
Advance Your Career by Learning
the Most Powerful Analytical Tool
 ―
Art Yudin

Basic Python
for Data
Management,
Finance, and
Marketing

Basic Python for Data
Management, Finance,

and Marketing
Advance Your Career by

Learning the Most Powerful
Analytical Tool

Art Yudin

Basic Python for Data Management, Finance, and Marketing: Advance
Your Career by Learning the Most Powerful Analytical Tool

ISBN-13 (pbk): 978-1-4842-7188-9     ISBN-13 (electronic): 978-1-4842-7189-6	
https://doi.org/10.1007/978-1-4842-7189-6

Copyright © 2021 by Art Yudin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shiva Ramachandran
Development Editor: Matthew Moodie
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, New York, NY 100043. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC
is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-7188-9. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Art Yudin
South Amboy, NJ, USA

https://doi.org/10.1007/978-1-4842-7189-6

For my family for always supporting me.

v

Table of Contents

Chapter 1: ��Getting Started with Python���1

Installing Python��3

Variables and Numeric Types���9

Strings��16

Your First Program���20

Logic with If, Elif, and Else���23

Methods���31

Lists and Tuples���35

Indexing and Slicing���41

Summary���47

Chapter 2: ��Writing Your Own Python Scripts���������������������������������������49

Definite Loops��49

The Range Function���54

Nested for Loops��57

Defining Your Own Functions���59

Structuring a Program���64

Indefinite Loop���72

Dictionary���74

Writing Information into a Text File��81

Reading Information from a Text File���84

About the Author��ix

About the Technical Reviewer��xi

vi

Chapter 3: ��Data Analysis with Pandas���93

Series���94

DataFrame���100

Constructing a DataFrame���100

Slicing a DataFrame���103

Filtering a DataFrame���114

Logic Operations in Pandas���118

Reading Data from a CSV File��124

Combining Data Sets��139

Concatenating Data Sets��140

Merging DataFrames���145

Groupby��147

Summary���150

Chapter 4: ��Gathering Data with Python���151

Web Scraping���152

List Comprehensions���165

Web Scraping with Selenium���171

Introduction to Selenium��175

Working with APIs��192

Pandas-Datareader��200

Chapter 5: ��Data Visualization��207

Matplotlib���207

Line Plot���208

Histogram Plot���216

Scatter Plot��219

Pie Plot���227

Table of Contents

vii

Chapter 6: ��Essential Financial Tasks Done with Python��������������������231

NumPy Financial��231

Future Value fv( )��233

Present Value pv( )��234

Net Present Value npv( )���235

Value at Risk (VAR)���243

Monte Carlo Simulation��253

Efficient Frontier��257

Fundamental Analysis��267

Financial Ratios��274

Chapter 7: ��Essential Digital Marketing Tasks Done with Python�������277

Getting Started with Google API Client���278

Google Analytics with Python���281

Twitter Bot��298

Email Marketing with Python���304

Index��311

Table of Contents

ix

About the Author

Art Yudin is a FinTech enthusiast who has a great passion for coding and

teaching. Art is the founder and CEO of Practical Programming, a leading

training company for aspiring developers and data scientists. Currently,

Art develops financial services software and leads classes and workshops

at Practical Programming in New York and Chicago. He is the author of

several coding publications including “Building Versatile Mobile Apps with

Python and REST: RESTful Web Services with Django and React”. You can

follow Art Yudin on Twitter @artyudin_nyc.

xi

About the Technical Reviewer

Monica CHIŞ is a Freelancer Software IT Consultant and Trainer. She has

been working in various roles in different areas: IT industry, research, and

university for more than 23 years. She has experience with external audits

and with software development quality management, with highlighting the

important key points for clear processes.

She was Quality Manager for software projects in Air Traffic

Management and telecommunications, Project Manager and Delivery

Manager in IT companies. She has worked with various data analysis

methods, she has researches in data mining and she has taught statistics.

Her experience involves all aspects of a project, product, and software

development life cycles. She is a customer-oriented person, and she has

worked in multi-cultural competitive environments. She likes working with

people from different cultural groups. She is an enthusiast and passionate

about technology and the Software Quality Assurance field, and she is

promoting agile methodology. She really believes that it is possible to

create simple processes for delivering Quality Software Products. She is

passionate about the data mining field.

Starting with 2020 she is also a trainer for “SPOR – Şcoala pentru oameni

responsabili” offering a training for Quality Assurance in Software Projects.

 

1© Art Yudin 2021
A. Yudin, Basic Python for Data Management, Finance, and Marketing,
https://doi.org/10.1007/978-1-4842-7189-6_1

CHAPTER 1

Getting Started
with Python

When you are finished changing, you’re finished.

—Benjamin Franklin

I came to programming relatively late in my life. My job at that time had

nothing to do with software development. I was not one of the computer

geeks at school and always thought that coding was not for me. Working in

the financial industry, I was heavily dependent on Excel and had to do a lot

of manual copying and pasting.

One of my routine tasks was to update the budget and email the

updated version to the top management. I decided to automate the burden

and googled some script that was supposed to perform that duty. At that

time, I was not paying any attention if it was Python script or any other

code. The result of the enhancement was devastating. Not only my bosses

received an empty file, but I had permanently erased the three-year budget

project.

The main lesson I learned was if you want to make it right, you have to

learn the subject from the bottom up. I had read numerous articles on how

Python was used in real life and quickly realized that automation was the

future. These days Python is a required knowledge like Excel or email. If

you’re constantly crunching numbers at work, your career would definitely

https://doi.org/10.1007/978-1-4842-7189-6_1#DOI

2

benefit of productivity and speed that Python has to offer. Having Python

under the belt would allow you to write simple scripts or build complex

applications.

Compared with other programming languages, Python is user-friendly

and has logical and simple-to-learn syntax. With a right approach and

regular practice, Python could be picked up in a matter of a couple of

months. As my personal experience shows, it is never too late to get started

with programming. If you are driven by a motivation to take your business

skills to another level and need to evolve, you would never fail in Python.

While learning Python, the main challenge I had faced was excessively

technical and sometimes poorly written documentation. It was as if they

specifically wanted to confuse nontechnical people with terminology and

keep us out of their hi-tech kingdom. That is why many years later after I

have conquered the programming world, I have decided to write this book

and explain Python programming with plain words for people who never

coded before.

I understand that many of you are not planning to work as full-time

programmers and need Python as a modern tool to gather, manipulate,

and analyze data. That is why this book is structured as an easy-to-follow

practical guide. Our main goal here is to get you started with the Python

programming language and show you how Python could be used in

business life.

I have structured this book based on my extensive teaching experience.

We will start with the basics and then gradually move from simple

concepts to more complex ones. Many hypotheses and examples we start

with in this chapter would evolve and grow into advanced illustrations

of how you could use Python to solve complicated cases. By the time

you finish the book, you will have a clear understanding of how to apply

Python to day-to-day challenges. The most important part is that you

will be able to write Python scripts on your own by the end of the exciting

journey we are about to embark on.

Chapter 1 Getting Started with Python

3

�Installing Python
First things first, we need to install Python. This initial simple step could be

confusing for beginners. There are many different versions of Python, and

the installation process would vary for Mac and Windows. In order for us

to be on the same page and not to depend on various operating systems, I

decided to use the highly popular Python distribution platform Anaconda.

Anaconda is a package that comes with the latest version of Python

and a bunch of Python extensions we would need later. There are

other Python distributions on the market. Nevertheless, Anaconda was

specifically designed for people who want to have all data analysis tools

in one place. It is very popular and labeled “the birthplace of Python data

science.”1

The installation process itself is very straightforward and would work

for any computer. You could google “download Anaconda Individual

Edition” or go to the source www.anaconda.com/products/individual

and click the Download button. At the bottom of that page, you should see

Anaconda Installers (Figure 1-1). Choose a Graphical Installer for Mac

or Windows and download the package. At the time of writing this book,

Python 3.9 is the latest version of Python. No worries if later they move to

Python 3.10 or even Python 4. The syntax will be the same. Usually, each

version comes with some little improvements that would not affect the

concepts we will cover in this book.

1 www.anaconda.com

Chapter 1 Getting Started with Python

http://www.anaconda.com/products/individual
https://www.anaconda.com

4

After you have downloaded Anaconda, by default it should be in the

Downloads folder on your computer; click the downloaded installer, and

it will start the installation prompt. The installation process is no different

than any other application installation. It might offer to install PyCharm
IDE along the way. We will not be using PyCharm in the book, and it is

totally optional. If something goes wrong or you would need a step-by-step

installation guidance, you could find it here: https://docs.anaconda.

com/anaconda/install/.

To launch Anaconda on your computer, go to the Applications

directory; on Mac you’ll find it in Launchpad, and on Windows go to

Applications and look for the Anaconda Navigator green circle logo

or start typing Anaconda in the search prompt. After you clicked the

Anaconda Navigator logo, you should see the Navigator menu like in

Figure 1-2.

Figure 1-1.  Anaconda Installers at the bottom of the page
(www.anaconda.com/products/individual)

Chapter 1 Getting Started with Python

https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/install/
http://www.anaconda.com/products/individual

5

The Anaconda Navigator menu hosts many different apps to run

Python – JupyterLab, Jupyter Notebook, Spyder, and some others. They

are all apps to run Python. In this book, we will be using the Jupyter
Notebook, simply because it is the most popular app. From now on, I’ll

refer to it as Jupyter. I do not want to go over the pros and cons of all the

other apps comparing them. I think you should try all of them and pick the

one that would work for you. In my opinion, the main difference among

them is the layout. The Python syntax would be the same no matter which

one you choose.

To begin with the Jupyter Notebook, click the launch button on

the bottom of the card. Jupyter will launch in the browser running on a

local server. That would be a user interface. If you use Mac, you probably

noticed that Jupyter also launched a Terminal or command prompt

window. Jupyter has two parts: the user interface, where we write the

code, and the Kernel running on a local server, where the code is being

executed. If you use Windows, you have the Kernel running quietly under

the hood. On Mac, it pops up a Terminal window. We will talk more about

the Kernel later.

Figure 1-2.  Anaconda Navigator menu

Chapter 1 Getting Started with Python

6

In your browser, you will see the home directory of your computer. In

the top upper-right corner of the browser, you can find the New button.

Click the New button, and there will be a drop-down menu with Python 3

and other choices. Click Python 3 and you’ll make a new Jupyter file

(Figure 1-3).

Untitled is a default name of a file. You could change the default file

name if you click it and enter a new file name in the popped up prompt.

Unless you save the file in a specific folder by providing a path in the

prompt, it will be saved in the home or main directory on your computer

with the .ipynb extension. Jupyter comes with many great features. We

will cover most of them as we move along. One of the features is autosave.

Everything is being autosaved every three minutes. Of course, you can save

your work manually at any time by clicking the diskette icon (save button)

in the toolbar. All actions in the Jupyter Notebook can be done with a click

of the mouse in the toolbar, or you can find a corresponding shortcut by

clicking help in the upper menu or pressing the H letter on the keyboard.

In the center, you can see a cell where we will be writing code. If you

need more cells, you can always create one by clicking the plus icon button

in the toolbar. If, on the other hand, you need to remove a cell, you can do

it with the scissors button. I assume copy and paste buttons in the menu

are self-explanatory.

Figure 1-3.  New Jupyter Notebook file

Chapter 1 Getting Started with Python

7

Before we get to the actual Python coding part, I want to explain how to

use Jupyter. In the upper cell, write a print() command, like this:

 print("Hello")

Make sure “Hello” is wrapped in quotes. Now, click the Run play icon

button in the upper toolbar. A couple things just happened. First of all, we

got the [1] number in the square brackets on the left of the cell. Second,

under the cell, the Hello word was printed (Figure 1-4). The number in the

square brackets means that our code was executed in the Kernel. Every

time you write code in a cell, you would need to run that cell in order for

the code to be executed. It’s a little bit annoying to reach for that Run

button every time you need to run the code. The shortcut for this operation

is a simultaneous press of Shift and Enter keys.

If you run that cell over and over again, you will see that for every

operation we get a new number. The number itself is not important. It

represents the sequence of operation. What’s important is we need to run

the cell every time we update the code inside it. For example, let’s update

our message to

 print("Hello World!")

Figure 1-4.  The print() command prints “Hello” when you run the
Jupyter cell

Chapter 1 Getting Started with Python

8

The output Hello would not be updated unless we run that cell again.

I will run that cell again. In my case, that would be the second time I run

that cell. I’ll see the next number in sequence [2], meaning that operation

is in the Python memory, and the output will be changed to Hello World!

(Figure 1-5).

Note Y ou can see the list of all command shortcuts for Jupyter if
you click Help and choose Keyboard Shortcuts from the drop-down
menu.

The main thing you have to remember is to run or rerun a cell if you

update code or write a new statement. Do not pay too much attention

on numbers in []. Also, numbers in your file do not have to match the

numbers in my file on these figures.

Let me say a couple of words about the Kernel. The Kernel in

Jupyter executes Python code. It quietly does its job in the background.

Sometimes, you might see an asterisk in square brackets after you ran

the cell. The asterisk, [*], means that the Kernel is working. Complex

operations performed on huge data sets might take some time, and it is

normal. However, if it takes too long for a simple operation, that might

indicate that something went wrong, and Jupyter is down. To wipe out the

Figure 1-5.  The message has changed after we rerun the cell with the
updated code

Chapter 1 Getting Started with Python

9

file memory and start from scratch, you would need to click the Kernel
item in the upper toolbar. The drop-down menu would give options to

Restart the server or Restart & Clear Output. If you choose Restart &
Clear Output, you would still see your code in the file, but square brackets

would be cleared, meaning all operations in memory were successfully

wiped out.

We have covered enough of Jupyter to get started with coding.

Everything else that is needed we would figure out as we go. If at some

point you would want to know more about the Jupyter Notebook

application, I would definitely recommend you to visit their web page at

https://jupyter.org.

�Variables and Numeric Types
You probably know that computers have two types of memory. There

is a long-term memory where you keep your files or store information

as a database and a short-term memory, or random access memory

(RAM), where your computer runs applications. Although Python is a

programming language, it runs in short-term memory.

To store information in Python, we need to use variables. Variables in

programming are similar to what we did in school in math. For example,

the expression X + Y where X and Y are variables. They are called variables

because they could be anything and could hold any values.

The same is true for Python. If we need to save a value to use it later,

we would need to declare a variable. Simply put, we would need to come

up with a variable name and assign a value. For instance, we can grab

randomly picked name x and using an equal sign assign the value 7. In our

Jupyter cell, it would look like this:

 x = 7

Chapter 1 Getting Started with Python

https://jupyter.org

10

Do not forget to run that cell afterward. You can find all code for this

and all other chapters on my GitHub https://github.com/programwithus/

Basic-Python-for-Data-Management-Finance-and-Marketing. Let’s take

a closer look at that expression. x is a randomly picked variable name. We

could have used anything as a variable name. By the way, “banana” would

perfectly do the job. It is really up to us. Later in the chapter, we will discuss

the best practices for naming conventions.

However, there are some restrictions. You cannot start a variable name

with a number. Also, there are so-called reserved words or keywords that

you cannot use. Jupyter does a great job identifying words you cannot

use as variables. It marks them in bold green. Take a look at the keyword

print in Figure 1-5. print is one of the built-in commands and cannot be

used as a variable. The one thing you have to remember is that a variable

always has to be on the left side followed by an equal sign. An equal sign

is defining the variable and assigning some value. A value is where it gets

interesting.

The value, 7, we have assigned to variable x has to be stored somehow

in the Python memory.

Values would be stored as some data types. Many Python tutorials

explain data types as the classification of data items. Mostly needed for

computers to know how we would intend to use the data in the future.

When I heard that explanation for the first time, I found it very confusing.

Let me offer my explanation of data types.

Grab a bottle of a simple purified water you can find in any store. The

water would be the value, and a plastic bottle is a container. Then suppose

you order water in a coffee shop. They would bring you the same purified

water in a glass. Obviously, there is a huge difference between a plastic

bottle and a glass. For starters, the bottle comes with a cap that won’t let

the water out of the bottle. A plastic bottle and a glass are different types

of containers that are holding the same value – water. We understand that

different containers have different features and behave accordingly. The

point I am trying to make is that based on your intentions for that value,

Chapter 1 Getting Started with Python

https://github.com/programwithus/Basic-Python-for-Data-Management-Finance-and-Marketing
https://github.com/programwithus/Basic-Python-for-Data-Management-Finance-and-Marketing

11

in our case water, you should choose an appropriate container. If you

plan to get into the business of selling purified water, you should choose

a plastic bottle or an aluminum can with a flashy label for your value.

Contrast that with having a glass of water at a restaurant. Maybe you

should store your water in a travel mug or tumbler if you are planning a

road trip.

A data type is similar to a container. You should choose an appropriate

data type based on how you plan to use your data in the future. “It makes

sense with water, but how can you save 7, it’s a number,” you might ask me.

There are three distinct built-in numeric data types in Python: integer,

float, and complex numbers. Here, we will use integers and floats.

Integers are whole numbers. For instance, 7, 27, 1,000,000 would

be stored as integers, simply because they are whole numbers. Even a

negative number as long as it is a whole number would be stored in the

memory as an integer.

Floats are numbers with a decimal point. An example would be 7.5

or –2.5. Based on what you are planning to count, you should choose

either an integer or a float type. If we talk about money, then we should

use floats. People always want to be precise to a penny with money. The

contradictory of that would be people. Assuming that your task is to split

seven people into two teams, then integers would be an obvious choice.

You do not want to end up with three and a half people.

Let’s see how this concept works in practice. Under x = 7, add one more

statement. Do not forget to run the cell aftewards:

 y = 5.5

Since x and y both hold numeric values, we can do the math. Table 1-1

later in this chapter lists all the arithmetic operators.

 x + y

Keep in mind that Python is case sensitive, and x and y should be

lowercase. When you run that cell, 12.5 will be the output (Figure 1-6).

Chapter 1 Getting Started with Python

12

This time, I did not use the print() command because Jupyter by

default prints the result of the last operation in a cell. Notwithstanding, if I

want to print the result of this operation several times, I would need to use

the print() command:

 print(x + y)

When you run the cell, make sure your print() command is all

lowercase.

We have been using the print() command for quite some time. Now it

is time to learn other commands. Python is sometimes called “batteries

included” because it comes with a bunch of built-in commands and

modules. The commands are called built-in functions. A function is a

block of reusable code that performs a task.

Figure 1-6.  The output of the x + y expression

Table 1-1.  Arithmetic operators in Python

Operator Name Example

+ Addition 2 + 2 -> 4

– Subtraction 5 – 2 -> 3

* Multiplication 2 * 2 -> 4

/ Division 2 / 2 -> 1

// Floor division 5 // 3 -> 1

% Modulus (remainder) 5 % 3 -> 2

Chapter 1 Getting Started with Python

13

You can find the full list of built-in functions here: https://docs.

python.org/3/library/functions.html. This is the official Python

documentation page. Later when you upgrade to the next version of

Python at the time it is out, make sure that the documentation matches the

version you are running on your machine. In this book, we will learn and

use many of built-in functions. If you are serious about Python, bookmark

the documentation page to use it as a reference.

One of my favorite functions you can find on that list is type(). The

built-in function type() helps to identify the data type of a value. I’ll

illustrate how you can use a Python statement in a separate cell and nest a

couple statements in one cell. If you run the type() function in a separate

cell, then you don’t need a print() function. However, if you place

 print(type(x))

 print(type(y))

into the same cell, then you need to wrap each one in a print() function

(Figure 1-7).

You can see that the output for type(x) is an integer because x holds

the value of the whole number 7, and type(y) prints a float since 5.5 has a

decimal point.

Figure 1-7.  Running the built-in function type()

Chapter 1 Getting Started with Python

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

14

How many cells you should use is totally up to you. Usually, I keep

separate tasks in separate cells. It would make more sense as we move to

more complex tasks.

In my opinion, type() is the most underestimated function. Some

people might argue why we would need the function type()? We can

clearly see that x holds an integer. That is true. But in real life when data is

coming from the Internet in the form of an API (Application Programming

Interface), we will discuss APIs later in this book, or you are fetching data

from a CSV file, you do not know for sure what data type you are dealing

with.

Also, based on my experience, beginners always struggle with and

mismatch data types. My advice is run the type function on a variable if

you are not sure what data type it holds.

Now let’s take a closer look at the x + y expression. Suppose we want

to save the result of that operation so we can use it later. To save 12.5 in

Python memory, we would need to assign the expression, x + y, to a new

variable. Another randomly picked variable total could hold that result.

Try this in a new cell (Figure 1-8).

 x = 7

 y = 5.5

 total = x + y

 total

Figure 1-8.  Variable total holding the result of the x + y
expression

Chapter 1 Getting Started with Python

15

In some way, it is very convenient to use variable names. Assuming we

want to calculate the area of a room. To do that, we would need the length

of the room multiplied by the width. We can implement this formula in

Python code (Figure 1-9):

 length = 30

 width = 25.5

 area = length * width

 area

If we want to calculate the area of the next room in a house, we can

just reassign the values of length and width and do not have to touch the

formula length * width.

We have been using x and y as variable names. However, in real life you

would want to use variable names that would reflect the value’s purpose. If

you used x, y, and z as variables all the time, that would be confusing. Later

when you get back to the code, say in a couple of weeks, you would have

a hard time remembering what you actually meant by x and y. Also, very

often you collaborate with others. It would be much clearer for everyone

if variable names represented what information the variable holds. You

probably noticed that I do not capitalize my variables. The best practice is

to begin a variable with a lowercase letter. Sometimes, you need to use two

words to better describe the purpose of a variable. Then use an underscore

to connect the two words, such as length_room. This style is called the

snake case. Another option would be to start with a lowercase letter and

attach the second word capitalized like lengthRoom. Such technique

is called the camel case. No matter what style you choose, always stay

consistent and never use spaces between words in a variable name.

Figure 1-9.  Calculating the area of a room

Chapter 1 Getting Started with Python

16

�Strings
Strings are another built-in data type in Python. Any characters or letters

wrapped in quotes would be stored in the memory as a string. If we get

back to our initial example print("Hello"), Hello in quotes would be

regarded as a string by Python.

I think the following example will illustrate the nature of Python

strings. In a new cell, try the built-in function ord() (Figure 1-10):

 ord("a")

 ord("A")

"A" is the first letter of the alphabet. It makes sense for billions of

people using the Latin alphabet. But what if somebody would show you

a letter from a foreign alphabet that you have never seen before? Your

reaction would be something like “I do not know what that character

means.” The same is true for computers. Computers do not know the

meaning of characters. They store string characters as numbers. If you

take a look at how text looks under the hood, you would see a sequence of

numbers. In Figure 1-10, the ord() function returns the Unicode integer 97

for the "A" character and 65 for the "a" character. ord() stands for order

and provides a corresponding number for a character. Obviously, there is a

huge difference between 97 and 65. That proves Python is case sensitive.

Figure 1-10.  The ord function returns a unique Unicode number for
the character

Chapter 1 Getting Started with Python

17

The Unicode standard provides a number for each letter, symbol,

or emoji. If you are curious, check out the Unicode character table at

https://unicode-table.com/en.

You won’t be using the ord() function too often in your everyday life,

and you do not have to memorize all the numbers. The point I’m trying to

make is that a string is a sequence of characters. Computers do not care

about the meaning of strings. If I wrote "apple" for us, humans, it would

mean some fruit. A computer would just store a bunch of characters in its

memory as a sequence of integers.

The number "7" wrapped in quotes would not represent a numeric

value, but rather another character. You could give it a try and run the

ord() function on "7".

ord("7")

The result will be 55, a number representing the character 7 in the

Unicode table. It means that "7" in quotes cannot be used in arithmetic

operations because it would be stored as a string.

Again, think of the analogy of the water stored in different containers.

Although "7" looks like a number, in fact it is not a numeric type for

Python.

Let me run a couple of examples to illustrate integers, floats, and

strings. In a cell, try adding "7" to an integer (Figure 1-11).

 7 + "7"

Figure 1-11.  7 as an integer cannot be added to "7" as a string

Chapter 1 Getting Started with Python

https://unicode-table.com/en

18

7 + "7" will give us an error message. I would like to stop here and tell

you a little more about errors.

I know it could be frustrating to get an error message. Think of it

another way. Error messages in Python were created not to judge us but

to help us. When you get an error, first of all see where the green arrow

is pointing. That is where the problem has occurred. Second, read the

message thinkably. Python is telling exactly what went wrong. I know that

it might be difficult to comprehend them at first. With experience, you’ll be

able to understand the types of error messages and how to fix them.

In our case, Figure 1-11, Python is telling us that we cannot mix

different data types. It is impossible to add a string to an integer. Literally,

it’s telling us not to use a plus sign between integers and strings.

There are a couple of things we can do to fix this. We can try to convert

one data type into another. Since "7" looks like a number, we can use the

built-in function int() to convert it to a numeric data type. If we had a

letter or some other character instead of "7", that would not be possible.

 7 + int("7")

In Figure 1-12, we can see that the string "7" is being converted to an

integer. Integer 7 plus integer 7 expectedly gets us 14. If we had a letter

or some other character instead of "7", the conversion to a numeric type

would not be possible.

An alternative option would be to convert "7" to a float. Using the

function float(), try

 7 + float("7")

Figure 1-12.  Using the int() function, we convert a string to an
integer

Chapter 1 Getting Started with Python

19

This time, we got 14.0 as a result of integer 7 being added to a float.

At the end of the day, the string "7" was converted to a float 7.0. In an

arithmetical operation like this, 7 + 7.0, the float always wins, and the

result would be returned as a float.

There is one more option we can do here. We can convert an integer to

a string with the help of the built-in function str().

 str(7) + "7"

In Figure 1-14, you can see that now we have joined or concatenated

one string to another. Integer 7 was converted to a string, and the whole

operation yielded a new string "77".

The main idea behind these three examples is that the same plus

operator brings about different results based on the data type it is applied

to. All data types behave differently. In other words, each data type has

its own features. This totally makes sense because we understand that a

plastic bottle and a cup are two different containers that behave in their

own certain ways.

Keep these examples in mind. The behavior of data types is a very

important subject. Later, we will move to more advanced objects and learn

their features.

Figure 1-13.  The function float() converts string into a float

Figure 1-14.  Using the str() function, we convert an integer to a
string

Chapter 1 Getting Started with Python

20

�Your First Program
I guess we have covered enough to compose your first program. I am a

fan of practical examples. What could be more practical than a tax and tip

calculator? We all go out, and, in the end, they would bring us a check. For

simplicity, we assume that the check is $50. Our task is to calculate the tax

and tip in Python and get the bottom-line number. In New York City, the

sales tax is 8.875%. To keep numbers small and simple, I’ll round it down

to 8%. For a tip, I’ll use 18%. We have all inputs and can start coding:

 check = 50

 tax_rate = 0.08

 tip_rate = 0.18

After we defined variables with known values, we would need to

calculate the actual dollar amount for the tip and tax.2 Since we would

need to use the tax and tip later, it would be a good idea to assign

expressions to corresponding variables:

 tax = check * tax_rate

 tip = check * tip_rate

Note that if later we would use a different value for a check, there

would be no need to mess with the formula. The final step is to add the tax

and tip to the check and print the value:

 total = check + tax + tip

 print("Your total is $", total)

2 I know that there are other ways to calculate the tax and tip; however, here I am
trying to be as clear as possible.

Chapter 1 Getting Started with Python

21

I hope your result is 63.0 like I got in Figure 1-15. The comma in the

print() function creates that space where total is printed. Also, a comma

separates a string from a float. We are passing two arguments into the

print() function "Your total is $" and total. Later, I’ll introduce the

method format to print nicely formatted strings. If for some reason you

will see NameError: name is not defined, check the spelling of the

variables and make sure they match.

By now you are probably wondering how we can make this calculator

more versatile and use any number as a check. To accept a value from the

user, we would need to use the built-in function input(). The function

input() does two things; first, it would print a message that we want

to pass to a user and then would prompt for a value. I’ll replace 50 with

the function input() in the example. Inside the parentheses, I’ll pass a

message. A message is optional, but it would be a good idea to guide a user.

 check = input("How much is the meal? ")

Note A fter you punched the number, you need to press the enter
key on your keyboard. Otherwise, the program would be waiting for
your response and render [*] next to the cell. If that happens, restart
the Kernel as we discussed it before.

Figure 1-15.  Tax and tip calculator

Chapter 1 Getting Started with Python

22

If you run the cell with the code as it is, input() would prompt you

to enter a value. Suppose you entered 60, the program would throw

you the error. The error message would look like the one you can see in

Figure 1-16. A crucial part of coding is to debug your own code. Here, I

will show you an example of how to debug your code. We would need to

start with the error message “can’t multiply sequence by non-int of type

‘float’.” This is pretty much the same message that we have seen before.

It says that we cannot multiply a string by a float. Apparently, the input()

function returns any value as a string. Even if it looks like a number. If you

read the description of the input() function, it says “converts value to a

string”.3 Suppose we did not quite get that message and have not read the

documentation. Then we would need to go line by line to identify the bug.

Under the check variable, I’ll place a print() statement to inspect the

value of the check and its data type:

 print(check, type(check))

3 https://docs.python.org/3/library/functions.html#input

Figure 1-16.  Error message

Chapter 1 Getting Started with Python

https://docs.python.org/3/library/functions.html#input

23

This would get me 60 and a string. Now it is clear, we cannot multiply a

string by a float. To fix it, I’ll squeeze a new statement to convert the value

we received from the input to a float. Also, I’ll run the type function on that

value one more time to make sure that the type has changed to numeric

(Figure 1-17):

 check = float(check)

 print(check, type(check))

After we have successfully converted the user’s input to a float, our

tax and tip calculator works just fine. Print statements on lines 2 and 4 in

Figure 1-17 could be removed later. We needed them to find and fix that

bug only.

�Logic with If, Elif, and Else
To implement logic in Python, we need to use If, Elif, and Else

statements. Before we get to them, I want to introduce the Boolean data

type. There are two Booleans in Python, True and False. True and False

as keywords always should be capitalized. You will see True if you try to

Figure 1-17.  Tax and tip calculator ready to accept a value from the
user

Chapter 1 Getting Started with Python

24

evaluate the 2*2 == 4 statement. Consequently, the statement 2*2 == 5

would return False. Let me step back here and explain what a double

equal operator means.

When we assign a value to a variable name like x = 7, we use a

single equal sign because it defines the variable. A double equal sign is a

comparison operator. If we want to compare values, then we would need

to use ==. There are more comparison operators you can find in Table 1-2.

I’ll start with the if statement. The if statement evaluates the

expression, and if the result is True, then some conditions would be

executed. I think an example with weather conditions will illustrate it.

Suppose the weather outside is rainy, and we want to be reminded not to

forget an umbrella. We can compose the following Python code:

weather = "rainy"

if weather == "rainy":

 print("Take an umbrella")

The if condition evaluates weather == "rainy". In order for it to be

True, the value of the variable weather has to be identical to the "rainy"

string. For Python, "rainy" is a sequence of characters. The computer

Table 1-2.  Comparison operators in Python

Operator Name Example

== Equal 2 == 2

!= Not equal 5 != 2

> Greater than 5 > 2

< Less than 2 < 5

>= Greater than or equal 5 >= 2

<= Less than or equal to 2 <= 5

Chapter 1 Getting Started with Python

25

compares the values character by character. If the weather variable value

and "rainy" are perfectly matched, meaning all letters are the same and

lowercase, then the condition would return True.

You have probably noticed a colon after the if statement. In short,

this is a Python syntax, and you’ll have to learn it. The if, elif, and else

statements should have a colon at the end. I like to think of that colon as an

action trigger. If a condition is true, then do something.

As a rule of thumb, all statements that follow a colon should be

indented. An indentation is very important in Python. It is how we bind

statements together. We can say that the print("Take an umbrella")

statement is in the scope of the if statement. We will talk more about the

scope in the next chapter.

The official Python documentation recommends using four spaces for

indentation. However, apps like Jupyter give you an option to use a tab

key on the keyboard to indent. The main rule of programming is always

to be consistent. In the same file, you cannot mix spaces and tab as an

indentation. You can use whichever you like, but if you use tabs, stick to

tabs, or if you choose to indent with spaces, keep doing spaces. One of

the common mistakes I have seen is that people would copy somebody’s

code from the Internet and paste it into their files. This might give you an

indentation error because the copied code came with tabs, and you have

spaces for indentation in the file. The bottom line you have to remember is

never to mix tabs and spaces in one file.

We can try our weather exercises in Jupyter, and the output should

return Take an umbrella (Figure 1-18).

Figure 1-18.  The if statement prints the “Take an umbrella” message,
since weather == “rainy” returns True

Chapter 1 Getting Started with Python

26

To make our code more versatile, we can replace "rainy" with a

familiar function input():

 weather = input("How is the weather? ")

Run your code, and after the input function prompts, "How is the

weather?", you type something different than "rainy". Do not forget to

press the enter key. The if statement will be evaluated, but would return

False in this case, and nothing will be printed.

An if statement can be followed by an else statement. Keep in mind

that an if statement is often sufficient by itself. However, most of the time,

you would need to have more outcomes.

Let’s add an else statement to our weather script:

weather = input("How is the weather? ")

if weather == "rainy":

 print("Take an umbrella")

else:

 print("Have a nice day")

For the reason that the else statement captures anything else we might

get from a user, there is no need for a condition. The else statement is

immediately followed by a colon. A rookie mistake is people try to squeeze

in some condition after else. That makes no sense at all. In Figure 1-19,

you can see how our little program would react if a user entered "windy".

Since there is no condition to check for "windy", the else statement

catches it and prints "Have a nice day". Keep in mind that our code

performs no data validation. If a user for some reason had inputted some

abracadabra, the else statement would be triggered and execute whatever

code we might have under it.

Chapter 1 Getting Started with Python

27

What if we have more conditions than just "rainy"? In that case, we

would need to begin all other conditions with the elif keyword. elif

stands for “else if” and should be used after opening an if statement.

Suppose we need another reminder in case it is sunny outside. We can

write this additional condition as

weather = input("How is the weather? ")

if weather == "rainy":

 print("Take an umbrella")

elif weather == "sunny":

 print("Do not forget your sunglasses")

else:

 print("Have a nice day")

The point you have to remember is that you always start decisions

with an if statement and then use elif. You might use a thousand of elif

statements if needed. In our pattern, we can extend the weather options

with another elif condition in case there is a blizzard coming:

weather = input("How is the weather? ")

if weather == "rainy":

 print("Take an umbrella")

elif weather == "sunny":

 print("Do not forget your sunglasses")

Figure 1-19.  The else statement prints the “have a nice day” message
after being executed

Chapter 1 Getting Started with Python

28

elif weather == "blizzard":

 print("Stay home")

else:

 print("Have a nice day")

Run your code and test all conditions (Figure 1-20).

There is one mistake beginners do over and over again, using an if

statement instead of elif. In some instances, that might work, but I would

like to demonstrate why it is so important to use elif statements.

Suppose by mistake I had used an if statement instead of elif for

the "sunny" condition. Assuming that a user inputted "rainy" into

the prompt, what reminders would we see? You might say "Take an

umbrella". This is true. However, we would also see "Have a nice day"

(Figure 1-21). Why? Python regards the if statement as a beginning of a

new set of options and will execute the statement under the else after the

if check for "sunny". In case you expect only one outcome, then you must

use an elif statement.

In other words, every time Python reads an if statement, it takes it as

a separate conditional statement or a new decision set. That is why it is

very important to follow an if statement with elif if you want to outline

several options and anticipate only one result.

Figure 1-20.  Elif triggered by the “sunny” condition

Chapter 1 Getting Started with Python

29

I guess by now you want to know what we should do if a user enters

"Rainy" with a capital "R". The way our code is structured right now,

"Rainy" would be captured by the else statement. This is not what we

want. As people who write code for others, we would need to think of

all possible scenarios. One solution to fix it would be logical operators

(Table 1-3). In the course of this book, we will try all of them. We will begin

with or.

We can extend our if statement and use the or operator to give a user

more options how to input a weather condition. "Rainy" beginning with a

capital letter:

if weather == "rainy" or weather == "Rainy":

 print("Take an umbrella")

Figure 1-21.  Wrong example of structuring decision structures

Table 1-3.  Logical operators in Python

Operator Name

and Two conditions should be True

or Either condition should be True

not If a condition is not True

in If an item is in a sequence

not in If an item is not in a sequence

Chapter 1 Getting Started with Python

30

The important part to remember is that you need to outline the whole

condition after or. We would need to use the weather variable again.

The if statement would not work with just the weather == "rainy" or

"Rainy" condition. The if statement would be triggered if either one of

the conditions returned True. I’ll be honest with you, there is a better way

to make sure that the inputted value would match our condition. I’ll show

it to you later. The current example illustrates the use of the or operator.

Compared to the or operator, and would require a satisfaction of

two conditions. To see how it works, we add one more question to our

program. The variable season would hold a value like "summer" or

"winter":

 season = input("What season are we in ? ")

We will add another elif statement that would require two conditions

to be true:

elif weather == "cold" and season == "winter":

 print("Dress warmly")

Only if two conditions are satisfied and returned True, we would see

the "Dress warmly" message (Figure 1-22).

Figure 1-22.  Elif triggered if two conditions are satisfied and
returned True

Chapter 1 Getting Started with Python

31

�Methods
Python is an object-oriented programming language. Object-oriented

programming (OOP) is a design method to structure a program. The

main concept behind it is to bundle related properties and behaviors as

individual objects. In a nutshell, everything in Python is an object. We have

briefly touched behaviors of the objects with the water container analogy

before.

When I declare variable season = "summer", "summer" is stored as an

object in Python memory. It is encapsulated as a string, because we have

wrapped it in quotes, and "summer" is just an instance of a string. Later

if we want, we could replace "summer" with "winter". "winter" would

be another instance of a string. Since "summer" and "winter" are both

instances of the string, they would behave similarly and share the same

attributes.

There is a command that would show you all built-in methods of an

object – dir(). A method is similar to a function, which performs a task.

The main difference is a method belongs to an object. We will be using

dir() a lot; as things go more complicated, you will see that the dir()

function is irreplaceable. Every time you do not know how to do something

in Python, I would recommend you start with the dir() function. Suppose

we need to convert "summer" to uppercase "SUMMER". If you have no idea

how to do it, always start with the dir() function. Run dir() on the object;

in this case, run it on "summer". You can pass the instance "summer" as an

argument into the dir() function or a variable name holding that instance.

Another option is to pass str into the dir() function; after all, "summer" is

an instance of a string.

season = "summer"

dir("summer")

or

Chapter 1 Getting Started with Python

32

dir(season)

or

dir(str)

I know at first what you see in Figure 1-23 looks overwhelming. This

is a list of all built-in methods or commands in a string object. Usually,

when you want to do something to an object, you want to check all its

methods with the function dir(). In the beginning of that list, we see

dunder methods. Dunder is short for “double underscores.” All these

dunder methods have double underscores before and after the method

name. Dunder methods are used by Python itself. As an illustration, the

function len() would use the dunder method __len__() when called on

"winter". Similarly, a plus operator would call the __add__() method

if you concatenate two strings (Figure 1-24). Most of the time, you skip

dunder methods and start looking for a method you need to use.

Figure 1-23.  String methods

Chapter 1 Getting Started with Python

33

After scanning all string methods, we see the upper() method. It is the

second to last on the string method list (Figure 1-23). The name of that

method is self-explanatory. However, there are many others that we do

not know yet and have no idea how to use them. To see a definition of the

method, use the function help() (Figure 1-25). By the way, the function

help() is universal and can be applied to functions too, such as help(len).

help("winter".upper)

or

help(season.upper)

or

help(str.upper)

Figure 1-25.  Function help() returns a definition of the function len()

Figure 1-24.  Function len() and “+” act as wrappers for __len__()
and __add__() methods

Chapter 1 Getting Started with Python

34

As we can see from the definition, the method upper() “Return[s]

a copy of the string converted to uppercase”. Later, we will talk why the

method upper() returns a “copy” of an object. Methods are built-in

commands into the object itself; that is why we need to use them like this:

season.upper()

or

"winter".upper()

Methods are unique to an object. If you run the dir() function on an

integer or a float, you won’t see the upper() method. That makes sense.

Only alphabetical characters can be converted to uppercase.

Beginners always ask me “how would I know which is a function to

which I should pass an object as an argument, like len("winter"), or a

method that I need to use with a period after an object?” The answer is very

simple. You run dir() on an object, and if what you are looking for is in that

list, then it is a method, and you should use it with the period, like this:

 "winter".lower()

On the other hand, if it is not in the list, then you cannot run it as a

method. A very common mistake is to apply a wrong method to the object.

In that case, Python would give you an error message “[type] object has no

attribute [name of method]”. People do that over and over again. Believe

me there is no need to memorize all methods of an object. Sometimes, it is

even impossible due to the fact that Python and its extensions are regularly

updated. All you have to do is to use dir() to see all available methods of

an object.

In our previous example with if and else, we had to use the logical

operator or, in case a user would use a capitalized word. With the lower()

method, we can convert any incoming string to lowercase and not worry

that a user might use different caps and enter something like "suNNy".

Keep in mind that we would need to save the copy of the lowercase

string, meaning to assign to a variable name. In Figure 1-26, you can see

“BLIZZARD” was entered and converted to lowercase on line 3.

Chapter 1 Getting Started with Python

35

�Lists and Tuples
So far, we have learned integer, float, and string types. Here, we will discuss

lists and tuples. We will start with the most popular data structure – a list. A

data structure is some kind of collection of items or elements. Most of the

time, a data structure contains other basic types, like integers or floats. The

easiest way to think of data structures is to compare them to containers.

A list is a container that holds items separated by a comma. There is no

limit to the number of items in the list. The only limit would be a computer

memory.

Usually, I explain a list with a box example. A box is a container where

you could put stuff. Later, if needed, you can fetch items from the box. To

initialize a list, we have to assign square brackets to a variable. Continuing

with a box example, let’s define a variable box and assign empty square

brackets:

 box = []

 type(box)

Figure 1-26.  The function lower converts entered words to lowercase
strings

Chapter 1 Getting Started with Python

36

You could think of this operation as preparing an empty box to put

some stuff in. Run the function type(box) to confirm that the box variable

holds a list object.

Suppose we needed to add a bunch of numbers to a list object, how

would we do it? One option would be to google it; however, the best way

would be to see what methods come with the list itself. Remember the

function dir() from the previous exercise? Run dir() and pass a variable

holding the list object into the function:

 dir(box)

The methods for a list object (Figure 1-27) are completely different

from a string or any other data structure.

Our goal is to add numbers one by one to the list object. If we take a

closer look at the list methods, we would see two commands that sound

like we can use them to add data to the list. They are append() and

insert() in Figure 1-27. If you want to know the difference between them

and how to use them, run the help() function:

help(box.append)

and

help(box.insert)

The main difference between these two is that the append() method

literally appends an item to the end of a list. The insert() method on the

other hand requires not only the item to be inserted but also a location in

the form of an index. We will review indexing later in this chapter, and for

that reason we will start with the append() method. In a cell, try to append

random numbers to the list:

Figure 1-27.  The list methods

Chapter 1 Getting Started with Python

37

 box.append(70)

 box.append(30)

 box.append(50)

 box.append(10)

 box.append(20)

Keep in mind that every time you run the cell, you will see the same

number appended to the list again. I am going to run the cell once. After

that operation, my list, box, holds all numbers I have appended separated

by a comma (Figure 1-28).

I hope a box analogy helped you to understand how a list object works.

Now it is time to give you a more formal definition of a list data structure.

A list is a sequential data structure that can be ordered in ascending or

descending order. It is a versatile container. You can add items to a list or

remove items from a list. The main thing I want you to understand about a

list data structure is that you do not use a list just to store the data.

For that, you would use a file or would write data into a database. But

you would choose to use a list because you want to do something with the

items in the container down the road. For example, you initialize a list and

append numbers to it because you want to sort them. There is a built-in

method sort() (Figure 1-29):

 box.sort()

 box

Figure 1-28.  The list of numbers

Chapter 1 Getting Started with Python

38

A list data structure is being sorted in place; that means within the

object itself. That is why there is no need to assign a box.sort() operation

to a variable. This behavior of a list is called mutability. Mutability is a

very important concept in programming. It means if the object can be or

cannot be changed. A list is mutable, and we can add more items with the

append() method or using the remove() method get rid of unwanted items

from it:

 box.append(800)

 box.remove(10)

 box

As a result of these operations, we have added 800 and dropped 10

from our list (Figure 1-30).

A tuple on the other hand is immutable, meaning it cannot be

changed. We can create a tuple with round brackets:

t = (1,2,3,4,5)

type(t)

Run the function type() on t, and you can see that now we deal with a

tuple. A tuple is similar to a list. It is also an ordered data structure that can

hold elements separated by a comma. However, if you run dir(t), you can

Figure 1-30.  We have appended 800 and removed 10 from the list

Figure 1-29.  Sorted list in ascending order

Chapter 1 Getting Started with Python

39

see that besides dunder methods there are only two other methods that we

can use – count() and index(). The main difference between a list and a

tuple is mutability. Again, a list is mutable, and a tuple is immutable.

Sometimes, people in my classroom would ask “do we really need

to go so deep in programming concepts like mutability, we just want to

use Python.” The answer is “Yes.” This is important especially if you are

planning to work with huge data sets. The general principle is immutable

objects tend to be faster than mutable. You can think of list and tuple data

structures as an open box and a sealed box. In the case of an open box, you

can put more stuff in it or may remove something from it. So, if later you

want to review what you have in an open box, it might take some time. In

the case of a sealed box, there is no need to waste any time on checking.

It is sealed and has a label on it saying what’s in it. There will be no new

items because it is sealed.

How would you choose a right data structure? Obviously, if we’re

talking about a carton box and a plastic box, you would choose the one

suitable for a job based on the box attributes. In programming, it is pretty

much the same. Allow me to demonstrate it with a simple example.

Assume we need to write a program that reads a letter from a user. If a

user enters a, e, i, o, or u, the program should print "This letter is

a vowel". If a user enters any other letter of the alphabet, the program

should say "This letter is a consonant". For simplicity’s sake, let’s

assume that "y" is always a consonant.

One approach that quickly comes to mind is to use the or operator and

chain all possible conditions like this:

 letter = input("Give me a letter ")

 �if letter == "a" or letter == "e" or letter =="i" or

letter == "o" or letter == "u":

 print("This letter is a vowel")

Chapter 1 Getting Started with Python

40

The solution with a bunch of or operators is valid, but it is not the most

efficient one. We can put all vowels into a list and use the in operator from

Table 1-3:

 letter = input("Give me a letter ")

 if letter in ["a","e","i","o","u"]:

 print("This letter is a vowel")

The solution with the list is neat. However, the set of vowels would

never change. On the ground of that, we could use an immutable tuple to

pack a constant set of the vowel letters:

 letter = input("Give me a letter ")

 if letter in ("a","e","i","o","u"):

 print("This letter is a vowel")

Of course, you will not feel a high rate on a tuple with just five elements

(Figure 1-31). Nevertheless, any tuple would be faster than a list, and you

can see that difference on a list with more than 10,000 of items.

Before you start writing a code, you should ask yourself a question,

“would I need to add or remove something?” If the answer is yes, then you

go with a list. Elseways, you can use a tuple. Also, a list structure can be

converted to a tuple with a built-in function tuple(). Vice versa, a tuple

object can be converted to a list with a list() function. We will try them

later in this book.

Figure 1-31.  The program to check if a letter is a vowel or a
consonant

Chapter 1 Getting Started with Python

41

We will use lists and tuples extensively in this book, and as we move

along, we will discuss other characteristics of them.

�Indexing and Slicing
Lists and tuples are ordered collections of elements. That means they

retain items in order. Each item in a list or tuple can be accessed by its

index. To understand this concept, imagine an apartment building.

Tenant Mark lives in apartment number 1, and his neighbor John occupies

apartment 2. Mary resides in apartment number 3 and so on. If I want

to send a letter to Mark, I will need to include his apartment number in

the address. The letter would be delivered to Mark since he occupies

apartment 1. Later, Mark moves to another building, and my letter, if it was

late, would be delivered to another tenant currently living in apartment

number 1. The point is no matter who lives in the apartment, you can

always reach out to that person by the apartment number, and every

building has apartment numbers 1, 2, and 3. That is why sometimes local

businesses would send their flyers addressed to the “current resident” of

apartment number 1 or 2 or whatever, hoping to pick up clients no matter

who occupies them.

Our example can be translated to Python. We have the list stored with

the variable building. The list contains names of building residents:

 building = ["Mark", "John", "Mary"]

The major thing to remember is in Python we start a count at zero. The

first element of a list or a tuple or a string would always have an index of

zero. To see who occupies the first “apartment,” we need to fetch it by index

0:

 building[0]

Chapter 1 Getting Started with Python

42

The building[0] statement gets us "Mark". Consequently,

building[1] will retrieve "John" and building[2] expectedly "Mary"

(Figure 1-32).

Again, no matter what is the first element, we can always grab it by

index 0. Remember there is a method insert() that requires an index to

add an element to a list. Using this method, we can add a new element at a

specific location. We will insert "Jackson" at the beginning of the list:

 building.insert(0,"Jackson")

After this operation, the first element in the list is “Jackson” (Figure 1-33).

If I have asked you to get me the last element from the list, you would

say that we need to count all elements and pass the index of the last

element into square brackets, like this:

 building[3]

Figure 1-33.  Method insert() adds an element based on the index

Figure 1-32.  Fetching elements from the list by an index

Chapter 1 Getting Started with Python

43

Although building[3] would get us "Mary" which is true, most of the

time you do not want to count. A list could hold a gazillion of elements

which would make it difficult to count. The golden rule is the first element

in a sequence has an index of 0, and the last element in a sequence is

always a –1 index. Using this logic, we can access the last element using

the –1 index:

 building[-1]

building[-1] gets us "Mary" again. You could see in Figure 1-34 we

are consequently fetching elements from right to left by a negative index.

The easiest way to remember the syntax would be to think of the

direction. The positive sign of an index would take you from left to right.

If you want to move from right to left, you should use a negative index,

starting at –1 (Figure 1-35).

The indexing concept could be applied to a string. All characters in a

string have an index. You can try to grab the first character of "apple" by

index 0:

 word = "apple"

 word[0]

Figure 1-34.  A negative index would fetch elements from right to left

Chapter 1 Getting Started with Python

44

Indexing helps us to grab one element or character at a time. What

if we need to get two or more? Then we need to slice the sequence.

The syntax is quite simple; we need to provide indexes for locations of

characters where we want to start and where we want to stop:

 object[start_index : stop_index]

For example, if we want to grab "pp" out of "apple", we would need to

indicate the index for the first "p", which is 1, and the index for the second

"p" plus one, 2+1. I know it sounds a bit confusing at first. Remember in

Python the stop point is always excluded. For that reason, we would need

to add one to the index of the last character of the sliced substring:

 word[1:3]

This statement would get us the sliced substring "pp" (Figure 1-36).

Logically, if we wanted to slice off the last two characters "le", we would

write it as word[3:5]. The index of "e" is 4; since the stop is excluded, we

would need to go with 5. This is correct, and word[3:5] would get us "le".

However, there is no index 5 in the five-letter word “apple”. Thereby people

would skip the stop index, like this:

 word[3:]

This syntax means that we want to start at index 3, letter "l", and get all

remaining characters. No matter how many is there (Figure 1-37). Skipping

the stop index is totally normal if you need to go all the way and fetch all

the characters in a sequence after the start point.

In fact, there is one more hidden index in slicing – step. A step index

indicates intervals, how you want to move through the sequence. By

default, a step index is 1. It is not required if you want to go by every

character in a string or element in a list.

 object[start : stop : step]

Chapter 1 Getting Started with Python

45

Using the defaulted step index like this:

 word[0 : : 1]

would not do much and return the whole string "apple". The

preceding notation simply states that we want to start at the first character

and then move one by one letter. Skipping the stop index in the middle

means that we do not want to stop anywhere and get all characters no

matter how many is there.

In the event that you need to skip a character, you can use 2 as the step

index. The word[0 : : 2] statement would return you "ape". Step index 2

is skipping every other letter.

A step index could be negative. To reverse the whole word and read it

backward, we would need to use a –1 index as a step:

 word[-1 : : -1]

The first negative index –1 indicates that we want to start at the last

character "e". The step index –1 means that we want to get all characters

from right to left. The direction example I made earlier makes more

sense now. Frankly, the start index is not necessary in this case because

a negative step index flips default values for the start and stop. But if the

negative start index helps you to reverse strings and lists at first, feel free to

include it. Try the negative step:

 word[: : -1]

The result would be "elppa" as you can see in Figure 1-38.

To to become fluent with slicing, I recommend the very simple exercise.

In a new cell, define a string as alphabetical letters:

 string = "AaBbCcDdEe"

Then try to fetch all capital letters starting at “A”:

 string[0 : : 2]

Chapter 1 Getting Started with Python

46

The start index 0 gets us started at the first letter “A”. The step index 2

is getting us every other letter. Since we want to get all capital letters and

have no idea how many characters in the string, we can leave the stop

index blank.

Right after this, we can get all lowercase letters, "edcba", from right

to left. To go backward and jump over every other letter, we would need

to use –2 as the step index. Logically, our starting point would be –1

(Figure 1-39):

 string[-1 : : -2]

Very often, people ask me what the practical use of slicing would be.

Believe me, you constantly need to slice or reverse something. The recent

example that comes to my mind is mapping clients by the zip code.

A company has very extensive client base and needs to know in what

areas the customers are concentrated. To solve this task, they would fetch

all client addresses from the database, and each address would look pretty

much like this:

 address = "29 E Madison St., Chicago, IL, 60602"

In order to group the customers by areas, we do not need the whole

street address. All we need is the zip code. We know that a zip is always

five characters at the end of an address. We can slice it with a –5 as a start

index:

 address[-5 : :]

For practice, try to slice the city and the state out of this address. Keep

in mind that in Python “ ” empty space also counts as a character and

would have an index.

Chapter 1 Getting Started with Python

47

�Summary
I really hope that by the end of this chapter you’ve caught a Python bug.

Believe me, we have just scratched the surface. In the next chapter, we will

continue with the introduction to Python programming and approach

more advanced examples of everyday Python use. The data type concept

we have discussed in the chapter will evolve into more sophisticated data

structures in Chapters 2 and 3. If you’re still a bit confused about integers,

floats, and strings, I would strongly recommend going over the examples

we did in the chapter one more time. As I have mentioned before, data

types are the cornerstone of any programming language.

Chapter 1 Getting Started with Python

49© Art Yudin 2021
A. Yudin, Basic Python for Data Management, Finance, and Marketing,
https://doi.org/10.1007/978-1-4842-7189-6_2

CHAPTER 2

Writing Your Own
Python Scripts
In the previous chapter, we have covered all the basics of Python. Here,

we will take a look at essential control flow statements and will learn how

to structure a program. We will learn how to use for and while loops

and compose custom functions. Also, we will get familiar with a decisive

Python data structure – dictionary.

As we move through the chapter, we will solve a couple of interesting

and beneficial challenges. The exercises we are about to take on will

demonstrate how to manipulate data with Python. A very necessary skill

no matter what field you are in.

�Definite Loops
A definite loop or for loop is an essential part of any programming

language. Very often, you need to do something many times. For example,

you need to send a Christmas greeting to all your friends. The greeting

should be personalized and say something like “Merry Christmas {name

of your friend goes here}!”. The same message should be printed for each of

your friends.

https://doi.org/10.1007/978-1-4842-7189-6_2#DOI

50

Let’s see how we can do it. For starters, we need to compose a list with

names. Creating a list of close friends to greet sounds like a natural task in

a holiday season. Translating the task to Python would look like this:

friends = ["Mary", "Paul", "John"]

Now we need to iterate through the list and grab name by name. The

iteration would be possible with a keyword for (Figure 2-1):

for name in friends:

 print("Merry Christmas", name)

Figure 2-1.  For loop iterating through the list of friends

I want to go step by step and explain this example. Let’s start with the

anatomy of a for loop. for is a keyword and will be highlighted in Jupyter.

You have to start with the keyword for to repeat the task multiple times.

After for, you need to use some variable. Often, in my class people would

ask me how Python knows we are dealing with names of friends. In fact,

“name” is a variable and can be replaced with any other placeholder. Try

to replace “name” with “banana” on lines 3 and 4 in Figure 2-1, and you’ll

see exactly the same output. Most of the time, in Python tutorials people

use the letter i, stands for item, as a variable in the for loop. The choice of

a variable is totally up to you. in is an operator, also green. It is referring to

the next sequence. In plain words, we want to do the following:

for variable in sequence:

do something to variable

Chapter 2 Writing Your Own Python Scripts

51

We are going through the list of items and defining the variable with

each value. One at a time. In the greetings example, we literally grab a

person’s name value by value from the list and assign it to the “name”

variable (Figure 2-2). That is what’s going on behind the scenes.

As the definite term implies, a for loop iterates as many times as many

elements you have in the sequence. Since the print statement is in the

scope of the for loop, it is executed per iteration.

While you iterate, you can perform any operations on the values.

We can insert the string method format() to make the output nicer. The

format method will place the value of the variable name into curly braces.

This method would escape the need to use multiple commas in the

print() function and make our code clean:

for name in friends:

 �print("Merry Christmas {}! and Happy New Year!".

format(name))

Most of the time, you would need to combine a for loop and if, elif,

or else. Extending our example, we can say that if Paul is on the list, print

the “Please give me a call” message. To check each value in the list whether

it is “Paul”, the if statement has to be in the scope of the for loop. It will

test each value, and assuming that Paul is in the list, the if condition

returns True. Logically, another print() function in the scope of the if

statement will be triggered (Figure 2-3).

Figure 2-2.  The variable “name” is being defined with each value
from the list

Chapter 2 Writing Your Own Python Scripts

52

The most difficult part for beginners is to understand the scope of the

for loop and included if statement. All statements in the scope of the for

loop will be executed while the for loop iterates (Figure 2-4).

Figure 2-3.  Using an if statement while iterating through the list

Figure 2-4.  The design pattern for a for loop and an if statement

Chapter 2 Writing Your Own Python Scripts

53

Another example to illustrate a for loop would be to iterate over the

list of numbers and filter it at the same time. The initial list might look

something like this:

 alist = [1, 5, 2, 5, 3, 5, 4, 5, 6, 5, 7]

Our task is to identify the number 5 and add it to another blist. So, let’s

initialize a new list:

 blist = []

If you do not know where to start, try logically splitting the task into

steps. First off, we need to grab each number from the list. This sounds like

a for loop job. Then we need to compare each number to 5. Otherwise,

how the computer would know we are looking for the number 5. If at some

point the comparison returns True, we would need to use the method

append() to add that number to blist. All these steps could be translated

into code:

 for number in alist:

 if number == 5:

 blist.append(number)

As a result, we would get blist full of 5s (Figure 2-5). On line 6 in

Figure 2-5, append() is indented and placed in the scope of the if

statement. It would be executed only after the if statement returns True.

Indentation is an important part of the Python syntax, and you have to

follow the design pattern for a for loop and an if statement (Figure 2-4).

Figure 2-5.  Filtering alist and adding 5s to the blist

Chapter 2 Writing Your Own Python Scripts

54

�The Range Function
The range function is one of the built-in functions. It generates a sequence

of numbers. To use it, we need to specify a start integer (at which number

to start a sequence), a stop integer (where to stop), and a step integer (a

specific interval) (Figure 2-6). A stop integer is the only required parameter

for the function. A stop number is excluded from the generated sequence.

By default, the start point is 0, and the step is 1. So, we at least have to

provide a stop integer. Do not confuse the range function with slicing.

Although the function range() requires similar parameters, start, stop, and

step, it has nothing in common with a slice notation.

Most of the time, the function range() is used with a for loop.

Assuming that we want to build a range of numbers from 1 to 5, we can

write it like this:

 for i in range(1,6):

 print(i)

Figure 2-6.  The range function parameters

Chapter 2 Writing Your Own Python Scripts

55

The output is numbers from 1 to 5. The stop point is excluded

(Figure 2-7). We did not specify the step. It defaults to 1.

So far, pretty simple. What if we want to generate the same range

but this time in descending order? Then we would need to start at 5. We

cannot use 1 as the stop. If we use 1, we will not see it in the sequence. Zero

has to be our stop point. To change the direction, we would use –1 as the

step (Figure 2-8).

You might wonder what the practical use of the range is. Usually, the

function range() is used to generate an index. Remember we can access

items in a sequence by their indices? Let’s get back to the example we used

in the previous chapter:

 word = "apple"

 word[0]

Figure 2-7.  The function range generates numbers from 1 to 5

Figure 2-8.  The function range generates numbers in descending
order from 5 to 1

Chapter 2 Writing Your Own Python Scripts

56

 word[1]

 word[2]

 word[3]

 word[4]

Using the indexing syntax, we fetch letters by an index. We do not want

to do it manually. It would be a much easier task if we can generate an

index for any word no matter how long it is. With the help of the function

len(), we can get a number of items or characters in any sequence:

len(word)

The string “apple” has five characters. The function len() always

returns an integer. This integer can be used as a stop point in the range()

function. Using that as an argument, the function range generates the

correct sequence from 0 up to the stop point for any word. We can pass

len(word) as the stop argument in range().

i will represent an index of each letter. This index can be used to access

a letter, for example, word[0]. In Figure 2-9, you can see that the range has

generated a sequence of numbers from 0 to 4. That is exactly what we have

expected with the stop point of 5. Then, passing every number into square

brackets, we fetched letter by letter from the string.

Figure 2-9.  The function range generates numbers that can be used
as indices

Chapter 2 Writing Your Own Python Scripts

57

In many cases, you would want to get a location of a value in a

sequence. That is why we want to know the index of each value. For

instance, if we want to replace a value or do something to a value, we

would know where the value is stored.

�Nested for Loops
The best illustration of nested for loops would be a multiplication table.

We all know how a multiplication table looks like. The concept is quite

simple; there are two sets of numbers. You take a number from one set

and multiply it by the number from another set. The set of numbers from

1 to 10 can be created by range(). The sequence of numbers from 1 to 10

should be printed horizontally. You probably noticed that every time we

use the print() function in the for loop, it prints each item on a new line.

This behavior of the print() function could be changed. We can see all

keyword arguments of any function if we run help() on it:

 help(print)

Apparently, the function print() has a default argument end='\n'.

'\n' means a new line. Every time the print() function is executed, it

ends a new line character after the printed text. Just for fun, try to replace

'\n' with 'ZZ', and it would print 'ZZ' at the end of each statement.

For a multiplication table, we would need numbers from 1 to 10 printed

horizontally. We can perform it this way:

 for i in range(1,11):

 print(i, end=' ')

Then we would need another set of numbers from 1 to 10. This time,

we would use j for a variable:

 for j in range(1,11):

 print(j, end=' ')

Chapter 2 Writing Your Own Python Scripts

58

Note that as a result of these two for loops, we get 20 numbers. The first

for loop iterates and prints ten numbers. So is the second for loop. We can

move the second for loop into the scope of the first for loop. This will get us

ten js for every iteration of the outer for loop. Next, get rid of the first print

statement and multiply i by j in the second print() function:

 for i in range(1,11):

 for j in range(1,11):

 print(i*j, end=' ')

After we have nested for loops, we get 100 numbers printed. The main

message here is that it would take longer to produce 100 operations than 20.

By nesting for loops, we have drastically increased the time complexity of

our program. In other words, we made our code run slower.

Do not get me wrong. I am not saying that you should never use the

nested loops. There are instances where you have to use nested loops.

Like a multiplication table. I want you to understand that if you can find a

solution without nesting loops, that solution would be faster.

Just before we formalize the multiplication table, we need to add one

more print statement at the end. Although this print statement would

follow the second for loop, it would be placed in the scope of the outer for

loop. That means the last print statement will be executed as many times

as the outer for loop iterates. Because the last print statement is in the

scope of the outer for loop. We need this print to add ‘\n’ after each set

of numbers. It would be easier to understand it if you temporarily place

something into that print() function, like “ZZ”:

 for i in range(1,11):

 for j in range(1,11):

 print(i*j, end=' ')

 print('ZZ')

These little funny labels help you to see what exactly the last print

statement does and how many times it is executed. With the added

Chapter 2 Writing Your Own Python Scripts

59

print() function on the bottom, it looks more like a multiplication

table. We can add a final touch with a string format method. This format

method will help us to space out the numbers with an even interval

of four spaces between the numbers. As you may remember, a string

method format inserts values into curly brackets. While passing the

values, we can format them. In our example, :4 in the curly brackets

generates four spaces between numbers:

 for i in range(1,11):

 for j in range(1,11):

 print("{:4}".format(i*j), end=' ')

 print()

In Figure 2-10, you can see the final result. The multiplication table

exercise explains the concept of nested for loops very well. For each

iteration of the outer for loop, you are getting n iterations of the inner for

loop. Next time you decide to use nested for loops, think of a multiplication

table and the runtime complexity of your code.

�Defining Your Own Functions
So far, we have been using Python built-in functions. You however can define

your own functions. Before we get to the coding part, we need to understand

what a function in Python is. A function is a block of reusable code. The

keyword here is reusable. There is a principle in programming – keep your

Figure 2-10.  Multiplication table

Chapter 2 Writing Your Own Python Scripts

60

code DRY. DRY means do not repeat yourself. If you want to do something

over and over again, wrap it as a function.

Each function is supposed to perform one task and serve a purpose.

You do not want to compose the whole program as one long function.

Rather, split your code into multiple functions where every step or job

would be a separate function. The whole program would consist of

multiple functions, blocks of code which you could easily replace or

change down the road. Besides, some functions might be used in other

programs. It is a common practice to import a function from one module

to another.

Let’s compose a simple function that sums up two numbers. You start

a function with the keyword def. def stands for define. Then you need to

come up with some name for a function. Any name will do, but as a best

practice, the name of the function is supposed to reflect the purpose of the

function. Right after the function name you should place the parentheses

with the colon “:”.

 def add():

Indentation should follow the colon. All indented statements would

be blocked in the scope of the function. Just for now, we will define two

variables in the function, a and b, and assign to them values 5 and 6,

respectively. Note that variables a and b are defined locally – inside of the

function:

 def add():

 a = 5

 b = 6

If you try to use them outside of the function, Python would raise an

error message that a and b are not defined (Figure 2-11). That means a and

b could be used within the function where they are defined.

Chapter 2 Writing Your Own Python Scripts

61

Our simple function would add a to b, and we save the result with the

variable total. Until now we have been using the print() function to see

the results of our operations. We, humans, need to see things; computers

do not. For that reason, the functions return results. Return is the last

statement in a function. You cannot do anything after a return statement. It

stops the code. If you need to have a print() function to see the result, you

would need to squeeze it in before the return statement:

 def add():

 a = 5

 b = 6

 total = a + b

 return total

If you ran the cell with the function add(), you would see that nothing

happened. Except that now the function add() is stored in Python

memory. In order to use the function, we would need to call or invoke it:

 add()

In Figure 2-12, you can see the invoked function add() returns the

result 11.

Figure 2-11.  a name is being defined locally within the function

Chapter 2 Writing Your Own Python Scripts

62

If you want to save the result from the function, you would need to

assign the function to a variable name. In Figure 2-12, the result from the

function add() is saved with variable c.

To make our function more versatile, we can define a and b as

arguments. All we need is to place them inside parentheses after the name

of the function and separate by a comma:

 def add(a,b):

Now our function requires any two numbers to produce a result.

Calling a function without passing two numbers would raise an error

message.

The bottom line is a function takes arguments and returns the result.

It is a reusable code you can call over and over again (Figure 2-13). It is a

good practice to encapsulate the code based on its purpose. Structuring

the code as a set of functions makes it clean.

Figure 2-12.  The function add() returns 11

Chapter 2 Writing Your Own Python Scripts

63

When you work with a team and others would be using your function,

it would be a good idea to add a description. The description is called

a docstring. Using three single or double quotes on the line below the

function definition, write the purpose of the function. The description

should not be long. There is no need to explain in detail how your function

works. A docstring should outline the purpose of the function. Also, you

might specify some values used in calculations.

 '''

 Return the sum of two numbers

 '''

If your function has a docstring, people could read it with the help()

function (Figure 2-14).

Figure 2-13.  The function add() returns results

Chapter 2 Writing Your Own Python Scripts

64

�Structuring a Program
It is time to put into practice everything we have learned so far. Here, we

will program one of the oldest word games, Pig Latin. The idea behind this

exercise is to learn how to manipulate data and structure the code.

If you have never played Pig Latin, the rules are very simple. You ask

a user for any word. If a word starts with a vowel, then you need to add

"yay" at the end. For example, apple would become appleyay. However,

if a word starts with a consonant, you would need to cut off all consonants

before the first vowel in the word and add them to the end of the word.

Also, you need to append "ay" to a word beginning with a consonant. The

word scratch would become atchscray.

If at first the problem sounds too complicated and you have no idea

how to approach it, start with a pseudocode.

A pseudocode is an outline in plain words of an algorithm you are

about to implement. You can think of it as a road map. On a piece of paper,

write all the steps you need to do to accomplish the task. Pretend that

you are trying to explain to a kid how to play Pig Latin step by step. The

pseudocode code solution for Pig Latin might look like this:

	 1.	 Ask a user for a word.

	 2.	 Check if the word starts with a vowel.

Figure 2-14.  A docstring can be read with the help() function

Chapter 2 Writing Your Own Python Scripts

65

	 3.	 If the word starts with a vowel, add “yay” and save

with a variable.

	 4.	 If the word starts with a consonant, we need to

check all letters and find the first vowel.

	 5.	 To remove the letters before the vowel, we need to

know the index of the vowel.

	 6.	 Store all removed consonant letters using the

variable firstpart.

	 7.	 Get the rest of the letters and store them with the

variable secondpart.

	 8.	 Concatenate secondpart with firstpart and add “ay”.

The problem broken down into baby steps is easier to solve. If you do

not know how to implement a step in Python, you could always google it.

OK, now we can start and translate our plan into Python.

For simplicity, I assume that a user has entered the word apple:

 word = "apple"

Now we need to check if the first letter is a vowel. Grabbing the first

character from a string sounds like an indexing. The first index is always

0, so the first letter would be word[0]. In the previous chapter, we coded a

solution to check if a letter was a vowel. We can use it here:

 if word[0] in ["a","e","i","o","u"]:

 print("This letter is a vowel")

Since "apple" begins with a vowel, according to step 3 we will add

“yay” to it. The new Pig Latin word would be saved under the name result:

 if word[0] in ["a","e","i","o","u"]:

 result = word + "yay"

 print(result)

Chapter 2 Writing Your Own Python Scripts

66

Add a print statement to check the result's value and run your code.

Make sure the solution works on words that begin with a vowel. The first

part was simple to solve. We are halfway there.

For the second half, we would need a word starting with a consonant.

Reassign the variable word to "scratch". There are only two options: a

word either starts with a vowel or not. Logically, it sounds like if and else

statements. So far, we have implemented the if part; now we compose the

else part.

Step 4 in the pseudocode requires testing all letters in a word and

finding the first vowel.

To find a vowel, we would need to iterate through the characters of a

string or, translating this task into Python, run a for loop operation. Step 5

suggests that when we find a vowel in the word, we would need to get hold

of the index of the vowel. The function range() will be handy to identify an

index. Translating steps 4 and 5 into code would look like this:

 word = "scratch"

 if word[0] in ["a","e","i","o","u"]:

 result = word + "yay"

 else:

 for index in range(len(word)):

 print(index, word[index])

The print statement helps us to make sure we are on the right

track, and index represents the index of each letter in word. As you may

remember, to fetch a character from a string by an index, we would need

to pass it into square brackets as follows: word[index]. It would be easy to

identify a vowel because we just did it in the first part. We need to replace 0

with index:

word = "scratch"

if word[0] in ["a","e","i","o","u"]:

 result = word + "yay"

Chapter 2 Writing Your Own Python Scripts

67

else:

 for index in range(len(word)):

 if word[index] in ["a","e","i","o","u"]:

 print(index, word[index])

The print statement in the scope of the if statement reveals the vowel

and its index. In the word "scratch", the index of the vowel is 3. In keeping

with the pseudocode, we need to split the word by the vowels’ index. We

do not want to hardcode it, meaning using 3 explicitly, due to the fact that

in another word a vowel might be at a different location. Using slicing, we

can grab all consonants in the word "scratch" before the vowel "a". So,

step 6 would look in the following way:

 firstpart = word[0:index]

Similarly, we will slice all other letters after the vowel:

 secondpart = word[index :]

The stop point is left blank because we want to get all characters after

the index. The last step in the pseudocode is simple. To be consistent,

we will use the same variable result and concatenate secondpart with

firstpart and “ay”:

word = "scratch"

if word[0] in ["a","e","i","o","u"]:

 result = word + "yay"

else:

 for index in range(len(word)):

 if word[index] in ["a","e","i","o","u"]:

 firstpart = word[0:index]

 secondpart = word[index :]

 result = secondpart+firstpart+"ay"

Chapter 2 Writing Your Own Python Scripts

68

Assign the function input() to word and test your code with different

words; make sure it works. One thing is bothering me; the words with

two or more vowels are returning the wrong results. If you try the word

"brackets", the result will be "etsbeackyay". I believe the rule says

we need to identify the first vowel. If we need the code to stop after the

first instance of a vowel, we need to conclude the if statement with the

keyword break. In Figure 2-15, you can see the whole solution of the Pig

Latin challenge.

Our code can be refactored to improve the design and structure.

I would start with if statements. The list of vowels is used twice in our

code. Wouldn’t it be easier and neater if we had a function to tell us

whether a letter was a vowel? We can compile a little helper function which

would take a letter as an argument and return either True or False. I’ll call

this function is_vowel:

 def is_vowel(letter):

 if letter in ["a","e","i","o","u"]:

 return True

 else:

 return False

Figure 2-15.  Pig Latin game programmed in Python

Chapter 2 Writing Your Own Python Scripts

69

Next, we can wrap the Pig Latin game code as a function. I’ll call this

function game. The purpose of the function would be to accept any string,

we will define it as word, and return the Pig Latin variant:

def game(word):

 if is_vowel(word[0]):

 result = word + "yay"

 else:

 for index in range(len(word)):

 if is_vowel(word[index]):

 firstpart = word[0:index]

 secondpart = word[index :]

 result = secondpart+firstpart+"ay"

 break

 return result

Within the function game, we will be calling the function is_vowel to

check if a letter is a vowel. You can test the function game and call it with

any word:

 game("scratch")

We would ask a user for an input in a separate function. For that, we

will define a function and name it main. In real life, we would need to

validate the user’s input. We need to make sure that the input contains no

numbers or other non-alphabetical characters, and the length of the input

is greater than one letter. There are no one-letter words in English besides

a and I. If the input was successfully validated, we would pass it into the

function game. After manipulations, the function game would return a Pig

Latin word, and we will present the result to a user. If a user’s input did not

pass our filter, we would return "Invalid input, please try again".

Chapter 2 Writing Your Own Python Scripts

70

Since is_vowel would work only with lowercase letters, we would need to

convert the received word to lowercase before invoking the function game:

def main():

 word = input("give me a word ")

 if word.isalpha() and len(word) > 1:

 word = word.lower()

 result = game(word)

 else:

 result = "Invalid input, please try again"

 return result

You can see the final implementation of the Pig Latin game in

Figure 2-16. When we call the function main on the bottom, it prompts us

to enter a word. If the filter on line 32 returns True, the function game is

called on line 34. The user’s input converted to lowercase is passed into

game as an argument and assigned to the argument word. On line 15,

is_vowel is being invoked with the first letter. In the case of the word

"dog", is_vowel returns False, and the program diverted to the else

statement. After the second iteration, the function is_vowel is called again,

this time with the letter “o”. Received True from the is_vowel function lets

the code run lines 20–22. The new word is saved under the name result

on line 22. Finally, the function game returns the Pig Latin word on line 24.

The outcome of the game function is saved on line 34 and returned on line

37 by the main function.

Chapter 2 Writing Your Own Python Scripts

71

Some people might ask why we need so many functions for a simple

task such as the Pig Latin game. The answer is each function has its own

purpose and is responsible for one job. is_vowel is a helper function

that answers just one question, whether a letter is a vowel. If needed,

we can export this function and use it in another file. The function main

is responsible for all user communications. If later you need to alter the

message in the input statement, you could easily get it done without

touching the game function. Communicating with users is a completely

separate task and has nothing to do with Pig Latin code. If we decide to

add more word games to our program, the main function would be the

right place to add a menu and ask users what game they want to play.

Figure 2-16.  Refactored code of the Pig Latin game

Chapter 2 Writing Your Own Python Scripts

72

�Indefinite Loop
There are definite and indefinite loops in Python. We have covered definite

for loops; now it is time to take a look at a while loop, an indefinite loop.

As you might have guessed from the name, we do not know how many

times a while loop iterates. The keyword while requires some condition

right after it. If the condition returns True, then the while loop executes

statements within its scope. After it is done, the while loop checks the

condition again. If the condition is still valid, it iterates again. However,

if the condition returns False, the while loop exits. The easiest example

would be the work hours. The pseudocode might look like this:

 while not 6.00pm

 keep working

If it is not 6:00 p.m. we would be working. In an hour, we check the

time again if it is 6.00pm yet. No, it is not. Keep working. At some point, the

while condition is no longer true, because it is passed 6.00pm. We can get

out of the loop and stop working. The main rule is the condition should

switch to False at some point. Otherwise, you will end up in an infinite

loop. In real life, it could be a disaster.

We can construct a simple while loop like this:

 tally = 0

 while tally < 5:

 tally = tally + 1

 print(tally)

Before you run this code, make sure you increase tally by 1 with each

iteration of the while loop. If accidentally you skip this statement, your

while loop will print 0 over and over again. This would be an example of

an infinite loop. To exit an infinite loop, you would need to interrupt the

Kernel by clicking the stop button in the Jupyter upper menu.

Chapter 2 Writing Your Own Python Scripts

73

The tally = tally + 1 statement in the while loop will increase the

value of tally. After five repetitions, the value of tally will be 5, and the

condition tally < 5 will return False. The loop will exit (Figure 2-17).

The key element of a while loop is the condition. The condition has to

change at some point to exit the loop.

We can use a while loop in the Pig Latin example. The function

main() validates an entered word. If a string contains anything besides

alphabetic characters, the code is redirected to "Invalid input, please

try again", and the program stops. In reality, we do not want to give up

on a user who accidentally entered an invalid word. Using a while loop,

we would ask them to try again. Instead of if and else statements, we will

use a while loop. The program will be asking a user to enter a word until

the right format would be entered. I will add another print statement with

a hint that only alphabetic characters can be used:

def main():

 word = input("give me a word ")

 while not word.isalpha() and len(word) > 1:

 print("Invalid input, please try again")

 print("You can use alphabetic-characters only ")

 word = input("give me a word ")

 word = word.lower()

 result = game(word)

 return result

Figure 2-17.  A while loop exits if the condition is no longer true

Chapter 2 Writing Your Own Python Scripts

74

The keyword not after while makes word.isalpha() and len(word)

> 1 filters False. This statement literally says while False. The while

loop will be executing print statements and asking for input over and

over again till a user gets it right. However, if a user enters a word that

can be used, then the while statement will not be executed at all, and the

code will go to the word = word.lower() line. word = word.lower() and

result = game(word) statements are outside of the while loop. They

will be executed in two cases. The first case would be if the while loop

never gets triggered. The second situation would be if the while loop was

executed and then terminated.

As you can see, there is a conceptual difference between a while loop

and a for loop. The while loop heavily depends on a condition. The for

loop contrarily iterates for every item in a sequence.

�Dictionary
A dictionary is a very important and widely used data structure. I will be

referring to a dictionary many times as we move along. Understanding a

dictionary will help us to comprehend more sophisticated data structures.

A dictionary is an unordered collection of key and value pairs. A key

holds a single value. A phone book would be the best way to explain a

dictionary structure. To initialize a dictionary, we need to use { } curly

brackets:

 phone_book = {}

After we have defined phone_book as a dictionary, we can add a few

phone numbers to it. In order to add a new pair to a dictionary, we need

a key in square brackets and assign a value. Suppose I want to store my

friend’s phone number, then John would be the key, and John’s number is

the value:

 phone_book["John"] = 2123458967

Chapter 2 Writing Your Own Python Scripts

75

The key has to be unique. If I had another friend with the same name, I

would need to use a different key to store his number. We can add a couple

more friends to the dictionary:

 phone_book["Tommy"] = 5169873456

 phone_book["Mark"] = 2015672189

Now phone_book should look like in Figure 2-18.

If you want to fetch a value, all you need is a key. To get Tommy’s

phone number, I need to pass his name as the key (Figure 2-19):

 phone_book["Tommy"]

Compared to a list structure, a dictionary would be faster. It took us

one operation to get a value from the dictionary. If I stored phone numbers

Figure 2-18.  Python dictionary

Figure 2-19.  Fetching a value by a key

Chapter 2 Writing Your Own Python Scripts

76

in a list, I would need to iterate to find Tommy’s number. Iteration requires

many operations. That in any case would take longer than one operation.

Another feature of a dictionary is easy reassignment of the value.

Suppose Tommy changes the phone number, we can replace an old value

with a new one (Figure 2-17):

 phone_book["Tommy"] = 2016546765

There is no limit on how many times you want to change the value

and how often. Easy reassignment of a value makes a dictionary a perfect

structure to hold stock prices. The stock symbol would be the key, and the

price as the value could be changed many times. Likewise, a dictionary is

used to count stuff. The value is updated for every instance of the key. At

the end of the chapter, we will count how many times each word appears

in a text file using a dictionary.

Since a dictionary is an unordered collection and can hold thousands

of elements, how would you find all the keys? As always, we start with the

dir() function. If you run dir() on dict or in our case phone_book, you

will find the methods a dictionary supports. The method we are looking for

is keys().

The keys() attribute will get all the keys from a dictionary. If you see a

dictionary for the first time, start with keys(). This command will return

an ordered array of all keys from a dictionary (Figure 2-20):

 phone_book.keys()

Figure 2-20.  The method keys() returns all the keys from a dictionary

The opposite of the keys() method is values(). values() would

return all values from a dictionary as a list (Figure 2-21):

 phone_book.values()

Chapter 2 Writing Your Own Python Scripts

77

Figure 2-21.  The method values() returns all the values from a
dictionary

Figure 2-22.  The method items() returns all pairs from a dictionary
as tuples

Values are less informative for us because we do not know what they

are referring to. On the other hand, if we assume that a dictionary holds all

stocks traded on NYSE, by values we could see how many companies are

gaining or losing.

The method items() converts a dictionary to a list of tuples. Each key-

value pair would be presented as a tuple structure (Figure 2-22).

 phone_book.items()

The method items() will come in handy in the case that we need to

convert a dictionary into a list. A dictionary is not an ordered structure;

therefore, to sort a dictionary by values, you need a list. A list naturally can

be sorted. You will see this example in action later in the chapter.

The method get(), as you might have guessed, fetches the value by

the key. The main difference between this method and the dictionary

notation, phone_book["Tommy"], is that get would return a default value

if the key is not found. If a user tries to retrieve Mary’s phone number and

there is no Mary in the dictionary, then get() will return "Not Found":

 phone_book.get("Mary", "Not Found")

Returning a default value would be a neater way compared to an error

message (Figure 2-23).

Chapter 2 Writing Your Own Python Scripts

78

By now, you are probably asking the question, is it possible to iterate

over a dictionary with a for loop? My approach is if you are not sure or

do not know something, try it. At least you will learn why an operation

failed from an error message. As a matter of fact, you can loop through a

dictionary.

There are a couple of ways to iterate through a dictionary. The first one

is straightforward:

 for i in phone_book:

 print(i)

This method will get you all the keys from a dictionary. By keys, you

can get the values:

 for i in phone_book:

 print(i, phone_book[i])

Another iteration technique requires the items() method:

 for i in phone_book.items():

 print(i)

As you can see, the i variable represents a tuple. The method items()

has converted phone_book into a list of tuples. Technically, after items()

has been applied, we iterate through a list of tuples. Each tuple contains

exactly two values what used to be a key and a value. To extract a key and a

Figure 2-23.  The method get() returns a default value if a key is not
in the dictionary

Chapter 2 Writing Your Own Python Scripts

79

value, we need to unpack the tuple. One way would be to index the key and

the value:

 for i in phone_book.items():

 print(i[0], i[1])

However, we can assign variables to the first and second elements

in a tuple:

 key, value = ("John", 2123458967)

If we go with logic, then the for loop would require two variables and

will look like this:

 for key, value in phone_book.items():

 print(key, value)

In Figure 2-24, you can see that the two solutions are producing

the same results. It is up to you which technique to use at the end of

the day.

Figure 2-24.  Iterating through a dictionary with a for loop

One simple exercise will sum up getting values from a dictionary and

adding new keys and values.

Suppose we have a menu in a restaurant stored as a dictionary:

menu = {"Burger": 3.75, "Soda": 0.99, "Nachos": 2.99, "Shake":1.25}

Chapter 2 Writing Your Own Python Scripts

80

Using an input function, we will ask a user for two items from the menu:

item_one = input("What would you like?)

item_two = input("What else would you like?)

After we get the desired items, we can fetch the price from the

dictionary using them as keys:

price_one = menu[item_one]

price_two = menu[item_two]

Finally, we will calculate and print the total:

total = price_one + price_two

print("Your total is ${}".format(total))

The next part of the exercise demonstrates how to populate a new

dictionary with keys and values. Continuing with the restaurant example,

we decided to mark down by 10% all products and store new prices in

another dictionary named sale. We need to initialize a new dictionary:

sale = {}

While iterating through menu, we will decrease a value by 10% and at

the same time add food and new prices to the sale dictionary. The built-in

function round will round down numbers after a decimal point to 2:

for food, price in menu.items():

 sale[food] = round(price * 0.9, 2)

After we went through the menu and decreased all prices, our new

dictionary sale would look like this:

{'Burger': 3.38, 'Soda': 0.89, 'Nachos': 2.69, 'Shake': 1.12}

Chapter 2 Writing Your Own Python Scripts

81

�Writing Information into a Text File
As we have discussed before, Python operates in RAM, short-term

memory, and files are stored on a hard drive or in a cloud, long-term

memory. The built-in function open() reads and writes data from and

into a file. open() returns a Python object. Keep in mind that you are not

working directly with a file stored on a hard drive but with an object. The

function open() takes keyword arguments. We can take a look at the main

ones necessary to open a file. For starters, you need to provide a file name

and a file path. Next is the mode. A mode specifies your intention for a

file. The default is mode='r'. String 'r' stands for read. If your intention

is to get information from a file, you should leave it like it is. For writing

data into a file, we would need to change the mode to 'w'. Every time you

run the code, the open() function will create a new file. Another keyword

argument is encoding. For Mac users, it is optional because by default it

will encode or decode a file as UTF-8. Remember in the first chapter, we

have talked about how computers store strings. In a nutshell text file is

a string. UTF-8 is the most popular encoding system for text right now.

If you are curious how exactly UTF-8 encoding works and see the table

characters and corresponding numbers, you can find it on Wikipedia

(https://en.wikipedia.org/wiki/UTF-8). Windows might require the

encoding="utf8" argument to encode a file:

 obj = open("myfile.txt", "w", encoding="utf8")

obj holds an object generated by the function open(). Print it and you

will see

<_io.TextIOWrapper name='myfile.txt' mode='w' encoding='utf8'>

That means that we have successfully created myfile.txt. You can

look up a new file on your computer. Use find or search for it in the same

directory where you keep the Jupyter Notebook.

Chapter 2 Writing Your Own Python Scripts

https://en.wikipedia.org/wiki/UTF-8

82

Open the myfile.txt file in any text editor. It is blank. We have not

written anything in it yet. Writing mode is a bit tricky. If you rerun the

open() function again, "w" mode will delete the existing myfile.txt file

and create a new one with the same name. Keep in mind that if you had

myfile.txt on your computer before with some existing information, you

would have lost it.

Now that we have a file, we can write something into it. Again, we will

be manipulating the Python object. Run dir() on obj, and you would see

all read and write methods. To add a string to obj, we use the command

write(). When we are done, the command close() saves it in the file.

We need a string to write it into the file; make sure you have all your

code in the same cell:

string_one = "This pizza is delicious!"

obj = open("myfile.txt", "w", encoding="utf8")

obj.write(string_one)

obj.close()

The method close() saves the object as a file. It works in the same way

as a save button in Microsoft Word. Your text is not saved until you click

the save as button. If there is a power outage and the data you have on the

screen was not saved, you might lose it.

After you run all these commands, refresh the myfile.txt file. "This

pizza is delicious!" should be in it (Figure 2-25).

Figure 2-25.  Writing information in a text file

Chapter 2 Writing Your Own Python Scripts

83

In comparison to write mode, append mode will add a string to an

existing file. If you already have the file and want to write in additional

data, replace "w" in keyword argument mode to "a". We need another

string to append it to myfile.txt. The "\n" sign means a new line in

Python. It will start a phrase on a new line:

string_two = "I love pepperoni pizza!"

obj = open("myfile.txt", "a", encoding="utf8")

obj.write("\n"+string_two)

obj.close()

Every time you run this code, it will append "I love pepperoni

pizza!" to "myfile.txt" (Figure 2-26).

To sum up everything, let’s do a simple example. Suppose we have a

dictionary with stock prices and need to store them in a text file:

portfolio={"IBM":111.90,"AAPL":155.53,"MSFT":216.39}

obj = open("dummydata.txt", "w", encoding="utf8")

for key, value in portfolio.items():

 obj.write("Stock {} Price{}\n".format(key,value))

obj.close()

Figure 2-26.  Append mode writes information in a text file

Chapter 2 Writing Your Own Python Scripts

84

Here, I use "w" mode because we just write data into the dummydata.txt

file. The for loop iterates through the dictionary and extracts keys and values.

Note that the format() method converts prices, float values, to strings. A text

file format would accept string data types only (Figure 2-27).

�Reading Information from a Text File
Reading data from a file is similar to writing a file. All we need to do is leave

the function open() in a default reading mode. Some Windows systems

would require you to add a little r before the file path. Also, make sure you

have the right file path if your file is not in the same directory where the

Python script is saved. Otherwise, you would get a FileNotFoundError.

obj = open(r"dummydata.txt", "r", encoding="utf8")

obj.read()

The method read() parses obj as a string (Figure 2-28). Do not worry

about \n signs. Python indicates that these characters are separated by a

new line.

Figure 2-27.  Writing information from the dictionary in a
text file

Chapter 2 Writing Your Own Python Scripts

85

In fact, we can use \n to split the string into a list. Assign obj.read() to a

new variable. There is a string method split(). One thing you have to remember

about split() is it is always returning a list data structure. By default, split()

would separate strings by an empty space. Conversely, you can pass a keyword

or a character to be split by. In our case, we will pass \n as an argument:

obj = open(r"dummydata.txt", "r", encoding="utf8")

data = obj.read().split("\n")

After split(), the variable data holds the list of strings separated by a

comma. A list is a versatile data structure, and we can analyze data going

forward (Figure 2-29).

To recapitulate everything we have learned in this chapter, we will do

a practical example. Grab any text file you have, or you can follow my steps

using the file I had uploaded online. If you decide to use your own file, you

can use the open() function as we did in the previous example. Reading a

file from a server would require a Python built-in module urllib. Urllib is

a package that collects several modules for working with URLs (Uniform

Resource Locators). The principle behind urllib is very simple.

Figure 2-29.  Parsing information from a text file

Figure 2-28.  Reading information from a text file

Chapter 2 Writing Your Own Python Scripts

86

It sends a request to a server and fetches the information with the function

urlopen(). My text file is located here: https://bit.ly/text-file.

It would be a good idea to keep our code clean and neat. My advice is

for every job create a new file.

Since urllib is a package, we need to import it first. During the course

of this book, we will be using many different packages of libraries. A

library is a collection of functions. Simply put, a third-party code. It is very

important to import a library at the beginning of the file. You do not want

to squeeze a third-party code into the middle of your script. That is why

even if you forgot a library at first, get back and import it in the first cell.

 from urllib.request import urlopen

Reading text from a cloud would require the urlopen() function.

The information we have received from a server would be stored as an

object. The object can be parsed with the method read(). In the case of

text coming from an online source, read() will return byte literals with a

prefix 'b'. We can use the str() function to be sure it is the regular string

(Figure 2-30):

data = urlopen("https://bit.ly/text-file")

data = str(data)

Figure 2-30.  Parsing information from a remote text file

At the moment, our data is represented as a simple string. Our goal is

to find ten most frequent words in the text.

Chapter 2 Writing Your Own Python Scripts

https://bit.ly/text-file

87

Logically, we can use a dictionary data structure. Each word would be

a key, and the number of times the word appears in the text would be the

value. Sounds like a plan. But before we get to that, we need to convert all

words to lowercase. The article “the” with a capital T for Python would be

a different string than the same article beginning with a lower t. Also, we

need to split the big string by whitespaces into words:

data = urlopen("https://bit.ly/text-file")

data = str(data).lower()

data = data.split()

After split(), the data variable holds a list of words. We need a

dictionary to accumulate the number of occurrences of each word. I’ll

initialize a dictionary with the variable d:

d = {}

We can iterate through the list of words. If a word is in the dictionary,

we increase the value by one. Otherwise, we will add a word to d and set

the value as 1:

for word in data:

 if word in d:

 d[word] = d[word] + 1

 else:

 d[word] = 1

In Figure 2-31, you can see the dictionary full of words.

Chapter 2 Writing Your Own Python Scripts

88

All we have to do is to sort these words by values. We cannot sort a

dictionary, so we would need to convert it into a list of tuples (Figure 2-32):

 alist = list(d.items())

Figure 2-31.  The dictionary d holds words as keys and number
of times each word appears in the text as values

Figure 2-32.  We have converted the dictionary into a list of
tuples

Chapter 2 Writing Your Own Python Scripts

89

Before we sort the list of tuples, I would like to explain to you the

mechanics of the sort() method. The function help() will reveal all

keyword arguments of sort():

 help(list.sort)

There are two arguments, key=None and reverse=False. Reverse

simply means how you want to sort the list in ascending or descending

order. By default, it is set to False because people prefer to order

everything ascendingly. We would need to switch reverse to True because

we are interested in the highest values.

The key argument is a little bit trickier. Let me explain what I mean.

Suppose we have a plain list of numbers. The method sort() will sort it in

ascending order by comparing values:

 plain_list = [9, 5, 7, 4, 8, 3]

 plain_list.sort()

 [3, 4, 5, 7, 8, 9]

To illustrate our case, I’ll take a sample of the list and apply the same

method sort():

my_list = [('will', 17),('explain', 1),('choice', 3),('a', 32)]

my_list.sort()

[('a', 32), ('choice', 3), ('explain', 1), ('will', 17)]

You can see that the list is sorted but in alphabetical order. Python knows

the order of the alphabet. The method sort() assumes that the first element

in a tuple is the important one. By default, it orders all tuples through first

elements. We want to order the list by the second element in each tuple. We

can accomplish that if we fetch the second element of a tuple and use it as a

key in the method sort(). The first step is to get an element:

 t =('a', 32)

 t[1]

Chapter 2 Writing Your Own Python Scripts

90

We would need to perform this operation on every tuple in the list.

Sounds like repetition. We need to wrap this statement as a function. I’ll

name this function get_value:

 def get_value(t):

 return t[1]

The definition of sort() says if a key function is given, it would be

applied to all items in the list. The second step would be to use get_value

as a key:

 alist.sort(key=get_value, reverse=True)

In Figure 2-33, you can see the list is sorted by words with the highest

values. We can slice the list to get the first ten most frequent words in the file.

Someone might ask, is there a better way to get a key besides defining

a function to index an element in a tuple? The answer is yes; lambda would

be an elegant solution. We will cover lambda in the next chapter. Later, you

could go back to this problem and replace get_value with lambda.

Figure 2-33.  Finding ten most frequent words in the text

Chapter 2 Writing Your Own Python Scripts

91

I believe that the first two chapters have built a solid understanding of

how Python operates. You can regard these chapters as an introduction to

Python programming. We have covered all essential topics from built-in

data types and functions to control flow statements.

By now, you should have had built a foundation to address advanced

Python topics and approach complex problems.

Chapter 2 Writing Your Own Python Scripts

93© Art Yudin 2021
A. Yudin, Basic Python for Data Management, Finance, and Marketing,
https://doi.org/10.1007/978-1-4842-7189-6_3

CHAPTER 3

Data Analysis
with Pandas
Modern life challenges require fast-paced solutions. These days, we need

to evaluate tons of information in real time. Python is fast, but if you need

to go faster, there is Pandas. Pandas is a core Python library for accelerated

data manipulation. Originally developed for Wall Street professionals, it

quickly became popular among people who crunch numbers, analyze big

data, and simply want to switch from spreadsheets to the powerful and

more efficient Python programming language. The name Pandas stands

for panel data. Panel data is an econometric term for multidimensional

data set. Pandas has many useful functions to make a data analysis process

more efficient.

Pandas comes with two sophisticated data structures: Series and

DataFrame. I like to think of data structures in terms of vehicles. Assuming

that a Python list is a simple and reliable car that could take you from point

A to point B, the Series would be a fast racecar. A simple car needs regular

oil and gas, but a racecar would require premium lube and a special

care. In this chapter, we will go over all the main Pandas features, such as

filtering, logical operations, and concatenating and merging data sets, and

learn how to use them.

https://doi.org/10.1007/978-1-4842-7189-6_3#DOI

94

�Series
Before we get to the Series definition and start coding, we would need to

import Pandas.

Since Pandas is a third-party library, we would need to import it every

time we want to use it at the beginning of a file:

 import pandas as pd

The variable pd is used as a shortcut. pd holds all Pandas functions,

and you can see all of them with the help of the tab key on your keyboard.

In a new cell, type pd. and press the tab key (Figure 3-1). Do not forget the

period after pd. Based on my experience, it might take some time till you

see the drop-down menu with all functions, especially on Windows. In

Jupyter, the tab key works as a completion instrument.

A Series is a one-dimensional data structure. We have seen sequential

structures before, but this one is different. You can see a formal definition

of the Series if you run

 help(pd.Series)

Figure 3-1.  Type pd and press the tab key to see Pandas functions

Chapter 3 Data Analysis with Pandas

95

It says “one-dimensional ndarray with axis labels.”1 To understand the

definition and appreciate all Series features, we need to create one.

We will start with a list and convert it into a Series to see the differences

between two data structures. Define a simple Python list alist with a

bunch of numbers:

 alist = [100, 200, 300, 400, 500]

Using the function pd.Series(), transform the list into a Series:

 ser = pd.Series(alist)

In Figure 3-2, we can see the Pandas Series, a one-dimensional data

structure or simply put a container. On the left side of the Series is the

index. An index comes by default. The concept of an index was borrowed

from relational databases. In a relational database, each record has a

primary key. A primary key is a unique identifier. Using the key, you can

fetch a value. A Series uses the same approach. However, in a Series you

can get duplicates as a result of concatenating data sets. When we get to

concatenation, we will talk about it, and I will explain how to deal with

1 �https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
Series.html

Figure 3-2.  Pandas Series

Chapter 3 Data Analysis with Pandas

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html

96

overlapping index values. In the meantime, we can fetch a value by an

index:

 ser[1]

The ser[1] operation will get us 200. Using a slicing notation, we can

grab a couple of values:

 ser[1:3]

As a result, we get 200 and 300. The stop index is excluded as in the

Python slicing notation.

A Series always comes with dtype, a data type identifier of values, on

the bottom. Compared to a list, a Series is homogeneous and can hold only

the same data type values. The homogeneity of values makes a Series faster

than a list. We can perform a simple test to illustrate homogeneity. Replace

the first element in the ser Series to a float:

 ser[0] = 1000.1234

The float 1000.1234 was converted to an integer and only then

accepted by the Series with dtype: int64 (Figure 3-3). That means all

of the values must be the same data type. If it was not possible to convert

a value to an integer for some reason, then the Series would convert all

values to floats or would raise an error.

Figure 3-3.  A Series is always homogeneous

Chapter 3 Data Analysis with Pandas

97

A Series has two major attributes: index and values. Try ser.index and

it will return RangeIndex(start=0, stop=5, step=1), meaning there are five

elements. The format of the index reminds us of a function range(). We

have used it in the previous chapter. The statement ser.values will reveal

that the values are stored as a NumPy array, array([1000, 200, 300, 400,

500]).

NumPy is another core library in Python for scientific calculations.

Although the NumPy package is outside of the scope of this book, we will

be referring to it. Pandas’ data structures build on top of the NumPy array,

and they share similar behavior. Thus, we can borrow functions from

NumPy and apply them to Pandas objects.

One of the main advantages of a Series is that we can implement

operations on the whole structure rather than its items. This behavior is

called vectorization. Vectorization is also inherited from NumPy. This

behavior makes the Series faster and more efficient than a Python list. For

example, if we needed to divide all items in alist by two, then we would

have to use a for loop:

 for item in alist:

 newitem = item / 2

However, if all values were stored in a Series, we could apply the

mathematical operation to the whole container (Figure 3-4).

Figure 3-4.  Vectorization applies an operation to the Series

Chapter 3 Data Analysis with Pandas

98

That is exactly what I meant comparing a Series to a racecar. Any for

loop operation would take longer than a vectorized operation. For that

reason, you do not want to iterate through a Series with a for loop. First of

all, it would make the operation run slower; second, there is no need for it.

Another proof of efficiency would be a vectorized operation example

between two Series objects – a simple calculation of a price-to-earnings ratio.

The market price of a stock divided by earnings per share would be done faster

if we stored all stock prices and earnings in the two Series rather than lists.

Random stock prices held in the Series under the name portfolio

 portfolio = pd.Series([30,20,45,76,34])

would be divided by the same companies’ earnings per share, also

provided in the Series container:

 earnings = pd.Series([1.5,3.3,4.5,2.5,2.75])

The final result could be saved as a new Series under the variable name

pe (Figure 3-5):

 pe = portfolio / earnings

We can round down the results of the price-to-earnings ratio example

to exactly two numbers after the decimal point if we pass the expression in

the round() function:

 pe = round(portfolio / earnings, 2)

Figure 3-5.  Division operation between the two Series objects

Chapter 3 Data Analysis with Pandas

99

As I have just mentioned, a Series has two attributes: index and

values. That reminds us of keys and values in the dictionary structure. In

some sense, a Series is close to the dictionary. The easiest way to create a

new Series would be to convert a Python dictionary into a Pandas Series

(Figure 3-6).

 stocks = {"IBM":30, "ORCL":20, "MSFT":45}

 portfolio = pd.Series(stocks)

The keys from the dictionary are used as the index in the Series

(Figure 3-7). You can think of a Pandas Series as a specialization of a

Python dictionary.

Using the dictionary notation on the Series, we can append more

values to the portfolio object. To add an element, we need a new pair,

key and value. Try the following code to add more stocks to the portfolio

Series:

 portfolio["AAPL"] = 76

 portfolio["INTC"] = 34

Figure 3-6.  Converting a Python dictionary into a Series structure

Figure 3-7.  String keys from a dictionary are the indices in the
Series

Chapter 3 Data Analysis with Pandas

100

As a result of that operation, the portfolio object was appended with

two more values (Figure 3-8).

We have learned that a Series is a one-dimensional data structure in

Pandas. Now let’s see what we get if we join a few Series together.

�DataFrame
A DataFrame is a two-dimensional data structure. You can think of it as a

bunch of Series bound together. There are several ways on how you can

create a DataFrame, and I will show you all of them as we move along

through the book. I want to start with the simplest example of how you

can construct a DataFrame from scratch. We will initialize a DataFrame

with the Pandas function pd.DataFrame() and save it under the portfolio

variable name.

�Constructing a DataFrame
To keep our code clean and neat, place each example into a separate

Jupyter Notebook. At the beginning of the file in an isolated cell, we need

to import Pandas:

 import pandas as pd

Figure 3-8.  Using a dictionary notation, we can add values to a
Series

Chapter 3 Data Analysis with Pandas

101

In a new cell, define the portfolio variable as a DataFrame with the

help of the Pandas DataFrame() function:

 portfolio = pd.DataFrame()

If you print the portfolio object, you will not see anything because

it is empty. We need to populate our container with data. The most

straightforward way would be to define a few Series and attach them to the

portfolio object. Once again, I am using random numbers for values in

all my examples.

stock_symbols = pd.Series(["IBM","ORCL","MSFT", "AAPL"])

stock_prices = pd.Series([116.86, 56.91, 216.51, 119.26])

number_shares = pd.Series([50, 100, 50, 100])

We need to come up with names for the columns and using the

dictionary notation add them with values to the DataFrame:

portfolio["Symbol"] = stock_symbols

portfolio["Price"] = stock_prices

portfolio["Qty"] = number_shares

In Figure 3-9, you can see the DataFrame we have created from

scratch.

Chapter 3 Data Analysis with Pandas

102

Break the DataFrame down into smaller pieces, and you will see that it

is composed of index, columns, and values attributes (Figure 3-10):

 portfolio.index

 portfolio.columns

 portfolio.values

Figure 3-9.  Creating a DataFrame from scratch

Chapter 3 Data Analysis with Pandas

103

We have used the dictionary notation to add columns to the

DataFrame. That makes the DataFrame a specialization of the Python

dictionary.

�Slicing a DataFrame
Using the same approach, we can slice the DataFrame to grab a column:

 portfolio["Price"]

Pass a column name as a string in the square brackets, as we did with a

key to fetch a value from the Python dictionary, and it will return just one

column (Figure 3-11). The returned column is a Series object.

Figure 3-10.  The DataFrame has three attributes: index, columns,
and values

Figure 3-11.  Slicing a column of the DataFrame

Chapter 3 Data Analysis with Pandas

104

The square brackets method using a column as the key allows us to

part columns or create new columns. Also, this method would be essential

if a column name has empty spaces. If you create a DataFrame from

scratch, I would advise you to avoid using spaces in a column name, when

using two or more words as a column name. However, sometimes you

have to deal with data created by someone else with separated words in a

column name. In that case, ["a column name"] would be the only way you

could grab a column.

As always, to see all built-in attributes and methods in a DataFrame,

run the dir() function on the portfolio object. We can see that Symbol,

Price, and Qty are the attributes of our DataFrame. That means we can

slice the Price column like this:

 portfolio.Price

Keep in mind that slicing the column method as an attribute

(Figure 3-12) will not help you to get multiple columns.

We would need to pass column names as a list into square brackets to

grab a couple of columns (Figure 3-13):

 portfolio[["Symbol","Qty"]]

Figure 3-12.  Slicing a column of the DataFrame as an attribute

Chapter 3 Data Analysis with Pandas

105

As was mentioned before, the square brackets notation and the name

would create a new column. What if we do not have appropriate values for

a column yet? That will not be a problem. We can create an empty column

using 0 or an empty string as a placeholder for values that would be added

later. For example, we would need to have a column for the price paid for

each share in our portfolio. We will name it Cost, and since we do not have

the actual data yet, use " " as a placeholder:

 portfolio["Cost"] = " "

That statement will create an empty column we could use later

(Figure 3-14).

Figure 3-13.  Slicing many columns of a DataFrame

Figure 3-14.  Using the square brackets notation to create an empty
column

Chapter 3 Data Analysis with Pandas

106

Keep in mind that we could always reassign values under the same

column name. All we need is the cost per share data stored as a one-

dimensional structure. We have used a Series to add values to the

DataFrame before; however, a list or a tuple would do the same job just

fine. Most of the time when you are gathering data from different sources,

you would use a list as an temporarily structure to hold values. Just

make sure the length of the structure would match the number of rows

in the DataFrame. Add the values to the portfolio DataFrame through

reassignment:

portfolio["Cost"] = [115.25, 55.00, 210.30,105.75]

Figure 3-15 shows the column Cost with updated values.

Earlier in the chapter, we have performed vectorized operations

between two Series. Since each column represents a Series, we can do

vectorized calculations between columns. The price of a share multiplied

by the quantity of shares would get us a dollar amount of the whole

position. We can save the results in a new column under the name Amount

(Figure 3-16):

portfolio["Amount"] = portfolio["Price"] * portfolio["Qty"]

Figure 3-15.  Updating values in the column by reassignment

Chapter 3 Data Analysis with Pandas

107

Another example of a similar operation would be calculating the profit

or loss of each position. This time, we will use a slightly different syntax.

We will use column names as attributes of the DataFrame (Figure 3-17).

Python follows the math order of operations, and we will use the round

brackets to compute the profit or loss per share first, and then the result

would be multiplied by the quantity of shares:

portfolio["Profit"] = (portfolio.Price–portfolio.

Cost)*portfolio.Qty

Figure 3-16.  Vectorized operation to calculate the dollar amount of a
position

Figure 3-17.  Calculating the profit or loss, grabbing the columns as
attributes of a DataFrame

Chapter 3 Data Analysis with Pandas

108

A DataFrame comes with the index by default. But we can always

reassign the index. Stock symbols are unique, and we can use them as

indices. To use a column value as an index, we would need to slice the

column and assign it as the index:

portfolio.index = portfolio.Symbol

After index reassignment, the portfolio DataFrame has identical

values for the index as in the column Symbol. To differentiate an index

and a column, Pandas prints the index name on the next line under the

columns’ names (Figure 3-18).

So far, we have been adding new columns to a DataFrame. With the

method drop(), we can remove the unwanted columns. DataFrame

methods are more complicated than what we have dealt with in a list or

tuple before. I would recommend using the function help() to verify all

arguments a method might take:

 help(portfolio.drop)

Figure 3-18.  Reassigning an index to the values of the Symbol
column

Chapter 3 Data Analysis with Pandas

109

You have probably noticed that Pandas developers did a good job

providing information on functions and methods with relevant examples.

The Drop() method takes the following keyword arguments:

drop(labels=None, axis=0, index=None, columns=None, level=None,

inplace=False, errors='raise')

Parameters vary for a method. However, there are a couple of them

that would be common to all Pandas methods. I am talking about axis and

inplace.

A DataFrame has two axis – rows and columns (Figure 3-19). The

drop() command or any other DataFrame method could be applied either

to rows or columns. By default, the axis is set to rows or 0. If we left it as it

is and tried to delete the Symbol column from the DataFrame, we would

get an error – "Symbol not found in axis". Because the drop() method

by default would be looking for the "Symbol" name in the index values.

Since we want to get rid of a column, we would need to switch the method

drop() axis keyword to "columns". Pandas provides two options, either

to set a keyword argument to 1 or literally "columns".

Figure 3-19.  Axis 0 or “index” is referring to rows, and axis 1 or
“columns” is referring to columns

Chapter 3 Data Analysis with Pandas

110

Nonetheless, if our intention was to drop a row, like “IBM”, then we

should have left the axis as it was or assigned "index" to axis. Keep axis

in mind when using a DataFrame method.

Another common parameter in DataFrame methods is inplace. When

we are applying a method such as drop() and removing a column from

the DataFrame, we are changing the object. The alterations to the object

should be saved. Setting inplace = True will save those changes. The

argument inplace means that an object is modified in place, within the

object itself. So there is no need to assign the expression to a variable to

save the changes if inplace is set to True.

There are two options, True or False. In some way, you can think of it

as a save button. The method drop() would remove an unwanted column

and save the adjustment with inplace = True. Sometimes, by accident

people skip the inplace = True step. Would the method drop() still

remove a column? The answer is yes, but there might be some issues with

the object later. The best practice would be to set the inplace keyword

argument to True when you are applying a method and need to preserve

the changes.

OK, now we are ready to remove the Symbol column from the

DataFrame:

portfolio.drop(labels="Symbol", axis=1, inplace=True)

Make sure you run the drop() statement in a separate cell, and you run

it once (Figure 3-20). A rookie mistake is to rerun the cell and receive the

warning message "not found in axis". If you run the drop() command

again, it would not be able to find the column. The column is gone, and it

is no longer part of the DataFrame.

Chapter 3 Data Analysis with Pandas

111

So far, we have been manipulating DataFrame columns. Rows and

values can be sliced as well as columns. There are two methods to retrieve

one or more rows – loc and iloc.

Loc stands for location. The loc method requires labels, and iloc takes

an index of a row. Noticeably, i means index in the iloc method name.

Both loc and iloc will do the same job.

Suppose we need to fetch the row for MSFT out of the portfolio

DataFrame. MSFT is a label of an index value. The underlying index value is 2.

The index count starts at 0. IBM is 0, ORCL is 1, and MSFT is 2. If we want to use

labels, then the loc statement would look like this:

portfolio.loc["MSFT"]

Consequently, iloc would require an integer for the index and would

get you the same result with this statement:

portfolio.iloc[2]

Compared to other DataFrame methods, loc and iloc use square

brackets (Figure 3-21).

Figure 3-20.  The method drop removes the Symbol column

Chapter 3 Data Analysis with Pandas

112

The Python slicing principle could be applied to a DataFrame with

loc and iloc methods. The only difference is the method loc with labels

would include a stop position. In the iloc method, the stop index is

excluded. That is why fetching two rows for ORCL and MSFT would have

MSFT as a stop in the loc variant and would require an upper limit for a

numeric index value in the iloc expression (Figure 3-22):

portfolio.loc["ORCL":"MSFT"]

portfolio.iloc[1:3]

Figure 3-21.  Methods loc and iloc fetch the MSFT row

Figure 3-22.  Slicing rows with loc and iloc methods

Chapter 3 Data Analysis with Pandas

113

In real life, a DataFrame might have thousands of columns, and

you might need to get just a subset of data. Subsetting on a DataFrame

would need indices for rows and columns separated by a comma. Rows

would always come first. The iloc method is similar to the Python slicing

notation syntax:

 [start : stop : step , start : stop : step]

As in Python, the step is optional and by default is set to 1. As a

reminder, the loc method takes labels for the index and columns.

We can get the values from Price and Qty columns for ORCL and MSFT

essentially as

portfolio.loc["ORCL":"MSFT", "Price":"Qty"]

portfolio.iloc[1:3, 0:2]

In Figure 3-23, you can see that both methods yield the same result.

Another option would be to slice the columns first and then apply loc

or iloc. For instance, getting values for MSFT and AAPL out of Price and

Profit columns would be equal to these statements:

portfolio[["Price", "Profit"]].loc["MSFT":"AAPL"]

portfolio[["Price", "Profit"]].iloc[2 :]

Figure 3-23.  Subsetting with loc and iloc methods

Chapter 3 Data Analysis with Pandas

114

We are leaving the stop index blank in the iloc method since we want

to get all rows after index 2 (Figure 3-24).

�Filtering a DataFrame
The filtering process is more efficient in Pandas than what we have done so

far with a for loop and if statements. We will start with a simple example.

Our goal is to filter the portfolio DataFrame and identify all stocks priced

less than $100.00.

The first step would be to grab the column Price either using the

dictionary notation portfolio["Price"] or portfolio.Price and define a

condition:

 portfolio.Price < 100

If you run this statement, it will return Boolean values (Figure 3-25).

Figure 3-24.  Subsetting on columns with loc and iloc methods

Chapter 3 Data Analysis with Pandas

115

The filter is working, but obviously we need more information and

the stock itself. One option would be to apply the filter to the whole

DataFrame. This option will fetch you the whole row:

 portfolio[portfolio.Price < 100]

Another option would be to apply the condition to a particular column

or columns. Specifically, if we want to see how many shares we hold of

stocks that are priced less than a hundred, we need to slice the Qty column

and apply the filter:

 portfolio.Qty[portfolio.Price < 100]

This would be an example of filtering one column based on another

one. As you can see in Figure 3-26, the first statement has retrieved the

whole row, and the second filter gets just one value.

Figure 3-25.  Defining a condition for a filter

Chapter 3 Data Analysis with Pandas

116

There is no need to iterate through values and use if and else

statements. Also, we can combine conditions as we did before with

conditional operators. In Pandas, &, ampersand, is the equivalent of the

and operator in Python. When you use &, both conditions have to be True

to return the result. Suppose we need to find all stocks that are priced

less than $200, and the number of shares is exactly 50 in the portfolio

DataFrame. Then we can couple two conditions as

(portfolio.Price < 200) & (portfolio.Qty == 50)

And apply the filter to the DataFrame:

portfolio[(portfolio.Price < 200) & (portfolio.Qty == 50)]

Please note that each condition must be wrapped in the round

brackets. Apparently, only one position in portfolio fully satisfied these

two conditions (Figure 3-27).

Figure 3-26.  Filtering a DataFrame

Chapter 3 Data Analysis with Pandas

117

Another conditional operator in Pandas is |. It is pronounced a toll bar.

The equivalent of the or operator in Python, | would filter if either one of

the conditions is True. We can filter the DataFrame and filter all positions

where the price is greater than $200 or the cost is exactly $55. We need to

outline each of the conditions first in parentheses and using | apply them

to the portfolio object:

portfolio[(portfolio.Price > 200) | (portfolio.Cost == 55)]

As we can see in Figure 3-28, two positions fit into our filter – ORCL

because its "Cost" value is precisely 55 and MSFT with a price greater

than 200.

Filtering is very useful, but what if you want to do something to a value

based on a condition?

Figure 3-27.  Filtering a DataFrame based on two conditions

Figure 3-28.  Filtering a DataFrame where either one of the
conditions is true

Chapter 3 Data Analysis with Pandas

118

�Logic Operations in Pandas
When you need to take actions based on a condition, that is where logical

operations come into play. If a condition is True, then do something to the

values. There are three different approaches you can use to perform logical

operations in Pandas. My favorite is lambda, and I’ll explain it first.

Lambda is an anonymous function in Python – in other words, a

function with no name that runs like an expression. Beginners find lambda

somewhat confusing, but it is not that difficult, believe me – presuming

that you grasp the syntax and practice the lambda syntax a couple of times.

I will start with single-expression lambda. Suppose we want to double

the number of shares of each stock in our portfolio DataFrame. The

easiest and efficient way would be to use portfolio.Qty * 2. However,

to explain lambda I would do it differently. An alternative to a vectorized

operation would be to go value by value in the column Qty and add each

value to itself. That sounds like an iteration through a column. We do not

want to use a for loop to iterate over a column because it would slow

down the process. The most efficient way to iterate through a Series would

be to use the method apply(). The official documentation says that the

method apply() takes another function and applies it to all values within

a column.2 To double the number of shares, we would need to compile a

function and pass it into the apply() method.

Let’s define a simple function that would take the number of shares

from each row in the column Qty and add them to themselves:

 def double(num_shares):

 return num_shares + num_shares

2 �https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
DataFrame.apply.html

Chapter 3 Data Analysis with Pandas

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html

119

Now that we have a function, we will apply it to each value within the

Series portfolio.Qty:

 portfolio.Qty.apply(double)

Keep in mind that when you use a function as a helper function within

some other function, like map(), filter(), or the method apply(), you do

not need parentheses at the end. That is why we call the double function

inside the apply() method as apply(double). In Figure 3-29, we see that

the number of shares for each stock has doubled.

Usually, we define a function because we would want to use it again

and again. I doubt that the double function would be needed anymore.

Is there a better way? The answer is yes; we can replace a function with

lambda.

To write lambda expressions, you need to remember the following

setup. Always begin with the lambda keyword. In lambda, there are two

parts separated by the colon character. In the first part, you define a

variable or variables. Something that goes into a lambda. In the second

part, you compose an expression. Something that lambda would return as

the result (Figure 3-30).

Figure 3-29.  Applying a function double to all values in the Series

Chapter 3 Data Analysis with Pandas

120

There is no need to use a return operator because lambda always

returns the result. Keep in mind that lambda has to be used within a

function or can be assigned as an expression to a variable name. We can

rewrite the double function as a lambda expression:

 lambda num_shares : num_shares + num_shares

This expression can replace the double function in the apply()

method:

portfolio.Qty.apply(lambda num_shares : num_shares + num_

shares)

If we want to save the result of that operation, we can assign it to a new

column name as in Figure 3-31.

Lambda can be used with if and else statements. The syntax would

look like in Figure 3-32.

Figure 3-30.  Lambda syntax

Figure 3-31.  Doubling the number of shares and saving the result
under a new column name

Chapter 3 Data Analysis with Pandas

121

With lambda returning outcomes based on if and else statements,

we can do logical operations on a Series or the whole DataFrame. As an

illustration of that, we can provide the recommendations to buy or sell a

stock based on the price. Let’s say if the stock price is less than $118, we

would record Buy in the new column Rating. Otherwise, the record in

the Rating column would be Sell. The lambda expression in the apply()

method would look like this:

lambda stock_price : "Buy" if stock_price < 118 else "Sell"

Again, stock_price is a variable that accurately describes the value.

All we have to do is to pass the lambda expression into the apply() method

and save the results under the column name Rating:

portfolio["Rating"] = portfolio.Price.apply(lambda stock_price :

 "Buy" if stock_price < 118 else "Sell")

The Rating column holds outcomes based on if and else statements

we have applied to all values in the Price column (Figure 3-33).

Figure 3-32.  Lambda syntax with if and else conditions

Figure 3-33.  Applying lambda with if and else statements

Chapter 3 Data Analysis with Pandas

122

I know that lambda requires some practice to master it, and later in the

chapter, I’ll present more examples of the practical use of lambda.

Another approach to logical operations on a DataFrame would be

using the method loc. The syntax would look like this:

DataFrame.loc[if condition, new column to save result] =

result

A practical example would be to calculate the profit or loss per share.

If values in the Price column are greater than values in the Cost column,

then we want to subtract the cost paid from the current price. The results

will be stored in a new column. We will name it PL_per_share (Figure 3-34).

We can write this logical statement as

portfolio.loc[portfolio.Price > portfolio.Cost, "PL_per_share"] =

portfolio.Price - portfolio.Cost

There is one more option for outcomes based on if and else

conditions – the NumPy function where(). Pandas is built on NumPy, and

the NumPy array data structure is the core of a Series and a DataFrame. It

means we can borrow functions from the NumPy package and use them

in Pandas. Since we have not imported the NumPy library into our file, we

would need to scroll up and import NumPy into the first cell right under

the Pandas import. Do not forget to rerun the cell:

 import numpy as np

Figure 3-34.  Performing a logical operation with the loc method

Chapter 3 Data Analysis with Pandas

123

The function where() belongs to NumPy, and we would need to use

it as

 np.where()

It would be a good idea to read the description and see all arguments

that it takes:

 help(np.where)

Just as the documentation says, where() needs a condition, and

then it would provide two outcomes. The first one will be executed if the

condition is True and the other one if the condition returns False.

To practice where(), we can run a scenario; if the value in PL_per_

share is greater than $5, we need to return True. Otherwise, where()

will return False. The results will be stored in the new column under

the greater_five name. Following the description of where(), we can

compile that logical expression as

portfolio["greater_five"] = np.where(portfolio.PL_per_share >5,

True, False)

Figure 3-35 shows that where() did a perfect job, and the newly created

column greater_five has True values if the profit per share is greater

than $5.

Figure 3-35.  Performing a logical operation with the npwhere
function

Chapter 3 Data Analysis with Pandas

124

With the where() function, we can perform more complicated

operations than Boolean outcomes.

Using the logic from the previous example, we can increase our

position in stock if PL_per_share is less than $5. If the condition is True,

then we would multiply the price per share by the value from New_Qty.

The result of this operation will update the value in the Amount column.

For stocks with the PL_per_share value greater than $5, we will not do

anything and leave the amount as it is:

portfolio["Amount"] = np.where(portfolio.PL_per_share < 5,

portfolio.Price * portfolio.New_Qty, portfolio.Amount)

The Amount column was updated only for IBM and ORCL since the values

in the column PL_per_share were 1.61 and 1.91, respectively (Figure 3-35).

Out of these three approaches, my favorites are lambda and the

where() function. The method loc would require a separate statement

for each if condition. However, you might want to use loc when you have

more conditions to test if and else and more if conditions.

I think we have covered enough theory and need to take on a real-life

example. We will fetch data from www.sectorspdr.com/sectorspdr/.

�Reading Data from a CSV File
Sectorspdr.com provides live data on S&P 500 companies split by

industries. Each sector represents an ETF (exchange-traded fund).

No worries if you are not into finance. We are not going too much into

technicalities here. All we need is a relevant data to read as a DataFrame.

We would need to clean the data and analyze it. The reason I have

chosen the Sectorspdr.com site is because it serves data as a CSV

(Comma- Separated Values) file that can be readed from online without

downloading it first.

Chapter 3 Data Analysis with Pandas

http://www.sectorspdr.com/sectorspdr/
http://sectorspdr.com
http://sectorspdr.com

125

We will grab a CSV file for XLF – ETF that tracks the S&P Financial

Sector Index. You can get data here: www.sectorspdr.com/sectorspdr/

sector/xlf/index. In case Sectorspdr.com changes something on the

site or you would want to follow my example precisely, I’ve uploaded the

data I’ll be using here to my server. I have downloaded the CSV file from

Sectorspdr.com, and you can find it here: https://bit.ly/bookcsvxlf.

In Figure 3-36, you can see two green buttons to download the data

in a CSV or Excel format. On the page we have all financial companies

included in the XLF fund and their weightings with in the index. We will

read this information from the site and analyze it. One option would be to

download the data by clicking a green button to your computer and then

open it as a DataFrame with the Pandas function read_csv(). Pandas can

read different formats of data. We will talk more about gathering data in

the next chapter. The most popular formats are CSV and xlsx. The main

advantage of read_csv() and read_excel() functions is they return a

DataFrame. If you check the description of the read_csv() function with

help(pd.read_csv), you’ll see that you can open a CSV file right from the

cloud without downloading the file first. To open it right from a server, we

can copy the URL (Uniform Resource Locator) and pass it directly into

pd.read_csv().

Chapter 3 Data Analysis with Pandas

http://www.sectorspdr.com/sectorspdr/sector/xlf/index
http://www.sectorspdr.com/sectorspdr/sector/xlf/index
http://sectorspdr.com
http://sectorspdr.com
https://bit.ly/bookcsvxlf

126

For this exercise, we would need to launch a new Jupyter file and

import pandas in the first cell:

 import pandas as pd

There are two options how to get the information from the site: the

first is to copy the URL from the website by clicking the right button on the

mouse and selecting “Copy Link Address”. Using the first option, you’ll get

the most recent data from Sectorspdr.com. The second option would be to

use my link of the previously downloaded file to my server. These are two

examples of how you can do it:

url = "https://www.sectorspdr.com/sectorspdr/IDCO.Client.Spdrs.

Index/Export/ExportCsv?symbol=xlf"

file = pd.read_csv(url, skiprows=1)

Figure 3-36.  Sectorspdr website with options to download data

Chapter 3 Data Analysis with Pandas

http://sectorspdr.com

127

or

url = "https://bit.ly/bookcsvxlf"

file = pd.read_csv(url, skiprows=1)

In both instances, you should see the DataFrame like in Figure 3-37.

The skiprows keyword argument skips the first row in the original

file. Sometimes, files have time stamps or titles that we do not need for

analysis. In the xlf.csv file, the first row was a time stamp, and it was

interfering with the DataFrame format. You can remove skiprows=1 and

rerun the cell to see how the DataFrame would look like without skiprows.

On line 3 in Figure 3-37, I use the method head(). Most of the time, the

data is too big to fit on the screen, and Pandas cannot render the whole

data set. The methods head() and tail() would show the first five rows

or last five rows, respectively. If you want to see more rows, you can pass a

number of rows as an argument into head() or tail(). To examine 20 first

rows, we can

 file.head(20)

Every time I deal with a new data set, I start with the DataFrame

method info():

 file.info()

Figure 3-37.  Reading a CSV file from an online location

Chapter 3 Data Analysis with Pandas

128

The method info() returns all information about the file object

(Figure 3-38). First of all, we see that the DataFrame has 65 rows. It takes

4.7 KB of memory. But more importantly, the info() method provides us

with the data type of values in each column. Only three columns – Last,

Change, and Unnamed: 8 – hold numeric values. All other columns have

an object as a data type. An Object dtype means a nonnumeric data

type, mostly strings. It would not be possible to use math operations on

the "Index Weight" column or "Volume" column because they contain

strings. We will need to convert the values to floats if we plan to run any

calculations on those columns.

Before we get to data analysis, we need to clean the data set a bit.

There is a column "Unnamed: 8" with NaN. NaN stands for not a number

and means that there is no value. The column with no values is completely

useless to us. We will delete it with a method drop():

file.drop("Unnamed: 8", axis=1, inplace=True)

Figure 3-38.  The method info() provides information on a
DataFrame

Chapter 3 Data Analysis with Pandas

129

As I warned you earlier, place the drop() statement into a separate cell

and run it once only. The column "Unnamed: 8" is gone after we dropped

it (Figure 3-39).

I will show you how to convert a data type of a column to numeric

values. Suppose we want to sum up all values in the "Index Weight"

column and check if we get 100%. The method info() indicated that the

values are strings. Our job is to convert strings to floats. What could be

easier you might think for a moment? However, before we get to that part,

we would need to get rid of the % sign. Otherwise, we would get an error

message because special characters cannot be converted to numeric

values. Let’s slice the column and run the function dir on it to see what is

built into that Series. We will have to use a dictionary notation due to an

empty space in the name of the column:

 dir(file["Index Weight"])

If you scroll through all attributes, you will find str, a module that

contains string methods. We can see all of them if we include str into the

dir() function:

 dir(file["Index Weight"].str)

Figure 3-39.  Deleted Unnamed: 8 column from the DataFrame

Chapter 3 Data Analysis with Pandas

130

You should see familiar method names we have seen in a string

object in Python. Although the names of methods match Python string

methods, all of them were designed for a one-dimensional Series. The

implementation of these methods is different from the regular Python

string methods. These methods were designed to be applied to a whole

Series, not to a string value one by one.

The "Index Weight" column contains numbers with the % sign. We

need to remove all % signs. That sounds like an iteration through the

column. If we dealt with a list, we would use a for loop and one by one

remove % with the string method strip(). With the str.strip() method,

there is no need to iterate because it comes from the Series object itself.

I want to make it clear strip() and str.strip() will perform the same

job, but the first one would do one at a time and the other one through the

Series. To remove all % signs before we convert values to a numeric data

type, we will do

 file["Index Weight"].str.strip("%")

str.strip() clears % off all values (Figure 3-40).

We are halfway there; now we need to convert string values to a

numeric data type. There are a couple of options to convert one data type

Figure 3-40.  The Series method strstrip removes % signs from all
values

Chapter 3 Data Analysis with Pandas

131

into another. Here, we can apply the Pandas function pd.to_numeric() to

all values in the Series like this:

file["Index Weight"].str.strip("%").apply(pd.to_numeric)

or we can use the Series method astype() and pass a float data type

as an argument:

file["Index Weight"].str.strip("%").astype(float)

It is a personal preference how to convert strings to the floats in

Pandas; the outcome will be the same. We need to store the results, and I’ll

assign that statement to a new column name "IW":

file["IW"] = file["Index Weight"].str.strip("%").astype(float)

Although visually numbers are the same in the columns Index Weight

and IW, on the latter one we can perform math calculations and filtering

(Figure 3-41).

Figure 3-41.  Converting strings from the Index Weight column to
numeric values and saving the result in the IW column

Chapter 3 Data Analysis with Pandas

132

The aggregation method max() will get the sum of all values in the

column:

 file.IW.sum()

min() and max() methods will get the smallest value from the Series

and the largest one:

 file.IW.min()

 file.IW.max()

We can fetch the companies with smallest and largest share values in

the S&P 500 financial index XLF from the DataFrame by filtering

file[file.IW == file.IW.min()]

file[file.IW == file.IW.max()]

Apparently, Unum Group has the smallest share, and Berkshire

Hathaway is the largest holding in the XLF index (Figure 3-42).

Table 3-1.  Aggregation methods in Pandas

Method Definition

sum( ) Compute sum of values

mean( ) Compute mean of values

count( ) Compute count of rows

std( ) Compute standard deviation

var( ) Compute variance of values

min( ) Compute min of group value

max( ) Compute max of group values

Chapter 3 Data Analysis with Pandas

133

One other method worth noting in the str module is contains().

The contains() method helps to search for substrings within the text.

To illustrate, we will do a simple task. The majority of companies in the

DataFrame have either Group or Corp words in their company names.

Suppose our goal is to compare what would prevail in the XLF index,

Group or Corp. To solve this task, we would need to filter the "Company

Name" column first:

 file["Company Name"].str.contains("Group")

and

 file["Company Name"].str.contains("Corp")

These statements return True or False. As we did it before, we can

apply them to the whole file object and then use the method count():

file[file["Company Name"].str.contains("Group")].count()

file[file["Company Name"].str.contains("Corp")].count()

Figure 3-42.  Filtering companies with smallest and largest shares in
the index

Chapter 3 Data Analysis with Pandas

134

The method count() adds up the number of rows in each column with

the filtered condition. We can apply that filter not to the whole DataFrame

but rather to one column Symbol:

file["Symbol"][file["Company Name"].str.contains("Group")].

count()

file["Symbol"][file["Company Name"].str.contains("Corp")].

count()

Apparently, financial companies prefer to use the Corp abbreviation in

the name than Group as our analysis shows in Figure 3-43.

The method contains() saves a lot of time and iteration. Using the toll

bar | sign, we can replace the or operator and search for both Corp and

Group instances at the same time:

file["Symbol"][file["Company Name"].str.

contains("Group|Corp")].count()

This statement will get us 27, the number of companies with Corp and

Group words in the Company Name column.

All data sets require some sort of cleaning. The conversion of values to

a numeric data type is relatively easy. Nonetheless, there are cases when

you would need to compile a function to get the desired format of data.

The column "Value" contains the number of shares that changed

hands for each stock in the index. If our goal is to know what the total

turnover of all shares was in the index, we would need to convert the

Figure 3-43.  Filtering “Company Name” column by “Group” and
“Corp” words

Chapter 3 Data Analysis with Pandas

135

values in that column to a numeric type and use the sum method at the

end. One obstacle is stopping from using the approach we did before on

the "Index Weight" column. Some of the values are in thousands and

have K at the end, and others are in millions and contain M. It would not be

possible to just strip those letters and add up the numbers. This is a perfect

case for lambda. Before we get to the lambda solution, I want to resolve that

issue with a function.

We will define a function with a self-explanatory name str_to_num to

take a string as an argument and return a number. Within the function,

we will have if and else conditions. If the incoming string contains K, we

would get rid of the letter, convert it to a numeric value, and multiply by a

thousand. Otherwise, we will remove M and multiply it by a million.

 def str_to_num(value):

 if "K" in value:

 value = value.strip("K")

 number = float(value)

 number = number * 1000

 else:

 value = value.strip("M")

 number = float(value)

 number = number * 1000000

 return number

When I write my code, I always test every step of it. To make sure the

function works, I’ll invoke it with the first value from the Volume column:

 str_to_num("5.55 M")

The function returns 5550000.0 (Figure 3-44).

Chapter 3 Data Analysis with Pandas

136

The conversion of all values in the "Volume" column would require

the method apply to loop through all rows and put into use the function

str_to_num. The results will be saved in a new column under the

"Vol_function" name:

 file["Vol_function"] = file["Volume"].apply(str_to_num)

The same conversion operation could be achieved with lambda. To

compare results of the conversion, I’ll save the results received from

lambda under "Vol_lambda". The lambda expression will have if and else

conditions and follow all the steps we made in the str_to_num function.

I specifically broke down all the steps in the str_to_num function in

Figure 3-44 so we can implement them in lambda step by step. First, we

define value as an argument in lambda and then write the first part of the

expression:

 lambda value : float(value.strip("K"))*1000 if "K" in value

The lambda expression is mimicking the function. The order of

operations is slightly different because we need to nest the functions.

Before we multiply a number with 1000, we need to strip K. Of course, if K is

the incoming string.

Figure 3-44.  Testing the function str_to_num()

Chapter 3 Data Analysis with Pandas

137

The second part of lambda’s expression is conceptually the same. We

do not need to check for M since the else condition means anything else

besides K. Whatever is left after we lose M is converted to a float type and

multiplied by 1,000,000:

 else float(value.strip("M"))*1000000

The final lambda expression would be passed into the apply() method

instead of the str_to_num function like this:

file["Vol_lambda"] = file["Volume"].apply(lambda value :

float(value.strip("K"))*1000 if "K" in value else float(value.

strip("M"))*1000000)

These two approaches to clean data and convert values to numeric

types yield the same results. To prove that, I’ll compare the sums of all

values in Vol_function and Vol_lambda columns (Figure 3-45).

Which approach to use is up to you. The function would be my choice

if I had to do something more sophisticated than if and else conditions.

Lambda is a great choice to solve something on the fly. Another example

illustrates that.

Figure 3-45.  Two methods to convert the column Volume values to a
numeric type

Chapter 3 Data Analysis with Pandas

138

The "52 Week Range" column provides highest and lowest prices

during the year. Suppose we need to get the difference between those

numbers. Each value in the column comes as a string. I would split the

string into two values and convert them to a numeric type. The results will

be saved in two new columns "High" and "Low". Finally, I would get the

difference by subtracting "Low" values from "High" values.

Beforehand we need to slice the column:

 file["52 Week Range"]

The Series we have got as a result of slicing contains strings, and we

can use one of str methods on it. Each value has a dash between highest

and lowest prices. In the previous chapter, we used the split() method to

separate strings by empty spaces; now we will use "-" as a separator:

 file["52 Week Range"].str.split("-")

As a result of the operation, all values in the Series represent a Python

list with two strings. We need to grab the first and second strings and to

convert them into floats. It makes me think of indexing. The index location

of the first value is 0, and the second value has an index location of 1.

However, indexing would have to be performed on each list in the Series.

That could be achieved with the method apply() and lambda():

file["Low"] = file["52 Week Range"].str.split("-").apply(

lambda value : float(value[0]))

file["High"] = file["52 Week Range"].str.split("-").apply(

lambda value : float(value[1]))

Chapter 3 Data Analysis with Pandas

139

Two columns "Low" and "High" were added to the DataFrame with

numeric values (Figure 3-46). Finally, we can calculate the difference and

subtract "Low" column values from "High" column values. The result will

be saved under the new column name "Diff":

file["Diff"] = file["High"] – file["Low"]

The preceding examples proved that lambda() is an irreplicable tool

in wrangling data. My advice would be to repeat the exercises again to fully

comprehend and learn the syntax. Additionally, it would be a good idea to

grab another data set and use the apply() method and lambda on a new data.

�Combining Data Sets
There are two options on how you can combine data sets. The first one is

a simple concatenation of two or more DataFrames together. The second

option is merging data sets based on common values.

Figure 3-46.  Splitting 52 Week Range column values into Low and
High columns

Chapter 3 Data Analysis with Pandas

140

�Concatenating Data Sets
We will start with concatenation. As always, we will begin a new exercise in

a new file. Do not forget to import Pandas on the top of the file:

 import pandas as pd

We will create two data sets to join. Each data set will contain

information about wine. Data set one will have columns "Country" and

"Price". This time, we will create a DataFrame out of two lists:

country_list = ["US", "Italy", "France", "Spain"]

price_list = [13.99, 9.99, 12.99, 11.99]

These Python lists have to be added to each other with a built-in

function zip():

 data_one = zip(country_list, price_list)

The function zip() returns an object that we can pass into the

pd.DataFrame() function. Also, we need to provide column names for

the DataFrame:

ds_one = pd.DataFrame(data=data_one, columns=["Country","Price"])

Data set two will have different columns – "Region" and "Variety":

region_list = ["Rioja", "Bordeaux", "Sicilia", "Napa"]

variety_list = ["Red Blend", "Merlot", "Primitivo", "Chardonnay"]

The function zip() always returns an object, and we will pass the

returned object after zipping two Python lists together into the

pd.DataFrame() function:

data_two = zip(region_list, variety_list)

ds_two = pd.DataFrame(data=data_two, columns=["Region",

"Variety"])

Chapter 3 Data Analysis with Pandas

141

Now we have two DataFrames to concatenate (Figure 3-47).

Pandas’ function concat() joins DataFrames. The function concat()

could concatenate more than two objects. If you want to join three or more

objects, you would have to pass DataFrames in the form of a Python list.

Before we proceed to concatenation, we need to decide how we would

attach one to the other one vertically or horizontally. By default, the

keyword argument axis in the concat() function is set to 0 or index. That

means if we pass our data sets into concat(), it will put one on top of the

other one (Figure 3-48):

new_ds = pd.concat([ds_one, ds_two])

Figure 3-47.  Creating two DataFrames from the lists

Chapter 3 Data Analysis with Pandas

142

The new DataFrame object new_ds created as a result of concatenation

turned up with NaNs, not a number, and overlapping values in the index.

We do not have corresponding values and NaNs in the rows reflect that.

I will explain how to deal with missing values later.

Duplicates in the index would be a problem going forward for the new

data set. The concat() function comes with the ignore_index keyword,

which is by default set to False. If you were sure that the new data set

would have overlapping values, you could set ignore_index=True. This

option would replace old indices with a brand-new index:

pd.concat([ds_one, ds_two],ignore_index=True)

I personally prefer another DataFrame method reset_index(). In the

previous case, you lose the old index forever. With reset_index(), you

have more flexibility and can save the original index with duplicates as a

column. Run the help() function on the new_ds object, and you see the

keyword argument drop:

 help(new_ds.reset_index)

Figure 3-48.  The function concat() by default concatenates
DataFrames vertically

Chapter 3 Data Analysis with Pandas

143

As you probably noticed by now, I use the help() function every

time on every method or function. The Pandas libriary is being updated

on a regular basis. Even if you know how to use a method or a function,

it would be smart to check if anything has changed, comparing to the

previous version. Besides, some methods take so many arguments that it

is impossible to remember all of the options. The function help() will save

you a lot of time googling.

The argument drop in the reset_index() method is set to the default

value False. If we apply reset_index() as it is to a new_ds object, we will

get a brand-new index, and the original one would become a column:

 new_ds.reset_index(inplace=True)

The DataFrame new_ds was appended with a column index, and the

new index contains unique values only (Figure 3-49). In my opinion, the

drop keyword argument in the reset_index() feature gives more flexibility

especially if you work with a sensitive data that cannot be obtained again.

Figure 3-49.  Resetting the index on a DataFrame with the drop
argument set to False

Chapter 3 Data Analysis with Pandas

144

If we changed the drop argument to True in the reset_index()

method as with ignore_index, we would have lost the original index

forever. Now with old index values in the column, we could always go back

to them by resetting the index if needed:

 new_ds.index = new_ds["index"]

Do not confuse a DataFrame attribute index with the column "index".

Another way to concatenate ds_one and ds_two DataFrames would

be along the columns. We need to switch the axis argument to 1 or

"columns":

new_ds = pd.concat([ds_one, ds_two],axis=1)

This time, the new_ds DataFrame came with four columns and four

rows (Figure 3-50).

The wine lovers who are reading this book probably noticed the

mismatch between countries and wine-growing regions. Keep in mind that

the function concat() just joins the data sets. If we need to match data, the

best option would be the function merge().

Figure 3-50.  Concatenating two DataFrames with the axis argument
set to columns

Chapter 3 Data Analysis with Pandas

145

�Merging DataFrames
The Pandas function merge() combines DataFrames based on common

values in the columns. For starters, we need to have columns with

the same values. Let’s add a new "Origin" column to ds_two with the

following countries:

ds_two["Origin"] = ["Spain", "France", "Italy", "US"]

Now two DataFrames ds_one and ds_two have the column with the

same values. Although in the ds_one DataFrame the column is called

"Country" and in ds_two "Origin", we can merge them:

merged_ds = pd.merge(ds_one, ds_two,left_on="Country", right_

on="Origin")

We have merged two DataFrames by matching values in the "Country"

and "Origin" columns (Figure 3-51).

By default, the function merge() looks for the same column name. If

we had the "Country" column in both data sets, then it would merge them

by the values of these columns. In that case, we would not need to provide

left_on and right_on arguments using the merge() function.

Figure 3-51.  The function merge() matches values in Country and
Origin columns

Chapter 3 Data Analysis with Pandas

146

I prefer to use left_on and right_on keyword arguments in the

merge() function because you can be more specific. We definitely state

that in ds_one we want to use the "Country" column to match values. The

left_on argument is referring to the ds_one data set because position wise

it is on the left in the function merge(). Logically, right_on is referring to

a column in ds_two because it is on the right side of data sets’ arguments.

Also, if we had a couple of columns named the same in data sets, merge()

would pick the first common column name to match the values. That

might not be our plan, so I choose to be specific with columns.

Data sets can be merged by an index. Pandas gives us many options to

solve the same with different functions and methods. We can still use the

merge() function with keyword arguments left_index and right_index

by an index. But there is a method join() that is initially merging data sets

by matching values in the index. To show the join() method in action, we

will reset the index in ds_one to the "Country" column and in ds_two to

the "Origin" column:

ds_one.index = ds_one["Country"]

ds_two.index = ds_two["Origin"]

At the moment, two DataFrames have an index with the same values,

and we can merge them with the help of the method join() which by

default will match index values:

joined_ds = ds_one.join(ds_two)

The joined_ds DataFrame inherited the index from ds_one and

matched it with indices of ds_two (Figure 3-52).

Chapter 3 Data Analysis with Pandas

147

�Groupby
Groupby is one more essential tool of Pandas I want to discuss before we

dive into a sea of practical challenges. The method groupby() is similar to

sorting by functionality. If you have used relational databases, you should

be familiar with the groupby functionality.

The groupby() method gives an option to regroup a DataFrame based

on common values in one or more columns. It sorts values and uses them

as new keys. The groupby() method always returns an object. Most of the

time, it is used with aggregation methods as count, sum, and mean. It will

make more sense if we use groupby in action.

We will take a data set with S&P 500 companies. I’ll open the CSV file

from an online location, https://bit.ly/booksp500, in a new file.

The S&P 500 index consists of 500 largest companies in the United

States from 11 industries. After we read the data from the CSV file located

online, the DataFrame we get should look like the one in Figure 3-53.

Figure 3-52.  Merging two DataFrames with the method join() by
matching values in an index

Chapter 3 Data Analysis with Pandas

https://bit.ly/booksp500

148

The file DataFrame has three columns. The "Sector" column holds

the industry name of a company.

Our goal is to sort all companies in the index by an industry. One

option would be to filter by a sector and then count the number of rows.

For example, if we wanted to know how many companies from a health-

care sector are included in S&P 500, we would do

file[file.Sector.str.contains("Health Care")].count()

The method groupby() allows us to do the same but for all sectors

within the "Sector" column at the same time. The column name is passed

as an argument into the groupby() method in square brackets. Square

brackets will allow us to pass more than one column into the method.

Groupby() splits the DataFrame and reassembles it using values from the

"Sector" column as keys or an index:

sector_data = file.groupby(["Sector"]).count()

Figure 3-53.  DataFrame with S&P 500 companies from a CSV file

Chapter 3 Data Analysis with Pandas

149

Subsequently, the sector_data object has industries as an index. The

method count() returned the number of all companies for each index

value (Figure 3-54).

As you can see, sector_data is stored as a new DataFrame. That gives

us flexibility. We can reset the index, and Sector will be a column. On the

other hand, we can plot this data.

Visualization is an important part of data analysis. One of the

prominent visualization libraries in Python is Matplotlib. Some of the

features of Matplotlib are built-in into a DataFrame. Built-in Matplotlib

methods are stored in the plot module. You can see all available options

by running the dir() function on the DataFrame:

 dir(sector_data.plot)

Figure 3-54.  Grouping by values from the Sector column

Chapter 3 Data Analysis with Pandas

150

The method pie() will help us to plot the number of companies in

each S&P 500 sector (Figure 3-55). The column "Name" will be used as the

values for a pie chart:

sector_data.plot.pie(y="Name", figsize(10,10))

�Summary
I think we have armed up with Python and Pandas enough to take on

real-life challenges. We know how to initialize a DataFrame and read data

from a CSV file. Filtering and lambda logical statements will help us to take

some actions on if and else conditions. In the next chapter, we will use

the methods we have learned to gather and manipulate data. In addition to

Pandas, we will discover more libraries specifically designed to work with

different data sources. Our goal is to gather information and analyze it.

Figure 3-55.  The sector_data plot

Chapter 3 Data Analysis with Pandas

151© Art Yudin 2021
A. Yudin, Basic Python for Data Management, Finance, and Marketing,
https://doi.org/10.1007/978-1-4842-7189-6_4

CHAPTER 4

Gathering Data
with Python
Information is an essential piece of data analysis. It comes from diverse

sources in different formats. Some information requires a lot of effort to

obtain; other data comes clean and structured. Python is a great tool to

gather and manipulate any data in any format.

Programming has automated the tedious manual process of copying

and pasting information from online sources to spreadsheets. In this

chapter, we will discuss various approaches to gathering data. We will

start with web scraping, the process of crawling websites and grabbing

information. If information is out there and intended for public use, why

not utilize it? Of course, all gathered data should be used solely in legal

intentions.

Also, we will work with APIs. All big respected companies provide

APIs to their services. Google and Twitter tech giants even have Python

libraries to make developers’ life easier. Some companies would charge

for information; others would give it for free unless you want to make a

commercial use out of it.

Numerous libraries to obtain data from online sources are one of the

reasons why Python is so popular.

https://doi.org/10.1007/978-1-4842-7189-6_4#DOI

152

�Web Scraping
Web scraping is a method of extracting data from websites. The process

always starts with a first step – sending a request to a server and receiving

the data as a response.

Usually, we use a browser to read the information from the Web. In

the computer world, a browser is called a client. A client sends a request

for information to a server. You enter a URL (Uniform Resource Locator)

address on the top of the browser page, and it sends a message to a server

requesting for information. Based on that request, the server would send

back a message with data. The data comes as HTML (Hypertext Markup

Language). A web browser interprets that information, and we see images

and text with styles and colors.

When we scrape websites, Python acts as a client and sends a request

to a server. Python does not understand HTML, and received data has to

be converted into a string, the data type Python can naturally work with.

There are several Python packages to communicate with a server. In

this book, we will use a very popular Requests library. A Requests method

sends a request message to a server and handles the response. There is no

need to download a Requests package because it is included in Anaconda.

For further examples, you would need a Google Chrome browser. Chrome

comes with developer tools. All other browsers would require additional

downloads to get developer tools. If you do not have a Chrome browser

installed, download it from www.google.com/chrome/. Assuming that most of

us already have Chrome installed, make sure you have a current version.

Before we get to the scraping part, I would like to explain the nuts and

bolts of web scraping on the outdated site: http://shakespeare.mit.edu/

romeo_juliet/romeo_juliet.1.0.html.

Open the link in a Chrome browser, and you’ll see the web page

looking like from the 1990s. No images or animation on the site, just plain

text. That is exactly what we need to understand the main steps in the web

scraping process.

Chapter 4 Gathering Data with Python

http://www.google.com/chrome/
http://shakespeare.mit.edu/romeo_juliet/romeo_juliet.1.0.html
http://shakespeare.mit.edu/romeo_juliet/romeo_juliet.1.0.html

153

First things first, we need to send a request to the server and fetch the

website. This is where Python’s Requests library comes in handy.

The Requests library has the method get() to request information from a

server. If a request is successful, the server sends the information back with a

success code 200. Otherwise, the server would send a message with different

error codes like 403 or 404. You have probably seen a 404 error message before

when the browser returns “page not found.” You do not need to know all the

codes to scrape data. Just keep in mind that code 200 means everything is

OK. Any other code number would mean that something went wrong.

Getting along with the “Romeo and Juliet” page in a Jupyter cell,

import the Requests library:

 import requests

Sending a request to the server requires the method get() with the

URL you are trying to fetch, like this:

page = requests.get("http://shakespeare.mit.edu/romeo_juliet/

romeo_juliet.1.0.html")

The method get() returned response 200, meaning that data was

received (Figure 4-1).

The variable page holds a Python object. The returned Python object

can be parsed as a string that would form a structure looking similar to an

HTML markup. The most popular Python library to work with HTML is

BeautifulSoup. The library name was inspired by the title of the poem in

the Alice in Wonderland novel.

Figure 4-1.  Sending a request and receiving a response with the
requests.get() method

Chapter 4 Gathering Data with Python

154

BeautifulSoup recreates all data received from a server as an HTML

markup. Make no mistake, it will not be HTML, rather a string object looking

like an HTML structure. BeautifulSoup also comes as a part of Anaconda,

and all we have to do is import it along with Requests. Get back to the upper

cell and import it right after Requests. Do not forget to rerun the cell.

from bs4 import BeautifulSoup

bs4 is the short name of the package, and BeautifulSoup is the

function we will use to generate an object that would look like an HTML

structure. Pass the content from a server as page.content into the function

and parse it as HTML:

data = BeautifulSoup(page.content, "html.parser")

Print data and you will see an object that looks like HTML code

(Figure 4-2).

Figure 4-2.  BeautifulSoup parsed data from a server as an HTML
markup

Chapter 4 Gathering Data with Python

155

You do not need to be proficient in HTML to scrape the Web. Yet I’ll

give you a crash course. Every element rendered on a web page has to

be wrapped in <> tags. In Figure 4-2 closer to the bottom, you can find

<h3>PROLOGUE</h3>. h means heading and 3 is a font size. Flip back to the

web browser, and you see the bold PROLOGUE header. Navigate to PROLOGUE

with the mouse and highlight it. Then click the right button. I hope you use

a Chrome browser as we agreed. In the context menu, you should see the

Inspect option. Click Inspect and it will reveal how the web page looks

under the hood, an HTML markup (Figure 4-3).

You can see that in Figures 4-2 and 4-3, <h3>PROLOGUE</h3> looks

the same. That is because BeautifulSoup totally reconstructed the HTML

markup structure of the web page. Each <> tag is an attribute of the

BeautifulSoup object we saved with the data variable. That means we can

grab elements from the page object by tags. Try to run data.h3 in a Jupyter

cell, and you’ll see a PROLOGUE text.

There are two major functions in BeautifulSoup to fetch elements out

of the HTML structure – find() and find_all(). The difference is simple;

find() looks for one element, and find_all() will fetch all items that

Figure 4-3.  Inspecting the HTML code of a web page in Chrome
Developer Tools

Chapter 4 Gathering Data with Python

156

fit the criteria. Run help on find() and find_all() to see all available

arguments they accept:

 help(data.find)

 help(data.find_all)

Methods find() and find_all() take an HTML tag as an argument

to find an element on a page. Other element attributes such as a class or a

color could be used to precisely reference the item on a web page.

For example, run the statement data.find(“h3”). The method find() will

look for an element wrapped in <h3> tags. The result will be a PROLOGUE

text. The method find() handles one element at a time; it would get the first

one if there were many items with the same tags.

Now, highlight all lines of the poem on the web page in a browser, click

the right button, and inspect selected lines. You can see that all of the lines

in the Chrome Developer Tools window are surrounded with <a> tags.

The method find_all() with <a> tags as a first argument will get a list of all

those lines. Remember find_all always returns a list even if it does not find

anything.

alist = data.find_all("a")

In Figure 4-4, you can see that we have fetched all the lines wrapped in

<a> tags.

Chapter 4 Gathering Data with Python

157

The fetched lines in the list have <a> tags and href (Hypertext

REFerence). We need to remove tags and other attributes off the text. In the

BeautifulSoup library, there is a method get_text() to extract strings out of

<> tags. We would need to apply it to each item in alist to get clean text.

 for item in alist:

 print(item.get_text())

What if we need to grab a particular line from the web page? For

instance, “From forth the fatal loins of these two foes” text from the whole

poem. The first step would be to highlight the text and inspect it in HTML

code (Figure 4-5).

Figure 4-4.  Text elements with HTML <a> tags

Chapter 4 Gathering Data with Python

158

The second step would be to investigate the element in Chrome

Developer Tools, right side in Figure 4-5, and find the hooks we can use

to fetch the text. The text "From forth the fatal loins of these two

foes" is surrounded by <a> tags and has an attribute name=5. Again, we

do not need to know what name=5 means.1 This is some attribute used

for something by a developer who built the website. All we care is a

combination that would be unique to the text we want to get. If we used

just a tag in find(), then it would get us the first element wrapped in the

<a> tags. Fortunately, name=5 is unique to the line of the text we need.

Using the find() method, we will pass the <a> tag as a first argument,

because "From forth the fatal loins of these two foes" begins

with it, and as a second argument, we will pass name=5. Attributes should

be passed in the form of a dictionary like this:

 element = data.find("a", {"name":5})

1 �If you are curious what all these HTML tags mean, you’ll find all of them here:
https://eastmanreference.com/complete-list-of-html-tags

Figure 4-5.  Locating and inspecting a line from the text in Chrome

Figure 4-6.  Getting the line of the text by using the find() method and
HTML attributes

Chapter 4 Gathering Data with Python

https://eastmanreference.com/complete-list-of-html-tags

159

We have fetched the text and have cleaned it with the get_text()

method (Figure 4-6).

As you have seen, the whole web scraping process in a nutshell

consists of the following steps:

	 1.	 Get the data from a server with the Requests method

get().

	 2.	 Pass the received data into the BeautifulSoup()

function; it parses data as an object looking like an

HTML web structure.

	 3.	 In a browser, inspect the element you need to grab.

	 4.	 Using find() or find_all(), fetch the text with

hooks like tags and attributes.

Now that we have learned the essential steps of web scraping, we

can take on a popular website investing.com. Investing.com provides

important news that every trader needs to know before the trading day

starts. The URL to the news page is www.investing.com/news/.

If you open that page in a browser, you can see news titles and short

teasers. Click a title and it will take you to the full article. We will start

collecting titles and hrefs (Hypertext REFerence) so we could access the

full article later. Href is just a URL that leads somewhere. They are also

called web links.

First things first, we need to fetch the website. Start with imports:

 import requests

 from bs4 import BeautifulSoup

Bear in mind that most of the websites do not want to provide

information to the bots. The requests.get() method sends a message

to a server, and the message kind of saying "Hi, I am Python", and the

website does not want to respondse to Python bot. To go around it, we’ll

Chapter 4 Gathering Data with Python

http://investing.com
http://www.investing.com/news/

160

make our request for information look like it comes from a web browser.

That is quite simple; all we have to do is to provide different headers in a

message to a server:

headers={'User-agent' : 'Mozilla/5.0'}

Headers are passed into the requests.get() method as a keyword

argument right after the URL. Mozilla/5.0 is a common browser token.

When a server receives the message with a token in the header, it would

accept it as a regular browser call for information. You can try to run the

following statement with and without headers:

page = requests.get("https://www.investing.com/news/",

headers={'User-agent':'Mozilla/5.0'})

With headers, the requests.get() method returns response 200

(Figure 4-7).

The successful response can be parsed as a BeautifulSoup object:

data = BeautifulSoup(page.content, "html.parser")

Print data and see what’s in there. A bit messy at first, there is a lot

of JavaScript functions, but <!DOCTYPE HTML> clearly states that we

deal with HTML (Figure 4-8). Keep in mind investing.com is a more

sophisticated website than the one we have dealt before.

Figure 4-7.  Successful response from a server with the requests library

Chapter 4 Gathering Data with Python

http://investing.com

161

Flip back to the www.investing.com/news/ page in a browser. Choose

any title you like, navigate the mouse on it, and click the right button. I

have chosen "Oil Inventories Rose by 4M Barrels Last Week: API".

Click Inspect and it will reveal how the web page looks under the hood

(Figure 4-9).

Take a closer look at the highlighted HTML code, and you can see

exactly the same title you have clicked. In my case, in Figure 4-9 it is

"Oil Inventories Rose by 4M Barrels Last Week: API". This text is

wrapped into <a> tags. An <a> tag means a web link, and right after it,

we see the class="title" attribute. That looks like a unique combination.

Our goal is to grab all titles and collect hrefs, which are also included into

<a> tags. find_all() would be the right choice for collecting all titles on

the web page. As a first argument, we will pass the <a> tag, and the second

argument will be class="title". Also, we will need to include href=True

to collect hrefs:

titles = data.find_all("a", class="title", href=True)

Figure 4-8.  Data received from a server parsed with the
BeautifulSoup() function

Figure 4-9.  Inspecting a title with Chrome Developer Tools

Chapter 4 Gathering Data with Python

http://www.investing.com/news/

162

We have received all titles from the web page with hrefs (Figure 4-10).

The variable titles holds a list, and we can go through item by item to

get a clean text and extract href. Each title and corresponding href should

be packed together as another list. Then we can place all lists with titles

and hrefs into a one huge list. At the end of the day, we will have a list of

lists. We need a list of lists so later we can conveniently grab a title and href

and fetch the full article page. From that article or detail page, we will take

a text snippet.

I will create a new Python list clean_titles and append to it a cleaned

title and href packaged as a separate list under a variable small_list, like

this:

clean_titles = []

for item in titles:

 small_list = [item.get_text(), item["href"]]

 clean_titles.append(small_list)

The clean_titles list holds a bunch of small lists with a title and a

URL to the full article (Figure 4-11).

Figure 4-10.  The list of titles received with the find_all() method

Chapter 4 Gathering Data with Python

163

Before we hit the URL for each title, we need to understand the HTML

structure of a full article web page. Let’s investigate further; in the browser,

click any title and it should take you to a full article or, as web developers

call it, a detail view.

On the full article page (Figure 4-12), I am clicking the first paragraph

with the right mouse button and choosing the inspect option.

On the right part of my screen (Figure 4-12), I see that the whole article

is enclosed with <p> tags, paragraphs. If we want to get the full article,

we would need to use the find_all() method and use a <p> tag as an

argument.

Figure 4-11.  List of lists with titles and hrefs

Figure 4-12.  Inspecting a full article web page in Chrome Developer
Tools

Chapter 4 Gathering Data with Python

164

To get a paragraph of each article, we will create a small web crawler.

We already have URLs for all articles, and we will have to hit page by page

to grab a text snippet from each object. As we fetch a web page, we will

parse the data with the BeautifulSoup() function and apply the find_

all() method.

Using a for loop, we will iterate through the clean_titles list and

fetch each URL with requests.get() pretty much like we did before:

for item in clean_titles:

 url = item[1]

 �page = requests.get("https://www.investing.com{}".

format(url), headers={'User-agent':'Mozilla/5.0'})

 �print("now fetching", "https://www.investing.com{}".

format(url))

Each item in clean_titles represents a list, and we need to extract the

second element, URL, by indexing it item[1]. To fetch the article, we need

to recreate a full URL beginning with https://www.investing.com. In the

requests.get() method, I concatenate https://www.investing.com and

the rest of the URL from the clean_titles list. Do not forget the headers.

The last print statement is not necessary, but I like to see how it works and

make sure that I am getting a full URL (Figure 4-13).

Figure 4-13.  Calling a URL for each article

Chapter 4 Gathering Data with Python

https://www.investing.com
https://www.investing.com

165

In the scope of the for loop, we would need to use the

BeautifulSoup() function on every page object. We will save the HTML

structure of each article page under the variable name article. The

last step is to apply find_all() with a <p> tag to the article object. The

find_all() method returns a list, and we will save it under the

list_article name.

Here, I would like to stop for a minute and introduce a concept that

would save us some time going forward – list comprehension.

�List Comprehensions
A list comprehension is a Python syntax that makes your code run faster.

This is especially important when you deal with a huge amount of data. I

prefer to use a list comprehension in gathering information when you have

to scrape thousands of web pages.

Before we get to the list comprehension syntax, I would like you to

do a simple exercise. Suppose we have alist full of numbers. We want to

filter it and find all 5s. Then we would need to save all 5s in a new list. Let’s

name it blist. The solution would be

alist = [1,2,3,5,5,5,6,7,5,5]

blist = []

for number in alist:

 if number == 5:

 blist.append(number)

We iterate through the list in search of 5. If we find 5, we add it to blist

with a list method append(). The method append() is implemented in

Python as a module, and it takes some time to call it every time we get 5.

To make this code run faster, we can skip the append() method and rewrite

Chapter 4 Gathering Data with Python

166

the solution as a list comprehension. The same searching for 5s example

would look like this:

blist = [number for number in alist if number == 5]

The whole statement is wrapped in square brackets, and the result is

returned as a list. That is why we no longer need the append() method.

The outcome of a list comprehension statement is always a list type, and in

our case it is saved as blist. A list comprehension would be roughly twice

faster than using an append() method, and you could feel that on a list

with more than 10,000 elements.

The syntax of a simple list comprehension consists of three parts: the

for loop, filter, and expression. The filter is optional:

 [expression for loop filter]

If you compare the first solution with the one done as the list

comprehension, you will see that they are pretty much the same. The one

in square brackets starts with an expression. In our case, the expression is

a number itself, because we just want to keep a value if it is equal to 5. In

some other cases, you might want to do something else, maybe multiply

the number by 10 if the value is equal to 5. Then we use the same for

loop, where the number variable is defined. The filter is an if statement.

Sometimes you need it, sometimes not. In case an if statement is needed,

you place it right after the for loop.

Let’s consider another example; suppose we need to take all numbers

in the alist container and multiply them by 10. In that case, we do not

need a filter, and the list comprehension would look like this:

blist = [number * 10 for number in alist]

You need to remember that a list comprehension always returns a

list data structure. You save that list by assigning a list comprehension

statement to a variable.

Chapter 4 Gathering Data with Python

167

Let’s get back to our scraping example armed with a list

comprehension syntax. Our final goal is to write a title and article snippet

into a text file. To smooth the process, we will strip off <p> tags from all

items in the list_article using a list comprehension [p.get_text() for p in

list_article]. The result of this list comprehension would be a list of strings.

To concatenate all strings, from the list, we will use a string method join().

I have noticed that the first <p> tags on each full article contain “No results

matched your search”. Since we grabbed all <p> tags, we have that message

as a first item in list_article. We do not need it, and we will slice it off

starting with the second element in list_article[1:].

We will do the whole cleaning and concatenation operation at the

same time as

clean_article = " ".join([p.get_text() for p in list_

article[1:]).

clean_article will be a full article. At the end of the for loop, we will

append each article as a string to mega_list:

mega_list = []

for item in clean_titles:

 url = item[1]

 �page = requests.get("https://www.investing.com{}".

format(url), headers={'User-agent':'Mozilla/5.0'})

 �print("now fetching", "https://www.investing.com{}".

format(url))

 article = BeautifulSoup(page.content, "html.parser")

 list_article = article.find_all("p")

 �clean_article = " ".join([p.get_text() for p in list_

article])

 mega_list.append(clean_article)

In Figure 4-14, you can see the code in action and a small part of

mega_list in Figure 4-15.

Chapter 4 Gathering Data with Python

168

The final part is to create a report in a text format. We will use the

function zip() to combine clean_titles and mega_list lists:

final_list = list(zip(clean_titles, mega_list))

Before we write the data into a text file, we will format it a bit and print

just to make sure everything looks OK.

We can create a string template under a variable name TEMP:

TEMP = """

Title: {}

Snippet: {}

URL: {}

"""

Figure 4-14.  Gathering articles from investing.com

Figure 4-15.  Parsing and cleaning information for each article

Chapter 4 Gathering Data with Python

169

This template will format nicely a title of an article; a short snippet, no

longer than 300 letters from an article; and a URL in case we want to read

the full article.

We will pass all this information into TEMP from the final_list

container:

for item in final_list:

 title, url = item[0]

 url="https://www.investing.com{}".format(url)

 snippet = item[1][:300]

 print(TEMP.format(title, snippet, url))

The final_list list contains tuples with two lists. We are assigning two

variable names to the first list from a tuple:

title, url = item[0]

To have a fully clickable URL, we will add www.investing.com:

url = https://www.investing.com{}.format(url)

Then slice the first 300 characters out of the second list. You can

change the number based on how much of a snippet you want to see:

snippet = item[1][:300]

Finally, pass the variable into TEMP via the format() method

(Figure 4-16).

Chapter 4 Gathering Data with Python

http://www.investing.com

170

If it looks nice, we can write TEMP into a text file. For this task, we will

initialize a new report object with the function open():

report = open("report.txt", "w")

Finally, we will pass TEMP.format(title, snippet, url) into the write()

method:

for item in final_list:

 title, url = item[0]

 snippet = item[1][:300]

 print(TEMP.format(title, snippet, url))

 report.write(TEMP.format(title,snippet,url))

The final report.txt file should look like in Figure 4-17.

Figure 4-16.  Formatting the text into a readable format with
a template

Chapter 4 Gathering Data with Python

171

As you can see, the process of web scraping itself is not that

complicated. I would say it is more time-consuming. You need to spend

some time looking for the right tags and attributes to pull out an element.

Also, data cleaning takes some time. Keep in mind that websites get

maintained, and developers rename attributes or change the website

layout. If the developers of that site change a few things, the code will not

be working, and we will have to start the whole process from scratch.

�Web Scraping with Selenium
Modern websites heavily rely on JavaScript libraries that update

information without reloading a web page. I do not want to get into web

development because it is outside of the scope of the book. Simply put,

some elements on a web page are generated on the user side, and the

BeautifulSoup cannot pick them up. In those cases, we need to simulate a

web browser experience with Selenium. Initially, Selenium was developed

for web application testing purposes but quickly became a popular tool

for automation and gathering data. Selenium features allow to simulate

Figure 4-17.  The final output of the web scraping operation is stored
in a text file

Chapter 4 Gathering Data with Python

172

mouse and keyboard actions. You can write a script to flip over several

pages with mouse clicks and entering information in online forms on

web pages.

Unfortunately, Selenium does not come with Anaconda, and you need

to install it separately. Selenium is a third-party library, and to install it, we

need a package manager like PIP or Conda.

A Python package manager or PIP is a simple and reliable built-in aid

to find and install Python libraries. Although PIP is a standard feature in

the latest Python version, sometimes you need to launch it.

On Mac, you would need to search for a Terminal either in the search

prompt or Other apps in Launchpad. Please do not use the Terminal
window running Anaconda’s Kernel. Make sure in the Terminal you open

a brand-new window through a menu: Terminal ➤ Shell ➤ New Window.

In that new empty Terminal window, run the pip --version

command to check the PIP version on your machine:

 pip -- version

If for some reason it would get you an error message "pip command

not found", launch PIP with the following code:

sudo easy_install pip

The Sudo command will prompt you to enter a password for admin

installation rights on the computer and will launch PIP. If sudo

easy_install pip would not work, then open python.org/downloads

and install Python from the official Python downloads page. Then

repeat the sudo easy_install pip command again.

Windows users click the search prompt located in the left-bottom

corner and type the name CMD, command prompt. The CMD

abbreviation should get a command prompt window. To see whether you

have PIP working or would require the PIP installation, run the

pip -- version

Chapter 4 Gathering Data with Python

http://python.org/downloads

173

Figure 4-18.  Installation of Python and adding it to PATH on
Windows

command in a command prompt. If you get a response with a version

number, then you have PIP on your computer; otherwise, you would need

to download the PIP module.

In the case that you get the "pip command not found" message, go

to the official Python page (www.python.org/downloads) and download

the latest version of Python. As you start the installation process, on the

first screen mark the "Add Python 3.9 to PATH" option on the bottom

(Figure 4-18). After the installation process finished, close and reopen the

CMD prompt.

Try the pip -- version command one more time. If the problem

persists, download the get-pip.py2 file. Usually, I would recommend saving

the get-pip.py file to the Downloads folder. To install PIP from the get-pip.

2 https://bootstrap.pypa.io/get-pip.py

Chapter 4 Gathering Data with Python

http://www.python.org/downloads
https://bootstrap.pypa.io/get-pip.py

174

py file, you would need to open a new CMD window and navigate to the

Downloads directory with a CMD command cd, change directory:

cd Downloads

After you get into the Downloads directory, execute the get-pip.py file:

python get-pip.py

Now the pip -- version command should work, and you can install

Python libraries with the pip install <package> statement. In some

rare cases that the PIP command still raises an error message, refer to

the official Python documentation at https://packaging.python.org/

tutorials/installing-packages/.

Assuming PIP is in place, we are ready to install Python packages. To

add third-party libraries to Anaconda, I would recommend opening a

Terminal or command prompt directly from Anaconda Navigator.

Step 1. On the left-side menu in Anaconda Navigator, click

Environments and navigate to Base (root).

Step 2. Right next to Base (root) should be a play button.

Click that play button, and you will see a menu with Open Terminal as

the first option.

Step 3. Launch a Terminal window by clicking Open Terminal. Right

after that, a new Terminal window should pop up.

Step 4. In the Terminal window, run a PIP command to install

Selenium or any other library:

pip install selenium

Besides installing Selenium itself, we would need to download a

Chrome driver. Selenium can be used with any web browser. Due to its

popularity and built-in developer tools, in this example we will be using a

Chrome browser. Before downloading a driver, check what browser version

you have installed on your machine. You can find this information in the

Chapter 4 Gathering Data with Python

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/

175

About Google Chrome section in the Chrome settings. We are interested

in the first two digits of a long version number. Currently, I have the 87

Google Chrome version running on my Mac.

With this information in mind, find and download a driver for

your operational system from https://chromedriver.chromium.org/

downloads.

I would definitely recommend updating a Chrome browser if you can’t

find your Chrome browser version in the Current Releases section of the

https://chromedriver.chromium.org/downloads page. A driver comes

compressed as a zip file. Unzip it and save ChromeDriver to the same

directory where your Jupyter Notebook or Python file is. Make sure you

know where ChromeDriver is saved because you would need to provide

the full relative PATH to it.

�Introduction to Selenium
I would like to start the Selenium introduction with an amazon.com

scraping example. We will open any product page on amazon.com and

gather information about that product. Open a new Jupyter Notebook, and

after importing Selenium, get it connected to ChromeDriver:

from selenium.webdriver import Chrome

I’ll create a variable driver_path and assign the relative PATH to the

ChromeDriver. Chapter4 is a folder where I keep the Jupyter file alone with

ChromeDriver, and programwithus is my home directory. Please note that

the little r before the quotes might be required for some Windows users.

It would be optional for Mac users. Also, Windows users would need to

include the full file name with the extension .exe, like chromedriver.exe.

For Mac users

driver_path = "/Users/programwithus/Chapter4/chromedriver"

Chapter 4 Gathering Data with Python

https://chromedriver.chromium.org/downloads
https://chromedriver.chromium.org/downloads
https://chromedriver.chromium.org/downloads
http://amazon.com
http://amazon.com

176

For Windows users

driver_path = r"/Users/programwithus/Chapter4/chromedriver.exe"

In the same cell, pass driver_path into the Chrome() function we have

imported earlier from Selenium:

page = Chrome(executable_path=driver_path)

Run the cell, and the Chrome() function should launch a browser

window with a note on top, “Chrome is being controlled by automated test

software”. Now the page variable holds an instance of the browser managed

by Python code. In case you get a FileNotFoundError with a message

"chromedriver executable needs to be in PATH", check the driver_

path and make sure it leads to the ChromeDriver file correctly.

If a browser window popped up, you are ready to scrape data.

The scraping process itself will be similar to what we did earlier with

BeautifulSoup. First, we need to fetch the website. The page variable will

hold the Python Selenium object. Then find the hooks for HTML elements

in the Selenium object. Only this time the Selenium Chrome() function will

replace the requests.get() method and the BeautifulSoup() function.

Navigate to amazon.com and choose any product you like. I have

chosen the Ring Video Doorbell. You can see it here: www.amazon.com/dp/

B08N5NQ869.

You can choose any product on amazon.com for this example. Usually,

the Amazon URL is much longer than www.amazon.com/dp/B08N5NQ869.

Amazon and other big companies collect a lot of marketing information

about their customers – information such as the region, browser, and

timezone the request is coming from – and add it to a URL after the ?

sign. These additional parameters after the ? sign are not important for us

and can be removed. In short, any product sold on Amazon would have

an ASIN number, a unique identifier. The ASIN number is the part of a

product URL that comes after /dp/.

Chapter 4 Gathering Data with Python

http://amazon.com
http://www.amazon.com/dp/B08N5NQ869
http://www.amazon.com/dp/B08N5NQ869
http://amazon.com
http://www.amazon.com/dp/B08N5NQ869

177

As a matter of fact, any URL usually contains some kind of unique

identifier either as a numeric ID or a slug. A slug is a distinctive part of a

URL referring to a particular piece of information. For example, the www.

cnn.com/style/article/new-years-eve-ball-design-history/index.

html URL has a new-years-eve-ball-design-history slug that is unique

and leads to the “A brief history of the Times Square New Year’s Eve ball

drop” article on cnn.com. So, if you are trying to fetch a web page, spend a

couple of minutes understanding a URL pattern of the website you want to

grab information from.

On Amazon, all products are stored in a database under ASIN and

can be accessed by www.amazon.com/bp/ plus ASIN. Anything else in the

Amazon URL is optional parameters.

Sending a request to the Amazon server for the www.amazon.com/dp/

B08N5NQ869 URL would require the Selenium method get():

page.get("https://www.amazon.com/dp/B08N5NQ869")

The method get() will launch a browser window and return an

instance of the Ring Video Doorbell web page (Figure 4-19).

Chapter 4 Gathering Data with Python

http://www.cnn.com/style/article/new-years-eve-ball-design-history/index.html
http://www.cnn.com/style/article/new-years-eve-ball-design-history/index.html
http://www.cnn.com/style/article/new-years-eve-ball-design-history/index.html
http://cnn.com
http://www.amazon.com/bp/
http://www.amazon.com/dp/B08N5NQ869
http://www.amazon.com/dp/B08N5NQ869

178

Suppose we want to gather the product name and the price from the

page. The routine to find HTML hooks will be the same as we did before.

Navigate to the product name, click the right button on a mouse, and

inspect the element in Chrome Developer Tools.

As you can see in Figure 4-20, the product name in Chrome Developer

Tools fully matches the title on a page.

Figure 4-19.  Selenium has taken a control over a Chrome browser
and opened a product page

Chapter 4 Gathering Data with Python

179

If for some reason you cannot see the title highlighted in your browser,

click the text inspect one more time.

We need to choose an HTML tag to grab the element by. As in the

previous example, we can get an HTML element by the class. However,

I think that the "a-size-large" class (Figure 4-20) might be used

somewhere else on that page. The Id attribute would be a better choice

because id is unique. "productTitle" id cannot be used again in

HTML code on the same page. To fetch the title by id, we would need

to use the Selenium method find_element_by_id(). You can find all

available the Selenium locating elements methods either by going to the

documentation3 or running the dir() function on the object stored under

the page variable:

dir(page)

The find_element_by_id() method is easy to use. All you have to do

is to pass the element’s id attribute. Selenium locating elements methods

return objects, and converting them to strings requires a text method.

3 https://selenium-python.readthedocs.io/locating-elements.html

Figure 4-20.  Examining a web page element with Chrome Developer
Tools

Chapter 4 Gathering Data with Python

https://selenium-python.readthedocs.io/locating-elements.html

180

In the same cell, create the variable title to hold a product name, and

using the find_element_by_id() method, fetch the information:

title = page.find_element_by_id("productTitle")

title = title.text

print(title)

The same process can be used to grab the price of a product. If

we point on the price and inspect it, we will see that Amazon uses

“priceblock_ourprice” id for a $99.99 value. Take into account that if you

are expecting a different product page on Amazon, there might be another

id attribute for a price. Based on my research, they also use "priceblock_

dealerprice".

In the same cell, I’ll get the price for the product. This time, I’ll chain a

text method to page.find_element_by_id():

price = page.find_element_by_id("priceblock_ourprice").text

print(title, price)

By now, you probably have two or three Chrome browsers opened. The

method close() after we get the looked-for information will shut down a

browser.

In Figure 4-21, you can see the name and price for a product we

fetched.

Figure 4-21.  Fetching the name and price of a product from
amazon.com

Chapter 4 Gathering Data with Python

http://amazon.com

181

Selenium is a truly automation solution. Besides grabbing data from

HTML, you can fill web forms and imitate mouse clicks. Let’s consider an

example of gathering information on all Ring Video Doorbells available on

Amazon. Our first step would be to find all ASIN numbers in the category.

On the top of the Amazon page, there is a search prompt. We can

program Selenium to insert a name of a product we are interested in and

submit the search. In order to do that, we would need to use the Selenium

module Keys. The Keys module implements all major keyboard functions.

Import the Keys module right under the Selenium Chrome function in

the upper cell and rerun the cell:

from selenium.webdriver import Chrome

from selenium.webdriver.common.keys import Keys

In the next cell, comment out for now title and price statements and

replace the product URL we have been using with the www.amazon.com

Amazon landing page, like in Figure 4-22.

Before we will fill in a search prompt with a desired product name,

we will need to locate the input in HTML code. Open www.amazon.com in

a web browser, navigate the mouse on the text box, and click with a right

button to inspect the element. Locate the text box attribute we could use to

Figure 4-22.  Preparing a Selenium setup to enter values in the input
prompt on web pages

Chapter 4 Gathering Data with Python

http://www.amazon.com
http://www.amazon.com

182

grab the element in HTML. I think id="twotabsearchtextbox" would be

perfect to capture a text box (Figure 4-23).

After we have managed to locate the input box in HTML, using the

method send_keys() we can pass any text into that box:

prompt = page.find_element_by_id("twotabsearchtextbox")

prompt.send_keys("ring video doorbell")

Try the code and make sure it fills out the search prompt.

If everything works correctly, we can click the submit button of the

form with an ENTER key:

prompt.send_keys(Keys.ENTER)

Keys.ENTER will mimic the return button action on a keyboard, and the

search action will be triggered.

In Figure 4-24, you can see that we have managed to enter a name of

the product into the input box and received all available products in that

category. The Ring Video Doorbells are listed on a different web page.

Figure 4-23.  Inspecting web page elements in Chrome Developer
Tools

Chapter 4 Gathering Data with Python

183

A new web page means the whole inspection routine starts again.

To gather information on all available Ring Video Doorbells, we need to

collect all ASIN product numbers from the page, so later we could pull

them one by one. Highlight an item on the page and try to figure out how

to grab the ASIN number. Apparently, each item is wrapped into <div>

tags, a generic HTML container, with a data-asin attribute (Figure 4-25).

The data-asin attribute holds the ASIN number for a product within the

<div> container. You might ask if we necessarily need to use a data-asin

attribute or there is another way to capture an element. Probably there is

another way to pull out a desired element. I encourage you to experiment.

The data-asin attribute is unique to this particular example. In other

cases, on different web pages, there will be other attributes or HTML

tags. Also, in the future Amazon developers might replace the data-asin

attribute with something else. That is why inspection is an essential part

Figure 4-24.  Running a Selenium script to find products by a
category name

Chapter 4 Gathering Data with Python

184

of the web scraping process. Web scraping is all about investigating and

finding HTML hooks that would help you to grab elements. It took me a

couple minutes to realize that in our case data-asin would work to get

ASIN from the page.

Capturing the data-asin attribute directly is not an easy task. The

solution would be to get the whole <div> container of each product on

the page and then extract the value of the data-asin attribute. The task

is getting more complicated; the <div> container we need to fetch has

no unique id (Figure 4-24), and we will need to use another Selenium

method. Run the dir() function on the page object, and there in the list

of all methods, you should see the find_elements_by_class_name()

method. With the find_elements_by_class_name() help, we could get a

hold of all <div> containers with the class "s-result-item" (Figure 4-25)

for all products on the page:

asin_numbers = page.find_elements_by_class_name("s-result-

item")

Figure 4-25.  Inspecting a div container with a product information
in Chrome Developer Tools

Chapter 4 Gathering Data with Python

185

The find_elements_by_class_name() method returns a list of

Selenium elements stored under the asin_numbers variable. You could

either convert them to strings by applying a text method:

rings = [item.text for item in asin_numbers]

or extract data-asin attributes, like this:

asin_list = [item.get_attribute('data-asin') for item in asin_

numbers]

print(asin_list)

After we used get_attribute('data-asin'), we have all ASIN

numbers from that page stored in asin_list (Figure 4-26). Containers

with no data-asin attribute returned empty strings ‘ ’. That is OK; we will

deal with empty values later.

After we collected ASIN numbers for Ring Video Doorbells, we can

fetch the details on each one of them and store information into a CSV file.

Figure 4-26.  Fetching ASIN numbers for all products on the web
page

Chapter 4 Gathering Data with Python

186

Python comes with a CSV module for working with CSV files. We will

use it to write gathered information into a CSV file. Since CSV is a built-in

module, there is no need to download and install it. But we still need to

import it in the upper cell:

import csv

To get details on each Ring Video Doorbell in our list, we will need to

fetch a product page and grab the title and price from each page. Also, we

will collect the description details from each product page.

We have managed to get the title and price of a product before. Now

we need to inspect the bullet points on www.amazon.com/dp/B08N5NQ869

to grab the product details. It looks like all bullet points located in the

<div> container with id="feature-bullets". Using the familiar Selenium

method find_element_by_id(), we will grab them.

It is time to piece all statements together. We will assemble a small

crawler that will gather information on products from finding them

on Amazon to saving data. I’ll go step by step and then post the whole

solution.

We have left off on a list full of ASIN numbers. We will iterate through

the list and append each ASIN number to the www.amazon.com/dp/ URL

to fetch an Amazon product page. In real life while web scraping for

information, many things could go wrong. The Wi-Fi might be out, or

Amazon discontinued to support a product. In addition, some elements

might return no values, like empty strings we have in the asin_list. Any

of these issues might break our code down. That will interrupt the whole

process, and because of one or two bad URLs or pages, we will not get

others. That is very disappointing when you are trying to hit thousands of

pages, and one small thing cease the running code. To avoid that and keep

executing the code even if we get the obstacles along the way, we would

wrap each statement into try and except blocks.

Chapter 4 Gathering Data with Python

http://www.amazon.com/dp/B08N5NQ869
http://www.amazon.com/dp/

187

Exception handling is a great way to avoid stopping after Python

code returns an error message. Let me explain exception handling on our

Amazon example:

for number in asin_list:

 try:

 page.get("https://www.amazon.com/dp/{}".format(number))

 print("fetching {}".format(number))

 except:

 print("could not get the page for {}".format(number))

In the code, we loop through all collected ASIN numbers within

asin_list and pass each unique number into the string method format()

to append it to the Amazon URL. The Selenium page.get() method will

try to pull each product page from the server. If an Amazon server returns

a valid response, the variable page would save it, and we could parse

elements out of the Selenium object. However, if the URL was broken or

server was not responding for some reason, instead of getting an error

message and stopping, the code would jump to except block and print

"Could not get the page for some ASIN".

If a statement in the try block fails, the except block will prevent an

error. After all statements in the except block are executed, Python will

continue its normal course within the for loop. In the preceding example,

it will try to fetch the next web page in asin_list.

Try and except blocks are a very popular way to avoid crashing the

code. Very often, they are used to capture error messages, so later you can

take a close look at what went wrong. Sometimes, professional developers

would place a function in an except block to send them a message with an

exception to quickly address an issue.

Chapter 4 Gathering Data with Python

188

Also, within the for loop, we will define an empty list. We would need

it to store all scraped information for a product. In case we hit a page with

missing data for title and price, we would define them as None:

for number in asin_list:

 data = []

 title = None

 price = None

 try:

 page.get("https://www.amazon.com/dp/{}".format(number))

 print("fetching {}".format(number))

 except:

 print("could not get the page for {}".format(number))

Next, we will try to get a product title; if there is no id=" productTitle"

on a page, the except block would print "productTitle is not there".

try:

 title = page.find_element_by_id("productTitle").text

except:

 print("productTitle is not there")

As I have mentioned before, the price element is a little bit tricky.

Amazon uses different id attributes for the price element. I have located

id=" priceblock_ourprice" and id=" priceblock_dealprice". In

case the product is sold out and the product page says "Currently

unavailable", there will be no price element at all. That is the case where

price would be set to None.

try:

 price = page.find_element_by_id("priceblock_ourprice").text

except:

 print("priceblock_ourprice is not there")

Chapter 4 Gathering Data with Python

189

try:

 price = page.find_element_by_id("priceblock_dealprice").text

except:

 print("priceblock_dealprice is not there")

The results for the product title and price should be added to the data

list:

data.extend([title,price])

The product description from the bullet points would be grabbed

by id= "feature-bullets" and saved into bullets_list by a new line.

bullets_list values would extend the same data list:

try:

 bullets = page.find_element_by_id("feature-bullets").text

 bullets_list = bullets.split("\n")

 data.extend(bullets_list)

except:

 print("feature-bullets id is not there")

At the end, we will write a data list into a CSV file. Go back up, and

using the function open(), define a file object. A CSV module comes

with a write() method that would insert a data list as a row into the

amazon-results file:

csv_file = open("amazon-results.csv", 'w')

writer = csv.writer(csv_file)

Since some of the pages produced no results before we write data

into the file, check if the first element is not None. If the data list contains

information, then we would add it as a row to the amazon-results.CSV file.

The following if block should be placed into the scope of the for loop:

if data[0] != None:

 writer.writerow(data)

Chapter 4 Gathering Data with Python

190

Finally, outside of the for loop, we need to save the file object and

close the browser window:

csv_file.close()

page.close()

At the end of the day, the code will generate the amazon-results.CSV

file saved in the same directory where the current Jupyter Notebook is.

Each product would be written in a separate row and details separated by

a comma. In Figure 4-27, you can see the amazon-results.CSV opened in

Excel.

As I promised here, you can see the full solution for the Amazon

example done with Selenium:

#importing packages

from selenium.webdriver import Chrome

from selenium.webdriver.common.keys import Keys

import csv

Figure 4-27.  Saving the results in an Excel file

Chapter 4 Gathering Data with Python

191

#initiating a csv file

csv_file = open("amazon-results.csv", 'w')

writer = csv.writer(csv_file)

#ChromeDriver PATH

chromedriver = r"/Users/programwithus/Chapter4/chromedriver"

page = Chrome(executable_path=chromedriver)

#openning amazon.com and gathering ASIN numbers for Ring

doorbells

page.get("https://www.amazon.com")

prompt = page.find_element_by_id("twotabsearchtextbox")

prompt.send_keys("ring video doorbell")

prompt.send_keys(Keys.ENTER)

asin_numbers = page.find_elements_by_class_name("s-result-item")

rings = [item.text for item in asin_numbers]

asin_list = [item.get_attribute('data-asin') for item in asin_

numbers]

#fetching details for each product and writing it into amazon-

results.csv

for number in asin_list:

 data = []

 title = None

 price = None

 try:

 page.get("https://www.amazon.com/dp/{}".format(number))

 print("fetching {}".format(number))

 except:

 print("could not get the page for {}".format(number))

 try:

 title = page.find_element_by_id("productTitle").text

Chapter 4 Gathering Data with Python

192

 except:

 print("productTitle is not there")

 try:

 price = page.find_element_by_id("priceblock_ourprice").

text

 except:

 print("priceblock_ourprice is not there")

 try:

 �price = page.find_element_by_id("priceblock_

dealprice").text

 except:

 print("priceblock_dealprice is not there")

 data.extend([title,price])

 try:

 bullets = page.find_element_by_id("feature-bullets").

text

 bullets_list = bullets.split("\n")

 data.extend(bullets_list)

 except:

 print("feature-bullets id is not there")

 if data[0] != None:

 writer.writerow(data)

#saving file and closing browser

csv_file.close()

page.close()

�Working with APIs
So far, we have been working with HTML web pages. I have mentioned at

the beginning of the chapter a relationship between a client/browser and a

server. A browser receives HTML and presents it as images and styled text.

Chapter 4 Gathering Data with Python

193

We are humans and want to see information presented in a nice colorful

way. There are other clients that do not need to see images and colors. I

am talking about devices. A device sending a request to a server also would

be a client. For example, these days you can get a fridge that would place

an order with a grocery store for delivery if you run out of milk. Another

example would be a smartphone exchanging Facebook messages or a car

receiving weather updates from a server. These devices need data in a

simple format with no styles and colors. The data format they consume is

JSON (JavaScript Object Notation) that comes as a string. Servers may send

data as HTML or JSON based on a requesting client.

Usually, JSON comes from an API (Application Programming

Interface), an interface specifically designed to communicate with

computer applications or devices.

If your work is to analyze financial data, then you can subscribe for

the Bloomberg API. On the other hand, if you are in a digital marketing

and need to receive information from Google Analytics, you would use

the Google Analytics Reporting API. As a matter of fact, Google even has a

Python library to help developers get connected to their APIs and access

all Google applications. We will work with them later in the book.

All APIs are designed differently, and most of the time companies have

developer documentation explaining how to use them and how to get

authenticated. Some of the APIs are free; others require a subscription.

Here, we will take a look at a very popular source of financial data,

Alpha Vantage. In the following example, I’ll explain to you the main

principles of working with APIs.

All API providers require some sort of authentication, and Alpha

Vantage is no excuse of the rule. Compared to other API services, it is very

easy to get an API Key at www.alphavantage.co/support/#api-key. You

need to answer two simple questions and provide your email address.

Make sure you get your own API Key because the one I use here will expire.

After a successful registration, you should see the message:

Chapter 4 Gathering Data with Python

http://www.alphavantage.co/support/#api-key

194

Welcome to Alpha Vantage! Your API key is: ZIIROPRQCMEREHR8.

Please record this API key at a safe place for future data

access.

The API Key acts as a user id and a password at the same time. The API

Key’s job is to authenticate a person or device requesting the information.

Also, if it is a paid service, make sure that the account is current.

Getting acquainted with any API should begin with the developer

documentation of the API provider. We are new to Alpha Vantage

services, and it would be smart to start with www.alphavantage.co/

documentation/.

Alpha Vantage provides several APIs to get stock prices, companies’

fundamental data, forex, cryptocurrencies, and technical indicators. We’ll

use the TIME_SERIES_DAILY_ADJUSTED API to fetch historic daily prices for

stocks.

The demo URL looks like this:

https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_AD

JUSTED&symbol=IBM&apikey=demo

Open the reference in a browser, and you will see JSON data that

contains open, high, low, and close values for IBM stock. If you take a

closer look, you’ll see that JSON reminds a Python dictionary data type.

The demo URL gives us a good understanding of how to use it. An

IBM value in the API endpoint could be replaced with any other symbol

of a stock we want to get historic prices. In the apikey=demo argument, the

demo should be changed to an API Key you have obtained.

Using a time series API, we will get historic prices for AAPL and store

them as a DataFrame. In a new Jupyter file, import two libraries we would

need for this example, Requests and Pandas:

import requests

import pandas as pd

Chapter 4 Gathering Data with Python

http://www.alphavantage.co/documentation/
http://www.alphavantage.co/documentation/

195

We need to define the API Key as a string, a URL for the API, and a

stock we want to get:

API_Key = "ZIIROPRQCMEREHR8"

url = "https://www.alphavantage.co/query?function=TIME_SERIES_

DAILY_ADJUSTED&symbol={}&apikey={}"

stock = "AAPL"

In the URL, I have replaced the IBM symbol and demo with {}; later, we

will insert our own values into them with the format() method.

For starters, we need to send a request to a server with the requests.

get() method. We will pass "AAPL" with the stock variable and API_Key

we have defined. The Python string method format() makes the code

cleaner, and it would be easy to replace "AAPL" with any other symbol

down the road:

data = requests.get(url.format(stock, API_Key))

Run the code and data will return response 200, meaning that

everything is OK, and we got the information from the API. As I have

mentioned before, the Python library Requests supports different data

types, and since the API serves JSON, we would use the method json() to

extract the values. You can just chain json() to requests.get():

data = requests.get(url.format(stock, API_Key)).json()

Finally, the data we have received from the Alpha Vantage API looks

like in Figure 4-28.

Chapter 4 Gathering Data with Python

196

The JSON syntax is similar to a Python dictionary. Every time I am

dealing with a new source data, I use the type() function. Pass data into

type(), and you’ll see that Python took it as a dictionary.

We have received a lot of information from the API, and it is difficult to

visually identify the keys in the dictionary. The Python dictionary method

keys() will help us to get all the keys:

 data.keys()

The method keys() has returned dict_keys(['Meta Data', 'Time

Series (Daily)']). We are not interested in 'Meta Data' and will take

a closer look at 'Time Series (Daily)'. data is a dictionary, and we can

get the values by a key 'Time Series (Daily)'. Time Series is another

dictionary, so we will use the keys() method again:

data['Time Series (Daily)'].keys()

Apparently, data['Time Series (Daily)'] contains all information

as dictionaries too. The method keys() has returned dates that were used

Figure 4-28.  Receiving data from an API

Chapter 4 Gathering Data with Python

197

as a key. Each inner dictionary contains more keys with daily values for

"AAPL". To get them, you can apply the same method keys() to any date:

data['Time Series (Daily)']['2021-01-08'].keys()

Every day has the same set of keys to hold values:

dict_keys(['1. open', '2. high', '3. low', '4. close', '5.

adjusted close', '6. volume', '7. dividend amount', '8. split

coefficient'])

If I needed to get a closing price for AAPL stock for '2021-01-08', I

would fetch it like this (Figure 4-29):

data['Time Series (Daily)']['2021-01-08']['4. close']

If you need to get all close prices from the Alpha Vantage Time Series

API, then you can iterate through a dictionary. In this example, I’ll use

dict_of_prices as an intermediate variable just to make the code cleaner

and clearer (Figure 4-30):

Figure 4-29.  Accessing values from the received data converted to a
Python dictionary

Chapter 4 Gathering Data with Python

198

dict_of_prices = data['Time Series (Daily)']

for key in dict_of_prices:

 print(key, dict_of_prices[key]['4. close'])

I went through all these steps to illustrate how to get any value from an

API. Assuming that we want to convert the received data into a DataFrame,

then we can take dict_of_prices or data['Time Series (Daily)'] and

pass it directly into the Pandas function DataFrame:

df = pd.DataFrame(dict_of_prices)

When a dictionary is passed into the DataFrame function, it might

use wrong values for columns. In our case, the pd.DataFrame function

used dates for columns, which is not a desired outcome. To pivot a two-

dimensional data structure, we will apply a T attribute to the transpose

index and columns of the DataFrame:

 df = pd.DataFrame(dict_of_prices).T

The attribute T is an accessor for the transpose() method, and you

can use them interchangeably. With the T attribute at the end, df should

look like in Figure 4-31.

Figure 4-30.  Iterating through the dict_of_prices dictionary object

Chapter 4 Gathering Data with Python

199

Take into consideration that JSON served by APIs is a string, and all

values in df are stored not as numeric data types. Meaning we cannot use

them for math calculations. You do not need to remember that; instead,

run the method info() on a DataFrame to check the values’ data types:

df.info()

To work with these values, we would need to convert them to numeric

data. Going column by column would be tedious. We will use an applymap()

method. The concept of applymap() is similar to an apply() method; it

iterates through values. The difference is that applymap() would be used on

all values in a DataFrame. applymap() has no inplace argument, and we

would need to save the value conversion with the same variable df:

df = df.applymap(pd.to_numeric)

Run df.info() again, and you will see that all values were converted

to either float or integer data types. The last thing we could do is to convert

index values to datetime objects:

df.index = pd.to_datetime(df.index)

The datetime objects in the index will help us to manipulate data,

for example, plot the last 120 days of closing prices from the DataFrame

(Figure 4-32):

df.loc['2020-09-01':'2021-01-12':-1]['4. close'].plot.line()

Figure 4-31.  Transposing a DataFrame with a built-in method T

Chapter 4 Gathering Data with Python

200

The method loc slices data from '2020-09-01' to '2021-01-12'. We

use the –1 step since the original DataFrame begins with the '2021-01-12'

index, and we need to go in reverse. To plot closing prices, we grab the '4.

close' column and plot it as a line (Figure 4-32).

�Pandas-Datareader
Popular APIs have wrappers like Pandas-Datareader. A wrapper is a

small program usually designed to make the process of working with

data seamless. Pandas-Datareader unifies the mechanism of accessing

information from Yahoo Finance, Google, NASDAQ, Federal Reserve

Economic Data, and many others. The full list of data providers can be

found in the Pandas-Datareader documentation.4 As the name implies,

Pandas-Datareader works with Pandas and returns received information

in the form of a DataFrame.

4 https://pydata.github.io/pandas-datareader/readers/index.html

Figure 4-32.  Plotting data from a DataFrame

Chapter 4 Gathering Data with Python

https://pydata.github.io/pandas-datareader/readers/index.html

201

Initially designed as a part of Pandas to receive remote financial and

economic data, Pandas-Datareader was a spin-off and now is a stand-alone

Python package. We need to install it separately in Anaconda Navigator ➤

Environments ➤ Terminal using a pip command:

pip install pandas-datareader

Most of Pandas-Datareader data sources can be accessed via the

DataReader() function. To see DataReader() in action, open a new

Jupyter Notebook and import Pandas and Pandas-Datareader:

import pandas as pd

import pandas_datareader.data as web

For starters, we will get historic prices for IBM stock from Yahoo

Finance. Yahoo Finance requires no registration, and all we need is to pass

a stock symbol, source of data, and time range:

stock_price = web.DataReader('IBM', 'yahoo', '2020-01-01',

'2021-01-15')

Dates for start and end days shall be passed into the function either as

strings or datetime objects. The first argument 'IBM' can be replaced with

any other valid stock symbol. DataReader() returns prices in a DataFrame

format, and you can apply Pandas functions and methods to the stock_

price object:

stock_price.head()

DataReader() connects to the Yahoo service, and it may take time to

get a response (Figure 4-33).

Chapter 4 Gathering Data with Python

202

The Investors Exchange (IEX) is another popular data source that

would work with DataReader(). The Investors Exchange provides tons of

data for individual and professional accounts on a paid basis. Here, we will

use a free account to illustrate how to use an API Key in a DataReader()

function and get access to IEX. You can register and claim your API Key on

the IEX cloud platform at https://iexcloud.io. Upon registering, you’ll

get access to API tokens. Define an API_Key as a string and pass it as the

last argument in DataReader():

API_Key = 'pk_1386c11694f7887a90694cd588149'

msft_prices = web.DataReader('MSFT', 'iex', '2020-01-01',

'2021-01-15', api_key=API_Key)

The API Key I use here is just an example and not a valid token.

'iex' is a data source argument you have to use for connection to the

Investors Exchange. The prices we have received are stored as DataFrame

under the variable msft_prices (Figure 4-34).

Figure 4-33.  Receiving data from Yahoo Finance with the
DataReader() function

Chapter 4 Gathering Data with Python

https://iexcloud.io

203

Besides the stock market prices, Pandas-Datareader provides access to

economic indicators from FRED (Federal Reserve Bank of St. Louis). Let’s

take a look at two most important indicators: Gross Domestic Product (GDP)

and Total Nonfarm Payrolls.

FRED provides GDP numbers starting from 1947, and we can get them

with the same DataReader() function. All we have to do is to pass the

symbol 'A191RL1Q225SBEA' and change the source to 'fred'. The symbols

for economic indices can be found on the FRED website at https://fred.

stlouisfed.org. Usually, the symbol comes right after the indicator title

(Figure 4-35).

gdp = web.DataReader('A191RL1Q225SBEA', 'fred', '1947-04-01',

'2021-01-15')

Figure 4-34.  Receiving data from the Investors Exchange with the
DataReader() function

Chapter 4 Gathering Data with Python

https://fred.stlouisfed.org
https://fred.stlouisfed.org

204

We can plot the data with the method plot.line() and add a title as

an argument (Figure 4-36).

Figure 4-36.  Plotting Gross Domestic Product received from the
FRED source with the DataReader() function

Figure 4-35.  Real Gross Domestic Product information on
https://fred.stlouisfed.org

Chapter 4 Gathering Data with Python

https://fred.stlouisfed.org

205

Similar to GDP, we can plot Total Nonfarm Payrolls. The symbol for

Total Nonfarm Payrolls is PAYEMS. We will fetch the maximum available

information with the start date '1939-01-01' up to December 2020:

nonfarm = web.DataReader('PAYEMS', 'fred', '1939-04-01',

'2020-12-01')

nonfarm.plot.line(title='Total Nonfarm Payrolls');

In Figure 4-37, you can see the plot of historic employment data we

received from FRED using the DataReader() function.

In this chapter, we have covered the main principles of working with

APIs. In the next chapter, we will continue using APIs to gather and analyze

information. In particular, we will work with the Google Data Python

Library to get access to popular Google apps.

Figure 4-37.  Plotting Total Nonfarm Payrolls received from the FRED
source with the DataReader() function

Chapter 4 Gathering Data with Python

207© Art Yudin 2021
A. Yudin, Basic Python for Data Management, Finance, and Marketing,
https://doi.org/10.1007/978-1-4842-7189-6_5

CHAPTER 5

Data Visualization
Visualization is an essential piece of data analysis. It is not enough to

gather, manipulate, and analyze data. You need to present your findings.

Numbers should tell a story. A story with no images would be a dull

one. We, humans, consume information with our eyes, and as they say,

“a picture is worth a thousand words.” A brighter picture will keep your

attention longer.

Being the most popular programming language for data science and

machine learning, Python has numerous visualization solutions. In this

chapter, we will learn how to use the most prominent Python library for

visualization – Matplotlib. All other Python visualization libraries either are

built on top of Matplotlib or share the same principles in plotting data.

�Matplotlib
We have briefly used Matplotlib via Pandas in previous chapters; now it is

time to take a closer look at the popular visualization package.

The Matplotlib library is the first major Python library for plotting

data. It would not be a stretch to say that Matplotlib is the mostly used

visualization Python solution in the world. Matplotlib allows to graph

data as different types of plots. Lines, bar charts, scatter, and histogram

are the main types of plots you can easily do with Matplotlib. Beyond

that, many Matplotlib extensions exist to help you visualize astronomical,

geographical, or scientific data.

https://doi.org/10.1007/978-1-4842-7189-6_5#DOI

208

�Line Plot
Matplotlib is a part of Anaconda. All you need is to import it into a file to

start using it. In a new Jupyter file, import the Matplotlib module pyplot:

import matplotlib.pyplot as plt

Matplotlib is a big library, and rather than importing it all, we are

selecting the main module pyplot. plt, as you have probably guessed, is a

convention shorthand.

I want to start the introduction to Matplotlib with a simple line

example. Create two Python lists with a few numbers:

x = [2, 5, 7]

y = [2, 7, 3]

The choice for x and y variables is not random. To draw a line, we need

to connect points. Each point has two numbers or coordinates x and y to

map it. In our example, there will be three points. We can graph them with

the Matplotlib function plot():

plt.grid(True)

plt.plot(x,y, marker="o");

I have added the function plt.grid(True) to illustrate that the

position of each point is unique to values on x and y axes derived from x

and y lists (Figure 5-1).

Chapter 5 Data Visualization

209

Also, I have placed an optional keyword argument marker="o" to

accent that the function plt.plot() connects the dots based on values we

have provided. Remove marker="o" and you will see a simple line:

 plt.plot(x,y)

The semicolon I have right after the plt.plot() function is a little

trick to hide the memory address of a line object. If you rerun the plt.

plot(x,y) expression without a semicolon at the end, you will see

[<matplotlib.lines.Line2D at 0x7f97da40b9a0>] printed right above

the graph.

The function plt.plot() is easy to use. All you have to do is to pass

any two iterables like a list or a tuple or a Pandas Series or a NumPy array

as x and y coordinates, and it would draw a line.

The Matplotlib function plt.plot() allows you to use different styles

and any possible color. There are so many variations that the function plot

simply states that it takes *args and **kwargs. *args and **kwargs mean

that a function can take multiple arguments and keyword arguments.

Figure 5-1.  Plot of a line

Chapter 5 Data Visualization

210

It is impossible to keep in mind all available markers and styles. Every

time I need to add something fancy to my plot, I run

help(plt.plot)

The help(plt.plot) returns a description with all possible graph

variations.

In experimenting with different plot styles, I would like to start with

colors. Colors could be passed into the plot() function in different

formats. For prime colors, you can use the first letter of a color or a full

color name, for example:

Use "b" or "blue" for blue

plt.plot(x,y, color="b")

plt.plot(x,y, color="blue")

use "r" or "red" for red

plt.plot(x,y, color="r")

plt.plot(x,y, color="red")

use "g" or "green" for green

plt.plot(x,y, color="g")

plt.plot(x,y, color="green")

If you find it boring to use preset colors, you might use HEX or RGB

formats. I would recommend visiting https://htmlcolorcodes.com for

a color palette. On that website, you can pick any color with HEX or RGB

code. For example, my favorite light coral color could be used like this:

plt.plot(x, y, color="#F08080");

or even with the name of the color:

plt.plot(x, y, color="LightCoral");

Any graph requires a legend and a title. Matplotlib has special

functions plt.legend() and plt.title() to add annotations to a plot.

Chapter 5 Data Visualization

https://htmlcolorcodes.com

211

Needless to say, all available Matplotlib functions could be seen with the

dir(plt) command.

The plt.legend() function reflects the data displayed in the plot. It is

very easy to use. All you have to do is to add a keyword argument label to

your plot, and the function plt.legend() will render it:

plt.plot(x, y, color="#F08080", label="Line");

plt.legend()

The plot annotation could be rendered in any place of a graph. Add

the argument loc, stands for location, and assign any position from

the “Location string” list. The “Location string” list can be found in the

function description help(plt.legend).

I’ll place label="Line" referred to in plt.plot() to the lower center of

the graph (Figure 5-2):

plt.plot(x, y, color="#F08080", label="Line")

plt.legend(loc="lower center");

Figure 5-2.  The function legend() adds an annotation to a
graph

Chapter 5 Data Visualization

212

Along with the legend, we can attach any name to a plot with the

function plt.title(). The graph label should be passed as a string in

the plt.title() function. The plt.title() function allows to specify a

position, color, and font size of a label. Using the argument loc, a label can

be placed in one of three positions: left, right, and default center. To set

a label custom color as in the plt.plot() function plot, we can either use

prime colors or HEX and RGB codes. A label text size should be passed in

points with the keyword fontsize.

As a case in point, I’ll plot a stock price. For this task, we would need

to get historic stock prices. Scroll back to the first cell in a file and import

Pandas-Datareader:

import pandas_datareader as pdr

Fetch historic prices for Apple or any other stock from the "yahoo"

source within any date range:

data = pdr.DataReader("AAPL","yahoo", "2020-01-01","2021-02-12")

The data["Adj Close"] column would be plotted on the vertical

axis as a y argument in the Matplotlib function plt.plot(). The index

data.index would represent the horizontal axis:

plt.plot(data.index, data["Adj Close"])

This plotting statement looks messy, and to make it readable, I will

slice the data["Adj Close"] and assign it to the variable y. I will do the

same to data.index for the variable x:

x = data.index

y = data["Adj Close"]

plt.plot(x, y)

Chapter 5 Data Visualization

213

We added two more lines of code, but it is worth it. Now it is readable

and clear to other people who might use our code. Also, it would be easier

to plug in any other values we might want to plot.

Put in a label into the plt.plot() function and render it on the lower

right with the plt.legend() method:

plt.plot(x, y, color="#196F3D" label="AAPL")

plt.legend(loc="lower right")

Attach a title positioned on the left in the same color as the stock price

line with a font size of 22:

plt.title("Apple Inc. Stock Price", loc="left",

color="#196F3D", fontsize=22)

Run the code, and you’ll see a nice plot with a custom title and a

legend label. One thing is bothering me, overlapping horizontal axis

values.

Matplotlib provides xticks() and yticks() functions to set custom

labels for horizontal and vertical axes. In the current example, it would

be difficult to match custom labels to data.index values, and besides we

might change the date range in the future; thus, to make dates readable, we

will pivot them a bit. The xticks() and yticks() functions come with an

argument rotation that changes an angle of text. We can set half of a right

angle for x labels with the numeric value 45:

xticks(rotation=45)

Finally, the plot should look like in Figure 5-3. Experiment with colors

and label styles.

Chapter 5 Data Visualization

214

There are several additional styling options we can apply to our graph.

The Matplotlib function grid() adds the grid lines of any style and color:

plt.grid(color="brown", linestyle=":")

As many Matplotlib functions, grid() is highly customizable. You can

provide colors and line styles. The graph size can be set with the figure()

method. In Matplotlib, the term figure refers to a plotted data. That is

why the dimensions of a graph should be used with a keyword figsize.

The width and height should be passed as either a list or a tuple and

dimensions specified in inches:

plt.figure(figsize=(12,8))

One of my students asked me if it would be possible to use corporate

colors in the plots since it was a requirement at her company. The answer

is yes. You already have seen that we can set any color for a line or grid.

Moreover, there is the style package in Matplotlib. You can define any

Figure 5-3.  Plot of a stock price with a title and a legend

Chapter 5 Data Visualization

215

style variations by calling the plt.style.use() method. I am not going

into details how to compose styles; that is outside of the scope of the book.

If for some reason you need to set a particular style sheet, you can find the

information on how to do it here: https://matplotlib.org/stable/api/

style_api.html.

For the rest of us who just want to have stylish graphs, I would

recommend using one of the preset style sheets. All available options are

listed here: https://matplotlib.org/stable/gallery/style_sheets/

style_sheets_reference.html.

For example, a very popular "seaborn" style can be applied to a plot

like this:

plt.style.use("seaborn")

Python code runs in sequence, and functions plt.style.use() and

figure() should be defined before plot() on the top (Figure 5-4).

Chapter 5 Data Visualization

https://matplotlib.org/stable/api/style_api.html
https://matplotlib.org/stable/api/style_api.html
https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html

216

�Histogram Plot
A histogram is another popular type of graph. Compared to the plot()

function, the hist() method requires one set of data. It is often used to

illustrate the distribution of the data.

Using Apple stock historic prices, we can calculate the daily returns for

the stock and plot them as a histogram:

stock_return = data['Adj Close'].pct_change(1)*100

Figure 5-4.  Applying style.use() and figure() functions to a plot

Chapter 5 Data Visualization

217

The Pandas method pct_change() returns the percentage change

between the current and the prior date. The first value in the stock_return

Series is NaN, and we need to throw it out to plot a histogram:

stock_return.dropna(inplace=True)

After the method dropna() removes all NaNs, the Series can be passed

into the hist() function as an x argument:

plt.hist(stock_return)

The data passed into the hist() function is split in the number of

equal-width bins. Using the second argument bins, you can change the

range and, if the number of observations allow, get more precise results by

increasing the number of bins:

plt.hist(stock_return, bins=100)

As in the previous example, we will add a title to the histogram plot:

plt.title('Distribution of APPL Daily Return')

Along with the title text, Matplotlib provides options to label horizontal

and vertical axes. As the name of the xlabel() and ylabel() functions

suggests, they can be used to name axes:

plt.xlabel('Daily Percentage Return')

plt.ylabel('Frequency')

With the added title and axis labels, the histogram graph would look

like in Figure 5-5.

Chapter 5 Data Visualization

218

The histogram plot can be saved as a separate file in png, jpeg, pdf, or

svg formats.

The Matplotlib function savefig() will generate a brand-new file with

a plot. All you need is to provide a unique file name as a string argument:

plt.savefig("AAPL return.png")

or you can save it as a PDF file:

plt.savefig("AAPL return.pdf")

Keep in mind that the savefig() function should be the last Matplotlib

command after you run all the statements for the graph you are plotting.

Figure 5-5.  The function hist() plots the daily returns of a stock

Chapter 5 Data Visualization

219

�Scatter Plot
The Python library Matplotlib can use three different backends. I would

call them here formats. The one we have used so far is a default one called

"inline". The "Inline" format generates static images and stores them

in a Jupyter Notebook. The main advantage of the "inline" format is that

you can have as many static graphs per Jupyter file as you want.

In the event that you want to use interactivity in plots, you would need

to switch to "notebook" mode. You can have only one interactive image

per Jupyter file. That is why I would recommend composing the next

example in a separate new file. Interactive mode requires a magic Python

function before you import Matplotlib:

%matplotlib notebook

import matplotlib.pyplot as plt

I did not exaggerate when I called a function magical. A magic function

is an official Python term for functions prefixed with the % sign.1

A scatter plot is one of the essentials in data analysis, and we will use

the scatter() function to map the US population in 2019. The Matplotlib

function scatter() not only plots data but also allows to adjust the size

and color of dots based on values. We will grab the Excel file with an

estimate of the resident population for the United States in 20192 and

plot the data as a scatter graph. The file is located here: https://bit.ly/

bookScatterExample.

1 �https://ipython.readthedocs.io/en/stable/interactive/tutorial.
html#magics-explained

2 �The original version of the file can be downloaded from www.census.gov/data/
datasets/time-series/demo/popest/2010s-state-total.html using API www2.
census.gov/programs-surveys/popest/tables/2010-2019/state/totals/nst-
est2019-01.xlsx

Chapter 5 Data Visualization

https://bit.ly/bookScatterExample
https://bit.ly/bookScatterExample
https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#magics-explained
https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#magics-explained
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-state-total.html
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-state-total.html
https://www2.census.gov/programs-surveys/popest/tables/2010-2019/state/totals/nst-­est2019-­01.xlsx
https://www2.census.gov/programs-surveys/popest/tables/2010-2019/state/totals/nst-­est2019-­01.xlsx
https://www2.census.gov/programs-surveys/popest/tables/2010-2019/state/totals/nst-­est2019-­01.xlsx

220

In addition to the plotting library, we will need Pandas; import it along

Matplotlib like this:

%matplotlib notebook

import matplotlib.pyplot as plt

import pandas as pd

The Excel file with data is online, and we can read it with the Pandas

read_excel() function.3 The first row is a header, and we can skip it with

the keyword argument skiprows=1:

data = pd.read_excel("https://bit.ly/bookScatterExample",

skiprows=1)

As always, we would need to clean the data a bit and grab only

columns that contain information:

data = data[["State", "Population"]]

We will convert population numbers into millions for readability:

data["Population_Mill"] = data["Population"]/1000000

The data range is too wide, and to plot a neat scatter, we can filter the

data and get states with a population from two to eight million:

filtered_data = data[(data["Population_Mill"] > 2.0)

&(data["Population_Mill"]< 8.0)]

3 If for any reason https://bit.ly/bookScatterExample is not available, you
can always get the file from https://book.nyc3.digitaloceanspaces.com/
Estimates_Population_US_2019.xlsx

Chapter 5 Data Visualization

https://bit.ly/bookScatterExample
https://book.nyc3.digitaloceanspaces.com/Estimates_Population_US_2019.xlsx
https://book.nyc3.digitaloceanspaces.com/Estimates_Population_US_2019.xlsx

221

The scatter() function is similar to the plot() method. It takes x and

y values as coordinates. In order to make the code readable, I’ll slice the

filtered_data DataFrame and assign filtered_data["State"] to x and

filtered_data["Population_Mill"] to y variables:

x = filtered_data["State"]

y = filtered_data["Population_Mill"]

Now we can pass x and y objects into scatter() and rotate the state

names on horizontal axes:

plt.scatter(x, y)

plt.xticks(rotation=90)

The %matplotlib notebook has generated us an interactive graph

(Figure 5-6). The menu under the plot allows us to zoom in and move data

around. The little diskette works as a save button.

Chapter 5 Data Visualization

222

I have mentioned before the Matplotlib function scatter() lets us

control the size and color of the dots with keyword arguments s and c.

We can make the scatter plot more presentable by assigning filtered_

data["Population_Mill"] data as the size and color. I’ll magnify the

data dots by raising the values into a power of four:

size = filtered_data["Population_Mill"]**4

color = filtered_data["Population_Mill"]

plt.scatter(x, y, s=size, c=color)

Figure 5-6.  Scatter plot of the US state population in millions

Chapter 5 Data Visualization

223

Some dots are overlapping others, and to make them transparent,

we will add another Matplotlib styling attribute alpha. The value under 1

makes the plot more transparent:

 plt.scatter(x, y, s=size, c=color, alpha=0.5)

As all Matplotlib plotting functions, scatter() allows to provide

colormaps either custom or the one you can choose from the

documentation. (You can find all colormaps listed here: https://

matplotlib.org/stable/tutorials/colors/colormaps.html.) From

the list, I have picked the "plasma" colormap and will pass it into the

scatter() function with the attribute cmap="plasma". The scatter plot will

be more informative if we add a colorbar scale (Figure 5-7):

plt.scatter(x, y, s=size, c=color, alpha=0.5, cmap="plasma")

plt.colorbar()

Chapter 5 Data Visualization

https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://matplotlib.org/stable/tutorials/colors/colormaps.html

224

We defiantly should add a title and vertical axis label. I think the

plotted data will look better if we increase the figure size to 10 by 8. We

need to define figsize in the function figure() before using scatter(),

so insert the statement plt.figure(figsize=(10,8)) into the code:

plt.figure(figsize=(10,8))

plt.scatter(x,y, s=size, c=color, alpha=0.5, cmap="plasma")

plt.xticks(rotation=90)

plt.colorbar()

plt.title("The States with population estimates between 2 and 8

million, 2019")

plt.ylabel("Population in millions")

Figure 5-7.  Scatter plot with a colorbar scale

Chapter 5 Data Visualization

225

You have probably noticed that I always move down a semicolon

character to the last line of code. Again, that hides a plot object reference

in Python memory.

This time, I do not want to add grid lines to the plot, but rather

annotate each value date with a state name.

The Matplotlib function annotate() can place a text label anywhere on

a graph based on x and y coordinates. Try placing the label "Here" on the

"Indiana" dot:

plt.annotate("Here", ("Indiana", 6.4))

The x and y coordinates should be passed in the form of a tuple as

("Indiana", 6.4). "Indiana" represents the x value on horizontal axes

and 6.4 is the population on y axes.

Rerun the Jupyter Notebook cell, and you’ll see the "Here" text

attached to the orange dot representing the Indiana state. Obviously, we

do not want to manually add a text annotation to all values. We can iterate

through all x values and get the coordinates by an index. The task would

require the Python built-in function enumerate(). The enumerate()

function will provide an index to all values in filtered_data["State"]

stored under the x variable. With the help of a for loop, we will go through

the enumerated object and pass the index and name of each state to the

annotate() function. The x and y variables hold the Pandas Series objects,

and we need to use the method .iloc[] to map the index to the values:

for index, label in enumerate(x):

 plt.annotate(label, (x.iloc[index], y.iloc[index]))

After that, all dots would be assigned text labels from the x object

(Figure 5-8).

Chapter 5 Data Visualization

226

The interactive scatter graph we have created allows users to magnify

data with the zoom option in the menu (Figure 5-8) and move it around

with a left mouse click. The home button in the menu resets everything to

default dimensions. "Notebook" mode we have set in the upper cell will

not let you to generate another plot in the file because of the recursive

Figure 5-8.  Annotating values in the scatter plot

Chapter 5 Data Visualization

227

nature of the interactive mode. The default "inline" and interactive

"notebook" formats are the main modes for Jupyter.

Aside from Jupyter, Matplotlib might use your computer operational

system as a backend engine. You can try it by using the magic function:

%matplotlib with no arguments

%matplotlib

import matplotlib.pyplot as plt

In this case, Matplotlib will generate an interactive plot similar to

"notebook" mode in a separate Python shell. One thing to remember

when you toggle between the Matplotlib modes is that they cannot be used

together at the same time, and you need to reboot the Kernel if you replace

one with another one within a Jupyter file.

�Pie Plot
We will generate a pie chart in an interactive shell. Import Matplotlib using

the %matplotlib format:

%matplotlib

import matplotlib.pyplot as plt

in a new Jupyter file, and it will return

Using matplotlib backend: MacOSX

or Windows, depending on the operational system your computer is

running on. Using matplotlib backend means that Matplotlib is

connected to your operational system and will use it to generate images.

Continuing the previous example, we will plot the resident population

for the US geographic areas as a pie plot. According to the US Census

Bureau, 38.26% of all population in the United States reside in the South,

23.87% in the West, 20.82% in the Midwest, and 17.06% in the Northeast.

Chapter 5 Data Visualization

228

We need to define values and labels for the pie plot:

population = [38.26, 23.87, 20.82, 17.06]

areas = ["South", "West", "Midwest", "Northeast"]

The Matplotlib pie() function will generate a simple pie chart. To see

all available arguments to customize the pie diagram, run help(plt.pie).

Pass population into pie() as x values and areas as labels:

plt.pie(x=population, labels=areas)

The Matplotlib backend engine should generate a pop-up window

with a simple pie chart (Figure 5-9).

Figure 5-9.  Population data plotted as a pie chart

Chapter 5 Data Visualization

229

The function pie() as well as other Matplotlib functions accepts

custom colors. For this example, I decided to pick a bright color palette on

https://htmlcolorcodes.com:

palette = ["#00FFFF"," #FF00FF"," #00FF00"," #800080"]

plt.pie(x=population, labels=areas, colors=palette)

Sometimes, you want to emphasize a wedge of a pie diagram to make

a point. This can be done with the pie() function argument explode.

Explode accepts an iterable such as a list or a tuple with floats for the

position of each wedge to the center.

For instance, the explode=[0, 0.1, 0, 0] argument will push the

second wedge from the center by 0.1. In our case, I’ll display the "West"

wedge 0.2 from the center of the pie plot:

standout =[0, 0.2, 0, 0]

plt.pie(x=population, explode=standout, labels=areas,

colors=palette)

Another style argument in the pie() function is shadow. If you want to

add a 3D look to the pie plot, switch the shadow argument to True:

plt.pie(x=population, explode=standout, labels=areas,

shadow=True, colors=palette)

Along with labels, you might want to display the actual values of each

region in the plot. The autopct argument will display the values. We need

to assign the format of a value as a string. The format of a string should be

done in a Python formatting style you can find at https://pyformat.info.

In particular, the expression '%.2f' would show two numbers after the

decimal point, and '%.2f%%' would place a % character after the value:

plt.pie(x=population, explode=standout, labels=areas,

autopct='%.2f%%', shadow=True, colors=palette)

Chapter 5 Data Visualization

https://htmlcolorcodes.com
https://pyformat.info

230

With additional styling attributes, we have generated a very stylish

pie plot (Figure 5-10). If something went wrong during the process of

generating the plot, rebooting the Kernel should help.

Of course, you can add a title to the pie plot as we did it in the previous

cases.

Matplotlib is a very useful tool to get a sense of data. It is easy to use.

We have covered all main functions to visualize and style diagrams. We

have learned how to build basic graphs, but with Matplotlib and numerous

additions and plugins, you can do so much more. For sophisticated styles

and plots, I would recommend visiting the Matplotlib documentation

gallery page: https://matplotlib.org/stable/gallery/index.html.

Figure 5-10.  A pie plot with styling attributes

Chapter 5 Data Visualization

https://matplotlib.org/stable/gallery/index.html

231© Art Yudin 2021
A. Yudin, Basic Python for Data Management, Finance, and Marketing,
https://doi.org/10.1007/978-1-4842-7189-6_6

CHAPTER 6

Essential Financial
Tasks Done with Python
In the previous chapters, we have covered all the nuts and bolts of Python.

We have used some financial examples to illustrate in finance. In this

chapter, we will dive more in everyday finance tasks. My goal here is to

show you a practical use of Python and to get you started so you could

write your own code. Also, you should regard this book as your first step

in Python learning and continue your education by reading the Pandas

and other libraries’ documentation, follow professional blogs, and master

Python by practicing. There will never be a magical function or a preset

solution to solve all real-life challenges. So use the examples in the chapter

to build a base for your own projects.

�NumPy Financial
I would like to begin this chapter with elementary financial functions

every student learns in the first year of business college. The future value

of money, internal rate of return, present value, and net present value

of future cash flows are the pillars of financial analysis. Knowing Python

basics, you can write the formulas and calculate these measures from

scratch, yet to save us some time and effort, there is a Numpy-Financial

package. Numpy-Financial does all the necessary work for you, providing

clean results with no bugs.

https://doi.org/10.1007/978-1-4842-7189-6_6#DOI

232

To get started with Numpy-Financial, you need to install it in the

Terminal. As a reminder, you can find the Terminal in Anaconda Navigator

Environments by clicking the base (root) menu. Make sure that you are

installing the package into a new Terminal shell and not interfering with

the working Kernel.

pip install numpy-financial

After you see the message that Numpy-Financial was successfully

installed, the Terminal can be closed, and you can import the package in a

new Jupyter Notebook:

import numpy_financial as npf

I do not want to spend a lot of time explaining the financial metrics in

detail and their importance in financial analysis, but rather concentrate on

their implementation in the Numpy-Financial functionality.

Numpy-Financial is a small library that has only ten essential functions

(Table 6-1).

Table 6-1.  Numpy-Financial functions

Function Description

fv(rate, nper, pmt, pv[,when]) Compute the future value

ipmt(rate, per, nper,

pv[,fv,when])

Compute the interest portion of a

payment

irr(values) Return the internal rate of return (IRR)

mirr(values,finance_

rate,reinvest_rate)

Modified internal rate of return

(continued)

Chapter 6 Essential Financial Tasks Done with Python

233

Function Description

nper(rate, pmt, pv[,fv,when]) Compute the number of periodic

payments

npv(rate, values) Return the NPV (Net Present Value) of a

cash flow series

pmt(rate, nper, pv[,fv,when]) Compute the payment against loan

principal plus interest

ppmt(rate, per, nper,

pv[,fv,when])

Compute the payment against loan

principal

pv(rate, nper, pmt[,fv,when]) Compute the present value

rate(nper, pmt, pv, fv[,when,

guess,tol,...])

Compute the rate of interest per period

Table 6-1.  (continued)

As you have seen it is not necessary to memorize all functions and their

arguments. All you have to do is to run dir(npf) to see objects’ available

methods and help() to learn a particular function arguments.

�Future Value fv( )
The value of money is the first thing you learn in Finance 101. Let’s take a

look at a classic problem. Suppose you have a choice to get $3000.00 today

earning 3% annually or agree to be paid $3300.00 three years from now. We

will solve the problem with the pv() function. The given statements will be

saved under variable names deposit, annual_interest, and years:

deposit = 3000

annual_interest = 0.03

years = 3

Chapter 6 Essential Financial Tasks Done with Python

234

future_value = npf.fv(annual_interest, years, 0, -deposit)

print("Future value of ${:.2f} is ${:.2f}".format(deposit,

future_value))

I use a minus sign before deposit as an argument because we can

regard that as an investment. If you do not use a minus sign, then the result

will come out as a negative number.

As a result of the calculation, we see that $3300.00 would be a better

deal than earning 3% annually on the deposit of $3000.00 (Figure 6-1).

�Present Value pv( )
The opposite of the future value of money formula is the present value of

money. An amount of money today is worth more than the same amount

in the future. But how much more exactly? Numpy-Financial will help us to

answer that question with the function pv().

Continuing with the preceding example, we can assume that you have

a choice to receive $3300 in three years, or you can claim them now. We

will leave an interest rate at 3% annually.

The pv() function takes the interest rate, number of periods, and

future value as arguments. The interest rate could be passed as an annual

or monthly value. The number of periods would depend on the annual or

monthly interest. We will define future_value as $3300; annual_rate and

years values stay the same:

Figure 6-1.  Future value calculation with the fv() function

Chapter 6 Essential Financial Tasks Done with Python

235

future_value = 3300

annual_rate = 0.03

years = 3

present_value = npf.pv(annual_rate, years,0,-future_value)

print("Present value of ${:.2f} is ${:.2f}".format(future_

value, present_value))

The present value of $3300.00 is $3019.97 according to the result we

have returned by the pv() formula (Figure 6-2).

�Net Present Value npv( )
Numpy-Financial can help to determine priority between investment

projects based on profitability using the Net Present Value of future cash

inflows discounted at the cost of capital rate. The function npv() returns

the Net Present Value of a cash flow series. It is easy to use; all we need is

a cost of capital or opportunity cost of capital and future expected cash

flows. Expected cash flows should be passed as an array. According to the

documentation, investments have to be negative floats and inflows should

be passed as positive numbers.

Suppose there is a company planning to expand and choosing between

two investment opportunities. One choice is to expand production

and invest $100,000 in new facilities and equipment. The production

expansion will bring $25,000 of annual income in the next five years.

Figure 6-2.  Calculating the present value of money with the pv()
function

Chapter 6 Essential Financial Tasks Done with Python

236

Another investment alternative is to buy securities yielding 5% annually.

We assume that the risks are equal for simplicity of the example.

Based on the assumptions, we will calculate NPV (Net Present Value)

of the expansion project. We will define investment as a negative value

and cash_flows as a Python list holding future cash flows:

discount_rate = 0.05

investment = -100000

cash_flows = [investment, 25000, 25000, 25000, 25000, 25000]

net_present_value = npf.npv (discount_rate, cash_flows)

print("Net Present Value of the project is ${:.2f}

".format(net_present_value))

The Net Present Value of the project is $8236.92 (Figure 6-3).

Using the same npv() function, we can compare two projects. Also,

we can run scenarios for a range of discounted interest rates and see how

project profitability would be affected by changing interest rates.

The second project we want to compare to would have the same initial

investment of $100,000 and gradually increasing inflows of $5000, $10,000,

$40,000, $40,000, and $40,000 in the next five years, respectively.

Figure 6-3.  Calculating the Net Present Value of a project

Chapter 6 Essential Financial Tasks Done with Python

237

The discounted rates can be presented as a range of floats stored in a

Python list:

cash_flows_project_one = [-100000,

25000,25000,25000,25000,25000]

cash_flows_project_two = [-100000,

5000,10000,40000,40000,40000]

discount_rates = [0.0,0.05,0.10,0.20,0.25]

The first initial investment number in cash_flows_project_one and

cash_flows_project_two is negative because we invested that amount,

and it represents a cash outflow.

We need to initialize two empty lists to store the outcomes of scenario

analysis:

npv_project_one =[]

npv_project_two =[]

Finally, to calculate NPV for projected cash flows, we would need to

dynamically pass each rate from the discount_rates list. A for loop will

iterate through the list of discount_rates and will send a value by value

into the npv() function. The outcomes will be temporarily stored under

variables npv_one and npv_two and appended to npv_project_one and

npv_project_two lists:

for rate in discount_rates:

 npv_one = npf.npv(rate, cash_flows_project_one)

 npv_project_one.append(npf.npv(rate, cash_flows_projetct_one))

 npv_two = npf.npv(rate, cash_flows_project_two)

 npv_project_two.append(npv_two)

Now that we have run scenarios for different discount rates and saved

the NPV results, we can plot them.

Besides the Matplotlib library, we would need the Shapely package to

find an intersection of two plotted lines representing the NPV values.

Chapter 6 Essential Financial Tasks Done with Python

238

Open a Terminal or a command prompt and download and install

Shapely:

pip install shapely

Shapely is a Python library to analyze geometric objects.1 Of course,

we could have found the intersection coordinates without the help of

Shapely, but it would require many lines of code. The Shapely method

intersection() would do a better job more precisely.

After you have installed Shapely, import it and Matplotlib on top of the

Jupyter Notebook:

import numpy_financial as npf

import matplotlib.pyplot as plt

from shapely.geometry import LineString

I want my graph to have perfectly scaled axes, and I’ll set x and y axes’

limits as 0.0 and 0.25:

plt.xlim(0.0, 0.25)

The Matplotlib method xlim() sets the x limits of the current axis

based on the start and end points. We can hardcode them as 0.0 and 0.25

discount rates or make them change based on the values in the discount_

rates list. That means assigning the start point as the first value from the

list discount_rates[0] and the end point as the last value from the same

list discount_rates[-1]:

plt.xlim(discount_rates[0], discount_rates[-1])

1 https://pypi.org/project/Shapely/

Chapter 6 Essential Financial Tasks Done with Python

https://pypi.org/project/Shapely/

239

Y axes will be scaled using the Matplotlib method ylim(), and we will

pass the start and end points as the last value from the NPV results stored

in the npv_project_two list:

plt.ylim(npv_project_two[-1],npv_project_two[0])

After that, we can plot the NPV results using discount rates as the x axis:

plt.plot(discount_rates, npv_project_one, label="Project One")

plt.plot(discount_rates, npv_project_two, label="Project Two")

The NPV values will be plotted as two lines when you run the cell. The

intersection point of two lines or, as it is called in finance, the crossover

rate can be precisely calculated and marked on the plot.

The Shapely function LineString will convert the x and y coordinates

into a straight geometrical object:

line1 = LineString(list(zip(discount_rates, npv_project_one)))

line2 = LineString(list(zip(discount_rates, npv_project_two)))

The values from discount_rates, npv_project_one, and npv_

project_two we have used as x and y coordinates in the plot have to

be combined with the help of the Python built-in function zip(). The

function zip() will package them as a list of tuples and pass into the

LineString() function.

Let me step back and say a couple of words about the function zip().

Very often, we need to map values that came from different sources. For

example, the names of cities and population. Both come as lists where

population values are in millions:

cities = ["New York", "Chicago", "Huston"]

population = [8.3, 2.7, 2.3]

Chapter 6 Essential Financial Tasks Done with Python

240

The function zip() will match the population value to a city in the

cities list:

zip(cities, population)

The function zip() as many other functions in Python returns an

object:

<zip at 0x7fe2366e4700>

To unpack the zip object, we need either to iterate through it with a

for loop and get pairs one by one or to wrap the zip object as a list:

list(zip(cities, population))

Now we can see pairs stored as tuples in the list:

[('New York', 8.3), ('Chicago', 2.7), ('Huston', 2.3)]

Getting back to our NPV example, the result of the LineString

operation is stored under the line1 and line2 variables. The method

intersection will get us coordinates of that crossing point:

point = line1.intersection(line2)

The object point now has x and y coordinates that can be plotted on

the graph as point.x and point.y attributes. The point.x and point.y

give the exact dollar amount and interest rate at the intersection on NPV

values of two evaluated projects.

We can mark the intersection on a graph as a red dot with dashed lines

dropping on x and y axes:

plt.plot(point.x, point.y, marker="o", color="red")

As you can see, to plot a dot, we use the same plot() function we have

practiced in the previous chapter. The difference is the style. Now we use

a marker. There are many preset markers in the function plot(). You can

find the one you like with help(plt.plot).

Chapter 6 Essential Financial Tasks Done with Python

241

Matplotlib functions hline() and vline() will plot horizontal and

vertical lines based on x and y coordinates:

plt.hlines(y=point.y, xmin=0.0, xmax=point.x, color='red',

linestyles='dotted', label=str(round(point.x*100,3)))

plt.vlines(x=point.x, ymin=-40000, ymax=point.y, color='red',

linestyles='dotted',label=str(round(point.y,2)))

The Matplotlib functions hline() and vline() are similar to other

plotting methods we have been working before. The straight lines go from

the origin of the point that is defined as xmax=point.x and ymax=point.y.

X and y limits are identified as 0.0 on x and –40000 on y axes.

The final touch is grids and labels:

plt.grid()

plt.legend()

plt.title("NPV profile")

plt.xlabel("Discount Rate")

plt.ylabel("NPV (Net Present Value)")

The full solution and the graph are shown in Figures 6-4 and 6-5.

Chapter 6 Essential Financial Tasks Done with Python

242

Figure 6-4.  Calculating and plotting NPV of two projects

Figure 6-5.  Plot of the crossover rate of NPV of two projects

Chapter 6 Essential Financial Tasks Done with Python

243

�Value at Risk (VAR)
Financial regulation became tougher over the past years, and these days

compliance managers have to use modern tools to generate tons of reports

working with huge data sets. This is where Python comes to the rescue.

Value at risk is a very popular statistical measure to evaluate the level

of financial risk for an investment. In VAR (value at risk), the risk is defined

as the maximum loss at a specified time.

Here, we will take a look at how to calculate the parametric VAR model

based on a normal distribution and volatility.

Suppose we have a portfolio of common stocks. In our portfolio, we

hold positions in the following stocks: Microsoft, Apple, and IBM. For

simplicity of the example, let’s say we hold 100 shares of each company.

To make future assumptions, we would need to get historic prices for

the stock in the portfolio. I hope you have already installed the Pandas-

Datareader library; if not, in Chapter 4 we have discussed the installation

and the purpose of the package in detail.

Import NumPy, Pandas, Matplotlib, and Pandas-Datareader on the top

of a new Jupyter Notebook:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import pandas_datareader.data as web

To fetch historic prices, we need to place the stock symbols into a Python

list. The variable name portfolio would perfectly reflect the list purpose:

portfolio = ["MSFT","AAPL","IBM"]

We will need a DataFrame to store the historic prices for our stocks, so

we initialize one under the variable name prices:

prices = pd.DataFrame()

Chapter 6 Essential Financial Tasks Done with Python

244

Using Pandas-Datareader, get historic prices from Yahoo for each stock

by its symbol. You can specify any period range as a string format:

for stock in portfolio:

 �prices[stock] = web.DataReader(stock, 'yahoo', '2017-01-01',

'2021-03-20')["Adj Close"]

Keep in mind that Pandas-Datareader returns a DataFrame containing

columns for open, high, low, close, volume, and adjusted close prices.

The adjusted close price, which reflects a stock price after splits and

dividends, is what we need. We grab it from each DataFrame by column

name ["Adj Close"]. Using the dictionary notation, we add the ["Adj

Close"] column to the DataFrame we have defined before. The variable

stock holding a value from the portfolio list will set the symbol for each

company as a column name in prices while we iterate through the list.

At the end of the day, we should have the prices DataFrame filled with

historic prices. You can check them with msft_prices.head().

The method head() will reveal the first five rows of the DataFrame with

historic prices (Figure 6-6).

Figure 6-6.  Retrieving historic prices for the portfolio of stocks

Chapter 6 Essential Financial Tasks Done with Python

245

We can visualize the historic prices by plotting them. It would be

difficult to plot and compare stocks with different values, like AAPL at

27.45 and IBM at 137.77. We would need to normalize the prices using 100

as a base on the first date of data. prices.iloc[0] will get us the prices on

the first date in the DataFrame:

first_date = prices.iloc[0]

normalized_prices = prices/first_date * 100

The plotting part is easy; we have done it before in Chapter 5:

[line1,line2,line3] = plt.plot(prices.index , normalized_

prices, label=["MSFT","AAPL","IBM"])

plt.legend(loc="lower right")

plt.xticks(rotation=45)

plt.title("Portfolio of stocks");

plt.grid()

plt.legend([line1,line2,line3],["MSFT","AAPL","IBM"],

loc="upper left");

I use the DataFrame index as the x axis since it contains dates.

normalized_prices is my y axis. The [line1,line2,line3] list is used

purely for labels to differentiate what line is what stock.

The historic performance of three stocks can be seen in Figure 6-7.

Chapter 6 Essential Financial Tasks Done with Python

246

The VAR calculation begins with historic stock returns. There are two

methods how you can do that. The first one is using the Pandas method

shift() that shifts a row by a specific number:

stocks_return = prices/prices.shift(1)-1

Or to be more precise, you can calculate logarithmic returns with the

NumPy function log():

stocks_return = np.log(prices/prices.shift(1))

The second option is to use the method pct_change(). Pct_change()

also accepts an argument for a number of periods. In our case, it is one day

or one row:

return = prices.pct_change(1)

Figure 6-7.  Normalized historic prices

Chapter 6 Essential Financial Tasks Done with Python

247

No matter what approach you use, stocks_return and return should

have the same results. The first value in both cases is NaN (not a value),

and we will eliminate it with the dropna() method:

 return.dropna(inplace=True)

In case you forgot, inplace is an argument that saves changes within

the object.

Visualization of returns will help us better comprehend the numbers.

The Matplotlib function hist() will present the picture in the form of

histograms.

We can plot all three stocks on the same graph. The keyword argument

will make them transparent:

plt.hist(return["MSFT"], alpha=0.5, bins=100)

plt.hist(return["AAPL"], alpha=0.5, bins=100)

plt.hist(return["IBM"], alpha=0.5, bins=100);

Or if the graph is too busy to understand anything, you can plot each

stock return individually (Figure 6-8). I have mentioned before that the

Pandas DataFrame supports Matplotlib, and you can apply the method

hist() directly to return:

return.hist()

Chapter 6 Essential Financial Tasks Done with Python

248

The Pandas Series has a method describe(). The method describe()

could be applied only to a Series or columns in a DataFrame holding

numeric values:

return.describe()

Figure 6-9 displays statistical measures of the stock returns the method

describe() computed.

Figure 6-8.  Plotting historic stock returns

Chapter 6 Essential Financial Tasks Done with Python

249

After we have applied the describe method to the historic returns,

we can see where a mean of the data set is and how big is a spread of std

(standard deviation). Min and max values indicate the boundaries of the

data set. Besides, we can see 25%, 50%, and 75% percentiles.

The describe() method is a very useful tool to get statistical measures

of any set of numeric values on the fly.

For our VAR calculation, we will need the mean and standard deviation

of the portfolio. We can grab the mean value from the describe() method:

return.describe().loc["mean"]

or use the special mean() method:

mean_return = return.mean()

The standard deviation of a portfolio or volatility would require

a covariance between each pair of stocks. In Pandas, we can create a

covariance matrix on the returns with the function cov():

covar = return.cov()

Figure 6-10 displays a covariance matrix of the portfolio we will use to

get the volatility of the portfolio.

Figure 6-9.  The method describe() returns statistical measures

Chapter 6 Essential Financial Tasks Done with Python

250

Additionally, we would need the percentage of each stock within

the portfolio. For the simplicity of this example, we assume that we have

invested 50% of the total dollar value of the portfolio into Microsoft, 25%

in Apple, and 25% in IBM. This assumption has to be saved in the NumPy

array:

weights = np.array([0.5,0.25,0.25])

The NumPy array can be regarded as a vector. Also, the NumPy array is

used as a core in the Series and DataFrame. That means we can derive the

dot product or single numerical value out of the vector.

The variable mean_return holds the mean of historic returns of three

stocks, and we would need to normalize them again in portfolio stock

percentages with the method dot():

portfolio_mean = mean_return.dot(weights)

The standard deviation is the square root of the variance, and we can

get it with the NumPy sqrt() method:

volatility = np.sqrt(weights.T.dot(covar).dot(weights))

The capital T is a transpose method; it changes the relative position of

a vector or a matrix. If you run dir() on an array, Series, or DataFrame, it

always would be the first one in the list.

Figure 6-10.  Covariance matrix

Chapter 6 Essential Financial Tasks Done with Python

251

Additionally, the mean and standard deviation have to be calculated

for the total value of the portfolio. Here, we will assume that the total value

of the portfolio is $1,000,000:

portfolio_value = 1000000

investment_mean = (1 + portfolio_mean) * portfolio_value

investment_volatility = portfolio_value * volatility

After we have all the necessary values at hand, we can calculate the inverse

of the normal cumulative distribution. For that, we would need ppf(), percent

point function, from the SciPy (science Python) package. SciPy is included in

Anaconda, and all we need is to import it at the beginning of the file:

import scipy.stats as scs

The ppf() method uses default values for the mean, 0, and standard

deviation, 1, which are standard for a normal bell distribution. We will

overwrite them with investment_mean and investment_volatility. A risk

manager will need to pass the confidence level into ppf(); usually, it is 95%:

confidence = 95

normsinv = scs.norm.ppf((1-95/100), investment_mean,investment_

volatility)

The final step is to subtract the inverse of the normal cumulative

distribution from the portfolio value:

var = portfolio_value – normsinv

You can round down the result to two figures after the decimal point:

np.round(var,2)

The final result is 25088.94 (Figure 6-11). After all these calculations, we

can say with 95% degree of certainty that a portfolio with MSFT, AAPL, and

IBM shares currently valued at $1,000,000 may lose $25,088.94 in one day.

Chapter 6 Essential Financial Tasks Done with Python

252

If you need to project what VAR will be over five days, you can multiply

one day VAR by a square root of the number of days.

We will place the var * np.sqrt(day) expression into the for loop

within a range of days. Initialize an empty list to store the results. We will

plot them:

var_results = []

number_of_days = 5

days_list = list(range(1, number_of_days+1))

for day in days_list:

 result = var * np.sqrt(day)

 var_results.append(result)

We need to add 1 to number_of_days since in the function range, the

stop point is exclusive.

Figure 6-11.  The value at risk calculation

Chapter 6 Essential Financial Tasks Done with Python

253

Figure 6-12.  Projecting VAR over a five-day period

Conclusively, we will plot var_results:

plt.plot(days_list, var_results)

plt.title("Value at Risk")

plt.ylabel("Portfolio loss")

plt.xticks(days_list,["1st day","2nd day","3rd day","4th

day","5th day"]);

plt.grid()

We can see that losses double over the period of five days (Figure 6-12).

�Monte Carlo Simulation
Using the same historic stock prices, we can forecast the performance

of the portfolio and simulate probable outcomes using the Monte Carlo

simulation technique.

Chapter 6 Essential Financial Tasks Done with Python

254

The Monte Carlo approach is to generate random outcomes for

expected returns and expected volatility for the portfolio. Pretty much like

rolling dice over and over again.

To save the outcomes for expected returns and expected volatility, we

need to initialize two lists:

mc_return = []

mc_volatility = []

Randomly changing the percentages of each position in the portfolio,

we will calculate the expected returns and expected volatility. The NumPy

function random() will generate random numbers in the shape of an array.

The size and dimensions of an array would depend on the number passed

as an argument. In our case, we need an array that would match the

number of positions in the portfolio.

The portfolio list we used at the beginning of the example

currently contains three stocks. In the future, we might add a couple

more, so it would be smart to store the length of the list under the variable

num_assets:

num_assets = len(portfolio)

for roll in range(5000):

 weights = np.random.random(num_assets)

 weights /= np.sum(weights)

 mc_return.append(np.sum(mean_return * weights) * 252)

 �mc_volatility.append(np.sqrt(np.dot(weights.T, np.dot

(covar * 252, weights))))

For each iteration of the for loop, the method random() generates

random weights of assets in the portfolio. The total percentage of all assets

always has to be exactly 100%; that is why we divide weights by sum() of

weights. Next, we generate expected returns and volatility and normalize

the results by the number of trading days in a year (Figure 6-13).

Chapter 6 Essential Financial Tasks Done with Python

255

We will plot the outcomes as a scatter, but before that we need to

convert mc_return and mc_volatility lists into NumPy arrays:

expected_return = np.array(mc_return)

expected_volatility = np.array(mc_volatility)

In the end, we plot expected_return and expected_volatility:

color = expected_return/expected_volatility

plt.figure(figsize=(12,8))

plt.scatter(expected_volatility, expected_return, c=color,

marker='o')

plt.grid()

plt.title("Monte Carlo simulation")

plt.xlabel('Expected volatility')

plt.ylabel('Expected return')

plt.colorbar(label="Sharpe ratio")

plt.show()

The Matplotlib show() method is optional. I have included it in case

you would want to run the code in Matplotlib "notebook" mode or use the

operational system to generate the plot.

Figure 6-13.  Running the Monte Carlo simulation on a portfolio of
stocks

Chapter 6 Essential Financial Tasks Done with Python

256

This example is an illustration of Harry Markowitz’s Modern Portfolio

Theory.2 The higher return on investment you want to get, the higher

volatility you should expect (Figure 6-14).

The curve in Figure 6-14 connects all of the most efficient outcomes,

the optimal combination of risk and return, and it is called the efficient

frontier.

2 https://www.investopedia.com/terms/m/modernportfoliotheory.asp

Figure 6-14.  Plotting Monte Carlo simulation results

Chapter 6 Essential Financial Tasks Done with Python

https://www.investopedia.com/terms/m/modernportfoliotheory.asp

257

�Efficient Frontier
The preceding example has demonstrated that you can build any

statistical or financial model from scratch. However, if you are too busy

and require a key-turn solution, there is a professional Python package

PyPortfolioOpt that implements portfolio optimization methods, including

efficient frontier techniques and other solutions for risk management.3

PyPortfolioOpt comes with built-in risk models and plotting.

Unfortunately, for now PyPortfolioOpt is not a part of the Anaconda

package, and we will need to install it with the pip command. We have

gone through the installation process many times, and I am sure that by

now you know where to find the Terminal, so run

pip install pyportfolioopt

We will use PyPortfolioOpt to find the efficient frontier for our portfolio.

For the following example, you would need to open a new Jupyter

Notebook and import the following functions from PyPortfolioOpt:

import pandas as pd

import pandas_datareader.data as web

from pypfopt.efficient_frontier import EfficientFrontier

from pypfopt.cla import CLA

from pypfopt import plotting

from pypfopt.plotting import plot_weights

from pypfopt import risk_models

from pypfopt import expected_return

I will explain all of the imported functions as we move through

the example. Our goal is to generate and plot the efficient frontier of a

3 https://pyportfolioopt.readthedocs.io/en/latest/index.html

Chapter 6 Essential Financial Tasks Done with Python

https://pyportfolioopt.readthedocs.io/en/latest/index.html

258

portfolio. Also, find optimal portfolios using the Critical Line Algorithm as

implemented by Marcos Lopez de Prado and David Bailey.4

We will be using the same portfolio from the previous example, and

we will need to get the historic prices again since we are in a different

notebook. At the same time, feel free to use your own favorite equities or

add more stocks to the default list:

portfolio = ["MSFT", "AAPL","IBM"]

prices = pd.DataFrame()

for stock in portfolio:

 prices[stock] = �web.DataReader(stock, 'yahoo', '2017-01-01',

'2021-03-20')["Adj Close"]

Similar to the previous case, PyPortfolioOpt calculates the expected

returns by extrapolating historic returns. There is the expected_return

module, we have imported it, as the name implies it generates annualized

mean returns. Run it on the historic prices we have gathered with

Pandas-Datareader:

mu = expected_return.mean_historical_return(prices)

To quantify the asset risk, PyPortfolioOpt includes risk models. One of

them is the covariance matrix. Before, we have used the Pandas method

cov(); this time, we will run sample_cov() from the risk_models module

we have imported at the beginning of the file:

sigma = risk_models.sample_cov(prices)

The sample_cov() function takes prices and returns annualized

results. Compared to the previous example, there is no need to multiply

the results by 252 trading days. It is already included in sample_cov().

4 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2197616

Chapter 6 Essential Financial Tasks Done with Python

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2197616

259

Based on the expected returns and covariance, we can calculate the

efficient frontier function we have imported, EfficientFrontier.

Besides returns and covariance, you may provide weight boundaries

for all your equities in the form of a list of tuples. In the previous

example, we assumed that in the portfolio we held 50% of MSFT and

25%, respectively, of AAPL and IBM. If the goal is to set the exact values,

then we pass weight_bounds =[(0.5,0.5),(0.25,0.25),(0.25,0.25)]

as a keyword argument. Otherwise, all positions in a portfolio would be

defaulted to (0,1), meaning each asset minimum value could be 0 and

maximum weight within a portfolio 100%. If a portfolio includes a short

position, then weight_bounds should be set to (-1,1). I suggest we leave a

default value of (0,1) and see what would be the optimal outcome:

efficient_front = EfficientFrontier(mu, sigma, weight_

bounds=(0,1))

The EfficientFrontier function always returns an object (Figure 6-15).

Chapter 6 Essential Financial Tasks Done with Python

260

The job of PyPortfolioOpt is to optimize a portfolio of stocks. In other

words, PyPortfolioOpt provides us with a guidance on how to better

structure a portfolio to achieve the investment goals.

For instance, if our investment goal is to reduce volatility to a

minimum, we would get the proposed allocation of assets within

a portfolio with an attribute of the efficient frontier object min_

volatility():

min_vol_weights = efficient_front.min_volatility()

According to PyPortfolioOpt, an allocation of 52% of all assets in IBM,

17% in AAPL, and 30% in MSFT will provide us with a maximum return at

the lowest level of volatility (Figure 6-16).

Figure 6-15.  Generating the efficient frontier for a portfolio of
stocks

Chapter 6 Essential Financial Tasks Done with Python

261

Figure 6-16.  Calculating weights of stocks in a portfolio to minimize
volatility

In contrast, if the goal is to drive the risk-adjusted return to a

maximum, we can choose to maximize the Sharp ratio option with the

max_sharp() method. By default, the risk-free rate is 2%, but you can set it

to the current market:

max_sharp_weights = efficient_front.max_sharpe(risk_free_rate=0.02)

Maximizing the Sharp ratio choice will return a completely different

picture and recommend to drive up MSFT and AAPL shares to 54% and

45%, respectively, and completely eliminate IBM holding (Figure 6-17).

Depending on our assumptions and investment goals, the portfolio_

performance() method will calculate the expected return, annual

volatility, and Sharp ratio. The only thing you have to keep in mind is

that portfolio_performance() would return the expected returns and

volatility from the last operation you have performed on a portfolio. For

the clarity of the example, we would need to wipe out the memory of

the notebook we are working in. You can do it by choosing the option

"Restart & Clear Output" in the upper Kernel menu of a Jupyter

Notebook. Then you would need to rerun the cells for where all the

Figure 6-17.  Maximizing the Sharp ratio of the investment portfolio

Chapter 6 Essential Financial Tasks Done with Python

262

packages are imported, historic prices are gathered with

Pandas-Datareader, and we had calculated expected returns and

covariance matrix. Finally, you choose the scenario you want to get returns

and volatility, for instance, maximizing the Sharp ratio, and run

that cell. Afterward, you can get the portfolio performance by running

portfolio_performance() on the instance of the efficient frontier:

efficient_front.portfolio_performance(verbose=True, risk_free_

rate = 0.02)

There are two arguments verbose and risk_free_rate we can pass

into the portfolio_performance() method. The verbose argument means

the returned values would be printed with explanation. By default, verbose

is set to False and returns a tuple with raw numbers; a True option would

print all values with explanation (Figure 6-18). The risk_free_rate argument

would impact the expected return and volatility; thus, it should reflect the

market rates of future assumptions.

Additionally, we may plot the suggested weights from the max_

sharpe() method with the plotting method we have imported, plot_

weights() (Figure 6-19):

plot_weights(max_sharp_weights);

Figure 6-18.  Getting the expected performance of a portfolio with a
maximized Sharp ratio

Chapter 6 Essential Financial Tasks Done with Python

263

Consequently, to get the expected performance of a portfolio with

a low volatility, we would need to clear all outputs again and restart the

Kernel. Then rerun the cells and apply the min_volatility() method

to the instance of the efficient frontier. In this case, the portfolio_

performance() method returns a completely different set of performance

measures (Figure 6-20).

Figure 6-19.  Plotting weights of a portfolio with a maximized Sharp
ratio

Chapter 6 Essential Financial Tasks Done with Python

264

The visualization of the weights after minimum volatility optimization

would make it easier to understand the asset allocation. Plot them with the

plot_weights() function (Figure 6-21):

plot_weights(min_vol_weights);

Figure 6-20.  Getting the expected performance of a portfolio with a
minimizing volatility

Chapter 6 Essential Financial Tasks Done with Python

265

As I have mentioned before, PyPortfolioOpt comes with plotting tools

to help us visualize the entire efficient frontier. The plotting() function

would not work if you had run min_volatility() or max_sharpe()

methods. We would need to reinstate the instance of the original efficient

frontier by clearing the memory and resetting the Kernel. After that, rerun

all the cells except the ones with min_volatility() and max_sharpe()

methods.

With one line of code and plotting() function we have imported

before, plot the curve:

plotting.plot_efficient_frontier(efficient_front, show_

assets=True)

Figure 6-21.  Plotting the weights of a portfolio with a minimizing
volatility

Chapter 6 Essential Financial Tasks Done with Python

266

The show_assets argument will make sure the equities are also

mapped on the plot (Figure 6-22).

There is an alternative to the classic mean-variance optimization – CLA

(the Critical Line Algorithm). CLA is an optimization solution to find the

optimal portfolio on the curve. It is quite popular in portfolio management

due to the fact that it is the only algorithm specifically designed for

inequality-constrained portfolio optimization. It is implemented in

PyPortfolioOpt as the CLA() function. The CLA() function requires

expected returns and covariance matrix to get the optimal portfolio. Pass

the values we have generated before into CLA() and plot it (Figure 6-23):

cla = CLA(mu, sigma)

plotting.plot_efficient_frontier(cla);

Figure 6-22.  Plotting the efficient frontier of a portfolio

Chapter 6 Essential Financial Tasks Done with Python

267

The PyPortfolioOpt library is irreplaceable in investment portfolio

management. It is easy to use and well documented. My advice is to keep

an eye on the documentation (https://pyportfolioopt.readthedocs.

io/en/latest/index.html) for new features or changes. There are

some additional features we have not touched in the chapter such as

implementing your own optimizers. I believe after the preceding examples,

you have a better understanding of how to operate PyPortfolioOpt.

�Fundamental Analysis
There are numerous ways you can access corporate financial information

these days. One of them is the Alpha Vantage API we discussed in

Chapter 4. Here, I would like to demonstrate another Python package

Fundamental Analysis for acquiring and analyzing balance sheets,

income statements, cash flows, and other substantial information of

publicly traded companies.

We need to install the Fundamental Analysis library with the pip

command:

pip install FundamentalAnalysis

Figure 6-23.  Plotting the optimal portfolio with CLA

Chapter 6 Essential Financial Tasks Done with Python

https://pyportfolioopt.readthedocs.io/en/latest/index.html
https://pyportfolioopt.readthedocs.io/en/latest/index.html

268

In a new Jupyter Notebook, import Fundamental Analysis, Pandas,

Requests, and Matplotlib to plot data:

import FundamentalAnalysis as fa

import matplotlib.pyplot as plt

import pandas as pd

import requests

Fundamental Analysis is a small Python wrapper around the Financial

Modeling Prep API that gathers fundamental information of publicly

traded companies. According to the documentation, it obtains detailed

data on more than 13,000 companies.5

In order to start using the Financial Analysis package, you need

to secure an API Key from https://financialmodelingprep.com/

developer/docs/. Register and choose a free plan or a paid plan for

premium APIs and 30+ years of historic data. After you select a plan, go to

the dashboard in the upper menu where you can find your API Key.

We can start exploring Financial Analysis capabilities after you receive

an API Key. The API Key I’ll be using in this example will be disabled.

For starters, let’s get the list of all available companies and ETFs

(exchange-traded funds):

API_KEY = "1b01185c3c4ae0c8626ad15beb99a957"

companies = fa.available_companies(API_KEY)

The data received from the available_companies() function as well

as all other functions comes as a DataFrame. Using the iloc[] method, we

can move through the rows (Figure 6-24):

companies.iloc[5:10]

5 https://pypi.org/project/FundamentalAnalysis/

Chapter 6 Essential Financial Tasks Done with Python

https://financialmodelingprep.com/developer/docs/
https://financialmodelingprep.com/developer/docs/
https://pypi.org/project/FundamentalAnalysis/

269

If you have a favorite company, use its exchange symbol. I’ll use

Exxon Mobil Corporation. The symbol of Exxon Mobil on New York Stock

Exchange is XOM. The function profile() will get us essential information

about any publicly traded company (Figure 6-25):

ticker = "XOM"

profile = fa.profile(ticker, API_KEY)

Figure 6-24.  Browsing through the list of available companies

Chapter 6 Essential Financial Tasks Done with Python

270

A valuation is an important piece of information, and Financial

Analysis provides it with the function enterprise() for the five-year period

with free plans and for longer periods with a paid plan (Figure 6-26):

entreprise_value = fa.enterprise(ticker, API_KEY)

entreprise_value

Figure 6-26.  Valuation of Exxon Mobil Corp

Figure 6-25.  Receiving a profile of the XOM ticker

Chapter 6 Essential Financial Tasks Done with Python

271

They called it Fundamental Analysis for a reason; with the function

balance_sheet_statement(), we can fetch balance sheets of a publicly

traded company for a several year period (Figure 6-27). The keyword

argument period could be set either to the "annual" or "quarter" option.

Besides the assets and liabilities, balance_sheet_statement() returns the

links to SEC (US Securities and Exchange Commission) filings so you could

go right to the source.

Figure 6-27.  Balance sheets of Exxon Mobil Corp

Along with a balance sheet, you can get an income statement and a

cash flow statement:

income_statement_annually = fa.income_statement(ticker,

API_KEY, period="annual")

cash_flow_statement_annually = fa.cash_flow_statement(ticker,

API_KEY, period="annual")

We can visually analyze the data with Matplotlib. Gross profit is an

important component of a Fundamental Analysis, and we will visualize it

by plotting the revenue and cost of revenue numbers as bars.

On the x axis of the graph, we will plot years:

x = income_statement_annually.columns

Chapter 6 Essential Financial Tasks Done with Python

272

With Financial Analysis, you can get the raw data from the US

Securities and Exchange Commission (SEC) or key financial ratios.

and we will grab the numbers from the income statement for the

revenue and cost of revenue:

revenue = income_statement_annually.loc["revenue"]

cost = income_statement_annually.loc["costOfRevenue"]

The bar chart as other Matplotlib figures requires coordinates for x and

y axis arguments. Along with that, we will specify the color and width of

bars arguments:

plt.bar(x, revenue, color ='maroon', width = 0.6)

plt.bar(x, cost, color ='blue', width = 0.6)

plt.title("Exxon Mobil Corp Revenue/Cost of Revenue");

Based on the visual analysis, we see that 2020 was a tough year for

Exxon Mobil Corp (Figure 6-28).

Figure 6-28.  Visualization of gross profit

Chapter 6 Essential Financial Tasks Done with Python

273

The function key_metrics() will deliver all the main measures like the

current ratio of return on equity:

ratios = fa.key_metrics(ticker, API_KEY)

Using the subplot() function from Matplotlib, we will plot the

return on investment capital and return on equity from ratios on the

same figure but in the separate windows. We set the x axis as years from

ratios.columns and y values will be roic and roe from the rows. We get

the rows by labels with the DataFrame method loc[]:

x = ratios.columns

roic = ratios.loc["roic"]

roe = ratios.loc["roe"]

plt.subplot(211)

plt.plot(x, roic, color="blue", marker="o", label="ROIC")

plt.legend()

plt.subplot(212)

plt.plot(x, roe, color="green", linestyle='--', label="ROE")

plt.legend();

The numbers 211 and 212 in the method subplot represent the grids,

where the first number 2 means the number of rows, and the second

number 1 is the number of columns; each subplot has just one column.

The last number shows a position of a subplot within the whole figure.

The plot gets us two subplots on the same figure where each graph

displays separate values (Figure 6-29).

Chapter 6 Essential Financial Tasks Done with Python

274

�Financial Ratios
Another set of ratios are financial ratios. Fiancial ratios help investors

important information about a company health and help to compare

companies performance within an industry. We can get them with the

function financial_ratios():

fin_ratios = fa.financial_ratios(ticker, API_KEY)

One of the financial ratios we have received that I want to plot is the

inventory turnover.

Figure 6-29.  Plotting ROIC and ROE ratios

Chapter 6 Essential Financial Tasks Done with Python

275

An inventory turnover shows how fast a company sells its inventory.

The high inventory turnover ratio in 2016 points to higher sales, which

probably reflects high oil prices (Figure 6-30).

Financial Analysis is a very convenient package to grab financial

information with just a few lines of code.

As we have seen in this chapter, you can build a solution from scratch

or use a third-party library with Python. It is entirely up to you what road

to take. If you are an algorithmic trader, you would probably prefer a

custom-built high-tuned solution. On the other hand, if you need to get

the numbers fast, then you can always find a Python package that does the

job. In my opinion, Python is a great tool for any kind of financial analysis.

Figure 6-30.  Plotting the inventory turnover ratio

Chapter 6 Essential Financial Tasks Done with Python

277© Art Yudin 2021
A. Yudin, Basic Python for Data Management, Finance, and Marketing,
https://doi.org/10.1007/978-1-4842-7189-6_7

CHAPTER 7

Essential Digital
Marketing Tasks
Done with Python
Digital marketing requires digital tools to work with social media, send

sales emails, and acquire clients in the World Wide Web. There are

numerous marketing applications helping digital marketeers to run,

test, and analyze promo campaigns, but some of them are ridiculously

expensive, and others are not customizable and require additional work to

get needed results.

Would it be great if with a few lines of code, you could’ve run and

evaluate any custom scenario for free? You can build your own marketing

tools with Python. All big tech giants provide free and easy-to-use APIs to

automate tasks and manage the information.

In this chapter, we will take a look at the most popular marketing

services from Google, Twitter, and Mailgun. Using their APIs and Python,

we will robotize many tedious tasks. Besides, we will learn how to get the

marketing data in Python-readable format to examine it with Pandas.

We will start with the most essential digital marketing

instrument – Google Analytics. Google is a Python-friendly company,

and Python’s inventor Guido van Rossum had work at Google for a while.

Many Google services run on Python, and almost all of them can be

https://doi.org/10.1007/978-1-4842-7189-6_7#DOI

278

accessed through APIs. Google even has its own Python library to make a

connection to its services as simple as possible.

�Getting Started with Google API Client
I want to start with a quick introduction to the Google API Client package.

The Google API Client libraries provide an entry point to all essential

Google products. Whether you want to send or read email from a Gmail

account or access Google Maps with Python, you would need to have

Google API Python Client installed on your machine.

The installation process is seamless with a Python package manager

pip. Open Terminal in Anaconda Navigator ➤ Environments ➤ base

➤ Terminal, and using the pip command, install the Google API Client

package:

pip install google-api-python-client

All Google services require authentication and enabling the API.1 The

process I am about to describe here would be a generic scenario for any

Google API service.

Google recommends managing your projects and monitoring API

usage in one place, Google Cloud Platform (https://cloud.google.com/).

Some of Google services are free, some require payments, but regardless

of that, for new developers Google offers a $300 credit which is more than

enough to try the APIs. If you do not have a Google account yet, create one

at https://accounts.google.com and log in to Google Cloud Platform.

The dashboard of Google Cloud Platform might be a bit intimidating

for a newcomer because of too much information and unknown

abbreviations. We need to create a new project for an API.

1 �https://developers.google.com/analytics/devguides/reporting/data/v1/
quickstart-client-libraries

Chapter 7 Essential Digital Marketing Tasks Done with Python

https://cloud.google.com/
https://accounts.google.com
https://developers.google.com/analytics/devguides/reporting/data/v1/quickstart-client-libraries
https://developers.google.com/analytics/devguides/reporting/data/v1/quickstart-client-libraries

279

Step 1: Look for “create project” right next to the Google Cloud

Platform logo on top or simply jump to the Manage resources page

(https://console.cloud.google.com/cloud-resource-manager).

On the Manage resources page, you will see the “create project” button

on top (Figure 7-1).

Click “create project” and assign a project name in the new project

prompt. The name could be anything, and the location field could be left

with a default “No organization” value. Step 2: After you click the blue

create button, you should see the newly created project in the dashboard.

If you have another project on the home page of Google Cloud Platform,

in the top menu choose the one you want to use. Step 3: The dashboard

consists of many cards; choose the one that says API. On the bottom of the

API’s card, you will see a “Go to APIs overview” arrow. As you may recall

from Chapter 4, pretty much any API requires authentication in the form

of an API Key. The API overview link should take you to the API & Services

page where you can see all usage information and establish credentials.

Step 4: On the top of API & Services, click the plus sign “ENABLE APIS
AND SERVICES”.

This will take you to the API Library where you could choose any

Google service you want to get connected to. In the current case, type

Google Analytics API in the search prompt on the page. Besides the Google

Analytics API, we also filtered all other Google analytical services such as

the Google Analytics Reporting API and YouTube Analytics. Choose the

Google Analytics Reporting API (Figure 7-2).

Figure 7-1.  Google Cloud Platform Manage resources page

Chapter 7 Essential Digital Marketing Tasks Done with Python

https://console.cloud.google.com/cloud-resource-manager

280

The Google Analytics Reporting API page provides all

information about the service. Also, you could find a link to tutorials

and documentation. I would recommend keeping an eye on the

documentation as they might change something going forward.

Our goal is to invoke the Google Analytics Reporting API; on the page,

look for the blue “ENABLE” button and click it. After that, you should be

redirected back to the APIs & Services page. One last step left to have a fully

functional app service with Google is receive an API Key for the service. In

the left-hand menu, click the credentials option with a key. The credentials

page lets you to initialize, manage, and change API Keys. On the top of the

credentials page, you should see the plus sign create credentials button.

Click it and choose the API Key option. The API Key created card will pop

up upon creation of an API Key (Figure 7-3).

Figure 7-2.  Searching for Google Analytics Reporting API
services

Chapter 7 Essential Digital Marketing Tasks Done with Python

281

Most Google API services require an API Key. Save that key for later.

�Google Analytics with Python
We are one step away from placing our first Google Analytics API call;

Google Analytics requires an API Key to be provided in JSON format.

The easy way to generate a JSON file with a key would be to open the

Service Accounts page in Google Cloud Platform. You can search for it

in a prompt on top or navigate to IAM & Admin in the left menu. From

IAM & Admin, choose the Service Accounts option; it should take you to

the https://console.cloud.google.com/iam-admin/serviceaccounts

page. If you have multiple projects, click the one for Google Analytics.

There you should see the project email Google has created for the service

(Figure 7-4).

Figure 7-3.  Generating an API Key for a Google Analytics service

Chapter 7 Essential Digital Marketing Tasks Done with Python

https://console.cloud.google.com/iam-admin/serviceaccounts

282

Click the email and navigate to the Keys tab. There you’ll see the Add
Key button. Click Add Key and choose the Create New Key option. The

pop-up window will offer to generate a JSON Key file (Figure 7-5); click the

Create button and save it to your machine.

Figure 7-4.  Service Accounts page and Google service email

Figure 7-5.  Generating a key and saving it as a JSON file

Chapter 7 Essential Digital Marketing Tasks Done with Python

283

Finally, after we have generated an API Key as a JSON file, we can write

some code to use Google Analytics. It is time for Python code; open a new

Jupyter Notebook and move the downloaded JSON Key file to the same

working directory. Also, it would be a good idea to rename the JSON file to

client_secret_api.js.

To get authenticated, we would need to install the Oauth2client library.

You know where to find a Terminal window, so just run the pip command

and install the library:

pip install oauth2client

On top of a new Jupyter Notebook, import

from oauth2client.service_account import

ServiceAccountCredentials

from apiclient.discovery import build

At the beginning of the script, we need to define the credentials.

SCOPES will be the same for everybody trying to get access to Google

Analytics. KEY_FILE_LOCATION should provide a path to the downloaded

JSON file with the API Key. I have renamed my file to client_secret_api.

json. Finally, VIEW_ID should hold your View ID for your Google Analytics

project. You can find VIEW_ID on your analytics.google.com page. VIEW_ID

is assigned to the .\ Web resource you track if you have activated the

“Create a Universal Analytics property” option in Google Analytics.

Go to Admin settings on the bottom left and look for View Settings.

There in Basic Settings, you’ll find the View ID number for your website.

While you are in Google Analytics, add the email from Service Accounts

(Figure 7-4) to the list of users allowed to generate reports in Account User

Management.

SCOPES = ['https://www.googleapis.com/auth/analytics.readonly']

KEY_FILE_LOCATION = 'client_secret_api.json'

VIEW_ID = '123415356'

Chapter 7 Essential Digital Marketing Tasks Done with Python

http://analytics.google.com

284

To initialize credentials, we will use imported

ServiceAccountCredentials and pass KEY_FILE_LOCATION and SCOPES as

arguments:

credentials = ServiceAccountCredentials.from_json_keyfile_

name(KEY_FILE_LOCATION, SCOPES)

Next, we will need to connect the Google API Client library via the

function build(). As I have mentioned before, the Google API Client

package is generic and works with all Google services. In the function

build(), you need to specify a service you want to get connected to and a

version of the package:

analytics = build('analyticsreporting', 'v4', credentials=

credentials)

The Google Analytics report requires a period range. We can set start_

date and end_date:

start_date = "2020-01-01"

end_date = "2021-04-23"

Also, we would need to specify dimensions and metrics for the

Google Analytics report. You can find the list of all available metrics here:

https://ga-dev-tools.appspot.com/dimensions-metrics-explorer/.

For my first report, I’ll use very popular users and sessions metrics.

To send a request for this report, we need to use the analytics.reports()

function, and in the body specify VIEW_ID, dates, metrics, and dimensions:

response = analytics.reports().batchGet(body={

 'reportRequests': [{

 'viewId': VIEW_ID,

 �'dateRanges': [{'startDate': start_date, 'endDate':

end_date}],

 'metrics': [

Chapter 7 Essential Digital Marketing Tasks Done with Python

https://ga-dev-tools.appspot.com/dimensions-metrics-explorer/

285

 {"expression": "ga:users"},

 {"expression": "ga:sessions"}

]

 }]}).execute()

Users and sessions metrics arguments should be passed into the

function as array keys and values where "expression" followed by metrics.

Print the response in a new cell, and you’ll see a generated report from

Google Analytics come in JSON format (Figure 7-6).

We have dealt with JSON before and know that it works like a Python

dictionary.

Figure 7-6.  Generating a Google Analytics report for users and
sessions metrics

Chapter 7 Essential Digital Marketing Tasks Done with Python

286

The response contains an array under the key "reports". We can fetch

the array and grab the first item:

response['reports'][0]

The information we are looking for is stored under the data key. The

data holds another dictionary, and we can see all the keys by applying a

dictionary method keys():

response['reports'][0]["data"].keys()

The options we receive are

dict_keys(['rows', 'totals', 'rowCount', 'minimums',

'maximums'])

The totals key is holding the information we want to use. We will get

the values for users and sessions:

report = response['reports'][0]["data"]['totals'][0]

users = report['values'][0]

sessions = report['values'][1]

In Figure 7-7, we can see that unique users 308087 visited the site with

a total of 363031 sessions.

Chapter 7 Essential Digital Marketing Tasks Done with Python

287

To visualize how engaged users are with the site, we can plot new and

returning users. The sessions includes all visitors, new and returning. The

users on the other hand represent new visitors.

We need to import Matplotlib in the first cell where we keep all our

imports:

import matplotlib.pyplot as plt

The percentage of new visitors can be calculated as users divided by

sessions. Do not forget that JSON comes as a string, and all values have to

be converted to numeric data types:

new_visitors = int(users)/int(sessions)

returning_visitors = 100 - new_visitors

We will plot these numbers as a donut chart. A donut chart is a

combination of a pie chart and a circle (Figure 7-8):

metrics = [new_visitors, returning_visitors]

plt.pie(metrics, shadow=True, colors=["#E74C3C","#27AE60"],

labels=["New Visitors", "Returning Visitors"])

Figure 7-7.  Fetching users and sessions values from a JSON
response

Chapter 7 Essential Digital Marketing Tasks Done with Python

288

donut = plt.Circle((0,0), 0.5, color='white')

p = plt.gcf()

p.gca().add_artist(donut);

Another popular Google Analytics report is pageviews and session

duration.

Dates and VIEW_ID will be the same as we used in the previous

example. This time, we can structure the received data as a DataFrame. In

the first cell, add Pandas to the imported libraries:

import pandas as pd

According to the Google Dimensions & Metrics Explorer,2 we will

need to pass ga:pageviews and ga:avgSessionDuration as metrics and

ga:deviceCategory as dimensions. Let’s compile an analytics report

request like this:

2 https://ga-dev-tools.appspot.com/dimensions-metrics-explorer/

Figure 7-8.  Plot of new users and returning users based on metrics
values

Chapter 7 Essential Digital Marketing Tasks Done with Python

https://ga-dev-tools.appspot.com/dimensions-metrics-explorer/

289

response = analytics.reports().batchGet(body={

 'reportRequests': [{

 'viewId': VIEW_ID,

 �'dateRanges': [{'startDate': start_date, 'endDate':

end_date}],

 'metrics': [

 {"expression": "ga:pageviews"},

 {"expression": "ga:avgSessionDuration"}

], "dimensions": [

 {"name": "ga:deviceCategory"}

]

 }]}).execute()

The response you receive should look like the one in Figure 7-9.

Figure 7-9.  Requesting a Google Analytics report for pageviews and
session duration

Chapter 7 Essential Digital Marketing Tasks Done with Python

290

As in the previous example, we would need to fetch the values out

of the response. In most APIs, all information is stored under the "data"

key. Using a dictionary notation, we can unpack the response and get to

“data":

response['reports'][0]["data"]

Since we have asked for dimensions values, the data contains another

key "rows". We can store that path under a new variable report_two:

report_two = response['reports'][0]["data"]["rows"]

If you run the function type() on the report_two object, you’ll

see that it is a list data structure. The report_two list contains three

dictionaries with "dimensions" and "metrics" keys. At the same time,

"metrics" leads to another list with one dictionary and the key "values"

(Figure 7-10).

Our goal is to grab the values and to store them in a DataFrame. Due

to the fact that report_two is a list, we can iterate through it and fetch the

values using a dictionary notation:

for item in report_two:

 print(

 �item["dimensions"][0], item["metrics"][0]["values"][0],

item["metrics"][0]["values"][1]

)

Figure 7-10.  Unpacking the response

Chapter 7 Essential Digital Marketing Tasks Done with Python

291

I know that the print() part of the for loop is a little bit messy

and confusing. I’ll explain what is going on there. We will start with

item[“dimensions”][0]. In Figure 7-10, we see that the “dimensions” key

holds a list with one value; to get that value, we would need to index it [0]. In

the for loop, the item variable represents each dictionary from the report_two

list. item[“dimensions”] gets us another list, and then we index it to fetch the

first and the only value item[“dimensions”][0]. Using the same logic, we can

fetch the pageviews values. item[“metrics”] gets us a list; we index it [0] and

see another dictionary like this one: {‘values’: [‘689331’, ‘47.1034009002383’]}.

The key “values” item[“metrics”][0][“values”] leads us to another list with

two values. One for the pageview and the other one for session duration.

The first value from that list can be indexed as [0] and the second as [1]. The

bottom-line item[“metrics”][0][“values”][0] fetches us a value for pageview

and item[“metrics”][0][“values”][1] for session duration.

In order to store all these values as a DataFrame, we need to place

them into Python lists.

Initialize three empty lists:

devices = []

pageviews = []

session_duration = []

As we iterate through the report_two list, we append the values to

each list. As always, keep in mind that down the road you would want to do

something with these values. Maybe filter or compare them. The response

came as a string, and we will convert the values into integers and floats:

devices = []

pageviews = []

session_durations = []

for item in report_two:

 device = item["dimensions"][0]

 page = int(item["metrics"][0]["values"][0])

Chapter 7 Essential Digital Marketing Tasks Done with Python

292

 session = round(float(item["metrics"][0]["values"][1]),2)

 devices.append(device)

 pageviews.append(page)

 session_durations.append(session)

After we have grouped all values in the lists, we will construct a DataFrame:

data = pd.DataFrame()

Add the lists as columns:

data["Page_views"] = pageviews

data["Session_duration"] = session_durations

data.index = devices

At the end of the day, the received report boils down to clean values

stored in a DataFrame and ready to be analyzed (Figure 7-11).

Figure 7-11.  The values from the Google Analytics report stored as a
DataFrame

Chapter 7 Essential Digital Marketing Tasks Done with Python

293

With one line of code, we can visualize the data. This time, we will be

using Pandas built-in plot() and pie() methods:

data.plot.pie(figsize=(18, 12), subplots=True, colors=["#FF0000",

"#00FF00","#0000FF"]);

Our graph for the pageviews vs. session duration report will look like in

Figure 7-12.

Every time I check my Google Analytics, I wonder where people

visiting my site are from. With the same template for the Google Analytics

request, we will get the location of sessions using the country and city.

This time, I will decrease the date range and set it to a three-day

period. With a larger time period, you will get more information. Each

Google Analytics response contains a thousand of rows, and to fetch all

data, you would need to use a while loop to send an API request over and

over again till you get all the rows. For the dimensions, I’ll use ga:country

and ga:city. Another way to track the site visitors would be ga:latitude

Figure 7-12.  Visualization of pageviews and session duration values
from the Google Analytics report

Chapter 7 Essential Digital Marketing Tasks Done with Python

294

and ga:longitude. Besides the date range and dimensions, my Google

Analytics request will be the same:

response = analytics.reports().batchGet(body={

 'reportRequests': [{

 'viewId': VIEW_ID,

 'dateRanges': �[{'startDate': "2021-04-20",

'endDate':"2021-04-23"}],

 'metrics': [

 {"expression": "ga:sessions"},

], "dimensions": [

 {"name": "ga:country"},

 {"name":"ga:city"}

]

 }]}).execute()

In Figure 7-13, you can see the tail of the response I received for a

three-day period. Please note that rowCount is 758, which means all

information was returned in the response. In case you have more visitors

or take a larger timeframe, a response would contain nextPageToken. Then

you would need to send another request for the next 1000 rows.

Chapter 7 Essential Digital Marketing Tasks Done with Python

295

The raw response data has to be converted to an analysis-friendly

DataFrame. The routine will be similar to what we did in the previous

examples.

We need to grab the information out of the response. I’ll save the

information as a list under the variable name report_three:

report_three = response['reports'][0]["data"]["rows"]

Then we need to initialize three Python lists to hold our data:

countries = []

cities = []

sessions = []

Figure 7-13.  Calling the Google Analytics API to see visitors of the site
by country and city dimensions

Chapter 7 Essential Digital Marketing Tasks Done with Python

296

To iterate through report_three and get country, city, and sessions

out of each row, we will use the for loop:

for item in report_three:

 country = item["dimensions"][0]

 city = item["dimensions"][1]

 session = item["metrics"][0]["values"][0]

 countries.append(country)

 cities.append(city)

 sessions.append(session)

After we have all data in the lists, we can construct a DataFrame out of

them.

Initialize a new DataFrame:

location = pd.DataFrame()

Assign the lists as values to columns in the DataFrame location:

location["Country"] = countries

location["City"] = cities

location["Sessions"] = sessions

Some of the values in the DataFrame location contain (not set)

(Figure 7-14). That simply means Google Analytics could not identify a

visitor by location.

Chapter 7 Essential Digital Marketing Tasks Done with Python

297

For me, the most important market is the United States, and I can sort

the DataFrame by the Country column:

market = location[location.Country=="United States"]

Also, I want to see the cities with most sessions during this three-day

period. I’ll sort market data by the number of sessions:

market.sort_values(by="Sessions", ascending=False,

inplace=True)

This operation might get you a warning that you are trying to save

sorting values on a slice of the main DataFrame (Figure 7-15). That is

because I use inplace=True. The inplace argument saves the changes.

Figure 7-14.  Constructing a DataFrame with values from the
response received from the Google Analytics API

Chapter 7 Essential Digital Marketing Tasks Done with Python

298

That is OK; it is just a warning. To get three cities with the most sessions, I

can slice the market DataFrame:

market.iloc[0:3]

Figure 7-15.  Sorting the DataFrame by values in the Session
column

I think the Google Analytics example gave you a sense of how to work

with the Google API. All other Google API packages would require the

same authentication, and the process of obtaining an API Key would be

pretty much the same as we did at the beginning of this chapter.

�Twitter Bot
Another practical application of Python is building bots for social media

and chats. Here, we will build a simple Twitter bot. It will post content on a

Twitter account.

I’ll be honest with you; lately, it became more difficult to get your

bot registered with Twitter and get API Keys. I hope by the time the book

is published, the Twitter authentication process will be the same as I

describe it here.

As a developer, you should start your API registration process with the

Twitter developer docs here: https://developer.twitter.com/en. There

Chapter 7 Essential Digital Marketing Tasks Done with Python

https://developer.twitter.com/en

299

you’ll find a lot of information how to automate your Twitter account.

Besides, they have a developer Q&A blog where you can find tons of useful

information and get answers to any Twitter-related questions.

Before we start coding, we need to register our future app and obtain

API Keys on https://developer.twitter.com/en/portal/dashboard. But

even before that, you should be a Twitter user and have an active account.

The process of obtaining Twitter API Keys is the following. With your

Twitter account, log in to the Twitter developer portal. There you would

need to click the central button “Create Project” to launch a new app.

Be prepared to provide your phone number. Twitter will not allow you to

create an app without a phone number on your profile.

To obtain API Keys, you would need to provide the name of your

project and shortly explain the purpose of your bot (Figure 7-16).

After you answer all questions, Twitter will provide you the API Key,

API Secret Key, and Bearer Tokens. These are three keys we will need for

our bot to get authenticated with Twitter. Besides these keys, you’ll need

to generate an Access Token and a Secret Token. To generate tokens, in

Figure 7-16.  Regestering a new Twitter App

Chapter 7 Essential Digital Marketing Tasks Done with Python

https://developer.twitter.com/en/portal/dashboard

300

the left-side menu under Projects & Apps, click your app name. After

you clicked the app, you should see the App Details information. Scroll

down and look for the App permissions section. In the App permissions

section, click the Edit option and switch to Read and Write mode. This

operation is necessary for the bot to be able to post tweets. On top of the

same page on the Keys and tokens section, you need to generate the

Access Token and Secret token. Click the Regenerate button and store

the tokens in a secure place (Figure 7-17).

Right after you have all API Keys and Access tokens on hand, you are

ready to build a Twitter bot.

There are several Python Twitter libraries. I personally prefer Tweepy

for its simplicity. If later you decide to build something more sophisticated

than what we go over here, you can always refer to the Tweepy

documentation (https://docs.tweepy.org/en/latest/).

Figure 7-17.  Generating Access Token and Secret

Chapter 7 Essential Digital Marketing Tasks Done with Python

https://docs.tweepy.org/en/latest/

301

Tweepy is not a part of Anaconda, and you need to install it separately.

In a Terminal window, run

pip install tweepy

In a new Jupyter Notebook, import Tweepy, the library we would need

to send tweets:

import tweepy

The next step would be to define the API Keys and tokens Twitter

provided us with:

API_KEY = 'Q88u0KvQK4f7fGfqO43SxVbcE'

API_SECRET = 'ahQk6VKzjuF5eucS6a6DJT3LubBqnBTj5JxT2BvBTaIDMKkZhO'

ACCESS_TOKEN = '797271725629173762-3etBbFChCjbQFCYYKf9oq5HtvMqmha9'

SECRET_TOKEN = 'apXizrBPPE7TqqW7OAhnBx1DzetrUpqNbPS1PoRzTZKjF'

First of all, we need to get authenticated by Twitter. Using Tweepy

methods OAuthHandler and set_access_token, we pass the API Keys as

arguments. Using these API Keys and tokens, you get authenticated and

establish a connection with Twitter:

auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)

auth.set_access_token(OAUTH_TOKEN, OAUTH_TOKEN_SECRET)

api = tweepy.API(auth)

Our goal is to generate and send a tweet with an image and some text.

Prepare an image and store it in the same directory where your Jupyter file

is, or make sure you know the relative path to the image file.

Define the path to the file you want to upload with the image_path

variable:

image_path = "/Users/programwithus/Chapter7/fortweeter.png"

Chapter 7 Essential Digital Marketing Tasks Done with Python

302

After the bot has got authenticated, we are ready to post tweets with

media files. The special Tweepy method update_with_media() posts

media and adds a message. According to the documentation, too long

messages or duplicating messages will be ignored. The message should be

passed with the keyword status:

api.update_with_media(image_path, status="Python Rules! Learn

Python")

If the tweet was sent successfully, you should see the Status message

with all details returned as in Figure 7-18 and the actual tweet (Figure 7-19).

Figure 7-18.  The code to automatically send tweets with media
files

Chapter 7 Essential Digital Marketing Tasks Done with Python

303

In case you want to run a Twitter campaign and send tweets every day,

you would need to store the content somewhere. Obviously, the best place

would be a database with prepared text and paths to the images. Python

works with any type of relational databases. The easiest option would be

to use the Sqlite3 database. The Sqlite3 module comes with a standard

Python distribution.

If you are not familiar with relational databases, a simple text or CSV

file might be an alternative. The content and image links could be read

from a file and then tweeted with Tweepy. The information about to be

sent would be held in a list of lists and later dispended with the code we

just created running in the for loop.

Figure 7-19.  Tweet sent by the Tweepy library

Chapter 7 Essential Digital Marketing Tasks Done with Python

304

�Email Marketing with Python
Sending an email with Python is quite an easy task. Python has Email and

Smtplib modules to compose and send messages. The process is very

well documented here: https://docs.python.org/3/library/email.

examples.html. You need to simulate a server with the Smtplib package on

your computer, and it will dispatch the email.

Regardless of its easiness, I do not find the process to be convenient

for marketing purposes, especially when you want to reach 10,000 or

even 100,000 recipients. For serious marketeers, I would recommend the

Mailgun service. Mailgun gives you more flexibility using your own Python

code with the comfort of an analytic dashboard.

Mailgun provides a Python API and could be easily integrated in any

web application or used in a Python script. The Mailgun API is easy to

use even for Python beginners. Also, the Mailgun service allows to use

HTML templates and provides analytics on the performance of your email

campaigns.

If you currently use one of the email marketing services, you should

definitely compare the pricing and see if it would make sense to switch to

Mailgun. In this book, we will use the Mailgun free trial.

Any marketing professional knows that branding is a key to gain

customer trust. People these days will not open just any email. Potential

customers will not click unless an email comes from a reliable source or

clearly shows whom it’s from. Mailgun gives you an option to add your

domain name and make emails look professional. Although it is not

necessary to add a domain name for testing purposes, Mailgun provides

a sandbox domain, I will set up my domain artyudin.com to illustrate the

process. In case you want to follow my code but do not have a domain

name, you can get one at godaddy.com or namecheap.com as cheap as a

dollar a year.

Open www.mailgun.com/ in a browser and sign up for free to obtain

an API Key. After the registration is completed, log in. You will see the

Chapter 7 Essential Digital Marketing Tasks Done with Python

https://docs.python.org/3/library/email.examples.html
https://docs.python.org/3/library/email.examples.html
http://artyudin.com
http://godaddy.com
http://namecheap.com
http://www.mailgun.com/

305

dashboard; there you should see the Sending option in the left-side

menu. Click Sending. Choose the Domains option from the menu, and

if you want to add an existing domain, click the green Add New Domain

button in the upper-left corner. In case you just want to try Mailgun, you

can stick to the sandbox domain provided by Mailgun by default. The

major disadvantage of using the sandbox domain is Mailgun allows to

send messages to authorized recipients only. That means you would need

to send them an invitation and ask to agree to receive emails from the

Mailgun server.

After you clicked the green Add New Domain button, you should see a

prompt asking for a domain you want to use. Before you click Add Domain,

choose one of the regions US or EU where the domain was originated. The

next step is to set up your domain and verify the ownership of it.

I know all these DNS settings (Figure 7-20) sound confusing and

complicated at first. But on the same page, you’ll find a video and step-by-

step instructions for all major domain sellers and providers. All you have

to do is to log in to your domain provider and manage DNS right next to

Figure 7-20.  Adding a domain to the Mailgun server

Chapter 7 Essential Digital Marketing Tasks Done with Python

306

your domain name. In the DNS records, add TXT and MX records as in the

Mailgun guide. All you have to do is to copy the values from the Mailgun

page and paste them into the domain DNS records. To make sure your

settings are correct, click Verify DNS Settings, and if you see green marks

right next to DNS Types, then everything is working, and you are ready to

send emails (Figure 7-21). In case something is not working, and you still

see red and yellow crosses, watch the video one more time and try again.

Mailgun works as a regular API and requires the Requests library to send

a message to a server and an API Key. Open the Mailgun Dashboard and

select the option Settings from the left menu and then find the option API

Keys. Also, API Keys can be found in your personal settings (Figure 7-22).

Figure 7-21.  Added domain name was successfully verified

Figure 7-22.  Mailgun API Keys

Chapter 7 Essential Digital Marketing Tasks Done with Python

307

To send an email, open a new Jupyter Notebook and import the

Requests library on top of the file:

 import requests

As in previous API examples, we will define the API_KEY variable to

hold the API Key. Also define the DOMAIN variable for your domain name:

API_KEY = "9514cb771d5da80eb6"

DOMAIN = "artyudin.com"

The Requests library has functions that match major HTTP methods

get(), post(), put(), and delete(). The get() method sends a request

to obtain data from a server, and the post() method delivers the data

to a server. Since we want to deliver information, we will use the post()

method.

We will need to pass a few parameters into the post() method. I’ll break

it down and define each information piece separately to make it clear.

First of all, the Requests method post() requires the HTTP address we

are trying to reach. We will define it as url and use the template from the

Mailgun documentation.

Our goal is to reach many potential customers, so I’ll set recipients

as a list of email addresses. In real life, you will probably be fetching

emails and names from a file or a database. In any case, you would need to

provide all emails as a Python list:

recipients = ["anna@example.com", "sherlock@example.com"]

I’ll set the subject as the subject_matter variable:

subject_matter = "Hello there"

The message itself I’ll assign as a string to the message variable:

message = "I am sending this email with Python!"

Chapter 7 Essential Digital Marketing Tasks Done with Python

308

Finally, I’ll define who I am sending the message as sender. If you

have not added a domain name, then you’ll have to use the verified email

address.

In the post() method, we will pass url, authentication as auth, and

information as data. For authentication in the auth tuple, we need to set

the API_KEY:

auth=("api", API_KEY)

The keyword argument data will contain all the information we have

defined before:

data = {"from": sender, "to": recipients, "subject": subject_

matter, "text": message}

The whole Requests method post() would look like this:

requests.post(

 url,

 auth=("api", API_KEY),

 data={"from": sender,

 "to": recipients,

 "subject": subject_matter,

 "text": message}

)

Every time we send a request to a server, the Requests package returns

a code. Anything in the range from 200 to 300 means that the operation

was completed successfully. In case you see 400, check your code. You

might have missed a closing bracket or provided a wrong API or domain

name.

In our example, we have received 200 (Figure 7-23). Since the email

was successfully sent, start looking for it in a mailbox.

Chapter 7 Essential Digital Marketing Tasks Done with Python

309

Figure 7-23.  Successfully sent an email with Python

As you can see, the process of using the Mailgun API is not difficult

at all. Wrapping the API into your own Python script gives you flexibility

to add a bunch of other tasks along with sending emails. For example,

scheduling email campaigns or maybe scraping data from the Internet and

then emailing that information. In any case, using Python and Mailgun

services gives you more room for automation. Our goal is to automate

tedious marketing tasks with Python.

You should regard this chapter as a trampoline for using the Python

programming language for marketing. All the big companies provide

useful APIs that you can use to make your work process faster and efficient.

I believe that by now you have a strong understanding of how to retrieve

information from APIs with the Requests library and how to manipulate

received data with Python.

Chapter 7 Essential Digital Marketing Tasks Done with Python

311© Art Yudin 2021
A. Yudin, Basic Python for Data Management, Finance, and Marketing,
https://doi.org/10.1007/978-1-4842-7189-6

Index

A, B
Anaconda package

data analysis tools, 3
graphical installation, 3, 4
installation process, 3
Jupyter Notebook file, 5, 6
Kernel operation, 8
navigator menu, 4, 5
print() command, 7, 8
PyCharm, 4
run play icon button, 7
untitled file, 6

Application programming
interfaces (APIs)

accessing values, 197
Alpha Vantage services, 194
built-in method, 199
client/browser, 192
client libraries

authentication, 278
Cloud Platform, 278
installation process, 278
key option, 280
reporting process, 279, 280
resources page, 279

device sending, 193
dictionary object, 198

Google analytics, 193
libraries, 194
plotting data, 200
receiving data, 196
registration, 193
requests.get() method, 195
transpose() method, 198
type() function, 196

applymap() method, 199

C
Comma-separated values (CSV)

aggregation methods, 132
apply()/lambda() method,

138, 139
converting strings, 131
delete option, 129
dictionary notation, 129
exchange-traded fund, 124
financial companies fund, 125
info() method, 128
lambda expression, 136
min() and max() methods, 132
numeric type, 137
online location, 127
read_csv() function, 125
Sectorspdr website, 126

https://doi.org/10.1007/978-1-4842-7189-6#DOI

312

series method, 130
skiprows keyword, 127
smallest and largest shares, 133
str methods, 138
strip() and str.strip() method, 130
str_to_num() function, 135, 136

contains() method, 133, 134
Critical Line Algorithm (CLA), 266

D
DataFrame

constructing file
attributes, 102, 103
portfolio variable, 100, 101
scratch creation, 102

filtering process, 114–117
slicing approach

attributes, 104, 107
column name, 103
column names, 104
dir() function, 104
intermediatory structure, 106
loc and iloc method,

112–114
reassignment, 106
square brackets method,

104, 105
stock symbols, 108
string, 103
symbol column, 108,

110, 111

vectorized operation, 107
two-dimensional structure, 100

Data structure
close() function, 82
dictionary, 49, 74–80
loop/for loop, 49–53
functions

add() function, 61, 63
definition, 59
docstring, 63
error message, 60
help() function, 63
indentation, 60
parentheses, 60
print() function, 61

get() method, 78
indefinite loops, 71–74
items() method, 77
multiplication table, 59
nested for loops, 57–59
open() function, 81, 82
program structure

grabbing code, 65
input() function, 68
is_vowel() function, 68, 70
lowercase function, 70
pseudocode code solution,

64–67
refactored code, 71

range function, 54–57
reading data

dictionary, 88
FileNotFoundError, 84
frequent words, 90

Comma-separated
values (CSV) (cont.)

Index

313

open() function, 84
parsing information, 85
read() method, 84
remote text file, 86
sort() method, 89
split() function, 85, 87
urllib, 85
urlopen() function, 86

writing information (text files),
81–84

Definite/indefinite loops, 71–74
Dictionary, 74–80
Digital marketing tasks

analytics, 281–298
client libraries, 278–281
definition, 277
email marketing, 304–309
Twitter bot, 298–303

drop() method, 128

E
Efficient frontier techniques

classic mean/variance
optimization, 266

definition, 257
investment portfolio, 261
max_sharp() method, 261
min_volatility() function, 260
optimal portfolios, 258
plotting() function, 265, 266
plot_weights() function, 264
portfolio_performance()

method, 262

PyPortfolioOpt, 257
sample_cov() function, 258
sharp ratio, 262, 263
visualization, 264
volatility, 261, 264

Email marketing
API Keys, 306
delete() method, 307
documentation, 304
domain option, 305, 306
mailbox, 308
Mailgun service, 304
post() method, 308
sending/domains option, 305
Smtplib package, 304

F
Filtering process, 114–117
Financial tasks

definition, 231
efficient frontier, 257
fundamental analysis, 267–277
future value fv(), 233, 234
inventory turnover, 275
Monte Carlo simulation,

253–256
net present value, 235–242
Numpy, 231–233
present value, 234, 235
ratios, 274, 275
value at risk, 243–253

Loop/for loop
append() method, 53

Index

314

definition, 49
design pattern, 52
format() function, 51
if statement, 51
iteration, 50
list variables, 51
translation, 50

Fundamental analysis
balance sheets, 271
bar chart, 272
capabilities, 268
cash flow statement, 271
companies, 269
definition, 267
enterprise() function, 270
exchange-traded funds, 268
pip command, 267
plotting data, 268
profile() function, 269
revenue numbers, 271
ROIC and ROE ratios, 273, 274
subplot() function, 273
valuation, 270
visualization, 272

Future value (fv() function),
233, 234

G
Gathering data

application programming
interfaces, 192–200

information, 151
list comprehension, 165–171
Pandas-Datareader, 200–205
Selenium, 175–192
web scraping (see Web scraping

process)
Google Analytics

account user management, 283
build() function, 284
constructing option, 296, 297
DataFrame, 292
dictionary notation, 290
email/navigation, 282
fetching option, 287
for loop, 296
integers and floats, 291
JSON files, 281
libraries, 288
metrics values, 287, 288
pageviews and session

duration, 289
pip command, 283
plot()/pie() methods, 293
request method, 294
response method, 295
service accounts page, 282
sorting, 298
source code, 288
unpacking process, 290
users and sessions metrics, 285
values, 292
visualization, 293

Groupby, 147–150

Loop/for loop (cont.)

Index

315

H, I
Histogram graph, 216–218
Hypertext Markup

Language (HTML), 152

J
JavaScript Object

Notation (JSON), 193

K
keys() method, 76, 196, 286

L
Line chart

grid() function, 214
HEX/RGB formats, 210
legend() function, 211
plot() function, 208, 210
plotting statement, 212
plt.grid() function, 208
plt.legend() function, 211, 213
plt.plot() function, 209
plt.style.use() method, 215
plt.title() function, 212
pyplot modules, 208
title/legend, 214

List comprehension
append() method, 165, 166
final_list, 169
gathering data, 165
list_article, 167

mega_list, 167
open() function, 170
parsing and cleaning

information, 168
string template, 168
syntax, 165
text formation, 170
web scraping operation, 171
zip() function, 168

M
Matplotlib

library, 207
line chart, 208–216
pie chart, 227–230
scatter plot, 219–227

Monte Carlo simulation
definition, 253
NumPy arrays, 255
plotting option, 256
portfolio list, 254
random() function, 254
show() method, 255
volatility, 254

N
Net present value (NPV)

assumptions, 236
calculating/plotting projects,

241, 242
company planning, 235
crossover rate, 242

Index

316

definition, 235
discount_rates, 237
geometrical object, 239
hline()/vline() functions, 241
intersection() method, 238
LineString operation, 240
plot() function, 240
project creation, 236, 237
scenario analysis, 237
xlim() method, 238
ylim() method, 239
zip() function, 239

Numpy-Financial package,
231–233

O
Object-oriented

programming (OOP), 31

P, Q
Pandas

CSV (see Comma-separated
values (CSV))

DataFrame, 100–117
Datareader

DataReader() function,
201, 203

definition, 200–205
Gross Domestic Product, 204
IEX, 202
nonfarm payrolls, 205

pip command, 201
plot.line() method, 204
receiving data, 203

data sets
combination, 139
concatenation, 140–144
drop keyword, 143
groupby() method, 147–150
zip() function, 140

definition, 93
logical operations

anonymous function, 118
apply() method, 118,

119, 121
double function, 119, 120
if and else conditions, 121
lambda syntax, 120
logical operation, 122
np.where function, 123
NumPy function, 122
where() function, 123, 124

merging function, 145–147
panel data, 93
plotting tools, 150
series (see Series)
sophisticated data structures, 93

Pie chart, 227–230
post() method, 307
Python

Anaconda (see Anaconda)
concepts, 2
error message, 18, 22
first program creation, 20–23
float() function, 18

Net present value (NPV) (cont.)

Index

317

if, Elif/Else statements
boolean data type, 23
comparison operators, 24, 25
documentation, 25
Elif keyword, 27, 28, 30
Else statement, 26
if statement, 25
logical operators, 29, 30
structuring decision

structures, 29
indexing/slicing

element/character, 44
fetching elements, 42
insert() method, 42
list storage, 41
negative index, 43
negative step, 45
ordered collections, 41
skipping option, 45
string/element, 44

installation process, 3
int() function, 18
learning process, 2
lists/tuples

append() method, 36
ascending order, 38
conditions, 39
container, 35
data structure, 35, 39
help() function, 36
list methods, 36
numbers, 37
operators, 40
remove() method, 38

sort() function, 37
tuple() function, 40
type() function, 38
vowel/consonant, 40

methods
concept, 31
dir() function, 31, 32
len() function, 33
lowercase strings, 35
string methods, 32
upper() method, 34

ord() function, 16, 17
print() statement, 22
routine tasks, 1
str() function, 19
strings, 16–19
tax and tip calculator, 21
variables/numeric types

area calculation, 15
arithmetic operators,

11, 12
built-in functions, 13
case sensitive, 11
data types, 10
expression, 14
floats, 11
integers, 11
memory, 9
naming conventions, 10
plastic bottle/glass, 10
reserved words/keywords, 10
source code, 15
store information, 9
type() function, 13

Index

318

R
Range function

descending order, 55
index value, 56
len() function, 56
parameters, 54–57
range() function, 54

requests.get() method, 153, 159,
160, 164

S
Scatter plot

annotate() function, 225
annotating values, 226
colorbar scale, 223, 224
enumerate() function, 225
insert statement, 224
interactive graph, 221, 222, 226
magic function, 219
inline format, 219
notebook mode, 219
read_excel() function, 220

Selenium
Amazon landing page, 181
automation solution, 181
BeautifulSoup() function, 176
browser window, 190
category name, 183
Chrome() function, 176
ChromeDriver, 175
dir() function, 179
div container, 184
excel file, 190

exception handling, 187
fetching option, 180
find_element_by_id()

method, 180
get() method, 177
input prompt, 181
inspect option, 182
Keys module, 181
page.get() method, 187
product page, 178
productTitle, 188
try and except blocks, 187–189
source code, 190–192
text method, 185
web page, 183, 185
web scraping

command prompt window,
172–174

documentation, 174
get-pip.py file, 174
installation, 173
Sudo command, 172
Terminal window, 172
web development, 171

write() method, 189
Series

advantages, 97
attributes, 99
data type identifier, 96
definition, 94
dictionary, 99, 100
differences, 95
division operation, 98
homogeneous, 96

Index

319

one-dimensional structure, 94
pd variable, 94
relational database, 95
round() function, 98
string keys, 99
vectorization, 97, 98

T
Twitter bot

account creation, 299
API registration process, 298
image_path variable, 301
media files, 302
OAuthHandler method, 301
session column, 299
Terminal window, 301
token/secret access, 300
Tweepy documentation, 300
Tweepy library, 303

U
Uniform Resource Locator (URL),

85, 125, 152

V
Value at risk (VAR)

covariance matrix, 250
cov() function, 249
pct_change() method, 246
DataFrame, 244
definition, 243

describe() method, 248, 249
dot() method, 250
dropna() method, 247
head() method, 244
Jupyter Notebook, 243
normalized historic

prices, 246
NumPy array, 250
plotting historic stock, 248
ppf() method, 251
projecting value, 253
retrieving historic prices, 244
risk calculation, 252
shift() method, 246
sqrt() method, 250
string format, 244

Visualization
definition, 207
histogram, 216–218
line chart, 208–216
Matplotlib library, 207
pie chart, 227–230
scatter plot, 219–227

W, X, Y, Z
Web scraping process

BeautifulSoup() function, 160
Chrome browser, 152
definition, 152–165
find()/find_all() method,

155, 156
get() method, 153
get_text() method, 159

Index

320

hrefs, 162
HTML markup, 154
information, 152
inspect option, 161, 163
investing.com, 159
locating/inspecting line, 158

inspect option, 155
requests method, 152
Selenium, 171–175
text elements, 157
variable titles, 162, 163
URL site, 164
web links, 159

Web scraping process (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Getting Started with Python
	Installing Python
	Variables and Numeric Types
	Strings
	Your First Program
	Logic with If, Elif, and Else
	Methods
	Lists and Tuples
	Indexing and Slicing
	Summary

	Chapter 2: Writing Your Own Python Scripts
	Definite Loops
	The Range Function
	Nested for Loops
	Defining Your Own Functions
	Structuring a Program
	Indefinite Loop
	Dictionary
	Writing Information into a Text File
	Reading Information from a Text File

	Chapter 3: Data Analysis with Pandas
	Series
	DataFrame
	Constructing a DataFrame
	Slicing a DataFrame
	Filtering a DataFrame

	Logic Operations in Pandas
	Reading Data from a CSV File
	Combining Data Sets
	Concatenating Data Sets
	Merging DataFrames
	Groupby
	Summary

	Chapter 4: Gathering Data with Python
	Web Scraping
	List Comprehensions
	Web Scraping with Selenium
	Introduction to Selenium
	Working with APIs
	Pandas-Datareader

	Chapter 5: Data Visualization
	Matplotlib
	Line Plot
	Histogram Plot
	Scatter Plot
	Pie Plot

	Chapter 6: Essential Financial Tasks Done with Python
	NumPy Financial
	Future Value fv()
	Present Value pv()
	Net Present Value npv()
	Value at Risk (VAR)
	Monte Carlo Simulation
	Efficient Frontier
	Fundamental Analysis
	Financial Ratios

	Chapter 7: Essential Digital Marketing Tasks Done with Python
	Getting Started with Google API Client
	Google Analytics with Python
	Twitter Bot
	Email Marketing with Python

	Index

