

Zabbix 4 Network Monitoring
Third Edition

Monitor the performance of your network devices and
applications using the all-new Zabbix 4.0

Patrik Uytterhoeven
Rihards Olups

BIRMINGHAM - MUMBAI

Zabbix 4 Network Monitoring
Third Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Rahul Nair
Content Development Editor: Ronn Kurien
Technical Editor: Swathy Mohan
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Tom Scaria
Production Coordinator: Jyoti Chauhan

First published: March 2010
Second edition: August 2016
Third edition: January 2019

Production reference: 1160119

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-026-6

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Patrik Uytterhoeven has over 16 years of experience in IT, mostly with HP UNIX and
Red Hat Linux. In late 2012, he joined Open-Future, a leading open source integrator
and the first Zabbix reseller and training partner in Belgium. When Patrik joined
Open-Future, he also became a Zabbix certified trainer. Since then, he has provided
training and public demonstrations around the world, from Belgium to America and
Asia. His next step was to author a book, so the first Zabbix Cookbook was born.
Because Patrik also has a deep interest in configuration management, he wrote some
Ansible roles. Patrik was also a technical reviewer of Learning Ansible and Ansible
Configuration Management, both published by Packt Publishing.

Rihards Olups has over 20 years of experience in IT, most of it with open source
solutions. He started using Zabbix in 2001, and joined Zabbix company later. Rihards
spent 6 years at Zabbix, helping users and customers get the most value out of the
monitoring tool. He briefly gets his mind off of Zabbix by improving OpenStreetMap.

About the reviewers
Werner Dijkerman is a lead infrastructure engineer from the Netherlands. He has
more than 10 years of experience in IT operations departments in different
organizations. He started working with the leading online retailer in the Netherlands
and moved on to one of the leading software companies for general practitioners. He
now works for iWelcome, the only established IDaaS provider in Europe.
He started the Puppet module for Zabbix, which is now available from the people
behind Vox Pupuli. He has also created several Ansible roles for Zabbix, to
automatically install and configure Zabbix components on your infrastructure for
various operating systems.

Andrea Dalle Vacche is a known name in the Zabbix world, between his products we
must at least mention Orabbix and DBforBIX. Andrea, during his career, has covered
many critical roles, his involvement has always been very wide reaching and deals
with critical aspects of the platforms. He is considered a subject matter expert of Site
Reliability Engineering. Indeed he is now covering a key technical role in a leading
global financial company where he is responsible for the stability/availability of large-
scale mission critical server farm.

First, I would like to thank my wife, Anna, for her support and encouragement. She
is always a pleasant presence in my life. Then, a special thanks goes to the whole
Packt team, as it is always a pleasure working with them.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with Zabbix 9
Technical requirements 10
The first steps in monitoring 10
Zabbix features and architecture 11

Installation 15
Choosing the version and repository 16
Hardware requirements 17

Installing from the packages 18
Red Hat Enterprise Linux (RHEL)/CentOS 18

EPEL 18
The Zabbix repository 19

Ubuntu/Debian 19
Installing from source 20

The server and agent 20
Software requirements 20
Downloading the source 21

Compilation 21
Dash or underscore 23
Initial configuration 23
Creating and populating the database 24
Starting up 26

Verifying the service's state 29
The web frontend 31
Prerequisites and setting up the environment 31

Using the web frontend configuration wizard 33
Step 1 – welcome 33
Step 2 – PHP prerequisites 34
Step 3 – database access 36
Step 4 – Zabbix server details 37
Step 5 – summary 38
Step 6 – writing the configuration file 38
Step 7 – finishing the wizard 40
Step 8 – logging in 40

Summary 44
Questions 44
Further reading 44

Chapter 2: Getting Your First Notification 45
Exploring the frontend 45

Table of Contents

[ii]

The user profile 47
Monitoring quickstart 51

Creating a host 53
Creating an item 55
Introducing simple graphs 58
Creating triggers 61
Configuring email parameters 63
Creating an action 66

Information flow in Zabbix 70
Let's create some load 71
Basic item configuration 76

Monitoring categories 76
Availability 76
Performance 76
Security 77
Management 77
Efficiency 77

Item types 78
How items can be monitored 80

Using global search 83
Summary 85
Questions 86
Further reading 86

Chapter 3: Monitoring with Zabbix Agents and Basic Protocols 87
Using the Zabbix agent 87

Passive items 90
Cloning items 97
Manually querying items 99

Active items 100
An active agent with multiple servers 115
Supported items 115
Choosing between active and passive items 117

Item scheduling 119
Simple checks 121

Setting up ICMP checks 122
Connecting all of the pieces 125

Key parameter quoting 126
Positional parameters for item names 126
Using mass update 128

Value mapping 129
Units 132

Custom intervals 133
Flexible intervals 134
Custom scheduling 135

Copying items 136

Table of Contents

[iii]

Summary 139
Questions 141
Further reading 141

Chapter 4: Monitoring SNMP Devices 142
Using Net-SNMP 143

Using SNMPv3 with Net-SNMP 149
The engine ID 150

Authentication, encryption, and context 150
Adding new MIBs 151
Polling SNMP items in Zabbix 154

Translating SNMP OIDs 157
Dynamic indexes 158
SNMP bulk requests 161

Receiving SNMP traps 161
Using embedded Perl code 162

Filtering values by received data 164
Filtering values by originating host 168
Debugging 169
Handling the temporary file 171
SNMP Trap Translator (SNMPTT) 172

Using a custom script 172
Filtering the traps 176
Custom mapping 177
Database lookups 177

Summary 183
Questions 184
Further reading 184

Chapter 5: Managing Hosts, Users, and Permissions 185
Hosts and host groups 185

Host inventory 192
Editing inventory data manually 192
Populating inventory data automatically 196

Host maintenance 198
Creating maintenance periods 199

Collecting data during maintenance 199
Not collecting data during maintenance 206
Maintenance period options 208

One-time only maintenance 209
Daily maintenance 209
Weekly maintenance 210
Monthly maintenance 210

Ad hoc maintenance 212
Users, user groups, and permissions 213

Authentication methods 213
Creating a user 214
Creating user groups 219

Table of Contents

[iv]

Permissions and maintenance 226
Summary 227
Questions 228
Further reading 228

Chapter 6: Detecting Problems with Triggers 229
Triggers 230

The trigger-and-item relationship 234
Trigger dependencies 235

Constructing trigger expressions 242
Preventing trigger flapping 244
Checking for missing data 245

Triggers that time out 247
Triggers with adaptable thresholds 247
Triggers with a limited period 248
Relative thresholds or time shift 249
Verifying system time 251
Human-readable constants 252
Customizing how triggers are displayed 253

Triggering severities 254
Triggering display options 254

Event details 255
Event generation and recovery expression 257

Using event tags for correlation 260
Summary 263
Questions 264
Further reading 264

Chapter 7: Acting upon Monitored Conditions 265
Actions 266

Limiting conditions when alerts are sent 266
Additional action conditions 271

Complex conditions 272
Dependencies and actions 273
Media limits for users 274

Sending out notifications 275
Using macros 278
Sending recovery messages 281

Escalating once a threshold is reached 283
Runner analogy 295

Using scripts as media 295
Integrating with issue management systems 298

Bugzilla 299
Computer Associates Unicenter Service Desk Manager 300
Atlassian JIRA 300

Remote commands 301
Global scripts 305

Table of Contents

[v]

Configuring global scripts 307
Reusing global scripts in actions 314

Summary 315
Questions 316
Further reading 317

Chapter 8: Simplifying Complex Configurations with Templates 318
Creating a template 320
Linking templates to hosts 322

Handling default templates 327
Changing the configuration in a template 328
Macro usage 329

User macros 331
Using multiple templates 335

Unlinking templates from hosts 339
Using mass update 342
Nested templates 343
Summary 347
Questions 348
Further reading 348

Chapter 9: Visualizing Data with Screens and Slideshows 349
Configuring and sharing dashboards 350

Configuring the dashboard 350
Sharing our dashboard 353

Screens 355
Dynamic screens 358
Additional screen elements 359
Templated screens 363

Slide shows 367
Showing data on a big display 369

Challenges 369
Non-interactive display 370
Information overload 370
Displaying a specific section automatically 370

Summary 372
Questions 372
Further reading 372

Chapter 10: Advanced Item Monitoring 373
Log file monitoring 373

Monitoring a single file 374
Filtering for specific strings 377
Monitoring rotated files 380
Alerting on log data 382

Event tags 386

Table of Contents

[vi]

Extracting part of the line 387
Parsing timestamps 390
Viewing log data 392

Reusing data on the server 394
Calculated items 394

Quoting in calculated items 396
Referencing items from multiple hosts 397

Aggregate items 399
Aggregating across multiple groups 402

User parameters 403
Just getting it to work 403
Querying data that the Zabbix agent doesn't support 405
Flexible user parameters 407
Level of the details monitored 409
Environment trap 411
Things to remember about user parameters 418

Wrapper scripts 418
When not to use user parameters 419

External checks 420
Finding a certificate expiry time 421
Determining certificate validity 424

Sending in the data 426
Using an agent daemon configuration file 429
Sending values from a file 429
Sending timestamped values 431

SSH and Telnet items 432
SSH items 432
Telnet items 435

Custom modules 435
Value preprocessing and dependent items 436
Summary 442
Questions 443
Further reading 444

Chapter 11: Automating Configuration 445
LLD 446

Network interface discovery 447
Automatically creating calculated items 453
Automatically creating triggers 455
Automatically creating graphs 456
Filtering discovery results 457

Filesystem discovery 461
Introducing the LLD JSON format 461
Including discovered graphs in screens 465
Custom thresholds with user macro context 469

CPU discovery 471

Table of Contents

[vii]

SNMP discovery 471
Creating custom LLD rules 476

Reimplementing CPU discovery 476
Discovering MySQL databases 478

Global regular expressions 481
Testing global regexps 484
Usage in the default templates 485

Network discovery 486
Configuring a discovery rule 486
Viewing the results 488
Reacting to the discovery results 490
Uniqueness criteria 495

Active agent auto-registration 496
Auto-registration metadata 498

Summary 499
Further reading 500

Chapter 12: Monitoring Web Pages 501
Monitoring a simple web page 501

Creating a web-monitoring scenario 501
Other scenarios and step properties 507
Alerting on web scenarios 509

Logging into the Zabbix interface 511
Step 1 – checking the first page 513
Step 2 – logging in 513
Step 3 – checking login 515
Step 4 – logging out 516
Step 5 – checking logout 518

Authentication options 520
Using agent items 521

Getting the page 522
Checking page performance 522
Extracting content from web pages 523

Extracting content using the HTTP agent 525
Summary 526
Questions 527
Further reading 527

Chapter 13: High-Level Business Service Monitoring 528
Deciding on the service tree 528
Setting up IT services 529

Creating test items and triggers 531
Configuring IT services 533
Sending in the data 537

Viewing reports 538

Table of Contents

[viii]

Specifying uptime and downtime 541
Summary 543
Questions 544
Further reading 544

Chapter 14: Monitoring IPMI Devices 545
Getting an IPMI device 545
Preparing for IPMI monitoring 546
Setting up IPMI items 546

Creating an IPMI item 548
Monitoring discrete sensors 550

Using the bitwise trigger function 552
Summary 554
Questions 555
Further reading 555

Chapter 15: Monitoring Java Applications 556
Setting up the Zabbix Java gateway 556
Monitoring JMX items 559

Querying JMX items manually 561
What to monitor? 564
JMX discovery 565

Summary 568
Questions 569
Further reading 569

Chapter 16: Monitoring VMware 570
Technical requirements 571
Preparing for VMware monitoring 571
Automatic discovery 572
Available metrics 574
The underlying operation 576

VMware LLD configuration 577
Host prototypes 577
Summarizing default template interaction 580
Server operation and configuration details 581

Summary 583
Questions 584
Further reading 584

Chapter 17: Using Proxies to Monitor Remote Locations 585
Active proxies and passive proxies 586
Setting up an active proxy 586

Monitoring a host through a proxy 590
Proxy benefits 595

Table of Contents

[ix]

Proxy limitations 598
Proxy operation 598

Proxies and availability monitoring 599
Method 1 – last access item 599
Method 2 – internal proxy buffer item 602
Method 3 – custom proxy buffer item 603

Setting up a passive proxy 606
Tweaking the proxy configuration 608
Summary 610
Questions 611
Further reading 611

Chapter 18: Encrypting Zabbix Traffic 612
Overview 612
Backend libraries 613
PSK encryption 614
Certificate-based encryption 617

Being our own authority 617
Setting up Zabbix with certificates 619

Concerns and further reading 622
Summary 623
Questions 624
Further reading 624

Chapter 19: Working Closely with Data 625
Getting raw data 625

Extracting from the frontend 625
Querying the database 627

Using data in a remote site 631
Diving further into the database 632

Managing users 633
Changing existing data 635

Finding out when 636
The when in computer language 637
Finding out what 637
Performing the change 638

Using XML import/export for configuration 638
Exporting the initial configuration 639
Modifying the configuration 639

The XML export format 640
Scripting around the export 640

Importing modified configuration 641
Generating hosts 643
Importing images 646

Starting with the Zabbix API 646

Table of Contents

[x]

Simple operations 647
Obtaining the API version 648
Logging in 650
Enabling and disabling hosts 651
Creating a host 652
Deleting a host 652
Creating a value map 653
Obtaining history and trends 653

Issues with the Zabbix API 656
Using API libraries 657

Summary 659
Questions 660
Further reading 660

Chapter 20: Zabbix Maintenance 661
Internal monitoring 661

New values per second 662
Zabbix server uptime 666
Cache usage 667
Internal process busy rate 669
Unsupported items and more problems 671

Counting unsupported items 672
Reviewing unsupported items 674
Internal events and unknown triggers 674

Backing things up 676
Backing up the database 677
Restoring from a backup 677
Separating configuration and data backups 678

Upgrading Zabbix 679
General version policy 680
Long-term support and short-term support 680
The upgrade process 681

Minor version upgrade 682
Upgrading binaries 682

Upgrading the frontend 683
Major-level upgrades 683
Database versioning 685
Gathering data during the upgrade 687
The frontend configuration file 688

Compatibility 688
Performance considerations 689
Who did that? 691
Exploring configuration file parameters 693

Zabbix agent daemon and common parameters 693
Zabbix server daemon parameters 697

Summary 704
Questions 706

Table of Contents

[xi]

Further reading 706

Appendix A: Troubleshooting 707
Introduction 707
Common issues 708

Installation 708
Compilation 708
Frontend 708
Backend 709
Locked out of the frontend 711

Monitoring 712
General monitoring 712
Monitoring with the Zabbix agent 713

User parameters 717
SNMP devices 718
IPMI monitoring 719
ICMP checks 720
Problems with simple checks 720
Problems with zabbix_sender and trapper items 720
General issues 721

Triggers 722
Actions 722

Discoveries and autoregistration 723
Troubleshooting Zabbix 724

The Zabbix log file format 724
Reloading the configuration cache 726
Controlling running daemons 728
Runtime process status 730

Further debugging 732

Appendix B: Being Part of the Community 733
Community and support 733

Chatting on IRC 734
Using the Zabbix Wiki 736
Using the Zabbix forum 737
Filing issues on the tracker 738
Meeting in person 738

The Zabbix summit 739
Local communities 739

Following the development 739
Getting the source 740

Daily snapshots 740
Accessing the version-control system 741

Looking at the changesets 743
Translating Zabbix 746
Commercial support options 747

Assessment 748

Table of Contents

[xii]

Other Books You May Enjoy 755

Index 758

Preface
This book is a perfect starting point for monitoring with Zabbix. Even if you've never
used a monitoring solution before, this book will get you up and running quickly,
before guiding you into more sophisticated operations with ease. You'll soon feel in
complete control of your network, ready to meet any challenges you might face.

Starting with the installation, you will discover the new features in Zabbix 4.0. You
will then get to grips with native Zabbix agents and SNMP devices. You will also
explore Zabbix's integrated functionality for monitoring Java application servers and
VMware.
The book also covers notifications, permission management, system maintenance,
and troubleshooting, so you can be confident that every potential challenge and task
is under your control. If you're working with larger environments, you'll also be able
to find out more about distributed data collection using Zabbix proxies.

Once you're confident and ready to put these concepts into practice, you will find out
how to optimize and improve performance. Troubleshooting network issues is vital
for anyone working with Zabbix, so the book is also on hand to help you work
through any technical snags and glitches you might face. By the end of this book, you
will have learned many more advanced techniques to fine-tune your system and
make sure it is in a healthy state.

Who this book is for
If you're new to Zabbix, look no further than this book. This book is for system and
network administrators who are looking to put their knowledge to work with Zabbix
4.0.

What this book covers
Chapter 1, Getting Started with Zabbix, gives an overview of Zabbix features and
architecture, and guides you through installing a Zabbix server, frontend, and agent
on the same system. We will set up a Zabbix database as well. The information in this
chapter will give you an idea of what the product is capable of and help you
understand the main components, as well as getting you started with a real, working
installation.

Preface

[2]

Chapter 2, Getting Your First Notification, teaches you how to navigate around the
Zabbix UI. This will be continued with setting up a monitored host, an item, and a
trigger. The collected data will be viewed in a visual way, and then the system will be
configured to send an email when a threshold is exceeded. This setup will be tested.

Chapter 3, Monitoring with Zabbix Agents and Basic Protocols, explores the differences
between passive and active agents/items. The benefits and drawbacks of each will be
discussed to aid you in deciding which one to use. Several types of agentless checks
will be covered, including ICMP ping checks.

Chapter 4, Monitoring SNMP Devices, covers a very popular monitoring method,
especially for network devices—SNMP. Industry-standard tools for SNMP will be
briefly introduced. Adding MIB files so that Zabbix can use them will be explained.
Both SNMP polling and trapping with Zabbix will be shown in a practical way.
SNMP bulkget support will be covered, including potential pitfalls.

Chapter 5, Managing Hosts, Users, and Permissions, looks at the management of hosts,
host groups (including nested group functionality), users, and user groups.

Chapter 6, Detecting Problems with Triggers, expands on the ways to define problem
conditions. To help you understand the concept of separate problem conditions, the
way triggers are not directly attached to hosts will be covered.

Chapter 7, Acting upon Monitored Conditions, uses the new knowledge on data
collection and problem definitions (items and triggers) to demonstrate the possible
ways to send out alerts. Ways to configure email and integration with issue-tracking
systems will be covered. Repeated alerts and escalations to other users and user
groups will be explained.

Chapter 8, Simplifying Complex Configurations with Templates, introduces templates
and advocates for their use. The benefits of templates will be clearly explained, and
the template management process will be demonstrated.

Chapter 9, Visualizing Data with Screens and Slideshows, ties in closely with the
previous chapter, introducing additional visualization elements—dashboards,
screens, and slide shows. It also expands on the sharing of these elements, which also
applies to network maps.

Preface

[3]

Chapter 10, Advanced Item Monitoring, deep-dives into many of the remaining data
collection and transformation options. You will learn how to monitor log files and use
calculated and aggregate items that reuse previously collected values. The most
popular way to extend Zabbix agent with new items, user parameters, will be
demonstrated in detail, along with a similar way to collect data on the server side,
external checks.

Chapter 11, Automating Configuration, introduces and provides lots of detail on the
ways to automate both host entity creation and the creation of hosts themselves in
Zabbix. The built-in LLD features, including the Zabbix agent (filesystems, network
interfaces, CPUs, and more) and SNMP, will be explored in detail, and ways to
completely customize it by scripting will be demonstrated, too.

Chapter 12, Monitoring Web Pages, delves into monitoring web pages in two main
ways—using web scenarios and web page-related Zabbix agent items. With web
scenarios, data storage details will be shared and alerting approaches will be
discussed. Both simple and more complicated monitoring (involving logging in) will
be covered.

Chapter 13, High-Level Business Service Monitoring, uses the data collection, alerting,
and visualization knowledge that you will have gained as a springboard to gain a
high-level overview of the services that can calculate SLA. In this chapter, you will
learn how best to design, configure, and test the service tree with a generated dataset
and view the results in the built-in reports.

Chapter 14, Monitoring IPMI Devices, covers most of the things needed to monitor
IPMI, a protocol supported by nearly all server class systems nowadays. You will
learn how to create IPMI items in Zabbix, and look at the more complex discrete
sensor monitoring. For sensors that return bit-mapped values, a special Zabbix trigger
function, bitwise(), will be explained in detail.

Chapter 15, Monitoring Java Applications, looks into the built-in support for JMX
monitoring and Zabbix Java gateway. We'll start by installing and configuring it to
work with Zabbix server and proceed with basic JMX value gathering.

Chapter 16, Monitoring VMware, demonstrates using the built-in VMware monitoring
by applying the default templates. After an easy start, you will get familiar with the
way these templates and VMware monitoring and discovery works, and you'll be
exposed to host prototypes.

Preface

[4]

Chapter 17, Using Proxies to Monitor Remote Locations, teaches you about Zabbix
proxies—remote data collectors. Both active and passive Zabbix proxies will be
configured, and the benefits of using one or the other will be explained.

Chapter 18, Encrypting Zabbix Traffic, looks at the encryption between Zabbix
components (the server, proxy, and agent) and trying it out in a practical manner. An
overview of the supported backend libraries will be provided.

Chapter 19, Working Closely with Data, looks at some low-level things, including
database structure and some content, in detail. You will find out where collected data
is stored and learn how to perform some modifications, such as restoring access after
forgetting your Zabbix password.

Chapter 20, Zabbix Maintenance, focuses on keeping Zabbix itself running. An
important topic covered will be internal monitoring, which shows cache usage,
process busy rates, unsupported item count, value collection count, and other
statistics. You will also learn about the best practice for backing up and restoring a
Zabbix database.

Chapter 21, Visualizing Data with Graphs and Maps, starts a more detailed section on
visualization options, beyond the previously discussed simple graphs. Simple,
custom, and ad hoc graphs will be covered in detail, especially the configuration
possibilities of custom graphs. To read this chapter, go to the link: https:/ /www.
packtpub.com/sites/ default/ files/ downloads/ Visualizing_ Data_ with_ Graphs_
and_Maps.pdf.

Chapter 22, Monitoring Windows, concerns Windows, providing coverage of most of
the available functionality, starting with the native agent installation and
configuration. Two of the most popular metric-gathering methods will be
demonstrated–performance counters and WMI. Ways to find out the desired
performance counters will be shown. Windows service state, including service
discovery, will be explained, along with Windows Eventlog monitoring and filtering
by severity, facility, and other parameters. To read this chapter, go to the
link: https:// www. packtpub. com/ sites/ default/ files/ downloads/ Monitoring_
Windows.pdf.

Appendix A, Troubleshooting, describes problems that users frequently encounter with
data collection and general Zabbix operations. The best ways to detect them and fix
them will be detailed. To prepare you for less common and new problems, detailed
information will be provided on the log file format, ways to modify the behavior of a
running daemon, finding out what daemon processes are doing, and other tasks.

https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf

Preface

[5]

Appendix B, Being Part of the Community, leaves you prepared to find more
information on the things not covered in this book. Suggestions concerning the
Zabbix IRC channel, forums, wiki, issue tracker, and possible in-person meetups will
be provided. To be more informed about upcoming changes or to obtain some
changes before full release, a code management system will be described. For users
who require commercial support, brief references will be included.

To get the most out of this book
You will need at least one Linux system, which could be a virtual machine as well.

Depending on the specific features discussed, you might also benefit from the
following:

Access to an SMTP (email) server
More Linux systems
A device with SNMP support
A Windows system
A device with IPMI support
A Java virtual machine
A VMware instance

Some of these can be replicated on the same Linux box—for example,
running SNMPD or a Java virtual machine will allow you to try out all the monitoring
solutions without a separate system.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[6]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ /github. com/
PacktPublishing/ Zabbix- 4- Network- Monitoring- Third- Edition. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https:/ /www. packtpub. com/ sites/ default/
files/downloads/ 9781789340266_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "This allows the zabbix user to use sudo and restart the Apache
web server."

A block of code is set as follows:

PROBLEM: SNMP trap has arrived on snmptraps on snmptraps

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

BB +5.0V | 4.97 Volts | ok
Baseboard Temp | 23 degrees C | ok
System Fan 2 | 3267 RPM | ok
Power Unit Stat | 0x00 | ok

https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/Zabbix-4-Network-Monitoring-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340266_ColorImages.pdf

Preface

[7]

Any command-line input or output is written as follows:

$ snmptrap -Ci -v 2c -c public <Zabbix server> "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s
"Critical Error"

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Go to Configuration | Actions and click on SNMP action in
the Name column."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packt.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

[8]

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
Getting Started with Zabbix

It's Friday night and you are at a party outside the city with old friends. After a few
beers, it looks as if this is going to be a great party, when suddenly your phone rings.
A customer can't access some critical server that absolutely has to be available as soon
as possible. You try to connect to the server using SSH, only to discover that the
customer is right—it can't be accessed.

As driving after those few beers would quite likely lead to an inoperable server for
quite some time, you get a taxi—expensive because of the distance (while many
modern systems have out-of-band management cards installed that might have
helped a bit in such a situation, our hypothetical administrator does not have one
available). After arriving at the server room, you find out that some log files have
been growing more than usual over the past few weeks and have filled up the hard
drive.

While the preceding scenario is very simplistic, something similar has probably
happened to most IT workers at one point or another in their careers. Most will have
implemented a simple system monitoring and reporting solution soon after that.

We will learn how to set up and configure one such monitoring system—Zabbix. In
this very first chapter, we will cover the following topics:

First steps in monitoring
Zabbix architecture and choosing the version and repository
Setting up Zabbix from packages
Setting up Zabbix from the source
Configuring the Zabbix frontend

Getting Started with Zabbix Chapter 1

[10]

Technical requirements
You will need a server or virtual machine with the option to install CentOS/Red Hat
or Debian/Ubuntu.

The first steps in monitoring
Situations similar to the one just described are actually more common than desired. A
system fault that had no visible symptoms before is relatively rare. A subsection of
UNIX administration horror stories
(http://www-uxsup.csx.cam.ac.uk/misc/horror.txt) only containing stories about
faults that weren't noticed in time could probably be compiled easily.

As experience shows, problems tend to happen when we are least equipped to solve
them. To work with them on our terms, we turn to a class of software commonly
referred to as network monitoring software. Such software usually allows us to
constantly monitor things happening in a computer network using one or more
methods and notify the persons responsible if a metric passes a defined threshold.

One of the first monitoring solutions most administrators implement is a simple shell
script invoked from crontab, which checks some basic parameters, such as disk
usage, or some service state, such as an Apache server. As the server and monitored
parameter count grows, a neat and clean script system starts to grow into a
performance-hogging script hairball that costs more time in upkeep than it saves.
While the do-it-yourself crowd claims that nobody needs dedicated software for most
tasks (monitoring included), most administrators will disagree as soon as they have to
add switches, UPSes, routers, IP cameras, and a myriad of other devices to the swarm
of monitored objects.

So, what basic functionality can expect from a monitoring solution? Let's take a look:

Data gathering: This is where everything starts. Usually, data is gathered
using various methods, including Simple Network Management Protocol
(SNMP), Zabbix agents, Intelligent Platform Management Interface
(IPMI), and Java Management Extensions (JMX).

http://www-uxsup.csx.cam.ac.uk/misc/horror.txt

Getting Started with Zabbix Chapter 1

[11]

Data storage: Once we have gathered the data, it doesn't make sense to
throw it away, so we will often want to store it for later analysis.
Alerting: Gathered data can be compared to thresholds and alerts sent out
when required using different channels, such as email or SMS.
Visualization: Humans are better at distinguishing visualized data than
raw numbers, especially when there's a lot of data. As we have data
already gathered and stored, it is easy to generate simple graphs from it.

Sounds simple? That's because it is. But then we start to want more features, such as
easy and efficient configuration, escalations, and permission delegation. If we sit
down and start listing the things we want to keep an eye out for, it may turn out that
that area of interest extends beyond the network, for example, a hard drive that has
Self-Monitoring, Analysis, and Reporting Technology (S.M.A.R.T) errors logged,
an application that has too many threads, or a UPS that has one phase overloaded. It
is much easier to manage the monitoring of all of these different problem categories
from a single configuration point.

In the quest for a manageable monitoring system, wondrous adventurers stumbled
upon collections of scripts much like the way they themselves implemented obscure
and not-so-obscure workstation-level software and heavy, expensive monitoring
systems from big vendors.

Many went with a different category—free software. We will look at a free software
monitoring solution, Zabbix.

Zabbix features and architecture
Zabbix provides many ways of monitoring different aspects of your IT infrastructure
and, indeed, almost anything you might want to hook up to it. It can be characterized
as a semi-distributed monitoring system with centralized management. While many
installations have a single central system, it is possible to use distributed monitoring
with proxies, and most installations will use Zabbix agents.

Getting Started with Zabbix Chapter 1

[12]

What features does Zabbix provide? Let's have a look:

A centralized, easy to use web interface
A server that runs on most UNIX-like operating systems, including Linux,
AIX, FreeBSD, OpenBSD, and Solaris
Native agents for most UNIX-like operating systems and Microsoft
Windows versions
The ability to directly monitor SNMP (SNMPv1, SNMPv2c, and SNMPv3) and
IPMI devices
The ability to directly monitor Java applications using JMX
The ability to directly monitor vCenter or vSphere instances using the
VMware API
Built-in graphing and other visualization capabilities
Notifications that allow easy integration with other systems
Flexible configuration, including templating
Low-Level Discovery (LLD) and the ability to generate items, graphs, and
triggers (among others) in an automated way
A lot of other features that allow you to implement a sophisticated
monitoring solution

If we look at a simplified network from the Zabbix perspective, placing the Zabbix
server at the center, the communication of the various monitoring aspects matters.
The following diagram depicts a relatively simple Zabbix setup with several of the
monitoring capabilities used and different device categories connected:

Getting Started with Zabbix Chapter 1

[13]

Getting Started with Zabbix Chapter 1

[14]

The Zabbix Server directly monitors multiple devices, but a remote location is
separated by a firewall, so it is easier to gather data through a Zabbix proxy. The
Zabbix proxy and Zabbix agents, just like the server, are written in the C language.

Our central object is the Zabbix database, which supports several backends. The
Zabbix server, written in the C language, and the Zabbix web frontend, written in
PHP, can both reside on the same machine or on another server. When running each
component on a separate machine, both the Zabbix server and the Zabbix web
frontend need access to the Zabbix database, and the Zabbix web frontend needs
access to the Zabbix server to display the server status and for some additional
functionality.

While it is perfectly fine to run all three server components on a single machine, there
might be good reasons to separate them, such as taking advantage of an existing high-
performance database or web server.

In general, monitored devices have little control over what is monitored—most of the
configuration is centralized. Such an approach seriously reduces the ability of a single
misconfigured system to bring down the whole monitoring setup.

In the following diagram, we have an overview of the basic Zabbix setup with our
Zabbix server, web server and relational database. In our setup, we will install the
three components on one machine. It is possible, however, to split up components
over three different machines, something we will see later in this book:

Getting Started with Zabbix Chapter 1

[15]

Installation
Alright, enough with the dry talk—what use is that? Let's look at the dashboard screen
of the Zabbix web frontend, showing only a very basic standard configuration:

The Zabbix dashboard shows you a high-level overview of the overall status of the
monitored system, the status of Zabbix, some of the most recent problems, and a few
more things. This particular dashboard shows a very tiny Zabbix setup. Eventually,
your Zabbix installation will grow and monitor different devices, including servers of
various operating systems, different services and the hardware state on those servers,
network devices, UPSes, web pages, other components of IT, and other infrastructure.

Getting Started with Zabbix Chapter 1

[16]

The frontend will provide various options for visualizing data, starting from lists of
problems and simple graphs and ending with network maps and reports, while the
backend will work hard to provide the information that this visualization is based on
and send out alerts. All of this will require some configuration that we will learn to
perform along the course of this book.

Before we can configure Zabbix, we need to install it. Usually, you'll have two
choices—installing from packages or setting it up from the source code. Zabbix
packages are available in quite a lot of Linux distribution repositories, and it is
usually a safe choice to use those. Additionally, a Zabbix-specific repository is
provided by SIA Zabbix (the company developing the product) for some
distributions.

It is a good idea to check the latest installation instructions at
https:/ / www. zabbix. com/ documentation/ 4.0/manual/
installation.

Choosing the version and repository
At first, we will set up the Zabbix server, database, and frontend, all running on the
same machine and using a MySQL database.

Should you use the packages or install from the source? In most cases, installing from the
packages will be easier. Here are a few considerations that might help you select the
method:

There are certain benefits of using distribution packages. These include the
following:

Automated installation and updating
The dependencies are usually sorted out
Easy and proper cleanup when uninstalling
No installation of compilers needed on your systems

Compiling from source also has its share of benefits. They are as follows:
You can get newer versions with more features and
improvements.
You have more fine-grained control over compiled-in
functionality.

https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation
https://www.zabbix.com/documentation/4.0/manual/installation

Getting Started with Zabbix Chapter 1

[17]

But which version to choose? You might see several versions available in repositories,
and those versions might not be equal. Since Zabbix 2.2, the concept of a Long-Term
Support (LTS) release has been introduced. This determines how long support in the
form of bug fixes will be available for. An LTS release is supported for five years
(three years full support and two years limited support), while a normal release is
supported until a month after the release date of the next version. Zabbix 2.2 and 3.0
are LTS releases, while 2.4, 3.2, and 3.4 are normal releases. Choose an LTS release for
an installation that you don't plan to upgrade for a setup where you want vendor
(Zabbix SIA) support. A normal release can be used for a setup you intend to keep
up-to-date. In this book, we will use the latest LTS release Zabbix version 4.0.

This policy might change. Verify the details on the Zabbix website:
http://www.zabbix.com/life_cycle_and_release_policy.php.

The most widely used Zabbix architecture is a server that queries agents. This is what
we will learn to set up initially so that we can monitor our test system.

As with most software, there are some prerequisites that we will need in order to run
Zabbix components. These include requirements of hardware and other software that
the Zabbix server and agent depend on. For the purpose of our installation, we will
settle for running Zabbix on Linux, using a MySQL database. The specific Linux
distribution does not matter much—it's best to choose the one you are most familiar
with.

Hardware requirements
Hardware requirements vary wildly depending on the configuration. It is impossible
to provide definite requirements, so any production installation should evaluate them
individually. For our test environment, though, even as little RAM as 128 MB should
be enough. CPU power in general won't play a huge role; Pentium II-class hardware
should be perfectly capable of dealing with it, although generating graphs with many
elements or other complex views could require more powerful hardware to operate at
an acceptable speed. You can take these as a starting point as well when installing on
a virtual machine.

Of course, the more resources you give to Zabbix, the snappier and happier it will be.

http://www.zabbix.com/life_cycle_and_release_policy.php

Getting Started with Zabbix Chapter 1

[18]

Installing from the packages
If you have decided to install Zabbix from the packages, package availability and the
procedure will differ based on the distribution. A few distributions will be covered
here—read the distribution-specific instructions for others. For the installation, we
need root rights.

Red Hat Enterprise Linux (RHEL)/CentOS
RHEL or CentOS users have two repositories to choose from: the well-known Extra
Packages for Enterprise Linux (EPEL) and the Zabbix repository. EPEL might be a
safer choice, but it might not always have the latest version. (In fact, at the time of
writing, the latest version in EPEL was still 3.0.22, so it's possible that 4.0 will not be
available in EPEL). In production, most of the time you will encounter setups with
Security-Enhanced Linux (SELinux) enabled. However, SELinux is rather complex
on its own, so it's out of the scope of this book; please disable SELinux before you
start with the installation of Zabbix. If you have no clue how to do so, this can be
done by editing the /etc/selinux/config file and putting disable or permissive
instead of enabled. Don't forget to reboot afterwards so that changes are applied to
the system. You can verify the status with the getenforce command.

EPEL
If EPEL is not set up already, it must be added. For RHEL/CentOS 7, the command is
similar to this:

rpm -Uvh
http://ftp.colocall.net/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rp
m

For CentOS7 only, run the following command:

yum install epel-release

Check the latest available version at https:/ /fedoraproject. org/
wiki/ EPEL.

https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL

Getting Started with Zabbix Chapter 1

[19]

If you would like to check the available Zabbix versions in EPEL, it is possible with
the next command:

yum --disablerepo="*" --enablerepo="epel" search zabbix

Once the repository has been set up, you may install the packages (except the
following is for 3.0 not for 4.0 as it was not available when this book was written):

yum install zabbix30-agent zabbix30-dbfiles-mysql zabbix30-server-
mysql zabbix30-web-mysql

The Zabbix repository
First, the package that will define that the Zabbix repository should be installed:

rpm -ivh
http://repo.zabbix.com/zabbix/4.0/rhel/7/x86_64/zabbix-release-4.0-1.e
l7.noarch.rpm

Once the repository has been set up, you may install the packages:

yum install zabbix-server-mysql zabbix-web-mysql zabbix-agent

Ubuntu/Debian
Zabbix has repositories available for Debian and Ubuntu just as it does for
CentOS/Red Hat, so both are equally supported. Just be aware that Zabbix SIA has a
slight preference lately for CentOS/Red Hat, and that this is the preferred OS for their
training as well, but both are equally supported and tested:

For Ubuntu 18.04
wget
https://repo.zabbix.com/zabbix/4.0/ubuntu/pool/main/z/zabbix-release/z
abbix-release_4.0-1+bionic_all.deb

For Debian 9
wget
https://repo.zabbix.com/zabbix/4.0/debian/pool/main/z/zabbix-release/z
abbix-release_4.0-1+stretch_all.deb
dpkg -i zabbix-release_4.0-1+bionic_all.deb

Getting Started with Zabbix Chapter 1

[20]

Once the repository has been set up, you may want to update the cache and install the
packages, as follows:

apt update
add-apt-repository universe # (This is needed
 # for package
 # like fping ...)
apt install zabbix-server-mysql zabbix-agent zabbix-frontend-php

Installing from source
If you have decided to install Zabbix from the source, you will need to obtain the
source, configure it, and compile it. After the daemons are put in place, the frontend
will have to be set up manually as well.

The server and agent
At first, we will only set up the Zabbix server and agent, both running on the same
system. We will set up additional components later during the course of this book.

Software requirements
Now, we should get to compiling the various components of Zabbix, so make sure to
install the minimum required packages to get Zabbix working with MySQL. Here
they are:

GCC
Automake
MariaDB (or any compatible MySQL DB)

Depending on your distribution and the desired functionality, you might also need
some or all of the following packages:

zlib-devel

mariadb-devel (for MySQL support)
glibc-devel

curl-devel (for web monitoring)
libidn-devel (curl-devel might depend on it)

Getting Started with Zabbix Chapter 1

[21]

openssl-devel (curl-devel might depend on it)
net-snmp-devel (for SNMP support)
popt-devel (net-snmp-devel might depend on it)
rpm-devel (net-snmp-devel might depend on it)
OpenIPMI-devel (for IPMI support)
libssh2-devel (for direct SSH checks)
libxm2-devel (for VMware monitoring)
unixODBC-devel (for database monitoring)
Java SDK (for Java gateway/JMX checks)

Downloading the source
There are several ways of downloading the source code of Zabbix. You can get it from
a Subversion (SVN) repository, which will be discussed in Appendix B, Being part of
the Community; however, for this installation procedure, I suggest you download
version 4.0.0 from the Zabbix home page, https:/ /www. zabbix. com/ . While it should
be possible to use the latest stable version, using 4.0.0 will allow you to follow
instructions more closely. Go to the Download section and grab the compressed
source package. Usually, only the latest stable version is available on the download
page, so you might have to browse the source archives, but do not take a
development or beta version, which might be available.

To make further references easy, I suggested you choose a directory to work in, for
example, ~/zabbix (~ being your home directory). Download the archive into this
directory.

Compilation
Once the archive has finished downloading, open a Terminal and extract it:

$ cd ~/zabbix; tar -zxvf zabbix-4.0.0.tar.gz

I suggest you install the prerequisites and compile Zabbix with external functionality
right away so that you don't have to recompile as we progress.

For the purpose of this book, we will compile Zabbix with server, agent, MySQL,
CURL, SNMP, SSH, ODBC, XML (VMware), and IPMI support.

https://www.zabbix.com/
https://www.zabbix.com/
https://www.zabbix.com/
https://www.zabbix.com/
https://www.zabbix.com/
https://www.zabbix.com/
https://www.zabbix.com/
https://www.zabbix.com/
https://www.zabbix.com/
https://www.zabbix.com/

Getting Started with Zabbix Chapter 1

[22]

To continue, enter the following in the Terminal:

$ cd zabbix-4.0.0
$./configure --enable-server --with-mysql --with-net-snmp --with-
libcurl --with-openipmi --enable-agent --with-libxml2 --with-unixodbc
--with-ssh2 --with-openssl

In the end, a summary of the compiled components will be printed. Verify that you
have the following enabled:

 Enable server: yes
 Server details:
 With database: MySQL
 WEB Monitoring: CURL
 SNMP: yes
 IPMI: yes
 SSH: yes
 TLS: OpenSSL
 ODBC: yes
 Enable agent: yes

If the configuration completes successfully, it's all good. If it fails, check the error
messages printed in the console and verify that all prerequisites have been installed.
A file named config.log might provide more detail about the errors. If you can't
find out what's wrong, check Appendix A, Troubleshooting, which lists some common
compilation problems.

To actually compile Zabbix, issue the following command:

$ make

You can grab a cup of tea, but don't expect to have much time—Zabbix compilation
doesn't take too long; even an old 350-MHz Pentium II compiles it in approximately
five minutes. On a modern machine, give it less than a minute. After the make process
has finished, check the last lines for any error messages. If there are none,
congratulations—you have successfully compiled Zabbix!

Now, we should install it. I suggest you create proper packages, but that will require
some effort and will be distribution dependent. Another option is to run make
install. This will place the files in the filesystem but will not register Zabbix as an
installed package—removing and upgrading such software is harder.

If you have experience with creating distribution packages, do so—it is a better
approach. If this is just a test installation, run the following:

make install

Getting Started with Zabbix Chapter 1

[23]

Here and later in this book, a $ prompt will mean a normal user,
while a # prompt will mean the root user. To run commands as root,
su or sudo are commonly used.

But remember that test installations have a tendency of becoming production
installations later—it might be a good idea to do things properly from the very
beginning.

Dash or underscore
Depending on the method of installation, you might get Zabbix binaries and
configuration files using either a dash (minus) or an underscore, as in the following:

 zabbix_server versus zabbix-server
 zabbix_agentd versus zabbix-agentd
 zabbix_server.conf versus zabbix-server.conf

While Zabbix itself uses an underscore, many distributions will replace it with a dash
to follow their own guidelines. There is no functional difference; you just have to
keep in mind the character that your installation uses. In this book, we will reference
binaries and files using an underscore.

Initial configuration
After compilation or installation from the package, we have to configure some basic
parameters for the server and agent. Default configuration files are provided with
Zabbix. The location of these files will depend on the installation method you chose:

Source installation: /usr/local/etc
RHEL/CentOS/Debian/Ubuntu package installation: /etc

On other distributions, the files might be located in a different directory. In this book,
we will reference binaries and configuration files using relative names, except in
situations where the absolute path is recommended or required.

To configure the Zabbix agent, we don't have to do anything. The default
configuration will do just fine for now. That was easy, right?

Getting Started with Zabbix Chapter 1

[24]

For the server, we will need to make some changes. Open the zabbix_server.conf
file in your favorite editor (you will need to edit it as the root user) and find the
following entries in the file:

DBName

DBUser

DBPassword

DBName should be zabbix by default; we can leave it as is. DBUser is set to root, and
we don't like that, so let's change it to zabbix. For DBPassword, choose any
password. You won't have to remember it, so be creative.

In UNIX-like solutions, a hash character or # at the beginning of a line usually means
that the line is commented out. Make sure not to start lines you want to have an effect
with a hash.

Creating and populating the database
For the Zabbix server to store the data, we need a database. As we have installed our
Zabbix server with MySQL support, we need to install the MySQL server first. You
will see that we install MariaDB instead of MySQL. This is because now most
distributions prefer to deliver MariaDB instead of MySQL as MySQL was acquired by
Oracle and people were afraid Oracle would change the license. Zabbix also has
support for other databases, such as Oracle, IBM DB2, and PostgreSQL. The reason
we use MySQL is because it's the most widely known and also the preferred database
by Zabbix SIA. This does not mean other solutions are worse or less tested. It's just
because the best knowledge in Zabbix SIA is with MySQL and not PostgreSQL or any
other supported database:

CentOS/Red Hat 7
yum install mariadb-server

Ubuntu/Debian
apt install mysql-server

We also have to create a database. Start a MySQL client to connect to the MySQL
Server:

CentOS/Red Hat 7 Start the database first and set a DB root password
systemctl start mariadb; systemctl enable mariadb
mysql_secure_installation
mysql -u root -p

Getting Started with Zabbix Chapter 1

[25]

Ubuntu/Debian Start the database first and set a DB root password
mysql_secure_installation
mysql -u root -p

Using mysql_secure_installation is easy to set a root password for your
database. It also allows you to configure MySQL/MariaDB easy in a more secure way.

Enter the root user's password for MySQL (you will have set this during the
installation of MariaDB or the password could be something that is the default for
your distribution). If you do not know the password, you can try omitting -p. This
switch will tell the client to attempt to connect without a password (or with an empty
password).

If you are using MySQL Community Edition from the packages and the version is
5.7.6 or higher, it generates a random password that is stored in logfiles. Check out
the MySQL documentation at
http://dev.mysql.com/doc/refman/5.7/en/linux-installation-rpm.html for more
details.

Now, let's create the database. Add the user through which Zabbix will connect to the
database and grant the necessary permissions to this user:

mysql> create database zabbix character set utf8 collate utf8_bin;
Query OK, 1 row affected (0.01 sec)
mysql> grant all privileges on zabbix.* to 'zabbix'@'localhost'
identified by 'mycreativepassword';
Query OK, 0 rows affected (0.12 sec)

Use the password you set in the zabbix_server.conf file instead of
mycreativepassword.

Quit the MySQL client by entering the following command:

mysql> quit

Let's populate the newly created database with a Zabbix schema and initial data. The
following commands refer to the files as they appear in the Zabbix source. When
installing from packages, this file could be located in a directory such as
/usr/share/doc/zabbix-server-mysql-4.0.0/ or /usr/share/zabbix-
server-mysql:

zcat /usr/share/doc/zabbix-server-mysql*/create.sql.gz | mysql -
uzabbix -p zabbix

http://dev.mysql.com/doc/refman/5.7/en/linux-installation-rpm.html

Getting Started with Zabbix Chapter 1

[26]

This processes should complete without any messages. If there are any errors, review
the messages, fix the issue, and retry the failed operation. If the import is interrupted
in the middle of the process, you might have to clear the database—the easiest way to
do this is to delete the database by typing this:

mysql> drop database zabbix;
Query OK, 0 rows affected (0.00 sec)

Be careful not to delete a database with important information! After
deleting the Zabbix database, recreate it as we did before.

By now, we should have the Zabbix server and agent installed and ready to start.

Starting up
You should never start the Zabbix server or agent as root, which is common sense
for most daemon processes. If you installed Zabbix from distribution packages,
system users should have been created already—if not, let's create a new user to run
these processes. You can use tools provided by your distribution or use the most
widely available command, useradd, which we need to execute as root:

useradd -m -s /bin/bash zabbix

For production systems, consider using different user accounts for the Zabbix server
and agent. Otherwise, users with configuration rights will be able to discover Zabbix
database credentials by instructing the agent to read the server configuration file.
Some distribution packages, such as the EPEL and OpenSUSE ones, already use a
separate user account called zabbixsrv or zabbixs by default.

This will create a user named zabbix with a home directory in the default location,
/home/zabbix usually, and a shell at /bin/bash.

While using bash on a test system will make it easier to debug
issues, consider using /bin/nologin or /bin/false on
production systems.

Getting Started with Zabbix Chapter 1

[27]

If you installed from source, let's try the direct approach—running the binaries. The
location of the binaries will depend on the chosen method of installation. Installing
from the source without any extra parameters will place the agent and server binaries
in /usr/local/sbin; distribution packages are likely to place them in /usr/sbin.
Assuming they are in your path, you can determine where the binaries are by
running this:

which zabbix_server

Keep in mind the potential use of a dash or minus instead of an
underscore.

This will show something similar to the following:

/usr/sbin/zabbix_server

Alternatively, the whereis command can also list configuration and other related
files:

whereis zabbix_server

This would likely list the binary, configuration file, and main page:

zabbix_server: /usr/sbin/zabbix_server
/usr/local/etc/zabbix_server.conf /usr/share/man/man3/zabbix_server

Once you know the exact location of the binaries, execute the following as the root
user:

<path>/zabbix_agentd

We are using zabbix_agentd, which runs as a daemon. Older
versions also had the zabbix_agent executable, which provided an
option to be run within internet service daemon (inetd); it did not
support active items and, in most cases, had worse performance
than the agent daemon.

Getting Started with Zabbix Chapter 1

[28]

This will start the Zabbix agent daemon, which should start up silently and
daemonize. If the command produces errors, resolve them before proceeding. If it
succeeds, continue by starting the Zabbix server:

<path>/zabbix_server

Check the Zabbix server log file, configurable in
zabbix_server.conf. If there are database-related errors, fix them
and restart the Zabbix server.

If you installed from the packages, execute this:

systemctl start zabbix-agent
systemctl start zabbix-server

With systemd no output should be printed on the screen if the
service was started without issues.

Feel free to experiment with other parameters, such as stop and restart—it should
be obvious what these two do.

You can verify whether services are running with the status parameter. For a
service that is not running, you would get the following:

systemctl status zabbix-server

A running service would yield the following:

zabbix-server.service - Zabbix Server
Loaded: loaded (/usr/lib/systemd/system/zabbix-server.service;
disabled; vendor preset: disabled)
Active: active (running) since Sun 2018-08-05 12:57:13 CEST; 1min 39s
ago
Process: 1972 ExecStart=/usr/sbin/zabbix_server -c $CONFFILE
(code=exited, status=0/SUCCESS)
Main PID: 1974 (zabbix_server)
CGroup: /system.slice/zabbix-server.service
├─1974 /usr/sbin/zabbix_server -c /etc/zabbix/zabbix_server.conf
├─1979 /usr/sbin/zabbix_server: configuration syncer [synced
configuration in 0.008373 sec, idle 60 sec]
....

Getting Started with Zabbix Chapter 1

[29]

While it's nice to have Zabbix processes running, it's hardly a process one expects to
do manually upon each system boot, so the server and agent should be added to your
system's startup sequence. This is fairly distribution specific, so all possible variations
can't be discussed here. With RHEL or CentOS, a command such as this should help:

systemctl enable zabbix-agent
systemctl enable zabbix-server

This will add both services to be started at boot time.

A nice summary of Systemd can be found at https:/ / fedoraproject. org/ wiki/
SysVinit_to_Systemd_ Cheatsheet.

Verifying the service's state
While the systemd method is a nice way to check a service's state for some
distributions, it's not available everywhere and isn't always enough. Sometimes, you
might want to use these other methods to check whether the Zabbix server or agent is
running:

Checking running processes: The most common method to check whether
a particular process is running is by looking at the running processes. You
can verify whether the Zabbix agent daemon processes are actually
running using this command:

 $ ps -C zabbix_agentd

Output from the ss command: Sometimes, an agent daemon might start
up but fail to bind to the port or the port might be used by some other
process. You can verify whether some other process is listening on the
Zabbix port or whether the Zabbix agent daemon is listening on the correct
port by issuing this command:

 # ss -tlnp

https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet

Getting Started with Zabbix Chapter 1

[30]

Process names won't be printed for other users' processes unless you are the
root user. In the output, look for a line similar to this:

ss is a replacement for netstat on CentOS/Red Hat; if you would
still like to use netstat, that is possible by installing the net-
tools package—just remember that netstat is deprecated.

State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 128 *:10050 *:*
users:(("zabbix_agentd",pid=1965,fd=4),("zabbix_agentd",pi
d=1964,fd=4),("zabbix_agentd",pid=1963,fd=4),
...
LISTEN 0 128 *:10051 *:*
users:(("zabbix_server",pid=2011,fd=5),("zabbix_server",pi
d=2010,fd=5),("zabbix_server",pid=2009,fd=5),
...
LISTEN 0 50 *:3306 *:*
users:(("mysqld",pid=1832,fd=14))
LISTEN 0 128 *:22 *:* users:(("sshd",pid=1033,fd=3))
LISTEN 0 100 127.0.0.1:25 *:*
users:(("master",pid=1278,fd=13))
LISTEN 0 128 :::10050 :::*
users:(("zabbix_agentd",pid=1965,fd=5),
...
LISTEN 0 128 :::10051 :::*
users:(("zabbix_server",pid=2011,fd=6),("zabbix_server",pi
d=2010,fd=6),("zabbix_server",pid=2009,fd=6),
...
LISTEN 0 128 :::22 :::*
users:(("sshd",pid=1033,fd=4))
LISTEN 0 100 ::1:25 :::* users:(("master",pid=1278,fd=14))

This indicates that the zabbix_agentd process is running and listening on
all addresses on port 10050—just what we need.

Telnetting to the port: Even when a service starts up and successfully
binds to a port, there might be some connectivity issues, perhaps due to a
local firewall. To quickly check connectivity on the desired port, you can
try this:

 $ telnet localhost 10050

Getting Started with Zabbix Chapter 1

[31]

This command should open a connection to the Zabbix agent daemon, and
the daemon should not close the connection immediately. All of this applies
to the Zabbix server as well, except that it uses a different port by default:
10051.

On CentOS, it is possible that telnet will not work—that's because we
have to install it first. This can be done by running the following:

 # yum install telnet

The web frontend
Now that we have the Zabbix server and agent either compiled and installed or
installed from the distribution packages, and both daemons are running, you
probably have a feeling that something's missing. We have only configured some
low-level behavior, so where's the meat?

That's what the frontend is for. While, in theory, Zabbix can have multiple frontends,
the only one with full functionality so far is the Zabbix web frontend, which is written
in PHP. We have to set it up to configure Zabbix and get to those nice graphs
everybody likes.

Prerequisites and setting up the environment
Of course, being a Zabbix web frontend, it will require a platform to run on—a web
server with a PHP environment. We will need the following installed:

A web server that is supported by PHP; Apache is the most common choice
PHP version 5.4.0 or higher

The following instructions apply when installing from source.
Installing from packages usually installs the Zabbix frontend as
well. On CentOS make sure you have Apache enabled and started.

In the next code block, we will show you how to install the webserver on CentOS and
Debian:

On CentOS
yum install httpd php php-ldap php-mysql
systemctl enable httpd
systemct start httpd

Getting Started with Zabbix Chapter 1

[32]

On Debian/Ubuntu
apt install apache2 php php7.2-cli php7.2-mysql php7.2-common
php7.2-curl php7.2-json php7.2-cgi libapache2-mod-php7.2 php7.2
php7.2-ldap

It is easiest to install these from the distribution packages as it will take care of all of
the dependencies we need. Just make sure you install the correct PHP connector for
your database—in our case, this is php-mysql. If you would like to make a
connection to your AD/LDAP, you also need to make sure that php-ldap is installed.

Some distributions split out the core PHP modules. These might
include ctype, net-socket, libxml, and others.

Once you have all of these installed, it's time to set up the frontend. Again, there's a
choice of using packages or installing from source. If you decided to go with the
packages, you should have the frontend installed already and should be able to
proceed with the configuration wizard section explained next. If you went with the
source installation, it's just a simple copying of some files.

First, you have to decide where the frontend code has to go. Most distributions that
package web servers use /srv/www/htdocs or /var/www. If you compiled the
Apache web server from the source, it would be /usr/local/apache2/htdocs
(unless you manually changed the prefix or installed an older Apache version). We
will place the frontend in a simple subdirectory, zabbix.

Assuming you have Apache distribution packages installed with the web root
directory at /srv/www/htdocs, placing the frontend where it is needed is as simple
as executing the following as the root user:

cp -r frontends/php /srv/www/htdocs/zabbix

The last thing we need to do is open our firewall so that our browser can connect on
the web server port of our server:

CentOS/Red Hat
firewall-cmd --add-service=http --permanent
firewall-cmd --reload

Debian / Ubuntu
(standard there is no firewall installed you could use iptables or ufw
or similar solution)
 # apt install firewalld

Getting Started with Zabbix Chapter 1

[33]

Zabbix provides out of the box a configuration for HTTP. This is not
really best practice and it's advised in production to configure
Zabbix properly with HTTPS.

Using the web frontend configuration
wizard
The web frontend has a wizard that helps you to configure its basics. Let's go through
the simple steps it offers.

It's time to fire up a browser and navigate to Zabbix's address:
http://<server_ip_or_name>/zabbix. It should work just fine in the latest
versions of most browsers, including Firefox, Chrome, Safari, Opera, Konqueror, and
Internet Explorer.

Step 1 – welcome
If everything has been configured properly, you should be greeted by the installation
wizard:

Getting Started with Zabbix Chapter 1

[34]

If you are not, there are several things that could have gone wrong. If the connection
fails completely, make sure Apache is started up and there is no firewall blocking
access. If you see a blank page or some PHP code, make sure that PHP is properly
installed and configured to parse files ending with the .php extension through the
AddType application/x-httpd-php directive. If you see a file and directory
listing instead of the installation wizard, make sure you have added index.php to
the DirectoryIndex directive. If these hints do not help, check the PHP
documentation at https:/ /secure. php.net/ manual/ en/ .

This screen doesn't offer us much to configure, so just click on Next step.

Step 2 – PHP prerequisites
In this step, the installation wizard checks PHP-related prerequisites. If you are lucky,
all will have been satisfied, and you will be greeted with all green entries:

https://secure.php.net/manual/en/
https://secure.php.net/manual/en/
https://secure.php.net/manual/en/
https://secure.php.net/manual/en/
https://secure.php.net/manual/en/
https://secure.php.net/manual/en/
https://secure.php.net/manual/en/
https://secure.php.net/manual/en/
https://secure.php.net/manual/en/
https://secure.php.net/manual/en/
https://secure.php.net/manual/en/
https://secure.php.net/manual/en/
https://secure.php.net/manual/en/
https://secure.php.net/manual/en/

Getting Started with Zabbix Chapter 1

[35]

If so, just click on the Next step button to continue to Step 3 – database access.

However, more often than not, one or more entries will have a red Fail warning listed
next to them. This is where things get more interesting. Problems at this point fall into
two categories—PHP installation or configuration.

Entries such as PHP version, PHP databases support, PHP bcmath, PHP mbstring,
PHP gd, PHP gd PNG/JPEG/FreeType support, and others that are not listed as an
option are PHP installation problems. To solve these, either install the appropriate
distribution packages (sometimes called php5-bcmath, php5-gd, php5-mysql, and so
on), or recompile PHP with the corresponding options.

PHP option "memory_limit", PHP option "post_max_size", PHP option
"upload_max_filesize", PHP option "max_execution_time", PHP option
"max_input_time", and PHP time zone are configuration issues that are all set in the
php.ini configuration file. This file is usually located at /etc/php5 or similar for
distribution packages and /usr/local/lib for PHP source installations. Set the
following options:

max_execution_time 300
memory_limit 128M
post_max_size 16M
upload_max_filesize 2M
max_input_time 300
always_populate_raw_post_data -1
date.timezone Europe/Riga

For the time zone, set the date.timezone option to a time zone that best matches
your environment. The default for Zabbix is Europe/Riga, and you can see valid
options at http://www.php.net/manual/en/timezones.php.

Make sure you restart Apache after changing the PHP configuration file. If you can't
find php.ini, or you make changes but the installation wizard does not pick them
up, create a file named test.php in the htdocs directory with only this content:

<?php phpinfo() ?>

Navigate to this file using your browser and check the value for a Configuration File
(php.ini) Path entry—this is where you should look for php.ini.

http://www.php.net/manual/en/timezones.php

Getting Started with Zabbix Chapter 1

[36]

Once everything is fixed, click on the Next step button to continue.

If you install from packages then you only have to edit the zabbix config file in your
web server's config folder and after applying the correct changes restart your web
server:

CentOS/Red Hat
/etc/httpd/conf.d/zabbix.conf
Debian/Ubuntu
#/etc/apache2/conf-enabled/zabbix.conf

Step 3 – database access
Remember the database we created earlier? That's the information we'll supply here:

Getting Started with Zabbix Chapter 1

[37]

We already configured database credentials for the Zabbix server, but the Zabbix
frontend uses a different configuration file. The default Database type, Database
host, and Database port values should work for us. Set both Database name and
User to zabbix. If you have forgotten the password, just look it up or copy it from
zabbix_server.conf. After entering the data, click on the Next step button. If all of
the information is correct, the wizard should proceed to the next step.

Step 4 – Zabbix server details
The next screen lets you specify the Zabbix server's location:

The defaults for the host and port are suitable for us, but we could benefit from filling
in the Name field. The contents of this field will be used for page titles and a label in
the upper-right corner of the Zabbix interface—this could be really handy if we had
multiple Zabbix installations. Feel free to enter any name here, but for this book, we'll
call the server Zabbix One. When you're done, it's over to the Next step again. The
next screen is a summary of the choices made in the previous screens.

Getting Started with Zabbix Chapter 1

[38]

Step 5 – summary
If you left the defaults where appropriate and your database connection test was
successful, it should be safe to continue by clicking on Next step:

Step 6 – writing the configuration file
It is quite likely that in the next screen, you will be greeted with failure:

Getting Started with Zabbix Chapter 1

[39]

The installation wizard attempted to save the configuration file, but with the access
rights that it has, it should not be possible. Previous versions of Zabbix explained two
alternatives for proceeding. Unfortunately, Zabbix 4.0 has lost the explanation for one
of those. The two possible solutions are as follows:

Click on Download the configuration file and manually place this file in1.
the htdocs/zabbix/conf directory.
Make the htdocs/zabbix/conf directory writable by the web server user2.
(execute as root). Use these commands:

 # chown <username> /path/to/htdocs/zabbix/conf
 # chmod 700 /path/to/htdocs/zabbix/conf

Obviously, we need to insert the correct username and directory in these commands.
Remember, common locations are /var/www/html and
/usr/local/apache2/htdocs—use the one you copied the Zabbix frontend code
to. Common users are wwwrun, www-data, nobody, and daemon—you can find out
which one the correct user is for your system by running this:

$ ps aux | grep http

You could also run this:

$ ps aux | grep apache

The username that most httpd processes are running under will be the correct one.
Once the permissions have been changed, click on Finish. That should successfully
save the configuration file.

You can also skip the configuration wizard by copying
zabbix.conf.php.example in the conf directory to
zabbix.conf.php and editing it directly. In this case, you should
manually verify that the PHP installation and configuration
requirements have been met.

It is suggested that you restrict the permissions on this file afterwards to be readable
only by the web server user, by issuing these commands as root:

chmod 440 /path/to/htdocs/zabbix/conf/zabbix.conf.php
chown root /path/to/htdocs/zabbix/conf/

The file contains the database password, which is best kept secret.

Getting Started with Zabbix Chapter 1

[40]

Step 7 – finishing the wizard
Congratulations, this is the last wizard screen, which only wants you to be friendly to
it and press Finish:

Step 8 – logging in
Immediately after clicking on Finish, you should see a login form:

Getting Started with Zabbix Chapter 1

[41]

The Zabbix database data that we inserted previously also supplied the default
username and password. The default credentials are as follows:

Username: Admin
Password: zabbix

That should get you to the initial frontend screen, which drops you into a quite empty
dashboard:

Getting Started with Zabbix Chapter 1

[42]

Congratulations! The web frontend is now set up and we have logged in.

It is possible to easily change the Zabbix frontend configuration
later. The zabbix.conf.php configuration file can be edited to
change database access details, the Zabbix server host and port, and
the server name that we entered in the fourth step as well. Most of
the parameters in that file should be self-explanatory; for example,
$ZBX_SERVER_NAME will change the server name.

If you take a closer look at the upper-right corner, you'll spot something familiar: it's
the server name we entered earlier in the configuration wizard. This makes it easier to
distinguish this installation from other Zabbix instances; for example, if you had a
testing and a production instance. Additionally, this name is also used in the page
title, and hence in the tab title in most modern browsers. When multiple tabs are
open, you should be able to see the instance name right there in the tab. There's no
need to click on each tab individually and check the URL or upper-right corner of the
Zabbix frontend:

The dashboard isn't too exciting right now, except maybe for that table labeled
System information. The same view is also available somewhere else, though—click
on Reports and then click on System information, the very first report:

Getting Started with Zabbix Chapter 1

[43]

Now we can concentrate on this widget. The frontend successfully sees that the
Zabbix server is running and displays the host and port to which it is trying to
connect. It also knows some basic things about Zabbix's configuration—there are
76 hosts configured in total. Wait, what's that? We have only set it up and have not
configured anything; how can there be 76 hosts already? Let's take a closer look at the
DETAILS column. These values correspond to the descriptions in parentheses located
in the PARAMETER column. So, there are 0 monitored hosts, 1 that is not monitored,
and 75 templates. Now that makes more sense—75 of those 76 are templates, not
actual hosts. Still, there's one host that isn't monitored, what's up with that?

Click on Configuration and choose Hosts. You should see the following screenshot:

The first thing to do here is click on that Filter button at the right
side of the page. In the older versions of Zabbix, it was a huge
button. As you can see, all filters are open by default; we will
discuss and use filters later. For now, whenever you see a filter
preceding the information we came for, just close it.

So, there it is. It turns out that the default Zabbix database already has one server
configured—the local Zabbix server. It is disabled by default, as indicated in the
System information screen and here by the Disabled string in the Status column.

There's a lot of technical details in the Zabbix online manual at
https://www.zabbix.com/documentation/4.0/.

https://www.zabbix.com/documentation/4.0/

Getting Started with Zabbix Chapter 1

[44]

Summary
In this chapter, we set up a fresh Zabbix installation consisting of a database, a server,
and an agent daemon, all running on the same machine. We also installed and
configured the Zabbix web frontend, based on PHP, to access the database.

We will use the results of this work in all of our future chapters. To see how we can
get from a monitored metric to an alert email, we'll go through a simple scenario in
the next chapter: think of it as a sort of quick start guide.

Questions
What are the three main components that we need to set up a Zabbix server1.
?
In what language is the Zabbix server written ?2.
In what language is the Zabbix frontend written ?3.
What databases other than MySQL are supported ?4.

Further reading
The next list contains a list of URLs that should help you find some extra information
concerning what we have seen in this chapter.

Requirements: https:/ / www. zabbix. com/ documentation/ 4.0/ manual/
installation/ requirements

Installation from sources: https:/ /www. zabbix. com/ documentation/ 4.0/
manual/ installation/ install

Why MariaDB Scores Over MySQL: https:/ /opensourceforu. com/ 2018/
04/why- mariadb- scores- over-mysql/

mysql_secure_installation: https:/ /mariadb. com/ kb/en/ library/ mysql_
secure_ installation/

https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/requirements
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/
https://mariadb.com/kb/en/library/mysql_secure_installation/

2
Getting Your First Notification

We have now installed Zabbix, but it's not doing much—this is what we'd expect.
Software that starts doing something on its own would probably be a bit undesirable,
at least for now. The promise of Zabbix is to inform you about problems as soon as
possible, preferably before your users and management notice them. But how do we
get data, where do we place it, and how do we define what a problem is? We will try to
quickly get Zabbix working and alerting us on a single monitored item, which is the
most common scenario. Before we can tell Zabbix who to send notifications to, we
will have to explore and use some basic Zabbix concepts. They are as follows:

Exploring the frontend
Monitoring quickstart
Information flow in Zabbix
Let's create some load
Basic item configuration
Using global search

Exploring the frontend
Although we have already looked at some data that was provided by the frontend,
we should get a bit more familiar with it before attempting some more configuration
tasks.

The configuration steps will be followed by verifying the results in the Monitoring
quickstart section. We will then explain some generic item terms that are used in
Zabbix and their uses. Items, being the basis of information gathering, have a fair
amount of configuration possibilities.

Getting Your First Notification Chapter 2

[46]

In your browser, go to the URL that contains the IP of your Zabbix setup, as
mentioned in the following steps. Zabbix should be properly configured now and
manageable from the UI:

Open Zabbix's root URL (http://<server_ip_or_name>/zabbix) and1.
log in again if you have been logged out. You should now see a pretty
empty dashboard with a little information.
Click on the entries in the top menu bar and observe how the lower menu2.
bar shows subentries of your chosen category.
Click on Configuration, and then click on Host groups in the second-level3.
menu—here, all configured host groups are shown.

You will be using these menus a lot so, in the future, we'll refer to the action we just
performed as Configuration | Host groups. (Whenever you see such a notation, the
first is the main category, and the second is the entry under it.)

As you can see in the following screenshot, there are five main categories, and they
are as follows :

The tabs in the preceding screenshot are explained as follows:

Monitoring: This category contains most of the monitoring-related pages.
You will be able to view data, problems, and graphs here.
Inventory: Here, inventory data for monitored systems can be viewed.
Reports: This section contains some simple reports.
Configuration: Setting up everything related to the monitoring of systems,
parameters, notification sending, and so on happens here.
Administration: This section allows you to set up more of the Zabbix
internals, including authentication methods, users, permissions, and global
Zabbix configuration.

Getting Your First Notification Chapter 2

[47]

The user profile
Before we venture deeper into these categories, it might be worth visiting the profile
section (see the person-like icon in the upper-right corner):

Clicking on it should open your profile:

Getting Your First Notification Chapter 2

[48]

Here, you can set some options concerning your user account, for example, you can
change your password, the frontend language, or the frontend theme. As we will be
using an English (en_GB) frontend, I suggest you leave that as the default. Zabbix 3.0
versions shipped two different themes, but that has been changed in Zabbix 4.0. Now,
we have the Blue and Dark themes, like we used to have in 3.0, but also a high-contrast-
light and a high-contrast-dark theme. We'll stick with the default theme, but both of the
themes shipped with Zabbix 4.0 seem to be visually appealing.

Notice that you can find out the user account you are currently connected to by
moving the mouse cursor over the profile icon in the upper-right corner. A tooltip
will show your username, as well as your name and surname, as configured in the
user profile. When you are not logged in, no profile icon is shown.

There are two options related to logging in: Auto-login, which will automatically log
the user in using a cookie saved by their browser, and Auto-logout. By default, Auto-
login should be enabled, and we will not change these options.

Be aware that, sometimes, the auto logout function will not work as
you would expect it to work. This is due to some pages extending
the session lifetime. You can find more information in the
documentation or in the ticket system of Zabbix at https:/ /
support. zabbix. com/ browse/ ZBX- 8051.

We won't change the URL option at present, but we'll discuss the benefits of setting a
custom default URL for a particular user later. The Refresh option sets the period in
seconds, after which some pages in the frontend will refresh automatically to display
new data. It might be beneficial to increase this parameter for huge screens, which we
do not yet have.

The Rows per page option will limit the amount of entities displayed at a time. In
larger installations, it might be useful to increase it, but making it too large can
negatively affect the performance of the frontend.

https://support.zabbix.com/browse/ZBX-8051
https://support.zabbix.com/browse/ZBX-8051
https://support.zabbix.com/browse/ZBX-8051
https://support.zabbix.com/browse/ZBX-8051
https://support.zabbix.com/browse/ZBX-8051
https://support.zabbix.com/browse/ZBX-8051
https://support.zabbix.com/browse/ZBX-8051
https://support.zabbix.com/browse/ZBX-8051
https://support.zabbix.com/browse/ZBX-8051
https://support.zabbix.com/browse/ZBX-8051
https://support.zabbix.com/browse/ZBX-8051
https://support.zabbix.com/browse/ZBX-8051
https://support.zabbix.com/browse/ZBX-8051
https://support.zabbix.com/browse/ZBX-8051

Getting Your First Notification Chapter 2

[49]

Let's make another change here—switch over to the Messaging tab:

This allows you to configure frontend messages. For now, just mark the Frontend
messaging option to enable them and change Message timeout to 180. We will
discuss what the various options do later in this chapter, when the messages start to
appear.

Verify that all the checkboxes in the Trigger severity section are
marked; if you saved the user profile before, they might have a
different default state.

Getting Your First Notification Chapter 2

[50]

After you have changed the theme and enabled frontend messages, click on the
Update button:

Getting Your First Notification Chapter 2

[51]

Monitoring quickstart
Now that we have a basic understanding of the frontend navigation, it's time to look
at the basics of data gathering in Zabbix Items. In general, anything you want to
gather data about will eventually go into an item.

An item in Zabbix is a configuration entity that holds information on
gathered metrics. It is the very basis of information flowing into
Zabbix, and without items, nothing can be retrieved. An item does
not hold any information on thresholds—that functionality is
covered by triggers.

If items are so important in Zabbix, we should create some. After all, if no data
retrieval is possible without items, we can't monitor anything without them. To get
started with item configuration, open Configuration | Hosts. If it's not selected by
default, choose All in the Group drop-down menu (in the top-right corner). This is a
location we will visit quite a lot, as it provides easy access to other entity
configurations, including Items and Triggers. Let's figure out what's what in this
area. The most interesting functionality is the host list:

Primarily, it provides access to host details in the very first column, but that's not all.
The usefulness of this screen comes from the other columns, which not only provide
access to elements that are associated with hosts, but also list the count of those
elements. Further down the host entry, we can see a quick overview of the most
important host configuration parameters, as well as status information, which we will
explore in more detail later:

Getting Your First Notification Chapter 2

[52]

We came here looking for items, so click on Items next to the Zabbix server. You
should see a list similar to the one in the following screenshot:

Note the method we used to reach the items list for a particular host—we used
convenience links for host elements, which is a fairly easy way to get there and the
reason why we will use Configuration | Hosts often.

Back to what we were after, we can see a fairly long list of pre-existing items. But
wait, didn't the Zabbix status screen that we saw in the first screenshot claim there's a single
host and no supported items? That's clearly wrong! Return to Reports | System
Information (or Monitoring | Dashboard, which shows the same data). It indeed
shows zero supported items. Now, move the mouse cursor over the text that reads
Number of items (enabled/disabled/not supported), and take a look at the tooltip:

Getting Your First Notification Chapter 2

[53]

Aha! So it counts only those items that are assigned to enabled hosts. As this example
host, Zabbix server, is disabled, it's now clear why the Zabbix status report shows
zero items. This is handy to remember later, once you try to evaluate a more complex
configuration.

Creating a host
Instead of using this predefined host configuration, we want to understand how
items work. But items can't exist in an empty space—each item has to be attached to a
host.

In Zabbix, a host is a logical entity that groups items. The definition
of what a host is can be freely adapted to specific environments and
situations. Zabbix in no way limits this choice; thus, a host can be a
network switch, a physical server, a virtual machine, or a website; it
can even be a host that we make up.

Getting Your First Notification Chapter 2

[54]

If a host is required to attach items to, then we must create one. Head over to
Configuration | Hosts and click on the Create host button, located in the top-right
corner. You will be presented with a host creation screen. This time, we won't concern
ourselves with the details, so let's input only the relevant information:

Host Name: Enter A test host.
Groups: Select the Linux servers group. This can be done by typing Linux
Servers in the empty box. As you will see, Zabbix will show you a list of
existing groups that match what you typed. Another option is to click the
Select button and choose the correct group from the list of groups that will
show up. Note that it is also possible to select multiple groups at the same
time.

Why did we have to select a group for this host? All permissions are
assigned to host groups, not individual hosts. A host must belong to
at least one group. We will cover permissions in more detail in
Chapter 5, Managing Hosts, Users, and Permissions.

The fields that we changed for our host should look as follows:

When you are ready, click on Add at the bottom.

Pay attention to Host name—it's important that this name is exactly
the same as in our example! We will see later why this is so
important.

Getting Your First Notification Chapter 2

[55]

Creating an item
So, we have created our first very own host. But, given that items are the basis of all
the data, it's probably of little use right now. To give it more substance, we should
create items. So, still on the Configuration | Hosts page, select Linux servers from
the Groups drop-down, and then click on Items next to the host we just created, A
test host. This host has no items to list—click on the Create item button in the
upper-right corner.

There's a form, vaguely resembling the one for host creation, so let's fill in some
values:

Name: Enter CPU Load into this field. This is how the item will be
named—basically, the name that you will use to refer to the item in most
places.
Key: The value in this field will be system.cpu.load. This is the technical
name of the item, which identifies what information it gathers.
Type of information: Choose Numeric (float). This defines which
formatting and type the incoming data will have.

After filling in all the required information, you will be presented with the following
screenshot:

We will look at the other defaults in more detail later, so click on Add at the bottom.

Getting Your First Notification Chapter 2

[56]

More information on item keys is provided in Chapter 3, Monitoring
with Zabbix Agents and Basic Protocols.

You should now see your new item in the list. But we are interested in the associated
data, so navigate to Monitoring | Latest data. Notice the filter that takes up half the
page? This time, we will want to use it right away.

Starting with Zabbix 2.4, the Latest data page does not show any data by default for
performance reasons; thus, we have to set the filter first.

In Filter, type test in the Hosts field. Our new host should appear. Click on it, then
click on Apply below the filter. You might have to wait for up to a minute to pass
after saving the item, and then you should see that this newly created item has
already gathered some data:

It is possible that there will be no CPU load and that your value will
stay at 0. If this is the case for you, then you could run something
like md5sum /dev/zero from your command line. This will
calculate an MD5 check from /dev/zero and you will see your
CPU load go up.

Getting Your First Notification Chapter 2

[57]

What should you do if you don't see any entries at all? This usually means that data
has not been gathered, which can happen for a variety of reasons. If this is the case,
check for these common causes:

Did you enter item configuration exactly as in the screenshot? Check the item
key and type of information.
Are both the agent and the server running? You can check this by executing the
following as root:

ss -lpn | grep zabbix

The output should list both the server and agent daemons running on the
correct ports:

tcp LISTEN 0 128 *:10050 *:*
users:(("zabbix_agentd",pid=1001,fd=4),("zabbix_agentd",pi
d=1000,fd=4)
 tcp LISTEN 0 128 :::10051 :::*
users:(("zabbix_server",pid=1509,fd=6),("zabbix_server",pi
d=1508,fd=6)

Can the server connect to the agent? You can verify this by executing the
following from the Zabbix server:

telnet localhost 10050

Trying ::1...
Connected to localhost.
Escape character is '^]'.
Connection closed by foreign host.

If the connection fails, it could mean that either the agent is not running or
some restrictive firewall setting is preventing the connection. In some cases,
SELinux might prevent that connection, too.
If the connection succeeds but is immediately closed, then the IP address
that the agent receives the connection from does not match the one
specified in the zabbix_agentd.conf configuration file for the Server
directive. On some distributions, this can be caused by IPv6 being used by
default, so you should try to add another comma-delimited value to the
same line for the IPv6 localhost representation to this directive, ::1.

Getting Your First Notification Chapter 2

[58]

The Zabbix server reads into the cache all the information on items to monitor every
minute by default. This means that configuration changes such as adding a new item
might show an effect in the data that's collected after one minute. This interval can be
tweaked in zabbix_server.conf by changing the CacheUpdateFrequency
parameter.

Once data starts arriving, you might see no value in the Change column. This means
that you moved to this display quickly, and the item managed to gather only a single
value, thus, there's no change yet. If that is the case, waiting a bit should result in the
page automatically refreshing (look at the page title—remember the 30-second refresh
we left untouched in the user profile?), and the Change column will be populated. So,
we are now monitoring a single value: the UNIX system load. Data is automatically
retrieved and stored in the database. If you are not familiar with this concept, it might
be a good idea to read the overview at https:/ /www. tecmint. com/ understand-
linux-load-averages- and- monitor- performance/ .

Introducing simple graphs
If you went away to read about system load, several minutes should have passed.
Now is a good time to look at another feature in Zabbix—Graphs. Graphs are freely
available for any monitored numeric item, without any additional configuration.

You should still be on the Latest data screen with the CPU Load item visible, so click
on the link named Graph. You'll get something like this:

https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/
https://www.tecmint.com/understand-linux-load-averages-and-monitor-performance/

Getting Your First Notification Chapter 2

[59]

While you will probably get less data, unless reading about system load took you
more than an hour, your screen should look very similar overall. Let's explore some
basic graph controls.

If you don't see any data even after several minutes have passed, try
to click on the filter at the top-right of the screen:

When you click on the filter, it will flap open and show you a more advanced version,
where you will be able to make more fine-grained selections in your time-frame:

In previous versions, Zabbix relied on a time bar that was not always easy to use.
Now, in Zabbix 4, it has received a mayor overhaul and, as you can see, it's much,
much more user-friendly.

Let's say we have only 15 minutes of data. We could click on the last 15 minutes
selection, as in the preceding screenshot, and the graph would show us the last 15
minutes of data. We can now do this from 5 minutes up to the last 2 years. With the
zoom out buttons < >, we are able to move back and forward in jumps based on the
time-frame we have selected. For example, if we had selected the last 5 minutes, then
we would be able to jump back and forward in jumps of 5 minutes.

Getting Your First Notification Chapter 2

[60]

If we are not happy with the predefined set of time-frames that Zabbix SIA has put in
the menu, then it is possible to select our own time-frame. Imagine you would like to
investigate a time slot of 2 minutes at a specific point in time. This can be done by
selecting the exact start date and end time from the box on the left-hand side of the
filter and pressing the Apply button. This is a huge improvement on the previous
versions!

Depending on the time at which you are looking at the graphs,
(probably 2 days or more) some areas of the graph might have a
gray background. This is the time outside of working hours, as
defined in the Zabbix configuration. We will explore this in more
detail later.

Clicking and dragging over the graph area will zoom in on the selected period once
the mouse button is released. This is handy for a quick drill-down to a problematic or
interesting period:

The yellow area denotes the time period we selected by clicking, holding down the
mouse button, and dragging over the graph area. When we release the mouse button,
the graph is zoomed to the selected period.

Another nice feature is that, if we like to see the raw values instead of the graph, we
can do this by clicking in the upper-right corner on View As | Graph. This will open
a drop-down selection menu, where we can select to see the raw values or the latest
500 raw values:

Getting Your First Notification Chapter 2

[61]

The graph period can't be shorter than one minute in Zabbix.
Attempting to set it to a smaller value will do nothing. Before
version 3.0, the shortest possible time period was one hour.

Creating triggers
Now that we have an item successfully gathering data, we can look at it and verify
whether it is reporting as expected (in our case, that the system is not overloaded).
Sitting and staring at a single parameter would make for a very boring job. Doing that
with thousands of parameters doesn't sound too entertaining, so we are going to
create a trigger. In Zabbix, a trigger is an entry containing an expression to
automatically recognize problems with monitored items.

An item alone does nothing more than collect data. To define
thresholds and things that are considered a problem, we have to use
triggers.

Navigate to Configuration | Hosts, click on Triggers (next to A test host), and click
on Create trigger.

Here, only two fields need to be filled in:

Name: Enter CPU load too high on A test host for last 3
minutes

Expression: Enter {A test host:system.cpu.load.avg(180)}>1

It is important to get the expression correct, down to the last symbol. Once done, click
on Add at the bottom. Don't worry about understanding the exact trigger syntax yet;
we will get to that later.

Getting Your First Notification Chapter 2

[62]

Another way to create the expression is to click Add, create the correct condition by
selecting the item and function, and filling in the Last of (T) and N fields, as in the
following screenshot:

Notice how our trigger expressions refer to the item key, not the name. Whenever you
have to reference an item inside Zabbix, it will be done by the item key.

The trigger list should now be displayed with a single trigger—the one we just
created. Let's take a look at what we just added: open Monitoring | Overview and
open the filter if it is closed, and then press the Any button. You should see our
freshly added trigger, hopefully already updated, with a green color, as in the
following screenshot:

Getting Your First Notification Chapter 2

[63]

With Zabbix 4.0, we now have the possibility to filter for Recent Problems, Problems,
and Any in the filter. With older versions, we had to look to the trigger page, where
we would have a mix of filters in an OK and a problem state. Click on Filter to close
the filter. We will explore this filter in more detail later.

Configuring email parameters
The most common notification method is email. Whenever something interesting
happens in Zabbix, an action can be taken. We will set it up so that an email is sent to
us. Before we decide when and what should be sent, we have to tell Zabbix how to
send it.

To configure the parameters for sending emails, do the following:

Open Administration | Media types 1.
Click on Email in the Name column2.

You'll get a simple form that you can fill in with the appropriate values for your
environment:

Getting Your First Notification Chapter 2

[64]

Change the SMTP server, SMTP helo, and SMTP email fields to use a valid email
server. The SMTP email address will be used as the From address, so make sure it's
set to something your server will accept. If needed, configure the SMTP
authentication, and then click on the Update button.

Additionally, you can also make use of the Connection security and the
Authentication options if you need to authenticate when connecting to your mail-
server.

New in Zabbix 4.0 is the Options tab. The Options tab contains the alert processing
settings. Concurrent sessions allow you to select one. This setting will only allow one
process to send emails. This is fine for small setups. Unlimited will allow Zabbix to
spin up an unlimited list of processes to send out emails. This can be needed in larger
setups to get out the amount of messages needed to ensure everybody is informed on
time. Custom will allow you to specify a custom number of processes.

The other option, Attempts, allows us to specify how many attempts Zabbix will
make to get those emails out when it fails to deliver the message to the mail-server.
The Standard option is 3 times and the maximum number of attempts is 10. The
Retry interval option will specify how much time Zabbix waits between every
attempt to send that message again. Times between 0 and 60 (seconds) are supported,
but also time suffixes such as 1 m and 5 s.

Now that we have configured the server to send emails and set what the From
address should be, it still doesn't know the email addresses that our defined users
have, which is required to send alerts to them.

To assign an email address to a user, take the following steps:

Open Administration | Users. You should see only two users: Admin and1.
Guest.
Click on Admin in the Alias column and switch to the Media tab, as2.
follows:

Getting Your First Notification Chapter 2

[65]

Click on the Add button. The only thing you have to enter here is a valid3.
email address in the Send to textbox, preferably yours.
Once you are done, click on Add and then Update in the User properties4.
screen.

In Zabbix 4, it is now possible to add multiple Send to email addresses. If this is the
case, then Zabbix will send one email to all the specified recipients.

You can specify more than one time period using a semicolon (;)
separator: d-d,hh:mm-hh:mm;d-d,hh:mm-hh:mm...

The When active option is used in Zabbix to let it know that it can only send emails
during these times. See the documentation for more details on how to define those
times: https:// www. zabbix. com/ documentation/ 4.0/manual/ appendix/ time_
period.

https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period

Getting Your First Notification Chapter 2

[66]

By marking the boxes Use if severity, we tell Zabbix to only send emails if the trigger
has a certain severity level.

That finishes the very basic configuration required to send out notifications to users
via email.

Creating an action
Now, it's time to tie all this together and tell Zabbix that we want to receive email
notifications when our test box is experiencing a heavy load.

Things that tell the Zabbix server to do something upon certain conditions are called
actions. An action has three main components:

Main configuration: This allows us to set up general options, such as the
email subject and the message.
Action operations: These specify what exactly has to be done, including
who to send the message to and what message to send.
Action conditions: These allow us to specify when this action is used and
when operations are performed. Zabbix allows us to set many detailed
conditions, including hosts, host groups, times, specific problems (triggers)
and their severity, among others.

To configure actions, take the following steps:

Open Configuration | Actions.1.
Click on Create action. (Make sure that the drop-down box Event source in2.
the top-right corner has Triggers selected.)

Getting Your First Notification Chapter 2

[67]

A form is presented that lets you configure preconditions and the action to take:

First, enter a name for your new action, such as Test action, and add a3.
new condition by selecting Trigger and =.
Next, use the Select button to select the trigger that you made on your test4.
host.
Click Add, then select the Recovery operations checkbox, and select Send5.
message for Operation type.

Getting Your First Notification Chapter 2

[68]

Next, select Admin as the user to send the recovery message under Send to6.
Users, and click Add:

Next, we should define the operation to perform, so switch to the7.
Operations tab.
In the Operations tab, insert 1h in Default operation step duration, as8.
shown in the following screenshot:

Getting Your First Notification Chapter 2

[69]

In here, click on New in the Operations block. This will open the9.
Operation details block.
In the Send to Users section, click on the Add button. In the resulting10.
popup, click on the Admin user.
Now, locate the Add control for the Operation details block. This is the11.
first arrow in the screenshot.
Next, click on Add (the second arrow) in the preceding screenshot.12.

Congratulations! You have just configured the simplest possible action.

Getting Your First Notification Chapter 2

[70]

Information flow in Zabbix
We have now configured various things in the Zabbix frontend, including data
gathering (Item), threshold definition (Trigger), and instructions on what to do if a
threshold is exceeded (Action). But how does it all work together? The flow of
information between Zabbix entities can be non-obvious at first glance. Let's look at a
schematic showing how the pieces go together:

In our Zabbix server installation, we created a host (A test host), which contains
an item (CPU load). A trigger references this item. Whenever the trigger expression
matches the current item value, the trigger switches to the PROBLEM state. When it
ceases to match, it switches back to the OK state. Each time the trigger changes its
state, an event is generated. The event contains details of the trigger state change:
when it happened and what the new state is. When configuring an action, we can add
various conditions so that only some events are acted upon. In our case, we did not
add any, so all events will be matched. Each action also contains operations, which
define exactly what has to be done. In the end, some operation is actually carried out,
which usually happens outside of the Zabbix server, such as sending an email.

Getting Your First Notification Chapter 2

[71]

A trigger can also be in the UNKNOWN state. This happens if there is not enough
data to determine the current state. As an example, computing the average value for
the past 5 minutes when there's no data for the past 10 minutes will make the trigger
go into the UNKNOWN state. Events that cause a change to or from the UNKNOWN
state do not match normal action conditions.

Let's create some load
Right, so we configured sending email. But it's not very interesting until we actually
receive some notifications. Let's increase the load on our test system. In the console,
launch the following:

$ cat /dev/urandom | md5sum

This grabs a pseudo random, never-ending character stream and calculates its MD5
checksum, so system load should increase as a result. You can observe the outcome as
a graph—navigate to Monitoring | Latest data and click on Graph for our single item
again.

Notice how the system load has climbed. If your test system can cope with such a
process really well, it might not be enough—in such a case, you can try running
multiple such MD5 checksum calculation processes simultaneously.

Allow 3 minutes to pass and there should be a popup in the upper-right corner,
accompanied by a sound alert:

Getting Your First Notification Chapter 2

[72]

There is one of the frontend messages we enabled earlier in our user profile. Let's look
at what's shown in the message window:

The small grey rectangle represents trigger severity. For recovery messages,
it is green. We will discuss triggers in Chapter 6, Detecting Problems with
Triggers.
The first link leads to the Monitoring | Problems page, displaying the
current problems for the host that are causing the message.
The second link leads to the Monitoring | Problems page, displaying the
problem history for the trigger in question.

The third link leads to the event details, displaying more information about this
particular occurrence.

The window itself can be repositioned vertically, but not horizontally—just drag it by
the title bar. At the top of the window, there are three buttons.

These buttons also have tooltips to remind us what they do, as follows:

The snooze button silences the alarm sound that is currently being played.
The mute/unmute button allows you to disable/enable all sounds.
The clear button clears the currently visible messages. A problem that is
cleared this way will not show up later unless it is resolved and then
happens again.

Frontend messaging is useful as it provides the following:

Notifications of new and resolved problems when you aren't explicitly
looking at a list of current issues
Sound alarms
Quick access to problem details

Now is a good time to revisit the configuration options of these frontend messages.
Open the profile again by clicking on the link in the upper-right corner, and switch to
the Messaging tab:

Getting Your First Notification Chapter 2

[73]

Here is what these parameters mean:

Frontend messaging: This enables/disables messaging for the current user.
Message timeout: This is used to specify how long a message should be
shown. It affects the message itself, although it may affect the sound alarm
as well.
Play sound: This drop-down has the options Once, 10 seconds, and
Message timeout. The first one will play the whole sound once. The second
one will play the sound for 10 seconds, looping if necessary. The third will
loop the sound for as long as the message is shown.
Trigger severity: This lets you limit messages based on trigger severity (see
Chapter 6, Detecting Problems with Triggers, for more information on
triggers). Unmarking a checkbox will not notify you about that specific
severity at all. If you want to get a message but not a sound alert, choose
no_sound from the drop-down.

Getting Your First Notification Chapter 2

[74]

Adding new sounds is possible by copying .wav files to the audio
sub-directory in the frontend directory.

Previously, when configuring frontend messaging, we set the message timeout to 180
seconds. The only reason was to give us enough time to explore the popup when it
first appeared; it is not a requirement for using this feature.

Now, let's open Monitoring | Problems and select Recent Problems for show, and A
test hosts for Hosts. We should see the CPU load too high on A test host for
last 3 minutes trigger visible with red, flashing PROBLEM text in the Status
column.

The flashing indicates that a trigger has recently changed state,
which we just made it do with that increased system load.

However, if you have a new email notification, you should already be aware of this
state change before opening Monitoring | Triggers. If all went as expected, you
should have received an email informing you about the problem, so check your email
client if you haven't yet. There should be a message with the subject PROBLEM: CPU
load too high on A test host for last 3 minutes.

Did the email fail to arrive? This is most often caused by some misconfiguration in the
mail delivery chain preventing the message from passing. If possible, check your
email server's log files as well as network connectivity and spam filters. Going to
Reports | Action log might reveal a helpful error message.

You can stop all MD5 checksum calculation processes now with a simple Ctrl + C. The
trigger should then change status to OK, though you should allow at least the
configured item interval of 30 seconds to pass.

Again, check your email: there should be another message, this time informing you
that it's alright now, having the subject OK: CPU load too high on A test host for last
3 minutes.

Getting Your First Notification Chapter 2

[75]

Another place where we can see our trigger is on the dashboard in the Problems
widget. We see that stat status is RESOLVED, and at the end, we will be able to
see an arrow in red under Actions if something has failed. When we move our mouse
over the arrow, we will see three actions: the first one was the email that was sent; the
second icon is the calendar with the V in it, when the problem was resolved; and the
third is the calendar with the exclamation mark inside, when the problem happened.
After the envelope, you will see the reason why the email was not sent:

If all went fine, then congratulations! You have set up all the required configuration
to receive alerts whenever something goes wrong, as well as when things go back to
normal. Let's recall what we did and learned:

We created a host. Hosts are monitored device representations in Zabbix
that can have items attached to them.
We also created an item, which is a basic way of obtaining information
about a Zabbix system. Remember: the unique item identifier is key, which
is also the string specifying what data will actually be gathered. A host was
required to attach this item to.
We explored a simple graph for the item that was immediately available
without any configuration. The easy-to-use time-period selection controls
allowed us to view any period and quickly zoom in for drill-down analysis.
Having data already is an achievement in itself, but defining what a
problem is frees us from manually trying to understand a huge number of
values. That's where triggers come in. They contain expressions that define
thresholds.
Having a list of problems instead of raw data is a step forward, but it
would still require someone looking at the list. We'd prefer being notified
instead—that's what actions are for. We were able to specify who should be
notified and when.

Getting Your First Notification Chapter 2

[76]

Basic item configuration
We rushed through the configuration of our simple item, so you might have gotten
curious about the parameters we didn't change or talk about. Let's take a quick look at
what can be monitored and what we can configure for each item.

Zabbix can monitor quite a wide range of system characteristics. Functionally, we can
split them into categories, while technically, each method used corresponds to an
item type.

Monitoring categories
Let's take a look at the generic categories that we can keep an eye on. Of course, this is
not an exhaustive list of things to monitor—consider this as an example subset of
interesting parameters. You'll soon discover many more areas to add in your Zabbix
configuration.

Availability
While the simplified example we started with (the unlucky administrator at a
party—remember him?) might not frighten many, there are more nightmare scenarios
available than we'd want to think about. Various services can die without a sign until
it's too late, and a single memory leak can bring the system down easily.

We'll try to explore the available options for making sure such situations are detected
as early as possible in order to, say, help our administrator deal with disk space
problems during the working day and not find out that an important service has died
because of a database hiccup just as they go through the door.

Performance
Performance is one of several holy grails in computing. Systems are never fast enough
to accommodate all needs, so we have to balance desired operations with available
resources. Zabbix can help you both with evaluating the performance of a particular
action and monitoring the current load.

You can start with simple things, such as network performance, indicated by a ping
round-trip, or the time it takes for a website to return content, and move forward with
more complex scenarios, such as the average performance of a service in a cluster
coupled with the disk array throughput.

Getting Your First Notification Chapter 2

[77]

Security
Another holy grail in computing is security, a never-ending process where you are
expected to use many tools, one of which can be Zabbix.

Zabbix can, independently of other verification systems, check simple things such as
open ports, software versions, and file check sums. While these would be laughable
as the only security measures, they can turn out to be quite valuable additions to
existing processes.

Management
System management involves doing many things, and that means following a certain
set of rules in all of those steps. Good system administrators never fail at that, except
when they do.

There are many simple and advanced checks you can use to inform you about tasks to
perform or problems that arise when configuring systems: cross-platform
notifications about available upgrades, checking whether the DNS serial number has
been updated correctly, and a myriad of other system management pitfalls.

Efficiency
While generally considered a subset of availability or performance, some aspects of
efficiency do not quite fit in there. Efficiency could be considered the first step to
improved availability and performance, which increases the importance of knowing
how efficient your systems are.

Efficiency parameters will be more service-specific than others, but some generic
examples might include Squid hit ratios and MySQL query cache efficiency. Other
applications, including custom in-house ones, might provide other efficiency-
measuring methods.

Getting Your First Notification Chapter 2

[78]

Item types
As explored previously, Zabbix gathers all its data within items. But surely, we'll
want to get information in more ways than just through the Zabbix agent. What are
our options? Let's have a look:

This is the item type configuration drop-down that opens when editing an item. We
pretty much skipped this selection when creating our item, because the default value
suited us. Let's take a quick look at the types available now:

Zabbix agent: This is the default type. The server connects to the agent and
gathers data.
Zabbix agent (active): This can be considered the opposite of the previous
type. The Zabbix agent gathers data and connects to the server as required.
Simple check: As the name implies, this type groups simple checks that are
performed by the server. This includes checking for open TCP ports, ICMP
ping, VMware, and so on. We will discuss both Zabbix agent types and
simple checks in Chapter 3, Monitoring with Zabbix Agents and Basic
Protocols.

Getting Your First Notification Chapter 2

[79]

SNMP agents: These three types deal with gathering SNMP data. Versions,
obviously, denote the protocol version to use when connecting to the
monitored host.
SNMP trap: While still relying on Net-SNMP's snmptrapd to obtain traps
from the network, Zabbix offers the functionality of receiving SNMP traps
easily. This item type allows you to do that, including automatic sorting
per host. We will cover SNMP polling and trapping in Chapter 4,
Monitoring SNMP Devices.
Zabbix internal: This groups items that gather information about the
internal state of Zabbix. We will discuss internal monitoring in Chapter 3,
Monitoring with Zabbix Agents and Basic Protocols.
Zabbix trapper: This item type accepts incoming data instead of querying
for it. It is useful for any data you might want to feed into Zabbix that is
obtained using other tools, customs scripts, or any other method.
Zabbix aggregate: These items aggregate values across a host group. This is
mostly useful for clusters or server farms where the overall state is more
important than the state of individual machines.
External check: External checks allow the Zabbix server to execute external
commands and store the returned values in the item. This allows it to pass
along any information that isn't accessible using any of the other item
types. We will use Zabbix trapper items, aggregate items, and external
checks in Chapter 10, Advanced Item Monitoring.
Database monitor: This type includes checks by using the unixODBC
drivers from the OS for querying various database parameters.
HTTP Agent: This type of item allows us to poll data from a web page by
making use of the HTTP/HTTPS protocol. Imagine Zabbix being able to
connect to a website, read data from that website, and place it in an item. It
sounds basic but we can do much more advanced things, such as
converting headers to JSON or reading data in XML or JSON.
IPMI agent: The Intelligent Platform Management Interface (IPMI) is a
specification for managing and monitoring (which we're mostly after)
systems, especially for out-of-band solutions. The IPMI item type allows
direct access to this data. We will cover IPMI monitoring in Chapter 14,
Monitoring IPMI Devices.
SSH agent: It is possible to directly query a host with SSH and retrieve
shell-command output. This check supports both password and key-based
authentication.

Getting Your First Notification Chapter 2

[80]

TELNET agent: For some systems where SSH is unavailable, a Telnet check
can be used. While insecure, it might be the only way to access some
devices, including older generation switches or UPSes. We will discuss SSH
and Telnet -items in Chapter 10, Advanced Item Monitoring.
JMX agent: Zabbix provides a component called the Zabbix Java gateway.
It allows you to monitor JMX-capable applications directly. JMX
monitoring will be discussed in Chapter 15, Monitoring Java Applications.
Calculated: These are advanced items that allow you to create new values
from other, pre-existing Zabbix items without duplicating data retrieval.
We will use these items in Chapter 10, Advanced Item Monitoring.
Dependent Item: Sometimes, it makes sense to gather data in bulk, and at
other times there is no other way then to retrieve data in bulk. The
dependent item can be used to retrieve necessary data out of the master
item that contains the bulk data.

While all of these types might look a bit confusing at this point, an important thing to
remember is that they are available for your use, but you don't have to use them. You
can have a host with a single ICMP ping item, but if you want to monitor more, the
advanced functionality will always be there.

As you might have noticed, the item type is set per individual item, not per host. This
allows for great flexibility when setting up monitored hosts. For example, you can use
ICMP to check general availability, a Zabbix agent to check the status of some services
and simple TCP checks for others, a trapper to receive custom data, and IPMI to
monitor parameters through the management adapter-all on the same host. The
choice of item type will depend on network connectivity, the feature set of the
monitored host, and the ease of implementation. Zabbix will allow you to choose the
best fit for each item.

How items can be monitored
While that covered categories and item types, we skipped some other parameters
when creating the item, so it might be helpful to learn about the basic values that will
have to be set for most item types. Let's take a quick look at the fields in the item
creation/editing window:

Name: A user-level item name. This is what you will see in most places
where data is shown to users.
Type: This is the main property, affecting other fields and the way item
data is gathered, as discussed previously.

Getting Your First Notification Chapter 2

[81]

Key: This is the property that explicitly specifies what data has to be
gathered for this item. It is sort of a technical name for the item. The key
value must be unique per host. For certain other item types, the field that is
actually identifying collected data might be Simple Network Management
Protocol Object Identifiers (SNMP OID) or IPMI sensor, and the key will
be only used to reference the item.
Type of information: This allows you to choose the data type that will be
gathered with the item. You'll have to set it according to the values
provided: integers, decimals, and so on.
Data type: This property provides a way to query data in hexadecimal or
octal format and convert it to decimal values automatically. Some SNMP-
capable devices (mostly printers) send information in these formats. There's
also the Boolean data type that converts several inputs to 1 or 0.
Units: This property allows you to choose the unit to be displayed besides
data, and for some units, Zabbix will calculate corresponding conversions
as required (called human-readable in many tools, so you get 32.5 GB
instead of the same value in bytes).
Use custom multiplier: This property multiplies incoming data with the
value specified here and stores the result. This is useful if data arrives in
one unit but you want to store it as another (for example, if the incoming
data is in bytes but you want it in bits, you'd use a multiplier of 8).
Update interval: This sets the interval between data retrieval attempts.
Custom intervals: This setting allows you to modify the update interval
during specific times or use cron-like item scheduling—either because you
have no need for a particular item during the night or because you know a
particular service will be down, for example, during a backup window.
You can choose Flexible or Scheduling when creating a custom interval.
History storage period: This sets the time period for which actual retrieved
values are stored in the database.
Trend storage period: This does the same as the History storage period
option, but for trends. Trends are data that's been calculated from history
and averaged for every hour to reduce long-term storage requirements.
Store value: This property is for numeric data only and allows the Zabbix
server to perform some basic calculations on the data before inserting it
into the database, such as calculating the difference between two checks for
counter items.

Getting Your First Notification Chapter 2

[82]

Show value: In this drop-down, a value map may be selected. It allows you
to show human-readable values for numeric codes, for example, as
returned by the SNMP interface status. Refer to Chapter 3, Monitoring with
Zabbix Agents and Basic Protocols, for more information on value mapping.
Applications: This property makes it possible to perform logical grouping
of items, for example, on the Monitoring | Latest data screen.
Populates host inventory field: Allows you to place collected item values
in an inventory field (explored in Chapter 5, Managing Hosts, Users and
Permissions).
Description: This field, available for several entities in Zabbix 3.0, allows
you to describe an item. You may explain the way data is collected,
manipulated, or what it means.
Enabled: This allows you to enable or disable the item.
Preprocessing: At the top, just on the right-hand side of item, there is a tab
called Preprocessing. Preprocessing allows us to manipulate data that we
retrieve from our items before we save it in our Zabbix database, like using
regular expressions to cut a certain part out of our data or trim the left or
right number from our received data, and so on:

Getting Your First Notification Chapter 2

[83]

Don't worry if these short descriptions didn't answer all of your questions about each
option. We'll dig deeper into each of these later. There are more options available for
other item types as well.

Using global search
So far, we have navigated to a host or its items and other entities by going to specific
pages in the frontend and then looking up the group and host. This is a convenient
enough method in smaller installations, and it's also what we will mostly use in this
book. In a larger installation, navigating like this could be very time-consuming, thus,
a feature called global search becomes very useful. Actually, many users almost
completely skip the classic navigation method and use search exclusively.

The global search field is available in the upper right corner of the Zabbix frontend. In
there, type a single letter, a. Anything entered here is matched against the beginnings
of host-names, and the results are shown in a drop-down. In our case, A test host
matches:

You can choose one of the drop-down entries with your keyboard or mouse, or search
using your original string. Let's choose the single entry in the drop-down by either
clicking on it with the mouse or highlighting it with the keyboard and hitting Enter. In
the search results, we can see three blocks that correspond to the three types of
entities that can be searched in Zabbix:

Hosts
Templates
Host groups

Getting Your First Notification Chapter 2

[84]

This is how the entry looks:

For all of them, searching by name is possible. Additionally, for hosts, a search can be
performed by IP address and DNS.

In the search results, clicking on the hostname will open the host's properties. There
are also additional links for each host, but the column headers can be confusing:
Triggers, Graphs, and Web are duplicated. While it's not very intuitive, the difference
is the use of a number next to the links: if there's a number, this is a link to the
configuration section. If there's no number, it is a link to the monitoring section, or
maybe there are no entities of that type configured. In that case, you sort of have to
remember that the rightmost column with the same name is for configuration. The
number for the configuration links, if present, is the count of the entities.

Getting Your First Notification Chapter 2

[85]

Summary
This was the chapter where we finally got some real action: monitoring an item,
creating a trigger, and getting a notification on that trigger. We also explored the
Zabbix frontend a bit and looked at basic item parameters. Let's review what basic
steps were required to get our first alert:

We started by creating a host. In Zabbix, everything to be monitored is
attached to a logical entity called a host.
Next, we created an item. Being the basis of information gathering, items
define parameters about monitored metrics, including what data to gather,
how often to gather it, how to store the retrieved values, and other things.
After the item, we created a trigger. Each trigger contains an expression
that is used to define thresholds. For each trigger, a severity can be
configured as well. To let Zabbix know how to reach us, we configured our
email settings. This included specifying an email server for the media type
and adding media to our user profile.
As the final configuration step, we created an action. Actions are
configuration entities that define actual operations to perform and can have
conditions to create flexible rules for what to do about various events.
We actually did one more thing to make sure it all works—we created a
problem. It is useful to test your configuration, especially when just starting
with Zabbix. Our configuration was correct, so we were promptly notified
about the problem.

While this knowledge is already enough to configure a very basic monitoring system,
we'll have to explore other areas before it can be considered a functional one. In the
next chapter, we will figure out what the differences between passive and active
items are and what the important things to keep in mind are when setting up each of
them. We'll also cover basic ICMP items and other item properties, such as positional
parameters, value mapping, units, and custom intervals.

Getting Your First Notification Chapter 2

[86]

Questions
Name the 5 severity levels in Zabbix.1.
Can Zabbix send messages to different users or groups, and where do we2.
configure this?
Does Zabbix allow items to be pre-processed before it saves them into the3.
database?

Further reading
Read the following articles for more information:

Setting time periods: https:/ /www. zabbix. com/documentation/ 4. 0/
manual/ appendix/ time_ period

Items: https:/ /www. zabbix. com/ documentation/ 4. 0/manual/ config/
items

VMware monitoring item keys: https:/ /www. zabbix. com/
documentation/ 4. 0/manual/ config/ items/ itemtypes/ simple_ checks/
vmware_ keys

https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/appendix/time_period
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys

3
Monitoring with Zabbix

Agents and Basic Protocols
Now that we have explored the basics of gathering and acting upon information in
Zabbix, let's take a closer look at two simple and widely used methods for obtaining
data—the already-mentioned Zabbix agents and so-called simple checks, which
include TCP connectivity and ICMP checks.

In this chapter, we will cover the following topics:

Using the Zabbix agent
Item scheduling
Creating a simple check
Binding it all together
Value mapping
Units

Using the Zabbix agent
Previously, we installed the Zabbix agent on the same host and monitored a single
item for it. It's now time to expand and look at how inter-host connectivity works.

To continue, install the Zabbix agent on another host. The easiest way might be
installing from the distribution packages—or you may choose to compile it from the
source. If installing from the packages on Red Hat Enterprise Linux (RHEL)/Debian-
based systems, refer to Chapter 1, Getting Started with Zabbix, for repository
instructions. A potential agent package name could be zabbix-agent.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[88]

Compiling the agent only from the source is done in a similar way to how all
components were included for compilation in Chapter 1, Getting Started with Zabbix.
Instead of the full configure line, we will use a single flag this time:

$./configure --enable-agent

Configuration should complete successfully, and the following summary lines are
important:

Enable server: no
Enable proxy: no
Enable agent: yes

If the output you see matches the preceding output, continue by issuing the following
command:

$ make install

Compilation should complete without any errors, and it should do so relatively
quickly. However, be aware that we compile the agent without support for
encryption. I have added the URL to the documentation at the end of this chapter,
which explains what options are needed to add encryption.

If you install distribution packages on a distribution different from where the server
is installed, don't worry when the agent daemon has an older version than the server.
This is supported and should work well. However, if the agent is older then 1.4 it will
not work on Zabbix 4.0 as changes have been made in how the agent communicates
with the Zabbix server. A newer agent with a newer server might not work and is not
supported. You should avoid using an older server with newer agents as this has not
been tested so there is no guarantee it will work as intended.

Staying with an older agent can be more convenient as you already have one installed
and working well. When setting up new ones, it is suggested you go with the latest
one, as it might have bugs fixed, improved performance, more supported items for a
particular platform, and other benefits.

With the agent installed, now is the time to start it up. How this is done
exactly depends on the installation method—and if you installed from the packages,
it depends on the distribution as well. For examples on how to start up the agent,
refer to Chapter 1, Getting Started with Zabbix. As a quick reminder, if you installed
from packages on an RHEL/Debian-based system, the agent daemon can likely be
started up like this:

systemctl start zabbix-agentd

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[89]

If you installed from the source, directly execute the binary:

<path>/zabbix_agentd

Once the agent has been started, we also have to add this new host to the
configuration:

Go to Configuration | Hosts1.
Make sure that the Group drop-down menu in the upper-right corner says2.
Linux servers
Click on the Create host button and fill in this form:3.

Here are some tips on filling out the form:

Host name: Feel free to choose a descriptive name, or simply enter Another
host
Agent interfaces: Fill in either the IP address or DNS name, depending on
which connection method you want to use
Connect to: If you decide to go with DNS name, switch to DNS

When you're done, click on the Add button at the bottom.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[90]

Passive items
The item we created before was a so-called passive item, which means that the Zabbix
server initiates a connection to the agent every time a value has to be collected. In
most locations, they are simply referred to as being of the Zabbix agent type.

An easy way to remember what's passive or active in Zabbix is to think from the
agent's perspective. If the agent connects to the server, it's active. If not, it's passive:

Let's create another passive item to check for the remote host:

Go to Configuration | Hosts.1.
Click on Items next to the host you just created.2.
Click on the Create item button, and fill in the following values. This will3.
create our passive item, so make sure you copy it exact as it is written here.
In this item, we will try to monitor our web server status as it runs for the
frontend already on port 80:

Name: Enter Web server status
Key: Enter net.tcp.service[http,,80] (that's two
subsequent commas preceding 80)
Update interval: Change to 60 from the default (30)—once a
minute should be more than enough for our needs
History storage period: Change to 7 from the default
(90)—that's still a whole week of exact per-minute service status
records kept

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[91]

The end result should be as shown in the following screenshot:

But what's up with that ,,80 added to the service name? Click on the Select button next
to the Key field. This opens a window with a nice list of keys to choose from, along
with a short description of each:

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[92]

The Type drop-down menu in the upper-right corner will allow you to switch
between several item types—we'll discuss the other types later. For now, find
net.tcp.service in the list and look at the description. There are two things to
learn here:

Firstly, we didn't actually have to add that 80—it's a port, and given that
the default is already 80, adding it was redundant. However, it is useful if
you have a service running on a nonstandard port.
Secondly, there's a key list just one click away to give you a quick hint in
case you have forgotten a particular key or what its parameters should be
like.

This key, net.tcp.service, is a bit special: it tries to verify that the corresponding
service actually does respond in a standard manner, which means the service must be
explicitly supported. As of the time of writing, Zabbix supports the following services
for the net.tcp.service key:

FTP
HTTP
HTTPS
IMAP
LDAP
NNTP
POP
SMTP
SSH
TCP
Telnet
NTP

The TCP service is a bit special in its own way. While others perform service-specific
checks, TCP is not really a service; it just checks the TCP connection. It's closer to a
key you can see a couple of rows above in the item list, net.tcp.port. As the
description says, this one just tries to open a TCP connection to any arbitrary port
without performing any service-specific checks on the returned value. If you try to
use an arbitrary service string that is not supported, you would simply get an error
message saying that such an item key is not supported.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[93]

There's also a net.udp.service key that currently supports only
one service—Network Time Protocol (NTP).

Feel free to look at the other available keys—we will use a couple of them later as
well—then close this popup and click on the Add button at the bottom. You have
probably already noticed the green strip at the top of the screen when some operation
successfully completes. In older versions there was a control called Details available.
Since Zabbix 4.0 this has changed and we will not see any details, only that the item
was added:

Now, we could go over to Monitoring | Latest data and wait for the values
appearing there, but that would be useless. Instead, after a couple of minutes, you
should visit Configuration | Hosts. Depending on your network configuration, you
might see a red ZBX marker next to this host. This icon represents errors that have
occurred when attempting to gather data from a passive Zabbix agent.

To see the actual error message, move your mouse cursor over the icon, and a tooltip
will open. Clicking on the error icon will make the tooltip permanent and allow you
to copy the error message:

The three additional entries represent the SNMP, JMX, and IPMI
data-gathering statuses. We will monitor SNMP devices in Chapter
4, Monitoring SNMP Devices, IPMI devices in Chapter 14, Monitoring
IPMI Devices, and JMX applications in Chapter 15, Monitoring Java
Applications.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[94]

If you see an error message similar to Get value from agent failed: cannot connect to
[[192.168.1.100]:10050]: [111] Connection refused (most likely with a different IP
address), it means that the Zabbix server was unable to connect to the agent daemon
port. This can happen because of a variety of reasons, the most common being a
firewall—either a network one between the Zabbix server and the remote host or a
local one on the remote host. Make sure to allow connections from the Zabbix server
to the monitored machine on port 10050. If you see something like what was
displayed in the previous screenshot with no route to host then you probably made a
configuration mistake and the Zabbix server cannot connect to the host with the
Zabbix agent.

If you did this correctly (or if you did not have a firewall blocking the connection),
you could again go to Monitoring | Latest data—only that would be pointless, again.
To see why, refresh the host list. Soon, you should see the Zabbix agent status icon
turn red again, and moving your mouse cursor over it will reveal another error
message, Received empty response from Zabbix Agent at [192.168.1.100], assuming
that the agent dropped the connection because of access permissions. Now that's
different. What access permissions is it talking about, and why did they work for our first
host?

From the Zabbix server, execute this (replace the IP address with the correct one from
your host):

$ telnet 192.168.1.100 10050

You should always verify network connectivity and access
permissions from the Zabbix server. Doing it from another machine
can have wildly differing and useless results.

Replace the IP address with your remote host's address. You should see the following
output, and the connection should immediately be closed:

Trying 192.168.1.100...
Connected to 192.168.1.100.
Escape character is '^]'.
Connection closed by foreign host.

Now, try the same with localhost:

$ telnet localhost 10050
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[95]

Notice how, this time, the connection is not closed immediately, so there's a difference
in the configuration. The connection will most likely be closed a bit later—three
seconds later, to be more specific. If this does not happen for some reason, press
Ctrl +], as instructed, then enter quit—this should close the connection:

^]
telnet> quit
Connection closed.

It turns out that configuring the Zabbix agent daemon on another machine is going to
be a tiny bit harder than before.

As opposed to the installation on the Zabbix server, we have to edit the agent daemon
configuration file on the remote machine. Open zabbix_agentd.conf as root in
your favorite editor and take a look at the Server parameter. It is currently set to
127.0.0.1, which is the reason we didn't have to touch it on the Zabbix server. As
the comment states, this parameter should contain the Zabbix server IP address, so
replace 127.0.0.1 with the correct server address here.

If you have older Zabbix agent instances in your environment, make
sure to use and edit zabbix_agentd.conf, with d in the name. The
other file, zabbix_agent.conf, was used by the limited-
functionality zabbix_agent module, which has been removed.

Save the file and restart the agent daemon. How exactly this is done depends on the
installation method, again. If you installed from the distribution packages, the
following will most likely work:

systemctl restart zabbix-agentd

If you installed from the source and did not create or adapt some init scripts, you
will have to manually stop and start the agent process:

killall -15 zabbix_agentd; sleep 3; zabbix_agentd

The preceding command will stop all processes called zabbix_agentd on the
system. This should not be used if multiple agents are running on the system.
Additionally, the delay of 3 seconds should be more than enough in most cases, but if
the agent does not start up after this, check its log file for potential reasons. It is also
possible that you have to specify the location of the zabbix_agentd binary if this file
is not in a location that is in your path, for example, /usr/bin/zabbix_agentd.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[96]

Never use kill -9 with Zabbix daemons. Just don't. Even if you
think you could, do not do it. Signal 15 is SIGTERM—it tells the
daemon to terminate, which means writing any outstanding data to
the database, writing out and closing the log files, and potentially
doing other things to shut down properly. Signal 9 is SIGKILL—the
process is brutally killed without allowing it to say goodbye to the
loved database and files. Unless you really know what you are
doing, you do not want to do that—seriously, don't.

To verify the change, try Telnetting to the remote machine again:

$ telnet 192.168.1.100 10050

This time, the outcome should be the same as we had with the localhost—the
connection should be opened and then closed approximately three seconds later.

While some host interface must be specified for all hosts, even for
those only using active items, it is only used for passive Zabbix
agent checks. If such items are not configured, this interface is
simply ignored.

Finally, it should be worth opening Monitoring | Latest data. We will only see our
previously created item, though; the reason is the same filter we changed earlier. We
explicitly filtered for one host; hence, the second host we created does not show up at
all.

In the filter, which should still be expanded, clear the host field and select Linux
servers in the Host groups field, and then click on Apply.

In many filter fields in Zabbix, we can either start typing and get a list of matching
entries or click on the Select button to see a list of all available entities. Typing in is a
very convenient way when we know at least part of the name. Being able to see the
list is helpful when working in an environment we are less familiar with.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[97]

We should see two monitored hosts now, each having a single item:

Notice how we can click the triangle icon next to each entry or in the header to
collapse and expand either an individual entry or all of the entries.

Cloning items
Let's try to monitor another service now, for example, the one running on port 22,
SSH:

To keep things simple for us, we won't create an item from scratch this1.
time; instead, go back to Configuration | Hosts.
Click on Items next to Another host.2.
Click on Web server status in the Name column. This will open the item3.
editing screen, showing all of the values we entered before.

This time, there are different buttons available at the bottom. Among other changes,
instead of the Add button, there's an Update one.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[98]

Notice how one of the previously seen buttons is different. What
was labeled Add previously is Update now. This change identifies
the operation that we are going to perform: either adding a new
entity or updating an existing one. We might open a configuration
form intending to clone the entity, scan the fields, change some
values, but forget to click on the Clone button. In the end, the
existing item will be changed. The difference in the labels of the Add
and Update buttons might help spot such mistakes before they are
made.

There's also Delete, which, obviously, deletes the currently open item. We don't want
to do that now. Instead, click on Clone.

Notice how the opened form proposes to create a new item, but this time, all values
are set to those that the original item we cloned had. The Update button is changed to
Add as well. Click on the Add button—it should fail. Remember, we talked about the
key being unique per host; that's what the error message says as well:

The item editing form is still open, so we can correct our mistake. Make the following
modifications:

Name: Change it to SSH server status
Key: Change http,,80 to ssh so that it looks like
this: net.tcp.service[ssh]

That's all we have to do for now, so click on the Add button at the bottom again. This
time, the item should be added successfully. Now navigate to Monitoring | Latest
data, where Another host should have two items listed—SSH server status and Web
server status. Their status will depend on which services are running on the remote
host. As it's remote, SSH most likely is running (and hence has a value of 1), but
whether or not the web server is running will be specific to your situation. Be aware
that it can take a few minutes before you get the first value in the latest data for our
new item:

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[99]

The monitoring of a port is often done to make sure the service on it
is available, but that is not a strict requirement. If some system is not
supposed to have SSH available through the internet, we could use
such a check to verify that it has not been accidentally exposed
either by the inadvertent starting of the SSH daemon or an
unfortunate change in the firewall.

Manually querying items
Adding items to the frontend and waiting for them to update is one way of seeing
whether you got the item key right. It is not a very quick method, though—you have
to wait for the server to get to checking the item. If you are not sure about the
parameters or would like to test different combinations, the easiest way to do this is
with a utility called zabbix_get. When installing from source, it is installed together
with the Zabbix agent. When installing from the packages, it could be installed
together with the Zabbix agent or it could also be in a separate package. Using it is
very simple: if we want to query the agent on the Zabbix server, we will run this on
our Zabbix server, a test host.

On Debian/Ubuntu, run the following command:

apt install zabbix-get

On Red Hat/Centos run the following command:

yum install zabbix-get

This is the command to run from the shell of our Zabbix server:

$ zabbix_get -s 127.0.0.1 -k system.cpu.load

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[100]

This will obtain the value in the exact same way as the server would do it. If you
would like to get values like this from another host, you could run zabbix_get on
the Zabbix server. Attempting to run it from the same host on which the agent runs
will fail as we changed the Server parameter to accept connections from the Zabbix
server only. If you would like to query the agent from the localhost for debugging
purposes, 127.0.0.1 can be added to the Server parameter through a comma—this
is sometimes done on all systems when deploying the agent. The -s option is to
specify the IP/hostname of the host and -k is to specify the item key as we defined in
Zabbix for our item. Run zabbix_get --help to check out all of the options you can
specify.

This covers the basics of normal, or passive, Zabbix items, where the server queries
agents. Let's move on to other item types.

Active items
Passive Zabbix items are fine if you can connect to all of the monitored hosts from the
Zabbix server, but what if you can't allow incoming connections to the monitored hosts
because of security or network topology reasons?

This is where active items come into play. As opposed to passive items, for active
items, it's the agent that connects to the server; the server never connects to the agent.
When connecting, the agent downloads a list of items to check and then reports the
new data to the server periodically. Let's create an active item, but this time, we'll try
to use some help when selecting the item key:

Go to Configuration | Hosts1.
Click on Items next to Another host2.
Click on Create item3.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[101]

For now, use these values:

Name: Incoming traffic on interface $1
Type: Zabbix agent (active)
Update interval: 60s
History storage period: 7d

We'll do something different with the Key field this time.

Click on the Select button and, in the upcoming dialog that we saw before, click on
net.if.in[if,<mode>]. This will fill in the chosen string, as follows:

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[102]

Replace the content in the square brackets with the name of your
network card, so that the field contents read net.if.in[enp0s3].
When you're done, click on the Add button at the bottom. Never
leave placeholders such as <mode>—they will be interpreted as
literal values and the item will not work as intended.

If your system has a different network interface name, use that here instead of eth0.
You can find out the interface names with the ifconfig or ip addr show
commands. In many modern distributions, the standard ethX naming scheme has
been changed to one that will result in various different interface names such as
enp0s3 and em1. Further, replace any occurrences of eth0 with the correct interface
name:

Go to Monitoring | Latest data and check whether new values have arrived.

Well, it doesn't look like they have. You could wait a bit to be completely sure, but
most likely, no data will appear for this new active item, which means we're in for
another troubleshooting session.

First, we should test basic network connectivity. Remember, active agents connect to
the server, so we have to know which port they use (by default, it's port 10051). So,
let's start by testing whether the remotely monitored machine can connect to the
Zabbix server:

$ telnet <Zabbix server IP or DNS name> 10051

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[103]

This should produce output similar to the following:

Trying <Zabbix server IP>...
Connected to <Zabbix server IP or DNS name>.
Escape character is '^]'.

Press Ctrl +] and enter quit in the resulting prompt:

telnet> quit
Connection closed.

Such a sequence indicates that the network connection is working properly. If it isn't,
verify possible network configuration issues, including network firewalls and the
local firewall on the Zabbix server. Make sure to allow incoming connections on port
10051:

To check you local firewall rules run
For iptables
iptables -S

For firewalld
$ firewall-cmd --list-all

Both agent and server ports for Zabbix are registered with the
Internet Assigned Numbers Authority (IANA).

So, there might be something wrong with the agent; let's take a closer look. We could
try to look at the agent daemon's log file, so find the LogFile configuration
parameter. If you're using the default configuration files from the source archive, it
should be set to log to /tmp/zabbix_agentd.log. If you installed from packages, it
is likely to be in /var/log/zabbix or similar. Open this log file and look for any
interesting messages regarding active checks. Each line will be prefixed with PID and
timestamp in the syntax, PID:YYYYMMDD:HHMMSS. You'll probably see lines similar
to these:

15794:20141230:153731.992 active check configuration update from
[127.0.0.1:10051] started to fail (cannot connect to
[[127.0.0.1]:10051]: [111] Connection refused)

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[104]

The agent is trying to request the active check list, but the connection fails. The
attempt seems to be wrong—our Zabbix server should be on a different system than
the localhost. Let's see how we can fix this. On the remote machine, open the
zabbix_agentd.conf configuration file and check the ServerActive parameter.
(This file can probably be located under /etc/zabbix/) The default configuration
file will have a line like this:

ServerActive=127.0.0.1

This parameter tells the agent where it should connect to for active items. In our case,
the localhost will not work as the Zabbix server is on a remote machine, so we should
modify this. Replace 127.0.0.1 with the IP address or DNS name of the Zabbix
server, and then restart the agent either using a systemd script or the manual
method: killall.

While you have the configuration file open, take a look at another parameter
there—StartAgents. This parameter controls how many processes are handling
incoming connections for passive items. If set to 0, it will prevent the agent from
listening on incoming connections from the server. This enables you to customize
agents to support either or both of the methods. Disabling passive items can be better
from a security perspective, but they are very handy for testing and debugging
various problems. Also, some items will only work as passive items. Active items can
be disabled by not specifying (commenting out) ServerActive. Disabling both
active and passive items won't work; the agent daemon will complain and refuse to
start up and it's correct—starting with both disabled would be a pointless thing to do.
Take a look:

zabbix-agentd [16208]: ERROR: either active or passive checks must be
enabled

We could wait for values to appear on the frontend again, but again, they would not.
Let's return to the agent daemon log file and see whether there is any hint about
what's wrong:

15938:20141230:154544.559 no active checks on server
[192.168.1.3:10051]: host [Zabbix server] not monitored

If we carefully read the entry, we will notice that the agent is reporting its hostname
as Zabbix server, but that is the hostname of the default host, which we decided
not to use and left disabled. The log message agrees: it says that the host is not
monitored.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[105]

If we look at the startup messages, there's even another line mentioning this:

15931:20141230:154544.552 Starting Zabbix Agent [Zabbix server].
Zabbix 4.0.0 (revision 85308)

You might or might not see the SVN revision in this message
depending on how the agent was compiled. If it's missing, don't
worry about it as it does not affect the ability of the agent to operate.

As that is not the hostname we want to use, let's check the agent daemon
configuration file again. There's a parameter named Hostname, which currently reads
Zabbix server. Given that the comment for this parameter says Required for active
checks and must match hostname as configured on the server, it has to be what
we're after. Change the agent configuration parameter to Another host, save and
close the configuration file, and then restart the Zabbix agent daemon. Check for new
entries in the zabbix_agentd.log file; there should be no more errors.

While we're at it, let's update the agent configuration on A test host as well. Modify
zabbix_agentd.conf and set the Hostname=A test host and restart the agent
daemon.

If there still are errors about the host not being found on the server, double-check that
the hostname in the Zabbix frontend host properties and agent daemon configuration
file (the one we just changed) match.

This hostname is case sensitive.

It's now time to return to the frontend and see whether data has started flowing in at
the Monitoring | Latest data section:

Notice how the system in this screenshot actually has an interface named enp0s3, not
eth0. We will find out how to allow Zabbix to worry about interface names and
discover them automatically in Chapter 11, Automating Configuration.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[106]

If you see no data and the item shows up unsupported in the configuration section,
check the network interface name.

Great, data is indeed flowing, but the values look really weird. If you wait for a while,
you'll see how the number in the Last Value column just keeps on increasing. So, what
is it? Well, network traffic keys gather data from interface counters, that is, the
network interface adds up all traffic, and this total data is fed into the Zabbix
database. This has one great advantage—even when data is polled at large intervals,
traffic spikes will not go unnoticed as the counter data is present, but it also makes
data pretty much unreadable for us, and graphs would also look like an ever-growing
line (if you feel like it, click on the Graph link for this item). We could even call them
hill graphs:

Luckily, Zabbix provides a built-in capability to deal with data counters like this:

Go to Configuration | Hosts1.
Click on Items next to Another host2.
Click on Incoming traffic on interface eth0 in the Name column3.
Go to the Preprocessing tab and change the Preprocessing steps4.
to Changes per second
Click on Update:5.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[107]

We will have to wait a bit for the changes to take effect, so now is a good moment to
discuss our choice for the Type of information option for this item. We set it to
Numeric (unsigned), which accepts integers. The values that this item originally
receives are indeed integers—they are counter values denoting how many bytes have
been received on this interface. The Preprocessing steps option we changed to
Changes per second (in previous versions, Delta speed per second), though, will
almost always result in some decimal part being there; it is dividing the traffic
between two values according to the number of seconds passed between them. In
cases where Zabbix has a decimal number and has to store it in an integer field, the
behavior will differ depending on how it got that decimal value, as follows:

If the decimal value arrived from a Zabbix agent source such as a
system.cpu.load item, the item will turn up unsupported
If Zabbix received an integer but further calculations resulted in a decimal
number appearing, like with our network item, the decimal part will be
discarded

This behavior is depicted in the following diagram:

Why is there a difference like this, and why did we leave this item as an integer if doing so
results in a loss of precision? Decimal values in the Zabbix database schema have a
smaller number of significant digits available before the decimal point than integer
values. On a loaded high-speed interface, we might overflow that limit, and it would
result in values being lost completely. It is usually better to lose a tiny bit of
precision—the decimal part—than the whole value. Note that precision is lost on the
smallest unit: a byte or bit. Even if Zabbix shows 5 Gbps in the frontend, the decimal
part will be truncated from this value in bits; hence, this loss of precision should be
really, really insignificant. It is suggested to use integers for items that have a risk like
this, at least until database schema limits are increased.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[108]

Check out Monitoring | Latest data again, you will see that the number under
change is negative as we are now calculating a change per second instead of an ever-
increasing value. So, our received value will probably be lower then the previous one.

Keep in mind that, in the worst case scenario, configuration changes might take up to
three minutes to propagate to the Zabbix agent—one minute to get into the server
configuration cache and two minutes until the agent refreshes its own item list. On
top of this delay, this item is different from the others we created—it needs to gather
two values to compute per second, one of which we are interested in; hence, we will
also have to wait for whatever the item interval is before the first value appears in the
frontend.

That's better; Zabbix now automatically calculates the change between every two
checks (that's what the delta is for) and stores it, but the values still don't seem to be
too user friendly. Maybe they're better in the graph—let's click on the Graph link to
find out:

Ouch. While we can clearly see the effect our change had, it has also left us with very
ugly historical data. The Y-axis of that graph represents the total counter value (hence
showing the total since the monitored system was started up), but the X-axis
represents the correct (delta) data. You can also take a look at the values numerically,
go to the drop-down menu in the upper-right portion, which currently reads Graph.
Choose 500 latest values from there. You'll get the following screenshot:

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[109]

In this list, we can nicely see the change in data representation as well as the exact
time when the change was performed. But those huge values have come from the
counter data, and they pollute our nice, clean graph by being so much out of
scale—we have to get rid of them:

Go to Configuration | Hosts.1.
Click on Items next to Another host.2.
Mark the checkbox next to the Incoming traffic on interface enp0s3 (or3.
whatever interface you have) item, and look at the buttons positioned at
the bottom of the item list:

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[110]

The fourth button from the left, named Clear history, probably does what we want.
Notice the 1 selected text to the left of the activity buttons—it shows the amount of
entries selected, so we always know how many elements we are operating on. Click
on the Clear history button. You should get a JavaScript popup asking for
confirmation to continue. While history cleaning can take a long time with large
datasets, in our case, it should be nearly instant, so click on the OK button to
continue. This should get rid of all history values for this item, including the huge
ones.

Still, looking at the Y axis in that graph, we see the incoming values being represented
as a number without any explanation of what it is, and larger values get K, M, and
other multiplier identifiers applied. It would be so much better if Zabbix knew how to
calculate it in bytes or a similar unit:

Navigate to Configuration | Hosts.1.
Click on Items next to Another host.2.
Click on the Incoming traffic on the enp0s3 (or whatever your interface3.
is) interface in the Name column. Edit the Units field and enter Bps
Click on Update.4.

Let's check whether there's any improvement in the Monitoring | Latest data:

Wonderful; data is still arriving. Even better, notice how Zabbix now automatically
calculates KB, MB, and so on where appropriate. Well, it would in our example host if
there were more traffic. Let's look at the network traffic; click on Graph:

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[111]

Take a look at the Y-axis—if you have more traffic, units will be calculated there as
well to make the graph readable, and unit calculations are retroactively applied to the
previously gathered values.

Units do not affect stored data like the Store value option did, so we
do not have to clear the previous values this time.

One parameter that we set, the update interval, could have been smaller, hence
resulting in a better-looking graph. But it is important to remember that the smaller
the intervals you have on your items, the more data Zabbix has to retrieve and, each
second, more data has to be inserted into the database and more calculations have to
be performed when displaying this data. While it would have made no notable
difference on our test system; you should try to keep intervals as large as possible.

So far, we have created items that gathered numeric data—either integers or decimal
values. Let's create another one, a bit different this time:

As usual, go to Configuration | Hosts.1.
Click on Items next to Another host. Before continuing with item creation,2.
let's look at what helpful things are available in the configuration section,
particularly for items. If we look above the item list, we can see the
navigation and information bar.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[112]

This area provides quick and useful information about the currently
selected host—the hostname, whether the host is monitored, and its
availability. Even more importantly, on the right-hand side, it provides
quick shortcuts back to the host list and other elements associated with the
current host—applications, items, triggers, graphs, discovery rules, and web
scenarios. This is a handy way to switch between element categories for a
single host without going through the host list all the time. But that's not all
yet.

Click on the Filter button to open the filter we got thrown in our face3.
before. The sophisticated filter appears again:

Using this filter, we can make complex rules about what items to display. Looking at
the top-left corner of the filter, we can see that we are not limited to viewing items
from a single host; we can also choose a Host group. When we need to, we can make
filter choices and click on the Filter link underneath. Currently, it has only one
condition—the Host field contains Another host, so the Items link from the host list
we used was the one that set this filter:

Clear out the Host field1.
Choose Linux servers from the Host group field2.
Click on the Apply button below the filter3.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[113]

Host information and the quick link bar is only available when items
are filtered for a single host.

Now, look right below the main item filter—that is a Subfilter, which, as its header
informs, only affects data already filtered by the main filter.

The entries in the subfilter work like toggles—if we switch one on, it works as a filter
on the data in addition to all other toggled subfilter controls. Let's click on Zabbix
agent (active) now. Notice how the item list now contains only one item; this is what
the number 1 represented next to this Subfilter toggle. But the subfilter itself now
also looks different:

The option we enabled, Zabbix agent (active), has been highlighted. Numeric (float),
on the other hand, is grayed out and disabled, as activating this toggle in addition to
already active ones results in no items being displayed at all. While the Numeric
(unsigned) toggle still has 1 listed next to it, which shows that enabling it will result
in those many items being displayed, the Zabbix agent toggle instead has +3 next to
it. This form represents the fact that activating this toggle will display three more
items than are currently being displayed, and it is used for toggles in the same
category. Currently, the subfilter has five entries, as it only shows existing values.
Once we have additional and different items configured, this subfilter will expand.
We have finished exploring these filters, so choose Another host from the Host field,
click on the Filter button under the filter, and click on Create item.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[114]

When you have many different hosts monitored by Zabbix, it's quite easy to forget
which version of the Zabbix agent daemon each host has, and even if you have
automated software deploying in place, it is nice to be able to see which version each
host is at, all in one place.

Use the following values:

Name: Enter Zabbix agent version
Type: Select Zabbix agent (active) (we're still creating active items)
Key: Click on Select and then choose the third entry from the
list—agent.version
Type of information: Choose Character
Update interval: Enter 86400s

When done! Click on the Add button. There are two notable things we did. Firstly, we
set the information type to Character, which reloaded the form, slightly changing
available options. Most notably, fields that are relevant for numeric information were
hidden, such as units, multiplier, and trends.

Secondly, we entered a very large update interval, 86400, which is equivalent to 24
hours. While this might seem excessive, remember what we will be monitoring here,
the Zabbix agent version, so it probably (hopefully) won't be changing several times
per day. Depending on your needs, you might set it to even larger values, such as a
week.

To check out the results of our work, go to Monitoring | Latest data.

If you don't see the data, wait a while; it should appear eventually. When it does, you
should see the version of the Zabbix agent installed on the listed remote machine, and
it might be a higher number than displayed here, as newer versions of Zabbix have
been released. Notice one minor difference—while all the items we added previously
have links named Graph on the right-hand side, the last one has one called History.
The reason is simple—for textual items, graphs can't be drawn, so Zabbix does not
even attempt to do that.

Now, about that waiting—why did we have to wait for the data to appear? Well,
remember how active items work? The agent queries the server for the item list it
should report on and then sends in data periodically, but this checking of the item list
is also done periodically. To find out how often, open the zabbix_agentd.conf
configuration file on the remote machine and look for the RefreshActiveChecks
parameter. The default is two minutes, which is configured in seconds, hence listing
120 seconds.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[115]

So, in the worst case, you might have had to wait for nearly three minutes to see any
data as opposed to normal or passive items, where the server would have queried the
agent as soon as the configuration change was available in its cache. In a production
environment with many agents using active items, it might be a good idea to increase
this value. Usually, item parameters aren't changed that often.

An active agent with multiple servers
The way we configured ServerActive in the agent daemon configuration file, it
connects to a single Zabbix server and sends data on items to the server. An agent can
also work with multiple servers at the same time; we only have to specify additional
addresses here as a comma-separated list. In that case, the agent will internally spawn
individual processes to work with each server individually. This means that one
server won't know what the other server is monitoring—values will be sent to each of
them independently. On the other hand, even if several servers request data on
individual items, this data will be collected several times, once for each server.

Always check comments in the configuration files; they can be very
useful. In the case of ServerActive, the comment shows that an
agent may also connect to non-default ports on each server by using
syntax like this: server1:port and server2:port.

Working with multiple servers in active mode can be useful when migrating from one
Zabbix instance to another. For a while, an agent could report to both the old and new
servers. Yet another case where this is useful is a customer environment where the
customer might have a local Zabbix server performing full-fledged monitoring, while
an external company might want to monitor some aspects related to an application
they are delivering.

For passive items, allowing incoming connections from multiple Zabbix servers is
done the same way—by adding multiple IP addresses to the Server parameter.

Supported items
We created some items that use the Zabbix agent in both directions and gather data.
But those are hardly the only ones available. You could check out the list while
creating an item again (go to Configuration | Hosts, click on Items for any host, and
click on the Create item button, followed by the Select button next to the Key field) in
order to see which items are built in for Zabbix agents, along with a short description
for most of them.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[116]

Not all Zabbix agent items are available as both passive and active
items. For example, log and event log items (for gathering log file
and Windows event log information, respectively) are only available
as active items. Log monitoring is covered in Chapter 10, Advanced
Item Monitoring, and Windows-specific items in Chapter 22,
Monitoring Windows.

Looking at the list, we can find out which categories of items Zabbix agents support
natively—system configuration, network traffic, network services, system load and
memory usage, filesystem monitoring, and others. But that does not mean everything
you see there will work on any system that the Zabbix agent daemon runs on. As
every platform has a different way of exposing this information and some parameters
might even be platform-specific, it isn't guaranteed that every key will work on every
host.

For example, when the disk drive statistics report changes to userspace, the Zabbix
agent has to specifically implement support for the new method; hence, older agent
versions will support fewer parameters on recent Linux systems. If you are curious
about whether a specific parameter works on a specific version of a specific operating
system, the best way to find out is to check the Zabbix manual and then test it. Some
of the most common agent item keys are as follows:

agent.ping: This returns 1 when the agent is available and nothing at all
when the agent is not available
net.if.in/out/total: This provides incoming/outgoing or total traffic
information
net.tcp.service: This tries to make a simplistic connection to a TCP
service
proc.num: This counts the number of processes and can filter by various
parameters
vfs.fs.size: This provides filesystem usage information
vm.memory.size: This provides memory usage information
system.cpu.load: This provides CPU load information in a standard
decimal representation
system.cpu.util: This provides CPU utilization information, for
example, iowait

For most of these, various parameters an be specified to filter the result or choose a
particular piece of information. For example, proc.num[,zabbix] will count all
processes that the Zabbix user is running.

https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[117]

Choosing between active and passive items
Even though we discussed Zabbix agents being active or passive, an agent really is
neither one nor the other—the direction of the connections is determined by the item
level. An agent can (and, by default, does) work in both modes at the same time.
Nevertheless, we will have to choose which item type—active or passive—to use. The
short version—active items are recommended.

To understand why, let's compare how the connections are made. With a passive
agent, it is very simple:

The arrow direction denotes how connections are made.

One value means one connection. An active agent is a bit more complicated.
Remember—in the active mode, the agent connects to the server; hence, the agent first
connects to the Zabbix server and asks for a list of items to be monitored. The server
then responds with items, their intervals, and any other relevant information:

At this point, the connection is closed and the agent starts collecting the information.
Once it has some values collected, it sends them to the server:

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[118]

Note that an active agent can send multiple values in one connection. As a result,
active agents will usually result in a lower load on the Zabbix server and a smaller
amount of network connections.

The availability icon in the host list represents passive items only; active items do not
affect it at all. If a host has active items only, this icon will stay gray. In previous
Zabbix versions, if you added passive items that failed and then converted them all
into active items, this icon would still stay red. Zabbix 3.0.0 is the first version in
which the icon is automatically reset back to gray.

Of course, there are some drawbacks to active items and benefits to passive items too.
Let's try to summarize what each item type offers and in which situation they might
be better.

The benefits of active items are as follows:

They have a smaller number of network connections
They cause lower load on the Zabbix server
They will work if the network topology or firewalls do not allow
connecting from the server to the agent (for example, if the monitored hosts
are behind an NAT)
Items such as log or Windows event log monitoring are supported

Here are the benefits of passive items:

They are easier to set up for beginners
Custom intervals are supported (they are not supported by active items)
Polling a virtual IP address on a cluster allows you to always query the
active cluster node
The default templates use passive items; hence, no modification or other
configuration is required to use them

We will discuss using and modifying templates in Chapter 8, Simplifying Complex
Configurations with Templates.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[119]

Item scheduling
Earlier, we discussed what introduces delay before a new item is checked—the
Zabbix server configuration cache was mentioned. For passive items, there is another
factor involved as well, and it is the way Zabbix schedules items to be polled. Each
item is scheduled to be polled at a certain time, and the time between two polls is
always constant. Even more, a specific item is always scheduled the same way, no
matter when the Zabbix server was started. For example, if an item has a 60-second
interval, it could be configured to be polled at second 13 of every minute. If the
Zabbix server is restarted, this item will still be polled at second 13 of every minute.
This scheduling is based on an internal item ID; hence, a specific item will not get
this timing changed during its lifetime unless it is deleted and recreated or the item
interval is changed.

This logic is similar for all polled item types and will be relevant
when we configure SNMP and other item types.

Active items get their polling started upon agent startup; hence, the specific time
when values arrive will change based on when the agent was started. Additionally,
active items are processed in a serial fashion; hence, one slow item can delay the
values for other items from the same agent.

To summarize, after we add a new passive item, it is saved in the database, the
Zabbix server does not know about it yet. This item is then loaded into the
configuration cache. The configuration cache is refreshed every 60 seconds by default.
After the server finds out about the new item, it schedules the item to be polled for
the first time at some point between that moment and the item interval.

This means that, with the default interval of 30 seconds, it may take from 30 to 90
seconds before the first value arrives for the item. If the item has a very long interval,
such as a serial number or agent version configured earlier, it may take a very long
time until the first value appears automatically. There is no way to speed up item
polling except by adding it with a short interval at first and then increasing the
interval when the item has been verified to work as expected.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[120]

After a new active item is added, it is saved in the database again and the Zabbix
server does not know about it yet. The active Zabbix agent periodically connects to
the server to gather information about items it is supposed to monitor but, as it is not
in the configuration cache yet, the server does not tell the agent about the item. This
item is then loaded into the configuration cache. The configuration cache is refreshed
every 60 seconds by default. After the server finds out about the new item, the item is
available to the agent, but the agent connects to the server every two minutes by
default. Once the agent finds out about the new item, it immediately attempts to
collect the first value for it.

Refer to Chapter 20, Zabbix Maintenance, for details on how to tune
these intervals.

In both cases, if an item is set to delta, we have to obtain two values before we can
compute the final value that will be stored in the database and displayed in the
frontend, we can't compute the difference from just one value.

However, with Zabbix 4.0 a feature was introduced that was the most voted feature
for years that allows us to speed up things but only for passive checks at the moment.
Also, we still have to wait till the configuration cache has picked up the changes
before we can use this feature. By going to a passive item, we have at the bottom of
the page a Check now button that allows us to retrieve the latest value of this item.
Hopefully, this feature will be improved in the future so that it will work for active
and passive items:

To be able to use the Check now button, the item config must be
present in configuration cache in order to get executed. So it is not
possible to check for a new value for an item/rule that has been
created just now. Unless we wait till the configuration cache has
picked up the information. We can however do a force reload of the
configuration cache. Something that we will see in our Chapter 17,
Using Proxies to Monitor Remote Locations.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[121]

Simple checks
The previously created items all required the Zabbix agent daemon to be installed,
running, and able to make a connection in either direction. But what if you can't or
don't want to install the agent on a remote host and only need to monitor simple things? This
is where simple checks can help you. These checks do not require any specialized
agent running on the remote end and only rely on basic network protocols such as
Internet Control Message Protocol (ICMP) and TCP to query monitored hosts.

Host-availability icons only cover the Zabbix agent, SNMP, JMX,
and IPMI status, that is, things where we expect the response to
arrive. Our expectations for simple checks could go both ways—an
open port could be good or bad. There is no status icon for simple
checks.

Let's create a very basic check now:

Go to Configuration | Hosts 1.
Click on Items next to Another host2.
Click on Create item3.

Use the following values:

Name: Enter SMTP server status
Type: Select Simple check
Key: Click on the Select button

The Type drop-down menu at the upper-right corner should already say Simple
check. If it doesn't, change it to that. In the Key list, click on the
net.tcp.service[service,<ip>,<port>] key and then edit it. Replace service
with smtp and remove everything after it in the square brackets so that it becomes
net.tcp.service[smtp], like so:

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[122]

When configuring simple checks in Zabbix, beware of paranoid
network security configurations that might trigger an alert if you
check too many services too often.

When done, click on the Add button at the bottom. To check the result, go to
Monitoring | Latest data—our new check should be there and, depending on
whether you have the SMTP server running and accessible for the Zabbix server,
should list either 1 (if running and accessible) or 0.

Setting up ICMP checks
What if we care only about the basic reachability of a host, such as a router or switch that is
out of our control? ICMP ping (echo request and reply) would be an appropriate
method for monitoring in that case, and Zabbix supports such simple checks. Usually,
these won't work right away; to use them, we'll have to set up a separate utility,
fping, which Zabbix uses for ICMP checks. It should be available for most
distributions, so just install it using your distribution's package-management tools. If
not, you'll have to download and compile fping manually; it's available at
http://fping.sourceforge.net/.

fping should come with your distribution if not make sure it is
installed on your system. If you make use of SELinux, then it might
be that SELinux prevents Zabbix from using fping as fping needs
to be run as root. In that case, the solution is to create a proper
SELinux rule for this.

Once fping is properly installed, the Zabbix server must know where to find it and
be able to execute it. On the Zabbix server, open zabbix_server.conf and look for
the FpingLocation parameter. It is commented out by default, and it defaults to
/usr/sbin/fping. You can quickly find the fping binary location with this
command:

$ which fping

http://fping.sourceforge.net/

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[123]

If one of the results is /usr/sbin/fping, you don't have to change this parameter. If
not, modify the parameter to point to the correct fping location and restart the
Zabbix server so that it knows about the configuration change. That's not it yet.
Zabbix also needs to be able to run fping with administrative privileges, so execute
the following as root:

chgrp zabbix /usr/sbin/fping
chmod 4710 /usr/sbin/fping

Permissions are usually already correct in Fedora/RHEL-based
distributions. If you're using distribution packages, don't execute the
previous commands; they might even disallow access for the Zabbix
server, as it might be running under a different group.

As the fping binary should have been owned by root before, this should be enough
to allow its use by the Zabbix group as required; let's verify that.

As usual, navigate to Configuration | Hosts, click on Items next to Another host, and
click on Create item. Set the following details:

Name: ICMP ping performance
Type: Simple check
Key: Click on the Select button; in the list, click on the icmppingsec key,
and then remove everything inside the square bracket and the brackets
themselves
Type of information: Numeric (float)
Units: ms
Custom multiplier (from the Preprocessing tab): Select the checkbox and
enter 1000

The options in Preprocessing tab are as follows:

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[124]

When all fields have been correctly set, click on the Add button at the bottom.
Perform the usual round trip to Monitoring | Latest data—ICMP ping should be
recording data already. If you wait for a few minutes, you can also take a look at a
relatively interesting graph to notice any changes in the network performance.

Here, we set up ICMP ping measuring network latency in seconds. If you wanted to
simply test host connectivity, you would have chosen the icmpping key, which
would only record whether the ping was successful or not. That's a simple way to test
connectivity on a large scale, as it puts a small load on the network (unless you use
ridiculously small intervals). Of course, there are things to be aware of, such as doing
something different to test Internet connectivity—it wouldn't be enough to test the
connection to your router, firewall, or even your provider's routers. The best way
would be to choose several remote targets to monitor that are known to have a very
good connection and availability.

For ICMP ping items, several parameters can be specified. For example, the full
icmpping key syntax is as follows:

icmpping[<target>,<packets>,<interval>,<size>,<timeout>]

By default, target is taken from the host this item is assigned to, but that can be
overridden. The packets parameter enables you to specify how many packets each
invocation should issue—usually, the fping default is 3. The interval parameter
enables you to configure the interval between these packets—usually, the fping
default is one second against the same target, specified in milliseconds. As for size,
here, the default of a single packet could differ based on the fping version,
architecture, and maybe other parameters. And the last one—timeout—sets
individual target timeouts, with a common default being 500 milliseconds.

These defaults are not Zabbix defaults, if not specified, fping
defaults are used.

Note that we should not set ICMP ping items with very large timeouts or packet
counts; it can lead to weird results. For example, setting the packet count to 60 and
using a 60-second interval on an item will likely result in that item missing every
second value.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[125]

If you set up several ICMP ping items against the same host, Zabbix invokes the
fping utility only once. If multiple hosts have ICMP ping items, Zabbix will invoke
fping once for all hosts that have to be pinged at the same time with the same
parameters (such as packet, size, and timeout).

fping needs the SUID bit set to work properly. This is because fping
needs root permissions to work but we run our Zabbix setup as a
regular Zabbix user. In most cases, this will be set out of the box by
your distribution but, just in case, check it if you run into issues. The
proper settings can be verified like this:

If you don't use IPV4 but IPV6, then you need to configure fping for
IPV6 in the Zabbix server configuration; that also means that you need
to install fping6 next to fping. The usual location
is /usr/sbin/fping6.

Connecting all of the pieces
So, we found out that a normal or passive agent waits for the server to connect, while
an active agent connects to the server, grabs a list of items to check, and then
reconnects to the server periodically to send in the data. This means that using one or
the other kind of Zabbix agent item can impact performance. In general, active agents
reduce the load on the Zabbix server because the server doesn't have to keep a list of
what and when to check. Instead, the agent picks up that task and reports back to the
server. But you should evaluate each case separately: if you only have a few items per
host that you monitor very rarely (the update interval is set to a large value),
converting all agents into active ones that retrieve the item list more often than the
items were previously checked won't improve Zabbix server performance.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[126]

It is important to remember that you can use a mixture of various
items against a single host. As we just saw, a single host can have
passive Zabbix agent items, active Zabbix agent items, and simple
checks assigned. This allows you to choose the best fit for
monitoring every characteristic to ensure the best connectivity and
performance and the least impact on the network and the monitored
host. And that's not all yet—we'll explore several additional item
types, which again can be mixed with the ones we already know for
a single configured host.

Key parameter quoting
Zabbix key parameters are comma-delimited and enclosed in square brackets. This
means that any other character can be used in the parameters as is. If your parameters
include commas or square brackets, they will have to be in quote marks. Here are a
few examples:

key[param1,param2]: This key has two parameters, param1 and param2
key["param1,param2"]: This key has one parameter, param1 and
param2

key[param1[param2]: This is an invalid key
key['param1,param2']: This key has two parameters, 'param1 and
param2'

What's up with the last one? Well, Zabbix item keys are not shell-interpreted. Zabbix
specifically supports double quotes for key parameter quoting. Single quotes are
treated like any other character.

Positional parameters for item names
While we're working with items, let's explore some more tricks:

Go to Configuration | Hosts1.
Click on Items next to Another host 2.
Click on Incoming traffic on interface enp0s8 (or whatever interface you3.
have) in the Name column

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[127]

In the item-editing form, click on the Clone button at the bottom4.
In the new form, modify the Key field so that it reads net.if.in[lo]5.
Click on the Add button at the bottom6.

You might notice it right away, or go to Monitoring | Latest data and look at the list.
Despite the fact that we only modified the key, the item name was updated
accordingly as well:

That's what the $1 part in the item Name field is doing. It's working like a common
positional parameter, taking the first parameter of the item key. If we had more
parameters, we could access those for inclusion in the name with $2, $3, and so on.
This is mostly useful in cases where you want to create several items that monitor
different entities so that when cloning the items, you have to change only a single
instance of the identifier. It's easier than it seems to miss some change when there are
multiple locations, hence creating items with mismatched configuration.

Now that we have some more items configured, it's worth looking at another
monitoring view. While we spent most of our time in Monitoring | Latest data, this
time, navigate to Monitoring | Overview. The Type drop-down menu in the upper-
right corner currently lists Triggers, which does not provide a very exciting view for
us: we only have a single trigger created. But we did create several items, so switch
this drop-down menu to Data:

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[128]

This time, the overview page is a bit more interesting: we can see which hosts have
which items and item values.

The usage of $1 to $9 in item names is deprecated so it's advised to
not use this anymore as, in later versions, this might not work
anymore. This is already true in 4.2 and it can also be that it is in 5.0;
there is no plan yet when it will be removed completely (https:/ /
support. zabbix. com/ browse/ ZBXNEXT- 4591).

Using mass update
Now this looks quite good—we can see all of the monitored data in a compact form.
Those 1 results that denote the status for various servers—what do they mean? Was 1
for a running state, or was it an error, like with exit codes? They surely aren't intuitive
enough, so let's try to remedy that. Go to Configuration | Hosts, and click on Items
for Another host. Select all three server status items (SMTP, SSH, and Web), and
then look at the buttons at the bottom of the item list.

This time, we will want to make a single change for all of the selected items, so the
second button from the right looks like what we need—it says Mass update. Click on
it:

Now that's an interesting screen—it allows us to change some parameters for
multiple items at once. While doing that, only changes that are marked and specified
are performed, so we can change some common values for otherwise wildly differing
items. It allows us to set things such as the Update interval or any other parameter
together for the selected items:

https://support.zabbix.com/browse/ZBXNEXT-4591
https://support.zabbix.com/browse/ZBXNEXT-4591
https://support.zabbix.com/browse/ZBXNEXT-4591
https://support.zabbix.com/browse/ZBXNEXT-4591
https://support.zabbix.com/browse/ZBXNEXT-4591
https://support.zabbix.com/browse/ZBXNEXT-4591
https://support.zabbix.com/browse/ZBXNEXT-4591
https://support.zabbix.com/browse/ZBXNEXT-4591
https://support.zabbix.com/browse/ZBXNEXT-4591
https://support.zabbix.com/browse/ZBXNEXT-4591
https://support.zabbix.com/browse/ZBXNEXT-4591
https://support.zabbix.com/browse/ZBXNEXT-4591
https://support.zabbix.com/browse/ZBXNEXT-4591
https://support.zabbix.com/browse/ZBXNEXT-4591

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[129]

Value mapping
This time, we are interested in only one value, the one that decides how the value is
displayed to us. Mark the checkbox next to the Show value entry to see the available
options.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[130]

It looks like somebody has already defined entries here, but let's find out what it
actually means before making a decision. Click on the Show value mappings link to
the right on the same line:

Looking at the list, we can see various names, each of them having a list of mapped
references. Look at the Name column, where the predefined entries have hints about
what they are good for. You can see UPS-related mappings, generic status/state,
SNMP, and Windows service-related mappings. The Value map column shows the
exact mappings that are assigned to each entry. But what exactly are they? Looking at
the entries, you can see things such as 0 => Down or 1 => Up. Data arriving for an
item that has a value mapping assigned will expose the descriptive mappings. You
are free to create any mapping you desire. To create a new category of mapped data,
you need to use the button in the upper-right corner called Create value map. We
won't do that now, because one of the available mappings covers our needs quite
well. Look at the entries—remember the items we were curious about? They were
monitoring a service and they used 1 to denote a service that is running and 0 to
denote a service that is down. Looking at the list, we can see an entry, Service state,
which defines 0 as Down and 1 as Up—exactly what we need. Well, that means we
don't have to create or modify any entries, so simply close this window.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[131]

You can access the value map configuration screen at any time by
navigating to Administration | General and choosing show value
mappings from the drop-down menu in the upper-right corner.

Back in the mass-update screen, recall the mapping entries we just saw and remember
which entry fit our requirements the best. Choose Service state from the drop-down
menu for the only entry whose checkbox we marked, Show value.

When you are done, click on the Update button. This operation should complete
successfully. You can click on the Details control in the upper-left corner to verify
that all three items we intended were updated.

Let's see how our change affected information display. Configured and assigned
value mappings are used in most Zabbix frontend locations where it makes sense. For
example, let's visit that old friend of ours, Monitoring | Latest data. Take a close look
at the various server status entries—Zabbix still shows numeric values for the
reference, but each has conveniently listed an appropriate friendly name mapped
value:

We have currently stopped the SMTP server to verify whether both 1 => Up and 0 =>
Down mappings work—as we can see, they do. Value mapping will be useful for
returned data that works like code values—service states, hardware states (such as
batteries), and other similar monitored data. We saw some predefined examples in
the value-mapping configuration screen before, and you are free to modify or create
new mappings according to your needs.

Value mapping can be used for integers, decimal values (floats), and strings. One use
case for strings could be the mapping of different backup levels that a backup
software might return:

I => Incremental

D => Differential

F => Full

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[132]

Navigate back to Monitoring | Overview and again, look at the various server status
entries for ANOTHER HOST:

While value mapping doesn't seem too useful when you have to remember a single
monitored characteristic with only two possible states, it becomes very useful when
there are many different possible states and many possible mappings so that in most
locations, you will have a quick hint about what each numeric value means and you
are always free to invent your own mappings for custom-developed solutions.

Units
We previously configured units for some items, using values such as B or ms. While
the effect was visible in the monitoring section quite easily, there are some subtle
differences in the handling of different units.

Units is a free-form field. You can type anything in there, but some units will change
their behavior when data is displayed:

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[133]

B/Bps: By default, when applying K, M, G, T and other unit prefixes,
Zabbix will use a multiplier of 1,000. If the unit is set to B or Bps, the
multiplier used will be changed to 1,024.
s: An incoming value in seconds will be translated to a human-readable
format.
uptime: An incoming value in seconds will be translated to a human-
readable format.
unixtime: An incoming Unix timestamp will be translated to a human-
readable format.

Interestingly, for our ICMP ping item, we did not use any of these; we used ms
instead. The reason is that in certain cases of a very small roundtrip, a value in
seconds might be too small to properly store in the Zabbix database schema. By
applying the multiplier of 1,000 in the item configuration, we converted the incoming
value in seconds into milliseconds, which should never exceed the limits of the
database schema. One downside would be that, if a ping takes a long time, the value
will not be displayed in seconds—we will have to figure it out from the millisecond
value.

Units do not affect the stored values, only what gets displayed. We
may safely change them back and forth until we get them right.
With older versions of Zabbix, there was a fixed blacklist for certain
units, such as rpm and % so that we would not get anything crazy
such as 5KRPM or 1K%. With Zabbix 4, this blacklist has been
removed and replaced with a new feature that allows us to blacklist
any unit we like just by adding an ! in front of the unit: https:/ /
www. zabbix. com/ documentation/ 4.0/ manual/ config/ items/
item#unit_ blacklisting.

Custom intervals
Another item property that we just briefly discussed was custom intervals. Most item
types have their intervals configurable, which determines how often the item values
should be collected. But what if we would like to change this interval based on the day of the
week or the time of day? That is exactly what custom intervals enable us to do. There are
two modes for custom intervals:

Flexible intervals
Custom scheduling

https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting
https://www.zabbix.com/documentation/4.0/manual/config/items/item#unit_blacklisting

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[134]

Flexible intervals
Flexible intervals override the normal interval for the specified time. For example, an
item could collect values every 60 seconds, but that item might not be important
during the weekend. In that case, a flexible interval could be added with an interval
of 3600 and time specification of 6-7,00:00-24:00. During Saturdays and Sundays,
this item would only be checked once an hour:

Up to seven flexible intervals may be added for a single item.

Days are represented with the numbers 1-7 and a 24-hour clock notation of HH:MM-
HH:MM is used.

In case you were wondering, the week starts with a Monday here.

It is also possible to set the normal interval to 0 and configure flexible intervals. In
this case, the item will only be checked at the times specified in the flexible intervals.
This functionality can be used to check some item on a specific weekday only or even
to simulate a crude scheduler. If an item is added with a normal interval of 0, a
flexible interval of 60 seconds, and a time specification of 1,09:00-09:01, this item
will be checked on Monday morning at 9 o'clock.

Overlapping flexible intervals: If two flexible intervals with
different values overlap, during the overlap period, the smallest
value is used. For example, if flexible intervals with periods
1-5,00-24:00 and 5-6,12:00-24:00 are added to the same item,
during Friday, from 12:00 to 24:00, the one that has the smallest
interval will be used.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[135]

Custom scheduling
The example of having a flexible interval of one minute works, but it's not very
precise. For more exact timing, the other custom interval type can be
used—scheduling. This enables you to obtain item values at an exact time. It also has
one major difference from flexible intervals. Flexible intervals change how an item is
polled, but custom scheduling does not change the existing polling. Scheduled checks
are executed in addition to the normal or flexible intervals.

It may sound a lot like crontab, but Zabbix custom scheduling uses its own syntax.
The time prefix is followed by a filter entry. Multiple time prefix and filter values are
concatenated, going from the biggest to the smallest. The supported time prefixes are
as follows:

md: month days
wd: weekdays
h: hours
m: minutes
s: seconds

For example, an entry of m13 will schedule this item to be polled every hour at the
beginning of minute 13. If it is combined with a weekday specification such as
wd3m13, it will be polled every hour at the beginning of minute 13 on Wednesdays
only. Changing the weekday reference to the month day—or date—reference as
md13m13 would make this item be polled every hour at the beginning of minute 13 on
the thirteenth day only.

The example of polling the item on Monday morning at 09:00 that we looked at before
would be wd1h9:

The filter can also be a range. For example, polling an item at 09:00 on Monday,
Tuesday, and Wednesday would be done as wd1-3h9.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[136]

At the end of the filter, we can also add a step through a slash. For example,
wd1-5h6-10/2 would poll the item from Monday to Friday, starting at 06:00 every
other hour until 10:00. The item would get polled at 06:00, 08:00, and 10:00. To make
an item be polled every other hour all day long on all days, the syntax of h/2 can be
used.

Multiple custom intervals may also be specified by separating them with a semicolon;
wd1-5/2 and wd1;wd3;wd5 would both poll an item at the beginning of Monday,
Wednesday, and Friday.

Copying items
Looking at the same overview screen, the data seems easier to understand with
textual hints provided for previously cryptic numeric values, but there's still a bit of
not-so-perfect displaying. Notice the dashes displayed for the CPU load item for
Another host and all other values for A test host. We didn't create corresponding
items on both hosts, and item data is displayed here, which means missing items
should be created for each host to gather the data. But recreating all items would be
very boring. Luckily, there's a simple and straightforward solution to this problem.

Go to Configuration | Hosts and click on Items next to A test host. We had only a
single item configured for this host, so mark the checkbox next to this item. Let's look
at the available buttons at the bottom of the list again:

This time, we don't want to update selected items, but copy them to another host:

Click on the Copy button.1.
We want to copy these items to a specific host, so choose Hosts in the2.
Target type drop-down menu.
Select Linux servers in the Group drop-down menu, which should leave us3.
with a short list of hosts. We are copying from A test host to Another host;
mark the checkbox next to the Another host entry.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[137]

Click on the Copy button:4.

When the operation has completed, change the Host filter field (expand the filter if it
is closed) to Another host, and then click on Filter below the filter itself. Notice how
the CPU load item has appeared in the list. This time, mark all the items except CPU
load, because that's the only item A test host has. You can use the standard range
selection functionality here-mark the checkbox next to the ICMP ping performance
item (the first item in the range we want to select), hold down Shift on the keyboard,
and click on the checkbox next to the Zabbix agent version (the last item in the range
we want to select). This should select all the items between the two checkboxes we
clicked on.

Using the Shift key and clicking works to both select and deselect
arbitrary entry ranges, including items, hosts, triggers, and other
entries in the Zabbix frontend. It works both upward and
downward. The result of the action depends on the first checkbox
marked—if you select it, the whole range will be selected, and vice
versa.

With those items selected, do the following:

Click on Copy below the item list.1.
Choose Hosts in the Target type drop-down menu.2.
Choose Linux servers in the Group drop-down menu.3.
Mark only the checkbox next to A test host, and click on Copy.4.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[138]

After that, click on the Details link in the upper-right corner. Notice how5.
all of the copied items are listed here. Let's take another look at Monitoring
| Overview:

Great, that's much better! We can see all the data for the two hosts, with the numeric
status nicely explained. Basically, we just cross-copied items that did not exist on one
host from the other one.

But it only gets better—with a mouseover of the displayed values, you can notice how
the chosen row is highlighted. Let's click on one of the CPU load values:

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[139]

As you can see, the overview screen not only shows you data in a tabular form, it also
allows quick access to common timescale graphs and the Latest values for the item.
Feel free to try that out.

When you have looked at the data, click on one of the Zabbix agent version values:

Notice how this time there are no entries for graphs. Remember: graphs were only
available for numeric data, so Monitoring | Latest data and these overview screen
pop-up menus offer the value history only.

Summary
This time, we created a new host and added several normal or passive agent items
and active agent items.

We learned that it is good practice to disable active items if they are not used by
commenting out the ServerActive parameter. If passive items are not used, they
can be disabled by setting StartAgents to 0, although leaving them enabled can
help with testing and debugging.

We set up simple checks on two different hosts and explored many tricks and
mechanisms to ease managing in the frontend, such as item cloning, copying, and
value mapping.

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[140]

It might be worth remembering how connections are made for active and passive
Zabbix agent item types, that's important when you have to decide on monitoring
mechanisms based on existing network topology and configuration. Let's look at the
following diagram, summarizing those connections. The arrow direction denotes how
connections are made:

Discussing benefits and drawbacks, we found that active items are recommended
over passive items in most cases.

Listed here are the default ports that can be changed if necessary:

Normal or passive items: The Zabbix server connects to a Zabbix agent,
which in turn gathers the data (port 10050)
Active items: The Zabbix agent connects to a Zabbix server, retrieves a list
of things to monitor, gathers the data, and then periodically reports back to
the server (port 10051)
Simple checks: The Zabbix server directly queries the exposed network
interfaces of the monitored host; no agent is required

Monitoring with Zabbix Agents and Basic Protocols Chapter 3

[141]

The simple checks were different: they never used the Zabbix agent and were
performed directly from the Zabbix server. Simple checks included TCP port
checking.

This covers the two basic, most commonly used check types—a Zabbix agent with
bidirectional connection support and simple checks that are performed directly from
the server.

In the next chapter, we will look at SNMP monitoring. We will start with a quick
introduction to the Net-SNMP tools and basic Management Information Base (MIB)
management, and we will set up SNMP polling with fixed and dynamic OIDs. We
will also receive SNMP traps and map them to hosts and items both using the built-in
method and a very custom approach.

Questions
When we talk about active or passive communication between Zabbix1.
server and agent, is this from the agent or the server perspective ?
When I configure an item, can I click the Check now button and expect2.
Zabbix to give me the information right away?
When I need to know the total throughput of my network interface, do I3.
have to calculate in and out traffic together ?

Further reading
Read the following articles for more information:

Zabbix Documentation 4.0: https:/ /www. zabbix. com/ documentation/ 4.
0/manual/ installation/ install

Encryption: https:/ / www. zabbix. com/ documentation/ 4.0/manual/
encryption#compiling_ zabbix_ with_ encryption_ support

10 Implementation details of net.tcp.service and net.udp.service checks:
https:/ /www. zabbix. com/ documentation/ 4. 0/manual/ appendix/ items/
service_ check_ details

https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/installation/install
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/encryption#compiling_zabbix_with_encryption_support
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/4.0/manual/appendix/items/service_check_details

4
Monitoring SNMP Devices

Now that we are familiar with monitoring using Zabbix agents and the agentless
method, let's explore an additional method that does not require Zabbix agent
installation, even though it needs an agent of some kind anyway. Simple Network
Management Protocol (SNMP) is a well-established and popular network-
monitoring solution. We'll learn to configure and use SNMP with Zabbix, including
SNMP polling and trap receiving.

Being more than two-decades old, SNMP has had the time to become widespread
across a whole range of networked devices. Although the name implies management
functionality, it's mostly used for monitoring. As the first versions had security
drawbacks, the ability to modify configuration over SNMP did not become as popular
as its read-only counterpart.

SNMP as the primary monitoring solution is especially popular in embedded devices,
where running a complete operating system and installing separate monitoring
agents would be overkill. Two of the most popular device categories implementing
SNMP out of the box are printers and various network devices, such as switches,
routers, and firewalls. SNMP allows the easy monitoring of these otherwise quite
closed devices. Other devices with SNMP agents provided include UPSes, Network-
Attached Storage (NAS) devices, and computer rack temperature/humidity sensors.
Of course, SNMP is in no way restricted to devices with limited processing
power—it's perfectly fine to run a generic SNMP agent instead of a specialized
monitoring agent on standard servers. Reasons to use SNMP agents instead of Zabbix
agents might include already installed and set up SNMP agents, no access to
monitored hosts to install Zabbix agents, or a desire to keep systems relatively free
from dependencies on monitoring software.

Given the prevalence of SNMP, it's no wonder Zabbix supports it out-of-the-box.
SNMP support in Zabbix builds upon another quality open source product—Net-
SNMP (http://net-snmp.sourceforge.net/).

http://net-snmp.sourceforge.net/)
http://net-snmp.sourceforge.net/)

Monitoring SNMP Devices Chapter 4

[143]

In this chapter, we will do the following:

Look at basic Net-SNMP tools
Learn how to add Management Information Base (MIB) files so that
Zabbix recognizes them
Poll SNMP items in Zabbix
Receive SNMP traps

Using Net-SNMP
If you installed Zabbix from the distribution packages, SNMP support should be
already included. If you compiled Zabbix from the source, it should still have SNMP
support, as we included that in the configure flags. All that's left to do is set up SNMP
monitoring configuration. Before we do that, we'll need a device that has an SNMP
agent installed. This is where you can choose between various options; you can use
any networked device that you have access to, such as a manageable switch, network
printer, or a UPS with an SNMP interface. As SNMP agents usually listen on port
161, you will need the ability to connect to such a device on this port over User
Datagram Protocol (UDP). Although TCP is also supported, UDP is much more
widely used.

If you don't have access to such a device, you could also start up an SNMP daemon
on a computer. For example, you could easily use Another host as a test bed for
SNMP querying. Many distributions ship with the SNMP daemon from the Net-
SNMP package, and often it is enough to simply start the snmpd service. If that's not
the case for your chosen distribution, you'll either have to find one of those
networked devices with an SNMP agent already available or configure snmpd
manually.

For testing, it may be enough to have a line like the following in
/etc/snmp/snmpd.conf:

rocommunity public

This allows full read access to anybody who uses the public community string.

Do not use such a configuration in production.

Monitoring SNMP Devices Chapter 4

[144]

Whichever way you choose, you will have to find out what data the device actually
provides and how to get it. This is where Net-SNMP comes in, providing many useful
tools to work with SNMP-enabled devices. We will use several of these tools to
discover information that is required to configure SNMP items in Zabbix.

Let's start by verifying whether our SNMP device is reachable and responds to our
queries.

While SNMPv3 has been the current version of SNMP since 2004, it is still not as
widespread as SNMPv1 and SNMPv2. There are a whole lot of old devices in use that
only support older protocol versions, and many vendors do not hurry with SNMPv3
implementations.

To complicate things further, SNMPv2 also isn't widely used. Instead, a variation of
it, the community-based SNMPv2, or SNMPv2c, is used. While devices can support
both v1 and v2c, some only support one of these. Both use so-called community
authentication, where user authentication is performed based on a single community
string. Therefore, to query a device, you would have to know which protocol version
it supports and the community string to use. It's not as hard as it sounds. By default,
many devices use a common string for access, public, as does the Net-SNMP
daemon. Unless you explicitly change this string, you can just assume that's what is
needed to query any host.

In some distributions, the Net-SNMP daemon and tools can be split out in separate
packages. In such cases, install the tool package as well.

If you have installed and started Net-SNMP daemon on Another host, you can
perform a simple query to verify SNMP connectivity:

$ snmpstatus -v 2c -c public <IP address>

If the daemon has been started correctly and network connectivity is fine, you should
get some output, depending on the system you have:

[UDP: [<IP address>]:161->[0.0.0.0]:51887]=>[Linux another 3.11.10-29-
default #1 SMP Thu Mar 5 16:24:00 UTC 2015 (338c513) x86_64] Up:
10:10:46.20
Interfaces: 3, Recv/Trans packets: 300/281 | IP: 286/245

We can see here that it worked, and by default, communication was done over UDP
to port 161. We can see the target system's operating system, hostname, kernel
version, when was it compiled and what hardware architecture it was compiled for,
and the current uptime. There's also some network statistics information tacked on.

Monitoring SNMP Devices Chapter 4

[145]

If you are trying to query a network device, it might have restrictions on who is
allowed to use the SNMP agent. Some devices allow free access to SNMP data, while
some restrict it by default and every connecting host has to be allowed explicitly. If a
device does not respond, check its configuration—you might have to add the IP
address of the querying machine to the SNMP permission list.

Looking at the snmpstatus command itself, we passed two parameters to it—the
SNMP version (2c in this case) and community (which is, as discussed before,
public).

If you have other SNMP-enabled hosts, you can try the same command on them. Let's
look at various devices:

$ snmpstatus -v 2c -c public <IP address>
[UDP: [<IP address>]:161]=>[IBM Infoprint 1532 version NS.NP.N118
kernel 2.6.6 All-N-1] Up: 5 days, 0:29:53.22
Interfaces: 0, Recv/Trans packets: 63/63 | IP: 1080193/103316

As we can see, this has to be an IBM printer. And hey, it seems to be using a Linux
kernel.

While many systems will respond to version 2c queries, sometimes you might see the
following:

$ snmpstatus -v 2c -c public <IP address>
Timeout: No Response from <IP address>

This could of course mean network problems, but sometimes SNMP agents ignore
requests coming in with a protocol version they do not support or an incorrect
community string. If the community string is incorrect, you would have to find out
what it has been set to; this is usually easily available in the device or SNMP daemon
configuration (for example, Net-SNMP usually has it set in the
/etc/snmp/snmp.conf configuration file). If you believe a device might not support
a particular protocol version, you can try another command:

$ snmpstatus -v 1 -c public <IP address>
[UDP: [<IP address>]:161]=>[HP ETHERNET MULTI-
ENVIRONMENT,SN:CNBW71B06G,FN:JK227AB,SVCID:00000,PID:HP LaserJet P2015
Series] Up: 3:33:44.22
Interfaces: 2, Recv/Trans packets: 135108/70066 | IP: 78239/70054

So, this HP LaserJet printer did not support SNMPv2c, only v1. Still, when queried
using SNMPv1, it divulged information such as the serial number and series name.

Monitoring SNMP Devices Chapter 4

[146]

Let's look at another SNMPv1-only device:

$ snmpstatus -v 1 -c public <IP address>
[UDP: [<IP address>]:161]=>[APC Web/SNMP Management Card (MB:v3.6.8
PF:v2.6.4 PN:apc_hw02_aos_264.bin AF1:v2.6.1 AN1:apc_hw02_sumx_261.bin
MN:AP9617 HR:A10 SN: ZA0542025896 MD:10/17/2005) (Embedded PowerNet
SNMP Agent SW v2.2 compatible)] Up: 157 days, 20:42:55.19
Interfaces: 1, Recv/Trans packets: 2770626/2972781 | IP:
2300062/2388450

This seems to be an APC UPS, and it's providing a lot of information stuffed in this
output, including serial number and even firmware versions. It also has considerably
longer uptime than the previous systems: over 157 days.

But surely, there must be more information obtainable through SNMP,; also, this
looks a bit messy. Let's try another command from the Net-SNMP arsenal, snmpwalk.
This command tries to return all of the values available from a particular SNMP
agent, so the output could be very large—we'd better restrict it to a few lines at first:

$ snmpwalk -v 2c -c public 10.1.1.100 | head -n 6
SNMPv2-MIB::sysDescr.0 = STRING: Linux zab 2.6.16.60-0.21-default #1
Tue May 6 12:41:02 UTC 2008 i686
SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (8411956) 23:21:59.56
SNMPv2-MIB::sysContact.0 = STRING: Sysadmin (root@localhost)
SNMPv2-MIB::sysName.0 = STRING: zab
SNMPv2-MIB::sysLocation.0 = STRING: Server Room

This syntax did not specify OID, and snmpwalk defaulted to
SNMPv2-SMI::mib-2. Some devices will have useful information in
other parts of the tree. To query the full tree, specify a single dot as
the OID value, like this:
snmpwalk -v 2c -c public 10.1.1.100

As we can see, this command outputs various values, with a name or identifier
displayed on the left and the value itself on the right. Indeed, the identifier is called
the Object Identifier (OID), and it is a unique string, identifying a single value.

Monitoring SNMP Devices Chapter 4

[147]

Calling everything on the left-hand side an OID is a simplification. It actually consists
of an MIB, OID, and UID, as shown here:

Nevertheless, it is commonly referred to as just the OID, and we will use the same
shorthand in this book. Exceptions will be cases when we will actually refer to the
MIB or UID part.

Looking at the output, we can also identify some of the data we saw in the output of
snmpstatus-SNMPv2-MIB::sysDescr.0 and DISMAN-EVENT-
MIB::sysUpTimeInstance. Two other values, SNMPv2-MIB::sysContact.0 and
SNMPv2-MIB::sysLocation.0, haven't been changed from the defaults, and hence
aren't too useful right now. While we are at it, let's compare this output to the one
from the APC UPS:

$ snmpwalk -v 1 -c <IP address> | head -n 6
SNMPv2-MIB::sysDescr.0 = STRING: APC Web/SNMP Management Card
(MB:v3.6.8 PF:v2.6.4 PN:apc_hw02_aos_264.bin AF1:v2.6.1
AN1:apc_hw02_sumx_261.bin MN:AP9617 HR:A10 SN: ZA0542025896
MD:10/17/2005) (Embedded PowerNet SNMP Agent SW v2.2 compatible)
SNMPv2-MIB::sysObjectID.0 = OID: PowerNet-MIB::smartUPS450
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (1364829916) 157
days, 23:11:39.16
SNMPv2-MIB::sysContact.0 = STRING: Unknown
SNMPv2-MIB::sysName.0 = STRING: Unknown
SNMPv2-MIB::sysLocation.0 = STRING: Unknown

The output is quite similar, containing the same OIDs, and the system contact and
location values aren't set as well. But to monitor some things, we have to retrieve a
single value per item, and we can verify that it works with another command,
snmpget:

$ snmpget -v 2c -c public 10.1.1.100 DISMAN-EVENT-
MIB::sysUpTimeInstance
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (8913849) 1 day,
0:45:38.49

Monitoring SNMP Devices Chapter 4

[148]

We can add any valid OID, such as DISMAN-EVENT-MIB::sysUpTimeInstance in
the previous example, after the host to get whatever value it holds. The OID itself
currently consists of two parts, separated by two colons. As discussed earlier, the first
part is the name of a Management Information Base (MIB). MIBs are collections of
item descriptions, mapping numeric forms to textual ones. The second part is the OID
itself. There is no UID in this case. We can look at the full identifier by adding a -Of
flag to modify the output:

$ snmpget -v 2c -c public -Of 10.1.1.100 DISMAN-EVENT-
MIB::sysUpTimeInstance
.iso.org.dod.internet.mgmt.mib-2.system.sysUpTime.sysUpTimeInstance =
Timeticks: (8972788) 1 day, 0:55:27.88

To translate from the numeric to the textual form, an MIB is needed.
In some cases, the standard MIBs are enough, but many devices
have useful information in vendor-specific extensions. Some
vendors provide quality MIBs for their equipment; some are less
helpful. Contact your vendor to obtain any required MIBs. We will
discuss basic MIB management later in this chapter.

That's a considerably long name, showing the tree-like structure. It starts with a no-
name root object and goes further, with all the values attached at some location to
this tree. Well, we mentioned numeric form, and we can make snmpget output
numeric names as well with the -On flag:

$ snmpget -v 2c -c public -On 10.1.1.100 DISMAN-EVENT-
MIB::sysUpTimeInstance
.1.3.6.1.2.1.1.3.0 = Timeticks: (9048942) 1 day, 1:08:09.42

So, each OID can be referred to in one of three notations—short, long, or numeric. In
this case, DISMAN-EVENT-MIB::sysUpTimeInstance,
.iso.org.dod.internet.mgmt.mib-2.system.sysUpTime.sysUpTimeInstanc

e, and .1.3.6.1.2.1.1.3.0 all refer to the same value.

Take a look at the snmpcmd man page for other supported output-
formatting options.

Monitoring SNMP Devices Chapter 4

[149]

But how does this fit into Zabbix SNMP items? Well, to create an SNMP item in Zabbix,
you have to enter an OID. How do you know what OID to use? Often, you might have
the following choices:

You just know it
Ask somebody
Find out yourself

More often than not, the first two options don't work, so finding it out yourself will be
the only way. As we have learned, Net-SNMP tools are fairly good at supporting such
a discovery process.

Using SNMPv3 with Net-SNMP
The latest version of SNMP, version 3, is still not that common yet, and it is somewhat
more complex than the previous versions. Device implementations can also vary in
quality, so it might be useful to test your configuration of Zabbix against a known
solution—Net-SNMP daemon. Let's add an SNMPv3 user to it and get a value. Make
sure Net-SNMP is installed and that snmpd starts up successfully.

To configure SNMPv3, first stop snmpd, and then, as root, run this:

net-snmp-create-v3-user -ro zabbix

This utility will prompt for a password. Enter a password of at least eight
characters—although shorter passwords will be accepted here, it will fail the default
length requirement later. Start snmpd again, and test the retrieval of values using v 3:

$ snmpget -u zabbix -A zabbixzabbix -v 3 -l authNoPriv localhost
SNMPv2-MIB::sysDescr.0

This should return data successfully, as follows:

SNMPv2-MIB::sysDescr.0 = STRING: Linux another 3.11.10-29-default #1
SMP Thu Mar 5 16:24:00 UTC 2015 (338c513) x86_64

We don't need to configure versions 1 or 2c separately, so now we have a general
SNMP agent, providing all common versions for testing or exploring.

Monitoring SNMP Devices Chapter 4

[150]

The engine ID
There is a very common misconfiguration done when attempting to use SNMPv3.
According to RFC 3414 (https://tools.ietf.org/html/rfc3414), each device must
have a unique identifier. Each SNMP engine maintains a value, snmpEngineID,
which uniquely identifies the SNMP engine.

Sometimes, users tend to set this ID to the same value for several devices. As a result,
Zabbix is unable to successfully monitor those devices. To make things worse, each
device responds nicely to commands such as snmpget or snmpwalk. These
commands only talk to a single device at a time; hence, they do not care about
snmpEngineID much.

In Zabbix, this could manifest as one device working properly but stopping when
another one is added to monitoring.

If there are mysterious problems with SNMPv3 device monitoring with Zabbix that
do not manifest when using command-line tools, snmpEngineID should be checked
very carefully.

Authentication, encryption, and context
With SNMPv3, several additional features are available. Most notably, one may
choose strong authentication and encryption of communication. For authentication,
Zabbix currently supports the following methods:

Message-Digest 5 (MD5) algorithm
Secure Hash Algorithm (SHA)

For encryption, Zabbix supports these:

Data Encryption Standard (DES)
Advanced Encryption Standard (AES)

While it seems that one might always want to use the strongest possible encryption,
keep in mind that this can be quite resource intensive. Querying a lot of values over
SNMP can overload the target device quite easily. To have reasonable security, you
may choose the authNoPriv option in the Security level drop-down menu. This will
use encryption for the authentication process but not for data transfer.

https://tools.ietf.org/html/rfc3414

Monitoring SNMP Devices Chapter 4

[151]

Another SNMPv3 feature is context. In some cases, one SNMP endpoint is responsible
for providing information about multiple devices—for example, about multiple UPS
devices. A single OID will get a different value, depending on the context specified.
Zabbix allows you to specify the context for each individual SNMPv3 item.

Adding new MIBs
One way to discover usable OIDs is to redirect the full SNMP tree output to a file,
find out what interesting and useful information the device exposes, and determine
what the OIDs are from that. It's all good as long as the MIB files shipped with Net-
SNMP provide the required descriptors, but SNMP MIBs are extensible—anybody
can add new information, and many vendors do. In such a case, your file might be
filled with lines like this:

SNMPv2-SMI::enterprises.318.1.1.1.1.2.3.0 = STRING: "QS0547120198"

That's quite cryptic. While the output is in the short, textual form, part of it is
numeric. This means that there is no MIB definition for this part of the SNMP tree.
Enterprise number 318 is assigned to APC and, luckily, APC offers an MIB for
download from their site, so it can be added to Net-SNMP configured MIBs. But how?

Getting SNMP MIBs isn't always easy. A certain large printer
manufacturer representative claimed that they do not provide
SNMP MIBs, and everybody should use their proprietary printer-
management application. Most manufacturers do provide MIBs,
though, and in some cases, freely accessible MIB collection sites can
help better than official vendor sites.

After downloading a new MIB, you have to place it in a location where Net-SNMP
will search for MIB files and configure them as well. Net-SNMP searches for MIBs in
two locations: .snmp/mibs in the user's home directory and
/usr/share/snmp/mibs; which one you use is your decision. If you want something
for the current user only, or don't have access to the /usr directory, you can use
.snmp/mibs; otherwise, use /usr/share/snmp/mibs. Whichever you choose, that's
not enough—you also have to instruct tools to include this MIB.

While Zabbix server uses the same directory to look for MIBs,
specifying MIBs to be used is only required for the Net-SNMP
tools—Zabbix server loads all MIBs found.

Monitoring SNMP Devices Chapter 4

[152]

The first method is to pass MIB names directly to the called command. But hey, we
don't know the MIB name yet. To find out what a particular name in some file is,
open the file in a text editor and look for MIB DEFINITIONS ::= BEGIN near the
beginning of the file. The string before this text will be the MIB name we are looking
for. Here's an example:

PowerNet-MIB DEFINITIONS ::= BEGIN

So, APC has chosen to name its MIB PowerNet-MIB. Armed with this knowledge, we
can instruct any command to include this file:

$ snmpget -m +PowerNet-MIB -v 1 -c public <IP address> SNMPv2-
SMI::enterprises.318.1.1.1.1.2.3.0
PowerNet-MIB::upsAdvIdentSerialNumber.0 = STRING: "QS0547120198"

Excellent; snmpget included the correct MIB and obtained the full textual string,
which confirms our suspicion that this might be a serial number. You can now use the
same flag for snmpwalk and obtain a file with much better value names. Quite often,
you will be able to search such a file for interesting strings such as serial number
and find the correct OID.

The + sign instructs us to include the specified MIBs in addition to
otherwise configured ones. If you omit +, the MIB list will be
replaced with the one you specified.

Feel free to look at the MIB files in the /usr/share/snmp/mibs directory. As you
can see, most files here have their filename the same as their MIB name without the
extension, which is not required. Actually, the filename has nothing to do with the
MIB name; hence, sometimes, you might have to resort to tools such as grep to find
out which file contains which MIB.

While passing individual MIB names on the command line is nice for a quick one-
time query, it gets very tedious once you have to perform these actions more often
and the MIB list grows. There's another method, somewhat more durable—the MIB's
environment variable. In this case, the variable could be set like this:

$ export MIBS=+PowerNet-MIB

In the current shell, individual commands do not need the MIB names passed to them
anymore. All of the MIBs specified in the variable will be included upon every
invocation.

Monitoring SNMP Devices Chapter 4

[153]

Of course, that's also not that permanent. While you can specify this variable in
profile scripts, it can get tedious to manage for all the users on a machine. This is
where a third method comes in: configuration files.

Again, you can use per-user configuration files, located in .snmp/snmp.conf in their
home directories, or you can use the global /etc/snmp/snmp.conf file.

The location of the global configuration file and MIB directory can be different if you
have compiled Net-SNMP from source. They might reside in /usr/local.

The syntax to add MIBs is similar to the one used in the environment variable—you
only have to prefix each line with mibs, like so:

mibs +PowerNet-MIB

If you want to specify multiple MIB names in any of these locations, you have to
separate them with a colon. Let's say you also need a generic UPS MIB; in that case,
the MIB name string would be as follows:

+PowerNet-MIB:UPS-MIB

In some Net-SNMP versions, lines in configuration files might be
silently cut at 1,024 characters, including newline characters. You
can specify multiple mibs lines to get around this limitation.

And if you feel lazy, you can make Net-SNMP include all of the MIB files located in
those directories by setting mibs to ALL—this works in all three locations. Beware
that this might impact performance and lead to some problems if some parts are
declared in multiple locations, including warnings from Net-SNMP tools and
incorrect definitions being used.

Zabbix server always loads all available MIBs. When a new MIB is
added, the Zabbix server must be restarted to pick it up.

Monitoring SNMP Devices Chapter 4

[154]

Polling SNMP items in Zabbix
Armed with this knowledge about SNMP OIDs, let's get to the real deal—getting
SNMP data into Zabbix. To make the following steps easier, you should choose an
entry that returns string data. We could use a UPS serial number, such as the one
discovered previously to be PowerNet-MIB::upsAdvIdentSerialNumber.0. Do
the same for some network printer or manageable switch; if you don't have access to
such a device, you can choose a simple entry from the Net-SNMP enabled host, such
as the already mentioned system description, SNMPv2-MIB::sysDescr.0.

Now is the time to return to the Zabbix interface:

Go to Configuration | Hosts, and click on Create host. Then, fill in the1.
following values:

Host name: Enter SNMP device.
Groups: In the Groups list-box, if there's a group, select it
and click on the button.
New group: Enter SNMP devices.
SNMP interfaces: Click on Add.
DNS name or IP address: Enter the correct DNS name or IP
address next to the SNMP interfaces we just added. If you
have chosen to use an SNMP-enabled device, input its IP or
DNS here. If you don't have access to such a device, use the
Another host IP address or DNS name. If your SNMP device
supports the retrieval of items in bulk then also mark bulk
requests as, performance-wise, it's better to retrieve items in
bulk than item by item:

Connect to: Choose DNS or IP, according to the field you
populated.

Monitoring SNMP Devices Chapter 4

[155]

If no agent items will be created for this host, the agent interface will
be ignored. You may keep it or remove it.

When you are done, click on the Add button at the bottom. It's likely that2.
you won't see the newly created host in the host list. The reason is the
Group drop-down menu in the upper-right corner, which probably says
Linux servers. You can change the selection to All to see all configured
hosts or to SNMP devices to only see our new device. Now is the time to
create an item, so click on Items next to SNMP devices and click on the
Create item button. Fill in the following values:

Name: Enter something sensible, such as Serial number, if
you are using an OID from an SNMP agent, or System
description if you are using the Net-SNMP daemon.
Type: Change to the appropriate version of your SNMP
agent. In the displayed example, SNMPv1 agent is chosen
because that's the only version our device supports.
Key: This is not restricted or too important for SNMP items,
but required for references from triggers and other locations.
You can choose to enter the last part of the textual OID, such
as upsAdvIdentSerialNumber.0 or sysDescr.0.
SNMP OID: This is where our knowledge comes in. Paste
the SNMP OID you have found and chosen here. In the
example, PowerNet-MIB::upsAdvIdentSerialNumber.0
is entered. If you are using the Net-SNMP daemon, enter
SNMPv2-MIB::sysDescr.0.
SNMP community: Unless you have changed it, keep the
default public value.
Type of information: Select Character.
Update interval: This information doesn't really change that
often, so use some large value, such as 86400.

If you left the agent interface in place, notice how it cannot be
chosen for this item—only the SNMP interface can. While some item
types can be assigned to any interface type, SNMP items must be
assigned to SNMP interfaces.

When you are done, click on the Add button at the bottom.3.

Monitoring SNMP Devices Chapter 4

[156]

Now, the outcome will depend on several factors. If you are lucky, you will already
see the incoming data in Monitoring | Latest data. If you have chosen some vendor-
specific OID, like in our example, it is possible that you will have to go back to
Configuration | Hosts, click on Items next to SNMP device, and observe the status
of this item:

Now, what's that? How could it be? We saw in our tests with Net-SNMP command-line
tools that there actually is such an OID. Well, one possible situation when this error
message appears is when the specified MIB is not available, which could happen if
you tried SNMP queries previously from a different host.

Zabbix server works as if ALL is set for MIB contents; hence, you don't have to do
anything besides copy the MIB to the correct directory (usually
/usr/share/snmp/mibs) on the Zabbix server and restart the server daemon. If you
did not copy the OID, deciding instead to retype it, you might have made a mistake.
Verify that the entered OID is correct.

Even though Zabbix has done a great job to improve the readability
of the error messages in the frontend, it might be misleading in
some cases as it does not show the full log information. Check the
server log to be sure.

After fixing any problems, wait until the Zabbix server refreshes the item
configuration and rechecks the item. With the item configured, let's see what data we
can get in Zabbix from it. Navigate to Monitoring | Latest data, expand the filter,
clear the Host groups field, and start typing SNMP in the Host field—SNMP device
should appear, so choose it and click on Filter. Expand the other category if needed,
and look for the serial number. You should see something like this:

Monitoring SNMP Devices Chapter 4

[157]

The serial number has been successfully retrieved and is visible in the item listing.
This allows us to automatically retrieve data that, while not directly tied to actual
availability or performance monitoring, is still quite useful. For example, if a remote
device dies and has to be replaced, you can easily find the serial number to supply in
a servicing request, even if you neglected to write it down beforehand.

Translating SNMP OIDs
If you can't or don't want to copy vendor-specific MIB files to the Zabbix server, you
can always use numeric OIDs, like we did before. While not being as descriptive, they
are guaranteed to work even if the copied MIBs are not available for some reason or
are removed during a system upgrade.

But how do we derive the corresponding numeric OID from a textual one? While we could
use snmpget to retrieve the particular value and output it in numeric form, that
requires the availability of the device and network round trip. Fortunately, there's an
easier way—the snmptranslate command. To find out the numeric form of the OID,
we can use PowerNet-MIB::upsAdvIdentSerialNumber.0:

$ snmptranslate -On PowerNet-MIB::upsAdvIdentSerialNumber.0
.1.3.6.1.4.1.318.1.1.1.1.2.3.0

You must have MIBs placed correctly and pass their names to Net-
SNMP tools for the translation to work.

The default output format for Net-SNMP tools is the short textual one, which only
outputs the MIB name and object name. If you would like to find out the
corresponding textual name, use the following:

$ snmptranslate .1.3.6.1.2.1.1.1.0
SNMPv2-MIB::sysDescr.0

You can also use the -Of flag to output an OID in full notation:

$ snmptranslate -Of PowerNet-MIB::upsAdvIdentSerialNumber.0
.iso.org.dod.internet.private.enterprises.apc.products.hardware.ups.up
sIdent.upsAdvIdent.upsAdvIdentSerialNumber.0

Monitoring SNMP Devices Chapter 4

[158]

Dynamic indexes
Previously, we monitored incoming traffic on the eth0 device using an active Zabbix
agent daemon item. If we have snmpd set up and running, we can also try retrieving
outgoing traffic but, this time, let's try to use SNMP for that.

Monitoring network traffic using the Zabbix agent daemon is usually easier, but
SNMP monitoring is the only way to obtain this information for many network
devices, such as switches and routers. If you have such a device available, you can try
monitoring it instead, though the network interface name will most likely differ.

One way to find the item we are interested in would be to redirect the output of
snmpwalk to a file and then examine that file. Looking at the output, there are lines
such as these:

IF-MIB::ifDescr.1 = STRING: lo
IF-MIB::ifDescr.2 = STRING: eth0

Great, so the desired interface, eth0 in this case, has an index of 2. Nearby, we can
find actual information we are interested in-traffic values:

IF-MIB::ifOutOctets.1 = Counter32: 1825596052
IF-MIB::ifOutOctets.2 = Counter32: 1533857263

So, theoretically, we could add an item with the IF-MIB::ifOutOctets.2 OID and
name it appropriately. Unfortunately, there are devices that change interface index
now and then. Also, the index for a particular interface is likely to differ between
devices, hence potentially creating a configuration nightmare. This is where dynamic
index support in Zabbix comes into use.

Let's look at what a dynamic index item OID would look like in this case:

Database OID Literal string "index" Index-based OID Index string
IF-MIB::ifOutOctets["index", "ifDescr", "eth0"]

Let's have a quick overview what this all means to us:

Database OID: This is the base part of the OID that holds the data we are
interested in, that is, without the actual index. In this case, it's the OID
leading to ifOutOctets, in any notation.
Literal string "index": This is the same for all dynamic index items.

Monitoring SNMP Devices Chapter 4

[159]

Index-based OID: This is the base part of the OID that holds the index we
are interested in. In this case, it's the OID leading to ifDescr, in any
notation.
Index string: This is the string that the index part of the tree is searched for.
This is an exact, case-sensitive match of all OIDs from the previous base
OID. Here, the name of the interface we are interested in, eth0, will be
searched for. No substring or other matching is allowed here.

The index that this search will return will be added to the database OID, and the
following queries will gather values from the resulting OID.

You can easily view the index to determine the correct string to search for with Net-
SNMP tools:

$ snmpwalk -v 2c -c public localhost
.iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifDescr
IF-MIB::ifDescr.1 = STRING: lo
IF-MIB::ifDescr.2 = STRING: eth0
IF-MIB::ifDescr.3 = STRING: sit0

As can be seen, this machine has three interfaces—loopback, Ethernet, and a tunnel.
The picture will be very different for some other devices. For example, an HP
ProCurve Switch would return (with the output shortened) the following:

$ snmpwalk -v 2c -c public 10.196.2.233
.iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifDescr
IF-MIB::ifDescr.1 = STRING: 1
IF-MIB::ifDescr.2 = STRING: 2
...
IF-MIB::ifDescr.49 = STRING: 49
IF-MIB::ifDescr.50 = STRING: 50
IF-MIB::ifDescr.63 = STRING: DEFAULT_VLAN
IF-MIB::ifDescr.4158 = STRING: HP ProCurve Switch software loopback
interface

Now that we know the OID to use for dynamic index items, let's create one such item
in Zabbix:

Navigate to Configuration | Hosts, click on Items next to the correct host1.
you want to create the item for, and click on Create item. Fill in the
following values:

Name: Outgoing traffic on interface $1
Type: SNMPv2 agent
Key: ifOutOctets[eth0]

Monitoring SNMP Devices Chapter 4

[160]

SNMP OID: IF-
MIB::ifOutOctets["index","ifDescr","eth0"]

Units: Bps
Store value: Delta (speed per second)

Same as before, replace eth0 with an interface name that exists on the target
system.

When you are done, click on the Add button at the bottom.2.

Make sure that the compound OID is entered correctly, paying close
attention to quotes and spelling. We discussed the reason to use the
Numeric (unsigned) type of information in Chapter 3, Monitoring
with Zabbix Agents and Basic Protocols.

The newly added item should start gathering data, so let's look at Monitoring |
Latest data. If you don't see this item or the data for it, navigate back to
Configuration | Hosts and click on Items next to the corresponding host—there
should be an error message displayed that should help with fixing the issue. If you
have correctly added the item, you'll see the traffic data, as follows:

Remember that if the index matches the exact string, a substring
match will not work here.

Dynamic index items are quite common. Many network devices have fixed port
names but varying indexes. Host-based SNMP agents place things such as disk usage
and memory statistics in dynamic indexes; thus, if you have such devices to monitor,
Zabbix support for them will be handy.

Using dynamic index items can slightly increase overall load, as two SNMP values
are required to obtain the final data. Zabbix caches retrieved index information, so the
load increase should not be noticeable.

A dynamic SNMP index enables us to easily monitor a specific interface or other
entity by name, but it would not be a very efficient method for monitoring a larger
number of interfaces. We will discuss an automated solution, low-level discovery, in
Chapter 10, Advanced Item Monitoring.

Monitoring SNMP Devices Chapter 4

[161]

SNMP bulk requests
You might have spotted the checkbox next to the SNMP interfaces section, Use bulk
requests:

When requesting values from SNMP hosts, Zabbix may request one value at a time or
multiple values in one go. Getting multiple values in one go is more efficient, so this
is what Zabbix will try to do by default—it will ask for more and more values in one
connection against a device until all SNMP items can be queried in one go or the
device fails to respond. This approach enables us to find the number of values that a
device is configured to return, or is technically capable of returning, in one go. No
more than 128 values will be requested in one attempt, however.

Only items with identical parameters on the same interface will be queried at the
same time—for example, if the community or the port is different, Zabbix will not try
to get such values in one attempt.

There are quite a lot of devices that do not work properly when multiple values are
requested; hence, it is possible to disable this functionality per interface.

Receiving SNMP traps
While querying SNMP-capable devices is a nice method that requires little or no
configuration of each device in itself, in some situations, information flow in the
reverse direction is desired. For SNMP, these are called traps. Usually, traps are sent
upon some condition change, and the agent connects to the server or management
station on port 162 (as opposed to port 161 on the agent side, which is used for
queries). You can think of SNMP traps as being similar to Zabbix active items; as with
those, all connections are made from monitored machines to the monitoring server.

Monitoring SNMP Devices Chapter 4

[162]

The direction of the connections isn't the only difference, SNMP traps have some
other pros and cons when compared to queries. For example, SNMP traps are usually
more capable of detecting short-lived problems that might have been missed by
queries. Let's say you are monitoring incoming voltages on a UPS. You have decided
on a reasonable item interval that would give you useful data and wouldn't overload
the network and Zabbix server—let's say some 120 seconds, or two minutes. If the
input voltage suddenly peaks or drops for a minute, your checks might easily miss
this event, hence making it impossible to correlate it with problems with other
devices that are not connected to the UPS. Another benefit that traps provide is
reduced network and Zabbix server load as the information is only sent when an
event occurs and there is no constant querying by the server. One drawback is partial
decentralization of the configuration. SNMP trap-sending conditions and parameters
have to be set for each device or device group individually. Another drawback is a
lack of the guaranteed sending of the traps. Almost all SNMP implementations will
use UDP, and trap information might get lost without any trace.

As such, SNMP traps aren't used to replace SNMP queries. Instead, they supplement
them by leaving statistical information-gathering to the queries and providing
notifications of various events happening in the devices, usually notifying us of
emergencies.

In Zabbix, SNMP traps are received by snmptrapd, a daemon again from the Net-
SNMP suite. These traps then have to be passed to the Zabbix daemon with some
method. There are several ways of doing it, and we will explore two different
approaches:

Using the built-in ability of Zabbix to receive traps from the Net-SNMP
trap daemon
Using a custom script to push SNMP values to Zabbix

The first method, especially when using the embedded Perl code approach, is the
most simple one and will offer the best performance. A custom script will provide the
most flexibility but will also require more effort.

Using embedded Perl code
Using embedded Perl code in snmptrapd is the easiest method to set up. Unless you
need extra functionality, it is suggested to stick with this method.

Monitoring SNMP Devices Chapter 4

[163]

We'll start by configuring snmptrapd to pass information to Zabbix. There is an
example script in the Zabbix sources called
misc/snmptrap/zabbix_trap_receiver.pl. Place this file in some reasonable
location—perhaps a bin subdirectory in the Zabbix home directory. If the directory
does not exist, create it, as follows:

mkdir -p /home/zabbix/bin; chown zabbix /home/zabbix

If using distribution packages, you might have to use a different
username. Check your distribution packages for details.

Place the zabbix_trap_receiver.pl file in this directory:

cp misc/snmptrap/zabbix_trap_receiver.pl /home/zabbix/bin

On some distributions, Net-SNMP Perl support could be split out
into a separate package, such as net-snmp-perl.

Now, on to instructing snmptrapd to use that script. We only need to tell the trap
daemon to process all of the received traps with this script. To do this, you'll have to
find the location where your distribution places the Net-SNMP configuration
files—usually, /etc/snmp/. In this directory, look for a file named snmptrapd.conf.
If it's there, edit it (create a backup copy before you do anything); if it's missing, create
it. Edit it as root and make it look as follows:

authCommunity execute public
perl do "/home/zabbix/bin/zabbix_trap_receiver.pl";

This will accept all traps that have the community set to public and pass them to the
Perl receiver script.

If you expect to receive traps with various community strings that
are not known in advance, you could disable the authorization or
checking of the community string with the
disableAuthorization yes option in snmptrapd.conf.

Start or restart the trap daemon. It might be worth taking a quick look at the
zabbix_trap_receiver.pl file. Notice the line that specifies the path:

$SNMPTrapperFile = '/tmp/zabbix_traps.tmp';

Monitoring SNMP Devices Chapter 4

[164]

Behind the scenes, traps are passed to the Zabbix server through a temporary file.
We'll discuss this in a bit more detail later in this chapter.

Filtering values by received data
Now, let's move on to the items on the Zabbix side. To test the most simple thing first,
we will try to send values from the Zabbix server. Navigate to Configuration | Hosts,
click on A test host in the Name column, and click on Add in the SNMP interfaces
section. Click on the Update button at the bottom, and then click on Items next to A
test host. Click on Create item and enter these values:

Name: SNMP trap tests
Type: SNMP trap
Key: snmptrap[test]
Type of information: Character

When you're done, it should look like this:

This item will collect all traps that this host gets, if the traps contain the test string.
We have the trap daemon configured to place traps in a file, and we have the item to
place these traps in. What's left is telling the Zabbix server where to get the traps.
Open zabbix_server.conf and modify the StartSNMPTrapper parameter:

StartSNMPTrapper=1

There is a special process in Zabbix that reads traps from a temporary file. This
process is not started by default, so we changed that part of the configuration. Take a
look at the parameter just preceding this one:

SNMPTrapperFile=/tmp/zabbix_traps.tmp

Monitoring SNMP Devices Chapter 4

[165]

Notice how it matches the file in the Perl script. A change in the script should be
matched by a change in this configuration file and vice versa. At this time, we will not
change the location of this temporary file.

After these changes have been made, restart the Zabbix server daemon. Now, we are
ready to test this item. Let's send a trap by executing the following from the Zabbix
server:

$ snmptrap -Ci -v 2c -c public localhost "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s "test"

This slightly non-optimal Net-SNMP syntax will attempt to send an SNMP trap to
localhost using the public community and some nonsense OID. It will also wait
for a response to verify that snmptrapd has received the trap successfully—this is
achieved by the -Ci flag. It uses the default port, 162, so make sure the port is open
in your firewall configuration on the Zabbix server to receive traps.

Waiting for confirmation also makes snmptrap retransmit the trap.
If the receiving host is slow to respond, the trap might be received
multiple times before the sender receives confirmation.

If the command is successful, it will finish without any output. If it fails with the
snmpinform: Timeout error message, then several things could have gone wrong.
As well as double-checking that UDP port 162 is open for incoming data, verify that
the community in the /etc/snmp/snmptrapd.conf file matches the one used in the
snmptrap command and that the snmptrapd daemon is actually running.

If everything goes well, we should be able to see this item with a value on the latest
data page:

Now, let's send a different trap. Still on the Zabbix server, run this:

$ snmptrap -Ci -v 2c -c public localhost "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s "some
other trap"

Monitoring SNMP Devices Chapter 4

[166]

This trap will not appear in the item we created. What happened to it? As the value that
we sent did not contain the test string, this value did not match the one in the item.
By default, such traps are logged in the server log file. If we check the log file, it
should have something similar to the following:

9872:20160318:232004.319 unmatched trap received from "127.0.0.1":
23:20:02 2016/03/18 PDU INFO:
 requestid 253195749
 messageid 0
 transactionid 5
 version 1
 notificationtype INFORM
 community public
 receivedfrom UDP: [127.0.0.1]:54031→[127.0.0.1]:162
 errorindex 0
 errorstatus 0
VARBINDS:
 DISMAN-EVENT-MIB::sysUpTimeInstance type=67 value=Timeticks:
(2725311) 7:34:13.11
 SNMPv2-MIB::snmpTrapOID.0 type=6 value=OID: NET-SNMP-
MIB::netSnmpExperimental
 NET-SNMP-MIB::netSnmpExperimental type=4 value=STRING: "some other
trap"

This is not so easy to trigger on, or even see in, the frontend at all. We will improve
the situation and tell Zabbix to handle such unmatched traps for this host by placing
them in a special item:

Navigate to Configuration | Hosts, click on Items next to A test host, click1.
on Create item, and then fill in these values:

 Name: SNMP trap fallback
 Type: SNMP trap
 Key: snmptrap.fallback
 Type of information: Character

When you're done, click on the Add button at the bottom2.

The key we used here, snmptrap.fallback, is a special one. Any trap that does not
match any of the snmptrap[] items will be placed here. Retry sending our
previously unmatched trap:

$ snmptrap -Ci -v 2c -c public localhost "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s "some
other trap"

Monitoring SNMP Devices Chapter 4

[167]

Let's check the latest data page again:

The fallback item got the value this time. To see what the value looks like, let's click
on the History link next to one of these items:

It contains quite a lot of information, but it also looks a bit strange, almost as if the
value was cut. It turns out that, with this method, the trap information that is
recorded in the database is quite verbose and the character information type does not
offer enough space for it—this type is limited to 255 characters. We cannot even see
the string we sent in the trap that matched or failed to match the filter. Let's try to fix
this with the mass update functionality again:

Go to Configuration | Hosts1.
Click on Items next to A test host2.
Mark the checkboxes next to both SNMP trap items and click on the Mass3.
update button
In the resulting form, mark the checkbox next to Type of information and4.
choose Text
Click on the Update button5.

This should have fixed it, but we don't know that for sure yet. Let's verify—send both
of these traps again:

$ snmptrap -Ci -v 2c -c public localhost "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s "test"
$ snmptrap -Ci -v 2c -c public localhost "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s "some
other trap"

Monitoring SNMP Devices Chapter 4

[168]

If we look at the history of one of these items now, we will see that this change has
indeed helped, and much more information is displayed—including the custom
string we used for distributing these values across items:

If the value is still cut, you might have to wait a bit more for the
configuration cache to be updated and resend the trap.

The first item we created, with the snmptrap[test] key, can actually have a regular
expression as the item parameter. This allows us to perform more advanced filtering,
such as getting a link up and down traps in a single item. If a trap matches
expressions from multiple items, it would get copied to all of those items.

Filtering values by originating host
We figured out how to get values in specific items, but how did Zabbix know that it
should place these values in A test host? This happens because the address of the host
that the trap came from matches the address in the SNMP interface for these items. To
test this, let's copy the trap items to Another host:

Navigate to Configuration | Hosts and click on Items next to A test host1.
Mark the checkboxes next to both SNMP trap items and click on the Copy2.
button
Choose Hosts from the Target type drop-down menu and mark the3.
checkbox next to Another host

Monitoring SNMP Devices Chapter 4

[169]

Click on Copy4.

If you added an SNMP interface to Another host earlier, this
operation might succeed.

It looks like that failed, and Zabbix complains that it can not find an interface.
Another host did not have an SNMP interface; hence, these items can not be attached
to any interface at all:

Go to Configuration | Hosts and click on Another host1.
Add a new SNMP interface with the address that this host has and click on2.
Update
Try to copy the SNMP trap items from A test host to Another host the3.
same way as done previously, and it should succeed now

With the items in place, let's test them. Send two test traps from Another host, the
same way we sent them from the Zabbix server before:

$ snmptrap -Ci -v 2c -c public <Zabbix server> "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s "test"
$ snmptrap -Ci -v 2c -c public <Zabbix server> "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s "some
other trap"

Replace <Zabbix server> with the IP or DNS name of the Zabbix server. These
commands should complete without any error messages.

The traps should be placed properly in the items on Another host.

Debugging
If traps do not arrive at all or do not fall into the correct items, there are a few things
to check. If the traps do not appear when sent from a remote host, but work properly
when sent from the Zabbix server, check the local firewall on the Zabbix server and
make sure incoming UDP packets on port 162 are allowed.

Monitoring SNMP Devices Chapter 4

[170]

Also make sure that the IP address the Zabbix server sees in the incoming traps
matches the address in the SNMP interface for that host.

Sometimes, you might see that traps arrive at the SNMP trap daemon but do not
seem to be passed on. It might be useful to debug snmptrapd in this case—luckily, it
allows a quite detailed debug output. Exact values to use for various file locations
will differ, but the following might work to manually start the daemon while
enabling all debug output:

/usr/sbin/snmptrapd -A -Lf /var/log/net-snmpd.log -p
/var/run/snmptrapd.pid -DALL

Here, -Lf specifies the file to log to and -DALL tells it to enable full debug.

If the received trap is in a numeric format and not very readable, you might have to
add specific MIBs to the /etc/snmp/snmp.conf file so that they are found by
snmptrapd.

What happens if Zabbix decides that a trap does not belong to any item on any host? This
could happen because there are no trap items at all, the fallback item is missing, or the
address in the incoming trap is not matched with any of the SNMP interfaces. By
default, the Zabbix server logs such traps in the log file. An example record from the
log file is as follows:

2271:20150120:124156.818 unmatched trap received from
[192.168.168.192]: 12:41:55 2015/01/20 PDU INFO:
 errorindex 0
 transactionid 1
 requestid 1752369294
 messageid 0
 receivedfrom UDP:
[192.168.168.192]:45375->[192.168.1.13]:162
 errorstatus 0
 version 1
 notificationtype INFORM
 community public
VARBINDS:
 DISMAN-EVENT-MIB::sysUpTimeInstance type=67 value=Timeticks:
(77578087) 8 days, 23:29:40.87
 SNMPv2-MIB::snmpTrapOID.0 type=6 value=OID: NET-SNMP-
MIB::netSnmpExperimental
 NET-SNMP-MIB::netSnmpExperimental type=4 value=STRING: "non-
matching trap"

Monitoring SNMP Devices Chapter 4

[171]

The logging of non-matching traps can be controlled. If we go to Administration |
General and choose Other from the drop-down menu in the upper-right corner; the
last checkbox there is Log unmatched SNMP traps. Unmarking it will stop logging
such traps:

And what if you would like to try out Zabbix's SNMP trap handling without setting up an
SNMP trap daemon, perhaps on some development server? That should be very easy as
you can simply append trap information to the temporary file. It's a plain-text file,
and Zabbix does not know who added content, the trap daemon, user, or somebody
else. Just make sure to add all of the data for a single trap in one go.

Handling the temporary file
The temporary file to pass traps from the trap daemon to Zabbix is placed in /tmp by
default. This is not the best practice for a production setup, so I suggest you change it
once you are satisfied with the initial testing.

Note that the temporary file can grow indefinitely—Zabbix only reads data from it,
and never rotates or removes the file. Rotation should be set up separately, probably
with the logrotate daemon.

Monitoring SNMP Devices Chapter 4

[172]

SNMP Trap Translator (SNMPTT)
Zabbix may also receive traps that are parsed by SNMPTT: http://www.snmptt.org/.
This method uses the same temporary file and internal process approach as the
embedded Perl trap receiver solution. SNMPTT can be useful for making received
data human-readable.

Remember that it changes passed data so, depending on how things are set up,
adding SNMPTT might require changes to item mapping, triggers, or other
configuration.

Using a custom script
The method covered earlier, the embedded Perl receiver, is easy to set up and
performs well. If it is not possible to use it for some reason or some advanced filtering
is required, a custom script could push trap values to items. This subsection will use
an example script shipped with Zabbix to demonstrate such a solution.

We'll place the example SNMP trap-parsing script in the Zabbix user's home directory:

cp misc/snmptrap/snmptrap.sh /home/zabbix/bin

Let's take a look at that script now. Open the file we just copied to
/home/zabbix/bin/snmptrap.sh. As you can see, this is a very simplistic script,
which gets passed trap information and then sends it to the Zabbix server, using both
host snmptrap and key snmptrap instances. If you are reading carefully enough,
you've probably already noticed one problem—we didn't install any software as
~zabbix/bin/zabbix_sender, so that's probably wrong.

First, let's find out where zabbix_sender is actually located:

$ whereis zabbix_sender
zabbix_sender: /usr/local/bin/zabbix_sender

On this system, it's /usr/local/bin/zabbix_sender. It might be a good idea to
look at its syntax by running this:

$ zabbix_sender --help

http://www.snmptt.org/

Monitoring SNMP Devices Chapter 4

[173]

This allows you to send a value to the Zabbix server, specifying the server with the -z
flag, port with -p, and so on. Now let's return to the script. With our new knowledge,
let's look at the last line—the one that invokes zabbix_sender. The script seems to
pass values retrieved from the SNMP trap as parameters to zabbix_sender; hence,
we can't make any decisions and information transformation between snmptrapd
and Zabbix. Now, let's fix the problem we noticed:

Change ZABBIX_SENDER to read /usr/local/bin/zabbix_sender (or
another path if that's different for you)
Additionally, change the last line to read $ZABBIX_SENDER -z
$ZABBIX_SERVER -p $ZABBIX_PORT -s "$HOST" -k "$KEY" -o

"$str"—this way, we are also quoting host and key names, just in case
they might include spaces or other characters that might break command
execution

Save the file. Let's prepare the Zabbix side now for trap receiving. On the frontend, do
the following:

Navigate to Configuration | Hosts and click on Create host. Fill in the1.
following values:

 Name: snmptraps
Groups: Click on SNMP devices in the Other groups box,
then click on the button; if there are any other groups in the
Groups listbox, remove them

Click on the Add button at the bottom.2.

Notice that the hostname used here, snmptraps, must be the same as the one we
configured in the snmptrap.sh script; otherwise, the traps won't be received in
Zabbix.

Now, click on Items next to the snmptraps host, and then click on Create item. Enter
these values:

Name: Received SNMP traps
Type: Zabbix trapper
Key: snmptraps
Type of information: Character

Monitoring SNMP Devices Chapter 4

[174]

We used the Character type of information here as our script is
expected to pass less information to the item. If large amounts of
information would have had to be passed, we would have set this
parameter to Text again.

When you are done, click on the Add button at the bottom. Again, notice how we
used the exact same key spelling as in the snmptrap.sh script.

We're done with configuring Zabbix for SNMP trap receiving, but how will the traps
get to the script we edited and, in turn, to Zabbix? The same as before, this is where
snmptrapd steps in.

Let's create a simplistic configuration that will pass all the received traps to our script.
To do this, we will edit snmptrapd.conf. If you created it earlier, edit it (you may
comment out the lines we added previously); if it's missing, create the file. Edit it as
root and make it look as follows:

authCommunity execute public
#perl do "/home/zabbix/bin/zabbix_trap_receiver.pl";
traphandle default /bin/bash /home/zabbix/bin/snmptrap.sh

We commented out the Perl receiver line and added a line to call our new script. The
default keyword will make sure that all received traps go to this script (that is, unless
we have other traphandle statements with OIDs specified, in which case only those
received traps will get to this script that don't match any other traphandle
statement). Save this file, and then start or restart the snmptrapd daemon as
appropriate for your distribution.

Now, we should be able to receive SNMP traps through all the chain links. Let's test
that by sending a trap same the way as before from the Zabbix server:

$ snmptrap -Ci -v 2c -c public localhost "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s "test"

Once the command completes successfully, check the frontend for the results. Go to
Monitoring | Latest data and select SNMP devices in the filter:

Monitoring SNMP Devices Chapter 4

[175]

Great, data from our test trap has been received here. It's trimmed in the table view,
though, so click on History to view all of it:

Excellent, we can see our trap in its entirety. Notice how with this custom script we
decided to parse out only the specific string, instead of pushing all the details about
the trap to Zabbix. Let's check what it looks like with several traps received one after
another. From the console again, execute the following:

$ snmptrap -Ci -v 2c -c public localhost "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s "another
test"

Refresh the History screen we had open in the browser and check whether the result
is satisfactory:

Our latest trap is nicely listed, with entries being ordered in descending order.

If the trap did not arrive, refer to the Debugging section earlier in this
chapter.

But wait, everything after the first space is missing from the informative text. That's
not desirable, so let's try to fix this problem. As root, open the
/home/zabbix/bin/snmptrap.sh file and look for the line that strips out addresses
from received information:

oid=`echo $oid|cut -f2 -d' '`
address=`echo $address|cut -f2 -d' '`
community=`echo $community|cut -f2 -d' '`
enterprise=`echo $enterprise|cut -f2 -d' '`

Monitoring SNMP Devices Chapter 4

[176]

As seen here, when using a space as the separator, only the second field is grabbed.
We want the full details captured instead as, otherwise, a very important failure
would simply show up as A for us. Let's add a dash to the field parameter so that all
trailing fields are captured as well:

address=`echo $address|cut -f2- -d' '`

This should solve the problem, so let's test it again:

$ snmptrap -Ci -v 2c -c public localhost "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s "A Very
Important Failure"

Return to the frontend and refresh the history listing:

Finally! The data from our important traps will no longer be lost.

Filtering the traps
While that is great for receiving all traps in a single location, it also makes traps
harder to correlate to particular hosts, and especially hard to observe if you have lots
and lots of trap-sending hosts. In such a case, it becomes very desirable to split
incoming traps in some sort of logical structure, similar to the way we did with the
Perl receiver solution earlier. At the very least, a split based on existing hosts can be
performed. In this case, all received traps would be placed in a single item for that
host. If there are particular traps or trap groups that are received very often or are
very important, these can be further split into individual items.

For example, if a network switch is sending various traps, including link up and
down ones, we'll probably want to place these in a single item so they do not obscure
other traps that much. If the switch has many workstations connected that are
constantly switched on and off, we might even want to drop these traps before they
reach Zabbix. On the other hand, if this switch has very important connections that
should never go down, we might even go as far as creating an individual item for
notifications coming from each port.

Monitoring SNMP Devices Chapter 4

[177]

All the methods work by either replacing, improving, or hooking into the handler
script, snmptraps.sh.

Custom mapping
One way to approach trap distribution is to create custom mappings that choose an
appropriate destination for the trap depending on any parameters, including source
host, OID, and trap details. Such mapping, while being relatively cumbersome to set
up, is also the most flexible, as you can perform all kinds of specific case handling. It
also requires double configuration—most changes have to be made both to the Zabbix
configuration and to these mappings.

Custom mapping can use file-based lookup, a separate database, or any other kind of
information storage.

Database lookups
Another method is to tap into existing knowledge, through the Zabbix database. As
the database already holds information on host/IP address relationships, we can
simply look up the corresponding hostname. Let's modify snmptraps.sh so that all
traps coming from hosts defined in Zabbix end up in an snmptraps item for that
specific host, but other traps are collected in the generic snmptraps host instead.

Start by modifying /home/zabbix/bin/snmptraps.sh and adding two lines:

oid=`echo $oid|cut -f11 -d'.'`
community=`echo $community|cut -f2 -d'"'`
zabbixhost=$(HOME=/root mysql -N -e "select host from zabbix.hosts
left join zabbix.interface on
zabbix.hosts.hostid=zabbix.interface.hostid where ip='$hostname' order
by 'hostid' limit 1;" 2>/dev/null)
[[$zabbixhost]] && HOST=$zabbixhost
str="$hostname $address $community $enterprise $oid"
$ZABBIX_SENDER $ZABBIX_SERVER $ZABBIX_PORT -s "$HOST" -k "$KEY" -o
"$str"

Monitoring SNMP Devices Chapter 4

[178]

So what do these do?:

The first line queries the MySQL database and checks whether a host is
defined with the same IP as the trap source. If it is, the Zabbix host variable
gets the hostname, as defined in Zabbix, assigned. Returned results are
sorted by host ID and only the first match is taken. Hence, if there are
multiple hosts with the same IP address (which is perfectly fine in Zabbix),
only the oldest entry is selected. Any error output is discarded (redirected
to /dev/null), so in case of a database misconfiguration, traps are not lost
but end up in the generic trap-handling host.
The second line simply sets the host used for sending data to Zabbix to the
entry returned from the database, if it exists.
But what's that HOME variable in the first line? The mysql command used
there does not specify user, password, or any other connection information,
so for the command to succeed, it would have to get this information from
somewhere. For MySQL, this information can be placed in the .my.cnf file
located in the user's HOME directory. Given that snmptrapd runs as root,
but services often do not get all the environment variables normal logins
do, we are directing further commands to look in /root for that file.

This means we're not done yet; we have to create the /root/.my.cnf file and fill it
with the required information. As root, create /root/.my.cnf and place the
following content in it:

[client]
user=zabbix
password=mycreativepassword

For the password, use the same one you used for the Zabbix server and frontend (if
you don't remember this password, you can look it up in zabbix_server.conf).

Now, we should prepare for trap receiving on the Zabbix side.

Open Configuration | Hosts, click on Items next to Another host, and then click on
the Create item button. Enter these values:

Name: snmptraps
Type: Zabbix trapper
Key: snmptraps
Type of information: Character

Monitoring SNMP Devices Chapter 4

[179]

When you are done, click on the Add button at the bottom.

Before we send a test trap, let's do one more thing: make sure that snmptrapd does
not perform reverse lookups on received traps. While that might slightly decrease the
prettiness of the data, we want to keep this script simple for now and this will also
improve performance a bit. To do this, add the -n flag for snmptrapd to the startup
scripts and restart it. This procedure is distribution specific.

Finally, we are ready to test our tricky setup. From Another host, execute this:

$ snmptrap -Ci -v 2c -c public <Zabbix server> "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s "test"

Replace <Zabbix server> with the IP or DNS name of the Zabbix server. This
command should complete without any error messages.

This won't work with A test host—the oldest host with the IP
address of 127.0.0.1 would be the Zabbix server example host.

Back in the frontend, navigate to Monitoring | Latest data:

Great, snmptrap instances are now successfully sorted by host, if present.

If this trap was not sorted properly and still went into the snmptraps host, it could be
caused by different output in some Net-SNMP versions. Instead of passing the IP
address or hostname of the incoming connection as the first value, they pass a string
like this:

UDP: [192.168.56.11]:56417->[192.168.56.10]:162

In that case, try adding another line before the zabbixhost assignment:

oid=`echo $oid|cut -f11 -d'.'`
community=`echo $community|cut -f2 -d'"'`
hostname=$(echo "$hostname" | awk -F'[][]' '{print $2}')

Monitoring SNMP Devices Chapter 4

[180]

It will extract the first string enclosed in square brackets from the hostname variable.
After making this change to the script, send the trap again.

That took us some time to set up, but now it's very simple. If we want traps from
some host to be handled by a specific host, we create that host and an snmptraps
item for it. All other traps go to the generic snmptraps host and snmptraps item.

But what about item lookup? The database holds information on item keys as well, so
perhaps we could try using that.

We need to retrieve the item key from any database field based on the information
received in the trap. As traps include SNMP OIDs, they are the best candidates to
map traps against items. Now, the OID can be in numeric or textual form. In the
Zabbix configuration, we have two fields that could be used:

Name: While pretty much a free-form field, it is a friendly name, so we'd
better keep it human-readable.
Key: This field has more strict rules on the characters it accepts, but OIDs
should be fine. While not used by humans much, this field is still referred
to in the trigger expressions.

That means we will use the Key field. To keep it both short enough and somewhat
human-readable, we'll set it to the last part of the received textual-form OID. As the
trap will be received by snmptraps.sh, it will try to match the received OID to the
item key and based on that decide where to send the data.

Remember that specific MIBs might have to be added to /etc/snmp/snmp.conf so
that they are found by snmptrapd.

Again, as root, edit the /home/zabbix/bin/snmptraps.sh script. Replace the two
lines we just added, so that it looks like this:

community=`echo $community|cut -f2 -d' '`
enterprise=`echo $enterprise|cut -f2 -d' '`
oid=`echo $oid|cut -f11 -d'.'`
community=`echo $community|cut -f2 -d'"'`
hostname=$(echo "$hostname" | awk -F'[][]' '{print $2}')
zabbixhostid=$(HOME=/root mysql -N -e "select hosts.hostid,host from
zabbix.hosts left join zabbix.interface on
zabbix.hosts.hostid=zabbix.interface.hostid where ip='$hostname' order
by 'hostid' limit 1;" 2>/dev/null)
zabbixhost=$(echo $zabbixhostid | cut -d" " -f2-)
[["$zabbixhost"]] && {
 zabbixid=$(echo $zabbixhostid | cut -d" " -f1)

Monitoring SNMP Devices Chapter 4

[181]

 trapoid=$(echo $oid | cut -d: -f3)
 if ["$trapoid"]; then
 zabbixitem=$(HOME=/root mysql -N -e "select key_ from
zabbix.items where key_='$trapoid' and hostid='$zabbixid';" 2>
/dev/null)
 if ["$zabbixitem"]; then
 HOST=$zabbixhost
 KEY=$zabbixitem
 fi
 fi
}
[[$KEY = snmptraps]] && {
 if ["$(HOME=/root mysql -N -e "select key_ from zabbix.items
where
key_='snmptraps' and hostid='$zabbixid';" 2> /dev/null)"]; then
 HOST=$zabbixhost
 fi
}
str="$hostname $address $community $enterprise $oid"

Save the file. In functional terms, as regards our current configuration, it will work
exactly the same as the previous version, with one minor improvement: if you look at
the previous version carefully, you'll see it only checks for host availability, so if you
created a host but forgot to create an item with the snmptraps key for it, the sent trap
would be lost. This version will check whether an item with such a key exists for that
host. If not, the generic host, snmptraps, will receive the trap.

Note that this is one benefit of the custom-script solution over the embedded Perl trap
receiver we configured earlier. It is easier to have triggers for traps landing in this
fallback host than checking for them in the Zabbix server log file.

Additionally, it will now check whether the host also has an item with a key,
matching the last part of the OID received. A simple decision flow representation is
shown in the following diagram:

Monitoring SNMP Devices Chapter 4

[182]

To test this, send an SNMP trap from Another host (there is no need to restart
snmptrapd):

$ snmptrap -Ci -v 2c -c public <Zabbix server> "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s "test"

Replace <Zabbix server> with the Zabbix server's IP or DNS name. If you now
check Monitoring | Latest data for Another host, the trap should be correctly placed
in the snmptraps item for this host. A trap sent from any other host, including the
Zabbix server, should be placed in the snmptraps host and snmptraps item—feel
free to try this out. Previously, a trap sent from the Zabbix server would be lost,
because the script did not check for the snmptraps item's existence—it would find
the host and then try to push the data to this nonexistent item.

Monitoring SNMP Devices Chapter 4

[183]

Let's try out our item mapping now:

Go to the Zabbix interface, Configuration | Hosts, click on Items next to1.
Another host, and click on the Create item button. Fill in the
following values:

Name: Experimental SNMP trap
Type: Zabbix trapper
Key: netSnmpExperimental
Type of information: Character

When you're done, click on the Add button at the bottom.2.

Again, send a trap from Another host:

$ snmptrap -Ci -v 2c -c public <Zabbix server> "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s "test"

In the frontend, look at Monitoring | Latest data. If all went right, this time the trap
data should have been placed in yet another item—the one we just created:

Now, whenever we have a host that will be sending us traps, we will have to decide
where we want its traps to go. Depending on that, we'll decide whether it needs its
own host with an snmptraps item, or perhaps even individual items for each trap
type.

Summary
Having explored basic monitoring with a Zabbix agent before, we looked at a major
agentless monitoring solution in this chapter—SNMP. Given the wide array of
devices supporting SNMP, this knowledge should help us with retrieving
information from devices such as printers, switches, UPSes, and others, while also
listening and managing incoming SNMP traps from those.

Monitoring SNMP Devices Chapter 4

[184]

Beware of starting to monitor a large number of network devices, especially if they
have many interfaces. For example, adding 10 switches with 48 ports, even if you
monitor a single item per switch once a minute only, will make Zabbix poll eight new
values per second (480 ports once a minute results in 480/60=8 new values per
second). Usually, more values per port are monitored, so such an increase can bring a
Zabbix server down and severely impact network performance even when SNMP
bulk get is used.

While we have created several hosts by now, we only paid attention to the host
properties that were immediately useful. In the next chapter, we will look some more
into what we can control on hosts, including host and host group maintenance. We'll
also discover how we can provide access for other users to what we have been
configuring so far, using user and permission management.

Questions
Is it possible to retrieve snmp items in groups instead of item by item?1.
What is the advantage of dynamic indexes?2.
What options do we have when configuring snmptraps in Zabbix?3.

Further reading
The following is a list of URLs with some more information about SNMP traps in
Zabbix that should help you to get started:

SNMP agent: https:/ /www. zabbix. com/ documentation/ 4.0/ manual/
config/ items/ itemtypes/ snmp? s[]=bulk s[]= requests#internal_
workings_ of_ bulk_ processing

Start with SNMP traps in Zabbix: http:/ /zabbix. org/ wiki/ Start_ with_
SNMP_ traps_ in_ Zabbix

https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/snmp?s%5B%5D=bulk&s%5B%5D=requests#internal_workings_of_bulk_processing
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix
http://zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix

5
Managing Hosts, Users, and

Permissions
We created some hosts and host groups earlier, thus exploring the way items can be
grouped and attached to hosts. Now is the time to take a closer look at these concepts
and see what benefits they provide. In this chapter, we will cover the following
topics:

Hosts and host groups
Host maintenance
Users, user groups, and permissions

Hosts and host groups
A host can be considered a basic grouping unit in Zabbix configuration. As you might
remember, hosts are used to group items, which in turn are basic data-acquiring
structures. Each host can have any number of items assigned, spanning all item
types—Zabbix agents, simple checks, Simple Network Management Protocol
(SNMP), Intelligent Platform Management Interface (IPMI), and so on. An item
can't exist on its own, so hosts are mandatory.

Managing Hosts, Users, and Permissions Chapter 5

[186]

Zabbix does not allow a host to be left alone, that is, to not belong to any group. Let's
look at what host groups we currently have defined—from the frontend, open
Configuration | Host groups, as shown in the following screenshot:

The first thing that should catch your eye is that the Templates group seems to have a
large number of templates already. These are provided as examples so that you can
quickly refer to them later for some hints on items. We'll ignore these for now. We can
also see an empty Discovered hosts group and the Zabbix servers group, which
contains a single example host. The interesting part is in the first half of the table—we
can see both groups we used along the way, with all the corresponding members.
This table is fairly simple, with just a group name, a count of the number of group
members (individually denoting hosts and templates contained in the group), and
individual members being listed.

Managing Hosts, Users, and Permissions Chapter 5

[187]

As you will see, individual members are color-coded, and use the following
convention:

Green: Normal, enabled host
Red: Normal, disabled host
Gray: Template

As you will see, some of the groups have / in their name, such as, for example,
Templates/Applications. This is the new way of allowing the creation of subgroups
in Zabbix. So, when you would like to create a host in a sub-group, it is possible to do
so by just adding a / in the name.

Let's create another host group and assign some hosts to it:

Click on the Create host group button.1.
Enter Linux servers/Test group. This will allow you to create a host group2.
nested in the Linux servers group with the name Test group. Let's also
create a Linux servers/SNMP group. As you can see, there is a box that
allows you to apply permissions and tags to all subgroups. This box can be
helpful if you would like sub-groups to inherit the permissions from the
host group.
Now, we will add our another host and our test host to the group Linux3.
servers/Test group and our snmptrap host to the group Linux
servers/SNMP group by going to Configuration | Hosts followed by <our
host>.

Managing Hosts, Users, and Permissions Chapter 5

[188]

In the Groups box, we can now type the name of our new group, or we can4.
select it with the Select button.
Next, we click Update. For the snmptrap host, we remove the Linux5.
servers group by clicking on the x just after the name of the group, so that it
only belongs to Linux servers/SNMP group:

You have probably guessed by now that a host can belong to any number of groups
or subgroups. This allows you to choose groupings based on any arbitrary decision,
such as having a single host in groups called Linux servers, Europe servers, and DB
servers.

Now, we are back in the host list, so return to the host group list by navigating to
Configuration | Host groups. The group Linux servers/Test group contains two
hosts, as it should, and Linux servers/SNMP group only contains our
host, snmptrap. Let's say you want to disable a whole group of hosts, or even several
host groups. Perhaps you have a group of hosts that are retired but that you don't
want to delete just yet, or maybe you want to disable hosts that were created for
testing when creating an actual production configuration on the Zabbix server. The
group listing provides an easy way to do that—mark the checkboxes next to Linux
servers/SNMP group, click on the Disable hosts button at the bottom of the list, and
confirm the popup.

Managing Hosts, Users, and Permissions Chapter 5

[189]

After this operation, all green hosts should be gone—they should be red now,
indicating that they are in a disabled state:

After doing this, you should remember that snmptrap is a generic SNMP trap-
receiving host, which probably should be left enabled. Click on it to open the host
details editing page.

While you have the host details page open, you can take a quick look at the Interface
section. As you can see, there are four different interface types available. For each of
them, a single IP and DNS field is available, along with connect to controls, which are
used for checks that are initiated from the server side. We've already used agent and
SNMP interfaces. We will also use IPMI and JMX interfaces when configuring
monitoring using those protocols.

Mark the Enabled checkbox and click on Update.

You should now see a host list with a status that shows in green, Enabled, per host.
By clicking on the Enabled status, we can disable/enable each host individually.

 Finally, we are back to having all the hosts enabled again. Zabbix has four methods
to change the state of a host. Let's have a look at them:

Changing the state for the whole group in the Configuration | Host groups
area
Changing the state for a single host using the Enabled checkbox in that
host's properties page
Changing the state for a single host using controls for each host in the
Status column in the host configuration list
Changing the state for a single host or multiple hosts by marking the
relevant checkboxes in the host configuration list and using the enable and
disable buttons at the bottom of the list

We created the previous host group by going through the group configuration screen.
As you might remember, another way to do this is to use the New group field when
creating or editing a host—this creates the group and simultaneously adds the host to
that group.

Managing Hosts, Users, and Permissions Chapter 5

[190]

The host list on the configuration screen is also useful in another way. It provides a
nice, quick way of seeing which hosts are down. While the monitoring section gives
us quite extensive information on the state of specific services and the conditions of
each device, sometimes you will want a quick peek at the device status, for example,
to determine the availability of all the devices in a particular group, such as printers,
routers, or switches. The configuration provides this information in a list that contains
almost no other information to distract you. If we were to now select all from the
Group drop-down, we would see all the hosts this installation has:

This time, we are interested in two columns—Status and Availability. The
Availability column shows the internal state, as determined by Zabbix, for each host
and polled item type. If Zabbix tries to get data from a host but fails, the availability
of that host for this specific type of information is determined to be absent. Both the
availability status and error message are preserved for the following four separate
types of items, which are polled by the Zabbix server:

Zabbix agent (passive)
SNMP
JMX
IPMI

Managing Hosts, Users, and Permissions Chapter 5

[191]

Error messages are preserved for each interface and are calculated by the Zabbix
server internally. Error messages are shown when you move your mouse over the red
icon. Here, we have an overview of all the different possible statuses in Zabbix:

Green—available
Red—not available (error shown when the mouse is moved over the red
icon)
Gray—unknown or not configured:

Remember that the availability icon in the host list represents
passive Zabbix agent items only—active items do not affect it at all.
If a host has active items only, this icon will remain gray. If you add
passive items that fail and then convert them all to active items, the
icon should revert to gray. This is an improvement in Zabbix that
has been around since version 3.0. In previous versions, the icon
would remain red throughout and you had to reset it in the database
manually.

The Zabbix server will set the icon to grey in the following situations:

There are no enabled items on the interface
The host is set to be monitored by a proxy, a different proxy, or by a server
(until Zabbix is updated and the host is checked again for availability, the
icon will remain grey)
The host is monitored by a proxy that is offline
When our host is disabled

Managing Hosts, Users, and Permissions Chapter 5

[192]

Availability information is aimed more at Zabbix administrators—it shows problems
related to gathering data from a host, not information such as resource usage, process
status, or performance metrics.

That just about wraps it up for host and host group management in Zabbix. The
usefulness of host groups extends a bit past frontend management, though we'll see
how exactly later in this chapter when we talk about permissions.

With older versions of Zabbix, it was possible to add hosts to the
host group when creating it. In Zabbix 4.0, this option has been
removed, as selection boxes were removed in 4.0. Let's hope that this
functionality comes back in another way.

Host inventory
We looked at managing hosts, but there's one area of host properties that warrants a
slightly longer section.

Editing inventory data manually
Let's have a look how we can use Zabbix to manage our inventory:

Go to Configuration | Hosts, and make sure Linux servers has been1.
selected in the Group drop-down. Then, click on A test host, and switch to
the Host inventory tab. By default, the inventory is set to Disabled, as
shown in the following screenshot:

Managing Hosts, Users, and Permissions Chapter 5

[193]

Click on Manual to enable the inventory fields. Notice how there are a lot2.
of fields, starting with simple things such as type, name, operating system,
and hardware, and ending with hardware maintenance dates, location
data, and point-of-contact information. In the Type field, enter test, and
then click on Update.
Now, click on Another host, switch to the Host inventory tab, and click on3.
Manual. Then, enter the same test string in the Type field again. Click on
Update. Now, let's mark the checkboxes next to both SNMP hosts and click
on Mass update at the bottom of the list. In the Mass update form, switch
to the Inventory tab and mark the checkbox next to Inventory mode.
Switch to Manual, mark the checkbox next to Type, and enter snmp in that
field:

Click on Update. With some inventory data populated, let's go to4.
Inventory | Overview. Choose all from the Group drop-down and Type
from the Grouping by drop-down. Notice how we can see all the available
values for this field and how many hosts we have for each of them:

Managing Hosts, Users, and Permissions Chapter 5

[194]

Click on the number 2 in the Host count column next to snmp. Here, we can5.
see individual hosts and some of the inventory fields, including the field
that we used, Type. This list was filtered to show only those hosts that have
the exact snmp string in the Type field. You can verify that by looking at
the filter:

Collapse the filter and click on SNMP Device in the Hosts column. This6.
will open the host overview page, displaying some basic configuration
information. Notably, host interfaces are displayed here. While users
without configuration permissions on hosts are not able to open host
properties in the configuration section, they may see this host overview
page and see the host interfaces this way:

Managing Hosts, Users, and Permissions Chapter 5

[195]

There are also two lines of links at the bottom of this form—Monitoring7.
and Configuration. As you might expect, they provide quick access to
various monitoring and configuration sections for this host, similar to the
global search we discussed in Chapter 2, Getting Your First Notification.
Clicking on hostname SNMP Device will provide access to global scripts.
We will explore and configure those in Chapter 7, Acting upon Monitored
Conditions.
Let's return to Configuration | Hosts and click on SNMP Device. Switch8.
to the Host inventory tab, and in the OS column, enter Linux
(http://www.kernel.org) and click on Update. Let's go directly to
Inventory | Hosts this time—notice how this was the page we ended up at
when we clicked on the host count from the inventory overview. Looking
at the OS column, we can see that Zabbix recognized the URL and made it
clickable:

At this time, the columns displayed on this page cannot be
customized.

This allows you to link to websites that provide more information or to web
management interfaces for various devices. Note that, other than recognizing URLs,
fields are not interpreted in any way; for example, Location latitude and Location
longitude fields are just text fields.

Managing Hosts, Users, and Permissions Chapter 5

[196]

Populating inventory data automatically
Manually populated inventory data is useful, but doing that on a large scale may not
be very feasible. Zabbix can also collect some inventory values automatically for us.
This is possible because any item can populate any inventory field. We will use one of
our existing items and create a new one to automatically populate two inventory
fields.

Let's start by adding the new item. Navigate to Configuration | Hosts, switch to
Linux servers from the Group drop-down, and click on Items for A test host. Then,
click on Create item. Fill in the following values:

Name: The full OS name
Key: system.uname
Type of information: Text
Update interval: 300
Host inventory field: Software application A

When you're done, click on Add at the bottom. We now have an item configured to
place data in the inventory field, but this alone won't do anything. We have our
inventory set to manual mode. From the navigation bar preceding the item list, click
on A test host and switch to the Host inventory tab. Then, choose Automatic. Notice
how something changed—our field Software application A here got disabled, and a
link appeared to the right of the field:

This is the field we chose during the item configuration earlier. The link shows which
item is supposed to populate this field and allows convenient access to the
configuration of the item. Note that the field we manually populated earlier, Type,
did not lose the value. Actually, the automatic mode can be said to be a hybrid one.
Fields that are configured to obtain their values automatically do so; other fields may
be populated manually. Click on Update.

Values from items are placed in the inventory whenever an item gets a new value. For
the full OS version item, we set the interval to a fairly low one: 300 seconds. The agent
item, on the other hand, has a large interval. This means that we might have to wait
for a long time before the value appears in that inventory field. To make it happen
sooner, restart the agent on A test host.

Managing Hosts, Users, and Permissions Chapter 5

[197]

The inventory field we chose, Software application A, is not very representative, but
there is no way of customizing inventory fields at this time. If you have data that does
not match existing inventory fields well, you'll have to choose the best fit or just use
something not really related to the actual data.

With the item supposed to have the value placed in the Inventory field, let's return to
Inventory | Overview and choose Software application A from the Grouping by
drop-down. This should display only one host:

Click on 1 in the Host count column, and you should be able to see that, as1.
expected, it is A test host. The column we chose is not listed in the current
view, though.
Click on A test host in the Host column and switch to the Details tab.2.

Here, we can see system information from the system.uname item:

We used both the overview and host pages of the inventory section. The Overview
page is useful to see the distribution of hosts by inventory field. The host page allows
you to see individual hosts by using the filter at the top-right of the page.

Managing Hosts, Users, and Permissions Chapter 5

[198]

When we ended up on the hosts page, the filter was preset for us to match an exact
field value, but we may also search for a substring. For example, if we have systems
with OS information containing CentOS 7.5 and CentOS 6.2, we may filter just by
CentOS and obtain a list of all the CentOS systems, no matter which exact version
they are running:

While being able to access inventory data in the frontend is useful sometimes, faster
and easier access might be preferred. It is also possible to include inventory data in
notifications. For example, an email could include system location, whom to contact
when there's a problem with the system, and some serial numbers, among other
things. We will discuss notifications in Chapter 7, Acting upon Monitored Conditions.

If we go to Administration | General | Other (from the drop-down
on the right), then we have the option to set the default host
inventory mode. This option is only valid for new added hosts. It
will not change the default behavior for already existing hosts.

Host maintenance
We want to know about problems as soon as possible, always. Well, not
always—there are those cases when we test failover or reconfigure storage arrays.
There is also maintenance—the time when things are highly likely to break and we do
not want to send loads of emails, SMS messages, or other things to our accounts or to
other people. Zabbix offers host group and host-level maintenance that enables us to
avoid excessive messaging during such maintenance periods.

Managing Hosts, Users, and Permissions Chapter 5

[199]

Hosts being under maintenance can result in three main consequences:

Data is not collected for those hosts
Problems for those hosts are hidden or not shown in the frontend
Alerts are not processed for those hosts

These consequences can also be customized in quite some detail per host group, host,
and other factors. We will explore most of those customization possibilities in this
chapter, except alert processing, which we will discuss in Chapter 7, Acting upon
Monitored Conditions.

Creating maintenance periods
We will create a couple of maintenance periods and see how they affect several views
in the frontend. We will discuss the available time period options and set up two
different maintenance periods:

One that will not affect data collection
One that stops data collection

Before working with maintenance periods, ensure that the time
zones configured for the PHP and Zabbix server hosts match.
Otherwise, the time displayed in the frontend will differ from the
time the actual maintenance takes place. In fact, it is also very
important to have a proper ntpd or chronyd service on your hosts
and server configured, otherwise weird time issues can occur when
hosts lag behind the server and/or proxies.

Collecting data during maintenance
Navigate to Configuration | Maintenance and click on Create maintenance period.
In the resulting form, fill in these values:

Name: Enter Normal maintenance
Maintenance type: With data collection
Active since: Make sure this is set to the start of your current day or earlier
Active till: Make sure this is set to a year or so in the future
Description: Enter we keep data during this maintenance

Managing Hosts, Users, and Permissions Chapter 5

[200]

What's that? Are we really creating a year-long maintenance period? Not really. Switch to
the Periods tab:

Here, the Zabbix terminology is a bit confusing. The main tab has since-till fields,
which allow us to set what we could call the main period. The Periods tab allows us
to add individual periods, which we can call subperiods. Any maintenance entry in
Zabbix must have at least one subperiod defined. Maintenance in Zabbix is active
when the main period overlaps with subperiods. Let's repeat that:

We should not add a maintenance entry without any sub periods defined.

No sub periods are defined here yet, so let's click on New.

To keep things simple here, let's add a one-time period. In the Date field, set the date
and time to the current values. We can leave the Maintenance period length at the
default, which is 1 hour.

When you're done, click on the small Add link after the Maintenance period
section—do not click on the Add button yet. Only after clicking on that small Add
link should you click on the Add button, an error should appear:

Managing Hosts, Users, and Permissions Chapter 5

[201]

That didn't seem to work too well—apparently, a maintenance entry without any
hosts or groups assigned to it cannot be created. Switch to the Hosts and groups tab.
For our first maintenance period, select the Linux servers from the Host groups box,
and choose A test host from the Hosts box. Then, click on the Add button, but this
time not the small Add link, as shown in the following screenshot, as that one is used
to add extra tag lines:

Managing Hosts, Users, and Permissions Chapter 5

[202]

Maintenance in Zabbix is active when the main period overlaps with
sub-periods. As you can see, with Zabbix 4.0, tags have been added
to the maintenance periods for hosts and groups. This can be very
useful if we have added tags to our triggers. Then, it is possible to
only create maintenance periods for hosts who's triggers contain
certain tags.

You may freely add any number of hosts and host groups, and they may overlap.
Zabbix will correctly figure out which hosts should go into maintenance. The
maintenance entry should appear in the list:

The reminder to click on the small Add link was repeated several times for a
reason—it is too easy to forget to click on it and actually miss your changes in some
cases. For example, if you were adding the second sub period and forgot to click on
the small link, it would be silently discarded. Watch out for similar traps in other
forms!

As you can also see in the preceding screenshot, when you click the filter on top of the
page, it is now possible to filter the maintenance periods in a more easy way by
selecting the state of the maintenance periods you would like to see.

With the maintenance entry added, let's try to see the effect this has on several
sections in the frontend. In the console, run the following command:

$ cat /dev/urandom | md5sum

Managing Hosts, Users, and Permissions Chapter 5

[203]

Navigate to Monitoring | Problems. Select A test host from the Hosts selection box
and make sure you also mark the Show suppressed problems option:

Wait for the trigger to fire. When it shows up, look at the Host column—this time,
there's an orange wrench indicator. This shows us that maintenance is currently
active for this host. Move the mouse cursor over this indicator:

Managing Hosts, Users, and Permissions Chapter 5

[204]

You may click on the indicator to keep the message open, as with
other pop-up messages in Zabbix.

The message shows the name of the maintenance we used—normal maintenance. It
also tells us that this maintenance is configured to keep collecting data, and below,
that the description of the maintenance is shown. This allows us to easily inform other
users why this maintenance is taking place. Still on the problem page, look at the
filter. Notice how the Show suppressed problems checkbox was marked by us.
Unmark it and click on Apply. All problems for A test host should disappear—well,
from this view at least. To avoid being confused later, mark that checkbox and click
on Apply again. Remember, most filter options are remembered between visits to a
specific page, so we will not see hosts in maintenance in this view later if we leave it
unmarked.

Let's check how another page looks when a host is in maintenance. Navigate to
Monitoring | Dashboard and click on Edit dashboard. Next, click on the gear in the
top-right corner of the Problems widget and also check the Show suppressed
problems option here, then click Apply:

Managing Hosts, Users, and Permissions Chapter 5

[205]

Managing Hosts, Users, and Permissions Chapter 5

[206]

Note that we can choose many more options for our widget. We can even choose to
only show problems for certain hosts or host groups or even only those where the
trigger is tagged with a certain tag, or decide to not show problems with a certain
severity level.

You could add tags such as application or OS to your triggers or
development and production, and then filter in the frontend
problems related only to application or OS, or development or
production.

The host that's under maintenance is denoted here in the same way. Again, moving
the mouse cursor over the orange icon will reveal the maintenance name, type, and
description.

The maintenance status can also be seen in other frontend sections. We will review
some of them in Chapter 21, Visualizing Data with Graphs and Maps.

We created and checked one maintenance entry. During this maintenance, data from
our host was still collected, and triggers were checking that data. The status was
shown in the frontend, and we could choose to hide hosts that were in maintenance.
Now let's try something different—maintenance that also stops data from being
collected in Zabbix.

Not collecting data during maintenance
Follow these steps:

Navigate to Configuration | Maintenance and click on Create 1.
maintenance period. In the resulting form, fill in these values:

Name: Enter Maintenance with all data dropped
Maintenance type: Choose No data collection
Active since: Make sure this is set to the start of your current
day or earlier
Active till: Make sure this is set to a year or so in the future
 Description: Enter We don't need no data

https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf

Managing Hosts, Users, and Permissions Chapter 5

[207]

Switch to the Periods tab and click on New.2.
In the Date field, set the date and time to the current values as shown in the3.
following screenshot:

Click on the small Add link—again, that first one, not the Add button.4.
Now, switch to the Hosts and groups tab. Make sure the host selection says5.
Another host.
Now, click on the Add button. There should be two maintenance entries in6.
the list:

Go to Monitoring | Latest data and make sure Linux servers is selected in7.
the Host groups field in the filter.

Notice how data stopped coming in for the items in Another host—the timestamp is
not being updated anymore. That's because of the maintenance without data
collection that we created. As such, triggers will not fire, and problems for such hosts
will not appear in the frontend, no matter what the filter settings are.

Managing Hosts, Users, and Permissions Chapter 5

[208]

Let's take a quick look at Configuration | Hosts. This is another location where the
maintenance status can be seen. Hosts that are in maintenance will have In
maintenance listed in the Status column—this replaces the normal Enabled text:

We discovered the way maintenance can affect data collection and the displaying of
problems. Another important reason to use it is skipping or modifying notifications.
We will discuss notifications in Chapter 7, Acting upon Monitored Conditions.

Maintenance period options
So far, the only type of maintenance sub-periods we've used is one-time maintenance.
We decided to call those periods that were configured in a separate tab sub-periods to
distinguish them from the main period, configured in the first tab, Maintenance. We
also discovered that maintenance would be active only during the time in which the
main period overlaps with sub periods. But what's the point of defining the same thing
twice? Couldn't the one-time period be the only thing to specify? The benefit of the main
period becomes more apparent when configuring recurring maintenance, so let's
explore the options available for sub-periods. Navigate to Configuration |
Maintenance, start creating a new maintenance, and play with the available sub
periods as we explore them.

Managing Hosts, Users, and Permissions Chapter 5

[209]

One-time only maintenance
This is the maintenance sub-period type we've already used. It starts at the specified
date and time, proceeds for the amount of time specified in minutes, hours, and days,
and that's it. This type of sub-period must still overlap with the main period.

Daily maintenance
For daily maintenance, we have to specify the starting time and the length of the
maintenance period:

During the main period, maintenance will start every day at the specified time. It will
start every day with the Every day(s) option set to the default, 1. We can change this
and make the maintenance only happen every second day, third day, and so on.

Managing Hosts, Users, and Permissions Chapter 5

[210]

Weekly maintenance
For weekly maintenance, we have to specify the starting time and the length of the
maintenance period, the same as for daily maintenance:

We also have to choose on which days of the week the maintenance will take
place—we can choose one or more. During the main period, maintenance will start
every specified day of the week at the specified time. It will start every week with the
Every week(s) option set to the default, 1. We can change this and make the
maintenance only happen every second week, third week, and so on.

Monthly maintenance
Monthly maintenance has two modes:

By day of month
By day of week

Managing Hosts, Users, and Permissions Chapter 5

[211]

For both of these, we have to specify the start time and the length of the maintenance
period, the same as in daily and weekly maintenance modes. Additionally, we have
to choose which months the maintenance will happen in—we may choose one month
or more. In Day of month mode (option Date set to Day of month), we have to enter
a day in the Day of month field. Maintenance will happen on that day only in each of
the months we select.

In Day of week mode (option Date set to Day of week), we have to choose which
days of the week the maintenance will take place on—we may choose one or more:

Managing Hosts, Users, and Permissions Chapter 5

[212]

As this has to happen monthly, not weekly, we also have to choose whether this will
happen on the first, second, third, fourth, or last weekday in any of the selected
months:

In addition to this, we may also ask Zabbix to run this maintenance on the last such
day in the selected months, for example, every April, August, and December, to run
the maintenance on the last Wednesday that month.

With all these recurring maintenance modes, it is possible to create nearly any
scenario—one thing that might be missing is the ability to run monthly maintenance
on the last day of every month.

So, the benefit of having this sort of a double configuration, that is, this overlap
between the main period and the sub-periods, is that we can have recurring
maintenance that starts at some point in the future and then stops at some point later
completely automatically—we don't have to remember to add and remove it on a
specific date.

Ad hoc maintenance
The maintenance functionality in Zabbix is aimed at a well-planned environment
where maintenance is always planned in advance. In practice, people often want to
place a host in maintenance quickly and then simply remove it manually a bit later.
With all the periods and other things maintenance entry requires, it's not quick
enough. A slightly hackish workaround is to create a new host group (ex-
maintenance) and a maintenance period that is always active (make sure to set its end
date far enough in the future). Include that host group in the maintenance entry, and
then adding a host to the chosen host group will add that host to maintenance. Of
course, you will have to remember to remove the host from the host group
afterwards. Another workaround is to use the API.

Managing Hosts, Users, and Permissions Chapter 5

[213]

Users, user groups, and permissions
In Zabbix, hosts need to be placed in 1 or more host group(s). Users also need to be
placed in 1 or more group(s). Hosts have gathered the information and, they have
items linked to them, directly or from templates. Permissions in Zabbix are set on a
group level.

Authentication methods
Before we look at more detailed user configuration, it might be helpful to know that
Zabbix supports three authentication methods. Navigate to Administration |
Authentication to take a look at authentication configuration:

As can be seen in the preceding screenshot, these are the three authentication
methods:

HTTP: Users are authenticated with web server HTTP authentication
mechanisms. Support for HTTP authentication basically allows the use of
any of the authentication methods for Zabbix that the web server supports,
and in the case of the Apache HTTPD daemon, there are many. If you like
to use HTTP authentication, then click the HTTP settings tab and fill in the
necessary information.
LDAP: Users are authenticated using an LDAP server. This can be handy if
all enterprise users that need access to Zabbix are already defined in an
LDAP structure. Only user passwords are verified; group membership and
other properties are not used. A Zabbix user account must also exist for the
login to be successful. If you would like to use the LDAP authentication,
then you will need to fill in the settings in the LDAP tab and select LDAP
from the Authentication page instead of internal.

Managing Hosts, Users, and Permissions Chapter 5

[214]

Internal: With this method, users are authenticated using Zabbix's internal
store of users and passwords. We will be using this method.

Creating a user
The initial Zabbix installation does not contain many predefined users—let's look at
the user list. Navigate to Administration | Users:

That's right; only two user accounts are defined—Admin and guest. We have been
logged in as Admin all the time. On the other hand, the guest user is used for
unauthenticated users. Before we logged in as Admin, we were guest. The user list
shows some basic information about the users, such as which groups they belong to,
whether they are logged in, when their last login was, and whether their account is
enabled. A guest user can be unwanted, as they could reveal certain information that
should not be visible to anybody, so use with care!

By granting access permissions to the guest user, it is possible to
allow anonymous access to resources. This user will be active by
default!

Let's create another user for ourselves. Click on the Create user button located in the
upper-right corner. We'll look at all of the available options for a user account, while
filling in the appropriate ones:

Alias: Enter monitoring_user. This is essentially a username.
Name: Enter monitoring. In this field, you would normally enter the
user's real name.
Surname: Enter user. This field normally contains the user's real surname.
Groups: Just like hosts, user accounts can be grouped. A user must belong
to at least one group, so let's assign our new user to a group, at least
temporarily. Click on the Select button next to the Groups field, and mark
the checkbox next to Zabbix administrators. Then, click on Select.

Managing Hosts, Users, and Permissions Chapter 5

[215]

Password: Choose and enter a password, and then retype it in the next
field.
Language: The frontend has translations in various levels of maturity, and
each user can choose their own preference. We'll leave this as English
(en_GB).

If a language you would like to use is not listed, it might still be
there—just incomplete. See Appendix B, Being Part of the Community,
for more details on how to enable it and contribute to Zabbix
translations.

Theme: The Zabbix frontend supports theming. Currently, there are only
four themes included, though. We'll leave the theme as System default.
Auto-login: Marking this option will automatically log the user in after
they have logged in at least once manually. Automatic login is performed
with browser cookies. We won't be using automatic login for this user.
Auto-logout: You can make a particular account automatically log out after
a specific period of inactivity. The minimum time period that can be set is
90 seconds. The maximum is about 1 day, and time suffixes are
supported. There is no need to set automatic logout here.

What's more, at the time of writing, this option does not work as
expected and should not be relied on, as there are cases where a user
will not be logged out. See the URL at the end of this chapter, in the
Further reading section, for more information.

Refresh: This is the time, in seconds, between page refreshes when in the
Monitoring section. While smaller values might be nice to look at when
first setting up and having items with short check intervals, they somewhat
increase the load on the server, and if the page contains a lot of
information, then it might not even finish loading before the next refresh
kicks in. Let's set this to 60s for this user—after all, they can always refresh
manually when testing something. Note that some pages do not perform a
full page refresh; instead, they just reload some elements on that page. A
graph page, for example, only reloads the graph image.
Rows per page: Each user can have an individual maximum rows-per-page
setting. If the returned data exceeds this parameter, the interface splits the
data into multiple pages. We won't change this parameter.

Managing Hosts, Users, and Permissions Chapter 5

[216]

URL (after login): A user might wish to always see a specific page after
logging in – be it the overview, trigger list, or any other page. This option
allows the user to customize that. The URL that's entered is relative to the
Zabbix directory, so let's make this user always see Monitoring | Problems
when they log in, by entering tr_status.php here.

The final result should look as follows:

Managing Hosts, Users, and Permissions Chapter 5

[217]

If it does, click on the Add button at the bottom.

Now, it would be nice to test this new user. It is suggested that you launch another
browser for this test so that any changes are easy to observe. Let's call the browser
where you have the administrative user logged in Browser 1 and the other one Browser
2. In Browser 2, open the Zabbix page and log in as monitoring_user, supplying
whatever password you entered before. Instead of the dashboard, the Monitoring |
Problems page is opened.

Also, the page is notably different than before—the main menu entries Configuration
and Administration are missing here. Also the Host and Host groups entries are both
empty and nothing can be selected; no issues are visible. Go to Monitoring |
Overview. The Group drop-down is set to all and Type is set to Triggers, but the
Details view claims that there's No data found. How come?

By default, users don't have access to any systems. When our new user logs in,
nothing is displayed in the monitoring section, because we did not grant any
privileges, including read-only. We did assign this user to the Zabbix administrators
group, but that group has no permissions set by default.

Back in Browser 1, click on monitoring_user in the Alias column. One minor thing
to notice—instead of a Password input field, this time, a button that says Change
password is visible. If you ever have to reset a password for a user, clicking on this
button will reveal the password input fields again, allowing a password update along
with any other changes that might have been made:

But there's a tab we still haven't used—Permissions. Let's switch to it.

There's also a Media tab. There, users can have various media
assigned to them so that Zabbix knows how to alert them. Media
types include email addresses and numbers to send SMS messages
to. We will discuss notification functionality in Chapter 7, Acting
upon Monitored Conditions.

Managing Hosts, Users, and Permissions Chapter 5

[218]

The first thing to notice is the User type drop-down. It offers three user types. We'll
leave it at Zabbix User for this user:

For reference, these types have the following meanings:

Zabbix User: These are normal users that only have access to the
Monitoring, Inventory, and Reports sections in the Main menu
Zabbix Admin: These users, in addition to the previous three sections,
have access to the Configuration section, so they are able to reconfigure
parts of Zabbix
Zabbix Super Admin: These users have full access to Zabbix, including the
Monitoring, Configuration, and Administration sections

The following is a section that looks very similar to what we are looking for; there
are Host groups and permissions:

Managing Hosts, Users, and Permissions Chapter 5

[219]

There's just one problem—there is no way to change these permissions.

A helpful message at the bottom of the page explains why. It says Permissions can be
assigned for user groups only.

We conveniently skipped adding or configuring any groups and permissions, so now
is a good time to fix that.

Creating user groups
Instead of modifying the default user groups, we will add our own. Navigate to
Administration | User groups and take a look at the list of current user groups:

As can be seen, there are already a few predefined groups, giving you some idea of
how users could be organized. That organization can be based on system categories,
systems, management roles, physical locations, and so on. For example, you might
have a group of administrators in headquarters and some in a branch location. Each
group might not be interested in the UPS status in the other location, so you could
group them as HQ admins and Branch admins. A user can belong to any number of
groups, so you can create various schemes, as real-world conditions require.

Managing Hosts, Users, and Permissions Chapter 5

[220]

Let's create a new group for our user. Click on Create user group in the upper-right
corner. Let's fill in the form and find out what each control does:

Group name: Enter Our users.
Users: Here, we can add users to the group we are creating. Our current
installation has very few users, so finding the correct username with all
users displayed is easy. Select monitoring_user and click on the button
or just type the name in the box and select the correct user.
Frontend access: This option allows us to choose the authentication
method for a specific group. It allows for a configuration where most users
are authenticated against LDAP, but some users are authenticated against
the internal user database. It also allows us to set no GUI access for some
groups, which can then be used for users that only need to receive
notifications. We'll leave this option as System default.

If your Zabbix installation uses LDAP for user authentication, setting Frontend access
to Internal for a user group will make all users in that group authenticate against the
internal Zabbix password storage. It is not a failover option—internal authentication
will always be used. This is useful if you want to provide access to users that are not
in the LDAP directory, or create emergency accounts that you can pull out of a safe
when LDAP goes down. Such an approach will not work with HTTP authentication,
as it happens before Zabbix gets to decide anything about the authentication backend:

Enabled: With a single option, all the users in this group can be disabled or
enabled. As the predefined groups might tell you, this is a nice way to
easily disable individual user accounts by simply adding them to a group
that has this checkbox unmarked. We want our user to be able to log in, so
this option will stay marked.
Debug mode: This option gives users access to frontend debug
information. It is mostly useful for Zabbix developers or Zabbix
administrators. We will discuss debug mode in Appendix A,
Troubleshooting.

Managing Hosts, Users, and Permissions Chapter 5

[221]

With the main settings covered, let's switch to the Permissions tab:

Now that's more like it! We can finally see controls for various permission levels.
There are three sections, labeled Read-write, Read, Deny, and None. Our user had
no permissions to see anything, so we will want to add some kind of permissions.
Click on Select left of the Read-write box. This opens a new window with host
groups.

It also provides us with another valuable bit of information. have finally got the
essential information together—in Zabbix, permissions can be set for user groups on
host groups only.

Mark the checkbox next to Linux servers/SNMP group and click on the Select button.

We can now see that SNMP devices has been added to the Read-write box. Next,
click on the Read box. This time, mark the checkbox next to the Linux servers entry,
and then click on Add. You will see that Zabbix also adds the Linux servers/Test
group but with permissions set to None. This is because, when we created our Linux
servers host group, we had the option to select Apply permissions and tag filters to
all subgroups, but we left that box unmarked. If we had marked that option, then all
the subgroups from the Linux servers group would have inherited the permissions
from the Linux servers group.

Managing Hosts, Users, and Permissions Chapter 5

[222]

The final form should look like this:

This looks about right, so click on the Add button at the bottom. The group will be
successfully added, and we will be able to see it in the group list.

Let's get back to Browser 2. Navigate to Monitoring | Latest data. Click on Select next
to the Host groups field. Great, both of the groups we selected when configuring the
permissions are available. Mark the check-boxes next to them and click on Select.
Then, click on Apply. Now, our new user can view data from all the hosts. But we
also added write permissions to one group for this user, so what's up with the
Configuration menu? Let's recall the user-creation process—wasn't there something
about user types? Right, we were able to choose between three user types, and we
chose Zabbix User, which, as we discussed, was not allowed to access configuration.

Managing Hosts, Users, and Permissions Chapter 5

[223]

It is important to keep in mind that, at this time, a Zabbix User that
has write access granted will not be able to configure things in the
frontend, but they will get write access through the API. This could
cause security issues. We will discuss the API in Chapter 19,
Working Closely with Data.

To continue exploring user permissions, we'll create another, more powerful user. In
Browser 1, go to Administration | Users, and click on the Create user button. Fill in
these values:

Alias: Enter advanced_user.
Name: Enter advanced.
Surname: Enter user.
Groups: Click on Select, mark the checkbox next to Zabbix administrators,
and click on Select.
Password: Enter a password in both fields. You can use the same password
as for monitoring_user to make it easier to remember.
Refresh: Enter 60s.
URL (after login): Let's have this user view a different page right after
logging in. The overview page might do—enter overview.php here.

Now, switch to the Permissions tab and select Zabbix Admin from the User type
drop-down. This is will make quite a big difference, as we will soon see:

When done, click on the Add button.

Managing Hosts, Users, and Permissions Chapter 5

[224]

Let's use Browser 2 now. In the upper-right corner, click the logout icon, and then log
in as advanced_user. This user will land on the overview page, and this time, we
can see the Configuration section. That's because we set the user type to Zabbix
Admin. Let's check out what we have available there—open Configuration |
Hosts and select all from the Group selection box:

How could there be no hosts available? We set this user as the Zabbix Admin type.
should probably look at the user list back in Browser 1:

Here, we can easily spot our mistake—we added advanced_user to the Zabbix
administrators group, but we set permissions for the Our users group. We'll fix that
now, but this time, we'll use the user properties form. Click on advanced_user in the
Alias column, and in the resulting form, click on Select next to the Groups field.
Mark the checkbox next to Our users, and then click on Select:

Managing Hosts, Users, and Permissions Chapter 5

[225]

When done, click on Update. In Browser 2, simply refresh the host's Configuration
tab—it should reveal our hosts, SNMP device, and snmptraps, which advanced_user
can configure.

Suddenly, we notice that we have granted configuration access to the snmptraps
host this way, which we consider an important host that should not be messed with
and that neither of our two users should have access to anyway. How can we easily
restrict access to this host while still keeping it in the SNMP devices group?

In Browser 1, navigate to Configuration | Host groups and click on Create host
group. Enter the following details:

Group name: Enter Linux servers/Important SNMP hosts
Configuration | Hosts: Go to host snmptraps and in the Group box, select
Linux servers/Important SNMP Hosts

When done, click on Update.

Managing Hosts, Users, and Permissions Chapter 5

[226]

Open Administration | User groups, click on Our users in the Name column, and
switch to the Permissions tab. In the group details, click on the Deny box. Click
select and select Linux servers/Important SNMP Hosts, and then click on the Update
button:

Now is the time to look at Browser 2. It should still show the host configuration with
two hosts. Refresh the list and the snmptraps host will disappear. After our changes,
advanced_user has configuration access only to the SNMP device host, and there
will be no access to the monitoring of the snmptraps host at all, because we used
Deny. For monitoring_user, nothing has changed—there was no access to the
SNMP devices group before.

Permissions and maintenance
The maintenance configuration that we looked at in this chapter follows the rules of
host group permissions in its own way. Host group permissions impact the way
Zabbix administrators can configure maintenance entries:

Zabbix admins can create new maintenance entries and include host
groups and hosts they have write permissions on
Zabbix admins can edit existing maintenance entries if they have write
permissions on all the hosts and host groups included in those maintenance
entries

Managing Hosts, Users, and Permissions Chapter 5

[227]

Summary
In this chapter, we explored another aspect of host properties in Zabbix—host
inventory. Host inventory may be manually populated, but the more useful aspect of
it is its ability to receive values from any item in any inventory field. This still allows
you to manually edit inventory fields that do not receive values from items.

Host and Host group maintenance allows us to create on-time or recurring
maintenance entries on a daily, weekly, and monthly basis. Problems with hosts that
are in maintenance are distinguished visually in the frontend, and in many views we
can also choose not to show such problems at all.

It's important to remember the main rules about permissions in Zabbix:

Permissions can be assigned to user groups only
Permissions can be granted on host groups only

This means that, for fancy permission schemes, you might have to do some planning
before starting to click around. We can also safely say that, to avoid mysterious
problems in the future, every host should be in at least one host group, and every
user should be in at least one user group. Additionally, there were two factors that
combined to determine effective permissions—the permissions set for groups and the
user type. We can try summarizing the interaction of these two factors:

Looking at the preceding table, we can see that the Zabbix Super Admin user type
cannot be denied any permissions. On the other hand, Zabbix User cannot be given
write permissions. Still, it is very important to remember that, at this time, they
would gain write privileges through the Zabbix API.

With this knowledge, you should be able to group hosts, manage host inventories,
and host maintenance, as well as create groups, sub-groups, and users, not to mention
assign fine-grained permissions.

Managing Hosts, Users, and Permissions Chapter 5

[228]

In the next chapter, we'll look at a way to check whether item values indicate a
problem or not. While we have items collecting data, items in Zabbix are not used to
configure thresholds or any other information to detect bad values. Items don't care
what the values are as long as the values are arriving. To define what a problem is, a
separate configuration entity, called a trigger, is used. Trigger logic, written as an
expression, can range from very simple thresholds to fairly complex logical
expressions.

Questions
Are status icons for Zabbix Active and passive?1.
How many status icons are there?2.
Can we collect data during a maintenance period?3.
Can we deny super admins access to hosts?4.

Further reading
Read the following articles for more information regarding what was covered in this
chapter:

Supported macros: https:/ /www.zabbix. com/ documentation/ 4. 0/manual/
appendix/ macros/ supported_ by_ location

Maintenance: https:/ / www. zabbix. com/documentation/ 4. 0/manual/
maintenance

User
profile: https://www.zabbix.com/documentation/4.0/manual/web_inter
face/user_profile?s[]=auto&s[]=logout#configuration

https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/maintenance
https://www.zabbix.com/documentation/4.0/manual/web_interface/user_profile?s%5B%5D=auto&s%5B%5D=logout#configuration
https://www.zabbix.com/documentation/4.0/manual/web_interface/user_profile?s%5B%5D=auto&s%5B%5D=logout#configuration

6
Detecting Problems with

Triggers
We have gained quite comprehensive knowledge of what kind of information we can
gather using items. However, so far, we only have a single thing we are actively
monitoring, so we have only created a single trigger (we did that in Chapter 2,
Getting Your First Notification). Triggers can do way more. Let's recap what a trigger is.

A trigger defines when a condition is considered worthy of attention. It fires (that is,
becomes active) when item data, or a lack of it, matches a particular condition, such as
too high system load or too low free disk space.

Let's explore both of these concepts in more detail now. In this chapter, we will look
at the following topics:

Getting to know more about the trigger-and-item relationship
Discovering trigger dependencies
Constructing trigger expressions
Preventing trigger flapping
Checking for missing data
Using event tags for correlation

Detecting Problems with Triggers Chapter 6

[230]

Triggers
Triggers are things that fire. They look at item data and raise a flag when the data
does not fit whatever condition has been defined. As mentioned before, simply
gathering data is nice, but awfully inadequate. If you want any historical data
gathering, including notifications, there would have to be a person looking at all of
the data all of the time, so we have to define thresholds at which we want the
condition to be considered worth looking into. Triggers provide a way to define what
those conditions are.

Earlier, we created a single trigger that was checking the system load on A test host.
It checks whether the returned value is larger than a defined threshold. Now, let's
check for some other possible problems with a server, for example, when a service is
down. The SMTP service going down can be significant, so we will try to look for
such a thing happening now.

Navigate to Configuration | Hosts, click on any of the Triggers links, and click on the
Create trigger button. In the form that opens, we will fill in some values, as follows:

Name: The content of this field will be used to identify the trigger in most
places, so it should be human-readable. This time, enter SMTP service is
down. Notice how we are describing what the problem actually is. As
opposed to an item, which gathers statuses, a trigger has a specific
condition to check, thus, the name reflects it. If we have a host that should
never have a running SMTP service, we could create a trigger named SMTP
service should not be running.
Expression: This is probably the most important property of a trigger.
What is being checked, and for what conditions, will be specified here.
Trigger expressions can vary from very simple to complex ones. This time,
we will create a simple one, and we will also use some help from the
frontend for that. Click on the Add button next to the Expression field to
open the expression building dialog. It has several fields to fill in as well, so
let's look at what those are:

Item: Here, we can specify which item data should be
checked. To do that, click on the Select button. Another
popup will open. Select Linux servers from the Group drop-
down, and then select Another host from the Host drop-
down. We are interested in the SMTP service, so click on
SMTP server status in the Name column. The popup will
close, and the Item field will be populated with the name of
the chosen item.

Detecting Problems with Triggers Chapter 6

[231]

Function: Here, we can choose the actual test to be
performed. Perhaps we can try remembering what the SMTP
server status item values were right, 1 was for the server
running, and 0 was for the server being down. If we want to
check when the last value was 0, the default function Last
(most recent) seems to fit quite nicely, so we won't change it.
Last of (T): This is a function parameter if the function
supports a time period. We used 180 in seconds for our first
trigger to check the values during the previous 3 minutes,
but when taking the last item value, a time period would
make no sense.
Time shift: We will discuss this functionality later in this
chapter, in the Relative thresholds or time shift section.
Result: This field allows us to set the constant used in the
previous function. We want to find out whenever an SMTP
server goes down (or the status is 0). So, here, the default of 0
fits as well:

With the values set as illustrated in the previous screenshot,
click on the Insert button. The Expression field will now be
populated with the {Another
host:net.tcp.service[smtp].last()}=0 trigger
expression.

Detecting Problems with Triggers Chapter 6

[232]

Severity: There are five severity levels in Zabbix, and an
additional Not classified severity level, as shown in the
following screenshot:

We will consider this problem to be of average severity, so click on Average.

Before continuing, make sure that the SMTP server is running on another host, and
then click on the Add button.

The Allow manual close option is useful if you like to acknowledge
a problem from a log file for example. This allows you to keep the
problem open and close it manually when acknowledging the
problem.

Detecting Problems with Triggers Chapter 6

[233]

Let's find out what it looks like in the overview now:

Go to Monitoring | Overview and make sure that the Type drop-down has1.
Triggers selected
Then, expand the filter, choose Any in the Acknowledge status drop-2.
down, and click on Filter:

Great, we can see that both hosts now have a trigger defined. Since the triggers differ,
we also have two unused cells:

Let's look at the trigger expression in more detail. It starts with an opening curly
brace, and the first parameter is the hostname. Separated by a colon is the item key—
this is net.tcp.service[smtp] here. The item key must be replicated exactly as in
the item configuration, including any spaces, quotes, and capitalization. After the
exact item key comes a dot as a separator, which is followed by the more interesting
and trigger-specific thing—the trigger function. One of the most common functions is
being used here—last(). It always returns a single value from the item history.
There are trigger functions that require at least a parameter to be passed, but for the
last() function, this is optional, and if the first parameter is just a number, it is
ignored.

Detecting Problems with Triggers Chapter 6

[234]

Older versions of Zabbix required a parameter to be passed, even if
it would have been ignored. It is still common to see syntax such as
last(0) being used. Thus, last(0) and last() all return the
latest single values for one item, so the use of the function last(300)
or last(5m) function is incorrect.

On the other hand, if the first parameter is a number prefixed with a hash, it is not
ignored. In that case, it works like an nth value specifier. For example, last(#9)
would retrieve the 9th most recent value. As we can see, last(#1) is equal to
last(0) or last(). Another overlapping function is prev. As the name might
suggest, it returns the previous value; thus, prev() is the same as last(#2).

Hostname, item key, trigger function, operators—they are all case-
sensitive.

Continuing with the trigger expression, curly braces are closed to represent a string
that retrieves a value, that is, host and item reference, followed by the trigger
function. Then, we have an operator, which in this case is a simple equals sign. The
comparison here is done with a constant number, 0.

If item history is set to 0, no values are stored and no triggers are
evaluated, even if those triggers would only check the last value.
This is different from previous versions of Zabbix, where only
triggers referencing the last value would still work.

The trigger-and-item relationship
You might have noticed how items in Zabbix do not contain any configuration for the
quality of the data—if the CPU load values arrive, the item does not care whether they
are 0 or 500. Any definition of a problem condition happens in a trigger, whether it's
a simple threshold or something more complex.

And when we created this trigger, we could click on any of the Triggers links, but we
paid attention to the host selected in the drop-downs when choosing the item. It
actually does not matter which of those Triggers links we click on, as long as the
proper host is selected in that popup, or we manually enter the correct host name.

Detecting Problems with Triggers Chapter 6

[235]

A trigger does not belong to a host like an item does. A trigger is
associated with any number of hosts it references items from.

If we clicked on Triggers for host A and then chose an item from host B for that
trigger, the created trigger would not appear for host A, but would appear for host B.

This decoupling of problem conditions from the value collection has quite a lot of
benefits. Not only is it easy to check for various different conditions on a single item,
a single trigger may also span multiple items. For example, we could check the CPU
load on a system in comparison with the user session count. If the CPU load is high
and there are a lot of users on the system, we could consider that to be a normal
situation. But if the CPU load is high while there is a small number of users on the
system, it would be a problem. An example trigger is as follows:

{host:system.cpu.load.last()}>5 and {host:user.sessions.last()}<100

This would trigger if the CPU load was above 5, but only if there were fewer than
100 users on the system.

Remember that we cannot just start referencing items in trigger
expressions and expect that to work. Items must exist before they
can be used in trigger expressions.

A trigger could also reference items from multiple hosts. We could correlate a
database statistic with the performance of an application on a different host, or free
disk space on file servers with the number of users in the Lightweight Directory
Access Protocol (LDAP).

We will discuss and configure some slightly more advanced trigger expressions later
in this chapter.

Trigger dependencies
We now have one service being watched. There are some more being monitored, so
now we can try to create a trigger for an HTTP server. Let's assume that our host runs
software that is a bit weird. The web service is a web email front-end, and it goes
down whenever the SMTP server is unavailable. This means that the web service
depends on the SMTP service.

Detecting Problems with Triggers Chapter 6

[236]

Go to Configuration | Hosts, click on Triggers next to Another host, and then click
on Create trigger. Fill in the following values:

Name: Web service is down.
Expression: Click on Add, and then again on Select next to the Item field.
Make sure that Linux servers is selected in the Group drop-down and
Another host in the Host drop-down, and then click on Web server status
in the Name column. Both the function and its parameter are fine, so click
on Insert:

This inserts the {Another
Host:net.tcp.service[http,,80].last()}=0 expression.

Severity: The value of this field should be Average.
Description: Trigger expressions can get very complex. Sometimes, the
complexity can make it impossible to understand what a trigger is
supposed to do without serious dissection. Comments provide a way to
help somebody else, or yourself, understand the thinking behind such
complex expressions later. While our trigger is still very simple, we might
want to explain the reason for the dependency, so enter something such as
Web service goes down if SMTP is inaccessible.

Detecting Problems with Triggers Chapter 6

[237]

Now, switch to the Dependencies tab. To configure the dependency of the web
frontend on the SMTP service, click on the Add link in the Dependencies section. In
the resulting window, make sure that Linux servers is selected in the Group drop-
down and Another host is selected in the Host drop-down, and then click on the only
entry in the Name column, that is, SMTP service is down:

When done, click on the Add button at the bottom. Notice how, in the trigger list,
trigger dependencies are listed in the Name column. This allows for a quick overview
of any dependent triggers without opening the details of each trigger individually:

Both triggers in the dependency list and items in the Expression column act as links,
allowing easy access to their details.

Item name colors in the Expression column match their state: green
for OK, red for Disabled, and grey for Unsupported.

Detecting Problems with Triggers Chapter 6

[238]

With the dependency set up, let's find out whether it changes anything in the front-
end. Navigate to Monitoring | Overview, make sure Type is set to Triggers, expand
the filter, then switch Triggers status to Any, and click on Filter:

The difference is visible immediately. Triggers involved in the dependency have
arrows drawn over them. So, an upward arrow means something depends on this
trigger—or was it the other way around? Luckily, you don't have to memorize that.
Make sure that the web service and the SMTP service are down on another host first.
Move the mouse cursor over the SMTP service is down trigger for Another host,
which is the upper cell with the arrow:

Detecting Problems with Triggers Chapter 6

[239]

A popup appears, informing us that there are other triggers that are dependent on
this one. Dependent triggers are listed in the popup. If we click on the arrow and then
on Description from the popup menu, we will see the description we added in the
trigger box before.

Let's see what happens if we turn our SMTP service on and keep our web service
down. After a few seconds, when Zabbix notices that the SMTP service is up, we can
see that our trigger has changed. We can now see that our web service is down and
that the arrow is pointing downward, telling us that there is a dependency on this
trigger:

The web server trigger has disappeared from the list and has been replaced by the
SMTP server trigger. That's because Zabbix does not show dependent triggers if the
dependency upstream trigger is in the PROBLEM state. This helps to keep the list
short and concentrate on the problems that actually cause downtime.

Trigger dependencies are not limited to a single level. We will now add another
trigger to the mix. Before we do that, we'll also create an item that will provide an
easy way to manually change the trigger state without affecting system services. In
the frontend, navigate to Configuration | Hosts, click on Items next to Another host,
and then click on Create item. Fill in the following values:

Name: Testfile exists
Key: vfs.file.exists[/tmp/testfile]

Detecting Problems with Triggers Chapter 6

[240]

When you are done, click on the Add button at the bottom. As the key might reveal,
this item simply checks whether a particular file exists and returns 1 if it does, and 0
if it does not.

Using a constant filename in /tmp in real-life situations might not be
desirable, as any user could create such a file. The reason we have
chosen to do it in tmp is because we then don't have to care about
the permissions for our file, as in real life, Zabbix would need the
correct permissions.

In the bar above the Item list, click on Triggers, and then click on the Create trigger
button. Enter these values:

Name: Testfile is missing.
Expression: Click on Add and then on Select next to the Item field. In the
item list for Another host, click on Testfile exists in the Name column, and
then click on Insert (again, the default function works for us). The
Expression field is filled with the following expression:

{Another Host:vfs.file.exists[/tmp/testfile].last()}=0

Severity: The severity value should be Warning.

When you are done, click on the Add button at the bottom. Let's complicate the
trigger chain a bit now. Click on the SMTP service is down trigger in the
Name column, switch to the Dependencies tab, and click on Add in the
Dependencies section. In the upcoming dialog, click on the Testfile is missing entry
in the Name column. This creates a new dependency for the SMTP service trigger:

Detecting Problems with Triggers Chapter 6

[241]

Click on Update. Now, we have created a dependency chain, consisting of three
triggers—Web service is down depends on SMTP service is down, which in turn
depends on Testfile is missing. Zabbix calculates chained dependencies, so all
upstream dependencies are also taken into account when determining the state of a
particular trigger—in this case, Web service is down depends on those two other
triggers. This means that only a single trigger will be displayed in the Monitoring |
Overview section. If we place the most important trigger at the bottom and the ones
depending on it above, we would get a dependency chain like this:

Now, we should move on to fixing the problems the monitoring system has
identified. Let's start with the one at the top of the dependency chain—the missing
file problem. On another host, execute the following:

$ touch /tmp/testfile

This should create an empty file and deal with the only trigger currently on the
trigger list. Wait for the trigger list to update. You will see that the list gets updated
and that the trigger that tells us that the SMTP service is down will be visible in the
trigger box.

Looking at the list, we can see one big difference this time—the SMTP trigger now has
two arrows, one pointing up and the other pointing down. Moving your cursor over
them, you will discover that they denote the same thing as before—the triggers that
this particular trigger depends on or that depend on this trigger. If a trigger is in the
middle of a dependency chain, two arrows will appear, as has happened for the
SMTP service is down trigger here.

The arrows here are shown in the same direction as in our previous schematic. We
could say that the dependent trigger is supported by the more important trigger, as if we
had bricks placed one on top of another. If any of the bricks disappear, the bricks
above it will be in trouble.

Detecting Problems with Triggers Chapter 6

[242]

Our testfile trigger worked as expected for the chained dependencies, so we can
remove that dependency now:

Go to Configuration | Hosts, click on Triggers next to Another host, and1.
click on the SMTP service is down trigger in the Name column
Switch to the Dependencies tab, click on Remove in the Action column,2.
and click on the Update button

Note that you always have to save your changes in the editing form of any entity. In
this case, simply removing the dependency won't be enough. If we navigate to some
other section without explicitly updating the trigger, any modifications will be lost.
Now, you can also restart any stopped services on another host.

Constructing trigger expressions
So far, we have used only very simple trigger expressions, comparing the last value to
a constant. Fortunately, that's not all that trigger expressions can do. We will now try
to create a slightly more complex trigger.

Let's say we have two servers, A test host and Another host, providing a redundant
SSH File Transfer Protocol (SFTP) service. We would be interested in any one of the
services going down. Navigate to Configuration | Hosts, and click on Triggers next
to Another host. Then, click on the Create trigger button. Enter the following values:

Name: One SSH service is down.
Expression: Click on the Add button. In the resulting popup, click on
Select next to the Item field. Make sure Another host is selected in the
Host drop-down, click on the SSH server status item in the Name column,
and then click on Insert. Now, position the cursor at the end of the inserted
expression and enter or without quotes (that's a space, or, and a space).
Again, click on the Add button. In the resulting popup, click on Select next
to the Item field. Select A test host from the Host drop-down, click on the
SSH server status item in the Name column, and click on Insert.
Severity: The value of severity should be Average (remember, these are
redundant services).

The final trigger expression should look like this:

{Another host:net.tcp.service[ssh].last()}=0 or {A test
host:net.tcp.service[ssh].last()}=0

Detecting Problems with Triggers Chapter 6

[243]

When you are done, click on the Add button at the bottom.

In Zabbix versions preceding 2.4, a pipe character, |, was used
instead of a lowercase or.

The process we followed here allowed us to create a more complex expression than
simply comparing the value of a single item. Instead, two values are compared, and
the trigger fires if either of them matches the comparison. That's what the or operator
does. Another logical operator is and. Using the SSH server as an example trigger, we
could create another trigger that would fire whenever both SSH instances go down.
Getting the expression is simple, as we just have to modify that single operator, that
is, change or to and, so that the expression looks like this:

{Another host:net.tcp.service[ssh].last()}=0 and {A test
host:net.tcp.service[ssh].last()}=0

Trigger expression operators are case-sensitive, so AND would not be
a valid operator—a lowercase and should be used.

Trigger expressions also support other operators. In all the triggers we created, we
used the most common one—the equality operator, =. We could also be using the
inequality operator, <>. That would allow us to reverse the expression, like this:

{A test host:net.tcp.service[ssh].last()}<>1

Zabbix versions preceding 2.4 used the hash,#, instead of <> for the
not equal comparison.

While not useful in this case, such a trigger is helpful when the item can have many
values and we want the trigger to fire whenever the value isn't the expected one.

Trigger expressions also support the standard mathematical operators +, -, *, and /,
and comparison operators <, >, <=, and >=, so complex calculations and comparisons
can be used between item data and constants.

Detecting Problems with Triggers Chapter 6

[244]

Let's create another trigger using a different function. In the frontend section
Configuration | Hosts, choose Linux servers from the Group drop-down, click on
Triggers next to A test host, and click on the Create trigger button. Then, enter the
following values:

Name: Critical error from SNMP trap
Expression: {A test host:snmptrap.fallback.str(Critical
Error)}=1

Severity: The value of severity should be High

When you are done, click on the Add button at the bottom.

This time, we used another trigger function, str(). It searches for the specified string
in the item data and returns 1 if it's found. The match is case-sensitive.

This trigger will change to the OK state whenever the last value for the item does not
contain the string specified as the parameter. If we want to force this trigger to the
OK state manually, we can just send a trap that does not contain the string the trigger
is looking for. Sending a success value manually can also be useful when another
system is sending SNMP traps. In the case where the problem trap is received
successfully but the resolving trap is lost (because of network connectivity issues, or
for any other reason), you might want to use such a fake trap to make the trigger in
question go back to the OK state. If using the built-in trap-processing functionality, it
would be enough to add trap information to the temporary file. If using the scripted
solution with Zabbix trapper items, zabbix_sender could be used. SNMP trap
management was discussed in Chapter 4, Monitoring SNMP Devices.

Preventing trigger flapping
With the service items and triggers we wrote, the triggers would fire right away, as
soon as the service was detected as being down. This can be undesirable if we know
that a service will be down for a moment during an upgrade because of log rotation
or backup requirements. We can use a different function to achieve a delayed reaction
in such cases. Replacing the last() function with max() allows us to specify a
parameter, and thus react only when the item values have indicated a problem for
some time. For the trigger to fire only when a service has not responded for 5
minutes, we could use an expression such as this:

{A test host:net.tcp.service[ssh].max(300)}=0

Detecting Problems with Triggers Chapter 6

[245]

For this example to work properly, the item interval must not
exceed 5 minutes. If the item interval exceeds the trigger function's
checking time, only a single value will be checked, making the use
of a trigger function such as max() useless.

Remember that, for functions that accept seconds as a parameter, we can also use the
count of returned values by prefixing the number with #, like this:

{A test host:net.tcp.service[ssh].max(#5)}=0

In this case, the trigger would always check the five last returned values. Such an
approach allows the trigger period to scale along if the item interval is changed, but it
should not be used for items that can stop sending in data.

Using trigger functions is the easiest and most widely applied solution for potential
trigger flapping. The previous service example checked that the maximum value over
the last 5 minutes was 0, thus, we were sure that there are no values of 1, which
would mean service is up.

For our CPU load trigger, we used the avg(180) function, checking the average
value for the last 3 minutes. We could also have used min(180)—in this case, a single
drop below the threshold would reset the 3-minute timer, even if the overall average
was above the threshold. Which one should you use? That is entirely up to you,
depending on what the functional requirements are. One way is not always better
than the others.

Checking for missing data
Some items are always expected to provide values, such as the CPU load item. The
problem condition for this item is usually value too large. But there are some items
that are different, for example, an item with the agent.ping key. This item only tells
us whether the agent is available to the server, and it only returns 1 when the agent is
up. And yes, that's it—it does not send 0 when the agent is down; there is no value at
all. We can't write a trigger with the last() function, as the last value is always 1.
The same goes for min(), max(), and avg(). Luckily, there is a function we can use
in this case: nodata(). It allows the trigger to fire if an item is missing data for some
period of time. For example, if we created an agent.ping item on A test host, the
trigger could look like this:

{A test host:agent.ping.nodata(300)=1}

Detecting Problems with Triggers Chapter 6

[246]

Here, the nodata() function is checking whether this item is missing data for 300
seconds, or 5 minutes. If so, the trigger will fire. What's the comparison with 1? All
trigger functions in Zabbix return a number. The nodata() function returns 1 if the
item is missing data and 0 if there's at least one value in the specified time period.
Note that it might not be a good idea to try and guess what return values are
available for a trigger function—if you are not sure, you'd better check the manual for
details. To make it easier, I've added the link for you at the end of this chapter, in the
Further reading section.

The nodata() function is said to be time-based. Normal trigger functions are
evaluated when an item receives a new value. This makes a lot of sense for triggers
against items such as the CPU load item we created earlier—when a value arrives, we
compare it to the threshold. It wouldn't work that well with our agent.ping item,
though. If values were coming in, everything would be good—the trigger expression
would be evaluated, and this function would return 0. If values stopped coming in, it
would not get evaluated and would never fire. Then, if a new value arrived, the
function would get evaluated, would see that new value, and declare that everything
was perfect.

So, in this case, the trigger is not evaluated only when a new value comes in. Instead,
this function is evaluated every 30 seconds. This interval is hardcoded. To be more
specific, any trigger that includes at least one time-based function in the expression is
recalculated every 30 seconds. With the 30-second interval, you should never use a
parameter lower than 30 for the nodata() function. To be safe, never use a parameter
lower than 60 seconds. In Zabbix version 4.0.0, the following trigger functions are
time-based:

date()

dayofmonth()

dayofweek()

nodata()

now()

time()

Refer to the Zabbix manual if you're using a later version—there might be changes to
this list.

Starting from Zabbix 3.2, nodata(), date(), dayofmonth(),
dayofweek(), now(), and time() functions are also calculated for
unsupported items. The other functions require the referenced item
to be in a supported state.

Detecting Problems with Triggers Chapter 6

[247]

Triggers that time out
There are systems that send a trap upon failure, but no recovery trap. In such cases,
manually resetting every single case isn't an option. Fortunately, we can construct a
trigger expression that times out by using the function we just discussed—nodata().
An expression that would make the P state timeout after 10 minutes looks like this:

{Another host:snmptrap.fallback.str(Critical Error)}=1 and
{Another host:snmptrap.fallback.nodata(600)}=0

For now, we want to have more precise control over how this trigger fires, so we
won't change the trigger expression to the previous example's.

Note that adding the nodata() function to a trigger will make that trigger reevaluate
every 30 seconds. Doing this with a large amount of triggers can have a significant
impact on the performance of the Zabbix server.

Triggers with adaptable thresholds
There are monitored metrics that have rather different threshold needs, depending on
the possible range of the value, even when measuring in percentages instead of
absolute values. For example, using bytes for a disk space trigger will not work that
well when disks can range from a few dozen megabytes to hundreds of terabytes or
even petabytes. Applying our knowledge of trigger expressions, we could vary our
threshold depending on the total disk size. For this, we will have to monitor both free
and total disk space:

(
 {host:vfs.fs.size[/,total].last()}<=100GB
 and
 {host:vfs.fs.size[/,pfree].last()}<10
) or
(
 {host:vfs.fs.size[/,total].last()}>100GB
 and
 {host:vfs.fs.size[/,pfree].last()}<5
)

A trigger that requires item values like this with the last function will only work
when all involved items have collected at least one value. In this case, two items are
referenced, each twice.

Detecting Problems with Triggers Chapter 6

[248]

The previous expression has been split for readability. In Zabbix versions prior to 2.4,
it would have to be entered on a single line, but since Zabbix 2.4, newlines and tab
characters are supported in trigger expressions.

This expression will make the trigger act differently in two cases of disk
configuration:

Total disk space being less than or equal to 100 GB
Total disk space being more than 100 GB

Depending on the amount of total disk space, a different threshold is applied to the
free disk space as a percentage—10% for smaller disks and 5% for larger disks.

You might easily expand this to have different thresholds for disks between 100 MB,
10 GB, 100 GB, 10 TB, and higher.

Triggers with a limited period
We discussed hosts and host group maintenance in Chapter 5, Managing Hosts, Users,
and Permissions. That allowed us to stop alerting, but when doing so, the smallest
entity the maintenance could affect was a host; we could not create a maintenance for
a specific trigger without the use of tags. While this is slightly different functionally,
we could limit the time for which a trigger is active on the trigger level, too. To do so,
we can use several of those time-based trigger functions. Taking our CPU load trigger
as an example, we could completely ignore it on Mondays (perhaps there's some
heavy reporting done on Mondays):

{A test host:system.cpu.load.avg(180)}>1 and
{A test host:system.cpu.load.dayofweek()}<>1

The dayofweek() function returns a number with Monday starting at 1, and the
previous expression works unless the returned value is 1. We have to append a
trigger function to an item even if it does not take item values at all, such as in this
case. It is quite counter-intuitive seeing the dayofweek() function after the CPU load
item, but it's a best practice to reuse the same item.

We could also make this trigger ignore weekend mornings:

{A test host:system.cpu.load.avg(180)}>1 and
{A test host:system.cpu.load.dayofweek()}>5 and
{A test host:system.cpu.load.time()}<100000

Detecting Problems with Triggers Chapter 6

[249]

Here, we are checking for the day value to be above 5 (with 6 and 7 being Saturday
and Sunday). Additionally, the trigger time() function is being used. This function
returns the time in HH:MM:SS format, so our comparison makes sure it is not 10:00:00
yet.

Note that this method completely prevents the trigger from firing, so we won't get
alerts, won't see the trigger on the frontend, and there won't be any events being
generated.

We will also discuss a way to limit alerts themselves based on time in Chapter 7,
Acting Upon Monitored Conditions.

Relative thresholds or time shift
Normally, trigger functions look at the latest values—last() gets the last value and
min(), max(), and avg()look at the specified time period, counting back from the
current time. For some functions, we may also specify an additional parameter called
time shift. This will make the function act as if we had traveled back in time; in other
aspects, it will work exactly the same. One feature this allows is creating a trigger
with relative thresholds. Instead of a fixed value such as 1, 5, or 10 for a CPU load
trigger, we can make it fire if the load has increased compared to a period some time
ago:

{A test host:system.cpu.load.avg(3600)}/
{A test host:system.cpu.load.avg(3600,86400)}>3

In this example, we have modified the time period that we are evaluating—it has
been increased to one hour. We have stopped comparing the result with a fixed
threshold; instead, we are looking at the average values from some time
ago—specifically, 86400 seconds, or one day, ago. Functionally, this expression
checks whether the average CPU load for the last hour exceeds the average CPU load
for the same hour one day ago more than 3 times.

This way, the CPU load can be 1, 5, or 500—this trigger does not care about the
absolute value, just whether it has increased more than three times.

Detecting Problems with Triggers Chapter 6

[250]

The second parameter for the avg() function we used was the time shift. To
understand how it gets the values, let's assume that we have added a new item and
that the time shift is set to 1 hour. It is 13:00:00 now, and a new value for the item has
come in. We had previous values for 1 hour at 12:10:00, 12:20:00, and so on, up to
12:50:00. The time shift of one hour would get no values at all, as it would first step 1
hour back to 12:00:00 and then look for all the values 1 hour ago—but the first value
we had was at 12:10:00:

As of Zabbix version 4.0.0, the following functions support the time shift parameter:

avg()

band()

count()

delta()

forecast()

last()

max()

min()

percentile()

strlen()

sum()

timeleft()

Triggers always operate on history data, never on trend data. If
history is kept for one day, a time shift of one day should not be
used, as it is likely to miss some values in the evaluation.

Detecting Problems with Triggers Chapter 6

[251]

Verifying system time
Zabbix can verify a huge number of things, among which is the current time on
monitored systems. Let's create a quick configuration to do just that. We will create an
item to collect the current time and then a trigger to compare that time with the
current time on the Zabbix server. Of course, for this to work properly, the clock on
the Zabbix server must be correct—otherwise, we would complain that it is wrong on
all the other systems.

The first thing is the item to collect—the current time. Go to Configuration | Hosts,
click on Items next to Another host, and then click on Create item. Fill in the
following values:

Name: Local time
Key: system.localtime
Units: unixtime

When you are done, click on the Add button at the bottom. This item returns the
current time as a Unix timestamp. While a unit is not required for our trigger, we
entered unixtime there. This will translate the timestamp to a human-readable value
in the frontend. We discussed item units in more detail in Chapter 3, Monitoring with
Zabbix Agents and Basic Protocols.

In the bar above the item list, click on Triggers, then click on the Create trigger
button. Enter these values:

Name: Incorrect clock on {HOST.NAME}.
Expression: Click on Add and then on Select next to the Item field. In the
item list for Another host, click on Local time in the Name column and
click on Insert. The Expression field is filled with this expression:
{Another host:system.localtime.last()}=0. This isn't actually
what we need, but we tried to avoid the function drop-down here, so we
will edit the expression manually. Change it to read this: {Another
host:system.localtime.fuzzytime(30)}=0. (Another option is to use
the drop-down, select the fuzzytime() function from the list, and add 30
for time.)
Severity: Select the Warning option.

Detecting Problems with Triggers Chapter 6

[252]

When you're done, click on the Add button at the bottom. The fuzzytime() function
accepts a time period as a parameter. This makes it compare the timestamp of the
item with the current time on the Zabbix server. If the difference is greater than the
time specified in the parameter, it returns 0, which is the problem condition we
wanted to catch. Again, if you are not sure about the return value of some trigger
function, you'd better check the Zabbix manual. You can change your local time by
using the timedatectl command.

Don't forget that an incorrect time on the Zabbix server can result in
a huge number of alerts about all other systems.

Human-readable constants
Using plain numeric constants is fine while we're dealing with small values. When an
item collects data that is bigger, such as disk space or network traffic, such an
approach becomes very tedious. You have to calculate the desired value, and from
looking at it later, it is usually not obvious how large it really is. To help here, Zabbix
supports so-called suffix multipliers in expressions—the abbreviations K, M, G, T,
and so on are supported. This results in shorter and way more easy-to-read trigger
expressions. For example, checking disk space for a host called host looks like this at
first:

{host:vfs.fs.size[/,free].last()}<16106127360

With suffix multipliers, it becomes this:

{host:vfs.fs.size[/,free].last()}<15G

This is surely easier to read and modify if the need arises.

Detecting Problems with Triggers Chapter 6

[253]

Another type of constant is time-based. So far, we've only used time in seconds for all
the trigger functions, but that tends to be a bit unreadable. For example, 6 hours
would be 21,600, and it just gets worse with longer periods. The following time-based
suffixes are supported:

s: seconds
m: minutes
h: hours
d: days
w: weeks

The s suffix would simply be discarded, but all others would work as multipliers.
Thus, 21,600 would become 6h, which is much more readable. The SSH service
trigger example we looked at earlier would also be simpler:

{A test host:net.tcp.service[ssh].max(5m)}=0

We have now covered the basics of triggers in Zabbix. There are many more functions
that allow the evaluation of various conditions that you will want to use later on. The
frontend function selector does not contain all of them, so sometimes you will have to
look them up and construct the expression manually. For a full and up-to-date
function list, refer to the official documentation at
https://www.zabbix.com/documentation/4.0/manual/appendix/triggers/function

s.

Customizing how triggers are displayed
With all the details explored regarding trigger configuration, we should be able to
create powerful definitions on what to consider a problem. There are also several
configuration options available to customize the way triggers are displayed.

https://www.zabbix.com/documentation/4.0/manual/appendix/triggers/functions
https://www.zabbix.com/documentation/4.0/manual/appendix/triggers/functions

Detecting Problems with Triggers Chapter 6

[254]

Triggering severities
Navigate to Administration | General and choose Trigger severities in the drop-
down in the upper-right corner:

In this section, we can customize severity labels and their colors. As the information
box at the bottom of this page says, changing severity labels will require updating
translations that anybody might be using in this Zabbix instance.

Triggering display options
Navigate to Administration | General and choose Trigger displaying options in the
drop-down in the upper-right corner:

Detecting Problems with Triggers Chapter 6

[255]

It's not just trigger severity labels that we can modify; we can even change the default
red and green colors, which are used for the PROBLEM/OK states. Even better, the
color can be different, depending on whether the problem has been acknowledged or
not. We discussed trigger state blinking in Monitoring | Overview and other
frontend sections for 30 minutes. On this page, we can selectively enable or disable
blinking based on the trigger state and acknowledgement status, as well as customize
the length of time for which a trigger change is considered recent enough to blink.
The default can be seen here, defined in seconds: 2m. The Use custom event status
colours option allows us to turn on the customization of colors for
acknowledged/unacknowledged problems. This option was added in version 4.0.

Event details
After we have configured the triggers, they generate events, which in turn are acted
upon by actions.

Detecting Problems with Triggers Chapter 6

[256]

We looked at a high-level schema of information flow inside Zabbix,
including item, trigger, and event relationships in Chapter 2,
Getting Your First Notification.

But can we see more details about them somewhere? In the frontend, go to Monitoring |
Problems, and click on date and time in the Time column for the latest entry with
a Problem status.

If you see no problems listed, expand the filter, click on Reset and
select History from the Show option, and make sure that the time
period that's selected is long enough to include some events, for
example, to last 1 day.

This opens up the Event details page, which allows us to determine the event flow
with more confidence. It includes things such as event and trigger details and action
history. The Event list section in the lower-right corner, which includes the previous
20 events, acts as a control, allowing you to click on any of these events and once
again see the previous 20 events from the chosen event. As this list only shows events
for a single trigger, it is very handy if you need to figure out the timeline of one,
isolated problem:

Detecting Problems with Triggers Chapter 6

[257]

Another handy feature that's new in version 4.0 is, as you can see, the use of icons.
They are visible in multiple places, such as, for example, in the problem page and the
event page. They show us a quick overview of what happened with a specific item.
Here is a list of icons that you might encounter and their meaning:

Event generation and recovery expression
Trigger events are generated whenever a trigger changes state. A trigger can be in one
of the following states:

OK: The normal state, when the trigger expression evaluates to false
PROBLEM: A problem state, when the trigger expression evaluates to
true

UNKNOWN: A state when Zabbix cannot evaluate the trigger expression,
usually when there is missing data

Refer to Chapter 20, Zabbix Maintenance, for information on how to
get notifications about triggers becoming UNKNOWN.

No matter whether a trigger goes from OK to PROBLEM, UNKNOWN, or any other
state, an event is generated.

There is also a way to customize this with the PROBLEM events
generation mode multiple option in the trigger properties. We will
discuss this option in Chapter 10, Advanced Item Monitoring.

Detecting Problems with Triggers Chapter 6

[258]

We found out before that we can use certain trigger functions to avoid changing the
trigger state after every change in data. By accepting a time period as a parameter,
these functions allow us to react only if a problem has been going on for a while. But
what if we would like to be notified as soon as possible, while still avoiding trigger
flapping if values fluctuate near our threshold? Here, a specific Zabbix macro (or
variable) helps and allows us to construct trigger expressions that have some sort of
hysteresis—the remembering of state.

A common case is measuring temperatures. For example, a very simple trigger
expression would read like this:

server:temp.last()>20

It would fire when the temperature was 21 and go to the OK state when it's 20.
Sometimes, temperature fluctuates around the set threshold value, so the trigger goes
on and off all the time. This is undesirable, so an improved expression in versions
before 3.2 would look like this:

({TRIGGER.VALUE}=0 and {server:temp.last()}>20) or
({TRIGGER.VALUE}=1 and {server:temp.last()}>15)

As this was rather complex, this feature was replaced in Zabbix 3.2 with a new, more
user-friendly Recovery expression. The only thing we need to do now in our trigger
is select the Recovery expression box from the OK event generation option:

Detecting Problems with Triggers Chapter 6

[259]

You can also think of this as the trigger having two thresholds. One for the error state
and one for the OK state. We expect it to switch to the PROBLEM state when the
values pass the upper threshold at 20 degrees but resolve only when they fall below
the lower threshold at 15 degrees:

How does that change the situation when compared to the simple expression that
only checked for temperatures over 20 degrees? Let's have a look:

In this example case, we have avoided two unnecessary problem states, and that
usually means at least two notifications as well. This is another way of preventing
trigger flapping.

Detecting Problems with Triggers Chapter 6

[260]

Using event tags for correlation
Correlation in Zabbix can be used on two different levels:

On trigger level
On Global level

Trigger level-based correlation: As the name suggests, this occurs on triggers and
can be used to relate different problems to a solution by closing, for example, a
trigger. Trigger-based event correlation, in short, allows us to correlate separate
problems reported by one trigger. It's very useful for log-monitoring, SNMP traps,
and so on. In Chapter 10, Advanced Item Monitoring, we will see how we can use
trigger-based correlation in our log monitoring to close triggers based on tags.

Global-based correlation: This is a way to correlate problems to a solution based on
different triggers by making use of global rules. Global event correlation allows us to
do some preprocessing of problems based on the event tag information on a trigger.
Here, we will create a global correlation rule and, based on this rule, problems can be
closed. This allows us to focus on the root cause of the problems instead of having to
look through a list of trigger problems.

Let's have a look at our event correlation screen by going to Configuration | Event
correlation and clicking on Create correlation:

Detecting Problems with Triggers Chapter 6

[261]

When creating a new condition, we have several options to chose from:

Old event tag: Specify the old event tag for matching
New event tag: Specify the new event tag for matching
New event host group: Specify the new event host group for matching
Event tag pair: Specify new event tag and old event tag for matching
(values are used)
Old event tag value: Specify the old event tag name and value for
matching
New event tag value: Specify the new event tag name and value for
matching

Let's imagine we have a trigger on a MS SQL Server that monitors a log for this
application and detects an error. Let's also imagine we have added a tag on this
trigger with the name Application with the problem tag:

Next, we have another trigger that monitors the service state of this MS SQL Server
with the Service tag and stopped value:

Detecting Problems with Triggers Chapter 6

[262]

We now have two triggers in error state, one that warns us of the errors in the log file
and another trigger that warns us that the service is stopped. What we have to do
now in our global correlation rule is create a rule that closes the old event and only
keeps the new event open:

In our condition, we will create a rule that says that Old event tag Application
equals Ms SQL Server and that the new tag service should contain stopped in our
Operations tab. We can then add that old events can be closed by Zabbix:

Detecting Problems with Triggers Chapter 6

[263]

This will allow us to focus on only one problem by closing the old event, meaning
that we are only focusing on the newly created event.

Of course, it can happen that we first see the service as stopped and
then the error in the log file. For cases like this, we have to create
another correlation rule.

Summary
This chapter was packed with concepts concerning reacting to events that happen in
your monitored environment. We learned how to describe conditions that should be
reacted to as trigger expressions. Triggers themselves have useful functionality with
dependencies, and we can make them depend on each other. We also explored
several ways of reducing trigger flapping right in the trigger expression, including
using functions such as min(), max(), and avg(), as well as trigger hysteresis.

Among other trigger tricks, we looked at the following:

Using the nodata() function to detect missing data
Using the same nodata() function to make a trigger time out
Creating triggers that have different used disk space threshold values
based on the total disk space

Detecting Problems with Triggers Chapter 6

[264]

Creating triggers that only work during a specific time period
Having a relative threshold, where recent data is compared with the
situation some time ago

Remember that if item history is set to 0, no triggers will work, even
the ones that only check the very last value.

Trigger configuration has a lot of things that can both make life easier and introduce
hard-to-spot problems. Hopefully, the coverage of the basics here will help you
leverage the former and avoid the latter.

With the trigger knowledge available to us, we will take the time in the next chapter
to see where we can go after a trigger has fired. We will explore actions that will
allow us to send emails, or even run commands, in response to a trigger firing.

We have seen the different sorts of events and we have seen how we can configure
global event correlation in Zabbix.

Questions
Can we use time notations like 5 m in our trigger functions or do we need1.
to write it in seconds?
Does Zabbix have support for host dependencies?2.
How do I know if my trigger that fired has dependencies?3.
Does Zabbix have support for recovery expressions on triggers?4.

Further reading
Read the following articles for more information regarding what was covered in this
chapter:

Trigger expression: https:/ /www. zabbix. com/documentation/ 4. 0/
manual/ config/ triggers/ expression

Unit symbols: https:/ /www. zabbix. com/ documentation/ 4. 0/manual/
appendix/ suffixes

https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/config/triggers/expression
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes
https://www.zabbix.com/documentation/4.0/manual/appendix/suffixes

7
Acting upon Monitored

Conditions
Now that we know more about triggers, let's see what we can do when they fire. Just
seeing a problem on the frontend is not enough; we probably want to send
notifications using email or SMS, or maybe even attempt to remedy the problem
automatically.

Actions ensure something is done in connection with a trigger firing. Let's try to send
notifications and automatically execute commands.

In this chapter, we will cover the following topics:

Limiting conditions when alerts are sent
Sending out notifications
Escalating once a threshold is reached
Using scripts as media
Integrating with issue management systems
Remote commands
Understanding global scripts

Acting upon Monitored Conditions Chapter 7

[266]

Actions
The trigger list would be fine to look at, and would be way better than looking at
individual items, but that would still be an awful lot of manual work. That's where
actions come in, providing notifications and other methods to react upon in the event
of a change in conditions.

The most common method is email. If you had an action set up properly when we
first configured a fully working chain of item-trigger-action in Chapter 2, Getting
Your First Notification, you will have received an email whenever we started or
stopped a service, created the test file, and so on. Now, let's look at what actions can
do in more detail.

Limiting conditions when alerts are sent
Our previous action, which we created in Chapter 2, Getting Your First Notification,
matched any event, as we had not limited its scope in any way. Now, we will try
matching only a specific condition:

Navigate to Configuration | Actions, select Triggers as the event source,1.
and then click on Create action.

The following activities rely on a correctly configured email setup
(done in Chapter 2, Getting Your First Notification) and a user group
called Our users (added in Chapter 5, Managing Hosts, Users, and
Permissions).

In the Name field, enter SNMP action.2.
Now, look at the Conditions. By default, there were two conditions that3.
were already added in earlier versions. In Zabbix 4, this is no longer the
case, and Maintenance status has been renamed to Problem is
suppressed, while the option Trigger value has made way for Trigger
severity. A few new conditions have been added so that we can react based
on our tags.

Acting upon Monitored Conditions Chapter 7

[267]

For now, let's add Problem is not suppressed and Trigger severity is4.
greater than or equals Not classified:

For our action right now, let's leave the default conditions in place and move to
operations. Operations are the actual activities that are performed:

Switch to the Operations tab and click on the New link in the Action1.
operations block. To start with, we will configure a very simple
action—sending an email to a single user group. This form can be fairly
confusing.

Acting upon Monitored Conditions Chapter 7

[268]

Click on Add in the Send to User groups section, and, in the window that2.
appears, click on Our users. The result should look like this:

Continue from here and click on the main Add link in the Operation3.
details block (just below the Conditions section).
Finally, click on the Add button at the bottom. As we want to properly test4.
how emails are sent, we should now disable the action we
added previously.
Mark the checkbox next to SNMP Action, click on the Disable button at5.
the bottom, and then confirm disabling in the popup.

Now, we require triggers on our SNMP trap items.

Navigate to Configuration | Hosts, click on Triggers next to snmptraps, and click on
Create trigger. Enter the following information:

Name: SNMP trap has arrived on {HOST.NAME}
Expression: {snmptraps:snmptraps.nodata(30)}=0
Severity: Information

Acting upon Monitored Conditions Chapter 7

[269]

Such a trigger will fire whenever a trap arrives, and clear itself approximately 30
seconds later. We discussed the nodata() trigger function in Chapter 6, Detecting
Problems with Triggers. When done, click on the Add button at the bottom.

We will also want to have a trigger fire on Another host:

Let's copy the one we just created. Mark the checkbox next to it and click on1.
Copy.
Choose Hosts in the Target type drop-down, Linux servers in the Group2.
drop-down, and then select Another host:

When done, click on Copy.

To prevent our trap going in the item that has no trigger against it,
go to Configuration | Hosts, click on Items next to Another host,
and either remove the Experimental SNMP trap item, or change its
item key.

One link is still missing—none of the two users in the Our users group has user
media defined. To add media, navigate to Administration | Users, and click on
monitoring_user in the Alias column. Switch to the Media tab and click Add, enter
the email address in the Send to field, and then close the popup by clicking on Add.
We now have to save this change as well, so click on Update.

Now, we have to make a trigger fire. Execute the following from Another host:

$ snmptrap -Ci -v 2c -c public <Zabbix server> "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s
"Critical Error"

Acting upon Monitored Conditions Chapter 7

[270]

Refer to Chapter 4, Monitoring SNMP Devices, for information on
receiving SNMP traps.

Replace <Zabbix server> with the IP or DNS name of the Zabbix server. This value
should end up in the snmptraps item in Another host and make the associated
trigger fire. You can verify that the trigger fires in the Monitoring | Triggers section:

To make our next trap end up in the snmptraps host, go to
Configuration | Hosts, click on Items next to Another host, and
either remove the smptraps item or change its item key.

Then, send another trap from Another host:

$ snmptrap -Ci -v 2c -c public <Zabbix server> "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s
"Critical Error"

As Another host no longer has any snmptraps item, this value should go to the
snmptraps host instead. By now, we should have received an email from our new
action. Let's check out another view—the event view. Open Monitoring | Events and,
take a look at the final few entries:

If you don't see the SNMP events, make sure that both the Group
and Host drop-downs have all selected.

We can see that three events have been successfully registered by now; first, the
SNMP trap item reporting an error on Another host, then resolving it, and, finally,
the trigger on the snmptraps host has fired. But the last column, titled ACTIONS, is
notably different. While the first PROBLEM event has some numbers listed, the most
recent one has nothing. Here's why.

In Zabbix, only users that have at least read-only access to at least
one of the systems, referenced in the trigger, receive notifications.

The snmptraps host was located in the important SNMP host group, and
permissions on it for our user group were explicitly set to deny.

Acting upon Monitored Conditions Chapter 7

[271]

That allows us to overlap host group permissions with action conditions to create
quite sophisticated notification scenarios.

Additional action conditions
So far, we have only used the two default action conditions. Actually, Zabbix
provides quite a lot of different conditions that determine when an action is invoked.
Let's look at some examples of what other conditions are available:

Application: Allows us to limit actions to specific applications. For
example, an action could only react when items belonging to the MySQL
application are involved. This is a free-form field, so it must match the
actual application name. We may also match or negate a sub-string.
Host: Allows us to single out an important (or unimportant) host for action
invocation.
Host group: Similar to the Host condition, this one allows us to impose a
limit based on the host group membership.
Problem is suppressed: Specifies whether the problem is suppressed—yes
or no.
Tag: Specifies what event tag to include or exclude, or whether it should
contain a specific part.
Tag value: Same as tag, but relates to the value of the tag.
Template: Equals, or not, a specific template.
Trigger: This condition allows us to match individual, specific triggers.
Trigger name: A bit more flexible than the previous one, with this
condition, we can limit invocation based on the trigger name—for example,
only acting upon triggers that have the database string in their names.
Trigger severity: We can limit the action to happen just for the highest two
trigger severities, or maybe just for a couple of the lowest severities.
Time period: Operations may only be carried out if a problem has occurred
in a specified time period, or they can be suppressed for a specified time
period instead.

There are more action conditions that are useful in specific use cases—check the list in
the action condition configuration so that you're able to use them later.

Acting upon Monitored Conditions Chapter 7

[272]

Complex conditions
In the action properties, in the Conditions tab, there was also a Type of calculation
drop-down at the very top:

It appears when the action has two or more conditions; hence, as far as we are
concerned, it was always present; the default action came with two conditions
already. Now, let's find out what functionality it offers:

And: All the conditions must be true for the action to match
Or: It is enough for one condition to be true for the action to match
And/Or: Conditions of the same type are evaluated as Or; conditions of
different types are evaluated as And
Custom expression: Full freedom option—you write a formula to define
how the conditions should be evaluated

The first two options are clear enough. And/Or automatically creates the expression
and the logic is based on condition types. For example, let's say we have the following
conditions:

A: Application = MySQL
B: Application = PostgreSQL
C: Trigger severity = High
D: Host group = Database servers

The And/Or option would create a formula: (A or B) and C and D. This works in
a lot of situations, but we might add another condition for a Host group, as follows:

E: Host group = Production servers

Acting upon Monitored Conditions Chapter 7

[273]

Actual placeholder letters are likely to be different in the Zabbix
frontend as the conditions are ordered. Adding or removing a
condition can change the letters of the existing conditions—be
careful when using custom expressions and when conditions are
changed.

The formula would be (A or B) and C and (D or E). The new Host group
condition, being the same type, is or-ed with the previous Host group condition. It is
probably not what the user intended, though. In this case, the desired condition was
hosts that are both in the database server and production server groups. The And/or option
no longer helps help, so we can use a Custom expression. In this case, we would
simply type the formula in the input field provided:

(A or B) and C and (D and E)

Grouping for D and E here is optional; we added it only for clarity.

The situation is even more complicated when negating a number of
conditions. If you would like to skip an action in case a problem
occurs for a host in either group A or group B, having two not host
group conditions such as (A and B) wouldn't work; it would only
match if a host was in both groups at the same time. Making the
expression check for (A or B) would match unless a host is in both
host groups again. For example, if the problem happens on a host
that's in group A, Zabbix would check that the host matched the first
condition. It would tell that the action shouldn't be performed, but
there's the second part including or. The host wouldn't be part of
group B, and thus the action would be performed. Unfortunately,
there's no simple solution for such cases. Creating two actions, each
only negating a single host group, would work.

Dependencies and actions
Another way to limit the notifications sent is trigger dependencies, which come in
really handy here. If a trigger that is dependent on an already active trigger fires, we
have seen the effect on the frontend—the dependent trigger did not appear in the list
of active triggers. This is even better with actions; no action is performed in such a
case. If you know that a website relies on a Network File System (NFS) server, and
have set a corresponding dependency, the NFS server going down would not notify
you about the website problem. When there's a problem to solve, not being flooded
with emails is a good thing.

Acting upon Monitored Conditions Chapter 7

[274]

There's a possible race condition if the item for the dependent trigger is checked more
often. In such a case, the dependent trigger might fire first, and the other one a short
time later, thereby still producing two alerts. While this is not a huge problem for the
trigger displaying in the frontend, this can be undesirable if it happens when actions
are involved. If you see such false positives on a frequent basis, change the item
intervals so that the dependent one always has a slightly longer interval.

Media limits for users
We looked at what limits an action can impose, but there are also possible limits per
media. Navigate to Administration | Users and click on Admin in the ALIAS
column. Switch to the Media tab and click on Add, next to the only media we have
created here:

Admin level users may change their own media. Normal users
cannot change their own media.

When considering limits, we are mostly interested in two sections here—When active
and Use if severity.

As the name indicates, the first of these allows us to set a period when media is used.
Days are represented by the numbers 1-7, and a 24-hour clock notation of HH:MM-
HH:MM is used. Several periods can be combined, separated by semi- colons. This way,
it is possible to send an SMS to a technician during weekends and at night, an email
during workdays, and an email to a help desk during working hours.

In case you are wondering, the week starts on Monday.

Acting upon Monitored Conditions Chapter 7

[275]

For example, a media active period like this might be useful for an employee who has
different working hours over the course of the week:

1-3,09:00-13:00;4-5,13:00-17:00

Notifications would be sent out as follows:

Monday to Wednesday, from 09:00 until 13:00
Thursday and Friday, from 13:00 until 17:00

This period works together with the time period condition in
actions. The action for this user will only be carried out when both
periods overlap.

Use if severity is very useful as well, since that poor technician might not want to
receive informative SMS messages at night—just those indicating a potential disaster.

Click on Cancel to close this window.

In older versions, it was not possible to add multiple email
addresses. Since the release of Zabbix 4.0, it is now possible to add
multiple addresses for one user.

Sending out notifications
Since both of the users specified in the action operations have explicitly been denied
access to the snmptraps host, they were not considered valid for action operations.

Let's give them access to this host now:

Go to Administration | User groups and click on Our users in the1.
Name column.
Switch to the Permissions tab, then mark the read-write box in Important2.
SNMP hosts, and then click on Update. Both users should now have access
to the desired host.

Acting upon Monitored Conditions Chapter 7

[276]

Out triggers have been deactivated by now, so we can send another trap to activate
the one on the snmptraps host.

Notice how no messages were sent when the triggers deactivated,
because of the Trigger value = PROBLEM condition. We will
enable recovery messages later in this chapter.

Run the following commands on Another host:

$ snmptrap -Ci -v 2c -c public <Zabbix server> "" "NET-SNMP-
MIB::netSnmpExperimental" NET-SNMP-MIB::netSnmpExperimental s
"Critical Error"

Wait for a while so that the trigger fires again. Check your email, and you should
have received a notification regarding the host that we were previously not notified
about, snmptraps. Let's see the event list again. Open Monitoring | Problems and
look at the latest entry.

If the Actions column shows a number in an orange color, wait a
couple more minutes. We will discuss the reason for such a delay in
Chapter 20, Zabbix Maintenance.

Oh, but what's up with the weird entry in the Actions column? Those two differently
colored numbers look quite cryptic. Let's try to find out what they could mean by
opening Reports | Action log and looking at the last few entries:

Acting upon Monitored Conditions Chapter 7

[277]

If you don't see any entries, increase the displayed time period.

The STATUS column says that sending the message succeeded for the
monitoring_user, but failed for the advanced_user. Thus, green numbers in the event
list mean successfully sent notifications, while red numbers mean failures. To see why
it failed, move the mouse cursor over the red X in the INFO column:

You can click the red X to make the popup stay when the mouse cursor moves away,
which allows us to copy the error text.

Acting upon Monitored Conditions Chapter 7

[278]

Earlier versions would show the name of our user in the pop-up box
(advanced_user). This is no longer the case, so we have to look in
the recipient column for the exact recipient.

Excellent—that clearly explains what the error is; our advanced_user had no media
entries defined. We can easily deduce that numbers in the event list represent
notification counts—green for successful ones and red for unsuccessful ones. It also
shows us that actions should not be configured to send messages for users that do not
have media correctly set, as such entries pollute the action log and make it harder to
review interesting entries.

While the action log provides more detail, we could have established the error in the
event list as well. Return to Monitoring | Problems and move the mouse cursor over
the red, right-most number 1 in the Actions column. A popup will appear. Click on
the number 1 to make the popup stay and move the mouse cursor over the red X in
the INFO column. The same informative popup will appear, in this case telling us
that there's no media defined for this user.

Using macros
Let's take a careful look at the emails we received (if you have already deleted them,
just send a couple more SNMP traps). The subject and body both mention the trigger
name—SNMP trap has arrived on snmptraps. It looks like it was a good idea to
include the hostname macro in the trigger name. While there's another solution we
will explore right now, a general suggestion is to always include the hostname in the
trigger name. Doing so will avoid cases when you receive an alert, but have no idea
which host has the problem. For example, if we had omitted the hostname macro
from our trigger, the email alerts would have said SNMP trap has arrived.

Another solution is possible in regards to the aforementioned problem; we can use
the macro in the action log to help in this particular case.

To proceed, navigate to Configuration | Actions, click on SNMP action, and then the
operations tab. In the Name column, change the default subject field contents to the
following:

{TRIGGER.STATUS}: {TRIGGER.NAME} on {HOST.NAME}

Acting upon Monitored Conditions Chapter 7

[279]

The use of the word macros can be confusing here. Zabbix calls
them macros, although they might be more correctly regarded
as variables. In this book, we will follow Zabbix terminology, but
feel free to read macro as variable.

The field already contained two macros—{TRIGGER.STATUS} and
{TRIGGER.NAME}. The benefit of a macro is evident when we have a single action
covering many cases. We don't have to create a myriad of actions to cover every
possible situation; instead, we use macros to have the desired information, related to
the particular event, replaced. Macro names usually provide a good idea of what a
macro does. In this case, we improved the existing subject line, which already
contained trigger name and status macros, by adding the hostname macro, though it
is still recommended to include the hostname in trigger names.

To confirm your changes, click on Update. Make the trigger change state by sending
SNMP traps as before, and then check your email. The subject now includes the
hostname. But wait, now the hostname is included twice—what have we done? The
subject is now as follows:

PROBLEM: SNMP trap has arrived on snmptraps on snmptraps

We used the same macro in the trigger name and in the action subject. You should
decide where you would like to specify the hostname and always follow that rule.

There's also something else slightly strange in the emails. At the end of the message
body, there are a number of lines with UNKNOWN in them:

Received SNMP traps (snmptraps:snmptraps): 192.168.56.11 "Critical
Error" NET-SNMP-MIB::netSnmpExperimental
UNKNOWN (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*
UNKNOWN (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*

Let's look at the corresponding action configuration:

Item values:
{ITEM.NAME1} ({HOST.NAME1}:{ITEM.KEY1}): {ITEM.VALUE1}
{ITEM.NAME2} ({HOST.NAME2}:{ITEM.KEY2}): {ITEM.VALUE2}
{ITEM.NAME3} ({HOST.NAME3}:{ITEM.KEY3}): {ITEM.VALUE3}

Acting upon Monitored Conditions Chapter 7

[280]

The number that is appended in these macros, such as in {ITEM.NAME1}, is the
sequential number of the item in the trigger expression. The trigger that sent the
notifications for us referenced a single item only, hence the first reference works,
referencing the second and third items fails, and that outputs *UNKNOWN* in the
message. The default action is meant to be used as an example; in this case,
demonstrating the ability to reference multiple items. If most of your triggers
reference only a single item, it might be desirable to remove the second and third
lines. At this time, there is no way to conditionally print the item value, if it exists.

Sometimes, the receiver of the message might benefit from additional information
that is not directly obtainable from event-related macros. Here, an additional class of
macros helps—the ones used in trigger expressions also work for macro contents.
Imagine a person managing two servers that both rely on an NFS server, which is
known to have performance problems. If the system load on one of these two servers
increases enough to fire a trigger, the alert receiver would want to know the load on
the second server as well, and also whether the NFS service is running correctly. That
would allow them to do a quick evaluation of where the problem most likely lies. If
the NFS service is down, or is having performance problems of its own, then the
system load on these two servers most likely has risen because of that, and the NFS
server admin will have to take care of that. For this person to receive such
information, we can add lines such as these to the email body:

CPU load on Another host: {Another host:system.cpu.load.last()}
NFS service is: {NFS Server:nfs.service.last()}

Make sure to adjust item intervals and trigger expressions to avoid
race conditions for these items.

Note that there is no built-in NFS service item; you have to create proper hosts and
items to be able to reference them like this.

As can be seen in the preceding example, the same syntax is used as in trigger
expressions, including the functions that are supported. This also allows the receiver
to be informed immediately regarding average load over a period of time by adding a
macro such as this:

Average CPU load on Another host for last 10 minutes: {Another
host:system.cpu.load.avg(600)}

Acting upon Monitored Conditions Chapter 7

[281]

You can find a full list of supported macros in the official Zabbix documentation at
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_

by_location.

Sending recovery messages
The setup we used only sent out messages when the problem happened. That was
ensured by the Trigger value = PROBLEM condition, which was added by default.
One way to also enable the sending of messages when a trigger is resolved would be
to remove that condition, but it will not be useful when escalation functionality is
used. Thus, it is suggested leaving that condition in place and enabling recovery
messages on the action level instead.

Let's enable recovery messages for our SNMP trap action:

Go to Configuration | Actions, click on SNMP action in the1.
Name column, and select the Recovery operations tab. Now, we can
customize the recovery message. Instead of sending similar messages for
problems and recoveries, we can make recoveries stand out a bit more.
Hey, that's a good idea. We will be sending out emails to management, so
let's add some feel good thing here.
In the Operations box from our recovery tab, we tell Zabbix to send2.
messages to our user group Our users through all media.

Do not remove the trigger value condition when enabling recovery
messages. Doing so can result in recovery messages being escalated,
and thus generate a huge amount of useless messages.

Click on the Update button.3.

This will make the outgoing recovery messages have a sort of a double
affirmation that everything is good—the subject will start with Resolved:
with the name of the event:. To test the new configuration, set the
trap to generate a problem and wait for the problem to resolve. This time,
two emails should be sent, and the second one should come with our
custom subject.

https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location
https://www.zabbix.com/documentation/4.0/manual/appendix/macros/supported_by_location

Acting upon Monitored Conditions Chapter 7

[282]

In the email that arrives, note the line at the very end that looks similar to this:

Original event ID: 1313

The number at the end of the line is the event ID—a unique identifier of the
occurrence of the problem. It is actually the so-called original event ID. This is the ID
of the original problem, and it is the same in the problem and recovery notifications.
A very useful approach is automatically matching recovery messages with the
problem ones when sending this data to an issue management or ticketing system.
Recovery information can be used to automatically close tickets, or provide additional
information for them.

This ID was produced by a macro, {EVENT.ID}, and, as with many other macros, you
can use it in your actions. If you would want to uniquely identify the recovery event,
there's yet another macro for that—{EVENT.RECOVERY.ID}.

There are a lot of macros, so make sure to consult the Zabbix manual for a full list of
them.

You may or may not have already noticed but, in our recovery
operation, we had no option to send out the recovery option right
away or with a delay, as we could with our error message. This is an
option that is not yet available. Also, imagine a scenario where we
send out our error message after 10 minutes, but the problem is
already resolved after 5 minutes. In this case, we will get an OK
email after 5 minutes but no error message, as we delayed that one
by 10 minutes. This can be confusing. Zabbix has introduced
another tab—Update operations. This works in the same way as the
recovery operations tab, but will send us an update if someone
clicks the Ack button in Zabbix for this issue. Everybody involved
will then receive updates.

Acting upon Monitored Conditions Chapter 7

[283]

Escalating once a threshold is reached
We know how to perform an action if a threshold is reached, such as the temperature
being too high, the available disk space being too low, or a web server not working.
We can send a message, open a ticket in a tracker, run a custom script, or execute a
command on a remote machine. But all of these are simple if-then sequences; if it's
this problem, then do this. Quite often, the severity of the problem depends on how
long the problem persists. For example, a connection loss to a branch office that lasts a
couple of minutes might not be critical, but it's still worth noting down and emailing
IT staff. The inability to reach a branch office for five minutes is quite important, and,
at this point, we would like to open a ticket in the help desk system and send an SMS
to IT staff. After 20 minutes of the problem not being fixed, we would email an IT
manager. Let's look at what tools Zabbix provides to enable such gradual activities
and configure a simple example.

In the frontend, perform the following operations:

Navigate to Configuration | Actions and click on Disabled next to the1.
Test action in the Status column to enable this action
Then, click on Enabled next to the SNMP action2.
Now, click on Test action in the Name column3.

Currently, this action sends a single email to the user Admin whenever a problem
occurs. Let's extend this situation:

Our first user, Admin, will be notified five minutes after the problem
happens, with a one-minute interval. After that, they would be notified
every five minutes until the problem is resolved.
advanced_user is lower-level management who would like to receive a
notification if a problem is not resolved within five minutes.
monitoring_user is a higher-level manager who should be notified in 20
minutes if the problem is still not resolved, and if it has not yet been
acknowledged.

While these times would be longer in real life, in this instance, we are interested in
seeing escalation in action.

Now, we are ready to configure escalations. Switch to the Operations tab.

Acting upon Monitored Conditions Chapter 7

[284]

Looking at the operations list, we can see that it currently contains only a single
operation—sending an email message to the Admin user immediately and only once,
which is indicated by the Steps Details column having only the first step listed:

The first change we would like to perform is to make sure that Admin receives
notifications every minute for the first five minutes after the problem happens. Before
we modify that, though, we should change the default operation step duration,
which, by default, is 3600, and cannot be lower than 60 seconds. Looking at our
requirements, two factors affect the possible step length:

The lowest time between two repeated alerts, in our case, 1 minute.
The biggest common divisor for the starting time of delayed alerts. In our
case, the delayed alerts were required at 5 and 20 minutes, thus, the biggest
common divisor is 5 minutes.

Normally, you would set the default step duration to the biggest common divisor of
both of these factors. Here, that would be 60 seconds, but we may also override step
duration inside an operation. Let's see how that can help us have a simpler escalation
process.

Enter 300 in the Default operation step duration—that's five minutes in seconds, so
5m should give the same result as 300. Now, let's make sure that Admin receives a
notification every minute for the first five minutes. Click on Edit in the Action
operations block.

Acting upon Monitored Conditions Chapter 7

[285]

Notice how the operation details also have a Step duration field. This allows us to
override the action level step duration for each operation. We have an action level
step duration of 300 seconds, but these steps should be performed at one-minute
intervals, so enter 60 in the Step duration field. The two Steps fields denote the step
this operation should start and end with. Step 1 means immediately, thus, the first
field satisfies us. On the other hand, it currently sends the message only once, but we
want to pester our administrator for five minutes. In the Steps fields, enter 6 in the
second field.

Step 6 happens 5 minutes after the problem happened, step 1 is
right away, which is 0 minutes, step 2 is one minute, and so on.
Sending messages for 5 minutes will result in six messages in total,
as we send a message both at the beginning and the end of this
period.

The final result should look like this:

If it does, click on Update in the Operations block, not the button at the bottom yet.
Now, on to the next task: Admin must receive notifications every five minutes after
that, until the problem is resolved.

Acting upon Monitored Conditions Chapter 7

[286]

We have to figure out what values to incorporate in the Steps field. We want this
operation to kick in after five minutes, but notification at five minutes is already
covered by the first operation, so we are probably aiming for 10 minutes. But which
step should we use for 10 minutes? Let's try to create a timeline. We have a single
operation currently set that overrides the default period. After that, the default period
starts working, and even though we currently have no operations assigned, we can
calculate when further steps would be taken:

Step Operation Interval (seconds) Time passed
1 Send message to user Admin Operation, 60 0
2 Send message to user Admin Operation, 60 1 minute
3 Send message to user Admin Operation, 60 2 minutes
4 Send message to user Admin Operation, 60 3 minutes
5 Send message to user Admin Operation, 60 4 minutes
6 Send message to user Admin Operation, 60 5 minutes
7 None Default, 300 6 minutes
8 None Default, 300 11 minutes

Operation step duration overrides periods for the steps included in
it. If an operation spans steps 5-7, it overrides periods 5-6, 6-7, and
7-8. If an operation is at step 3 only, it overrides period 3-4.

We wanted to have 10 minutes, but it looks like this is not possible with this
particular configuration—our first operation puts step 7 at 6 minutes, and reverting to
the default intervals puts step 8 at 11 minutes. To override interval 6-7, we would
have to define some operation at step 7, but we do not want to do that. Is there a way to
configure it in the desired manner? This should be feasible by observing the following:

Click on Edit in the Operations column and change the second Steps field1.
to 5, and then click on Update in the Operation details block. Do not click
on the main Update button at the bottom.
Now, click on New in the Operations block. Let's configure the simple2.
things first.

Click on Add in the Send to Users section in the Operation details block,3.
and click on Admin in the resulting popup. With the first operation
updated, let's model the final few steps again:

Acting upon Monitored Conditions Chapter 7

[287]

Step Operation Interval (seconds) Time passed
...
5 Send message to user Admin Operation, 60 4 minutes
6 None Default, 300 5 minutes
7 None Default, 300 10 minutes
8 None Default, 300 15 minutes

With the latest modifications, it looks like we can send a message after 10 minutes
have passed—that would be step 7, but we actually removed message sending at step
6, after 5 minutes. The good news is that if we now add another operation to start at
step 6, that finishes the first five-minute sending cycle and then keeps on sending a
message every 5 minutes. Perfect!

Enter 6 in the first Steps field. We want this operation to continue until the problem is
resolved, so 0 goes in the second Steps fields. Once complete, click on the Add
control at the bottom of the Operation details block.

We can see that Zabbix helpfully calculated the time when the second operation
should start, which allows us to quickly spot errors in our calculations. There are no
errors here; the second operation starts at 5 minutes, as desired.

With that covered, our lower-level manager, advanced_user, must be notified after
five minutes, but only once. That means another operation, as follows:

Click on New in the Operations block.1.
Click on Add in the Send to Users section and, in the popup, click on2.
advanced_user in the Alias column.
The single message should be simple. We know that step 6 happens after3.
five minutes have elapsed, so let's enter 6 in both Steps fields, and then
click on Add at the bottom of the Operation details block. Again, the Start
in column shows that this step will be executed after five minutes, as
expected.

If two escalation operations overlap steps, and one of them has a
custom interval and the other uses the default, the custom interval
will be used for the overlapping steps. If both operations have a
custom interval defined, the smallest interval is used for the
overlapping steps.

Acting upon Monitored Conditions Chapter 7

[288]

We are now left with the final task—notifying the higher-level manager after 20
minutes, and only if the problem has not been acknowledged. As before, click on
New in the operations block, and then click on Add in the Send to Users section. In
the popup, click on monitoring_user in the Alias column. Now, let's continue with
our planned step table:

Step Operation Interval (seconds) Time passed
...
7 None Default, 300 10 minutes
8 None Default, 300 15 minutes
9 None Default, 300 20 minutes

Since steps just continue with the default period, this shows us that step 9 is the
correct one. As we want only a single notification here, enter 9 in both of the Steps
fields.

It is not required to fill all steps with operations. Some steps in-
between can be skipped if the planned schedule so requires.

An additional requirement was to notify this user only if the problem has not been
acknowledged.

To add such a restriction, execute the following:

Click on New in the Conditions area.1.
The Operation condition block is displayed, and the default setting already2.
has Not Ack chosen, so click on Add in the Operation condition block. The
form layout can be a bit confusing here, so make sure not to click on Add in
the Operation details block instead. While we're almost done, there's one
more thing we can do to make this notification less confusing for upper
management.

Currently, everybody receives the same message—some trigger information
and the last values of items that are being referenced in triggers. Item values
might not be that interesting to the manager, hence we can try omitting
them from those messages. Untick the Default message checkbox and
notice how we can customize the subject and message for a specific
operation.

Acting upon Monitored Conditions Chapter 7

[289]

For the message, remove everything that goes below the Trigger URL line.
For the manager, it might also be useful to know who was notified and
when. Luckily, there's another helpful macro, {ESC.HISTORY}. Let's modify
this message by adding an empty line and then this macro. Here's what the
final result for this operation should look like:

Acting upon Monitored Conditions Chapter 7

[290]

It's all fine, so click on Add at the bottom of the Operation details block. We can now
review action operations and verify that each operation starts when it should.

Everything seems to match the specification. Let's switch to the Recovery operations
tab and, similar to the SNMP action, change the Recovery subject to Resolved:
{TRIGGER.NAME}. This time, we wanted to avoid Resolved: OK:, opting for a single
mention that everything is now fine. Add the users in the recovery operation. We can
finally click on Update. With this notification setup in place, let's break something.
On Another host, execute the following command:

$ rm /tmp/testfile

It will take a short time for Zabbix to notice this problem and fire away the first email
to the Admin user. This email won't be that different from the ones we received
before. But now let's be patient and wait a further 20 minutes. During this time, the
Admin user will receive more messages. What we are really interested in is the
message content in the email to the monitoring_user. Once you receive this
message, look at what it contains:

Trigger: Testfile is missing
Trigger status: PROBLEM
Trigger severity: Warning
Trigger URL:
Problem started: 2016.04.15 15:05:25 Age: 20m
1. 2016.04.15 15:05:27 message sent Email admin@company.tld
"Zabbix Administrator (Admin)"
2. 2016.04.15 15:06:27 message sent Email admin@company.tld
"Zabbix Administrator (Admin)"
3. 2016.04.15 15:07:27 message sent Email admin@company.tld
"Zabbix Administrator (Admin)"
4. 2016.04.15 15:08:27 message sent Email admin@company.tld
"Zabbix Administrator (Admin)"
5. 2016.04.15 15:09:27 message sent Email admin@company.tld
"Zabbix Administrator (Admin)"
6. 2016.04.15 15:10:27 message failed "advanced user
(advanced_user)" No media defined for user "advanced user
(advanced_user)"
6. 2016.04.15 15:10:27 message sent Email admin@company.tld
"Zabbix Administrator (Admin)"
7. 2016.04.15 15:15:28 message sent Email admin@company.tld
"Zabbix Administrator (Admin)"
8. 2016.04.15 15:20:28 message sent Email admin@company.tld
"Zabbix Administrator (Admin)"

Acting upon Monitored Conditions Chapter 7

[291]

As in all other notifications, the time here will use the local time on
the Zabbix server.

It now contains a lot more information than just what happened; the manager has
also received a detailed list of who was notified of the problem. The Admin user has
received many notifications,but advanced_user has not received the notification
because their email address is not configured. There's some work to do in terms of
either this user, or the Zabbix administrators, fixing this issue. And, in this case, the
issue is escalated to the monitoring_user only if nobody has acknowledged the
problem before, which means nobody has even looked into it.

The current setup would cancel escalation to the management user if
the problem is acknowledged. We may create a delayed escalation
by adding yet another operation that sends a message to the
management user at some later step, but does so without an
acknowledgement condition. If the problem is acknowledged, the
first operation to the management user would be skipped, but the
second one would always work. If the problem is not acknowledged
at all, the management user would get two notifications.

If we look carefully at the prefixed numbers, they are not sequential numbers of
entries in the history; they are actually the escalation step numbers. That gives us a
quick overview of which notifications happened at the same time, without comparing
timestamps. The Email string is the name of the media type that's used for this
notification.

Let's fix this problem now; on Another host, execute the following command:

$ touch /tmp/testfile

In a short while, two email messages should be sent—one to the Admin user and one
to monitoring_user. As these are recovery messages, they will both have our
custom subject:

Resolved: Testfile is missing

Acting upon Monitored Conditions Chapter 7

[292]

Our test action had escalation thresholds that are too short for most real-life
situations. If reducing these meant creating an action from scratch, that would be very
inconvenient. Let's see how easily we can adapt the existing one. In the frontend,
navigate to Configuration | Actions, click on Test action in the Name column, and
then switch to the Operations tab. We might want to make the following changes,
assuming that this is not a critical problem and does not warrant a quick response,
unless it has been there for half an hour:

Increase the interval between the additional repeated messages that the
Admin user receives
Increase the delay before the messages to the advanced_user and
monitoring_user are sent
Start sending messages to the Admin user after the problem has been there
for 30 minutes

In the next few steps, be careful not to click on the Update button
too early as that will discard the modifications in the operation that
we are currently editing.

Let's start by changing the Default operation step duration to 1,800 (30 minutes).
Then, click on Edit in the Action column next to the first entry (currently spanning
steps 1-5). In its properties, set the Steps fields to 2 and 6, and then click on the
Update control in the operation details block.

For both operations that start at step 6, change that to step 7. For the operation that
has 6 in both of the Steps fields, change both occurrences the same way as before, and
again, be careful not to click on the Update button yet.

Acting upon Monitored Conditions Chapter 7

[293]

The final result should look like this:

If it does, click on that Update button.

The first change for the default operation step spaced all steps out, except the ones
that were overridden in the operation properties. That mostly achieved our goals to
space out notifications to the Admin user and delay notifications to the two other
users. By changing the first step in the first operation from 1 to 2, we achieved two
goals. The interval between steps 1 and 2 went back to the default interval for the
action (as we excluded step 1 from the operation that did the overriding with 60
seconds), and no message was sent to the Admin user right away. Additionally, we
moved the end step a bit further so that the total number of messages the Admin user
would receive at one-minute intervals would not change. That resulted in some
further operations not being so nicely aligned to the 5-minute boundary, so we
moved them to step 7. Let's compare this to the previous configuration:

Acting upon Monitored Conditions Chapter 7

[294]

This allows us to easily scale notifications and escalations up from a testing
configuration to something more appropriate to the actual situation, as well as
adapting quickly to changing requirements. Let's create another problem. On
Another host, execute the following command:

$ rm /tmp/testfile

Wait for the trigger to fire and for a couple of emails to arrive for the Admin user, and
then solve the problem:

$ touch /tmp/testfile

That should send a recovery email to the Admin user soon. Hey, wait ..., why for that
user only? Zabbix only sends recovery notifications to users who have received
problem notifications. As the problem did not get escalated for the management user
to receive the notification, that user was not informed about resolving the problem
either. A similar thing actually happened with advanced_user, who did not have
media assigned. As the notification was not sent when the event was escalated
(because no email address was configured), Zabbix did not even try to send a
recovery message to that user. No matter how many problem messages were sent to a
user, only a single recovery message will be sent per action.

So, in this case, if the Admin user resolved or acknowledged the issue before
monitoring_user received an email about the problem, monitoring_user would
receive neither the message about the problem, nor the one about resolving it.

As we can see, escalations are fairly flexible and allow you to combine many
operations when responding to an event. We could imagine one fairly long and
complex escalation sequence of a web server going down to proceed as follows:

Email the administrator1.
Send an SMS to admin2.
Open a report at the help desk system3.
Email management4.
Send an SMS to management5.
Restart Apache6.
Reboot the server7.
Power cycle the entire server room8.

Well, the last one might be a bit over the top, but we can indeed construct a fine-
grained stepping up of reactions and notifications about problems.

Acting upon Monitored Conditions Chapter 7

[295]

Runner analogy
Did that escalation thing seem terribly complicated to you? If so, we can try an analogy
that was coined near Salt Lake City.

Imagine there's a runner running through a forest, with a straight route. On this
route, there are posts. The runner has a preferred speed (we might call it a default
speed), which means that it normally takes T seconds for the runner to go from one
post to the next one.

On the posts, there may be instructions. The runner starts from the very first post, and
checks for instructions there. Instructions can order the runner to do various things:

Send an SMS to somebody at this post only
Send an SMS to somebody from this post until post N
Change speed from this post until the next post so as to arrive sooner or
later
Change speed from this post until post N

The route is taken by the runner no matter what. If there are no instructions at the
current post, the runner just continues to the next post.

If this analogy clarified how the action escalation steps are processed by the runner, it
might be worth reviewing this section and possibly gaining a better understanding of
the details, too.

Using scripts as media
While Zabbix supports a decent range of notification mechanisms, there always
comes a time when you need something very specific and the default methods just
don't cut it. For such situations, Zabbix supports custom scripts to be used as media.

Let's try to set one up:

Open Administration | Media types and click on Create media type. Enter1.
the following values:

Name: Test script
Type: Script

Acting upon Monitored Conditions Chapter 7

[296]

Script name: testscript
Script parameters: Click on the Add control and enter
{ALERT.MESSAGE} in the new field:

The {ALERT.MESSAGE} macro will be expanded to the message
body from the action configuration. Currently, two additional
macros are supported in the script parameters – {ALERT.SENDTO}
and {ALERT.SUBJECT}. Consult the Zabbix manual to check
whether any new macros are added in later versions.

When you are done, click on the Add button at the bottom.2.

Now, we should make sure that this media is used at some point:

Go to Administration | Users, click on monitoring_user in the ALIAS1.
column, and switch to the Media tab.
Click on Add in the Media section. In the Type drop-down, select Test2.
script and, in the Send to field, enter user@domain.tld:

Acting upon Monitored Conditions Chapter 7

[297]

The email address won't be passed to our script, but Zabbix does not
allow us to save a media entry with an empty Send to field.

When you are done, click on Add and confirm these changes by clicking on Update in
the user editing form. Before we continue with the script itself, navigate to
Configuration | Actions and then click on Disabled next to SNMP action to enable
this action.

We entered the script name, but where should the script be placed? Now is the time to
return to where we haven't been for some time. Take a look at zabbix_server.conf
and check what value the AlertScriptsPath option has. The default location will
vary depending on the method of installation. If you installed it from the source, it
will be /usr/local/share/zabbix/alertscripts. Distribution packages are
likely to use some other directory. As with root, create a file called testscript in
that directory:

touch /path/to/testscript
chmod 755 /path/to/testscript

Populate it with the following content:

#!/bin/bash
for i in "$@"; do
 echo "$i" >> /tmp/zabbix_script_received.log
done

As you can see, we are simply logging each passed parameter to a file for
examination. Now, generate some SNMP traps so that the snmptraps trigger
switches to the PROBLEM state. Wait for the email to arrive, and then check the
/tmp/zabbix_script_received.log file. It should have content similar to this:

Trigger: SNMP trap has arrived on snmptraps
Trigger status: PROBLEM
Trigger severity: Information
Trigger URL:
Item values:
1. Received SNMP traps (snmptraps:snmptraps): 192.168.56.11 "Critical
Error" NET-SNMP-MIB::netSnmpExperimental
2. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*
3. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*
Original event ID: 397

Acting upon Monitored Conditions Chapter 7

[298]

We can see that the whole message body from action properties is passed here with
newlines intact. If we wanted to also know the user media Send to value to identify
the Zabbix user who received this data, we would also pass the {ALERT.SENDTO}
macro to our alert script. Similarly, to get the subject from the action properties, we
would use the {ALERT.SUBJECT} macro.

If you see message content losing newlines, check the quoting in
your script; all newlines are preserved by Zabbix.

From here, basically anything can be done with the data: passing it to issue
management systems that do not have an email gateway, sending it through some
media not supported directly by Zabbix, or displaying it somewhere.

Now, let's revisit action configuration. Open Configuration | Actions and click on
Test action in the Name column. Now, we have a script being executed whenever
monitoring_user receives a notification. But what if we would like to skip the script for
notification, and only use it in a specific action? Thankfully, we don't have to create a
separate user just for such a scenario:

Switch to the Operations tab and, in the operations block, click on Edit1.
next to the last operation. This will send a message to monitoring_user.
Take a look at the Send only to drop-down. It lists all media types, and2.
allows us to restrict a specific operation to a specific media type only. In
this drop-down, choose Email.
Click on the Update link at the bottom of the Operation details block, and3.
then the Update button at the bottom.

By using the Send only to option, it is possible to use different notification methods
for different situations without creating multiple fake user accounts. For example, a
user might receive an email for the first few escalation steps, and then an SMS would
be sent.

Integrating with issue management systems
Sending out messages to technicians or the help desk is nice, but there are times and
conditions when it is desirable to automatically open an issue in some management
system. This is most easily achieved by using two main integration methods:

Acting upon Monitored Conditions Chapter 7

[299]

Email gateways
APIs that decent systems provide

To implement such an integration, the following steps should be taken:

Create a Zabbix user for the ticketing system notifications.1.
Configure media for this user (the email address that the system receives2.
an email at, or the script to run).
Assign read-only access for resources tickets should be automatically3.
created for (remember, no alerts are sent or scripts run if the user does not
have access to any of the hosts involved in the event generation).
Create a separate action, or add this user as a recipient to an existing action4.
operation with a custom message (by unmarking the Default message
checkbox when editing the operation).

There's also a step 5—either proper message contents should be formatted so that the
receiving system knows what to do with the message, or a script should be created to
access the ticketing system API. This is specific to each system, but let's look at a few
examples. These examples provide only basic information; for added bonus points,
you can add other macros, such as final or average value ones. Note that the specific
syntax might change between ticketing system versions, so check the documentation
for the version you are using.

Bugzilla
Bugzilla is a famous free bug tracker, sometimes abused as a general issue
management system. Still, Zabbix can monitor the status of software tests and open
new tickets if, for example, compilation fails. The following would be configured as
the message body:

@{TRIGGER.NAME}
@product = <some existing product>
@component = <some existing component>
@version = 1.8
{DATE} - {TIME}
{TRIGGER.NAME}.

The From address is used to determine the user account that is creating the bug
report.

Acting upon Monitored Conditions Chapter 7

[300]

Computer Associates Unicenter Service Desk
Manager
CA Service Desk Manager (formerly Unicenter Service Desk), from Computer
Associates, is a solution that provides a ticketing system, among other features. The
following would be configured as the message body:

"start-request"
%CUSTOMER= <some existing user account>
%DESCRIPTION= {DATE} - {TIME}
{TRIGGER.NAME}.
%SUMMARY= {TRIGGER.NAME}.
%PRIORITY= {TRIGGER.NSEVERITY}
%CATEGORY= <some existing category>
"end-request"

Use the {TRIGGER.NSEVERITY} macro here—that's numeric trigger
severity, with Not classified being 0 and Disaster being 5.

Atlassian JIRA
Atlassian JIRA is a popular ticketing system or issue tracker. While it also supports an
email gateway for creating issues, we could look at a more advanced way to do
that—using the API that JIRA exposes. Media type and user media would have to be
created and configured, similar to what we did in the Using scripts as media section
earlier in this chapter, although it is proposed that you create a special user for
running such scripts.

As for the script itself, something like this would simply create issues with an
identical summary, placing the message body from the action configuration in the
issue summary:

#!/bin/bash
json='{"fields":{"project":{"key":"PROJ"},"summary":"Issue
automatically created by
Zabbix","description":"'"$1"'","issuetype":{"name":"Bug"}}}'
curl -u username:password -X POST --data "$json" -H "Content-Type:
application/json" https://jira.company.tld/rest/api/2/issue/

Acting upon Monitored Conditions Chapter 7

[301]

For this to work, make sure to replace the project key, username, password, and URL
to the JIRA instance, and possibly also the issue type.

For debugging, add the curl flag -D-. That will print out the
headers.

This could be extended in a variety of ways. For example, we could pass the subject
from the action properties as the first parameter, and encode the trigger severity
among other pipe-delimited things. Our script would then parse out the trigger
severity and set the JIRA priority accordingly. That would be quite specific for each
implementation, although, hopefully, this example provided a good starting point.

Remote commands
The script media type is quite powerful, and it could even be used to execute a
command in response to an event. For the command to be executed on the monitored
host, though, it would require some mechanism to connect, authorize, and so on,
which might be somewhat too complicated. Zabbix provides another mechanism to
respond to events—remote commands. Remote commands can be used in a variety of
cases, some of which might be initiating a configuration backup when a configuration
change is detected, or starting a service that has died. We will set up the latter
scenario:

Navigate to Configuration | Actions and click on Create action. In the1.
Name field, enter Restart Apache.
Go to Conditions and, in the New condition block, choose Host in the first2.
drop-down. Then, select equals and, in the selection box, start typing
another.
In the drop-down that appears, click on Another host.3.
Click on Add to add the condition (but do not click on the global Add4.
button yet).

Acting upon Monitored Conditions Chapter 7

[302]

Let's create another condition. In the New condition block, in the first drop-down,
choose Trigger name. Leave the second drop-down at the default value. In the input
field next to this, enter Web service is down, and then click on Add control. The
end result should look as follows:

Now, switch to the Operations tab. In the operations block, click on New. In the
Operation details block that just appeared, choose Remote command in the
Operation type field. Zabbix offers five different types of remote command:

Custom script
IPMI
SSH
Telnet
Global script

We will discuss SSH and telnet items in Chapter 10, Advanced Item Monitoring. We
will discuss IPMI functionality in Chapter 14, Monitoring IPMI Devices. Global scripts
will be covered later in this chapter but for now, let's look at the custom script
functionality.

Acting upon Monitored Conditions Chapter 7

[303]

For custom scripts, you may choose to run them either on the Zabbix agent, server, or
the Zabbix proxy. Running on the agent will allow us to gather information, control
services, and do other tasks on the system where problem conditions were
encountered. Running on the server will allow us to probe the system from the
Zabbix server's perspective, or maybe access the Zabbix API and take further
decisions based on that information. Running on a proxy, the script will be executed
by the Zabbix server or proxy, depending on whether the host is monitored by the
Zabbix server or the Zabbix proxy.

If you like to run remote commands, then don't forget to configure
the EnableRemoteCommands option on your agents in the Zabbix
config file.

For now, we will create an action that will try to restart the Apache web server if it is
down. Normally, that has to be done on the host that had the problem. In the Target
list section, click on the New link. The drop-down there will have Current host
selected, which is exactly what we wanted, so click on the Add control just below it.

In the Commands textbox, enter the following:

sudo /usr/bin/systemctl restart httpd (or apache2)

This will be distribution-specific, but most Linux systems today use
systemd, and so does Ubuntu and CentOS. In other cases, it may be
the case that you have to use init.

We are restarting Apache just in case it has stopped responding, instead of simply
dying. You can also enter many remote actions to be performed, but we won't do that
now, so just click on the Add control at the bottom of the Operation details block. To
save our new action, click on the Add button at the bottom.

When running remote commands, the Zabbix agent accepts the
command and immediately returns 1—there is no way for the server
to know how long the command took, or even whether it was run at
all. Note that the remote commands on the agent are run without a
timeout.

Our remote command is almost ready to run, except, on the agent side, there's still
some work to be done, so open zabbix_agentd.conf as root and look for the
EnableRemoteCommands parameter. Set it to 1 and uncomment it, save the config
file, and then restart zabbix_agentd.

Acting upon Monitored Conditions Chapter 7

[304]

That's still not all. As remote commands are passed to the Zabbix agent daemon,
which is running as a zabbix user, we also have to allow this user to actually restart
Apache. As evidenced by the remote command, we will use sudo for this, so edit
/etc/sudoers.d/zabbix on Another host as root and add the following line:

zabbix ALL=NOPASSWD: /usr/bin/systemctl

For additional safety measures, use the visudo command. It should
also check your changes for syntax validity. On some systems, sudo
is only configured to be used interactively. You might have to
comment the requiretty option in /etc/sudoers.

Again, change the script name if you need a different one. This allows the zabbix
user to use sudo and restart the Apache web server. Just restart it; don't stop or do
any other operations.

Make sure that the SMTP server is running on Another host,
otherwise the web service trigger will not be triggered as we had a
dependency on the SMTP trigger. Alternatively, remove that
dependency.

Now, we are ready for the show. Stop the web server on Another host. Wait for the
trigger to update its state and check the web server's status. It should start again
automatically.

By default, all actions get two conditions. One of them limits the
action to fire only when the trigger goes into the PROBLEM state,
but not when it comes back to the OK state. For this action, it is a
very helpful setting; otherwise, the web server would be restarted
once when it was found to be down, and then restarted again when
it was found to be up. Such a configuration mistake would not be
obvious, so it might stay undetected for a while. You should also
avoid enabling recovery messages for an action that restarts a
service.

Note that remote commands on agents only work with passive agents; they will not
work in active mode. This does not mean that you cannot use active items on such a
host. You may do this, but remote commands will always be attempted in passive
mode by the server connected directly to that agent. There might be a situation where
all items are active and, thus, a change in configuration that prevents server-to-agent
connection from working is not noticed, and then the remote command fails to work.
If you have all items active and want to use remote commands, it might be worth
having a single passive item to check whether that type of item still works.

Acting upon Monitored Conditions Chapter 7

[305]

While the need to restart services like this indicates a problem that would be best
fixed for the service itself, sometimes it can work as an emergency solution, or in the
case of an unresponsive proprietary software vendor.

Global scripts
Looking at values and graphs on the frontend is nice and useful, but there are cases
when extra information might be needed right away, or there might be a need to
manually invoke an action, such as starting an upgrade process, rebooting the system,
or performing some other administrative task. Zabbix allows us to execute commands
directly from the frontend—this feature is called global scripts. Let's see what is
available out of the box. Navigate to Monitoring | Problems and click on the
hostname in any of the entries:

Acting upon Monitored Conditions Chapter 7

[306]

The second part of this menu has convenience links to various sections in the
frontend. The first part, labeled SCRIPTS, is what we are after. Currently, Zabbix
ships with three preconfigured scripts—Detect operating system, Ping, and
Traceroute. We will discuss them in a bit more detail later, but for now just click on
Ping. A pop-up window will open with the output of this script:

Notice the slight delay; the target host was pinged three times, and we had to wait for
that to finish to get the output.

Global scripts are available by clicking on the host in several locations in the frontend
from such a context menu. These locations are as follows:

Monitoring | Dashboard (in the Problems widget)
Monitoring | Overview (when hosts are located on the left-hand side)
Monitoring | Latest data (when showing data from more than one host)
Monitoring | Maps
Inventory | Hosts, where clicking on the Host name will open the
inventory overview
Reports | Triggers top 100

Calling those three scripts while preconfigured hinted at the fact that we can
configure our own. Let's do just that.

Acting upon Monitored Conditions Chapter 7

[307]

Configuring global scripts
We will start by examining the existing scripts. Navigate to Administration | Scripts:

The same three scripts we saw in the menu can be seen here. Let's see what they do:

Detect operating system: This script calls nmap and relies on sudo
Ping: Uses the ping utility, and pings the host three times
Traceroute: Calls the traceroute utility against the host

These three scripts are all executed on the Zabbix server, so they should work for any
host, a server with a Zabbix agent, a switch, a storage device, and so on.

We will discuss other options in a moment, but for now, let's see whether all of these
scripts work. Ping should work for most people. Traceroute will require the
traceroute utility to be installed. As for operating system detection, it is unlikely to
work for you out of the box. Let's try and make that one work.

If Zabbix administrators are not supposed to gain root shell access
to the Zabbix server, do not configure sudo, as shown here. There's
a feature in nmap that allows for the execution of commands.
Instead, create a wrapper script that only allows the -O parameter
with a single argument.

Start by making sure that nmap is installed on the Zabbix server. As the script uses
sudo, edit /etc/sudoers.d./zabbix (or use visudo) and add a line like this:

zabbix ALL=NOPASSWD: /usr/bin/nmap

Acting upon Monitored Conditions Chapter 7

[308]

In distribution packages, a Zabbix server might run as the zabbixs
or zabbixsrv user instead; use that username in the sudoers
configuration.

Adapt the nmap path if necessary. Similar to restarting the Apache web server, you
might have to uncomment the requiretty option in /etc/sudoers. Again, all of
these changes have to be executed on the Zabbix server. When finished, run the
operating system detection script from the menu, using one of the locations
mentioned earlier:

The SELinux security framework may prevent global scripts from
working.

Hooray, that worked! The nmap command took some time to run. When running
global scripts on the agent, they obey the same timeout as the remote commands we
discussed earlier in this chapter. This script was run on the server. In this case, there's
a 60-second timeout in the frontend.

Now, on to examining other script options, and also configuring some scripts of our
own. When there's a problem on a system, it might be resource starvation. We might
want to find out which processes on a system are stressing the CPU the most.

Navigate back to Administration | Scripts and click on Create script. For our first
script, fill in the following:

Name: Top CPU using processes
Commands: top -n 1 -b | grep -A 10 "^[]*PID"

Acting upon Monitored Conditions Chapter 7

[309]

In our case, we will leave the other options as is. Here is a short overview of all the
options:

Column Description
Type Click the button to select a type script or IPMI

Execute on

• Zabbix agent—the script will be executed by the Zabbix agent on the host.
• Zabbix server (proxy)—the script will be executed by the Zabbix server or proxy,
depending on whether the host is monitored by a server or proxy.
• Zabbix server—the script will be executed by the Zabbix server only. The option to
execute scripts on the Zabbix agent has been available since the release of Zabbix 2.0
(providing remote commands are enabled in the Zabbix agent config file).

Commands

Enter the full path to the commands to be executed within the script.
The following macros are supported in the commands—{HOST.CONN},
{HOST.IP}, {HOST.DNS}, {HOST.HOST}, and {HOST.NAME}. If a macro
may resolve to a value with spaces (for example, hostname), don't forget to quote
as needed.
Since Zabbix 2.2, user macros are supported in script commands.

Description Enter a description for the script.
User group Select the user group that the script will be available to (or All for all user groups).
Host group Select the host group that the script will be available for (or All for all host groups).
Required host
permissions

Select the permission level for the host group—Read or Write. Only users with the
required permission level will have access to executing the script.

Enable
confirmation

Mark the checkbox to display a confirmation message before executing the script.
This feature might be especially useful with potentially dangerous operations
(such as a reboot script) or ones that might take a long time.

Confirmation
text

Enter a custom confirmation text for the confirmation popup enabled with the
preceding checkbox (for example, Remote system will be rebooted. Are you
sure?). To see how the text will appear, click on Test confirmation next to the field.
Since Zabbix 2.2, the confirmation text will expand hostname
macros—{HOST.HOST}, and {HOST.NAME}, host connection
macros—{HOST.IP}, {HOST.DNS}, and {HOST.CONN}, and user macros.
 The macros will not be expanded when testing the confirmation message.

When done, click on Add. For the top command, we told it to only print the process
list and to do so once only. Then, we grabbed the header line and the next 10 lines
after it – assuming the header line starts with any amount of spaces and a PID string.

We enabled remote commands on Another host earlier. If you
skipped that, make sure to enable them before proceeding.

Navigate to Monitoring | Problems, click on Another host in the Host column, and
then choose Top CPU using processes.

Acting upon Monitored Conditions Chapter 7

[310]

You may use any other location where this context menu is available. We listed these
locations earlier:

In this specific case, the systemd process is using most of the CPU. The Zabbix agent,
which is running on this system, is not even in the top 10 here. Well, to be fair, on this
system, nothing much is happening anyway. All of the processes are reported to be
using no CPU at all.

Other similar diagnostic commands might show some package details, Media Access
Control (MAC) addresses, or any other information that's easily obtained from
standard utilities. Note that getting a list of processes that use the most memory is not
possible with top on most operating systems or distributions; the ps command will
probably have to be used. The following code might provide a useful list of the top 10
memory-using processes:

ps auxw --sort -rss | head -n 11

We are grabbing the top 11 lines here because that also includes the header.

Acting upon Monitored Conditions Chapter 7

[311]

Now, let's configure another script, one that will allow us to reboot the target system.
Navigate to Administration | Scripts and click on Create script. Fill in the following:

Name: Management/Reboot.
Commands: reboot.
User group: This command is a bit riskier, so we will limit its use to
administrative users only; choose Zabbix administrators.
Host group: As this would not work on SNMP devices, it would not make
sense to make it show up for hosts other than Linux systems here; choose
Selected and start typing Linux in the text field. Choose Linux servers in
the drop-down.
Required host permissions: We wouldn't want users with read-only access
to be able to reboot hosts, so choose Write.
Enable confirmation: This is a potentially destructive action, so mark this
checkbox.
Confirmation text: With the previous checkbox marked, we may fill in this
field. Type Reboot this system?.

Even though the group selection field might look similar to other
places where multiple groups can be selected, here, only one host
group may be selected.

We may also test what this confirmation message will look like; click on Test
confirmation:

Acting upon Monitored Conditions Chapter 7

[312]

While the Execute button is disabled right now, we can see that this would look fairly
understandable. Click on Cancel in the confirmation dialog. The final result should
look like the following. If it does, click on the Add button at the bottom:

Now, let's see what this script would look like in the menu. Navigate to Monitoring |
Problems and click on Another host in the Host column. In the pop-up menu, move
the mouse cursor over Management:

Acting upon Monitored Conditions Chapter 7

[313]

Notice how the syntax we used created a submenu; the slash is used as a separator.
We could group Ping, Traceroute, and Top CPU using processes as Diagnostics, add
more entries in the Management section, and create a useful toolset. Note that we can
also use zabbix_get on the server here and poll individual items that we might not
want to monitor constantly. Entries can be nested this way as many times as needed,
but beware of creating too many levels. Such mouseover menus are hard to use
beyond the first few levels, as it is too easy to make a wrong move and suddenly, all
the submenus are closed.

Regarding the Reboot entry, if it seemed a bit risky to add, fear not—it does not work
anyway. First, we had to use sudo for it in the command. Second, we had to
configure sudoers to actually allow the running of that command by the zabbix
user.

Acting upon Monitored Conditions Chapter 7

[314]

Reusing global scripts in actions
Some of the global scripts, added this way only make sense when used interactively.
Most of the data gathering or diagnostic ones would probably fall under this
category. But our reboot entry might be reused in action operations, too. Instead of
configuring such commands individually in global scripts and each action, we would
have a single place to control how the rebooting happens. Maybe we want to change
the reboot command to issue a pending reboot in 10 minutes. That way, a system
administrator who might be working on the system has some time to cancel the
reboot and investigate the problem in more detail.

We already have the global script for rebooting created. If we had a trigger that
warranted rebooting the whole system, we would create an action with the
appropriate conditions. In the action properties, global scripts may be reused by
choosing Remote command in the Operation type drop-down when editing an
operation. Then, in the Type drop-down, Global script must be selected and a
specific script chosen:

As these scripts can be used both from the frontend and in actions, they're not just
called frontend scripts; they are global scripts.

Acting upon Monitored Conditions Chapter 7

[315]

Summary
We started this chapter by discussing actions. Actions are the things controlling what
is performed when a trigger fires, and they have a very wide range of things to
configure at various levels, including conditions of various precision, message
contents, and actual operations performed, starting with simple email sending and
using custom scripts, and ending with the powerful remote command execution. We
also learned about other things affecting actions, such as user media configuration
and user permissions.

Let's refresh our memory on what alerting-related concepts are available:

Trigger is a problem definition including a severity level, with the trigger expression
containing information on calculations and thresholds. Event is something
happening—that is, a trigger changing state from PROBLEM to OK, and so
on. Action is a configuration entity, with specific sets of conditions that determine
when it is invoked and the operations to be performed. Operation is an action
property that defined what to do if this action is invoked, and escalations were
configured with the help of operations. Alert or notification is the actual thing sent
out—an email, SMS, or any other message.

In addition to simple one-time messages, we also figured out how the built-in
escalations work in Zabbix, and escalated a few problems. While escalations allow us
to produce fairly complex response scenarios, it is important to pay attention when
configuring them. Once enabled, they allow us to perform different operations, based
on how much time has passed since the problem occurred, and other factors. We
discussed common issues with notifications, including the fact that users must have
permission to view a host to receive notifications about it, and recovery messages
only being sent to the users who received the original problem message.

By now, we have learned of three ways to avoid trigger flapping, resulting in
excessive notifications:

By using trigger expression functions such as min(), max(), and avg() to
fire a trigger only if the values have been within a specific range for a
defined period of time
By using hysteresis and only returning to the OK state if the current value
is some comfort distance below (or above) the threshold
By creating escalations that skip the first few steps, thus only sending out
messages if a problem has not been resolved for some time

Acting upon Monitored Conditions Chapter 7

[316]

The first two methods are different from the last one. Using different trigger functions
and hysteresis changes the way the trigger works, impacting how soon it fires and
how soon it turns off again. With escalations, we do not affect the trigger's behavior
(thus they will still show up in Monitoring | Triggers and other locations), but we
introduce delayed notification whenever a trigger fires.

Finally, we figured out what global scripts are and tried manually pinging a host and
obtaining a list of the top CPU-using processes on it. As for action operations, we
discussed several ways to react to a problem:

Sending an email
Running a command (executed either on the Zabbix agent or server)
Running an IPMI command
Running a command over SSH or Telnet
Reusing a global script

The last one allowed us to configure a script once and potentially reconfigure it for all
systems in a single location.

When configuring triggers and actions, there are several little things that can both
make life easier and introduce hard-to-spot problems. Hopefully, the coverage of the
basics here will help you to leverage the former and avoid the latter.

In the next chapter, we will see how we can avoid configuring some of the things we
already know, including items and triggers, on each host individually. We will use
templates to manage such configurations on multiple hosts easily.

Questions
Can we send delayed notifications to a user and escalate problems when1.
the issue is not resolved until it is fixed ?
Can we increase the severity level of a trigger when our action sends a2.
message indicating that there is a problem ?

Acting upon Monitored Conditions Chapter 7

[317]

Further reading
Read the following articles for more information on what was covered in this chapter:

Conditions: https:/ /www. zabbix. com/ documentation/ 4.0/manual/
config/ notifications/ action/ conditions

E-mail: https:/ / www. zabbix. com/documentation/ 4. 0/manual/ config/
notifications/ media/ email

https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/action/conditions
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email
https://www.zabbix.com/documentation/4.0/manual/config/notifications/media/email

8
Simplifying Complex
Configurations with

Templates
Our current setup has two hosts with similar enough environments, so we copied
items from one over to another. But what do we do when there are a lot of hosts with
similar parameters to monitor? Copying items manually is quite tedious. It's even worse
when something has to be changed for all the hosts, such as an item interval or a
process name. Luckily, Zabbix provides a means to configure these things in a unified
fashion with the templating system.

We will cover the following topics in this chapter:

Identifying template candidates
Creating a template
Linking templates to hosts
Using multiple templates
Using mass update
Nested templates
Identifying template candidates

Templates allow a Zabbix administrator to reduce their workload and streamline the
configuration. But to deploy the templates properly, we have to first identify use
cases that require or benefit from them. Or, to put it simply—we have to identify
what templates in Zabbix actually are.

Simplifying Complex Configurations with Templates Chapter 8

[319]

When we created the second monitored Linux host, we manually copied items from
the first host. If we wish, we can also copy over triggers. Such copying around isn't
the best job ever, so instead, we can create items and triggers for a template, which
are then linked to the host in question. As a result of the linkage, the host
immediately gets all the items and triggers defined in the template. Later, when we
want to change some item parameters for all the hosts, we only have to do it once.
Changes made to the template propagate to the linked hosts. So, templates make the
most sense for items and triggers that you want to have on multiple hosts, such as
those Linux machines. Even if you have only a single device of a certain class, it might
be worth creating a template for it in case new devices appear that could benefit from
the same configuration.

For example, if we had Apache HTTPD and MySQL running on a host, we could split
all items and triggers that are relevant for each of these services into separate
templates:

Modifying an item in the MySQL template would propagate those changes
downstream in the host. Adding more hosts would be simple; we would just link
them to the appropriate templates. Making a change in the template would apply that
change to all the downstream hosts.

While the snmptraps host we created seems like a good candidate for directly-created
objects, we could have a situation where SNMP agents send in traps that are properly
distributed between configured hosts in Zabbix, but every now and then a device
would send in a trap that wouldn't have a host or corresponding SNMP item
configured. If we still wanted traps like that to get sorted in corresponding items in
our generic trap host, we would again use templates to create such items for
corresponding hosts and our generic host.

Simplifying Complex Configurations with Templates Chapter 8

[320]

Templates are a valuable tool in the Zabbix configuration. That all sounds a bit dry,
though, so let's set up some actual templates.

Creating a template
Open Configuration | Templates. As we can see, there are already 81 predefined
templates, compared with only 38 in Zabbix 3.0. Zabbix has done a great job in
providing us with a bunch of standard templates to start with. We will create our
own specialized one, though; click on Create template. This opens a simple form that
we have to fill in:

Template name: C_Template_Linux
Groups: Custom templates

The C_ at the front of the name stands for custom. We are also creating a new group
to hold our templates in, and instead of going through the group configuration, we
use the shortcut for group creation on this form. When you type in the name, a box
will be shown with our new group name and (new) behind it. Just click on it and the
new group will be created, as there is no group yet with the name Custom
templates. Don't worry about (new) being in the name of the group, that's just an
indication to show us that this is a new group. When you are done, click on Add.

Simplifying Complex Configurations with Templates Chapter 8

[321]

We now have the template, but it has no use—there are no items or triggers in it. Go
to Configuration | Hosts, where we will use a lazy and quick solution; we will copy
existing items and triggers into the new template. Select Linux servers in the Group
drop-down, then click on Items next to Another host. Mark all items by clicking in
the checkbox in the header, next to wizard, and click on the Copy button at the
bottom.

Remember that to select a sequential subset of checkboxes, you can
use range selection; select the first checkbox for the range, hold
down Shift, and click on the last checkbox for the range.

On the next screen, do the following:

Choose Templates in the Target type drop-down, and Custom templates1.
in the Group drop-down.
That leaves us with single entry, so mark the checkbox next to2.
C_Template_Linux in the Target section.
Click on Copy. All items should be successfully copied.3.

In this case, the destination template did not have any items configured. As it is not
possible to have two items for a single host with the same key, attempting to copy
over an already-existing item would fail.

In the upper-left corner, click on the Details link. That expands the messages, and we
can see that all of these items were added to the target template:

Simplifying Complex Configurations with Templates Chapter 8

[322]

Now we have to do the following steps with triggers:

Click on Triggers in the navigation bar above the item list, then click the1.
checkbox in the header next to Severity.
Uncheck the One SSH service is down, because this trigger spans both2.
hosts. If we copied this trigger to the template, that would create all kinds
of weird effects.

The sequence here—copying items first, then triggers—was
important. A trigger cannot be created if an item it references is
missing, so attempting to copy triggers first would have failed.
Copying a trigger will not attempt to copy the items the trigger is
referencing.

Follow these steps:

Click on the Copy button at the bottom.1.
In the next screen, choose Templates in the Target type drop-down and2.
Custom templates in the Group drop-down.
Mark the checkbox next to C_Template_Linux in the Target section, then3.
click on Copy.

All triggers should be successfully copied. Of course, we don't have to create a host
first; create entities on it, then copy them to a template. When creating a fresh
template, you'll want to create entities on the template directly. If you have been less
careful and haven't thought about templating beforehand, copying like this is a nice
way to create the template more quickly.

Linking templates to hosts
Now we'd like to link this template to our very first host, A test host. First, let's
compare item lists between the freshly-created template and that host:

Open Configuration | Hosts in one browser window or tab and1.
Configuration | Templates in another.
In the first window, choose Linux servers in the Group drop-down, then2.
click on Items next to A test host.

Simplifying Complex Configurations with Templates Chapter 8

[323]

In the other one, select Custom templates in the Group drop-down, then3.
click on Items next to C_Template_Linux. Place the windows next to each
other and compare the listings:

We can see that the template has three more items than the host. Looking at the lists
on the left side of the screenshot and the right, we can see that items available on the
template (right) but not on the host (left) are both SNMP-related items that we added
later, experimental SNMP trap and snmptraps, the local time item, and also the check
for a file, Testfile, exists. If the template has four items that the host is missing, but
in total, it only has three items more, then that means the host should have one item
that the template doesn't. That's right, the full OS name exists for the host but is
missing in the template. Keep that in mind, and return to Configuration | Hosts.

Make sure the Group drop-down says either all or Linux servers, and click on A test
host in the Name column. We finally get to use the Templates tab—switch to it. Start
typing C in the Link new templates input field. In the drop-down, our new template,
C_Template_Linux, should be the very first one. Click on it. Even though it might
seem that this template is now added, it actually isn't; if we were to update the host
now, it would not be linked:

Simplifying Complex Configurations with Templates Chapter 8

[324]

Click on the Add control just below the template name. This form can be highly
confusing, so try to remember that you have to do that extra click here. With the
template added to the list, notice that it's actually a link. Clicking it will open template
properties in a new window. When looking at host properties, this offers quick access
to template properties. Such convenient links are available in many places in the
Zabbix frontend:

In the end, click on the Update button at the bottom. We are now welcomed with a
message that tells us that our host is updated with the information from our template:

Simplifying Complex Configurations with Templates Chapter 8

[325]

When a template is linked to a host, identical entities that already
exist on the host are linked against the template, but no historical
data is lost. Entities that exist on the template only are added to the
host and linked to the template.
Do not confuse templates with host groups. They are completely
different things. Groups serve a logical host grouping (and
permission assigning), but templates define what is monitored on a
host, what graphs it has, and so on. What's more, a single host group
can contain both ordinary hosts and templates. Adding a template
to a group will not affect hosts in that group in any way; only
linking that template will. Think of groups as a way to organize the
templates the same way as hosts are organized.

Now, we can check out how linked items appear in the configuration:

Open Configuration | Hosts1.
Click on Items next to A test host:2.

There are two observations we can make right away:

Almost all items are prefixed with a template name (C_Template_Linux in
this case) in grey text. Obviously, this indicates items that are linked from
the template. Clicking on the template name would open an item listing for
that template.
A single item (full OS name) is not prefixed. Remember, this was the only
item existing on the host, but not on the template. If entities exist on the host
only, linking does not do anything to them; they are left intact and attached
to the host directly.

Let's see what a linked item looks like. Click on SMTP server status in the Name
column:

Simplifying Complex Configurations with Templates Chapter 8

[326]

Hey, what happened? Why are most fields greyed out and can't be edited? Well, that's what
a template is about. Most of the entity (in this case, an item) parameters are
configured in the template. As we can see, some fields are still editable. This means
that we still can disable or enable items per individual host, even when they are
linked in from a template. The same goes for the update interval, history length, and a
few other parameters.

We now want to make this particular item for this host slightly different from all
other hosts that the template will be linked to, so let's change these things:

Update interval: 360
History storage period: 60

When you are done, click on Update. Now, this host will have two parameters
customized for a single item, while all other hosts that will get linked against the
template will receive values from the template. Let's link one more host to our
template now. Navigate to Configuration | Templates. Here we can see a full list of
templates, along with the hosts linked to them. The linkage area in this screen shows
various entries and listed entities there have different colors:

Gray: Templates
Green: Enabled hosts
Red: Disabled hosts

Simplifying Complex Configurations with Templates Chapter 8

[327]

Go back to Configuration | Hosts and go to Another host to the Template tab. Link
this host with our template C_Template_Linux, just as we did in previous task, with
our A test host. Take a look at the item SMTP server status on both hosts, and you
will see that our Another host has the interval defined from our template, while
our A test host has the updated values.

You used to be able to link templates to hosts from the Template
section in Zabbix. However, Zabbix SIA has been cleaning up the
interface to make things easier for end users and less confusing, and
this functionality was lost in the process.

Handling default templates
In the template list, you can see many predefined templates. Should you use them as is?
Should you modify them? Or just use them as a reference?

It depends. Carefully evaluate the default templates and decide whether you really
want to use them as is. Maybe item intervals are too low or the history storage period
is too high? If there's anything you would like to change, the suggested approach is to
clone those templates and leave the defaults as-is. That will allow you to update the
official templates later and always have the latest version for reference.

Regarding keeping them in sync, the easiest way is XML import, and we will discuss
that in Chapter 19, Working Closely with Data.

And talking of community-supplied templates, this is something many of you will
want to improve. The user who supplied the template might have had completely
different requirements; they might have misunderstood some aspect of Zabbix
configuration or handled an older device that does not expose as much data as the
one you are monitoring. Always evaluate such templates very carefully and don't
hesitate to improve them. I've added some URLs at the end of this chapter to get you
started including the official page from Zabbix to share templates.

Simplifying Complex Configurations with Templates Chapter 8

[328]

Changing the configuration in a template
Let's try changing an item that is attached to the template:

Open Configuration | Templates, select Custom templates from the1.
Group drop-down and click on Items next to C_Template_Linux.
Click on SMTP server status in the Name column. As we can see, all fields2.
are editable when we edit a directly-attached instance of an item.
Change the History storage period field to read 14d, then click on Update. 3.

When an item is updated in a template, the change is propagated to all linked hosts.
This means that with a single action, both linked hosts have their history-keeping
period set to 14 days now. But we changed two item properties for one downstream
host before, and we just changed one of those for the upstream template. What about
downstreaming the host's other item? Let's find out:

Go to Configuration | Hosts, choose Linux servers in the Group drop-1.
down, and click on Items next to A test host.
In the Name column, click on SMTP server status:2.

We can see that our downstream change for Update interval has been preserved, but
the History storage period value has been overwritten with the one set for the
template. That's because only changed properties are set to downstream when editing
template-attached items. Now click on Cancel.

Simplifying Complex Configurations with Templates Chapter 8

[329]

Macro usage
We previously added triggers from Another host to our template, but we didn't do
that for A test host. Let's find out whether it has some triggers we could use in the
template. Click on Triggers in the Navigation bar above the Items list. From the
directly-attached triggers in the list (the ones not prefixed with a template name), one
is a trigger that takes into account items from two different hosts and we avoided
copying it over before. The other directly-attached triggers are the ones that we are
interested in. Mark the checkboxes next to the CPU load too high on A test host for
last 3 minutes and Critical error from SNMP trap triggers in the Name column, then
click on the Copy button at the bottom. In the next window, choose Templates in the
Target type drop-down, Custom templates in the Group drop-down, then mark the
checkbox next to the only remaining target (C_Template_Linux), and click on Copy.

The two triggers we copied are added to the template. This causes the following:

As A test host is linked to the modified template and it already has such
triggers; these two triggers for that host are updated to reflect the linkage.
Another host does not have such triggers, so the triggers are created and
linked to the template.

While we are still in the trigger list, select Another host in the Host drop-down. Look
carefully at the CPU load trigger that was added to this host in the previous
operation:

Wait, that's definitely incorrect. The trigger refers to A test host, while this is Another
host. The trigger name was correct when we first added it, but now the same trigger
is applied to multiple hosts. In turn, the reference is incorrect for all the hosts except
one. Let's try to fix this:

Select Custom templates in the Group drop-down1.
Click on the CPU load too high on A test host for last 3 minutes trigger in2.
the Name column
Change the Name field to CPU load too high on {HOST.NAME} for3.
last 3 minutes

Click on the Update button4.

Yes, that's right, macros to the rescue again.

Simplifying Complex Configurations with Templates Chapter 8

[330]

The use of the word macros can be confusing here—Zabbix calls
them macros, although they might be more correctly
considered variables. In this book, we will follow Zabbix
terminology, but feel free to read macro as variable.

In the trigger list for the template, the trigger name has now changed to CPU load too
high on {HOST.NAME} for last 3 minutes. That's not very descriptive, but you can
expect to see such a situation in the configuration section fairly often—Zabbix does
not expand most macros in configuration. To verify that it is resolving as expected,
navigate to Monitoring | Problems and expand the filter. Set the Show selection box
to History, and in Problem enter CPU in the Filter by name field, then click on the
Apply button under the filter:

Notice how the trigger name includes the correct hostname now. In most cases, it is
suggested to include a macro such as this in trigger names to easily identify the
affected host.

The macro we used here, {HOST.NAME}, resolves to the host's visible name. We had
no visible name specified and the hostname was used. If a host had the visible name
defined, we could also choose to use the hostname with a macro {HOST.HOST}.

Simplifying Complex Configurations with Templates Chapter 8

[331]

Zabbix made some changes in 4.0. Problem and event names used to
be generated on the fly in the frontend, and on the server side, based
on the respective trigger name with all the macros expanded. That
lead to severe performance issues and also made it impossible to see
historical information about problems if the trigger name had
changed.
Now, problem and event names are stored directly in the events and
problem tables when an event is generated for a problem or
recovery. This change leads to a better separation of triggers and
problems and improves performance, especially that of the frontend,
and maintains historical problem names.

User macros
The macros we used before are built-in. Zabbix also allows users to define macros and
use them later. In this case, it might be even more important to call them variables
instead, so consider using that term too. Let's start with a practical application of a
user macro and discuss the details a bit later.

Go to Configuration | Templates and click on C_Template_Linux in the Templates
column. Switch to the Macros tab and add one new macro:

Macro: {$CPU_LOAD_THRESHOLD}
Value: 1

Simplifying Complex Configurations with Templates Chapter 8

[332]

When done, click on Update. We have defined one macro on the template, but it is
not used at this time. Click on Triggers next to C_Template_Linux, then click on CPU
load too high on {HOST.NAME} for last 3 minutes in the Name column. Change the
trigger properties:

Name: CPU load too high on {HOST.NAME} for last 3 minutes
(over {$CPU_LOAD_THRESHOLD})

Expression:
{C_Template_Linux:system.cpu.load.avg(180)}>{$CPU_LOAD_THR
ESHOLD}

Notice how we used the same user macro name, both in the trigger name and
expression, as in the template properties. When done, click on Update. The changes
we just did had no functional impact—this trigger works exactly the same as before,
except it has a more explanatory name. We replaced the trigger threshold with the
macro, parametrizing it instead of having a hard-coded value. Now we can try
overriding this value for a single host; navigate to Configuration | Hosts and click on
A test host in the Name column. Switch to the Macros tab and switch to the Inherited
and host macros mode:

Notice how, in this form, we can see the macro we just created on the template.
There's also a {$SNMP_COMMUNITY} macro—we will discuss where that one comes
from a bit later. We can also see which exact template is providing the macro that we
created. Although we remember that in this case, in real-world setups, it is an
extremely helpful feature when many templates are linked to a host. To customize
this value on this host, click on the Change control next to
{$CPU_LOAD_THRESHOLD}. The Effective value column input field becomes
editable; change it to 0.9.

Simplifying Complex Configurations with Templates Chapter 8

[333]

Zabbix 3.0 was the first version that allowed us to resolve macros
like this. In previous versions, we would have to know the exact
macro name to be able to override it. There was also no reasonable
way to identify the template supplying the macro.

When done, click on Update. Now we finally have some use for the macro; by using
the same name on the host level, we were able to override the macro value for this
single host. To double-check this change, go to Monitoring | Problems and expand
the filter. Set the Show status box to History and enter CPU in the Filter problem
field, then click on Apply.

Create some load on both machines. Remember that we could use something such as
cat /dev/urandom | md5sum to generate some CPU load. On our problem page,
after some time, we would see problems:

This list confirms that Another host is getting the macro value of 1 from the template,
but A test host has it changed to 0.9. We are still using the same template and the
same trigger, but we changed the trigger threshold for this single host.

Remember the {$SNMP_COMMUNITY} macro we saw in the Inherited and host
macros section from the macro tab on our host . So far, we have covered two locations
where user macros may be defined—the template and host level. There's actually
another location available. Click on the menu on Administration | General and select
Macros in the drop-down in the upper-right corner. This form looks the same as the
template and host macro properties, and there's one macro already defined here:

Simplifying Complex Configurations with Templates Chapter 8

[334]

We'll talk more about this macro in a moment, but first, let's figure out how these
three levels interact. As an example, we can look at a hypothetical use of the macro
we just defined:

In addition to our template and host-level definitions, we could define this macro on
the global level with yet another value; in this example, we used 2. Now, all other
templates and hosts that would not have this macro defined would use the global
value of 2. This change would not affect our template and host, as they have a macro
with the same name already defined. In general, the macro definition that's closest to
the host wins. Zabbix first looks for a macro on the host, then the template, then the
global level.

The macro's name is up to us, as long as we use the allowed
symbols: uppercase letters, numbers, underscores, and a dot.

But what happens if two templates define the same macro and are linked directly to a host?
One of the macro values will be used, and the choice will depend on Zabbix's internal
IDs; do not rely on such a configuration. One way to explicitly override the macro
value would be by introducing yet another template that would be linked directly to
the host and would pull in the two original templates.

Simplifying Complex Configurations with Templates Chapter 8

[335]

We used a user macro in the trigger name and expression as a threshold. Where else
can they be used? Here are some examples:

Item key parameters and item name: We might run SSH on the default
port 22, but override it for some hosts. Note that user macros cannot be
used in the key itself, only in parameters that are enclosed by square
brackets.
Trigger function parameters: We might change the trigger to
{C_Template_Linux:system.cpu.load.avg({$CPU_LOAD_TIME})}>{

$CPU_LOAD_THRESHOLD} and then use {$CPU_LOAD_TIME} to change the
averaging time for some hosts.
SNMP community: This is where the {$SNMP_COMMUNITY} default macro
we saw in the global configuration is used. If that macro had been used in
SNMP item properties, we could use the same template on various SNMP
devices and change the SNMP community as needed.

If you are designing templates that use user macros, it is suggested
to define such macros on the template level in addition to, or instead
of, the global macro. Exporting such a template will not include
global macros, only the macros that are defined on the template
level.

Entities such as items and triggers are configured once in the template. When the
template is applied to many hosts, macros provide a way to create personalized
configurations for linked hosts.

Using multiple templates
There are two monitored hosts now. They both have some services monitored and
linked to the same template. Suddenly, the situation changes: one of the hosts gets a
new function and the email server is removed. Our options from the Zabbix
viewpoint include simply disabling email-related items for that host, or creating a
separate template for it and removing email-server-related entities from the main
template, instead leaving them on the other server. There's a better approach, though:
splitting email-server-related entities into a separate template.

Navigate to Configuration | Templates, then click on the Create template button.
Enter C_Template_Email in the Template name field, select Custom templates in
the Groups box if it's not already selected, then click on Add:

Simplifying Complex Configurations with Templates Chapter 8

[336]

Now, let's populate this template:

Select Custom templates in the Group drop-down and click on Items next1.
to C_Template_Linux
Mark the checkboxes next to SMTP server status and Testfile in the2.
Name column, then click on the Copy button at the bottom
In the next screen, select Templates in the Target type drop-down, and3.
Custom templates in the Group drop-down
Mark the checkbox next to C_Template_Email, then click on Copy4.

That deals with the items—now let's take care of the triggers:

Click on Triggers in the navigation bar above the Items list1.
Mark the checkboxes next to SMTP service is down and Testfile is2.
missing in the Name column. Then click on the Copy button
In the next screen, select Templates in the Target type drop-down, Custom3.
templates in the Group drop-down and mark the checkbox next to
C_Template_Email, then click on Copy

We also have to pull in our test file item and trigger, as the SMTP
trigger depends on the test file trigger. We could not copy the SMTP
trigger, as that would leave an unsatisfied dependency.

Simplifying Complex Configurations with Templates Chapter 8

[337]

We now have a simple dedicated email server template that we can link to the hosts.
It has the same item and trigger regarding the SMTP service as our custom Linux
template. There's a problem though—as they both have an item with the same key,
we cannot link these templates to the same host; it would fail. Attempting to do so
would probably result in a message such as this:

We will perform some steps to change the template linkage:

Unlink C_Template_Linux from A test host and Another host
Remove SMTP related items and triggers from C_Template_Linux
Link C_Template_Email to them both
Link C_Template_Linux back to both hosts

This way, SMTP-related items and triggers will become templated from the email
template, while preserving all collected data. If we deleted those items from the Linux
template and then linked in the email template, we would also remove all collected
values for those items.

Go to Configuration | Hosts, mark the checkboxes next to A test host and Another
host, then click on Mass update. Switch to the Templates tab and mark the Link
templates checkbox and the Replace checkbox. This will unlink the linked templates,
but keep the previously templated entities as directly-attached ones:

Simplifying Complex Configurations with Templates Chapter 8

[338]

We will discuss host mass update in more detail later in the chapter
in the Using mass update section.

Click on Update. Now we will modify the Linux template to remove SMTP related
items and triggers.

Navigate to Configuration | Templates, click on Items for C_Template_Linux, and
mark the checkboxes next to SMTP server status and Testfile exists in the
Name column. At the bottom, click on the Delete button and confirm the popup. If
you expand the details, you will see that the triggers that were depending on these
items got deleted, too—we did not have to delete them manually:

Now we are ready to link in our new email template, and link back the modified
Linux template. We can even do that in one step and we will again use the mass
update function to do that. Go to Configuration | Hosts, mark the checkboxes next to
A test host and Another host, then click on Mass update. Switch to the Templates
tab, mark the Link templates checkbox, and type C_ in the input field. Both of our
templates will show up; click on one of them, then type C_ again, and click on the
other template:

Simplifying Complex Configurations with Templates Chapter 8

[339]

Click on the Update button. Take a look at the template-linkage list in Configuration
| Templates after this operation. Each of the custom templates now has two hosts
linked:

A single host can be linked against multiple templates. This allows for a modular
configuration where each template only provides a subset of entities, thus a server
can be configured to have any combination of basic Linux, email server, web server,
file server, and any other templates.

Of course, with a single item and trigger, this process seems too complex, but usually
the email server would have more parameters, such as mail-server process counts,
SMTP, IMAP, POP3 service status, spam and virus filter status, and queue length. At
that point, the ability to quickly make a collection of metrics monitored on a machine
with a couple of clicks is more than welcome.

The method of unlinking, redesigning, and linking back is a
common and suggested approach to changing template
configurations. Just be careful not to change item keys while
templates are unlinked, or to delete items while they are linked.

Unlinking templates from hosts
We talked about one server losing the email server duties, and linking both templates
to both hosts was not the correct operation. Let's deal with that now:

Open Configuration | Hosts and choose Linux servers in the Group drop-1.
down.
Our first test host will not be serving SMTP any more, so click on A test2.
host in the Name column and switch to the Templates tab:

Simplifying Complex Configurations with Templates Chapter 8

[340]

This section properly lists two linked templates. We now want to unlink
C_Template_Email, but there are two possible actions: Unlink and Unlink
and clear. What's the difference then? Let's try it out and start with the one
that looks safer.

Click on Unlink next to C_Template_Email, then click on Update. Expand3.
the Details link to see what happened:

Both item and trigger got unlinked, so it seems. Was that what we wanted?
Let's see.

Click on Items next to A test host:4.

Simplifying Complex Configurations with Templates Chapter 8

[341]

Well, not quite—SMTP-related items are still there. So a simple unlink does unlinking
only, and leaves a copy of the items on the previously-linked host. That is handy if we
want to create a different item or leave an item on the host to keep data for historical
reasons, but not this time. To solve the current situation, we can manually delete both
triggers and items, but that wouldn't be so easy if the host additionally had a bunch
of directly-attached entities. In that case, we would have to manually hunt them
down and remove them, which allows for mistakes to be made. Instead, let's try a
different route: relink this template, then remove it without a trace:

Click on A test host in the navigation header and switch to the Templates1.
tab.
Start typing C_ in the Link new templates field, then click on2.
C_Template_Email.
Carefully click on the small Add control just below it and then click on3.
Update. Expanding the details will show the SMTP item and trigger getting
linked to the template again. We are now back at our starting point with
two templates linked—time to unlink again.
Click on A test host in the Name column and switch to the Templates tab.4.
Click on Unlink and clear next to C_Template_Email in the Linked5.
templates block, then click on Update, and expand Details:

And now it's done. Both items and triggers are actually deleted. Look at the host list;
notice how the Templates column again offers a quick overview. This comes in
handy when you might want to quickly verify a template linkage for all the hosts in a
particular group:

Simplifying Complex Configurations with Templates Chapter 8

[342]

Using mass update
Similar to items, a mass update can also be used for hosts, and we've already used it a
couple of times. Let's explore in more detail what functionality mass update might
offer here. Go to Configuration | Hosts. In the hosts list, mark the checkboxes next to
A test host and Another host and click on the Mass update button at the bottom.
Then switch to the Templates tab and mark the Link templates checkbox.

Selecting a template is done the same way as in the host properties; we can either type
and search by that substring, or click on the Select button to choose from a list. We
may specify multiple templates in that field, and there is no extra control to click like
in the host properties—we had to click on Add there. In this form, it is enough to
have the template listed in the first field. Switching between mass update and
updating an individual host can be quite challenging as these forms work
differently—be very, very careful.

There are also two checkboxes. Before we discuss what they do, let's figure out what
happens by default. If we list a template or several and then update the configuration,
that template is linked to all selected hosts in addition to the existing templates. The
existing ones are not touched in any way. The checkboxes modify this behavior:

A short overview of the options we have:

Replace: Existing templates are unlinked. As before, any entities coming
from those templates are not touched. Items, triggers, and everything else
that was controlled by that template stays on the host. If the templates we
had specified in this form have items with the same keys, such items are be
linked to the new templates.

Simplifying Complex Configurations with Templates Chapter 8

[343]

Clear when unlinking: Existing templates are unlinked and cleared—that
is, anything coming from them is deleted. It's almost like clearing the host,
except that directly-attached entities would not be touched; only templated
entities are affected.

Of course, if there are any conflicts, such as the same item key being present in two
templates, such a linkage would fail.

We will not modify the template linkage at this time, so click on the Cancel button
here.

Nested templates
The one host still serving emails, Another host, now has two templates assigned. But
what if we separated out in individual templates all services, applications, and other similar
data that can be logically grouped? This would result in a bunch of templates that we
would need to link to a single host. This is not tragic, but what if we had two servers like
that? Or three? Or 20? At some point, even a configuration with templates can become
hard to manage—each host can easily have a template count of a dozen in large and
complicated environments.

This is where simplicity is coupled with powerful functionality. Behind the scenes,
templates aren't that different from hosts. Actually, they are hosts, just somewhat
special ones. This means that a template can be linked to another template, thus
creating a nested configuration.

How does that apply to our situation? Let's create a simple configuration that would
allow the easy addition of more hosts of the same setup. In Configuration |
Templates, click on the Create template button. In the Template name field, enter
C_Template_Email_Server, mark Custom templates in the Groups box.

Switch to the Linked templates tab. Here, we can link other templates to this one. In
the Link new templates selection box, add the following templates by typing C_ and
then selecting both C_Template_Email and C_Template_Linux. Another option is to
press the Select button and to select them from the list of templates. Press the small
Add button in the Link new templates section (not the one all the way at the bottom):

Simplifying Complex Configurations with Templates Chapter 8

[344]

When you are done, click on the Add button at the bottom. We now have a template
that encompasses a basic Linux system configuration with an email server installed
and running, so we still have to properly link it to a host that will serve this role:

Open Configuration | Hosts, click on Another host in the Name column1.
and switch to the Templates tab.
In the Linked templates section, click on both Unlink links.2.
In the Link new templates input field, type email and click on3.
C_Template_Email_Server.
Click on the small Add button, then click on Update at the bottom of the4.
form. The action successfully completes, so expand the Details link.

As we can see here, all elements were unlinked first and updated later. Essentially,
the previous templates were unlinked, but the items and triggers were left in place
and were then relinked to the new template. The biggest benefit from such a sequence
was keeping all the historical item data.

Simplifying Complex Configurations with Templates Chapter 8

[345]

The biggest thing we did here was create a nested template. Such a template is linked
against other templates, thus it inherits all the items, triggers, and other
characteristics, while usually making some modifications to the original template
conditions. In this case, our nested template contains entities from two other
templates, like this:

While that seems to be only a little gain from the previous situation of two templates
linked to a single host, it is a very valid approach when your monitored environment
is slightly larger. If there's a single host that requires a specific combination of
multiple templates, it is fine to link those templates directly to the host. As soon as the
count increases, it is more convenient to set up template nesting, creating a single
template to link for these hosts. When you have done that, adding a new host of the
same class requires linking against a single template only, which greatly simplifies
configuration and minimizes the chance of mistakes.

Looking at the host list, we can see all templates that affect this host in the Templates
column:

Simplifying Complex Configurations with Templates Chapter 8

[346]

Notice how the new C_Template_Email_Server template is listed first, and the two
other templates are listed in parentheses. Templates that are linked directly to the
host are listed first, and second-level templates that are pulled in by the first level are
listed in parentheses. Only the first two levels are shown her—if we had more levels
of nesting, we would not see them in the host list.

Let's review a templated item now. From the host list, perform the following steps:

Click on Items next to Another host.1.
Click on SMTP server status in the Name column. This time we are2.
interested in the very first row here, Parent items:

This is something that shows up in templated items. Higher-level items can be seen
and accessed here, and for this item, there are two levels displayed. Templates that
are closer to the host are listed last, and the very first template is the one the item
originates from. If we had more than two levels, they would be shown as well. This
line works as a quick way to get information on where a particular item originates
from and what could modify it, as well as a convenience access to the upstream item.
If we spot a simple mistake in some templated item, we can go to higher-level items
with one click, instead of going to Configuration | Templates, finding the correct
page and/or template, then repeating that for the item. The same parent entity
convenience access line is available for triggers and other entities, too.

When using a nested template setup, the inherited macro resolution helper is even
more helpful. If we had a single host and a single template, without the helper, we'd
first check the macro on the host; if it's not defined there, we'd check for it on the
template, and if not defined there either, on the global level. With nested templates,
we would have to check all the templates individually. With the helper, we can see
the outcome and which exact template is providing the value from that same macro
tab in the host properties.

Simplifying Complex Configurations with Templates Chapter 8

[347]

Template nesting is a convenient way to group templates and apply a single template
to the target hosts, while still having different functionality properly split up and
reused in multiple lower-level templates. Nevertheless, care should be taken not to
create excessive nesting. Two levels of nesting are quite common, but one advanced
Zabbix user admitted that designing a templating system with five levels of nesting
was a bit excessive, and they would restrict themselves to a maximum of four levels
next time.

Summary
In Zabbix, templates play a major role in simplifying the configuration and allowing
large-scale changes. If you are a proficient user of word processors, you probably use
styles. The same concept is used in text, CSS styles for the web, and
elsewhere—separating content from the presentation helps to reduce the amount of
work required when changes have to be made.

While the comparison to styles might seem far-fetched at first, it actually is similar
enough. Just like styles, you can separate a host from the services you provide, and
you can define these services in a centralized fashion. In the same way that a word
document has a heading style that allows you to change the font size for all headings
of that level with one action, templates in Zabbix allow you to change some
parameter for all linked hosts, whether direct or nested.

We used several locations that allow us to modify template linkages in Zabbix:

Host properties: This allows us to link, unlink, and unlink and clear
multiple templates from a single host
Host mass update: This allows us to link multiple templates to multiple
hosts, as well as unlinking, or unlinking and clearing, all the previously
linked templates (but not unlinking, or unlinking and clearing, a specific
template)
Template properties: This allows us to link and unlink (and clear) linked
templates

In the preceding list, we could also talk about templates where we talk about hosts.
That would be used when managing nested template configuration.

Simplifying Complex Configurations with Templates Chapter 8

[348]

Macros in Zabbix are like variables—they provide a generic placeholder that is later
replaced with a host-specific value. We looked at some built-in macros and also user
macros that allow us to define our own variables to have customized items, triggers,
and other entities on the host level.

As we saw with all the rearrangement of items and triggers in templates, it is easier to
plan a sane template policy before getting to the actual configuration. It is strongly
suggested that you sit down and draw at least a very basic hierarchy of monitored
things before rushing into the configuration—that will make things easier in the long
run.

In the next chapter, we will look at the ways data can be visualized in Zabbix. We'll
start with graphs and network maps, and see how various runtime information can
be displayed. We will discuss graph customization and usage in detail.

Questions
Can I use an item with a trigger in a template on multiple hosts and have1.
different thresholds for the trigger?
If I use templates, can I still make host-level changes on my items?2.
Can I link my template to a group so that the group gets all items, triggers,3.
and so on from the template?

Further reading
Read the following articles for more information also the Zabbix share website is the
official Zabbix website to share you templates:

Configuring a template: https:/ /www. zabbix. com/documentation/ 4. 0/
manual/ config/ templates/ template

User macros: https:/ / www. zabbix. com/documentation/ 4. 0/manual/
config/ macros/ usermacros

Zabbix share: https:/ / share. zabbix. com/

zabbix-community-repos: https:/ /github. com/ monitoringartist/
zabbix- community- repos

https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/templates/template
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://www.zabbix.com/documentation/4.0/manual/config/macros/usermacros
https://share.zabbix.com/
https://share.zabbix.com/
https://share.zabbix.com/
https://share.zabbix.com/
https://share.zabbix.com/
https://share.zabbix.com/
https://share.zabbix.com/
https://share.zabbix.com/
https://share.zabbix.com/
https://share.zabbix.com/
https://github.com/monitoringartist/zabbix-community-repos
https://github.com/monitoringartist/zabbix-community-repos
https://github.com/monitoringartist/zabbix-community-repos
https://github.com/monitoringartist/zabbix-community-repos
https://github.com/monitoringartist/zabbix-community-repos
https://github.com/monitoringartist/zabbix-community-repos
https://github.com/monitoringartist/zabbix-community-repos
https://github.com/monitoringartist/zabbix-community-repos
https://github.com/monitoringartist/zabbix-community-repos
https://github.com/monitoringartist/zabbix-community-repos
https://github.com/monitoringartist/zabbix-community-repos
https://github.com/monitoringartist/zabbix-community-repos
https://github.com/monitoringartist/zabbix-community-repos
https://github.com/monitoringartist/zabbix-community-repos

9
Visualizing Data with Screens

and Slideshows
We will explore a few visualization options in this chapter. Compound elements
(which have nothing to do with map elements) allow us to combine individual
elements and other sources to provide a more informative or good-looking overview.
We might want to see a map of our network together with a graph of main outbound
links, and perhaps also a list of current problems.

We cover the functionality of screens and slide-shows in this
chapter, but keep in mind that Zabbix SIA would like to remove this
functionality in future versions. The idea is that it is deprecated and
can be replaced with the revamped home screen, as it can be shared
and supports widgets.

We will cover the following topics:

Configuring and sharing dashboards
Screens that can include other entities, including global and templated or
host screens
Slideshows that change displayed information on a periodic basis
automatically
Showing data on a big display

Visualizing Data with Screens and Slideshows Chapter 9

[350]

Configuring and sharing dashboards
The new dashboard in Zabbix has improved a lot over the years, and the idea of
Zabbix SIA is that the dashboard should be a single piece of information that gathers
all kind of information. It's probably inspired by the success of things such as
Grafana.

Let's take a look at the dashboard more closely. Since we've already seen how to
configure some of the widgets, let's take a look how we can configure our dashboard
and share it with others.

Configuring the dashboard
The configuration of our dashboard can be done very easily by clicking in the top-
right on the Edit dashboard button:

By clicking this button, we arrive at some sort of configuration mode for our
dashboard, and when we move our mouse over one of the widgets, we see that a box
is drawn around the widget:

Visualizing Data with Screens and Slideshows Chapter 9

[351]

Moving our mouse over one of these lines allows us to change the size of the widget.
Moving our mouse away to the middle will change our mouse cursor into four
arrows, which indicates that we are now able to move our widget around.

In short, we are now able to resize our widget and change the position of our widgets.
This allows us to change the look of the dashboard by resizing widgets as we need.
Think of the problem widget; we can now create a widget with the exact size we need
to see the number of problems.

Looking at the Edit dashboard button that we clicked on earlier, we now see that it
has changed into four different options:

The first icon is the wheel. When we click on the wheel, we are able to configure the
dashboard and change the owner and the name of our dashboard:

The Add widget button gives us the option to add new widgets to our dashboard:

Visualizing Data with Screens and Slideshows Chapter 9

[352]

Here, we can select the type of widget we'd like to add and configure the name we'd
like to give it, set the refresh interval per widget, the way we sort things, and the
number of lines to show. As we can see, there is a nice long list of widgets to choose
from—let's hope that this is only the start of it:

We will not go over every widget as this would take up too much time, and after all,
widgets are not too difficult to configure. However, there is one widget that is very
interesting. The Graph widget appears twice in this list, once as Graph and once as
Graph (classic).

As it turns out, Zabbix has improved not only the look and the functionalities of the
dashboard, but also how graphs look in our dashboard. Graph (classic) is still the old
graph style that we know from our items, and the Graph widget contains the new
look, not to say the Graphana-style look:

Visualizing Data with Screens and Slideshows Chapter 9

[353]

This is a much more appealing look than what we are used to. Too bad it only works
in the frontend at the moment, but this was a well-thought-out decision as it would
have cost resources from our Zabbix server. Once done and happy with our look, we
can save the changes by clicking on the Save changes button.

Sharing our dashboard
Now that our dashboard looks how we want it to look, it's time to look into how we
can share it with the rest of our team:

Click on the Actions button next to Edit dashboard:1.

Visualizing Data with Screens and Slideshows Chapter 9

[354]

We are presented with a new pop-up menu where we can select sharing,2.
create new, clone, and delete. I think the last three options speak for
themselves, so let's have a look at sharing:

If you have experience with graphs and maps sharing, this popup should look
familiar to you. The box type allows us to choose between making our dashboard
available to the public or making it private.

Public speaks for itself; we share it with everybody else. When choosing Private, it is
only visible to us. However, after the Type tab, we have two more options to choose
from—List of user group shares and List of user shares.

If we don't want to make our dashboard publicly available, we still have the option to
share it with specific users or with specific groups of users. This allows us to build
dashboards and share them with other users or specific groups of users .

The third button with the two arrows pointing to both the corners of the screen is the
button to go fullscreen, however there are still some parts visible from the menu, such
as the name and the buttons—edit dashboard, for example. The Fullscreen button has
changed a bit and now has four arrows, instead of two, pointing to all corners of our
screen:

This is what we call the kiosk mode in Zabbix; it allows us to remove all unnecessary

Visualizing Data with Screens and Slideshows Chapter 9

[355]

information from the screen so that we can maximize the view of our dashboard for
monitors without any distraction.

Top-level navigation, user-level content, and the dashboard and all
widgets in view mode (except for the map navigation tree) are now
readable by a screen-reader. All interactive elements (except maps)
can now be accessed by pressing the Tab key.

Screens
The graphs and maps we are familiar with cannot be combined into a single page on
their own—for that, we may use an entity called a screen.

Let's create one together:

Navigate to Monitoring | Screens, and click on the Create screen button.1.
Enter Local servers in the Name field and 2 in the Columns field. We2.
will be able to add more later, if needed:

As with network maps, screens may also be created and shared by
users.

Visualizing Data with Screens and Slideshows Chapter 9

[356]

Click on Add, and then click on Constructor next to Local servers. We are3.
presented with a fairly unimpressive view:

So, it's up to us to spice it up.

Click on the left-hand Change link, and we have an editing form replacing4.
the previous cell's contents. The default resource type is graph, and we
created some graphs earlier.
Click on Select next to the Graph field. In the upcoming window, make5.
sure A test host is selected in the Host drop-down, and then click on CPU
load & traffic.
That's all we want to configure here for now, so click on Add.6.
Now, click on the right-hand Change link and then on Select next to the7.
Graph field.
In the next window, click on Used diskspace (pie). Remember how we tuned8.
the pie chart dimensions before? When inserting elements for screens, we
override their configured dimensions.
Our pie chart has to share space with the other graph, so enter 390 in the9.
Width field and 290 in the Height field, and then click on Add.
While we can immediately see the result of our work here, let's look at it in10.
all its glory; go to Monitoring | Screens and click on Local servers in the
Name column:

Visualizing Data with Screens and Slideshows Chapter 9

[357]

It is not required to save a screen explicitly, unlike most other
configuration sections. All changes are immediately saved.

We now have both graphs displayed on a single page. But hey, take a look at the
preceding screen: the controls there look very much like the ones we used for graphs.
And they are—using these controls, it's possible to do the same things as with graphs,
only for all the screen elements. We can make all screen elements display data for a
longer period of time or see what the situation was at some point in the past.

Two graphs are nice, but earlier, we talked about having a map and a graph on the
same page. Let's see how we can make that happen.

Click on All screens shown in the preceding screenshot, and click on Constructor
next to Local servers. We want to add our map at the top of this screen, but we can
see here that we created our screen with two columns and single row, so we have to
add more. Couldn't we do that in the general screen properties, using the same fields we used
when we created the screen? Of course we could, but with one limitation: increasing the
column and row count that way will only add new columns and rows to the right or
at the bottom, respectively. There is no way to insert rows and columns at arbitrary
positions using that form. That's why we will use a different approach.

Reducing the column and row count is only possible from the right-
hand side and bottom when using the generic screen properties
form. Any elements that have been configured in the removed fields
will also be removed.

Look at those + and - buttons around the screen. They allow you to insert or remove
columns and rows at arbitrary positions. While the layout might seem confusing at
first, understanding a few basic principles should allow you to use them efficiently:

Buttons at the top and bottom operate on columns
Buttons on the left and right operate on rows
+ buttons add a column or row before the column or row they are
positioned at
- buttons remove the column or the row where they are positioned

Visualizing Data with Screens and Slideshows Chapter 9

[358]

In this case, we want to add another row at the bottom:

Click on the lower-left + icon in the first column, the column that has1.
+ controls only, not the one that has a graph already. This adds a row below
our graphs with two columns, both having a Change link, just like before.
Click on the first Change link. It's not a graph we want to add, so choose2.
Map from the Resource drop-down.
Click on Select next to the Map field, and then click on First map. If we3.
leave other parameters as they are, the map will appear on top of the left-
hand column. Having it centered above both columns would look better.
That's what the Column span option is—enter 2 in that field, and then click
on Add.

As can be immediately seen, this screen element now spans two columns. This
capability is not limited to maps; any element can span multiple columns or rows.

Dynamic screens
We now have a screen that contains a network map and two graphs, showing data
about A test host. Now, we should create a screen showing data for Another host.
We'll probably have to repeat all the steps we performed for this one as well. That
would be quite bad, especially for many hosts, wouldn't it? That's why there is a
different, much easier approach.

Click on the Change link after the CPU load & traffic graph in the screen
configuration, and look at the last parameter in there:

Let's find out what a dynamic item means—mark this option and click on Update.
While that seem to have done, edit the other graph, mark the Dynamic item
checkbox, and click on Update. It's now time to check out the result—go to
Monitoring | Screens, and click on Local servers in the Name column. Look at the
available drop-downs at the top of the screen:

Visualizing Data with Screens and Slideshows Chapter 9

[359]

As soon as we marked some elements as dynamic, we were given the choice of other
hosts. Let's check out how well this works. Select Linux servers from the Group drop-
down and Another host from the Host drop-down:

Wonderful! Elements marked as dynamic now show data from the selected host,
while non-dynamic elements show the same data no matter which host is selected.
The static elements could be maps, like in our screen, but they could also be graphs if
the Dynamic item option hasn't been checked for them. That would allow us to
switch a screen to show server information in some graphs, but other graphs could
keep on showing general network information.

Only graphs from hosts can be added to screens; graphs from
templates cannot. For a dynamic screen item, there is a risk that the
host from which the graph was initially selected gets deleted, thus
breaking the screen. Old versions of Zabbix allowed us to include
graphs from templates here, and that functionality might return
later.

Visualizing Data with Screens and Slideshows Chapter 9

[360]

Additional screen elements
This is a nice, simple screen, but there were many more available screen elements to
choose from, so let's create another screen:

Go to the list of screens. If a screen is shown in the monitoring view, click1.
on All screens, and then click on the Create screen button.
In the resulting form, enter Experimental screen in the Name field,2.
enter 2 for both the Columns and Rows fields, and then click on Add.
In the screen list, click on Constructor next to Experimental screen.3.
Click on the Change link in the upper-left cell.4.
In the Resource drop-down, choose Simple graph, and then click on Select5.
next to the Item field.
Select A test host from the Host drop-down.6.

As we can see, all the simple graphs that are available without any manual
configuration can also be added to a screen. Here, click on the CPU Load entry. In the
Width field, enter 600, and then click on Add. Click on the Change link in the upper-
right cell. Choose History of events from the Resource drop-down, change Show
lines from 25 to 10, and then click on Add.

Well, suddenly our graph doesn't look that great anymore—it should be taller to fit
this layout. We could place it below the events list, but that would require deleting it
and reconfiguring the lower-right cell. Well, not quite. Drag the graph to the lower-
right cell and release the mouse button:

Visualizing Data with Screens and Slideshows Chapter 9

[361]

Previous Zabbix versions highlighted the target cell to inform the
user that the object would be placed there. This functionality has
been lost since Zabbix 3.0.0.

The element (in this case, a graph) is moved from one cell to another, requiring no
reconfiguration of individual cells. The upper-left cell is now empty, so click on
Change there. Select Triggers info from the Resource drop-down and Linux servers
from the Group box, select Vertical in the Style option, and then click on Add.

This screen element provides us with high-level information on trigger distribution
by severity. Let's populate this screen even more now:

Click on the Change link in the lower-left corner.1.
In the screen element configuration, select Triggers overview from the2.
Resource drop-down, and start typing linux in the Group field.
Click on Linux servers from the drop-down. We have more triggers than3.
hosts in this group; select Top for the Hosts location option, and click on
Add. The elements are misaligned again, right?

We'll try out some alignment work now. Click on the second + button from the top in
the first column (next to the overview element we just added). This inserts a row
before the second row. Drag the Triggers overview element (the one we added last)
up one row, to the first cell in the row we just added. Click on the Change link for the
History of events element (upper-right cell), enter 20 in the Show lines field and 2 in
the Row span field, and click on Update.

Our screen now looks quite nice, except that the lower-left corner is empty.

Visualizing Data with Screens and Slideshows Chapter 9

[362]

Click on Change in that cell, select System info from the Resource drop-down, and
then click on Add. The screen looks fairly well-laid-out now. Let's look at it in the
monitoring view by going to Monitoring | Screens and clicking on Experimental
screen in the Name column:

It was mentioned earlier that all graphs show the same time period in a screen. That is
true if the graphs are added as normal screen elements. It is possible to add graphs
that show a static period of time using the URL screen element, which allows us to
include any page in a screen. In that case, the URL should point back to the Zabbix
frontend instance. For example, showing a simple graph could be achieved using a
URL such
as http://zabbix.frontend/zabbix/chart.php?period=3600&itemids[0]=2
3704&width=600.

Visualizing Data with Screens and Slideshows Chapter 9

[363]

You can find out the item ID by opening the simple graph of that item and looking at
the URL. Note that the width of the graph image should be manually adjusted to
match the screen cell width and avoid scrollbars in the screen cell. This way, we could
configure a screen that shows hourly, daily, weekly, monthly, and yearly graphs of
the same item.

As we discovered, screens in Zabbix allow very flexible visual layouts. You can
choose to have a map, followed by more detailed graphs; or you can have graphs of
the most important information for a group of servers, and a trigger summary at the
top; or any other combination: there are many more possible screen elements to be
added. It might be a good idea to try out all of the available screen elements and see
what information they provide.

As screens can contain lots of information, they can be performance-
intensive, especially if many users look at them at the same time.

Templated screens
The screens we have configured so far are global screens—they can contain lots of
different elements, are available in the Monitoring | Screens section, and, if some
elements are set to be dynamic, we can choose any other host in the drop-down to see
its data. Zabbix also offers another way to configure and use screens: templated
screens, also known as host screens. These are configured on a template and are then
available for all the hosts that are linked to that template. Let's create a simple screen:
navigate to Configuration | Templates and click on Screens next to
C_Template_Linux. Then, click on the Create screen button. In the Name field, enter
Templated screen, and click on Add. As with global screens, click on Constructor
in the Actions column. So far, the configuration has been pretty much the same. Now,
click on the Change link in the only cell, and expand the Resource drop-down. The
list of available resources is much smaller than it was in the global screens. Let's
compare those lists.

Visualizing Data with Screens and Slideshows Chapter 9

[364]

The global screen resources are as follows:

The templated screen resources are as follows:

As can be seen, global screens offer 19 different types of elements, while templated
screens offer only 7.

For our screen right now, leave the Resource drop-down at Graph and click on Select
next to the Graph field. Notice how the current template is selected and cannot be
changed—all elements added to a templated screen must come from the same
template.

In the popup, perform the following steps:

Click on CPU load & traffic in the Name column, and then click on Add.1.
Click on the + icon in the upper-right corner to add another column, and2.
click on the Change link in the rightmost cell.
In the Resource drop-down, choose Simple graph, click on Select next to3.
the Item field, and then click on CPU Load in the Name column.
Click on the Add button.4.

Visualizing Data with Screens and Slideshows Chapter 9

[365]

Navigate to Configuration | Hosts and take a look at the available columns5.
for each host. There is no column for screens. Templated or host screens are
only configured on the template level; they do not get a copy on the host
whereas items, triggers, and other entities do.

Let's go to Monitoring | Screens. If we look at the screen list there, the screen we just
configured cannot be found. Templated or host screens can only be accessed from the
host pop-up menu in the following locations:

Monitoring | Dashboard (in the Problems widget)
Monitoring | Problems (if hosts are in problem state)
Monitoring | Overview (if hosts are in the leftmost column)
Monitoring | Latest data (if filtering by the Host field isn't done)
Monitoring | Maps

They are also available from these two pages:

Global search results
The host inventory page

Let's move on to Monitoring | Maps: click on Host group elements in the
Name column. In the map, click on either A test host or Another host. This time, the
Host screens entry in the menu is enabled—click on that one:

Visualizing Data with Screens and Slideshows Chapter 9

[366]

The screen we configured earlier opens, showing the data from this specific host:

If we had multiple screens configured in this template, they would be available in the
drop-down in the upper-right corner. Remember that these screens will only be
available for hosts that are linked to this template.

One thing to notice on this screen is the difference in height for both graphs. When
configuring the screen, we did not change the height value, and it was the same for
both graphs, 100. Unfortunately, that's not the height of the whole graph, but only of
the graph wall area. As a result, if you have different item counts, a trigger or a
percentile line will result in a different graph height. For a screen, this means a
tedious configuration to get the dimensions to match. The same also applies to
width—there, having one or two Y-axis values will result in a different graph width.

If the legend is disabled for a custom graph, the height will not vary
based on item count. There is currently no way to show the legend
for a custom graph when it is displayed on its own and hide it when
the custom graph is included in a screen.

Should we use a templated or global screen? Several factors will affect that decision:

The availability of the elements (global screens have many more)
Navigation (Monitoring | Screens versus the popup menus)
Which and how many hosts need such a screen

Visualizing Data with Screens and Slideshows Chapter 9

[367]

Slide shows
We now have a couple of screens, but to switch between them, a manual interaction is
required. While that's mostly acceptable for casual use, it would be hard to do if you
wanted to display them on a large display for a helpdesk. Manual switching would
soon get annoying even if you simply had Zabbix open on a secondary monitor all
the time.

Another functionality comes to the rescue: slideshows. Slideshows in Zabbix are
simple to set up, so go to Monitoring | Screens. Why a screen page? Zabbix changed
the slideshow operations in 3.0 to be the same way as maps and screens by moving
both viewing and configuration to the monitoring section.

Slideshows didn't get their own section, though; to access them, perform the
following steps:

Choose Slide shows from the drop-down in the upper-right corner.1.
Click on the Create slide show button. Enter First slide show in the2.
Name field, and click on the Add control in the Slides section. Slides are
essentially screens, which is what we can see in the popup.
Click on Local servers. We do not change the default value in the Delay3.
field for this slide or screen. Leaving it empty will use the value of 30s
from the preceding Default delay field.
Click on Add in the Slides section, and then click on Experimental screen.4.
This time, enter 5s in the Delay field for this screen:

Visualizing Data with Screens and Slideshows Chapter 9

[368]

Notice the handles on the left-hand side—the same as in graphs and icon mapping;
we can reorder the slides here. We won't do that now; just click on the Add button at
the bottom.

If you want to add a single element to a slideshow, such as a map or
graph, you will have to create a screen that contains only this
element.

Now, click on First slide show in the Name column. It starts plain, showing a single
screen, and it then switches to the other screen after 30 seconds, then back after 5
seconds, and so the cycle continues. As we have dynamic screen items included in the
slideshow, we can also choose the host in the upper-right corner—this will affect the
dynamic screen items only.

We could show more screens; for example, a large high-level overview for 30 seconds,
and then cycle through the server group screens, showing each one for 5 seconds.

Take a look at the buttons in the upper-right corner:

The first button allows us to add this slideshow to the dashboard favorites, the same
as with graphs and screens. The third button is the full-screen one again. But the
middle button allows us to slow down or speed up the slideshow; click on it:

Visualizing Data with Screens and Slideshows Chapter 9

[369]

Instead of setting a specific time, we can make the slideshow faster or slower by
applying a multiplier, thus maintaining the relative time for which each slide should
be displayed.

There's also another reason to choose global screens over templated or host screens:
only global screens can be included in slideshows.

Old versions of Zabbix had a memory leak in the slideshow functionality. There have
also been several cases of memory leaks in browsers. If you see browser memory
usage consistently increasing while using Zabbix slideshows, consider upgrading. If
that is not possible, one of the slides could reload the page using a URL element and
JavaScript, which, in most cases, should reduce memory usage. The
website http://www.phpied.com/files/location-location/location-location.ht
ml suggests 535 different ways of doing this.

Both screens and slideshows can also be created by normal users and then shared
since Zabbix 3.0, the same way how we share maps in Chapter 21, Visualizing Data
with Graphs and Maps. As with maps, other users will need access to all the elements
and sub-elements included in such screens and slideshows to be able to access them.

Showing data on a big display
While visualization on an individual level is important, the real challenge emerges
when there's a need to create views for a large display, usually placed for help desk or
technical operators to quickly identify problems. This poses several challenges.

Challenges
Displaying Zabbix on a large screen for many people requires taking into account the
display location, the experience level of the people who will be expected to look at it,
and other factors that can shape your decisions on how to configure this aspect of
information. Since Zabbix 3.2, Zabbix SIA has made more and more progress on the
front dashboard to make it more dynamic and polished. It's probably best to create
graphs in this dashboard and share them with other users. Another solution that is to
use some third-party software, such as Grafana.

http://www.phpied.com/files/location-location/location-location.html
http://www.phpied.com/files/location-location/location-location.html
https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf

Visualizing Data with Screens and Slideshows Chapter 9

[370]

Non-interactive display
In the majority of cases, data displayed on such a screen will be non-interactive;
people are expected to view it, but not click around. Such a requirement is posed
because drill-down usually happens on individual workstations, leaving the main
display accessible for others. Additionally, somebody could easily leave the main
display in an unusable state, so no direct access is usually provided. This means that
data placed on the display must not rely on the ability to view problem details. It
should be enough for the level of technical support to gather the required knowledge.

Information overload
Having to place all information regarding the well-being of the infrastructure of an
organization can result in a cluttered display, where too many details in a font that's
way too small are crammed on the screen. This is the opposite of the previous
challenge; you would have to decide which services are important and how to define
each of them. This will require you to be working closely with the people responsible
for those services so that correct dependency chains can be built. This is the method
used most often to simplify and reduce displayed data while still keeping it useful.

Both of these challenges can be solved with careful usage of screens
and slideshows that display properly-dependent statuses. Do not
rely on slide shows too much—it can become annoying to wait for
that slide to come by again, because it was up for a few seconds only
and there are now 10 more slides to cycle through.

Displaying a specific section automatically
There are some more requirements for a central display: it should open automatically
upon boot and display the desired information, for example, a nice geographical map.
While this might be achieved with some client-side scripting, there's a much easier
solution, which we have already explored.

Visualizing Data with Screens and Slideshows Chapter 9

[371]

As a reminder, go to Administration | Users, click on monitoring_user in the
Alias column, and look at two of the options: Auto-login and URL (after login):

If we marked the Auto-login option for a user that is used by such a display station, it
would be enough to log in once, and that user would be logged in automatically upon
each page access. This feature relies on browser cookies, so the browser used should
support and store cookies. The URL (after login) option allows the user to
immediately navigate to a specified page. All that's left is that the display box
launches a browser upon boot and point, to the Zabbix frontend URL, which should
be simple to set up. When the box starts up, it will, without any manual intervention,
open the specified page (which will usually be a screen or slideshow). For example, to
open a screen with an ID of 21 whenever that user accesses the Zabbix frontend, a
URL like this could be used:
http://zabbix.frontend/zabbix/screens.php?elementid=21. To open that
screen in Zabbix's fullscreen mode, a fullscreen parameter has to be appended:
http://zabbix.frontend/zabbix/screens.php?elementid=21&fullscreen=

1.

When displaying data on such large screens, explore the available options and
functionality carefully; perhaps the latest data display is the most appropriate in some
cases. When using trigger overviews, evaluate the host/trigger relationship and
choose which should be displayed on which axis.

Visualizing Data with Screens and Slideshows Chapter 9

[372]

Summary
In this chapter, we first looked at configuring and sharing the new Zabbix dashboards
and then learned to combine graphs, maps, and other data on a single page by using
screens. Screens are able to hold a lot of different elements, including the statistics of
currently-active triggers, and even history and any custom page, by using the URL
element. The URL element also allows us to create a screen that contains graphs
showing different time periods. The screens are available on both the global and
template levels.

Especially useful for unattended displays, slideshows allow us to cycle through
screens. We can set the default delay and override it for individual screens. To
include a single map or graph in a slideshow, we still have to create a screen
containing that map or graph.

In the next chapter, we will try to gather data using more advanced methods. We'll
look at reusing already-collected data with calculated and aggregate items, running
custom scripts with external checks, and monitoring log files. We will also try out the
two most popular ways to get custom data in Zabbix—user parameters on the agent
side and the great zabbix_sender utility.

Questions
How can we create slideshows?1.
If I have a slideshow that has a standard delay of five seconds, can I slow2.
down or speed up the slideshow?
Should I create screens and slideshows to show in our NOC, or is there a3.
better way?

Further reading
The following are a few links to the information in the Zabbix documentation that we
have looked at in this chapter:

Screens: https:/ /www. zabbix. com/ documentation/ 4.0/ manual/ config/
visualisation/ screens

Slide shows: https:/ / www. zabbix. com/documentation/ 4. 0/manual/
config/ visualisation/ slides

https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/screens
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides
https://www.zabbix.com/documentation/4.0/manual/config/visualisation/slides

10
Advanced Item Monitoring

Having set up passive and active Zabbix agent items, simple checks such as ICMP
ping or TCP service checks, or SNMP and IPMI checks, can we go further? Of course
we can. Zabbix provides several more item types that are useful in different
situations—let's try them out.

In this chapter, we'll explore log file monitoring; computing values on the server from
the already collected data; running custom scripts on the Zabbix server or agents;
sending in complete custom data using a wonderful utility, zabbix_sender; and
running commands over SSH and Telnet. Among these methods, we should be able
to implement the monitoring of any custom data source that isn't supported by
Zabbix out of the box.

Let's have a short overview of the topics that we'll touch on:

Log file monitoring
Event tags
Reusing data on the server
External checks
User parameters
SSH and Telnet items
Dependent items and value preprocessing

Log file monitoring
Log files can be a valuable source of information. Zabbix provides a way to monitor
log files using the Zabbix agent. For that, two special keys are provided:

log: Allows us to monitor a single file
logrt: Allows us to monitor multiple rotated files

Advanced Item Monitoring Chapter 10

[374]

Both of the log monitoring item keys only work as active items. To see how this
functions, let's try out the Zabbix log file monitoring by actually monitoring some
files.

Monitoring a single file
Let's start with the simpler case, monitoring a single file. To do so, we could create a
couple of test files. To keep things a bit organized, let's create a
directory, /tmp/zabbix_logmon/, on A test host and create two files in there,
logfile1 and logfile2. For both files, use the same content as this:

2018-08-13 13:01:03 a log entry
2018-08-13 13:02:04 second log entry
2018-08-13 13:03:05 third log entry

Active items must be properly configured for log monitoring to
work; we did that in Chapter 3, Monitoring with Zabbix Agents and
Basic Protocols.

With the files in place, let's proceed to creating items:

Navigate to Configuration | Hosts, click on Items next to A test host, then1.
click on Create item. Fill in the following:

Name: First logfile
Type: Zabbix agent (active)
Key: log[/tmp/zabbix_logmon/logfile1]
Type of information: Log
Update interval: 1s

Advanced Item Monitoring Chapter 10

[375]

When done, click on the Add button at the bottom.2.

As mentioned earlier, log monitoring only works as an active item, so we used that
item type. For the key, the first parameter is required; it's the full path to the file we
want to monitor. We also used a special type of information here, log. But what about
the update interval, why did we use such a small interval of one second? For log items, this
interval isn't about making an actual connection between the agent and the server; it's
only about the agent checking whether the file has changed: it does a stat() call,
similar to what tail -f does on some platforms/filesystems. A connection to the
server is only made when the agent has anything to send in.

With active items, log monitoring is both quick to react, as it's
checking the file locally, and avoids excessive connections. It could
be implemented as a somewhat less efficient passive item, but that's
not supported.

With the item in place, it shouldn't take longer than three minutes for the data to
arrive—if everything works as expected, of course. Up to one minute could be
required for the server to update the configuration cache, and up to two minutes
could be required for the active agent to update its list of items. Let's verify this:
navigate to Monitoring | Latest data and filter by host, A test host. Our First
logfile item should be there, and it should have some value as well:

Advanced Item Monitoring Chapter 10

[376]

Even short values are excessively trimmed here. It's hoped that this will
be improved in further releases. If the item is unsupported and the
configuration section complains about permissions, make sure
permissions actually allow the Zabbix user to access that file. If the
permissions on the file itself look correct, check the execute permission
on all the upstream directories too. Here and later, keep in mind that
unsupported items will take up to 10 minutes to update after the issue
has been resolved.

As with other non-numeric items, Zabbix knows that it can't graph logs, hence there's
a History link on the right-hand side; let's click on it:

All of the lines from our log file are here. By default, Zabbix log monitoring parses
whole files from the very beginning. That's good in this case, but what if we wanted to
start monitoring some huge existing log file? Not only would that parsing be wasteful,
we would also likely send lots of useless old information to the Zabbix server.
Luckily, there's a way to tell Zabbix to only parse new data since the monitoring of
that log file started. We could try that out with our second file and, to keep things
simple, we could also clone our first item. Let's proceed with the following steps:

Navigate to Configuration | Hosts, click on Items next to A test host, then1.
click on First logfile in the Name column. At the bottom of the item
configuration form, click on Clone and make the following changes:

Name: Second logfile
Key: log[/tmp/zabbix_logmon/logfile2,,,,skip]

There are four commas in the item key; this way, we're skipping
some parameters and only specifying the first and fifth parameters.

When done, click on the Add button at the bottom.2.

Advanced Item Monitoring Chapter 10

[377]

The same as before, it might take up to three minutes for this item to start working.
Even when it starts working, there will be nothing to see in the latest data page; we
specified the skip parameter and hence only new lines would be considered.

Allow at least three minutes to pass after adding the item before
executing the following command. Otherwise, the agent won't have
the new item definition yet.

To test this, we could add some lines to Second logfile. On A test host, execute
the following:

 $ echo "2018-12-1 10:34:05 fourth log entry" >>
/tmp/zabbix_logmon/logfile2

This and further fake log entries increase the timestamp in the line
itself; this isn't required, but looks a bit better. For now, Zabbix
would ignore that timestamp anyway.

A moment later, this entry should appear in the latest data page:

If we check the item history, it's the only entry, as Zabbix only cares about new lines
now.

The skip parameter only affects behavior when a new log file is
monitored. While monitoring a log file with and without that
parameter, the Zabbix agent doesn't re-read the file, it only reads the
added data.

Filtering for specific strings
Sending everything is acceptable with smaller files, but what if a file has lots of
information and we're only interested in error messages? The Zabbix agent may also
locally filter the lines and only send to the server the ones we instruct it to. For
example, we could grab only lines that contain the error string in them. Modify the
Second logfile item and change its key to the following:

log[/tmp/zabbix_logmon/logfile2,error,,,skip]

Advanced Item Monitoring Chapter 10

[378]

Add an error after the path to the log file. Note that now there are three commas
between error and skip; we populated the second item key parameter. Click on
Update. The same as before, it may take up to three minutes for this change to
propagate to the Zabbix agent, so it's suggested to let some time pass before
continuing. After making a cup of tea, execute the following on A test host:

 $ echo "2018-12-1 10:45:05 fifth log entry" >>
/tmp/zabbix_logmon/logfile2

This time, nothing new will appear in the Latest data page; we filtered for the error
string, but this line had no such string in it. Let's add another line:

$ echo "2018-12-1 10:54:05 sixth log entry - now with an error" >>
/tmp/zabbix_logmon/logfile2

Checking the history for the logfile2 item, we should only see the latest entry:

How about using some more complicated conditions? Let's say we would like to filter for
all error and warning string occurrences, but for warnings only if they're followed
by a numeric code that starts with the numbers 60-66. Luckily, the filter parameter is
actually a regular expression. Let's modify the second log monitoring item and
change its key to the following:

log[/tmp/zabbix_logmon/logfile2,"error|warning 6[0-6]",,,skip]

We changed the second key parameter to "error|warning 6[0-6]", including the
double quotes. This regular expression should match all errors and warnings that
start with the numbers 60-66. We had to double quote it, because regular expression
contained square brackets, which are also used to enclose key parameters. To test this
out, let's insert our log file several test lines in, but just like with the previous test, let's
wait three minutes:

$ echo "2018-12-1 11:01:05 seventh log entry - all good" >>
/tmp/zabbix_logmon/logfile2
$ echo "2018-12-1 11:02:05 eighth log entry - just an error" >>
/tmp/zabbix_logmon/logfile2
$ echo "2018-12-1 11:03:05 ninth log entry - some warning" >>
/tmp/zabbix_logmon/logfile2

Advanced Item Monitoring Chapter 10

[379]

$ echo "2018-12-1 11:04:05 tenth log entry - warning 13" >>
/tmp/zabbix_logmon/logfile2
$ echo "2018-12-1 11:05:05 eleventh log entry - warning 613" >>
/tmp/zabbix_logmon/logfile2

We could speed up the process by reloading the Zabbix server
configuration cache. This is done every 60 seconds. We still have to
wait till the active agent asks for the Zabbix server for the latest
update; this is done every 120 seconds. The server configuration can
be reloaded on the Zabbix server by running the following
command:
zabbix_server -R config_cache_reload

Based on our regular expression, the log monitoring item should do the following:

Ignore the seventh entry, as it contains no error or warning at all
Catch the eighth entry, as it contains an error
Ignore the ninth entry, it has a warning but no number following it
Ignore the tenth entry, it has a warning, but the number following it doesn't
start within the 60-66 range
Catch the eleventh entry, it has a warning, the number starts with 61, and
that is in our required range, 60-66

Eventually, only the eighth and eleventh entries should be collected. Verify that, in
the latest data page, only the entries that matched our regular expression were
collected:

Advanced Item Monitoring Chapter 10

[380]

The regular expression we used wasn't very complicated. What if we would like to
exclude multiple strings or do some other, more complicated, filtering? With the PCRE
regular expressions, that could be somewhere between very complicated and
impossible. There's a feature in Zabbix, called global regular expressions, which
allows us to define regular expressions in an easier way. If we had a global regexp
named Filter logs, we could reuse it in our item like this:

log[/tmp/zabbix_logmon/logfile2,@Filter logs,,,skip]

Regular expression support in Zabbix has been switched from
POSIX extended regular expressions to Perl Compatible Regular
Expressions (PCRE) for enhanced regular expressions and
consistency with the frontend. This was switch implemented in
Zabbix 3.4.

Global regular expressions are covered in more detail in Chapter 11, Automating
Configuration.

Monitoring rotated files
Monitoring a single file wasn't terribly hard, but there's a lot of software that uses
multiple log files. For example, the Apache HTTP server is often configured to log to
a new file every day, with the date included in the filename. Zabbix supports
monitoring such a log rotation scheme with a separate item key, logrt. To try it out,
follow these steps:

Navigate to Configuration | Hosts, click on Items next to A test host, then1.
click on Create item. Fill in the following:

Name: Rotated logfiles
Type: Zabbix agent (active)
Key: logrt["/tmp/zabbix_logmon/access_[0-9]{4}-
[0-9]{2}-[0-9]{2}.log"]

Type of information: Log
Update interval: 2s

When done, click on the Add button at the bottom.2.

Advanced Item Monitoring Chapter 10

[381]

But the key and its first parameter changed a bit from what we used before. The key
is now logrt, and the first parameter is a regular expression, describing the files that
should be matched. Note that the regular expression here is supported for the file part
only; the path part must describe a specific directory. We also double quoted it
because of the square brackets that were used in the regexp. The regexp should
match filenames that start with access_, followed by four digits, a dash, two digits, a
dash, two more digits, and ending with .log. For example, a filename such as
access_2018-12-31.log would be matched. One thing we did slightly differently
was the update interval was set to two seconds instead of one. The reason is that the
logrt key is periodically re-reading directory contents, and this could be a bit more
resource intensive than just checking a single file. That's also the reason why it's a
separate item key, otherwise we could have used the regular expression for the file in
the log item.

The Zabbix agent doesn't re-read directory contents every two
seconds if a monitored file still has lines to parse; it only looks at the
directory again when the already known files have been fully
parsed.

With the item in place, let's proceed by creating and populating some files that should
be matched by our regular expression. On A test host, execute the following:

$ echo "2018-12-1 03:00:00 rotated first" >
/tmp/zabbix_logmon/access_2018-12-30.log

Checking the latest data page, the rotated log file item should get this value. Let's say
that's it for this day and we'll now log something the next day:

$ echo "2018-12-1 03:00:00 rotated second" >
/tmp/zabbix_logmon/access_2015-12-31.log

Checking the history for our item, it should've successfully picked up the new file:

As more files with a different date appear, Zabbix will finish the current file and then
start on the next one.

Advanced Item Monitoring Chapter 10

[382]

The Zabbix agent doesn't send more than what is specified in the
option maxlines of a log file per second. The limit prevents
overloading of network and CPU resources, and overrides the
default value provided by the MaxLinesPerSecond parameter in
the agent configuration file.

Alerting on log data
With the data coming in, let's talk about alerting on it with triggers. There are a few
things somewhat different than the thresholds and similar numeric comparisons that
we've used in triggers so far.

If we have a log item that's collecting all lines and we want to alert on the lines
containing some specific string, there are several trigger functions of potential use:

str(): This checks for a substring; for example, if we're collecting all
values, this function could be used to alert on errors: str(error)
regexp: Similar to the str() function, this allows us to specify a regular
expression to match
iregexp: This is a case-insensitive version of regexp()

These functions only work on a single line; it's not possible to match
multiline log entries.

For these three functions, a second parameter is supported as well; in that case, it's
either the number of seconds or the number of values to check. For example,
str(error,600) would fire if there's an error substring in any of the values over
the last 10 minutes.

That seems fine, but there's an issue if we only send error lines to the server by
filtering on the agent side. To see what the problem is, let's consider a normal trigger,
like the one checking for CPU load exceeding some threshold. Assuming we have a
threshold of 5, the trigger currently in the OK state, and values such as 0, 1, and 2
arriving, nothing happens; no events are generated. When the first value above 5
arrives, a PROBLEM event is generated and the trigger switches to the PROBLEM
state. No other values above 5 wouldn't generate any events; nothing would happen.

Advanced Item Monitoring Chapter 10

[383]

And the problem would be that it would work this way for log monitoring as well.
We would generate a PROBLEM event for the first error line, and then nothing. The
trigger would stay in the PROBLEM state and nothing else would happen. The
solution is somewhat simple: there's a selection box in the trigger properties,
Multiple, in the PROBLEM event generation mode option:

Marking this checkbox would make the mentioned CPU load trigger generate a new
PROBLEM event for every value above the threshold of 5. Well, that wouldn't be
very useful in most cases, but it would be useful for the log monitoring trigger. It's all
good if we only receive error lines; a new PROBLEM event would be generated for
each of them.

Note that even if we send both errors and good lines, errors after good lines would be
picked up, but subsequent errors would be ignored, which could be a problem as
well.

With this problem solved, we arrive at another one: once a trigger fires against an
item that only receives error lines, this trigger never resolves; it always stays in the
PROBLEM state. While that's not an issue in some cases in others, it's not desirable.
There's an easy way to make such triggers time out by using a trigger function we're
already familiar with, nodata(). If the item receives both error and normal lines, and
we want it to time out 10 minutes after the last error arrived even if no normal lines
arrive, the trigger expression could be constructed like this:

{host.item.str(error)}=1 and {host.item.nodata(10m)}=0

Here, we're using the nodata() function the other way around: even if the last entry
contains errors, the trigger would switch to the OK state if there were no other values
in the last 10 minutes.

We also discussed triggers that time out in Chapter 6, Detecting
Problems with Triggers, in the Triggers that time out section.

Advanced Item Monitoring Chapter 10

[384]

If the item receives error lines only, we could use an expression like the previous one,
but we could also simplify it. In this case, just having any value is a problem
situation, so we would use the reversed nodata() function again and alert on values
being present:

{host.item.nodata(10m)}=0

Here, if we have any values in the last 10 minutes, that's it; it's a PROBLEM. If there
aren't any values, the trigger switches to OK. This is somewhat less resource intensive
as Zabbix doesn't have to evaluate the actual item value.

Yet another trigger function that we could use here is count(). It would allow us to
fire an alert when there's a certain number of interesting strings—such as
errors—during some period of time. For example, the following will alert if there are
more than 10 errors in the last 10 minutes:

{host.item.count(10m,error,like)}>10

Another solution can be to keep the problem open and, after we have checked it
ourselves, close it by hand. This can be done by selecting the Allow manual close box
in the trigger:

Yet another way could be if we receive log files with errors and OK to make use of the
OK event generation option. We would then create a trigger that alerts us when
there's, for example, an error in the log and recover when it sees the word OK in the
log.

Let's try this with our first log file. Click on triggers on A test host and add the
following triggers:

Name: Warning on errors in logfile1
Severity: Warning
Problem expression: {A test
host:log[/tmp/zabbix_logmon/logfile1].str(error)}=1

OK event generation: Recovery expression
Recovery expression: {A test
host:log[/tmp/zabbix_logmon/logfile1].str(ok)}=1

Advanced Item Monitoring Chapter 10

[385]

Now, let's create some errors in our log file (make sure you wait long enough, like
with the other tests):

echo "error" >> /tmp/zabbix_logmon/logfile1

Let's check the dashboard to see whether we get a warning; we should be able to see a
problem for our A test host.

Now, let's fix this error by sending the word ok to our log file and see what happens:

echo "ok" >> /tmp/zabbix_logmon/logfile1

We can check this in the dashboard by seeing whether our error is gone but, to get
more proof, let's go to Monitoring | Problems and select A test host in the Hosts
selection box in our filter. We can now see that there was an issue at 13:04:42 and that
the issue has been resolved at 13:09:32; in Actions, we can see the actions that were
taken:

Advanced Item Monitoring Chapter 10

[386]

Event tags
Event tags are another way to get information in Zabbix and, besides the extra
information, they help to close items in Zabbix in an automated way. Let's build on
the previous task where we monitored and closed a log file with the recovery
expression.

Another way to close our item can be by using tags. Remember, we can add tags to
our triggers. By adding the log tag here and giving it the {ITEM.VALUE} value, the
value will be added from the item in our tag. This will be, in our case, error or ok.
Since we only want to close it when we receive the ok value, we have to filter for the
word ok. This we can do with the regsub function. So, if we bring all this together in
our trigger, then we need to select the following options:

OK event generation: Expression
OK event closes: All problems if tag values match
Tag for matching: log
Tags: In the first box, add, log, and in the second box,
{{ITEM.VALUE}.regsub(ok)}

In this case, when the tag matches the ok value, our trigger will be closed.

What we see here is that the tag log gets populated with the latest values retrieved
from our item and by making use of the regular expression function, regsub, we're
able to extract the word ok from it.

Advanced Item Monitoring Chapter 10

[387]

Because we selected the OK event closes option with the log tag, the trigger gets
closed automatically when the item receives the ok value in the log.

We'll see all of the tag information in our triggers in the dashboard,
problem page, and so on. This can be useful as well. You could, for
example, tag a program with the tag service and give the tag the
name of the service, so that if the application is stopped, people
know what service to restart.
Be careful not to select OK event closes: All problems if tag values
match by not adding a tag in the Tags box, as this will result in the
trigger being closed when the log gets populated with the next line.

Extracting part of the line
Sometimes, we only want to know that an error was logged. In those cases, grabbing
the whole line is good enough. But sometimes, the log line might contain an
interesting substring, maybe a number of messages in some queue. A log line might
look like this:

2015-12-20 18:15:22 Number of messages in the queue: 445

Theoretically, we could write triggers against the whole line. For example, the
following regexp should match when there are 10,000 or more messages:

messages in the queue: [1-9][0-9]{4}

But what if we want to have a different trigger when the message count exceeds 15,000? That
trigger would have a regular expression like this:

messages in the queue: (1[5-9]|[2-9].)[0-9]{3}

And if we want to exclude values above 15,000 from our first regular expression, it
would become the following:

messages in the queue: 1[0-4][0-9]{3}

Advanced Item Monitoring Chapter 10

[388]

That's definitely not easy to maintain. And that's with just two thresholds. But there's
an easier way to do this, if all we need is that number. Zabbix log monitoring allows
us to extract values by regular expressions. To try this out, let's create a file with some
values to extract. Still on A test host, create
the /tmp/zabbix_logmon/queue_log file with the following content:

echo "2018-12-1 12:01:13 Number of messages in the queue: 445" >>
/tmp/zabbix_logmon/queue_log
echo "2018-12-1 12:02:14 Number of messages in the queue: 5445" >>
/tmp/zabbix_logmon/queue_log
echo "2018-12-1 12:03:15 Number of messages in the queue: 15445" >>
/tmp/zabbix_logmon/queue_log

Now, on to the item, go to Configuration | Hosts, click on Items next to A test host,
then click on Create item. Fill in the following:

Name: Extracting log contents
Type: Zabbix agent (active)
Key: log[/tmp/zabbix_logmon/queue_log,"messages in the
queue: ([0-9]+)",,,,\1]

Type of information: Log
Update interval: 1s

We quoted regular expression because it contained square brackets again. The regular
expression itself extracts the text messages in the queue, followed by a colon, a
space, and a number. The number is included in a capture group; this becomes
important in the last parameter. To the key, we added \1 which references the
capture group contents. This parameter, output, tells Zabbix not to return the whole
line, but only whatever is referenced in that parameter. In this case, that's the number.

We may also add extra text in the output parameter; for example, a
key such as log[/tmp/zabbix_logmon/queue_log messages
in the queue, "([0-9]+)",,,,Extra \1 things], would
return Extra 445 things for the first line in our log file. Multiple
capture groups may be used as well, referenced in the output
parameter as \2, \3, and so on.

When done, click on the Add button at the bottom. Some three minutes later, we
could check the history for this item in the latest data page:

Advanced Item Monitoring Chapter 10

[389]

Hooray! Extracting the values is working as expected. Writing triggers against them
should be much, much easier as well. But one thing to note: for this item, we're
unable to see the graphs. The reason is the Type of information property in our log
item; we had it set to Log, but that type isn't considered suitable for graphing. Let's
change it now.

Go to Configuration | Hosts, click on Items next to A test host, and click on
Extracting log contents in the Name column. Change Type of information to
Numeric (unsigned), then click on the Update button at the bottom.

If the extracted numbers have the decimal part, use Numeric (float)
for such items.

Check this item in the latest data section; it should have a Graph link now. But
checking that reveals that it has no data. How so? Internally, Zabbix stores values for
each type of information separately. Changing that doesn't remove the values, but
Zabbix only checks the currently configured type. Make sure to set the correct type of
information from the start. To verify that this works as expected, run the following on
A test host:

$ echo "2018-12-1 18:16:13 Number of messages in the queue: 113" >>
/tmp/zabbix_logmon/queue_log
$ echo "2018-12-1 18:17:14 Number of messages in the queue: 213" >>
/tmp/zabbix_logmon/queue_log
$ echo "2018-12-1 18:18:15 Number of messages in the queue: 150" >>
/tmp/zabbix_logmon/queue_log

Checking out this item in the Latest data section, the values should be there and the
graph should be available, too. Note that the date and time in our log file entries still
doesn't matter; the values will get the current timestamp assigned.

Advanced Item Monitoring Chapter 10

[390]

Value extracting works the same with the logrt item key.

Another way to get data out of a log file could be by making use of the Preprocessing
tab in our item as shown in the following screenshot. We have the option here to
retrieve a whole log line and then pre-process it with, for example, the Regular
expression option to cut out information. Only after our regular expression has run
will the information be stored into the database:

Parsing timestamps
Talking about the timestamps on the lines we pushed into Zabbix, the date and time
in the file didn't match the date and time displayed in Zabbix. Zabbix marked the
entries with the time it collected them. This is fine in most cases when we're doing
constant monitoring; content is checked every second or so, gathered, timestamped,
and pushed to the server. When parsing some older data, the timestamps can be way
off, though. Zabbix does offer a way to parse timestamps out of the log entries.

Let's use our very first log file monitoring item for this.

Navigate to Configuration | Hosts, click on Items next to A test host, and click on
First logfile in the Name column. Notice the Log time format field; that's what we'll
use now. It allows us to use special characters to extract the date and time. The
supported characters are as follows:

y: Year
M: Month
d: Day

Advanced Item Monitoring Chapter 10

[391]

h: Hour
m: Minute
s: Second

In our test log files, we used the time format like this:

2018-12-13 13:01:03

The time format string to parse out date and time would look like this:

yyyy-MM-dd hh:mm:ss

Note that only the supported characters matter; the other ones are just ignored and
can be anything. For example, the following would work exactly the same:

yyyyPMMPddPhhPmmPss

You can choose any characters outside of the special ones. Which ones would be best?
Well, it's probably best to aim for readability. Enter one of the examples here in the
Log time format field:

When specifying the log time format, all date and time components
must be present; for example, it's not possible to extract the time if
seconds are missing.

When done, click on the Update button at the bottom. Allow for a few minutes to
pass, then proceed with adding entries to the monitored file. Choose the date and
time during the last hour for your current time and run on A test host:

$ echo "2018-12-01 16:40:13 a timestamped log entry" >>
/tmp/zabbix_logmon/logfile1

Advanced Item Monitoring Chapter 10

[392]

Now, check the history for the First logfile item in the latest data page:

There's one difference from the previous cases. The Local time column is populated
now, and it contains the time we specified in our log line. The Timestamp column
still holds the time when Zabbix collected the line.

Note that only numeric data is supported for date and time extraction. The standard
Syslog format uses short textual month names such as Jan, Feb, and so on; such a
date/time format isn't supported for extraction at this time.

Viewing log data
With all of the log monitoring items collecting data, let's take a quick look at the
displaying options. Navigate to Monitoring | Latest data and click on History for
Second logfile. Expand the Filter. There are a few very simple log viewing options
here:

Advanced Item Monitoring Chapter 10

[393]

The field in the preceding screenshot is explained as follows:

Items list: We can add multiple items and view log entries from them all at
the same time. The entries will be sorted by their timestamp, allowing us to
determine the sequence of events from different log files or even different
systems.
Value and Selected: Based on a substring, entries can be shown, hidden, or
colored.

As a quick test, enter error in the Value field and click on Filter. Only the entries
that contain this string will remain. In the Selected drop-down menu, choose Hide
selected and now only the entries that don't have this string are shown. Now, choose
Mark selected in the Selected drop-down menu and notice how the entries
containing the error string are highlighted in red. In the additional drop-down
menu that appears, we can choose red, green, or blue for highlighting:

Let's add another item here; click on Select behind the Items list entry. In the popup,
choose Linux servers in the Group drop-down menu and A test host in the Host
drop-down menu, then click on First logfile in the Name column. Notice how the
entries from both files are shown, and the coloring option is applied on top of that.

That's pretty much it regarding log viewing options in the Zabbix frontend. Note that
this is very limited functionality and, for a centralized Syslog server with full log
analysis options on top of that, a specialized solution should be used; there are quite a
lot of free software products available.

Advanced Item Monitoring Chapter 10

[394]

Reusing data on the server
The items we've used so far were collecting data from some Zabbix agent or SNMP
device. It's also possible to reuse this data in some calculation, store the result, and
treat it as a normal item to be used for graphs, triggers, and other purposes. Zabbix
offers two types of such items:

Calculated: These items require writing exact formulas and referencing
each individual item. They're more flexible than aggregate items, but aren't
feasible over a large number of items and have to be manually adjusted if
the items to be included in the calculation change.
Aggregate: These items operate on items that share the same key across a
host group. Minimum, maximum, sum, or average can be computed. They
can't be used on multiple items on the same host, but if hosts are added to
the group or removed from it, no adjustments are required for the
aggregate item.

Calculated items
We'll start with calculated items that require typing in a formula. We're already
monitoring total and used disk space. If we additionally wanted to monitor free disk
space, we could query the agent for this information. This is where calculated items
come in: if the agent or device doesn't expose a specific view of the data, or if we
would like to avoid querying monitored hosts, we can do the calculation from the
already retrieved values.

To create a calculated item that would compute the free disk space, do the following:

Navigate to Configuration | Hosts, click on Items next to A test host, and1.
then click on Create item. Fill in the following information:

Name: Diskspace on / (free)
Type: Calculated
Key: calc.vfs.fs.size[/,free]
Formula: last("vfs.fs.size[/,total]")-
last("vfs.fs.size[/,used]")

Units: B
Update interval: 1800s

When done, click on the Add button at the bottom.2.

Advanced Item Monitoring Chapter 10

[395]

We chose a key that wouldn't clash with the native key in case
somebody decides to use that later, but we're free to use any key for
calculated items.

All of the referenced items must exist. We can't enter keys here and have them gather
data by extension from the calculated item. Values to compute the calculated item are
retrieved from the Zabbix server caches or the database; no connections are made to
the monitored devices.

With this item added, let's go to the Latest data page. As the interval was set to 1,800
seconds, we might have to wait a bit longer to see the value, but eventually it should
appear:

If the item turns unsupported, check the error message and make
sure the formula you typed in is correct.

The interval we used (1,800 seconds) wasn't matched to the intervals of both
referenced items. Total and used disk space items were collecting data every 3,600
seconds, but calculated items aren't connected to the data collection of the referenced
items in any way. A calculated item isn't evaluated when the referenced items get
values; it follows its own scheduling, which is completely independent from the
schedules of the referenced items and is semi-random. If the referenced items stopped
collecting data, our calculated item would keep on using the latest value for the
calculation, as we used the last() function. If one of them stopped collecting data,
we would base our calculation on one recent and one outdated value. And if our
calculated item could get very incorrect results if called at the wrong time, because
one of the referenced items has significantly changed but the other hasn't received a
new value yet, there's no easy solution to that, unfortunately. The custom scheduling
discussed in Chapter 3, Monitoring with Zabbix Agents and Basic Protocols, could help
here, but it could also introduce performance issues by polling values in uneven
batches, and it would also be more complicated to manage. It's suggested to be used
only as an exception.

Advanced Item Monitoring Chapter 10

[396]

The free disk space that we calculated might not match the available
disk space reported by system tools. Many filesystems and
operating systems reserve some space that doesn't count as used,
but counts against the available disk space.

We might also want to compute the total of incoming and outgoing traffic on an
interface, and a calculated item would work well here. The formula would be like
this:

last(net.if.in[enp0s8])+last(net.if.out[enp0s8])

There's no need anymore to calculate total traffic on an interface in
Zabbix 4.0 as there's now an item that can do this for us. We can
make use of net.if.total[<paramenters>] now.
Did you spot how we quoted item keys in the first example, but not here?
The reason is that calculated item formula entries follow a syntax of
function(key,function_parameter_1,

function_parameter_2...). The item keys we referenced for the
disk space item had commas in them like
this: vfs.fs.size[/,total]. If we didn't quote the keys, Zabbix
would interpret them as being vfs.fs.size[/ with a function
parameter of total]. That wouldn't work.

Quoting in calculated items
The items we referenced had relatively simple keys: one or two parameters and no
quoting. When the referenced items get more complicated, it's a common mistake to
get quoting wrong. That, in turn, makes the item not work properly or at all. Let's
look at the formula that we used to calculate free disk space:

last("vfs.fs.size[/,total]")-last("vfs.fs.size[/,used]")

The referenced item keys had no quoting. But what if the keys have the filesystem
parameter is quoted like this:

vfs.fs.size["/",total]

We would have to escape the inner quotes with backslashes:

last("vfs.fs.size[\"/\",total]")-last("vfs.fs.size[\"/\",used]")

Advanced Item Monitoring Chapter 10

[397]

The more quoting the referenced items have, the more complicated the calculated
item formula gets. If such a calculated item doesn't seem to work properly for you,
check the escaping very, very carefully. Quite often users have even reported some
behavior as a bug that turns out to be a misunderstanding about the quoting.

Referencing items from multiple hosts
The calculated items we've created so far referenced items on a single host or
template. We just supplied item keys to the functions. We may also reference items
from multiple hosts in a calculated item; in that case, the formula syntax changes
slightly. The only thing we have to do is prefix the item key with the hostname,
separated by a colon, the same as in the trigger expressions:

function(host:item_key)

Let's configure an item that would compute the average CPU load on both of our
hosts:

Navigate to Configuration | Hosts, click on Items next to A test host, and1.
click on Create item. Fill in the following:

Name: Average system load for both servers
Type: Calculated
Key: calc.system.cpu.load.avg
Formula: (last(A test
host:system.cpu.load)+last(Another
host:system.cpu.load))/2

Type of information: Numeric (float)

When done, click on the Add button at the bottom.2.

For triggers, when we referenced items, those triggers were associated with the hosts
that the items came from. Calculated items also reference items, but they're always
created on a single, specific host. The item we created will reside on A test host
only. This means that such an item could also reside on a host that isn't included in
the formula—for example, some calculations across a cluster could be done on a
meta-host that holds cluster-wide items but isn't directly monitored itself.

Advanced Item Monitoring Chapter 10

[398]

Let's see whether this item works in Monitoring | Latest data. Make sure both of our
hosts are shown and expand all entries. Look for three values, CPU Load both for A
test host and Another host, as well as Average system load for both servers:

You can filter by load in the item names to see only relevant entries.

The value seems to be properly calculated. It could now be used like any normal item,
maybe by including it and individual CPU load items from both hosts in a single
graph. If we look at the values, the system loads for individual hosts are 1.62, and 0,
and the average is calculated as 0.81. Sometimes, it can be that this isn't an exact fit,
even far away from the rounding. Why would we get such a difference? Data for both
items that the calculated item depends on comes in at different intervals, and the
calculated value is computed at a slightly different time—hence, while the value itself
is correct, it might not match the exact average of values seen at any given time. Here,
both CPU Load items had some values and the calculated average was correctly
computed.

When we make use of items in calculated items, we reference them
from existing items so we need to be careful to copy the exact item
over as is. That means parameters have to match with the original
item—also, quotes and macros if we used them in our original item.
We discuss a few additional aspects regarding calculated items in
Chapter 11, Automating Configuration.

Advanced Item Monitoring Chapter 10

[399]

Aggregate items
The calculated items allowed us to write a specific formula, referencing exact
individual items. This worked well for small-scale calculations, but the CPU Load
item we created last would be very hard to create and maintain for dozens of hosts,
and impossible for hundreds. If we want to calculate something for the same item key
across many hosts, we would probably opt for aggregate items. They would allow us to
find out the average load on a cluster or the total available disk space for a group of
file servers, without naming each item individually. As with the calculated items, the
result would be a normal item that could be used in triggers or graphs.

To find out what we can use in such a situation:

Go to Configuration | Hosts, select Linux servers in the Group drop-down menu
and click on Items next to A test host, then click on Create item. Now, we have to
figure out what item type to use. Expand the Type drop-down menu and look for an
entry named Zabbix aggregate. That's the one we need, so choose it and click on
Select next to the Key field. Currently, the key is listed as grpfunc, but that's just a
placeholder; click on it. We have to replace it with the actual group key: one of
grpsum, grpmin, grpmax, or grpavg. We'll calculate the average for several hosts, so
change it to grpavg. This key, or group function, takes several parameters:

group: As the name suggests, the host group name goes here. Enter Linux
servers for this parameter.
key: This is the key for the item to be used in calculations. Enter
system.cpu.load here.
func: This is a function used to retrieve data from individual items on
hosts. While multiple functions are available, in this case we'll want to find
out what the latest load is. Enter last for this field.
param: This is a parameter for the previous function, following the same
rules as normal function parameters (specifying either seconds or value
count, prefixed with #). The function we used, last(), can be used
without a parameter, so simply remove the last comma and the placeholder
that follows it.

Advanced Item Monitoring Chapter 10

[400]

For individual item data, the following functions are supported:

Function Details
avg Average value
count Number of values
last Last value
max Maximum value
min Minimum value
sum Sum of values

For aggregate items, two levels of functions are available. They're nested—first, the
function specified as the func parameter gathers the required data from all hosts in
the group. Then, grpfunc (grpavg in our case) calculates the final result from all the
intermediate results retrieved by func.

All of the referenced items must exist. We can't enter keys here and
have them gather data by extension from the aggregate item. Values
to compute the calculated item are retrieved from the Zabbix server
caches or the database; no connections are made to the monitored
devices.

The final item key should be grpavg[Linux servers,system.cpu.load,last].

If the referenced item key had parameters, we would have to quote
it.

To finish the item configuration, fill in the following:

Name: Average system load for Linux servers
Type of information: Numeric (float)

Advanced Item Monitoring Chapter 10

[401]

The final item configuration should look like this:

When done, click on the Add button at the bottom. Go to Monitoring | Latest data,
make sure all hosts are shown, and look for the three values again—CPU Load both
for A test host and Another host, as well as Average system load for Linux servers:

You can filter by load in the item names again.

The computed average across both hosts doesn't match our result if we look at the
values on individual hosts, and the reason is exactly the same as we mentioned with
the calculated items.

As the key parameters indicate, an aggregate item can be calculated
for a host group—there's no way to pick individual hosts. Creating a
new group is required if arbitrary hosts must have an aggregate
item calculated for them. We discussed other benefits from careful
host group planning in Chapter 5, Managing Hosts, Users, and
Permissions.

Advanced Item Monitoring Chapter 10

[402]

We used the grpavg aggregate function to find out the average load for a group of
servers, but there are other functions, as follows:

Function Details

grpmax
The maximum value is reported. We can find out what the maximum SQL
queries per second are across a group of database servers.

grpmin
The minimum value is reported. The minimum free space for a group of
file servers could be determined.

grpsum
Values for the whole group are summed. The total number of HTTP
sessions could be calculated for a group of web servers.

This way, a limited set of functions can be applied across a large number of hosts.
While less flexible than calculated items, it's much more practical in case we want to
do such a calculation for a group that includes hundreds of hosts. Additionally, a
calculated item has to be updated whenever a host or item is to be added or removed
from the calculations. An aggregate item will automatically find all of the relevant
hosts and items. Note that only enabled items on enabled hosts will be considered.

Nothing limits the use of aggregate items by servers. They can also be used on any
other class of devices, such as calculating average CPU Load for a group of switches,
monitored over SNMP.

Aggregating across multiple groups
The basic syntax allows us to specify one host group. Although we mentioned earlier
that aggregating across arbitrary hosts would require creating a new group, there's
one more possibility—an aggregate item may reference several host groups. If we
modified our aggregate item key to also include hosts in a Solaris servers group,
it would look like this:

grpavg[[Linux servers,Solaris servers],system.cpu.load,last]

That is, multiple groups can be specified as comma-delimited entries in square
brackets. If any host appears in several of those groups, the item from that host would
be included only once in the calculation. There's no strict limit on the host group
count here, although both readability and overall item key length limit—2,048
characters—should be taken into account.

Advanced Item Monitoring Chapter 10

[403]

Both calculated and aggregate items can reuse values from any other
item, including calculated and aggregate items. They can also be
used in triggers, graphs, network map labels, and anywhere else
where other items can be used.

User parameters
The items we've looked at so far allowed us to query the built-in capabilities of a
Zabbix agent, query SNMP devices, and reuse data on the Zabbix server. Every now
and then, a need arises to monitor something that isn't supported by Zabbix out of the
box. The easiest and most popular method to extend Zabbix data collection is user
parameters. They're commands that are run by the Zabbix agent and the result is
returned as an item value. Let's try to set up some user parameters and see what
things we should pay extra attention to.

Just getting it to work
First, we'll make sure that we can get the agent to return any value at all. User
parameters are configured on the agent side—the agent daemon contains the key
specification, which includes references to commands. On A test host, edit
zabbix_agentd.conf and look near the end of the file. An explanation of the syntax
is available here:

UserParameter=<key>,<shell command>

This means that we can freely choose the key name and command to be executed. It's
suggested that you keep key names to lowercase alphanumeric characters and dots.
For starters, add a very simple line like this:

UserParameter=quick.test,echo 1

Just return 1, always. Save the configuration file and restart the Zabbix agent daemon.
While it might be tempting to add an item like this in the frontend, it's highly
recommended to test all user parameters before configuring them in the frontend.
That'll provide the results faster and overall make your life simpler. The easiest way
to test an item is with zabbix_get; we discussed this small utility in Chapter 3,
Monitoring with Zabbix Agents and Basic Protocols. Run on A test host:

$ zabbix_get -s 127.0.0.1 -k quick.test

Advanced Item Monitoring Chapter 10

[404]

If testing user parameters on a different host, run zabbix_get from
the Zabbix server or make sure the agent allows connections from
the localhost—that's configured with the server parameter in
zabbix_agentd.conf.

That should return just 1. If it does, great—your first user parameter is working. If
not, well, there's not much that could go wrong. Make sure the correct file was being
edited, the agent daemon was really restarted, and that the correct host was queried.

This trivial user parameter actually illustrates a troubleshooting
suggestion. Whenever a user parameter fails and you can't figure
out why, simplify it and test every iteration with zabbix_get.
Eventually, you'll get to the part that's responsible for the failure.

We won't actually add this item in the frontend as it won't provide much value.
Instead, let's re-implement an item that is already available in the Zabbix agent,
counting the number of logged-in users. Edit zabbix_agentd.conf again and add
the following near our previous modification:

UserParameter=system.test,who | wc -l

Notice how we can chain multiple commands. In general, anything the underlying
shell would accept would be good. Save the file and restart the Zabbix agent daemon.
Now, quick test again by running this command from the Zabbix server (don't forget
to replace 127.0.0.1 with the IP of your host) or from the host:

$ zabbix_get -s 127.0.0.1 -k system.test

That should return a number, as you are probably running zabbix_get from the
same system; it should be at least 1. Let's create an item to receive this data in the
frontend:

Open Configuration | Hosts, make sure Linux servers is selected in the1.
Group drop-down menu, click on Items next to A test host, then click on
Create item. Fill in these values:

Name: Users logged in
Type: Zabbix agent (active)
Key: system.test

Advanced Item Monitoring Chapter 10

[405]

We're using the active item type with our user parameter. User parameters
are suggested to be used as active items as they can tie up server
connections if they don't return very quickly. Notice how we used exactly
the same key name as specified in the agent daemon configuration file.

When you're done, click on Add.2.
Now check Monitoring | Latest data. As this is an active item, we might3.
have to wait for the agent to request the item list from the server, then
return the data, which can take up to two minutes in addition to the server
updating its cache in one minute. Sooner or later, the data will appear.

The great thing is that it's all completely transparent from the server side—the item
looks and works as if it was built in.

We have gotten a basic user parameter to work, but this one replicates the existing
Zabbix agent item, so it still isn't that useful. The biggest benefit provided by user
parameters is the ability to monitor virtually anything, even things that aren't natively
supported by the Zabbix agent, so let's try some slightly more advanced metrics.

Querying data that the Zabbix agent doesn't
support
One thing we might be interested in is the number of open TCP connections. We can
get this data using the netstat command (chances are netstat isn't installed on
your distribution out of the box, but it should be possible to install this util from the
net-tools package. If not, check out the following tip). Execute the following on the
Zabbix server:

$ netstat -t

The -t switch tells netstat to list TCP connections only. As a result, we get a list of
connections (trimmed here):

Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address
State
tcp 0 0 localhost:zabbix-trapper localhost:52932
TIME_WAIT
tcp 0 0 localhost:zabbix-agent localhost:59779
TIME_WAIT
tcp 0 0 localhost:zabbix-agent localhost:59792
TIME_WAIT

Advanced Item Monitoring Chapter 10

[406]

In modern distributions, the ss utility might be a better option. It'll
also perform better, especially when there are many connections. An
alternative command for ss, matching the aforementioned netstat
command, would be ss -tstate connect.

To get the number of connections, we'll use the following command:

netstat -nt | grep -c ^tcp

Here, grep first filters out connection lines and then just counts them. We could have
used many other approaches, but this one is simple enough. Additionally, the -n flag
is passed to netstat, which instructs it to perform no resolving on hosts, hence
giving a performance boost.

Edit zabbix_agentd.conf and add the following line near the other user
parameters:

UserParameter=net.tcp.conn,netstat -nt | grep -c ^tcp

In the frontend, go to Configuration | Hosts, click on Items next to A test host, then
click on Create item and fill in the following values:

Name: Open connections
Type: Zabbix agent (active)
Key: net.tcp.conn

When you're done, click on the Add button at the bottom. Did you notice that we didn't
restart the agent daemon after modifying its configuration file? Do that now. Using such an
ordering of events will give us values faster, because the agent queries the active
items list immediately after startup, and this way the server already has the item
configured when the agent is restarted. Feel free to check Monitoring | Latest values:

Advanced Item Monitoring Chapter 10

[407]

Flexible user parameters
We're now gathering data on all open connections. But looking at the netstat
output, we can see connections in different states, such as TIME_WAIT and
ESTABLISHED:

tcp 0 0 127.0.0.1:10050 127.0.0.1:60774 TIME_WAIT
tcp 0 0 192.168.56.10:22 192.168.56.1:51187 ESTABLISHED

If we want to monitor connections in different states, would we have to create a new user
parameter for each? Fortunately, no. Zabbix supports so-called flexible user parameters,
which allow us to pass parameters to the command executed.

Again, edit zabbix_agentd.conf and modify the user parameter line we added
before to read as follows:

UserParameter=net.tcp.conn[*],netstat -nt | grep ^tcp | grep -c "$1"

The ss utility again might be better in modern distributions. For
example, filtering for established connections could be easily done
by the established ss -t state.

We've made the following changes:

First, the addition of [*] indicates that this user parameter itself accepts
parameters
Second, adding the second grep statement allows us to use such passed
parameters in the command
We also moved the -c flag to the last grep statement to do the counting

Was it mentioned that it might be easier with ss?

All parameters we would use now for this key will be passed to the script—$1

substituted for the first parameter, $2 for the second, and so on. Note the use of
double quotes around $1. This way, if no parameter is passed, the result would be the
same as without using grep at all.

Advanced Item Monitoring Chapter 10

[408]

Restart the agent to make it pick up the modified user parameter.

Back in the frontend, follow these steps:

Navigate to Configuration | Hosts, click on Items next to A test host, click1.
on Open connections in the Name column, and then click on the Clone
button at the bottom of the editing form. Change the following fields:

Name: Open connections in $1 state
Key: net.tcp.conn[TIME_WAIT]

Click on the Add button at the bottom.2.
Now click on Open connections in the TIME_WAIT state in the3.
Name column, click on Clone, and modify the Key field to read
net.conn[ESTABLISHED]; then click on the Add button at the bottom.

See the man page for netstat for a full list of possible connection states.

Take a look at Monitoring | Latest data:

It's possible that the values don't match; summing open connections in all states
might not give the same number as all open connections. First, remember that there
are more connection states, so you'd have to add them all to get a complete picture.
Second, as we saw before, all of these values aren't retrieved simultaneously, so one
item grabs data, and a moment later another comes in, but the data has already
changed slightly.

We're also counting all of the connections that we create either by
remotely connecting to the server, just running the Zabbix server, or
by other means.

Advanced Item Monitoring Chapter 10

[409]

We're now receiving values for various items, but we only had to add a single user
parameter. Flexible user parameters allow us to return data based on many
parameters. For example, we could provide additional functionality to our user
parameter if we make a simple modification like this:

UserParameter=net.conn[*],netstat -nt | grep ^tcp | grep "$1" | grep -
c "$2"

We added another grep command on the second parameter, again using double
quotes to make sure the missing parameter won't break anything. Now, we can use
the IP address as a second parameter to figure out the number of connections in a
specific state to a specific host. In this case, the item key might be
net.conn[TIME_WAIT,127.0.0.1].

Note that the item parameter ordering (passing state first and IP second) in this case
is completely arbitrary. We could swap them and get the same result, as we're just
filtering the output by two strings with grep. If we were to swap them, the
description would be slightly incorrect, as we're using positional item key parameter
references in it.

Level of the details monitored
There're almost unlimited combinations of what details one can monitor on some
target. It's possible to monitor every single detailed parameter of a process, such as
detailed memory usage, the existence of PID files, and many more things, and it's
possible to simply check whether a process is running.

Sometimes, a single service can require multiple processes to be running, and it might
be enough to monitor whether a certain category of processes is running as expected,
trusting some other component to figure that out. One example could be Postfix, the
email server. Postfix runs several different processes, including master, pickup,
anvil, and smtpd. While checks could be created against every individual process,
often it would be enough to check whether the init script thinks that everything is
fine.

Advanced Item Monitoring Chapter 10

[410]

We would need an init script that has the status command support. As init
scripts usually output a textual string, Checking for service Postfix:
running, it would be better to return only a numeric value to Zabbix that would
indicate the service state. Common exit codes are 0 for success and nonzero if there's
a problem. That means we could do something like the following:

/etc/init.d/postfix status > /dev/null 2>&1 || echo 1

That would call the init script, discard all stdin and stderr output (because we
only want to return a single number to Zabbix), and return 1 upon a non-successful
exit code. That should work, right? There's only one huge problem-parameters should
never return an empty string, which is what would happen with such a check if
Postfix was running. If the Zabbix server were to check such an item, it would assume
the parameter is unsupported and deactivate it as a consequence. We could modify
this string so that it becomes the following:

/etc/init.d/postfix status > /dev/null 2>&1 && echo 0 || echo 1

This would work very nicely, as now a Boolean is returned and Zabbix always gets
valid data. But there's a possibly better way. As the exit code is 0 for success and
nonzero for problems, we could simply return that. While this would mean that we
won't get nice Boolean values only, we could still check for nonzero values in a
trigger expression like this:

{hostname:item.last()}>0

As an added benefit, we might get a more detailed return message if the init script
returns a more detailed status with nonzero exit codes. As defined by the Linux
Standard Base, the exit codes for the status commands are the following:

Code Meaning
0 Program is running or service is OK
1 Program is dead and /var/run pid file exists
2 Program is dead and /var/lock lock file exists
3 Program isn't running
4 Program or service status is unknown

There're several reserved ranges that might contain other codes, used by a specific
application or distribution—those should be looked up in the corresponding
documentation.

Advanced Item Monitoring Chapter 10

[411]

For such a case, our user parameter command becomes even simpler, with the full
string being as follows:

UserParameter=service.status[*],/etc/init.d/"$1" status > /dev/null
2>&1; echo $?

We're simply returning the exit code to Zabbix. To make the output more user
friendly, we'd definitely want to use value mapping. That way, each return code
would be accompanied on the frontend with an explanatory message like the
preceding. Notice the use of $1. This way, we can create a single user parameter and
use it for any service we desire. For an item like that, the appropriate key would be
service.status[postfix] or service.status[nfs]. If such a check doesn't
work for the non-root user, sudo would have to be used.

In open source land, multiple processes per single service are less common, but
they're quite popular in proprietary software, in which case a trick like this greatly
simplifies monitoring such services.

Most distributions have moved to systemd. In that case, the user
parameter line would be
UserParameter=service.status[*],systemctl status "$1"

> /dev/null 2>&1; echo $?.

Environment trap
Let's try to find out what other interesting statistics we can gather this way. A
common need is to monitor some statistics about databases. We could attempt to
gather some MySQL query data; for example, how many queries per second are there?
MySQL has a built-in query per second measurement, but that isn't quite what most
users would expect. That particular value is calculated for the whole uptime MySQL
has, which means it's quite useful, though only for the first few minutes. Longer-
running MySQL instances have this number approaching the average value and only
slightly fluctuating. When graphed, the queries per second graph gets flatter and
flatter as time passes.

The flexibility of Zabbix allows us to use a different metric. Let's try to create a
slightly more meaningful MySQL query items. We can get some data on the
Select statements with a query like this:

mysql> show global status like 'Com_select';

Advanced Item Monitoring Chapter 10

[412]

That is something we should try to get working as a user parameter now. A test
command to parse out only the number we're interested in would be as follows:

$ mysql -N -e "show global status like 'Com_select';" | awk '{print
$2}'

We're using awk to print the second field. The -N flag for mysql tells it to omit
column headers. Now, on to the agent daemon configuration—add the following near
our other user parameters on our Zabbix server:

UserParameter=mysql.queries[*],mysql -u zabbix -N -e "show global
status like 'Com_$1';" | awk '{print $$2}'

It's basically the user parameter definition with the command appended, but we've
made a few changes here. Notice how we used [*] after the key and replaced
select in Com_select with $1—this way, we'll be able to use query type as an item
key parameter. This also required adding the second dollar sign in the awk statement.
If a literal dollar sign placeholder has to be used with a flexible user parameter, such
dollar signs must be prefixed with another dollar sign. And the last thing we changed
was adding -u zabbix to the mysql command. Of course, it's best not to use root or
a similar access for database statistics, if possible—but if this command is supposed to
be run by the Zabbix agent, why specify the username again? Mostly because of an old
and weird bug where MySQL would sometimes attempt to connect with the wrong
user. If you'd like to see the current status of that issue, see
https://bugs.mysql.com/bug.php?id=64522. With the changes in place, save and
close the file, then restart the agent daemon.

You might want to create a completely separate database user that
has no actual write permissions for monitoring.

Now, the same as before, let's do a quick zabbix_get test on our Zabbix server
command line:

$ zabbix_get -s 127.0.0.1 -k mysql.queries[select]

Well, you might have seen this one coming:

ERROR 1045 (28000): Access denied for user 'zabbix'@'localhost' (using
password: NO)

https://bugs.mysql.com/bug.php?id=64522

Advanced Item Monitoring Chapter 10

[413]

Our database user did require a password, but we specified none. How could we do
that? The mysql utility allows us to specify a password on the command line with the
-p flag (for example, -p<password>, with no spaces between -p and the password),
but it's best to avoid it. Placing passwords on the command line might allow other
users to see this data in the process list, so it's a good idea to develop a habit: no secret
information on the command line, ever.

On some platforms, some versions of the MySQL client will mask
the passed password. While that's a nice gesture from MySQL's
developers, it won't work on all platforms and with all software, so
such an approach should be avoided just to make it a habit. The
password in such a case is likely to be written to the shell history
file, making it available to attackers even after the process is no
longer running.

How could we pass the password in a secure manner then? Fortunately, MySQL can read
the password from a file that we could secure with permissions. A .my.cnf file is
searched in several directories, and in our case the best option might be placing it in
the user's home directory. On the Zabbix server, execute the following as the zabbix
user:

$ touch ~zabbix/.my.cnf
$ chown zabbix:zabbix ~zabbix/.my.cnf
$ chmod 600 ~zabbix/.my.cnf
$ echo -e "[client]\npassword=<password>" > ~zabbix/.my.cnf

If your password contains the hash mark #, enclose it in double
quotes in this file.
You can change to the zabbix user with su - zabbix or use sudo.

Use the password that the Zabbix database user has. You can remind yourself what it
was by taking a look at zabbix_server.conf. If running the preceding commands
as root, also run chown -R zabbix.zabbix ~zabbix after creating the file. Note
that we first create and secure the file, and only then place the password in it. Before
we proceed with the agent side, let's test whether MySQL utilities pick up the
password file. As the zabbix user, run the following:

$ mysqladmin -u zabbix status

Run the preceding code either in the same su session or as sudo -u zabbix
mysqladmin -u zabbix status.

Advanced Item Monitoring Chapter 10

[414]

If everything went well with the file we put the password in, it should return some
data:

Uptime: 10218 Threads: 23 Questions: 34045 Slow queries: 0 Opens:
114 Flush tables: 2 Open tables: 140 Queries per second avg: 3.331

If that doesn't work, double-check the password, path, and permissions to the file. We
use mysqladmin for this test, but both mysql and mysqladmin should use the same
procedure for finding the .my.cnf file and reading the password from it.

Now that we know it's working, let's turn to zabbix_get again (no agent restart is
needed as we didn't modify the agent configuration file this time):

$ zabbix_get -s 127.0.0.1 -k mysql.queries[select]

But the result seems weird:

ERROR 1045 (28000): Access denied for user 'zabbix'@'localhost' (using
password: NO)

In some cases, when using systemd, the home directory might be
set—if so, skip the next change, but keep in mind this potential
pitfall.

It's failing still, and with the same error message. If we carefully read the full error,
we'll see that the password is still not used. How could that be?

It doesn't matter which user account we run zabbix_get as—it
connects to the running agent daemon over a TCP port. So when the
user parameter command is run, information about the user running
zabbix_get has no impact at all.

The environment isn't initialized for user parameter commands. This includes several
common variables and one we're quite interested in: HOME. This variable is used by
the MySQL client to determine where to look for the .my.cnf file. If the variable is
missing, this file (and in turn, the password) can't be found. Does that mean we're
doomed? Of course not, we wouldn't let such a minor problem stop us. We simply
have to tell MySQL where to look for this file, and we can use a very simple method
to do that. Edit zabbix_agentd.conf again and change our user parameter line to
read as follows:

UserParameter=mysql.queries[*],HOME=/var/lib/zabbix mysql -u zabbix -N
-e "show global status like 'Com_$1';" | awk '{print $$2}'

Advanced Item Monitoring Chapter 10

[415]

If you installed from packages, use the directory that is set as the
home directory for the zabbix user.

This sets the HOME variable for the mysql utility and that should allow the MySQL
client to find the configuration file that specifies the password. Again, restart the
Zabbix agent and then run the following:

$ zabbix_get -s 127.0.0.1 -k mysql.queries[select]
1788

You'll see a different value, and finally we can see the item is working. But what's that
number? If you repeatedly run zabbix_get, you will see that the number is
increasing. That looks a lot like another counter—and indeed, that's the number of
SELECT queries since the database engine startup. We know how to deal with this.
Back in the frontend, let's add an item to monitor the SELECT queries per second:

Navigate to Configuration | Hosts, click on Items next to A test host, then1.
click on the Create item button. Fill in these values:

Name: MySQL $1 queries per second
Type: Zabbix agent (active)
Key: mysql.queries[select]
Type of information: Numeric (float)
Units: qps
Preprocessing tab: Preprocessing steps (Change per second)
New application: MySQL

Advanced Item Monitoring Chapter 10

[416]

The preceding details are shown in the following screenshot:

When you're done, click on the Add button at the bottom.2.

Notice how we used Delta (speed per second) together with Numeric (float) here.
For the network traffic items, we chose Numeric (unsigned) instead, as there the
value could overflow the float. For this query item, that's somewhere between highly
unlikely and impossible, and we'll actually benefit a lot from increased precision here.
The qps unit is just that—a string. It doesn't impact the displaying of data in any way
besides appearing next to it.

Advanced Item Monitoring Chapter 10

[417]

Again, we might have to wait for a few minutes for any data to arrive. If you are
impatient, feel free to restart the Zabbix agent daemon, then check the Latest data
page:

The data is coming in nicely and we can see that our test server isn't too overloaded.

Let's benefit from making that user parameter flexible now:

Navigate back to Configuration | Hosts, click on Items next to A test host,1.
then click on MySQL select queries per second in the Name column.
At the bottom of the form, click on the Clone button and change select in2.
the key to update, then click on the Add button at the bottom. Clone this
item two more times, changing the key parameter to insert and delete.
Eventually, there should be four items:

The items should start gathering the data soon; let's try to see how they look all
together:

Click on Graphs in the navigation header above the item list, then click on1.
Create graph
Enter MySQL queries in the Name field and click on Add in the Items2.
section.
Mark the check boxes next to the four MySQL items we created and click3.
on Select at the bottom, then click on the Add button at the bottom

Advanced Item Monitoring Chapter 10

[418]

Let's go to Monitoring | Graphs, then select A test host in the Host drop-4.
down menu and MySQL queries in the Graph drop-down menu. The
graph, after some time, might look like this:

As we can see, the select queries are at the top here and the delete ones are almost
non-existent. There are other query types, but this should be enough for our user
parameter implementation.

Things to remember about user parameters
We saw that the flexibility of user parameters is basically unlimited. Still, there might
be cases when additional measures have to be applied.

Wrapper scripts
Commands to be executed can be specified in the Zabbix agent daemon configuration
file on a single line only. Pushing whole scripts there can be very messy and
sometimes it can be hard to figure out the quotation. In such cases, a wrapper script
has to be written. Such a script can be useful if parsing data requires more complex
actions, or if parsing out multiple different values can't be easily done with flexible
user parameters.

It's important to remember that using user parameters and custom scripts requires
these to be distributed on all monitored hosts—that involves the scripts themselves
and changes to the Zabbix agent daemon's configuration file.

Advanced Item Monitoring Chapter 10

[419]

This can soon become hard to manage. Various systems will require different user
parameters, so you'll either end up with a messy agent configuration file containing
all of them or a myriad of different combinations. There's a quite widespread feature
to help with this problem: configuration file inclusion. You can specify the inclusion
of individual files by adding to zabbix_agentd.conf entries such as these:

Include=/etc/zabbix/zabbix_agentd.d/zabbix_lm_sensors.conf
Include=/etc/zabbix/zabbix_agentd.d/zabbix_md_raid.conf

If such a file is missing, Zabbix will complain but will still start up. Inclusions can be
nested—you can include one file that, in turn, includes several others, and so on.

It's also possible to include whole directories—in that case, all files placed there will
be used. This method allows other packages to place, for example, user parameter
configuration in a specific directory, which will then be automatically used by Zabbix:

Include=/etc/zabbix/zabbix_agentd.d/

Or, to be sure that only files ending with conf are included, use this:

Include=/etc/zabbix/zabbix_agentd.d/*.conf

Then, other packages would only need to place files such as
zabbix_lm_sensors.conf or zabbix_md_raid.conf in the
/etc/zabbix/userparameters directory, and they would be used without any
additional changes to the agent daemon configuration file. Installing the Apache web
server would add one file, installing Postfix another, and so on.

When not to use user parameters
There are also cases where user parameters are best replaced with a different solution.
Usually, that will be when the following happens:

The script takes a long time
The script returns many values

In the first case, the script could simply time out. The default timeout on the agent
side is three seconds, and it's not suggested to increase it in most cases.

In the second case, we might be interested in 100 values that a script could return in a
single invocation, but Zabbix doesn't allow several values to be obtained from a single
key or from a single invocation, so we would have to run the script 100 times—not
very efficient.

Advanced Item Monitoring Chapter 10

[420]

If a script supplies values for multiple trapper items, it might be
worth adding a nodata() trigger for some of them—that way, any
issues with the script and missing data would be discovered
quickly.

There're several potential solutions, with some drawbacks and benefits for each case:

A special item (usually an external check, discussed in the following, or
another user parameter) that could send the data right away using
zabbix_sender if the data collection script is quick. If not, it could write
data to temporary files or invoke another script with nohup.
crontab: This is a classic solution that can help both when the script takes
a long time and when it returns many values. It does have the drawback of
having interval management outside Zabbix. Values are usually sent right
away using zabbix_sender (discussed later in this chapter), although
they could also be written to temporary files and read by other items using
the vfs.file.contents or vfs.file.regexp keys.
A special item (usually another user parameter) that adds an atd job. This
solution is a bit more complicated, but allows us to keep interval
management in Zabbix while still allowing the use of long-running scripts
for data collection. See
http://zabbix.org/wiki/Escaping_timeouts_with_atd for more details.

External checks
All of the check categories we explored before cover a very wide range of possible
devices, but there's always that one that doesn't play well with standard monitoring
protocols, can't have the agent installed, and is buggy in general. A real-life example
would be a UPS that provides temperature information on the web interface, but
doesn't provide this data over SNMP. Or, maybe we would like to collect some
information remotely that Zabbix doesn't support yet—for example, monitoring how
much time an SSL certificate has until it expires.

In Zabbix, such information can be collected with external checks or external scripts.
While user parameters are scripts run by the Zabbix agent, external check scripts are
run directly by the Zabbix server.

http://zabbix.org/wiki/Escaping_timeouts_with_atd

Advanced Item Monitoring Chapter 10

[421]

First, we should figure out the command to find out the remaining certificate validity
period. We have at least two options here:

Return the time when the certificate expires
Return 0 or 1 to identify that the certificate expires in some period of time

Let's try out both options.

Finding a certificate expiry time
We could find out the certificate expiry time with an openssl command such as this:

$ echo | openssl s_client -connect www.google.com:443 2>/dev/null |
openssl x509 -noout -enddate

Feel free to use any other domain for testing here and later.

We're closing stdin for the openssl command with echo and passing the retrieved
certificate information to another openssl command, x509, to return the date and
time when the certificate will expire:

notAfter=Jan 30 08:59:00 2019 GMT

The resulting string isn't something we could easily parse in Zabbix, though. We
could convert it into a UNIX timestamp like this:

$ date -d "$(echo | openssl s_client -connect www.google.com:443
2>/dev/null | openssl x509 -noout -enddate | sed 's/^notAfter=//')"
"+%s"

We're stripping the non-date part with sed and then formatting the date and time as
a UNIX timestamp with the date utility:

1546425338

Looks like we have the command ready, but where would we place it? For external
checks, a special directory is used. Open zabbix_server.conf and look for the
ExternalScripts option. You might see either a specific path or a placeholder:

ExternalScripts=${datadir}/zabbix/externalscripts

Advanced Item Monitoring Chapter 10

[422]

If it's a specific path, that's easy. If it's a placeholder such as the preceding, it
references the compile-time data directory. Note that it's not a variable. When
compiling from the sources, the ${datadir} path defaults to /usr/local/share/.
If you installed from packages, it's likely to be /usr/lib/. In any case, there should
be a zabbix/externalscripts/ subdirectory in there. This is where our external
check script will have to go. Create a script, zbx_certificate_expiry_time.sh,
there with the following contents:

#!/bin/bash
date -d "$(echo | openssl s_client -connect "$1":443 2>/dev/null |
openssl x509 -noout -enddate | sed 's/^notAfter=//')" "+%s"

Notice how we replaced the actual website address with a $1 placeholder—this
allows us to specify the domain to check as a parameter to this script. Make that file
executable:

$ chmod 755 zbx_certificate_expiry_time.sh
$ chown zabbix:zabbix zbx_certificate_expiry_time.sh

And now, for a quick test, type the following:

$./zbx_certificate_expiry_time.sh www.google.com
1548838740

Great, we can pass the domain name to the script and get back the time when the
certificate for that domain expires. Now, on to placing this information in Zabbix.

In the frontend, go to Configuration | Hosts, click on Items next to A test host, and
click on Create item. Fill in the following:

Name: Certificate expiry time on $1
Type: External check
Key: zbx_certificate_expiry_time.sh[www.google.com]
Units: unixtime

Advanced Item Monitoring Chapter 10

[423]

We specified the domain to check as a key parameter, and it'll be passed to the script
as the first positional parameter, which we then use in the script as $1. If more than
one parameter is needed, we would comma-delimit them, the same as for any other
item type. The parameters would be properly passed to the script as $1, $2, and so
on. If we need no parameters, we would use empty square brackets [], or just leave
them off completely. If we wanted to act upon the host information instead of
hardcoding the value like we did, we could use some macro; for example,
{HOST.HOST}, {HOST.IP}, and {HOST.DNS} are common values. Another useful
macro here would be {HOST.CONN}, which would resolve either to the IP or DNS,
depending on which one is selected in the interface properties.

When done, click on the Add button at the bottom. Now, check this item in the Latest
data page:

The expiry time seems to be collected correctly and the unixtime unit converted the
value into a human-readable version. What about a trigger on this item? The easiest
solution might be with the fuzzytime() function again. Let's say we want to detect a
certificate that will expire in seven days or less. The trigger expression would be as
follows:

{A test
host:zbx_certificate_expiry_time.sh[www.zabbix.com].fuzzytime(604800)}
=0

The huge value in the trigger function parameters, 604800, is seven days in seconds.
Can we make it more readable? Sure we can—this would be exactly the same:

{A test
host:zbx_certificate_expiry_time.sh[www.google.com].fuzzytime(7d)}=0

The trigger would alert with one week left and, from the item values, we could see
exactly how much time exactly is left. We discussed triggers in more detail in Chapter
6, Detecting Problems with Triggers.

We're conveniently ignoring the fact that the certificate might not be
valid yet. While our trigger would fire if the certificate wasn't valid
for a week or more, it would ignore certificates that would only
become valid in less than a week.

Advanced Item Monitoring Chapter 10

[424]

Determining certificate validity
A simpler approach might be passing the threshold to the OpenSSL utilities and
letting them determine whether the certificate will be good after that many seconds.
A command to check whether the certificate is good for seven days would be as
follows:

$ echo | openssl s_client -connect www.google.com:443 2>/dev/null |
openssl x509 -checkend 604800
Certificate will not expire

That looks simple enough. If the certificate expires in the given time, the message
would say Certificate will expire. The great thing is that the exit code also
differs based on the expiry status, so we could return 1 when the certificate is still
good and 0 when it expires.

This approach returns 1 upon success, similar to many built-in
items. We could also follow the openssl command with echo $?,
which would return 0 upon success.

$ echo | openssl s_client -connect www.google.com:443 2>/dev/null |
openssl x509 -checkend 604800 -noout && echo 1 || echo 0

In this version, values such as 7d aren't supported, although they're
accepted. Be very careful to use only values in seconds.

In the same directory as before, create a script, zbx_certificate_expires_in.sh,
with the following contents:

#!/bin/bash
echo | openssl s_client -connect "$1":443 2>/dev/null | openssl x509 -
checkend "$2" -noout && echo 1 || echo 0

This time, in addition to the domain being replaced with $1, we also replaced the
time period to check with a $2 placeholder. Make that file executable:

$ chmod 755 zbx_certificate_expires_in.sh

And now, for a quick test, type the following:

$./zbx_certificate_expires_in.sh www.zabbix.com 604800
1

Advanced Item Monitoring Chapter 10

[425]

It looks good. Now, on to creating the item—in the frontend:

Go to Configuration | Hosts, click on Items next to A test host, and click1.
on Create item. Start by clicking on Show value mappings next to the
Show value drop-down menu. In the resulting popup, click on the Create
value map. Enter Certificate expiry status in the Name field, then
click on the Add link in the Mappings section. Fill in the following, as
shown in the following screenshot:

0: Expires soon
1: Does not expire yet

We're not specifying the time period here as that could be customized per
item.

When done, click on the Add button at the bottom and close the popup.2.
Refresh the item configuration form to get our new value map and fill in
the following:

Name: Certificate expiry status for $1
Type: External check
Key:
zbx_certificate_expires_in.sh[www.google.com,60
4800]

Show value: Certificate expiry status

Advanced Item Monitoring Chapter 10

[426]

When done, click on the Add button at the bottom. And again, check this
item in the Latest data page.

It seems to work properly. It doesn't expire yet, so we're all good. One benefit over
the previous approach could be that it's more obvious which certificates are going to
expire soon when looking at a list.

It's important to remember that external checks could take quite a long time. With the
default timeout being three or four seconds (we'll discuss the details in Chapter 20,
Zabbix Maintenance), anything longer than a second or two is already too risky. Also,
keep in mind that a server poller process is always busy while running the script; we
can't offload external checks to an agent like we did with the user parameters being
active items. It's suggested to use external checks only as a last resort when all other
options to gather the information have failed. In general, external checks should be
kept lightweight and fast. If a script is too slow, it'll time out and the item will become
unsupported.

Sending in the data
In some cases, there might be custom data sources where none of the previously
discussed methods would work sufficiently well. A script could run for a very long
time, or we could have a system without the Zabbix agent but with the capability to
push data. Zabbix offers a way to send data to a special item type, Zabbix trapper,
using a command-line utility, Zabbix sender. The easiest way to explain how it works
might be to set up a working item like that:

Navigate to Configuration | Hosts, click on Items next to A test host, click1.
on Create item, then fill in the following:

Name: Amount of persons in the room
Type: Zabbix trapper
Key: room.persons

When you're done, click on the Add button at the bottom.2.

We now have to determine how data can be passed into this item, and this is where
zabbix_sender comes in. On the Zabbix server, execute the following:

$ zabbix_sender --help

Advanced Item Monitoring Chapter 10

[427]

If you've installed from a distribution, then zabbix_sender needs
to be installed first from the repository.

We won't reproduce the output here, as it's somewhat lengthy. Instead, let's see
which parameters are required for the most simple operation, sending a single value
from the command line:

-z is to specify the Zabbix server
-s is to specify the hostname, as configured in Zabbix
-k is for the key name
-o is for the value to send

Note that the hostname is the hostname in the Zabbix host properties—not the IP, not
the DNS, and not the visible name. Let's try to send a value:

$ zabbix_sender -z 127.0.0.1 -s "A test host" -k room.persons -o 1

As usual, the hostname is case sensitive. The same applies to the
item key.

This command should succeed and show the following output:

info from server: "processed: 1; failed: 0; total: 1; seconds spent:
0.000046"
sent: 1; skipped: 0; total: 1

If you're very quick with running this command after adding the
item, the trapper item might not be in the Zabbix server
configuration cache. Make sure to wait at least one minute after
adding the item.

Let's send another value—again using zabbix_sender:

$ zabbix_sender -z 127.0.0.1 -s "A test host" -k room.persons -o 2

Advanced Item Monitoring Chapter 10

[428]

This one should also succeed, and now we should take a look at Monitoring | Latest
data over at the frontend. We can see that the data has successfully arrived and the
change is properly recorded:

Now we could try being smart. Let's pass a different data type to Zabbix:

$ zabbix_sender -z 127.0.0.1 -s "A test host" -k room.persons -o
nobody

We're now trying to pass a string to the Zabbix item even though, in the frontend, its
data type is set to an integer:

info from server: "processed: 0; failed: 1; total: 1; seconds spent:
0.000074"
sent: 1; skipped: 0; total: 1

Zabbix didn't like that, though. The data we provided was rejected because of the
data type mismatch, so it's clear that any process that's passing the data is responsible
for the data contents and formatting.

Now, security-concerned people would probably ask—who can send data to items of the
trapper type? zabbix_sender can be run on any host by anybody, and it's enough to
know the hostname and item key.

It's possible to restrict this in a couple of ways—for one of them, see Configuration |
Hosts, click on Items next to A test host, and click on Amount of persons in the
room in the Name column. Look at one of the last few properties, Allowed hosts. We
can specify an IP address or DNS name here, and any data for this item will be
allowed from the specified host only:

Several addresses can be supplied by separating them with commas. In this field, user
macros are supported as well. We discussed user macros in Chapter 8, Simplifying
Complex Configurations with Templates.

Advanced Item Monitoring Chapter 10

[429]

Another option to restrict who can send the data to trapper items is by using the
authentication feature with PSK or SSL certificates. That's discussed in Chapter 18,
Encrypting Zabbix Traffic.

Using an agent daemon configuration file
So far, we specified all of the information that zabbix_sender needs on the
command line. It's also possible to automatically retrieve some of that information
from the agent daemon configuration file. Let's try this (use the correct path to your
agent daemon configuration file):

 $ zabbix_sender -c /usr/local/etc/zabbix_agentd.conf -k
room.persons -o 3

This succeeds, because we specified the configuration file instead of the Zabbix server
address and the hostname—these were picked up from the configuration file. If
you're running zabbix_sender on many hosts where the Zabbix agent also resides,
this should be easier and safer than parsing the configuration file manually. We could
also use a special configuration file for zabbix_sender that only contains the
parameters it needs.

If the ServerActive parameter contains several entries, values are
sent only to the first one. The HostnameItem parameter isn't
supported by zabbix_sender.

Sending values from a file
The approach we used allows us to send one value every time we run
zabbix_sender. If we had a script that returned a large number of values, that
would be highly inefficient. We can also send multiple values from a file with
zabbix_sender. Create a file like this anywhere, for example, in /tmp/:

"A test host" room.persons 4
"A test host" room.persons 5
"A test host" room.persons 6

Advanced Item Monitoring Chapter 10

[430]

Each line contains the hostname, item key, and value. This means that any number of
hosts and keys can be supplied from a single file.

Notice how values that contain spaces are double quoted—the input
file is whitespace (spaces and tabs) separated.

The flag for supplying the file is -i. Assuming a filename of sender_input.txt, we
can run the following:

$ zabbix_sender -z 127.0.0.1 -i /tmp/sender_input.txt

That should send all three values successfully:

info from server: "processed: 3; failed: 0; total: 3; seconds spent:
0.000087"
sent: 3; skipped: 0; total: 3

When sending values from a file, we could still benefit from the agent daemon
configuration file:

$ zabbix_sender -c /usr/local/etc/zabbix_agentd.conf -i
/tmp/sender_input.txt

In this case, the server address would be taken from the configuration file, while
hostnames would still be supplied from the input file. Can we avoid that and get the
hostname from the agent daemon configuration file? Yes, that's possible by replacing the
hostname in the input file with a dash, like this:

- room.persons 4
"A test host" room.persons 5
- room.persons 6

In this case, the hostname would be taken from the configuration file for the first and
the third entry, while still overriding that for the second entry.

If the input file contains many entries, zabbix_sender sends them
in batches of 250 values per connection.

Advanced Item Monitoring Chapter 10

[431]

When there's a need to send lots of values constantly, we might wish to avoid
repeatedly running the zabbix_sender binary. Instead, we could have a process
write new entries to a file without closing the file, and then have zabbix_sender
read from that file. Unfortunately, by default, values would be sent to the server only
when the file is closed—or with every 250 values received. Fortunately, there's also a
command-line flag to affect this behavior. The -r flag enables a so-called real-time
mode. In this mode, zabbix_sender reads new values from the file and waits for 0.2
seconds. If no new values come in, the obtained values are sent. If more values come
in, it waits for 0.2 seconds more, and so on up to one second. If there's a host that's
constantly streaming values to the Zabbix server, zabbix_sender would connect to
the server once per second at most and send all of the values received in that second
in one connection. Yes, in some weird cases, there could be more connections—for
example, if we supplied one value every 0.3 seconds exactly.

If sending a huge number of values and using a file could became a performance
issue, we could even consider a named pipe in place of the file—although that would
be a quite rare occurrence.

Sending timestamped values
The data that we sent so far was considered to be received at that exact moment—the
values had the timestamp assigned by the server when it got them. Every now and
then, there's a need to send values in batches for a longer period of time or import a
backlog of older values. This can be easily achieved with zabbix_sender—when
sending values from a file, it supports supplying a timestamp. When doing so, the
value field in the input file is shifted to the right and the timestamp is inserted as the
third field. For a quick test, we could generate timestamps one, two, and three days
ago:

$ for i in 1 2 3; do date -d "-$i day" "+%s"; done

Take the resulting timestamps and use them in a new input file:

- room.persons 1462745422 11
"A test host" room.persons 1462659022 12
- room.persons 1462572622 13

With a file named sender_input_timestamps.txt, we would additionally use the
-T flag to tell zabbix sender that it should expect the timestamps in there:

$ zabbix_sender -c /usr/local/etc/zabbix_agentd.conf -T -i
/tmp/sender_input_timestamps.txt

Advanced Item Monitoring Chapter 10

[432]

All three values should be sent successfully.

When sending in values for a longer period of time, make sure the
history and trend retention periods for that item match your needs.
Otherwise, the housekeeper process could delete the older values
soon after they're sent in.

Looking at the graph or latest values for this item, it's probably slightly messed up.
The timestamped values we just sent in are likely to be overlapping in time with the
previous values. In most cases, sending in values normally and with timestamps for
the same item isn't suggested.

If the Zabbix trapper items have triggers configured against them,
timestamped values should only be sent with increasing
timestamps. If values are sent in a reversed or chaotic older-newer-
older order, the generated events won't make sense.
If data is sent in for a host that's in a no-data maintenance, the
values are also discarded if the value timestamp is outside the
current maintenance window. Maintenance was discussed in
Chapter 5, Managing Hosts, Users, and Permissions.

SSH and Telnet items
We've looked at quite a lot of fairly custom and customizable ways to get data into
Zabbix. Although external checks should allow us to grab data by any means
whatsoever, in some cases, we might need to collect data from some system that's
reachable over SSH or even Telnet, but there's no way to install an agent on it. In that
case, a more efficient way to retrieve the values would be to use the built-in SSH or
Telnet support.

SSH items
Let's look at the SSH items first. As a simple test, we could re-implement the same
Zabbix agent parameter we did as our first user parameter, determining the number
of the currently logged-in users by running who | wc -l. To try this out, we need a
user account we could use to run that command, and it's probably best to create a
separate account on A test host. Creating one could be as simple as the following:

useradd -m -s /bin/bash zabbixtest
passwd zabbixtest

Advanced Item Monitoring Chapter 10

[433]

Don't create unauthorized user accounts in production systems. For
remote systems, verify that the user is allowed to log in from the
Zabbix server.

With the user account in place, let's create the SSH item. In the frontend, follow these
steps:

Go to Configuration | Hosts, click on Items next to A test host, and click1.
on Create item. Fill in the following:

Name: Users logged in (SSH)
Type: SSH agent
Key: ssh.run[system.users]
User name: zabbixtest (or whatever was the username for
your test account)
Password: Fill in the password used for that account
Executed script: who | wc -l

The fields are shown in the following screenshot:

Advanced Item Monitoring Chapter 10

[434]

The username and password will be kept in plain text in the Zabbix
database.

When done, click on the Add button at the bottom.2.

For the key, we could customize the IP address and port as the second and third
parameters respectively. Omitting them uses the default port of 22 and the host
interface address. The first parameter for the item key is just a unique identifier. For
SSH items, the key itself must be ssh.run, but the first parameter works in a similar
fashion to the whole key for user parameters. In the Latest data page, our first SSH
item should be working just fine and returning values as expected. This way, we
could run any command and grab the return value.

In most cases, it's suggested to use user parameters instead of SSH
checks' we should resort to direct SSH checks only when it's not
possible to install the Zabbix agent on the monitored system.

The item we just created uses a directly supplied password. We could also use key-
based authentication. To do so, in the item properties, choose Public key for the
Authentication method drop-down menu and fill in the name of the file that holds
the private key in the Private key file field. Although the underlying library allows
skipping the public key when compiled with OpenSSL, Zabbix currently requires
specifying the public key filename in the Public key file field. If the key is
passphrase-protected, the passphrase should be supplied in the Key passphrase field.
But where should that file be located? Check the Zabbix server configuration file and
look for the SSHKeyLocation parameter. It isn't set by default, so set it to some
directory and place the private and public key files there. Make sure the directory and
all key files are only accessible by the Zabbix user.

Encrypted or passphrase-protected keys aren't supported by default
in several distributions, including Debian.
The libssh2 dependency might have to be compiled with OpenSSL
to allow encrypted keys. See
https://www.zabbix.com/documentation/3.0/manual/installatio

n/known_issues#ssh_checks for more detail.

https://www.zabbix.com/documentation/3.0/manual/installation/known_issues#ssh_checks
https://www.zabbix.com/documentation/3.0/manual/installation/known_issues#ssh_checks

Advanced Item Monitoring Chapter 10

[435]

Telnet items
In the case of a device that can neither have the Zabbix agent installed nor supports
SSH, Zabbix also has a built-in method to obtain values over Telnet. With Telnet
being a really old and insecure protocol, that's probably one of the least suggested
methods for data gathering.

Telnet items are similar to SSH items. The simplest item key syntax is the following:

telnet.run[<unique_identifier>]

The key itself is a fixed string, while the first parameter is a unique identifier, the
same as for the SSH items. Also, the second and third parameter are IP address and
port, if they're different from the host interface IP and the default Telnet port, 23. The
commands to run will go in the Executed script field, and the username and
password should be supplied as well.

The username and password are transmitted in plain text with
Telnet. Avoid it if possible.

For the login prompt, Zabbix looks for a string that ends with : (colon). For
Command Prompt, the following are supported:

$

#

>

%

When the command returns, the beginning of the string, up to one of these symbols is
trimmed.

Custom modules
Besides all of the already covered methods, Zabbix also offers a way to write loadable
modules. These modules have to be written in C and can be loaded in the Zabbix
agent, server, and proxy daemons. When included in the Zabbix agent, from the
server perspective, they act the same as the built-in items or user parameters. When
included in the Zabbix server or proxy, they appear as simple checks.

Advanced Item Monitoring Chapter 10

[436]

Modules have to be explicitly loaded using the LoadModulePath and LoadModule
parameters. We won't be looking at the modules in much detail here, but information
about the module API and other details are available at
https://www.zabbix.com/documentation/4.0/manual/config/items/loadablemodul

es.

Value preprocessing and dependent
items
A new powerful tool added in Zabbix is preprocessing items and dependent items.
We touched briefly on preprocessing when we had to add a network card and
calculate the Change per second. But there's much more that we can do now out of
the box without the need for knowledge of scripting. As value mapping is something
we have together in an item, we'll combine it with dependent items as it makes more
sense here.

Let's start by creating a new item on our A test host:

Name: Zabbix master item
Type: Zabbix agent(active)
Key: mysql.dependent
Type of information: Text
New applications: MySQL-Master

If all goes well, when we look at the latest data, we now see text value in our history
as shown in the following screenshot:

https://www.zabbix.com/documentation/4.0/manual/config/items/loadablemodules
https://www.zabbix.com/documentation/4.0/manual/config/items/loadablemodules

Advanced Item Monitoring Chapter 10

[437]

When we click on History, it should show us all of the values from our MySQL:

Now, this looks nice but let's say we're only interested in two lines,
Innodb_deadlocks and Aborted_clients, and we want to see the values from
those two lines also. It turns out that with the new dependent items and
preprocessing, this is going to be a piece of cake.

Let's go back to our list of items on A test host and click on the three dots (...)
before the item, Zabbix master item as shown in the following screenshot:

Advanced Item Monitoring Chapter 10

[438]

Now, click on Create dependent item from the pop-up menu that appears. This will
create a new item that is dependent on our Zabbix master item:

In our new item that appears, we have to add a few things. Let's start with the easy
ones first:

Name: Innodb_deadlocks
Type: Dependent item
Key: Innodb.deadlocks
Type of information: Character
New application: MySQL-Dependent

Notice how we now have Master item as an option, and how it's already making a
reference to our first item our Zabbix master item:

Advanced Item Monitoring Chapter 10

[439]

We still have things to do, as this will not work. We need to tell Zabbix now how to
retrieve this information from our master item. This is where our preprocessing
comes into play.

Let's go to the Preprocessing tab and add the following information in it:

Name: Regular expression
Parameters: In the first box, add Innodb_deadlocks\s(\d.*) and in the
second box, \1:

Click on Update when done.

Create another dependent item for our Aborted_clients item. This time, use the
following information in our item:

Name: Aborted_clients
Type: Dependent item
Key: Aborted.clients
Type of information: Character
Application: MySQL-Dependent

Just like with the previous item, we need to create a reprocessing step. Use the
following information:

Name: Regular expression
Parameters: In the first box, Aborted_clients\s(\d.*) and in the
second box, \1

Advanced Item Monitoring Chapter 10

[440]

When ready click Add, we now should have one master item with two dependent
items.

Let's check this by going to Configuration | Hosts, then A test host, and clicking on
Items. Open the filter and select MySQL-Master and MySQL-Dependent from the
subfilter. We should now see three items, one master and two dependent items, in
our item list:

We didn't changed the History of the master item but if you have no
need to keep it, then you could change the History to 0 days. The
item then will only be used to create the dependent items and no
data will be kept in the database.

Now, let's check whether we have some data; let's go to the latest data page and filter
on Application by selecting the MySQL-Dependent items from the list:

Yippee! We have two items with values in our latest data page and we had to write 0
lines of code for this. In previous versions, we probably had to write a script to send
us data for both items.

As you have probably noticed, there's much more to choose from in our
preprocessing options than only Regular expression; some we used already when
configuring our network card and others we didn't. Let's have a quick overview of
what's possible:

Advanced Item Monitoring Chapter 10

[441]

We have the following fields from the previous screenshot:

Regular expression: This matches the value to the <pattern> regular
expression and replaces the value with <output>. pattern is replaced
with a regular expression and output with the formatting template. A \N
(where N = 1…9) escape sequence is replaced.
Trim: This removes specified characters from the beginning and end of the
value.
Right trim: This removes specified characters from the end of the value.
Left trim: This removes specified characters from the beginning of the
value.
XML XPath: This extracts a value or fragment from XML data using XPath
functionality.
JSON Path: This extracts a value or fragment from JSON data using a
simple subset of JSONPath functionality.
Custom multiplier: This multiplies the value by the specified integer or
floating-point value.
Simple change: This calculates the difference between the current and
previous value.
Changer per second: This calculates the value change (the difference
between the current and previous value) in speed per second.

Advanced Item Monitoring Chapter 10

[442]

Boolean to decimal: This converts the value from Boolean format into
decimal.
Octal to decimal: This converts the value from octal format into decimal.
Hexadecimal to decimal: This converts the value from hexadecimal format
into decimal.

Summary
In this chapter, we looked at more advanced ways to gather data.

We explored log monitoring and either tracking a single file or multiple files and
matching a regular expression. We filtered the results and parsed some values out of
them.

Calculated items gave us a field to type any custom formula and the results were
computed from the data the server already had, without querying the monitored
devices again. Any trigger function could be used, providing great flexibility.

Aggregate items allowed us to calculate particular values, such as the minimum,
maximum, and average for items over a host group. This method is mostly useful for
cluster or cluster-like systems, where hosts in the group are working to provide a
common service.

External checks and user parameters provided a way to retrieve nearly any value—at
least any that can be obtained on the command line. While very similar conceptually,
they also have some differences that we'll try to summarize now:

External checks User parameters
Are executed by the Zabbix server
process Are executed by the Zabbix agent daemon

Are executed on the Zabbix server Are executed on the monitored hosts

Can be attached to any host Can only be attached to the host where the
Zabbix agent daemon runs

Can reduce server performance Have no notable impact on server performance
if set up as active items

Advanced Item Monitoring Chapter 10

[443]

As can be seen from this comparison, external checks should be mostly used with
remote systems where the Zabbix agent can't be installed, because they can be
attached to any host in the Zabbix configuration. Given the possible negative
performance impact, it's suggested to use user parameters in most situations.

Note that it's suggested for user parameters to have an active Zabbix agent type. That
way, a server connection isn't tied up in case the executed command fails to return in
a timely manner. We also learned that we should take note of the environment the
agent daemon runs in, as it isn't initialized.

For scripts that return a large number of values or for scripts that take a long time to
run, it was suggested to use the zabbix_sender command-line utility with a
corresponding Zabbix trapper item. This not only allowed us to send in anything at
our preferred rate, it also allowed us to specify the timestamp for each value.

And for those cases where we have to execute a command on a remote host to get the
value, the built-in support of SSH or even Telnet items could come in handy.

Armed with this knowledge, we should be able to gather any value that traditional
methods such as Zabbix agents, SNMP, IPMI, and other built-in checks can't retrieve.

Value preprocessing and dependent items provided us with a way to extract specific
items from a master item and do some preprocessing of data on our items before it
was put into the database.

In the next chapter, we'll cover several ways to automate configuration in Zabbix.
That'll include network discovery, low-level discovery, and active agent auto-
registration.

Questions
Does Zabbix support log rotation?1.
When using a calculated item, will it read information from the database or2.
will it poll the data from the items?
I have an aggregated item for a group of servers—can I use Zabbix-get to3.
retrieve the item value for that group?

Advanced Item Monitoring Chapter 10

[444]

Is it a good idea to place username and password in the Zabbix user4.
parameters?
Can we use preprocessing only on dependent items?5.
I have dependent items on a master item but I don't want to keep the data6.
from the master item as it contains too much. Is it possible to not keep it?

Further reading
Read the following articles for more information:

Log file monitoring: https:/ /www. zabbix. com/ documentation/ 4.0/
manual/ config/ items/ itemtypes/ log_ items

Calculated items: https:/ / www.zabbix. com/documentation/ 4. 0/manual/
config/ items/ itemtypes/ calculated

Aggregate checks: https:/ / www. zabbix. com/ documentation/ 4.0/manual/
config/ items/ itemtypes/ aggregate

SSH checks: https:/ /www. zabbix. com/ documentation/ 4.0/ manual/
config/ items/ itemtypes/ ssh_checks

Telnet checks: https:/ /www. zabbix. com/ documentation/ 4. 0/manual/
config/ items/ itemtypes/ telnet_ checks

Dependent items: https:/ / www. zabbix. com/ documentation/ 4.0/ manual/
config/ items/ itemtypes/ dependent_ items

Creating an item: https:/ /www. zabbix. com/ documentation/ 4.0/manual/
config/ items/ item? s[]= hexadecimal s[]=decimal#item_ value_
preprocessing

https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/log_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/calculated
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/aggregate
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/ssh_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/telnet_checks
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/dependent_items
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing
https://www.zabbix.com/documentation/4.0/manual/config/items/item?s%5B%5D=hexadecimal&s%5B%5D=decimal#item_value_preprocessing

11
Automating Configuration

So far, we have largely executed the manual configuration of Zabbix by adding hosts,
items, triggers, and other entities. With the exception of templates as discussed in
Chapter 8, Simplifying Complex Configurations with Templates, we haven't looked at
ways to accommodate larger and more dynamic environments. In this chapter, we
will discover ways to automatically find out about resources such as network
interfaces or filesystems on hosts by using low-level discovery, scanning a subnet
using network discovery, and allowing hosts to register themselves using active agent
auto-registration.

While learning about these methods, we will also explore related features, such as
global regular expressions, and find out more details regarding the features we are
already aware of—including context for user macros.

As Zabbix has several ways to manage automatic entity configuration and they all
operate in a different manner, it is highly recommended never using the term auto-
discovery when talking about Zabbix—nobody would know for sure which
functionality is meant. Instead, it is always recommended specifying whether it's low-
level discovery (LLD), network discovery, or active agent auto-registration.

We will cover the following topics in this chapter:

LLD
Creating custom LLD
Global regular expressions
Network discovery
Active agent auto-registration

Automating Configuration Chapter 11

[446]

LLD
Currently, we are monitoring several parameters on our hosts, including network
traffic. We configured those items by finding out the interface name and then
manually specifying it for all of the relevant items. Interface names could vary from
one system to another, and there could be a different number of interfaces on each
system. The same could happen with filesystems, CPUs, and other entities. They
could also change—a filesystem could get mounted or unmounted. Zabbix offers a
way to deal with such different and potentially dynamic configurations with a feature
called LLD. In the Zabbix documentation and community, it is usually known as
LLD, and that is how we will refer to it in this book, too.

LLD normally enables us to discover entities on existing hosts (we will discuss more
advanced functionality related to discovering hosts with LLD in Chapter 16,
Monitoring VMware). LLD is an extremely widely used feature, and there are few
Zabbix users who do not benefit from it. There are several LLD methods that are built
in, and it is fairly easy to create new ones, too. The LLD methods that are available are
as follows:

Network interfaces (Zabbix agent)
CPUs and CPU cores (Zabbix agent)
Simple network management protocol (SNMP) Object identifiers (OIDs)
Java Management Extensions (JMX) objects
Open Database Connectivity (ODBC) queries
Windows services
Filesystems (Zabbix agent)
Host interfaces
Custom LLD

We'll discuss Windows service discovery in Chapter 22, Monitoring Windows. ODBC
monitoring can be a bit cumbersome in the case of many databases being monitored,
so we won't spend much time on it and won't be covering ODBC LLD in this book.
Refer to the official documentation on it at
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discov

ery#discovery_using_odbc_sql_queries.

https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery#discovery_using_odbc_sql_queries
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery#discovery_using_odbc_sql_queries

Automating Configuration Chapter 11

[447]

Network interface discovery
Network interfaces on servers seem simple to monitor, but they tend to get more
complicated as the environment size increases and time goes by. Back in the day, we
had eth0, and everybody was happy. Well, not everybody—people needed more
interfaces, so we had eth1, eth2, and so on. It would already be a challenge to
manually match the existing interfaces to Zabbix items so that all interfaces are
properly monitored. Then, Linux-based systems changed the interface naming
scheme, and now, you could have enp0s25 or something similar, or a totally different
interface name. That would not be easy to manage on a large number of different
systems. Interface names on Windows are even more fun—they could include the
name of the vendor, driver, antivirus software, firewall software, and a bunch of
other things. In the past, people have even written VB scripts to sort of create fake
eth0 interfaces on Windows systems.

Luckily, LLD should solve all that by providing a built-in way to automatically
discover all the interfaces and monitor the desired items on each interface. This is
supported on the majority of the platforms that the Zabbix agent runs on, including
Linux, Windows, FreeBSD, OpenBSD, NetBSD, Solaris, AIX, and HP-UX.

Let's see how we can discover all the interfaces automatically on our monitored
systems. Navigate to Configuration | Templates and click on Discovery next to
C_Template_Linux. This is the section that lists the LLD rules—currently, we have
none. Before we create a rule, it might be helpful to understand what an LLD rule is
and what other entities supplement it.

A Discovery rule is a configuration entity that tells Zabbix what it should discover. In
the case of network interfaces, an LLD rule would return a list of all interfaces.
Assuming our system has interfaces called ETH0 and ETH1, the LLD rule would just
return a list of them:

Automating Configuration Chapter 11

[448]

Then, the LLD rule contains prototypes. In the first place, prototypes for items would
be required, although LLD allows us to add trigger and custom graph prototypes as
well. What actually are prototypes? We discussed templates in Chapter 8, Simplifying
Complex Configurations with Templates. You can think of LLD prototypes as mini-
templates. Instead of affecting the whole host, they affect items or triggers, or custom
graphs on a host. For example, an item prototype for network interface discovery
could tell Zabbix to monitor incoming network traffic on all discovered interfaces the
same way.

Getting back to creating an LLD rule, in the empty list of LLD rules, click on Create
discovery rule in the upper-right corner and then fill in the following details:

Name: Interface discovery
Key: net.if.discovery
Update interval: 120s

When done, click on Add. The discovery rule is added, although it won't do much
useful work for now. The key we used, net.if.discovery, is supposed to return all
the interfaces on the system. As you probably spotted, the properties of an LLD rule
look quite similar to item properties—there's an update interval, and there are flexible
intervals. Overall, the built-in agent LLD rules are actually items. Later, we will look
at the details of how they operate.

Automating Configuration Chapter 11

[449]

A discovery rule returns macros. In the same way as before, it might be safer to think
about them as variables, although we will again refer to them as macros here. These
macros return various properties of the discovered entities. In the case of the network
interface discovery by the Zabbix agent, these macros return interface names. LLD
macros always use the syntax of {#NAME}, that is, the name wrapped in curly braces
and prefixed with a hash mark. The macros can be later used in prototypes to create
items for each discovered interface. The built-in LLD rule keys return a fixed set of
such macros, and we will discuss each set whenever we look at the specific discovery
method, such as network interfaces first, and the filesystem and others later. We have
an LLD rule now, but it just reveals the interfaces. Nothing is done about them
without the prototypes. To derive any benefit from the previous step, let's create
some prototypes. Still in the LLD rule list, click on Item prototype in the ITEMS
column next to Interface discovery. Then, click on the Create item prototype button,
and fill in the following:

Name: Incoming traffic on $1
Key: net.if.in[{#IFNAME}]
Units: Bps
Preprocessing step (in the Preprocessing tab): Change per second

The fields can be seen in the following screenshot:

Automating Configuration Chapter 11

[450]

Our prototype here uses a discovery macro in the item key parameters. Actually, this
is required. These macros will be replaced with different values when creating the
final items, so the resulting item keys will be different. We could create item
prototypes without using LLD macros in the key parameters, but the resulting
discovery would fail as it would attempt to create one item per LLD macro.

When done with the configuration, click on the Add button at the bottom. Let's see
whether this item prototype now works as intended. We set the interval in our LLD
rule to a low value—120 seconds. As we cannot force items and discovery rules to run
manually, this will allow us to play with various configuration changes and see the
results much sooner. Wait for a few minutes and go to Configuration | Hosts. Then,
click on Discovery next to A test host. Something's not right—in the Info column,
there's a red error icon. Move your mouse cursor over it to see what the error message
is:

It's complaining that an item that would have to be created based on the LLD item
prototype already exists. That is correct; we created an item exactly like that earlier,
when we manually added items for interface monitoring.

If an LLD rule attempts to create items that have already been
created, the discovery fails and no items will be created.

As is always the case, item uniqueness is determined by the item key, including all
the parameters. Unfortunately, there is no way to merge manually configured items
with LLD-generated ones. There is also no easy way to keep the collected history. We
could change the item key either for the existing item or for the item prototype
slightly and keep the manually added item for historic purposes and then remove it
later when the new, LLD-generated item has collected sufficient historical data.

Automating Configuration Chapter 11

[451]

In this case, we could apply a small hack to the existing item key.

Navigate to Configuration | Templates, and click on Items next to
C_Template_Linux. Click on Incoming traffic on interface enp0s3 in the
Name column. In the properties, make the following changes:

Name: Incoming traffic on interface $1 (manual)
Key: net.if.in[enp0s3,]

That is, add (manual) to the name and a trailing comma inside the square brackets.
The first change was not strictly required, but it will allow us to identify these items.
The second change does not change anything functionally—the item will still collect
exactly the same information. We changed the item key, though. Even a small change
like this results in the key being different, and the discovery rule should be able to
create those items now. When done, click on Update. Now, make the same changes to
the outgoing network traffic item and the loopback interface item.

This trick works because the item key accepts parameters. For item
keys that accept no parameters, it is not possible to add empty
square brackets to indicate no parameters.

With the item keys changed, we could also monitor outgoing traffic automatically:

Go to Configuration | Templates, click on Discovery next to1.
C_Template_Linux, and then Item prototype next to Interface discovery.
Click on Incoming traffic on {#IFNAME} and then on the Clone button.2.
Change Incoming to Outgoing in the Name field, and change the Key3.
field to read net.if.out[{#IFNAME}].
When done, click on the Add button at the bottom.4.
Allow a few minutes to pass and then head back to Configuration | Hosts.5.

Automating Configuration Chapter 11

[452]

Click on Discovery next to A test host. The error icon should be gone. If6.
not, track down any other items mentioned here and make the same
changes to them.
Once there are no errors listed in this section, navigate to Configuration |7.
Hosts, click on Items next to A test host, and then click on the Discovered
sub-filter under DISCOVERY. There should be several new items, and
they should all be prefixed with the LLD rule name, Interface discovery, as
shown in the following screenshot:

Clicking on the discovery rule name will open the list of prototypes in the
LLD rule.

The number of items created depends on the number of interfaces
on the system—for each interface, two items should be created.

Our first discovery rule seems to be working nicely now; all interfaces on the system
have been discovered and network traffic is being monitored on them. If we wanted
to monitor other parameters on each interface, we would add more prototypes, using
the discovery macro in the item key parameters so that the created items have unique
keys.

In our LLD item, we made use of the {#IFNAME} macro. This was
not a random choice. Zabbix has a list of built-in macros for LLD
rules. The list can be found for every LLD rule in the
documentation. I have added the correct link at the end of this
chapter.

Automating Configuration Chapter 11

[453]

Automatically creating calculated items
For our manually created network traffic items, we created calculated items to collect
the total incoming and outgoing traffic. We did this in Chapter 10, Advanced Item
Monitoring. While we could go ahead and create such calculated items manually for
all LLD-created items, too, that would necessitate a huge amount of manual work.

Let's try to create a calculated item per interface according to the LLD rule instead. Go
to Configuration | Templates, click on Discovery next to C_Template_Linux, and
then click on Item prototype next to Interface discovery. Then, click on Create item
prototype. Fill in the following values:

Name: Total traffic on $1
Type: Calculated
Key: calc.net.if.total[{#IFNAME}]
Formula:
last(net.if.in[{#IFNAME}])+last(net.if.out[{#IFNAME}])

Units: B

We did not change Type of information, as we intentionally left it at
Numeric (unsigned) for the network traffic items we referenced
here. To remind yourself why, refer to Chapter 3, Monitoring with
Zabbix Agents and Basic Protocols.

When done, click on the Add button at the bottom. If you check the latest data page,
this item should start gathering data in a couple of minutes.

The item key for calculated items is for our own convenience. The
key does not affect the data collection in any way—that is
completely determined by the formula.

But let's say we're not that interested in very detailed statistics on the total traffic, but
more in a longer-term trend. We could modify the item we just created to collect the
sum of average incoming and outgoing traffic over the past 10 minutes and do so
every 10 minutes. Let's go back to Configuration | Templates, click on Discovery
next to C_Template_Linux, and then click on Item prototype next to Interface
discovery. Then, click on Total traffic on {#IFNAME}. Change these four fields:

Name: Total traffic on $1 over last 10 minutes
Key: calc.net.if.total.10m[{#IFNAME}]

Automating Configuration Chapter 11

[454]

Formula:
avg(net.if.in[{#IFNAME}],10m)+avg(net.if.out[{#IFNAME}],10
m)

Update interval: 10m

In the formula, we could also have used 600 instead of 10m and, for
Update interval, we could have used 600 instead of 10m or we
could have used 600s.

When done, click on the Update button at the bottom. We now have to allow a couple
of minutes for the discovery rule to run again and then up to 10 minutes for this item
to get the new value.

Let's discuss the changes we made. The most important one was the Formula update.
We changed the last() function for both item references to avg(). We can use any
trigger function in calculated items. We also supplied a parameter for this function
after a comma, and that was the reason we had to double-quote item keys in the disk
space item. The referenced keys contained a comma. That comma would be
misunderstood by Zabbix to separate the item key from the function parameters.

Additional parameters can be specified by adding more commas.
For example, in avg(net.if.in[{#IFNAME}],10m,1d), 1d would
be a time shift, as that's the second parameter for the avg() trigger
function. We learned more about trigger functions in Chapter 6,
Detecting Problems with Triggers.
If we only want to display the total on a graph, there is no need to
create an item – stacked graphs allow us to do that. We discussed
stacked graphs in Chapter 21, Visualizing Data with Graphs and Maps.

The total traffic item (or items) should be updated in the latest data to display the
average total traffic over the past 10 minutes. Normally, we would probably use an
even longer interval for these averages, such as one hour, but 10 minutes supplies us
with the data a bit more quickly. This approach could also be used to configure a
floating average for an item. For example, a formula such as this would calculate the
floating average over 6 hours for the CPU load:

avg(system.cpu.load,6h)

Calculated items do not have to reference multiple items; they can also reference a
single item to perform a calculation on it. Such a floating average could be used for
better trend prediction or for writing relative triggers by comparing current CPU load
values to the floating average.

https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf

Automating Configuration Chapter 11

[455]

Automatically creating triggers
Creating items for all discovered entities is useful, but even looking through them
would be quite a task. Luckily, LLD allows us to create triggers automatically as well.
The same as with items, this is done by creating prototypes first; actual triggers will
be created by the discovery process later.

To create the prototypes, follow these steps:

Navigate to Configuration | Templates, click on Discovery next to1.
C_Template_Linux, and then click on Trigger prototypes. In the upper-
right corner, click on Create trigger prototype, and configure it as follows:

Name: Incoming traffic too high for {#IFNAME}
on {HOST.NAME}.
Expression: Click on Add next to this field. In the popup,
click on Select prototype, and then click on Incoming traffic
on {#IFNAME} in the Name column. Click on Insert and
modify the generated expression. Change =0 to >5K. This
will alert you whenever the incoming traffic exceeds 5,000
bytes per second, as the item is collecting in bytes per second.
Severity: Select Warning.

The fields can be seen in the following screenshot:

When done, click on the Add button at the bottom.2.

That was for incoming traffic; now, let's create a prototype for outgoing traffic. Click
on the name of the prototype we just created, and then click on Clone. In the new
form, change Incoming in the Name field to Outgoing and net.if.in in the
Expression field to net.if.out, and then click on the Add button at the bottom.

Automating Configuration Chapter 11

[456]

With both prototypes in place, let's go to Configuration | Hosts and click on Triggers
next to A test host. It is likely that there are several new triggers here already. For the
incoming traffic, we created that prototype first, so discovery might have had a
chance to process it already. Nevertheless, it should not take longer than a few
minutes for all of the LLD-created triggers to show up. Make sure to refresh the page
manually to see any changes—configuration pages do not get automatically refreshed
like monitoring ones do:

In the same way as with items, triggers are prefixed with the LLD rule name. Notice
how we got one trigger from each prototype for each interface, the same as with the
items. The {#IFNAME} LLD macro was replaced by the interface name as well. Note
that we did not have to worry about making the created triggers unique—we must
reference an item key in a trigger, and that already includes the appropriate LLD
macros in item key parameters.

The threshold we chose here is very low—it is likely to fire even on our small test
systems. What if we had various systems and we wanted to have a different threshold on each
of them? The concept we discussed earlier, user macros, would help here. Instead of a
hardcoded value, we would use a user macro in the trigger expression and override it
on specific hosts as required. We discussed user macros in Chapter 8, Simplifying
Complex Configurations with Templates.

Automatically creating graphs
We have items and triggers automatically created for all interfaces, and we could also
have a graph created for each interface, combining incoming and outgoing traffic.

In the same way as before, this is done with the help of prototypes:

Go to Configuration | Templates, click on Discovery next to1.
C_Template_Linux, and then click on Graph prototypes. Click on Create
graph prototype and enter Traffic on {#IFNAME} in the Name field.
Click on Add prototype in the Items section, and mark the checkboxes next2.
to the incoming and outgoing network traffic items. Then, click on Select.
Choose Gradient line for both items in the Draw style drop-down:

Automating Configuration Chapter 11

[457]

When done, click on the Add button at the bottom. Note that we had to3.
specify the LLD macro in the graph name—otherwise, Zabbix would be
unable to create graphs, as they would have had the same name.

With the prototype in place, let's go to Configuration | Hosts and click on Graphs
next to A test host. If you see no graphs, wait a couple of minutes and refresh the
page—the graphs should show up, one for each interface, again prefixed with the
LLD rule name:

Navigating to Monitoring | Graphs and selecting A test host in the Host drop-down
will show all of these graphs in the Graph drop-down. This way, traffic on a specific
interface can be easily reviewed by selecting the appropriate graph—and without
configuring those graphs manually first.

There is no way to automatically create a graph with all the
discovered items in it at this time.

Filtering discovery results
Looking at the items, triggers, and graphs that were created, besides real interfaces,
the loopback interface also got discovered, and all of those entities got created for it.
In some cases, it would be useful to monitor that interface as well, but for most
systems, such data would not be useful.

Automating Configuration Chapter 11

[458]

If we look at the list of items in the configuration, the LLD-generated items had the
checkbox next to them disabled. This is no longer the case, and we can now delete the
discovered items. The controls in the STATUS column allow us to enable or disable
them individually. LLD-generated items on a host cannot be edited, except for being
disabled or enabled. Note that in the frontend, this can be done by selecting a list of
items all at once, something that was not possible with the older 3.0 version.

Disabling an LLD-generated item on many hosts could be a massive manual task. We
could think about disabling the prototype, but that would not work for two reasons:

Firstly, we only want to disable items for the loopback interface, but the
same prototype is used for items on all interfaces.
Secondly, state changes in the prototype are not propagated to the
generated items. The initial state in which these items are created – enabled
or disabled – will be kept for them.

What about other changes to these items, such as changing the item key or some other
property? Those would get propagated downstream, but only when the discovery
itself was run by the Zabbix server, and not when we made the changes to the
prototype in the frontend. In practice, this means that we would have to wait for up
to the LLD rule interval to see these changes applied downstream.

Luckily, there's a way to easily avoid creating items for some of the discovered
entities, such as in our case, not creating items for the loopback interface. This is
possible by filtering the entities LLD returns on the LLD rule level. Let's change our
existing rule to ignore interfaces with the name lo.

If we wanted to keep LLD-generated items but disable or enable
several of them on different hosts, in some cases, that might be
worth doing through the Zabbix API—we will have a brief
introduction to the API in Chapter 19, Working Closely with Data.

Navigate to Configuration | Templates and click on Discovery next to
C_Template_Linux. Then, click on Interface discovery in the Name column. Notice
how there's another tab here—Filters. Switch to that tab, and in the first and only
Filters entry, fill in the following:

Macro: {#IFNAME}, and select matches in the drop-down
Regular expression: @Network interfaces for discovery

Automating Configuration Chapter 11

[459]

These fields can be seen in the following screenshot:

When done, click on Update. LLD filters work by only returning matching entries. In
this case, we wanted to exclude the entry lo and keep everything else. The filter we
used will exclude lo but match everything else—including eth0, enp0s3, and loop.

The regular expression here is a reference to the Network interfaces for discovery
regular expression that is available as standard in Zabbix under the Administration |
General | Regular expression menu:

By using the @ sign in front of the name, we make a reference to this
regular expression. We could have written our own expression if we
wanted in this box.

Automating Configuration Chapter 11

[460]

To see whether this worked, navigate to Configuration | Hosts and click on Items
next to A test host. In the list, notice how both lo interface items have an orange icon
with an exclamation mark in the Info column. If you move the mouse cursor over it, a
message explains that this item is no longer classed as discovered and will be deleted
at a later date:

In this case, the item is not discovered because it got excluded by the filter, but the
reason does not matter that much; it could be an interface being removed or having
its name changed as well. But why will it be removed after that specific amount of time, a
bit more than 29 days? If we look at the properties of our LLD rule again, there's a field
called Keep lost resources period:

Here, we may specify how long items will be kept for when they are not discovered
again, and the default is 30 days. The tooltip helpfully told us how much time we
have left before the item will be deleted and at what precise time it will be deleted.
Other entities, including triggers and custom graphs, are kept as long as the
underlying items are kept.

An LLD rule is only evaluated when it gets new data. If the rule
stops getting data, items would tell you that they are supposed to be
deleted, but they won't be deleted until the rule gets new data and is
evaluated.

Now, navigate to Monitoring | Latest data and click on Graph for Incoming traffic
on lo. Let some time pass. You will notice that items that are scheduled for deletion
still continue collecting data. This might have been undesirable when we had initially
been monitoring a lot of things on a device, overloaded it, and then applied filtering,
hoping to remedy the situation. There is no way to directly control this, but we may
temporarily set the resource—keeping to 0, which would remove the items that are
no longer discovered the next time the LLD rule runs. In the LLD rule properties, set
the value of this field to 0 and click on Update. After a couple of minutes, check the
item list for A test host in the configuration—both of the automatic lo interface items
should now be gone.

Automating Configuration Chapter 11

[461]

What if we would like to have a different set of items for different discovered entities, for
example, monitoring more things on interfaces with a specific name? That is not easily
possible, unfortunately. One way would be by creating two different LLD rules with
different item prototypes, and then filtering for one set of entities in one LLD rule,
and another set in the other LLD rule. Still, that is more complicated than you might
expect. LLD rules have the same uniqueness criteria as items—the key. With some
items, we can use a little trick and have one item with a key called key and another
with key[]. Specifying empty square brackets will denote empty parameters, but
from a functional perspective, the item will be exactly the same. Unfortunately, the
agent LLD keys do not accept parameters, so this trick won't work. One workaround
would be specifying an alias on an item key—we will discuss how that can be done in
Chapter 20, Zabbix Maintenance.

Filesystem discovery
We have found out that a Zabbix agent has built-in support for discovering network
interfaces. It can also discover other things, one of the most popular being filesystems.
Before we configure that, let's find out what we can expect from such a feature.

Introducing the LLD JSON format
The discovery does not just look a bit like an item in the frontend; it also operates in
the same way underneath. The magic happens based on the content of a specific item
value. All the things that are discovered are encoded in a JSON structure. The easiest
way to see what's returned is to use zabbix_get and query a Zabbix agent. On A
test host, run the following command:

 $ zabbix_get -s 127.0.0.1 -k net.if.discovery

Here, net.if.discovery is just an item key, not different from other item keys. This
will return a small string, similar to the following:

{data:[{{#IFNAME}:enp0s3},{{#IFNAME}:enp0s8},{{#IFNAME}:lo}]}

Automating Configuration Chapter 11

[462]

While it's mostly understandable, it would be even better with some formatting. The
easiest way is to use Perl or Python tools. The Python method would be as follows:

$ zabbix_get -s 127.0.0.1 -k net.if.discovery | python -mjson.tool

The Perl method would be one of these:

$ zabbix_get -s 127.0.0.1 -k net.if.discovery | json_pp
$ zabbix_get -s 127.0.0.1 -k net.if.discovery | json_xs

The latter method should be faster, but requires the JSON::XS Perl module. For our
purposes, performance should not be a concern, so choose whichever method works
for you. The output will be similar to this:

{
 data : [
 {
 {#IFNAME} : enp0s3
 },
 {
 {#IFNAME} : enp0s8
 },
 {
 {#IFNAME} : lo
 }
]
}

The number of interfaces and their names might differ, but we can see that for each
discovered interface, we are returning one macro—the interface name. The key for
filesystem discovery is similar—vfs.fs.discovery. We can now run this:

$ zabbix_get -s 127.0.0.1 -k vfs.fs.discovery | json_pp

This would most likely return lots and lots of entries. Here's a snippet:

{
 data : [
 {
 {#FSNAME} : /dev/pts,
 {#FSTYPE} : devpts
 },
 {
 {#FSNAME} : /,
 {#FSTYPE} : xfs
 },
 {
 {#FSNAME} : /proc,

Automating Configuration Chapter 11

[463]

 {#FSTYPE} : proc
 },
 {
 {#FSNAME} : /sys,
 {#FSTYPE} : sysfs
...

Two things can be seen here:

It definitely returns way more than we would want to monitor
It returns two values for each filesystem—name and type

While we could filter according to filesystem name, some monitored systems could
have the root filesystem only, some could have separate /home, and so on. The best
way would be to filter by filesystem type. In this example, we only want to monitor
filesystems of type xfs.

With this knowledge in hand, let's navigate to Configuration | Templates, click on
Discovery next to C_Template_Linux, and then click on Create discovery rule. Fill in
the following values:

Name: Filesystem discovery
Key: vfs.fs.discovery
Update interval: 2m

The same as with network interface discovery, we set the update interval to 2m or
120s. The default in the form, 30 seconds, is very low and should not be used.
Discovery can be resource intensive, and, if possible, should be run on an hourly basis
or so. Now, switch to the Filters tab, and fill in these values:

Macro: {#FSTYPE}
Regular expression: matches ^xfs$

Replace the filesystem type with the one used on your system.
Multiple filesystem types can be accepted, like this: ^ext4|xfs$.
We can also use @File systems for discovery. This will use
the regular expression that's already available in Zabbix.

Automating Configuration Chapter 11

[464]

When done, click on the Add button at the bottom. We have the discovery now, but
no prototypes. Click on Item prototypes next to Filesystem discovery, and then click
on Create item prototype. Fill in the following values:

Name: Free space on {#FSNAME}
Key: vfs.fs.size[{#FSNAME},free]

When done, click on the Add button at the bottom. We now expect the discovery to
get the list of all filesystems and discard most of those, except the ones precisely with
the type xfs, and then create a free disk space item for each of them. We filter by one
LLD macro, {#FSTYPE}, but use another {#FSNAME} in the actual item configuration.

After a couple of minutes have passed, navigate to Configuration | Hosts and click
on Items next to A test host. You can select Discovered items from the Discovery
selection box in the filter if you like. For each filesystem of type xfs, there should be a
free disk space item, as shown in the following screenshot:

With more prototypes, we could also monitor total space, inode statistics, and other
data. We could have triggers as required on all of these filesystems.

As this discovery returns multiple macros, it might be desirable to filter by multiple
macros at the same time. For example, we might want to exclude the /boot
filesystem from monitoring. Similar to the type of calculation in action conditions, as
discussed in Chapter 7, Acting upon Monitored Conditions, we can choose between the
automatic options of And, Or, and And/Or and there's also the Custom expression
option. This should allow us to create discovery logic of varying complexity.

Automating Configuration Chapter 11

[465]

Including discovered graphs in screens
When we configure screens with normal graphs, we just choose the graph that should
be included in the screen. With LLD-generated graphs, it becomes more
complicated—we never know for sure how many graphs could be there for each host.
Luckily, Zabbix allows us to include LLD-generated graphs in a way that
automatically figures out the number of discovered entities.

To try this feature out, execute the following steps:

Go to Monitoring | Screens, go to the list of screens, and click on1.
Constructor next to Local servers.
Click on the + icon in the lower-left corner to add another row here, and2.
then click on Change in the lower-left cell.
In the Resource drop-down, select Graph prototype.3.
Click on Select next to the Graph prototype field.4.
In the popup, choose Linux servers in the Group drop-down and A test5.
host in the Host drop-down, and then click on Traffic on {#IFNAME} in
the Name column.
In the Width field, enter 400.6.
Click on Add.7.

Notice how this cell does not seem that useful in the screen configuration—no data is
displayed, and the title just says Traffic on {#IFNAME}. Let's check this screen in the
monitoring view and see whether it's any better.

Automating Configuration Chapter 11

[466]

Depending on the number of network interfaces your system had, the lower-left
corner of the screen will have a different number of graphs. If there's only one
interface (excluding lo), the screen will look decent. If there are more, all of them will
be displayed, but they will be stuffed in a single cell, making the screen layout less
appealing:

We did not set Dynamic item for this screen element. When the host
selection is changed in the monitoring section, these graphs always
show data for A test host. We discussed screen configuration in
more detail in Chapter 9, Visualizing Data with Screens and
Slideshows.

Automating Configuration Chapter 11

[467]

To improve this, return to the constructor of the Local servers screen and click on the
Change link in the lower-left corner. Change Column span to 2. Our screen has two
columns, so the network interface graphs will now use full screen width.
Additionally, take a look at the Max columns field—by default, it is set to 3. If your
system had three or more network interfaces discovered, the graphs would take the
width of three columns, not two, breaking the screen layout again. Let's set it to 2.
When done, click on Update, and then check the screen in the monitoring view again:

Automating Configuration Chapter 11

[468]

This looks better now; the network traffic graphs take full screen width, and any
further traffic graphs will be placed underneath in two columns. This was a custom
graph prototype that we added. Now, let's see how this works for simple graphs by
following these steps:

Open the constructor of the Local servers screen again and click on the +1.
icon in the lower-left corner.
Click on the Change link in the lower-left table cell and select Simple2.
graph prototype in the Resource drop-down.
Then, click on Select next to the Item prototype field.3.
Choose Linux servers in the Group drop-down and A test host in the Host4.
drop-down, and then click on Free space on {#FSNAME} in the Name
column.
Set both Max columns and Column span to 2 again, and click on Add.5.
Check this screen in the monitoring view. All of the discovered filesystems6.
should be shown in this screen, below the network traffic graphs.

This works the same way in templated screens (also known as host screens), except
that we may only select item and graph prototypes from a single template:

Automating Configuration Chapter 11

[469]

Custom thresholds with user macro context
The triggers we created from the network interface LLD prototypes always used the
same threshold. We could use a user macro and customize the threshold for an
individual host, but all interfaces would get the same threshold on that host. With
filesystem monitoring, it could be desirable to have different thresholds on different
filesystems. For example, we could use 80% warning on the root filesystem, 60% on
the /boot filesystem, and 95% on the /home filesystem. This is possible, using the
user macro context.

Refer to Chapter 8, Simplifying Complex Configurations with Templates, for further
details on user macros.

The normal syntax for user macros is {$MACRO}. The context is specified inside the
curly braces, separated by a colon, like so {$MACRO:context}. A trigger prototype to
check for the filesystem being 80% full in our LLD rule could have an expression like
this:

{C_Template_Linux:vfs.fs.size[{#FSNAME},free].last()}<20

It might be a good idea to use trigger functions such as avg() or
max() to avoid trigger flapping, as discussed in Chapter 6,
Detecting Problems with Triggers.

This would trigger an alert on any filesystem having less than 20% free disk space or
in excess of 80% utilization. We could rewrite it to use the user macro as the threshold
value:

{C_Template_Linux:vfs.fs.size[{#FSNAME},free].last()}<{$FS_FREE_THRESH
OLD}

This would allow us to customize the threshold per host, but not per filesystem.
Expanding on this, we would instruct the LLD rule to put the discovered filesystem
as the macro context, as follows:

{C_Template_Linux:vfs.fs.size[{#FSNAME},free].last()}<{$FS_FREE_THRESH
OLD:{#FSNAME}}

As the LLD prototypes are processed, the LLD macros are replaced with the
discovered values in created items. The trigger for the root filesystem that would be
created on the host would look like this:

{A test
host:vfs.fs.size[{#FSNAME},free].last()}<{$FS_FREE_THRESHOLD:/}

Automating Configuration Chapter 11

[470]

The trigger for the /home filesystem would look like this:

{A test
host:vfs.fs.size[{#FSNAME},free].last()}<{$FS_FREE_THRESHOLD:/home}

When Zabbix evaluates this trigger, it will first look for a macro with this context
value on the host. If that is not found, it will look for this macro with this context in
the linked templates. If it's not found there, it will look for a global macro with such a
context. If it's still not found, it will revert to the macro without the context and
evaluate that as a normal user macro. This means that we don't have to define user
macros with all possible context values—only the ones where we want to modify the
behavior. If there's a filesystem for which a specific user macro is not available, there's
always the host, template, or global macro to fall back on.

This feature is really nice, but properly explaining it seems to be complicated, so
here's a schematic. Without context, user macros were evaluated as in the right-hand
column—that is, the host level was checked first, then template, and then global. With
context, it is the same—just that the macro name with context is looked up in all three
levels first, and then we fall back to the macro name without context on all three
levels. The first place where there's a match will determine the value for that macro:

When used in triggers like this, this feature allows us to have different thresholds for
different filesystems—and that can also be customized per host. We could have a user
macro {$FS_FREE_THRESHOLD:/home} set to 20 on one host, 30 on another, and so
on.

Of course, this is not limited to triggers—it is supported in all the locations where
user macros are supported, including item-key parameters and trigger-function
parameters. A trigger could check the average temperature for 5 minutes on one
system and 15 minutes on another.

Automating Configuration Chapter 11

[471]

CPU discovery
Yet another discovery method supported by the Zabbix agent is CPU discovery. It
returns all CPUs (or cores) present on a system. Now that we know how to get the
LLD JSON, we only need to know which item key is used to return CPU
information—that's system.cpu.discovery. Run this on A test host:

$ zabbix_get -s 127.0.0.1 -k system.cpu.discovery | json_pp

For a single-core system, it will return this:

{
 data : [
 {
 {#CPU.NUMBER} : 0,
 {#CPU.STATUS} : online
 }
]
}

The CPU discovery returns two macros for each discovered CPU:

{#CPU.NUMBER} is a CPU number, as assigned by the system.
{#CPU.STATUS} tells us the CPU's status, again, according to the host
system.

This can be used to monitor various states on individual CPUs and cores. If our
application is supposed to utilize all cores evenly, it might be useful to know when
the utilization is not even. Simple CPU utilization monitoring will return the average
result across all CPUs, so a runaway process that consumes 100% of a single CPU on a
quad-core system would only register as having 25% utilization. We might also want
to know when a CPU is not online for some reason.

SNMP discovery
The discovery methods we examined before were all Zabbix-agent based. Zabbix also
supports discovering entities over SNMP. This is different from the dynamic SNMP
index support we discussed in Chapter 4, Monitoring SNMP Devices. The dynamic
SNMP index allows us to monitor a specific entity by name—for example, a network
interface by its name. SNMP support in LLD allows us to discover all entities and
monitor them.

Automating Configuration Chapter 11

[472]

Let's see how we could use it to discover all network interfaces:

Navigate to Configuration | Hosts, click on Discovery next to the host for1.
which you created SNMP items previously, and click on Create discovery
rule. Populate these fields:

Name: SNMP interface discovery
Type: SNMPv2 agent (or choose another, supported SNMP
version)
Key: snmp.interface.discovery
SNMP OID: discovery[{#IFDESCR}, IF-
MIB::ifDescr]

Update interval: 120s

Zabbix versions before 2.4 used a different SNMP OID syntax for
LLD rules. While upgrading, Zabbix would change the syntax to the
current one; importing an older template would use the old syntax,
which would fail in Zabbix 2.4 and later. At the present time, it is
not known which Zabbix version could fix this.

When done, click on the Add button at the bottom.2.

Automating Configuration Chapter 11

[473]

The discovery itself was very similar to what we have created so far, with one
exception—the SNMP OID value. For the SNMP LLD, we define the macro name and
the OID table to be discovered. In this case, Zabbix would look at all the individual
values in the IF-MIB::ifDescr table and assign them to the {#IFDESCR} macro,
which is the name we just specified in the SNMP OID field. In addition to the macro
we specified, Zabbix will also add one extra macro for each entity discovered
– #SNMPINDEX}. That, as we will see in a moment, will be useful when creating item
prototypes.

To create some prototypes, next to the new discovery rule, click on Item prototype,
and then click on Create item prototype. Fill in the following:

Name: Incoming traffic on interface $1 (SNMP LLD)
Type: SNMPv2 agent
Key: lld.ifInOctets[{#IFDESCR}]
SNMP OID: IF-MIB::ifInOctets.{#SNMPINDEX}
Units: Bps
Preprocessing: Change per second

Automating Configuration Chapter 11

[474]

When done, click on the Add button at the bottom.

Notice how we prefixed lld to the item key. That way, there is no chance it could
clash with the items we created manually earlier. As for the SNMP OID, we used the
built-in {#SNMPINDEX} macro, which should uniquely identify values in the SNMP
table. If we add such an item manually, we would find out which is the correct index
for the desired interface and use that number directly. That's for the incoming
traffic—to make this more complete, click on Incoming traffic on interface
{#IFDESCR} (SNMP LLD) in the Name column, and then click on the Clone button at
the bottom. In the Name field, change Incoming to Outgoing. In both of the Key and
SNMP OID fields, change In to Out so that the OID has ifOutOctets. When done,
click on the Add button at the bottom. Navigate to Configuration | Hosts and click
on Items next to the host we just worked on. After a couple of minutes, there should
be new items here, according to those two prototypes. As this is a configuration page,
make sure to refresh it every now and then, otherwise the changes will not be visible.

If the items don't show up after a longer period of time, go to the
discovery list for that host and check the Info column—there could
be an error listed there.

Most likely, the loopback interface will be in the list as well. We did not apply any
filtering for this LLD rule:

As before, let's create a graph prototype for these items:

Click on Discovery rules in the navigation header above the item list, click1.
on Graph prototypes next to SNMP interface discovery, and then click on
the Create graph prototype button. In the Name field, enter Traffic on
{#IFDESCR} (SNMP). Click on Add prototype in the Items section, mark
the checkboxes next to both of the prototypes, and click on Select.
Click on the Add button at the bottom. If you look at the list of graphs in2.
the configuration section for this host after a few minutes, a new graph
should appear for each interface there.

Automating Configuration Chapter 11

[475]

The ifDescr OID is usually the interface name. It is quite common to use the
ifAlias OID for a more user-friendly description. We could change our discovery to
ifAlias instead of ifDescr, but not all systems will have a useful ifAlias value on
all interfaces, and we might want to know the ifDescr value anyway. Zabbix can
discover multiple OIDs in a single LLD rule as well. Let's go back to the discovery
rule configuration for this host and click on SNMP interface discovery in the
Name column. Modify the SNMP OID field to read the following:

discovery[{#IFDESCR}, IF-MIB::ifDescr, {#IFALIAS}, IF-MIB::ifAlias]

Further OIDs are added as extra parameters, where the macro name is always
followed by the OID. We could also add more OIDs, if needed:

key[{#MACRO1}, MIB::OID1, {#MACRO2}, MIB::OID2, {#MACROn}, MIB::OIDn]

In this case, though, ifAlias should be enough. Click on the Update button at the
bottom, and then click on Graph prototypes next to the SNMP interface discovery
entry. Click on Traffic on {#IFDESCR} (SNMP) in the Namecolumn, and change the
name for this graph prototype:

Traffic on {#IFDESCR} ({#IFALIAS}) (SNMP)

This way, if an interface has ifAlias set, it will be included in the graph name. We
still keep the ifDescr value, as that is a unique interface identifier, and some
interfaces might have nothing to return for the ifAlias OID. Let's go to the graph
configuration for this host. After a few minutes have passed, the graph names should
be updated, with ifAlias included in the parentheses.

If you are monitoring a Linux system that's running the Net-SNMP
daemon, ifAlias will most likely be empty.

This approach also provides an easy way to monitor selected interfaces only. If you
have a large number of network devices and only a few selected ports are to be
monitored, the description for those ports could be changed on the device—for
example, they could all be prefixed with zbx. This will show up in the ifAlias OID,
and we would filter by the {#IFALIAS} macro in the LLD rule properties.

The macro names are user configurable and could be different on a
different Zabbix installation. Only the built-in {#SNMPINDEX} macro
will always have the same name.

Automating Configuration Chapter 11

[476]

Creating custom LLD rules
The built-in low-level discovery support is great for discovering filesystems, network
interfaces, CPUs, and other entities. But what if we have some custom software that we
would like to discover components with or perhaps are running an older Zabbix agent on some
system that does not support a particular type of discovery yet? The great thing about LLD
is that it is very easy to extend with our own discovery rules. Let's take a look at two
examples:

Reimplementing CPU discovery on Linux
Discovering MySQL databases

An LLD rule never returns item values. It discovers entities that
allow the creation of items from prototypes. Items receive values
from agents, SNMP devices, using zabbix_sender, or any of the
other data collection methods.

Reimplementing CPU discovery
First, let's try to do something that is already available in recent Zabbix
agents—discovering CPUs. We do this both because it could be useful if you have a
system running an old agent and because it shows how straightforward LLD can be
on occasion. To do this, let's consider the following script:

for cpu in $(ls -d /sys/devices/system/cpu/cpu[0-9]*/); do
 cpui=${cpu#/sys/devices/system/cpu/cpu}
 [[$(cat ${cpu}/online 2>/dev/null) == 1 || ! -f
${cpu}/online]] && status=online || status=offline;
cpulist=$cpulist,'{{#CPU.NUMBER}:'${cpui%/}',
{#CPU.STATUS}:'$status'}'
done
echo '{data:['${cpulist#,}']}'

It relies on /sys/devices/system/cpu/ holding a directory for each CPU, named
cpu, followed by the CPU number. In each of those directories, we look for the online
file—if that file is there, we check the contents. If the contents are 1, the CPU is
considered to be online; if something else, it is considered to be offline. In some cases,
changing the online state for CPU0 will not be allowed—this file would then be
missing, and we would interpret that as the CPU being online. We then append
{#CPU.NUMBER} and {#CPU.STATUS} macros with proper values and eventually
print it all out, wrapped in the LLD data array. Let's use this as a user parameter.

Automating Configuration Chapter 11

[477]

We explored user parameters in Chapter 10, Advanced Item
Monitoring.

We will concatenate it all in a single line, as we don't need a wrapper script for this
command. In the Zabbix agent daemon configuration file on A test host, add the
following:

UserParameter=reimplementing.cpu.discovery,for cpu in $(ls -d
/sys/devices/system/cpu/cpu[0-9]*/); do
cpui=${cpu#/sys/devices/system/cpu/cpu}; [[$(cat ${cpu}/online
2>/dev/null) == 1 || ! -f ${cpu}/online]] && status=online ||
status=offline;
cpulist=$cpulist,'{{#CPU.NUMBER}:'${cpui%/}',{#CPU.STATUS}:'$status'}'
; done; echo '{data:['${cpulist#,}']}'

For more complicated cases or production implementation, consider
a proper JSON implementation, such as the JSON::XS Perl module.

Restart the agent daemon and, on the same system, run this:

$ zabbix_get -s 127.0.0.1 -k reimplementing.cpu.discovery

On a quad-core system, it would return something similar to this:

{data:[{{#CPU.NUMBER}:0,{#CPU.STATUS}:online},{{#CPU.NUMBER}:1,{#CPU.S
TATUS}:online},{{#CPU.NUMBER}:2,{#CPU.STATUS}:offline},{{#CPU.NUMBER}:
3,{#CPU.STATUS}:online}]}

You can reformat JSON for better readability using Perl or Python;
we did that earlier in this chapter.

We can now use this item key for an LLD rule the same way as with the built-in item.
The item prototypes would work exactly the same way, and we wouldn't even need
to use different LLD macros.

On most Linux systems, you can test this by bringing some CPUs or cores offline—for
example, the following will bring the second CPU offline:

echo 0 > /sys/devices/system/cpu/cpu1/online

Automating Configuration Chapter 11

[478]

Discovering MySQL databases
With the CPU discovery reimplemented, let's try to discover MySQL databases.
Instead of user parameters, let's use a Zabbix trapper item, which we will populate
with Zabbix sender.

We explored Zabbix sender in Chapter 10, Advanced Item Monitoring.

We will use a different item type now. This is completely normal—the item type used
for LLD does not matter as long as we can get the correct JSON into the Zabbix server.
Let's start by creating the LLD rule with a number of item prototypes and proceed
with generating JSON after that. With this rule, we could discover all MySQL
databases and monitor their sizes using a user parameter. The following assumes that
your Zabbix database is on A test host. Navigate to Configuration | Hosts, click
on Discovery next to A test host, and then click on Create discovery rule. Fill in the
following:

Name: MySQL database discovery
Type: Zabbix trapper
Key: mysql.db.discovery

When done, click on Add. Now, click on Item prototypes next to MySQL database
discovery, and then click on Create item prototype. Here, fill in the following:

Name: Database $1 size
Type: Zabbix agent (active)
Key: mysql.db.size[{#MYSQL.DBNAME}]
Units: B
Update interval: 300
Applications: MySQL

When done, click on the Add button at the bottom. For this item, we used an active
agent, as this is suggested for user parameters, and we also set the update interval to
5 minutes—usually, the database size won't change that quickly. We are
only interested in more long-term trends. We now have the item, which will be a
UserParameter variable, and that item, in turn, will be created by an LLD rule that is
populated by Zabbix sender. Let's set up the UserParameter variable now. In the
Zabbix agent daemon configuration file for A test host, add the following:

UserParameter=mysql.db.size[*],HOME=/home/zabbix mysql -Ne select
sum(data_length+index_length) from information_schema.tables where
table_schema='$1';

Automating Configuration Chapter 11

[479]

This UserParameter variable will query the total database size, including both
actual data and all indexes. Notice how we are setting the HOME variable again. Don't
forget to save the file and restart the agent daemon afterward. It's also a good idea to
test it right away:

$ zabbix_get -s 127.0.0.1 -k mysql.db.size[zabbix]

This will most likely return a number:

147865600

If it fails, double-check the MySQL parameter configuration we used in Chapter 10,
Advanced Item Monitoring.

Notice how it takes some time for this value to be returned. For large databases, it
might be a better idea to use Zabbix sender for such an item as well.

With the LLD rule and item prototype in place, let's get to sending the JSON for
discovery. The following should discover all databases that are accessible to the
current user and generate the LLD JSON for Zabbix:

for db in $(mysql -u zabbix -Ne show databases;); do
 dblist=$dblist,'{{#MYSQL.DBNAME}:'$db'}'
done
echo '{data:['${dblist#,}']}'

We are removing the trailing comma in the JSON database list—JSON does not allow
a trailing comma, and including it will make the discovery fail. Zabbix will complain
that the incoming data is not a valid JSON.

The principle here is similar to the CPU discovery reimplementation from earlier—we
find all the databases and list them in the JSON after the proper macro name. It
should return a line similar to this:

{data:[{{#MYSQL.DBNAME}:information_schema},{{#MYSQL.DBNAME}:zabbix}]}

And now on to actually sending this to our LLD rule—we will use Zabbix sender for
that.

If you tested this and thus modified the dblist variable, run unset dblist before
running the following command:

 $ zabbix_sender -z 127.0.0.1 -s A test host -k mysql.db.discovery
-o $(for db in $(mysql -u zabbix -Ne show databases;); do
dblist=$dblist,'{{#MYSQL.DBNAME}:'$db'}'; done; echo
'{data:['${dblist#,}']}')

Automating Configuration Chapter 11

[480]

This command should be run as the user the Zabbix agent daemon
runs as; otherwise, it might include databases that the Zabbix user
has no permission for, and such items would become unsupported.

Visiting the item list for A test host in the configuration should reveal that one
item created for each database:

It might take up to 3 minutes for the first value to appear in the Latest data page first,
up to a minute for the configuration cache to refresh, and then up to 2 minutes for the
active agent to update its configuration from the server.

Also remember that the rule is only evaluated when it gets new
data. If a database was removed and scheduled for deletion, it
would never get deleted if the trapper item got no more data.

After some time has passed, the values should be visible in the Monitoring | Latest
data page:

LLD rules cannot be nested—for example, we cannot discover tables in the databases
we discovered. If the tables had to be discovered, it would required a separate,
independent LLD rule.

Automating Configuration Chapter 11

[481]

Global regular expressions
Now that we know about some of the automation features, let's take a look at a
feature in Zabbix that allows us to define regular expressions in an easier – and
sometimes more powerful – way. This feature can be used in low-level discovery, as
discussed here, and in other locations.

There are quite a lot of places in Zabbix where regular expressions can be used. We
already looked at icon mapping in Chapter 21, Visualizing Data with Graphs and Maps,
and log filtering in Chapter 10, Advanced Item Monitoring. In all these places, we
defined the regular expression directly. But sometimes, we might want to have a
single expression that we could reuse, or the expression could be overly complicated
when typed in directly. For example, our filtering of loopback interfaces earlier was
not the most readable thing. This is where global regular expressions can help.

Let's see how we could have used this feature to simplify that filtering:

Navigate to Administration | General, choose Regular expressions from the drop-
down, and click on New regular expression. To see what we could potentially do
here, expand the Expression type drop-down:

Character string included and Character string not included both seem pretty
straightforward. This expression would match or negate the matching of a single
string. Any character string included is a bit more complicated, according to the
Delimiter drop-down (which appears when we choose Any character string). We
could enter multiple values and, if any of those were found, it would be a match:

https://www.packtpub.com/sites/default/files/downloads/Visualizing_Data_with_Graphs_and_Maps.pdf

Automating Configuration Chapter 11

[482]

For example, leaving the Delimiter drop-down at the default setting, retaining the
comma, and entering ERROR, WARNING in the Expression field, would match either
the ERROR or WARNING string.

The two remaining options, Result is TRUE and Result is FALSE, are the powerful
ones. Here, we could enter ^[0-9] in the Expression field and match when the string
either starts or does not start with a number. Actually, only these last two work with
regular expressions; the first three are string-matching options. They do not even
offer any extra functionality besides making things a bit simpler; technically, they are
not regular expressions, but are supported here for convenience.

Previously, when we wanted to filter out an interface with the name lo, we used a
filter that referenced us to the following regular expression rule—Network interfaces
for discovery.

Creating something familiar is fairly complicated. Let's create a global regular
expression that would do the same:

Enter Name as Exclude loopback.1.
In the Expressions block, fill in the following:2.

Expression type: Result is FALSE
Expression: ^lo$

The fields can be seen in the following screenshot:

Click on the Add button at the very bottom.3.

Using lo with Character string not included would exclude
anything containing lo, not just the exact string lo.

Automating Configuration Chapter 11

[483]

Now, let's reference it in our global regular expression:

To do so, go to Configuration | Templates, click on Discovery next to1.
C_Template_Linux, and click on Interface discovery in the Name column.
Switch to the Filters tab and replace the value in the Regular expression
column with @Exclude loopback.

Here, no quoting should be used—just the @ sign and then the
global regular expression name, precisely as configured in the
administration section.

When done, click on Update. The new configuration should work exactly2.
the same. Another solution could be to just write the regular expression
itself in this box.

No check is carried out when a global regular expression gets its
name changed—this way, you could break configuration elsewhere,
so it should be done with great care, if at all.

Another place where global regular expressions come in handy is log monitoring.
Similar to LLD rule filters, we just use an @ prefixed expression name instead of
typing the regular expression directly. For example, we could define a regular
expression as follows:

(ERROR|WARNING) 13[0-9]{3}

It would catch any errors and warnings with the error code in the 13,000
range—because that might be defined to be of concern to us. Assuming we named
our global regexp errors and warnings 13k, the log monitoring key would look
like this:

log[/path/to/the/file,@errors and warnings 13k]

Automating Configuration Chapter 11

[484]

Testing global regexps
Let's return to Administration | General, choose Regular expressions in the drop-
down, and click on New regular expression. Add three expressions here, as follows:

First expression:
Expression type: Character string included
Expression: A
Case sensitive: yes

Second expression:
Expression type: Result is TRUE
Expression: ^[0-9]

Third expression:
Expression type: Result is FALSE
Expression: [0-9]$

This should match a string that contains an uppercase A, starts with a number, and
does not end with a number. Now, switch to the Test tab and enter 1A2 in the Test
string field; then, click on Test expressions. In the following screenshot of the result
area, it shows that a string starting with a number and containing an uppercase A
corresponds, but then, the string ends with a number, which we negated. As a result,
the final test fails:

Automating Configuration Chapter 11

[485]

Zabbix uses PCRE. In older versions, it was only the frontend using
the PCRE and the backend would use the POSIX regular
expressions. In Zabbix 4.0, this is no longer the case. https:/ /
regex101. com/ is a good site to test your PCRE regular expressions.

Usage in the default templates
As we created our own global regular expression, you probably noticed that there
were a few already existing there.

Let's navigate to Administration | General and choose Regular expressions in the
drop-down again. Besides the one we created for the loopback interface filtering,
there are five existing expressions:

The expressions shown in the preceding screenshot can be shown as follows:

One of them, Network interfaces for discovery, actually does almost the
same thing as ours did, except that it also excludes interfaces whose names
start with Software Loopback Interface, which is for MS Windows
monitoring.
File systems for discovery can be used to limit the types of filesystems to
monitor, besides xfs, which we filtered for; it includes a whole bunch of
other filesystem types.

https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/

Automating Configuration Chapter 11

[486]

Storage devices for SNMP discovery excludes memory statistics from
storage devices when monitoring over SNMP. Windows service names for
discovery is used to exclude services that we don't need to know the status
of in Windows and could easily get extended.
The final one, Windows service startup states for discovery, will exclude
services not marked as to start automatically or automatic delayed.

Network discovery
LLD is concerned with discovering entities on an individual host. Zabbix also
supports a way to scan a network address range and perform some operation based
on what has been discovered there—that's called network discovery.

Configuring a discovery rule
To see how this could work, let's have a simple discovery rule. We can discover our
test systems, or we can point the discovery at another network range that is accessible
to the Zabbix server.

To create a network discovery rule, execute the following:

Navigate to Configuration | Discovery and click on Create discovery rule.1.
Fill in the name and IP range as desired, and then click on New in the2.
Checks block. Choose ICMP ping in the Check type drop-down and click
on Add in this block. Additionally, change Delay to 2m so that we can more
easily see the effects of any changes:

Automating Configuration Chapter 11

[487]

Make sure fping is properly configured—we did that in Chapter 3,
Monitoring with Zabbix Agents and Basic Protocols.

When done, click on the Add button at the bottom.3.

Automating Configuration Chapter 11

[488]

Viewing the results
After a few minutes have passed, check the Monitoring | Discovery section:

All the devices that respond to the ping in the configured range will be listed here. If
a device is already monitored as a host in Zabbix, it will be listed in the Monitored
host column. We will also see for how long the host is known to be up, and, in the
ICMP ping column, we also see the time the service is running. In older versions, this
column would just be marked green and we would have had to move the mouse over
the column to see how long the status was running. It can happen that only one host
is listed, as already monitored here. How come? Hosts are recognized here by their IP
addresses, so we used 127.0.0.1. The address by which it was discovered differs, so
it's not really considered to be the same host or device.

Hosts are not clickable here at this time—probably the easiest way
to get to the host properties is by copying and pasting the hostname
in the global search field.

Automating Configuration Chapter 11

[489]

Now, follow these steps:

Navigate back to Configuration | Discovery and click on A test discovery1.
in the NAME column. Click on New in the Checks block and choose a
service that is accessible and would be easy to control on these hosts –
perhaps SMTP again. Click on Add in the Checks section, and then click
on New there again. This time, choose a service that is not present on any
host in the configured range—FTP might be a good choice. Then, click on
Add in this block again:

Finally, click on Update. After a couple of minutes, visit Monitoring |2.
Discovery:

SMTP has appeared, which is great. But why is there no FTP column? Could this view be
limited to two services? It's not limited to a specific number of services, but a service
that is not discovered on any of the hosts does not show up at all at this time. If a
service was initially discovered on a number of systems but not on others, the column
would be shown and the systems where the service was not discovered would get a
gray cell.

Automating Configuration Chapter 11

[490]

Let's break something now—bring down the SMTP service on one of the hosts, and
wait for a couple of minutes. The SMTP cell for that host should turn red, and the
popup should start tracking downtime for that service now. If all services on a host
went down, the host itself would be considered as down, and that would be reflected
in the Uptime/Downtime column:

Reacting to the discovery results
The discovery monitoring page is interesting at first, but not that useful in the long
term. Luckily, we can make Zabbix perform operations in response, and the
configuration is somewhat similar to how we reacted to triggers firing.

To see how this is configured, follow these steps:

Navigate to Configuration | Actions and switch to Discovery in the Event source
drop-down in the upper-right corner. Then, click on Create action. Fill in the name of
Network discovery test, switch to the New conditions drop-down box, and
expand the first drop-down in the New condition section:

Automating Configuration Chapter 11

[491]

The available conditions are completely different from what was available for trigger
actions. Let's review them:

Discovery check: A specific check in a specific discovery rule must be
chosen here.
Discovery object: Either a device or service can be chosen here. In our
example, the discovered host would be a device object and SMTP would be
a service object.
Discovery rule: A specific network discovery rule must be chosen here.
Discovery status: This condition has possible values of Up, Down,
Discovered, and Lost. For devices, they are considered to be discovered or
up if at least one service on them can be reached. Here is what the values
mean:

Discovered: This device or service is being seen for the first
time or after it was detected to be down
Lost: This device or service has been seen before, but it has
just disappeared
Up: The device or service has been discovered, no matter
how many times it might have happened already
Down: The device or service has been discovered at some
point, but right now, it is not reachable, no matter how many
times that has happened already

Host IP: Individual addresses or ranges may be specified here.
Proxy: Action may be limited to a specific Zabbix proxy. We will discuss
proxies in Chapter 17, Using Proxies to Monitor Remote Locations.
Received value: If we are polling a Zabbix agent item or an SNMP OID, we
may react to a specific value—for example, if undertaking discovery
according to the system.uname item key, we could link all hosts that have
Linux in the returned string to the Linux template.
Service port: Action may be limited to a specific port or port range on
which the discovery has happened.
Service type: Action may be restricted to a service type. This is similar to
the Discovery check condition, except that choosing SMTP here would
match all SMTP checks from all network discovery rules, not just a specific
one.
Uptime/Downtime: Time in seconds may be entered here to limit the
action only after the device or service has been up or down for a period of
time.

Automating Configuration Chapter 11

[492]

Most of these are pretty self-explanatory, but let's take a closer look at two of them.
The Discovery status condition allows us to differentiate between the initial check or
being discovered after downtime and periodic checks. As an example, if we matched
the Up status and added the host to a Host group, this addition would be checked
and performed every time the host can be reached. If somebody removed that host
from that host group, it would be readded during every discovery cycle. If we
matched the Discovered status, it would only happen when the host is first
discovered and when it goes down and then up again. Automatic readdition to the
group is most likely to happen later in this case.

The Uptime/Downtime condition allows us to react with a delay, not immediately.
For example, we might want to have an uptime of a few hours before monitoring a
device, as it might be a temporary troubleshooting laptop that is attached to the
network. Probably even more importantly, we might not want to delete a host with
all its history if that host is down for 5 minutes. Checking for a week-long downtime
might be reasonable – if nobody bothered with that host for a week, it's safe to delete.

For now, let's leave the conditions empty and switch to the Operations tab. Adding a
new operation and expanding the Operation type drop-down will reveal all the
available operations. We will discuss them in more detail a bit later, but for now, let's
choose Add to host groups. In the input field, start typing linux, and choose Linux
servers from the drop-down. Then, click on the small Add control in the Operation
details block. Be very careful here, as it is easy to lose some configuration. When
done, click on the Add button at the bottom:

Automating Configuration Chapter 11

[493]

After a couple of minutes, go to Configuration | Hosts to observe the results. If
discovering our test systems, we should see that one new host has been added.

Even though we did not tell the action to add the host itself, it still
happened. If the operation implies that there's a host—for example,
adding it to a host group or linking to a template—the host will be
automatically added.

Why only one host? The other host already existed as per Monitoring | Discovery
earlier. For this host, you will see either its hostname or the IP address used as the
hostname in Zabbix. If the Zabbix server was able to perform a reverse lookup on the
IP address, the result will be used as the hostname. If not, the IP address will be used
as the hostname.

If multiple addresses reverse-resolved to the same name, others
would be added as name_2 and so on.

Click on New host in the Name column. In the Groups section, this host is in the
Linux servers group, as expected. But it is also in some other group, Discovered
hosts. Where did that come from?

By default, all hosts discovered by network discovery are added to a specific group.
Which group? That's a global setting.

Navigate to Administration | General and then choose Other in the drop-down. The
Group for discovered hosts setting allows us to choose which group that is. What if
you don't want the discovered hosts to end up in that group? In the action operations, we
could add another operation, Remove from host group, and specify the Discovered
hosts group.

Automating Configuration Chapter 11

[494]

Now let's review all available discovery operations:

Send message: The same as for trigger actions, we may send a message to
users and user groups. This could be used both to supplement an action
that adds devices (Hey, take a look at this new server we just started monitoring)
or as a simple notification that a new device has appeared on the network
(This new IP started responding, but I won't automatically monitor it).
Remote command: Zabbix can attempt to run a remote command on a
passive Zabbix agent or Zabbix server, a command using IPMI, SSH, or
Telnet, and even a global script. This would only succeed if remote
commands are enabled on the Zabbix agent side. We discussed remote
commands in Chapter 7, Acting upon Monitored Conditions.
Add host: A host will be added and only included in the Discovered hosts
group.
Remove host: A host will be removed. This probably makes the most sense
to perform when a host has not been discovered, and, to be on the safe side,
only when the downtime exceeds a specified period of time.
Add to host group: A host will be added to a host group. If there is no such
host, one will be added first.
Remove from host group: A host will be removed from a host group.
Link to template: A host will be linked to a template. If there is no such
host, one will be added first.
Unlink from template: A host will be unlinked from a template.
Enable host: A host will be enabled. If there is no such host, one will be
added first.
Disable host: A host will be disabled. This could be used as a safer
alternative to removing hosts, or we could disable a host first and remove it
later. If there is no such host, one will be added first.

Automating Configuration Chapter 11

[495]

When linking to a template, the host still needs all the proper interfaces, as required
by the items in that template. During discovery, only successful discovery checks
result in the adding of interfaces of a corresponding type. For example, if we only
found SNMP on a host, only an SNMP interface would be added. If both SNMP and
Zabbix agent discovery checks succeeded on a host, both interfaces would be added.
If some checks succeed later, additional interfaces are created.

Uniqueness criteria
But what about multi-homed hosts that have multiple interfaces exposed to Zabbix network
discovery?

Let's return to Configuration | Discovery and click on A test discovery.1.
Look at the Device uniqueness criteria option—the only setting there is IP2.
address. In the Checks block, click on New and choose Zabbix agent in the
Check type drop-down. In the Key field, enter system.uname, and then
click on Add in the Checks block.
Notice how the Device uniqueness criteria got a new option—Zabbix3.
agent "system.uname", as shown in the following screenshot:

By default, with the uniqueness criteria set to IP address, Zabbix will create a new
host for each discovered IP address. If there's a system with multiple addresses, a
new host will be created for each address. If the uniqueness criteria is set to a Zabbix
agent item, it will look at all the IP addresses it has seen before and the values it got
back for that item key. If the new value matches some previous value, it will add a
new interface to the existing host instead of creating a new host. It works the same
way with SNMP—adding an SNMP check will add another uniqueness criteria
option, and Zabbix will compare values received for that specific OID. It is common
to discover SNMP devices by the SNMPv2-MIB::sysDescr.0 OID.

Both a Zabbix agent and SNMP must be preconfigured to accept
connections from the Zabbix server.

Automating Configuration Chapter 11

[496]

Now that we have discussed network discovery, I'll give you one short suggestion
about it—don't use it. Well, maybe not that harsh, but do not cling to it too much.
There are use cases for network discovery, but quite often, there's a decent list of
devices that should be monitored coming either from a configuration management
database (CMDB) or some other source. In that case, it is better to integrate and
automatically update your Zabbix configuration based on that authoritative source. If
your answer to What's your most definitive list of hosts in your environment? is Zabbix,
then network discovery is for you.

Active agent auto-registration
We just explored network discovery—it scanned a network range. Zabbix also
supports a feature that goes the other way around, where Zabbix agents can chime in
and Zabbix server can automatically start monitoring them. This is called active agent
auto-registration.

Whenever a Zabbix agent connects to the Zabbix server, the server compares the
incoming agent hostname with the existing hosts. If a host with the same name exists,
it proceeds with the normal active item monitoring sequence. This includes both
enabled and disabled hosts. If the host does not exist, the auto-registration sequence
kicks in, that is, an event is generated.

The fact that an event is generated every time an unknown agent connects to the
Zabbix server is important. If you do not use active items or auto-registration, switch
off active checks on the agent side. Otherwise, every such check results in a network
connection, a log entry on the agent and server side, and an event in the Zabbix
database. There have been cases where that increases the database size and results in
significantly reduced performance. In some instances, there are millions of such
completely useless auto-registration events, which is up to 90% of the total event
count. It is recommended checking the server log for entries such as the following:

cannot send list of active checks to [127.0.0.1]: host [Register me]
not found

If found, they should all be solved. The first pair of square brackets tells us where the
connection came from, and second, what host the agent claimed to be.

Automating Configuration Chapter 11

[497]

Similar to trigger and network discovery events, we may react to that event with an
action. Let's configure an auto-registration action now:

Head to Configuration | Actions and switch to Auto registration in the1.
Event source dropdown.
Then, click on Create action.2.
Enter Testing registration in the Name field, and then switch to the3.
Operations tab.
Click on New in the operations block. The Operation type dropdown4.
reveals a subset of operations that are available for network discovery.

In previous versions, we could not remove hosts, remove hosts from host groups, and
unlink hosts from templates, but now it seems that this has been fixed. The operations
are functionally the same as for network discovery, so we won't look into them much,
just choose Add host this time, and click on the small Add in the Operation details
block. Then, click on the Add button at the bottom. With the action in place, probably
the easiest way to test this is to fake a new agent. Edit the agent daemon configuration
file on A test host and change the Hostname parameter to Register me. Then,
restart the agent daemon.

Go to Configuration | Hosts—there's a new host again. If you check the host
properties, it is included in the Discovered hosts group; the same group is used here
as in the network discovery. Let's change the Hostname parameter back to the
previous value in the agent daemon configuration file and restart the agent.

We haven't looked at the conditions for auto-registration yet—let's return to
Configuration | Actions, click on Testing registration, and switch to the Conditions
tab. The drop-down next to the New condition section reveals the available
conditions:

As we can see, the list of available conditions is much shorter here. We can filter by
hostname. For example, if all our Linux hosts have linux in the name, we could
detect them that way. We can also filter by proxy if we use Zabbix proxies for the
auto-registration. There's also an entry called Host metadata. What's that?

Automating Configuration Chapter 11

[498]

Auto-registration metadata
When a Zabbix agent connects to the server, it sends its hostname. But it may
additionally send some custom string to the server. What exactly it sends is controlled
by a configuration parameter called HostMetadata in the agent daemon configuration
file. This could be used to define which type the host is—database or application.
Alternatively, it could list individual services running on a host. As we can match
against received metadata in the auto-registration action, we could list all the running
services, delimited with pipes. In the action conditions, we could look for |MySQL|
and link the new host to the appropriate templates.

Metadata is still limited to 255 characters.

Controlling the metadata parameter directly in the configuration file is possible, but it
could be cumbersome. There's a way to make an agent dynamically obtain that value.
Instead of HostMetadata, we would define HostMetadataItem and specify an item
key. We could use one of the built-in item keys or configure a user parameter and run
a script. Note that we can also use the system.run item key here and specify any
command directly in the HostMetadataItem parameter, even if remote commands
are not enabled—as it is not arriving from the network, it is not considered to be a
remote command. For example, the following is a valid HostMetadataItem line:

HostMetadataItem=system.run[rpm -qa mariadb]

If the mariadb package is present on an RPM-based system, the agent would send
that in the metadata; we could match it in the action conditions and link that host to
the MariaDB/MySQL template.

There's also another use case for this parameter. You might have noticed that as long
as there's an auto-registration action, somebody could maliciously or accidentally
create lots and lots of hosts, potentially slowing down Zabbix significantly. There is
no secret challenge mechanism to prevent that, but we can use metadata here. Action
conditions could check for a specific secret string to be included in the metadata—if
it's there, create the host. If not, send an email for somebody to investigate. Note that
the key can't be too long, as the 255-character length limit still applies.

Automating Configuration Chapter 11

[499]

Summary
In this chapter, we learned about a number of features in Zabbix that allow automatic
configuration, creation, and maintenance:

Low-level discovery or LLD
Network discovery
Active agent auto-registration

LLD allows entities to be discovered by using Zabbix agents—it has built-in support
for network interfaces, filesystems, and CPUs. We talked about customizing
thresholds and other values per discovered entity with user macro context support.
Zabbix can also discover SNMP tables, such as network interfaces, but it is not limited
to that—any SNMP table can be discovered. We also looked at creating custom
discoveries, including MySQL database discovery.

LLD offers a way to filter results by regular expressions, and we checked out how
global regular expressions can make that easier here and also in other places, such as
log monitoring.

After that, we explored network discovery, which is all about scanning an address
range and automatically adding hosts, potentially linking them to proper templates,
and then adding them to host groups.

In the other direction, there's active agent auto-registration, where active agents can
chime in and the server starts monitoring them automatically. Metadata support for
this feature allows quite fine-grained rules on what templates to link in or what host
groups the hosts should belong to. We noted that, if not used, active checks should be
disabled on agents; otherwise, an unnecessary load would be placed on the entire
Zabbix infrastructure.

In the next chapter, we will explore the built-in web monitoring feature. It allows us
to define scenarios that consist of steps. Steps check a page and may look for a specific
HTTP response code or string in the returned page. We will also try out logging in to
applications and extracting data from one page and then passing it to another.

Automating Configuration Chapter 11

[500]

Further reading
Read the following article for more information regarding what was covered in this
chapter:

Discovery of network interfaces: https:/ /www. zabbix. com/ documentation/ 4.0/
manual/discovery/ low_ level_ discovery/ network_ interfaces

https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces
https://www.zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/network_interfaces

12
Monitoring Web Pages

In this chapter, we will look at the built-in capability of Zabbix to monitor web pages.
We will check different sections of a web page and monitor it for failures, as well as
monitoring download speed and response time. We'll also find out how Zabbix can
extract a value from a page and then reuse that value. Besides more advanced
scenarios and step-based solutions, we will also explore web-monitoring-related
items that are available for the Zabbix agent.

In this chapter, the following topics will be covered:

Monitoring a simple web page
Logging into the Zabbix interface
Authentication options
Using agent items

Monitoring a simple web page
The internet is important in every aspect of modern life—socializing, business,
entertainment, and everything else happens over the wire. With all the resources
devoted to this network, many are tasked with maintaining websites—no matter
whether we have an internally-hosted site or one trusted to an external hosting
provider, we will want to know at least its basic health status. We could start by
monitoring a few simple things on a real-life website.

Creating a web-monitoring scenario
Web monitoring in Zabbix happens through scenarios that, in turn, consist of steps.
Each step consists of a URL and things to check on it. This allows both the checking of
a single page and verifying that several pages work properly in succession. The web-
monitoring scenarios in Zabbix are assigned to hosts, and they can also be templated.

Monitoring Web Pages Chapter 12

[502]

To see how this works, we could monitor a couple of pages from the open mapping
project, OpenStreetMap.

While we could attach a web-monitoring scenario to any of the existing hosts, that
wouldn't correctly depict what the scenario is monitoring, so we will create a
dedicated host. As there's only one OpenStreetMap website, we won't use templates
for this:

Navigate to Configuration | Hosts, click on Create host, and fill in these1.
values:

Name: OpenStreetMap
Groups: Web pages

We don't have to change any other values here, so click on the Add button
at the bottom.

We're now ready to create the scenario itself—in the list of hosts, click on2.
Web next to OpenStreetMap and then click on Create web scenario. In the
scenario properties, enter these values:

Name: Main page
New application: Webpage
Update interval: 300

Now on to the individual steps. The steps for web monitoring are the actual queries
performed on the web server; each step has a URL. Switch to the Steps tab and click
on Add in the Steps section. Fill in these values in the new popup:

Name: First page.
URL: http://www.openstreetmap.org/.
Required string: Enter OpenStreetMap is a map of the world,
created by people like you. This field will search for a particular
string in the returned page, and this step will fail if such a string is not
found. We can use PCRE regular expressions here, but not global regular
expressions, as discussed in Chapter 11, Automating Configuration.
Required status codes: Enter 200. Here, acceptable HTTP return codes can
be specified, separated by commas. Again, if the return code doesn't match,
this step will be considered a failure. A status code of 200 means OK.

Monitoring Web Pages Chapter 12

[503]

The required string is only checked against the page source, not
against the HTTP headers. The scenario only downloads the content
the step URL points at; other elements of the web page are never
downloaded. Since Zabbix 3.4, macros are supported in the update
interval field, and time suffixes.

The form should look like this:

If it does, click on the Add button. Let's also check whether the GPS traces page can
be accessed.

Monitoring Web Pages Chapter 12

[504]

Again, click on Add in the Steps section, and enter these values:

Name: Traces
URL: http://www.openstreetmap.org/traces/
Required string: Public GPS traces
Required status codes: 200

In the Required string field, we entered the text that should be present on the traces
page. When done, click on Add.

The final step of the configuration should look like this:

Monitoring Web Pages Chapter 12

[505]

If everything looks fine, click on the Add button at the bottom. Let's see what web
monitoring visually looks like. Open Monitoring | Web and click on Main page next
to OpenStreetMap. It looks as if all the steps were completed successfully, so we can
consider the monitored website to be operating correctly as the Status column
happily says OK, or at least the parts that we are monitoring. As with plain items, we
can see when the last check was performed:

We also have an overview of how many steps each scenario contains, but that's all
very vague. Click on Main page in the Name column—maybe there's more
information. Indeed, there is! Here, we can see statistics for each step, such as Speed,
Response time, and Response code. And, if that's not enough, there are predefined
pretty graphs for Speed and Response time. Note that these are stacked graphs, so
we can identify the moments when all of the steps together take more time.

Monitoring Web Pages Chapter 12

[506]

Above the graphs, we can see those familiar timescale controls, the new time selector
controls, so these graphs provide the same functionality as anywhere else, including
clicking and dragging to zoom in or selecting by time, months, or years:

We can see the relative time each step took and how fast it was compared to the
others. In this case, both operations together, on average, take slightly less than a
second.

While this view is very nice, it isn't very flexible. Can we have direct access to underlying
data, perhaps? Let's visit Monitoring | Latest data to find out. Choose Webpages in
the Host groups field, and click on Apply. Items within the Webpage application will
show up.

Monitoring Web Pages Chapter 12

[507]

Take a look at the data, all of the collected values are accessible as individual items,
including download Speed, Response time, Response code, and even the last error
message per scenario.

We can reuse these items, creating whatever graphs we please. If we want we could
create a pie chart of response times for each step or a non-stacked graph of download
speeds. Of course, as with all items, we get simple graphs without any additional
configuration:

There's also a failed step item, which returns 0 if none of the steps failed. As that
value is 0 when everything is fine, we can check for it not being 0 in a trigger, and
alert based on that.

While we could use value mapping to show Success when the failed
step is 0, we would have to add a value map entry for every step
number—value mapping does not support ranges or default values
yet.

Other scenarios and step properties
Before we continue with alerting, let's review the other options on the scenario level:

Attempts: Web pages are funny beasts. They mostly work, but that one
time when the monitoring system checks it, it fails. Or is it just that users
reload a page that fails to load once and never complain? No matter what, this
field allows us to specify how many times Zabbix tries to download a web
page. For pages that experience the occasional hiccup, a value of 2 or 3
could be appropriate.

Monitoring Web Pages Chapter 12

[508]

Agent: When a web browser connects to a web server, it usually sends
along a string identifying itself. This string includes the browser name,
version, operating system, and, often, other information. This information
is used for purposes such as gathering statistics, making a specific portion
of a site work better in some browser, denying access, or limiting
experience on the site. Zabbix web monitoring checks also send user-agent
strings to web servers. By default, it identifies as Zabbix, but you can also
choose from a list of predefined browser strings or enter a custom string by
choosing the Others option:

Monitoring Web Pages Chapter 12

[509]

HTTP proxy: If needed, an HTTP proxy can be set per scenario. A
username, password, and port can be specified as well:

The default HTTP proxy can be set with the http_proxy and
https_proxy environment variables for the Zabbix server process –
these variables will be picked up by libcurl, which is used
underneath for the web monitoring. If a proxy is specified on the
scenario level, it overrides such a default proxy setting. There is no
way to set a proxy on the step level.

We'll discuss the remaining fields, Variables and Headers, a bit later in logging into
the Zabbix interface.

Web monitoring in Zabbix does not support JavaScript at all.

Alerting on web scenarios
Let's create a trigger that warns us when any one of the steps in the scenario fails. As
discovered previously, the failed step item holds 0 when all is good. Anything else is
a sequential number of the step that failed. As a web scenario stops at any failure, a
failed step number of 3 means that the first two steps were executed successfully, and
then the third step failed. If there were any further steps, we don't know their
state—they were not processed.

To create a trigger, we always need an item key. We could try to find it in the item
list. Go to Configuration | Hosts and click on Items next to the OpenStreetMap host,
no items. The reason is that these items are special—they are items that are internal to
Zabbix web scenarios (not to be confused with the internal monitoring items,
discussed in Chapter 20, Zabbix Maintenance), and thus are not available for manual
configuration. We should be able to select them when creating a trigger, though. Click
on Triggers in the navigation header, and then click on Create trigger.

Monitoring Web Pages Chapter 12

[510]

In the trigger-editing form, enter these values:

Name: {HOST.NAME} website problem.
Expression: Click on Add, then click on Select next to the Item field in the
resulting popup. Select Web pages in the Group drop-down and
OpenStreetMap in the Host drop-down.
Then, click on Failed step of scenario Main page in the Name column. We
have to find out when this item is not returning zero.
In the Function drop-down, choose last() - Last (most recent T value).
For Result, choose <> and 0.

The final trigger expression should be as follows:

{OpenStreetMap:web.test.fail[Main page].last()}<>0

When you are done, click on the Add button at the bottom. We can see how
the web.test.fail[Main page] item key was used, thus, web scenario items are
very much like normal items. They have names and keys, even though they can't be
seen in the item configuration view. This way, we can create triggers for all web
scenario items, such as response time and download speed, to also spot performance
issues, or for return codes so that we can spot exact at what step it has failed. The
same items are available for custom graphs, too.

Monitoring Web Pages Chapter 12

[511]

The trigger we created would alert upon the first failure in this web scenario. You
might want to make this monitoring less sensitive, and there are at least two ways to
achieve that:

Set Attempts in the scenario properties to a larger value.
Check item values over a longer period of time. We discussed such a
strategy in Chapter 6, Detecting Problems with Triggers.

The count function could be a good candidate here as we could
count the number of values over a certain period of time that are
over a value, for example, count(10m,0,gt) would count the
values for the last 10 minutes that are over 0.

If a web-monitoring step fails, Zabbix stops and does not proceed to the next step. If
the website you are monitoring has multiple sections that can work independently of
one another, you should create a separate scenario for each.

When web monitoring fails, it could be very useful to know what
exactly we received from the web server. Unfortunately, Zabbix
does not store retrieved content anywhere by default. We'll discuss a
way to temporarily view all the retrieved web pages in the
Controlling running daemons section of Appendix A, Troubleshooting.

Logging into the Zabbix interface
Our first steps in website testing were fairly simple. Let's do something a bit fancier
now. We will attempt to log in to the Zabbix frontend, check whether that succeeds,
and then log out. We should also verify that the logout operation was successful, by
the way.

We will use the default Admin user account for these tests. Note that
this will pollute the audit log with login/logout entries for this user.

We will do this with a greater number of individual steps for greater clarity:

Check the first page1.
 Log in2.
Check login3.

Monitoring Web Pages Chapter 12

[512]

Log out4.
Check logout5.

We will set up this scenario on A test host. Go to Configuration | Hosts, click on
Web next to A test host, and click on Create web scenario. Fill in these values:

Name: Zabbix frontend
New application: Zabbix frontend
Variables: Enter these lines:

{user}=Admin
{password}=zabbix

Remember that the host we assign the web scenario to does not matter much—actual
checks are still performed from the Zabbix server.

Monitoring Web Pages Chapter 12

[513]

The variables we filled in use a different syntax than other macros/variables in
Zabbix. We will be able to use them in the scenario steps, and we'll see how exactly
that is done in a moment. And now, on to the steps. Switch to the Steps tab. For each
of the steps, first click on the Add link in the Steps section. Then, click on the Add
button in the step properties, and proceed to the next step. For all the steps, adapt the
URL as needed—the IP address or hostname and the actual location of the Zabbix
frontend.

Step 1 – checking the first page
On the first page, fill in the following details:

Name: First page
URL: http://127.0.0.1/zabbix/index.php
Required string: Zabbix SIA
Required status codes: 200

In the URL, we also appended index.php to reduce the amount of redirects required.
The Required string option will be checked against the page contents. That also
includes all the HTML tags, so make sure to list them if your desired string has any
included. We also chose a text that appears at the bottom of the page to ensure that
the page has loaded completely. And the status code—the HTTP response code of
200 is OK; we require that specific code to be returned.

Make sure you add the correct IP address of your Zabbix server in
the URL field as this is the IP where your frontend is running.

Step 2 – logging in
And now, on to logging in:

Name: Log in
URL: http://127.0.0.1/zabbix/index.php

Monitoring Web Pages Chapter 12

[514]

Post type: The Form data option is selected with the following values:
Name: name, Value: {user}
Name: password, Value: {password}
Name: enter, Value: Sign in

Required status codes: 200
Variables: The fields of this option are filled with the following values:

Name: {sid}
Value: regex:name="csrf-token" content="([0-9a-
z]{16})":

Monitoring Web Pages Chapter 12

[515]

The Post type variables can be specified as attribute and value pairs. When using the
Form data option, our values are URL-encoded. In raw mode, attributes and values
are displayed on a single line, as in older Zabbix releases, such as 3.0, and are not
URL-encoded.

In our post type, we are using the variables we specified earlier, and we pass them
according to the input field names in the login form. The last variable, enter, is a
hidden input in the Zabbix frontend login page, and we must pass a hardcoded value
of Sign in to it. To find out these values for other pages, you can check the page
source, use browser debugging features, or sniff the network traffic.

Also take note of how we get the content of the {sid} variable
(session ID) using a variable syntax with a regular expression:
regex:name="csrf-token" content="([0-9a-z]{16})". This
variable will be required in the Step 4 – logging out section. Variables
can be used in later steps and override scenario-level variables or
variables from previous steps.

Step 3 – checking login
We could assume that the logging in has succeeded, but it is always best to check
such things. We may have missed a hidden variable, or made a mistake with the
password. So, we'll use a separate step to be sure that logging in really succeeded.
Note that all further steps in this scenario will act as a logged-in user until we log out.
Zabbix keeps all received cookies for later steps during the whole scenario. When
logged in, one distinguishing factor is the profile link, which uses the top-nav-
profile class—and that will be the string we check for:

Name: Check login
URL: http://127.0.0.1/zabbix/index.php
Follow redirects: Yes
Required string: Administration
Required status codes: 200

Monitoring Web Pages Chapter 12

[516]

Step 4 – logging out
Now that we have verified that the frontend is accessible and that we can log in and
retrieve logged-in content, we should also log out, otherwise the Zabbix database will
become polluted with open session records. We'll discuss session maintenance in
Chapter 20, Zabbix Maintenance.

The two important variables here are reconnect and sid. reconnect simply has to
be set to 1. As for sid, we extracted that value in the Step 2 – logging in section, so we
have all the components to log out:

Name: Log out
URL: http://127.0.0.1/zabbix/index.php
Query fields: This option is filled with the following values:

Name: reconnect, Value: 1
Name: sid, Value: {sid}

Required status codes: 200

Monitoring Web Pages Chapter 12

[517]

Monitoring Web Pages Chapter 12

[518]

Step 5 – checking logout
We will check whether there's a string that we only expect to see on the login page.
Logging out could have failed invisibly otherwise. Let's add a string to check for in
our item:

Name: Check logout
URL: http://127.0.0.1/zabbix/index.php
Required string: Username
Required status codes: 200

If everything looks good, click on the Add button at the bottom of the page to save
this scenario. We could let the scenario run for a while and discuss some of the step
parameters we didn't use:

Headers: Custom HTTP headers that will be sent when performing a
request. They are specified as attribute and value pairs. Headers on the step
level will overwrite the headers specified for the scenario.
Follow redirects: This specifies whether Zabbix should follow redirects. If
enabled, it follows up to 10 hardcoded redirects, so there is no way to check
whether there's been a specific number of redirects. If disabled, we can
check for the HTTP response code being 301 or some other valid redirect
code.
Retrieve only headers: If the page is huge, we may opt to retrieve headers
only. In this case, the Required string option will be disabled, as Zabbix
does not yet support matching strings in headers.
Timeout: This specifies the timeout for this specific step. It is applied both
to connecting and performing the HTTP request, separately. Note that the
default timeout is rather long, at 15 seconds, which can lead to Zabbix
spending up to 30 seconds on a page.

We could have used a user macro for part or all of the URL—that
way, we would only define it once and then reference it in each step.
We discussed user macros in Chapter 8, Simplifying Complex
Configurations with Templates.

Monitoring Web Pages Chapter 12

[519]

After the scenario has had some time to run, let's go to Monitoring | Web page.
Choose Linux servers in the Group drop-down and click on Zabbix frontend in the
Name column:

The scenario seems to be running correctly—the login and logout seem to have
worked properly. Note that, if it fails for you, the failure could actually be in the
previous step. For example, if it fails on Step 3 – checking login, the actual fault is likely
to be in Step 2 – logging in, that is, the login failed.

Monitoring Web Pages Chapter 12

[520]

The approach we took, with five steps, was not the simplest one. While it allowed us
to split each action into its own steps (and provided nice graphs with five values), we
could have used a much simpler approach. To check the login and logout, the
simplest approach and the minimum number of steps would have been these:

Log in and check whether it is successful
Log out and check whether it is successful

As an extra exercise, create a new scenario that achieves the same goal in two steps.

Authentication options
In the scenario properties, there was also a tab that we didn't use: Authentication.
Check it out here:

For HTTP authentication, Zabbix currently supports two options—Basic and NTLM.
Digest authentication is not supported at this time, as you can see:

Choosing one of the HTTP authentication methods will provide input fields for a
username and password.

Monitoring Web Pages Chapter 12

[521]

All the other options are SSL/TLS-related. The checkboxes allow us to validate the
server certificate—the SSL verify peer option checks the certificate validity, and SSL
verify host additionally checks that the server hostname matches the Common Name
or the Subject Alternate Name in the certificate. The certificate authority is validated
against the system default. The location of the CA certificates can also be overridden
by the SSLCALocation parameter in the server configuration file.

The last three fields enable us to set up client authentication using a certificate. Zabbix
supports all possible combinations of certificate, a key, and key password, such as a
single unencrypted file, a completely separate certificate, and key and key password.
The client certificate files must be placed in the directory specified by the
SSLCertLocation parameter in the server configuration file. Key files, if any, must
be placed in the directory specified by the SSLKeyLocation parameter in the server
configuration file.

Using agent items
The web-scenario-based monitoring we just set up is quite powerful, but there might
be cases where a more simple approach would be enough. On the agent level, there
are some interesting item keys that allow us to retrieve web pages and perform
simple verification. An additional benefit is the ability to do that from any agent, so it
is very easy to check web page availability from multiple geographically-distributed
locations. There are three web page-related item keys:

web.page.get

web.page.perf

web.page.regexp

Also keep in mind the simpler item keys, such as
net.tcp.service, which was discussed in Chapter 3, Monitoring
with Zabbix Agents and Basic Protocols.

Monitoring Web Pages Chapter 12

[522]

Getting the page
The simplest web page-related agent item key, web.page.get, allows us to retrieve
page content. As with scenario-based web monitoring, it does not retrieve any
included content, such as images. Let's create a simple item with this key:

Navigate to Configuration | Hosts, and select Linux servers in the Group1.
drop-down
Click on Items next to A test host, and click on Create item. Fill in the2.
following values:

Name: Zabbix main page
Key: web.page.get[127.0.0.1,/zabbix/index.php]
Type of information: Text
New application: ZABBIX

We are creating an agent item for our Zabbix server, which means that this web item
will be checked by the local agent.

When done, click on the Add button at the bottom. In this item, we specified / as the
second parameter, but that is optional by default; the root on the web server is
requested. If there is a case where your web server is not running on the standard
port, 80, we can specify this as the third parameter:

web.page.get[www.site.lan,/,8080]

Instead of checking the results of each of the items we are creating individually, let's
create all three items first and then verify the results.

HTTPS, at this time is not supported, even when you specify the
correct port.

Checking page performance
Another web page-related agent item is web.page.perf. It returns the loading time
of the page in seconds. While still in the item list, click on Create item, and fill in the
following:

Name: Zabbix main page load time

Monitoring Web Pages Chapter 12

[523]

Key: web.page.perf[127.0.0.1,/zabbix/index.php]
Type of information: Numeric (float)
Units: s
Applications: ZABBIX

When you've done that click on the Add button at the bottom. We changed Type of
information, as this item key returns the time it took to load the page in seconds, and
that value will usually consist of a decimal part.

Extracting content from web pages
When creating the web-monitoring scenario, we extracted content from a page to be
reused later. With simpler agent monitoring, it's still possible to extract some content
from a page. As a test, we could try to extract the text after remembers me for and
up to days. Click on Create item again, and fill in the following:

Name: Zabbix remembers me for
Key: web.page.regexp[127.0.0.1,/zabbix/index.php,,"Remember
me for.(\d.)",,\1]

Type of information: Character
Applications: ZABBIX

When you've done that click on the Add button at the bottom.

The item key works with Zabbix server page contents at the time of
writing. If the web page gets redesigned, consider it an extra
challenge to adapt the regular expression.

For this item, we are extracting search results from the page directly. The important
parameter here is the fourth one, it is a regular expression that will be matched in the
page source. In this case, we are looking for the remember me for string and
including two digits after it. When the regular expression contains a comma, it's best
to double-quote it. A comma is the item key parameter separator, so it could be
misinterpreted. Then, in the last parameter, we request only the contents of the first
capture group are included. By default, the whole matched string is returned. For
more details on value extraction with this method, refer to the Log file
monitoring section in Chapter 10, Advanced Item Monitoring. We also chose Type of
information as Character, which will limit the values to 255 symbols, just in case it
matches a huge string.

Monitoring Web Pages Chapter 12

[524]

For this key, the fifth parameter allows us to limit the length of the
returned key. If you want to extract a number and send it over SMS,
limiting the length of the extracted string to 50 characters would
reduce the possibility of the message being too long.

A practical application of this item would be extracting statistics from an Apache web
server when using mod_status or similar functionality with other server software.

None of the three web.page.* items supports HTTPS,
authentication, or redirects at this time.

With the items configured, let's check their returned values—head to Monitoring |
Latest data, clear out the Host groups field, select Linux servers in the Hosts field,
and then click on Filter. Look for items in the Zabbix application:

Each item requests the page separately.

The items should be returning full page contents, the time it took to load the page,
and the result of our regular expression. The web.page.get item always includes
headers, too. If you see empty values appearing every now and then in the
web.page.get and web.page.regexp items, this is probably happens because the
request has timed out. While web scenarios had their own timeout setting, the agent
items obey the agent timeout of 3 seconds by default. The web.page.perf item
returns 0 upon a timeout.

The Zabbix web.page.get item currently does not work properly
with chunked transfer encoding, which is widely used. Extra data is
inserted in the page contents. This was expected to be fixed in
Zabbix 3.0, by using libcurl for these agent items as well, but that
development was not finished. At the time of writing, it is not
known when this will be fixed.

Monitoring Web Pages Chapter 12

[525]

Using these items, we could trigger when a page takes too long to load, when it
doesn't work at all, or when a specific string cannot be found on the page by using
str() and similar trigger expressions either on the whole page item or on the content
extraction item.

Web scenarios are executed on the Zabbix server, agent items on the
agent. We will discuss running web scenarios on remote systems in
Chapter 17, Using Proxies to Monitor Remote Locations.

The items we created all went to the same Zabbix agent. We can also create a host
with multiple interfaces and assign items to each interface. This allows us to check a
web page from multiple locations but keep the results in a single host. We still have to
make the item keys unique—if needed, either use the trick with empty key
parameters, extra commas in key parameters, or key aliasing, discussed in Chapter
20, Zabbix Maintenance. Note that templates can't be used in such a setup.

Extracting content using the HTTP agent
If we need to monitor a web page over HTTPS, there could be another solution for the
items we have seen for http. The HTTP agent is new in 4.0. This item type allows us to
poll data using the HTTP/HTTPS protocol. Trapping is also possible, using the Zabbix
sender or Zabbix sender protocol. Let's go to our host A test host go to items and click
Create item:

Name: OpenStreetMap main page
Type: HTTP agent
Key: openstreetmap.main
URL: https://www.openstreetmap.org/
Required status codes: 200
Retrieve mode: Headers
Type of information: Text
New application: OSM

Monitoring Web Pages Chapter 12

[526]

Give the item some time, then go to Monitoring | Latest data, select A test host from
the Host selection box, and click on Apply. We should now see the headers and the
confirmation that our status code, 200, is OK:

The advantage of using this type of item is that we can make use of the Preprocessing
tab, and that it supports HTTPS. There's much more this item can do, but that
discussion is outside the scope of this book. At the end of this chapter, I have added
some URLs that will give you more insight into this new item type.

Summary
In this chapter, we learned to monitor web pages based on various parameters,
including response time, transfer speed, HTTP return code, and text contained in the
page itself. We also learned how to set up multiple scenarios, and steps as well as
setting up variables to be used in those steps. As a more advanced example, we
logged in to the Zabbix frontend and logged out of it. For that to work, we extracted
the session ID and reused it in subsequent steps. With this knowledge, it should be
possible to monitor most of the functionality web pages have.

For production systems, there will usually be way more applications, scenarios, and
steps. Web monitoring can be used for many different purposes, the most popular
being site availability and performance, but there are many different cases you could
monitor, including things such as watching the slashdot front page for a company
name and replacing the usual first web page with a simpler one to withstand the
coming load-slashdotting-easier.

As a simpler alternative, we explored web page items on the agent side. They have
three features:

Retrieving full page contents
Finding out page load times
Extracting a string from a page using regular expressions

Monitoring Web Pages Chapter 12

[527]

Web scenarios are only available on the server side, while simpler items are only
available on the agent side.

Having mostly concentrated on monitoring the Linux system so far, we'll leave that
here and look at monitoring Windows in the next chapter. We'll look at the native
agent for Windows, performance counter and Windows Management
Instrumentation (WMI) monitoring, and service discovery and Windows Event Log
monitoring.

Questions
Does Zabbix web monitoring allow us to create scenarios and can they skip1.
steps?
Can user macros be used in my scenarios?2.
Is HTTPS supported in scenarios?3.
When using the new HTTP agent item, is there support for trapping?4.

Further reading
Check out the following articles for more information:

HTTP agent: https:/ / www. zabbix. com/ documentation/ 4.0/manual/
config/ items/ itemtypes/ http

Web monitoring: https:/ /www.zabbix. com/documentation/ 4. 0/manual/
web_ monitoring

https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/http
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring
https://www.zabbix.com/documentation/4.0/manual/web_monitoring

13
High-Level Business Service

Monitoring
Monitoring IT systems usually involves poking at lots of small details: CPU, disk,
memory statistics, process states, and a myriad of other parameters. All of these are
very important, and every detail should be available to technical people. But in the
end, the goal of these systems isn't to have enough disk space; the goal is to serve a
specific need. If we only look at the low-level detail, it can be very hard to figure out
what impact the current problem might have on users. Zabbix offers a way to have a
higher-level view, called IT services. Relationships between individual systems can
be configured to see how they build up to deliver services, and Service Level
Agreement (SLA) calculation can be enabled for any part of the resulting tree.

We'll cover the following topics in this chapter:

Deciding on the service tree
Setting up IT services
Viewing reports
Specifying uptime and downtime

Deciding on the service tree
Before configuring things, it's useful to think through the setup, and doubly so with
IT services. A large service tree might look impressive, but it might not represent the
actual functionality well and might even obscure the real system state.

High-Level Business Service Monitoring Chapter 13

[529]

Disk space being low is important, but it doesn't actually bring the system down; it
doesn't affect the SLA. The best approach likely would be to only include specific
checks that identify a service being available or operating in an acceptable manner;
for example, the SLA might require some performance level to be maintained. Unless
we want to have a large, complicated IT service tree, we should identify key factors in
delivering the service and monitor those.

What are the key factors? If the service is simple enough and can be tested easily, we
could have a direct test. Maybe the SLA requires that a website is available; in that
case, a simple web.page.get item would suffice. If it's a web page-based system, we
might want to check the page itself, log in, and perform some operation as a logged in
user; this is possible with web scenarios.

We discussed web monitoring in more detail in Chapter 12,
Monitoring Web Pages.

Sometimes, it might not be possible to use the interface directly—maybe it isn't
possible to have a special user for monitoring purposes, or we aren't allowed to
connect to the actual interface. In that case, we should use lower-level monitoring,
concentrating on the main pieces of the system that must be available. We should still
attempt to have the highest-level checks possible. For example, we could check
whether web server software is running, whether we can connect to a TCP port, and
whether we can connect to the backend database from the frontend system. Memory
or disk usage on the database system and database low-level health don't matter from
the high-level monitoring point of view. It should all be monitored, of course, but
having the delete query rate too high usually doesn't affect the top-level service. On
the other hand, if a service goes down, we might be unable to see, in the same tree,
that it happened because a disk filled up—but that's an operational failure, and we
can expect that the personnel responsible are using such low-level triggers with
proper dependencies to resolve the issue.

Setting up IT services
The best way to learn about a feature is to use it. We don't have any business services
in our environment, so we could use a similar approach as with the network map link
indicator feature, where we created fake items and triggers to simulate network issues.
We'll create items and triggers that will act as high-level service monitors.

High-Level Business Service Monitoring Chapter 13

[530]

We'll invent two companies, called Banana and Pineapple. Our company will be
hosting various services for these two companies:

A code repository system for Banana
A warehouse analytics system for Pineapple
A ticketing system for Banana and Pineapple

Our service tree could look like this:

High-Level Business Service Monitoring Chapter 13

[531]

If everything is green at the top level, we know that all of our customers are happy. If
not, we see which customer is having an issue with a system, and we can see which
system is affected. The ticketing system going down would affect both customers.
And anything below these services—well, that's operational monitoring.

Unfortunately, IT service functionality is not that easy to evaluate without collecting
data for a longer period of time; SLA graphs are more interesting when we have data
for a few weeks or more. Maybe we could send in data and pretend it's past data.
Actually, we can do that. The small but great zabbix_sender tool, which we
discussed in Chapter 10, Advanced Item Monitoring, allows us to specify a timestamp
for each value. This means that we'll create Zabbix trapper items and push values to
those.

Creating test items and triggers
Let's create some test items and triggers that we can use for our SLA's. Follow these
steps:

Navigate to Configuration | Hosts and click on Create host. Normally,1.
items such as these would reside in different hosts, but for our test setup a
single host will be best. Enter IT services in the Host name and Group
fields and make sure no other groups are selected in the Groups select box,
then click on the Add button at the bottom.
Switch to IT services in the Group drop-down menu, click on Items next to2.
IT services, then click on Create item. This way, we create three different
items with these settings:

Name: Code repository service
Type: Zabbix trapper
Key: code_repo
New application: IT services

High-Level Business Service Monitoring Chapter 13

[532]

You can use the item cloning feature to create the remaining two items3.
more rapidly. Use the Applications field instead of the New application
field for the remaining items:

Name: Warehouse analytics service
Type: Zabbix trapper
Key: warehouse_analytics
Application: IT services

And for the last item, use the following:

Name: Ticketing service
Type: Zabbix trapper
Key: ticketing
Application: IT services

The final list of items should look like this:

Now, click on Triggers in the navigation bar above the item list, then click4.
on Create trigger. Create three triggers with their settings as follows. For
the first trigger, enter the following:

Name: Code repository down
Expression: {IT services:code_repo.last()}=0
Severity: High

For the second trigger, enter the following:

Name: Warehouse analytics down
Expression: {IT
services:warehouse_analytics.last()}=0

Severity: High

High-Level Business Service Monitoring Chapter 13

[533]

And for the third trigger, use the following:

Name: Ticketing down
Expression: {IT services:ticketing.last()}=0
Severity: High

The result should look like this:

We didn't include the hostname in the trigger name here to keep
them shorter; you'll likely want to do that for production systems.

In these triggers, the severity setting was very important. By default, triggers in
Zabbix have the lowest severity, Not classified. SLA calculation in IT services ignores
the two lowest severities, Not classified and Information. There doesn't seem to be a
functional benefit from that, and the reasons are most likely historic. It's somewhat
common for users to create quick testing triggers only to see that the SLA calculation
doesn't work. When creating the trigger, the severity setting wasn't changed, as it is a
relatively unimportant one for a quick test. Luckily, we knew about it and created
triggers that will work in the SLA calculation.

Configuring IT services
We're getting closer to sending in our slightly fake data, but we must configure IT
services before the data comes in. In Zabbix, SLA results cannot be calculated
retroactively. IT services must be configured at the beginning of the period for which
we want to collect the SLA. SLA state is stored separately from trigger and event
information, and is calculated at runtime by the Zabbix server.

High-Level Business Service Monitoring Chapter 13

[534]

Let's go to Configuration | Services. The interface for managing Services is different
from most other places in Zabbix. We have root, which is an immutable entry. All
other service entries must be added as children to it. Click on Add child next to the
root entry.

When clicking on an acceptable SLA in Zabbix, 99.9% is selected as
the standard and not 100%

We'll start by grouping all customer services in an entry—we might have internal
services later. In the Name field, enter Customer services and click on the Add
button at the bottom.

We have two customers; click on Add child next to Customer services. Enter
Banana in the Name field, enable the Calculate SLA checkbox, then click on Add.

Click on Add child next to Customer services again. Enter Pineapple in the Name
field, enable the Calculate SLA checkbox, then click on Add. Notice how the
Customer services entry can be expanded now. Expand it and observe the result,
which should be like this:

The customers are in place; let's add their services now. Click on Add child next to
Banana. Enter Code repository in the Name field and enable the Calculate SLA
checkbox. This will be our leaf or lower-level service, and we'll now link it to a trigger.
The trigger state will affect the SLA state for this service and for all upper-level
services with SLA calculation enabled. Click on Select next to the Trigger field, then
click on Code repository down in the Name column.

High-Level Business Service Monitoring Chapter 13

[535]

The final configuration for this service should look like this:

When done, click on Add. Then, click on Add child next to Banana again. Enter
Ticketing in the Name field, enable the Calculate SLA checkbox, and click on
Select next to the Trigger field, then click on Ticketing down in the Name column.
Click on the Add button to add the second child service for this customer.

Our first customer is configured; now, click on Add child next to Pineapple. Enter
Warehouse analytics in the Name field, enable the Calculate SLA checkbox, and
click on Select next to the Trigger field. Click on Warehouse analytics down in the
NAME column then click on the Add button.

We can add the ticketing service as another child service for Pineapple, but services
here can also be defined once, then added at multiple places in the service tree. This is
done by making parent services depend on additional services. Click on Pineapple
and switch to the Dependencies tab. Notice how its only child service, Warehouse
analytics, is already listed here. Click on the Add link and click on Ticketing entry.
Click on the Update button:

High-Level Business Service Monitoring Chapter 13

[536]

That didn't work well. If you're familiar with filesystem concepts, the error message
might be a bit helpful; otherwise, it's probably a very confusing one. IT services in
Zabbix have one hard link; they're attached to a parent service. To attach them to
another service, we add them as a dependency, but we have to add them as a soft link,
as only one hard link is allowed per service. Mark the SOFT checkbox next to
Ticketing and click on Update again. This time, the operation should be successful
and the Ticketing entry should now be visible for both companies.

When deleting either a hard- or soft-linked entry, all occurrences of
that service will be deleted.

If the entries are collapsed for you, expand them all and observe the final tree:

Note that we enabled SLA calculation starting from the company level. Computing
the total SLA across all customers is probably not a common need, although it could
be done. In the Status calculation column, all of our services have Problem, if at least
one child has a problem. In the Service properties, we could also choose Problem, if
all children have problems. At this time, those are the only options for problem state
propagation; setting the percentage or amount of child services isn't possible (it could
be useful for a cluster solution, for example).

High-Level Business Service Monitoring Chapter 13

[537]

Sending in the data
Now is the time to send in our data, which will be a bit fake. As mentioned, IT
services/SLA functionality is more interesting when we have data for a longer period
of time, and we could try to send in data for a year. Of course, we won't create it
manually—we'll generate it. Create a script like this on the Zabbix server:

#!/bin/bash
hostname="IT services"
time_period=$[3600*24*365] # 365 days
interval=3600 # one hour
probability=100
current_time=$(date "+%s")
for item_key in code_repo warehouse_analytics ticketing; do
 [[-f $item_key.txt]] && {
 echo "file $item_key.txt already exists"
 exit
 }
 for ((value_timestamp=$current_time-$time_period;
value_timestamp<$current_time;
value_timestamp=value_timestamp+$interval)); do
 echo "\"$hostname\" $item_key $value_timestamp
$([[$(($RANDOM%$probability)) < 1]] && echo 0 ||
echo 1)" >> $item_key.txt
 done
done

This script will generate values for each of our three item keys every hour, for one
year in the past, starting at the current time. For each entry, there's a small chance of
getting a value of 0, which is failure. The result will be random, but it should
fluctuate around our acceptable SLA level, so hopefully we'll get some services that
do meet the SLA level and some that don't. As all of the values are sent in with a one-
hour interval and it's quite unlikely that two failures would follow one another, no
downtime should be longer than one hour. Assuming the script was saved as
generate_values.sh, you just have to run it once:

$./generate_values.sh

Three files should be generated:

code_repo.txt

ticketing.txt

warehouse_analytics.txt

High-Level Business Service Monitoring Chapter 13

[538]

The following could generate quite a lot of alert emails. If you would
like to avoid that, disable the actions we added earlier.

Now run zabbix_sender for each of these files:

$ zabbix_sender -z 127.0.0.1 -T -i code_repo.txt
$ zabbix_sender -z 127.0.0.1 -T -i ticketing.txt
$ zabbix_sender -z 127.0.0.1 -T -i warehouse_analytics.txt

The output on each invocation should be similar to this:

info from server: "processed: 250; failed: 0; total: 250; seconds
spent: 0.001747"
...
info from server: "processed: 10; failed: 0; total: 10; seconds spent:
0.000063"
sent: 8760; skipped: 0; total: 8760

Zabbix sender processes up to 250 values per connection—refer to
Chapter 10, Advanced Item Monitoring, for more details about this
small, but great, utility.

If all of the preceding succeeded, great; we now have a year's worth of data.

Viewing reports
Finally, we're ready to see the results of all of the work done previously. Navigate to
Monitoring | Services and you should see a report like this:

High-Level Business Service Monitoring Chapter 13

[539]

It shows the current state of each service, the calculated SLA value, and whether it
meets the projected value. In this example, out of three services, only one has met the
SLA level—the Warehouse analytics service. You're most likely seeing a different
result.

The bar doesn't actually represent 100%—if you compare the value with how much of
the bar is colored red, it doesn't seem to match. Move the mouse cursor over any of
the bars to see why:

This bar only displays the last 20%—for the SLA monitoring, we don't expect
anything much below 80% available and showing a smaller part of a full bar allows
us to see the impact more.

What we are looking at right now is the report for Last 7 days, as can be seen in the
upper-right corner. Expand the drop-down menu there and check the available
options:

Play with the choices there and see how our random data either met or did not meet
the expected SLA level. Unfortunately, at this time, it's not possible to generate such a
report for an arbitrary period of time—if you want to see the SLA values for a specific
week two months ago, you're out of luck.

There're several other reports slightly hidden on this page. Clicking on these options
will give the following results:

Service name will open the availability report for that service.
Trigger name (if linked to the service) will open the event history for that
trigger.
The SLA bar will open a yearly availability graph for that service.

High-Level Business Service Monitoring Chapter 13

[540]

Let's click on Banana for now—this will open the availability report.

By default, it shows a weekly report for the current year. Let's switch to Yearly in the
Period drop-down menu:

This shows a report for the last five years, and that will almost always span six
calendar years—which is why we get six entries. Here and elsewhere, Zabbix SLA
calculation assumes that we'll get information about problems—if there's no
information about any problem, Zabbix assumes that services were available for that
period. In this page, we may also choose Monthly, Weekly, and Daily periods—for
all of these, a year can be selected and data for all of the months, weeks, or days in
that year will be displayed. When looking at the year list, we can observe that the
years available are the same as in the yearly report—five years that span six calendar
years:

If a trigger is linked to the service, clicking on the trigger name will show the event
history for that trigger. We looked at the event view in Chapter 6, Detecting Problems
with Triggers, so we won't spend more time on it here.

High-Level Business Service Monitoring Chapter 13

[541]

Now let's return to Monitoring | Services and click on one of the bars in the Problem
time column. A yearly SLA graph is displayed:

Each column represents one week. The time this service was down is displayed at the
top, in red. Our service was mostly up, but we can see that there was a bit of
downtime most weeks.

Both for the availability reports and the yearly graph, there's nothing to configure,
and the time period can't be set to a custom time—we only have the predefined
periods available here, and we can't customize SLA graph size or other parameters.
For the yearly graph, we can only see the current year.

There's no way to restrict access to IT service monitoring and
reports—they're available for all users and normal permissions
aren't taken into account here.

Specifying uptime and downtime
With SLA monitoring configured, we can happily proceed with making sure our
systems run smoothly; we do some maintenance during a properly scheduled
maintenance period, only to discover that our SLA level has dropped. Were you sure
downtime during maintenance periods wouldn't be counted against the SLA monitoring?
Wrong. Zabbix host and host group-level maintenance doesn't affect SLA monitoring.
If something is down during such a maintenance, Zabbix still considers that as an
unacceptable unavailability of the service.

High-Level Business Service Monitoring Chapter 13

[542]

Host and host group-level maintenance was discussed in Chapter 5,
Managing Hosts, Users, and Permissions.

There's a way to avoid calculating SLA data for a specific period, though.

Let's go to Configuration | Services and click on Code repository. In the service
properties, switch to the Time tab. Here, we can add three types of time periods:

Uptime
Downtime
One-time downtime

Let's start with the simplest one—the One-time downtime. When adding a time
period like that, we may enter a short description in the Note field, and we choose
From-Till dates and times:

The note is not used for much, though—it's only displayed in the list of configured
times, as shown in the preceding screenshot.

High-Level Business Service Monitoring Chapter 13

[543]

The Downtime option allows us to define times that will be excluded from the SLA
calculation:

This is done on a weekly basis, where we may choose the weekday and time with
minute precision. Unfortunately, here is the only place in Zabbix where a week sort of
starts with Sunday. The biggest issue is that these periods can't cross the week
border, hence it's actually impossible to add SLA calculation downtime for the
weekend in one go—we would have to add one entry for Saturday and one for
Sunday.

But what about the Uptime option? That one works in the reverse way. If an uptime
entry is added, SLA calculation only happens during that time period; all other time
is considered to be downtime.

Of course, when adding time periods here, we should obey the clauses from the
actual agreement, not use this to hide problems from the SLA calculation, right?

Summary
In this chapter, we departed a bit from the low-level monitoring of CPU, disks, and
memory. We discussed a higher level of monitoring, one that looked at business
services, called IT services in Zabbix. We were able to configure a service tree to
represent real-life dependencies and structures, link individual entries to triggers to
propagate problem states to services, and configure SLA calculation for those
services. We didn't have a large IT system to test against, so we sent in fake data and
observed the resulting reports, including a service availability report and yearly SLA
graph.

High-Level Business Service Monitoring Chapter 13

[544]

We noted two important facts about IT service functionality in Zabbix:

Triggers with a severity of Not classified or Information are ignored when
calculating the SLA.
SLA information can't be calculated at a later time—the IT services must be
configured in advance.

For those cases when a service doesn't have full-time SLA coverage, we learned about
a way to specify when the SLA calculation should take place based on weekly time
periods—but we also noted that host and host group-level maintenance doesn't affect
the SLA calculation and the uptime/downtime configuration has to be done for the IT
services themselves.

In the next chapter, we'll go back to lower-level monitoring—even lower than before.
We'll cover monitoring hardware directly using the Intelligent Platform
Management Interface (IPMI). Zabbix supports monitoring both normal and analog
IPMI sensors, and discrete IPMI sensors. There's even a special trigger function for
discrete sensors. What is it? See the next chapter for details.

Questions
Are services exportable to PDF?1.
Can I calculate my services from the beginning of the year when I configure2.
Services at the end of the year?
Are maintenance windows taken out of service reports?3.

Further reading
Read the following articles for more information:

Service monitoring: https:/ /www.zabbix. com/ documentation/ 4. 0/
manual/ it_ services

Services: https:/ / www. zabbix. com/ documentation/ 4.0/manual/ web_
interface/ frontend_ sections/ monitoring/ it_services

https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services
https://www.zabbix.com/documentation/4.0/manual/web_interface/frontend_sections/monitoring/it_services

14
Monitoring IPMI Devices

By now, we are familiar with monitoring using Zabbix agents, SNMP, and several
other methods. While SNMP is very popular and available on the majority of
network-attached devices, there's another protocol that is aimed at system
management and monitoring: Intelligent Platform Management Interface (IPMI).
IPMI is usually implemented as a separate management and monitoring module,
independent of the host operating system, that can also provide information when the
machine is powered down. IPMI is becoming more and more popular, and Zabbix
has direct IPMI support. IPMI is especially popular on so-called lights-out or out-of-
band management cards, available for most server hardware available today. As
such, it might be desirable to monitor the status of hardware directly from these
cards, as that does not depend on the operating system type, or even whether it's
running at all.

In this chapter, we will cover the following topics:

Getting an IPMI device
Preparing for IPMI monitoring
Setting up IPMI items
Monitoring discrete sensors

Getting an IPMI device
For this section, you will need an IPMI-enabled device, usually a server with a remote
management card. The examples here will use real hardware that could have vendor-
specific quirks, but it should be possible to apply the general principles to any
product from any vendor.

Monitoring IPMI Devices Chapter 14

[546]

Preparing for IPMI monitoring
To gather data using IPMI, Zabbix must be configured accordingly, and the device
must accept connections from Zabbix. If you installed Zabbix from packages, IPMI
support should be available. If you compiled Zabbix Server from source, OpenIPMI
library support should be included as well. To be sure, check the startup messages in
the server log file. Make sure the line about IPMI says YES:

IPMI monitoring: YES

That is not enough yet—by default, Zabbix server is configured to not start any IPMI
pollers; thus, any added IPMI items won't work. To change this, open
zabbix_server.conf and look for the following line:

StartIPMIPollers=0

Uncomment it and set the poller count to 3, so that it reads as follows:

StartIPMIPollers=3

Save the file and restart zabbix_server.

On the monitored device side, add a user that Zabbix can use. The IPMI standard
specifies various privilege levels, and for monitoring, the user level might be the most
appropriate. The configuration of IPMI users could be done using the vendor-
supplied command-line tools, the web interface, or using some other method. Consult
vendor-specific documentation for details on this step.

Setting up IPMI items
Before we can add IPMI items to Zabbix, we should test the IPMI access. By default,
IPMI uses UDP port 623, so make sure it is not blocked by a firewall. Check whether
your Zabbix server has the ipmitool package installed—if not, install it, and then
execute the following:

$ ipmitool -U zabbix -H <IP address of the IPMI host> -I lanplus -L
user sdr
Password:

Monitoring IPMI Devices Chapter 14

[547]

Provide the password that you set in the IPMI configuration. We are using user-level
access, as specified by the -L user flag, so that administrative privileges should not
be required for the Zabbix IPMI user. The -I lanplus flag instructs ipmitool to use
the IPMI v2.0 LAN interface, and the sensor command queries the host for the
available sensors. If your device has IPMI running on a non-default port, you can
specify the port with the -p flag.

Zabbix does not use ipmitool to query IPMI devices; it uses the
OpenIPMI library instead. This library historically has had a few
bugs, and a working ipmitool instance does not guarantee that
IPMI monitoring will work with Zabbix server. When in doubt, test
with the latest version of OpenIPMI.

The output will contain a bunch of sensors, possibly including the following:

BB +5.0V | 4.97 Volts | ok
Baseboard Temp | 23 degrees C | ok
System Fan 2 | 3267 RPM | ok
Power Unit Stat | 0x00 | ok

That looks like useful data, so let's try to monitor the fan's RPM in Zabbix. Do the
following in the frontend:

Navigate to Configuration | Hosts. To keep things organized, let's create a1.
new host for our IPMI monitoring—click on Create host, and then enter the
following values:

Name: IPMI host.
Groups: Click on Select and choose Linux servers, or type it
in the Groups box and select the group when it shows up.
IPMI interfaces: Click on the Add control and enter the IPMI
address, and then click on Remove next to Agent interfaces.

Some IPMI solutions work on the primary network interface,
intercepting IPMI requests. In such cases, simply set the same IP
address to be used for IPMI.

Switch to the IPMI tab, and enter the following values:2.

IPMI username: Enter the username used for IPMI access
IPMI password: Enter the password you set for IPMI access

Monitoring IPMI Devices Chapter 14

[548]

If you set a long IPMI password, you will see an error that the max allowed
password field is 20 characters, as shown in the following screenshot. This is
normal, as the maximum password length for IPMI v2.0 is 20 characters:

If you have a different configuration for IPMI, such as a different privilege3.
level or port, set them appropriately. When done, click on the Add button
at the bottom.

For this host, we reused the Linux servers group—feel free to add it in a
separate group.

Creating an IPMI item
Now that we have the host part of IPMI connectivity sorted out, it's time to create
actual items. Make sure Linux servers is selected in the Group drop-down, then click
on Items next to the IPMI host, and then click on Create item. Enter these values:

Name: System Fan 2 (or, if your IPMI-capable device does not provide
such a sensor, choose another useful sensor)
Type: IPMI agent
Key: System_Fan_2
IPMI sensor: System Fan 2
Units: !RPM

When done, click on the Add button at the bottom.

Even though the previous unit blacklist in Zabbix still works, it is
now deprecated. So, the correct way to prevent the conversion of
these units is now !ms, !rpm, !RPM, !%.
For this item type, the item key is only used as an item identifier,
and we could enter any string in there. We opted to use the sensor
name with spaces replaced by underscores to make it easier to
identify the item in trigger expressions and other places. The IPMI
sensor name will determine what data will be collected.

Monitoring IPMI Devices Chapter 14

[549]

On some devices, the sensor name could have a trailing space. This is not obvious
from the default sensor output in ipmitool. If the sensor name seems correct but
querying it from Zabbix fails, try to retrieve data for a single sensor from the Zabbix
server:

$ ipmitool -U zabbix -H <IP address of the IPMI host> -I lanplus -L
user sensor get "System Fan 2"

This will print detailed information for that sensor. If it fails, the sensor name is
probably incorrect.

Let's check out the results of our work; open Monitoring | Latest data and then select
IPMI host in the filter:

Notice how the value is displayed fully and is not shortened to 3.3K. The !RPM unit is
still included in a hardcoded unit blacklist, and items that use such units do not get
the unit multiplier prefix added, but it's best to use the ! as this is the new way of
blacklisting, plus it allows us to be more flexible. We will discuss the unit blacklist in
more detail in Chapter 20, Zabbix Maintenance.

Great! The hardware state information is being gathered correctly. What's even better,
this information is retrieved independently of the installed operating system or
specific agents, and is retrieved even if there is no operating system running, or even
installed.

There is no built-in low-level discovery support at this time. If you
would like to discover available sensors, it might be best done with
an external check or Zabbix trapper item type for the low-level
discovery rule itself.

Monitoring IPMI Devices Chapter 14

[550]

Monitoring discrete sensors
The sensor list shows some sensors where the value is quite clear, such as for
temperatures and fan RPMs. Some of these can be a bit trickier, though. For example,
your sensor listing could have a sensor called Power Unit Stat or something
similar. These are discrete sensors. You might think that they return 0 for an OK state
and 1 for Failure, but they're usually more complicated than that. For example, the
power unit sensor can actually return information about eight different states in one
retrieved value.

Let's try to monitor it and see what value we can get in Zabbix for such a system:

Navigate to Configuration | Hosts, click on Items next to IPMI host, and1.
click on Create item. Fill in the following:

Name: Power Unit Stat (or, if your IPMI-capable device
does not provide such a sensor, choose another useful
sensor)
Type: IPMI agent
Key: Power_Unit_Stat
IPMI sensor: Power Unit Stat

When done, click on the Add button at the bottom.2.

If normal sensors work but discrete ones do not, make sure you try
with the latest version of the OpenIPMI library. Discrete sensors in
OpenIPMI-2.0.16, 2.0.17, and 2.0.18 often have an additional 0 (or
some other digit or letter) appended at the end.

Check this item in the Latest data section—it will likely return 0. But what could it
return? It's actually a decimal representation of a binary value, where each bit could
identify a specific state, most often a failure. For this sensor, the possible states are
listed in Intelligent Platform Management Interface Specification Second Generation v2.0.

The latest version of this specification can be found at
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-ho

me.html.

http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html

Monitoring IPMI Devices Chapter 14

[551]

According to that specification, the meanings of the individual hex values are as
follows:

00h Power off/Power down
01h Power cycle
02h 240 VA Power down
03h Interlock power down
04h AC lost/power input lost (the power source for the power unit was lost)
05h Soft power control failure (the unit did not respond to a request to turn on)
06h Power unit failure detected
07h Predictive failure

Looking at the description of the first bit, a binary value of 0 means that the unit is
running and reports no problems. A binary value of 1 means that the unit is powered
down. We could compare the returned value to 0, and that would indicate that
everything is fine with the unit, but what if we want to check some other bit, such as
predictive failure? If only that bit were set, the item would return 128. As mentioned
before, discrete items return a decimal representation of the binary value. The original
binary value is 10000000 (or 07h in the previous table), where the eighth bit,
counting from the least significant, is set. By the way, this is also the reason why we
left the Type of information field as Numeric (unsigned) and Data type as Decimal
for this item—although the actual meaning is encoded in a binary representation, the
value is transmitted as a decimal integer.

Thus, to check for a predictive failure, we could compare the value to 128, couldn't
we? No, not really. If the system is down and reports a predictive value, the original
binary value would be 10000001, and the decimal value would be 129. It gets even
messier when we start to include other bits in there. This is also the reason it's not
possible to use value mapping for such items at this time—in some cases, a value
could mean all bits are set, and there would have to be a value-mapping entry for
every possible bit combination. Oh, and we cannot detect a system being down just
by checking for a value of 1—a value of 129 and a whole bunch of other values
would also mean that.

If we can't compare the last value in a simple way, can we reasonably check these discrete
sensor values at all? Luckily, yes; Zabbix provides a bitwise trigger function called
band(), which was originally implemented specifically for discrete IPMI sensor
monitoring.

Monitoring IPMI Devices Chapter 14

[552]

Using the bitwise trigger function
The special band() function is somewhat similar to the simple last() function, but
instead of just returning the last value, it applies a bitmask with a bitwise AND to the
value and returns the result of this operation. If we wanted to check for the least
significant bit, the one that lets us know whether the unit is powered on, we would
use a bitmask of 1. Assuming some other bits have been set, we could receive a value
of 170 from the monitored system. In binary, that would be 10101010. Bitwise AND
would multiply each bit down as shown in the column :

Decimal value Binary value
Value 170 10101010
Bitwise AND (multiplied down)
Mask 1 00000001
Result 0 00000000

The general syntax for the band() trigger function is as follows:

band(#number|seconds,mask)

It also supports a third parameter, time shift—we discussed time
shifts in Chapter 6, Detecting Problems with Triggers.

When thinking about binary representation, we have to use decimal numbers in
Zabbix. In this case, it is simple – the trigger expression would be as follows:

{host:item.band(#1,1)}=1

We are checking the last value received with #1, applying a decimal mask of 1, and
verifying whether the last bit is set.

As a more complicated example, let's say we wanted to check for bits (starting from
the least significant) 3 and 5, and we received a value of 110 (in decimal):

Decimal value Binary value
Value 110 01101110
Bitwise AND (multiplied down)
Mask 20 00010100
Result 4 00000100

Monitoring IPMI Devices Chapter 14

[553]

A simple way to think about the operation of the mask would be that all the bits that
match a 0 in the mask are set to 0, and all other bits pass through it as is. In this case,
we are interested in whether both bits 3 and 5 are set, so the expression would be as
follows:

{host:item.band(#1,20)}=20

In our value, only bit 3 was set, and the resulting value from the function was 4,
which does not match 20—neither bits are set, so the trigger expression evaluates to
FALSE. If we wanted to check for bit 3 being set and bit 5 not being set, we would
compare the result to 4. And if we wanted to check for bit 3 not being set and bit 5
being set, we would compare it to 16—because in binary that's 00010000.

Now let's get back to checking for the predictive failure bit being set—it was the
eighth bit, so, our mask should be 10000000, and we should compare the result to
10000000. But both of these should be in decimal format, so we should set both the
mask and comparison values to 128.

Let's create a trigger in the frontend with this knowledge:

Go to Configuration | Hosts, click on Triggers next to IPMI host, and click1.
on Create trigger.
Enter Power unit predictive failure on {HOST.NAME} in the2.
Name field, and then click on Add next to the Expression field.
Click on Select next to the Item field, and then choose Power Unit Stat.3.
Set the Function drop-down to Bitwise AND of last (most recent) T value4.
and mask = N, enter 128 in both the Mask and N fields, and then click on
Insert. The resulting trigger expression should be as follows:

{IPMI host:Power_Unit_Stat.band(,128)}=128

Notice how the first function parameter is missing? As with the last() function,
omitting this parameter is equal to setting it to #1, as in the earlier examples. This
trigger expression will ignore the 7 least significant bits and check whether the result
is set to 10000000 in binary, or 128 in decimal.

Bitwise comparison is possible with the count() function, too. Here, the syntax is
potentially more confusing: both the pattern and mask are to be specified as the
second parameter, separated by a slash. If the pattern and mask are equal, the mask
can be omitted. Let's try to look at some examples to clear this up.

Monitoring IPMI Devices Chapter 14

[554]

For example, to count how many values had the eighth bit set during the previous 10
minutes, the function part of the expression would be as follows:

count(10m,128,band)

Our pattern and mask were the same, so we could omit the mask part. The previous
expression is equivalent to the following:

count(10m,128/128,band)

If we would like to count how many values had bit 5 set and bit 3 not set during the
previous 10 minutes, the function part of the expression would be as follows:

count(10,16/20,band)

Here, the pattern is 16 or 10000, and the mask is 20 or 10100.

Beware of adding too many IPMI items against a single system—it is very easy to
overload the IPMI controller.

With the release of Zabbix 4.0, it's now possible to use id: and
name: in the IPMI sensor field:

name: allows us to specify the sensor by its full name
instead of its short name
id: gives us the option to specify the ID of the specific
sensor we would like to monitor

All of this information can easily be found in the Zabbix server log
file. For this, it's best to start the Zabbix server in debug level 4.

Summary
IPMI, while not yet as widespread as SNMP, can provide software-independent
hardware monitoring for some devices, usually servers. It is becoming more and
more popular as an out-of-band monitoring and management solution that can help
us watch over hardware states for compliant devices.

Zabbix supports monitoring normal sensors, such as voltage, RPM, or temperature, as
well as discrete sensors that can pack a lot of information into a single integer. To
decrypt the information hidden in that integer, Zabbix offers a special trigger
function, called band(), which enables us to do bitwise masking and matching
specific bits.

Monitoring IPMI Devices Chapter 14

[555]

IPMI, covered in this chapter, is at a fairly low level in the system stack. In the next
chapter, we will discuss ways to monitor Java applications using the JMX protocol.
Zabbix supports JMX through a dedicated process called the Zabbix Java gateway,
which we will set up.

Questions
What do I have to write in the IPMI sensor field in my item?1.
Can I make use of LLD to discover my IPMI items?2.

Further reading
Read the following article for more information:

IPMI checks: https:/ /zabbix. com/ documentation/ current/ manual/
config/ items/ itemtypes/ ipmi

https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi
https://zabbix.com/documentation/current/manual/config/items/itemtypes/ipmi

15
Monitoring Java Applications

Among all the other features that Zabbix can query directly is monitoring Java
application servers using the Java Management Extensions (JMX) protocol. Actually,
it's not just application servers—other server software written in Java can be
monitored as well. Even standalone Java applications can be monitored, as the JMX
framework does not have to be implemented by application developers—it is
provided with Java. The main Zabbix daemons are written in C, but the JMX protocol
is somewhat complicated, especially all the authorization and encryption methods.
Thus, a separate component is used for JMX monitoring: the Zabbix Java gateway.
This gateway runs as a separate process and queries JMX interfaces on behalf of the
Zabbix server.

In this chapter, we'll set up the Java gateway and monitor a simple property on it.
We'll cover the following topics:

Setting up the Zabbix Java gateway
Monitoring JMX items
Querying JMX items manually
JMX discovery

Setting up the Zabbix Java gateway
Let's start by getting the gateway up and running. If you installed from packages,
there's likely a Java gateway package available; just install that one. If you installed
from source, the Java gateway can be compiled and installed by running the
following from the Zabbix source directory:

$./configure --enable-java && make install

Monitoring Java Applications Chapter 15

[557]

If the compilation fails because it is unable to find javac, you might
be missing Java development packages. The package name could be
similar to java-1_8_0-openjdk-devel. Consult your
distribution's documentation for the exact package name.

By default, when compiling from source, Zabbix Java gateway files are placed in the
/usr/local/sbin/zabbix_java directory. From here on, we will use files found in
that directory. If you installed from packages, consult the package configuration
information to locate those files. The configuration file can probably be found at
/etc/zabbix/zabbix_java_gateway.conf.

Let's try something simple: just starting up the gateway. Go to the Java gateway
directory and run the following:

./startup.sh

The Zabbix Java gateway comes with a convenient startup script, which we used
here. If all went well, you should see no output, and a Java process should appear in
the process list. Additionally, the gateway should listen on port 10052. While this
port is not an officially-registered port for the Zabbix Java gateway, it's just one port
above the Zabbix trapper port, and there does not seem to be any other application
using that port. With the gateway running, we still have to tell Zabbix server where
the gateway can be found. Open zabbix_server.conf and look for the
JavaGateway parameter. By default, it is not set, and we have to configure the
gateway IP or hostname here. As we can point the server at a remote system, we are
not required to run the Java gateway on the same system as where Zabbix server is
located, in some cases, we might want to place the gateway closer to the Java
application server, such as by setting this parameter to the localhost IP address:

JavaGateway=127.0.0.1

Right below in our config file is a parameter called JavaGatewayPort. By default, it
is set to 10052, which is the same unregistered port as our running gateway already
listens on—so we won't change that. The next parameter is StartJavaPollers. As
with IPMI pollers, no Java pollers are started by default. We won't hammer our Java
gateway much, so enable a single Java poller as follows:

StartJavaPollers=1

Monitoring Java Applications Chapter 15

[558]

With this, Zabbix server should be sufficiently configured. Restart it to apply the Java
gateway configuration changes. Great! We have the gateway running, and Zabbix
server knows where it is. Now, we just need something to monitor. If you have a Java
application server that you can use for testing, try monitoring it. If not, or for
something simpler to start with, you could monitor the gateway itself. It is a Java
application, and thus, the JMX infrastructure is available. There's one thing we should
change before enabling JMX for the gateway. Java is quite picky about DNS and name
resolution in general. If JMX functionality is enabled and the local system hostname
does not resolve, Java applications are likely to fail to start up. For a local Java
gateway, check the /etc/hosts file. If there is no entry for the current hostname, add
the following line:

127.0.0.1 testhost

We're ready to enable JMX functionality for the gateway now; it is not enabled by
default. To enable JMX on the Zabbix Java gateway, edit the startup.sh (or
zabbix_java_gateway.conf) script we used earlier, and look for the following line:

uncomment to enable remote monitoring of the standard JMX objects on
the Zabbix Java Gateway itself

As the first line says, uncomment the two lines following it.

A single variable is assigned across two lines in this script !

One parameter in there is worth paying extra attention to, as follows:

-Dcom.sun.management.jmxremote.port=12345

This sets the JMX port, the one that the gateway itself will query. Yes, in this case, we
will start a process that will connect to itself on that port to query JMX data. The port
is definitely not a standard one, as you might guess, it's just a sequence of 12345.
Other Java applications will most likely use a different port, which you will have to
find out by yourself.

Monitoring Java Applications Chapter 15

[559]

If you installed from packages, a recent package should include the same lines in the
init script. If not, consider reporting that to the package maintainers, and use the
following parameters in addition to the port parameter, listed in the previous code:

-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

The first parameter tells Java to enable JMX, and the last two parameters instruct Java
not use any authentication or encryption.

In previous versions, JMX functionality in the Zabbix gateway didn't
work with Java 1.9. If this happens, the solution is to downgrade to
Java 1.8. I was unable to find any reference in the Zabbix manual
about this in 4.0

With this change done, run the shutdown and startup scripts:

./shutdown.sh
./startup.sh

We are finally ready to add actual hosts and JMX items.

You should always check the log files for errors on the server side
and the Java gateway side. You will quickly notice if there are
communication issues. Both log files can be found under
/var/log/zabbix/, if you installed from packages.

Monitoring JMX items
Let's create a separate host for JMX monitoring:

Navigate to Configuration | Hosts and click on Create host1.
Enter Zabbix Java gateway in the Host name field, clear everything in2.
the Groups box, enter Java in the Groups field, and then select Java (new)
Remove the default agent interface and click on Add next to JMX3.
interfaces

Monitoring Java Applications Chapter 15

[560]

In our case, the gateway is running on the localhost, so we can leave the IP address as
the default, 127.0.0.1. But what about the port? We had the Java gateway listen on
10052, but then there was also port 12345 in the startup.sh script. If any confusion
arises, we should think about which functionality is available on each of these ports.
On port 10052, we had the gateway itself, which was the port Zabbix server connects
to. We already saw this port set in the server configuration file. Normally, the
gateway would then connect to some other Java application to query JMX
information:

Port 12345 was in the lines we uncommented in the gateway's startup.sh script,
and that was the JMX interface for the gateway. That was also what we wanted to
monitor—our Java application. After the Zabbix server connects to the Java gateway
on port 10052, we expect the gateway to connect to itself, on port 12345:

Monitoring Java Applications Chapter 15

[561]

Thus, in the host interface, we would want to use port 12345 and surprise—that is
also the default:

The JMX system can actually return a different IP address and port
that the JMX querying client should connect to. Zabbix uses Java
functionality that automatically obeys this information, but in some
cases, it can be wrong. If you see error messages and the Zabbix Java
gateway seems to connect to a different address or port than the one
configured in the host properties, check the configuration of the
target Java application, specifically the
Djava.rmi.server.hostname and
Dcom.sun.management.jmxremote.rmi.port parameters.

The rest of the host configuration should be sufficient for our need—click on the Add
button at the bottom. Now, make sure Java is selected in the Group drop-down, click
on Items next to Zabbix Java gateway, and click on Create item. Enter the following
data:

Name: Used heap memory
Type: JMX agent
Key: jmx[java.lang:type=Memory,HeapMemoryUsage.used]
Units: B

When done, click on the Add button at the bottom. Check this item in the latest data
section after a few minutes—it should be collecting values successfully.

Querying JMX items manually
Creating items on the server and then waiting for them to be updated through the
gateway can be quite cumbersome if we don't know the exact parameters beforehand.
We could query the gateway manually using netcat and similar tools, but that's not
that easy either. There was an easier method with zabbix_get, but since
3.0.7, zabbix_get can no longer be used to query data from the Zabbix Java gateway.

Monitoring Java Applications Chapter 15

[562]

There are some good community solutions, which can be found
at https:/ / www. zabbix. org/ wiki/ Docs/ howto/ zabbix_ get_ jmx.

Another good solution is to use tools such as JConsole. This tool comes with the
standard JDK.

Let's connect to the JMX interface by just running jconsole and in the Remote
Process field, add the IP and the port to connect to our machine. Keep the username
and password empty, as we configured our Java gateway with
the authenticate=false option. For other applications, you should add a
password in your production environment:

When you are finished, click on Connect and ignore the warning about SSL.

https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx

Monitoring Java Applications Chapter 15

[563]

Let's have a look where we can find our HeapMemoryUsage item:

Click on MBeans | java.lang | Memory | HeapMemoryUsage.1.
In the right-hand pane, you can see the attribute value with2.
the HeapMemoryUsage name and the
javax.management.openmbean.CompositeDataSupport value:

This is not telling us much, so let's double-click on the value,
javax.management.openmbean.CompositeDataSupport. A box will
open and show us the possible names with their respective values. In the
following screenshot we will see a list of items that can be used with there
respective values. The value from that item should match with what we
monitored in our JMX item used heap memory attribute, for example we
can monitor HeapMemoryUsage committed, init max or used values in this
case.

Monitoring Java Applications Chapter 15

[564]

What to monitor?
With a Java application server, monitoring is not initiated by the actual Java
application developers often enough. Also quite often it's not clear what would be a
good set of things to monitor first. In general, the same advice applies as with any
other system: somebody who knows the monitored application should determine
what is monitored. It's even better if the available Java developers are reasonable and
actually implement additional JMX items to monitor application-specific logic. If that
isn't easy to achieve, you can always start with a basic set of memory usage, thread
count, garbage collector, and other generic metrics. Here are a few potentially useful
parameters:

jmx["java.lang:type=ClassLoading","LoadedClassCount"]: How
many classes have been loaded
jmx["java.lang:type=Memory",NonHeapMemoryUsage.used]: We
already monitored the heap memory usage on the gateway; this will
monitor the non-heap memory usage

Monitoring Java Applications Chapter 15

[565]

In general, it's hard to suggest a static list of things to monitor for JMX—there are
several garbage collectors, and exact keys for garbage-collection monitoring will
differ depending on which one is in use. Zabbix also provides a couple of templates
out of the box for generic and Tomcat-specific JMX monitoring, which could be a
good start.

What if we want to use multiple Java gateways—maybe one at each data center, or even one
on each Java application server so that JMX connections do not happen over the network?
Zabbix server only supports a single Zabbix gateway. Attaching multiple Java
gateways to a single server is actually possible using Zabbix proxies, but we will
discuss that in Chapter 17, Using Proxies to Monitor Remote Locations.

Since Zabbix 3.4, it is also possible to use custom JMX endpoints in
the item. This allows us to monitor applications such as JBoss.
Endpoints are set per item, so it is also possible to monitor multiple
Java applications on one host with different endpoints.

JMX discovery
As we saw in the What to monitor? section, it's not always easy to monitor JMX items.
As an example, Java has different garbage collectors and they can even change during
the lifetime of the application, as it is the developer who decides what garbage
collector fits best. Here, low-level discovery (LLD) comes to the rescue. Instead of
creating a template with all possible combinations and seeing unsupported items all
over our machines, we just discover what is on our hosts.

Let's go to our host Zabbix Java gateway and discover all garbage collectors:

Go to Configuration | Hosts1.
Select Java from the Group selection box2.
Click on Discovery behind the Zabbix Java gateway host3.
Click on Create discovery rule in the upper-right corner4.

Let's create our global discovery rule by adding the following:

Name: Global JMX Discovery Rule
Type: JMX agent
Key:
jmx.discovery[beans,"java.lang:type=GarbageCollector,name=
*"]

Update interval: 300s

Monitoring Java Applications Chapter 15

[566]

When ready, click the Add button:

Next, we have to create our discovery item as we only have our global discovery rule.
As you can see, we added in the key to discover beans. We could have added
attributes here as well.

This is the list of items we can select:

Attributes (retrieve JMX MBean attributes, default)
Beans (retrieve JMX MBeans)

Monitoring Java Applications Chapter 15

[567]

We could also replace java.lang:type with *:type,the other
garbage collectors not under java.lang would also be discovered.
Try not to add only an * to do a global search but look for a specific
type , such as in our case, garbage collectors, else this will cost you
lots of resources.

Time to create our discovery item; let's go to Item prototype | Create item
prototype. Add the following parameters in our item:

Name: java.gc {#JMXOBJ}-CollectionCount
Type: JMX agent
Key: jmx[{#JMXOBJ},CollectionCount]
Type of information: Numeric (unsigned)
New application prototype: {#JMXDESC}

Give it some time, then go to Monitoring | Latest data and select Zabbix Java
gateway in Host:

Monitoring Java Applications Chapter 15

[568]

As you can see, we now have the latest data for the collection count for our garbage
collectors configured on the machine. In our case, the MarkSweepCompact and Copy
Garbage Collectors were detected.

Because we added the {#JMXDESC} macro in the new application prototype, we now
have a new item in the latest data for every newly-detected JMX object visible like in
the preceding screenshot.

Zabbix maintains a list of supported macros for JMX LLD with a perfect explanation
of what every macro does. This information can be found at https:/ /zabbix. com/
documentation/ 4. 0/manual/ discovery/ low_ level_ discovery/ jmx#supported_
macros.

Since Zabbix 4.0.0, it's possible to work with custom MBeans that
return non-primitive data types, which override the toString()
method.

Summary
Java is sometimes called the king of the enterprise. It's so popular in large systems,
despite often-cited drawbacks, such as memory usage, that one might wonder what
makes it so attractive. One reason could be that it lowers maintenance costs—at least,
that is claimed sometimes, and it would make a lot of sense in large, long-life systems.
Developing a system is usually cheap compared to maintaining it over a long period
of time. Given the widespread usage of Java-based systems, the built-in JMX support
is very handy—except maybe the limiting endpoint support. In this chapter, we
looked at setting up a separate daemon, called the Zabbix Java gateway, and
performing the initial configuration to make it work with a Zabbix server. We also
monitored heap memory usage on the gateway itself, and that should be a good start
for JMX monitoring. For easier debugging, we looked at some scripts and the use of
jconsole. We noticed that monitoring Java can be difficult, as many different items
can exist on the same Java version, for example: garbage collectors. We saw how we
can solve this problem with the use of LLD items for JMX.

Lately, we have been discussing the monitoring of somewhat niche products and
protocols. The next chapter will continue that trend—we will discuss the built-in
VMware monitoring that enables us to discover and monitor all virtual machines
from a hypervisor or a vCenter.

https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx#supported_macros

Monitoring Java Applications Chapter 15

[569]

Questions
Can I install multiple Java gateways?1.
Are JMX items processed by the Zabbix agent or the Zabbix server?2.
What ports do we need to open for JMX monitoring?3.

Further reading
Check out the following articles for more information:

JMX monitoring: https:/ / zabbix. com/ documentation/ current/ manual/
config/ items/ itemtypes/ jmx_monitoring

Java gateway: https:/ / zabbix. com/ documentation/ 4. 0/manual/
concepts/ java

Docs/howto/zabbix get jmx: https:/ / www.zabbix. org/ wiki/ Docs/ howto/
zabbix_ get_ jmx

Discovery of JMX objects: https:/ /zabbix. com/documentation/ 4. 0/
manual/ discovery/ low_ level_discovery/ jmx

https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/current/manual/config/items/itemtypes/jmx_monitoring
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://zabbix.com/documentation/4.0/manual/concepts/java
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://www.zabbix.org/wiki/Docs/howto/zabbix_get_jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx
https://zabbix.com/documentation/4.0/manual/discovery/low_level_discovery/jmx

16
Monitoring VMware

There are a lot of virtualization solutions available today. Their target markets and
popularity differ, but for enterprise shops that can afford it, VMware solutions are
quite widespread. Zabbix offers built-in support for monitoring VMware. This
support includes the following:

Monitoring vSphere and/or vCenter
Automatically discovering all hypervisors
Automatically discovering all virtual machines

Monitoring VMware doesn't involve any custom layers; Zabbix accesses the VMware
API directly, and the monitoring of such an environment is very easy to set up.

In this chapter, the following topics will be covered:

Preparing for VMware monitoring
Automatic discovery
Available metrics
The underlying operation
VMware LLD configuration

Monitoring VMware Chapter 16

[571]

Technical requirements
For this chapter, you'll need access to an API of a VMware instance, including a
username and password. It might be a good idea to try this in a smaller or non-
production environment first.

Even though Zabbix has optimized the number of API calls, when
discovering a large environment from vCenter, the vCenter API
endpoint could get overloaded, as Zabbix would connect to it and
request data for all of the vSphere instances and virtual machines
that have been discovered. It might make sense to split the
monitoring over individual vSphere instances instead.

Preparing for VMware monitoring
To try out VMware support, we'll need the following:

The IP address or hostname on which we have access to the VMware API
The username for an account with permissions to retrieve the information
The password for that account

First, the server must be compiled with VMware support. If you have installed from
packages, this support most likely is included. If you installed from source, check
whether the Zabbix server log file lists VMware monitoring as enabled:

VMware monitoring: YES

When compiling from source, the following options are needed for VMware support:

--with-libcurl

--with-libxml2

As with several other features we've explored so far, the Zabbix server doesn't start
any VMware-specific processes by default. Edit zabbix_server.conf and look for
the StartVMwareCollectors parameter. Add a new line and tell Zabbix to start two
VMware collectors:

StartVMwareCollectors=2

Monitoring VMware Chapter 16

[572]

Restart the server. Why two collectors? Zabbix developers recommend the number of
collectors is based on the number of monitored VMware instances. For the best
performance, it's suggested to start more collectors than the monitored instance
count, but less than double the monitored instance count. Or if we put that in an
equation, it'll be as follows: instances < StartVMwareCollectors < (instances * 2). We'll
start small and monitor a single instance for now, so we'll have 1 <
StartVMwareCollectors < 2. It's also recommended to always start at least two VMware
collectors, so the choice is obvious here. If we had two VMware instances to monitor,
it would be three collectors: 2 < StartVMwareCollectors < 4.

A VMware instance is a vSphere or vCenter instance, not an
individual virtual machine. That is, the number of collectors
depends on the endpoints Zabbix actually connects to for data
collection.

We'll start by unleashing Zabbix on the VMware API and allowing it to automatically
discover everything using the templates that're shipped with Zabbix. Once we see
that it works as expected, we'll discover how we can customize and expand this
monitoring, as well as look under the hood a bit at the mechanics of VMware
monitoring.

Automatic discovery
We'll create a separate host, which will be the starting point for the discovery. This
host won't do anything else for us besides monitor generic VMware parameters and
discover all other entities.

Follow these steps to setup our monitoring in Zabbix:

Go to Configuration | Hosts and click on Create host.1.
Enter VMware in the Host name field, clear out existing groups in the In2.
groups block, and enter VMware in the New group field.
Switch to the Macros tab and fill in values for these three macros:3.

{$URL}: The VMware API/SDK URL in the
form https://server/sdk
{$USERNAME}: The VMware account username
{$PASSWORD}: The VMware account password

Monitoring VMware Chapter 16

[573]

The API or SDK is available on vSphere or vCenter systems.

Switch to the Templates tab, start typing vmware, choose Template VM4.
VMware, and click on the Add control in the Link new templates section.
When done, click on the Add button at the bottom.5.

What's next? Well, nothing. If everything has been done right, everything should be
monitored automatically. Hypervisors should be discovered and monitored, and
virtual machines discovered, placed in groups based on hypervisors, and monitored
as well. It might not happen immediately, though. Like other Low-Level Discovery
(LLD) rules in default templates, VMware discovery also has a one hour
interval—wait, LLD rules? Yes, VMware discovery also uses LLD functionality. We
discussed it in detail in Chapter 11, Automating Configuration. VMware support takes
it a step further, though: besides item, trigger, and graph prototypes, it also uses host
prototypes. We'll cover host prototypes a bit later. For now, we can either leave the
discovery to happen, or we can go to Configuration | Templates, click on Discovery
next to Template VM VMware, and reduce the update interval for all three discovery
rules. Just make sure to set it back later.

After waiting for a while—or after reducing the intervals—check Configuration |
Host groups. You should see several new host groups, prefixed with Discover
VMware VMs. Depending on how large the monitored VMware instance is, the new
group count could be from two up to many. There'll be a group called Hypervisors
and a group for virtual machines per cluster. If there're clusters, there'll also be a
group for hypervisors per cluster.

If there aren't any clusters configured, the group for virtual
machines will just be called vm.

Monitoring VMware Chapter 16

[574]

Available metrics
With some groups and hosts automatically created, let's see what data they're
collecting. Navigate to Monitoring | Latest data and select Hypervisors in the Host
groups field. Then, click on Filter:

There'll be more items for each hypervisor. Some of them might not have data yet, but
a bit of patience should reveal all of the details.

Datastore items might appear later; they're discovered by the
datastore discovery LLD rule in Template VM VMware Hypervisor
with a default interval of one hour.

Monitoring VMware Chapter 16

[575]

Now, filter by hypervisor virtual machine group in the Host groups field or by a
single discovered virtual machine in the Hosts field:

Again, there should be more items, and some could still be missing values. They all
should eventually get populated, though.

Disks, filesystems, and interface items might appear later; they're
discovered by the disk device discovery, mounted filesystem
discovery, and network device discovery LLD rules in the
Template VM VMware Guest template, with a default interval of
one hour.

Monitoring VMware Chapter 16

[576]

Once all of the LLD rules on the host level have run, we'll see quite a lot of items
being covered by the default templates. In many cases, these templates might even be
enough. Sometimes, you might want to extend them, though. The same as with other
default templates, it's strongly suggested you clone the template first and then make
the modifications to the new template.

But what other things could be supported besides the already included items? To see the full
list of supported VMware item keys, visit the item type section in the Zabbix manual.
VMware items are listed after Simple checks, and at the time of writing this, the full
URL is
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/sim

ple_checks/vmware_keys. Why below Simple checks? That's the item type for all
VMware keys. When adding new items, the type must be set to simple check. The
same as other simple checks, these items are processed by the Zabbix server directly.

Many items have been added since the first implementation of
VMWare monitoring in Zabbix. If you're still using the templates
that came with Zabbix 3.0, it's probably a good idea to download the
latest version of the templates and check out the VMWare keys
available in the previous URL. Currently, discovered VMware hosts
can't have other templates linked in or other item types added. It's
not possible to merge VMware monitoring and other monitoring,
such as a Zabbix agent, on the same host. If both virtualization and
OS-level statistics are to be monitored, separate hosts must be used
for that.

The underlying operation
While automatic discovery and monitoring works great, it's useful to understand how
exactly it works, both to be able to extend it and to solve problems as they arise. We'll
look at two areas in more detail:

LLD configuration in the default templates and host prototypes
Server operation and configuration details

https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys

Monitoring VMware Chapter 16

[577]

VMware LLD configuration
Let's dissect the default templates and how they operate. We only linked a single
template, and it ended up discovering all hypervisors and virtual machines; it's time
to find out how that happened. The top-level template, Template VM VMware, also
does some direct monitoring, although not much; it has items for VMware Event log,
Full name, and Version, as shown in the following screenshot:

These would be collected on the vCenter or vSphere level. It all grows more
interesting and complicated when we look at the LLD rules on this template. It
discovers VMware clusters, hypervisors, and individual virtual machines.
Admittedly, cluster discovery isn't that complicated; it only has a single item
prototype to monitor cluster status. Hypervisor discovery uses an LLD feature we
haven't looked at yet: host prototypes.

Host prototypes
If we go to Configuration | Templates and click on Discovery next to Template VM
VMware, we'll see that there's a single host prototype in the Discover VMware
hypervisors LLD rule. Click on Host prototypes and then click on {#HV.NAME} in
the Name column:

Monitoring VMware Chapter 16

[578]

Here, LLD macros are used again. We looked at their use in item and trigger
prototypes, but here they're used for the Host name and Visible name in the host
prototype. The interesting part is the use of different macros in these fields. Host
name, the one used to identify the host, isn't the hypervisor name, but its UUID. The
human-friendly name goes in the Visible name field. When a hypervisor is
referenced, it must be done by the UUID and it'll be referenced by that UUID in the
server log messages.

The Templates tab doesn't hold many surprises; it instructs Zabbix to link any
discovered hypervisors to Template VM VMware Hypervisor. Let's switch to the
Groups tab now:

This is a bit more interesting. Host prototypes can instruct created hosts to be placed
in existing host groups, listed in the Groups field. Additionally, they can instruct new
groups to be created based on Group prototypes and created hosts to be included in
those groups. Group prototypes are similar to other prototypes; the resulting names
must be unique, and that means we should use some LLD macro in the group name.

The {#DATACENTER.NAME} macro was added in Zabbix 3.2 and
adds the VMWare hypervisor data center name. If there aren't any
clusters configured, there won't be any per-cluster groups created.

Monitoring VMware Chapter 16

[579]

The Discover VMware VMs LLD rule in this template is similar; it holds a single host
prototype to be used for all discovered virtual machines. Just as with hypervisors, the
UUID is used for the hostname, and that would also be the one that appears in the
server log file:

In the frontend, we may search both by the Host name and Visible name. If
searching by the hostname—and this might be common, as we'll see it in log
files—the visible name will be shown as usual, with the hostname displayed below it
and made bold to indicate that it matched the search:

In the Templates tab, we can see that the created hosts will be linked to Template
VM VMware Guest. It's worth looking at the Groups tab for this host prototype.
Besides adding all discovered virtual machines to an existing group, Virtual
machines, two group prototypes are used here:

As seen in the hostgroup page earlier, a group would be created per hypervisor and
per cluster, holding all virtual machines on that hypervisor or in that cluster.

Monitoring VMware Chapter 16

[580]

Summarizing default template interaction
We've looked at what the default set of VMware templates does, but it can be a bit
confusing to understand how they interact and what configuration entity creates
what. Let's try to summarize their interaction and purpose in a diagram. Here, hosts
that receive the listed template are represented with a thick border, while various
LLD rules are shown with a thin border:

If a template has host prototypes, hence resulting in more hosts being created, it
points to another thick-bordered host box, which in turn is linked to another
template.

Monitoring VMware Chapter 16

[581]

But remember that, for this tree to start working, we only had to create a single host
and link it to a single template, Template VM VMware.

Server operation and configuration details
We know how Zabbix deals with information once that information has been
received, but there's a whole process to get it. That process is interesting on its own,
but there're also parameters to tune in addition to StartVMwareCollectors, which
we discussed earlier. First, let's examine how the values end up in items. The
following diagram shows a data flow starting with VMware and ending with the
Zabbix history cache:

Here, the steps happening inside the Zabbix server are grouped, and arrows indicate
the data flow direction; connections are actually made from the VMware collectors to
the VMware SDK interface. The collectors start by grabbing data and placing it in a
special cache; caches are indicated with a dashed border here. Then pollers—the same
processes that are responsible for passive Zabbix agents, SNMP, and other item
types—grab some values from that cache and place them in the Zabbix history cache.
For now, ignore the details in the history cache; we'll discuss it more in Chapter 20,
Zabbix Maintenance.

Monitoring VMware Chapter 16

[582]

Why the intermediate VMware cache? When VMware items are added,
there're quite a lot of them, with various intervals. If Zabbix were to
make a connection to VMware for every value, it would be a
performance disaster. Instead, VMware collectors grab everything
from the VMware SDK interface, place that in the cache, and then
the pollers pick the required values from that cache. This way, a lot
of items can get their values grabbed from the VMware cache
instead of having to bother VMware every single time.

Now is a good time to look at the VMware-related configuration parameters in the
server configuration file. We already covered StartVMwareCollectors, the
processes that connected to the VMware interface and placed information in a special
VMware cache. This cache by default is set to 8 MB, and this size can be controlled
with the VMwareCacheSize parameter. How would we know when that should be
changed? The best way is to monitor the usage and adjust accordingly. We'll discuss
the monitoring of internal caches in Chapter 20, Zabbix Maintenance.

Sometimes, connections to the VMware interface could get stuck. It could either be a
single slow instance that slows down the monitoring of other instances, or it could be
a single request going bad. In any case, connections to VMware instances will time
out after 10 seconds by default. This time can be controlled with the VMwareTimeout
parameter.

We just have two VMware-specific parameters left, VMwareFrequency and
VMwarePerfFrequency. Zabbix queries some of the information using the VMware
internal performance counters. At the time of writing this, the following item keys on
the hypervisor level are extracted from the following performance counters:

vmware.hv.network.in

vmware.hv.network.out

vmware.hv.datastore.read

vmware.hv.datastore.write

vmware.hv.perfcounter

Monitoring VMware Chapter 16

[583]

On the virtual machine level, the following keys are extracted from the following
performance counters:

vmware.vm.cpu.ready

vmware.vm.net.if.in

vmware.vm.net.if.out

vmware.vm.perfcounter

vmware.vm.vfs.dev.read

vmware.vm.vfs.dev.write

What does this actually mean? The item keys, listed previously, get new information as
often as VMwarePerfFrequency is set to. To put it differently, it doesn't make sense
to set the frequency of any items listed here lower than VMwarePerfFrequency. All
other items, including low-level discoveries, get their information as often as
VMwareFrequency is set to, and it doesn't make sense to set the frequency of other
items and LLD rules lower than VMwareFrequency.

We could also say that both of these parameters should be set to match the lowest
frequency for their corresponding items, but we have to be careful; setting these too
low could overload VMware instances. By default, both of these parameters are set to
60 seconds. This is fine for small and average environments, but on a large VMware
instance, we might want to increase them both, while potentially increasing
VMwareTimeout as well.

If you see weird graphs, verify whether the item update interval
isn't less than VMwarePerfFrequency.

Summary
To monitor VMware, just a single template is all we need. Well, that's not entirely
true; the other two templates for hypervisors and virtual machines must be present,
too, but besides that, Zabbix can automatically discover all hypervisors and virtual
machines, just like we did in the beginning of this chapter.

We looked in detail at the default templates: how they work and interact and what
each provides. The main template discovered everything, and then created hosts and
linked in hypervisor and virtual machine templates as needed.

Monitoring VMware Chapter 16

[584]

In the end, we looked at lower-level details, including how data is passed through the
VMware cache, how often that happens, and how we can tune all of that.

In the next chapter, we'll discuss a new Zabbix process: Zabbix proxy. Zabbix proxies
are remote data collectors that are really great. Similar to agents, they can operate in
passive or active mode, and they support almost everything Zabbix server supports,
including monitoring Zabbix agents, SNMP devices, VMware, and much more. We'll
set up both active and passive proxies, and discuss the best way to handle a proxy
becoming unavailable.

Questions
How many templates do we need to monitor VMware?1.
How can I increase debug logging only for VMware?2.
Does Zabbix support monitoring for KVM, Xen, and Hyper-V?3.

Further reading
Read the following articles for more information:

VMware monitoring item keys: https:/ /www. zabbix. com/
documentation/ 4. 0/manual/ config/ items/ itemtypes/ simple_ checks/
vmware_ keys

Virtual machine monitoring: https:/ /www. zabbix. com/ documentation/ 4.
0/manual/ vm_ monitoring

https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/config/items/itemtypes/simple_checks/vmware_keys
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring
https://www.zabbix.com/documentation/4.0/manual/vm_monitoring

17
Using Proxies to Monitor

Remote Locations
The Zabbix server can do monitoring using lots of different methods: it can
communicate with Zabbix agents, SNMP devices, and IPMI devices; run commands;
and do a whole lot of other things. A problem arises when the number of devices to
be monitored increases; a single endpoint (our Zabbix server) is supposed to
communicate with lots of others, and a large number of connections can cause
problems both on the Zabbix server and in the network components between the
Zabbix server and monitored devices.

It gets worse if we have to monitor remote environments—be it a branch office,
another data center, or a customer site. Zabbix agents? Port 10050 must be open to all
servers. SNMP? Port 161 must be open to all devices. It becomes unmanageable
really quickly.

A solution is to use Zabbix proxies. A Zabbix proxy is a remote data-collector process
that is capable of collecting data using all the methods the Zabbix server supports. In
this chapter, we will set up a Zabbix proxy, use it for gathering data, and discuss the
best methods to determine whether the proxy itself is available.

Zabbix proxies are not available for Windows.

We will cover the following topics in this chapter:

Active proxies and passive proxies
Setting up an active proxy
Proxy benefits
Proxy limitations

Using Proxies to Monitor Remote Locations Chapter 17

[586]

Proxies and availability monitoring
Setting up a passive proxy
Tweaking the proxy configuration

Active proxies and passive proxies
The Zabbix proxy first appeared in Zabbix version 1.6, back in 2008. Since then, it has
proven to be a very good solution. When the Zabbix proxy first appeared, it
supported connecting to the Zabbix server only, similarly to active agent. Zabbix
version 1.8.3 introduced a capability of the server to connect to the proxy, and now,
active proxies and passive proxies are available. While the Zabbix agent can
communicate with the server in both ways at the same time by having active and
passive items on the same host, the Zabbix proxy communicates with the server only
in one way at a time; the whole proxy is designated as active or passive.

The proxy mode does not change the direction of connections to or from the
monitored devices. If using active items through a proxy, the agent will still be the
one making the connections, and if using passive items, the agent will be accepting
connections. It's just that instead of the server, the agent will now communicate with
the proxy.

In both active and passive mode, server-proxy communication requires a single TCP
port, to a single address only, to be open. That is much easier to handle on the firewall
level than allowing connections to and from all of the monitored devices. There are
more benefits that a proxy may provide—but let's discuss those once we have a proxy
running.

Setting up an active proxy
We'll start with an active proxy—one that connects to the Zabbix server.

When setting up the proxy for this exercise, it is suggested to use a separate machine.
If that is not possible, you can choose to run the proxy on the Zabbix server system.

If installing the proxy from packages, we will have to choose a database. Zabbix
proxy uses its own database. If compiling the proxy from the sources, use the --
enable proxy parameter and the corresponding database parameter.

Using Proxies to Monitor Remote Locations Chapter 17

[587]

Additionally, the proxy must have support compiled in for all features it should
monitor, including SNMP, IPMI, web monitoring, and VMware support. See Chapter
1, Getting Started with Zabbix, for compilation options.

If a proxy is compiled from the same source directory the server was compiled from,
and the compilation fails, try running make clean first.

Which database should you choose for the Zabbix proxy? If the proxy will be monitoring a
small environment, SQLite might be a good choice. Using SQLite for the Zabbix
server backend is not supported, as it is likely to have locking and performance
issues. On a Zabbix proxy, it should be much less of a problem. If setting up a large
proxy, MySQL or PostgreSQL would be a better choice. During this chapter, we will
use the proxy with a SQLite database, as that is very easy to set up.

If compiling from the sources, SQLite development headers will be needed. In most
distributions, they will be provided in a package named sqlite-devel or similar. If
you install from the package, then you have to install it with yum or apt and the
package name will look similar to zabbix-proxy-sqlite3, but this is something
you have to check. For other databases than SQLite, you need to replace sqlite3
with the correct database name.

Edit zabbix_proxy.conf. We will change three parameters:

DBName

Hostname

Server

Change them to read as follows:

DBName=/tmp/zabbix_proxy.db
Hostname=First proxy
Server=<Zabbix server IP address>

The parameters in the preceding code block are explained as follows:

The first parameter, DBName, is the same as for the Zabbix server, except we
do not just specify the database name here. For SQLite, the path to database
file is specified here. While a relative path may be used, in most situations
it will be much more complicated to start the proxy, thus an absolute path
is highly suggested. We used a file in /tmp to make the setup of our first
proxy simpler, no need to worry about filesystem permissions. What about
the database username and password? As the comments in the configuration
file indicate, they are both ignored when SQLite is used.

Using Proxies to Monitor Remote Locations Chapter 17

[588]

On a production system, it is suggested to place the database file in
a location other than /tmp. In some distributions, /tmp might be
cleared upon reboot. On the other hand, for performance reasons,
we might choose to place the database in a tmpfs volume, gaining
some performance, but losing the proxy database upon every
system restart.
Placing the SQLite database on a tmpfs filesystem can also be useful
if you run your proxy on embedded devices at one of you clients. In
case things go wrong you could just ask your client to restart the
device. You will lose some data, but the database will be created
again once the proxy is up. With corrupt databases, you would have
some more work to recover data or fix the corrupt DB.

The second parameter, Hostname, will be used by the proxy to identify
itself to the Zabbix server. The principle is the same as with the active
agent: the value, specified here, must match the proxy name as configured
on the server side (we will set that up in a moment), and is case-sensitive.
The third parameter, Server, acts the same way as it did with active
agents. The active proxy connects to the Zabbix server and we specify the
server IP address here.

If you are running the proxy on the same machine as the Zabbix
server, change the port the proxy listens on, set
ListenPort=11051. The default port would conflict with the
Zabbix server.
As with the Zabbix server, you must ensure that the appropriate
pollers are configured to start. For example, if you want to monitor
IPMI devices through a proxy, make sure to set the
StartIPMIPollers parameter in the proxy configuration file to a
value other than the default 0.

Start the Zabbix proxy now. Wait, we did not create the database for the proxy. What
will it do? Let's look at the proxy log file—check /tmp/zabbix_proxy.log, or the
location set in the proxy configuration file. Paying close attention, we can find some
interesting log records:

3890:20181228:123654.746 using configuration file:
/etc/zabbix/zabbix_proxy.conf
3890:20181228:123654.746 cannot open database file
"/tmp/zabbix_proxy.db": [2] No such file or directory
3890:20181228:123654.746 creating database ...

Using Proxies to Monitor Remote Locations Chapter 17

[589]

It first failed to open an existing database file, then proceeded to create the database.
The Zabbix proxy can automatically create the required SQLite database and
populate it. Note that this is true for SQLite only—if using any other database, we
would have to create the database manually and insert schema. This is also possible
for SQLite—using the sqlite3 utility, we would do it like this:

$ sqlite3 /tmp/zabbix_proxy.db < schema.sql

But schema only! Not just for SQLite—for all databases—the proxy needs schema
only. No data and no image SQL files should be used. If the Zabbix proxy detects
some extra data in the database, it exits, complaining that it cannot use the server
database. Older proxy versions could crash or even corrupt the server database in
such a case. A link to the documentation on where to find the DB schemas is provided
at the end of this chapter.

Do not create an empty file. Either allow the proxy to create the
database file, or create it yourself and populate it using the sqlite3
utility. An empty file will be perceived as an empty database and
the proxy will fail to start.
If a proxy complains that it cannot work with a server database, it
will have found entries in the users table.

We could also verify that the Zabbix proxy is listening on the port it should be by
running the following:

$ ss -ntl | grep 10051

The output should confirm that everything is correct:

LISTEN 0 128 *:10051 *:*

If installing on the same machine, check for port 11051, or whichever other port you
chose.

There are a few log entries that indicate something is not working properly:

cannot send heartbeat message to server at "192.168.56.10": proxy
"First proxy" not found
cannot obtain configuration data from server at "192.168.56.10": proxy
"First proxy" not found

Zabbix 3.0 introduced the IP address in these messages. If you
struggled with figuring out which proxy is the issue in a larger
environment before, it should no longer be a problem.

Using Proxies to Monitor Remote Locations Chapter 17

[590]

We only configured and started the proxy daemon, but we did not configure
anything related to proxies on the server side. Let's monitor a host through our new
proxy.

Monitoring a host through a proxy
Now that we have the proxy configured and running, we have to inform Zabbix
about it somehow. To do this, perform the following steps:

Open Administration | Proxies in the frontend, then click on the Create1.
proxy button.
Enter First proxy in the Proxy name field:2.

The proxy name we enter here must match the one configured in the
zabbix_proxy.conf file, and is case-sensitive.
Zabbix 4.0 added some extra security. If we fill in Proxy address
with the IP of our proxy, then only requests from this comma-
delimited list of IP addresses will be accepted.

Next, we need to select Another host in Configuration | Hosts and select3.
First proxy from the Monitored by proxy drop-down menu:

Using Proxies to Monitor Remote Locations Chapter 17

[591]

When done, click on Update.4.

The next time the proxy connects to the server, the names should match and the
proxy should get the information on what it is supposed to monitor. But when will that
next time be? By default, the Zabbix proxy connects to the Zabbix server once per
hour. The first connection attempt happens upon proxy startup, and at one-hour
intervals from then on. If you configured the frontend part soon after the proxy was
started, it could take up to an hour for the proxy to get the configuration data and
start working. There are two ways to force rereading of the configuration data from
the Zabbix server:

Restart the proxy
Force-reload its configuration cache

The first one would be acceptable on our test proxy, but it would not be that nice on a
larger production proxy that is actively collecting data already. Let's see how we can
force-reload the configuration cache. First, run the following:

zabbix_proxy --help

In the output, pay attention to the runtime-control section and the first parameter
in it:

 -R --runtime-control runtime-option Perform administrative
functions
 Runtime control options:
 config_cache_reload Reload configuration cache

When an active proxy is told to reload its configuration cache, it connects to the
server, gets the new configuration data, and then updates the local cache. Let's issue
that command now:

zabbix_proxy --runtime-control config_cache_reload

Runtime commands depend on the PID file being properly
configured. When you run the previous command, it looks for the
PidFile option in the default proxy configuration file, looks up the
PID from the PID file, and sends the signal to that process. If
multiple active proxies are running on the system, a signal can be
sent to a specific proxy by specifying its configuration file with the -
c option.

The reload command should be processed successfully:

zabbix_proxy [19293]: command sent successfully

Using Proxies to Monitor Remote Locations Chapter 17

[592]

Check the proxy log file now:

forced reloading of the configuration cache
received configuration data from server at "192.168.56.10", datalen
6545

First, the proxy logs that it has received an order to reload the configuration cache.
Then it connects to the server and successfully retrieves the configuration data from
the server.

We will discuss reloading of the configuration cache in somewhat
greater detail in Appendix A, Troubleshooting.

You can verify whether the proxy can successfully connect to the server by opening
Administration | Proxies again. Look at the Last seen (age) column for the new
proxy. Instead of saying never, it should show some time period. If it does not, check
that both the Zabbix server and proxy are running, and that you can open a
connection from the proxy host to the Zabbix server, port 10051:

But if you look at the Hosts column, you'll see that it is empty now. What happened
here? We clearly added Another host to be monitored by this proxy—why did it
disappear? This could be a challenging task to figure out, and a situation such as that
could easily arise in a production environment. The reason for the host disappearing
from the proxy configuration is active-agent auto-registration. We
configured it in Chapter 11, Automating Configuration, and the agent has been sort of
repeatedly auto-registering ever since. But why does that affect the host assignment to
proxy? When an active agent connects and auto-registration is active, it matters
where it connects to. Instead of creating a new host, the Zabbix server reassigns that
host to the Zabbix server or some proxy, whichever received the agent connection. It
considers that agent as having migrated from the server to some proxy or vice versa,
or from one proxy to another. We assigned a host to our new proxy, the agent kept on
connecting to the server, and the server reassigned that host back to be monitored
directly by the server. How could we solve it? We have two options:

Disable the active agent's auto-registration action and reconfigure the
host manually
Configure the agent to connect to the proxy instead

Using Proxies to Monitor Remote Locations Chapter 17

[593]

Let's try the second, fancier approach. On Another host, edit zabbix_agentd.conf
and change ServerActive to the proxy IP address, then restart the agent.

In the preceding screenshot, we also see a column Compression. All
communications between the Zabbix server and proxies are now
unconditionally compressed in both ways. For this the zlib library
is required. This compression is new in Zabbix 4.0 and Zabbix SIA
claims that it can save 50% of your bandwidth between proxy and
server.
If you installed the Zabbix proxy on the same system as the Zabbix
server, make sure to specify the proxy port in this parameter, too.
For example, 192.168.1.23:11051.
Do not set the proxy address in addition to the server address—in
that case, the agent will try to work with both the server and proxy
in parallel. See Chapter 3, Monitoring with Zabbix Agents and Basic
Protocols, for more detail on pointing the agent at several servers or
proxies.

Check the proxy list again. There should be Another host in the Hosts column now,
and it should not disappear again. Let's check data for this host in Monitoring |
Latest data. Unfortunately, it looks like most of the items have stopped working.
While we changed the active server parameter in the agent daemon configuration file
and active agent items work now, there are more item categories that could have
failed:

Passive agent items do not work because the agent does not accept
connections from the proxy
ICMP items likely do not work as fping is either missing or does not have
proper permissions.
While Another host does not have items of SNMP, IPMI, and other types,
those could have started to fail because appropriate support was not
compiled into the proxy, or respective pollers were not started
If you configured the proxy on the Zabbix server system, passive items will
work, as the IP address the agent gets the connections from will stay the
same

Let's fix at least the passive agent items. Edit zabbix_agentd.conf on Another host
and change the Server parameter. Either replace the IP address in there with the
proxy address, or add the proxy address to it, then restart the agent. In a few minutes,
most of the passive agent items should start receiving data again.

Using Proxies to Monitor Remote Locations Chapter 17

[594]

As for the ICMP items, refer to Chapter 3, Monitoring with Zabbix Agents and Basic
Protocols, for the fping configuration. It's the same as on the server side; it's just that
the changes have to be performed on the proxy system now.

In general, when a host is monitored by proxy, all connections to and from that host
must and will be performed by the proxy. The agent must allow connections from the
proxy for passive items and connect to the proxy for active items. Even the Zabbix
sender must send data to the proxy for Zabbix trapper items, not the Zabbix server
anymore.

With the host monitored by the proxy, let's check whether there is any indication of
that in the frontend:

Open Configuration | Hosts, make sure Linux servers is selected in the1.
Group drop-down, and take a look at the Name column
As you can see, Another host is now prefixed by the proxy name and reads2.
First proxy: Another host:

When having multiple proxies, it is a common practice to name
them by location name—for example, proxy-London or Paris-
proxy.

Before it was possible to monitor hosts by proxies from under Administration |
Proxies this option was removed in Zabbix and now the only place left we can do this
is on host level under Configuration | Hosts.

If you decide to monitor A test host through the proxy, be very careful
with its address. If the address is left at 127.0.0.1, the proxy will
connect to the local agent for passive items and then report that data to
the server, claiming it came from A test host. That would also be not
that easy to spot, as the data would come in just fine; only it would be
the wrong data.

Using Proxies to Monitor Remote Locations Chapter 17

[595]

Proxy benefits
With our first proxy configured, let's discuss its operation and the benefits it provides
in more detail. Let's start with the main benefits:

A proxy collects data when the server is not available
A proxy reduces the number of connections to and from remote
environments
A proxy allows us to use incoming connections for polled items

We talked about the proxy retrieving configuration data from the server, and we
talked about it having a local database. The Zabbix proxy always needs a local
database, and this database holds information on the hosts the proxy is supposed to
monitor. The same database also holds all the data the proxy has collected, and if the
server cannot be reached, that data is not lost. For how long? By default, data is kept
for one hour. This can be configured in the zabbix_proxy.conf file, in the
ProxyOfflineBuffer parameter. It can be set up to 30 days, but beware of running
out of disk space, as well as of the potential to overload the Zabbix server when
connectivity is back—we will discuss that risk in more detail later:

There are more proxy-specific configuration parameters available;
they are listed later in this chapter.

Using Proxies to Monitor Remote Locations Chapter 17

[596]

Fewer connections to remote environments can be very important, too. Monitoring
using passive items means one connection for each value. With active items, it's a bit
better; multiple values will often be sent in a single connection. But the proxy pools
up to 1,000 values in a single connection. That is done even when they are of different
types, such as agent, SNMP, IPMI, and SSH items. Fewer connections means healthier
firewalls and other network devices, and much better performance from smaller total
latency and less work for the Zabbix server to handle the incoming connections from
Zabbix agents:

The third main benefit is the ability to receive incoming connections on the server
side and still gather data by polling devices. For example, when monitoring a
customer environment, the Zabbix server might have no access to the network
devices. The Zabbix proxy could connect to them, collect data using SNMP, and then
connect to the server to send the data. Also, keep in mind that only a single port for a
single address would have to be opened in firewalls, as opposed to a lot of ports for
all of the monitored devices when a proxy is not used:

Using Proxies to Monitor Remote Locations Chapter 17

[597]

There are a few more benefits that Zabbix proxies provide:

Single point of control for all proxies on the Zabbix server
Ability to use multiple Java gateways

As proxies grab the configuration data from the Zabbix server, the configuration of all
proxies is done on a single system. This also allows us to ship out small,
preconfigured devices that are plugged into a remote environment. As long as they
get network connectivity and can connect to the Zabbix server, all configuration
regarding what should be monitored can be changed at will from the Zabbix server.

As for Java gateways, we discussed them in Chapter 15, Monitoring Java Applications.
Only a single Java gateway could be configured for the Zabbix server, but a gateway
may also be configured for each proxy. With proxies being simple to set up, it's fairly
easy to have lots of Java gateways working on behalf of a single Zabbix server.
Additionally, the Java gateway only supports connections from the server to the
gateway. Using an active proxy in front of the gateway allows Java Management
Extensions (JMX) monitoring using incoming connections to the Zabbix server:

Using Proxies to Monitor Remote Locations Chapter 17

[598]

Proxy limitations
While proxies have many benefits, they do have some limitations. Well, they have
pretty much one main limitation: they are only data collectors. If the server cannot be
reached, the proxy cannot do independent notifications. They can't even generate
events; all logic regarding triggers is processed on the server only. Remember, proxies
do not process events or send out alerts. Remote commands were not supported in
older versions, but are now supported since Zabbix 3.2. When we create scripts
(Administration | Scripts), we now have the option to select if they need to be run
from agent, server or proxy:

Remember we need to activate EnableRemoteCommands for this on our proxy, just
like we have to do this for our host in our zabbix_proxy.conf file.

Proxy operation
Let's talk about how proxies operate a bit. We'll cover three things here:

Synchronization of the configuration
Synchronization of the collected data
Operation during maintenance

By default, proxies synchronize the configuration once per hour, and this period can
be set in the zabbix_proxy.conf configuration file. Look for the parameter named
ConfigFrequency, which by default will look like this:

ConfigFrequency=3600

This means that a Zabbix proxy can lag in configuration up to an hour, which might
sound scary, but once a production installation settles, the configuration usually
doesn't change that often. While testing, you might wish to decrease this period, but
in a stable production setup, it is actually suggested to increase this value.

If you must have configuration changes pushed to a proxy
immediately, force the configuration to be reloaded.

Using Proxies to Monitor Remote Locations Chapter 17

[599]

The collected data is sent to the server every second by default. That can be
customized in the zabbix_proxy.conf file with the DataSenderFrequency
parameter.

The active proxy won't connect to the server every second if it has
no values to send—a one-second interval will be used only if it has
data to send. On the other hand, if it has lots of values to send and
cannot push them all in a single connection (which means 1,000
values), the next connection will be performed as soon as possible
without waiting that 1 second.

Regarding host and host-group maintenance, when a host is in maintenance without
data collection, data is still sent by proxy, but the server discards it. This way, changes
in the maintenance status do not suffer from the default one-hour delay for a
configuration sync.

Proxies and availability monitoring
With all the benefits that a proxy brings, you might be tempted to use them a
lot—and a good idea that would be, too. Proxies are really great. There's still the issue
of monitoring availability for hosts behind proxies. If a proxy goes down or cannot
communicate with the Zabbix server, we would be missing data for all the hosts
behind that proxy. If we used the nodata() trigger function to detect unavailable
hosts (we could call such triggers availability triggers), that could mean thousands of
hosts are declared unavailable. Not a desirable situation. There is no built-in
dependency for hosts behind a proxy, but we can monitor proxy availability and set
trigger dependencies for all hosts behind that proxy. But what should we set those
dependencies to? Let's discuss the available ways to monitor proxy availability and
their potential shortcomings.

Method 1 – last access item
There was the last access column in Administration | Proxies. Of course, looking at it
all the time is not feasible, thus it can also be added as an internal item. To create such
an item, do the following:

Let's go to Configuration | Hosts, click on Items next to the host that runs1.
your proxy, and click on Create item. Fill in the following values:

Name: $2: last access

Using Proxies to Monitor Remote Locations Chapter 17

[600]

Type: Zabbix internal
Key: zabbix[proxy,First proxy,lastaccess]
Units: unixtime

This item can be created on any host, but it is common to create it
either on the Zabbix proxy host, or on the Zabbix server host.

In the key here, the second parameter is the proxy name. Thus, if your
proxy was named kermit, the key would become
zabbix[proxy,kermit,lastaccess].

If items like these are created on hosts that represent the proxy
system and have the same name as the proxy, a template could use
the {HOST.HOST} macro as the second parameter in this item key.
We discussed templates in Chapter 8, Simplifying Complex
Configurations with Templates.

When done, click on the Add button at the bottom.2.

Notice how we used a special unit here: unixtime. Now what would it do? To find
out, navigate to Monitoring | Latest data, expand the Filter, select the host you
created the last item on, and enter proxy in the Name field, then click on the Filter
button. Look at the way data is presented here, we can see very nicely, in a human-
readable form, when the proxy last contacted the Zabbix server:

So this item will be recording the time when the proxy last contacted the Zabbix
server. That's great, but hardly enough to notice problems in an everyday
routine—we already know that a trigger is needed. Here, the already-familiar
fuzzytime() function comes to the rescue.

Navigate to Configuration | Hosts, click on Triggers next to the host you created the
proxy last access item on, then click on the Create trigger button.

Using Proxies to Monitor Remote Locations Chapter 17

[601]

Let's say we have a fairly loaded and critical proxy—we would like to know when
three minutes have passed without the proxy reporting back. In such a case, a trigger
expression such as this could be used:

{host:zabbix[proxy,proxy name,lastaccess].fuzzytime(180)}=0

One could consider using the Simple change value for the last access
item, which would return 0 when the proxy is not communicating.
The trigger for such an item is more obscure, thus fuzzytime() is
the most common trigger function for this purpose.

As we might recall, the proxy connected to the server in two cases—it either
synchronized the configuration, or sent the collected data. What if, for some reason, all
occurrences of both of these events are further apart than three minutes? Luckily, the Zabbix
proxy has a heartbeat process, which reports back to the server at regular intervals.
Even better, this timing is configurable. Again, take a look at zabbix_proxy.conf,
this time looking for the HeartbeatFrequency variable, which by default looks like
this:

HeartbeatFrequency=60

Specified in seconds, this value means that the proxy will report back to the server
every minute, even if there are no new values to send. The lastaccess item is quite
a reliable way to figure out when a proxy is most likely down or at least inaccessible,
even if it would not be sending data for a longer period of time.

For our trigger, fill in the following values:

 Name: Proxy "First proxy" not connected for 3 minutes
 Expression: {Another host:zabbix[proxy,First
proxy,lastaccess].fuzzytime(3m)}=0

Severity: High

Replace the proxy name with the host name on which the proxy last
access item was created. If the last access item used the
{HOST.HOST} macro, use the same macro in the trigger name and
expression, too.

We could have used 180 in place of 3m, but the time suffix version is a bit easier to
read. Time suffixes were discussed in Chapter 6, Detecting Problems with Triggers.
When done, click on the Add button at the bottom.

Using Proxies to Monitor Remote Locations Chapter 17

[602]

This combination of an item and a trigger will alert us when the proxy will be
unavailable. Now we just have to set up trigger dependencies for all availability
triggers behind this proxy on this proxy last access trigger.

Unfortunately, there's a common problem situation. When proxy-server
communication is interrupted, the proxy last access trigger fires and masks all other
triggers because of the dependency. While the proxy is unable to connect to the server
for some time, it still collects the values. Once the communication is restored, the
proxy sends all the values to the server, older values first. The moment the first value is
sent, the last access item is updated and the trigger resolves. Unfortunately, at this
point, the proxy is still sending values that were collected 5, 30, or 60 minutes ago.
Any nodata() triggers that check a shorter period will fire. This makes the proxy
trigger dependency work only until the proxy comes back, and results in a huge event
storm when it does come back. How can we solve it? We could try to find out how
many unsent values the proxy has, and if there are too many, ignore all the triggers
behind the proxy—essentially, treating a proxy with a large value buffer the same as
an unreachable proxy.

Method 2 – internal proxy buffer item
We can turn to Zabbix internal items to figure out how large the proxy buffer is—that
is, how many values it has to send to the Zabbix server:

Let's go to Configuration | Hosts, click on Items next to Another host, and1.
click on Create item. Fill in the following values:

Name: First proxy: buffer size
Type: Zabbix internal
Key: zabbix[proxy_history]

This item must be created on a host, monitored through the proxy
for which the buffer size should be monitored. If assigned to a host
and monitored by the Zabbix server, this item will become
unsupported.

When done, click on the Add button at the bottom.2.

Using Proxies to Monitor Remote Locations Chapter 17

[603]

With the default proxy configuration update interval of one hour, it might take quite
some time before we can see the result of this item. To speed up the configuration
update, run the following on the proxy host:

zabbix_proxy --runtime-control config_cache_reload

The proxy will request item configurations from the server and update its own cache.
After a short while, we should be able to see the result in the Latest data page:

What is that value, though? It's quite simply the number of values that are still in the
proxy buffer and must be sent to the server. This might allow us to create a trigger
against this item. Whenever the buffer is bigger than 100, 200, or 1,000 values, we
consider the proxy data not up to date and make all host triggers depend on the
buffer size. Except that there's still a significant problem. Values for this item are kept
in the same proxy buffer it monitors and are subject to the same sequential sending,
with older values being sent first. With this item, we would still suffer from the same
problem as before—while the proxy was unavailable, the proxy buffer item would
hold 0 or some other small value. As values start to flow in, individual host triggers
would fire, and only after some time would we see that the buffer was actually really
large. It would be useful for some debugging later, but would not help with masking
the hosts behind the proxy. Is there a solution then?

Method 3 – custom proxy buffer item
A solution could be some method that would send us the proxy buffer size, bypassing
the buffer itself. Zabbix does not offer such a method, thus we will have to implement
it ourselves. Before we do that, let's figure out how we could obtain information on
the buffer size. For that, we will delve into the proxy database.

You might have to install the SQLite 3 package to get the sqlite3 utility.

On the proxy host, run the following:

$ sqlite3 /tmp/zabbix_proxy.db

Using Proxies to Monitor Remote Locations Chapter 17

[604]

The proxy keeps all of the collected values in a single table, proxy_history. Let's
grab the last three collected values:

sqlite> select * from proxy_history order by id desc limit 3;
1659|28805|1546002875|0||0|0|0|660348055|0|0|0|0
1658|28804|1546002874|0||0|1546002874|0|658660672|0|0|0|0
1657|28799|1546002869|0||0|1|0|654297524|0|0|0|0

We will discuss other fields in a bit more detail in Chapter 19, Working Closely with
Data, but for now, it is enough to know that the first field is a sequential ID. Still, how
does the proxy know which values it has sent to the server already? Let's look at the IDs
table:

sqlite> select * from ids where table_name='proxy_history';
proxy_history|history_lastid|1701

The history_lastid value here is the last ID that has been synchronized to the
server. On a busy proxy, you might have to run these statements really quickly to see
the real situation, as new values will be constantly added and sent to the server. We
can get the current buffer (unsent values) size with this:

sqlite> select (select max(proxy_history.id) from proxy_history)-
nextid from ids where field_name='history_lastid';

It will calculate the difference between the biggest ID and the history_lastid
value. On our proxy, this will likely return 0 all the time.

Try stopping the Zabbix server and see how this value increases.
Don't forget to start the Zabbix server again.

Now we should put this in an item. The most important thing is to make sure this
item is processed directly by the server, without involving the Zabbix proxy. We have
several options:

Passive agent item
Active agent item
Zabbix trapper item that is populated by zabbix_sender

Using Proxies to Monitor Remote Locations Chapter 17

[605]

For a passive agent, the server should query it directly. For an active agent, it should
point at the Zabbix server. For the trapper item, zabbix_sender should be used to
connect to the Zabbix server. In all three cases, the host should be assigned to be
monitored by the Zabbix server. If we are using internal monitoring to collect proxy
values in a dedicated host, a separate host will be needed to collect the buffer data.
This way, we will avoid these values getting stuck in the proxy buffer.

For the agent items, we could use UserParameter, like this:

UserParameter=proxy.buffer,sqlite3 /tmp/zabbix_proxy.db "select
(select max(proxy_history.id) from proxy_history)-nextid from ids
where field_name='history_lastid';"

You might have to use the full path to the sqlite3 binary.

As for the Zabbix trapper approach, it could be run from crontab or using any other
method. The command would be similar to this:

zabbix_sender -z zabbix_server -s target_host -k item_key -o $(sqlite3
/tmp/zabbix_proxy.db "select (select max(proxy_history.id) from
proxy_history)-nextid from ids where field_name='history_lastid';")

Here, we use the basic zabbix_sender syntax, but the value is obtained from the
SQLite query. See Chapter 10, Advanced Item Monitoring, for more information on
UserParameters and zabbix_sender. The Zabbix trapper item would receive the
same data as the internal buffer monitoring—the buffer size. The trigger would check
for this buffer exceeding some threshold.

Note that all three methods are likely to result in some missing values for the buffer
item—the values would not be available while the connection between the server and
proxy is down. The active agent item approach would suffer less as it has an in-
memory buffer, but it there might still be missing values. If it would be valuable to
know how the buffer changed during the communication breakdown. This item
could be used for the trigger and an internal item, as discussed earlier, for more
complete buffer statistics.

Regarding triggers and dependencies, it is suggested to make the buffer trigger
depend on the last access trigger. This way, hosts behind the proxy will be silenced if
the proxy disappears completely, and when the proxy comes back with a large buffer,
the buffer trigger will keep those hosts silent.

Using Proxies to Monitor Remote Locations Chapter 17

[606]

Setting up a passive proxy
So far, we configured and discussed only one way a proxy can work, as an active
proxy. A proxy may also be configured to accept incoming connections from the
server, and similar to the agent; it is called a passive proxy in that case:

As opposed to the Zabbix agent, where this mode was set on the item level and a
single agent could work in both active and passive mode, a Zabbix proxy can only
work in one mode at a time.

Let's switch our active proxy to the passive mode. First, edit zabbix_proxy.conf
and set the ProxyMode parameter to 1. This is all that's required to switch the proxy
to the passive mode—now restart the proxy process.

As opposed to the passive agent, the Server parameter is currently
ignored by the passive proxy.

In the frontend, perform the following steps:

Navigate to Administration | Proxies and click on First proxy in the1.
Name column.
Choose Passive in the Proxy mode drop-down, and notice how an2.
Interface section appears.

Using Proxies to Monitor Remote Locations Chapter 17

[607]

Set the IP address and port of your proxy:3.

When done, click on Update. Now, when will the server send configuration information to
the passive proxy? By default, the interval is one hour. Unfortunately, scheduling
sending configuration data is done the same way as the polling of passive items—it's
distributed in time and could happen any time from now, until one hour has passed.

Don't forget to change the proxy port if you are not running the
proxy on the standard port 10051.

Well, let's try to force-reload the configuration cache on the proxy:

zabbix_proxy --runtime-control config_cache_reload
zabbix_proxy [3587]: command sent successfully

That seemed promising. Let's check the proxy log file:

forced reloading of the configuration cache cannot be performed for a
passive proxy

Well, that's not good. The configuration cache-reloading command is ignored by
passive proxies.

Using Proxies to Monitor Remote Locations Chapter 17

[608]

Currently, there is no way to force send that data from the server side either.
Restarting the server won't help—it could make things worse, if the sending was
scheduled while the server was not running. What we could do in our small
installation is reduce that interval. Edit zabbix_server.conf and look for the
ProxyConfigFrequency option. Set it to 180, or some similarly small value, and
restart the server. After a few minutes, check the server log file:

sending configuration data to proxy "First proxy" at "192.168.56.11",
datalen 6363

Such a line indicates the successful sending of the configuration data to the passive
proxy. Note that ProxyConfigFrequency affects communication with all passive
proxies; we cannot set this interval to a different value for different proxies.

When would one choose an active or passive proxy? In most cases, an active proxy would
be preferred, as it can result in a smaller number of connections and we may force it
to reload its configuration from the server. If the proxy cannot or should not connect
to the server, a passive proxy could be used. A common situation when a passive
proxy is used is when the Zabbix server is located in the internal network, and the
proxy is monitoring a DMZ. We wouldn't want to have connections from the DMZ to
the internal network, thus the choice of a passive proxy.

Tweaking the proxy configuration
While many configuration parameters for a proxy are the same as for the server (the
pollers to start, port to listen on, and so on), and some are the same as for the agent
daemon (hostname), there are some proxy-specific parameters. Knowing about these
can be helpful when diagnosing a proxy-related problem, or when the proxy must be
deployed in a specific environment. For an active proxy, the following parameters
affect it:

Option Description

ProxyLocalBuffer

Proxy will keep data in the local database for this many
hours. By default, all data that is synchronized to the
Zabbix server is removed. This could be useful if we would
like to extract some data that is not stored permanently on
the Zabbix server, such as network-discovery values.

ProxyOfflineBuffer
Proxy will keep data for this many hours if the Zabbix
server is unavailable. By default, data older than one hour is
discarded.

Using Proxies to Monitor Remote Locations Chapter 17

[609]

HeartbeatFrequency
By default, the Zabbix proxy sends a heartbeat message to
the Zabbix server every minute. This parameter allows us to
customize that.

ConfigFrequency

By default, the Zabbix proxy retrieves a new configuration
from the server once per hour. You might want to increase
this for large, fairly static setups, or maybe decrease it for
smaller, more dynamic installations. Configuration data-
retrieval can be forced by reloading the active proxy's
configuration cache.

DataSenderFrequency

This parameter specifies how often the proxy pushes
collected data to the Zabbix server. By default, it's one
second. As all the trigger and alert processing is done by the
server, it is suggested to keep this value low. If there are no
values to send, an active proxy will not connect to the
server except for heartbeat connections.

For a passive proxy, ProxyMode allows us to switch to the passive mode. Now the
communication is controlled by parameters in the server configuration file:

Option Description

StartProxyPollers

The number of processes that will be started and will
connect to passive proxies to send configuration data and
poll collected values. By default, one such process is
started, and more might be needed if there are several
passive proxies.

ProxyConfigFrequency

By default, Zabbix servers send configuration data to
passive proxies once per hour. There is no way to force the
sending of configuration data to passive proxies. This
parameter affects connections to all passive proxies.

ProxyDataFrequency

This parameter specifies how often the proxy pushes
collected data to the Zabbix server. By default, it's one
second. The Zabbix server will connect to passive proxies
even if they have no values to provide. This parameter
affects connections to all passive proxies.

Using Proxies to Monitor Remote Locations Chapter 17

[610]

Summary
In this chapter, we covered a great and easily-maintainable solution for larger-scale
data collection—Zabbix proxies. Zabbix proxies are also very desirable for remote
environments. Similar to Zabbix agents, Zabbix proxies can operate either in active or
in passive mode, reducing the hassle with configuring firewalls.

Let's recap the main benefits of Zabbix proxies:

Connections between the Zabbix proxy and the Zabbix server are done on a
single TCP port, thus allowing us to monitor devices behind a firewall or
devices that are inaccessible because of network configuration.
The Zabbix server is freed up from keeping track of checks and actually
performing them, thus increasing performance.
Local buffering on the proxy allows it to continue gathering data while the
Zabbix server is unavailable, transmitting it all when connectivity problems
are resolved.

Remember that active agents must point to the proxy if a host is monitored through
that proxy. Passive agents must allow incoming connections from the proxy by
specifying the proxy IP address in the Server parameter. The zabbix_sender utility
must also send data to the proper proxy; sending data to the Zabbix server is not
supported for hosts that are monitored through a proxy.

It is important to remember that proxies do not process events, do not generate
trends, and do not send out alerts—they are remote data-gatherers, and alerting can
happen only when the data is delivered to the Zabbix server. Additionally, proxies do
not support remote commands. While scheduled for implementation in Zabbix 3.2,
we will have to wait for that version to be released to know whether the development
was successful.

With proxies taking over the monitoring of hosts, it is important to know that they are
available, and it is also important to be silent about hosts behind a proxy if the proxy
itself is not available. We discussed several ways this could be done, including proxy-
buffer monitoring to avoid sending alerts when the proxy has collected a lot of data
during connectivity problems, and value-sending is behind.

Zabbix proxies are easy to set up, easy to maintain, and offer many benefits, thus they
are highly recommended for larger environments.

Using Proxies to Monitor Remote Locations Chapter 17

[611]

In the next chapter, we will finally discuss that NONE sign you might have noticed
next to all hosts and proxies in the configuration section under Agent encryption. It
refers to encryption configuration, which is a feature that was added in Zabbix 3.0.
Zabbix supports pre-shared key and certificate-based TLS authentication and
encryption. Encryption is supported for all components—server, proxy, agent,
zabbix_get, and zabbix_sender. We will set up both pre-shared key and TLS-
based encryption.

Zabbix has provided a template to monitor our proxies, this
template is Template App Zabbix Proxy. This would allow us to
monitor the internal health of our proxies just like we can do for our
Zabbix server. In this case it's important to install a Zabbix agent on
the Zabbix proxy that is being monitored by the proxy!

Questions
Can proxies be configured to be active/passive like Zabbix Agents?1.
When I install Zabbix proxies what do I need to change on my hosts?2.
Can I monitor JMX items from hosts behind a Zabbix proxy?3.

Further reading
Read the following articles for more information:

Database creation: https:/ /zabbix. com/ documentation/ current/ manual/
appendix/ install/ db_ scripts

Proxies: https:/ / zabbix. com/documentation/ current/ manual/
distributed_ monitoring/ proxies

https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/appendix/install/db_scripts
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies
https://zabbix.com/documentation/current/manual/distributed_monitoring/proxies

18
Encrypting Zabbix Traffic

Communication between Zabbix components is done in plain text by default. In
many environments, that isn't a significant problem, but monitoring over the internet
in plain-text is likely not a good approach—transferred data could be read or
manipulated by malicious parties. In previous Zabbix versions, there was no built-in
solution, and various VPN, stunnel, and SSH port-forwarding solutions were used.
Such solutions can still be used, but 3.0 was the first Zabbix version to provide built-
in encryption.

In this chapter, we'll set up several of the components to use different types of
encryption and cover the following topics:

Overview
Backend libraries
Pre-shared key encryption
Certificate-based encryption
Being our own authority
Setting up Zabbix with certificates

Overview
For Zabbix communication encryption, two types are supported:

Pre-Shared Key (PSK)
Certificate-based encryption

The PSK type is very easy to set up but is likely harder to scale. Certificate-based
encryption can be more complicated to set up but easier to manage on a larger scale
and is potentially more secure.

Encrypting Zabbix Traffic Chapter 18

[613]

This encryption is supported between all Zabbix components; server, proxy, agent,
and even zabbix_sender and zabbix_get.

For outgoing connections (such as server-to-agent or proxy-to-server), only one type
may be used (we need to choose between no encryption or PSK or certificate-based).
For incoming connections, multiple types may be accepted. This way, an agent could
work with encryption by default for active or passive items from the server, and then
work without encryption with zabbix_get for debugging.

Backend libraries
Behind the scenes, Zabbix encryption can use one of three different
libraries: OpenSSL, GnuTLS, or mbed TLS. Which one to choose? If using packages,
the easiest and safest is to start with whichever the packages are compiled with. If
compiling from source, choose the one that's easiest to compile with. In both cases,
that's likely to be the library that's endorsed by the packagers and maintained well.
The Zabbix team has made a significant effort to implement support for all three
libraries in as similar a way as possible from the user's perspective. There could be
differences regarding support for some specific features, but those are likely to be
more obscure ones: if such problems do come up later, switching from one library to
another should be as easy as recompiling the daemons. While in most case, it would
likely not matter much which library you're using, it's a good idea to know that; one
good reason for supporting these three different libraries is also the ability to switch
to a different library if the currently used one has a security vulnerability.

These libraries are used in a generic manner, and there's no
requirement to use the same library for different Zabbix
components; it's totally fine to use one library on the Zabbix server,
another on the Zabbix proxy, and yet another with zabbix_sender.

In this chapter, we'll try out encryption with the Zabbix server and zabbix_sender
first and then move on to encrypting agent traffic using both PSK and certificate-
based encryption. If you have installed from packages, your server most likely
already supports encryption. Verify that by looking at the server and agent startup
messages:

3237:20181226:100436.209 TLS support: YES

Encrypting Zabbix Traffic Chapter 18

[614]

One way to find out which library the binary has been compiled
against would be to run ldd /usr/sbin/zabbix_server |
egrep -i "ssl|tls"—replace the binary name as needed.

If you compiled from source and TLS support isn't present, recompile the server and
agent by adding one of these parameters: --with-openssl, --with-gnutls, or --
with-mbedtls.

PSK encryption
Let's start with a simple situation, a single new host for which the Zabbix server will
accept PSK-encrypted incoming connections only for the ones we'll send some values
to using zabbix_sender. For that to work, both the Zabbix server and
zabbix_sender must be compiled with TLS support. The PSK configuration consists
of a PSK identity and key. The identity is some string that isn't considered to be
secret; it isn't encrypted during the communication, so don't put sensitive information
in the identity string. The key is a hexadecimal string.

Zabbix requires the key to be at least 32 characters (hexadecimal
digits) long. The maximum in Zabbix is 512 characters, but it might
depend on the specific version of the backend library you're using.

We could just type the key in manually, but a slightly easier method might be using
the openssl command:

$ openssl rand -hex 64

This will generate a 512-bit key, which we'll use in a moment. Navigate to
Configuration | Hosts, click on Create host, and fill in these values:

Host name: Encrypted host
Groups: Have only Linux servers in theGroups block

Encrypting Zabbix Traffic Chapter 18

[615]

Switch to the Encryption tab, and in the Connections from host section, leave only
PSK marked. In the PSK identity field, enter secret and paste the key we generated
earlier in the PSK field:

When done, click on the Add button at the bottom. Take a look at the Agent
encryption column for this host:

The first block has only one field and currently says NONE. For connections to the
agent, only one type was possible, so this column must be showing the currently
selected types for outgoing connections from the server perspective. The second block
has three fields. We could choose a combination of the acceptable incoming
connection types, so this column must be showing what types of incoming
connections from the server perspective are accepted for this host.

Now, click on Items next to Encrypted host, and click on Create item. Fill in these
values:

Name: Beers in the fridge
Type: Zabbix trapper
Key: fridge.beers

Click on the Add button at the bottom. Let's try to send a value now, like we did in
Chapter 10, Advanced Item Monitoring:

$ zabbix_sender -z 127.0.0.1 -s "Encrypted host" -k fridge.beers -o 1

Encrypting Zabbix Traffic Chapter 18

[616]

That should fail:

info from server: "processed: 0; failed: 1; total: 1; seconds spent:
0.000193"

Notice how the processed count is 0 and the failed count is 1. Let's check the Zabbix
server log file:

26868:20181228:165704.100 connection of type "unencrypted" is not
allowed for host "Encrypted host"

Now, that's actually quite a helpful message; we didn't specify any encryption for
zabbix_sender, but we did require an encrypted connection for our host.

Now is the time to get the PSK working for zabbix_sender. Run it with the --help
parameter, and look at the TLS connection options section. Oh yes, there're quite a lot
of those. Luckily, for PSK encryption, we only need three of them: --tls-connect, -
-tls-psk-identity, and --tls-psk-file. Before running the command, create a
file in the current directory called zabbix_encrypted_host_psk.txt, and paste the
hexadecimal key we generated earlier into it.

It's more secure to create an empty file first, change its permissions
to 400 or 600, and paste the key in the file afterward; that way,
another user won't have a chance to snatch the key from the file. If a
specific user is supposed to invoke zabbix_sender, make sure to
set that user as the owner of the file.

Run zabbix_sender again, but with three additional encryption parameters:

$ zabbix_sender -z 127.0.0.1 -s "Encrypted host" -k fridge.beers -o 1
--tls-connect psk --tls-psk-identity secret --tls-psk-file
zabbix_encrypted_host_psk.txt

We set the connection type to psk with the --tls-connect flag and specified the
PSK identity and key file now.

Zabbix doesn't support specifying the PSK key on the command line
for security reasons; it must be passed in from a file.

This time, the value should be sent successfully:

info from server: "processed: 1; failed: 0; total: 1; seconds spent:
0.000070"

Encrypting Zabbix Traffic Chapter 18

[617]

To be sure, verify that this item now has data in the frontend.

Certificate-based encryption
With PSK-based encryption protecting our sensitive Zabbix trapper item, let's move
to certificates. We'll generate certificates for the Zabbix server and agent and require
encrypted connections on the Zabbix agent side for passive items. Certificate
authorities sign certificates, and Zabbix components can trust one or more authorities.
By extension, they trust the certificates signed by those authorities.

You might have a certificate infrastructure in your organization, but for our first test,
we'll generate all the required certificates ourselves. We'll need a new Certificate
Authority (CA) that will sign our certificate. Zabbix doesn't support self-signed
certificates.

It's strongly recommended to use intermediate certificate authorities
to sign client and server certificates; we won't use them in the
following simple example.

Being our own authority
We'll start by creating the certificates in a separate directory. For simplicity's sake,
let's do this on A test host;, choose any directory where our certificate signing will
happen.

The following is not intended to be a good practice. It's actually
doing quite a few bad and insecure things to get the certificates
faster. Don't follow these steps for any production setup.

Let's create a folder with our own certificates that we can use to encrypt our traffic.
$ mkdir zabbix_ca
$ chmod 700 zabbix_ca
$ cd zabbix_ca

Generate the root CA key:

$ openssl genrsa -aes256 -out zabbix_ca.key 4096

Encrypting Zabbix Traffic Chapter 18

[618]

When prompted, enter a password twice to protect the key. Generate and self-sign
the root certificate:

$ openssl req -x509 -new -key zabbix_ca.key -sha256 -days 3560 -out
zabbix_ca.crt

When prompted, enter the password you used for the key before. Fill in the values as
prompted; the easiest might be supplying empty values for most, except the country
code and common name. The common name doesn't have to be anything too
meaningful for our test, so using a simple string such as zabbix_ca will suffice.

Now, on to creating a certificate we'll use for the Zabbix server. First, let's generate a
server key and Certificate Signing Request (CSR):

$ openssl genrsa -out zabbix_server.key 2048
$ openssl req -new -key zabbix_server.key -out zabbix_server.csr

When prompted, enter the country code and common name strings as before. The
common name doesn't have to match the server or agent name or anything else, so
using a simple string such as zabbix_server will suffice. Let's sign this request now:

$ openssl x509 -req -in zabbix_server.csr -CA zabbix_ca.crt -CAkey
zabbix_ca.key -CAcreateserial -out zabbix_server.crt -days 1460 -
sha256

When prompted, enter the CA passphrase. Let's continue with the certificate we'll use
for the Zabbix agent. Generate an agent key and certificate signing request:

$ openssl genrsa -out zabbix_agent.key 2048
$ openssl req -new -key zabbix_agent.key -out zabbix_agent.csr

When prompted, enter the country code and common name strings as before. The
common name doesn't have to match the server or agent name or anything else, so
using a simple string such as zabbix_agent will suffice. Now, let's sign this request:

$ openssl x509 -req -in zabbix_agent.csr -CA zabbix_ca.crt -CAkey
zabbix_ca.key -CAcreateserial -out zabbix_agent.crt -days 1460 -sha256

When prompted, enter the CA passphrase.

We're done with creating our test certificates. Both keys were created unencrypted;
Zabbix doesn't support prompting for the key password at this time.

Encrypting Zabbix Traffic Chapter 18

[619]

Setting up Zabbix with certificates
Now, on to making the passive items on A test host use the certificates we just
generated. We must provide the certificates to the Zabbix agent. In the directory
where the Zabbix agent configuration file is located, create a new directory called
zabbix_agent_certs. Restrict access to it, like this:

chown zabbix zabbix_agent_certs
chmod 500 zabbix_agent_certs

From the directory where we generated the certificates, copy the relevant certificate
files over to the new directory:

cp zabbix_ca.crt /path/to/zabbix_agent_certs/
cp zabbix_agent.crt /path/to/zabbix_agent_certs/
cp zabbix_agent.key /path/to/zabbix_agent_certs/

Edit zabbix_agentd.conf and modify these parameters:

TLSAccept=cert
TLSConnect=unencrypted
TLSCAFile=/path/to/zabbix_agent_certs/zabbix_ca.crt
TLSCertFile=/path/to/zabbix_agent_certs/zabbix_agent.crt
TLSKeyFile=/path/to/zabbix_agent_certs/zabbix_agent.key

This will make the agent only accept connections when they're encrypted and use a
certificate signed by that CA, either directly or through intermediates. We'll still use
an unencrypted connection for active items. A user could supply certificates and
expect all communication to be encrypted now, which would not be the case unless
either of the TLSAccept or TLSConnect parameters required encryption. To prevent
silently ignoring certificate files, Zabbix enforces one of TLSAccept or TLSConnect
when certificates are supplied. Restart the Zabbix agent.

If a certificate becomes compromised, the certificate authority can
revoke it by listing the certificate in a Certificate Revocation List
(CRL). Zabbix supports CRLs with the TLSCRLFile parameter.

Let's take a look at the host configuration list in the Zabbix frontend:

Encrypting Zabbix Traffic Chapter 18

[620]

It looks like connections to A test host don't work anymore. Let's check the agent
log file:

failed to accept an incoming connection: from 127.0.0.1: unencrypted
connections are not allowed

It looks like we broke it. We set up encryption on the agent but didn't get around to
configuring the server side. What if we would like to roll out encryption to all of the agents
and deal with the server later? In that case, it would be best to set
TLSAccept=cert,unencrypted—then, agents would still accept unencrypted
connections from our server. Once the certificates are deployed and configured on the
Zabbix server, we only have to remove unencrypted from that parameter and restart
the Zabbix agents. Let's try this out; change zabbix_agentd.conf again:

TLSAccept=cert,unencrypted

Restart the agent daemon and observe monitoring resuming from the Zabbix server.
Now, let's make the server uses its certificate. We'll place the certificate in a place
where the Zabbix server can use it. In the directory where the Zabbix server
configuration file is located, create a new directory called zabbix_server_certs.
Restrict access to it, like this:

chown zabbix zabbix_server_certs
chmod 500 zabbix_server_certs

If using packages that run Zabbix server with a different username,
such as zabbixs or zabbixsrv, replace the username with the
proper one in the two commands.

From the directory where we generated the certificates, copy the certificates over to
the new directory:

cp zabbix_ca.crt /path/to/zabbix_server_certs/
cp zabbix_server.crt /path/to/zabbix_server_certs/
cp zabbix_server.key /path/to/zabbix_server_certs/
Edit zabbix_server.conf, and modify these parameters:
TLSCAFile=/path/to/zabbix_server_certs/zabbix_ca.crt
TLSCertFile=/path/to/zabbix_server_certs/zabbix_server.crt
TLSKeyFile=/path/to/zabbix_server_certs/zabbix_server.key

Encrypting Zabbix Traffic Chapter 18

[621]

Now, restart the Zabbix server. Although we have specified the certificates on both
agents and the server, passive items still work in unencrypted mode. Let's proceed
with making them encrypted. In the Zabbix frontend, navigate to Configuration |
Hosts, click on A test host, and switch to the Encryption tab. In the Connections to
host selection, choose Certificate, and then click on the Update button. After the
server configuration cache has been updated, it'll switch to using certificate-based
encryption for this host.

We're changing the configuration for A test host, not encrypted
host.

Going back to our scenario where we slowly rolled out certificate-based configuration
to our agents and added it to the server later, we can now disable unencrypted
connections on the agent side. Change zabbix_agentd.conf:

TLSAccept=cert

Restart the agent. If we had followed this process from the very beginning,
monitoring would have continued uninterrupted. Let's try to use zabbix_get:

$ zabbix_get -s 127.0.0.1 -k system.cpu.load
zabbix_get [5746]: Check access restrictions in Zabbix agent
configuration

That fails because the agent only accepts encrypted connections now. As we did for
zabbix_sender, we can specify the certificate; but we must use the Zabbix server
certificate now.

Access to the Zabbix server certificate is required for this command:

$ zabbix_get -s 127.0.0.1 -k system.cpu.load --tls-connect cert --tls-
ca-file /path/to/zabbix_server_certs/zabbix_ca.crt --tls-cert-file
/path/to/zabbix_server
 _certs/zabbix_server.crt --tls-key-file
/path/to/zabbix_server_certs/zabbix_server.key
0.030000

Certainly, this results in a more secure environment. It isn't enough to spoof the IP
address to access this agent. It isn't enough to have an account on the Zabbix server to
have access to all agents; access to the server certificate is needed, too. On the other
hand, it makes debugging a bit more complicated, as we can't query the agent that
easily, and sniffing the traffic is much harder, too.

Encrypting Zabbix Traffic Chapter 18

[622]

We used PSK and certificate-based encryption with zabbix_sender, zabbix_get,
and a passive agent, but the same principles apply for active agents. As an exercise,
try to get the active agent items working with encryption, too.

Concerns and further reading
At this time, encryption is a very new feature in Zabbix. While it has been developed
and tested extremely carefully and pedantically, it's likely to receive further
improvements. Make sure to read through the official documentation on encryption
for more details and in case changes are made. Right now, let's touch on basic
concerns and features that're missing.

So far in this chapter, we've covered Zabbix server, agents, zabbix_get, and
zabbix_sender—what about Zabbix proxies? Zabbix proxies fully support encryption.
Configuration on the proxy side is very similar to agent configuration, and
configuration on the frontend side is done in a similar way to agent encryption
configuration too. Keep in mind that all involved components must be compiled with
TLS support—any proxies you have might have to be recompiled. When considering
encryption, think about the areas where it's needed most; maybe you have the Zabbix
server and proxy communicating over the internet while all other connections are in
local networks. In that case, it might make sense to set up encryption only for server-
proxy communication at first. Note that encryption isn't supported when
communicating with the Zabbix Java gateway, but we could easily have the gateway
communicate with a Zabbix proxy on the localhost, which in turn provides
encryption for the channel to the Zabbix server.

We've already figured out how upgrading and transitioning to encryption can
happen seamlessly without interrupting data collection; the ability for all components
to accept various connection types allows us to roll the changes out sequentially.

An important reason why we might want to implement encryption only partially is
performance. Currently, Zabbix doesn't reuse connections, implement a TLS session
cache, or use any other mechanism that would avoid setting up an encrypted
connection from scratch every time. This can be especially devastating if you have
lots of passive agent items. Make sure to understand the potential impact before
reconfiguring it all.

Encryption isn't currently supported for authentication purposes. That is, we can't
omit active agent hostnames and figure out which host it is based on the certificate
alone. Similarly, we can't use encrypted connections for active agent auto-registration.

Encrypting Zabbix Traffic Chapter 18

[623]

For certificate-based encryption, we only specified the certificates and the CA
information. If the CA used is large enough, that wouldn't be very secure; any
certificate signed by that CA would be accepted. Zabbix also allows verifying both the
issuer and subject of the remote certificate. Unless you're using an internal CA that's
used for Zabbix only, it's highly recommended to limit the issuer and subject. This
can be done on the host or proxy properties in the frontend and by using the
TLSServerCertIssuer and TLSServerCertSubject parameters in the agent or
proxy configuration file.

Summary
In this chapter, we explored the built-in Zabbix encryption that's supported between
all components; server, proxy, agent, zabbix_sender, and zabbix_get. While not
supported for the Java gateway, a Zabbix proxy could easily be put in front of the
gateway to provide encryption back to the Zabbix server.

Zabbix supports pre-shared key and TLS certificate-based encryption, and can use
one of three different backend libraries; OpenSSL, GnuTLS, or mbed TLS. In case of
security or other issues with one library, users have an option to switch to another
library.

The upgrade and encryption deployment can be done in steps. All Zabbix
components can accept multiple connection types at the same time. In our example,
the agent would be set up to accept both encrypted and unencrypted connections,
and when done with configuring all agents for encryption, we would switch to
encrypted connections on the server side. Once that would be verified to work as
expected, unencrypted connections could be disabled on the agents.

With the encryption being built in and easy to set up, it's worth remembering that
encrypted connections will need more resources and that Zabbix doesn't support
connection pooling or other methods that could decrease load. It might be worth
securing the most important channels first, leaving endpoints for later. For example,
encrypting the communication between the Zabbix server and proxies would likely
be a priority over connections to individual agents.

In the next chapter, we'll work more closely with Zabbix data. That will include
retrieving monitoring data directly from the database and modifying the database in
an emergency case, such as losing all administrative passwords. We'll also discuss the
XML export and import functionality and the Zabbix API.

Encrypting Zabbix Traffic Chapter 18

[624]

Questions
What types of encryption can we use in Zabbix?1.
Is there anything at the moment that isn't encrypted?2.

Further reading
Read the following articles for more information:

Encryption: https:/ / zabbix. com/ documentation/ 4.0/ manual/ encryption

Using certificates: https:/ /zabbix. com/documentation/ 4. 0/manual/
encryption/ using_ certificates

Using pre-shared keys: https:/ /zabbix. com/documentation/ 4. 0/manual/
encryption/ using_ pre_ shared_ keys

https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_certificates
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys
https://zabbix.com/documentation/4.0/manual/encryption/using_pre_shared_keys

19
Working Closely with Data

Using a web frontend and built-in graphing is nice and easy, but sometimes you
might want to perform some nifty graphing in an external spreadsheet application or
maybe feed data into another system. Sometimes, you might want to make some
configuration change that isn't possible or is too cumbersome to perform using the
web interface. While that's not the first thing most Zabbix users would need, it's
handy to know when the need arises. Hence, in this chapter, the following topics will
be covered:

Getting raw data
Diving into the database
Using XML import/export for configuration
Starting with the Zabbix API

Getting raw data
Raw data is data as it's stored in the Zabbix database, with minor, if any, conversions
performed. Retrieving such data is mostly useful for analysis in other applications.

Extracting from the frontend
In some situations, it might be a simple need to quickly graph some data together
with other data that isn't monitored by Zabbix (yet you plan to add it soon, of course),
in which case, a quick hack job of spreadsheet magic might be the solution. The
easiest way to get data to be used outside of the frontend is actually from the frontend
itself.

Working Closely with Data Chapter 19

[626]

Let's find out how we can easily get historical data for some item:

Go to Monitoring | Latest data and select A test host from the Hosts filter1.
field, and then click on Filter.
Click on Graph next to CPU Load. That gives us the standard Zabbix2.
graph. That wasn't what we wanted, now, was it? But this interface allows
us to access raw data easily using the drop-down menu in the top-right
corner—choose Values in there, as shown in the following screenshot:

If the item has stopped collecting data some time ago and you just want to quickly
look at the latest values, choose the 500 latest values instead. It'll get you the data
with fewer clicks.

One thing worth paying attention to is the time period controls at the top, which are
the same as the ones available for graphs, screens, and everywhere else in Zabbix.
Using the new time filter, we can display data for any arbitrary period. In the
previous time selector, there was a standard of one hour; in the new time selector,
you'll notice that it remembers your last choice. In this case, the time selection of one
hour is probably fine. For some items that're polled less frequently, we'll often want
to use a much longer period:

Working Closely with Data Chapter 19

[627]

While we could copy data out of this table with a browser that supports HTML
copying, then paste it into some receiving software that can parse HTML, that isn't
always feasible. A quick and easy solution is in the upper-right corner—just click on
the As plain text button.

This gives us the very same dataset, just without all of the HTML-ish surroundings,
such as the Zabbix frontend parts and the table. We can easily save this representation
as a file or copy data from it and reuse it in spreadsheet software or any other
application. An additional benefit this data provides is that all entries have the
corresponding Unix timestamps listed as well.

Technically, this page is still an HTML page. Zabbix users have
asked to be provide with a proper plain-text version instead.

Querying the database
Grabbing data from the frontend is quick and simple, but this method is unsuitable
for large volumes of data and is hard to automate—parsing the frontend pages can be
done, but isn't the most efficient way of obtaining data. Another way to get to the
data would be to directly query the database.

Working Closely with Data Chapter 19

[628]

We'll look at the Zabbix API a bit later. It's suggested to use the API unless there are
performance issues.

Let's find out how historical data is stored. Launch the MySQL command-line client
(simply called mysql, usually available in the path variable) and connect to the
zabbix database as the zabbix user:

$ mysql -u zabbix -p zabbix

When prompted, enter the zabbix user's password (which you can remind yourself
of by looking at the contents of zabbix_server.conf) and execute the following
command in the MySQL client:

mysql> show tables;

This will list all of the tables in the zabbix database—exactly 144 in Zabbix 4.0.
That's a lot of tables to figure out, but for our current need (getting some historical
data out), we'll only need a few. First are the most interesting ones—tables that
contain gathered data. All historical data is stored in tables, the names of which start
with history. As you can see, there're many of those with different suffixes—why is
that? Zabbix stores retrieved data in different tables depending on the data type. The
relationship between types in the Zabbix frontend and database is as follows:

history: Numeric (float)
history_log: Log
history_str: Character
history_text: Text
history_uint: Numeric (unsigned)

To grab the data, we first have to find out the data type for that particular item. The
easiest way to do that's to open item properties and observe the Type of information
field. We can try taking a look at the contents of the history table by retrieving all
fields for three records:

mysql> select * from history limit 3;

Working Closely with Data Chapter 19

[629]

The output will show us that each record in this table contains four fields (your
output will have different values):

+--------+------------+--------+-----------+
| itemid | clock | value | ns |
+--------+------------+--------+-----------+
23668	1430700808	0.0000	644043321
23669	1430700809	0.0000	644477514
23668	1430700838	0.0000	651484815
+--------+------------+--------+-----------+

The preceding output values are explained as follows:

The next-to-last field, value, is quite straightforward—it contains the
gathered value
The clock field contains the timestamp in Unix time—the number of
seconds since the so-called Unix epoch, 00:00:00 UTC on January 1, 1970
The ns column contains nanoseconds inside that particular second

An easy way to convert the Unix timestamp into a human-readable
form that doesn't require an internet connection is using the GNU
date command: date -d@<timestamp>. For example, date -
d@1234567890 will return Sat Feb 14 01:31:30 EET 2009.

The first field, itemid, is the most mysterious one. How can we determine which ID
corresponds to which item? Again, the easiest way is to use the frontend. You should
still have the item properties page open in your browser, so take a look at the address
bar. Along with other variables, you'll see part of the string that reads like
itemid=23668. Great, so we already have the itemid value on hand. Let's try to
grab some values for this item from the database:

mysql> select * from history where itemid=23668 limit 3;

Use the itemid value that you obtained from the page URL:

+--------+------------+- -------+-----------+
| itemid | clock | value | ns |
+--------+------------+--------+-----------+
23668	1430700808	0.0000	644043321
23668	1430700838	0.0000	651484815
23668	1430700868	0.0000	657907318
+--------+------------+--------+-----------+

The resulting set contains only values from that item, as evidenced by the itemid
field in the output.

Working Closely with Data Chapter 19

[630]

We'll usually want to retrieve values from a specific period. Guessing Unix
timestamps isn't entertaining, so we can again use the date command to figure out
the opposite—a Unix timestamp from a date in human-readable form:

$ date -d "2016-01-13 13:13:13" "+%s"
1452683593

The -d flag tells the date command to show the specified time instead of the current
time, and the %s format sequence instructs it to output in Unix timestamp format.
This fancy little command also accepts more free-form input, such as last Sunday
or next Monday.

As an exercise, figure out two recent timestamps half an hour apart, then retrieve
values for this item from the database. Hint—the SQL query will look similar to this:

mysql> select * from history where itemid=23668 and clock >=
1250158393 and clock < 1250159593;

You should get back some values. To verify the period, convert the returned clock
values back into a human-readable format. The obtained information can be now
passed to any external applications for analyzing, graphing, or comparing.

With history* tables containing the raw data, we can get a lot of information out of
them. But sometimes, we might want to get a bigger picture only, and that's when
table trends can help. Let's find out what exactly this table holds. In the MySQL client,
execute this:

mysql> select * from trends limit 2;

We're now selecting two records from the trends table:

+--------+------------+-----+-----------+-----------+-----------+
| itemid | clock | num | value_min | value_avg | value_max |
+--------+------------+-----+-----------+-----------+-----------+
| 23668 | 1422871200 | 63 | 0.0000 | 1.0192 | 1.4300 |
| 23668 | 1422874800 | 120 | 1.0000 | 1.0660 | 1.6300 |
+--------+------------+-----+-----------+-----------+-----------+

Just like the history tables have history and history_uint,
there are trends and trends_uint tables for Numeric (float) and
Numeric (unsigned) types of information. There're no
corresponding _log, _str, or _text tables as trend information can
be calculated for numeric data only.

Working Closely with Data Chapter 19

[631]

Here, we find two familiar friends, itemid and clock, whose purpose and usage we
just discussed. The last three values are quite self-explanatory—value_min,
value_avg, and value_max contain the minimal, average, and maximal values of the
data. But for what period? The trends table contains information on hourly periods.
So, if we would like to plot the minimal, average, or maximal values per hour for one
day in some external application, instead of recalculating this information, we can
grab data for this precalculated data directly from the database.

But there's one field we've missed—num. This field stores the number of values there
were in the hour that is covered in this record. It's useful if you have hundreds of
records each hour in a day that're all more or less in line but data is missing for one
hour, except a single extremely high or low value. Instead of giving the same weight
to the values for every hour when calculating daily, weekly, monthly, or yearly data,
we can more correctly calculate the final value.

If you want to access data from the database to reuse in external applications, beware
of the retention periods—data is removed from the history* and trends* tables
after the number of days specified in the History storage period and Trend
storage period fields for the specific items.

Using data in a remote site
We covered data retrieval on the Zabbix server. But what if we have a remote site, a
Zabbix proxy, a powerful proxy machine, and a slow link? In situations like this, we might
be tempted to extract proxy data to reuse it. However, the proxy stores data in a
different way than the Zabbix server.

Just like in the previous chapter, run the following command:

$ sqlite3 /tmp/zabbix_proxy.db

This opens the specified database. We can look at which tables are present by using
the .tables command:

sqlite> .tables

Notice how there're still all of the history* tables, although we already know that
the proxy doesn't use them, opting for proxy_history instead. The database schema
is the same on the server and proxy, even though the proxy doesn't use most of those
tables at all. Let's look at the fields of the proxy_history table.

Working Closely with Data Chapter 19

[632]

To check the table definition in SQLite, you can use the .schema
proxy_history command.

The following table illustrates the item fields and their usage:

Field Usage

id
The record ID, used to determine which records have been synchronized
back to the server

itemid The item ID as it appears on the Zabbix server
clock The Unix time of the record, using proxy host time

timestamp
Relevant for time, parsed through the log file time format field, or for
Windows event log monitoring—the timestamp as it appears on the
monitored machine

source Relevant for Windows event log monitoring only—event log source
severity Relevant for Windows event log monitoring only—event log severity
value The actual value of the monitored item
logeventid Relevant for Windows event log monitoring only—event ID
ns Nanoseconds for this entry
state Whether this item is working normally or it's in the unsupported state
lastlogsize The size of the log file that's been parsed already
mtime The modification time of rotated log files that have been parsed already

meta
If set to 1, it indicates that this entry contains no actual log data, only
lastlogsize and mtime

The proxy doesn't have much information on item configuration;
you'll need to grab that from the Zabbix server if you're doing
remote processing. For example, the proxy has item keys and
intervals, but item names aren't available in the proxy database.

As can be seen, several fields will be used for log file monitoring and some others
only for Windows event log monitoring.

Diving further into the database
With some knowledge of how to extract historical and trend data from tables, we
might as well continue looking at other interesting, and relatively simple, things that
we can find and perhaps even change directly in the database.

Working Closely with Data Chapter 19

[633]

Managing users
We saw how managing users was an easy task using the frontend. But what if you have
forgotten the password? What if some remote installation of Zabbix is administered by local
staff, and the only Zabbix super admin has left for a month-long trip without a phone and
nobody else knows the password? If you have access to the database, you can try to solve
such problems. Let's find out what exactly Zabbix stores about users and how. In the
MySQL console, execute this:

mysql> select * from users limit 2;

This way, we are listing all data for two users at the most:

The example output is trimmed on the right-hand side and fewer
than half of the original columns are shown here. You can also
replace the trailing semicolon in the SQL query with \G to obtain
vertical output, like this:
select * from users limit 2 \G

That's a lot of fields. We'd better find out what each of them means:

Field Usage
userid Quite simple, it's a unique numeric ID.
alias This is more commonly known as a username or login name.
name This is the user's name, usually their given name.
surname This surely can't be anything else but the surname.

passwd
The password hash is stored here. Zabbix stores MD5 hashes for
authentication.

url The after-login URL is stored in this field.

autologout
This shows whether auto-logout for this user is enabled. Non-zero
values indicate timeout.

lang This is the language for the frontend.

Working Closely with Data Chapter 19

[634]

Field Usage

refresh
This is the page refresh in seconds. If zero, page refresh is
disabled.

type
The number is linked to the type of user—user, admin, super
admin, or guest.

theme This is the frontend theme to use.

attempt_failed
This is how many consecutive failed login attempts there have
been.

attempt_ip This is the IP of the last failed login attempt.
attempt_clock This is the time of the last failed login attempt.
rows_per_page This is how many rows per page are displayed in long lists.

As we can see, many of the fields are options that're accessible from the user profile or
properties page, although some of these aren't directly available. We mentioned
password resetting before; let's look at a simple method to do that. If passwords are
stored as MD5 hashes, we must obtain those first. A common method is the
command-line utility, md5sum. Passing some string to it will output the desired result,
so we can try executing this:

$ echo "somepassword" | md5sum
531cee37d369e8db7b054040e7a943d3 -

The MD5 hash is printed, along with a minus sign, which denotes standard input. If
we had run md5sum on a file, the filename would have been printed there instead.

The command-line utility provides a nice way to check various
sequences. For example, try to figure out what the default guest
password hash, d41d8cd98f00b204e9800998ecf8427e,
represents.

Now, the problem is that if we try to use this string as a password hash, it'll fail. In
this case, the hash is calculated on the passed string, including the newline at the end.
For the correct version, we have to pass the -n flag to echo, which suppresses the
trailing newline:

$ echo -n "somepassword" | md5sum
9c42a1346e333a770904b2a2b37fa7d3 -

Notice the huge difference in the resulting string. Great, now we only have to reset
the password.

Working Closely with Data Chapter 19

[635]

The following statement changes the Zabbix administrative user password. Don't
perform this on a production system, except in an emergency situation:

mysql> update users set passwd='9c42a1346e333a770904b2a2b37fa7d3'
where userid=1;
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

From here on, you should be able to log in to the Zabbix frontend as
Admin/somepassword—try it out. Feel free to change the password back after that.

There's actually an easier method available. MySQL has a built-in function for
calculating MD5 hashes, so all of this trickery could be replaced with a simpler
approach:

mysql> update users set passwd=MD5('somepassword') where
alias='Admin';

At this time, Zabbix doesn't use password salting. While making it
simpler to reset the password, it also makes it easier to find the
actual password in MD5 tables.

We also mentioned making some user a Zabbix super admin. This change is fairly
simple—all we have to do is change a single number:

mysql> update users set type=3 where alias='wannabe_admin';

And that's it—the wannabe_admin user will become a Zabbix super admin.

Changing existing data
While once the monitoring data has been gathered, you usually won't have a need to
change it, there might be some rare cases when that might be required. Back in
Chapter 3, Monitoring with Zabbix Agents and Basic Protocols, we created items for
network traffic monitoring, and we gathered data in bytes, but in network
management, usually bits per second are used instead. While it would often be
possible for you to simply reconfigure the items and clear the old data, what if you
need to preserve already gathered values? Directly editing the database might be the only
solution.

Working Closely with Data Chapter 19

[636]

Before doing that, you would have to modify the item in question. If data is coming in
bytes but we want bits, what do we do? Right, we configure the multiplier for that item
and set the multiplier to 8. Additionally, change units to b (bits) while performing
the change.

When performing the change to the item, take a quick look at a clock.

While this will deal with all future incoming values, it will leave us with inconsistent
data before that moment. As we do not want to delete it, we must find some way to
fix it. Our problem is twofold:

We have incorrect data in the database.
We have both incorrect and correct data in the database (old and new
values).

This means that we can't simply convert all values, as that would break the new,
correct ones.

If you've set any triggers based on traffic amount, don't forget to
change those as well.

Finding out when
Figuring out the moment when correct information started flowing in can be most
easily done by looking at the frontend. Navigate to Monitoring | Latest data, click on
History for that item, and then select Values or 500 latest values. Look around the
time you changed the item multiplier plus a minute or so, and check for a notable
change in the scale. While it might be hard to pinpoint the exact interval between two
checks (network traffic can easily fluctuate over eight times in value between two
checks), there should be a pretty constant increase in values. Look at the times to the
left of the values and choose a moment between the first good value and the last bad
value.

Working Closely with Data Chapter 19

[637]

The when in computer language
But as we now know, all time-related information in the Zabbix database is stored as
Unix timestamps. For that, the GNU date command can help again. Execute the
following on the Zabbix server, by replacing the exact time with what you deduced
from the latest values:

$ date -d "2016-03-13 13:13:13" "+%s"

That'll output the Unix timestamp of that moment, which in the case of this example
would be 1457867593.

Be aware of the difference in time zones, though—values displayed in the frontend
will usually have the local time zone applied. Check that the value for the timestamp
you obtained matches the value in the database for that same timestamp. There's
actually an easier and safer way to obtain the value timestamp. While still looking at
the value history for the item in the frontend, click the As plain text button in the
upper-right corner:

Notice how the third column is exactly what we wanted—the Unix timestamp. In this
case, we don't have to worry about the time zone, either.

Finding out what
Now that we know the exact time that limits the change, we must also know which
item we must modify for it. Wait, but we do know that already, don't we? Almost.
What we need is the item ID to make changes to the database. The easiest way to find
that out is by opening the item properties in the configuration section and copying
the ID from the URL, like we did before.

Working Closely with Data Chapter 19

[638]

Performing the change
By now, we should have two cryptic-looking values:

The time in Unix timestamp format
The item ID

What do we have to do now? Multiply by eight all of the values for the item ID before
that timestamp. With the data we have, it's actually quite simple—in the MySQL
console, we would have to execute this:

mysql> update history_uint set value=value*8 where itemid=<our ID>
and clock<'<our timestamp>';

To be safe, you might want to perform the modifications in a
transaction and check the results while the transaction is still open.
If the results are satisfactory, commit the changes. If not, roll them
back.

We are updating history_uint, because even though the data for the network
traffic is a decimal number because of the Store as item option, we dropped the
decimal part by storing the data as an integer. See Chapter 3, Monitoring with Zabbix
Agents and Basic Protocols, to remind yourself why we did so. This single query should
be enough to convert all of the old data into bits.

If you have lots of historical data in total and for this item, such a
query can take quite some time to complete. When running such
commands on a remote system, use a tool such as screen.
We're only modifying the history table here. If the item has been
collecting data for a longer period of time, we would also have to
modify the corresponding trends or trends_uint tables.

Using XML import/export for
configuration
The web frontend is an acceptable tool for making configuration changes to a Zabbix
server, unless you have to make lots of modifications, which aren't made easier in the
frontend with methods such as mass update. One simple method is exporting
configuration to an XML file, making some changes, and importing it back in.

Working Closely with Data Chapter 19

[639]

XML import/export is very often used to share templates—you can find a large
number of those on https://zabbix.org and http://share.zabbix.com.

We'll look at the Zabbix API a bit later. It's suggested to use the API
to modify Zabbix configuration, as it also offers much more
complete functionality than XML import/export—although the XML
approach might be simpler in some cases.

Let's look at how a simple roundtrip would work.

Exporting the initial configuration
In the frontend, open Configuration | Templates and select Custom Templates in
the Group drop-down menu. Mark the checkbox next to C_Template_Email and
click on the Export button at the bottom. Your browser will offer to save a file called
zbx_export_templates.xml; save it somewhere on your local machine.

Modifying the configuration
Now, with the file in hand, we can modify the configuration. This method gives us
free rein over host and host-attached information, so modifications are limited only
by Zabbix's functionality and our imagination. At this time, the following entities are
available for XML export and import:

Hosts
Templates
Host groups
Network maps
Map images (icons and backgrounds)
Screens
Value maps

Out of these, host groups and images are only exported indirectly. For hosts, all of
their properties and sub-entities are exported and imported, except the web scenarios
(this functionality might be available in Zabbix 3.2). Host groups are exported
together with hosts or templates and, when exporting a map, the images used in it are
exported in the same file. It's possible to import both a single type of entity and any
number and combination of them in the same XML file.

https://zabbix.org
http://share.zabbix.com

Working Closely with Data Chapter 19

[640]

The XML export format
Open the saved XML export in your favorite editor. In this file, you'll see all of the
data that this host has, and the file will start like this:

<?xml version="1.0" encoding="UTF-8"?>
<zabbix_export>
 <version>4.0</version>
 <date>2018-12-30T12:22:25Z</date>
 <groups>
 <group>
 <name>Custom templates</name>
 </group>
 </groups>
 <templates>
 <template>
 <template>C_Template_Email</template>

In this case, each template is contained in a <template> block, which in turn has
blocks for all of the things attached to that template. The format is simple, and most
things should be obvious simply from taking a glance at the XML and maybe
sometimes by comparing values in XML with values in the frontend configuration
section. An exception might be the values available for each field. Those can often be
gleaned from the API documentation, which we'll cover in a moment.

While we look at the exported template, we can see the same information that an
exported host would have, including template linkage—that's what the second nested
<templates> block denotes.

Scripting around the export
While manually making a single change to an exported file can be handy, it's the large
changes that expose the benefit of this approach best. As the most simple approach to
creating an XML file, we can use shell scripts.

For example, if we had to add a lot of similar items, we could script an XML file with
them all and import them in one go. The easiest approach would be to create some
items in the frontend, export that host, and write a quick script that loops over these
item definitions and creates the remaining items. The same can be done for triggers
and custom graphs as well. Again, it's best to create all data for a single element,
export it, and examine it to find out how it should be put back together.

Working Closely with Data Chapter 19

[641]

Unless individual entities are to be modifiable, consider using a
custom Low-Level Discovery (LLD) rule, as covered in Chapter 11,
Automating Configuration.

Other larger-scale problems that can be solved by an XML round-trip are the
following:

Adding lots of devices: If you're given a large list of switches with IP
addresses, adding them all through the interface is a monstrous task. With
XML, it becomes a very easy and quick one instead. To do that, simply
create a single host, linked against the previously created template or
several ones, and then export it to get some sort of a template. In this
export, you'll basically have to change a couple of values only—notably,
the connection details in the <interfaces> element. Then, just proceed to
create a loop that creates new <host> entries with the corresponding IP
and hostname data. Note that it's enough to only specify host information
in this file—all items, triggers, graphs, and other entities will be attached
based on the information that's contained in the template or templates
specified in the <templates> block.
Creating many graphs with lots of arbitrary items: Sometimes, it might be
required to create not only one graph per port, but also graphs grouping
items from several devices and other arbitrary collections. Export an
example host and script graph items in a loop. These are located in the
<graph_elements> block.

A graph with a huge number of items can soon become unreadable.
Don't overdo items on a single graph.

Importing modified configuration
For our first XML export/import, we won't do large-scale scripting. Instead, let's make
a simple modification. In the saved zbx_export_templates.xml file, find the item
block with the net.tcp.service[smtp] key. An item block starts with an <item>
tag and ends with an </item> tag. Copy this item block and insert it below the
existing block, and then change the item name to POP3 server status and the key
to net.tcp.service[pop3].

Working Closely with Data Chapter 19

[642]

Save this as a new file. Now, on to the actual import process—perform the following
steps:

Back in the frontend, in the Configuration | Templates section, click on1.
Import in the upper right-hand corner. In this form, click on Choose file
next to the Import file field and choose the saved file.
Feel free to explore the Rules section, although the defaults will do for us.2.
The only types of entities we're interested in are missing items, and the
respective checkbox in the Create new column next to Items is already
marked.
Click on Import to proceed. This should complete successfully, so click on3.
Details in the upper-left corner. While all other records will be about
updating, there should be two entries about an item being created. These
will be the only ones that make any changes, as all of the updates do
nothing—the data in the XML file is the same as in the database. As we're
adding this item for a template, it also gets added to all other hosts and
templates that're linked against this one. In previous versions, we would
get detailed information about this, but in Zabbix 4.0, we only get a
confirmation that the import was successful:

Let's verify that this item was added with the key we used in the XML file. Navigate
to Configuration | Hosts, make sure Linux servers is selected in the Group drop-
down menu, and click on the Items link next to the Another host entry. Our new item
should be visible in the item list, showing that it's been correctly added to the linked
host. Remember that we only added it to the upstream template in our import
process:

Working Closely with Data Chapter 19

[643]

Generating hosts
One of the possible problems that we need to solve when importing hosts in Zabbix
from XML is creating a larger number of hosts. We could use a hackish script like this
to generate a Zabbix host XML out of a CSV file:

#!/bin/bash

split="%"
agent_port=10050
useip=1

[[-s "$1"]] || {
 echo "Usage: pass an input CSV file as the first parameter
File should contain data in the following format:
hostname,dns,ip,hostgroup,linked_template,agent_port
agent_port is optional
For groups and templates multiple entries are separated with %
First line is ignored (assuming a header)"
 exit 1
}

echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>
<zabbix_export>
 <version>4.0</version>
 <date>$(date "+%Y-%m-%dT%H:%M:%SZ")</date>
 <hosts>"
while read line; do
 hostname=$(echo $line | cut -d, -f1)
 dns=$(echo $line | cut -d, -f2)
 ip=$(echo $line | cut -d, -f3)
 group=$(echo $line | cut -d, -f4)
 template=$(echo $line | cut -d, -f5)
 port=$(echo $line | cut -d, -f6)

 hostname1=${hostname%\"}
 dns1=${dns%\"}
 ip1=${ip%\"}
 group1=${group%\"}
 template1=${template%\"}
 port1=${port%\"}

 hostgroups=$(echo $group1 | tr "$split" "\n")
 templates=$(echo $template1 | tr "$split" "\n")

 echo " <host>
 <host>$(echo ${hostname1#\"})</host>

Working Closely with Data Chapter 19

[644]

 <name>$(echo ${hostname1#\"})</name>
 <status>0</status>
 <description/>
 <proxy/>
 <ipmi_authtype>-1</ipmi_authtype>
 <ipmi_privilege>2</ipmi_privilege>
 <ipmi_username/>
 <ipmi_password/>
 <tls_connect>1</tls_connect>
 <tls_accept>1</tls_accept>
 <tls_issuer/>
 <tls_subject/>
 <tls_psk_identity/>
 <tls_psk/>
 <interfaces>
 <interface>
 <default>1</default>
 <type>1</type>
 <useip>$useip</useip>
 <ip>${ip1#\"}</ip>
 <dns>${dns1#\"}</dns>
 <port>${port1:-$agent_port}</port>
 <bulk>1</bulk>
 <interface_ref>if1</interface_ref>
 </interface>
 </interfaces>"
 echo " <groups>"
 while read hostgroup; do
 echo " <group>
 <name>${hostgroup#\"}</name>
 </group>"
 done < <(echo "$hostgroups")
 echo " </groups>
 <templates>"
 while read hosttemplate; do
 echo " <template>
 <name>${hosttemplate#\"}</name>
 </template>"
 done < <(echo "$templates")
 echo " </templates>"
 echo " </host>"
done < <(tail -n +2 $1)

echo " </hosts>
</zabbix_export>"

Working Closely with Data Chapter 19

[645]

Save this script as csv_to_zabbix_xml.sh and make it executable:

$ chmod 755 csv_to_zabbix_xml.sh

Some people say that the shell isn't an appropriate tool to handle
XML files. The shell is a great tool for anything and perfectly fine for
our simple, quick host generation.

This script takes a CSV file as the input, ignores the first line, and uses all other lines
as host entries. We must specify the hostname, DNS, IP, and agent port. Additionally,
for each host, we can specify multiple host groups and templates the host should be
linked to by delimiting multiple entries with a percent sign. The useip parameter
defaults to 1; setting it to 0 will use DNS instead. Notice how we're generating all
kinds of fields we aren't interested in at this time, all of the IPMI and TLS fields,
setting the bulk parameter for the agent interface. Unfortunately, Zabbix XML
exports are unnecessarily verbose, and it expects the same verbosity back. For a larger
number of hosts, this will significantly increase the size of the XML file.

Quoting in the CSV file allows us to use commas in host group
names.

To use this file, let's create a simple CSV file called test.csv:

"Host name","Host DNS","Host IP","Host groups","Templates","port"
"test-xml-import","dns.name","1.2.3.4","Linux servers%Zabbix
servers","Template Module ICMP Ping"

We used a header line here, as the first line's always excluded—a single line in a file
wouldn't do anything at all. Now, let's run our script:

$./csv_to_zabbix_xml.sh test.csv > zabbix_generated_hosts.xml

In the frontend, navigate to Configuration | Hosts, click on Import in the upper-right
corner, choose the zabbix_generated_hosts.xml file in the Import file field, and
click on Import. The import should be successful—verify that back in Configuration
| Hosts. As this host isn't very useful right now, feel free to delete it.

Working Closely with Data Chapter 19

[646]

Importing images
When configuring network maps, we had a chance to upload our own icons. It is
highly inefficient to upload a lot of images one by one. One could script the process
using a utility such as curl, but that requires a new connection to the frontend for
every image and could break if the Zabbix interface is changed in future versions.
Images are supported in XML import, though, and we can also have a file with just
the images. We could write our own script for this, but there is already a script
shipped with Zabbix—look for the png_to_xml.sh script in the misc/images
directory. This script accepts two parameters—the directory where the images are
found and the output filename. For example, if we had images in a directory called
map_icons, we would run the script as follows:

./png_to_xml.sh map_icons zabbix_images.xml

To import the images, we would go to any page that has the Import button, such as
Configuration | Maps, click the Import button, and mark the checkboxes next to the
Images row. Only super admins can import images. Images are exported and
imported in base64 format, so there's no binary data in the XML file. An example of
an exported image is this:

<encodedImage>iVBORw0KGgoAAAANSUhEUgAAADAAAAAwCAYAAABXAvmHAAAABmJLR0QA
/wD/AP+gvaeTAAAM70lEQVR42u2ZeXBV133HP+cub9NDSGIR
...
</encodedImage>

This output is significantly cut—the real base64 value would take a few pages here.

Starting with the Zabbix API
The approaches we looked at earlier—direct database edits and XML
import/export—were either risky or limited. Editing the database is risky because
there's very little validation, and upgrading to a newer version of Zabbix can change
the database schema, making our tools and approaches invalid. XML import/export
was nice, but very limited—it didn't allow the modification of users, network
discovery rules, actions, and lots of things in the Zabbix configuration.

Working Closely with Data Chapter 19

[647]

This is where the Zabbix API could help. It's a JSON-based interface to Zabbix
configuration and data. It offers way more functionality than XML import/export
does, although there're still bits and pieces of configuration that can't be controlled
using it.

The Zabbix API currently is frontend based—it's implemented in PHP. To use it, we
connect to the web server running the frontend and issue our requests. There're a lot
of ways to do this, but here, we'll try to do things in a manner that's language
independent—we'll use curl and issue the requests from the shell.

Simple operations
The Zabbix API is request-response-based. We send a request and get a
response—either the data we requested or a success/failure indicator. Let's look at
some simple, practical examples of what we can do with the API. We'll use simple
curl requests to the API. Let's try this on the Zabbix server:

$ curl -s -X POST -H 'Content-Type: application/json-rpc' -d ''
http://127.0.0.1/zabbix/api_jsonrpc.php

In this request, note the following:

We use the POST method and send the JSON string with the -d
parameter—empty for now.
We also specify the -s parameter, which enables silent or quiet mode and
suppresses progress and error messages.
The URL is the Zabbix API endpoint, api_jsonrpc.php. This will be the
same for all API requests. Additionally, we specify the content type to be
application/json-rpc. This is required. If omitted, the Zabbix API will
return an empty response, which doesn't help much. The request we issued
should return a response like this:

{"jsonrpc":"2.0","error":{"code":-32600,"message":"Invalid
Request.","data":"The received JSON isn't a valid JSON-RPC
Request."},"id":null}

That didn't work, but at least there's an error message. Let's proceed with more valid
requests now.

Working Closely with Data Chapter 19

[648]

Obtaining the API version
One of the simplest ways to obtain the API version in Zabbix is probably by Zabbix
itself making use of the HTTP agent item and some JSON preprocessing. For this,
we'll create a new item. It doesn't really matter on what host—let's do it on A test
host. Go to Configuration | Hosts and create a new item on our A test host host
with the following parameters:

Name: Check Zabbix API Version
Type: HTTP agent
Key: check_zabbix_api_version
URL: http://<zabbix-server-ip>/zabbix/api_jsonrpc.php
Request type: POST
Request body type: JSON data
Request body: This field is filled with the following value:

 {
 "jsonrpc": "2.0",
 "method": "apiinfo.version",
 "params": [],
 "id": 1
 }

Retrieve mode: Body
Type of information: Character

Next, we have to add some information in the Preprocessing tab as the result would
be a JSON string looking like this:
{"jsonrpc":"2.0","result":"4.0.2","id":1}. This should look like what's
shown in the following screenshot:

Working Closely with Data Chapter 19

[649]

Working Closely with Data Chapter 19

[650]

 So, in the Preprocessing tab, select JSON Path and, for the Parameters field,
write $.result:

The end result should look similar and in the latest data, we can then read out the
version from our API:

In the Request body field, we added some JSON information; the reason we knew
what to add here was because this is well explained in the online Zabbix
documentation—I added the URL as a reference at the end of this chapter.

It's also good to know that, starting from Zabbix 2.0.4, the API
version matches the Zabbix version.

Logging in
Before we can perform any useful operations through the API, we must log in. Our
JSON string would be as follows:

$
json='{"jsonrpc":"2.0","method":"user.login","id":2,"params":{"user":"
Admin","password":"zabbix"}}'

Now, run the curl command to get the API version. In all further API requests, we'll
only change the json variable and then reuse the same curl command:

$ curl -s -w '\n' -X POST -H 'Content-Type: application/json-rpc' -d
"$json" http://localhost/zabbix/api_jsonrpc.php

Working Closely with Data Chapter 19

[651]

In this case, assuming a correct username and password, it should return the
following:

{"jsonrpc":"2.0","result":"df83119ab78bbeb2065049412309f9b4","id":2}

We use the request ID 2. That wasn't really required—we could've
used 3, 5, or 1013. We could've used 1; all requests have a very
obvious response, so we don't care about the ID at all. The response
still did have the same ID as our request, 2.

This response also has an alphanumeric string in the result property, which is very
important for all further work with the API. This is an authentication token or session
ID that we'll have to submit with all subsequent requests. For our tests, just copy that
string and use it in the json variable later.

Enabling and disabling hosts
Hosts may be enabled or disabled by setting a single value. Let's disable our IPMI
host and re-enable it a moment later. To do this, we'll need the host ID. Usually, when
using the API, we'd query the API itself for the ID. In this case, let's keep things
simple and look up the ID in the host properties—as with the item before, open the
host properties and copy the value for the hostid parameter from the URL. Also,
don't forget to replace your correct authorization ID. With that number available, let's
set our JSON variable:

$
json='{"jsonrpc":"2.0","method":"host.update","params":{"hostid":"1013
2","status":1},"auth":"df83119ab78bbeb2065049412309f9b4","id":1}'

We got back to using an ID of 1. It really doesn't matter when using
curl like this.

Run the curl command again; the output should look like the following:

{"jsonrpc":"2.0","result":{"hostids":["10132"]},"id":1}

Working Closely with Data Chapter 19

[652]

This should indicate success, and the host should be disabled—check the host state in
the frontend. Enabling it again is easy, too:

$
json='{"jsonrpc":"2.0","method":"host.update","params":{"hostid":"1013
2","status":0},"auth":"df83119ab78bbeb2065049412309f9b4","id":1}'

Run the curl command again to re-enable this host.

Creating a host
Now, let's move on to creating a host using the API. Let's set our JSON variable:

$ json='{"jsonrpc":"2.0","method":"host.create","params":{"host":"API
created
host","interfaces":[{"type":1,"main":1,"useip":1,"ip":"127.0.0.2","dns
":"","port":"10050"}],"groups":[{"groupid":"2"}],"templates":[{"templa
teid":"10186"}]},"auth": "df83119ab78bbeb2065049412309f9b4","id":1}'

In the default Zabbix database, the group ID of 2 should correspond to the Linux
servers group, and the template ID of 10104 should correspond to the Template
ICMP Ping template. If the IDs are different on your system, change them in this
JSON string. Run the curl command now, and the host should be created
successfully:

{"jsonrpc":"2.0","result":{"hostids":["10277"]},"id":1}

As part of the response, we also got the ID of the new host. Feel free to verify in the
frontend that this host has been created.

Deleting a host
And the returned ID will be useful now. Let's delete the host we just created:

$
json='{"jsonrpc":"2.0","method":"host.delete","params":["10277"],"auth
":"df83119ab78bbeb2065049412309f9b4","id":1}'

Make sure the host ID in this request is the same as what was
returned in the previous request; otherwise, a different host could be
deleted.

Working Closely with Data Chapter 19

[653]

Run the curl command again. The host should be successfully deleted:

{"jsonrpc":"2.0","result":{"hostids":["10277"]},"id":1}

Creating a value map
Value maps couldn't be controlled via the API before Zabbix 3.0. They were needed
for many templates, though, and people resorted to SQL scripts or even manually
created value maps with hundreds of entries. That's dedication. Since Zabbix 3.0,
things are much easier, and now, value maps are supported both in the API and XML
import/export. Let's create a small value map:

$
json='{"jsonrpc":"2.0","method":"valuemap.create","params":{"name":"Ma
pping
things","mappings":[{"value":"this","newvalue":"that"},{"value":"foo",
"newvalue":"bar"}]},"auth":"df83119ab78bbeb2065049412309f9b4","id":1}'

Run the curl command:

{"jsonrpc":"2.0","result":{"valuemapids":["16"]},"id":1}

If you check the new value map in the frontend, it's a bit easier to read than in that
JSON:

We covered value maps in Chapter 3, Monitoring with Zabbix Agents
and Basic Protocols.

Obtaining history and trends
The methods we've discussed so far mostly dealt with configuration. We may also
query some historical data. For example, to grab item history data, we would need to
know several things:

Item ID
The Type of information setting for that item

Working Closely with Data Chapter 19

[654]

Both of these can be found out by opening the item properties in the configuration
section—the ID will be in the URL, and the type of information will be in that drop-
down menu. Why do we have to specify the type of information? Unfortunately, the
Zabbix API doesn't look it up for us but tries to find the values only in a specific table.
By default, the history_uint (integer values) table is queried. To get the values for
the CPU load item on A test host, the JSON string would look like this:

$
json='{"jsonrpc":"2.0","method":"history.get","params":{"history":0,"i
temids":"23668","limit":3},"auth":"df83119ab78bbeb2065049412309f9b4","
id":1}'

Remember to replace both auth and itemid for this query.

There're a couple extra parameters worth discussing here:

The history parameter tells the API which table to query. With 0, the
history table is queried. With 1, the history_str table is queried. With
2, the history_log table is queried. With 3, history_int is queried
(which was the default). With 4, the history_text table is queried. We
must manually match this value to the setting in the item properties.
The limit parameter limits the number of entries returned. This is quite
useful here, as an item could have lots and lots of values. By the way,
limit is supported for all other methods as well—we can limit the number
of entries when retrieving hosts, items, and all other entities.

Now, run the curl command:

{"jsonrpc":"2.0","result":[{"itemid":"23668","clock":"1430988898","val
ue":"0.0000","ns":"215287328"},{"itemid":"23668","clock":"1430988928",
"value":"0.0000","ns":"221534597"},{"itemid":"23668","clock":"14309889
58","value":"0.0000","ns":"229668635"}],"id":1}

We got our three values, but the output is a bit hard to read. There're many ways to
format JSON strings, but in the shell, the easiest would be using Perl or Python
commands. Rerun the curl command and append to it | json_pp:

$ curl ... | json_pp

Working Closely with Data Chapter 19

[655]

You might also have json_xs, which will have better performance,
but performance should be no concern at all for us at this time.

This will invoke the Perl JSON tool, where pp stands for pure Perl, and the output
will be a bit more readable:

{
 "jsonrpc" : "2.0",
 "id" : 1,
 "result" : [
 {
 "clock" : "1430988898",
 "itemid" : "23668",
 "value" : "0.0000",
 "ns" : "215287328"
 },
 {
 "ns" : "221534597",
 "value" : "0.0000",
 "itemid" : "23668",
 "clock" : "1430988928"
 },
 {
 "value" : "0.0000",
 "ns" : "229668635",
 "clock" : "1430988958",
 "itemid" : "23668"
 }
]
}

Notice how the output isn't really sorted. Ordering doesn't mean
anything with JSON data, so tools don't normally sort the output.

Alternatively, use python -mjsontool, which will invoke Python's JSON tool
module. That's a bit more typing, though.

Working Closely with Data Chapter 19

[656]

In the output from the history.get method, each value is accompanied with an
item ID, Unix timestamp, and nanosecond information—the same as the history
tables we looked at earlier. That's not very surprising, as the API output comes from
those tables. If we convert these values into human-readable format as discussed
before by running date -d@<UNIX timestamp>, we'll see that they aren't
recent—actually, they're the oldest values. We can get the most recent values by
adding the sortfield and sortorder parameters:

$
json='{"jsonrpc":"2.0","method":"history.get","params":{"history":0,"i
temids":"23668","limit":3,"sortfield":"clock","sortorder":"DESC"},"aut
h":"df83119ab78bbeb2065049412309f9b4","id":1}'

These will sort the output by the clock value in descending order and then grab the
three most recent values—check the returned Unix timestamps to make sure of that. If
there're multiple values with the same clock value, other fields won't be used for
secondary sorting.

We can also retrieve trend data—a new feature in Zabbix 3.0:

$
json='{"jsonrpc":"2.0","method":"trend.get","params":{"itemids":"23668
","limit":3},"auth":"df83119ab78bbeb2065049412309f9b4","id":1}'

The Zabbix API doesn't allow submitting historical data—all item
values have to go through the Zabbix server using the
zabbix_sender utility, which we discussed in Chapter 10,
Advanced Item Monitoring. There're rumors that the API might be
moved to the server side, which might allow merging data-
submitting in the main API.

Issues with the Zabbix API
The Zabbix API is really great, but there're a few issues with it worth knowing about:

Audit: Many Zabbix API operations aren't registered in the Zabbix audit
log, which can be accessed by going to Administration | Audit. That can
make it really complicated to find out who made a particular change and
when.

Working Closely with Data Chapter 19

[657]

Validation: Unfortunately, the API validation leaves a lot to be desired. For
example, using the API, one could change a host to a proxy or vice versa, or
even set the host status value to a completely bogus value, making that
host disappear from the frontend, although no new host with that name
could be created. Be very, very careful with the possibility of sending
incorrect data to the Zabbix API. It might complain about that data, or it
might just silently accept it and make some silly changes.
Error messages: Similarly, even when validating input data, the error
messages aren't always that helpful. Sometimes, they'll tell you exactly
what's wrong, but you may also get incorrect parameters for a long
JSON input string.
Performance: The Zabbix API's performance can be extremely bad for
some operations. For example, modifying items for a template that's linked
to a large number of hosts, or linking many hosts to a template, might be
impossible to perform. While some of these operations could be split up,
for example, linking the template to a few hundred hosts at a time, in some
cases, we would have to fall back to doing direct SQL queries.
Missing functionality: Although the Zabbix API allows us to control most
of the Zabbix configuration, there're still some missing areas. By now, that
mostly concerns things found in the Administration | General section.
Once such functionality is implemented, it'll finally be possible for the
Zabbix frontend to stop performing direct database queries, and the API
will allow writing custom frontends without ever resorting to direct
database access.

Using API libraries
While we looked at a low-level API example, you aren't likely to use shell scripts to
work with the Zabbix API. The shell isn't that well suited for working with JSON data
even with extra tools, so another programming or scripting language might be a
better choice. For many of those languages, we wouldn't have to implement full raw
JSON handling, as there're libraries available. At the time of writing this, a list of
available libraries is maintained at http://zabbix.org/wiki/Docs/api/libraries.
Alternatively, just go to http://zabbix.org and look for the Zabbix API libraries
link.

All of these libraries are community supplied. There're no quality guarantees, and
any bugs should be reported to the library maintainers, not to Zabbix.

http://zabbix.org/wiki/Docs/api/libraries
http://zabbix.org

Working Closely with Data Chapter 19

[658]

For example, a Perl library called Zabbix::Tiny aims to be a very simple abstraction
layer for the Zabbix API, solving the authentication and request ID issues, and other
repetitive tasks when working with the API. It can be easily installed from the
Comprehensive Perl Archive Network (CPAN):

cpan Zabbix::Tiny

To create a new user, we would save the following in a file:

use strict;
use warnings;
use Zabbix::Tiny;
my $zabbix = Zabbix::Tiny->new(
 server => http://localhost/zabbix/api_jsonrpc.php,
 password => 'zabbix',
 user => 'Admin',
);
$zabbix->do(
 'user.create',
 alias => 'new_user',
 passwd => 'secure_password',
 usrgrps => ['13'],
 name => 'New',
 surname => 'User',
 type => 3,
);

This would create a new user. While most parameters are self-explanatory, the type
parameter tells the API whether this is a user, admin, or super admin. A value of 3
denotes the super admin user type. The group ID is hardcoded to 13—that's
something to customize. If the file we saved this in was called zabbix_tiny-
add_user.pl, we would call it like this:

$ perl zabbix_tiny-add_user.pl

While this might seem longer than our raw JSON string, it also deals with logging in,
and it's easier to write than raw JSON. For more information on this particular Zabbix
API library, refer to http://zabbix.org/wiki/Docs/howto/Perl_Zabbix::Tiny_API.

There're a lot of different Zabbix API libraries for various languages—Python alone
has seven different libraries at the time of writing this. It can be a bit of a challenge to
choose the best one.

http://zabbix.org/wiki/Docs/howto/Perl_Zabbix::Tiny_API

Working Closely with Data Chapter 19

[659]

If programming around a library isn't your thing, there's also a Python-based project
to create command-line tools for API operations, called Zabbix Gnomes. It can be
found at https://github.com/q1x/zabbix-gnomes.

Summary
In this chapter, we dove deeper into the internal data structures Zabbix uses. While
that's still just a small part of a large amount of database, XML import/export, API,
and other information, it should help with some of the common problems users
encounter at first.

We figured out how to get raw data from the frontend, which is the easiest method
for small datasets. For bigger amounts of data, we learned how to grab data from
different history tables, depending on data type. We also found out how Zabbix
proxies keep data in their local databases. For situations where less precision is
needed, we learned about the trends table and the calculation of the hourly minimal,
maximal, and average values that're stored there. We also covered resetting user
passwords directly in the database and fixing item history values if the item
configuration was incorrect initially.

We explored the Zabbix XML import/export functionality, which allowed us to add
and partially update hosts, templates, network maps, screens, host groups, images,
and value maps. We looked at the XML format in brief and created a simple script to
generate hosts from a CSV file.

And in the end, we looked at the Zabbix API, which allows us to control almost all of
the Zabbix configuration. We logged in, controlled the host status, added and deleted
a host, created a value map and retrieved some historical item values, and formatted
the output a bit with the json_pp tool. Although the API was really great, we also
discussed various issues with it, including the lack of auditing, proper validation, and
error messages. While we could only cover a small part of the Zabbix API here, we
figured out how to find out further information in the Zabbix manual and step up the
API usage by using a Perl library. We also discovered the list of API libraries for
various languages at http://zabbix.org/wiki/Docs/api/libraries.

We'll continue diving into Zabbix in the next chapter. Various maintenance-related
topics will be covered, including internal monitoring to find out cache usage and
process busy rates, backing up our Zabbix configuration, and upgrading Zabbix
when new versions come out. We'll also explore all of the parameters in the daemon
configuration files.

https://github.com/q1x/zabbix-gnomes
http://zabbix.org/wiki/Docs/api/libraries

Working Closely with Data Chapter 19

[660]

Questions
Is curl the only option to retrieve information from the Zabbix API?1.
How can we know the version of the Zabbix API?2.
What can we use to back up our templates and hosts?3.

Further reading
Read the following articles for more information:

Information on the Zabbix API version: https:/ / www.zabbix. com/
documentation/ 4. 0/manual/ api/ reference/ apiinfo/ version

Zabbix API documentation: https:/ /www. zabbix. com/ documentation/ 4.
0/manual/ api

https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api/reference/apiinfo/version
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api
https://www.zabbix.com/documentation/4.0/manual/api

20
Zabbix Maintenance

It's great when Zabbix runs smoothly; we get all of the data, nice graphs, and alerts.
To keep it running like that, we should follow the health of Zabbix itself, be ready to
recover from disastrous events, and upgrade to the latest version every now and then.
In this chapter, we'll cover the following topics:

Monitoring the internals of Zabbix: Caches, busy rates, performance
items, and other data that reveals how well Zabbix is feeling
Making backups: Suggestions on how to create backups and potential
restore strategies
Upgrading Zabbix: How to know what changes to expect from new
versions and which components are compatible with others in different
versions, and how to perform the upgrade itself

We'll also review generic suggestions regarding Zabbix setup to reduce performance
issues and take a look at the audit log, a way to see who made changes to the Zabbix
configuration and when, although this feature has some problems that we'll make
sure to find out. We'll finish this chapter with a look at all of the configuration
parameters in the server, proxy, and agent configuration files, concentrating on the
ones we haven't discussed so far.

Internal monitoring
Zabbix can monitor a lot of things about other systems, but what do we know about
Zabbix itself? We can see a few basic indicators in the Zabbix frontend right away. In
the frontend, go to Reports | System information. Here, we can observe high-level
information, such as whether the Zabbix server is running, and values such as the
number of hosts, items, triggers, and users online.

This information is also visible as a widget in the dashboard. Both the widget and the
report are available to super admin users only.

Zabbix Maintenance Chapter 20

[662]

Let's look at the value next to Required server performance, new values per second.
It's the main value when determining how large a Zabbix installation is:

New values per second
Why is the new values per second setting so important? While knowing how many hosts
or even items a system has is important, the underlying load could vary a lot. For
example, we could have a system with 1,000 hosts, with 100 items each, but the items
would be polled once every 15 minutes. In this case, the approximate expected New
Values Per Second (NVPS) would be 111. Or, we could have only 10 hosts with 100
items per host, but if the interval were 10 seconds (that's a very low interval; if
possible, never use such a low interval), the total expected NVPS would be 100. As we
can see, host and item count have an impact, but so does the average interval. NVPS
is a generic value that can be compared to other systems more easily. In our
installation, the expected NVPS, based on our current host and item configuration, is
likely to be somewhere between seven and nine. This means that, every second, the
Zabbix server is expected to receive and process that many historical values; this also
includes calculating any trigger expressions, calculating trend information for
numeric items, and storing any resulting events and these historical values in the
database. It's quite a lot of seemingly invisible work for each value.

Zabbix Maintenance Chapter 20

[663]

We can see the value for the current configuration in the Zabbix status report, but how
can we calculate the expected NVPS for a larger system we're building, without adding all of
the hosts and items? If we had 60 items on a single host, each polled once per minute,
the NVPS could be calculated like this:

<item count> / <item interval>

So, 60 items per minute would result in one NVPS. By the way, one item per minute
would be 1/60 or 0.01557. To get the total NVPS in the projected environment, we
would simply multiply it all by the amount of hosts:

<average item count per host> / <average item interval> * <total host
count>

Plug in various values and see how the expected NVPS changes as one of these values
is changed. The more hosts you have, the more impact the average interval and
average item count per host will have.

The value that the frontend gives us is a nice way to determine the expected NVPS
right now, but it isn't that easy to see how it's changed over time and how
configuration changes have impacted it.

We can add an internal item that'll store this value so that we can see long-term
changes and graph them:

Navigate to Configuration | Hosts, click on Items for A test host, and then1.
click on the Create item button.
In this form, start by clicking on Select next to the Key field, and change2.
the Type drop-down menu to Zabbix internal in the item helper.

This presents us with a nice list of the available internal items. We'll set up a
few of these, but won't discuss every single item in there. If you're curious
about some after we're done with this topic, consult the Zabbix manual for
detailed information on each internal item. Remember how we created an item
to monitor the time when the proxy last contacted the server? That was also an
internal item.

In this list, click on zabbix[requiredperformance]. Fill in the following:

Name: Expected NVPS
Type: Zabbix internal
Type of information: Numeric (float)

Zabbix Maintenance Chapter 20

[664]

Units: NVPS
New application: Zabbix performance

When done, click on the Add button at the bottom.3.

Check this item in the Latest data page. After a short while, it should have the
value—somewhat similar to what we saw in the Zabbix status report:

This value is likely to be different than the one we saw in the report. We just added an
item to monitor the expected NVPS, which provides values of its own, so this action
has affected the NVPS already.

Zabbix Maintenance Chapter 20

[665]

With this item configured, let's talk about what it actually is. You might've noticed
how it was stressed many times before that this is the expected NVPS. It's based on
our host and item configuration and doesn't actually reflect how many values we're
receiving. If we had all of the items of the active agent type and all agents were
stopped, the expected NVPS wouldn't change, even though we would receive no
information at all. Barring such technical issues, this number could differ from the
values we normally process because of other reasons. Log monitoring items are
always counted according to their interval. If we have a log item with an interval of
one second, it's included as one NVPS even if the log file itself gets no values—or if it
gets 10 values every second. Flexible intervals and item scheduling are ignored, and
trapper items aren't included in the expected NVPS estimate at all. If we send a lot of
values to trapper items, our real, processed NVPS will be higher than the expected
NVPS—sometimes several times higher.

As the expected or estimated NVPS can be inaccurate, we also have a way to figure
out the real NVPS value; there's another internal item for that purpose.

Let's go back to Configuration | Hosts and then Items for A test host again and click
on Create item. Fill in the following values:

Name: Real NVPS
Type: Zabbix internal
Key: zabbix[wcache,values]
Type of information: Numeric (float)
Units: NVPS
Preprocessing: Change per second
Applications: Zabbix performance

When done, click on the Add button at the bottom. In the Key, we used the
keywords, wcache and values. The first one is supposed to stand for write cache, or
we can think of it as a cache of the values to be written to the database. The values
parameter tells it to report the number of values passing through that cache. We'll
look at other possible parameters a bit later.

We could also obtain the number of processed values per type by
specifying the third parameter as float, uint, str, log, or text.
The third parameter defaults to all, reporting all value types.

Zabbix Maintenance Chapter 20

[666]

Another thing worth noting is the Store value; this internal item reports a counter of
all values, and this way, we're getting the number of values per second. We both
obtain a value, easily comparable with the expected NVPS, and avoid a hill graph.
How would we know which internal items return a final value and which ones are counter
items? Consult the Zabbix manual as usual.

With the item in place, let's compare the expected and real values in the latest data
page:

Notice how the expected NVPS value increased again after adding another item.

In this system, parts of the monitoring infrastructure are down, so the real NVPS
value is significantly lower than the expected one. You might want to mark the
checkboxes next to both of these items and display an ad hoc graph to visually
compare the values and see how they change over time. The expected NVPS is likely
to be pretty stable, only changing when the configuration is changed. The real NVPS
is likely to go up and down as the value retrieval and processing changes over time.

Zabbix server uptime
Let's try to monitor another Zabbix internal item:

Go to Configuration | Hosts, click on Items next to A test host, and then1.
click on Create item. Let's monitor the uptime of the Zabbix server—not
the whole system, but the Zabbix server daemon. Fill in these values:

Name: Zabbix server uptime
Type: Zabbix internal
Key: zabbix[uptime]
Units: uptime

Zabbix Maintenance Chapter 20

[667]

When done, click on Add at the bottom and then check this item in the2.
Latest data page.

Notice how our use of the uptime unit resulted in the raw uptime value in
seconds being converted into a human-readable format that shows how
long the Zabbix server process has been running for:

We could display this item on a screen and have a trigger on it to let us know when
the Zabbix server was restarted.

Cache usage
We've already discussed several caches in Zabbix and what they're used for. As these
caches fill up, it can have different effects on Zabbix. Let's take a look at how we can
monitor how much of some of those caches is free or used.

We could monitor the free space in the first cache we found out about, the
configuration cache:

Let's go to Configuration | Hosts, then click on Items next to A test host,1.
and click on Create item. Fill in the following values:

Name: Zabbix configuration cache, % free
Type: Zabbix internal
Key: zabbix[rcache,buffer,pfree]
Type of information: Numeric (float)
Units: %

When done, click on the Add button at the bottom.2.

Zabbix Maintenance Chapter 20

[668]

For this item key, we used the rcache keyword, which stands for read cache.
Coupled with buffer, it refers to the configuration cache. With pfree, we're
requesting free space in this cache as a percentage. Notice how we're setting Type of
information to Numeric (float); we could have left it at Numeric (unsigned), in
which case, Zabbix would cut off the decimal part, which isn't suggested in this case.
Check this item in the Latest data page:

On our system, it's highly unlikely to see the free configuration cache size drop below
90% with the default settings.

There're other internal caches on the server we can monitor. We'll discuss what they
hold in more detail, and the suggested sizes, when we look at the daemon
configuration parameters a bit later, but let's have a quick list for now:

Configuration cache: We're monitoring it already. It holds host, item,
trigger, and other configuration information.
Value cache: This holds historical values to speed up triggers, calculated
items, aggregate items, and other things.
VMware cache: This holds fairly raw VMware data.
History cache and history cache index: These two hold historical values
before they're processed for triggers and written to the database.
Trend cache: This holds trend information for the current hour for all items
that're receiving values.

It's a very, very good idea to monitor all of these parameters.

Note that most of the caches can be monitored for Zabbix proxies, too. This can be
done by assigning the host with those items to be monitored by a specific Zabbix
proxy. At that point, these internal items will return information about that proxy.
Only relevant items will work; for example, monitoring the trend cache on a proxy
isn't possible simply because there's no trend cache on a proxy. The same approach
with having such a host assigned to a proxy works also for the items under the
internal process busy rate, which we'll discuss next.

Zabbix Maintenance Chapter 20

[669]

Zabbix has provided templates for this purpose; they're named
Template App Zabbix Server and Template App Zabbix Proxy.
Make sure when you monitor a proxy that the Zabbix agent on the
proxy is being monitored by the proxy and not the Zabbix server.

Internal process busy rate
Zabbix has a bunch of processes internally, and we've already covered a few; we
enabled IPMI and VMware pollers, as well as SNMP trappers. For several of these,
we're also able to configure how many processes to start. How can we know whether one
process is enough or maybe we should have a hundred of them? We'll discuss general
guidelines per type a bit later, but a very important thing to know is how busy the
currently running processes are. There're internal items for this purpose as well. For
these items, the general syntax is as follows:

zabbix[process,<type>,<mode>,<state>]

The parameters in the preceding code are explained as follows:

The first parameter, process, is a fixed keyword.
The second parameter, type, is the process type, as in poller, trapper, and
so on.
The third parameter, mode, could be one of these:

avg: This is the average rate across all processes of the
specified type.
count: This is the number of processes of the specified type.
max: This is the maximum rate across the processes of the
specified type.
min: This is the minimum rate across the processes of the
specified type.
A number: This is the rate for an individual process of the
specified type. For example, there're five pollers running by
default. With a process number specified here, we could
monitor poller 1 or poller 3. Note that this is the
internal process number, not the system PID.

We talked about rate here; this is the amount of time a target process or processes
spent in a state, specified by the fourth parameter. It could either be busy or idle.

Zabbix Maintenance Chapter 20

[670]

Should we monitor the busy rate or the idle one? In most cases, the average busy time for
all processes of a specific type is monitored. Why busy? Just by convention, as when
this monitoring got implemented, the first templates monitored busy rate.
Additionally, when debugging a specific issue, it could be helpful to monitor the busy
rate for individual processes. Unfortunately, there's no way to query such values
directly from the server; we would have to add an item in the frontend and then wait
for it to start working. There's no built-in LLD for process types or the number of
them; we would have to create such items manually or automate them using XML
importing or the Zabbix API.

To see how this works, let's monitor the average busy rate for all poller processes:

Go to Configuration | Hosts, click on Items next to A test host, and then1.
on Create item. Fill in these values:

Name: Zabbix $4 process $2 rate
Type: Zabbix internal
Key: zabbix[process,poller,avg,busy]
Type of information: Numeric (float)
Units: %
New application: Zabbix process busy rates

Creating such an item on a host that's monitored through a Zabbix
proxy will report data about that proxy, not the Zabbix server.

We used positional variables in the item name again; if we wanted to
monitor another process, it would be easy to clone this item and change the
process name in the item key only.

When done, click on the Add button at the bottom. Check this item in the2.
Latest data page:

Most likely, our small Zabbix instance isn't very busy polling values. By default,
there're five pollers started, and they're dealing with the current load without any
issues.

Zabbix Maintenance Chapter 20

[671]

As an exercise, monitor a few more process types; maybe trapper and unreachable
pollers. Check the Zabbix manual section on internal items for the exact process
names to be used in this item.

After adding a few more items, you'll probably observe that there're a lot of internal
processes. We discussed creating such items automatically using XML importing or
the API, but then there were also all of the caches we could and should monitor.
Zabbix tries to help here a bit and ships with default internal monitoring templates. In
the search box in the upper-right corner, enter app zabbix and hit the Enter key.
Look at the Templates block:

While the agent template is quite simple and not of much interest at this time, the
server and proxy templates cover quite a lot, with 31 and 42 items respectively. These
templates will allow out-of-the-box monitoring of internal process busy rates, cache
usage, queues, values processed, and a few other things. It's highly recommended to
use these templates in all Zabbix installations.

These templates might still be missing a few interesting items, such as the expected
NVPS item we created earlier. It's suggested to create a separate template with such
missing things instead of modifying the default template. Such an approach will
allow easier upgrades, as new versions could add more processes, caches, and have
other improvements to the default templates. If we leave the default templates intact,
we can import a new XML file, tell Zabbix to add all missing things, update existing
things, and remove whatever isn't in the XML, and we'll have an up-to-date default
template. If we had it modified, it could be a lot of manual work to update it.

Unsupported items and more problems
We now know quite a bit about the internal monitoring of Zabbix, but there're still
more possibilities. Unsupported items are no good, so let's discuss the ways we could
monitor the situation with them.

Zabbix Maintenance Chapter 20

[672]

Counting unsupported items
Similar to cache usage and process busy rates, we may also monitor the count of
unsupported items with an internal item.

To create such an item, follow these steps:

Let's go to Configuration | Hosts, click on Items next to A test host, and1.
then click on Create item. Fill in these values:

Name: Amount of unsupported items
Type: Zabbix internal
Key: zabbix[items_unsupported]

When done, click on the Add button at the bottom. After a short while,2.
check this item on the Latest data page:

14? That's an extremely high value for such a small installation, although in this case
it's caused by the VMware monitoring being down. At this time, a VMware timeout
results in all VMware items becoming unsupported. In a perfect environment, there
would be no unsupported items, so we could create a trigger to alert us whenever this
item receives a value larger than 0. That wouldn't be too useful anywhere but in
really small environments, though; usually, a thing becomes broken here or there,
and the unsupported item count is never 0. A more useful trigger would hence be one
that alerts about a larger increase in the number of unsupported items. The change()
trigger function could help here:

{A test host:zabbix[items_unsupported].change()}>5

Whenever the unsupported item count increases by more than 5 in 30 seconds, which
is the default item interval, this trigger will fire. The threshold should be tuned to
work best for a particular environment.

Such a global alert will be useful, but in larger environments with more distributed
responsibilities, we might want to alert the responsible parties only. One way to do
that would be monitoring the unsupported item count per host. With this item, it
probably makes most sense to create it in some base template so that it's applied to all
of the hosts it's needed on.

Zabbix Maintenance Chapter 20

[673]

Let's create such an item with the following steps:

Navigate to Configuration | Templates, click on Items next to1.
C_Template_Linux, and then click on Create item. Fill in these values:

Name: Unsupported item count
Type: Zabbix internal
Key: zabbix[host,,items_unsupported]

When done, click on the Add button at the bottom. Check this item on the2.
Latest data page:

Apparently, the test host has 0 unsupported items in this installation. We would now
create a trigger on the same template, alerting us whenever a host has a non-zero
count of unsupported items. Such a combination would work fairly well although, in
larger installations, it could result in a large number of triggers firing if an item got
misconfigured in the template or if a broken userparameter script were distributed.
Unfortunately, there's no built-in item to determine the unsupported item count per
host group. One workaround would be to use aggregate items, as discussed in
Chapter 10, Advanced Item Monitoring. For example, to obtain the unsupported item
count for a group called Linux servers, the aggregate item key could look like this:

grpsum[Linux servers,"zabbix[host,,items_unsupported]",last]

We should probably avoid creating a trigger for the unsupported item count on
individual hosts, creating one on the aggregate item instead. While the individual
items would keep collecting data, which is a bit of a load on the Zabbix server and
increases database size, at least the alert count would be reasonable.

If an item turns unsupported, all triggers that reference it stop
working, even if they're looking for missing data using the
nodata() function. That makes it very hard to alert somebody of
such issues unless an internal item such as this is used; it's highly
unlikely to become unsupported itself.

There're still more internal items. It's a good idea to look at the full list of available
items for the latest version of Zabbix in the online manual.

Zabbix Maintenance Chapter 20

[674]

Reviewing unsupported items
The items that tell us about the number of unsupported items either for the whole
Zabbix installation or for a specific host are useful and tell us when things aren't
good. But what exactly isn't good? There's a very easy way to review the unsupported
item list in the frontend. Follow these steps:

Navigate to Configuration | Hosts, click on any of the Items links, and1.
expand the item filter. Clear out any host, host group, or other filter option
that's there, and look at the right-hand side of the filter.
In the State drop-down menu, choose Not supported and click on Filter.2.

This will display all of the unsupported items in this Zabbix instance. Note that we
may not display all items in all states like this; the filter will require at least one
condition to be set, and the state condition counts.

It's highly recommended to visit this view every now and then and try to fix as many
unsupported items as possible. Unsupported items are bad. Note that by default, up
to 1,000 entries will be shown. If you have more than 1,000 unsupported items, that's
a pretty bad situation and should be fixed.

If you see unsupported items in templates, it's most likely a Zabbix
instance that's been upgraded from an older version. The broken
item state was a bug in older versions of Zabbix. To fix this issue, the
state for these items should be manually changed in the database.
Look up the item ID and set the State value for it to 0. As usual, be
very careful with direct database updates.

Internal events and unknown triggers
Alerting on unsupported items, which we covered a moment ago, is likely the best
approach, as it allows us to have a small number of triggers and a relatively easy way
to split up alerting about them. There's another built-in approach that allows us to
alert about unsupported items and triggers in an unknown state; Zabbix has the
concept of internal events.

To configure an alert based on those internal events, follow these steps:

Go to Configuration | Actions, choose Internal in the Event source drop-down menu
and click on Create action. In the Action tab, enter these values:

Zabbix Maintenance Chapter 20

[675]

Name: A trigger changed state to unknown
In the New condition block, select Event type in the first drop-down menu,
and choose Trigger in "unknown" state in the last drop-down menu, and
press Add (below the condition not the one at the bottom):

Switch to the Operations tab and enter the following values:

Default subject: {TRIGGER.STATE}: {TRIGGER.NAME}
Click on New in the Operations block, and then click on Add in the Send
to Users section.

We set up email for monitoring_user in Chapter 2, Getting Your
First Notification—if another user has email properly set up in your
Zabbix instance, choose that user instead.

Click on monitoring_user in the popup, and then click on the small Add
link in the Operation details block—the last one, just above the buttons at
the very bottom. Be careful; this form is very confusing.

Switch to the Recovery operations tab and enter the following.

Recovery subject: {TRIGGER.STATE}: {TRIGGER.NAME}
Click on New in the Operations block, and then click on Add in the Send
to Users section and, just like in the Operations tab, select the
monitoring_user.

When done, click on the Add button at the bottom.

We discussed actions in more detail in Chapter 7, Acting upon Monitored Conditions.

Now, whenever a trigger becomes unknown, an alert will be sent.

Zabbix Maintenance Chapter 20

[676]

While we can limit these actions by application, host, template, or host group, we
cannot react to internal events in the same actions we use for trigger events. If we
already have a lot of actions carefully splitting up notification per host groups,
applications, and other conditions, we would have to replicate all of them for internal
events to get the same granularity. That's highly impractical so, at this time, it might
be best to have a few generic actions, such as ones that inform key responsible
persons, who would investigate and pass the issue to the team assigned to that host
group, application, or other unit.

If you looked carefully, then you noticed that Zabbix already
provided three internal operations: one for items in a not supported
state, another one for low-level discovery rules in a not supported
stated, and one for triggers in an unknown state. They're all disabled
and will inform the Zabbix administrators once they're enabled. My
advice is to enable them and to tune them to you needs.

A list of the build in actions already provided in Zabbix:

Backing things up
It's a good feeling to have a backup when things go wrong. When setting up a
monitoring system, it's a good idea to spend some time to figure out how backups
could be made so that the good feeling isn't replaced by a bad feeling. With Zabbix,
there're components and data to be considered:

Zabbix binaries: Such as the binaries from Zabbix server, proxy, and agent.
They're probably not worth backing up. Hopefully, they're easily available
from packages or by recompiling.
Zabbix frontend files: Hopefully, they're easily available as well. If any
changes have been made, they're presumably stored as a patch in a version
control system.
Zabbix configuration files: Hopefully, these are stored in a version control
system or a system configuration tool.
Zabbix server database: This contains all of the monitoring-related
configuration data, such as hosts and items, and it holds all of the collected
values. Now that's worth backing up!

Zabbix Maintenance Chapter 20

[677]

Backing up the database
Several different databases could be used for the Zabbix backend. We won't spend
much time on database-specific information, besides a brief look at a simple possible
way to create backups with the most widely used backend—MySQL—or one of its
forks. A very simple way to back up a database with MySQL, compressing it on the
way, would be this:

$ mysqldump zabbix --add-drop-table --add-locks --extended-insert --
single-transaction --quick -u zabbix -p | bzip2 >
zabbix_database_backup.db.bz2

Here, we're allowing the backup to drop existing tables in the target database and
telling it to lock each table when restoring, which is supposed to offer better restore
performance. The parameters in the preceding code are explained as follows:

--extended-insert: This parameter uses one insert for many values
instead of one per value—a much smaller backup and much faster restore.
Performing the backup in a single transaction should ensure a consistent
state across all of the tables being backed up.
 --quick: This parameter instructs MySQL to dump large tables partially
instead of buffering all of their contents in memory.
bzip2: This parameter is used to compress the data before writing it to the
disk. You can choose other compression software, such as gzip or xz or
change the compression level, depending on what you need more; disk
space savings or a less-taxed CPU during the backup and restore. Memory
usage can also be quite high with some compression utilities. The great
thing is you can run this backup process without stopping the MySQL
server (actually, it has to run) and even the Zabbix server.

Now, you can let your usual backup software grab this created file and store it on a
disk array, tape, or some other more exotic media.

Restoring from a backup
Restoring such a backup is simple as well. We pass the saved statements to the
MySQL client, uncompressing them first, if necessary:

$ bzcat zabbix_database_backup.db.bz2 | mysql zabbix -u zabbix -p

Zabbix Maintenance Chapter 20

[678]

Use zcat or xzcat as appropriate if you've chosen a different
compression utility.
The Zabbix server must be stopped during the restore process.

Of course, backups are useful only if it's possible to restore them. As required by any
backup policy, the ability to restore from backups should be tested. This includes
restoring the database dump, but it's also suggested to compare the schema of the
restored database and the default schema, as well as running a copy of the Zabbix
server on a test system. Make sure to disallow any outgoing network connections by
the test server, though; otherwise, it might overload the network or send false alerts.

Separating configuration and data backups
While we can dump a whole database in a single file, it isn't always the best solution.
There might be cases when restoring only the configuration data would be useful:

The first is when testing a Zabbix upgrade on a less powerful system than
the Zabbix server.
When attempting to recover from a disastrous event, it would be useful to
restore configuration only and resume monitoring as quickly as possible. If
needed, history and trend data can be restored later in small portions to
avoid overloading the database.

Usually, data tables, such as the ones holding history, trend, and event information,
will be much bigger than the configuration tables. Restoring the data tables would
take much longer or even be impossible on a test system. We could split all of the
tables into configuration and data ones, but it's likely even more simple to back each
table up separately and deal with the desired tables when restoring. An example
command to do so is as follows:

$ for table in $(mysql -N -e "show tables;" zabbix); do mysqldump --
add-locks --extended-insert --single-transaction --quick zabbix $table
| bzip2 > zabbix_database_backup_$table.bz2; done

Zabbix Maintenance Chapter 20

[679]

Note that, in this case, we're not performing the backup for the whole database in a
single transaction, and changes to the configuration could lead to inconsistencies
across the tables. It's a good idea to schedule such a backup at a time when
configuration changes would be unlikely.

If the consistency of the configuration tables is a likely problem, we could instead
back up the configuration tables in a single transaction and the tables that hold
collected and recorded information separately:

$ mysqldump --add-locks --extended-insert --single-transaction zabbix
--ignore-table=zabbix.history --ignore-table=zabbix.history_uint --
ignore-table=zabbix.history_text --ignore-table=zabbix.history_str --
ignore-table=zabbix.history_log --ignore-table=zabbix.trends --ignore-
table=zabbix.trends_uint --ignore-table=zabbix.events --ignore-
table=zabbix.alerts --ignore-table=zabbix.auditlog --ignore-
table=zabbix.auditlog_details --ignore-table=zabbix.acknowledges |
bzip2 > zabbix_database_backup_config_tables.bz2
$ mysqldump --add-locks --extended-insert --single-transaction zabbix
history history_uint history_text history_str history_log trends
trends_uint events alerts auditlog auditlog_details acknowledges |
bzip2 > zabbix_database_backup_data_tables.bz2

Note that the configuration and data table distinction is a bit fuzzy in Zabbix, and
several configuration tables still hold runtime information.

Upgrading Zabbix
Even though Zabbix is a mature product with more than 15 years behind it, it's still
very actively developed. Bugs are fixed and new features are added. At some point,
accumulated improvements make it worth upgrading. In this section, we'll look at the
following:

General version policy: Which versions are stable and which ones are
supported for longer periods of time
The upgrade process: What can be upgraded to what and how it should be
done
Compatibility between Zabbix components: Which versions of the server
can be used with which versions of the agent and so on

Zabbix Maintenance Chapter 20

[680]

General version policy
The Zabbix versioning scheme has changed a few times over the years. In general, the
first two numbers have denoted a major version, such as 2.4, 3.0 and 4.0, while the
third number has denoted a minor version number. Previously, an even second
number denoted a stable branch, while an odd second number denoted a
development branch. Hence, 2.3 was a development branch for 2.4, while 2.4 was the
resulting stable branch. This has slightly changed since 3.0. The development releases
have moved away from the odd numbering, that is, the 3.5 number. They're now
called 4.0.0alpha1, 4.0.0beta2, and so on. This is deemed to be more user friendly,
although the internal numbering is still based on 3.5 in several places—the database
version, for example, which we'll explore in more detail a bit later.

The new version numbering since Zabbix 3.0 could be summed up as follows:

A version number with just digits (and dots) in it denotes a stable release
A version number with the alpha, beta, or rc (release candidate)
keywords added isn't a stable release

Long-term support and short-term support
For stable branches, there're even more differences. The release and support policy
has changed as well, and the current policy states that there're two types of stable
branches:

Long-term support (LTS) branches: These branches are supported for
three years for general bug fixes and two more years for only critical and
security fixes
Short-term support branches: These are supported for roughly one month
after the first release in the next stable branch, LTS or non-LTS

At the moment of writing, 4.0 is the current LTS branch, with 4.2 and 4.4 planned as
short-term support branches, 5.0 following as the next LTS branch, and all further
LTS branches aligning to N.0 versioning. Will this hold? That's very hard to predict, so
you might want to check the current policy at
http://www.zabbix.com/life_cycle_and_release_policy.php.

This support mostly references commercial services, although it
strongly affects all users. We'll discuss support options in Appendix
B, Being Part of the Community.

http://www.zabbix.com/life_cycle_and_release_policy.php

Zabbix Maintenance Chapter 20

[681]

How to decide which branch to use? Consider the available features and how quickly you
would be able to upgrade. Does the latest LTS version satisfy you and you don't plan to
upgrade for years? Stick with it. Really desire a feature in a non-LTS branch and plan to
upgrade when the next stable branch comes out. Go with the non-LTS branch.
Anything in between, and you'll have to make a decision based on the support policy
that's in effect at that time. Here's a quick lookup table to help you decide:

Use a non-LTS branch when... Use an LTS branch when...
You need a new feature in the non-LTS
branch The LTS-branch features satisfy you

You plan to upgrade to every new version
quickly

You prefer to stay with one version as
long as possible

You can tolerate slight instability You prefer a more stable version

Note that the slight instability mentioned in the table doesn't mean that there're serious
issues with the non-LTS versions. In some cases, more stable might mean this bug is
pretty stable, but hasn't been fixed for a long time.

The upgrade process
Read the upgrade notes from the new Zabbix version you want to install.

What was that? Yes, before performing any upgrades, take a little time, go to the
Zabbix manual, and read the upgrade notes. If you're jumping over a few major
versions, do read all of the upgrade notes in between. Even if you've followed Zabbix
development a bit, you might've missed some change that could cause problems;
removed or added configuration parameters, memory requirement changes, or API
changes; the upgrade notes should list all significant changes.

It's also highly suggested to read the pages on new features and improvements, called
What's new. While it's much less risky to miss some of those changes, knowing about
them could help you use Zabbix in a more efficient way.

Let's talk about the upgrade process itself now. This process and compatibility will
differ depending on the version change you're performing:

A minor version upgrade inside the same major version is simple and easy
to undo
A major version upgrade is more complicated, and hard or impossible to
undo

Zabbix Maintenance Chapter 20

[682]

Minor version upgrade
This is the simplest case. For example, upgrading from 4.0.0 to 4.0.1 or from 4.0.1 to
4.0.5 would be considered a minor version upgrade.

Zabbix uses the third number to denote a minor version.

When performing a minor version upgrade, we may upgrade any combination of
components: server, agents, proxies, Java gateway, and so on. While it's suggested to
keep the main components of the same version to reduce confusion, a 4.0.0 server will
happily work with a 4.0.1 frontend, 4.0.2 proxies, and 4.0.3 agents. Inside one major
version, all components are compatible with each other.

It's also perfectly fine to skip minor versions when upgrading; as mentioned, going
from 4.0.1 directly to 4.0.5 is perfectly fine.

While minor versions won't have upgrade notes often, do make sure to check for
them. And read those What's new pages.

Upgrading binaries
Zabbix server, agents, and potentially proxy binaries have to be updated. The exact
process will depend on how you installed them in the first place. Compiled from the
source? Perform the same steps as during the installation. Installed from packages? Use
the distribution package management tools to perform the upgrade. This process
should be fairly simple, and we discussed the details back in Chapter 1, Getting
Started with Zabbix.

After starting the upgraded Zabbix server, in some rare cases you might see a log
entry like this:

10852:20151231:094918.820 starting automatic database upgrade

For a minor version upgrade, that could be a change to the database indexes to
improve performance, but we'll discuss that in more detail when we get to the major
version upgrades.

Zabbix Maintenance Chapter 20

[683]

Upgrading the frontend
Upgrading the Zabbix frontend from one minor to another minor version should be
simple as well. If installed from the sources, copy over the new frontend files. Instead
of overwriting the frontend, it might be a good idea to copy the frontend to a separate
directory first, verify that it works as intended, and then move your users over.

For example, if your original installation had the Zabbix frontend in the relative
path, zabbix/, place the new frontend files in zabbix-<new_version>/, rename
the zabbix/ directory to zabbix-<old_version>/, and create a symlink called
zabbix that points at the new version so that you don't have to use a different URL
whenever you upgrade. To skip the configuration wizard, copy over the
configuration file:

cp zabbix-<old_version>/conf/zabbix.conf.php zabbix/conf/

That should be enough. Now, you can refresh the Zabbix frontend in the browser and
check the page footer; the new version number should be visible there.

This approach with keeping the old frontend versions is useful if a new version turns
out to have a problem and you would like to test whether the old version also had the
same problem; just load up a URL in your browser that points to the old frontend
directory. If the problem indeed turns out to be a regression, simply change the
symlink to point to the old directory and revert to the old version.

If you modified the defines.inc.php file, make sure to perform
the same modifications in the new version of the file.

You may keep and use multiple versions of the Zabbix frontend in parallel, as long as
they all are of the same major version. While normally not needed, it can be very
helpful when some debugging or comparison has to be performed.

Major-level upgrades
A major-level upgrade is slightly different from a minor version upgrade. As a quick
reminder, definitely go and read the upgrade notes; major versions will always have
some. Remember about the What's new pages, too.

Zabbix Maintenance Chapter 20

[684]

Back to the major version upgrade itself, the most significant differences from a minor
version upgrade are as follows:

Database schema changes
Compatibility
Reading the upgrade notes

When performing major-level upgrades from source, it's suggested
to avoid copying the new frontend files over the old files. Leftover
files from the old version might cause problems.

Let's talk about database schema changes right now, let's discuss compatibility in
detail a bit later, and let's always remember to read our upgrade notes.

While the Zabbix team works hard to keep minor version upgrades without database
changes, for major releases, it's open season. Changes to the database schema and its
contents are made to accommodate new features, improve performance, and increase
flexibility. Users wouldn't appreciate it if they couldn't keep gathered data and
created configuration in the name of new greatness so, with each new version, a
database upgrade patch is provided. This may include adding new tables and
columns, removing tables and columns, and changing the data layout.

Given that a major version upgrade changes the database, make sure you have a
recent backup. While upgrades are extensively tested, it isn't possible for the
developers to test all scenarios. What has worked for a thousand people might break
in some obscure way for you. Additionally, interrupting the upgrade process because
of a hardware or electricity failure is likely to leave your database in a broken state.
You've been warned, so get that backup ready.

You're strongly encouraged to test the upgrade on a test installation, preferably using
a production dataset (maybe with trimmed history and trend data, if the available
hardware doesn't permit testing with a full copy).

With a fresh backup created, we're ready to engage the major version upgrade. The
database upgrade process significantly changed for Zabbix version 2.2. In older
versions, we had to apply the database patch manually. If you happen to have an old
Zabbix installation—old being pre-2.0—you'll have to patch it up to the 2.0 database
schema manually. For your reference, the database patches are located in the
upgrades/dbpatches directory in the source tree, but if you really want to follow
that path, make sure to consult with the Zabbix community via the channels
discussed in Appendix B, Being Part of the Community.

Zabbix Maintenance Chapter 20

[685]

For upgrading to Zabbix from version 2.2 or more recent, no manual patching is
required. Starting up the new server will automatically upgrade the database schema.
Note that this database upgrading happens without a confirmation. Be careful not to
start a more recent server binary against an older database version if you don't intend
to change the database.

One last note regarding the upgrade notes: promise. While the latest Zabbix upgrades
are really quick even in large installations, older versions sometimes upgraded
historical data tables, and that took a long time—like, really a long time. In some
reported cases, it was days. If such a change is required in any of the future versions,
it'll be mentioned in the upgrade notes, and you'll be glad you read them.

Database versioning
With all of this talk about the database version and schema changes, let's take a closer
look at how version information is stored and how we can check the upgrade status.
Examine the dbversion table in your Zabbix database:

 mysql> select * from dbversion;
 +-----------+----------+
 | mandatory | optional |
 +-----------+----------+
 | 4000000 | 4000003 |
 +-----------+----------+
 1 row in set (0.00 sec)

This table is the way Zabbix components determine which version of the database
schema they're dealing with. There're two numbers in there: the mandatory and
optional versions. The following rules are important regarding version numbers:

Inside one major version, the mandatory version number is always the
same
If a more recent server is started, it upgrades the database to the latest
mandatory and optional version
The server and frontend can work with a database as long as its mandatory
version matches their mandatory version exactly; the optional version
doesn't affect compatibility

The mandatory version encodes things such as table changes, column changes, and
otherwise significant changes that break compatibility. The optional version would
usually denote an index change—something that's helpful but doesn't prohibit older
versions from working with a more recent database.

Zabbix Maintenance Chapter 20

[686]

The Zabbix server can upgrade to the latest database schema version
on all versions from 2.0 onward. To upgrade the database from
version 2.0 to 4.0, it isn't required to use server versions in
succession; it's enough to start server version 4.0.

When a new major version of Zabbix Server is started, it's possible to observe the
current status and database upgrade progress in the server log file:

 10852:20151209:094918.686 Starting Zabbix Server. Zabbix 4.0.0
(revision {ZABBIX_REVISION}).
 10852:20151209:094918.729 ****** Enabled features ******
...
 10852:20151209:094918.730 TLS support: NO
 10852:20151209:094918.730 ******************************
 10852:20151209:094918.730 using configuration file:
/usr/local/etc/zabbix_server.conf
 10852:20151209:094918.820 current database version
(mandatory/optional): 4000000/ 4000000
 10852:20151209:094918.820 required mandatory version: 4000000
 10852:20151209:094918.820 starting automatic database upgrade
...
 10852:20151209:094918.866 completed 20% of database upgrade
...
 10852:20151209:094918.937 completed 100% of database upgrade
 10852:20151209:094918.937 database upgrade fully completed

Notice how it prints out the current mandatory and optional database versions we
just examined in the database, and the required mandatory version. If the mandatory
or optional database version numbers are lower than the required version, the server
will upgrade the database. If the database mandatory version is higher than the
server version, the server will refuse to start up. During the database schema
upgrade, no monitoring happens. Monitoring restarts once the database upgrade is
complete.

What happens if you upgrade the fronted before upgrading and starting the server to take care
of the database upgrade? You're likely to see a message that warns you that the frontend
doesn't matches the current Zabbix database version.

If you see such a message when upgrading, start the new server and ensure the
database upgrade is successful. If that doesn't help, make sure you're not starting
some older Zabbix server binary or pointing the Zabbix server at a different database.
If you see a message like that when not upgrading Zabbix, you likely have a quite
significant misconfiguration.

Zabbix Maintenance Chapter 20

[687]

Such a situation should never happen during the normal operation of Zabbix or
minor version upgrades. Note that the Zabbix frontend stores the major version it's
compatible with in the defines.inc.php file in the ZABBIX_DB_VERSION constant.

Gathering data during the upgrade
The database upgrade process can be very quick but, in some cases, it can also take
quite some time. It might be required to keep gathering data even during the Zabbix
upgrade, but how can we achieve that if the monitoring doesn't resume until the upgrade is
finished?

Remember the additional Zabbix process, the proxy? It's able to gather data and buffer
it for sending to the Zabbix server, so no data was lost even if the server was down
for some time, which sounds pretty much like our situation. If all of your actual
monitoring is already done by Zabbix proxies, you're already on the right track.

If you have items that're polled directly by server, you might want to set up a
temporary proxy installation, maybe even on the same server, that would be running
during the Zabbix server upgrade and removed later. To do this easily, use the mass
update functionality in the Configuration | Hosts section in the frontend and set the
Monitored by Proxy option. Make sure the proxy can actually gather data by testing
it first with a single host.

Setting up a temporary proxy installation will be notably harder if
you're using active items. It would be required to reconfigure all
Zabbix agents as they connect to the address specified in the
ServerActive parameter. On the other hand, active agents do
buffer data for a short while themselves, so a quick server upgrade
might not miss that data anyway.

The proxy method sounds great, but it's a bit more complicated than just upgrading
the server. Officially, only the same major version is supported for server-proxy
compatibility. This means that we should not use proxies of the previous version with
our upgraded server. Proxies, if used with a MySQL or PostgreSQL backend, can
upgrade their database as well. The suggested path for using proxies to continue data
collection through the major version upgrade would be like this:

Block all proxy-server communication (possibly using a local firewall such1.
as iptables)
Stop the old Zabbix server, upgrade it, and start the new server2.

Zabbix Maintenance Chapter 20

[688]

Stop one of the old Zabbix proxies, upgrade it, and start the new version to3.
upgrade the local database
Restore the communication between the proxy and the new server4.
Proceed the same way with all the remaining proxies5.

This should ensure minimum data loss through the upgrade, especially if the steps
for an individual proxy upgrade are scripted and happen with no delays.

Proxy database upgrading isn't supported if using SQLite. In that
case, the previous method wouldn't work, and the proxy database
file should simply be removed when upgrading.

The frontend configuration file
While the database upgrade is the most important step when moving from one major
version to another, it's worth paying a moment of attention to the Zabbix frontend
configuration file. It's suggested to compare the old configuration file with the new
one and see whether there're any new parameters or significant changes to the
existing parameters. The easiest way might be comparing with the
zabbix.conf.php.example file in the conf/ subdirectory. This configuration file is
pretty small, so spotting the differences should be easy.

When installing from packages, the frontend configuration file could
also be placed in /etc/zabbix/, /etc/zabbix/web/ or
/etc/zabbix/frontend/.

Compatibility
We've discussed upgrading the Zabbix server. But there're quite a lot of components,
and the compatibility between each of them differs slightly. Actually, the official
compatibility rule list is very short:

All older versions of Zabbix agents are supported but, starting from Zabbix
4.0, agents older then 1.4 aren't supported anymore.
Zabbix server, proxies, and Java gateways must be of the same major
version.

Zabbix Maintenance Chapter 20

[689]

Regarding the agents, it really is as great as it sounds. All of the old agent versions
will work with the latest version of the Zabbix server or proxy, even down to
1.4—with versions older than 4.0, even back to version 1.0 from 2001. If you upgrade
Zabbix server, you can keep your agents as is; although you wouldn't benefit from
new features, performance, or even security improvements.

Technically, combinations outside of the support rules might work. For example, a
more recent agent might work with an older server in some cases, and the Zabbix
Java gateway protocol hasn't changed much, so it's likely to work with different major
versions of Zabbix server, too. Such combinations aren't tested by Zabbix developers,
aren't supported, and should be avoided in general.

Performance considerations
Zabbix tends to perform nicely for small installations, but as the monitored
environment grows, we might run into performance problems. A full Zabbix
performance discussion is out of scope here, but let's discuss the starting points to
having a healthy configuration and the directions for further research:

Monitor only what you really need, as rarely as possible, and keep the data
only for as long as really needed. It's common for new users of Zabbix to
use default templates as is, add a lot of new items with low intervals, and
never look at the data. It's suggested to clone the default templates,
eliminate all that isn't needed, and increase the intervals as much as
possible. This involves trimming item lists, increasing intervals, and
reducing history and trend-retention periods. There're also events, alerts,
and other data—we'll discuss their storage settings a bit later.
When using Zabbix agents, use active items. Active items will result in a
smaller number of network connections and reduce the load on the Zabbix
server. There're some features not supported with active items, so
sometimes you'll have to use passive items. We discussed what can and
cannot be done with active items in Chapter 3, Monitoring with Zabbix
Agents and Basic Protocols.
Use Zabbix proxies. They'll provide bulk data to Zabbix server, reducing
the work the server has to do even further. We discussed proxies in
Chapter 17, Using Proxies to Monitor Remote Locations.

Zabbix Maintenance Chapter 20

[690]

We already know about the history and trend-retention periods for items, but for how
long does Zabbix store events, alerts, acknowledgment messages, and other data? This is
configurable by going to Administration | General and choosing Housekeeping in
the drop-down menu in the upper-right corner:

This page is excessively long, so the preceding screenshot only
shows a small section from the top.

Here, we may configure for how long to keep the following data:

Events and alerts: We may choose separate storage periods for trigger,
internal, network discovery, and active agent auto-registration events. Note
that removing an event will also remove all associated alerts and
acknowledgment messages.
Services: The IT service up and down state is recorded separately from
trigger events, and its retention period can be configured separately as
well.
Audit data: This specifies how long to store the audit data for. We'll discuss
what that actually is in a moment.
User sessions: User sessions that have been closed will be removed more
frequently, but active user sessions will be removed after one year by
default. This means that we can't be logged in longer than a year.

Zabbix Maintenance Chapter 20

[691]

These values should be kept reasonably low. Keeping data for a long period of time
will increase the database size, and that can impact the performance a lot.

What about the history and trend settings in here? While they're configurable per item
normally, we may override those here. Also, for each of the entries, internal
housekeeping may be disabled. These options are aimed at users who have to manage
large Zabbix installations. When the database grows really large, its performance
significantly degrades and can be improved by partitioning the biggest
tables—splitting them up by some criteria. With Zabbix, it's common to partition the
history and trends tables, sometimes adding events and alerts tables. If partitioning is
used, parts of tables (partitions) are removed, and the internal housekeeping for those
tables should be disabled. A lot of people in the Zabbix community will eagerly
suggest partitioning at the first opportunity. Unless you plan to have a really large
installation or know database partitioning really well, it might be better to hold off.
There's no officially supported or built-in partitioning scheme yet, and one might
appear in the future. If it does and your partition scheme is different, it'll be up to you
to synchronize it with the official one.

Who did that?
Now who did that? This is a question occasionally heard in many places, IT workplaces
included. Weird configuration changes and unsolicited reboots; accountability and a
trace of actions help a lot to determine whether the questioner was the one who made
the change and then forgot about it. For Zabbix configuration changes, an internal
audit log is available. Just like most functionality, it's conveniently accessible from the
web frontend. During our configuration quest, we made quite a lot of changes; let's
see what footprints we left. Navigate to Reports | Audit and set the filter time to a
period that approximately matches the initial installation of this Zabbix instance.
We're presented with a list of the things we did, although you can also only see
logging in and out on the first page of the audit records:

Zabbix Maintenance Chapter 20

[692]

And what if you set up Zabbix frontend monitoring, like we did in Chapter 12, Monitoring
Web Pages? You're likely to see only such records as our web scenario logs in and out
every minute. But notice the filter; we may also filter by user, action, and resource:

Expand the Action and Resource drop-down menus; notice that they're quite fine-
grained, especially the Resource drop-down menu.

In the Zabbix 1.8 version of this book, it said:

"In the first Zabbix 1.8 releases some actions aren't registered in the audit log. Such
issues are expected to be fixed in the near future."

Oh well. Unfortunately, it didn't get fixed in further 1.8 releases: 2.0, 2.2, 2.4 ,3.0,
and—to the best of my knowledge—neither in 4.0. The Zabbix audit log is still
missing lots of operations performed, especially when the API is used. While the
audit log can be extremely useful, it can easily miss the specific operation you're
interested in. Perform a test with the version you're interested in to be sure; the list of
operations that aren't logged can easily change in a minor version.

Moving forward from the sad fact of the broken audit log, as an exercise, try to find
out at what time you added the Restart Apache action.

While looking at this section, let's remind ourselves of another logging area; the
action log that we briefly looked at before. Go to Reports | Action log. Here, all
actions performed by the Zabbix server are recorded. This includes sending emails,
executing remote commands, sending SMS messages, and executing custom scripts.
This view provides information on what content was sent to whom, whether it was
successful, and error messages, if any. It's useful for verifying whether Zabbix has
sent a particular message, as well as figuring out whether the configured actions are
working as expected.

Zabbix Maintenance Chapter 20

[693]

Together, the action and log audit sections provide a good overview of internal
Zabbix configuration changes, as well as debugging help to determine what action
operations have been performed.

Exploring configuration file parameters
Let's conclude this chapter by digging into the configuration files of the Zabbix agent
and server, and examining each parameter in them. We'll start with the agent
configuration file and discuss the ways in which common parameters apply to other
daemons. We'll skip the proxy configuration file, as the common parameters will be
discussed by then, and the proxy-specific parameters were discussed in Chapter 17,
Using Proxies to Monitor Remote Locations. We'll also skip all the parameters that start
with TLS, as those are related to Zabbix daemon traffic encryption, and we discussed
that in Chapter 18, Encrypting Zabbix Traffic.

We'll look at the parameters in the order in which they appear in the default example
configuration files; no other meaning should be derived from the ordering here.

While reading the following descriptions, it's suggested to have the corresponding
configuration file open. It'll allow you to verify that the parameters are the same in
your version of Zabbix. Make sure to read the comments next to each parameter; they
might show that some parameters have changed since the time of writing this. In
general, when in doubt, read the comments in the configuration files. The Zabbix
team tries really hard to make them both short and maximally relevant and helpful.

Zabbix agent daemon and common
parameters
Let's start with the agent daemon parameters. For the parameters that're also
available for other daemons, we'll discuss their relevance to all of the daemons here:

PidFile: This is common to all daemons. They write the PID of the main
process in this file. The default configuration files use /tmp for simplicity's
sake. In production systems, this should be set to the distribution
recommended location.

Zabbix Maintenance Chapter 20

[694]

LogType: This is common to all daemons and can be a file, syslog, or
console. The default is file and, in that case, the LogFile parameter
determines where the logs are written. The syslog value directs the daemon
to log to syslog, and the console parameter tells it to log the messages to
stdout.
LogFile: This is common to all daemons. Log data is written to this file
when LogType is set to file. The default configuration files use /tmp for
simplicity's sake. In production systems, this should be set to the
distribution-recommended location.
LogFileSize: This is common to all daemons. When logging to a file, if
the file size exceeds this number of megabytes, move it to file.0 (for
example, zabbix_agentd.log.0) and log to a new file. Only one such
move is performed (that is, there's never zabbix_agentd.log.1).
DebugLevel: This is common to all daemons and specifies how much
logging information to provide, starting with 0 (nearly nothing) and
ending with 5 (a lot). It's probably best to run at DebugLevel 3 normally,
and use something higher for debugging. For example, starting with
DebugLevel 4, all server and proxy database queries are logged. At
DebugLevel 5, two extra things are currently logged:

Received pages for web monitoring
Received raw data for VMware monitoring

We'll look at changing the log level for a running daemon in
Appendix A, Troubleshooting.

SourceIP: This is common to all daemons. If the system has multiple
interfaces, outgoing connections will use the specified address. Note that
not all connections will obey this parameter; for example, the backend
database connections on the server or proxy won't.
EnableRemoteCommands: This determines whether the system.run item
should allow running commands. It's disabled by default.
LogRemoteCommands: If EnableRemoteCommands is enabled, this
parameter allows us to log all of the received commands. Unless
system.run is used to retrieve data, it's probably a good idea to enable
logging of the remote commands.

Zabbix Maintenance Chapter 20

[695]

Server: This is also available for the Zabbix proxy, but not for the Zabbix
server. It's a comma-delimited list of IP addresses or host names the agent
should accept connections from. It's only relevant for passive items,
zabbix_get, and other incoming connections.
ListenPort: This is common to all daemons and specifies the port to listen
on.
ListenIP: This is common to all daemons and specifies the IP address to
listen on—it could also be a comma-delimited list of addresses.
StartAgents: This is the number of processes to start that are responsible
for incoming connection handling. If it's a very resource-starved system, it
might be a good idea to reduce this. If this agent is expected to get lots of
queries for passive items, increase this number. Note that it has nothing to
do with the collector or active check processes; their numbers can't be
directly changed. If set to 0, the agent will stop listening to incoming
connections. This could be better security-wise, but could also make
debugging much harder.
ServerActive: This is the list of servers and ports to connect to for active
checks. It follows the syntax of server:port, with multiple entries
delimited by commas. If not set, no active checks are processed. We
discussed this functionality in Chapter 3, Monitoring with Zabbix Agents and
Basic Protocols.
Hostname: This is also available for the Zabbix proxy, but not for the
Zabbix server. If specified, the exact string will be sent to the Zabbix server
as the host name for this system.
HostnameItem: If Hostname isn't specified but HostnameItem is, the
value in this parameter will be interpreted as an item key and the result of
the evaluation will be sent to the server as the host name for this system.
HostMetadata: This is an exact string to be sent to the server; used in
active agent auto-registration.
HostMetadataItem: If HostMetadata isn't specified but
HostMetadataItem is, the value in this parameter will be interpreted as an
item key and the result of the evaluation will be sent to the server as the
host metadata to be used in active agent auto-registration.
RefreshActiveChecks: This specifies how often the agent should connect
to the server and ask for active items. It's set to two minutes by default. If
active checks aren't used at all, it means a useless connection every two
minutes from each agent; it's best not to set ServerActive at all in such a
case.

Zabbix Maintenance Chapter 20

[696]

BufferSend: Active agents will send values every BufferSend
seconds—by default, every five seconds. This allows us to reduce the
number of network connections if multiple values are collected within a
five-second window.
BufferSize: This is a buffer to hold the values for active items. By default,
it's set to 100 values. This is an in-memory buffer; don't set it too large if
memory usage is a concern. The buffer is actually split in half if there's at
least one log-monitoring item-one half is used for normal values, the other
for log entries. If the buffer is full, new normal values will result in the
dropping of older normal values, but it won't affect log entries. If the log
entry part of the buffer is full, log file processing stops, but no entries are
dropped there. If there're log items only and no normal items, half of the
buffer is still reserved for normal entries. If there're only normal items, the
whole buffer is used for them until at least one log item is added.
MaxLinesPerSecond: This is the default maximum number of lines of log
items that should be sent to the server. We discussed this in Chapter 10,
Advanced Item Monitoring.
Alias: This is a way to set an alias for an item key. While usable on all
platforms, we discussed it in Chapter 22, Monitoring Windows. This
parameter can also be used to create two LLD rules with the same key,
even if the key itself doesn't accept parameters. One rule could use the
original key, another the key that's aliased.
Timeout: This is common to all daemons. It specifies the timeout for
running commands, making connections, and so on. Since Zabbix 3.0, it has
a default of three on agents and four on the server and proxy. This could
affect userparameters, for example; a script that takes more than a few
seconds would time out. It's highly suggested not to increase the timeout
on the server side; if we have to handle many values every second, it's not
good to have a server process wait on a single script that long. If you have
such a script that takes a long time to return the value, consider using
zabbix_sender instead, as discussed in Chapter 10, Advanced Item
Monitoring.
AllowRoot: By default, Zabbix daemons, if started as root, try to drop the
privileges to a user specified in the User parameter (refer to the next point).
If the User parameter isn't specified, the outcome depends on this
parameter. If it's set to 0, startup fails. If it's set to 1, the daemon starts as
the root user.

https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf

Zabbix Maintenance Chapter 20

[697]

User: This is common to all daemons. If daemons are started as the root
user and AllowRoot is set to 0, try to change to the user specified in this
parameter. This is set to zabbix by default.
Include: This is common to all daemons. It allows you to include
individual or multiple configuration files. We discussed this feature in
Chapter 10, Advanced Item Monitoring. Note that files are included
sequentially as if literally included in the location where the Include
directive appeared. Also keep in mind that, if specified more than once,
most parameters will override all previous occurrences; that is, the last
option with the same name wins.
UnsafeUserParameters: By default, a subset of characters is disallowed
to be passed as parameters to userparameter keys. If enabled, this option
will allow anything to be passed and is essentially equivalent to
EnableRemoteCommands—the originally prohibited symbols make it
simple to gain shell access. See the default configuration file for a full list of
symbols this parameter would allow.
UserParameter: This allows us to extend agents by adding custom item
keys to it. We discussed this in quite a lot of detail and configured some
user parameters in Chapter 10, Advanced Item Monitoring. This parameter
may be specified multiple times as long the item key is unique; that's a way
to add multiple user parameters.
LoadModulePath: This is common to all daemons. It specifies a path to
load modules, written in the C language. This is an advanced way to
extend Zabbix daemons that's a bit out of scope for this book. Refer to the
Zabbix manual for more details.
LoadModule: This is common to all daemons. Multiple entries of this
parameter may be specified for individual .so files to load inside the
LoadModulePath directory.

Zabbix server daemon parameters
We'll now skip the common parameters we already discussed when looking at the
agent daemon configuration file. The remaining ones are as follows:

DBHost: This is useful if the backend database is on a different system.
Using an IP address is highly recommended here.
DBName: This is the database name; we set it in Chapter 1, Getting Started
with Zabbix. As the comment explains, it should be set to the database file
path when the SQLite backend is used for a proxy.

Zabbix Maintenance Chapter 20

[698]

DBSchema: This is the database schema, only useful with PostgreSQL and
IBM DB2.
DBUser and DBPassword: These are database access credentials. As the
comment explains, they're ignored when the SQLite backend is used for a
proxy.
DBSocket: This is the path to the database socket, if needed. Unless the
Zabbix server or proxy is compiled against a different database library than
the one available at runtime, you'll likely never need this parameter.
DBPort: If connecting to a local or remote database on a nonstandard port,
specify it here.
HistoryStorageURL: This is the URL to the Elasticsearch storage;
remember there's still no official support for Elasticsearch.
HistoryStorageTypes: This is a list of what to store in the Elasticsearch
DB.
HistoryStorageDateIndex: This enables preprocessing of history values
in history storage to store values in different indices based on date.
ExportDir: This is a directory for real-time export of events, history, and
trends in newline-delimited JSON format. If set, it enables real-time export.
ExportFileSize: This is the maximum size per export file in bytes.
StartPollers: Pollers are internal processes that collect data in various
ways. By default, five pollers are started, and this is plenty for tiny
installations such as our test setup. In larger installations, it's common to
have hundreds of pollers. Notice that there're no separate SNMP pollers;
the same processes are responsible for passive agent and SNMP device
polling. How to know whether you have enough? Using the internal
monitoring, find out the average busy rate. If it's above 70%, just add more
pollers. Pollers are responsible for the following:

Connecting to passive agents
Connecting to SNMP devices
Performing simple checks, such as service/port checks
Retrieving internal monitoring data
Retrieving VMware data from the VMware cache
Running external check scripts

StartIPMIPollers: This specifies how many processes should be started
that poll IPMI devices. We configured this parameter in Chapter 14,
Monitoring IPMI devices.

Zabbix Maintenance Chapter 20

[699]

StartPreprocessors: This is the number of pre-forked instances of
preprocessing workers needed for our preprocessing, such as JSON, XML,
and PCRE.
StartPollersUnreachable: If a host isn't reachable, it isn't polled by
normal pollers anymore; special types called unreachable pollers now deal
with that host, including IPMI items. This is done to avoid a situation
where a few hosts that time out take up most of the poller time. If there
aren't enough unreachable pollers, the worst thing that happens is that
hosts that are declared unreachable aren't noticed as being back up as
quickly. By default, only one unreachable poller is started. To know
whether that's enough, observe their busy rate, especially when there're
systems down in the monitored environment.
StartTrappers: By default, there're five trappers. As with pollers,
monitor their busy rate and add more as needed. Trappers are responsible
for receiving incoming connections from the following:

Active agents
Active proxies
zabbix_sender

The Zabbix frontend, including server availability check,
global scripts, and queue data

StartPingers: These processes create temporary files and then call fping
against those files to perform ICMP ping checks. If there're lots of ICMP
ping items, make sure to check the busy rate of these processes and add
more as needed.
StartDiscoverers: Discoverers perform network discovery. Discovery
happens sequentially for each rule. Even if there're lots of available
discoverers, only one at a time works on a single discovery rule. Note that
discoverers split up the rules they'll serve; for example, if there're two
discovery rules and two discoverers, one discoverer will always work with
a particular rule. We discussed network discovery in Chapter 11,
Automating Configuration.
StartHTTPPollers: These processes are responsible for processing web
scenarios. Like discoverers, HTTP pollers split up the web scenarios they
will serve. We discussed web monitoring in Chapter 12, Monitoring Web
Pages.

Zabbix Maintenance Chapter 20

[700]

StartTimers: Timer processes can be quite resource intensive, especially if
lots of triggers use time-based functions such as now(). We discussed time-
based trigger functions in Chapter 6, Detecting Problems with Triggers.
These processes are responsible for the following:

Placing hosts in and out of maintenance at second 0 of every
minute; this is only done by the first timer process if more
than one is started
Evaluating all triggers that include at least one time-based
trigger function at second 0 and second 30 of every minute

StartEscalators: These processes move escalations forward in steps, as
discussed in Chapter 7, Acting upon Monitored Conditions. They also run
remote commands, if instructed so by action operations.
JavaGateway, JavaGatewayPort, and StartJavaPollers: These
parameters point at the Java gateway and its port, and tell the server or
proxy how many processes should connect to that gateway. Note that they
all connect to the same gateway, so the gateway should be able to handle
the load if the number of Java pollers is increased. We discussed Java
monitoring in Chapter 15, Monitoring Java Applications.
StartVMwareCollectors, VMwareFrequency, VMwarePerfFrequency,
VMwareCacheSize, and VMwareTimeout: These control the way VMware
monitoring works. We discussed these parameters in detail in Chapter 16,
Monitoring VMware.
SNMPTrapperFile and StartSNMPTrapper: When receiving SNMP traps,
we must specify the temporary trap file and whether the SNMP trapper
should be started. Note that only one SNMP trapper process may be
started. We configured these parameters in Chapter 4, Monitoring SNMP
Devices.
HousekeepingFrequency: This specifies how often the internal
housekeeper process runs or, to be more specific, how long after the
previous run finished the next run should start. It's not suggested to change
the default interval of one hour; the housekeeper may be disabled as
needed for specific data in Administration | General, as discussed earlier
in this chapter. The first run of the housekeeper happens 30 minutes after
the server or proxy starts. The housekeeper may be manually invoked
using the runtime control option.

Zabbix Maintenance Chapter 20

[701]

MaxHousekeeperDelete: For deleted items, this specifies how many
values per item should be deleted in a single run, with the default being
5,000. For example, if we'd deleted 10 items with 10,000 values each, it
would take two housekeeper runs to get rid of all of the values for all items.
If an item had a huge number of values, deleting them all in one go could
cause database performance issues. Note that this parameter doesn't affect
value cleanup for existing items.
CacheSize: This is the size of the main configuration cache that holds
hosts, items, triggers, and lots of other information. Use of this cache
depends on the size of the configuration data, which is influenced by the
number of hosts, items, and other entities. Be very proactive with this
parameter; if cache usage significantly increases or you plan to add
monitoring for lots of new hosts, increase the configuration cache. If the
configuration cache is full, the Zabbix server stops.
CacheUpdateFrequency: This specifies how often the configuration cache
is updated. The default of one minute is fine for most installations,
although in large environments it might be a good idea to increase this
parameter, as a configuration cache update itself can increase database
load.
StartDBSyncers: This specifies how many database or history syncers
should be started (both names are used interchangeably in various places
in Zabbix). These processes are responsible for calculating triggers that
reference items, receiving new values, and storing the resulting events and
those history values in the database—probably the most database-taxing
processes in Zabbix. The default of four database or history syncers should
be enough for most environments, although it could be useful to increase
for big installations. Be careful with increasing this number; having too
many of these can have a negative effect on performance, although you
might see that, if their average busy rate decreases, the number of values
processed could decrease.
HistoryCacheSize: When values are collected, they're first stored in a
history cache. History or database syncers take values from this cache,
process triggers, and store the values in the database. The history cache
getting full usually indicates performance issues; increasing the cache size
is unlikely to help. If this cache is full, no new values are inserted into it,
but the Zabbix server keeps running.

Zabbix Maintenance Chapter 20

[702]

HistoryIndexCacheSize: This cache holds information about the most
recent and oldest value for all items in the history cache. It's used to avoid
scanning the history cache, which could get rather large. Use of this cache
depends on the number of items that collect data. As with the main
configuration and trend cache, make sure to have enough room in this
cache; if it's full, the Zabbix server will shut down.
TrendCacheSize: This cache holds trend information for the current hour
for each item—not the current hour per the clock, but the current hour
based on the incoming values. That is, the last value that came in for an
item determines the current hour value. For example, if values are sent in
using zabbix_sender for the hour 09:00-10:00 yesterday, that's the current
hour and its trend data is in the trend cache. As soon as the first value for
the hour 10:00-11:00 arrives, the trend cache information for that item is
written to the database and 10:00-11:00 becomes the new current hour. Use
of this cache depends on the amount of items that collect data. As with the
main configuration cache, make sure to have enough room in this cache; if
it's full, the Zabbix server will shut down.
ValueCacheSize: This parameter controls the size of the cache that holds
historical values; but as opposed to the history cache, it holds values that're
expected to be useful in the future. The values in here aren't meant to be
written out to the database, but quite the opposite: values are often read
into this cache from the database. The value cache is used when item values
are needed for trigger calculation (for example, computing the average
value for last 10 minutes), for calculated or aggregate items, for including
in notifications, and other purposes. Value cache population can take a
while when the server first starts up. If the value cache is full, the Zabbix
server will keep running, but its performance will likely degrade. Monitor
this cache and increase the size as needed.
Timeout: This specifies how long Zabbix waits for the agent, SNMP device,
or external check (in seconds).
TrapperTimeout: This parameter controls how long trappers spend on
communicating with active agents and proxies, as well as zabbix_sender.
Being set to the maximum value of five minutes by default, this timeout is
highly unlikely to be reached.

Zabbix Maintenance Chapter 20

[703]

UnreachablePeriod, UnavailableDelay, and UnreachableDelay:
These parameters work together to determine how value retrieval failures
should be handled. If value retrieval fails with a network error, the host is
considered to be unreachable and is checked every UnreachableDelay
seconds (by default, 15). This goes on for UnreachablePeriod seconds (45
by default), and if all checks fail (with the default settings, we end up with
four checks), the host is marked unavailable and is checked every
UnavailableDelay seconds. Note that, since Zabbix 3.0, if an item fails
twice in a row but another item of the same type on the same host
succeeds, the failing item is marked unsupported instead. It's probably best
to leave these values at the defaults, as changing them could lead to fairly
confusing results.
AlertScriptsPath: Custom scripts to be called from actions must be
placed in the directory specified by this parameter. We configured such a
script in Chapter 7, Acting upon Monitored Conditions.
ExternalScripts: Scripts that are to be used in external check items must
be placed in the directory specified by this parameter. We configured such
an item in Chapter 10, Advanced Item Monitoring.
FpingLocation and Fping6Location: These parameters should point at
the fping binaries for IPv4 and IPv6, if different. The fping utility is
required for ICMP checks, which we configured in Chapter 3, Monitoring
with Zabbix Agents and Basic Protocols.
SSHKeyLocation: If using SSH items with keys, the keys must be placed in
the directory specified by this parameter. We configured SSH items in
Chapter 10, Advanced Item Monitoring.
LogSlowQueries: Normally, SQL queries aren't logged up to DebugLevel
4. This parameter allows us to log all queries that take longer than the
number of milliseconds, specified here, at DebugLevel 3. By default, since
Zabbix 3.0, any query that takes longer than three seconds is logged. They
appear in the log file like this:

13890:20151223:152504.421 slow query: 3.005859 sec,
"commit;"

TmpDir: This is a temporary directory for any files the Zabbix server or
proxy need to store. Currently, it is only used for files that're passed to
fping.
SSLCertLocation, SSLKeyLocation, and SSLCALocation: These
parameters specify where certificates, keys, and certificate authority files
will be looked up when the SSL functionality is used with web monitoring.

Zabbix Maintenance Chapter 20

[704]

Again, all of the parameters starting with TLS are relevant for daemon traffic
encryption and won't be discussed here.

The available parameters might be slightly different if you have a more recent version
of Zabbix. To list the supported parameters in the configuration file you have, the
following command could help:

$ grep "### Option" zabbix_agentd.conf

Now, if you get confused about some parameter, what's the first place you should check?
If you said or thought: comments in the configuration files themselves, of course, great. If
not, go take a look at those comments and remember that the Zabbix team really,
really tries hard to make those comments useful and wants you to read them. You
will save your own time that way.

Summary
After Zabbix is installed and configured, a moment comes when maintenance tasks
become important. In this last chapter, we looked at three important tasks:

Monitoring Zabbix itself: We covered internal items that allow figuring
out how much data the Zabbix server or proxy is receiving, monitoring
cache usage, and verifying how busy the internal processes are, how many
unsupported items we have, and a few other things.
Making backups: We discussed the suggested and popular approaches to
making backups (and restoring from them, too) of the most important thing
in Zabbix—its database.
Upgrading Zabbix: We found out the differences between minor and major
version upgrades, and how the database is automatically patched by the
Zabbix server. We also learned about LTS versions, which are supported
for three years and for two extra years for critical and security fixes, while
the other versions are supported for about one month from when the next
version is released.

Zabbix Maintenance Chapter 20

[705]

While talking about upgrades, we also figured out how the compatibility between
different Zabbix components works. With minor-level upgrades, it was very easy; all
components, including the server, proxy, and agent, are compatible with each other.
Let's try to visualize the major upgrade level compatibility matrix:

As a reminder, from the support perspective, the server and proxy should be of the
same major version, and they support all older agent versions. Regarding the Zabbix
Java gateway, it should be from the same major version as the server or proxy;
although the protocol hasn't changed, there're no official tests done and no support
provided for different major versions.

Before performing a major Zabbix version upgrade, make sure to take a database
backup.

After dealing with these three major topics, we discussed general suggestions to keep
Zabbix performance acceptable, paying extra attention to housekeeper configuration.

We also found out a way to see the changes made to the Zabbix configuration: the
audit log. It allows us to see who made what changes to hosts, items, and other
entities. We're a bit disappointed to find out this log doesn't actually record all
operations, especially those performed through the API.

We concluded with quite a detailed look at the parameters in the server, proxy, and
agent configuration files. Is it maybe worth reminding you to pay close attention to
the comments in the configuration files themselves?

We'll conclude this book with two appendices, where we'll discuss the steps and
methods for Zabbix troubleshooting, as well as ways to interact with and join the
Zabbix community.

Zabbix Maintenance Chapter 20

[706]

Questions
Can we use older agents with newer Zabbix servers?1.
Can I use a Zabbix 4.0.1 server with a Zabbix 4.0.0 frontend and some 3.0.32.
agents?
When upgrading from Zabbix 3.4 to 4.0, can I keep my proxies on 3.4 after3.
I've upgraded my Zabbix server to 4.0?

Further reading
Read the following articles for more information:

Zabbix server: https:/ /zabbix. com/ documentation/ 4.0/manual/
appendix/ config/ zabbix_ server

Zabbix agent (Unix): https:/ /zabbix. com/ documentation/ 4.0/ manual/
appendix/ config/ zabbix_ agentd

Appendixes: https:/ /zabbix. com/ documentation/ 4.0/ manual/ appendix

https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_server
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix/config/zabbix_agentd
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix
https://zabbix.com/documentation/4.0/manual/appendix

Troubleshooting
Installing and configuring Zabbix can happen without a hiccup for one user and with
a constant stream of problems for another. The reasons for the problems can differ
from user to user—buggy libraries, bad distribution packaging, unintuitive
configurations in Zabbix, or maybe even an occasional bug in Zabbix itself. Here, we
will look at common problems new users experience when performing various tasks:

Setting up the initial Zabbix installation
Working with the web frontend
Monitoring different devices
Configuring thresholds and alerting

If you face a case that is more complicated than that, we will continue with more
detailed debugging instructions, including:

The Zabbix log file format
Reloading the server and the proxy configuration cache
Controlling running daemons
Observing the work performed by individual daemon processes

Introduction
This chapter caused me a bit of mental agony. Having worked with Zabbix since
2001, there were a lot of potential problem cases to describe. I'd wake up in the
middle of the night with an idea of a brilliant problem (and solution) to include, only
to have forgotten it by the time morning came. But this could have been a never-
ending chapter. A compromise was needed, and reluctantly accepted. This chapter
does not aim to help you with every single problem you will ever encounter in your
life, or with Zabbix. It tries to help with more common issues, and give you some
hints and starting points for further debugging.

Troubleshooting

[708]

Common issues
In this section, we'll look at a few issues you might face.

Installation
There are several common stumbling blocks in the installation process, some caused
by well-hidden factors.

Compilation
Q: I am trying to compile Zabbix on a 64-bit system. I have the1.
corresponding development packages installed, but Zabbix claims they are
not present.

A: Double-check that the 64-bit development packages are installed, not just
the 32-bit ones.

Q: I am trying to compile Zabbix from an SVN checkout, but the2.
configuration script fails with this error:

syntax error near unexpected token 'IKSEMEL,iksemel,'

A: Install the pkg-config package and rerun the commands to generate the
configuration script.

Q: I am trying to compile Zabbix, but it fails.3.

A: It is useful to reduce the number of possible causes. Verify that you are
not compiling with --enable-static, which is known to cause
compilation problems. If compilation fails without that flag, check the
config.log file contents in the source directory. It often contains exact
error details.

Frontend
Q: I have installed the Zabbix frontend. What's the default username and1.
password?

A: The username is Admin, and the password is zabbix.

Troubleshooting

[709]

Q: I'm setting up Zabbix from an SVN checkout. When I switch languages2.
in the frontend, nothing happens.

A: In the frontend directory, in the locale subdirectory, there's a
make_mo.sh script. It compiles the needed .mo files out of the translation
source .po files—run it. Note that it will need Gettext tools, and the web
server might have to be restarted afterward.

Backend
Q: Zabbix is working correctly, but some/all graphs are not displayed.1.

A: Refer to the Apache error log for more details. Usually, this is caused by
the PHP script memory limit being too low—if that is the case, increase it by
setting the memory_limit parameter to a higher value and restarting the
web server. Another possible cause is a broken conf/zabbix.conf.php
file—verify that it does not have any weird characters, especially at the end
of the file.

Q: Complex views, such as screens with many elements, sometimes fail to2.
load. What could be causing this?

A: Like the previous problem, check that the PHP memory limit has not
been exceeded. Additionally, check the PHP script timeout
(max_execution_time parameter) and increase it if necessary.

Q: My graphs have gaps.3.

A: It's not only graphs—data is missing in the database as well. This
problem should be resolved by finding out what causes the data loss.
Common reasons for this are:

Network problems: If the network is unreliable, data will be
missing.
An overloaded monitored device: For example, if you have
added a switch with many ports and are monitoring several
items on each port very often, try increasing the intervals and
disabling unneeded items.
An overloaded Zabbix server: It's usually the database.
Check the system load on the Zabbix database server,
especially iowait.

Troubleshooting

[710]

Q: I had Zabbix installed and running, but it is suddenly showing me the4.
installation screen again.

A: Check the accessibility of the conf/zabbix.conf.php file.

Q: The conf/zabbix.conf.php file is there, but I still see the installation5.
screen.

A: In some distribution packages, the frontend might expect the frontend
configuration file to be in /etc/zabbix/web or a similar location. Check
the package documentation.

Q: I am trying to open a large page with many elements, but refresh kicks6.
in before the page even finishes loading. How can I solve this?

A: Increase the refresh period in your user profile. While the page-loading
speed won't be improved by that, at least the page will get a chance to load
completely.

Q: The clock on my server is correct, but the frontend shows incorrect7.
times.

A: Check that the time zone is set correctly in the PHP configuration.

Q: Zabbix server is running, but the frontend claims it is not.8.

A: This could be caused by multiple factors:

Check the conf/zabbix.conf.php file—the frontend uses
the server address and port specified there to query the
Zabbix server process.
Make sure no firewall is blocking connections from the
frontend to the Zabbix server.
Make sure SELinux is not blocking connections from the
frontend to the Zabbix server.
Make sure you have at least one trapper process
enabled—they accept frontend connections. It is also possible
that there are not enough trappers to service all requests.
This is especially likely if the message about the server being
unavailable appears only every now and then. Monitor the
busy rate of the trapper processes like we did in Chapter 20,
Zabbix Maintenance.

Troubleshooting

[711]

Q: I am having a problem with a frontend that is not listed here.9.

A: Check the Apache error log and PHP log—these often offer an insight
into the cause. Also, go to Administration | Users or User groups and add
your user to the Enabled debug mode group. Afterward, all frontend pages
will have a small Debug control in the lower-right corner. Clicking on it will
show a lot of detail about that specific page, including the exact API and
SQL queries that were performed. Debug mode can use more resources—if
some frontend pages stop working after enabling debug mode, try disabling
it.

Q: I am sure that my Zabbix server is properly configured, but it still won't10.
start .

A: It could be that SELinux is active. Another issue can also be that
coredumps are activated. The Zabbix agent and Zabbix server will not start
if encryption is compiled in, as it can cause security issues with sensitive
data being written in the coredump.

Locked out of the frontend
A common mistake, performed by both new and seasoned users, is locking oneself
out of the frontend. This can happen in several ways, but we're more interested here
in how to get back in:

Q: I forgot my password and tried to log in until the Zabbix frontend1.
stopped responding.

A: By default, Zabbix denies access for 30 seconds after 5 failed login
attempts, so just wait for 30 seconds. You can customize these values in
includes/defines.inc.php:

ZBX_LOGIN_ATTEMPTS: The number of unsuccessful
attempts after which Zabbix denies access
ZBX_LOGIN_BLOCK: How long to deny access for, in seconds

Troubleshooting

[712]

Q: I have forgotten my Admin user password, or I have been tasked with2.
managing a Zabbix installation where the Admin user's password is not
known.

A: You can easily reset the Admin user password by directly modifying the
database:

mysql> update zabbix.users set passwd=MD5('somepassword')
where alias='Admin';

Of course, replace somepassword with some other string. Keep in
mind that, by default, MySQL saves console commands in the
~/.mysql_history file, so you might want to set the password to
some temporary version and update it in the frontend later.

Q: I changed the authentication method, but it didn't work as planned and3.
now I can't log in anymore.

A: You can restore Zabbix's internal authentication method by editing the
database:

mysql> update zabbix.config set authentication_type='0' where
configid='1';

Authentication type 0 is the internal one. For the record, other types are 1 (LDAP)
and 2 (HTTP). Zabbix expects only one config table entry with a configid value of 1.

Monitoring
Sometimes, monitoring something proceeds without a hitch, and sometimes it just
won't work.

General monitoring
Q: I added a host or item, but I don't see it in Monitoring | Latest data.1.

A: Check that the filter there includes the host or its group. Make sure that
the Show items without data checkbox is marked and that other filter
options do not exclude the item you are looking for.

Troubleshooting

[713]

Q: I can see my host in latest data, and new values are coming in—but it is2.
missing in Monitoring | Overview.

A: Overview is probably set to display triggers—verify that the host has
triggers configured. Hosts without triggers are not displayed in trigger
mode.

Monitoring with the Zabbix agent
Q: I am trying to monitor a host using passive Zabbix agent checks, but it1.
doesn't work.

A: Common reasons why Zabbix agent items won't work include the
following:

The Zabbix agent daemon is not running. Simple, right? Still,
start by checking that it is actually running.
The Zabbix daemon is not listening on the correct port or
interface. You can check which port and interface the Zabbix
agent daemon is listening on by running netstat -ntpl on
the monitored host. The default agent daemon port is 10050.
The server IP address in the agent daemon configuration file
is incorrect. Check the configuration file and make sure the
server directive specifies the IP that the Zabbix server will be
connecting from.
Network problems prevent the server from connecting to the
agent daemon properly. This includes things such as local
and network firewalls blocking connections, but also some
network devices and setups actually changing the source IP
address of the Zabbix server's outgoing connections. Test the
connectivity by executing telnet <monitored host IP>
10050 from the Zabbix server. If you have customized the
agent listen port, use that port in this command. If the
connection is not opened, debug it as a network problem. If
the connection is immediately closed, the Zabbix agent
daemon does not see the connection as coming from the IP
address set in the configuration file. Note that, in some cases,
you might actually have to use the IPv6 address, as the
Zabbix agent is receiving that as one of the incoming
connections.

Troubleshooting

[714]

Q: I am trying to monitor a host using active Zabbix agent checks, but it2.
does not work.

A: Active items are a bit trickier. Here are some things to verify:

Check network connectivity as with normal items—from the
monitored machine, execute telnet <Zabbix server IP>
10051

If you have customized the agent listen port, use that port in
this command

The Zabbix proxy IP address and port should be used in almost all
commands if the host is monitored by a proxy.

Make sure to wait for the Zabbix server to refresh its
configuration cache, and that the time specified in the
RefreshActiveChecks option in the agent daemon
configuration file has passed, before expecting results from
the active items. If you want to force the agent to reload the
list of items from the server, restart the agent.
Check whether the host name specified in the agent daemon
configuration file in the Hostname option matches the one
configured for the host in the frontend. Note that this is not
the IP address or DNS name; only the host name will
work—it is also not the visible name, but the so-called
technical host name. Like nearly everything else in Zabbix, it
is case-sensitive.
Make sure that the Zabbix server you want to send active
checks to (or retrieve them from) is listed in the
ServerActive option in the agent daemon configuration
file.

Troubleshooting

[715]

Q: I am verifying that I can get the value on the monitored host, but the3.
Zabbix agent says it is not supported or gives me the wrong data.

A: There are several possible cases:

You are checking things such as the process count or using
the zabbix_agentd -t syntax as root, but various
permission limitations, including grsecurity and SELinux,
can prevent access for the Zabbix agent. This includes the
Zabbix agent showing the number of unique running
processes as 0 even when with root access you can see the
actual number.
Another case when the local process count differs from what
the Zabbix agent returns: various interpreted processes, such
as Python or Perl ones, can appear to the agent as interpreter
processes, only with user processes as a parameter. Processes
known to display this problem include amavisd and xend.
In those situations, you can use a different approach; for
example, with the proc.num[python,,,xend] item key.
This will look for Python processes with the xend string in
their parameters.
The monitored instance is missing. For example, if you are
asking for a metric with the net.if.in[eth0,bytes] key
and the Zabbix agent claims it is not supported, verify that
the eth0 interface actually exists.
Another server has an active Zabbix agent configured with
the same host name and is also sending in data for this host.

Q: I modified a parameter in the agent daemon configuration file, but it4.
ignores my changes.

A: Check several things:

Verify that the modified line is not commented out.
Make sure you are editing the file on the correct system.
Check that the Zabbix agent daemon uses the modified
configuration file. All Zabbix daemons log the configuration
file they are using when starting up.

Troubleshooting

[716]

Check for Include directives. Pay extra attention to ones
that include all files in a directory, and nested includes.
Make sure you properly restarted the daemon. Note that
simply running zabbix_daemon or the zabbix_daemon
restart will not restart the daemon.

Some distribution packages may provide a configuration file and a
convenient symlink to that file. If you use sed -i on a symlink, it
does not edit the target file—it replaces the symlink with a regular
file instead. Some versions of sed may provide an option called --
follow-symlinks to edit the target file.

Q: I see the configuration file specifying one value for a parameter, but the5.
Zabbix agent uses a different value.

A: Refer to the answer to the previous question, especially the part about
making sure it's the correct file on the correct system, and that Include
directives do not override the first instance of the parameter.

Q: I'm trying to use active items or autoregistration on a Windows system,6.
but the automatically acquired hostname is all uppercase and cut at 15
characters.

A: Set HostnameItem=system.hostname[host] in the agent daemon
configuration file. We discussed this in Chapter 22, Monitoring Windows.

Q: I verified that an item works as expected when running7.
zabbix_agentd -t or -p, but it does not work when I check the values in
the frontend.

A: When manually running zabbix_agentd, the user and environment are
likely different from a running daemon, so permissions and environment
values will differ. Check the detailed operations that the item is expected to
perform and what could prevent it from succeeding with the Zabbix agent
daemon permissions. Do not test zabbix_agentd directly as root. The best
approach is testing against a running agent daemon with zabbix_get.

Q: I can get item values in the Zabbix server or with zabbix_get, but8.
when I test with zabbix_agentd -t or -p, I get an
error: [m|ZBX_NOTSUPPORTED] [Collector is not started.].

https://www.packtpub.com/sites/default/files/downloads/Monitoring_Windows.pdf

Troubleshooting

[717]

A: Some items, including system.cpu.util and proc.cpu.util, have
their values calculated by a running agent, as they need multiple samples
before providing a useful value. Such items only work when an agent
daemon is queried by the Zabbix server or zabbix_get.

User parameters
The following list details queries related to user parameters:

Q: My user parameter does not work.1.

A: Here are some common causes that break user parameters:

A missing environment is one of the biggest stumbling
blocks when setting up user parameters. The Zabbix agent
does not explicitly initialize environment details, such as the
HOME variable or other information. This can lead to an
inability to read the required configuration files and other
issues. Make sure to set the environment as required either
by setting variables in the user parameter directly or in a
wrapper script.
Again, restricted permissions for the Zabbix user will be
confusing to debug if you run commands for testing as root,
so always test user parameters as the Zabbix user. If you
need root access for a check, configure access via sudo.
Returning unclean data can also easily break data retrieval.
When retrieving data with user parameters, make sure it
does not contain characters that make it unsuitable for
storage (such as returning 26.6 C for a float datatype item) or
has other weird characters (such as having a CR/LF newline
at the end of the data string).
By default, agent items will timeout after three seconds. It is
not suggested to increase this timeout in most cases,
although it might be reasonably safe to do so if the
userparameter variable is used as an active item.
Remember that active items are not parallel—only one agent
process works on them, one item at a time. Consider using
zabbix_sender for such items instead.

Troubleshooting

[718]

SNMP devices
Q: My SNMP items do not work.1.

A: Double-check that the SNMP version and community string are set
correctly. Specifying an incorrect SNMP version will often cause timeouts,
making it harder to debug. Of course, check general connectivity and
permissions by using the snmpwalk and snmpget commands from the
Zabbix server.

Additionally, make sure you are not overloading the monitored
device by querying lots of values too frequently.

Q: My SNMP items either do not work at all, or fails frequently.2.

A: Perhaps your device does not properly support SNMP GETBULK, try
disabling bulk get support in the host properties for the SNMP interface.

Q: I imported a template, but the LLD fails with an invalid SNMP OID:3.
pairs of macro and OID are expected.

A: The Zabbix SNMP LLD key syntax changed in Zabbix 2.4. Unfortunately,
the XML import process was not updated accordingly, and the imported
LLD rule uses the old syntax. Refer to Chapter 11, Automating Configuration,
for details on the key syntax.

Q: I added MIB files, and they work with the command-line tools, but the4.
Zabbix server seems to be ignoring the MIB files.

A: Make sure to restart the server daemon—MIB definitions are loaded only
upon startup.

Q: My SNMP items work, but some OIDs on a specific device do not, even5.
though data appears in the snmpwalk output.

A: Try snmpget with those OIDs. Some UPSes are known to have buggy
firmware that prevents these metrics from working with GET requests, but
they do work with the GETNEXT requests that snmpwalk uses. If this is the
case, upgrade the firmware on the device.

Troubleshooting

[719]

Q: I listed all SNMP MIBs I want to use in /etc/snmp/snmp.conf, but6.
Net-SNMP utilities do not use them all properly.

A: Some Net-SNMP versions silently trim lines in this file to 1,024 symbols,
including the newline character. Try splitting options on multiple lines so
that a single line does not exceed 1,023 printable characters.

Q: I'm monitoring network traffic, but it returns incorrect data.7.

A: If it's a high-speed interface; make sure to use 64-bit counter OIDs, such
as ifHCInOctets and ifHCOutOctets.

Q: I'm adding SNMP devices to Zabbix, but adding new devices stops the8.
monitoring of the previous devices. If I query each device with snmpget,
they still respond as expected.

A: If it's SNMPv3, make sure all devices have a unique snmpEngineID
variable.

IPMI monitoring
Q: I can't get the IPMI item to work.1.

A: There are several things to verify when IPMI items do not work:

Make sure that the Zabbix server is configured with IPMI
support. Simple, but easy to miss.
Check whether the StartIPMIPollers option in the
server's configuration file is set to the default value, 0. If it is,
set it to 1 and restart the Zabbix server.
Make sure that the sensor names are correct. You can get the
sensor names with IPMItool, and you have to use the name
as it appears in the IPMItool output, with spaces and
without quoting it.
Check using the latest OpenIPMI version. Older OpenIPMI
versions are known to have various issues.

Troubleshooting

[720]

ICMP checks
Q: All of my ICMP checks are failing.1.

A: Here are a few possible reasons:

Check that fping has the correct permissions so that it can
run as root. For this we need to set the setuid bit on the
Zabbix server.
Make sure SELinux does not prevent Zabbix from running
fping. The grep fping /var/log/audit/audit.log
command might reveal more information.

Problems with simple checks
Q: My service works, but the net.tcp.service or net.udp.service1.
item says it does not.

A: Besides verifying that the correct server is queried, check whether the
service responds as Zabbix expects—simple checks are documented in
detail at https:/ / www. zabbix. com/documentation/ 3. 0/manual/ appendix/
items/ service_ check_ details.

Problems with zabbix_sender and trapper items
Q: I send in values with a timestamp, but a different timestamp is entered1.
in the server database.

A: The zabbix_sender includes the current time on the host in a clock
property for the whole request, and Zabbix server adjusts the timestamp for
all values accordingly. It is not possible to tell the server not to do so, or the
sender not to send it. Either fix the time on the sending system, or
implement the basic protocol without sending the request timestamp.

https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details
https://www.zabbix.com/documentation/3.0/manual/appendix/items/service_check_details

Troubleshooting

[721]

General issues
Q: I am monitoring network traffic, but the numbers are unrealistically1.
huge.

A: As the data is likely provided as a counter, make sure the result is stored
as delta (speed per second) on Zabbix.

Q: I'm monitoring a 10 G interface speed in bytes per second, and when the2.
interface is loaded, I lose values.

A: Make sure Type of information is set to Numeric (unsigned). This way,
you'll lose the precision of a fraction of a bit, but keep all the values.

Q: Zabbix does not like the formula for my calculated item.3.

A: Make sure to use proper quoting, especially if the referenced item keys
have quotes. For example, if the referenced item key is
key["parameter",param] in the calculated item formula, it can be used
as last("key[\"parameter\",param]"). Notice the escaping of the
inner double quotes with backslashes.

Q: I'm trying to use an item key, such as proc.num['apache'], but it does4.
not work.

A: Zabbix supports only double quotes; do not use single quotes for
quoting.

Q: I'm trying to use a trigger expression, such as5.
{host:item.LAST()=13}, but it does not work.

A: The problem could be case sensitivity, almost everything is case-sensitive
in Zabbix: item keys, their parameters, host names, trigger functions, and so
on. If you come from Windows, keep reminding yourself that case matters.

Troubleshooting

[722]

Triggers
Q: My trigger doesn't work, or Zabbix refuses to add my trigger.1.

A: Check the trigger's syntax, paying close attention to parentheses—is the
correct type used? Are they all properly closed? The same goes for quotes,
and don't forget about case-sensitivity. Try splitting up complex expressions
to pinpoint the error.

Actions
Q: My actions do not work.1.

A: If the notifications do not appear in Reports | Action log, make sure the
user you want to send notifications to has read permission to at least one of
the hosts that participated in generating the event. Also, check the action
conditions, host maintenance settings, and action operations. Make sure
your actions are not disabled—Zabbix can silently and automatically
disable actions if the resources referenced in action conditions or operations
are deleted. Also check the user media settings, such as severity and time
filter, and whether the configured media type is enabled. If the messages do
appear in the action log and there are error messages, hopefully the error is
helpful. If the messages appear in the action log as successfully sent, check
the logs on your MTA or other receiving system.

Q: My email notifications are not sent, and I can see that error messages,2.
such as [127.0.0.1], did not issue MAIL/EXPN/VRFY/ETRN during the
connection to MTA in e-mail server log files.

A: These messages are most likely caused by Zabbix monitoring the SMTP
service, not by notification attempts. Check the permissions, as mentioned
in the previous question, and check the action log in Reports | Action log to
find out why notifications are failing.

Troubleshooting

[723]

Q: Something happened, and my Zabbix server is sending out loads of3.
messages. Can I quickly stop that?

A: There exists a harsh method to stop runaway or excessive
escalations—you can delete all the currently-active escalations. Note that
even when deleting the active escalations, Zabbix will create new ones—a
good way to solve that is to have the action operation condition only send
out messages when the trigger is not acknowledged, and acknowledge the
problematic triggers. Beware: this will also remove correct escalations. In
the correct database, execute this:

mysql> delete from escalations;

Discoveries and autoregistration
Q: I remove a host from some host group, but it gets mysteriously re-added1.
later.

A: Check network discovery and active agent autoregistration
actions—most likely, they re-add the host.

Q: I move a host to be monitored by a specific proxy or Zabbix server2.
instance, but it changes back to another proxy or Zabbix server instance
later.

A: Check active agent autoregistration actions and the ServerActive
parameter on the agent. The created host will be assigned to the proxy or
server that last received the autoregistration request.

Q: I disable an LLD prototype, but the downstream items or triggers are3.
not disabled.

A: Unfortunately, that's by design and cannot be changed. You can disable
individual items and triggers in the configuration list. For changing the state
of many downstream items or triggers, try using the Zabbix API.

Troubleshooting

[724]

Troubleshooting Zabbix
All of the previous Q&As cover some of the most common issues new users might
encounter. There are a lot of other issues you might run into, and with new versions
of Zabbix, new issues will appear. While it's good to have quick solutions to common
problems, let's look at some details that could be helpful when debugging Zabbix
problems.

The Zabbix log file format
One of the first places we should check when there's an unexplained issue is log files.
This is not just a Zabbix-specific thing; log files are great. Sometimes. Other times,
they do not help, but we will discuss some other options for when log files do not
provide the answer. To be able to find the answer, though, it is helpful to know some
basics about the log file format. The Zabbix log format is as follows:

PPPPPP:YYYYMMDD:HHMMSS.mmm

Here, PPPPPP is process ID, space-padded to six characters, YYYYMMDD is the current
date, HHMMSS is the current time, and mmm is milliseconds for the timestamp. Colons
and the dot are literal symbols. This prefix is followed by a space and then by the
actual log message. Here's an example log entry:

10372:20151223:134406.865 database is down: reconnecting in 10 seconds

If there's a line in the log file without this prefix, it is most likely coming from an
external source, such as a script, or maybe from some library, such as Net-SNMP.

During startup, output similar to the following will be logged:

3737:20181208:111546.489 Starting Zabbix Server. Zabbix 4.0.2
(revision 87228).
 3737:20181208:111546.489 ****** Enabled features ******
 3737:20181208:111546.489 SNMP monitoring: YES
 3737:20181208:111546.489 IPMI monitoring: YES
 3737:20181208:111546.489 Web monitoring: YES
 3737:20181208:111546.489 VMware monitoring: YES
 3737:20181208:111546.489 SMTP authentication: YES
 3737:20181208:111546.489 Jabber notifications: YES
 3737:20181208:111546.489 Ez Texting notifications: YES
 3737:20181208:111546.489 ODBC: YES
 3737:20181208:111546.489 SSH2 support: YES
 3737:20181208:111546.489 IPv6 support: YES
 3737:20181208:111546.489 TLS support: YES

Troubleshooting

[725]

 3737:20181208:111546.489 ******************************
 3737:20181208:111546.489 using configuration file:
/etc/zabbix/zabbix_server.conf
 3737:20181208:111546.500 current database version
(mandatory/optional): 04000000/04000003
 3737:20181208:111546.500 required mandatory version: 04000000

The first line prints out the daemon type and version. Depending on how it was
compiled, it might also include the current SVN revision number. A list of the
compiled-in features follows. This is very useful to know whether you should expect
SNMP, IPMI, or VMware monitoring to work at all. Then, the path to the currently-
used configuration file is shown—helpful when we want to figure out whether the
file we changed was the correct one. In the server and proxy log files, both the current
and the required database versions are present—we discussed those in Chapter 20,
Zabbix Maintenance.

After the database versions, the internal process startup messages can be found:

 3737:20181208:111546.507 server #0 started [main process]
 3747:20181208:111546.517 server #6 started [timer #1]
 3748:20181208:111546.518 server #7 started [http poller #1]
 3743:20181208:111546.518 server #2 started [alerter #1]
 3744:20181208:111546.518 server #3 started [alerter #2]
 3745:20181208:111546.518 server #4 started [alerter #3]
 3749:20181208:111546.519 server #8 started [discoverer #1]
 3750:20181208:111546.529 server #9 started [history syncer #1]
 3746:20181208:111546.529 server #5 started [housekeeper #1]
 3742:20181208:111546.529 server #1 started [configuration syncer #1]
 3769:20181208:111546.529 server #28 started [trapper #5]
 3771:20181208:111546.531 server #30 started [alert manager #1]
 3754:20181208:111546.532 server #13 started [escalator #1]
 3756:20181208:111546.533 server #15 started [proxy poller #1]
 3757:20181208:111546.535 server #16 started [self-monitoring #1]
 3758:20181208:111546.535 server #17 started [task manager #1]
 3761:20181208:111546.535 server #20 started [poller #3]
 3764:20181208:111546.546 server #23 started [unreachable poller #1]
 3765:20181208:111546.556 server #24 started [trapper #1]
 3755:20181208:111546.558 server #14 started [snmp trapper #1]
 3763:20181208:111546.558 server #22 started [poller #5]
 3772:20181208:111546.570 server #31 started [preprocessing manager
#1]
 3766:20181208:111546.570 server #25 started [trapper #2]
 3751:20181208:111546.572 server #10 started [history syncer #2]
 3753:20181208:111546.572 server #12 started [history syncer #4]
 3759:20181208:111546.572 server #18 started [poller #1]
 3762:20181208:111546.584 server #21 started [poller #4]
 3767:20181208:111546.594 server #26 started [trapper #3]

Troubleshooting

[726]

 3768:20181208:111546.596 server #27 started [trapper #4]
 3770:20181208:111546.598 server #29 started [icmp pinger #1]
 3752:20181208:111546.599 server #11 started [history syncer #3]
 3760:20181208:111546.599 server #19 started [poller #2]
 3774:20181208:111547.136 server #33 started [preprocessing worker
#2]
 3773:20181208:111547.162 server #32 started [preprocessing worker
#1]
 3775:20181208:111547.162 server #34 started [preprocessing worker
#3]

There will be many more lines like these; the output here is trimmed. This might help
verify that the expected number of processes of some type has been started. When
looking at log file contents, it is not always obvious which process logged a specific
line, and this is where the startup messages can help. If we see a line such as the
following, we can find out which process logged it:

21974:20151231:184520.117 Zabbix agent item "vfs.fs.size[/,free]" on
host "A test host" failed: another network error, wait for 15 seconds

We can do that by looking for the startup message with the same PID:

grep 21974 zabbix_server.log | grep started
21974:20151231:184352.921 server #8 started [unreachable poller #1]

If more than one line is returned, apply common sense to find out
the startup message.

This demonstrates that hosts are deferred to the unreachable poller after the first
network failure.

But what if the log file has been rotated and the original startup messages are lost?
Besides more advanced detective work, there's a simple method, provided that the
daemon is still running. We will look at that method a bit later in the chapter runtime
process status.

Reloading the configuration cache
We met the configuration cache in Chapter 2, Getting Your First Notification, and we
discussed ways to monitor it in Chapter 20, Zabbix Maintenance. While it helps a lot
performance-wise, it can be a bit of a problem if we are trying to quickly test
something. It is possible to force the Zabbix server to reload the configuration cache.

Troubleshooting

[727]

Run the following to display the Zabbix server options:

zabbix_server --help

We briefly discussed Zabbix proxy configuration cache-reloading in
Chapter 17, Using Proxies to Monitor Remote Locations.

In the output, look for the runtime control options section:

-R --runtime-control runtime-option Perform administrative functions
Runtime control options:
config_cache_reload Reload configuration cache

Thus, reloading the server configuration cache can be initiated by the following:

zabbix_server --runtime-control config_cache_reload
zabbix_server [2682]: command sent successfully

Examining the server log file will reveal that it has received the signal:

forced reloading of the configuration cache

In the background, the sending of the signal happens like this:

The server binary looks up the default configuration file
It then looks for the file specified in the PidFile option
It sends the signal to the process with that ID

As discussed in Chapter 17, Using Proxies to Monitor Remote Locations, the great thing
about this feature is that it's also supported for active Zabbix proxies. Even better,
when an active proxy is instructed to reload its configuration cache, it connects to the
Zabbix server, gets all the latest configuration, and then reloads the local
configuration cache. If such a signal is sent to a passive proxy, it ignores the signal.

What if you have several proxies running on the same system—how can you tell the
binary which exact instance should reload the configuration cache? Looking back at
the steps that were taken to deliver the signal to the process, all that is needed is to
specify the correct configuration file. If running several proxies on the same system,
each must have its own configuration file already, specifying different PID files, log
files, listening ports, and so on. Instructing a proxy that used a specific configuration
file to reload the configuration cache would be this simple:

zabbix_proxy -c /path/to/zabbix_proxy.conf --runtime-control
config_cache_reload

Troubleshooting

[728]

The full or absolute path must be provided for the configuration file;
a relative path is not supported. The same principle applies for
servers and proxies, but it is even less common to run several
Zabbix servers on the same system.

Manually reloading the configuration cache is useful if we have a large Zabbix server
instance and have significantly increased the CacheUpdateFrequency parameter.

Controlling running daemons
A configuration-cache reload was only one of the things available in the runtime
section. Let's look at the remaining options in there:

housekeeper_execute Execute the housekeeper
log_level_increase=target Increase log level, affects all processes
if target is not specified
log_level_decrease=target Decrease log level, affects all processes
if target is not specified
Log level control targets: pid
Process identifier process-type All processes of specified type (for
example, poller)
process-type,N Process type and number (e.g., poller,3)

As discussed in Chapter 20, Zabbix Maintenance, the internal housekeeper is first run
30 minutes after the server or proxy startup. The housekeeper_execute runtime
option allows us to run it at will:

zabbix_server --runtime-control housekeeper_execute

Even more interesting is the ability to change the log level for a running process. This
feature first appeared in Zabbix 2.4, and it made debugging much, much easier.
Zabbix daemons are usually started and just work—until we have to change
something. While we cannot tell any of the daemons to reread their configuration file,
there are a few more options that allow us to control some aspects of a running
daemon. As briefly mentioned in Chapter 20, Zabbix Maintenance, the DebugLevel
parameter allows us to set the log level when the daemon starts, with the default
being 3. Log level 4 adds all the SQL queries, and log level 5 also adds the received
content from web monitoring and VMware monitoring.

Troubleshooting

[729]

For the uninitiated, anything above level 3 can be very surprising and intimidating.
Even a very small Zabbix server can easily log dozens of megabytes in a few minutes
at log level 4. As some problems might not appear immediately, you might have to
run it for hours or days at log level 4 or 5. Imagine dealing with gigabytes of logs you
are not familiar with. The ability to set the log level for a running process allows us to
increase the log level during a problem situation and lower it later, without requiring
a daemon restart.

Even better, when using the runtime log level feature, we can select which exact
components should have their log level changed. Individual processes can be
identified by either their system PID or by the process number inside Zabbix.
Specifying processes by the system PID could be done like this:

zabbix_server --runtime-control log_level_increase=1313

Specifying an individual Zabbix process is done by choosing the process type and
then passing the process number:

zabbix_server --runtime-control log_level_increase=trapper,3

A fairly useful and common approach is changing the log level for all processes of a
certain type—for example, we don't know which trapper will receive the connection
that causes the problem, so we could easily increase the log level for all trappers by
omitting the process number:

zabbix_server --runtime-control log_level_increase=trapper

And if no parameter is passed to this runtime option, it will affect all Zabbix
processes:

zabbix_server --runtime-control log_level_increase

When processes are told to change their log level, they log an entry about it and then
change the log level:

21975:20151231:190556.881 log level has been increased to 4 (debug)

Note that there is no way to query the current log level or set a specific level. If you
are not sure about the current log level of all the processes, there are two ways to sort
it out:

Restart the daemon

Troubleshooting

[730]

Decrease or increase the log level 5 times so that it's guaranteed to be at 0 or 5, then
set the desired level. As a simple test of the options we just explored, increase the log
level for all pollers:

zabbix_server --runtime-control log_level_increase=poller

Open a tail on the Zabbix server logfile:

tail -f /tmp/zabbix_server.log

Notice the amount of data that just 5 poller processes on a tiny Zabbix server can
generate. Then decrease the log level:

zabbix_server --runtime-control log_level_decrease=poller

Runtime process status
Zabbix has another small trick to help with debugging. Run top and see which mode
gives you a more stable and longer list of Zabbix processes—one of sorting by
processor usage (hitting Shift + P) or memory usage (hitting Shift + M) might.

Alternatively, hit o and type COMMAND=zabbix_server.

Press C and notice how the Zabbix processes have updated their command line to
show which exact internal process it is and what is it doing as we can see here:

zabbix_server: poller #1 [got 0 values in 0.000005 sec, idle 1 sec]
zabbix_server: poller #4 [got 1 values in 0.000089 sec, idle 1 sec]
zabbix_server: poller #5 [got 0 values in 0.000004 sec, idle 1 sec]

Follow their status and see how the task and the time it takes change for some of the
processes. We could also have output that could be redirected or filtered through
other commands:

top -c -b | grep zabbix_server

The -c option tells it to show the command line, the same thing we achieved by
hitting C before. The -b option tells top to run in batch mode without accepting input
and just outputting the results. We could also specify -n 1 to run it only once or
specify any other number as needed.

Troubleshooting

[731]

It might be more convenient to use ps:

ps -f -C zabbix_server

The -f flag enables full output, which includes the command line. The -C flag filters
by the executable name:

zabbix 21969 21962 0 18:43 ? 00:00:00 zabbix_server: poller
#1 [got 0 values in 0.000006 sec, idle 1 sec]
zabbix 21970 21962 0 18:43 ? 00:00:00 zabbix_server: poller
#2 [got 0 values in 0.000008 sec, idle 1 sec]
zabbix 21971 21962 0 18:43 ? 00:00:00 zabbix_server: poller
#3 [got 0 values in 0.000004 sec, idle 1 sec]

The full format prints out some extra columns—if all we needed was the PID and the
command line, we could limit columns in the output with the -o flag, like this:

ps -o pid=,command= -C zabbix_server
21975 zabbix_server: trapper #1 [processed data in 0.000150 sec,
waiting for connection]
21976 zabbix_server: trapper #2 [processed data in 0.001312 sec,
waiting for connection]

The equals sign after pid and command tells ps not to use any
header for these columns.

And to see a dynamic list that shows the current status, we can use the watch
command:

watch -n 1 'ps -o pid=,command= -C zabbix_server'

This list will be updated every second. Note that the interval parameter, -n, also
accepts decimals, so to update twice every second, we could use -n 0.5.

This is also the method to find out which PID corresponds to which process type if
startup messages are not available in the log file—we can see the process type and
PID in the output of top or ps.

Troubleshooting

[732]

Further debugging
There are a lot of things that could go wrong, and a lot of tools to help us find out
why it has. If you're familiar with the toolbox, including tools such as tcpdump,
strace, ltrace, and pmap, you should be able to resolve most Zabbix problems.

Some people claim that everything is a DNS problem. Often, they
are right—if nothing else helps, check the DNS. Just in case.
Remember that it's probably a good idea to use IP addresses instead
of DNS names for hosts in Zabbix.

As it would be quite out of scope, we won't discuss general Linux or Unix debugging
here. Of course, there's still a lot of Zabbix-specific things that could go wrong. You
might want to check out the Zabbix troubleshooting page on the wiki: http:/ /
zabbix.org/wiki/ Troubleshooting. If that doesn't help, make sure to check the
community and commercial support options from your local Zabbix partner or
Zabbix SIA. We will discuss options, such as the Zabbix IRC channel, in Appendix B,
Being Part of the Community.

http://zabbix.org/wiki/Troubleshooting
http://zabbix.org/wiki/Troubleshooting
http://zabbix.org/wiki/Troubleshooting
http://zabbix.org/wiki/Troubleshooting
http://zabbix.org/wiki/Troubleshooting
http://zabbix.org/wiki/Troubleshooting
http://zabbix.org/wiki/Troubleshooting
http://zabbix.org/wiki/Troubleshooting
http://zabbix.org/wiki/Troubleshooting
http://zabbix.org/wiki/Troubleshooting

Being Part of the Community
An important aspect of Zabbix is its open source nature. Zabbix is a true open source
solution—it's not open core, and it doesn't have an Enterprise version or some
proprietary plugins. Such approaches could be labeled as fake open source. All
components of Zabbix are completely open source; there are no closed or hidden
components.

Besides being open source, a lot of Zabbix development happens out in the open, too.
That makes it easy to closely follow the development and to get community support.
But each open source project is different in how it is run and what guidelines it has,
so let's look at what you can expect to find from this aspect of Zabbix:

Community support can be a great way to solve a problem, by chatting on
the IRC channel, looking at the Wiki, discussing it on the official forum, or
using the open bug tracker.
Following the development more closely by getting the latest source code
can enable you to try out fixes for problems as soon as possible, provide
early feedback, and get more familiar with the internals of Zabbix.
For product development, support contracts, or other services, commercial
support might be handy.

The development of Zabbix happens out in the open, but external contributions are
usually not accepted, except in one area—translations. Contributors to all the
translations Zabbix has are welcome, and we will also find out how to get involved in
that area.

Community and support
There's a vibrant community of Zabbix users who communicate and share through
different means. You are free to choose the communication and information-exchange
method you prefer, but it is good to know how things are organized.

Being Part of the Community

[734]

You are welcome to ask questions and help others by answering theirs, but it is
suggested to observe some basic rules, which will help you to get your answers:

Be polite; remember that nobody is obliged to respond to you in IRC, on
the forum, or elsewhere.
If you get no response, perhaps nobody knows the answer right now—be
patient. Remember that people live in different time zones, so what is the
middle of the working day for you might be the middle of the night for
somebody else.
Use English, unless communicating in a dedicated native-language section.
Avoid the use of single-letter substitutions for words. Keep in mind that for
many participants, English is a second or third language, so pointing out
mistakes should be polite. Perception of language also varies a lot—what is
considered offensive in one region might be completely fine in another.
Make sure to try to resolve the problem yourself first, by consulting the
official documentation, Wiki, and other sources. It's not polite to ask
community members to do your work for you. On the other hand, if you
would prefer somebody to work on your Zabbix instance, a commercial
support service, mentioned at the end of this chapter, might be more
suitable for you.
When asking for help, provide as much relevant information as possible.
This usually includes your Zabbix version and a detailed problem
description, depending on the problem you are having. That could be the
database used, the operating system or distribution, and information about
other dependencies. It is very helpful to note what steps you have already
taken when trying to resolve the problem. Don't make others guess at the
details—if they have to ask for more information, it will delay the solution.

These and other guidelines are listed at http:/ /zabbix. org/ wiki/ Getting_ help and
make sure to read through those as well.

Chatting on IRC
IRC, or Internet Relay Chat, is a fairly old communication method and is especially
popular within open source project communities. Zabbix users also like to gather for
Zabbix-related discussions on a dedicated channel. Located on the Freenode network
at freenode.net, the #zabbix channel is where you can expect to get help from, and
communicate with, fellow Zabbix users.

http://zabbix.org/wiki/Getting_help
http://zabbix.org/wiki/Getting_help
http://zabbix.org/wiki/Getting_help
http://zabbix.org/wiki/Getting_help
http://zabbix.org/wiki/Getting_help
http://zabbix.org/wiki/Getting_help
http://zabbix.org/wiki/Getting_help
http://zabbix.org/wiki/Getting_help
http://zabbix.org/wiki/Getting_help
http://zabbix.org/wiki/Getting_help
http://zabbix.org/wiki/Getting_help
http://zabbix.org/wiki/Getting_help
http://zabbix.org/wiki/Getting_help
http://freenode.net/

Being Part of the Community

[735]

The most advanced and knowledgeable community members can be found here. You
may use one of the many web-IRC gateways, such as http:/ /webchat. freenode. net/
, or connect to any Freenode IRC server with a dedicated program called an IRC
client. There are many different options available for different operating systems, and
you are free to choose any one—it won't impact your ability to communicate with
people using a different one. In addition to general communication guidelines, there
are some IRC-specific ones as well:

To reiterate the basic suggestion: be patient. Too often, people come in, ask
their question, and leave a few minutes later. Other members of the
channel might be sleeping, eating, or otherwise away from their computer.
So ask your question and stay around for a while. If it happens to be a
weekend, a while might even be several days.
Don't ask whether you can ask you question. If it's about Zabbix, and is
well thought out, just go ahead and ask. Starting with, Hey, can I ask a
question about Zabbix? will require somebody to confirm with, Yes, you can,
then you typing the question, and only then can the helping process start,
which will take much longer.
Don't repeat your question too often; it will only annoy others. While it
might be tempting to ask again and again when new people join, they are
unlikely to be the experts you are waiting for, so again, be patient. On the
other hand, it usually is fine to repeat the question if no answer has
appeared for a longer time—a day, for example.
Don't type the names of people present, hoping it will get you help. That
will needlessly distract them. Wait for somebody to respond instead.

Regarding politeness, remember that all communication is logged and publicly
available. If you reveal yourself to be a person who is hard to communicate with, it
will not only stay in people's memories, but also in the logs.

The Zabbix IRC channel also has a couple of automated helpers, called bots. All new
bug reports and feature requests are announced in the channel by them, and they
have other features as well. At this time, current bot features are described at http:/ /
zabbix.org/wiki/ Getting_ help#IRC_ bots.

http://webchat.freenode.net/
http://webchat.freenode.net/
http://webchat.freenode.net/
http://webchat.freenode.net/
http://webchat.freenode.net/
http://webchat.freenode.net/
http://webchat.freenode.net/
http://webchat.freenode.net/
http://webchat.freenode.net/
http://zabbix.org/wiki/Getting_help#IRC_bots
http://zabbix.org/wiki/Getting_help#IRC_bots
http://zabbix.org/wiki/Getting_help#IRC_bots
http://zabbix.org/wiki/Getting_help#IRC_bots
http://zabbix.org/wiki/Getting_help#IRC_bots
http://zabbix.org/wiki/Getting_help#IRC_bots
http://zabbix.org/wiki/Getting_help#IRC_bots
http://zabbix.org/wiki/Getting_help#IRC_bots
http://zabbix.org/wiki/Getting_help#IRC_bots
http://zabbix.org/wiki/Getting_help#IRC_bots
http://zabbix.org/wiki/Getting_help#IRC_bots
http://zabbix.org/wiki/Getting_help#IRC_bots
http://zabbix.org/wiki/Getting_help#IRC_bots
http://zabbix.org/wiki/Getting_help#IRC_bots

Being Part of the Community

[736]

Not only the most knowledgeable users are available on the Zabbix IRC channel. This
channel is quite popular. At the time of writing, the average number of participants is
about 300. It's actually the most popular IRC channel about monitoring. The demo
Zabbix instance, at http:/ /zabbix. org/ zabbix/ , monitors the number of users on the
channel, and a graph from 2006 until mid-2016 looks like this:(at time of writing the
demo site was down so it was not possible to update the graph with newer statistics)

The number of participants on the channel has grown significantly since 2006. You
can access the current version by going to http:/ /zabbix. org/ zabbix/ and looking
up the simple graph Users in #zabbix on freenode on the Zabbix.org host.

Using the Zabbix Wiki
The system that hosts the demo instance we discovered a moment ago also serves as a
community platform. Primarily, it's a MediaWiki instance that has a large amount of
useful information, and we have referred to it a few times already. Here are a few of
its interesting features:

Zabbix templates
Zabbix technical documentation, including the Zabbix protocol
documentation

http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/
http://zabbix.org/zabbix/

Being Part of the Community

[737]

Various Zabbix guidelines, including bug-reporting guidelines and IRC
etiquette
A list of Zabbix API libraries
Various how-tos, including instructions on high-availability setups and the
installation process

The content is flexible, and it is suggested you investigate what is available on
http://zabbix. org/ wiki/ Main_ Page every now and then.

This book was also supposed to cover how great it is to have new
feature specifications available on the Zabbix website, but
unfortunately, the Zabbix team has decided to withdraw them. You
can still find old specifications at http:/ / zabbix. org/ wiki/
Category:Specifications.

It being a Wiki, everybody is welcome to participate. See a mistake or something
missing? Just go ahead and improve it. Want to write instructions for some process you
found non-trivial to perform? Go ahead and create a new page. And if you are not sure
about it, just ask on IRC, and somebody will surely help.

There is also a Zabbix-related resource directory at http:/ /share.
zabbix. com . It does not host most of the content; instead, it usually
links to templates or scripts on GitHub or a Zabbix website page.
We won't look into it in any detail at this time, as the functionality is
a bit limited, but it is suggested to visit it every now and then to
check whether it has improved.

Using the Zabbix forum
The Zabbix forum is located at http:/ /www.zabbix. com/ forum. You can read it
without registering, but for posting, you will need authenticated access, so register for
a user account. The forum offers both a large collection of already-solved problems
and a chance that you will receive assistance with new problems.

While we've looked at the general suggestions for efficient and satisfactory
communication, there are some forum-specific suggestions as well:

Choose the appropriate forum for your question. If your problem is with
the development version of Zabbix, it should not be raised in the forum
concerning the Zabbix website.

http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Category:Specifications
http://zabbix.org/wiki/Category:Specifications
http://zabbix.org/wiki/Category:Specifications
http://zabbix.org/wiki/Category:Specifications
http://zabbix.org/wiki/Category:Specifications
http://zabbix.org/wiki/Category:Specifications
http://zabbix.org/wiki/Category:Specifications
http://zabbix.org/wiki/Category:Specifications
http://zabbix.org/wiki/Category:Specifications
http://zabbix.org/wiki/Category:Specifications
http://share.zabbix.com
http://share.zabbix.com
http://share.zabbix.com
http://share.zabbix.com
http://share.zabbix.com
http://share.zabbix.com
http://share.zabbix.com
http://share.zabbix.com
http://www.zabbix.com/forum
http://www.zabbix.com/forum
http://www.zabbix.com/forum
http://www.zabbix.com/forum
http://www.zabbix.com/forum
http://www.zabbix.com/forum
http://www.zabbix.com/forum
http://www.zabbix.com/forum
http://www.zabbix.com/forum
http://www.zabbix.com/forum
http://www.zabbix.com/forum

Being Part of the Community

[738]

Choose wisely between when to create a new thread and when to comment
on an existing one. It is highly discouraged to ask different questions on an
existing thread. On the other hand, it's better to search the forum before
creating a duplicate thread about an existing problem.
Enable new message notifications so that you can respond in a timely
fashion if additional information is requested. That will help resolve the
problem sooner.

Filing issues on the tracker
What if you have discovered a bug or have a bright idea on how to improve Zabbix? Zabbix
uses an issue tracker to record such things and track the resolution process. To access
the Zabbix issue tracker, navigate to https:/ /support. zabbix. com. Here, you can
register and log in to search existing reports as well as enter new ones.

When reporting a new issue, choose the correct project—project ZBX is used for bug
reporting, and project ZBXNEXT for new feature requests. It is strongly suggested
you search the tracker before filing a new report—perhaps the problem has already
been reported and there is no need to create duplicate reports.

What if you have resolved the issue yourself and have a patch for fixing a bug or implementing
a feature? Just attach it to the corresponding report. You should discuss your approach
with Zabbix developers before coding for all but the simplest cases—perhaps they are
already working on it, or perhaps your approach will conflict with some other feature
in development. Make sure to get familiar with the coding guidelines, too—they are
available at http:/ / zabbix. org/ wiki/ Main_ Page.

There is also a patch repository, at https:/ /github. com/ zabbix/
zabbix- patches, but it remains to be seen whether it becomes
popular.

Meeting in person
All the discussed channels are great for communicating with other Zabbix users,
getting help, and helping others. But there are also various ways to meet in person. A
very popular and nice yearly event is the official Zabbix conference, but there are
also various less formal events organized by local communities.

https://support.zabbix.com
https://support.zabbix.com
https://support.zabbix.com
https://support.zabbix.com
https://support.zabbix.com
https://support.zabbix.com
https://support.zabbix.com
https://support.zabbix.com
https://support.zabbix.com
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
https://github.com/zabbix/zabbix-patches
https://github.com/zabbix/zabbix-patches
https://github.com/zabbix/zabbix-patches
https://github.com/zabbix/zabbix-patches
https://github.com/zabbix/zabbix-patches
https://github.com/zabbix/zabbix-patches
https://github.com/zabbix/zabbix-patches
https://github.com/zabbix/zabbix-patches
https://github.com/zabbix/zabbix-patches
https://github.com/zabbix/zabbix-patches
https://github.com/zabbix/zabbix-patches
https://github.com/zabbix/zabbix-patches

Being Part of the Community

[739]

The Zabbix summit
The official Zabbix conference is a great event. It was first organized in 2011, and it
used to happen in September, but the latest conference was renamed to summit and
was held in October. It is a chance to find out about the latest things going on at
Zabbix, learn from a lot of very inventive Zabbix users, and have a bit of fun. It
happens in the birthplace and hometown of Zabbix—Riga, Latvia. There are two days
packed with interesting talks, and the Zabbix team tries hard to make everybody feel
welcome. If you have a chance, do try to join this event. Besides the Zabbix summit,
there are also more local summits being organized in Japan, Brazil, China, and the
BeNeLux. All events can be found at https:/ / www.zabbix. com/ events.

Local communities
Your local community might also be arranging get-togethers. Check out the listing of
various communication channels at http:/ /zabbix. org/ wiki/ Usergroups. Join the
user group, follow the news, and maybe even help to organize events. Don't hesitate
to add a new country to the list, too.

Following the development
So you have seen an interesting new feature mentioned on IRC and you want to try it
out? Perhaps you want to see how exactly a particular change was implemented or
comment on the way it was designed. Or perhaps you would like to produce a patch
that depends on some changes being made in the development version. A lot of
Zabbix development happens out in the open; here are the main phases you could be
interested in:

A specification being created
A development starting in a separate feature branch
A feature being merged into the main branches

Specifications were public at http:/ /zabbix. org/ wiki/ Main_ Page
before, but they are no longer available.

https://www.zabbix.com/events
https://www.zabbix.com/events
https://www.zabbix.com/events
https://www.zabbix.com/events
https://www.zabbix.com/events
https://www.zabbix.com/events
https://www.zabbix.com/events
https://www.zabbix.com/events
https://www.zabbix.com/events
https://www.zabbix.com/events
https://www.zabbix.com/events
http://zabbix.org/wiki/Usergroups
http://zabbix.org/wiki/Usergroups
http://zabbix.org/wiki/Usergroups
http://zabbix.org/wiki/Usergroups
http://zabbix.org/wiki/Usergroups
http://zabbix.org/wiki/Usergroups
http://zabbix.org/wiki/Usergroups
http://zabbix.org/wiki/Usergroups
http://zabbix.org/wiki/Usergroups
http://zabbix.org/wiki/Usergroups
http://zabbix.org/wiki/Usergroups
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page

Being Part of the Community

[740]

Providing feedback early is likely to be helpful and has a higher chance of impacting
the design. If you are interested in a specific feature, you could previously have
followed the specification on http:/ / zabbix. org/ wiki/ Main_ Page, but that phase is
closed now. Zabbix uses SVN for code versioning. The feature branches in SVN
provide very early access to the code, and that is a great time to try out and test the
features.

We talked about testing things out; let's find out how to get code that has not been
released as a version yet.

Getting the source
When looking for the Zabbix development version, there are two ways to get it, each
with its strengths and weaknesses.

Daily snapshots
On the Zabbix development download page (http:/ / www.zabbix. com/ developers.
php), there are daily snapshots of development versions provided. These usually have
the same setup procedures as the released versions. The benefits of using daily
snapshots include the following:

Getting them is a simple download
The source archive is already generated for you

The drawbacks include the following:

There is no way to update only those parts of the development version that
have actually changed
There is no way to easily see what actually has changed
You have no access to the feature branches
There is no way to get an arbitrary older version

It is suggested to use daily snapshots if you want a simple, one-time peek at how the
Zabbix development is progressing.

http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://www.zabbix.com/developers.php
http://www.zabbix.com/developers.php
http://www.zabbix.com/developers.php
http://www.zabbix.com/developers.php
http://www.zabbix.com/developers.php
http://www.zabbix.com/developers.php
http://www.zabbix.com/developers.php
http://www.zabbix.com/developers.php
http://www.zabbix.com/developers.php
http://www.zabbix.com/developers.php
http://www.zabbix.com/developers.php
http://www.zabbix.com/developers.php

Being Part of the Community

[741]

Accessing the version-control system
If you plan to follow Zabbix development for a longer period of time, or if you want
to see how exactly a particular change was implemented, daily snapshots will quickly
become cumbersome to use. There are no snapshots of the feature branches, so we
have to use SVN if the feature has not been merged into the main branches yet.

You can also browse the official SVN repository using a WebSVN
instance: https:/ /www. zabbix. org/ websvn/ wsvn/ zabbix. com. It
won't allow you to do a local checkout, but for a quick check on a
few files, it can be more convenient.

To access SVN repositories, specific software—a client—is needed. There are many
different SVN clients for various platforms, and you can choose whichever seems
most convenient to you. Here, we will use the official command-line client. As this
client is available on almost all Linux distributions, we may want to use it on our
Zabbix test server. But before we start playing with it, we must know that the Zabbix
source code repository resides at https:/ /svn. zabbix. com/. In SVN, development is
usually split into a trunk and branches. While the trunk represents the most recent
development work, branches are usually used for stable version maintenance. Zabbix
uses the same schema, and there are branches for stable version maintenance, such as
3.0; the development for the next stable version happens in the development section,
the trunk. The changes do not happen in the version branches or trunk right away,
though—they are first implemented in the development branches, which are usually
located at svn://svn.zabbix.com/branches/dev/ZBX-1, with the correct ZBX or
ZBXNEXT issue number at the end.

Let's say we are interested in the latest features and want to retrieve the trunk. To do
this, run the following:

$ svn checkout svn://svn.zabbix.com/trunk zabbix-trunk

This will proceed to retrieve all the files in the trunk and place them in a directory
called zabbix-trunk. As of writing this, the Zabbix trunk checkout uses
approximately 118 MB on disk, but the amount transferred over the network will be
less than that. Once the process completes, you might be tempted to proceed with
compilation, but that won't be easy to do as there is no configuration script. There's a
convenient script to generate the configuration:

$./bootstrap.sh

https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://www.zabbix.org/websvn/wsvn/zabbix.com
https://svn.zabbix.com/
https://svn.zabbix.com/
https://svn.zabbix.com/
https://svn.zabbix.com/
https://svn.zabbix.com/
https://svn.zabbix.com/
https://svn.zabbix.com/
https://svn.zabbix.com/
https://svn.zabbix.com/
https://svn.zabbix.com/

Being Part of the Community

[742]

After this completes, we should have the configuration script. Now, we can compile
this development version of Zabbix, right? Not quite yet. Development repositories
hold only a generic database schema and content description, so we will not be able
to create the database. We will have to generate the actual schema and data files
ourselves. For the Zabbix frontend, specific CSS files have to be generated, too. It is
also suggested you create a package, one just like those downloadable from the
Zabbix site, so let's do that. But before we can generate the database schema and
package, we have to use the configuration script. We can make it slightly faster and
require fewer dependencies by omitting any features that are not required. This also
enables the creation of a Zabbix package on another machine that does not have all
the dependencies for the required functionality installed, such as SNMP or IPMI
monitoring. In the simplest case, run the following:

$./configure

This will produce the files required for the database schema and package generation.
Now, we can proceed with the schema and CSS-generation:

$ make dbschema
$ make css

We discussed the packages required for compilation in Chapter 1,
Getting Started with Zabbix. For the make css step, you will also
need the Sass Ruby gem.

With the database schema and CSS files generated, we are ready to create a package:

$ make dist

After this command completes, the source directory should have a new archive,
named zabbix-<version>.tar.gz. Here, the version will be whatever name the
development part has received. From now on, we are back on the known path, as this
package is pretty much the same as the one you can download from the released
version area or from the daily snapshots area.

But that was a lot of work to get the same thing we could have downloaded right
away—why do it at all? Indeed, if you only want to grab the development version
once, daily snapshots should be your choice. But an SVN checkout presents other
benefits. Let's understand what those are.

Being Part of the Community

[743]

When writing this book, Zabbix SIA announced to its partners that it
was looking in moving to Git so it can be that things have changed
and that the source code is now available in Git instead on SVN.

Looking at the changesets
A collection of changes to a repository is called a changeset. A changeset that has
been placed in a repository is said to be committed. We can list changesets that have
been committed. For example, if we would like to know what the last changeset that
was committed to this part of the repository is, we would issue the following
command:

$ svn log -r PREV:HEAD

The -r subversion switch allows us to specify revisions—numeric representations of
each change. PREV and HEAD are special references, being the previous version and
latest version, respectively. Sometimes, we might be instructed to test or use a specific
version, called a revision. In that case, it is possible to retrieve it by issuing this
command:

$ svn up -r 1234

Replace 1234 with the revision number you are told to use. This will update the
whole checkout to that revision, and you should now rerun the commands discussed
previously, repeating the same process used after just having checked out.

But sometimes, we might need to update only one or a few files to a specific
revision—that can be done by specifying the path, like this:

$ svn up -r 1234 frontends/php/history.php

You can specify both of the directories and files, and get different revisions to test
behavior changes or find the specific change that introduced a problem for you.

So you have tried out a development version—maybe several revisions. Some time
later, you decide to find out what changes have been made to the trunk. First, you
need to determine the current revision. While in the checkout directory, run the
following command:

$ svn info

Being Part of the Community

[744]

Look for the line that looks like this:

Revision: 60013

With that number in hand, it's now time to update the local copy to the latest and
greatest. From the local copy directory, run the following:

$ svn up

This will proceed to update everything that has changed, compared to whatever copy
you have. As only changes are pulled, this will result in much less data being
downloaded, compared to downloading daily snapshots over and over again. Now,
you can proceed with building Zabbix as discussed before, or you can choose to view
the exact changes developers have committed:

$ svn log -r 60000:HEAD

This command will display the exact changes pushed to the code repository, along
with any comments that the developers decided to add. This can be used to
determine what exactly was changed. But all this was about the forward-looking
development version, that is, the trunk—what if you want to see a particular bug fix for
some problem in the stable version applied to that particular branch? Just as we grabbed the
trunk from the code repository, we can also grab the branch:

$ svn checkout svn://svn.zabbix.com/branches/3.0

Instead of the trunk, we are now specifying the subsection branches. After that comes
the specific branch, which can be any valid branch. What branches are there? We can list
them:

svn ls svn://svn.zabbix.com/branches

While installing a branch version is pretty much the same as installing the trunk,
there's one more use case with branches. If a particular bug is fixed in the branch and
you want to benefit from that before the next stable version is out, it is possible to
apply this single change to the installed copy. To do that, though, the change has to
be first extracted in a format that is easy to reuse. Here, another command comes to
the rescue. Remember svn log, which we used to look at changesets before? It showed
the revision number for each changeset. If we now have this number, we can take a
look at what files a particular commit modified:

$ svn log -v -c 60013

Being Part of the Community

[745]

Here, we use the -c switch to specify a single changeset, and -v to increase the
verbosity level. In the changed paths section, one or more files will be listed, for
example:

M /trunk/ChangeLog
M /trunk/src/zabbix_server/escalator/escalator.c

When creating a patch, we might want to omit files that don't affect actual software
behavior—the changelog in this case. Creating a patch would be done as follows:

$ svn diff -c 60013 src/zabbix_server/escalator/
 escalator.c > /tmp/zabbix.patch

Notice how we used subversion's diff subcommand, specified a single file, and
redirected the output to a file. Now, the patch should be applied to our Zabbix
installation. To do this, change to the Zabbix source installation directory, and execute
the following:

$ patch -p 0 -i /tmp/zabbix.patch

Be careful with extracting patches in this way. They will often work
if the change was made soon after the release you are patching. If a
lot of development has happened between the used version and the
patch, the patch might depend on some other changes and not work
properly.

The patch utility is instructed to use the zabbix.patch input file, and use the full
path information as specified to apply the changes. After patching, we should
evaluate areas the patch applies to—if it's the server, we should recompile and
reinstall our server binary, the same with the agent daemon. If changes were
performed on the frontend only, we'll usually want to apply the patch to the installed
frontend directly, by changing to the frontend directory and applying it as root with
the following command:

patch -p 2 -i /tmp/zabbix.patch

Note that in this case, we are instructing the patch utility to strip the first two
directories from the path inside the patch. When we are patching the frontend, no
recompilation is necessary, and all changes will be visible immediately. What if we
applied a patch but it only made things worse? Thankfully, that is easy to undo by
applying the same patch in reverse:

patch -R -p 2 -i /tmp/zabbix.patch

Being Part of the Community

[746]

If using this command for the frontend, again, no further action is required. If it
affects binaries, we have to recompile them.

Refer to the SVN documentation for more detailed instructions, or
ask on the Zabbix IRC channel for Zabbix-specific subversion
repository questions.

Translating Zabbix
The Zabbix frontend is available in various languages, and that is a great achievement
of the community—the Zabbix company does not do most of the translations. This is
also a great opportunity to get involved and make Zabbix available in your language.
Zabbix uses the online tool Pootle, which is a very easy way to get started. For more
advanced contributors, po files can be downloaded and used with standalone tools. If
you have decided to improve or create Zabbix support for your language, here are a
few general suggestions:

It can be a lot of work; be ready for that.
Before starting, discuss the current state with existing translators for your
language, if there are any.
Think carefully about how the terms could be translated—how would you
translate host, item, trigger, action, operation, and other entities?
Don't try to translate the Zabbix manual right away—once the frontend has
been fully translated and maintained for a while, manual translation can be
considered. Translating and maintaining the Zabbix manual is a huge
amount of work, and there is no language that has yet had a successful
long-term translation of the manual.

If a language you want to work on is available to translate but does
not appear in the frontend language selection, it might be hidden.
You can enable a language by editing the
include/locales.inc.php file and changing the display property
from false to true.

Being Part of the Community

[747]

The exact steps and procedure for participating in the translation work may change,
so I won't reproduce them here. Instead, go to http:/ /zabbix. org/ wiki/
Translating_Zabbix and follow the steps there. It will likely include registering on
the http://zabbix. org/ wiki/ Main_ Page Wiki, adding yourself to the translator table,
subscribing to the translator mailing list, and asking for permissions on Pootle. The
latter is probably best done on the Zabbix IRC channel, and that is also the best place
to ask any questions about getting involved in the translation process.

Commercial support options
Community support is great. It is often speedy, accurate, and friendly. However, even
if it is always like that, there might be cases when you might need a more formal
approach. Common cases where a formal agreement is pursued include the
following:

A company policy requires a support agreement for all systems put in
production
You want qualified help when implementing Zabbix
The Zabbix installation will be managed by people who are not deeply
involved and don't have much experience with it
You need a feature developed or improved

Approaching a commercial support provider is often the best solution in such cases,
and it is possible to obtain such support from the company behind the Zabbix
software. Visit the Zabbix website at http:/ /www. zabbix. com/ support. php to obtain
more information. If you are ready to discuss commercial support in more detail, it's
as easy as sending an email to sales@zabbix.com. At the time of writing this, the
sales team is very knowledgeable, helpful, and friendly, and usually lightning fast at
responding, too. There's no conflict of interest or personal gain for me; this is a
completely sincere and honest endorsement.

I would also advise you to have a look for a local partner. Local partners live in your
timezone, speak your language, and are probably more closely situated to your
company. Another advantage is that they can probably help you with more than just
Zabbix, and you can still buy local support and ask them to include official Zabbix
support in your contract. You can find the full list of partners and the reseller list at
http://www.zabbix. com/ partners. php . This should help you find one that is
geographically convenient.

http://zabbix.org/wiki/Translating_Zabbix
http://zabbix.org/wiki/Translating_Zabbix
http://zabbix.org/wiki/Translating_Zabbix
http://zabbix.org/wiki/Translating_Zabbix
http://zabbix.org/wiki/Translating_Zabbix
http://zabbix.org/wiki/Translating_Zabbix
http://zabbix.org/wiki/Translating_Zabbix
http://zabbix.org/wiki/Translating_Zabbix
http://zabbix.org/wiki/Translating_Zabbix
http://zabbix.org/wiki/Translating_Zabbix
http://zabbix.org/wiki/Translating_Zabbix
http://zabbix.org/wiki/Translating_Zabbix
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://zabbix.org/wiki/Main_Page
http://www.zabbix.com/support.php
http://www.zabbix.com/support.php
http://www.zabbix.com/support.php
http://www.zabbix.com/support.php
http://www.zabbix.com/support.php
http://www.zabbix.com/support.php
http://www.zabbix.com/support.php
http://www.zabbix.com/support.php
http://www.zabbix.com/support.php
http://www.zabbix.com/support.php
http://www.zabbix.com/support.php
http://www.zabbix.com/support.php
http://www.zabbix.com/support.php
http://www.zabbix.com/partners.php
http://www.zabbix.com/partners.php
http://www.zabbix.com/partners.php
http://www.zabbix.com/partners.php
http://www.zabbix.com/partners.php
http://www.zabbix.com/partners.php
http://www.zabbix.com/partners.php
http://www.zabbix.com/partners.php
http://www.zabbix.com/partners.php
http://www.zabbix.com/partners.php
http://www.zabbix.com/partners.php
http://www.zabbix.com/partners.php
http://www.zabbix.com/partners.php

Assessment

Chapter 1: Getting Started with Zabbix
The three main components that we need to set up a Zabbix server are as1.
follows:

Zabbix server
Zabbix frontend
Zabbix database

The C language2.
PHP language3.
Databases other than MySQL are supported are as follows:4.

PostgreSQL
MySQL forks such as MariaDB and Percona DB
IBM DB2
Oracle DB

Chapter 2: Getting Your First Notification
 The 5 severity levels in Zabbix are as follows:1.

Disaster
High
Average
Warning
Information
Not classified

Yes, Zabbix can send messages to users or groups, or both and2.
configuration is done under the tab configuration—Actions
Yes, for every item, there is a preprocessing tab that allows us to make3.
some changes before Zabbix stores the data in the database.

Assessment

[749]

Chapter 3: Monitoring with Zabbix Agents
and Basic Protocols

This is from the perspective of the agent. We talk about active or passive1.
agents but, in fact, there is only one agent that we configure to be active or
passive or both. Items can then be configured for active or passive.
No, remember it only works for passive items and there is also the2.
configuration cache that needs to be updated first.
This is a possible solution and it was needed before but, since Zabbix 4.0,3.
we now have an item, net.if.total, that calculates the total throughput
of our data over the interface.

Chapter 4: Monitoring SNMP Devices
Yes, by making use of the bulk request1.
OIDs can change from device to device. Also, with firmware updates, it can2.
change to streamline our templates. We can also make use of dynamic
indexes
When configuring snmptraps in Zabbix, the following options are there:3.

Using the Zabbix Perl script
Using custom scripts

Chapter 5: Managing Hosts, Users, and
Permissions

Only a passive status is shown1.
There are 4 status icons: Zabbix Agent, SNMP, JMX, and IPMI2.
Yes we have the option to either gather or not gather data during3.
maintenance
No, super admins always have full access4.

Assessment

[750]

Chapter 6: Detecting Problems with
Triggers

This is possible—we can use s, m, h, d, and w1.
No, but Zabbix has support for trigger dependencies (it is a feature on the2.
development list for 4.2 for dependencies on proxies)
There are visible icons on triggers in the problem page3.
Yes, in the trigger, we can choose to have a recovery expression or not4.

Chapter 7: Acting upon Monitored
Conditions

Yes, in our actions, we have to configure the proper operations1.
It's not built-in in Zabbix, but you could do it by creating a script that can2.
talk to the API

Chapter 8: Simplifying Complex
Configurations with Templates

Yes. If we use macros, we can define them on a global, template, and host1.
level.
Yes. Some items are changeable on the host level even if we have used a2.
template for it.
No. We can only link templates to hosts and other templates. Linking a3.
template to a group is not possible.

Chapter 9: Visualizing Data with Screens
and Slideshows

Slideshows are based on graphs, and we need two or more graphs to create1.
a slideshow.
Yes, by making use of the refresh interval multiplier.2.

Assessment

[751]

Screens are probably deprecated and it's best to not put too much effort3.
into them. The new dashboard has the same functionality, and graphs look
much nicer and have more options.

Chapter 10: Advanced Item Monitoring
Yes, it does, but we need to use a special item for this. 1.
Calculated items will read the existing data from the database and then2.
create a new item with it.
No, aggregated items are calculated just like calculated items by Zabbix3.
serve, but they do it for a group of servers. The zabbix-get tool can only
retrieve information from Zabbix agents.
No, it's not a good idea. It's best to look for another solution to do this, as4.
we've seen for our MySQL database.
No, it works on all items.5.
Yes, place the history at 0 days. Zabbix will create dependent items but6.
won't keep the data from the master item.

Chapter 12: Monitoring Web Pages
Yes, scenarios are supported and No, steps in scenarios cannot be skipped1.
there are no if-else scenarios

Yes, user macros are supported for variables—we can even use regex on2.
them.
Yes, scenarios support HTTP and HTTPS—only web.page.xxx items do3.
not support HTTPS
Yes, this can be done by using the Zabbix sender or the sender protocol4.

Chapter 13: High-Level Business Service
Monitoring

No. At this time, we can only show them on screen; there's no way to1.
export them, not even on a weekly basis.
No, services aren't calculated retrospectively in time.2.

Assessment

[752]

No. We need to configure this in our services by specifying uptime/3.
downtime.

Chapter 14: Monitoring IPMI Devices
You have to use the short sensor name, and with Zabbix 4.0, you can also1.
use an ID and long sensor name if you specify that with name: and id:
Not out of the box with the Zabbix built-in IPMP solution, but you could2.
do this with scripting and the Zabbix sender.

Chapter 15: Monitoring Java Applications
Yes, but you need to install proxies; only one Java gateway can be installed1.
per Zabbix server or per proxy.
The Java gateway will retrieve items from the JAVA application and the2.
Zabbix server will pull the data from the gateway and process the data. We
don't use Zabbix agents.
Ports we need to open for JMX monitoring are: 3.

For communication between Zabbix server/proxy and the
gateway, we need port 10052 (not IANA registered).
For communication between the Java gateway and an
application, we need to open another port (standard in Zabbix
12345).

Chapter 16: Monitoring VMware
Only one; linking Template Virt VMware with the ESX or vCenter and1.
adding the correct macros should be enough.
Debug logging only for VMware can be done as follows:2.

We can increase logging global by changing the log level in
the zabbix server configuration.
We can do it more smart and only increase VMware logs by
running:

zabbix_server -R log_level_increase="vmware
collector"

Assessment

[753]

Not out of the box; however, with LLD, it's probably possible to create your3.
own implementation.

Chapter 17: Using Proxies to Monitor
Remote Locations

No, we have to chose between active or passive.1.
Depending if the hosts is active or passive, or both, we need to point the2.
agent to the correct proxy by changing the IP of the Zabbix server in the
proxy configuration, and we need to tell Zabbix in the frontend that our
host is monitored by a proxy.
Yes, but we need to install a Zabbix Java gateway on our proxy.3.

Chapter 18: Encrypting Zabbix Traffic
The types of encryption can we use in Zabbix are as follows:1.

Encryption by PSK file
Encryption by certificate

Sadly, yes, there's no encryption between the Zabbix server and the2.
database, and there's no encryption between the Zabbix server/proxy and
the Java gateway.

Chapter 19: Working Closely with Data
No, other libraries such as Perl, PHP, and Python are available but they're1.
all community supported at the moment.
There's a method that doesn't need user authentication to retrieve the API2.
version; we can call it with curl, or even better, use the new Zabbix HTTP
item to retrieve that information.
We can use XML import/export to back up our hosts and templates.3.

Assessment

[754]

Chapter 20: Zabbix Maintenance
Yes, we can still use 1.0 agents but, since Zabbix 4.0, the oldest agent we1.
can use is 1.4.
Yes, in a major version, we can mix server and frontend even if they have2.
minor upgrades. Agents are backward compatible till 1.4; however, we'll
lose some functionality so it's best to upgrade agents when you can.
Proxies will still work and send data to the Zabbix server; however, they3.
can't receive updates from the Zabbix server. Proxies need to have the same
version as the Zabbix server so you need to upgrade them as soon as
possible.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Network Scanning Cookbook
Sairam Jetty

ISBN: 978-1-78934-648-0

Install and configure Nmap and Nessus in your network infrastructure
Perform host discovery to identify network devices
Explore best practices for vulnerability scanning and risk assessment
Understand network enumeration with Nessus and Nmap
Carry out configuration audit using Nessus for various platforms
Write custom Nessus and Nmap scripts on your own

https://www.packtpub.com/networking-and-servers/network-scanning-cookbook

Other Books You May Enjoy

[756]

Practical Network Automation - Second Edition

Abhishek Ratan

ISBN: 978-1-78995-565-1

Get started with the fundamental concepts of network automation
Perform intelligent data mining and remediation based on triggers
Understand how AIOps works in operations
Trigger automation through data factors
Improve your data center's robustness and security through data digging
Get access infrastructure through API Framework for chatbot and voice
interactive troubleshootings
Set up communication with SSH-based devices using Netmiko

https://www.packtpub.com/networking-and-servers/practical-network-automation-second-edition

Other Books You May Enjoy

[757]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us an
honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors,
and Packt. Thank you!

Index

A
action, components
 action conditions 66
 action operations 66
 main configuration 66
actions
 about 66, 266, 273
 complex conditions 272
 conditions 271
 conditions, limiting 266, 269
 examples 271
 issue management systems, integrating 298
 media limits, for users 274, 275
 notifications, sending out 275, 277
 remote commands 301, 304
 scripts, used as media 295, 298
 threshold, escalating 283, 284, 286, 288,

292

active agent auto-registration
 about 496, 497
 metadata 498
active agent
 connecting 125
 key parameter quoting 126
 mass update, using 128
 positional parameters, for item names 126,

128

active items 100, 104, 107, 110, 113, 115
active proxy, configuration parameters
 ConfigFrequency 609
 DataSenderFrequency 609
 HeartbeatFrequency 609
 ProxyLocalBuffer 608
 ProxyOfflineBuffer 608
active proxy
 about 586
 setting up 586, 587, 588, 589, 590

agent daemon configuration file
 using 429
agent daemon parameters 693, 696, 697
agent items
 used, for checking page performance 522
 used, for extracting content from web pages

523

 used, for obtaining page 522
 using 521
aggregate function
 grpmax 402
 grpmin 402
 grpsum 402
aggregate items
 about 394, 399
 across multiple groups 402
 using 399, 400, 401, 402
atd job
 reference 420
authentication methods
 about 213
 HTTP 213
 internal 214
 LDAP 213
authentication options 520, 521
auto-discovery 445
automatic discovery 572, 573
availability triggers 599

B
backend libraries
 about 613
 GnuTLS 613
 mbed TLS 613
 OpenSSL 613
bitwise trigger function
 using 552, 554

[759]

Bugzilla 299

C
cache usage 667, 668
calculated items
 about 394
 creating 394, 395
 quoting 396
 referencing, from multiple hosts 397, 398
Certificate Authority (CA) 617
certificate expiry time
 finding 421, 422, 423
Certificate Revocation List (CRL) 619
Certificate Signing Request (CSR) 618
certificate validity
 determining 424, 425, 426
certificate-based encryption 617, 623
certificates
 creating, in directory 617, 618
 Zabbix, setting up 619, 621
change per second
 calculating 436
community authentication 144
Comprehensive Perl Archive Network (CPAN)

658

configuration file parameters, Zabbix
 agent daemon 696, 697
 agent daemon parameters 693
 common parameters 693, 696, 697
 exploring 693
 server daemon parameters 697, 702, 704
configuration management database (CMDB)

496

configuration
 exporting 639
 modifying 639
 modifying, in templates 328
CPU discovery
 about 471
 reimplementing 476, 477
custom intervals
 about 133
 custom scheduling 135
 flexible intervals 134
custom LLD rules

 CPU discovery, reimplementing 476, 477
 creating 476
 MySQL databases, discovering 478, 479,

480

custom modules 435

D
dashboard
 configuring 350, 352
 sharing 350, 353, 354
data
 challenges 369
 displaying 369
 information, overloading 370
 non-interactive display 370
 reusing, on server 394
 section, displaying 370, 371
database
 data, changing 635, 637, 638
 exploring 632
 users, managing 633, 635
default templates
 handling 327
dependent items 436, 437, 439, 440, 441
discovered graphs
 including, in screens 465, 467, 468
Discovery rule 447
discrete sensors
 bitwise trigger function, using 552, 554
 monitoring 550, 551
disk device discovery 576
downtime
 specifying 541, 543
dynamic screens 358

E
embedded Perl code
 debugging 169, 171
 SNMP Trap Translator (SNMPTT) 172
 temporary file, handling 171
 using 162, 163
 values, filtering by originating host 168
 values, filtering by received data 164, 167
enp0s25 447
eth0 447

[760]

eth1 447
eth2 447
Ethernet 159
event details 255, 257
event generation 257, 259
event tags
 about 386, 387
 log data, viewing 392, 393
 part of line, extracting 387, 388, 389, 390
 timestamps, parsing 390, 391, 392
 used, for correlation 260, 262
external checks
 about 420
 certificate expiry time, finding 421, 422, 423
 certificate validity, determining 424, 425, 426
Extra Packages for Enterprise Linux (EPEL) 18

F
filesystem discovery
 about 461
 custom thresholds, with user macro context

469, 470
 discovered graphs, including in screens 465,

467, 468
 LLD JSON format 461, 463, 464
frontend navigation
 exploring 45, 46
 user profile 47, 50
functionality, monitoring solution
 alerting 11
 data gathering 10
 data storage 11
 visualization 11

G
generic categories
 availability 76
 efficiency 77
 management 77
 monitoring 76
 performance 76
 security 77
global regular expressions
 about 380, 481, 483
 testing 484, 485

 usage, in default templates 485
global screens 363
global scripts
 about 305, 306
 configuring 307, 308, 310, 312
 reusing, in actions 314
global search
 about 83
 using 83, 84
GnuTLS 613
group function, parameters
 func 399
 group 399
 key 399
 param 399

H
host groups 185, 189, 190, 192
host inventory
 about 192
 data, editing manually 192, 195
 populating, automatically 196, 198
host maintenance
 about 198
 ad hoc maintenance 212
 daily maintenance 209
 data collection, avoiding 206
 data, collecting 199, 201, 203, 204, 206
 monthly maintenance 210
 one-time only maintenance 209
 period options 208
 period, creating 199
 weekly maintenance 210
host prototypes 577, 579
host screens 363
host
 monitoring, through proxy 590, 591, 592,

593, 594
hosts
 about 185, 189, 190, 192
 assigning, to host group 187
 templates, linking to 322, 323, 325, 326
 templates, unlinking from 339, 341
HTTP agent
 used, for content extraction 525

[761]

human-readable 81

I
ICMP checks
 about 87
 setting up 122, 124
Intelligent Platform Management Interface

(IPMI) 11, 79, 185, 545
internal item ID 119
internal process busy rate 669, 671
Internet Control Message Protocol (ICMP) 121
internet service daemon (inetd) 28
IPMI device
 obtaining 545
IPMI items
 creating 548
 setting up 546, 548
IPMI monitoring
 preparing for 546
issue management systems
 Atlassian JIRA 300
 Bugzilla 299
 Computer Associates Unicenter Service Desk

Manager 300
 integrating 298
IT services
 about 528
 configuring 533, 534, 536
 data, sending 537, 538
 setting up 529, 531
 test items, creating 531, 532
 triggers, creating 531, 532
item data, function
 avg 400
 count 400
 last 400
 max 400
 min 400
 sum 400
item key parameter separator 523
item scheduling 119, 120
items
 cloning 97, 98
 configuring 76
 generic categories, monitoring 76

 monitoring 80
 querying 99
 types 78, 80

J
Java Management Extensions (JMX) 11, 446,

556, 597
JMX items
 discovering 565, 568
 monitoring 559, 561, 564
 querying, manually 561, 563
JSONPath functionality 441

L
libssh2 dependency
 reference 434
Lightweight Directory Access Protocol (LDAP)

235

Linux Servers 54
LLD 446
LLD configuration 577
LLD configuration, VMware
 host prototypes 577, 579
 server configuration details 581, 583
 server operation details 581, 583
 template interaction, summarizing 580
LLD JSON format 461, 463, 464
LLD methods
 about 446
 CPU discovery 471
 filesystem discovery 461
 network interface discovery 447, 448, 450,

451

 SNMP discovery 471, 473, 474, 475
loadable modules
 reference 436
log files
 about 373
 filtering, for specific strings 377, 378, 379,

380

 log data, alerting 382, 383, 384, 385
 monitoring 374
 rotated files, monitoring 380, 381
 single file, monitoring 374, 375, 376, 377
Long-Term Support (LTS) 17

[762]

Long-Term Support (LTS) branches 680
loopback 159
Low-Level Discovery (LLD) 12, 445, 565, 573,

640

M
macros
 usage 329, 330
 user macros 331, 332, 333, 334
Management Information Base (MIB)
 about 143, 148
 adding 151, 153
mass update
 using 342
mbed TLS 613
Media Access Control (MAC) 310
metrics 574, 576
minor version upgrade, Zabbix
 binaries, upgrading 682
missed data
 checking 245, 246
modified configuration
 importing 641, 642
monitoring
 steps 10
mounted filesystem discovery 576
multiple templates
 using 335, 336, 337, 338, 339
MySQL databases
 discovering 478, 479, 480
MySQL
 reference 25

N
nested templates 343, 344, 346
Net-SNMP
 reference 142
 using 143, 145, 148
 using, with SNMPv3 149
network device discovery 576
network discovery rule
 configuring 486
network discovery
 about 486
 reaction, to results 490, 492, 493, 495

 results, viewing 488, 489
 uniqueness criteria 495
Network File System (NFS) 273
network interface discovery
 about 447, 448, 450, 451
 calculated items, creating automatically 453,

454

 discovery results, filtering 457, 458, 461
 graphs, creating automatically 456, 457
 triggers, creating automatically 455, 456
network monitoring software 10
Network Time Protocol (NTP) 93
Network-Attached Storage (NAS) 142
New Values Per Second (NVPS) 662, 665
notifications
 macros, using 278, 280
 recovery messages, sending 281, 282
 sending out 275, 277

O
Object Identifier (OID) 146, 446
Open Database Connectivity (ODBC) 446
OpenSSL 613
operations, VMware monitoring
 about 576
 LLD configuration 577
overlapping flexible intervals 134

P
passive items
 about 90, 93, 96
 cloning items 97, 98
 items, querying 99
passive proxy, configuration parameters
 ProxyConfigFrequency 609
 ProxyDataFrequency 609
 StartProxyPollers 609
passive proxy
 about 586, 606
 setting up 606, 607, 608
Perl Compatible Regular Expressions (PCRE)

380

permissions
 about 213
 maintenance configuration 226

[763]

PHP
 reference 34
Pre-Shared Key (PSK) 612
Preprocessing 82
proxy availability, monitoring
 custom proxy buffer item 603, 604, 605
 internal proxy buffer item 602, 603
 last access item 599, 600, 601, 602
proxy
 availability, monitoring 599
 benefits 595, 596, 597
 configuration, tweaking 608, 609
 host, monitoring 590, 591, 592, 593, 594
 limitations 598
 operation 598, 599
PSK encryption 614, 616

R
raw data
 extracting, from frontend 625, 627
 obtaining 625
 obtaining, by querying the database 627,

629, 631
 using, in remote site 631, 632
read cache 668
real-time mode 431
recovery expression 257, 259
Red Hat Enterprise Linux (RHEL) 87
remote commands 301, 304
reports
 viewing 538, 539, 540, 541
reused data
 aggregate items 394
 calculated items 394
rotated files
 monitoring 380, 381

S
screens
 about 355, 357, 358
 additional screen elements 360, 362
 discovered graphs, including in 465, 467,

468

 dynamic screens 358
 templated screens 363, 366

scripts
 used, as media 295, 298
Security-Enhanced Linux (SELinux) 18
Self-Monitoring, Analysis, and Reporting

Technology (S.M.A.R.T) 11
server configuration details 581, 583
server daemon parameters 697, 702, 704
server operation details 581, 583
server
 data, reusing 394
Service Level Agreement (SLA) 528
service tree 528, 529
Short-term support branches 680
simple checks 87, 121
Simple Network Management Protocol (SNMP)

10, 142, 185, 446
Simple Network Management Protocol Object

Identifiers (SNMP OID) 81
slide shows 367, 369
SNMP discovery 471, 473, 474, 475
SNMP items
 polling, in Zabbix 154, 156
SNMP Trap Translator (SNMPTT)
 reference 172
SNMP traps
 custom mapping 177
 custom script, using 172, 175
 database lookups 177, 179, 180, 183
 embedded Perl code, using 162, 163
 filtering 176
 receiving 161, 162
SNMP
 bulk requests 161
 dynamic indexes 158, 160
 OIDs, translating 157
SNMPv3
 authentication 150
 context 150
 encryption 150
 engine ID 150
 using, with Net-SNMP 149
SSH File Transfer Protocol (SFTP) 242
SSH items
 about 432
 creating 433, 434

[764]

suffix multipliers 252

T
TCP connectivity 87
Telnet items
 about 432, 435
 syntax 435
Template App Zabbix Proxy 668
Template App Zabbix Server 668
template interaction
 summarizing 580
templates
 configuration, modifying in 328
 creating 320, 321, 322
 linking, to hosts 322, 323, 325, 326
 nested templates 343, 344, 346, 347
 unlinking, from hosts 339, 341
test hosts 74
test system
 load, creating 71, 74, 75
threshold
 escalating 283, 284, 286, 288, 292
 runner analogy 295
time shift 249
timestamps
 parsing 390, 391, 392
traps 161
trigger dependencies 273
trigger functions
 iregexp 382
 regexp 382
 str() 382
Trigger value 266
Triggers
 about 230, 231, 233
 customizing 253
 dependencies 235, 239, 241
 display options 254
 expressions, constructing 242, 244
 flapping, prevention 244, 245
 human-readable constants 252
 relative thresholds 249
 severities 254
 system time, verifying 251
 time out 247

 time shift 249
 trigger-and-item relationship 234
 with adaptable thresholds 247
 with limited period 248, 249
tunnel 159

U
Ubuntu/Debian
 Zabbix, installing 19
units
 about 132
 custom intervals 133
 items, copying 136, 138
unreachable pollers 699
uptime
 specifying 541, 543
User Datagram Protocol (UDP) 143
user groups
 about 213
 creating 219, 220, 221, 223, 225
user macros 331, 332, 333, 334
user parameters
 about 403
 avoiding 419
 benefits 420
 drawbacks 420
 flexible user parameters 407, 409
 level of details, monitoring 409, 410, 411
 setting up 403, 404, 405
 statistics, monitoring 411, 412, 413, 414,

415, 416, 418
 unsupported data, querying 405, 406
 wrapper scripts 418, 419
user
 creating 214, 217, 219
users 213

V
value mapping 129, 131, 132
value preprocessing 436, 437, 439, 440, 441
VMware monitoring
 preparing for 571, 572
VMwareCollectors 572

[765]

W
web frontend configuration wizard
 configuration file, writing 38
 database, accessing 36
 finishing 40
 logging in 40, 42, 43
 PHP prerequisites 34, 36
 server details 37
 summary 38
 using 33
 welcome screen 33
web page
 monitoring 501
web-monitoring scenario
 agent 508
 attempts 507
 creating 501, 504, 507
 HTTP proxy 509
 trigger, creating 509, 511
wrapper scripts 418, 419

X
XML export
 scripting 640
 using, for configuration 640
 using, for configuration changes 638
XML import
 hosts, generating 643, 645
 images 646
 using, for configuration changes 638
XPath functionality 441

Z
Zabbix agent
 active agent, with multiple servers 115
 active and passive items, selecting 117, 118
 active items 100, 104, 107, 110, 113, 114
 passive items 90, 93, 96
 supported items 115
 using 87, 89
Zabbix API libraries
 using 657
Zabbix API
 history, obtaining 653, 656

 host, creating 652
 host, deleting 652
 host, disabling 651
 host, enabling 651
 issues 656
 logging in 650
 operations 647
 trends, obtaining 653, 656
 value map, creating 653
 version, obtaining 648, 650
 working with 646
Zabbix Gnomes
 about 659
 reference link 659
Zabbix interface
 first page, checking 513
 logging in 513
 logging into 511
 logging out 516
 login, checking 515
 logout, checking 518, 520
Zabbix internal monitoring
 about 661
 cache usage 667, 668
 internal events 674, 676
 internal process busy rate 669, 671
 New Values Per Second (NVPS) 662, 665
 problems 671
 server uptime 666
 unknown triggers 674, 676
 unsupported items 671
 unsupported items, counting 672, 673
 unsupported items, reviewing 674
Zabbix Java gateway
 setting up 556, 558, 559
Zabbix proxy 585
Zabbix sender
 agent daemon configuration file, using 429
 data, sending with 426, 427, 428, 429
 timestamped values, sending 431, 432
 values, sending from file 429, 430, 431
Zabbix server uptime 666
Zabbix upgradation
 compatibility 688
 data, gathering 687, 688

 database versioning 685, 687
 frontend configuration file 688
 frontend, upgrading 683
 Long-Term Support (LTS) branches 680
 major-level upgrades 684, 685
 minor version upgrade 682
 Short-term support branches 680
 version policy 680
Zabbix
 action, creating 66, 68
 agent, setting up 20
 architecture 11, 14
 backup, performing 676
 backup, restoring 677
 compilation 21, 22
 configuration changes 691, 692
 configuration, separating 678
 dash 23
 data backups 678
 data, gathering 51
 database, backing up 677
 database, populating 24
 email parameters, configuring 63, 65
 encryption 622
 environment, setting up 31
 features 11, 14
 Global-based correlation 260
 graphs 58, 60
 hardware requirements 17
 host, creating 53

 information flow 70
 initial configuration 23
 installation 15
 installing, from CentOS 18
 installing, from EPEL 18
 installing, from packages 18
 installing, from Red Hat Enterprise Linux

(RHEL) 18
 installing, from source 20
 installing, from Ubuntu/Debian 19
 item, creating 55, 57, 58
 performance considerations 689, 691
 prerequisites 31
 reference 17, 43
 repository 19
 repository, selecting 16
 server, setting up 20
 server, starting 26
 service's state, verifying 29, 31
 setting up, with certificates 619, 621
 SNMP items, polling 154, 156
 software requirements 20
 source, downloading 21
 Trigger level-based correlation 260
 triggers, creating 61, 63
 underscore 23
 upgrade process 681
 upgrading 679
 version, selecting 16
 web frontend 31

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Zabbix
	Technical requirements
	The first steps in monitoring
	Zabbix features and architecture
	Installation
	Choosing the version and repository
	Hardware requirements

	Installing from the packages
	Red Hat Enterprise Linux (RHEL)/CentOS
	EPEL
	The Zabbix repository

	Ubuntu/Debian

	Installing from source
	The server and agent
	Software requirements
	Downloading the source
	Compilation

	Dash or underscore
	Initial configuration
	Creating and populating the database
	Starting up
	Verifying the service's state
	The web frontend
	Prerequisites and setting up the environment

	Using the web frontend configuration wizard
	Step 1 – welcome
	Step 2 – PHP prerequisites
	Step 3 – database access
	Step 4 – Zabbix server details
	Step 5 – summary
	Step 6 – writing the configuration file
	Step 7 – finishing the wizard
	Step 8 – logging in

	Summary
	Questions
	Further reading

	Chapter 2: Getting Your First Notification
	Exploring the frontend
	The user profile

	Monitoring quickstart
	Creating a host
	Creating an item
	Introducing simple graphs
	Creating triggers
	Configuring email parameters
	Creating an action

	Information flow in Zabbix
	Let's create some load
	Basic item configuration
	Monitoring categories
	Availability
	Performance
	Security
	Management
	Efficiency

	Item types
	How items can be monitored

	Using global search
	Summary
	Questions
	Further reading

	Chapter 3: Monitoring with Zabbix Agents and Basic Protocols
	Using the Zabbix agent
	Passive items
	Cloning items
	Manually querying items

	Active items
	An active agent with multiple servers
	Supported items
	Choosing between active and passive items

	Item scheduling
	Simple checks
	Setting up ICMP checks

	Connecting all of the pieces
	Key parameter quoting
	Positional parameters for item names
	Using mass update

	Value mapping
	Units
	Custom intervals
	Flexible intervals
	Custom scheduling

	Copying items

	Summary
	Questions
	Further reading

	Chapter 4: Monitoring SNMP Devices
	Using Net-SNMP
	Using SNMPv3 with Net-SNMP
	The engine ID
	Authentication, encryption, and context

	Adding new MIBs
	Polling SNMP items in Zabbix
	Translating SNMP OIDs
	Dynamic indexes
	SNMP bulk requests

	Receiving SNMP traps
	Using embedded Perl code
	Filtering values by received data
	Filtering values by originating host
	Debugging
	Handling the temporary file
	SNMP Trap Translator (SNMPTT)

	Using a custom script
	Filtering the traps
	Custom mapping
	Database lookups

	Summary
	Questions
	Further reading

	Chapter 5: Managing Hosts, Users, and Permissions
	Hosts and host groups
	Host inventory
	Editing inventory data manually
	Populating inventory data automatically

	Host maintenance
	Creating maintenance periods
	Collecting data during maintenance
	Not collecting data during maintenance
	Maintenance period options
	One-time only maintenance
	Daily maintenance
	Weekly maintenance
	Monthly maintenance

	Ad hoc maintenance

	Users, user groups, and permissions
	Authentication methods
	Creating a user
	Creating user groups
	Permissions and maintenance

	Summary
	Questions
	Further reading

	Chapter 6: Detecting Problems with Triggers
	Triggers
	The trigger-and-item relationship

	Trigger dependencies
	Constructing trigger expressions

	Preventing trigger flapping
	Checking for missing data
	Triggers that time out
	Triggers with adaptable thresholds
	Triggers with a limited period
	Relative thresholds or time shift
	Verifying system time
	Human-readable constants
	Customizing how triggers are displayed
	Triggering severities
	Triggering display options

	Event details
	Event generation and recovery expression

	Using event tags for correlation
	Summary
	Questions
	Further reading

	Chapter 7: Acting upon Monitored Conditions
	Actions
	Limiting conditions when alerts are sent
	Additional action conditions
	Complex conditions

	Dependencies and actions
	Media limits for users

	Sending out notifications
	Using macros
	Sending recovery messages

	Escalating once a threshold is reached
	Runner analogy

	Using scripts as media
	Integrating with issue management systems
	Bugzilla
	Computer Associates Unicenter Service Desk Manager
	Atlassian JIRA

	Remote commands

	Global scripts
	Configuring global scripts
	Reusing global scripts in actions

	Summary
	Questions
	Further reading

	Chapter 8: Simplifying Complex Configurations with Templates
	Creating a template
	Linking templates to hosts
	Handling default templates
	Changing the configuration in a template
	Macro usage
	User macros

	Using multiple templates
	Unlinking templates from hosts

	Using mass update
	Nested templates
	Summary
	Questions
	Further reading

	Chapter 9: Visualizing Data with Screens and Slideshows
	Configuring and sharing dashboards
	Configuring the dashboard
	Sharing our dashboard

	Screens
	Dynamic screens
	Additional screen elements
	Templated screens

	Slide shows
	Showing data on a big display
	Challenges
	Non-interactive display
	Information overload
	Displaying a specific section automatically

	Summary
	Questions
	Further reading

	Chapter 10: Advanced Item Monitoring
	Log file monitoring
	Monitoring a single file
	Filtering for specific strings
	Monitoring rotated files
	Alerting on log data

	Event tags
	Extracting part of the line
	Parsing timestamps
	Viewing log data

	Reusing data on the server
	Calculated items
	Quoting in calculated items
	Referencing items from multiple hosts

	Aggregate items
	Aggregating across multiple groups

	User parameters
	Just getting it to work
	Querying data that the Zabbix agent doesn't support
	Flexible user parameters
	Level of the details monitored
	Environment trap
	Things to remember about user parameters
	Wrapper scripts

	When not to use user parameters

	External checks
	Finding a certificate expiry time
	Determining certificate validity

	Sending in the data
	Using an agent daemon configuration file
	Sending values from a file
	Sending timestamped values

	SSH and Telnet items
	SSH items
	Telnet items

	Custom modules
	Value preprocessing and dependent items
	Summary
	Questions
	Further reading

	Chapter 11: Automating Configuration
	LLD
	Network interface discovery
	Automatically creating calculated items
	Automatically creating triggers
	Automatically creating graphs
	Filtering discovery results

	Filesystem discovery
	Introducing the LLD JSON format
	Including discovered graphs in screens
	Custom thresholds with user macro context

	CPU discovery
	SNMP discovery
	Creating custom LLD rules
	Reimplementing CPU discovery
	Discovering MySQL databases

	Global regular expressions
	Testing global regexps
	Usage in the default templates

	Network discovery
	Configuring a discovery rule
	Viewing the results
	Reacting to the discovery results
	Uniqueness criteria

	Active agent auto-registration
	Auto-registration metadata

	Summary
	Further reading

	Chapter 12: Monitoring Web Pages
	Monitoring a simple web page
	Creating a web-monitoring scenario
	Other scenarios and step properties
	Alerting on web scenarios

	Logging into the Zabbix interface
	Step 1 – checking the first page
	Step 2 – logging in
	Step 3 – checking login
	Step 4 – logging out
	Step 5 – checking logout

	Authentication options
	Using agent items
	Getting the page
	Checking page performance
	Extracting content from web pages
	Extracting content using the HTTP agent

	Summary
	Questions
	Further reading

	Chapter 13: High-Level Business Service Monitoring
	Deciding on the service tree
	Setting up IT services
	Creating test items and triggers
	Configuring IT services
	Sending in the data

	Viewing reports
	Specifying uptime and downtime
	Summary
	Questions
	Further reading

	Chapter 14: Monitoring IPMI Devices
	Getting an IPMI device
	Preparing for IPMI monitoring
	Setting up IPMI items
	Creating an IPMI item

	Monitoring discrete sensors
	Using the bitwise trigger function

	Summary
	Questions
	Further reading

	Chapter 15: Monitoring Java Applications
	Setting up the Zabbix Java gateway
	Monitoring JMX items
	Querying JMX items manually
	What to monitor?
	JMX discovery

	Summary
	Questions
	Further reading

	Chapter 16: Monitoring VMware
	Technical requirements
	Preparing for VMware monitoring
	Automatic discovery
	Available metrics
	The underlying operation
	VMware LLD configuration
	Host prototypes
	Summarizing default template interaction
	Server operation and configuration details

	Summary
	Questions
	Further reading

	Chapter 17: Using Proxies to Monitor Remote Locations
	Active proxies and passive proxies
	Setting up an active proxy
	Monitoring a host through a proxy

	Proxy benefits
	Proxy limitations
	Proxy operation

	Proxies and availability monitoring
	Method 1 – last access item
	Method 2 – internal proxy buffer item
	Method 3 – custom proxy buffer item

	Setting up a passive proxy
	Tweaking the proxy configuration
	Summary
	Questions
	Further reading

	Chapter 18: Encrypting Zabbix Traffic
	Overview
	Backend libraries
	PSK encryption
	Certificate-based encryption
	Being our own authority
	Setting up Zabbix with certificates

	Concerns and further reading
	Summary
	Questions
	Further reading

	Chapter 19: Working Closely with Data
	Getting raw data
	Extracting from the frontend
	Querying the database
	Using data in a remote site

	Diving further into the database
	Managing users
	Changing existing data
	Finding out when
	The when in computer language
	Finding out what
	Performing the change

	Using XML import/export for configuration
	Exporting the initial configuration
	Modifying the configuration
	The XML export format
	Scripting around the export

	Importing modified configuration
	Generating hosts
	Importing images

	Starting with the Zabbix API
	Simple operations
	Obtaining the API version
	Logging in
	Enabling and disabling hosts
	Creating a host
	Deleting a host
	Creating a value map
	Obtaining history and trends

	Issues with the Zabbix API
	Using API libraries

	Summary
	Questions
	Further reading

	Chapter 20: Zabbix Maintenance
	Internal monitoring
	New values per second
	Zabbix server uptime
	Cache usage
	Internal process busy rate
	Unsupported items and more problems
	Counting unsupported items
	Reviewing unsupported items
	Internal events and unknown triggers

	Backing things up
	Backing up the database
	Restoring from a backup
	Separating configuration and data backups

	Upgrading Zabbix
	General version policy
	Long-term support and short-term support
	The upgrade process
	Minor version upgrade
	Upgrading binaries

	Upgrading the frontend
	Major-level upgrades
	Database versioning
	Gathering data during the upgrade
	The frontend configuration file

	Compatibility

	Performance considerations
	Who did that?
	Exploring configuration file parameters
	Zabbix agent daemon and common parameters
	Zabbix server daemon parameters

	Summary
	Questions
	Further reading

	Chapter 21: Troubleshooting
	Introduction
	Common issues
	Installation
	Compilation
	Frontend
	Backend
	Locked out of the frontend

	Monitoring
	General monitoring
	Monitoring with the Zabbix agent
	User parameters

	SNMP devices
	IPMI monitoring
	ICMP checks
	Problems with simple checks
	Problems with zabbix_sender and trapper items
	General issues

	Triggers
	Actions
	Discoveries and autoregistration

	Troubleshooting Zabbix
	The Zabbix log file format
	Reloading the configuration cache
	Controlling running daemons
	Runtime process status

	Further debugging

	Chapter 22: Being Part of the Community
	Community and support
	Chatting on IRC
	Using the Zabbix Wiki
	Using the Zabbix forum
	Filing issues on the tracker
	Meeting in person
	The Zabbix summit
	Local communities

	Following the development
	Getting the source
	Daily snapshots
	Accessing the version-control system
	Looking at the changesets

	Translating Zabbix
	Commercial support options

	Assessment
	Other Books You May Enjoy
	Index

