξ f (t) are the time-varying
frequency parameters and time-varying damping parameters considering the filtra-
tion characteristics, respectively. For general ground motion, ξ f (t) = ξg(t) can be
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assumed and S0(t) is called the spectral intensity factor. The relevant expression can
be written as:

S0(t) = 2
ā2max

r̄2πωg(t)
(
2ξg(t) + 1

2ξg(t)

) (2.36)

ωg(t) = ω0 − a

(
t

T

)p

; ξg(t) = ξ0 + b

(
t

T

)p

(2.37)

ω f (t) = 0.1ωg(t); ω0 = ωg + a

2
ξ g − b

2
(2.38)

A(t) =
[
t

c
exp

(
1 − t

c

)]d
(2.39)

where T is the groundmotion duration, p is the shape control variable of the function,
where p = 1 represents the linear time variation, ω0 and ξ0 determine the specific
site characteristic parameters according to different site categories, parameters c
and d reflect the time-domain non-stationary characteristics of the ground motion,
parameters a and b reflect the non-stationary characteristics of the ground motion
in the frequency domain, amax is the average value of the peak acceleration of the
ground motion, and r̄ is the equivalent peak factor of the stationary vibration.

The non-stationary generalized power spectrum model of ground motion can
thus be fully determined using 10 parameters. A suitable number of ground motion
samples can be generated based on the modified evolutionary power spectrummodel
and the concept of the correlation spectrum form-random function. These samples
have their own assigned probabilities, which is convenient for the stochastic dynamic
analysis of slope under the stochastic dynamics framework. Relevant content can be
found in the literature (Huang et al., 2018; Huang & Xiong, 2017a) (Fig. 2.4).

2.4.2 Ground Motion Synthesis Method Based on Stochastic
Process Theory

The generation of representative time-history curves of stochastic processes is
required to solve applied engineering problems that cannot be solved by the descriptor
in the frequency domain. The methods of simulating and generating representative
time-history curves of stochastic process mainly include the spectral representation
method (harmonic superposition method), linear filtering method, eigen orthogonal
decomposition method, and wavelet analysis method.
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Fig. 2.4 Typical non-stationary seismic acceleration time series

(1) Spectral representation for ground motion synthesis

The spectral representation method is presently the most direct and relatively mature
ground motion synthesis method. The random process of ground motion is the sum
of a series of sine or cosine functions with a random phase, which is divided into the
first and second spectral representation methods, as shown in Table 2.4.

The application of stochastic simulation research results in engineering prac-
tice began in the 1960s. The harmonic superposition method has been used to
study and simulate the wave stochastic process but is limited to one-dimensional
stochastic processes. To study multivariable non-stationary random processes,
Shinozuka (1972) formally proposed the basic principle of the spectral represen-
tation method. Many scholars have thereafter carried out in-depth research on the
spectral representation method, which is widely used in seismic engineering fields.

Yang (1972) proposed the expression formula of the random envelopment process
and greatly improved the computational efficiency of the spectral representation
method using the fast Fourier transform. Grigoriu (2000) proposed a harmonic super-
position method with the random amplitude, frequency, and phase angle to generate
time history sampleswith different periods. Shinozuka andDeodatis (1991) proposed
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Table 2.4 Two spectral representation methods of ground motion acceleration process simulation

The first spectral representation method
(Liang, 2005)

Xa(t) =∑N
k=1At,k(cos(ωk t)Xk + sin(ωk t)Yk)

At,k = √
2SA((t, ωk))�ω; ωk = k�ω

The second spectral representation method
(Shinozuka & Deodatis, 1991)

Xa(c) = √
2
∑N−1

k=0 At,kcos(ωk t + ϕk)

At,k = √
2SA((t, ωk))�ω; ωk = k�ω

Difference between the two kinds of spectrum representation methods
First spectral representation method—2 N orthonormal random variables: the random variable
must only meet the orthonormal conditions and does not require a specific probability
distribution form of the random variable
Second spectral representation method—N cosine series with mutually independent random
phase angles: random variables must satisfy the condition of a mutually independent uniform
distribution

Note At,k is the power spectral density function of the randomprocess, ϕk is the independent random
phase angle, and ωu is the truncation frequency, which is used to calculate the mean square relative
error

the principle and mathematical expression formula of the spectral representation
method (univariate and one-dimensional random process). After modifying the clas-
sical spectral representation of stationary stochastic processes, the population and
time autocorrelation functions of the stochastic simulation processes can bettermain-
tain consistent convergence with the target self-correlation functions. Deodatis and
Shinozuka (1989) evaluated the advantages and disadvantages of the spectral repre-
sentationmethod in the randomprocess of groundmotion, further improved the spec-
tral representation method, and simulated and generated the time-history samples of
the earthquake groundmotion acceleration stochastic process. Liang (2005) proposed
a spectral representation method for simulating non-stationary random vibration
processes from the perspective of a progressive power spectrum.

(2) Linear filtering method for ground motion synthesis

The linear filtering method, which can be referred to as the white noise filtering
method, applies a random process abstraction to satisfy the certain condition of zero
mean white noise, and the time domain model of the process is fitted by appropriate
transformation of a hypothetical system. (see rational function of the PSD function
in Eq. (2.40)). The theoretical basis include any smooth Gaussian random process
that is available for use in the autoregressive moving average (ARMA) model, and
the spectral density function can only be determined by the model structure. The
ARMA model can represent the response value of a sample at the current moment
as a linear combination of the response value of the sample at the past moment.
The excitation value of the white noise can be regarded as a set of digital filters to
transform the white noise into a discrete random process with an approximate target
spectral density.

x(t) + λx(t) = ξ(t) (2.40)
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E[ξ(t)ξ(τ )] = 2λβ2δ(t − τ) (2.41)

Equation (2.40) presents a stochastic differential process of a linear system, where
white noise ξ(t) is taken as the input with filteredwhite noise x(t) because the output,
λ, is a constant associated with a random process, x(t) is the time series generated
by filtering, and ξ(t) is a zero-mean Gaussian white noise process. Equation (2.41)
is the condition for the covariance of Eq. (2.40) to be satisfied.

The linear filtering method can achieve the approximate representation of the
target spectral density matrix with the least parameters, and the calculation speed is
relatively fast. However, the model type, parameters, and order must be estimated,
the algorithm is complicated, and the calculation accuracy is low, which limits the
linear filtering method for engineering applications.

This chapter mainly provides an introduction to the PDEM and quantifica-
tion method of slope uncertainty. The following chapters introduce the simulation,
application, andverification of the slope stochastic dynamic analysismethod in detail.
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Chapter 3
Numerical Simulation and Application
of Slope Stochastic Seismic Response
Analysis

Numerical analysis methods are based on theoretical research, and are currently
the most common analysis tool owing to their efficient and accurate calculations.
Numerical analysis can effectively reproduce the dynamic response process of slopes
and be used to quickly obtain the data response of any unit body at any time. It is
therefore the most common method to study the random dynamic stability of slopes.
This chapter uses numerical simulations to study and analyze the random dynamic
stability of slopes based on the theoretical introduction in the previous chapter.

Earthquakes are important natural phenomena that can induce slope failure and
have always been a hotspot in slope stability analysis and seismic engineering
design research (Del Gaudio & Wasowski, 2004). The traditional quantitative anal-
ysis methods of seismic slope stability are all based on deterministic theory, which
regards the factors affecting slope instability as definite and homogeneous, such
as the strength reduction method (Wang et al., 2016). However, many factors have
large uncertainties that affect slope stability, such as the physical properties of the
geotechnical materials and ground motion intensity (Huang et al., 2020). The use of
the deterministic method to calculate and analyze slope stability produces substan-
tial errors. However, reliability theory makes it possible to quantitatively consider
these uncertain factors (Chen et al., 2018; Liu & Cheng, 2018). The slope seismic
analysis method based on reliability theory regards the uncertain factors that affect
slope stability as stochastic variables. The stability is then determined using deter-
ministic analysismethods, such as the limit equilibriummethod. The reliability index
is calculated by the reliability solution method to obtain the slope reliability analysis
and evaluation results. The most commonly used method for reliability solution is
the Monte Carlo method. The evaluation index system based on uncertainty analysis
therefore covers the stability coefficient under the theoretical framework of certainty,
and can provide a better basis for engineering decision-making.
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The commonly used methods of slope dynamic stability analysis include the
pseudo-static method, Newmark slider displacement method, and stochastic vibra-
tion method. The pseudo-static method has the advantages of simplicity and prac-
ticality, but cannot consider the nonlinear dynamic behavior of soil mass, the non-
stationary strength-frequency features of seismic oscillation, and the on-site ampli-
fication effects (Lin & Wang, 2006). The Newmark slider displacement method
partially considers the spectral characteristics of seismic oscillation and the nonlinear
mechanical behavior of soil. However, this method assumes that the slope soil is rigid
andplastic, and that the soil strength is not significantly reduced during an earthquake.
This is far from the real situation and does not fully reflect the true nonlinear dynamic
behavior of a slope in an earthquake event. Although these two methods are simple
and quick to calculate, they are too simplified to approximate actual situations, thus
leading to errors in the analysis results. A method based on the stochastic theory of
dynamic reliability can therefore be used to avoid the aforementioned shortcomings.

This chapter proposes a slope reliability analysis method based on the probability
density evolution method (PDEM). This approach uses the nonlinear dynamic time
history analysis method for calculation, and the nonlinear elastoplastic constitutive
model and ground motion time history curve are input as random variables in the
reliability analysis.

3.1 Slope Stochastic Seismic Analysis Methods

3.1.1 Slope Dynamic Stability Analysis Method

(1) Finite element sliding surface stress method

The nonlinear dynamic time history analysis method calculates the changes of each
particle’s velocity, acceleration, and displacementwith time to obtain the time history
response of the slope internal force, deformation, and safety factor. This section
considers the nonlinear mechanical behavior of soil.

The finite elementmethod (FEM) is used as an example to introduce the numerical
calculation process of the nonlinear dynamic time history analysis method. The finite
element sliding surface stress method has the advantages of fast calculation speed
and the ability to simultaneously determine the sliding surface position and its stress
and strain state, and is thus adopted in this section. This method calculates the stress
field through the FEM and integrates the entire sliding surface to obtain the shear
strength and sliding shear stress on the sliding surface. The piecewise linear fitting
method is typically used for complex stress fields to avoid the difficulty of solving
the integral by simulating the sliding surface of an arbitrary shape (Zou et al., 1995).

There are presently many FEM applications, including ANSYS, ABAQUS,
FLAC3D, and GeoStudio. For a simple and rapid calculation, this book uses
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GeoStudio software, which can use the finite element slip surface stress method and
integrate modules (e.g., SLOPE/W, SIGMA/W, QUAKE/W) to perform dynamic,
static stress, and deformation analysis of slopes and seismic response analysis. The
specific steps to analyze the dynamic stability of a slope are as follows.

a. In the QUAKE/W module, the FEM is used to calculate the stress field under
the influence of the initial dead weight. The calculation results are imported into
the next step of dynamic analysis.

b. In the QUAKE/Wmodule, the dynamic time history method is used to compute
the stress field at each time step based on the initial stress field distribution. The
calculation results are then imported into the SLOPE/W module.

c. In the SLOPE/Wmodule, the potential sliding block is first divided into several
soil strips. In the light of the inclination angle of the bottom sliding surface of
each soil strip and the finite element mesh that passes through, the shear strength
and sliding stress of the bottom of the soil strip are calculated in combination
with the stress field under the dynamic time step. All the soil strips are then
summed to obtain the strength of the entire potential sliding surface.

Owing to the inhomogeneity of the slope stress distribution and complexity of
the spectral characteristics of ground motion excitation, there are multiple potential
sliding surfaces with different safety factors at each time step. The sliding surface
corresponding to the minimum safety factor is typically of greatest interest, which
is also called the critical sliding surface. In the SLOPE/W module, the software
can automatically search for the critical slip surface at each time step and calculate
its corresponding safety factor in combination with the optimization program. The
safety factor of the critical slip surface at each time step can thus be calculated.

(2) Nonlinear constitutive model of soil

To consider the nonlinear mechanical behavior of soil materials, this book chooses
the nonlinear dynamic constitutive model in the QUAKE/W module.

The dynamic stress–strain relationship of soil is described by a hyperbola ((Xu &
Huang, 2021), and its curve equation can be defined by two parameters, Gmax and
τmax , where the former is called the small-strain shear modulus, which is the shear
modulus when the shear strain is zero, and the latter represents the horizontal asymp-
tote of the main line in the longitudinal direction. The physical meaning of the inter-
cept on the axis is maximum shear stress at failure, and γr = τmax/Gmax is the
reference strain of the soil. The equation of the backbone can be written as:

τ = γ
1

Gmax
+ γ

τmax

= Gmaxγ

1 + γ

γr

(3.1)

We next consider the mathematical expression of the hysteresis curve. The most
commonly used assumption is that the hysteresis curve follows themassing criterion.
This criterion assumes that the hysteresis curve can be obtained by the translation and
enlargement of the main trunk line. The equations of unloading and reverse loading
according to this criterion can be written as:
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τ = τA + Gmax (γ − γA)

1 + γ−γA

γ ABC
r

(3.2)

where τA is the shear stress, γA is the shear strain at the unloading starting point,
γ ABC
r is the reference strain of the trajectory of unloading and reverse loading, and

γ ABC
r = 2γr . Equation (3.2) can be further written as:

τ = τA + Gmax (γ − γA)

1 + γ−γA

2γr

(3.3.)

In the same way, the reverse unloading and forward loading trajectory equations
can be written as:

τ = τC + Gmax (γ − γC)

1 + γ−γC
2γr

(3.4)

where τC and γC are the shear stress and shear strain at the starting point of the
reverse unloading, respectively.

In the hyperbolic dynamic constitutive model, the maximum shear stress Tmax is
usually obtained approximately according to the Mohr–Coulomb failure theory. The
constitutive model therefore only requires the effective shear parameters of the soil
c′, ϕ′, and the small strain shear modulus Gmax . An empirical estimation formula
of Gmax is provided in the QUAKE/W module. Taking clay as an example, the
expression is:

Gmax = 625

(
1

0.3 + 0.7e2

)
(OCR)k

√
Paσ ′

m (3.5)

where Pa is the atmospheric pressure, σ ′
m is the average effective principal stress,

OCR is the over-consolidation ratio, e is the void ratio, and k is connected with the
plasticity index PI, which can be calculated as:

k = P I 0.72

50
(3.6)

3.1.2 Finite Element Reliability Analysis Framework Based
on PDEM

Section 3.1.1 introduced the calculation process of the dynamic FEM of the slope.
This section mainly presents the integration of slope reliability analysis based on
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PDEM and slope dynamic stability analysis calculated using GeoStudio software.
The specific calculation procedures are summarized as follows.

a. Probability space division of random variables. After determining the number
of basic random variables, select points, using tangent ball or number theory
(Chen&Li 2006a, b), determine the number of discrete points nsel , and calculate
their distribution probability. By dividing and selecting points in the continuous
probability space, the random problem is transformed into an nsel deterministic
problem represented by discrete representative points.

b. Create a seismic dynamic analysis model in the QUAKE/W module and
SLOPE/W module with the parameter mean value of the stochastic variable,
including geometric model establishment, finite element area and grid division,
material definition, finite element area material assignment, ground motion
input, boundary condition definition, sliding surface inlet and outlet position
setting, and model verification steps. Owing to the spatial variability of the soil
physical properties, the grids must be defined with the same size and position
as the stochastic field unit in the finite element model to ensure a one-to-one
correspondence of the stochastic field units and finite element unit. Save the
complete finite element dynamic analysis model as a calculation source file
with the extension “.xml”.

c. For different stochastic sources in a slope system subjected to seismic dynamic
excitation, adopt the Karhunen-Loève (K-L) series expansion method to simu-
late the anisotropic stochastic field of the soil parameters. The spectral represen-
tation method and stochastic function are used to express the non-stationarity
and stochasticity of the seismic excitation and generate the ground motion time
histories. The stochastic fields are consistent with the number nsel of generated
scattered points in probability space. The “.xml” file is a structured markup
language, which stores all the information of the slope seismic dynamic finite
element analysis model (e.g., area size, grid coordinates, material parameters,
load records, and boundary constraints). Find the material parameters and load
records, use programming language to write a program to modify them in
batches, and save the modified “.xml” file as a new calculation file.

d. Use the cmd.exe command line program that comes with the Windows system
and the DOS operating system to write a batch program that can automatically
calculate multiple “.xml” files.

e. After the batch calculation is completed, multiple folders corresponding to the
calculation time steps will be generated under the SLOPE/W module of each
“.xml” file. Find the file titled “slip_surface.csv” in the folder, from which the
critical safety factor, sliding surface, and other information in the current time
step can be extracted.

f. Substitute a series of deterministic analysis and calculation results into the
generalized probability evolution equation (GDEE), and use the finite differ-
ence numerical method for its solution. Calculate the probability density func-
tion (PDF) curve, cumulative distribution function (CDF) curve, and dynamic
reliability of the slope stochastic system.
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Fig. 3.1 Flow chart of slope reliability analysis using the PDEM

Figures 3.1 summarizes the slope seismic dynamic reliability calculation process
based on the PDEM and FEM.

3.2 Description of Stochastic Factors of Slope

The uncertainties of slope systems originate from the spatial variabilities of the
soil parameters and seismic motion excitations. Earthquakes have strong stochas-
ticity in terms of space, time, and magnitude. Numerous studies (Johari & Khoda-
parast, 2015; Mahdiyar et al., 2017; Wu et al., 2015) have considered the stochastic
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nature of the seismic spectral characteristics in slope reliability analysis.However, the
current considerations of earthquake activity mostly use the pseudo-static method.
This approach can neither determine the response of the non-stationary character-
istics of seismic samples nor describe the nonlinear mechanical behavior of soil
under seismic motion. The reliability analysis method is illustrated by the theory of
probability and statistics, which can consider the randomness of multiple physical
parameters for seismic slope stability analysis. The use of the non-linear dynamic
time history method to analyze seismic dynamics is therefore necessary, through
which the randomness of the geotechnical parameters and ground motion spectrum
parameters are considered for reliability analysis.

3.2.1 Generation of Stochastic Fields

Differing from general building materials, soil is a natural product that forms under
long-term geological action and is subjected to a range of different physical, chem-
ical, and natural environmental effects during its formation process. Soil parameters
often have spatial variability, which is manifested in the form of different phys-
ical characteristics at different points in the soil with a certain correlation between
points. The spatial variability of soil has a great influence on its properties, and is an
irreplaceable factor in slope reliability analysis and assessment.

In the initial stages of slope reliability analysis and research, only the influence
of stochastic fields and parameter anisotropy was considered on the predetermined
dangerous sliding surface. The common method is to divide the sliding surface in
each soil layer, consider the local average value of the parameters in each section as a
random variable, and determine the anisotropic characteristics of the soil mechanical
parameters by describing the correlation between the random variables (Cho, 2007;
El-Ramly et al., 2002; Li & Lumb, 1987). The main drawback of this method is that
the stochastic field is one-dimensional and the soil parameter anisotropy cannot be
considered. Although this approach of considering the stochastic field only on the
sliding surface is easily calculated, it oversimplifies the actual situation and is highly
unreasonable.

The spatial variability of soil physical characteristics means that the soil physical
quantity at different locations in space can be regarded as random variables. A more
reasonable stochastic field simulation method therefore involves the discretization
of the soil parameters in the entire research object area. The discrete stochastic field
parameters are then assigned to the corresponding finite element grid to perform
reliability analysis considering soil anisotropy (Cho, 2009; Griffiths et al., 2009;
Jha, 2015). Because the K-L series expansion method has high simulation accuracy
and fast discrete efficiency, this section considers the anisotropy of the soil physical
properties and uses the K-L series expansion method for calculation and simulation.
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(1) Simulation of relevant non-normal stochastic field

The simulation steps of related non-normally distributed stochastic fields are
summarized as follows.

a. Divide the stochastic field into a finite element grid. For calculation simplicity,
the stochastic field unit grid is generally consistent with the finite element unit
grid, and the coordinates of the center point of each grid are calculated.

b. Compute the eigenvalue λi and eigenvector ϕi (x) of the autocorrelation func-
tion. According to Eq. (3.7), select the autocorrelation function form under the
condition of a two-dimensional stochastic field, use Eq. (3.8) to calculate the
corresponding eigenvalues and eigenvectors, and arrange them in descending
order of eigenvalues.

ρ
(
x, x ′) =

⎧⎨
⎩

exp
(
−|x−x ′|

l

)
, (a)

exp
(
−|x−x ′|

lx
− |y−y′|

ly

)
, (b)

(3.7)

∫
�

ρ
(
x, x ′)ϕi

(
x ′)d�x ′ = λiϕi (x) (3.8)

where l is the relative distance of the one-dimensional stochastic field, x and x ′
are the coordinates of any two points in the one-dimensional stochastic field,
(x, y) and (x ′, y′) are the coordinates of any two points in the two-dimensional
stochastic field, and lx and ly are the relative distances in the horizontal and
vertical directions in a two-dimensional stochastic field, respectively. Equa-
tions (3.7a) and (3.7b) are suitable for one- and two-dimensional stochastic
fields, respectively.

c. Generate the independent standard Gaussian random variable ξk,i (θ). Latin
hypercube sampling technology can be applied to effectively ensure the
uniformity and completeness of the standard normal random variables.

d. Consider the correlation between soil physical parameters. According to
Eq. (3.10), calculate the mutual correlation coefficient matrix in the Gaussian
distribution, as shown in Eq. (3.9). Use Cholesky factorization to acquire the
lower triangular matrix L, and multiply it by the independent Gaussian random
variables ξk,i (θ) to acquire the relevant Gaussian stochastic variables χk,i (θ).

R0c,ϕ = (ρ0i j )2×2 =
(

1 ρ0cϕ

ρ0cϕ 1

)
(3.9)

ρ0i j = ln(ρi jCOV XiCOV X j + 1)√
ln(1 + COV 2

Xi
)
√
ln(1 + COV 2

X j
)

(3.10)

χk,i (θ) = ξk,i (θ) · LT k = c, ϕ (3.11)
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whereCOV Xi is the coefficient of variation of Xi, andCOV X j is the coefficient
of the variation of Xj.

e. Correlated non-normal stochastic field H
∧CNN

k (x, θ) simulation. According to
the mean value, variance, and probability distribution type of the soil parameter
stochastic field, the relevant non-normal stochastic field is obtained using the
equal probability transformation formula and calculated as follows:

H
∧CNN

k (x, θ) = G−1
i

{
�[H

∧C

k (x, θ)]
}

(3.12)

H
∧C

k (x, θ) = exp

(
μlnk(x) +

n∑
i=1

σlnk(x)
√

λiϕi (x)χk,i (θ)

)
k = c, ϕ (3.13)

where H
∧C

k (x, θ) represents the correlated normal stochastic field, G−1
i is the inverse

function of themarginal CDF of H
∧C

k (x, θ),�(·) is the CDFs of the standardGaussian
variables, and μlnk(x) and σlnk(x) are the average value and standard deviation of
the stochastic variables, respectively, which obey a Gaussian distribution.

f. Combining the probability space division of basic random variables, repeat steps
b–e nsel times to obtain the nsel realization of the relevant non-normal stochastic
field, and calculate the corresponding assigned probability.

(2) Stochastic field simulation results

This chapter selects the clay slope introduced by (Cho, 2010) as the research object.
A 10-m-high soil slope model is used, as shown in Fig. 3.2. The stochastic field
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Fig. 3.2 Slope geometry for reliability analysis
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model is applied to describe the anisotropy of the soil physical and mechanical
properties, and c and ϕ are regarded as basic stochastic variables. In slope seismic
engineering, it is impossible to measure all parameter values at each point in soil
space. Stochastic field simulations are generally carried out based on the parameter
statistics of a limited number of sample points. The example in this chapter uses an
average cohesion value of 10 kPa with a coefficient of variation of 0.3. The mean
value of the internal friction angle is 30° and the coefficient of variation is 0.2.
Both probability distributions follow a lognormal distribution. Because soil is an
anisotropic material, the horizontal and vertical autocorrelation distances differ. This
is reflected in the stochastic field, in which the horizontal autocorrelation distance
is considerably longer than the autocorrelation distance in the vertical direction, and
the difference between the two is generally an order of magnitude. Therefore, in this
chapter, the autocorrelation distance is set to 20 m in the horizontal direction, 2 m in
the vertical direction, and the cross-correlation coefficient is −0.5.

According to the stochastic field simulation process described above, the mesh
of the stochastic field cells must be first divided. Combined with the finite element
analysis model, the model established in this book has a total of 1281 nodes and 1210
elements. Among them, the triangular elements are mainly located near the empty
surface of the slope as the transition element body, as shown in Fig. 3.3.

The number of truncation terms n is highly critical when performing stochastic
field discretization. If n is too small, it will lead to insufficient calculation accuracy; if
n is too large, the computation amount will grow exponentially. The truncation value
of n commonly rests with the computational precision and autocorrelation function.
This chapter selects n = 150, as suggested in the literature (Cho, 2010).

The mean values of the soil parameters c and ϕ are used for modeling, and a
discrete simulation of the related non-normal stochastic field is carried out according
to Eq. (3.13). Figure 3.4 shows a typical realization. The value of c clearly fluctuates
around the mean owing to the location changes. This is much closer to the actual
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Fig. 3.3 Finite element model of a slope for reliability analysis
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x=30m

y=15m

Fig. 3.4 Typical realization of cohesion stochastic field

distribution of soil physical and mechanical parameters. According to the conse-
quences of the tangent sphere of the two basic random variables, the stochastic fields
are sequentially discretized using different statistical eigenvalues of c and ϕ, and 127
sets of non-normal stochastic fields related to the soil parameters are obtained. With
limited statistical information, these 127 stochastic fields are used to approximately
replace the true distribution of the soil parameters.

3.2.2 Stochastic Seismic Ground Motion Model

Existing ground motion observation records have shown that earthquakes exhibit
notably non-stationary characteristics owing to the complex and uncertain condi-
tions, such as the focal mechanism, propagation path, and engineering site char-
acterization. This non-stationary characteristic is manifested in the time domain as
follows. The ground motion will sequentially go through (1) an initial increasing
intensity phase, (2) a strong earthquake phase with a stable intensity region, and
(3) an attenuation phase of gradually weakening intensity, which is called the non-
stationary intensity. The performance in the frequency domain is as follows. Ground
motions at different frequenciesmoments have different vibration energies,which are
called non-stationary frequencies characteristics. Secondary hazards (e.g., damage
accumulation and resonance effects) are common in geotechnical engineering works
(e.g., slopes) owing to the non-stationary ground motion characteristics, which has
a serious effect on the seismic response of slope engineering and structures. The
non-stationary characteristics of the ground motion intension and frequency should
therefore be reasonably considered when establishing the ground motion model.
Furthermore, the future ground motions of a slope site should be used as the load
input when performing seismic slope reliability analysis. However, the location and
vibration characteristics of future ground motions are difficult to predict and exhibit
randomness.
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This section uses the modified Clough-Penzien power spectrum model to express
the intensity-frequency non-stationary features of ground motions. A stochastic
groundmotionmodel is established using the spectral representation-stochastic func-
tion method, and a series of ground motion acceleration sample time histories are
generated.

(1) Stochastic ground motion simulation

The method of establishing the generalized evolution PSD function is introduced
in Sect. 2.4.1. Equations (2.34)–(2.39) indicate that the generalized power spectrum
model for fully non-stationary groundmotion is completely determined by 10 param-
eters. Among these, parameters a and b indicate the non-stationary characteristics
of ground motions in the frequency-domain, parameters c, d, and n express the non-
stationary characteristics of ground motions that change over time, parameters ω0

and ξ0 reflect the characteristics of the site, and parameters amax , r , and T together
reflect the amplitude and duration characteristics of the seismic motions.

Appropriate essential stochastic variables are then chosen using the generalized
evolution power spectrum to represent the earthquake randomness, and the non-
stationary seismic motion is simulated by applying the spectrum representation-
stochastic function method (Liu et al., 2015a, b). Considering the non-stationary
seismicmotion stochastic process, themean value of Ẍg(t) is zero, and the expression
of the first type of spectrum can be written as:

Ẍg(t) ≈
N∑

k=1

√
2SẌg

(t, ωk)�ω[cos(ωk t)Xk + sin(ωk t)Yk] (3.14)

where ωk = k�ω and requires that the frequency difference is sufficiently small,
and Xk and Yk are standard orthogonal stochastic variables that satisfy the following
conditions:

E[Xi ] = E[Yi ] = 0
E

[
XiY j

] = 0
E

[
Xi X j

] = E
[
YiY j

] = δi j

(3.15)

For the sake of reducing the quantity of standard orthogonal random variables
{Xk,Yk}, the concept of a stochastic function (Tang&Liu, 2011) is adopted to express
the normal orthogonal random variables as functions of the essential stochastic vari-
ables. Considering that the ground motion stochastic system is composed of a single
basic random variable �, the stochastic function can be written as:

Xn = √
2cos

(
k� + π

4

)
, Y n = √

2sin
(
k� + π

4

)
(3.16)
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Among them, the basic stochastic variable � obeys a homogeneous distribution
on the interval [−π, π ]. The standard orthogonal random variable {Xn,Y n} clearly
satisfies Eq. (3.15). Note that in Eq. (3.14), the expansion of the generalized evolution
power spectrum follows a certain order of energy, which leads to a certain difference
in the order of the standard orthogonal random variables {Xk,Yk} and {Xn,Y n}.
Therefore, {Xn,Y n} should be reordered to satisfy the simulation demands of the
stochastic process.

A certain simulation error exists owing to the number of truncated terms, which
is similar to the discrete expression of a stochastic field. The variance error of the
non-stationary ground motion stochastic simulation is defined as Liu et al. (2015b):

ε(N ) = 1 −
∫ ωu

0

∫ T
0 SẌg

(t, ω)dtdω∫ ∞
0

∫ T
0 SẌg

(t, ω)dtdω
(3.17)

where ωu = N�ω is the calculation cutoff frequency and N is the quantity of cutoff
terms.

(2) Non-stationary ground motion generation results

Table 3.1 lists the parameter values of the generalized evolution spectrum model
for non-stationary ground motions recommended in this book according to current
Chinese standards (DL5073–2000). The model parameter amax is generally consid-
ered to be the typical value of the horizontal design basic seismic acceleration.

This book considers the corresponding design basic seismic acceleration value
under a seismic fortification intensity of VII degrees, namely amax = 0.1 g. A
category-IV site is selected as the research object. The stochastic ground motion
model and spatial stochastic field model of the geotechnical parameters are intro-
duced to comprehensively consider the stochasticity and uncertainties of the ground
motion and spatial distribution characteristics of the soil.

Table 3.1 Parameter values of the generalized evolution spectrummodel of non-stationary ground
motion

Parameter Site type

I II III IV

ω0(s−1) 31.42 20.94 15.71 9.67

ξ0 0.64 0.72 0.80 0.90

a(s) 4 5.5 7 8.5

b 1.8 1.8 1.8 1.8

c(s−1) 8 4 2 1

d 0.1 0.1 0.1 0.1

r 3.50 3.37 3.3 3.02

T (s) 15 20 25 30
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Fig. 3.5 Representative samples of non-stationary stochastic ground motions

According to the simulationmethodof non-stationary groundmotions, the number
theorymethod is first used to select sample points to discretize the three basic random
variables into representative point sets into standard Gaussian probability space and
calculate their probabilities. A total of 226 samples points is obtained. This corre-
sponds to the basic random variable �, which describes the stochasticity of ground
motion, and transforms it into a uniform distribution on [−π, π ] using an equal prob-
ability transformation. The discrete representative samples points are then substituted
into Eq. (3.16) to produce a series of standard orthogonal stochastic variables, and the
non-stationary seismic motion simulation spectrum expression Eq. (3.14) is used to
generate a sequence of representative seismic acceleration time histories (Fig. 3.5).
The quantity of truncation terms is 2000, the frequency difference �ω = 0.15 rad/s,
and the truncation frequency ωu = 300 rad/s. Substituting the error calculation into
Eq. (3.17) yields a variance error of 2.24%.

Figure 3.6 shows a comparative analysis of the overall mean, standard deviation,
and target value of the 226 representative seismic acceleration time histories. The

Fig. 3.6 Comparison of the
mean and standard deviation
between the population and
target of the non-stationary
stochastic ground motion
samples
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degree of agreement between the sample population and target is basically the same.
The target mean value is zero because the ground motion is usually assumed to be
a non-Gaussian stochastic process with a mean value of zero. The target standard
deviation is calculated by the Fourier transform of the power spectrum based on the
autocorrelation function.

3.3 Slope Stochastic Seismic Response Analysis

This chapter first considers a single random factor and the geotechnical param-
eter uncertainty. MATLAB is used to complete the stochastic field discretization
by sequentially modifying the calculation source file (“.xml”) to combine the soil
parameter stochastic field and finite element calculation model, and 127 new “.xml”
calculation files are generated. Using the same method, 226 new “.xml” calculation
files are generated that account for the uncertainty of the soil physical properties and
stochasticity of earthquake excitations based on the number theory selection results.

A series of deterministic analysis calculation results are then obtained by batch
processing, which are substituted into the GDEE, and the finite difference method is
applied for its solution. ThePDFof the slope nonlinear dynamic response considering
the influence of the soil parameter uncertainty and spatial variability is obtained,
which contains all the probability information of the slope stochastic system.

When solving theGDEE, Li andChen (2003) compared the differences among the
unilateral and bilateral difference schemes in terms of convergence, compatibility,
and stability. They demonstrated that the bilateral difference scheme has a prefer-
able computational result, but that it is necessary to further combine the unilateral
difference scheme to handle extreme event analysis problems. To assure the relia-
bility of the results, this chapter compares the Lax-Wendroff (LW) format and the
modified total variation diminishing (TVD) format in the bilateral difference format.
The results indicate that the LW format has a faster computational astringency and
higher accuracy, but does not ensure the non-negativity of the PDF. The TVD avoids
the shortcomings using a flux limiter.

Figures 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12 show the seismic response results of the
slope safety factor under single and double random factors. Among them, Figs. 3.7
and Fig. 3.8 show the response under the uncertainty of geotechnical parameters,
and Figs. 3.9, 3.10, 3.11 and 3.12 show the results under the combined action of the
geotechnical parameter uncertainties and ground motion stochasticity.

Figure 3.9 is the mean and standard deviation time history curve of the slope
safety factor calculated using LW and TVD under dual random factors. There is no
substantial difference between the two calculation formats, and the relative error is
calculated to be 2.7%. This value is less than the allowable error requirement of 5%,
which ensures the accuracy of the finite difference solution.

Figures 3.7 and 3.10 are the PDFs of the slope safety factor under single and
double random factors, respectively, at three times selected during the entire earth-
quake event. The distribution range of the safety factor and peak PDFvalue are shown
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Fig. 3.7 PDFs of the slope safety factor under a single random factor

Fig. 3.8 Equal probability density contour of the slope safety factor under a single random factor
(5–6 s)
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Fig. 3.9 Mean and standard
deviation of the slope safety
factor under dual random
factors

Fig. 3.10 PDFs of the slope
safety factor at different
times under dual random
factors

Fig. 3.11 Slope safety
factor probability density
evolution surface under dual
random factors (5–6 s)
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Fig. 3.12 Slope safety
factor probability density
contour under double
random factors (5–6 s)

to change over time. This represents the dynamic influence of random factors on the
safety factor. The PDF values are also usually no longer lognormally distributed
and there is multimodality. This demonstrates the potential inaccuracy of conven-
tional slope reliability analysis methods based on pre-assumed response probability
distribution types (e.g., lognormal distribution).

Figure 3.11 shows the slope safety factor probability density evolution surface at
5–6 s intercepted under dual random factors. The PDF clearly presents a complicated
evolution process with time. The surface evolves over time like the peaks of a moun-
tain range. The top of the mountains corresponds to larger PDF values (red regions),
and the foot of the mountains corresponds to smaller PDF values (blue regions). The
PDF profile shapes greatly differ at different times, and there is also a multi-peak
phenomenon at the top of the mountains where the PDF value is larger.

Figures 3.8 and 3.12 show the equal probability density contours under single and
double random factors, respectively, which were acquired by projecting the proba-
bility density evolution surface on the horizontal plane. The densely-curved areas
indicate higher PDF gradients at those locations. The probability density evolves over
time in the graph, similar to a water flow. This “flow” process is quite complicated
and contains a large number of vortices, which is thus non-stationary flow. When the
fixed safety factor is 1, the probability density exerts notable fluctuation character-
istics with time, which indicates the possibility of failure changes with time under
earthquake action. The equal probability density line under the combined action of
the double random factors of the ground motion and soil parameters in Fig. 3.12
is denser and more disorderly than that in Fig. 3.8, with the appearance of a large
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number of vortices over an expanded distribution range. The trend of the equal prob-
ability density contour in Fig. 3.12 is also relatively stable and does not contain the
visible fluctuations observed in Fig. 3.8, which reflects the impact of the ground
motion amplitude characteristics.

3.4 Slope Nonlinear Stochastic Seismic Dynamic Reliability
Analysis

3.4.1 Principles of Slope Reliability Analysis

Many of the factors that influence slope seismic dynamic stability (e.g., soil physical
and mechanical parameters, external loads) can be generally regarded as random
variables, which can be summarized as two comprehensive quantities of load Q and
resistance R. The powerful function Z of the slope is then expressed as:

Z = g(R, Q) = g(X) = Fs(X) − 1 (3.18)

where X = (X1, X2, . . . , Xn)
T is a random vector and Fs is the slope safety factor.

Powerful function calculations can be performed to evaluate the slope safety state.
A slope is generally in a safe state when the powerful function is >0. When the
performance function is 0, the system is in the critical state and the powerful function
is referred to as the ultimate state equation. When the powerful function is <0, the
slope is in a failure state and its corresponding probability is referred to as the failure
probability Pf , which is given as:

Pf = P(Z < 0) =
∫

Z<0

f (X)dx (3.19)

where f (X) is the joint PDF of the performance function g. The reliability index β

is also introduced to characterize the slope stability margin, which is defined as:

β = μZ

σZ
(3.20)

whereμg is the expectation and σg is the standard deviation of the powerful function
g.

Slope dynamic reliability analysis is the product of a combination of deterministic
seismic dynamic stability evaluation and dynamic reliability assessment. Its essence
is to transform uncertain problems into certain definite problems for solution. Deter-
ministic methods (e.g., limit equilibrium method, FEM) can be applied to establish
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Fig. 3.13 Solution modes of slope reliability analysis

the analysis model of slope stability and acquire the safety factor Fs in Eq. (3.18).
The external nesting then has a universal reliability calculation method to compute
Pf and β in Eqs. (3.19) and (3.20). The solution mode is shown in Fig. 3.13.

To obtain the nonlinear dynamic reliability of a slope, the PDF and CDF of the
safety factor under dynamic action are calculated using the extreme virtual distribu-
tion based on the PDEM (Chen & Li, 2007). This analysis is similar to probability
density evolution theory under static conditions, and also treats the time-invariant
response as the cut-off random variable of the virtual stochastic process by creating
a virtual procedure. However, the time-invariant response is usually selected as the
extreme or equivalent extreme value of the time history curve. The lowest safety
factor value is usually selected as the judgment value of the slope stability (Huang &
Xiong, 2017).

3.4.2 Results of Slope Stochastic Seismic Dynamic Reliability
Analysis

Using the above method, the PDF and CDF are achieved based on extreme events
under the combined action of double random factors, as shown in Figs. 3.14 and 3.15.
The PDF of the slope seismic dynamic safety factor no longer exhibits a typical
parameter probability distribution (e.g., censored normal distribution, logarithmic
distribution) owing to the combined effects of the ground motion stochasticity, soil
parameter uncertainties, and nonlinearity dynamic behavior of the slope. There is
instead a notable multi-peak phenomenon, which strongly illustrates the shortcom-
ings of reliability analysis using the parameter fitting method that presupposes the
stochastic response distribution type. Assuming that the safety factor is 1, the slope
is in a state of limit equilibrium. According to the CDF, the slope failure proba-
bility is 0.5150 when considering the stochastic excitation and uncertainty of the soil
parameters.



3.5 Verification of Slope Reliability Analysis Method Based on PDEM 73

Fig. 3.14 PDF of the slope
safety factor based on
extreme events in the limit
state

Fig. 3.15 CDF of the slope
safety factor based on
extreme events in the limit
state

3.5 Verification of Slope Reliability Analysis Method Based
on PDEM

3.5.1 Monte Carlo Simulations

The MCS method is a commonly used approach in reliability analysis. This method
can consider the nonlinearity and discreteness of limit state surfaces and has a certain
versatility. However, the large number of calculations required to accurately estimate
the failure probability is a bottleneck that restricts the practical application of this
method, especially when the powerful function has no analytical formula and the
failure probability is relatively small. The MCS method is therefore a calculation
method in slope stochastic nonlinear dynamic reliability analysis with relatively high
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accuracy. In practical applications, theMCSmethod is used to verify the approximate
analytical results of other numerical solutions (e.g., PDEM). This section uses the
MCSmethod to verify the reliability analysis methods introduced above at static and
dynamic levels.

(1) Static level verification

The slope model shown in Fig. 3.2 is used considering the large amount of MCS
calculations, and the random variable model is used to describe the uncertainty of the
soil parameters, ignoring the relevance between c and ϕ. The probability distribution
is assumed to be a lognormal distribution. The static stability analysis adopts the
SLOPE\W module and simplified Bishop method, and the sliding surface search
adopts the cut-in and cut-out method. On the basis of the average parameter values,
the safety factor is 1.207 under static conditions.

Differing from dynamic conditions, the safety factor of a slope under static condi-
tions is no longer a time history curve, but degenerates to a point. It is therefore
necessary to artificially introduce a virtual time parameter for each safety factor
calculation result to make the slope safety factor a cut-off random variable for the
virtual random process, and then import it into the generalized probability density
evolution equation.

This article uses the MCS method based on Latin hypercube sampling. Using
the “lhsnorm” function in MATLAB, 10,000 samples were randomly generated, the
safety factors of each sample were calculated, and statistical analysis was performed.
The analysis results are compared with the analysis results based on the PDEM.

Figure 3.16 is a PDF of the safety factor under static conditions obtained by the
MCS and PDEM calculation methods. The processing of the MC calculation data
adopts the kernel function method. Figure 3.16 shows that the PDF curves obtained
using the two calculation methods have good consistency. Figure 3.17 is the CDF
achieved by the MCS and PDEM calculation methods, and the agreement between

Fig. 3.16 PDF of the safety
factor calculated based on
the PDEM and MCS
methods under static
conditions
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Fig. 3.17 CDF of the safety
factor calculated based on
the PDEM and MCS
methods under static
conditions

Table 3.2 Comparison of the
first two-order statistics and
failure probability of the
PDEM and MCS methods

PDEM MCS Relative error (%)

Number of
calculations

127 10,000 –

Mean 1.2190 1.2187 0.025

Variance 0.2492 0.2407 3.5

Probability of
failure

0.1861 0.1729 7.6

the two is almost the same. Assuming that the safety factor is less than 1 to define
a slope in a failure state, the slope static failure probability calculated by the PDEM
and MCS methods is 0.1861 and 0.1729, respectively.

Table 3.2 further compares the first two statistics calculated by the two methods,
and the relative errors are relatively close. Notably, when calculating the relative
error, the MCS result is assumed as the exact solution. However, the calculation
result of the stochastic simulation is not necessarily the exact solution (Chen & Li,
2006b). From the standpoint of calculation time, the slope reliability analysis using
the PDEM has a calculation efficiency that is nearly a hundred times higher than that
of the MCS method.

(2) Seismic dynamic level verification

On the basis of static verification, dynamic reliability analysis is further performed
under seismic conditions. The analysis process in Fig. 3.2 is applied. The corrected
strong motion record El Centro wave is applied. The initial stress field distribution
is first calculated, the QUAKE/W module is then used to computed the stress and
strain distribution, and the finite element slip surface stress method in the SLOPE/W
module is used to acquire the slope safety factor time history curve.
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In this section, the hyperbolic dynamic constitutive model is used to calculate the
nonlinear dynamic time history analysis method. In addition to the known param-
eters in Sect. 3.2.1, pivotal parameters such as the damping ratio and small strain
shear modulus Gmax are required. The damping ratio used in this book is 0.05, and
the maximum value is 0.3. Gmax is estimated according to the empirical formula
given in this module. The maximum depth of the slope is 15 m, the soil is normally
consolidated, the void ratio is set to 1, the plasticity index is set to 18, and the static
lateral pressure coefficient is set to 0.5. The function relationship between Gmax and
effective stress is obtained, as demonstrated in Fig. 3.18.

When calculating the initial stress field of the slope, the constraint condition is
that the two ends of the slope are fixed in the X direction and the base of the slope is
fixed in the X/Y direction. After entering the dynamic analysis, the bottom restraint
conditions remain unchanged, and the two ends of the restraint conditions become a
fixed Y direction. Mean values of c and ϕ are used to compute the time history curve
of the slope safety factor under the action of seismic excitation, as shown in Fig. 3.19.
The slope safety factor decreased to the minimum value of 1.0086 at 2.46 s under
the ground motion action, and the maximum value (1.6095) appeared at 4.52 s.

The sample selection for the MCS method based on Latin hypercube sampling
included a sample size of 10,000, which was verified from the sample average value
and standard deviation. Figure 3.20 illustrates the standard deviation of the slope
safety factor computed by the PDEM and MCS methods. Figure 3.20 shows that,
aside from some visible errors at a few points, the degree of agreement between the
two is quite consistent.

We then consider a sample set composed of different slope safety factor time
history curves at the same time, inwhich the cut-off randomvariable and its statistical
analysis can be used to obtain the PDF at that time. This book chooses the slope safety
factor cut random variables at 5 s and 8 s, and compares the PDFs calculated by the
PDEM and MCS methods, as shown in Figs. 3.21 and 3.22, respectively. The PDFs

Fig. 3.18 Relation diagram
between clay Gmax and
effective stress
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Fig. 3.19 Time history
curve of the slope safety
factor

Fig. 3.20 Mean and sandard
deviation values of the safety
factors calculated based on
the PDEM and MCS
methods under dynamic
conditions

achieved using the twomethods are nearly the same; however, the calculation amount
of the MCS method is nearly one hundred times higher that of the PDEM.

Figures 3.23 and 3.24 show the PDF and CDF results of the extreme value distri-
bution of the slope safety factors under earthquake excitations, and compares the
results of the PDEM and MCS calculations. Similarly, when the slope safety factor
is equal to 1, the slope is in a critical state. On the basis of Fig. 3.24, the slope
seismic dynamic failure probability calculated based on the PDEM is 0.5132, and
the dynamic failure probability calculated by the MCS method is 0.5148. The rela-
tive error is only 0.31%, which is greatly reduced compared with the relative error
under static conditions. This is because of the analysis error caused by introducing
the virtual time parameters when solving the static force, which reflects the short-
comings of the MCS method in terms of stochastic convergence. A comparison of
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Fig. 3.21 PDF of slope
safety factor calculated by
the PDEM and MCS
methods at t = 5 s

Fig. 3.22 PDF of the slope
safety factor calculated by
the PDEM and MCS
methods at t = 8 s

the slope failure probability under static and dynamic action clearly shows that the
failure probability increases by nearly a factor of three for the nonlinear seismic
dynamic stability of slopes that suffer from seismic excitations.

3.5.2 Verification Using a Closed Form Analytical Solution

The previous section verifies the effectiveness of the PDEM compared with the
Monte Carlo stochastic simulation results. This section takes a single-degree-of-
freedom system as an example to verify the effectiveness of the PDEM method
from the perspective of analytical solutions. A single-degree-of-freedom system is
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Fig. 3.23 Comparison of
the slope safety factor PDF
under extreme conditions

Fig. 3.24 Comparison of
the slope safety factor CDF
under extreme conditions

subjected to the stochastic vibration effect, the PDF of the response is computed, and
the solution is compared and verified with the PDEM.

Here, the single-degree-of-freedom system exposed to stochastic excitation is
expressed as:

Ẍ + X = (
1 − ω2

)
cos(ωt) (3.21)

where ω is a uniform random variable on [5π/4, 7π/4], and the initial conditions of
the dynamic equation are X(t)|t=0 = x0, Ẋ(t)|t=0 = ẋ0.
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To facilitate the calculation of the dynamic differential equation shown in
Eq. (3.21), it is assumed that X(t)|t=0 = x0 = 1.0m and Ẋ(t)|t=0 = ẋ0 = 0.
The analytical result of Eq. (3.21) can be acquired as:

X(t) = (x0 − 1)cost + cos(ωt) = cos(ωt) (3.22)

where X(t) is a stochastic process because ω is a stochastic variable.
The PDF of ξ is denoted as fξ , assuming ξ = ωt . According to the conservation

of probability, ω can be obtained as:

fξ (x, t) = 1

t
fω

( x
t

)
(3.23)

X(t) can be re-expressed as X(t) = cos(ξ) if X(t) is further denoted as Z = cos(ξ).
Its PDF fz(x, t) can then be represented as:

fz(x, t) = 1√
1 − x2

[ fξ (arccosx, t) + fξ (2π − arccosx, t)] (3.24)

Equation (3.24) can be therefore repeated as X(t) = Z , similarly, the PDF of
X(t) can be expressed as:

fX (x, t) = fZ (x, t)

=
{

1√
1−x2

[
fξ (arccocs x, t) + fξ (2π − arccos x, t)

]
, |x | ≤ 1

0, otherwise

(3.25)

Because ω is uniformly distributed on [5π/4, 7π/4], its PDF is:

fω(x, t) =
{

1
7π
4 − 5π

4
= 2

π
, 5π

4 ≤ ω ≤ 7π
4

0, otherwise
(3.26)

Therefore, according to a series of mathematical derivations, the PDF of X(t) at
t = 1 s can be obtained as:

fX (x, t)|t=1 =
{

1
π

√
1−x2

, −
√
2
2 ≤ x ≤

√
2
2

0, otherwise
(3.27)

When t = 1s, the second-order statistics (e.g., average and standard deviation)
can be obtained based on the PDF fX (x, t)|t=1 of the displacement response X(t) of
the single-degree-of-freedom system, according to:
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μ(t) = E[X(t)] =
η2∫

η1

cos(xt) fω(ω)dx

= 1

η2 − η1
[sin(η2t) − sin(η1t)] (3.28)

SX (t) =
η2∫

η1

[cos(xt)]2 fω(ω)dx

= 1

(η2 − η1)t

[
(η2 − η1)t

2
+ sin

(
2η2t

) − sin
(
2η1t

)
4

]
(3.29)

Among them, η1 = 5π/4, η2 = 5π/4. The standard deviation X(t) can therefore
be obtained as:

σX (t) =
√
SX (t) − μ2

X (t) (3.30)

Figure 3.25 compares the PDF results of the displacement response obtained
by the PDEM and analytical solutions in the single-degree-of-freedom system. By
comparison of the PDF levels, it is theoretically explained that the probability density
evolution theory has a higher calculation accuracy and effectiveness. The evolu-
tionary level of the PDF of the stochastic dynamic system lays the foundation for the
solution of the system dynamic reliability.

Figure 3.26 shows the second-order statistical solution (mean and standard devi-

Fig. 3.25 PDF of the displacement response in a single-degree-of-freedom system (t = 1 s)
(reprinted from Huang et al. 2015 with permission of Elsevier)



82 3 Numerical Simulation and Application of Slope Stochastic Seismic …

Fig. 3.26 Second-order
statistics information (mean
and standard deviation) of a
single-degree-of-freedom
system (reprinted from
Huang et al. 2015 with
permission of Elsevier)

ation) of the single-degree-of-freedom stochastic dynamic system. The analytical
solution further demonstrates the correctness and validity of the PDEM.
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Chapter 4
Dynamic Failure Mechanism
and Post-failure Behavior Analysis
of Slopes

The previous chapters mainly focus on the failure potential under different seismic
intensity conditions, which is essential for landslide prevention. In terms of mitiga-
tion, not only should the landslide surface and slope volume be determined, but also
the run-out distance and flow depth should be considered. The entire dynamic evolu-
tion process of slope failure triggered by earthquake activity usually includes different
stages: small deformation accumulation; instability; large deformation flow; and
deposition. Studying the stages of slope instability separately cannot clearly explain
the evolution mechanism of the entire earthquake-trigged slope failure process. A
unifiedmodel to analyze the entire landslide process is therefore of great significance
for the design of retaining structures.

4.1 Evolution Process of Slope Failure

A slope can be divided into two parts: a skeleton formed by rock and soil particles;
and the fluid between the gaps. Weak interactions between rock and soil particles
often lead to various mechanical characteristics at different stages, such as solid-like
mechanical behavior during the finite deformation stage and liquid-like mechanical
behavior during the large deformation stage (Pastor et al., 2010; Prime et al., 2014b).
The different geotechnical material characteristics can be distinguished by strain.
When the strain of the geotechnical materials exceeds 100%, the materials change
from quasi-solid to quasi-liquid (Huang et al., 2012).

The entire dynamic process of earthquake-triggered slope failure can be gener-
ally characterized by three stages according to the mechanical characteristics of the
geotechnical materials: (1) activation; (2) high-speed flow-like movement; and (3)
final deposition. Figure 4.1 describes the entire process of slope instability and failure
evolution under seismic dynamic excitation conditions. The initiation stage mainly
includes the small deformation accumulation and instability process, the slope is
solid-like, and the sliding surface gradually forms and connects. Once the sliding
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The configuration of the slope
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The final configuration of the slope

Solid state

Fig. 4.1 Flow chart of entire process of slope instability and failure evolution under seismic
dynamic excitation conditions

surface is formed, the slope becomes unstable and the gravitational potential energy
of the slope is transferred into high kinetic energy, resulting in large deformation and
fluidization of the geotechnical materials (Prime et al., 2014a). The kinetic energy
of the landslide is gradually consumed owing to the influence of topography and the
interaction of the moving geotechnical materials, and the deposition stage begins.
The geo-materials ultimately reach a new equilibrium and act as a solid. During the
entire evolution of slope dynamic instability, the geotechnical materials change from
quasi-solid to quasi-liquid and ultimately return again to a quasi-solid. This kind
of solid–liquid phase transformation phenomenon that occurs during the process of
slope instability and failure was pointed out by Pastor et al. (2010).
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4.2 Dynamic Failure Processes and Slope Failure
Mechanism

The two main factors that influence the mechanism of earthquake-induced slope
instability include the slope body and ground motion.

(1) Slope factors

Slope factors include three types. The first is the topographic amplification effect. It
is well known that seismic amplification affects ground motion in all kinds of slopes.
The ground motion of slope bodies is gradually magnified with elevation and occurs
in both horizontal and vertical earthquakes. Historically, scholars mostly studied the
topographic amplification effect through spectral ratios (Geli et al., 1988). Studies
have shown that in addition to horizontal seismic action, the vertical seismic action of
some site pairs is amplified, especially in the 20 m closest to the surface (Elgamal &
He, 2004). At present, the amplification effect of ground motion in slopes can be
verified by various means, including measured seismic data and shaking table tests
(Fan et al., 2016).

The second slope factor is topographic site effects. Meunier et al. (2008) studied
the topographic site effects and showed that landslides triggered by earthquakes
mostly occur along ridge crests. This effect is generally referred to as the “backslope
effect”, which means that landslides are more densely distributed in the direction
facing the earthquake than in the backslope direction.Wang and Xie (2010) analyzed
the data of China’s first topographic array in theWenchuan earthquake and suggested
that the slope topography had different amplification effects on the different ground
motion frequencies in different directions.

The third slope factor is the progressive failure effect. The reflection effect of
seismic waves mainly leads to the tensile and fracture failure of rock mass. Some
scholars believe that seismic waves are reflected multiple times in complex multi-
layered rock mass, which is more likely to cause rock mass fragmentation. A change
of dynamic rock mass characteristics may also lead to resonance with the seismic
waves in a specific frequency band, thus leading to more serious slope failure (Jiao
et al., 2015).

(2) Ground motion factors

The statistical empirical formulas of seismic landslide investigations in different
areas cannot be directly compared because of differing earthquakemechanisms (e.g.,
strike-slip fault and thrust fault).

Vertical seismic action has attracted increasing attention since the 1979 Imperial
Valley earthquake (vertical peak ground acceleration (PGA) = 1.7 g, fault spacing
= 3 km) and the 1994 Northridge earthquake (Elgamal & He, 2004) (vertical PGA
= 0.8 g, fault spacing = 9 km). In the years following the Northridge earthquake,
seismic studies on structural engineering proposed the need to consider the seismic
performance of concrete structures subjected to both vertical and horizontal earth-
quakes (Elnashai & Papazoglou, 1997), and both vertical and horizontal acceleration
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response spectra were recommended to be considered in structural seismic design.
Studies have shown that 296 earthquakes and the records of 620 stations include
fault vertical seismic action (Ambraseys, 1995; Ambraseys & Simpson, 1996), and
the vertical acceleration of earthquakes above M6 within 10 km can easily reach
more than 0.1 g (Elgamal & He, 2004). On the basis of the measured vertical ground
motion data near faults, Aoi et al. (2008) also pointed out that vertical earthquakes
can be simulated by a “trampoline” model.

4.2.1 Dynamic Solution Steps

In this chapter, white noise is input to test the overall response of soil slope and adjust
the damping parameter of soil. The stochastic ground motion is input through batch
processing to obtain all the slope dynamic response-damage conditions. Some of the
solutions steps are summarized below.

(1) Establish a slope model.
(2) Determine the physical parameters and dynamic boundary conditions of the

slope model.
(3) Arrange monitoring points inside the slope body as measurement indicators of

the acceleration, velocity, displacement, and strain, among others.
(4) Perform a white noise test, and adjust the damping and other dynamic

parameters.
(5) Input the stochastic ground motion.
(6) Solve the dynamic response and determine the failure behavior of the soil slope

under stochastic ground motion.
(7) Analyze the response information of all monitoring points under the action of

an earthquake.
(8) Extract all the calculation information of the monitoring points to analyze the

destruction process and failure mechanism.

4.2.2 Slope Dynamic Calculation Model

This section studies the formation process of the sliding surface in a soil slope. Using
the FLAC2Ddynamic analysismodule, the failure process and instabilitymechanism
of soil slope under stochastic earthquakes are systematically and comprehensively
studied by batch processing a large number of intensity-frequency non-stationary
stochastic ground motions. The calculation model includes three parts: a geometric
model; parameter setting; and monitoring setting.

(1) Geometric model of soil slope

A homogeneous soil slope model with a height of 10 m and foot of 45° is built in this
section, as shown in Fig. 4.2a. Figure 4.2b presents the FLAC2D model grid with
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Fig. 4.2 Model of a homogeneous soil slope a and sketch of the finite element mesh in FLAC2D
b

4020 calculation regions containing 52 boundary grids automatically generated by
the free field boundary system on both sides of the model. The maximum grid size
is 1 m, which meets the grid size requirements in Eqs. 4.1, 4.2, 4.3, 4.4 and 4.5.

Vs = λ f (4.1)

Gmax = ρ · V 2
s (4.2)

K = E

3(1 − 2υ)
(4.3)

G = E

2(1 + υ)
(4.4)

lmax <

(
1

10
∼ 1

8

)
λ (4.5)

(2) Model parameter

TheMohr–Coulombmodel is chosen as the constitutive model and the other parame-
ters are listed in Table 4.1. The Rayleigh damping parameter for dynamic calculation
is damping ratio (εmin) equal to 0.05 and frequency ( fmin) of 3.5 Hz.
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Table 4.1 Parameters for
FLAC2D slope model

Parameter Value

Density. (kg/m3) 1780

bulk modulus K (MPa) 16.67

Shear modulus G (MPa) 7.692

Elastic modulus E (MPa) 20

Poisson ration μ 0.3

Cohesive force c (kPa) 20

Internal friction angle ϕ (°) 25

Shear strength ct (kPa) 3

Dilatancy angle θ (°) 0

After the model is established, the safety factor can be obtained using the slice
method and strength reduction method, yielding 1.53 and 1.50, respectively. The
sliding surface positions obtained by the two methods are nearly the same.

(3) Monitoring design

The strain monitoring arrangement is shown in Fig. 4.3a. Thirty strain monitoring
points are arranged in a rowwith an interval of 0.5m,which is the same as the distance
between every two layers. Because the slope height is 10 m, the whole model has 21
layers and 630 strainmonitoring points in total. The layout of thesemonitoring points
and data export are realized using a program written in FISH language. The strain
monitoring points are more numerous than those for monitoring the acceleration
and displacement because the grid size should be smaller than the distance between

Fig. 4.3 2D Slope profile:
typical monitoring points
area a; partial monitoring
profiles for shear strain
analysis b
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adjacent monitoring points to meet the requirement that the adjacent monitoring
points can monitor different element information. As shown in Fig. 4.3, the grid size
of the strain monitoring area cell is 0.2–0.33 m horizontally and 0.33 m vertically,
which is smaller than 0.5 m. Figure 4.3b shows five typical horizontal profiles.

4.2.3 Extraction of Dynamic Slip Surface Based
on the Plastic Strain Increment

The typical failure process was analyzed using the ground motion acceleration time
history sample wave 1 (selected from 508 earthquake samples), in accordance with
the work of Zhao et al. (2020). The strain time history at each location can be
obtained according to the strain monitoring points presented in Fig. 4.3. The specific
calculation steps are described below.

(1) The strain time histories curves of 30monitoring points in the horizontal profile
starting from the slope toe were calculated to determine whether or not there
was a large plastic strain increment, which reflects that notable failure had
occurred. Figure 4.4 shows the plastic strain time histories under the ground
motion acceleration time history of sample wave 1, where Fig. 4.4a, c, and e
represent the strain time history at various points in the horizontal section with
PGA = 0.1 g when the slope height of is 3, 5, or 7 m, respectively, and no
notable plastic deformation occurs in the slope body. Figure 4.4b, d, and f show
the strain time history with PGA = 0.4 g when the slope height is 3, 5, or 7 m,
respectively. The slope body shows notable plastic deformation, especially in
the area 3.5–4.5 m from the slope.

(2) Determine the coordinates of the maximum plastic strain of the horizontal
profile. Figure 4.5a, b show the section profiles of waves 10 and 100, respec-
tively, when PGA = 0.4 g. The maximum plastic strain exists at a certain loca-
tion from the slope surface, which allows the position of the sliding surface
coordinates to be determined and the sliding surface development time to be
recorded.

(3) Obtain the position coordinates of 21 points from 21 horizontal sections. The
connection fitting is the position of the dynamic slip surface with the seismic
sample, as shown in Fig. 4.6.

(4) In this example, 508 ground motion acceleration time history samples were
analyzed to determine the positions of all sliding surfaces. The probability
density function (PDF) was analyzed in combination with the sliding surface
development time in step 2.

Figure 4.7 shows the contours of the shear strain development under the ground
motion acceleration time history of sample wave 1. At the beginning of the earth-
quake, the shear strain is small (approximately 10–3). The shear strain at the slope
toe considerably increases with increasing PGA, and the potential sliding surface
develops inside of the slope. Figure 4.7d, e portray the sudden increase of shear
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Fig. 4.4 Time history of plastic strain of the slope profile under wave 1

strain within a very short time period (4.6–4.7 s), which indicates that most seismic
landslides are sudden, corresponding to Fig. 4.7b, d, f. The shear strain subsequently
tends to stabilize, and a slight shear strain appears at the top of the slope. In accor-
dance with the strain development process (Fig. 4.4) and strain contours (Fig. 4.7),
the seismic failure process of the slope is roughly determined as follows.
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(a) (b)

Fig. 4.5 Process of determining the sliding surface position for wave 10: PGA = 0.4 g a and wave
100, PGA = 0.4 g b

Fig. 4.6 Position of the dynamic slip surface quantified under earthquake action

(1) The failure sliding surface of the slope continuously develops and only one
slip surface can be determined for each ground motion sample.

(2) During the earthquake, the sliding surface mainly develops from the slope toe
to the top, but the top also develops a tensile crack surface in the downward
direction. The two sliding surfaces ultimately connect (Sect. 4.3).

(3) The trend of the shear strain time history is consistent at everymonitoring point
for a given ground motion acceleration time history, especially near the failure
surface. Although the plastic shear strain values are different in Fig. 4.4b, d,
and f, the time histories all increase suddenly and level up for the remaining
period.
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Fig. 4.7 Final plastic strain contours under earthquake action (wave 1, PGA = 0.4 g) (reprinted
from Zhao et al. (2020) with permission of Elsevier)

4.2.4 Failure Process Analysis Based on Stochastic Seismic
Ground Motion

The characteristics of the slope failure process under stochastic ground motion
conditionsmainly refer to beginning time, failure accomplishment time, andduration.

In the example presented here, the strain time history was normalized by dividing
the final plastic strain for analysis. The failure started when the shear strain achieved
10% of the maximum plastic shear strain, and stopped when the shear strain devel-
oped to 90% of the maximum plastic shear strain. The duration was the difference
between the beginning time and failure accomplishment time.
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Figure 4.8 represents the slope deformation development based on the normalized
strain history and strain rate time history.When the shear strain rate fluctuated around
zero, the shear strain remained unchanged, which corresponds to failure accomplish-
ment. After checking all the curves, four typical deformation development modes of
soil slope can be summarized, as follows.

Figure 4.8a—Type I: Transient slope failure (typically < 0.5 s). The plastic shear
strain curve experienced a large surge under earthquake loading, and the normalized
curve of the shear strain rate exhibited an isolated peak.

Figure 4.8b—Type II: Transient slope failure (~0.5–1 s) with a disconnected
process. A short pause occurred in the development of the plastic shear strain, and
two or more very close peaks appeared in the normalized curves of the shear strain
rates.

Figure 4.8c—Type III: Slope failure is completed in stages over a longer time
period (~2–4 s). The normalized curve of the shear strain rate exhibited several
similar peaks.

Figure 4.8d—Type IV: Slope failure took place over a long period of time and
was completed in several stages (>4 s), and the normalized shear strain leveled off
for more than 2 s during the earthquakes. The plastic shear strain stopped during the
earthquakes and the normalized curve of the shear strain rate exhibited two or more
completely separate peaks.

Fig. 4.8 Deformation development patterns of slope based on the normalized shear strain and shear
strain rate time history (reprinted from Zhao et al. (2020) with permission of Elsevier)
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These four types of deformation development modes have limitations, but they
cover almost all the slope outcomes. The number of samples classified as types I and
IV was smaller than that of types II and III. Most of the destruction process of an
earthquake is therefore completed under several cyclic loads.

4.3 Critical Slip Surface Determination and Landslide
Volume Analysis

Previous studies on seismic landslide disasters have shown that the determination of
the sliding surface affects the landslide volume (Xu et al., 2016). The relationship
between the landslide volume and run-out distance has also been reported in the
literature (Peng et al., 2015, 2016).

In the slice method, most slip surfaces are assumed to be circular, which is inac-
curate when the slope body is irregular and the material is heterogeneous (Cheng,
2003). A large number of modification schemes based on genetic algorithms and
simulated annealing in the search and calculation of non-circular sliding surfaces
thus exist (Sun et al., 2008; Zolfaghari et al., 2005). The core of these schemes is to
select multiple representative points in a certain area, connect them to form sliding
surfaces, and then analyze them based on limit equilibrium. It is also possible to use
the nested slices method or modified slices method for dynamic sliding surfaces.

Pre-generated slip surfaces are not necessary for the dynamic strength reduction
method, and the factor of safety (FOS) and slip surface position can be simultaneously
obtained. The PGAat different points in the same profile can also be used to locate the
sliding surface and its development. Similarly, a vertical profile can be set to gradually
find the greatest plastic strain point, which ultimately connects into a sliding surface
(Zheng et al., 2009).

4.3.1 Model of Slope Stochastic Dynamic Analysis

(1) Model geotechnical parameters

For this equivalent linear slope model, the former shear strain of the unit Gaus-
sian node must be calculated and the shear modulus decay function can be used to
update the unit material information (e.g., shear modulus and damping ratio). Using
basic parameters, such as soil density and cohesion, the equivalent linear model also
requires three material functions for dynamic calculation, which are the Gmax func-
tion, G attenuation function, and damping ratio function. For clayey soil, the Gmax

function is expressed as:

Gmax = 625

[
1

0.3 + 0.7e2

]
(OCR)k

√
Paσ ′

m (4.6)
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k = P I 0.72

50
(4.7)

σ ′
m = σv + K0σv + K0σv

3
(4.8)

where e is the porosity ratio, OCR is the over-consolidation ratio, P I is the soil plas-
ticity index, k is a parameter concerning the plasticity index, which can be calculated
using Eq. (4.7), Pa is the reference atmospheric pressure, σ

′
m is the average effective

stress, which can be calculated using Eq. (4.8) if groundwater is not considered, and
σv is the overburden earth pressure of the calculated position.

The G attenuation function is calculated using Eq. (4.9) based on the results of
lshibashi and Zhang (1993), and the main parameter is the plasticity index of clay.

G

Gmax
= K (γ, P I )

(
σ ′

m
)m(γ,P I )−m0 (4.9)

K (γ, P I ) = 0.5

{
1 + tanh

[
ln

(
0.000102 + n(P I )

γ

)0.492
]}

(4.10)

m(γ, P I ) − m0 = 0.272

{
1 − tanh

[
ln

(
0.000556

γ

)0.4
]}

exp
(−0.0145P I 1.3

)
(4.11)

n(P I ) = 0.0 f or P I = 0
n(P I ) = 3.37 × 10−6P I 1.404 f or 0 < P I < 15
n(P I ) = 7.00 × 10−7P I 1.976

n(P I ) = 2.70 × 10−5P I 1.115
f or 15 < P I < 70

f or P I > 70

(4.12)

where γ is the shear strain under cyclic seismic load, and K(γ,PI), m(γ,PI), n(PI)
are functions of the plasticity index of clay.

The soil damping ratio function and shear strain based on Eq. (4.9) can be
expressed as:

ξ = 0.333
1 + exp

(−0.0145P I 1.3
)

2

[
0.586

(
G

Gmax

)2

− 1.547
G

Gmax
+ 1

]
(4.13)

(2) Stochastic seismic ground motion

The site-based model for producing ground motion was adopted and a total of 508
seismic acceleration histories ground motions were generated. For the equivalent

linear analysis model,
−
amax = 0.2g is the average PGA, which greatly influences the

slope dynamic stability and time-history curve of the safety factor. Huang and Xiong
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Fig. 4.9 Minimum FOS distributions of a slope under random earthquakes: PDF for PGA= 1m/s2

a; CDF for PGA = 1 m/s2 b; PDF for PGA = 2 m/s2 c CDF for PGA = 2 m/s2 d (reprinted from
Huang et al. (2018) with permission of Springer)

(2017) used the finite element method and limit equilibrium method (FEM-LEM) to
investigation conditions involving a smaller acceleration peak with an average value

of
−
amax = 0.1g. Figure 4.9a shows the PDF and cumulative distribution function

(CDF) of the stability factor for an extreme value event, which indicates that the
slope would be in a stable state with the smaller peak acceleration. The seismic
dynamic reliability is shown in Fig. 4.9b, in which the slope dynamic reliability is
close to 1.

The average value of the peak acceleration is adjusted to 0.2 g in this study, and
the obtained PDF and CDF of the minimum safety factor are shown in Fig. 4.9c. The
minimum safety factor curve obtained from almost all of the ground motion samples
is less than 1, which implies that the ground motion samples under this setting value
can lead to slope instability, and the damage time and volume of instability can be
analyzed and calculated.
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4.3.2 Dynamic Slip Surface and Instability Volume of Slopes

The seismic dynamic instability analysis of soil slopes adopts the failure time and
corresponding instability volume based on the time histories curves of the seismic
dynamic safety factor.

(1) The slope instability time refers to the first instance that the safety factor is less
than 1 in the time history curve.

(2) The instability volume refers to the sliding body on the sliding surface
corresponding to the slope instability time.

The specific steps are as follows: (1) feed in the representative seismic acceleration
time history of wave 1; (2) extract the time history curve of the safety factor; and
(3) obtain the corresponding number of sliding surfaces for each time history curve.
Once the potential slippery surface is generated, its information (radius, center of
circle, and volume) is fixed in the calculation process,whichmeans the information of
the coded slippery surface is exactly the same at two different moments. The sliding
surface code can therefore be determined once obtaining the sliding time, and the
volume can be determined using the information corresponding to the sliding surface
code. For example, after inputting the seismic acceleration time history of wave 1
(Fig. 4.10), a sliding time of t= 4.21 s is determined, which corresponds to the sliding
surface number 5594 and is the most conservative way to identify the most critical
sliding surface. Through querying, the sliding volume is found to be 47.713 m3 for
a default thickness of the two-dimensional model of 1 m and the sliding area is
47.713 m2.

Fig. 4.10 Computational
step of the critical slip
surface based on the FOS
curve (reprinted from Huang
et al. (2018) with permission
of Springer)
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4.3.3 Evolution Law of Slope Instability Volume

The sliding time and twophysical indexes—the instability volume and sliding surface
depth—of the corresponding sliding surfacewere obtained. The reasons for choosing
these two indicators are listed as follows.

(1) The instability volume plays a decisive role in earthquake landslide disasters
mainly because there is a high correlation between the instability volume and
subsequent disaster scope.

(2) The sliding surface depth can also represent the magnitude of the landslide
volume. The acquisition of the sliding surface depth can thus be beneficial for
determining the embedding depth of an anchor and anchor force of a bolt under
stochastic seismic ground motion. Different sliding surface depths can be used
to determine the different normal stress of the sliding surface.

We first obtain the direct result of the instability volume corresponding to the
sliding time. The preliminary statistical information of the 508 calculated samples
can then be simply obtained by the relationship between the random instability
volume and the instability time of homogeneous soil slope. These 508 samples were
discretized in the initial probability space, and the sample information provides the
basis to solve the probability density function. The evolution lawof the obtained phys-
ical quantity (volume) is substituted into the probability density evolution equation
as follows:

∂pV θ (V, θ, t)

∂t
+ V̇ (θ, t)

∂pV θ (V, θ, t)

∂t
= 0 (4.14)

where V represents the instability volume and t represents the earthquake duration.
Figure 4.11 shows the probability density evolution surface of the instability

volume calculated using the probability density evolution equation based on the
sample information. The diagram shows that there is no slope instability at the initial

Fig. 4.11 Probability
density evolutionary surface
of the landslide volume
(reprinted from Huang et al.
(2018) with permission of
Springer)
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time, and that the probability exerts amaximumvaluewhen the volume is zero.As the
earthquake activity continues, some samples begin to be damaged and the probability
value of the samples with zero volume (indicating safety) begins to decrease. After
approximately 5 s, all the samples fail, the probability value is 0when the volume is 0,
and the unstable volume mainly concentrates around 50 m3. The three-dimensional
probability density evolution surface directly reflects the uncertainty of slope failure
under randomearthquake action,which includes the uncertainty of the sliding volume
and sliding depth.

4.3.4 Stochastic Seismic Risk Assessment of Slope

The existing methods of risk assessment usually involve equivalent extreme events
or the first crossing method, which generally consider physical quantities such as
acceleration, displacement, or the unstable volume. If the equivalent extreme events
are referred, the maximum sliding volume of each seismic input can be used for
analysis. Owing to the monotony of the volume research process, the value of the
sliding volume and truncated random variable at the sliding completion time are
identical. For example, all the sliding volume distributions at t = 10 s can be taken
for analysis. All the samples have therefore been destroyed at this moment, and the
volume distribution at this time can be considered the final state.

The randomness of the final sliding volume calculated by FEM-LEM coupling
is analyzed. Figure 4.12 shows the probability density evolution method (PDEM)
analysis and Monte Carlo Method (MCM) simulation analysis of the final instability
volume of homogeneous soil slope. The volume distribution in Fig. 4.12 can also be
used as a reference for seismic landslide hazard assessment. The seismic landslide
volume is closely related to the run-out distance and disaster-causing range, and is
generally believed to be proportional to the landslide volume (Li & Chu, 2016; Liu
et al., 2017; Zhang & Huang, 2016). The risk of a landslide disaster can be estimated
if the sliding volume is multiplied by the potential property loss per unit volume.

The ultimate purpose of studying seismic stability is seismic design. Therefore,
in addition to considering the randomness of the instability volume, the position of
the slope failure surface and depth of the sliding surface are all essential parameters,
which provide a reference for the design of support structures. Three to five samples
of ground motion are far from sufficient for current design specifications, and the
sliding surface depth varies greatly from 4 to 8 m (Fig. 4.13). For this model, the
sliding depth considering the static action is approximately 5.168 m. The sliding
depth may therefore be underestimated when using small data samples. If the anchor
bolt length and embedded depth of the anti-sliding pile are insufficient in the final
design, the failure probability under earthquake will be greatly increased.

If stochastic seismic dynamic analysis is used, the engineer can be informed of
all the slope sliding possibilities under seismic action, which will reduce the design
defect if the anchor depth is directly embedded in stable rock. Stochastic seismic
dynamic analysis can therefore present a completely different idea for seismic design.
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Fig. 4.12 Landslide volume
uncertainty calculated by the
MCM and PDEM: a PDF; b
CDF (reprinted from Huang
et al. (2018) with permission
of Springer)

Fig. 4.13 Landslide depth
uncertainty: PDF a; CDF b
(reprinted from Huang et al.
(2018) with permission of
Springer)
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Fig. 4.14 Sliding volume
determined by the plastic
strain increment method
(reprinted from Zhao et al.
(2020) with permission of
Elsevier)

The actual failure of an earthquake-triggered landslide occurs mostly owing to
lower shear-upper tensile fracturing. The role of the top tensile fracture zone should
thus be considered based on plastic shear strain slip surface in Sect. 4.3.4.

The specific seismic dynamic state of the sliding surface is not yet determined
after the sliding surface connects, and the slope may simply produce several cracks.
Using the above method, the area of the unstable sliding region is calculated for all
the ground motion samples. The PDF of the unstable sliding body is obtained by
the PDEM, as shown in Fig. 4.14. The plane strain analysis indicates that the sliding
region is mainly 25–75 m3 with an average of 42 m3.

The unstable volume should therefore also be used as a relevant index to evaluate
the seismic landslide risk. The random instability analysis method presented in this
section is of great importance to the seismic design of slope engineering.

4.4 Slope Post-failure Behavior Under Random
Earthquake Based on Smoothed Particle
Hydrodynamics

The seismic dynamic analysis of the first two stages has been previously presented
regarding themechanism and process. In the slope failure process, when soil particles
move rapidly and their state changes from elastic to plastic, the stress–strain relation-
ship is no longer in line with the small deformation assumption and enters the large
deformation stages. Such disasters (e.g., landslides and debris flows) move quickly
and affect a wide region, which often leads to the damage or burial of buildings,
transportation facilities, and other structures, which can directly threaten human life.
For example, a catastrophic landslide disaster occurred suddenly inMaoxian County
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Fig. 4.15 Homogeneous ideal slope model (units: m) (reprinted from Huang et al. (2020) with
permission of Springer)

of Sichuan Province in June 2017. The sliding volume was approximately 1.300 ×
106 m3 and the run-out distance was approximately 2.6 km. In April 2007, the Tibet
Yi Gong mountain collapsed, producing a landslide volume of 3 × 108 m3 and run-
out distance of more than 6 km, which caused economic losses of approximately 14
million yuan.

The run-out distance is positively relevant to the landslide volume (Okura et al.,
2000). Numerous studies have applied slope dynamics reliability analysis with
different stochastic factors, such as soil spatial anisotropy (Jiang et al., 2015), hori-
zontal seismic coefficients, and soil unitweights (Johari&Khodaparast, 2015). In this
section, the post-failure behavior under random earthquake action is quantitatively
analyzed based on smoothed particle hydrodynamics.

4.4.1 SPH Model of Soil Flow Hazards

According to existing reports of slope reliability analysis, Huang et al. (2020) estab-
lished a two-dimensional ideal slope model to evaluate the large deformation of
slopes after an earthquake event (Fig. 4.15). The slope height in this example is
20 m, the top width is 22 m, and the slope angle is 45°. The model is composed of
4767 particles, including 4080 soil particles (blue) and 687 boundary particles (red).
Some of the parameters of the ideal slope model are specific listed here: density ρ

= 1850 kg/m3; elastic modulus E = 500 MPa; Poisson’s ratio υ = 0.3. There are
2873 real particles and 406 boundary particles, which share the same parameters.
The artificial viscosity parameter a is 1, the artificial viscosity parameter k is 0.01,
the artificial stress parameter ε is 0.3, the time step is 10–4 s, and the ratio between
the smooth length and particle spacing is 1.2.

4.4.2 Simulation of Random Field

The specific steps of the lognormal random field simulation that link the cohesive
force c and internal friction angle ϕ are described as follows.
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(1) Determine the detailed statistical characteristic of c and ϕ, including the prob-
ability distribution, average value, coefficient of variation, autocorrelation
distance, and correlation number.

(2) Determine the subdivision grid of the two-dimensional random field. To
simplify the calculation, the grids are generally selected to be consistent with
the particles in the SPH model.

(3) Select the form of the autocorrelation function, obtain its eigenvalues and
eigenvectors by the numerical method, and arrange them according to the size
of the eigenvalues.

(4) Calculate the cross-correlationmatrix R0
1,2 of the standard normal random field

according to Eqs. (4.8) and (4.9), and use Latin hypercube sampling to generate
the independent standard normal random variable εn(θ) (Jiang et al., 2014). On
this basis, Eq. (4.10) is used to calculate the related standard normal random
variable εn(θ).

(5) Generate sample points of the cohesive force c and internal friction angle ϕ

according to the probability space subdivision of the basic random variables,
and use Eqs. (4.13) and (4.14) to discretize the relevant lognormal random
fields.

According to the above steps, the basic random variable space was divided and
226 representative points were obtained considering the Sobol point set (Radovic
et al., 1996). Using the inverse transformation method and generalized F deviation
optimization, the lognormal distribution random field is generated, to which c and
ϕ are related. The statistical characteristics of c and ϕ (Cho, 2010) are presented in
Table 4.2. Combinedwith the particle distribution information in the SPH calculation
model, the random field is divided into 4767 nodes, and the soil parameters of each
node are assigned to each particle. The average values of c and ϕ are taken as an
example, and the related lognormal random field is simulated. As shown in Figs. 4.16
and 4.17, the value of the soil parameters changes with changing location. On the
basis of the probability space subdivision of the random variables, the random field
of the statistical characteristic value of different c and ϕ values is discretized, and
a finite number of the sample collection is obtained, which reflects the geological
reality of the soil parameters.

Table 4.2 Statistical characteristics of soil parameters

Parameter Distribution
type

Average
value

Coefficient of
variation

Autocorrelation
distance

Cross
correlation
coefficient

Cohesive force Lognormal
distribution

10 kPa 0.3 lx = 20m
ly = 20m

ρcϕ =
−0.25

Internal
friction angle

Lognormal
distribution

20° 0.2
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Fig. 4.16 Realization of a
stochastic field of the
cohesive force

Fig. 4.17 Realization of a
stochastic field of the
internal friction force

4.4.3 Large Deformation Analysis of Soil Flow Hazards

Referring to Karhunen-Loève series expansion method, the corresponding sample
set is produced after generating the lognormal random field to which the c and ϕ are
related. A series of SPH calculation samples were generated under dynamic condi-
tions, in combinationwith the SPHmodel in Sect. 4.4.1. The SPHgoverning equation
was solved via batch processing to obtain the deterministic calculation results. The
finite difference numerical method was then used to handle the GDEE equation.
The PDFs of the flow slip parameters considering of the soil spatial variability were
obtained, and large deformation analysis of soil flow hazards was carried out.

There are many format differences when solving GDEE equations. A compar-
ison of three aspects (convergence, compatibility, and stability) shows that the total
variation diminishing (TVD) bilateral difference scheme reduces the dissipation,
suppresses the dispersion by applying a flux limit, offers the advantages of unilateral
and bilateral format differences format of Lax-Wendroff (LW), and calculates the
convergence faster with high precision.

The ground motion adopts the El Centro wave, ground motion acceleration, and
velocity time history curve, as shown in Fig. 4.18. The SPH simulation process is
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Fig. 4.18 Time history
curve of ground motion

shown in Fig. 4.19. When t = 1.0 s, the slope began to exhibit large deformation.
Under the action of ground motion, the sliding distance increased until t = 8 s, and
the run-out distance eventually reached 32.4 m.

The time history curves of the mean and standard deviation values of the flow
slip parameters were obtained by analyzing the SPH simulation results. Taking the
run-out distance as an example, when t = 10 s, the maximum value was 57.8 m,
which is more than seven times greater than the minimum value (8.8 m) with an
average of 19.4 m. Figure 4.20 highlights the growth of the mean and standard
deviation with time. The reason for this increase is that slope began to slip under
the earthquake action, and the average run-out distance increased with gradually
appearing differences. For example, the flow depth of the area 5 m from the slope
toe reached a minimum value of 1.8 m at t = 10 s, which is greater than one-third of
the maximum value (6.3 m), with a mean of 4.1 m and standard deviation of 0.82.
Figure 4.21 depicts the time history curve of mean and standard deviation of flow
depth in that section. When t < 2 s, the average flow depth is 0, showing that the
run-out distance is < 5 m. When 2 < t < 8 s, the mean flow depth value increases
with time, showing that the soil moved during in the large deformation flow process.
When t > 8 s, the mean flow depth value remains unchanged, which indicates that
the large deformation and soil movement had ceased. When 2 < t < 8 s, the standard
deviation of the flow depth exhibits a peak, which indicates an initial increase and
then decrease, and illustrates the influence of the soil spatial variability. The large-
deformation soil flow disaster shows notable differences, and the discreteness of the
flow depth initially increases and then decreases.

The GDEE equation was solved to obtain the probabilistic evolution process and
characteristics of the flow-slip parameters. Using the equivalent extreme events, the
corresponding virtual process was constructed to obtain the PDF and CDF curves of
the flow slip parameters. Figure 4.22 shows the PDF curve of the run-out distance
at three typical moments, taking the sliding distance as an example. The PDF of the
run-out distance clearly no longer follows a lognormal distribution, which indicates
complex mapping between the input and output of the random slope system. When
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Fig. 4.19 SPH simulation
process

t = 3.5 s, the run-out distance distribution ranges between 0 and 12 m, and the peak
PDF is 0.3584. When t = 4.5 s, the run-out distance is between 1 and 17 m, and
the peak PDF is 0.2316. When t = 5.5 s, the run-out distance is mainly distributed
between 4 and 23 m, and the peak PDF is 0.1406.

Figure 4.23 intercepts the curved surface of the probability density variation of
the run-out distance between 3 and 5 s, which demonstrates the complex changing
process of the PDF. Figure 4.24 is an equal-probability density plot of the run-out
distance, which is the horizontal projection of Fig. 4.26. Where the curves are dense
in the figure, the PDF values change rapidly. In contrast, when the curves are sparse,
the PDF values change slowly.
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Fig. 4.20 Mean and
standard deviation
time-history curves of the
run-out distance considering
spatial variability

Fig. 4.21 Mean and
standard deviation
time-history curves of the
flow depth considering
spatial variability

Fig. 4.22 PDF curve of
run-out distance under
typical moments considering
spatial variability
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Fig. 4.23
Three-dimensional surface
of the probability density
variation of run-out distance
considering spatial
variability

Fig. 4.24 Equal-probability
density plot of the run-out
distance considering spatial
variability

Fig. 4.25 PDF curve of the
run-out distance considering
spatial variability
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Fig. 4.26 CDF curve of the
run-out distance considering
spatial variability

The PDF and CDF curves of the final sliding distance were obtained based on the
equivalent extreme events, as shown in Figs. 4.25 and 4.26, respectively. The run-out
distance ranges from 7 to 43 m and the peak PDF is 0.1274, which corresponds to a
sliding distance of 15.3 m. The probability of a run-out distance greater than 17.1 m
is approximately 50%, and the probability of a sliding distance less than 23.7 m is
90%. Similarly, the PDF and CDF curves for the flow depth can be obtained, as
shown in Figs. 4.27 and 4.28, respectively. The flow depth is distributed between 1.5
and 6.0 m, the peak PDF is 0.7690, and the corresponding flow depth is 4.0 m. The
probability of the flow depth more than 4 m is about 50%, and the probability of the
flow depth less than 4.8 m is 90%.

Fig. 4.27 PDF curve of the
flow depth considering
spatial variability
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Fig. 4.28 CDF curve of the
flow depth considering
spatial variability
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Chapter 5
Nonlinear Stochastic Dynamic Seismic
Response Analysis of Slopes Based
on Large Shaking Table Tests

The shaking table physical model testing method is a significant approach for
studying the mechanism and modes of structural earthquake failure, evaluating the
overall seismic resistance of structures, and measuring the effects of seismic reduc-
tion and isolation. The numerical methods of dynamic analysis have advanced in
recent years. However, the uncertainties of numerical models and material parame-
ters are becoming an important topic for the validation of results, so that it develops a
strong requirement for experimental confirmation with appropriate boundary condi-
tions that are same as the virtual models. This is particularly true when a structure
behaves plastically or includes elements whose behavior shows a strong correlation
with different load properties, especially seismic excitations. Here we use a dynam-
ical system in which a function is applied to describe the time dependence charac-
teristics of certain points in a geometrical domain. Considering the time dependent
and stochastic properties of seismic excitations, the slope should be regarded as a
stochastic dynamical system when investigating the randomness of ground motions.
In a slope dynamical system, the description on the dynamic characteristics should
involve the propagation and spatio-temporal evolution of the kinetic indicators that
are assessed using probability (e.g., velocity, acceleration, and displacement). The
factors of stability and amplifying effect are significant concerns under stochastic
dynamical excitation conditions. The final illustration helps to visualize these effects
in an evolutional method using probability density function (PDF) curves.

Earthquake stochastic dynamic tests were originally based on field tests. Earth-
quake observation instruments were first set on building structures or slopes, and the
dynamic characteristics of these structures or slopes would be measured when an
earthquake stimulation was captured by the instruments. However, field prototype
tests cannot meet the needs of seismic research owing to the limited number of strong
earthquakes and long interim periods. The construction of indoor seismic simulation
equipment was therefore proposed, such as shaking tables and centrifuges. A large
amount of data can be obtained using such indoor physical methods, and the period
over which the data are obtained is greatly shortened.
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Shaking table tests loaded with earthquake waves were first used in the 1940s to
simulate the seismic behavior of civil engineering structures. The scaling and amount
increased substantially by the 1960s. A horizontal and vertical simultaneous seismic
simulation shaking table was established by the Institute of Industrial Technology
of the University of Tokyo in 1966. Vibrating tables with electromagnetic driving
methods began to appear in the late 1960s, such as the seismic simulation shaking
table built at the University of Illinois in 1968 (3.65 × 3.65 m), one built at the
University ofTokyo in 1966 (10×2m), andoneof the earliest earthquakes simulating
shakers built at the Central Research Institute of Japan Electric Power in 1968 (6 ×
6.5 m).

Prior to 1971, the shakers would vibrate in one direction or switch between hori-
zontal and vertical motion. The degrees of freedom (DOF) did not increase until the
seismic simulation shaking table at the University of California, Berkeley was first
established. The control system of multi-dimensional earthquake simulation shaking
tables is more complicated not only because control must be considered in different
directions, but also to consider the influence of coupling effects.

Advances in mechanical system control practices increased with the develop-
ment of the signal controlling theorem, which contains two popular control tech-
niques: proportion integral differential (PID) control based on displacement; and
supply-feedback control using displacement, velocity, and acceleration. However,
in 1975, the numerical control method, especially the position sensitive detector
control method, was adopted to achieve seismic excitation reproduction wider
frequency bands. The position sensitive detector controller can dynamically change
the controller parameters according to the system error to achieve adaptive control. In
themid 1990s, the seismic simulation shaker control systemwasmanipulated by both
digital and simulationmethods; the former contributed to the compensation of control
signals and the latter ensured the stability, accuracy, broadband, anti-interference,
and linear characteristics of the control system. In this chapter, a large-scale shaking
table test is conducted to study the dynamic response of slope under stochastic ground
motions, where 144 artificial seismic acceleration time-history samples are gener-
ated and demonstrated adopting a spatial evolution power spectrum technique (Zhao
et al., 2020).

The purpose of this physical test is to reveal the stochastic nonlinear seismic
response rules of slope, and to validate the numerical simulation results using
the obtained experimental data. The design of the model box and materials, simi-
larity laws, seismic excitations, loading schemes, monitoring system, and the model
production procedures are introduced in detail. The acceleration evolves following
the trend that the PDF value changes spatiotemporally in the shaking table test. In the
temporal domain, the PDF value initially increases and then decreases after a boost
of the progression of the seismic power spectrum. In the spatial range, the PDF value
increases upslope in the nonlinear manner, which implies that the mean and standard
deviation (MSD) of the amplifying factors increases with elevation following some
high-order function (Zhao et al., 2020). The processing of the detailed dataset shows
that the factor of safety (FOS) of the upper slope is inferior, and a de-amplifying effect
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is recognized at the slope toe under these seismic excitations. Different amplifying
factors and the applications of these factors in slope engineering are also discussed
in this chapter.

5.1 Model Design for Large Shaking Table Test

With the rise of the infrastructure industry, shaking table tests have become increas-
ingly common in studies of the seismic performance and mechanism of large
hydraulic structures, civil engineering structures, nuclear power plants, and other
constructions and facilities. These experimental results are good indicators that can
verify the validity of computational modeling outcomes. However, research on the
geotechnical surroundings and infrastructures within hazardous subgrade regions
remains insufficient, especially with regard to the dynamic response under seismic
excitations. New analysis methods are being put forward based on the temporally and
spatially related evolution characteristics. The uncertainty of seismic groundmotions
and indistinction on constitutive models of geotechnical materials and structures
suggest that probability density functions are one of the best options for overcoming
this insufficiency. On the basis of the significance and fact that this uncertainty has
seldom been studied in terms of slope seismic response using shaking table tests,
this chapter investigates the nonlinear stochastic seismic dynamic response of a slope
shaking table test. In mechanical systems, significant similarity matters in terms of
geometrics, kinematics, and dynamics of slope models should be addressed, and are
therefore introduced throughout the procedure. The similarity law is fully considered
in the overall steps.

(1) Size determination of test model
(2) Model materials production
(3) Model construction and measurement
(4) Seismic excitation generation.

5.1.1 Size Determination of Slope Model

The dimension parameters of the prototype include length, width, and height, and
should altogether be reduced or enlarged into a model size in some proportion that is
called the similarity ratio. The similarity ratio of a slope physical test mainly depends
on the purpose of the test, and considers the bearing capacity of the shaker to compare
the studied region of the prototype and the model box size.

The shaking table system is located at theMultifunctional Vibration Experimental
Center of the State Key Laboratory of Disaster Prevention and Mitigation in the
School of Civil Engineering at Tongji University. The shaking table system contains
four 4 × 6 m shaking tables, and one of the largest shakers has a global capa-
bility of more than 200 tons. Notably, one 30-ton shaker used in this slope model
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Table 5.1 Pivotal parameters
of the shaking table

Parameters

Geometry 4 × 6 m

Capacity 30 T

Frequency 0.1–50 Hz

DOF 3

Maximum value Item and direction X Y

Acceleration 1.2 g 0.8 g

Velocity 1000 mm/s 600 mm/s

Displacement 100 mm 50 mm

is sufficient to effectively capture the slope dynamic response with the assistance
of well-operating sensors. Essential differences exist between slope engineering and
building structures. The research scope of slopes and hazardous landslides consist
of a geotechnical loose medium and continuum (e.g., earth, rocks) without a macro-
scopic bridging capacity. There is therefore no need to engage multi-point shaker
coupling, which was originally adopted to investigate the seismic response of struc-
tures or bridges with regularly arranged columns and piers. The shaking table in
the study of slope lithology simulates in the same manner as single point shaking
table tests. Using a combination of materials with relatively high stiffness and low
deformation and with the design aim to reuse the slope model, the test requires a
rigid model box to simulate lithological boundaries that can resist deformation. Once
the shear model box is used, destructive tests are commonly conducted, and soft and
deformable soil materials should also be accommodated.

(1) Parameters of shaking table model

The composition of the model box covers a combination of experimental purposes,
shaking table size, and shaker capacity. Table 5.1 lists the pivotal characteristics
of the 30-ton shaker. In terms of the model box and shaker configuration, there is a
threaded hole on the rigid model box with a 36-mm diameter, and the spacing density
is 500 mm.

Table 5.2 lists some of the relevant references for the rigid model box geometry
in this test, and Table 5.3 lists the model box parameters used for comparison. The
shaking table size limit was shown in previous experiments to be generally within
4 m in length. The appearance length of the rigid box used in the test demonstrated
here is 3.6 m and the net length is 3.4 m. The design of the model box width and
height is ensured from the following fields.

a. Consideration of model boundary effects. Many scholars have systematically
investigated the impact of model width on the slope seismic response (Tang
et al., 2017). When the height is 0.6 m, a 1-m width is appropriate. When the
width is larger than 2 m, the error will be reduced to almost 0 compared with
the prototype. Accounting for previous studies (Lin & Wang, 2006; Shi et al.,
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Table 5.2 Reference slope shaking table model rigid box dimensions

No Appearance size References

1 3.1 × 1.0 × 0.7 m Shi et al. (2015)

2 4.4 × 1.3 × 1.2 m Lin and Wang (2006), Wang and Lin ( 2011)

3 1.7 × 1.28 × 2 .5 m Fan et al. (2016)

4 2.05 × 0.6 × 1 .4 m Shinoda et al. (2015)

5 3 × 0.4 × 0 .6 m Zhao et al. (2015)

6 5 × 2.2 × 1 .2 m Yuan et al. (2014)

7 3.7 × 2.78 × 2 .1 m Liu et al. (2014)

8 3.7 × 2.78 × 2 .45 m Liu et al. (2013)

9 3.7 × 1.7 × 1 .2 m Huang et al. (2013)

10 3.5 × 1.6 × 1 .8 m Yang et al. (2012)

Table 5.3 Engineering
parameters of slope shaking
table test model box

Parameters Values

Physical dimensions 3.5 × 1.5 × 1 .6 m

Bottom bolt inner size 3.5 × 1 .5 m

Internal dimensions 3.4 × 1.0 × 1 .6 m

Model box weight 1.35 T

Design slope earthwork 2.5 m3

Model box material High-strength steel, tempered glass

2015; Wang & Lin, 2011), the reasonable internal net width is determined to be
1 m for the balance of little accuracy loss and model expense reduction.

b. Combination of sample preparation difficulty, shaker bearing capacity, and
internal volume control. We set the internal net height of the model box to
1.6 m and the maximum height of the slope materials to 1.5 m. The model
parameters concluded in this chapter in Table 5.3 are in accordance with the
rigorous experimental review that conducted by other authors in Table 5.2.

(2) Assembly of the model box

The slopemodel box frameworkwaswelded using 20 #b channel steel, 10 #b channel
steel, 10 # I-steel, and 10 # equilateral angle steel, according to the Chinese code Hot
Rolled Section Steel The front and back profiles are made of 10-mm-thick tempered
glass to monitor slope deformation using high-speed cameras. The channel steel at
the bottom has 10 bolt holes at specific coordinates, which can be connected and
fixed with the shaking table. To reduce the relative slip between the slope model and
bottom during vibration, the steel bottom plate should be handled as a rough surface.
The complete appearance of the assembled model box is shown in Fig. 5.1.

(3) Model box frequency test
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Fig. 5.1 Rigid model box

When the inherent frequency of a structure coincides with the compulsive vibration
frequency, the input energy of the vibration tends to be transferred to the mechan-
ical objective. Mechanical resonance poses a problem in geotechnical engineering
practice, particularly when the structure objectives have a relatively low inherent
frequency, which is likely to meet the vibration frequency, and the large amount of
energy restored in the vibration is presented as a notable amplitude that may destroy
the entire structure objectives. The inherent frequency of the model box is therefore
not permitted in the seismic input frequency domain; Otherwise, the resonance of the
rigid box will not only destroy the structure, but also distort the output acceleration
when the input is close to the inherent frequency.

The inherent frequency of a rigid box is generally much higher than that of soil.
The upper critical seismic frequency applied by the shaker is approximately 50 Hz,
which increases the difficulty when using inadequate seismic frequencies to test
its inherent frequency. The actual seismic frequency must be confirmed to be lower
than that of the model box before the formal experimental excitations to avoid energy
dissipation caused by the environment. The inherent frequency is therefore measured
in the pretest by manually knocking with a hammer, and the initial frequency of this
free vibration can be beyond that for the resonance.

The high-frequency signal is first created by rigid hammer knocking. Notably, the
initial frequency must be sufficiently high and the hammer must be stiff with a good
elastic modulus. The hammer knockings excite the box twice continuously along the
length direction. One or more sensors are placed on the bottom and side wall of the
box to record the acceleration data during this process. A group of time and frequency
domain curves of the acceleration and amplitude signal are shown in Fig. 5.2. The
frequency of the first two orders of the frequency-domain signal of the two excitations
are 100 and 139 Hz, respectively. This indicates that its inherent frequency is larger
than that of the upper limit of the proposed input seismic excitation frequency during
the experiment, which means that the resonance has been eliminated.
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Fig. 5.2 Frequency test
results of the shaking table
rigid box in the time and
frequency domains
(reprinted from Zhao et al.
(2020) with permission of
Elsevier)

5.1.2 Material Production of Slope Model

The testingmaterials commonly adopted in physicalmodels includefield samples and
manualmaterials in a controlled proportion. To investigate the slope seismic response
under different groundmotion sequences, themodel is expected to be non-destructive
and maintain dynamic performance throughout the test. The model should therefore
have a sufficient stiffness and resistance to multiple seismic sequences. Materials
such as clays and silty sands are thus inappropriate owing to the destruction risk. The
simulated prototype materials with an elastic modulus 4 GPa and Poisson’s ratio of
0.3 are shown in the yellow area in Fig. 5.3.

The similarity theorem includes the theory and principles to bridge the gap
between the slope response in nature and similar phenomena for research purposes
conducted at a particular scale. This generally includes geometric similarity, dynamic
similarity, similar boundary conditions, similar motion characteristics, similar mate-
rials, and similar media. In this shaking table test, the requirements for the test layout
are as follows: base test conditions, model plane size (i.e., similarity ratio), shaker
bearing capacity, permittable model box height, equivalent prototype mass, asperity
requirement for seismic inputs, horizontal eccentricity ratio in the vibration, the
FOS for the vibration during fatigue, and emergency management planning. Test
prototypes are therefore often scaled in the model test using similarity theory.
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Fig. 5.3 Variance on the elastic modulus and Poisson’s ratio of slope materials (modified from
Engineering Geology Manual (2007))

(1) Material preparation

Slope prototypes are generally a mixture of hard rock to soft clay; it is therefore
challenging to unify the properties of the model materials. Table 5.4 summarizes the
current designmaterials, and three kinds of testmaterialswere selected.These include
the on-site soil sample, the single material (e.g., a single clay), and proportioning

Table 5.4 Classification of shaking table slope model material based on previous studies

Materials Sources Representative thesis

On-site sample On-site soils Wang et al. (2010), Yang et al.
(2015)

Single material Dry sand, clay dam gravel
filling, clay slope, earth-rock
dam, reinforced retaining wall
filling

Huang et al. (2011), Lin and Wang
(2006), Liu et al. (2016), Ng et al.
(2004), Wang and Lin (2011)

Proportioned material Cement, gypsum binder, quartz
sand, barite aggregate, various
rocks, collapses, iron powder,
bentonite

Aydan and Kumsar (2009), Fan et al.
(2016), Huang et al. (2013), Jiao
et al. (2014), Li et al. ( 2012), Liu
et al. (2013, 2014), Shinoda et al.
(2015), Xu et al. (2010), Yang et al.
(2015, 2012)
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Table 5.5 Well-proportioned model rock material in the model test

Material Quartz sand Barite powder Gypsum powder Glycerin Water

Proportion (%) 46.5 27.5 20.0 1.3 4.7

material (e.g., barite, quartz sand, and gypsum). The thick mixture should meet the
mechanical and physical characteristics of soft rock and hard rock by adjusting the
concentration of the single material proportion (Liu et al., 2014). The static and
dynamic characteristics of the artificial material must be quantified by a group of
direct shear tests or static triaxial tests and dynamic triaxial tests.

When three parameters (sand binder ratio, water paste ratio, and barite content)
are controlled in the test, the material density and stiffness should be controllable
(Shi et al., 2015). Owing to the availability and adjustability of this proportioning
method, a similar material selection scheme is adopted during testing. Here, we
use five kinds of engineering materials—barite, quartz sand, gypsum, glycerin, and
water—in accordance with the target proportion for good performance, according to
details provided in the literature (Aydan & Kumsar, 2009; Fan et al., 2016; Huang
et al., 2013; Jiao et al., 2014; Li et al., 2012; Liu et al., 2013, 2014; Shinoda et al.,
2015; Xu et al., 2010; Yang et al., 2012, 2015). The specific proportion information
is listed in Table 5.5. Of note, the quartz sand is relatively uniform; the particle size
is mainly concentrated between 0.5 and 1 mm with an average of 0.68 mm.

(2) Determination of similarity ratio and material proportion

On the basis of dimensional analysis, theBuckinghamπ theorem is used to determine
the dynamic similarity ratio of the shaking table test (Buckingham, 1914). According
to the Buckingham π theorem, if a relation equation f (q1, q2, q3 . . . qn) = 0 has n
physical quantities and k independent basic dimensions, it should be converted into
a relational formula F(π1, π2, π3 . . . πn−k) = 0 that contains (n−k) dimensionless
π term relations. Without knowing the relationship between formula f and F, if
provided the k basic physical dimensions as A1, A2, A3 . . . Ak , the remaining (n−k)
physical dimensions can be expressed as the power of the k basic dimensions as
follows:

qk+1 = fk+1(q1, q2, q3 . . . qk) = Ap1
1 Ap2

2 Ap3
3 . . . Apk

k (5.1)

qn = fn(q1, q2, q3 . . . qk) = Ar1
1 Ar2

2 Ar3
3 . . . Ark

k (5.2)

If k basic physical quantities are simultaneously multiplied by a conversion factor
sequence C1,C2,C3 . . .Ck , then k for any integer can be vectorized into Eq. (5.3).
The remaining (n−k) physical quantities in Eqs. (5.1) and (5.2) are expressed as
Eq. (5.4) and Eq. (5.5), respectively:

q ′
k = Ckqk (5.3)
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q ′
k+1 = C p1

1 C p2
2 . . .C pk

k qk+1 (5.4)

q ′
n = Cr1

1 C
r2
2 . . .Crk

k qn (5.5)

Equations (5.6) and (5.7) are inferred when the above physical quantities are
substituted into the original equations.

f
(
C1q1,C2q2 . . .Ckqk,C

p1
k qk+1 . . .Cr1

1 C
r2
2 . . .Crk

k qn
) = 0 (5.6)

f

(
1, 1 . . . 1,

qk+1

q p1
1 q p2

2 . . . q pk
k

. . .
qn

qr1q
r2
2 . . . qrkk

)
= 0 (5.7)

Equation (5.7) is transformed as follows:

qk+1

q p1
1 q p2

2 . . . q pk
k

= π1 (5.8)

qn
qr1q

r2
2 . . . qrkk

= πn−k (5.9)

The Buckingham π theorem effectively determines the scale relationship and
similarity ratio of the slope shaking tablemodel. It also verifies that the (n−k) physical
quantities can be obtained from k basic quantities through a certain conversion factor
sequence. The functional relationship of the main physical quantities is listed in
Eq. (5.10). The physical quantities are shown in Eq. (5.10) and their symbols and
dimensions are listed in Table 5.6.

f (ρ, l, E, μ, c, ϕ, σ, ε, t, f, u, v, a, g, ζ ) = 0 (5.10)

In accordance with the dimension analysis method, it is necessary to consider the
principle of strain similarity, in which the elastic modulus is similar to the control

Table 5.6 Dynamic similarity ratio of key physical dimension derivation

Physical quantity Symbol Dimension Physical quantity Symbol Dimension

Density ρ ML−3 Time t T

Geometric size l L Frequency f T1

Elastic Modulus E ML−1T2 Displacement u L

Poisson’s ratio μ 1 Velocity v LT−1

Cohesion C ML−1T2 Acceleration a LT−2

Internal friction angle ϕ 1 Gravity acceleration g LT−2

Stress σ ML−1T2 Damping ratio ζ 1

Strain ε 1
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strain under dynamic deformation conditions between the physical model and the
prototype. We must therefore verify three control parameters when considering the
similarity ratio of the test. We first need a model that is reduced in size to maintain
control of the length ratio of the original studied field and modal allowable size. The
material density is then difficult to satisfy as the same ratio carried out with size; thus,
we should use materials that are the same as the original rocks with similar charac-
teristics. The dynamic response under seismic excitation conditions is the first-order
purpose to conduct the experiment and the high-quality data input and acquisition
are extremely significant.We thus adjust the acceleration spectrum away from distor-
tion and set the similarity value to 1. To summarize the work for simplification of
the similarity model calculations under the premise of the Buckingham π theorem,
we make the density similarity Cp = 1 and the elastic modulus CE = λ, which is
internally achieved in the 1 g condition. The conversions of the similar constants
determined in this experiment are listed in Table 5.7. Of note, the similarity criterion
is only one kind of scheme that satisfies the Buckingham π theorem, and is often
used owing to its maturity and simplification.

Random excitation is used in the test and the designed slope model does not
show notable damage when the ground motion magnitude remains small. The slope

Table 5.7 Similarity ratio affirmation of the test physical dimensions with the Buckingham π

theorem

Category Physical quantity Value Abbreviation

Geometric size Length (Control) λ CL

Area λ2 Cs

Volume λ3 Cv

Material characteristics Density (Control) Cρ = 1 Cρ

Mass CρCL
3 = λ3 Cm

Cohesion CρCL = λ Cc

Internal friction angle 1 Cϕ

Poisson’s ratio 1 Cμ

Modulus CρCL = λ CE

Stress CρCL = λ Cσ

Strain CσCE
−1 = 1 Cε

Dynamic characteristics Acceleration (Control) Ca = 1 Ca

Force CρCL
3Ca = λ3 CF

Velocity CLCt
−1 = λ−0.5 Cv

Displacement CεCL = λ Cd

Time [CLCa
−1]0.5 = λ0.5 Ct

Frequency [CaCL
−1]0.5 = λ−0.5 Cf

Damping ratio 1 Cζ



126 5 Nonlinear Stochastic Dynamic Seismic Response Analysis of Slopes …

Table 5.8 Comparison
between slope prototype and
model parameters

Design specification
(unit)

Prototype
parameters

Model parameters

Slope height (m) 28.75 1.15

Density (kg/m3) 2000 2000

Gravity acceleration
(m/S3)

9.8 9.8

Elastic modulus (MPa) 4000 160

Poisson ratio 0.33 0.33

Cohesion kPa 1500 60

Internal friction angle
(°)

35 35

Time (s) 30 6

Damping ratio 0.05 0.05

model should thus have mechanical parameters similar to the prototype, such as
high rigidity. The rock slope height corresponding to its design is generally within
30 m, according to the Technical Code for Building Slope Engineering (2013). The
generalized prototype slope of this model is therefore a rock slope with interbedded
soft and hard rock. The slope model parameters are displayed in Table 5.8.

The unconfined compressive strength of the model material is 800 kPa, the simi-
larity ratio is 25, and the uniaxial compressive strength of prototype material is
Rc = 20 MPa. On the basis of the empirical mechanical relationships on soft rocks
(Palchik, 2010), the ratio of the elastic modulus to uniaxial compressive strength is
Mc = 200 − 250. We set Mc = 200 for the calculation and model material design.
The Young’s modulus of the prototype is 4 GPa and the Poisson’s ratio is 0.33,
whereas the Young’s modulus of the model is 160 MPa. The other significant rela-
tionships between the different indicators of the model and prototype materials are
listed in Table 5.8. The cohesion and internal friction angle of the materials were
obtained through a series of basic unit tests, including direct shear tests.

5.1.3 Construction and Measurement of Slope Model

This section introduces the test model preparation, including the model construction
and sensor layout design.

(1) Construction of material embedded with sensors

In the beginning of the model construction, foam boards are placed on the bottom
of both sides of the model, as shown in Fig. 5.1. According to the proportions listed
in Table 5.5, 87.8 kg of barite powder, 63.8 kg of gypsum powder, and 148.4 kg of
quartz sand for a total of 300 kg were mixed in a large mixer to ensure that all the
materials were uniformly mixed for the convenience of the subsequent steps. It is
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noted that the quartz sand should be added last to prevent uneven mixing in the dry
mixing process because the particle size is relatively large. The mixer direction is
changed several times to fully mix the three components, which takes approximately
8–10 min.

Glycerin solution is prepared in advance according to the proportion of glycerin
and water in Table 5.5. Next, 14.1 kg of dry material and 900 g of solution are slowly
combined during the stirring process in a small mixer.

The model is constructed from bottom to top in the model box. Each 5-cm-thick
soil is regarded as a layer and the loose soil is consolidated into a denser layer after
spreading the first layer. In the same way, the bottom is constructed to include 5
layers, with a total height of 30 cm.

The chromatic aberration of the tempered glass surface should be sufficiently
discrepant to allow clear observations. A certain proportion of black sand (e.g.,
30%) is therefore added in a 1–2 cm layer thickness close to the edge of the side wall
to increase the chromatic aberration and facilitate high-speed imaging. Figure 5.4a
shows an image after stirring the dyed sand, and Fig. 5.4b shows an image of the
10 × 10 cm grid lines. All images are processed using software in the displacement
field for supportive analysis.

The prepared model must be conserved for 5–7 days owing to the presence of
gypsum. The model is hoisted and fixed onto the vibrating table after maintenance,
various sensor collection channels are installed, and high-speed photogrammetry
equipment is erected.

(2) Layout of the dynamic response measurement

The sensors are sensitive, stable, and have a high accuracy in service under static
and dynamic measurement conditions. Even if the input signals change little over
time, the relation is apparent between the input and output data of the slope, which
reflects the sensitivity characteristics. The requirement of real-time and accurate

Fig. 5.4 Model side dyed sand treatment a and view of grid line b
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Table 5.9 Test sensors in the shaking table model

Sensor types Test sampling frequency Quantity

Contact measurement Acceleration sensor 256 Hz 45

Pull-wire displacement
meter

256 Hz 8

Non-contact measurement High-speed photography
equipment

1000 frames/s 1

3D laser scanner / 1

measurements is emphasized in the dynamic signal recording of the slope. To obtain
high-quality measurements, contact and non-contact measurement approaches are
planned in the grid. The sensor information is listed in Table 5.9.

The main parameters are shown in Table 5.10, and the principles of the sensors
are as follows. The determination of the range of acceleration sensors is based on a
preliminary numerical calculation. The results indicate that the maximum acceler-
ation amplification factor of the slope top, which is the most dangerous part of the
model, should bewithin 5 under seismic stimulation. It is therefore evident that under
the maximum seismic input of 0.8 g, the acceleration sensors with a 5 g range have
an adequate capacity for real-time measurements without over-ranged accidents.
The acceleration sensors used in this test include 25 acceleration sensors (JF106T,
Yangzhou Jufeng Technology Co., Ltd.) and 20 piezoelectric acceleration sensors
(DH105E, Donghua). The principle of these acceleration sensors is that an HY-ZK-1
impedance converter can be used to convert the charge signal into a voltage signal.
The key parameters are listed in Table 5.10.

On the basis of the analogy with particle image velocimetry technology, several
high-speed cameras are installed to take photographs of the dynamic objects to collect
a sequence of digital images. These 3D information solutions to the target and analyt-
ical algorithms are combined to measure the structural or motion parameters. The 3D
coordinate information of the high-speed moving target is obtained using a contin-
uous picture sequence takenwith the high-speed camera. The seismic spatial response
information of the target objective is available after analysis, which directly reflects
the static, kinetic, and dynamic characteristics of the slope.

The advantages of high-speed camera measurement technology are generalized
as follows. First, dynamic measurements can record the spatial positions and state
of objects at any instant. Dynamic information of every moving step can be continu-
ously recorded with intensive sampling, which provides the monitoring system with
favorable dynamic characteristics. Second, non-contact measurements can achieve
the measurement purpose with as few changes to physical properties of materials
as possible, which makes the measurements more reliable and closer to reality.
Third, multi-point acceleration measurements allow simultaneous data acquisition
from multiple monitoring points and collateral analysis on multiple regions. The
development of high-speed camera measurement technology, auxiliary devices, and
algorithms has reached an accuracy of 10−2 pixels, which ensures accurate analysis.
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Table 5.10 Detailed
parameters of the multi-type
sensors (JF106T, DH105E)

Sensor type Item Sampling interval

JF106T acceleration
sensor

Frequency
range

0.2~1000 Hz

Temperature
range

−40~150 °C

Charge
sensitivity

1200PC/g

Range ±10 g

Maximum
impact

100 g

Transverse
sensitivity

<5%

IRF 8 kHz

Capacitance 6000 pF

Insulation
resistance

>109 	

Sensitive
original

PZT-5

Weight 118 g

DH105E acceleration
sensor

Frequency
range

0.2~1000 Hz

Temperature
range

−20~80 °C

Charge
sensitivity

1000 MV/ms−2

Range ±5 g

Maximum
impact

50 g

Transverse
sensitivity

<5%

Internal
structure

Shear

Weight 165 g

Note IRF refers to the installation resonance frequency. Detailed
information on the displacement sensors is not provided here

The high-speed camera used in this test is an I-SPEED7high-performance camera
with a peak of 500,000 fps. Figure 5.5 shows an image of the camera, light source,
and a lighting effect diagram during excitation with a shuttering time of 0.1 μs. The
parameters of the high-speed camera are listed in Table 5.11. Sunlight with diffuse
reflection makes it possible to obtain a picture with a frame rate within 250 fps.
However, darker pictures tend to increase the frame rate. Following the provided
instruction, the image is quite distinguishable when the frame rate is below 1000
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Fig. 5.5 High-speed camera a, light source b, and lighting effect diagram during excitation with
the shuttering time of 0.1 μs c

Table 5.11 Detailed
parameters of the I-SPEED 7
series high-speed cameras

I-SPEED 7 Sampling interval

Upper limit of frame rate 500,000 fps

Resolution 2048 × 1536 ppi

Shutter type Global exposure

Shutter time 1 μs Standard mode, 250 ns fast
mode

Built-in SSD 500 GB

Recording time 1000 fps 16.1 s; 500 fps 32.2 s

Operating temperature 0–40 °C

fps in the direct sunlight at approximately 50,000 lx, whereas the frame rate of
pictures beyond that critical frame rate is not adequate for data processing. Hence, a
professional light source is required in the test, with two high-speed camera-specific
light sources, as shown in Fig. 5.5. To recede the local light spots caused by the direct
irradiation on the model box, the two light sources are placed on both sides of the
model box along oblique axes. Each single light source has a power of 3520 W and
nominal voltage of 220 V.

To obtain pictures with high resolution and sufficient light in combination with
the upper limit of the forced vibration of the shaker at 50 Hz, 500 fps is chosen to
ensure the picture quality and dataset density. The test is recorded in trigger mode,
the maximum length of each recording is 32 s, and the longest earthquake duration is
20 s. Each seismic wave is stored for 20 s, with 10,000 pictures collected each time.
These pictures are stored in real-time in.jpg or.jpeg format in a hard drive, saving
approximately 13 GB of pictures each time.

The high-speed cameras are placed on both sides of the model box, and the 3D
laser scanner is set on the front of the model. A total of 45 sensors (A0–A44) are
installed in the experiment, the layout of which is shown in Fig. 5.6. The accelera-
tion sensors A16, A26, A36, and A42 were damaged owing to the vibration impact
on the material, thus 41 acceleration sensors were in service for further seismic
measurements.
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Fig. 5.6 Stochastic response acceleration sensor observation profile

5.1.4 Ground Motion Generation and Response Acquisition

(1) Ground motion generation

The number of artificial excitation samples must be sufficiently large to analyze after
the test and sufficiently small to operate during the test. In accordance with previous
research (Liu et al., 2016), it is believed that the dynamic analysis requires 144 ground
motion samples, for which the cutoff error is less than 5% and the average response
spectrum fits well with the standard spectrum. The response spectrum represents
the curve of the ultimate seismic spatial responses of a single point system with the
inherent vibration period of the particles under deterministic seismic excitation. The
definition of the average response spectrum of the sample generated by the seismic
ground motion model is described in Chap. 2. Using this method, 144 acceleration
time history ground motion samples are used as the seismic inputs. Some parameters
of the ground motion generation are listed in Table 5.12. To clarify the concepts
of these parameters, the ground motion model parameters involved in Chap. 2 are
rewritten as follows:

Table 5.12 Parameters of
artificial seismic excitation
time history in slope shaking
table test

Parameters Values Parameters Values

a 6 T 30 s

b 0.2 ω̄g 15.71 rad/s

c 5.5 ξ̄g 0.72

d 2
−
amax 196.2 cm/s2

n 2
−
r 2.83
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(5.14)

where T is the groundmotion duration, n is the function shape control variable, which
is equal to 1 to represent the linear time-variation ωg, ξ g, c, and d are determined

based on the regional on-site categories,
−
amax is the average of ground motion peak

acceleration, and
−
r represents the equivalent crest factor of smooth ground motion.

The 144 pieces of the groundmotion samples in this batch are generated according
to the Class II site parameters in the specifications. There exists a factor of five
differences in the time history and frequency spectra between the prototype and
slope model based on the similarity laws. The time for real seismic waveformmainly
fluctuates between 5 and 25 s. We thus take 30 s for the spectrum analysis. As
expected, the low-amplitude components contribute the most in this time domain,
and the similarity laws are also realistic in terms of the difference of horizontal axis
of the frequency spectra.

In the following section, a total of 151 artificial seismic samples are generated
to acquire the seismic response of the different regions of the slope to study the
amplification and de-amplifying effects. The groundmotion timehistory stimulations
include sevenwhite noise sampleswith a prefix name ofWn, and 144 artificial ground
motion samples with a prefix name of Rd.

(2) Seismic response acquisition

The excitation scheme with 144 slope seismic samples is listed in Table 5.13. The
slope dynamic response characteristics are recorded in real-time to accordingly study
the seismic response of the slope under the excitation of each seismic sample.

5.2 Seismic Response Analysis of Slope Model

A large amount of data is captured in the file format, as described in Sect. 5.1,
and each seismic response result corresponds with one piece of a seismic sample.
This section focuses on the analysis and processing of the seismic characteristics
of the slope model under these conditions. An approach is adopted to illustrate the
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Table 5.13 Scheme for ground motion time history spectrum of the slope

No Wave file name No Wave file name No Wave file name No Wave file name

1 Wn 1 39 Rd 37 77 Rd 74 115 Rd 110

2 Rd 1 40 Rd 38 78 Rd 75 116 Rd 111

3 Rd 2 41 Rd 39 79 Wn 4 117 Rd 112

4 Rd 3 42 Rd 40 80 Rd 76 118 Rd 113

5 Rd 4 43 Rd 41 81 Rd 77 119 Rd 114

6 Rd 5 44 Rd 42 82 Rd 78 120 Rd 115

7 Rd 6 45 Rd 43 83 Rd 79 121 Rd 116

8 Rd 7 46 Rd 44 84 Rd 80 122 Rd 117

9 Rd 8 47 Rd 45 85 Rd 81 123 Rd 118

10 Rd 9 48 Rd 46 86 Rd 82 124 Rd 119

11 Rd 10 49 Rd 47 87 Rd 83 125 Rd 120

12 Rd 11 50 Rd 48 88 Rd 84 126 Rd 121

13 Rd 12 51 Rd 49 89 Rd 85 127 Rd 122

14 Rd 13 52 Rd 50 90 Rd 86 128 Rd 123

15 Rd 14 53 Wn 3 91 Rd 87 129 Rd 124

16 Rd 15 54 Rd 51 92 Rd 88 130 Rd 125

17 Rd 16 55 Rd 52 93 Rd 89 131 Wn 6

18 Rd 17 56 Rd 53 94 Rd 90 132 Rd 126

19 Rd 18 57 Rd 54 95 Rd 91 133 Rd 127

20 Rd 19 58 Rd 55 96 Rd 92 134 Rd 128

21 Rd 20 59 Rd 56 97 Rd 93 135 Rd 129

22 Rd 21 60 Rd 57 98 Rd 94 136 Rd 130

23 Rd 22 61 Rd 58 99 Rd 95 137 Rd 131

24 Rd 23 62 Rd 59 100 Rd 96 138 Rd 132

25 Rd 24 63 Rd 60 101 Rd 97 139 Rd 133

26 Rd 25 64 Rd 61 102 Rd 98 140 Rd 134

27 Wn 2 65 Rd 62 103 Rd 99 141 Rd 135

28 Rd 26 66 Rd 63 104 Rd 100 142 Rd 136

29 Rd 27 67 Rd 64 105 Wn 5 143 Rd 137

30 Rd 28 68 Rd 65 106 Rd 101 144 Rd 138

31 Rd 29 69 Rd 66 107 Rd 102 145 Rd 139

32 Rd 30 70 Rd 67 108 Rd 103 146 Rd 140

33 Rd 31 71 Rd 68 109 Rd 104 147 Rd 141

34 Rd 32 72 Rd 69 110 Rd 105 148 Rd 142

(continued)
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Table 5.13 (continued)

No Wave file name No Wave file name No Wave file name No Wave file name

35 Rd 33 73 Rd 70 111 Rd 106 149 Rd 143

36 Rd 34 74 Rd 71 112 Rd 107 150 Rd 144

37 Rd 35 75 Rd 72 113 Rd 108 151 Wn 7

38 Rd 36 76 Rd 73 114 Rd 109 152 /

Note Rd represents random seismic excitations; Wn represents white noise samples

stochastic characteristics and variability of the indicators to investigate their seismic
behavior considering the slope dynamic response with variable ground motion.

5.2.1 Dynamic Characteristics of the Slope Model

(1) White noise test

To estimate slope dynamic characteristics, the tests must be nondestructive and the
model must be completed in the pretest before the seismic samples are officially
applied. The white noise tests are performed for that purpose in the verification.
Slope gridlines on the plexiglass box are shown in Fig. 5.7. In this pretest, an artificial
white noise excitation is used to estimate the slope completeness. Figure 5.8 shows
the temporal curves and frequency spectra of the white noise sample. Because the
maximum value of the frequency input of the vibration shaker is 50Hz, the frequency
range for the white noise generation is set to 0–50 Hz. The duration is 40.96 s and the
lowest frequency of the ground motion is set to 0.024 Hz (1/40.96 s = 0.0224 Hz),
which contributes to the fluctuation in the low-frequency range in Fig. 5.8.

SA(w) = S0 (5.15)

The white noise inside the slope and white noise response spectra at different
slope elevations are shown in Fig. 5.9. The same approach as that of the inherent

Fig. 5.7 Rock slope with
gridlines on the plexiglass
box



5.2 Seismic Response Analysis of Slope Model 135

Fig. 5.8 White noise input temporal waveform and frequency power spectrum of the slope model

frequency measurement is adopted to investigate the frequency of the dynamic slope
system consisting of the slope model and rigid box. The inherent frequency of the
model is found to be approximately 34 Hz, thus the prototype inherent frequency is
6.8 Hz. The amplitude of the response remains different at multiple points inside the
slope. The response amplitude generally increases with increasing slope elevation.

There are seven white noises in the validation before the official tests in each
group, which contains 24 pieces of official seismic samples. Figure 5.10 shows the
sequence in which the pretest that illustrates the slope model frequency spectrum
hardly changeswhen treatedwith different pieces ofwhite noise inputs, thus releasing
a positive signal maintainsing thatthe model keeps similar and complete before the
official seismic excitation.

(2) Acceleration seismic responses

A deterministic investigation on the acquisition of the three dynamic response indi-
cators is conducted, and the different elevation regions with their profile responses
are selected prior to the statistical analysis in the following stochastic description, as
shown in Fig. 5.6. The selection procedure is as follows.

Select the response of the one point monitored under four seismic excitations.
This can be extracted from Fig. 5.11 in which the response obtained by multiple
excitations differ at the same elevation, and the time domain peak value is 0.4–0.6 g.
The data from the A9 acceleration sensor show that the frequency domain ranges
under different seismic excitations are somewhat similar, whereas the energy records
show a distinguishable difference.

Select the same seismic sample as the seismic input at a different elevation. It can
be concluded from Fig. 5.12 that the waveshape changes only slightly at multiple
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Fig. 5.9 White noise response spectra at different elevations of the slope model
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Fig. 5.10 Seismic sample excitation sequence

elevations of this sample, as demonstrated by the amplitude in each round. The
intensity of the Fourier spectrum is also proportional to the frequency domain range
and elevation.

Owing to the existence of non-stationary seismic excitation characteristics in the
time and frequency domain, the acquisition of the slope dynamic response is difficult
for obtaining accurate predictions on the seismic response. The data processing and
analysis of these performance-based indicators are therefore necessary.

5.2.2 Stochastic Dynamic Response Analysis of Slope

(1) Probability density evolution (PDE) of acceleration response

There are 144 seismic excitation samples applied to acquire the continuous accel-
eration dataset. In the test, the dominating energy supplement of the acceleration
starts at 5 s and ends at 25 s, as displayed in Fig. 5.13; however, the amplitude and
frequency components vary with time. The distribution of the three typical eleva-
tions at the slope bottom A1, middle part of the slope A9, and slope top A29 are
positioned at 1, 10, 20, and 29 s of the input sample to study the evolution principles
of the probability density of acceleration under this ground motion section. Several
respectable conclusions are implied in Fig. 5.14, as follows.

The acceleration PDF of the slope model at a given location at multiple moments
follows a standard Gaussian distribution, and the distribution range gradually
increases with increasing ground motion amplitude and ultimately returns to the
initial calmness when the ground motion ends. For example, the distribution at t =
1 s almost coincides with that at t = 29 s.

The acceleration PDFs of multiple elevations remain symmetrical and follow
normal Gaussian distributions with different standard deviations. The concentration
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Fig. 5.11 Response and frequency spectra of the A9 sensor inside the slope under different seismic
input conditions (No. means the number of ground motions)

degree of a series of curves increaseswith elevation,which ismanifested as the ampli-
fying effect. This phenomenon is particularly apparent for the horizontal acceleration
and provides a general rule for the other 143 ground motion samples in the same
time domain. We therefore conclude that the deterministic factors become dominant
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Fig. 5.12 Horizontal acceleration response along the elevation profile under one seismic excitation

with increasing time and elevation, and the features on the initial stochastic curve
with large standard deviations are difficult to capture.

Figure 5.14 clearly shows that when the ground motion amplitude is insignificant
(e.g., t = 5 or 20 s), the acceleration PDF follows a Gaussian distribution. However,
when the peak value is large (e.g., t = 10 or 15 s), the distribution range of the
function is broader and the value at sensor A29 at the slope top is even greater than
0.8 g. The distribution of the PDF of the acceleration changes and smoothness of the
distribution function curve decreases.
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Fig. 5.13 Time history curve of the ground motion captured in the typical test

Fig. 5.14 PDFs of the acceleration at 1, 10, 20, and 29 s recorded on sensors A29 a, A9 b, and A1
at different elevations c. PDFs of the acceleration at 5, 10, 15, and 20 s recorded on sensors A29 d,
A9 e, and A1 at different elevations f
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The dynamic mean value may not be accurately 0. This is mainly caused by the
nonlinear deformation of the slope under the high ground motion peak, material
nonlinearity, and the random coupling of ground motion. However, owing to the
large model stiffness, this part of the deformation is limited to an acceptable range,
which has little effect on the study of the random dynamic response.

Figure 5.15 shows part of the acceleration response of the PDE surface under
ground motion action measured at sensor A29. The PDF evolves in a normal distri-
bution near the ground motion peak (10–12 s), and the occurrences at the other
domain are small. The acceleration amplitude varies between −0.6 and 0.6 g at this
time.

Figure 5.16 shows the PDE of the settlement at the slope top to the box edge,
where numerous time-varying distributions appear at the peak seismic displacement,
which is viewed as residual subsidence. This is caused by the variability of the ground
motion samples and nonlinear material characteristics. The peak displacement in the
model is within the critical range, so the displacement of the prototype is less than
10 mm according to the law of similarity. This should not cause landslide damage on
the slope body within the simulated seismic conditions. Figure 5.17 also shows that
the settlement is balanced in the positive and negative directions, which contributes

Fig. 5.15 Acceleration probability density evolution surface at sensor A29

Fig. 5.16 PDFs on the
time-varying displacement at
the slope top
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Fig. 5.17 PDFs of the vertical settlement at different elevations of the slope model when the time
is 1s, 10s and 20s

to the aspect that the displacement is basically restored to the pre-seismic excitation
level after the real earthquake.

(2) Elevation amplification effect on acceleration

a. Analysis of acceleration at multiple elevations

Figure 5.17 shows the PDF of the acceleration amplitude along the elevation profile
selected at multiple moments. The acceleration at any time generally appears as
an amplifying effect with increasing elevation. The middle and upper parts of the
slope may also suffer during heavy earthquakes when the time is fixed. There is
a certain skewed distribution when the acceleration amplitude increases and when
the acceleration amplitude range in exterior normal direction of the slope is slightly
larger than the amplitude range in the interior normal direction. This may be caused
by the asymmetric structure of the slope and a certain degree of material nonlinearity.

b. Analysis of equivalent extreme events

Several studies have addressed the elevation amplification effect of slopes because
the effect is instructive for designing site selection rules, slope performance, and risk
mitigation for buildings in mountainous areas. The steps to investigate and analyze
these elevation amplification effects on the acceleration underground motion are as
follows.

Extract themaximum seismic acceleration of eachmonitored point under a certain
earthquake stimulation. Compare the response spectrum with that of the base under
the seismic excitation to obtain the amplifying factor of the seismic excitation by
dividing one by the other. The initial probability of the ground motion should be
attached to the amplifying factor.
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The probability that an incident occurs should not break the conservation rule, thus
the amplifying coefficients and probability of each elevation under ground motion
should be acquired by traversing all of the ground motions.

On the basis of the equivalent extreme events, a virtual stochastic method with
uncertainty is constructed in this process to solve the PDF of the slope amplifying
factor.

Combined with the above analysis, Figs. 5.18 and 5.19 show the slope amplifying
factor along the elevation distribution. The amplifying factor at each slope elevation
is not a constant, but presents a norm-like distribution.

In general, the acceleration amplifying factor, variability, and probability gradu-
ally increase with elevation. The distribution range of the density function accord-
ingly broadens, which implies that the slope dynamic response is more stochastic
and becomes harder to predict with increasing elevation.

Most of the horizontal acceleration magnifying coefficients on the slope top
exceed 1.5 with a non-transcendental probability of 97%, and the overall distribution
is between 1.5 and 3.0, as shown in Fig. 5.20.

Fig. 5.18 PDF curves of the acceleration elevation amplifying factor

Fig. 5.19 CDF curves of the acceleration elevation amplifying factor
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Fig. 5.20 Amplifying coefficient curves based on the average response spectrum under seismic
excitation conditions a, b, and amplifying coefficient curves based on the average Fourier spectrum
under seismic excitation conditions c, d

The average value of the slope top amplifying factor is 2.02, and the standard
deviation is 0.27. Similarly, the MSD of the amplifying factor increases with slope
elevation. It is therefore suggested that the peak design ground motion value of sites
should be doubled when buildings or structures are located on top of an engineering
slope, and the design calculation should be carried out for security and assurance.

(3) Spectral amplification under vibration

The reason for the concentration the frequency components of the ground motion
within the range of 6–7 Hz under the influence of ground motion is explained as
follows.

The inherent frequency of the slope model is 34 Hz and the prototype inherent
frequency is 6.8 Hz under similar laws. The energy dissipates only slightly during
the transfer process, which amplifies the pieces of the ground motion samples close
to the inherent frequency.

The high-frequency component of the input seismic sample is filtered.
Conventional shaking table amplifying coefficients are mostly obtained from the

horizontal acceleration peak amplification. However, limited research has addressed
the frequency domain amplification. Figure 5.20a, b show the average value of the
response spectrum for a damping ratio of 0.05 obtained from 144 ground motion
inputs of multiple measurement points with increasing elevation. Only the part with
the period within 1 s is shown because the slope frequency is fairly high. The results
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indicate that the peak acceleration response spectrum corresponding to the predom-
inant period of the slope is 0.147 s (1/6.8 Hz = 0.147 s). The amplifying coefficient
curve of the response spectrum is obtained by dividing the average response spectrum
at different elevation positions by the reference acceleration A1 at the slope bottom.

The amplifying coefficient curve based on the average response spectrum is shown
in Fig. 5.20a, b. The amplifying coefficient at the slope top near the slope inherent
frequency is 2.53, which is 20% larger than 2.02, and thus represents the peak hori-
zontal ground motion value. The amplifying coefficient curve using the fast Fourier
transform (FFT) method is shown in Fig. 5.20c, d. The average values are calculated
based on the statistical analysis of 144 ground motion samples as follows.

a. Average horizontal acceleration peak amplifying coefficient
b. Average horizontal acceleration response spectrum amplifying coefficient
c. Average horizontal acceleration Fourier spectrum amplifying coefficient.

Figure 5.21 quantifies the result that the average amplifying coefficient of the peak
horizontal acceleration value (2.02) is the smallest, that of the response spectrum of
the (2.53) is the second largest, and that after the FFT treatment (2.93) is the largest.

In general, closer relationships between the slope inherent frequency and seismic
sample are associated with larger amplifying factors. The average value of the

Fig. 5.21 Comparison of the different amplifying factors with elevation during ground motion
input (reprinted from Zhao et al. (2020) with permission of Elsevier)
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response spectrum is also smaller than the Fourier spectrum amplifying factor owing
to the use of an impedance ratio of 0.05. The response spectrum value is inversely
proportional to the damping ratio.

5.2.3 Seismic Dynamic Reliability Analysis of Slope

(1) Critical acceleration of slope model

The reliability analysis indicators of slope failure caused by ground motion mainly
include the minimum safety factor, vertical settlement or horizontal displacement at
the slope top, and the critical acceleration. Theminimum safety factor is often used in
numerical calculations; however, the displacement obtained from each condition in
this test is small. The critical acceleration is accordingly selected to assess whether
or not the slope top is cracked. Further slope fracture analysis, such as when the
initial condition is a large amplitude input, indicates that the test slope is visibly
cracked under tensile forces when the horizontal acceleration of the test slope at the
measurement point on the slope top is greater than 1.5 g.

(2) Slope dynamic reliability for engineering design

Figure 5.22 shows the maximum acceleration response of 144 ground motions at
each measurement point. The response of the A29 horizontal acceleration sensor at
the slope top under ground motion is less than the critical acceleration (1.5 g), which
indicates that the dynamic reliability of the test slope under the test conditions is
100% and effectively meets the requirements of multiple tests.

Although the slope is stable in the random test, the dynamic reliability method
used in this section can be extended to engineering practice. ThePDFof the horizontal
acceleration at slope top is acquired based on the site design seismic peak and ground
motion sample test result. The tensile strength values of thematerial are deterministic
and converted into the corresponding critical acceleration values of thematerial at the
slope top based on the indoor experiment and engineering practice experience. The
CDF curves are then calculated via integration based on the PDF of the horizontal
acceleration dataset. Combined with the critical acceleration value obtained in the
above step, the tensile crack failure probability at the top of the design slope is
obtained.

5.3 Comparison with Numerical Modeling Results

In this section, numerical calculations performed using FLAC3D, a program that
uses the finite differential method, is applied to compare with the seismic shaking
table test results. The geometric model is built in the prototype size, thus there is no
concern regarding similarity problems. When the nonlinear constitutive models are
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Fig. 5.22 Dynamic reliability of slope top cracking failure based on critical acceleration

applied on thematerials, Rayleigh damping should be adopted to temporally delay the
effects for dynamic excitations. A free field absorption boundary condition is added
on the bottom and side walls of the numerical model to eliminate the reflection led
by the propagation of the seismic excitations. Figure 5.23 shows a profile of the
displacement contours that correspond with the slope model pretest.

TheGaussian white noise and 144 seismic samples shown in Fig. 5.24 are adopted
to simulate the seismic acceleration with a certain intensity. The PGA magnitude at
an elevation of 1.2 m is quite distinct from that at 0.1 m, which provides evidence of
the amplification effect at the slope top. The first two order inherent frequencies are
captured as 35 and 85 Hz.

Figure 5.25 compares the horizontal acceleration response obtained at the same
elevation inside the slope of the Wn 1 seismic sample. The results of the response in
the shaking table tests and numerical calculations are generally consistent with the
temporal and frequency spectra. The shaking table test results are therefore consid-
ered credible by comparison with the numerical calculation results. Further work is
required to quantify the similarity and account for the unexpected differences.
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Fig. 5.23 Displacement contours of the 3D calculation model and test seismic excitation input

Fig. 5.24 Gaussian white noise time and frequency spectra a, b, respectively. Dynamic character-
istics test of the Gaussian white noise model c
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Fig. 5.25 Horizontal acceleration response of sensor A9 in the slope under ground motion Wn 1

References

Aydan, Ö., & Kumsar, H. (2009). An experimental and theoretical approach on the modeling of
sliding response of rock wedges under dynamic loading. Rock Mechanics and Rock Engineering,
43(6), 821–830.

Buckingham, E. (1914). Illustrations of the use of dimentional equations. On physically similar
systems, 6.

Fan, G., Zhang, J., Wu, J., et al. (2016). Dynamic response and dynamic failure mode of a weak
intercalated rock slope using a shaking table. Rock Mechanics and Rock Engineering, 49(8),
3243–3256.

Hot rolled section steel. (2008). General Administration of Quality Supervision, Inspection and
Quarantine of the People’s Republic of China, vol. GB/T 706–2008. Beijing: Standardization
Administration of China.

Huang, C., Horng, J., Chang, W., et al. (2011). Dynamic behavior of reinforced walls – Horizontal
displacement response. Geotextiles and Geomembranes, 29(3), 257–267.

Huang, R., Zhao, J., Ju, N., et al. (2013). Analysis of an anti-dip landslide triggered by the 2008
Wenchuan earthquake in China. Natural Hazards, 68(2), 1021–1039.



150 5 Nonlinear Stochastic Dynamic Seismic Response Analysis of Slopes …

Huang, Y., Han, X., & Zhao, L. (2021). Recurrent neural networks for complicated seismic dynamic
response prediction of a slope system. Engineering Geology, 289, 106198.

Jiao, Y., Tian, H., Wu, H., et al. (2014). Numerical and experimental investigation on the stability
of slopes threatened by earthquakes. Arabian Journal of Geosciences, 8(7), 4353–4364.

Li, Z., Ju, N., Hou, W., et al. (2012). Large-scale shaking table model tests for dynamic response
of steep stratified rock slopes. Journal of Engineering Geology, 20.

Lin, M., & Wang, K. (2006). Seismic slope behavior in a large-scale shaking table model test.
Engineering Geology, 86(2–3), 118–133.

Liu, H., Xu, Q., Li, Y., et al. (2013). Response of high-strength rock slope to seismic waves in a
shaking table test. Bulletin of the Seismological Society of America, 103(6), 3012–3025.

Liu, J., Liu, F., Kong, X., et al. (2014). Large-scale shaking table model tests of aseismic measures
for concrete faced rock-fill dams. Soil Dynamics and Earthquake Engineering, 61–62, 152–163.

Liu, J., Liu, F., Kong, X., et al. (2016). Large-scale shaking table model tests on seismically induced
failure of concrete-faced rockfill dams. Soil Dynamics and Earthquake Engineering, 82, 11–23.

Ng, C.W.W., Li, X. S., Van Laak, P. A., et al. (2004). Centrifuge modeling of loose fill embankment
subjected to uni-axial and bi-axial earthquakes. Soil Dynamics and Earthquake Engineering,
24(4), 305–318.

Palchik, V. (2010). On the ratios between elastic modulus and uniaxial compressive strength of
heterogeneous carbonate rocks. Rock Mechanics and Rock Engineering, 44(1), 121–128.

Shi, Z., Wang, Y., Peng, M., et al. (2015). Landslide dam deformation analysis under after-
shocks using large-scale shaking table testsmeasured byvideogrammetric technique.Engineering
Geology, 186, 68–78.

Shinoda, M., Watanabe, K., Sanagawa, T., et al. (2015). Dynamic behavior of slope models with
various slope inclinations. Soils and Foundations, 55(1), 127–142.

Tang, L., Cong, S., Ling, X., et al. (2017). The boundary conditions for simulations of a shake-
table experiment on the seismic response of 3D slope. Earthquake Engineering and Engineering
Vibration, 16(1), 23–32.

Technical Code for Building Slope Engineering. (2013). China General Administration of Quality
Supervision, Inspection and Quarantine, vol. GB 50330–2013). Beijing: China’s Ministry of
Housing and Construction.

Wang, K., & Lin, M. (2011). Initiation and displacement of landslide induced by earthquake—a
study of shaking table model slope test. Engineering Geology, 122(1–2), 106–114.

Wang, J., Yao, L., & Hussain, A. (2010). Analysis of earthquake-triggered failure mechanisms of
slopes and sliding surfaces. Journal of Mountain Science, 7(3), 282–290.

Xu, Q., Liu, H., Zou, W., et al. (2010). Large-scale shaking table test study of acceleration dynamic
responses characteristics of slopes. Chinese Journal of Rock Mechanics and Engineering, 29.

Yang, C., Zhang, J., Liu, F., et al. (2015). Analysis on two typical landslide hazard phenomena in
the wenchuan earthquake by field investigations and shaking table tests. International Journal of
Environmental Research and Public Health, 12(8), 9181–9198.

Yang, G., Ye, H., Wu, F., et al. (2012). Shaking table model test on dynamic response characteristics
and failure mechanism of antidip layered rock slopE. Chinese Journal of Rock Mechanics and
Engineering, 31.

Yuan, L., Liu, X., Wang, X., et al. (2014). Seismic performance of earth-core and concrete-faced
rock-fill dams by large-scale shaking table tests. Soil Dynamics and Earthquake Engineering, 56,
1–12.

Zhao, M., Huang, D., Cao, M., et al. (2015). Shaking table tests on deformation and failure
mechanisms of seismic slope. Journal of Vibroengineering, 17(1).

Zhao, L., Huang, Y., & Hu, H. (2020). Stochastic seismic response of a slope based on large-scale
shaking-table tests. Engineering Geology, 277.



Chapter 6
Conclusions and Prospects

6.1 Conclusions

This book investigates slope as the research object and a nonlinear stochastic
dynamic system. A theoretical framework of the nonlinear stochastic dynamics of
slope systems is established in combination with physical experiments and numer-
ical analysis. This book focuses on the slope nonlinear stochastic seismic dynamic
response, dynamic reliability, and failure phenomena. The entire stabilization process
is systematically addressed, focusing on the key scientific problems of slope dynamic
conservative systems and evolution processes. The main findings are summarized
below.

(1) A theory of slope nonlinear stochastic seismic dynamic systems is established
at the theoretical level. The response of slopes to earthquake activity is consid-
ered to be a dynamic conservative system. The slope stochastic dynamic anal-
ysis theory is introduced,which includes the establishment of stochasticmodels
of seismic groundmotions and rock and soil parameters based on site character-
istics, and a probability density evolution equation according to the description
of random events. The analysis theory of slope stochastic dynamic systems is
established with a theoretical foundation for slope seismic dynamic stability
evaluation.

(2) At the numerical simulation level, the seismic dynamic reliability of slopes is
studied under a framework of a probabilistic conservative system under seismic
excitations. It is proposed that the slope stochastic dynamic system should be
regarded as a probabilistic conservative system, and the slope seismic dynamic
reliability is analyzed in combination with the slope stochastic dynamics
theoretical framework. The main conclusions are as follows.

a. Taking the finite element method (FEM) as an example, probability
density evolution method (PDEM)-based slope dynamic reliability anal-
ysis is proposed,which considers the nonlinear constitutive relationship of
rock and soil materials in combination with the basic steps for solving the
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generalized probability evolution equation (GDEE) using an FEM batch
calculation.

b. The Karhunen-Loève (K-L) series expansion method is used to simulate
the stochastic field of the soil parameters, and a spectral representation
of non-stationary ground motions is established, namely, the stochastic
function simulation method.

c. The probability distributions of slope stochastic dynamic response results
considering single random factor and double random factors are resolved
and subsequently compared and analyzed based on extreme events.

d. MonteCarlos simulations (MCS) are used to calculate and verify the effec-
tiveness of the PDEM-based slope dynamic reliability analysis method
proposed in this book at both the static and dynamic levels. This method
is also verified by the analytical solution of the single degree of freedom
system.

(3) The failure analysis of slope under stochastic earthquake conditions is under-
taken at the application level, and the critical slip surface information, dynamic
instability mechanism, and behavior analysis after failure are investigated. The
uncertainty of the slope instability volume under stochastic ground motions is
proposed based on different deformation development modes defined by the
designed framework for risk assessment.

a. The critical sliding surface can be determined once the factor of safety is
lower than 1, which is the most conservative determination principle. The
landslide volume can also be determined. The three-dimensional proba-
bility density evolution surface directly reflects the uncertainty of slope
failure under random earthquake conditions, including the uncertainties
of the sliding volume and sliding depth.

b. Large deformation analysis of soil mass flow hazards is performed based
on the probability assessment method for large deformation flow hazards
of soil mass and considering the spatial variability of rock and soil mate-
rials. The probability density surface of the time-sensitive flow slip param-
eters is obtained, as well as their PDF and CDF curves based on the
equivalent extreme events. The PDF curves present complex probability
evolution characteristics with time owing to the soil spatial variability.
The PDF curves based on extreme events exhibit bimodal or multimodal
characteristics.

(4) The stochastic dynamic response analysis of slopes was studied using a large
shaking table test. A slope shaking table model was appropriately designed and
slope shaking table tests were performed under stochastic seismic input condi-
tions. The stochastic dynamic response law of the slope systemwas determined
and verified from the perspective of the physical experiment. The accuracy of
the analysis results and effectiveness of the theoretical methods are expected
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to be supplied as a scientific and effective theoretical basis for the perfor-
mance assessment of slope engineering and prevention and control of seismic
geological disasters.

a. The PDF of acceleration response at a given elevation exhibits a normal
distributionwithmeanvalue of 0 under the time sequence. The distribution
range slightly increases with time and ultimately returns to the initial stage
at the end of the ground motion. The PDF of the acceleration response at
different elevations and a given time also presents a normal distribution
with mean value of 0. The dependent value, probability, and variability
increase with increasing slope elevation, which demonstrates the ampli-
fying effect of horizontal acceleration. The PDF of acceleration response
presents a skewed distribution when the peak ground motion is large and
the instantaneous acceleration at the slope top is even greater than 0.8 g.
This is caused by the coupling effects of the material non-linearity and
randomness of seismic samples.

b. The horizontal acceleration peak values of 144 points are extracted during
the ground motion and compared with the base acceleration peak value to
obtain the amplifying coefficient. The results indicate that the amplifying
factor at the different slope elevations follows a Gaussian distribution,
and its mean value and standard deviation increase with elevation. 79% of
the horizontal acceleration amplifying factors on the slope top are greater
than 1.5, and mainly distributed between 1.5 and 3.0.

c. Average value of amplifying coefficient based on acceleration peak is the
smallest, that based on the acceleration response spectrum is the second
largest, and that based on the acceleration Fourier spectrum is the largest.
The reason is that the amplifying factor of the acceleration peak does not
consider the amplification of the specific spectrum, but damping is used
in the calculation of acceleration response spectrum, which will likely
reduce the amplitude of the response spectrum.

d. The prototype slope is established as a numerical model using FLAC3D
with dynamic load input and freefield boundary conditions. The amplitude
and frequency spectrum of the dynamic response at each elevation show
good consistency with the modal test data as a verification.

6.2 Prospects

Although this book presents a range of research on the stochastic dynamic analysis of
slopes, there is still room for further development. The future development prospects
of this theoretical method are summarized in the following aspects.

(1) Probabilistic dissipative system research

An important assumption of the slope stochastic dynamic framework estab-
lished in this book is that the slope system is a probabilistic conservative system,
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in which the total mechanical energy of the system is conserved during move-
ment. However, the conservative probability system based on the principle of
probability conservation is not completely suitable for slope dynamic systems.
This is because slopes tend to exhibit strongnonlinearity under large earthquake
load conditions, and even large-scale dynamic instability and large deformation
will occur. Friction, damping, viscosity, impact, and other non-conservative
forces presentlywork for slope dynamics, which implies that the analysis based
on slope stochastic dynamics must inevitably face probability dissipation anal-
ysis. Slope systems should therefore be regarded as a probabilistic dissipation
system. It should be pointed out that the probabilistic dissipative system and
probabilistic conservative system are not contradictory, but that their anal-
ysis frameworks differ at different design levels of ground motions. For small
earthquakes, slopes tend to remain stable and can be regarded as a probabilistic
conservative system. Even when regarded as a probabilistic dissipative system,
the probability distribution remains completely in the safe domain and the two
are equivalent to each other. However, analysis using a probabilistic dissipa-
tion framework has a clearer physical meaning and theoretical basis when the
ground motion magnitude is large.

(2) Guidance on slope performance evaluation

Supporting structures are one of the most effective methods for slope anti-
seismic design, reinforcement, and landslide prevention. Traditional seismic
performance evaluation and supporting structure design are mostly based on
deterministic theory, which often fails to consider the impact of uncertain
factors on the seismic performance of slope supporting structures. In practice,
the overall slope performance will be affected by uncertain factors originating
from different sources during the design service period of the supporting struc-
ture.The existing design methods can be optimized according to the stochastic
dynamic response of slope in combination with the slope stochastic dynamic
theory established in this book, and the seismic performance design and risk
assessment of slope engineering can be carried out considering random factors.
Resilience is a new disaster prevention and reduction method that can be used
as a new perspective to enhance the practical operability and sustainability of
the theoretical framework presented herein by focusing on the performance of
materials and structures throughout their life cycle to provide useful theoretical
tools for slope performance evaluation in engineering applications.

(3) New fields in artificial intelligence

The amount of calculation required for the stochastic dynamic analysis of
slopes is still relatively large. The PDEM is proposed in this book to solve the
shortcomings of the large amount of calculation and time-consuming prob-
lems of the MCS method. However, this approach is still limited by the time-
consuming nature of the calculation for each single deterministic sample. A
new method to reduce the calculation amount and deterministic analysis time
using existing research is therefore a potential development direction in the
future. Big data analysis has become the focus in various scientific fields in



6.2 Prospects 155

recent years, including the development of machine learning methods (e.g.,
artificial neural networks, deep learning, and genetic algorithms), which have
made significant progress in data extraction, identification, and prediction.
Machine learning algorithm research based on the existing experimental data
can therefore be carried out in subsequent work. The response related to slope
engineering can be determined by means of continuous training and learning,
and the internal propagation mechanism of randomness can be deeply studied
to resolve the problem of insufficient computational efficiency in randomness
performance analysis problems.
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