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Preface

With the unprecedented rate at which data is being collected today in almost all
fields of human endeavor, there is an emerging economic and scientific need to
extract useful information from it. For example, many companies already have
data-warehouses in the terabyte range (e.g., FedEx, Walmart). The World Wide
Web has an estimated 800 million web-pages. Similarly, scientific data is reach-
ing gigantic proportions (e.g., NASA space missions, Human Genome Project).
High-performance, scalable, parallel, and distributed computing is crucial for
ensuring system scalability and interactivity as datasets continue to grow in size
and complexity.

To address this need we organized the workshop on Large-Scale Parallel KDD
Systems, which was held in conjunction with the 5th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, on August 15th,
1999, San Diego, California. The goal of this workshop was to bring researchers
and practitioners together in a setting where they could discuss the design, im-
plementation, and deployment of large-scale parallel knowledge discovery (PKD)
systems, which can manipulate data taken from very large enterprise or scien-
tific databases, regardless of whether the data is located centrally or is globally
distributed. Relevant topics identified for the workshop included:

– How to develop a rapid-response, scalable, and parallel knowledge discovery
system that supports global organizations with terabytes of data.

– How to address some of the challenges facing current state-of-the-art data
mining tools. These challenges include relieving the user from time and vol-
ume constrained tool-sets, evolving knowledge stores with new knowledge
effectively, acquiring data elements from heterogeneous sources such as the
Web or other repositories, and enhancing the PKD process by incrementally
updating the knowledge stores.

– How to leverage high performance parallel and distributed techniques in
all the phases of KDD, such as initial data selection, cleaning and prepro-
cessing, transformation, data-mining task and algorithm selection and its
application, pattern evaluation, management of discovered knowledge, and
providing tight coupling between the mining engine and database/file server.

– How to facilitate user interaction and usability, allowing the representation
of domain knowledge, and to maximize understanding during and after the
process. That is, how to build an adaptable knowledge engine which supports
business decisions, product creation and evolution, and leverages information
into usable or actionable knowledge.

This book contains the revised versions of the workshop papers and it also
includes several invited chapters, to bring the readers up-to-date on the recent
developments in this field. This book thus represents the state-of-the-art in paral-
lel and distributed data mining methods. It should be useful for both researchers
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and practitioners interested in the design, implementation, and deployment of
large-scale, parallel knowledge discovery systems.

December 1999 Mohammed J. Zaki
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Parallel and Distributed Data Mining:

An Introduction

Mohammed J. Zaki

Computer Science Department
Rensselaer Polytechnic Institute

Troy, NY 12180
zaki@cs.rpi.edu

http://www.cs.rpi.edu/~zaki

Abstract. The explosive growth in data collection in business and sci-
entific fields has literally forced upon us the need to analyze and mine
useful knowledge from it. Data mining refers to the entire process of ex-
tracting useful and novel patterns/models from large datasets. Due to the
huge size of data and amount of computation involved in data mining,
high-performance computing is an essential component for any successful
large-scale data mining application. This chapter presents a survey on
large-scale parallel and distributed data mining algorithms and systems,
serving as an introduction to the rest of this volume. It also discusses
the issues and challenges that must be overcome for designing and im-
plementing successful tools for large-scale data mining.

1 Introduction

Data Mining and Knowledge Discovery in Databases (KDD) is a new interdis-
ciplinary field merging ideas from statistics, machine learning, databases, and
parallel and distributed computing. It has been engendered by the phenomenal
growth of data in all spheres of human endeavor, and the economic and scientific
need to extract useful information from the collected data. The key challenge in
data mining is the extraction of knowledge and insight from massive databases.

Data mining refers to the overall process of discovering new patterns or build-
ing models from a given dataset. There are many steps involved in the KDD
enterprise which include data selection, data cleaning and preprocessing, data
transformation and reduction, data-mining task and algorithm selection, and
finally post-processing and interpretation of discovered knowledge [1,2]. This
KDD process tends to be highly iterative and interactive.

Typically data mining has the two high level goals of prediction and descrip-
tion [1]. In prediction, we are interested in building a model that will predict
unknown or future values of attributes of interest, based on known values of some
attributes in the database. In KDD applications, the description of the data in
human-understandable terms is equally if not more important than prediction.
Two main forms of data mining can be identified [3]. In verification-driven data
mining the user postulates a hypothesis, and the system tries to validate it.

M.J. Zaki, C.-T. Ho (Eds.): Large-Scale Parallel Data Mining, LNAI 1759, pp. 1–23, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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The common verification-driven operations include query and reporting, multi-
dimensional analysis or On-Line Analytical Processing (OLAP), and statistical
analysis. Discovery-driven mining, on the other hand, automatically extracts
new information from data, and forms the main focus of this survey. The typical
discovery-driven tasks include association rules, sequential patterns, classifica-
tion and regression, clustering, similarity search, deviation detection, etc.

While data mining has its roots in the traditional fields of machine learning
and statistics, the sheer volume of data today poses the most serious problem.
For example, many companies already have data warehouses in the terabyte
range (e.g., FedEx, UPS, Walmart). Similarly, scientific data is reaching gigantic
proportions (e.g., NASA space missions, Human Genome Project). Traditional
methods typically made the assumption that the data is memory resident. This
assumption is no longer tenable. Implementation of data mining ideas in high-
performance parallel and distributed computing environments is thus becoming
crucial for ensuring system scalability and interactivity as data continues to grow
inexorably in size and complexity.

Parallel data mining (PDM) deals with tightly-coupled systems including
shared-memory systems (SMP), distributed-memory machines (DMM), or clus-
ters of SMP workstations (CLUMPS) with a fast interconnect. Distributed data
mining (DDM), on the other hand, deals with loosely-coupled systems such as a
cluster over a slow Ethernet local-area network. It also includes geographically
distributed sites over a wide-area network like the Internet. The main differences
between PDM to DDM are best understood if view DDM as a gradual transition
from tightly-coupled, fine-grained parallel machines to loosely-coupled medium-
grained LAN of workstations, and finally very coarse-grained WANs. There is
in fact a significant overlap between the two areas, especially at the medium-
grained level where is it hard to draw a line between them.

In another view, we can think of PDM as an essential component of a DDM
architecture. An individual site in DDM can be a supercomputer, a cluster of
SMPs, or a single workstation. In other words, each site supports PDM locally.
Multiple PDM sites constitute DDM, much like the current trend in meta- or
super-computing. Thus the main difference between PDM and DDM is that of
scale, communication costs, and data distribution. While, in PDM, SMPs can
share the entire database and construct a global mined model, DMMs generally
partition the database, but still generate global patterns/models. On the other
hand, in DDM, it is typically not feasible to share or communicate data at all;
local models are built at each site, and are then merged/combined via various
methods.

PDM is the ideal choice in organizations with centralized data-stores, while
DDM is essential in cases where there are multiple distributed datasets. In fact, a
successful large-scale data mining effort requires a hybrid PDM/DDM approach,
where parallel techniques are used to optimize the local mining at a site, and
where distributed techniques are then used to construct global or consensus pat-
terns/models, while minimizing the amount of data and results communicated.
In this chapter we adopt this unified view of PDM and DDM.
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This chapter provides an introduction to parallel and distributed data min-
ing. We begin by explaining the PDM/DDM algorithm design space, and then
go on to survey current parallel and distributed algorithms for associations, se-
quences, classification and clustering, which are the most common mining tech-
niques. We also include a section on recent systems for distributed mining. After
reviewing the open challenges in PDM/DDM, we conclude by providing a road-
map for the rest of this volume.

2 Parallel and Distributed Data Mining

Parallel and distributed computing is expected to relieve current mining meth-
ods from the sequential bottleneck, providing the ability to scale to massive
datasets, and improving the response time. Achieving good performance on to-
day’s multiprocessor systems is a non-trivial task. The main challenges include
synchronization and communication minimization, work-load balancing, finding
good data layout and data decomposition, and disk I/O minimization, which is
especially important for data mining.

2.1 Parallel Design Space

The parallel design space spans a number of systems and algorithmic components
including the hardware platform, the kind of parallelism exploited, the load
balancing strategy, the data layout and the search procedure used.

Distributed Memory Machines vs. Shared Memory Systems. The performance
optimization objectives change depending on the underlying architecture. In
DMMs synchronization is implicit in message passing, so the goal becomes com-
munication optimization. For shared-memory systems, synchronization happens
via locks and barriers, and the goal is to minimize these points. Data decom-
position is very important for distributed memory, but not for shared memory.
While parallel I/O comes for “free” in DMMs, it can be problematic for SMP
machines, which typically serialize I/O. The main challenge for obtaining good
performance on DMM is to find a good data decomposition among the nodes, and
to minimize communication. For SMP the objectives are to achieve good data
locality, i.e., maximize accesses to local cache, and to avoid/reduce false sharing,
i.e., minimize the ping-pong effect where multiple processors may be trying to
modify different variables which coincidentally reside on the same cache line.
For today’s non-uniform memory access (NUMA) hybrid and/or hierarchical
machines (e.g., cluster of SMPs), the optimization parameters draw from both
the DMM and SMP paradigms.

Another classification of the different architectures comes from the database
literature. Here, shared-everything refers to the shared-memory paradigm, with a
global shared memory and common disks among all the machines. Shared-nothing
refers to distributed-memory architecture, with a local memory and disk for each
processor. A third paradigm called shared-disks refers to the mixed case where
processors have local memories, but access common disks [4,5].
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Task vs. Data Parallelism. These are the two main paradigms for exploiting al-
gorithm parallelism. Data parallelism corresponds to the case where the database
is partitioned among P processors. Each processor works on its local partition
of the database, but performs the same computation of evaluating candidate
patterns/models. Task parallelism corresponds to the case where the processors
perform different computations independently, such as evaluating a disjoint set
of candidates, but have/need access to the entire database. SMPs have access
to the entire data, but for DMMs this can be done via selective replication or
explicit communication of the local data. Hybrid parallelism combining both
task and data parallelism is also possible, and in fact desirable for exploiting all
available parallelism in data mining methods.

Static vs. Dynamic Load Balancing. In static load balancing work is initially
partitioned among the processors using some heuristic cost function, and there
is no subsequent data or computation movement to correct load imbalances
which result from the dynamic nature of mining algorithms. Dynamic load bal-
ancing seeks to address this by stealing work from heavily loaded processors
and re-assigning it to lightly loaded ones. Computation movement also entails
data movement, since the processor responsible for a computational task needs
the data associated with that task as well. Dynamic load balancing thus incurs
additional costs for work/data movement, but it is beneficial if the load imbal-
ance is large and if load changes with time. Dynamic load balancing is especially
important in multi-user environments with transient loads and in heterogeneous
platforms, which have different processor and network speeds. These kinds of en-
vironments include parallel servers, and heterogeneous, meta-clusters. With very
few exceptions, most extant parallel mining algorithms use only a static load
balancing approach that is inherent in the initial partitioning of the database
among available nodes. This is because they assume a dedicated, homogeneous
environment.

Horizontal vs. Vertical Data Layout. The standard input database for mining
is a relational table having N rows, also called feature vectors, transactions, or
records, and M columns, also called dimensions, features, or attributes. The data
layout can be row-wise or column-wise. Many data mining algorithms assume a
horizontal or row-wise database layout, where they store, as a unit, each trans-
action (tid), along with the attribute values for that transaction. Other methods
use a vertical or column-wise database layout, where they associate with each at-
tribute a list of all tids (called tidlist) containing the item, and the corresponding
attribute value in that transaction. Certain mining operations a more efficient
using a horizontal format, while others are more efficient using a vertical format.

Complete vs. Heuristic Candidate Generation. The final results of a mining
method may be sets, sequences, rules, trees, networks, etc., ranging from simple
patterns to more complex models, based on certain search criteria. In the inter-
mediate steps several candidate patterns or partial models are evaluated, and
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the final result contains only the ones that satisfy the (user-specified) input pa-
rameters. Mining algorithms can differ in the way new candidates are generated
for evaluation. One approach is that of complete search, which is guaranteed
to generate and test all valid candidates consistent with the data. Note that
completeness doesn’t mean exhaustive, since pruning can be used to eliminate
useless branches in the search space. Heuristic generation sacrifices completeness
for the sake of speed. At each step, it only examines a limited number (or only
one) of “good” branches. Random search is also possible. Generally, the more
complex the mined model, the more the tendency towards heuristic or greedy
search.

Candidate and Data Partitioning. An easy way to discuss the many parallel
and distributed mining methods is to describe them in terms of the computa-
tion and data partitioning methods used. For example, the database itself can
be shared (in shared-memory or shared-disk architectures), partially or totally
replicated, or partitioned (using round-robin, hash, or range scheduling) among
the available nodes (in distributed-memory architectures).

Similarly, the candidate concepts generated and evaluated in the different
mining methods can be shared, replicated or partitioned. If they are shared
then all processors evaluate a single copy of the candidate set. In the replicated
approach the candidate concepts are replicated on each machine, and are first
evaluated locally, before global results are obtained by merging them. Finally, in
the partitioned approach, each processor generates and tests a disjoint candidate
concept set.

In the sections below we describe parallel and distributed algorithms for some
of the typical discovery-driven mining tasks including associations, sequences,
decision tree classification and clustering. Table 1 summarizes in list form where
each parallel algorithm for each of the above mining tasks lies in the design
space. It would help the reader to refer to the table while reading the algorithm
descriptions below.

2.2 Association Rules

Given a database of transactions, where each transaction consists of a set of
items, association discovery finds all the item sets that frequently occur together,
the so called frequent itemsets, and also the rules among them. An example of
an association could be that, “40% of people who buy Jane Austen’s Pride and
Prejudice also buy Sense and Sensibility.” Potential application areas include
catalog design, store layout, customer segmentation, telecommunication alarm
diagnosis, etc.

The Apriori [6] method serves as the base algorithm for the vast majority
of parallel association algorithms. Apriori uses a complete, bottom-up search,
with a horizontal data layout and enumerates all frequent itemsets. Apriori is an
iterative algorithm that counts itemsets of a specific length in a given database
pass. The process starts by scanning all transactions in the database and com-
puting the frequent items. Next, a set of potentially frequent candidate itemsets
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Algorithm Base Algorithm Machine Parallelism LoadBal DB Layout Concepts Database

Association Rule Mining

CD, PEAR, PDM, FDM, NPA Apriori DMM Data Static Horizontal Replicated Partitioned

DD, SPA, IDD Apriori DMM Task Static Horizontal Partitioned Partitioned

HD Apriori DMM Hybrid Hybrid Horizontal Hybrid Partitioned

CCPD Apriori SMP Data Static Horizontal Shared Partitioned

CandD, HPA, HPA-ELD Apriori DMM Task Static Horizontal Partitioned Partially Replicated

PCCD Apriori SMP Task Static Horizontal Partitioned Shared

APM DIC SMP Task Static Horizontal Shared Partitioned

PPAR Partition DMM Task Static Horizontal Replicated Partitioned

PE, PME, PC, PMC Eclat, Clique CLUMPS Task Static Vertical Partitioned Partially Replicated

Sequence Mining

NPSPM GSP DMM Data Static Horizontal Replicated Partitioned

SPSPM GSP DMM Task Static Horizontal Partitioned Partitioned

HPSPM GSP DMM Task Static Horizontal Partitioned Partially Replicated

pSPADE SPADE SMP Task Dynamic Vertical Partitioned Shared

D-MSDD MSDD DMM Task Static Horizontal Partitioned Replicated

Decision Tree Classification

SPRINT, SLIQ/R, SLIQ/D, ScalParC SLIQ/SPRINT DMM Data Static Vertical Replicated Partitioned

DP-att, DP-rec, PDT C4.5 DMM Data Static Horizontal Replicated Partitioned

MWK SPRINT SMP Data Dynamic Vertical Shared Shared

SUBTREE SPRINT SMP Hybrid Dynamic Vertical Partitioned Partitioned

HTF SPRINT DMM Hybrid Dynamic Vertical Partitioned Partitioned

pCLOUDS CLOUDS DMM Hybrid Dynamic Horizontal Partitioned Partitioned

Clustering

P-CLUSTER K-Means DMM Data Static Horizontal Replicated Partitioned

MAFIA - DMM Task Static Horizontal Partitioned Partitioned

Table 1. Design Space for Parallel Mining Algorithms: Associations, Sequences, Classification and Clustering.
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of length 2 is formed from the frequent items. Another database scan is made
to obtain their supports. The frequent itemsets are retained for the next pass,
and the process is repeated until all frequent itemsets (of various lengths) have
been enumerated.

Other sequential methods for associations that have been parallelized, in-
clude DHP [7], which tries to reduce the number of candidates by collecting
approximate counts (using hash tables) in the previous level. These counts can
be used to rule out many candidates in the current pass that cannot possibly be
frequent. The Partition algorithm [8] minimizes I/O by scanning the database
only twice. It partitions the database into small chunks which can be handled in
memory. In the first pass it generates a set of all potentially frequent itemsets,
and in the second pass it counts their global frequency. In both phases it uses a
vertical database layout. The DIC algorithm [9] dynamically counts candidates
of varying length as the database scan progresses, and thus is able to reduce the
number of scans.

A completely different design characterizes the equivalence class based algo-
rithms (Eclat, MaxEclat, Clique, and MaxClique) proposed by Zaki et al. [10].
These methods utilize a vertical database format, complete search, a mix of
bottom-up and hybrid search, and generate a mix of maximal and non-maximal
frequent itemsets. The algorithms utilize the structural properties of frequent
itemsets to facilitate fast discovery. The items are organized in a subset lattice
search space, which is decomposed into small independent chunks or sub-lattices,
which can be solved in memory. Efficient lattice traversal techniques are used,
which quickly identify all the frequent itemsets via tidlist intersections.

Replicated or Shared Candidates, Partitioned Database. The candidate
concepts in association mining are the frequent itemsets. A common paradigm for
parallel association mining is to partition the database in equal-sized horizontal
blocks, with the candidate itemsets replicated on all processors. For Apriori-
based parallel methods, in each iteration, each processor computes the frequency
of the candidate set in its local database partition. This is followed by a sum-
reduction to obtain the global frequency. The infrequent itemsets are discarded,
while the frequent ones are used to generate the candidates for the next iteration.

Barring minor differences, the methods that follow this data-parallel ap-
proach include PEAR [11], PDM [12], Count Distribution (CD) [13], FDM [14],
Non-Partitioned Apriori (NPA) [15], and CCPD [16]. CCPD uses shared-memory
machines, and thus maintains a shared candidate set among all processors. It
also parallelizes the candidate generation.

The other algorithms use distributed-memory machines. PDM, based on
DHP, prunes candidates using approximate counts from the previous level. It
also does parallelizes candidate generation, at the cost of an extra round of
communication. The remaining methods simply replicate the computation for
candidate generation. FDM is further optimized to work on distributed sites. It
uses novel pruning techniques to minimize the number of candidates, and thus
the communication during sum-reduction.
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The advantage of replicated candidates and partitioned database, for Apriori-
based methods, is that they incur only a small amount of communication. In
each iteration only the frequencies of candidate concepts are exchanged; no data
is exchanged. These methods thus outperform the pure partitioned candidates
approach described in the next section. Their disadvantage is that the aggregate
system memory is not used effectively, since the candidates are replicated.

Other parallel algorithms, that use a different base sequential method in-
clude APM [17], a task-parallel, shared-memory, asynchronous algorithm, based
on DIC. Each processor independently applies DIC to its local partition. The
candidate set is shared among processors, but is updated asynchronously when
a processor inserts new itemsets.

PPAR [11], a task-parallel, distributed-memory algorithm, is built upon Par-
tition, with the exception that PPAR uses the horizontal data format. Each
processor gathers the locally frequent itemsets of all sizes in one pass over their
local database (which may be partitioned into chunks as well). All potentially
frequent itemsets are then broadcast to other processors. Then each processor
gathers the counts of these global candidates in the second local pass. Finally a
broadcast is performed to obtain the globally frequent itemsets.

Partitioned Candidates, Partitioned Database. Algorithms implementing
this approach include Data Distribution (DD) [13], Simply-Partitioned Apriori
(SPA) [15], and Intelligent Data Distribution (IDD) [18]. All three are Apriori-
based, and employ task parallelism on distributed-memory machines. Here each
processor computes the frequency of a disjoint set of candidates. However, to
find the global support each processor must scan the entire database, both its
local partition, and other processor’s partitions (which are exchanged in each it-
eration). The main advantage of these methods is that they utilize the aggregate
system-wide memory by evaluating disjoint candidates, but they are impractical
for any realistic large-scale dataset.

The Hybrid Distribution (HD) algorithm [18] adopts a middle ground be-
tween Data Distribution and Count Distribution. It utilizes the aggregate mem-
ory, and also minimizes communication. It partitions the P processors into G
equal-sized groups. Each of the G groups is considered a super-processor, and
applies Count Distribution, while the P/G processors within a group use Intel-
ligent Data Distribution. The database is horizontally partitioned among the G
super-processors, and the candidates are partitioned among the P/G processors
in a group. HD cuts down the database communication costs by 1/G.

Partitioned Candidates, Selectively Replicated or Shared Database. A
third approach is to evaluate a disjoint candidate set and to selectively replicate
the database on each processor. Each processor has all the information to gener-
ate and test candidates asynchronously. Methods in this paradigm are Candidate
Distribution (CandD) [13], Hash Partitioned Apriori (HPA) [15], HPA-ELD [15],
and PCCD [16], all of which are Apriori-based. PCCD uses SMP machines, and
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accesses a shared-database, but is not competitive with CCPD. Candidate Dis-
tribution is also outperformed by Count Distribution. Nevertheless, HPA-ELD,
a hybrid between HPA and NPA, was shown to be better than NPA, SPA, and
HPA.

Zaki et al. [19] proposed four algorithms, ParEclat (PE), ParMaxEclat
(PME), ParClique (PC), and ParMaxClique (PMC), targeting hierarchical sys-
tems like clusters of SMP machines. The data is assumed to be vertically parti-
tioned among the SMP machines. After an initial tidlist exchange phase and class
scheduling phase, the algorithms proceed asynchronously. In the asynchronous
phase each processor has available the classes assigned to it, and the tidlists for
all items. Thus each processor can independently generate all frequent itemsets
from its classes. No communication or synchronization is required. Further, all
available memory of the system is used, no in-memory hash trees are needed,
and only simple intersection operations are required for itemset enumeration.

Most of the extant association mining methods use a static load balancing
scheme; a dynamic load balancing approach on a heterogeneous cluster has been
presented in [20]. For more detailed surveys of parallel and distributed associa-
tion mining see [21] and the chapter by Joshi et al. in this volume.

2.3 Sequential Patterns

Sequence discovery aims at extracting frequent events that commonly occur over
a period of time [22]. An example of a sequential pattern could be that “70% of
the people who buy Jane Austen’s Pride and Prejudice also buy Emma within
a month”. Sequential pattern mining deals with purely categorical domains, as
opposed to the real-valued domains used in time-series analysis. Examples of
categorical domains include text, DNA, market baskets, etc.

In essence, sequence mining is “temporal” association mining. However, while
association rules discover only intra-transaction patterns (itemsets), we now also
have to discover inter-transaction patterns (sequences) across related transac-
tions. The set of all frequent sequences is an superset of the set of frequent
itemsets. Hence, sequence search is much more complex and challenging than
itemset search, thereby necessitating fast parallel algorithms.

Serial algorithms for sequence mining that have been parallelized include
GSP [23], MSDD [24], and SPADE [25]. GSP is designed after Apriori. It com-
putes the frequency of candidate sequences of length k in iteration k. The can-
didates are generated from the frequent sequences from the previous iteration.
MSDD discovers patterns in multiple event sequences; it explores the rule space
directly instead of the sequence space. SPADE is similar to Eclat. It uses verti-
cal layout and temporal joins to compute frequency. The search space is broken
into small memory-resident chunks, which are explored in depth- or breadth-first
manner.

Three parallel algorithms based on GSP were presented in [26]. All three
methods use the partitioned database approach, and are distributed-memory
based. NPSPM (with replicated candidates) is equivalent to NPA, SPSPM (with
partitioned candidates) the same as SPA and HPSPM is equivalent to HPA,
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which have been described above. HPSPM performed the best among the three.
A parallel and distributed implementation of MSDD was presented in [27].

A shared-memory, SPADE-based parallel algorithm, utilizing dynamic load
balancing is described by Zaki, and new algorithms for parallel sequence mining
are also described by Joshi et al. in this volume.

2.4 Classification

Classification aims to assign a new data item to one of several predefined cat-
egorical classes [28,29]. Since the field being predicted is pre-labeled, classifica-
tion is also known as supervised induction. While there are several classification
methods including neural networks [30] and genetic algorithms [31], decision
trees [32,33] are particularly suited to data mining, since they can be constructed
relatively quickly, and are simple and easy to understand. Common applications
of classification include credit card fraud detection, insurance risk analysis, bank
loan approval, etc.

A decision tree is built using a recursive partitioning approach. Each internal
node in the tree represents a decision on an attribute, which splits the database
into two or more children. Initially the root contains the entire database, with
examples from mixed classes. The split point chosen is the one that best separates
or discriminates the classes. Each new node is recursively split in the same
manner until a node contains only one or a majority class.

Decision tree classifiers typically use a greedy search over the space of all
possible trees; there are simply too many trees to allow a complete search. The
search is also biased towards simple trees. Existing classifiers have used both the
horizontal and vertical database layouts. In parallel decision tree construction
the candidate concepts are the possible split points for all attributes within a
node of the expanding tree. For numeric attributes a split point is of the form
A ≤ vi, and for categorical attributes the test takes the form A ∈ {v1, v2, ...},
where vi is a value from the domain of attribute A.

Below we look at some parallel decision tree methods. Recent surveys on
parallel and scalable induction methods are also presented in [34,35].

Replicated Tree, Partitioned Database. SLIQ [36] was one of the earliest
scalable decision tree classifiers. It uses a vertical data format, called attribute
lists, allowing it to pre-sort numeric attributes in the beginning, thus avoiding the
repeated sorting required at each node in traditional tree induction. Nevertheless
it uses a memory-resident structure called class-list, which grows linearly in the
number of input records. SPRINT [37] removes this memory dependence, by
storing the classes as part of the attribute lists. It uses data parallelism, and a
distributed-memory platform.

In SPRINT and parallel versions of SLIQ, the attribute lists are horizontally
partitioned among all processors. The decision tree is also replicated on all pro-
cessors. The tree is constructed synchronously in a breadth-first manner. Each
processor computes the best split point, using its local attribute lists, for all the
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nodes on the current tree level. A round of communication takes place to de-
termine the best split point among all processors. Each processor independently
splits the current nodes into new children using the best split point, setting
the stage for the next tree level. Since a horizontal record is split in multiple
attribute lists, a hash table is used to note which record belongs to which child.

The parallelization of SLIQ follows a similar paradigm, except for the way
the class list is treated. SLIQ/R uses a replicated class list, while SLIQ/D uses
a distributed class list. Experiments showed that while SLIQ/D is better able
to exploit available memory, SLIQ/R was better in terms of performance, but
SPRINT outperformed both SLIQ/R and SLIQ/D.

ScalParC [38] is also an attribute-list-based parallel classifier for distributed-
memory machines. It is similar in design to SLIQ/D (except that it uses hash
tables per node, instead of global class lists). It uses a novel distributed hash
table for splitting a node, reducing the communication complexity and memory
requirements over SPRINT, making it scalable to larger datasets.

The DP-rec and DP-att [39] algorithms exploit record-based and attribute-
based data parallelism, respectively. In record-based data parallelism (also used
in SPRINT, ScalParC SLIQ/D and SLIQ/R), the records or attribute lists are
horizontally partitioned among the processors. In contrast, in attribute-based
data parallelism, the attributes are divided so that each processor is responsible
for an equal number of attributes. In both the schemes processors cooperate to
expand a tree node. Local computations are performed in parallel, followed by
information exchanges to get a global best split point.

Parallel Decision Tree (PDT) [40], a distributed-memory, data-parallel algo-
rithm, splits the training records horizontally in equal-sized blocks, among the
processors. It follows a master-slave paradigm, where the master builds the tree,
and finds the best split points. The slaves are responsible for sending class fre-
quency statistics to the master. For categorical attributes, each processor gathers
local class frequencies, and forwards them to the master. For numeric attributes,
each processor sorts the local values, finds class frequencies for split points, and
exchanges these with all other slaves. Each slave can then calculate the best local
split point, which is sent to the master, who then selects the best global split
point.

Shared Tree, Shared Database. MWK (and its precursors BASIC and
FWK) [41], a shared-memory implementation based on SPRINT uses this ap-
proach. MWK uses dynamic attribute-based data parallelism. Multiple proces-
sors co-operate to build a shared decision tree in a breadth-first manner. Using
a dynamic scheduling scheme, each processor acquires an attribute for any tree
node at the current level, and evaluates the split points, before processing an-
other attribute. The processor that evaluates the last attribute of a tree node,
also computes the best split point for that node. Similarly, the attribute lists are
split among the children using attribute parallelism.
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Hybrid Tree Parallelism. SUBTREE [41] uses dynamic task parallelism (that
exists in different sub-trees) combined with data parallelism on shared-memory
systems. Initially all processors belong to one group, and apply data parallelism
at the root. Once new child nodes are formed, the processors are also partitioned
into groups, so that a group of child nodes can be processed in parallel by a
processor group. If the tree nodes associated with a processor group become
pure (i.e., contain examples from a single class), then these processors join some
other active group.

The Hybrid Tree Formulation (HTF) in [42] is very similar to SUBTREE.
HTF uses distributed memory machines, and thus data redistribution is required
in HTF when assigning a set of nodes to a processor group, so that the processor
group has all records relevant to an assigned node.

pCLOUDS [43] is a distributed-memory parallelization of CLOUDS [44]. It
does not require attribute lists or the pre-sorting for numeric attributes; instead
it samples the split points for numeric attributes followed by an estimation step
to narrow the search space for the best split. It thus reduces both computation
and I/O requirements. pCLOUDS employs a mixed parallelism approach. Ini-
tially, data parallelism is applied for nodes with many records. All small nodes
are queued to be processed later using task parallelism. Before processing small
nodes the data is redistributed so that all required data is available locally at a
processor.

2.5 Clustering

Clustering is used to partition database records into subsets or clusters, such
that elements of a cluster share a set of common properties that distinguish
them from other clusters [45,46,47,48]. The goal is to maximize intra-cluster
and minimize inter-cluster similarity. Unlike classification which has predefined
labels, clustering must in essence automatically come up with the labels. For this
reason clustering is also called unsupervised induction. Applications of clustering
include demographic or market segmentation for identifying common traits of
groups of people, discovering new types of stars in datasets of stellar objects,
and so on.

The K-means algorithm is a popular clustering method. The idea is to ran-
domly pick K data points as cluster centers. Next, each record or point is assigned
to the cluster it is closest to in terms of squared-error or Euclidean distance. A
new center is computed by taking the mean of all points in a cluster, setting the
stage for the next iteration. The process stops when the cluster centers cease to
change. Parallelization of K-means received a lot of attention in the past. Differ-
ent parallel methods, mainly using hypercube computers, appear in [49,50,51,52].
We do not describe these methods in detail, since they used only small memory-
resident datasets.

Hierarchical clustering represents another common paradigm. These methods
start with a set of distinct points, each forming its own cluster. Then recursively,
two clusters that are close are merged into one, until all points belong to a
single cluster. In [49,53], parallel hierarchical agglomerative clustering algorithms
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were presented, using several inter-cluster distance metrics and parallel computer
architectures. These methods also report results on small datasets.

P-CLUSTER [54] is a distributed-memory client-server K-means algorithm.
Data is partitioned into blocks on a server, which sends initial cluster centers and
data blocks to each client. A client assigns each record in its local block to the
nearest cluster, and sends results back to the server. The server then recalculates
the new centers and another iteration begins. To further improve performance
P-CLUSTER uses that the fact that after the first few iterations only a few
records change cluster assignments, and also the centers have less tendency to
move in later iterations. They take advantage of these facts to reduce the number
of distance calculations, and thus the time of the clustering algorithm.

Among the recent methods, MAFIA [55], is a distributed memory algorithm
for subspace clustering. Traditional methods, like K-means and hierarchical clus-
tering, find clusters in the whole data space, i.e., they use all dimensions for dis-
tance computations. Subspace clustering focuses on finding clusters embedded
in subsets of a high-dimensional space. MAFIA uses adaptive grids (or bins) in
each dimension, which are merged to find clusters in higher dimensions. Parallel
implementation of MAFIA is similar to association mining. The candidates here
are the potentially dense units (the subspace clusters) in k dimensions, which
have to be tested if they are truly dense. MAFIA employs task parallelism,
where data as well as candidates are equally partitioned among all processors.
Each processor computes local density, followed by a reduction to obtain global
density.

The paper by Dhillon and Modha in this volume presents a distributed-
memory parallelization of K-means, while the paper by Johnson and Kargupta
describes a distributed hierarchical clustering method.

2.6 Distributed Mining Frameworks

Recently, there has been an increasing interest in distributed and wide-area data
mining systems. The fact that many global businesses and scientific endeavors
require access to multiple, distributed, and often heterogeneous databases, un-
derscores the growing importance of distributed data mining.

An ideal platform for DDM is a cluster of machines at a local site, or cluster
of clusters spanning a wide area, the so-called computational grids, connected
via Internet or other high speed networks. As we noted earlier, PDM is best
viewed as a local component within a DDM system. Further the main differences
between the two is the cost of communication or data movement, and the fact
that DDM must typically handle multiple (possibly heterogeneous) databases.
Below we review some recent efforts in developing DDM frameworks.

Most methods/systems for DDM assume that the data is horizontally par-
titioned among the sites, and is homogeneous (share the same feature space).
Each site mines its local data and generates locally valid concepts. These con-
cepts are exchanged among all the sites to obtain the globally valid concepts.
The Partition [8] algorithm for association mining is a good example. It is in-
herently suitable for DDM. Each site can generate locally frequent itemsets at a
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given threshold level. All local results are combined and then evaluated at each
site to obtain the globally frequent itemsets.

Another example is JAM [56,57], a java-based multi-agent system utilizing
meta-learning, used primarily in fraud-detection applications. Each agent builds
a classification model, and different agents are allowed to build classifiers using
different techniques. JAM also provides a set of meta-learning agents for combin-
ing multiple models learnt at different sites into a meta-classifier that in many
cases improves the overall predictive accuracy. Knowledge Probing [58] is another
approach to meta-learning. Knowledge probing retains a descriptive model af-
ter combining multiple classifiers, rather than treating the meta-classifier as a
black-box. The idea is to learn on a separate dataset, the class predictions from
all the local classifiers.

PADMA [59] is an agent based architecture for distributed mining. Individual
agents are responsible for local data access, hierarchical clustering in text doc-
ument classification, and web based information visualization. The BODHI [60]
DDM system is based on the novel concept of collective data mining. Naive min-
ing of heterogeneous, vertically partitioned, sites can lead to an incorrect global
data model. BODHI guarantees correct local and global analysis with minimum
communication.

In [61] a new distributed do-all primitive, called D-DOALL, was described
that allows easy scheduling of independent mining tasks on a network of work-
stations. The framework allows incremental reporting of results, and seeks to
reduce communication via resource-aware task scheduling principles.

The Papyrus [62] java-based system specifically targets wide-area DDM over
clusters and meta-clusters. It supports different data, task and model strate-
gies. For example, it can move models, intermediate results or raw data between
nodes. It can support coordinated or independent mining, and various meth-
ods for combining local models. Papyrus uses PMML (Predictive Model Markup
Language) to describe and exchange mined models. Kensignton [63] is another
java-based system for distributed enterprise data mining. It is a three-tiered sys-
tem, with a client front-end for GUI, and visual programming of data mining
tasks. The middle-layer application server provides persistent storage, task exe-
cution control, and data management and preprocessing functions. The third-tier
implements a parallel data mining service.

Other recent work in DDM includes decision tree construction over dis-
tributed databases [64], where the learning agents can only exchange summaries
instead of raw data, and the databases may have shared attributes. The main
challenge is to construct a decision tree using implicit records rather than ma-
terializing a join over all the datasets. The WoRLD system [65] describes an
inductive rule-learning program that learns from data distributed over a net-
work. WoRLD also avoids joining databases to create a central dataset. Instead
it uses marker-propagation to compute statistics. A marker is a label of a class
of interest. Counts of the different markers are maintained with each attribute
value, and used for evaluating rules. Markers are propagated among different
tables to facilitate distributed learning.
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For more information on parallel and distributed data mining see the book
by Freitas and Lavington [66] and the edited volume by Kargupta and Chan [67].
Also see [68] for a discussion of cost-effective measures for assessing the perfor-
mance of a mining algorithm before implementing it.

3 Research Issues and Challenges

In this section we highlight some of the outstanding research issues and a number
of open problems for designing and implementing the next-generation large-scale
mining methods and KDD systems.

High Dimensionality. Current methods are only able to hand a few thousand
dimensions or attributes. Consider association rule mining as an example. The
second iteration of the algorithm counts the frequency of all pairs of items,
which has quadratic complexity. In general, the complexity of different mining
algorithms may not be linear in the number of dimensions, and new parallel
methods are needed that are able to handle large number of attributes.

Large Size. Databases continue to increase in size. Current methods are able
to (perhaps) handle data in the gigabyte range, but are not suitable for terabyte-
sized data. Even a single scan for these databases is considered expensive. Most
current algorithms are iterative, and scan data multiple times. For example, it
is an open problem to mine all frequent associations in a single pass, although
sampling based methods show promise [69,70]. In general, minimizing the num-
ber of data scans is paramount. Another factor limiting the scalability of most
mining algorithms is that they rely on in-memory data structures for storing
potential patterns and information about them (such as candidate hash tree [6]
in associations, tid hash table [71] in classification). For large databases these
structures will certainly not fit in aggregate system memory. This means that
temporary results will have to be written out to disk or the database will have
to be divided into partitions small enough to be processed in memory, entailing
further data scans.

Data Location. Today’s large-scale data sets are usually logically and phys-
ically distributed, requiring a decentralized approach to mining. The database
may be horizontally partitioned where different sites have different transactions,
or it may be vertically partitioned, with different sites having different attributes.
Most current work has only dealt with the horizontal partitioning approach. The
databases may also have heterogeneous schemas.

Data Type. To-date most data mining research has focused on structured data,
as it is the simplest, and most amenable to mining. However, support for other
data types is crucial. Examples include unstructured or semi-structured (hy-
per)text, temporal, spatial and multimedia databases. Mining these is fraught
with challenges, but is necessary as multimedia content and digital libraries pro-
liferate at astounding rates. Techniques from parallel and distributed computing
will lie at the heart of any proposed scalable solutions.
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Data Skew. One of the problems adversely affecting load balancing in paral-
lel mining algorithms is sensitivity to data skew. Most methods partition the
database horizontally in equal-sized blocks. However, the number of patterns
generated from each block can be heavily skewed, i.e., while one block may con-
tribute many, the other may have very few patterns, implying that the processor
responsible for the latter block will be idle most of the time. Randomizing the
blocks is one solution, but it is still not adequate, given the dynamic and inter-
active nature of mining. The effect of skewness on different algorithms needs to
be further studied (see [72] for some recent work).

Dynamic Load Balancing. Most extant algorithms use only a static par-
titioning scheme based on the initial data decomposition, and they assume a
homogeneous, dedicated environment. This is far from reality. A typical parallel
database server has multiple users, and has transient loads. This calls for an in-
vestigation of dynamic load balancing schemes. Dynamic load balancing is also
crucial in a heterogeneous environment, which can be composed of meta- and
super-clusters, with machines ranging from ordinary workstations to supercom-
puters.

Incremental Methods. Everyday new data is being collected, and existing
data stores are being updated with the new data or purged of the old one. To-
date there have been no parallel or distributed algorithms that are incremental
in nature, which can handle updates and deletions without having to recompute
patterns or rules over the entire database.

Multi-table Mining, Data Layout, and Indexing Schemes. Almost no
work has been done on mining over multiple tables or over distributed databases
which have different schemas. Data in a warehouse is typically arranged in a star
schema, with a central fact table (e.g., point-of-sales data), and associated dimen-
sion tables (e.g., product information, manufacturer, etc.). Traditional mining
over these multiple tables would first require us to create a large single table that
is the join of all the tables. The joined table also has tremendous amounts of re-
dundancy. We need better methods for processing such multiple tables, without
having to materialize a single large view. Also, little work has been done on the
optimal or near-optimal data layout or indexing schemes for fast data access for
mining.

Parallel DBMS/File Systems. To-date most results reported have hand-
partitioned the database, mainly horizontally, on different processors. There has
been very little study conducted in using a parallel database/file system for
managing the partitioned database, and the accompanying striping, and lay-
out issues. Recently there has been increasing emphasis on tight database in-
tegration of mining [73,74,75,76], but it has mainly been confined to sequential
approaches. Some exceptions include Data Surveyor [77], a mining tool that
uses the Monet database server for parallel classification rule induction. Also,
generic set-oriented primitive operations were proposed in [78] for classification
and clustering. These primitives were fully integrated with a parallel DBMS.
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Interaction, Pattern Management, and Meta-level Mining. The KDD
process is highly interactive, as the human participates in almost all the steps.
For example, the user is heavily involved in the initial data understanding, se-
lection, cleaning, and transformation phases. These steps in fact consume more
time than mining per se. Moreover, depending on the parameters of the search,
mining methods may generate too many patterns to be analyzed directly. One
needs methods to allow meta-level queries [79,80,81] on the results, to impose
constraints that focus on patterns of interest [82,83], to refine or generalize
rules [84,85], etc. Thus there is a need for a complete set of tools that query
and mine the pattern/model database as well. Parallel methods can be success-
ful in providing the desired rapid response in all of the above steps.

4 Book Organization

This book contains chapters covering all the major tasks in data mining including
parallel and distributed mining frameworks, associations, sequences, clustering
and classification. We provide a brief synopsis of each chapter below, organized
under four main headings.

4.1 Mining Frameworks

Graham Williams et al. present Data Miner’s Arcade, a java-based platform-
independent system for integrating multiple analysis and mining tools, using a
common API, and providing seamless data access across multiple systems. Com-
ponents of the DM Arcade include parallel algorithms (e.g., BMARS - multiple
adaptive regression B-splines), virtual environments for data visualization, and
data management for mining.

Bailey et al. describe the implementation of Osiris, a data server for wide-
area distributed data mining, built upon clusters, meta-clusters (with commodity
network like Internet) and super-clusters (with high-speed network). Osiris ad-
dresses three key issues: What data layout should be used on the server? What
tradeoffs are there in moving data or predictive models between nodes? How data
should be moved to minimize latency; what protocols should be used? Experi-
ments were performed on a wide-area system linking Chicago and Washington
via the NSF/MCI vBNS network.

Parthasarathy et al. present InterAct, an active mining framework for dis-
tributed mining. Active mining refers to methods that maintain valid mined pat-
terns or models in the presence of user interaction and database updates. The
framework uses mining summary structures that are maintained across updates
or changes in user specifications. InterAct also allows effective client-server data
and computation sharing. Active mining results were presented on a number of
methods like discretization, associations, sequences, and similarity search.
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4.2 Association Rules and Sequences

Joshi et al. open this section with a survey chapter on parallel mining of as-
sociation rules and sequences. They discuss the many extant parallel solutions,
and give an account of the challenges and issues for effective formulations of
discovering frequent itemsets and sequences.

Morishita and Nakaya describe a novel parallel algorithm for mining corre-
lated association rules. They mine rules based on the chi-squared metric that
optimizes the statistical significance or correlation between the rule antecedent
and consequent. A parallel branch-and-bound algorithm was proposed that uses
a term rewriting technique to avoid explicitly maintaining lists of open and
closed nodes on each processor. Experiments on SMP platforms (with up to 128
processors) show very good speedups.

Shintani and Kitsuregawa propose new load balancing strategies for general-
ized association rule mining using a gigabyte-sized database on a cluster of 100
PCs connected with an ATM network. In generalized associations the items are
at the leaf levels in a hierarchy or taxonomy of items, and the goal is to discover
rules involving concepts at multiple (and mixed) levels. They show that load
balancing is crucial for performance on such large-scale clusters.

Zaki presents pSPADE, a parallel algorithm for sequence mining. pSPADE
divides the pattern search space into disjoint, independent sub-problems based
on suffix-classes, each of which can be solved in parallel in an asynchronous
manner. Task parallelism and dynamic inter- and intra-class load balancing is
used for good performance. Results on a 12 processor SMP using up to a 1 GB
dataset show good speedup and scaleup.

4.3 Classification

Skillicorn presents parallel techniques for generating predictors for classification
and regression models. A recent trend in learning is to build multiple prediction
models on different samples from the training set, and combine them, allowing
faster induction and lower error rates. This framework is highly amenable to
parallelism and forms the focus of this paper.

Goil and Choudhary implemented a parallel decision tree classifier using the
aggregates computed in multidimensional analysis or OLAP. They compute ag-
gregates/counts per class along various dimensions, which can then be used for
computing the attribute split-points. Communication is minimized by coalescing
messages and is done once per tree level. Experiments on a 16 node IBM SP2
were presented.

Hall et al. describe distributed rule induction for learning a single model
from disjoint datasets. They first learn local rules from a single site; these are
merged to form a global rule set. They show that while this approach promises
fast induction, accuracy tapers off (as compared to directly mining the whole
database) as the number of sites increases. They suggested some heuristics to
minimize this loss in accuracy.
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4.4 Clustering

Johnson and Kargupta present the Collective Hierarchical Clustering algorithm
for clustering over distributed, heterogeneous databases. Rather than gathering
the data at a central site, they generate local cluster models, which are subse-
quently combined to obtain the global clustering.

Dhillon and Modha parallelized the K-means clustering algorithm on a 16
node IBM SP2 distributed-memory system. They exploit the inherent data par-
allelism of the K-means algorithm, by performing the point-to-centroid distance
calculations in parallel. They demonstrated linear speedup on a 2GB dataset.

5 Conclusion

We conclude by observing that the need for large-scale data mining algorithms
and systems is real and immediate. Parallel and distributed computing is es-
sential for providing scalable, incremental and interactive mining solutions. The
field is in its infancy, and offers many interesting research directions to pur-
sue. We hope that this volume, representing the state-of-the-art in parallel and
distributed mining methods, will be successful in bringing to surface the require-
ment and challenges in large-scale parallel KDD systems.
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Abstract. Data Mining draws on many technologies to deliver novel
and actionable discoveries from very large collections of data. The Aus-
tralian Government’s Cooperative Research Centre for Advanced Com-
putational Systems (ACSys) is a link between industry and research fo-
cusing on the deployment of high performance computers for data min-
ing. We present an overview of the work of the ACSys Data Mining
projects where the use of large-scale, high performance computers plays
a key role. We highlight the use of large-scale computing within three
complimentary areas: the development of parallel algorithms for data
analysis, the deployment of virtual environments for data mining, and
issues in data management for data mining. We also introduce the Data
Miner’s Arcade which provides simple abstractions to integrate these
components providing high performance data access for a variety of data
mining tools communicating through XML.

1 Introduction

High performance computers and parallel algorithms provide the necessary plat-
form for the delivery of novel and actionable discoveries from extremely large
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collections of data. The Australian Government’s Cooperative Research Centre
for Advanced Computational Systems (ACSys) investigates industrial problems
to direct research on the deployment of high performance computers for data
mining. The multidisciplinary ACSys team draws together researchers in Statis-
tics, Machine Learning, and Numerical Algorithms from The Australian National
University and the Australian Government’s research organisation CSIRO Aus-
tralia. Commercial projects are drawn from the banking, insurance, and health
sectors.

There are many components that contribute to the successful deployment of
data mining solutions. Parallel algorithms exploit the processing capabilities of
multi-processor environments to deliver models in a timely fashion. Visualisa-
tion and Virtual Environments provide useful insights into relationships in the
data. And underlying all of these activities is the data itself, and in particular,
the mechanisms for accessing the data. Finally, we need to provide a standard,
integrated environment that can be easily tuned for particular applications, and
that can facilitate the communication of data mining outcomes. In this paper
we describe these components as have and are being developed collaboratively
by ANU and CSIRO researchers through ACSys in partnership with Australian
Industry.

We begin with a review of two algorithms developed for data mining: TPS-
FEM and BMARS. Predictive model building is a core component of data
mining—whether it is modelling response to marketing campaigns, modelling
patterns of health care, or modelling fraudulent behaviours. Gigabytes of data
collected over decades are available. And yet, it is often groups that occur infre-
quently that are important to our business (whether it is identifying the 5% who
will respond to a mail campaign, or the less than 1% who will commit insurance
fraud). Sampling is generally not an appropriate action, but instead we wish to
analyse all of the data.

Given the large amount of data as well as the large number of attributes
involved in data mining problems, two core challenges need to be faced. The
first concerns the computational feasibility of the techniques used to build the
predictive models used in data mining. This translates into the requirement that
data mining techniques scale to large data sets. The second challenge is the
interpretability of the resulting models. Specifically, one often has not only to
be able to build a predictive model but also to obtain insight from the structure
exhibited by the model. Distributing and sharing models, and combining models
built from different runs over possibly different data, can benefit from addressing
the interpretability question.

Exploring very large datasets with high dimensionality requires considerable
support to provide the Data Miner with insights that aid in their understanding
of the data. Virtual environments (VEs) for data mining are being explored
towards a number of ends. The high dimensionality of the data often presented
to the Data Miner leads to considerable complexity in coming to understand
the interplay of the many features. Exploring this interplay more effectively can
assist in the identification and selection of important features to be used for later
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predictive modelling and other data mining tasks. Also, as model builders are
applied to ever larger datasets, the complexity of the resulting models increases
correspondingly. Virtual environments can also effectively provide insights into
the modelling process, and the resulting models themselves.

All aspects of data mining revolve around the data. Data is stored in a variety
of formats and within a variety of database systems. Data needs to be accessed
in a timely manner and potentially multiple times. Managing, transforming,
and efficiently accessing the data is a crucial issue. The Semantic Extension
Framework provides an environment for seamlessly extending the semantics of
Java objects, allowing those objects to be instantiated in different ways and from
different sources. We are beginning to explore the benefits of such a framework for
ongoing data mining activities. The potential of this approach lies in all stages
of the data mining process [1], from data management and data versioning,
through to access mechanisms highly tuned to suit the behaviour of access of
the particular predictive modelling tool being employed.

Finally, we need to bring these tools together to deliver highly configurable,
and often pre-packaged or ‘canned’ solutions for particular applications. The
Data Miner’s Arcade provides simple abstractions to integrate these components
providing high performance data access for a variety of data mining tools com-
municating through standard interfaces, and building on the developing XML
standards for data mining [2].

2 Parallel Algorithms

Careful, detailed examination of each and every customer, patient, or claimant
that exists in a very large dataset made available for data mining might well
lead to a better understanding of the data and of underlying processes. Given
the sheer size of data we are talking about in data mining, this is, of course not
generally feasible, and probably not desirable. Yet, with the desire to analyse
all the data, rather than statistical samples of the data, a data mining exercise
is often required to apply computationally complex analysis tools to extremely
large datasets.

Often, we characterise the task as being one of building an indicator func-
tion as a predictor of fraud, of propensity to purchase, or of improved health
outcomes. We can view the function as

y = f(x)

where y is the real valued response, indicating the likelihood of the outcome,
and x is the array of predictor variables (attributes or features) which encode
the information thought to be relevant to the outcome. The function f can be
trained on the collected data by, for example, (logistic) regression. We have been
developing new computational techniques to identify such predictive models from
large data sets.

Applications for such model building abound. Another example is in insur-
ance where a significant problem is to determine optimal premium levels. When
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a new insurance policy is being underwritten it is important for an insurance
company to estimate the risk (based on the information provided by the policy
holder) or the likelihood of a claim being made against the policy. With this
knowledge the insurance companies would be able to set the ‘correct’ premium
levels and avoid undercharging as well as overcharging their customers (although
competitive factors must also come into play). To estimate the risk one has to
produce two models: one to predict if a policy holder is likely to make a claim;
and one to predict the amount of the claim.

Algorithms commonly used in such data mining projects include generalised
additive models [3], thin plate splines [4], decision tree and rule induction [5],
multivariate adaptive regression splines [6], patient rule induction methods [7],
evolutionary rule induction [8] and the combination of simple rules [9]. For data
mining, the issue of scalability must be addressed. We illustrate this with two
developments in parallel algorithms: thin plate spline finite element methods;
and Multivariate Adaptive Regression Splines using B-splines.

3 Predictive Modelling with Thin Plate Splines

A first computational challenge faced in generating a predictive model originates
from the large number of attributes or predictor variables. This challenge is often
referred to as the curse of dimensionality [10]. An effective way to deal with this
curse is provided by additive models of the form [11]

f(x) = f0 +
d∑

i=1

fi(xi).

Similar models are used in ANOVA, where all the variables xi are categorical.
The effects of the predictor variables are added up. Thus, the effect of the value
of a variable xi is independent of the effect of a different variable xj . We have
suggested and discussed a new scalable and parallel algorithm for the determi-
nation of a (generalised) additive model in [3].

A better model includes interactions between the variables. For example, it
could be the case that for different incomes the effect of the level of deductions
from taxable income on the likelihood of fraud varies. Interaction models are of
the form:

f(x) = f0 +
d∑

i=1

fi(xi) +
d∑

i,j=1

fi,j(xi, xj).

This model is made identifiable by additional constraints and the components
fi and fi,j are determined by the backfitting algorithm [11] which consists of
repeated estimation of the components. Thus only methods for the estimation
of one- and two-dimensional models are required.

The form of the models depends on the type of predictor variables. In the
following we will only discuss the case of real predictor variables. In order not
to exclude important functions we choose a nonparametric approach and find
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predictors f which are smooth and fit the data. thin plate splines [12] are an
established smooth model. They are designed to have small curvature. The one-
dimensional components fi(xi) turn out to be cubic splines which are computa-
tionally very tractable using a B-spline basis. The form of the interaction terms
is also known:

fxi,xj (xi, xj) = c0 + c1xi + c2xj +
n∑

k=1

bk φ
(
(xi − x

(k)
i )2 + (xj − x

(k)
j )2

)

where φ(r2) = r2 log(r2) [12]. The coefficients of the thin plate splines are de-
termined by the linear system of the form

[
Φ + αI X

XT 0

] [
b
c

]
=

[
y
0

]

where Φ is an n by n matrix with matrix elements Φi,j = φ(‖x(j) − x(i)‖2), I

is the identity, X a n by 3 matrix, where the i-th row is
[
1, x

(i)
1 , x

(i)
2

]
, b is

the vector with k-th component bk and c = (c0, c1, c2)T . Computationally, these
equations are intractable for large data sizes n by standard direct or iterative
methods, as even the formation of the matrix Φ requires O(n2) operations since it
is dense. The standard techniques thus give examples of algorithms which are not
scalable with respect to the data size. Only a few years ago it was thought that
the feasibility of thin plate splines (and similar radial-basis function approaches)
was limited to the case of a few hundred to thousand observations. However,
new techniques have been developed since then to push these limits. One school
of thought uses the locality of the problem, i.e., the fact that the value f(x) only
depends on observations x(k) which are near x [13,14]. The algorithms developed
are mainly for interpolation, i.e., the case α = 0.

We have developed a different approach which is provably scalable and may
be extended to higher order interactions. We use the fact that the thin plate
spline interpolant minimises the functional

J1(f) =
n∑

k=1

(f(x(k)) − y(k))2

+ α

∫ ((
∂2f

∂x2
1

)2

+ 2
(

∂2f

∂x1∂x2

)2

+
(

∂2f

∂x2
2

)2
)

dx1dx2.

(1)

The minimiser of this functional can be approximated in a finite-element space.
For the solution of this problem we suggest a non-conforming method based on
piecewise bilinear functions such that on the rectangular elements the function is
of the form a+bx1+cx2+dx1x2. The method finds an approximation u = (u1, u2)
of the gradient of f as a piecewise bilinear function. Instead of J1, the following
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function is minimised (obtained by inserting the gradient in J1):

J2(f) =
n∑

k=1

(f(x(k)) − y(k))2

+ α

∫ ((
∂u1

∂x1

)2

+
(

∂u1

∂x2

)2

+
(

∂u2

∂x1

)2

+
(

∂u2

∂x2

)2
)

dx1dx2.

(2)

It can be seen that if one chooses u with curlu = 0 such that

∆f(x) = div u(x), x ∈ G

and
∂f

∂n
(x) = un(x), x ∈ ∂G

then the same solution as above is obtained. However, practical tests show that
the curl condition is not important in achieving a good approximation [4].

The finite element solution of the optimisation problem proceeds in two
stages:

1. The matrix and right-hand side of the linear system of equations is assem-
bled. The matrix of this linear system is the sum of low rank matrices, one
for each data point x(i).

2. The linear system of equations is solved.

The time for the first (assembly) stage depends linearly on the data size n and
the time for the second (solution) stage is independent of n. Thus the overall
algorithm scales with the number of data points. The data points only need
to be visited once, thus there is no need to either store the entire data set
in memory nor revisit the data points several times. The basis functions are
piecewise bilinear and require a small number of operations for their evaluation.
With this technique the smoothing of millions of data points becomes feasible.

The parallel algorithm exploits different aspects of the problem for the as-
sembly and the solution stage. The time required for the assembly stage grows
linearly as a function of data size. For simplicity we assume that the data is ini-
tially equally distributed between the local disks of the processors. (If this is not
the case initial distribution costs would have to be included in the analysis.) In
a first step of the assembly stage a local matrix is assembled for each processor
based on the data available on its local disk. The matrix of the full problem is
then the sum of the local matrices and can thus be obtained through a reduction
step. This algorithm was developed and tested on a cluster of 10 Sun Sparc-5
workstations networked with a 10 Mbit/s twisted pair Ethernet using MPI [15].
The total time spent in this assembly phase is of the order

Tp = O(n/p) + O(m log2(p))

where m characterises the size of the assembled matrix. Thus, if the number n
of the data points grows like O(p log2(p)) for fixed matrix size m the parallel
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efficiency is

Ep =
T1

pTp
= O

(
n

n + mp log2(p)

)
= O(1)

and thus there is no drop in parallel efficiency for larger numbers of processors.
This basic trend is confirmed by practical experiments [15].

In the solution stage the spatial parallelism of the problem is exploited. As-
sume for simplicity that the domain is rectangular. If the domain was split into
strips of equal size the values on the boundaries between the strips depends on
the data in the neighbouring strips. However, as this dependency is local, only
a fixed number of points in the neighbouring strip really have an influence on
the function values f(x) in the strip. A good approximation is obtained for the
values on the strip by solving the smoothing problem for an expanded region
containing the original strip and a sufficient number of neighbouring points. Note
that by introducing redundant computations in this way, communication can be
avoided. The size of the original strip is proportional to m/p and, in order to
add the extra k neighbouring points, it has to be expanded by a factor kp/n.
Thus the size of the expanded strip is of the order of

s = (m/p)(1 + kp/n).

As we assumed n = O(p log2(p)) to get isoefficiency [16] of the assembly phase
the size of the strips is proportional to m/p asymptotically in p which shows
isoefficiency for the solution stage.

This approach thus ensures a fast and efficient path to the development of
predictive models.

4 Predictive Modelling with Multivariate Regression
Splines

The popular Multivariate Adaptive Regression Splines (MARS) algorithm by
Friedman [6] is able to produce continuous as well as easily interpretable regres-
sion models. The regression models are the special class of predictive models
intended to model numeric response variables as opposed to the generalised re-
gression models used in situations where the response is discrete. Here we give an
overview of the original MARS algorithm followed by a discussion of its parallel
version based on B-splines (BMARS).

MARS constructs a linear combination of basis functions which are products
of one-dimensional basis functions (indicator functions in the case of categorical
variables and truncated power functions in the case of numeric variables). The
key to the method is that the basis functions are generated recursively and
depend on the data. The important implication of the approach is that models
produced by MARS involve only variables and their interactions relevant to the
problem at hand. This property is especially useful in the data mining context.

BMARS [17] improves upon MARS by: using compactly supported B-spline
basis functions; utilising a new scale-by-scale model building strategy; and in-
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troducing a parallel implementation. These modifications allow the stable and
fast (compared to MARS) analysis of very large datasets.

4.1 Multivariate Adaptive Regression Splines

For the sake of simplicity, we confine ourselves to the case of purely numeric data
though it should be remembered that the (appropriately modified) algorithm is
able to deal with data of mixed type. The required modification will be discussed
briefly, below.

In a nutshell, the original MARS is an efficient technique designed to select
a (relatively high quality) model from the space of multivariate piecewise linear
functions1. Any such function can be represented as a linear combination of the
tensor product basis functions Tk1...kd

(x):

f(x) =
K1∑

k1=0

. . .

Kd∑
kd=1

ak1...kd
, Tk1...kd

(x), Tk1...kd
(x) =

d∏
j=1

bkj ,j(xj) (3)

where b0,j(xj) = 1 and {bkj,j(xj)}Kj

kj=1 are univariate piecewise linear basis func-
tions of the variable xj , j = 1, ..., d. The original MARS is based on the univari-
ate truncated power basis functions:

bkj ,j(xj) = [xj − tkj ]+, kj = 1, ..., Kj,

where tkj kj = 1, ..., Kj are certain prespecified knot locations on the variable xj

taken to be, for example, quantiles of the corresponding marginal distribution
of the data points. The coefficients ak1...kd

can be determined based the least
squares fit of the general model (3) to the data at hand.

As can be seen, there are
∏d

j=1(Kj + 1) basis functions in the expansion
(3). Therefore, the application of this approach would be feasible only in the
situation where one has to deal with a moderate number of variables as well as
knot locations. Also, it appears difficult to make any conclusion concerning the
structure of the regression function (3): all variables as well as a large number
of basis functions would generally be involved. These observations lead to the
conclusion that the approach is less appropriate in the data mining context.

The MARS algorithm aims to overcome the above problems. It traverses
the space of piecewise linear multivariate functions in a stepwise manner and
eventually arrives at a function which, on one hand, has much simpler structure
compared to the general function (3) and, on the other hand, is an adequate
model for the data. The models produced by MARS have the following structure

f(x) =
J∑

m=0

amTm(x)

1 Here a piecewise linear multivariate function is one which is piecewise linear with
respect to any of its numeric variables.



32 Graham Williams et al.

where the basis functions {Tm(x)}J
m=0 have the form

Tm(x) =
dm∏
j=1

[xv(j,m) − tjm]+.

As can be seen, this model is similar to the general model (3) in that both belong
to the same function space. However, the distinct feature of MARS models is
that they are normally based on only a very small subset of the complete set of
tensor product basis functions. The pseudo-code of the procedure which builds
the subset of functions is shown below.

Algorithm 1 MARS algorithm

model ← {T0(x) = 1}
for m = 1 to Jmax do

Tm(x)← 0
for s = 0 to m− 1 do

for j = 1 to d do
if xj involved in Ts(x) then
continue

else
for kj = 1 to Kj do

Form T c
m(x) = Ts(x)bkj,j(xj)

if T c
m(x) better than Tm(x) then

Tm(x)← T c
m(x)

end if
end for

end if
end for

end for
model ← model

⋃
Tm(x)

end for

The algorithm starts with the model containing only the constant function.
All subsequent functions are produced one at a time. At each step the algo-
rithm enumerates all possible candidate basis functions T c

m(x) and selects the
one whose inclusion in the model results in the largest improvement of the least
squares fit of the model to the data. The three nested internal loops (correspond-
ing to the s, j, kj loop variables) implement this selection process. The selected
basis function is added to the model.

The set of candidate basis functions is seen to be comprised of all basis
functions which can be derived from the ones contained in the model via multi-
plication by a univariate basis function. Due to the utilisation of this definition
of the set of candidates, the MARS algorithm allows for a considerable reduction
in the computational cost compared with another popular technique (forward
subset selection procedure [18]). The number of basis functions Jmax produced
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by MARS has to be specified by a user. It turns out that the quality of the
model can even further be improved via removal of the less optimal tensor prod-
uct basis functions from the model. This can be accomplished by means of the
backward elimination procedure (see [6] for details).

As mentioned, this approach can be modified to data of mixed types. Uni-
variate indicator functions I[x ∈ A] can be used instead of the truncated powers
whenever a categorical variable x is encountered in the Algorithm (1). Thus, the
typical tensor product basis function would have the form:

Tm(x) =
dnum

m∏
j=1

[xv(j,m) − tjm]+
dcat

m∏
j=1

I[xv(j,m) ∈ Ajm].

The algorithm for finding the appropriate subsets Ajm is very similar to the
ordinary forward stepwise regression procedure [18]. The detailed discussion of
the algorithm is given in [19].

4.2 Refinement of MARS via B-splines

MARS is thus based on truncated power basis functions which are used to form
tensor product basis functions. However, truncated powers are known to have
poor numerical properties. In our work we sought to develop a MARS-like algo-
rithm based on B-splines which form a basis with better numerical properties.
In our algorithm, called BMARS, we use B-splines of the second order (piece-
wise linear B-splines) to form tensor product basis functions

∏d
j=1 Bkj ,j(xj).

Thus, the models produced by MARS and BMARS belong to the space of piece-
wise linear multivariate functions. In common with MARS, BMARS traverses
the space of piecewise linear multivariate functions until it arrives at the model
which provides an adequate fit. However, the way in which the traversal occurs
is somewhat different. Apart from being a more stable basis, B-splines possess a
compact support property which allows us to build models in the scale-by-scale
way. The pseudo-code (Algorithm 2) illustrates the strategy.

To implement the scale-by-scale strategy, one needs B-splines of different
scales. The scale is the size of the support interval of a B-spline. Given a set
K of K = 2l0 + 1 knots on a variable x one can construct B-splines of l0 + 1
different scales based on l0 + 1 nested subsets Kl of K l = (K − 1)/2l−1 + 1
knots, l = 1, ..., l0 + 1 respectively. The lth subset is obtained from the full
set by retaining each 2l−1st knot and disposing of the rest. Thus, the B-splines
constructed using the lth subset of knots have on average twice as long support
intervals as the B-splines constructed using the (l − 1)st subset.

At the start of the algorithm, the scale parameter l is set to the largest pos-
sible value l0. Subsequently, B-splines of the largest scale only are used to form
new tensor product basis functions. Upon the formation of each new tensor prod-
uct basis function, the algorithm checks if the improvement of the fit due to the
inclusion of the new basis function is appreciable. We use the Generalised Cross-
Validation score [6] to decide if the inclusion of a new basis function improves
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the fit. If this is not the case, the algorithm switches over to using B-splines of
the second largest scale.

Thus, new tensor product basis functions continue to be generated using B-
splines of the second largest scale. Again, as soon as the algorithm detects that
the inclusion of new basis functions fails to improve the fit, it switches over to
using B-splines of the third largest scale. This procedure is repeated until the
Jmax number of tensor product basis functions is produced.

Algorithm 2 BMARS algorithm

model ← {T0(x) = 1}
l← l0 {set current scale to largest scale}
for m = 1 to Jmax do

Tm(x)← 0
for s = 0 to m− 1 do

for j = 1 to d do
if xj involved in Ts(x) then
continue

else
for kj = 1 to Kl

j do
Form T c

m(x) = Ts(x)Bl
kj,j(xj)

if T c
m(x) better than Tm(x) then

Tm(x)← T c
m(x)

end if
end for

end if
end for

end for
model ← model

⋃
Tm(x)

if no significant improvement of fit then
l ← l − 1 {decrease current scale}

end if
end for

The advantage of this strategy over that of MARS is that it results in a consid-
erable reduction of the number of candidate basis functions to be tested at each
step of the algorithm. This is due to the fact that the number K l

j of B-splines
of a particular scale l is less than the total number of knots Kj: Kj/K l

j = 2l−1.
This ratio is seen to be greater than one for all scales but the smallest (l = 1)
one. This results in a fewer number of iterations carried out by the inner-most
loop of Algorithm 2 compared to the similar loop of Algorithm 1. The results of
experiments suggest that this reduction in the computational complexity comes
at no cost in terms of the quality of the resulting models [20].
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4.3 Parallel Implementation of BMARS

It can be shown that the computational complexity of both MARS and BMARS
algorithms is linear in the number of data points as well as the number of at-
tributes. However, when large amounts of data are to be processed, the com-
putational time still can be prohibitively large. In order to reduce the cost of
running BMARS we have developed a parallel version of the algorithm based on
the Parallel Virtual Machine (PVM) system [21]. An advantage of PVM is its
wide availability on a number of platforms, so that software based on it is very
portable.

The idea of the parallel BMARS is very simple. Following from the struc-
ture of the Algorithm (2), each new tensor product basis function is the best
function selected from the pool of candidates. The goodness of each candidate is
determined via least squares fit. It turns out that these least squares fits account
for the bulk of the computational cost of running BMARS. Thus, an efficient
parallelisation of BMARS can be achieved via parallelisation of the least squares
procedure. We use the Gram-Schmidt algorithm [22] to perform the least squares
fit. It amounts to the computation of a number of scalar products and, there-
fore, can be efficiently parallelised using the data-partitioning approach (see, for
example [21]).

Parallel BMARS was tested on a multiprocessor system having 10 SPARC
processors. It was applied to the analysis of a large motor vehicle insurance data
set (∼ 1, 000, 000 data records) [20] as well as taxation data [17]. The results of
the experiments show that the efficiency of the algorithm is close to that of an
ideal algorithm [20].

Once again, by focusing on issues relating to the performance of the algo-
rithms on extremely large datasets from real world applications, significant im-
provements can be made in the “responsiveness” of the algorithms. The result is
that these tools can be significantly more effectively employed in data mining.

5 Virtual Environments for Data Mining

All stages of a data mining project require considerable understanding of multi-
dimensional data. Visualisation tools, both for exploratory data analysis and for
exploring the models produced by the data analysis algorithms, can play a sig-
nificant role, particularly in the context of complex models generated through
data mining [23,8]. Traditional approaches tend to be limited by the mouse-
keyboard-monitor interface. Virtual environments (VEs) dramatically increase
the “canvas” on which to render graphic representations of the data that scale
to large numbers of dimensions through an interactive, immersive, environment.

An approach being explored for this task is a technique for partitioning a 3D
VE into smaller working regions, each of which is capable of holding a subspace
of the original multidimensional data space [24]. The algorithm distributes a set
of partitioning axes in a radial arrangement from a single common origin, with
one axis for each dimension in the data set. The ends of the axes thus lie on
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the surface of a sphere. A convex hull is generated to connect the ends of the
axes together. The axes and the space that they form can be used for a number
of visualisation strategies, including rectangular prism and the use of density
functions.

5.1 Multidimensional Data Sets

Representing data of high dimensionality in a form that humans can both see and
understand is a considerable challenge. Understanding a large, multidimensional
data set is not a trivial task. A number of methods have been developed to
try to visualise multidimensional data, including parallel coordinates [25] , the
hyperbox [26], pixel colouration techniques [27], worlds within worlds [28], virtual
towns [29], the grand tour [30] and Chernoff faces [31].

However, to deal with the complexity and size of contemporary data sets
we are investigating new approaches to the problem using Virtual Environment
(VE) technology. The Multidimensional Data Orb (mdOrb) [32] has a number of
properties that differentiate it from those above. Firstly, it exploits the geometric
and perceptual properties of a VE to enable the presentation of more complex
data. Secondly, it is a framework on which a family of distinct visualisation
strategies can be carried out, rather than being a single fixed implementation.
Finally, it is a highly interactive framework in which the user actively explores
the data.

The mdOrb is a technique for partitioning a 3D VE into smaller working
regions, each of which is capable of holding a subspace of the original multi-
dimensional data space (see Figure 1). The algorithm first distributes a set of
partitioning axes in a radial arrangement from a single common origin, with one
axis for each dimension in the data set. The ends of the axes thus lie on the
surface of a sphere. A convex hull is generated to connect the ends of the axes
together using a Delaunay triangulation. The shape thus formed is a convex
polygonal mesh with every vertex of the mesh being linked to the centre of the
figure by an axis. Hence for a data set with N dimensions the mesh will consist of
N vertices. Each triangle in the surface mesh has three vertices, and each vertex
has its own axis that links it to the centre of the figure. The triad of axes forms
the corner of a skewed rectangular prism - the axes and the space that they form
can be used for a number of visualisation strategies.

The first strategy is to use each rectangular prism formed by a triad of axes
as a skewed Cartesian three-space for a scatter plot of points (see Figure 2).
The points in each three-space are given by the values of each point from the N
dimensional data space in the dimensions specified by the bounding axes. Hence
a single data point is represented by a mark in every three-space, where each
mark is composed of the vector sum of three vectors. Each vector’s direction is
that of one of the axes that define the three-space. Each vector’s magnitude is
the value of that point in the dimension in the data space that corresponds to
the given axis.

The second method calculates polygons for each data point in the N dimen-
sional data space. For a given data point, the corresponding polygons’ vertices lie
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Fig. 1. Composition of projection spaces in the Orb.

Fig. 2. Orb visualisation of multidimensional data.
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on each of the orb’s axes at lengths determined by the entry’s value in the corre-
sponding dimension. Each entry is thus represented by a tessellation of polygons
similar to the triangles that define the three-spaces of the orb. The entry’s tes-
sellation of polygons is identical to the triangles forming the orb surface mesh as
shown in Figure 1, but the length of each vertex from the origin varies according
to the value of the data point in the given dimension. Due to occlusion problems
we do not render each individual polygon opaquely. Instead we render a density
function that illustrates how many polygons pass through each region in space.
Densely populated areas appear opaque whilst sparsely populated areas appear
transparent.

The mdOrb is not a static visualisation, but rather a framework on which
dynamic interactive investigations can be carried out. Unlike a scatter plot ma-
trix [33] the mdOrb does not display every possible combination of dimensions
concurrently. Rather the only combinations shown are those in close proximity
to each other as determined by the current tessellation. However, this does not
mean that visible relationships are limited. Each axis can be moved around the
orb at will, thus allowing the user to pry apart certain regions or close them
together. Additionally, if the user moves an axis past the bounds of the triangles
that it forms, the surface mesh is recalculated for the new axis position. This
allows the user to interactively change the combinations of axes and their neigh-
bours. For example, if a user wishes to plot two dimensions against each other
they simply move the relevant axes until they are adjacent, a visual guide of the
current tessellation like that shown in Figure 1 aids them in this task.

A user may wish to “brush” (or highlight) a region of interest in the orb.
When brushing occurs all marks or other representations that correspond to the
same data entries can be highlighted. For example, if a user brushes a cluster
in one three-space, then the marks in all other three-spaces that correspond to
those same entries will also be highlighted. In this way the user can correlate
the different properties of individual entries or groups of entries across the entire
multidimensional space.

5.2 Structural Data Models

Structural information, such as decision trees, network diagrams and program
structures are often large, heavily connected and difficult to describe textually.
A structural diagram such as a graph can often convey the layout of the overall
data but their size often means that they are difficult to study in detail.

One possibility is to use a VE for visualising such a graph, and to alter the
graph structure such that close inspection is possible [34]. The graph describing
the information is first broken into multiple sections, forming a Multiple Layer
and Multiple Relationship (MLMR) graph [35]. The MLMR graph separates
nodes and edges into coherent groups that form modules or building blocks of the
overall structure. When visualised in a VE, the standard operations of altering
the viewpoint and moving and rotating the graph are supported. Additionally,
the user can interactively turn on and off individual groups of nodes and edges.
This allows them to interactively switch between visualising the entire graph
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from a global viewpoint and drilling down into a particular group of nodes and
edges with irrelevant sections of the graph removed for clarity.

Figure 3 shows a visualisation of a program written in the Java language. The
view shows the entire Java API with edges representing inheritance links, the
program itself is shown by the grey group of nodes. The navigation icons in the
lower left corner allow the user to interactively control which groups are visible.
Each group of nodes is represented by a node icon and each group of edges by
an edge icon, by selecting and deselecting the icons the groups of elements in
the graph are turned on and off. In Figure 4 many of the groups of nodes and
edges have been turned off, the only ones remaining in view are the nodes of the
program and the Java packages that it inherits from. The viewpoint has been
rotated and zoomed into the visible part of the graph to examine it in greater
detail.

Fig. 3. Overview visualisation of structural data.

While still in its early stages, the deployment of virtual environments in
data mining has much unexplored potential. Providing insights into the data
through visual and immersive means allows the user to more quickly understand
relationships in the data and assists in the selection of appropriate features for
data mining. Further explorations are underway to use VE in the actual model
building process as well as in the visualisation of the resulting models themselves.

6 Data Management

Data is stored in a variety of formats and within a variety of database systems
and data warehouses, across multiple platforms. The data needs to be accessed
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Fig. 4. In depth visualisation of portion of structural data.

in a timely manner, often after it has been pre-processed to suit the particular
application. And the data will often need to be accessed multiple times for use
in the single application. Efforts in this direction, including the ongoing develop-
ment of the The Data Space Transfer Protocol [36], have begun to demonstrate
the significance of the data access issue. Here, we describe an initial approach
to effectively and seamlessly providing sophisticated data access mechanisms for
data mining. A particular focus of this research is on smart caching and other
optimisations which may be tuned for particular classes of analysis algorithms
to improve the run time performance for data mining over very large datasets.
We are employing the semantic extension framework (SEF) for Java as the en-
vironment for this work.

The semantic extension framework (SEF) for Java and the High Performance
Orthogonal Persistent Java (HPOPJ) built on top of SEF [37] are abstraction
tools which provide orthogonality of algorithms with respect to the data sources.
This approach allows datasets to be transparently accessed and efficiently man-
aged from many and any source. Algorithms accessing the data simply view the
data as Java data structures which are intended to be efficiently instantiated
as required and as determined by the semantic extensions provide for the rele-
vant objects. We are now exploring the use of the SEF and HPOPJ to provide
orthogonality and optimised access to large scale datasets.

An important problem encountered when designing data mining applications
is that the programming language and the database system are different envi-
ronments. Moreover, most databases do not support the same data model as the
programming language. This quite common phenomenon, called the impedance
mismatch, means that the programmer has to map persistent variables onto
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the database environment. Solving such mapping problems and keeping explicit
track of persistent information wastes a significant portion of development time
(sometimes more than 30%) and accounts for many programming errors. The
use of the SEF for data mining enables a prototype oriented development where
complex algorithms are implemented and tested quickly.

6.1 Separation of Concerns and Orthogonal Persistent Java

Separation of concerns is a new subfield of software engineering [38]. Its goal is
to enable the encapsulation of all kinds of concerns in a software system such as
persistence, versioning, configuration, etc. An outstanding example of separation
of concerns with respect to the persistence operations is orthogonal persistence.
Orthogonal persistence provides programmers with an elegant abstraction over
the persistence of data. Programmers are freed from the burden of having to
explicitly program the movement of data between persistent and transient stores.
Orthogonally persistent Java (OPJ) refers to the application of the principles
of orthogonal persistence to the Java programming language. The separation
of concern with respect to the persistence operations need to be complemented
with a similar separation with respect to the storage medium. For this purpose
a standard interface to the underlying storage medium is necessary. The PSI
interface [39] has been defined in order to address this issue. In designing PSI,
we sought to balance a number of objectives: to flexibly support the needs of
persistent programming languages such as OPJ; and to admit small and fast
implementations.

The ACSys UPSIDE project is concerned with taking the ideals of OPJ
towards industrial relevance through performance and functionality. For this
reason, performance issues being addressed by the project include high efficiency
storage, byte code optimisations and Java Virtual Machine (JVM) optimisations.
Key functionality issues include the efficient integration of powerful transaction
models into the OPJ VM (long and short transactions), and support for object
instance and class versioning.

6.2 The Semantic Extension Framework

There are a number of ways in which standard Java semantics can be transpar-
ently extended, including:

1. Modifying the virtual machine to directly implement the semantic extensions
either through the existing byte-code set [40,41], or via additional byte-codes
[42].

2. Modifying the virtual machine to implement extended reflection capabilities
through which semantic extensions can be implemented [42].

3. Preprocessing source code [43].
4. Modifying the compiler [44,45].
5. Preprocessing byte-codes (statically) [46].
6. Transforming byte-codes at class load time [47,44].
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The first two approaches clearly violate the goal of portability as they depend
on a modified virtual machine. The next three approaches produce portable byte-
codes but require each producer of semantically extended code to have access to
a modified compiler or preprocessor. Moreover, the compilation approach pre-
cludes the dynamic composition of semantic extensions. Only the last method is
compatible with our goals of dynamic composition and portability. Consequently,
we have adopted the last approach to semantic extensions as the basis for our
semantic extension framework and our OPJ implementation (a semi-dynamic
approach).

Byte-code transformations are notoriously error prone. A simple mistake dur-
ing the transformation process can destroy type safety or the semantics of the
program, and may lead to the byte-code modified class being rejected at class
load time. A type-safe and declarative way to specify program transformations is
essential to the practical application of byte-code transformations. To this end,
we have defined the Semantic Extension Framework. Our framework allows for
both the semantic extension of methods and the inclusion of special ‘triggers’
(similar in concept to database triggers) that are activated on the occurrence of
particular events such as the execution of getfield or putfield Java byte-codes.
The semantic extension framework is invoked when a user class is loaded. This
action triggers a special semantic extension class loader to search for and load
any semantic extension classes that are applicable to the user class being loaded.

A first prototype of the framework has been implemented. It has been ap-
plied to the implementation of a portable OPJ and a portable object versioning
framework. We have implemented the framework using the ‘PoorMan’ library
that provides facilities for class file parsing and basic class transformations [47].

6.3 Orthogonally Persistent Systems

Orthogonally persistent systems are distinguished from other persistent systems
such as object databases by an orthogonality between data use and data persis-
tence. This orthogonality comes as the product of the application of the following
principles of persistence [48]:

Persistence Independence
The form of a program is independent of the longevity of the data which it
manipulates.

Data Type Orthogonality
All data types should be allowed the full range of persistence, irrespective of
their type.

Persistence Identification
The choice of how to identify and provide persistent objects is orthogonal to
the universe of discourse of the system.

These principles impart a transparency of persistence from the perspective of
the programming language which obviates the need for programmers to maintain
mappings between persistent and transient data. The same code will thus operate
over persistent and transient data without distinction.
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While the value of orthogonal persistence as a technology for managing com-
plex persistent data has long been acknowledged, difficulties in efficiently im-
plementing orthogonally persistent systems seem to have retarded its uptake in
the commercial setting. Of the various challenges associated with implement-
ing orthogonal persistence, one of the most important is that of transparently
and efficiently introducing persistence semantics into the programming language
runtime system.

There have been a number of efforts to extend Java with orthogonal per-
sistence [40,49,42,41]. Most prominent among these are PJama [40] and Gem-
Stone/J TM [41]. In both cases orthogonal persistence is achieved by replacing the
standard JVM with one that extends standard byte-code semantics to include
persistence. In both cases, the virtual machine, although enhanced, remains Java
compliant, allowing non persistent Java programs to execute normally.

Another common approach is the use of program transformations at the
source code level. Examples of this approach include JSPIN [50] and POET [51]
that replace the standard javac compiler. Each user class that directly extends
java.lang.Object is modified to extend a PersistentObject class. Additionally,
the user classes are modified to incorporate read and write barriers.

We have implemented two complete prototypes of our orthogonally persistent
Java (OPJ) environment, and a third is nearing completion. All OPJ prototypes
are built over the PSI interface, support an advanced transactional model, and
implement orthogonal persistence through transparent semantic extensions to
Java. While the first two prototypes semantically extended Java through ad-
hoc bytecode modifications, the third prototype utilises the semantic extension
framework described above. As a consequence, the third implementation is far
less complex. A number of PSI implementations have been developed, including:
a store based on the SHORE storage manager [52], a store based on Oracle
RDBMS [53], a lightweight implementation using filesystems and a purpose-built
high performance object store.

6.4 Orthogonal Object Versioning (OOV) Framework

Another example of the concept of the separation of concerns is Orthogonal
Versioning. The general idea of Orthogonal Versioning is to extend the principles
of Persistence Independence and Data Type Orthogonality to the problem of
multiple versions of the same object. The versioning system is independent of
the object type. All object types can have multiple versions except immutable
objects such as Strings. Any object version that could be reached from any
version of any persistent root is made persistent. The form of a program is the
same whether it manipulates the last version or any previous version of an object.
However, it is also possible to access and manipulate multiple object versions at
the same time using new methods which provide explicit access to any version
of an object.

We have built a first prototype of an object versioning framework based on
Orthogonal Object Versioning on top of OPJ prototypes.
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The advantage of such transparent versioning to data mining becomes ap-
parent when dealing with the many transformations that are performed on the
datasets used for data mining during the life time of a data mining exercise.
Datasets on which the data mining tools are to be applied need to be developed
from multiple source tables. The raw data needs to be transformed into features.
Refinements will need to be made (and usually many times refined) to the fea-
tures. As new snapshots of the dataset become available, new analyses need to
be performed. Comparing the results of these new analyses to the analyses on
previous versions of the datasets may shed light on changing dynamics repre-
sented in the dataset. All of these activities can be seamlessly supported using
the Orthogonal Object Versioning Framework.

In summary, the separation of concerns provided by the PSI interface and
HPOPJ allows a data mining tool developer to take advantage of a widely avail-
able, comprehensive information-processing infrastructure. The storage medium
can be scaled from a non-transactional file system to a Relational or Object Ori-
ented Database Management System effortlessly. Moreover, high performance
storage systems such as SHORE and ANU-Store can provide access to data
tuned to the particular analyses to be performed. Finally, other aspects of the
semantic extension framework, including versioning, will play a significant role
in simplifying the data management aspects of data mining.

7 Pulling It Together

Now consider the task of a data mining team interested in building models and
exploring alternative approaches with customer data. Some basic tools might
include, for example, C4.5 [5], BMARS, and TPSFEM. All are performing sim-
ilar and related tasks, yet the results need to be carefully understood in the
context of the tool used to generate the results. Tuning them requires different
interactions with (sometimes very) different interfaces, and simply getting the
data into a form that the tool can process requires many careful transformations.
While sometimes seeming trivial, these are at best annoyances, and at worst they
significantly inhibit the data mining process.

The first task in a data mining project, once the data is made available in
some format, is to transform that data into a format suitable for each of the data
mining tools to be used. Storing the data in a relational database and accessing
it via ODBC or JDBC is a help, but not the whole solution. Generally, a suite of
powerful tools (as might be provided to some extent by statistical packages such
as SAS and Splus) is required to transform the data into the suitable format. The
semantic extension framework we have introduced above will begin to play the
role of a fully integrated, tunable, and very powerful base for data management
on which the rest of the data mining suite sits.

To complicate the situation further, though, a data mining exercise will often
combine multiple approaches to obtain discoveries that otherwise would not be
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possible. For example, in the Hot Spots methodology for data mining [23] clus-
tering is used in conjunction with rule induction and domain post-processing to
identify areas in the data that are of significant importance to the domain prob-
lem (the “hot spots”). The task of feeding the output of one analysis tool into
others, allowing smooth interoperability throughout the process, has not been
a particular focus of the data mining research community. Providing standard
application programmer interfaces (APIs) to support the integration of multiple
tools into a single environment has similarly received little attention. Some ven-
dors have provided limited support in this area but the solutions tend to remain
incompatible.

7.1 The Data Miner’s Arcade

The Data Miner’s Arcade (Figure 5) [54] provides an object-oriented framework
through a collection of APIs for data access, for plug-n-play type tool integration
with graphical user interfaces, and for the communication of results. A single,
common, and easy to user user interface is provided to support all stages of a
data mining project.

Fig. 5. The Data Miner’s Arcade splash screen, showing the dynamically created tool-
bar reflecting just the tools available for this current invocation of the Arcade.

Access is provided to analysis tools without requiring the user to become
proficient in the widely varying user interfaces. Each tool need only provide
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a specification of the names and types of tuning parameters supported and a
suitable user interface, as in Figure 6, can be generated using a standard API
(research is under way to automate this process through the use of XML-type
specifications of the interface). Whilst deep expertise will still, at times, be re-
quired for the subtleties of particular tools, general straight-forward tasks can
now be completed easily by end users. The more mundane Data Mining activ-
ities can thus be performed by the data owners with further support from the
limited resources available from the data mining consultants as required.

Fig. 6. The Data Miner’s Arcade C5.0 interface. This has been generated for C5.0
(the commercially available and enhanced version of C4.5) providing the common ad-
vantages of GUI interfaces, including reduced effort expended on learning to drive this
otherwise command-line driven application.

The general architecture of the Data Miner’s Arcade is illustrated in Figure 7.
Currently, access to data is provided through JDBC but is being migrated to
the use of the Java semantic extension framework and OPJ, with minimal (and
ideally no) change to the actual API used by the data mining tools to access the
data. The data mining tools are “plugged in” to the Arcade as required. Results
from the tools are then supplied to visualisation components, or to utilities that
can apply the model to other datasets. The models can also be supplied to other
model builders to be integrated (for ensemble type learning systems) or otherwise
used in the ongoing data mining process.
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Fig. 7. A schematic of the architecture of the Data Miner’s Arcade. Three APIs are
identified, providing access to the data, the GUI interfaces, and output of the models.

Whilst there are a number of systems that have provided such a unified in-
terface to a variety of tools, the architecture of The Data Miner’s Arcade has
a number of distinct advantages and features. These make it a unique environ-
ment for the development and integration of data mining tools. Standards are
used where possible to facilitate the immediate integration of new tools as they
become available. Using Java’s internet oriented features, networked integration
and delivery of tools allows up-to-date developments in the analysis tools to be
immediately available within the Arcade. The standard API for data manage-
ment (possibly coupled with the data space transfer protocol mentioned above)
alleviates the need to develop data access methods for each of the tools. Data
management issues are abstracted, currently through JDBC, but soon through
the semantic extension framework, to dedicated components that deal with the
efficient delivery of the data.

We explore the issue of the delivery of the results of the analysis tools in the
next section.

7.2 XML for Communicating Models

A considerable amount of effort is required to communicate the results of current
data mining tools to both other analysis tools and to end users. After struggling
with the variety of analysis tools the remaining task for the data miner is to



48 Graham Williams et al.

interpret the results from them. Deceptively simple yet complexly inter-related
conjunctive rules from C4.5, complex numerical formulas from BMARS, and
complex centroids in clustering algorithms all provide much information and
nuggets of discovered knowledge. But the task of making sense of the results
obtained from the variety of analyses is one which the tools provide little help
with.

Research is underway to address this issue of the interoperability of the data
mining tools through the effective communication of the models they generate.
In particular, XML (the eXtensible Markup Language) is being used for this
task. Building on the tremendous success of HTML as a language for the inter-
change of documents locally and over the Web, XML provides the framework for
the exchange of many types of documents. The predictive modelling mark-up
language (PMML) [2] is an example of its application to data mining.

To illustrate this we present here a document type definition (DTD) that
describes a class of documents that record the details of predictive models rep-
resented as regression splines as produced by tools such as BMARS. The DTD
contains a definition of the components that together fully specify all details
of a BMARS model. This includes the name and type of features, and the ac-
tual formula itself, but expressed in a highly structured manner to allow easy
communication of the model.

A snapshot of the DTD for expressing the types of models produced by
BMARS is:

<!ELEMENT pmml (header, model)>

<!ELEMENT header (data-schema)>

...

<!ELEMENT model (bmars-model)>

<!ATTLIST model

name CDATA #IMPLIED

type (bmars|mars) #REQUIRED

training-set-name CDATA #IMPLIED

training-set-size CDATA #IMPLIED>

<!ELEMENT bmars-model (response-variable,

intercept,

tensor-product-basis-function*)>

<!ATTLIST bmars-model

lsf-level-of-interactions CDATA #IMPLIED

small-scale-features (yes|no) #IMPLIED

...

>

<!ELEMENT response-variable (#PCDATA)>

<!ELEMENT intercept (#PCDATA)>
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<!ELEMENT tensor-product-basis-function

(coefficient, (bspline-basis-function

|indicator-basis-function)+)>

...

Thus, BMARS generates a model that is expressed as a document conforming
to this specification. For example, the model that partially consists of

x17 = 9170 + 1270f1(x8) + . . . + 1510fi(x5) . . .

will be represented as:

<?xml version="1.0"?>

<!DOCTYPE pmml SYSTEM "mars.dtd">

<pmml>

<header>

<data-schema>

...

</data-schema>

</header>

<model

name="cc_a_model"

type="bmars"

training-set-name="claim_data"

training-set-size="2131231">

<bmars-model

level-of-interaction="1"

small-scale-features="no"

...>

<response-variable>x17</response-variable>

<intercept>+0.917E+04</intercept>

<tensor-product-basis-function>

<coefficient>-0.127E+04</coefficient>

<bspline-basis-function>

<variable>x8</variable>

<knots>

+0.000E+00 +0.000E+00 +0.600E+02

</knots>

</bspline-basis-function>

</tensor-product-basis-function>

...

<tensor-product-basis-function>
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<coefficient>-0.151E+04</coefficient>

<indicator-basis-function>

<variable>x5</variable>

<map-function>

1 1.00000000 0

2 2.00000000 0

3 3.00000000 1

4 4.00000000 0

</map-function>

</indicator-basis-function>

</tensor-product-basis-function>

...

</bmars-model>

</model>

</pmml>

We now have a model of our dataset expressed in a form that can easily
be distributed and communicated to other tools that may provide various vi-
sualisations of the model, combine this particular model with similar models
generated from BMARS (or other tools) on different versions of the dataset, or
to run the model against other, previously unseen, data. Figure 8 shows a typical
output from Arcade where a plugin has been used to take the XML generated
by BMARS to generate Matlab instructions to produce the resulting graph of
the interactions between two of the variables in the model.

X2

00

X1

Fig. 8. Sample output from an Arcade plug-in which can generate a MatLab script for
the graphing of the interaction between two variables represented in a model generated
by BMARS. The BMARS model is stored as an XML document.

The Data Miner’s Arcade, then, provides an environment for the develop-
ment for packaged solutions for data mining. It aims to take advantage of and
to develop standards to allow tools to interoperate. Rapid integration of new
algorithms has been a central focus, as well as the ease in tuning it for particular
tasks.
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8 Summary

We have presented in this paper a snapshot of ongoing research being performed
within ACSys by CSIRO Australia and the Australian National University in
data mining. The research is guided by tackling real world data mining projects.
Much of the research addresses the need to employ high performance and parallel
computers for large scale data mining. To this end, efficient and parallel algo-
rithms for data mining are being developed, including TPSFEM and BMARS.
High powered visualisation techniques are being researched for data mining. The
seamless management of data in ways that provide fast access from the data min-
ing tools is the third area we focussed on in this paper. Research is under way
to explore the benefits of using a semantic extension framework for Java for this
task. Finally, the Data Miner’s Arcade is being developed as a framework for
the integration of these many streams in our research, introducing XML as an
effective means for effecting the communications.
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Abstract. With the emergence of high performance networks, clusters
of workstations can now be connected by commodity networks (meta-
clusters) or high speed networks (super-clusters) such as the very high
speed Backbone Network Service (vBNS) or Internet2’s Abilene. Dis-
tributed clusters are enabling a new class of data mining applications in
which large amounts of data can be transferred using high performance
networks and statistically and numerically intensive computations can
be done using clusters of workstations.
In this paper, we briefly describe a protocol called the Data Space Trans-
fer Protocol (DSTP) for distributed data mining. With high performance
networks, it becomes possible to move large amounts of data for certain
queries when necessary. This paper describes the design of a high per-
formance DSTP data server called Osiris which is designed to efficiently
satisfy data requests for distributed data mining queries. In particular,
we describe 1) Osiris’s ability to lay out data by row or by column, 2) a
scheduler intended to handle requests using standard network links and
requests using network links enjoying some type of premium service, and
3) a mechanism designed to hide latency.

1 Introduction

In this paper we consider some of the issues that arise in distributed data mining
when large amounts of data are moved between sites. One of the fundamental
trade-offs in distributed data mining is between the cost of computation and the
accuracy of results. We assume: 1) that there is a cost for moving data between
sites, and 2) that the most accurate model is obtained by moving all the data
to a single site. Leaving some or all of the data in place, building local models,
and merging the resulting models, produces a model which is less accurate, but
which, in general, is also less expensive to compute.

The cost of moving data to a central location with the commodity Internet
has tended to produce either distributed data mining systems which build local
classifiers and then combine them or data mining systems that use standard
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interfaces such as ODBC or JDBC. These protocols work best when moving
relatively small amounts of data to a central location. Examples of the former
include JAM [18] and BODHI [15]; examples of the latter include Kensington
[11].

In a previous paper [22], we have pointed out that there are many interme-
diate cases in which building classifiers that are close to the optimal one results
in moving some of the data, leaving some of the data in place, building local
classifiers, and combining them. In this paper, we are concerned with the design
of network protocols and middle-ware for distributed data mining systems which
have the ability to move some data and to leave other data in place. For example,
Papyrus [7] is a distributed data mining system of this type.

Three fundamental challenges faced by distributed data mining systems are:

Problem A. How can the analysis of distributed data be simplified?
Problem B. How can the amount of data per site be scaled?
Problem C. How can the number of sites be scaled?

To address Problem A, we introduced a protocol called the Data Space Trans-
fer Protocol (DSTP) [1]. In this paper, we are concerned with how we can design
DSTP data servers for distributed data mining which scale up as the amount
of data per site increases (Problem B). We describe a high performance DSTP
server we are designing called Osiris, which is a component of a distributed and
high performance data mining system we are building called Papyrus [7].

One method of satisfying the computing and i/o requirements for high per-
formance data mining is to use clusters of workstations [7] [16] [19] — com-
pute clusters to satisfy the CPU requirements and data clusters to satisfy the
i/o requirements. With the recent advances in high performance networks, geo-
graphically distributed clusters of workstations can be connected not only with
commodity networks but also with high performance networks such as the NSF
vBNS Network supported by MCI and the Internet2 Abilene Network supported
by Qwest. For example, for the distributed data mining tests reported below, we
used a data cluster in Chicago connected to a compute cluster in Washington,
D.C. over a DS-3 link running at 45 Mb/s. Our first DSTP implementation pro-
vided approximately 3 Mb/s of throughput, while our current implementation
provides approximately 30 Mb/s of throughput, a 10x improvement. See Table
1.

Based upon our previous experience analyzing the performance of another
distributed data mining system we built [10], we decided to focus on three ques-
tions:

What do we store? More precisely, how should we physically layout the data on
the server? By row or by column? Can we precompute intermediate quantities
to speed up queries?

What do we move? More precisely, to what extent should data or meta-data be
moved from node to node? There are several possibilities: we can move data, we
can move predictive models, or we can move the results of computations. If we
decide to move data, we can move data by table, by row, or by column.
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How do we move it? What application protocol should be used for moving data
in data space? How can data be moved in parallel between nodes? How can QoS
be exploited to improve data transport? What is the effect of latency on data
mining queries? What transport protocol should we use? Given multiple requests
to a data server, how should the requests be scheduled?

The 10x performance gain we mentioned above resulted from careful un-
derstanding of these issues. Section 2 describes related work and background
material. Section 3 describes data space and the data space transfer protocol.
Section 4 describes the DSTP server and three experimental studies. Section 5
is the conclusion and summary.

2 Background and Related Work

In this section, we provide some background material and discuss some of the
related work in this area. With the exception of [19] and [16], the work we know
of in this area is limited to data mining over commodity networks. This section
is adapted from [8].

Several systems have been developed for distributed data mining. Perhaps the
most mature are: the JAM system developed by Stolfo et al. [18], the Kensington
system developed by Guo et al. [11], and BODHI developed by Kargupta et al.
[15]. These systems differ in several ways:

Data strategy. Distributed data mining can choose to move data, to move inter-
mediate results, to move predictive models, or to move the final results of a data
mining algorithm. Distributed data mining systems which employ local learning
build models at each site and move the models to a central location. Systems
which employ centralized learning move the data to a central location for model
building. Systems can also employ hybrid learning, that is, strategies which com-
bine local and centralized learning. JAM and BODHI both employ local learning
while Kensington implements a centralized approach using standard protocols
such as JDBC to move data over the commodity Internet.

Task strategy. Distributed data mining systems can choose to coordinate a data
mining algorithm over several sites or to apply data mining algorithms inde-
pendently at each site. With independent learning, data mining algorithms are
applied to each site independently. With coordinated learning, one (or more)
sites coordinate the tasks within a data mining algorithm across several sites.

Model Strategy. Several different methods have been employed for combining
predictive models built at different sites. The simplest, most common method
is to use voting and combine the outputs of the various models with a majority
vote [4]. Meta-learning combines several models by building a separate meta-
model whose inputs are the outputs of the various models and whose output is
the desired outcome [18]. Knowledge probing considers learning from a black box
viewpoint and creates an overall model by examining the input and the outputs
to the various models, as well as the desired output [11]. Multiple models, or what
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are often called ensembles or committees of models, have been used for quite
a while in (centralized) data mining. A variety of methods have been studied
for combining models in an ensemble, including Bayesian model averaging and
model selection [17], partition learning [6], and other statistical methods, such as
mixture of experts [23]. JAM employs meta-learning, while Kensington employs
knowledge probing.

Papyrus is designed to support different data, task and model strategies. For
example, in contrast to JAM, Papyrus can not only move models from node
to node, but can also move data from node to node, when that strategy is
desired. In contrast to BODHI, Papyrus is built over a data warehousing layer
which can move data over both commodity and high performance networks. Also,
Papyrus is a specialized system which is designed for clusters, meta-clusters, and
super-clusters, while JAM, Kensington and BODHI are designed for mining data
distributed over the Internet.

Moore [16] stresses the importance of developing an appropriate storage and
archival infrastructure for high performance data mining and discusses work in
this area. The distributed data mining system developed by Subramonian and
Parthasarathy [19] is designed to work with clusters of SMP workstations and
like Papyrus is designed to exploit clusters of workstations. Both this system
and Papyrus are designed around data clusters and compute clusters. Papyrus
also explicitly supports clusters of clusters and clusters connected with different
types of networks.

3 Data Space and the Data Space Transfer Protocol

We begin by describing some of the key concepts following [1].

Data Space. We assume that data is distributed over nodes in a global
network, which we call a data space.
Rows and Columns. Although the data may be more complicated, we
assume that the data is organized into tables, and that each table is
organized into rows (records) and columns (observations). Records may
contain missing values.
Catalog Files. Each DSTP server has a special file called the catalog file
containing meta-data about the data sets on the server.
DSTP. We assume that there is a server on each node which can move
data to other nodes using a protocol called the data space transfer pro-
tocol (DSTP). Depending upon the request, DSTP servers may return
one or more columns, one or more rows, or entire tables. DSTP servers
can also return meta-data about tables and the data they contain.
Universal Correlation Keys. A row may have one or more keys. Certain
keys called Universal Correlation Keys (UCK) are used for relating data
on two different DSTP servers. For example, key-value pairs (ki, xi) on
DSTP Server 1 can be combined with key-value pairs (kj , yj) on DSTP
Server 2 to produce a table (xk, yk) in a DSTP client. The DSTP client
can then find a function y = f(x) relating x and y.
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Horizontal Store: Store Size = 4.4 GB
NC ADR in Mb/s TDT in Giga bytes TTT in seconds EPR in Events/second

1 3.06 4.4 11777.5 64
2 6.07 4.4 5926.59 253
4 10.05 4.4 3590.40 655
8 16.92 4.4 2132.05 2811
16 23.32 4.4 1550.91 7731
32 34.93 4.4 1032.24 23245

Vertical Store: Store Size = 4.0 GB
NC ADR in Mb/s TDT in Mega bytes TTT in seconds EPR in Events/second

1 1.39 269.5 1549.05 400
2 2.75 269.5 797.00 1554
4 3.81 269.5 566.42 4377
8 6.75 269.5 320.45 15482
16 9.74 269.5 223.05 44590
32 13.96 269.5 152.52 126918

Table 1. Performance analysis of horizontal vs. vertical stores.
NC - Number of clients requesting data
ADR - Aggregate Data Rate
TDT - Total Data Transferred
TTT - Total Time Taken for completion of application
EPR - Events Processing Rate

Since DSTP client applications need only collect meta-data from the catalog
files and need only move the relevant columns, these type of applications tend to
scale better as the number of sites increases (Problem C) than distributed data
mining applications which must move entire files. Recall that we are interested
in the case in which some data is moved. Of course, if sufficient accuracy can
be obtained by local analysis followed by combining models, this is usually less
expensive than strategies which require that data be moved.

Notice that from this perspective, distributed databases are concerned with
the efficient updates of distributed rows, while distributed data mining applica-
tions are concerned with the efficient reading and analysis of distributed columns.

In the next section, we describe our efforts to produce DSTP servers which
can efficiently manage large data sets.

4 The Osiris DSTP Server

Osiris is a high performance DSTP Server which is designed to provide efficient
read access to data. In our design, efficient read access is delivered by imple-
menting high performance storage support, high performance network transfer
support, and differentiated service support.
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In this section we discuss our implementations of these support mechanisms
and some preliminary experimental results which attempt to quantify the rela-
tive performance gains for each technique. All three mechanisms are implemented
in process space and do not require any special tuning of the underlying hard-
ware or operating systems. We felt it was important to provide performance
improvements that were independent of the underlying system in order to in-
crease portability.

4.1 Rows and Columns

Tabular data may be laid out on disk by row or by column. Since data from disk
is transfered by block, certain queries will be more efficient when the data is laid
out by row (horizontally) and other queries will be more efficient when the data
is laid out by column (vertically).

DSTP client applications accessing data may request either rows of data or
columns of data. If a column of data is requested and the underlying storage
layout is horizontal, then each block will contain quite a bit of unwanted data.
The same is true if a row of data is requested and underlying layout is vertical.

Since horizontal layouts speed up certain distributed data mining queries and
vertical layouts speed up others, Osiris stores data in both formats. Although
this doubles the amount of space required, the I/O traffic is reduced significantly.
Since Osiris is a distributed system, the I/O traffic ultimately passes through
a network communication link. Since network bandwidth is sufficiently more
expensive than disk capacity, we feel the 2X increase in required storage is more
than compensated for.

The following results are from a proof of concept DSTP data server located
at the University of Illinois at Chicago being accessed by multiple clients located
at an Internet2 member facility in Washington, D.C. called Highway One. The
two sites are connected by the NSF/MCI vBNS Network. Even though vBNS
is an OC-3 network offering maximum bandwidth of 155 Mb/s, the end nodes
at Highway One were connected via a DS-3 link, which limited the maximum
bandwidth of the testbed to 45 Mb/s.

For this test, we used an application benchmark we developed called the
Event Benchmark, which is broadly derived from high energy physics. The data
consists of a large collection of events, with each event containing several hundred
attributes. An energy like function is computed from the attributes of an event
and the energies of the event are histogrammed.

To better understand quantitative effects of the Horizontal/Vertical Layout
strategy, we first laid out the data horizontally and ran the application, and then
we laid out the data vertically and ran the application.

In the first case, all the event data was stored as rows (i.e., each event was
a row). In the second case, the event data was stored attribute by attribute as
columns. The Event Benchmark specifies that event level summary data is to be
stored separately and analyzed at run-time to find out which attributes are to
be requested and processed. In other words, this particular application requests
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columns of data based on some criteria. Therefore, we expected that a vertical
layout should provide better performance.

Table 1 shows the performance results. The Event Processing Rate (EPR)
is an an application benchmark of efficiency. Aggregate Data Rate (ADR) and
Total Data Transferred (TDT) are system performance measures. The desired
result is to maximize application efficiency with the least load on the system.
Clearly, the vertical layout provided better performance, as expected.

NC ART-P in seconds ART-PS in seconds ART-C in seconds ART-CS in seconds

1 606.3 570.4 422.1 447.4
2 577.5 557.5 445 463.5
3 574.4 558.5 568.5 581.3
4 566.6 566.5 715 740
5 565.9 562.16 880.9 892.7

Table 2. Performance of Diff-Serv scheduler
NC - Number of clients requesting data per service type
ART-P - Average run-time for premium clients (no scheduling)
ART-PS - Average run-time for premium clients (with Diff-Serv scheduling)
ART-C - Average run-time for commodity clients (no scheduling)
ART-CS - Average run-time for commodity clients (with Diff-Serv scheduling)

This experiment demonstrates the effect that layout has on application per-
formance. Because we cannot predict whether applications will request rows or
columns, storing the data both horizontally and vertically will guarantee perfor-
mance gain.

4.2 Differentiated Service Support with Diff-Serv Scheduler

Osiris is being developed to simultaneously serve clients on both commodity and
high performance networks. Because of the premium nature of high performance
networks, it is desirable that clients on these networks have some precedence over
clients on commodity networks. Treating premium clients and commodity clients
differently constitutes a type of Quality of Service(QoS) called differentiated
services [20].

Differentiated service support in Osiris is another mechanism that attempts
to contribute to the requirement of efficient read access. In this context, efficiency
refers to system wide resource utilization as opposed to per process performance.

Because the currently popular Internet protocol suite (IP) does not support
any kind of QoS mechanism, we chose to implement differentiated service support
as a characteristic of the scheduling mechanism for client requests to Osiris. We
refer to this scheduler as the Diff-Serv Scheduler.

When a client attaches to Osiris, it informs the server whether it is a premium
client or a commodity client. Data block requests are then scheduled for service as
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TM TT in seconds AATR in Mbps

traditional single socket 96 8.3
PSocket size 2 57 14.0
PSocket size 3 34 23.5
PSocket size 4 30 26.7
PSocket size 5 26 30.8
PSocket size 6 26 30.8
PSocket size 7 26 30.8

Table 3. Performance of Transport Layer Multiplexing with PSocket. (Note:
The practical limit of the 45 Mb/s DS-3 appears to be about 35 Mb/s.)
TM - Transport Mechanism
TT - Transfer Time for 100 MBytes
AATR - Application Apparent Transfer Rate

they arrive with premium client requests getting preferential treatment. Please
see [12] for full design and implementation details of the Diff-Serv Scheduler.

For our experimental study, a single server was run on a machine connected
to the network through Switched Fast Ethernet (100 Mbps). An equal num-
ber of clients connected to both Switched Fast Ethernet (premium clients) and
Switched Ethernet (commodity clients) were launched and connected to the
server.

The premium clients each made 10,000 random block requests, and the com-
modity clients each made 5,000 random block requests. The default block size
for Osiris is 16KB. Every client waited for an exponentially distributed random
delay between block requests. This delay was introduced to cause a Poisson dis-
tribution of request arrivals to the server and was an attempt to simulate real
application behavior.

Experiments were conducted which compare system performance with Diff-
Serv scheduling turned on against system performance with Diff-Serv scheduling
turned off. Measurements were made with a total of two to ten clients. The results
are presented in Table 2. Please note that when Diff-Server scheduling is turned
off, the system defaults to FIFO scheduling.

The desired results were achieved. In all cases, premium client response time
improved while commodity client response time diminished when our implemen-
tation of Diff-Serv scheduling was turned-on.

4.3 High Performance Network Transfer Support with PSocket

It has been well documented that latency characteristics of TCP over wide area
networks, or more precisely networks with large ”bandwidth · delay” products,
have a significant negative impact on per process communication performance
[13]. Various protocol and implementation level solutions have been suggested
[14] [5]. One technique is for the sender to send multiple messages to the receiver
in parallel [21].
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In order to provide high performance network transfer support, we allow a
single process to break up a message and then send the pieces in parallel over mul-
tiple communication links (e.g., TCP sockets) to the receiver who then rebuilds
the entire message. We refer to this technique as Transport Layer Multiplexing
and have implemented a simple-to-use interface for application integration called
PSocket (as in Parallel Socket). For full details please refer to [2].

Osiris will use PSockets to increase the data transfer rate on a per client
process basis. The results in Table 3 are from a single, non-threaded sender
process using PSocket, located at the University of Illinois at Chicago, sending
data to a single non-threaded receiver process using PSocket located at Highway
One. The two sites are connected by the NSF/MCI vBNS Network. Highway
One connects to vBNS via a DS-3 link, which limited the maximum theoretical
bandwidth of the testbed to 45 Mb/s.

The experiment measured the wall clock transfer time of a 100 MByte buffer.
Results show that with a PSocket of size 5, a large portion of the practical
transfer rate of the DS-3 was consumed by the transfer. As a reference, the
transfer rate using traditional, single socket programming was given.

5 Conclusion

In general, the less data which distributed data mining systems move, the less
expensive the computation. However, due to the level of accuracy required or
to the nature of the data, it is sometimes necessary to move large amounts
of data between sites. With the emergence of high performance networks this
becomes practical in many circumstances in which it would have previously been
impractical.

In this paper, we have described some of the design considerations for a high
performance data server called Osiris which is part of the Papyrus distributed
data mining infrastructure and presented some experimental results describing
its use on an application benchmark requiring the computation of histograms.

In particular, we describe a design which supports high performance storage,
high performance network transfer, and differentiated network services, such as
commodity links and high performance links. This design provides at least a
10x improvement over a more naive design. We expect this to grow to 100x for
certain applications and network configurations.
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Abstract. Most current work in data mining assumes that the data is
static, and a database update requires re-mining both the old and new
data. In this article, we propose an alternative approach. We outline a
general strategy by which data mining algorithms can be made active
— i.e., maintain valid mined information in the presence of user inter-
action and database updates. We describe a runtime framework that
allows efficient caching and sharing of data among clients and servers.
We then demonstrate how existing algorithms for four key mining tasks:
Discretization, Association Mining, Sequence Mining, and Similarity Dis-
covery, can be re-architected so that they maintain valid mined informa-
tion across i) database updates, and ii) user interactions in a client-server
setting, while minimizing the amount of data re-accessed.

1 Introduction

As we enter the digital information era, one of the greatest challenges facing
organizations and individuals is how to turn their rapidly expanding data stores
into accessible knowledge. Digital data sources are ubiquitous and encompass
all spheres of human endeavor: from a supermarket’s electronic scanner to a
world wide web server, from a credit card reader to satellite data transmissions.
Organizations and individuals are increasingly turning to the extraction of use-
ful information, referred to as data mining, from such databases. Such high-level
patterns, or inferences, extracted from the data may provide information on cus-
tomer buying patterns, on-line access patterns, fraud detection, weather trends,
etc.

A typical data mining technique can be thought of as an exploration over a
huge user-defined pattern space, with the role of the data being to select patterns
with a desired degree of confidence. The set of accepted patterns is a function
of both the data and the user-defined pattern space (controlled by the input
parameters). The data mining process tends to be interactive and iterative in
nature, i.e., after observing the results from the first round of mining, the user
may choose to repeatedly modify the input parameters, thereby affecting the set
of accepted patterns. Also, since businesses are constantly collecting data, the
data is also subject to change, again affecting the set of accepted patterns.

M.J. Zaki, C.-T. Ho (Eds.): Large-Scale Parallel Data Mining, LNAI 1759, pp. 65–82, 2000.
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Most current techniques, which tend to be static in nature, simply re-execute
the algorithm in the case of data updates or user interaction. There are sev-
eral limitations to this approach. First, although many of these techniques have
parallel solutions [20,28,4] that are efficient in storage, access, and scale, they
are still computationally expensive. Second, re-executing the algorithm requires
re-examining both the old and new data, and hence I/O continues to be a bottle-
neck. These problems are further exacerbated in applications such as electronic
commerce and stock sequence analysis, where it is important to execute the
query in real or near-real time, in order to meet the demands of on-line transac-
tions. Also, more and more such applications are being deployed as client-server
applications where the server is physically separate from the client machine. Such
a setup is also common within an organization’s intra-net when there may be
several groups mining, perhaps with separate agendas, from a common dataset.
Ensuring reasonable response times in such applications is made more difficult
due to the network latency and server load overheads. This leads to the following
challenge:

In order to meet the demands of such interactive applications, can existing
algorithms be re-architected, making them efficient in the presence of user inter-
actions and data updates, in a distributed client-server setting?

1.1 Proposed Solution

We refer to algorithms that maintain valid mined information in the presence of
user interaction and database updates as active algorithms. The main challenge
is to perform the active mining in a storage and time efficient manner. This paper
describes a general strategy by which data mining tasks can be re-architected to
work efficiently with the constraints outlined above.

We accomplish our objective by maintaining a mining summary structure
across database updates and user interactions. On a database update, the re-
vamped algorithm replaces accesses to the old data with accesses to the mining
summary structure whenever possible. This ensures that information that is
previously mined can be re-used when the database is updated. On a user in-
teraction, the hope is that the mining summary structure can answer the query
without accessing the original data.

The design criteria for such a summary structure are: i) it should allow for
incremental maintenance as far as possible, i.e., the mining summary structure
from the old data along with the data update should ideally be sufficient to
produce the new summary structure, avoiding accesses to the old data as far
as possible, ii) it should store sufficient information to address a wide range of
useful user interactions, and iii) it should be small enough to fit in memory so
that accessing it rather than the old data provides a significant performance
gain.

While the above solution can potentially solve the active mining problem,
deploying these algorithms efficiently in a distributed setting is non-trivial. In
typical client-server applications, the client makes a request to the server, the
server computes the result, and then sends the result back to the client. The
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query execution time is significantly influenced by the speed of the client-server
link as well as the server load. Since the interactions in our applications are often
iterative in nature, caching the aforementioned summary structure on the client
side so that repeated accesses may be performed locally eliminates overhead and
delays due to network latency and server load. In order for this to be an effective
solution, the summary structure should not be very large (re-emphasizing point
iii) above), and an efficient mechanism for communicating updates is required.

Such summary structure sharing requires efficient caching support. We have
built a general-purpose framework called InterAct that facilitates the develop-
ment of interactive applications. InterAct supports sharing among interactive
client-server applications. The key to the framework is an efficient mechanism
to facilitate client-controlled consistency and sharing of objects among clients
and servers (this allows applications that can tolerate some information loss to
take advantage of this to increase efficiency by reducing communication). Advan-
tages within the scope of our work include: the ability to cache relevant data on
the client to support interactivity, the ability to update cached data (when the
data changes on the server) according to application or user preferences while
minimizing communication overhead, and the ability to extend the computation
boundary to the client to reduce the load on the server. We use this framework
to develop our applications.

1.2 Contributions

In this paper:

1. We describe a general methodology for creating active mining solutions for
existing applications.

2. We present active mining solutions for discretization, association mining,
sequence mining, and similarity discovery in a distributed setting.

3. We describe the InterAct framework, which, along with the changes to the
algorithms for active mining, allows effective client-server distribution of the
computation.

The next section presents the InterAct framework on top of which we im-
plement our active mining algorithms. We also outline our general approach to
the problem of making algorithms active. Sections 3 (Discretization),4 (Associ-
ation/Sequence Mining), and 5 (Similarity Discovery) describe the applications
we look at and our specific approach to make each of them active. We present and
evaluate our experimental results in Section 6. Section 8 details our conclusions.

2 InterAct Framework

InterAct is a runtime framework that presents the user with a transparent and ef-
ficient data sharing mechanism across disparate processes. The goal is to combine
efficiency and ease-of-use. InterAct allows clients to cache relevant shared data
locally, enabling faster response times to interactive queries. Further, InterAct
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provides flexible client-controlled mechanisms to map and specify consistency
requirements for shared data.

In order to accomplish its goal of transparently supporting interactive appli-
cations, InterAct:

– Defines a data (structure) format for shared objects that is address space
and architecture independent. Our implementation relies on the use of C++
and some programmer annotation to identify the relevant information about
shared data to the runtime framework.

– Identifies, defines, and supports the different types of consistency required by
such applications (described in [16]). In many domains (electronic commerce,
credit card transactions), the data that is being queried is constantly being
modified. The rate at which these modifications are required to be updated
in the client’s cached copy may vary on the basis of the domain, application,
or specific user. This rate can be controlled by exploiting the appropriate
consistency model to enhance application performance.

– Provides an underlying mechanism to transparently handle the consistency
demands as well as complex object transfer requirements. The goal here
is to reduce programming complexity by hiding as much of the underlying
communication from the application developer as possible.

For more framework details and the consistency types supported, see [16].

2.1 Active Mining and InterAct

Since mining applications typically operate on large data sets that reside on
a data server, communicating these datasets to the client would be infeasible.
However, in this paper we show that it is possible to design useful summary
structures for a range of mining applications, so that subsequent queries can
operate on these summary structures. This summary data structure can be gen-
erated by the data distiller (server), and subsequently operated on by the client.
Hence, the applications can be structured as shown in Figure 1, so that the data
server is responsible for creating the data structure(s), mapping them onto a
virtual shared dataspace, and subsequently keeping them up-to-date. The client
can then map the data structure(s) from the virtual shared dataspace under a
desired consistency model, thus enabling the client to respond to interactive
queries without having to go to the data server.

In order for the above setup to be effective the summary data structure should
satisfy three key properties. First, it should be able to directly answer a range
of interactive queries without requiring access to the data as far as possible.
This criterion minimizes the client-server communication, as well as server load.
Second, the summary structure should be incrementally maintainable. This cri-
terion ensures that changes to the data can be rapidly reflected in the summary
structure. Third, the summary structure should not be very large as otherwise
communicating it to the client may be very expensive. In the ensuing sections,
we describe how such summary structures can be designed for Discretization,
Association and Sequence Mining, and Similarity Discovery.
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Fig. 1. Client-Server Mining using InterAct

3 2-D Discretization

Discretization is the process by which the range of a given base attribute (or inde-
pendent variable) is partitioned into mutually exclusive and exhaustive intervals
based on the value of a related goal attribute (or dependent variable), whose
behavior we would like to predict or understand. Discretization has primarily
been used for summarization [8], as well as for growing a decision tree [19].

Typically, a single attribute is used as the decision variable. However, one can
also consider extensions to more than one base attribute (e.g., X > 5 ∧ Y < 6)
as long as the decisions remain simple. The need for this is often encountered
where repetitive applications of the single-attribute discretization do not provide
optimal results, while a single, integrated two-dimensional approach does.

In [17], the partitioning of a two dimensional base attribute space is defined
in terms of control points. A single control point partitions the base attribute
space into 4 rectangular regions. The rectangular regions are induced by drawing
lines through the control point that are perpendicular to the two axes. Two
control points partition the base attribute into up to 9 regions. The effect of
discretization is to approximate the behavior of the goal attribute as the same
for all points in a region. The purpose of the algorithm is to find the position of
the control point(s) that optimizes a given objective function.

The input to a discretization algorithm could be either the raw data or a
joint probability density function (pdf) of the base and goal attributes derived
from the data. Using the data directly eliminates errors associated with pdf esti-
mation. However, using a pdf enables one to use more meaningful error metrics
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such as Entropy [9]. Second, it permits users to encode domain knowledge by
altering the shape and type of kernel (normal, poisson, binomial, etc.) used for
density estimation. Further, it lends itself to a client-server architecture where
density estimation could be done on the server and a compact representation
shipped to the client.

Evaluating any pair of base attributes involves 2 steps: computing the three
dimensional probability density (pdf) estimate (two base attributes and the goal
attribute), and searching for the optimal (determined by the objective function:
Classification Error) discretization.

3.1 Interactivity

The idea in interactive discretization is that an end user ought to be able to
modify process parameters. The interactive features currently supported in our
algorithm include: i) choosing from a set of algorithms (brute force search, ap-
proximate search), and metrics (entropy, error), to compute the optimal dis-
cretization, ii) changing the number of control points (1, or 2), iii) changing the
position of control points, and iv) changing the parameters for pdf estimation.

Ideally, all these features need to be supported efficiently without excessive
I/O or computation.

3.2 Summary Structure

As mentioned earlier, the summary structure required to support such interac-
tions efficiently is the joint pdf p(base1, base2, goal). This pdf is estimated at
discrete locations. While several techniques exist to estimate the density of an
unknown pdf, the most popular ones are histogram, moving window, and kernel
estimates [7]. We use the histogram estimate described in [7]. The advantage of
this estimate is that it can be incrementally maintained in a trivial manner (a
histogram estimate is essentially the frequency distribution normalized to one).
Moreover, the more complicated kernel estimates can easily be derived from this
basic estimate [7].

With a few modifications, the histogram pdf estimate can handle each of the
interactions described above. If there are n points in the estimate, computing
the objective function for a given control point takes O(n) time. Since the ob-
jective of discretization is to find the control point(s) that optimizes the given
objective function, a brute force search will take O(n2) (O(n4) for two control
points) time. Recently, we have shown that smarter methods can reduce this
time complexity to O(n) (O(n2) for two control points) with additional memory
(O(n)). Alternatively, fast approximate searches like simulated annealing can be
used to generate good discretizations quickly [17].

Changing the control point in small incremental ways (moving the control
point along one of the two axes in unit steps), enables one to compute the
new objective functions (entropy or error) in unit time at the cost of additional
storage (O(n)). Changing the parameters for pdf estimation can also be done
quickly using the histogram estimate [7].
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In order for the summary structure to be cost effective, the size of the struc-
ture (n, the number of points in the estimate) must be small enough so that i)
it can be cached easily on remote clients, and ii) it can allow for faster interac-
tions. In the next section, we describe an experiment that explores the tradeoff
between the size of the summary structure and the accuracy of the discretization
obtained.

Accuracy vs. Summary Size. We evaluate the premise that it is possible to
create a condensed representation of the data (probability density function) with-
out serious degradation in the quality of discretizations obtained. This enables
efficient client-server partitioning, and allows off-loading parts of the computa-
tion to another machine, thereby reducing the load on the server, and potentially
improving interaction efficiency.

Experimentally, we have found that the number of points at which the pdf
needs to be evaluated (determined by grid size) without significant quality degra-
dation is not large. Our results are summarized in Figure 2. The results reported
are for two synthetic data sets, XOR and LL. These are described in [17] 1. Both
have 100,000 instances and 2 base attributes. It is easy to see that the quality
(error minimization) of discretization does not improve much beyond a grid size
of 642.

Data Set Grid Size Error

XOR 162 18.87%

XOR 322 18.13%

XOR 642 17.90%

XOR 1282 17.86%

LL 162 12.47%

LL 322 12.2%

LL 642 12.2%

LL 1282 12.3%

Fig. 2. Effect of grid size for pdf evaluation on quality of results

The resulting summary structure for discretization satisfies all the properties
for efficient active mining: it is bounded and small, it can be used to handle a
wide range of client queries without going back to the original database, and it
can be incrementally maintained.

1 Available via anonymous ftp from ftp.cs.rochester.edu/pub/u/srini

ftp.cs.rochester.edu/pub/u/srini
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4 Association/Sequence Mining

In this section, we consider two of the central data-mining tasks, i.e., the dis-
covery of association rules and the discovery of sequences. The discussion below
follows [28] (associations) and [27] (sequences).

The problem of mining association rules over basket data was introduced
in [2,3]. It can be formally stated as: Let I = {i1, i2, · · · , im} be a set of m
distinct attributes, also called items. Each transaction T in the database D of
transactions, has a unique identifier, and contains a set of items, such that T ⊆ I.
An association rule is an expression A ⇒ B, where A, B ⊂ I, are sets of items
called itemsets, and A ∩ B = ∅. Each itemset is said to have a support S if
S% of the transactions in D contain the itemset. The association rule is said to
have confidence C if C% of the transactions that contain A also contain B, i.e.,
C = S(A ∪ B)/S(A), i.e., the conditional probability that transactions contain
the itemset B, given that they contain itemset A.

Sequence Mining can be thought of as association mining over temporal
datasets. A sequence is an ordered (over time) list of nonempty itemsets. A
sequence of itemsets α1, . . . , αn is denoted by (α1 7→ · · · 7→ αn). The length
of a sequence is the sum of the sizes of each of its itemsets. The database is
divided into a collection of customer sets where each customer set contains the
set of transactions that customer is involved in in order of occurrence. For a
database D and a sequence α, the support or frequency of α in D, is the number
of customers in D whose sequences contain α as a subsequence. A rule A => B
involving sequence A and sequence B is said to have confidence c if c% of the
customers that contain A also contain B.

The basic approach to mining associations and sequences is a two step iter-
ative approach. First, identify the set of candidate associations/sequences for a
given number of items. Second, compute the set of associations/sequences from
the candidate set that meet the user-specified criteria, forming the basis for the
candidates in the next iteration (adding one to the number of items considered).
We use the ECLAT [28] (associations) and SPADE [27] (sequences) algorithms
as the basis for our work.

4.1 Interactivity

The idea in interactive association mining (or interactive sequence mining) is
that an end user be allowed to query the database for association rules at dif-
fering values of support and confidence. The goal is to allow such interaction
without excessive I/O or computation. Interactive usage of the system normally
involves a lot of manual tuning of parameters and re-submission of queries that
may be very demanding on the memory subsystem of the server. In most cur-
rent algorithms, multiple passes have to be made over the database for each
< support, confidence > pair. This leads to unacceptable response times for on-
line queries. Our approach to the problem of supporting such queries efficiently
is to create pre-processed summaries that can quickly respond to such online
queries.
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A typical set of queries that such a system could support include: i) Simple
Queries: identify the rules for support x%, confidence y%, ii) Refined queries:
where the support value is modified (x + y or x − y) involves the same proce-
dure, iii) Quantified Queries: identify the k most important rules in terms of
support, confidence pairs or find out for what support/confidence values can we
generate exactly k rules, iv) Including Queries: find the rules including item-
sets i1, . . . , in, v) Excluding Queries: compute the rules excluding itemsets
i1, . . . , in, and vi) Hierarchical Queries: treat items i1, . . . , in, as one item
and return the new rules.

4.2 Summary Structure

In [1], the concept of an Association Lattice L is defined. An association X is
said to be adjacent to an association Y if one of them can be obtained from the
other by adding a single item. Specifically, an association X is a parent of Y if Y
can be obtained by adding one item to X. We allow directed edges from parents
to children. It is then easy to see that if a directed path exists from a vertex V
to a vertex U then V ⊂ U . Further, each node in the lattice is weighted by the
support S of the given association it represents. The sequence lattice is obtained
in a similar manner.

The preprocessing step of the algorithm involves computing such a lattice
for a small enough support Smin, such that all future queries will involve a
support S larger than Smin . If the above holds, and given such a lattice, we
can produce answers to all but one (Hierarchical queries) 2 of the queries
described in the previous section at interactive speeds without going back to the
original database. This is easy to see as all of the queries will basically involve
a form of pruning over the lattice. A lattice, as opposed to a flat file containing
the relevant associations/sequences, is an important data structure as it permits
rapid querying for associations [1] and sequences [18]. This lattice can also be
incrementally maintained for associations [25] and sequences [18]. Due to limited
space, we do not describe it here.

Accuracy vs. Summary Size. Unlike in discretization, the size of the sum-
mary structure is not bounded for a choice of Smin. It depends on the data
and the choice of Smin. For small enough Smin the lattice can be very large
(larger than the original data itself in some cases!). However, for most practi-
cal cases (e.g., Smin = 0.05%, dataset = 170MB) the resulting lattice (4MB) is
manageable and the applications can benefit from client side caching of the data
structure.

The summary structure satisfies the three properties for efficient active min-
ing: it can be used to handle a wide range of client queries without going back to
the original database, it can be incrementally maintained, and for most practical
instances, the size of the lattice is not too large.
2 These queries require recomputation on the server. However, because of the way we

access the data, and the way it is stored we limit accesses to the old data.
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5 Similarity Discovery

Similarity is a central concept in data mining. Discovering the similarity among
attributes enables reduction in dimensions of object profiles as well as provides
useful structural information on the hierarchy of attributes. Das et al [6] pro-
posed a novel measure for attribute similarity in transaction databases. The
similarity measure proposed compares the attributes in terms of how they are
individually correlated with other attributes in the database. The choice of the
other attributes (called the probe set) reflects the examiner’s viewpoint of rel-
evant attributes to the two. Das et al show that the choice of the probe set
strongly affects the measurement.

There are some limitations to this basic approach. First, when the examiner
does not know what the relevant attributes are, their approach offers no solu-
tions. A brute force search would be impractical. Second, the approach limits
the probe elements to singleton attributes and does not allow boolean attribute
formulae.

If one is not interested in probe attributes of small frequency, an alternative
approach can be to use the associations generated by an algorithm such as
ECLAT [28] as the probe set. The similarity metric between attributes “a” and
“b” can be defined in terms of association sets (A, the set of all associations
involving “a” but excluding “a”. For instance if “adl” were a valid association,
then “dl” would belong to the set A. Similarly, B, the set of all associations
involving “b” but excluding “b”.) and their associated supports (sup):

Sim(A, B) =
∑

x∈A∩B max{0, 1− α| supA(x) − supB(x)|}
‖A ∪ B‖ ,

where α is a user-defined normalizing variable that defaults to one. This approach
is fast and scales well in practice. It also permits boolean attribute formulae(a
limitation of the Das et al [6] approach) as part of the probe set. Since we use
associations as the probe set, this approach can also be used to measure the sim-
ilarity between different homogeneous datasets and is not limited to measuring
attribute similarity.

5.1 Interactive Similarity

In our approach the following interactions are currently supported: i)Boolean
Pruning: Prune the probe space (association sets) to only those parts of the
association sets that satisfy a given boolean formula, ii) Identifying influential
attributes: Identify the (set of) probe attribute(s) that contribute most to the
similarity/dissimilarity metric, and iii) Changing the minimum support.

5.2 Summary Structure

In this application, the summary structure required is the association lattice
described in Section 4.2. For dataset similarity, the association lattices of both
datasets are required.
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Once the association lattices are obtained, the basic algorithm computes the
similarity measure. The different interactions are supported as follows.

For Boolean Pruning, the algorithm basically prunes both lattices according
to the boolean formula, yielding sets A1 and B1 . The similarity metric is then
recomputed by replacing A with A1 and B with B1. For Identifying Influential
Attributes, for a singleton attribute “l”, the algorithm prunes out all elements
in the association lattice that do not contain “l”. It then computes the similar-
ity between the two datasets. This step is repeated for all singleton attributes
and the resulting similarities are sorted. The higher ranked attributes influence
similarity while the lower ranked attributes influence dis-similarity.

Accuracy vs. Summary Size. Like association mining, the size of the sum-
mary structure is not bounded for a choice of Smin. However, unlike association
mining, similarity discovery is less attuned to this choice. Fixing an Smin apriori
is an acceptable solution for the purpose of computing similarities. This lim-
its the size of the data structure, ensuring that the three properties for active
mining are satisfied for this application.

6 Experimental Evaluation

In order to completely evaluate all aspects of our work, we evaluate the im-
pact of our summary structure with respect to three qualities; its interactive
performance, its incremental performance, and the efficacy of client-server work
distribution by caching the summary structure and executing queries locally. We
first describe in detail the queries we evaluated on each of the applications, and
their associated datasets.

6.1 Application Properties

We executed a series of queries for each application. For association mining, we
executed a simple query (find rules with support x%) followed by a quantified
query (find the 400 most important associations). For sequence mining, we exe-
cuted a combination of including (all sequences including item x) and excluding
sequences (all sequences excluding item y). For discretization, we executed the
base algorithm (find the optimal discretization) and then asked the system to
move the control points to a new location and compute the new error. In similar-
ity discovery, we asked the system to compute the pair-wise similarities for four
datasets and then asked it to recompute the similarities under boolean pruning,
as well as identify the most influential attributes.

Each of the queries was executed on an appropriate dataset. For association
mining, we executed our queries using a synthetic dataset generated adopting
the methodology described in [3]. The dataset we used (T10.I6.D3200) contained
on average 10 items per transaction, and 3,200,000 transactions. The size of the
resulting dataset is 140MB.
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For sequence mining, we executed our queries using a synthetic dataset gener-
ated by a similar procedure [27]. The dataset we used (C250.I6.T10) contained
on average 10 transactions per customer, and 250,000 customers, where each
transaction is variable in length. The size of the resulting dataset is 55MB.

For discretization, we used the XOR dataset [17]. The dataset has 100,000 in-
stances and 3 attributes (two base,one goal) per instance. There are 2 categories
for the goal attribute, C0 and C1. The size of the resulting dataset is 4MB.

For similarity discovery, we executed our queries against a real dataset, the
Reuters dataset 3. The data set consists of 21578 articles from the Reuters
newswire in 1987. Each article has been tagged with keywords. The size of
the dataset is 27MB. For our evaluation, we represented each news article as
a transaction with each keyword being an item.

For each of the applications considered: Associations, Sequences, Discretiza-
tion and Similarity, the size of the summary structures were 3.3MB, 1.0MB,
0.5MB, and 2.0MB, respectively. It is easy to see that in all of the cases the
summary structure is a significant reduction from the original dataset and is
small enough to enable effective active mining.

6.2 Active Mining Performance

Application Client (143Mhz) Client (270Mhz) Recompute IS (incr 5%)

Association Mining 2.4 1.5 540.7 10
Sequence Mining 0.58 0.35 150 7
Discretization 0.87 0.55 505.8 18
Similarity 0.35 0.11 10 10

Table 1. Active Mining Performance: Execution Times in seconds

We summarize the results on interactive and incremental mining performance
here. In this paper, we have described a methodology for off-loading the inter-
active querying feature onto client machines as opposed to executing on the
server, and shipping the results to the data mining client. In order to clearly
demonstrate the effectiveness of this approach, we wanted to compare executing
queries on slower clients (143Mhz and 270Mhz UltraSparcs) using the designed
summary structure versus recomputing the result on the fastest server we have
available (600MHz Alpha Station 4100s).

The results of the experiment are shown in Table 1. The first column cor-
responds to the application we evaluated, the second column contains the ex-
ecution time of the query on a 143Mhz client using the appropriate summary
structure, the third column similarly contains the execution time on a 270Mhz
client, and the fourth column represents the execution time of running the query
3 www.research.att.com/~lewis/reuters21578.html

www.research.att.com/~lewis/reuters21578.html
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from scratch on the 600 MHz Alpha, without the use of the summary structure.
For all of the applications, the execution time with the summary structure is
orders of magnitude faster than re-executing the query from scratch. This is
despite the fact that the results obtained for re-executing the query without the
summary structure is on a much faster server.

The fifth column of our table, Incremental Speedup (IS), represents the
speedup obtained from maintaining the structure incrementally, rather than re-
creating it on a database update. This part of the experiment was also performed
on the 600MHz Alpha Station 4100. The (incr 5%) in the column header corre-
sponds to the increment size. The datasets described in the previous sections are
divided into two partitions, one containing 95% of the transactions (or instances)
and the other containing the remaining 5%. The first partition we assume is the
original dataset, while the second partition is treated as the increment dataset.
The speedup numbers in this column compare the speedup of using an incremen-
tal algorithm as opposed to re-executing the algorithm on the entire (original
+ increment) data (column 4). The performance gains from the incremental
approach ranges from good (speedup of 7) to excellent (speedup of 18). As ex-
pected, incrementally maintaining the summary structure for the discretization
application results in the best speedup since it is the easiest to maintain.

6.3 Distributed Performance

Application Client(143) Client(270)

CSC SSRC L-SSRC CSC SSRC L-SSRC

Ethernet (Mbps) 10 100 10 100 10 100 10 100

Association 2.4 4.05 1.6 7.2 2.5 1.5 2.5 1.4 5.1 2.3
Sequence 0.58 0.85 0.55 1.35 0.86 0.35 0.63 0.5 1.18 0.73
Discretization 0.87 1.35 0.67 2.75 1.08 0.55 0.94 0.6 1.6 0.98
Similarity 0.35 1.5 0.55 2.7 0.98 0.11 0.9 0.37 2.4 0.94

Table 2. Time (in seconds) to Execute Query in a Distributed Environment

In typical client-server applications, the client makes a request to the server,
the server computes the result, and then sends the result back to the client.
Since the interactions in our applications are often iterative in nature, caching
the summary data structure on the client side so that repeated accesses may be
performed locally can potentially improve query execution times.

We present results on the efficacy of caching the summary structure in a
distributed environment consisting of SUN workstations connected by 10 or 100
Mbps switched Ethernet. The clients in each application interact with the server
by sharing the summary data structures with the server. The server creates the
summary data structure and updates it corresponding to changes in the database
(which we simulate). The potential gain from client-side caching depends on a
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number of factors: the size of the shared data, the speed of the client, the network
latency, the server load, and the frequency of data modification. We evaluate the
effect of each of these factors.

We ran each of our applications under the following scenarios:

1. Client-Side Caching (CSC): the client caches the summary structure and
executes the query on the local copy (the execution times reported here
do not reflect the time to communicate the summary structure, which gets
amortized over several queries).

2. Server Ships Results to Client (SSRC): the client queries the server and the
server ships the results back to the client. This scenario is similar to the use
of an RPC mechanism. In order to better understand the impact of server
load, we varied the number of clients serviced by the server from one (SSRC)
to eight (Loaded-SSRC).

We measured the time to execute each query under both scenarios. We eval-
uated each scenario on a range of client machines, from an UltraSparc (143Mhz)
machine to an UltraSparc IIi (270Mhz). In each case, our server was an 8-
processor 336 MHz UltraSparc II machine. Results are presented in Table 2
for these scenarios under two different network configurations. We varied the
network configuration by choosing clients that are connected to the server via
a 10 Mbps or a 100 Mbps Ethernet network. For each of the applications con-
sidered: Associations, Sequences, Discretization, and Similarity, the size of the
results shipped by the server (total data communicated) were 1.5MB, 0.25MB,
0.5MB and 0.75MB respectively.

The results in Table 2 show that client-side caching is beneficial for all but
a few of the cases. In particular, the following trends are observed. Client-side
caching is more beneficial under the following scenarios: the network bandwidth
is low (speedups from client-side caching under the 10Mbps configuration are
larger (1.5 to 23) than the 100Mbps numbers (0.6 to 9)), the server is loaded
(comparing the L-SSRC column (speedups of 1.1 to 9) with the SSRC column(
speedups of 0.6 to 3.5) with a 100 Mbps network), the client is a fast machine
(comparing the columns involving the 270Mhz clients versus the 143Mhz clients),
or the time to execute the query is low (comparing the row involving the similar-
ity discovery with the row involving association mining). In other words, the ben-
efits from client-side caching are a function of the computation/communication
ratio. The lower the ratio, the greater the gain from client-side caching. The fact
that InterAct enables such caching is very useful for such applications especially
when deployed on the Internet.

In addition, the client maps the shared summary data structures using one
of the set of consistency models provided by InterAct. Choosing the right con-
sistency model for a given application depends on its tolerance for stale data.
Updates are then transmitted to the client according to the consistency model
chosen. Results obtained show that the average update times are several orders of
magnitude faster than existing approaches such as RPC. For a detailed analysis
of our update protocol and results pertaining to these applications, see [16].
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7 Related Work

7.1 Distributed Data Mining Systems

Several systems have been developed for distributed data mining. The JAM [22]
(Java Agents for Meta-learning) and the BODHI [13] system assume that the
data is distributed. They employ local learning techniques to build models at
each distributed site, and then move these models to a centralized location. The
models are then combined to build a meta-model whose inputs are the outputs
of the various models and whose output is the desired outcome. The Kensing-
ton [12] architecture treats the entire distributed data as one logical entity and
computes an overall model from this single logical entity. The architecture re-
lies on standard protocols such as JDBC to move the data. The Id-Vis [23]
architecture is a general-purpose architecture designed with data mining appli-
cations in mind to work with clusters of SMP workstations. Both this system
and the Papyrus system [11] are designed around data servers, compute servers,
and clients. The Id-Vis architecture explicitly supports interactivity through the
interactive features of the Distributed Doall programming primitive. However,
the interactions supported are limited to partial result reporting and bare-bones
computational steering.

Our work is complementary to the above distributed data mining systems.
Their focus is on how to build data mining systems or specific data mining
applications when the data and processing capacity is distributed. Our focus is
on making existing algorithms active.

7.2 Incremental Mining

In [5], an incremental algorithm for maintaining association rules is presented. A
major limitation of this algorithm is that it may require O(k) database (original
plus increment) scans, where k is the size of the largest frequent itemset. In [10],
two incremental algorithms were presented – the Pairs approach stores the set
of frequent 2-sequences, while the Borders algorithm keeps track of the frequent
set and the negative border. An approach very similar to the Borders algorithm
was also proposed in [25].

There has been almost no work addressing the incremental mining of se-
quences. One related proposal in [26] uses a dynamic suffix tree based approach
to incremental mining in a single long sequence. However, we are dealing with
sequences across different customers, i.e., multiple sequences of sets of items
as opposed to a single long sequence of items. To the best of our knowledge
there has been no work to date on the incremental mining of discretization and
similarity discovery.

7.3 Interactive Mining

A mine-and-examine paradigm for interactive exploration of associations was
presented in [14]. The idea is to mine and produce a large collection of fre-
quent patterns. The user can then explore this collection by the use of templates



80 Srinivasan Parthasarathy, Sandhya Dwarkadas, and Mitsunori Ogihara

specifying what’s interesting and what’s not. They only consider inclusive and
exclusive templates (corresponding to our Including and Excluding queries),
whereas our approach handles a wider range of queries, in an efficient manner.

A second approach to exploratory analysis is to integrate the constraint
checking inside the mining algorithm. One such approach was presented in [21].
Recently, [15] presented the CAP algorithm for extracting all frequent associa-
tions matching a rich class of constraints. Our approach relies on constraining
the final results rather than integrating it inside the mining algorithm.

An online algorithm for mining associations at different values of support
and confidence, was presented in [1]. Like their approach, we rely on a lattice
framework to produce results at interactive speeds. Our approach relies on a
different base algorithm [28] for generating associations and this allows us to
compute a wider range of queries, as well as, compute such queries faster.

An interactive approach to discretization was presented in [24] for traditional
one-dimensional discretization. They also use a probability density estimate of
the base attribute to allow for certain user interactions in a manner similar to
ours. However, their problem domain is much simpler then ours and therefore
the interactive queries supported are relatively easier to compute. We are not
aware of any such work on interactive mining, within the domain of sequence
and similarity discovery.

Most of the incremental and interactive mining approaches tend to focus
on isolated applications leading to a proliferation of solutions with little or no
inter-operability. Our approach is the first that tries to integrate the incremental
and interactive components in a distributed setting. Furthermore, we outline a
general strategy for making mining algorithms active in such a setting.

8 Conclusions

In this paper, we described our approach to active data mining in a client-
server setting. We presented a general method for creating efficient interactive
mining algorithms, and in addition, demonstrated its efficacy in a distributed
setting using the InterAct framework. We applied this general methodology to
several data mining tasks: discretization, association mining, sequence mining,
and similarity discovery.

To summarize our method, we maintain a mining summary structure that is
valid across database updates and user interactions. On a user interaction, the
mining summary structure can answer the query without re-accessing the actual
data. On a database update, the amount of the original database that needs to
be re-examined is minimized. Lastly, by caching the summary structure on the
client using InterAct, we can eliminate overheads due to network latency and
server loads.

Experimental results show that executing queries using the appropriate sum-
mary structure can improve performance by several orders of magnitude. Fur-
thermore, for all the applications considered, the summary structures can be
incrementally maintained with up to an 18-fold improvement over re-creating
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the summary structures on a database update. Finally, up to a 23-fold improve-
ment in query execution times was observed when the clients cache the summary
structure and execute the query locally.
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Abstract. The problem of mining hidden associations present in the
large amounts of data has seen widespread applications in many practical
domains such as customer-oriented planning and marketing, telecommu-
nication network monitoring, and analyzing data from scientific exper-
iments. The combinatorial complexity of the problem and phenomenal
growth in the sizes of available datasets motivate the need for efficient
and scalable parallel algorithms. The design of such algorithms is chal-
lenging. This chapter presents an evolutionary and comparative review
of many existing representative serial and parallel algorithms for discov-
ering two kinds of associations. The first part of the chapter is devoted to
the non-sequential associations, which utilize the relationships between
events that happen together. The second part is devoted to the more
general and potentially more useful sequential associations, which utilize
the temporal or sequential relationships between events. It is shown that
many existing algorithms actually belong to a few categories which are
decided by the broader design strategies. Overall the aim of the chap-
ter is to provide a comprehensive account of the challenges and issues
involved in effective parallel formulations of algorithms for discovering
associations, and how various existing algorithms try to handle them.

1 Introduction

One of the important problems in data mining [1] is discovering associations
present in the data. Such problems arise in the data collected from scientific
experiments, or monitoring of physical systems such as telecommunications net-
works, or from transactions at a supermarket. The problem was formulated orig-
inally in the context of the transaction data at supermarket. This market basket
data, as it is popularly known, consists of transactions made by each customer.
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Each transaction contains items bought by the customer. The goal is to see if
occurrence of certain items in a transaction can be used to deduce occurrence of
other items, or in other words, to find associative relationships between items.
If indeed such interesting relationships are found, then they can be put to vari-
ous profitable uses such as shelf management, inventory management, etc. Thus,
association rules were born [2]. Simply put, given a set of items, association
rules predict the occurrence of some other set of items with certain degree of
confidence. The goal is to discover all such interesting rules. This problem is
far from trivial because of the exponential number of ways in which items can
be grouped together and different ways in which one can define interestingness
of a rule. Hence, much research effort has been put into formulating efficient
solutions to the problem.

It is commonly agreed upon that the number of occurrences of a set of items
in a given transaction database, called support, can be used to formulate the
interestingness of association rules derived from it. A more formal definition of
association rules will follow later in the chapter, but informally, the association
rule discovery problem usually translates into finding all sets of items that satisfy
a pre-specified minimum threshold on support, and then postprocessing them
to find the interesting rules. Such itemsets are called frequent. In this chapter,
we concentrate on the most time consuming operation in this discovery pro-
cess, which is the discovery of frequent itemsets. Since usually the number of
distinct items is large in transaction-based databases, the total number of po-
tential itemsets satisfying the support threshold can be prohibitively large. The
first algorithm that handled this problem of exponential explosion elegantly was
the Apriori algorithm [3] . This algorithm used a very fundamental property of
the support of itemsets: an itemset of size k can meet the minimum level of
support only if all of its subsets also meet the minimum level of support. This
property is used to systematically prune the search space of desired itemsets,
by progressively increasing the length of the itemsets being discovered. Briefly,
in an iteration k, all candidate k-itemsets (of length k) are formed such that all
its (k − 1)-subsets are frequent. The number of occurrences of these candidates
are then counted in the transaction database. Efficient data structures are used
to perform fast counting. Overall, the algorithm has been successful on a wide
variety of transaction databases. Since its conception, many other algorithms
[4,5,6,7,8,9,10,11,12,13] have emerged that improve upon the runtime, I/O, and
scalability performance of the Apriori algorithm by various efficient means of
pruning the itemset search space and counting the candidate occurrences in
large databases. In this chapter, we describe serial Apriori algorithm in detail,
and give a comparative review of many other representative serial algorithms.

Many practical applications of association rules involve huge transaction
databases which contain a large number of distinct items. In such situations,
the serial algorithms like Apriori running on single-processor machines may take
unacceptably large times. This is despite of the algorithmic improvements pro-
posed in many serial algorithms. The primary reasons are the memory, CPU
speed, and I/O bandwidth limitations faced by single-processor machines. As an
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example, in the Apriori algorithm, if the number of candidate itemsets becomes
too large, then they might not all fit in the main memory, and multiple database
passes would be required within each iteration, incurring expensive I/O cost.
This implies that, even with the highly effective pruning method of Apriori, the
task of finding all association rules can require a lot of computational and mem-
ory resources, especially when the data is enormous and high-dimensional (large
number of distinct items). This is true of most of the other serial algorithms as
well, and it motivates the development of parallel formulations.

Computational work in association rule discovery consists of candidate gener-
ation and counting their occurrences. The memory requirements come from stor-
ing the candidates generated. In order to extract concurrency, the computational
work and the memory requirements need to be distributed among all the avail-
able processors. In this chapter, we discuss the pros and cons of different work
and memory distribution approaches by studying various parallel formulations
of the Apriori-like algorithms in an evolutionary manner. Most existing parallel
algorithms can be classified based on how the candidates are distributed among
processors. We give details of the representative algorithms [14,15,5,16,17,11,6],
and briefly review few other parallelization strategies [18,19,20,21].

The concept of association rules can be generalized and made more useful by
observing another fact about transactions. All transactions have a timestamp
associated with them; i.e. the time at which the transaction occurred. If this
information can be put to use, one can find relationships such as if an item A
was bought by a customer, then he/she is likely to buy an item B in a few days
time. The usefulness of this kind of rules gave birth to the problem of discovering
sequential patterns or sequential associations.

In general, the data can be characterized in terms of objects and events
happening on these objects. The supermarket transaction data that we have
discussed so far, is just one special case of this general characterization, where
a customer is an object and items bought by him/her are the events. It is, how-
ever, applicable to many other application domains. For example, in experiments
from molecular biology, an organism or its chromosome can be an object and
its behavior observed under various conditions can form events. In a telecom-
munication network, switches can be objects and alarms happening on them
can be events. The events happening in such data are related to each other
via the temporal relationships of together and before (or after). The association
rules utilize only the together part of the relationship. The concept is extended
to the sequential patterns [22] or episodes [23], which take into account the se-
quential (before/after) relationship as well. The formulation in [22] is motivated
by the supermarket transaction data, and the one in [23] is motivated by the
telecommunication alarm data. A unified and generalized formulation of sequen-
tial associations is proposed in [24].

These formulations of sequential associations are not only important because
they represent more powerful and predictive relationships, but they are also
important from the algorithmic point of view because bringing in the sequential
relationships increases the combinatorial complexity of the problem enormously.
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The total number of possible sequential associations is much larger than that of
non-sequential associations. Various algorithms proposed so far [22,23,25,26,24],
try to contain the complexity by imposing various temporal constraints, and
by using the anti-monotonicity of the support criterion. However, as the data
becomes enormous and high-dimensional, single-processor algorithms become
computationally very expensive, especially because of the more complex nature
of sequential associations; and hence, the need for efficient parallel algorithms is
even more as compared to non-sequential associations. In many situations, the
techniques used in parallel algorithms for discovering standard non-sequential
associations can be extended easily to discover sequential associations. However,
different issues and challenges arise specifically due to the sequential nature and
various ways in which interesting associations can be defined. In the final part
of this chapter, we discuss all these issues and challenges, and a few parallel
formulations for resolving them.

The rest of this chapter is organized as follows. Section 3 provides an overview
of the serial algorithms for mining association rules. Section 4 describes paral-
lel algorithms for finding association rules. Section 5 contains a description of
a generalized formulation of sequential associations and parallel algorithms to
discover them. Section 6 summarizes the chapter.

2 Association Rule Discovery: Problem Definition

Let T be the set of transactions where each transaction is a subset of the itemset
I. Let C be a subset of I, then we define the support count of C with respect to
T to be:

σ(C) = |{t|t ∈ T, C ⊆ t}|.
Thus σ(C) is the number of transactions that contain C. For example, consider
a set of transactions from supermarket as shown in Table 1. The items set I for
these transactions is {Bread, Beer, Coke, Diaper, Milk}. The support count of

Table 1. Transactions from supermarket.

TID Items

1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

{Diaper, Milk} is σ(Diaper, Milk) = 3, whereas σ(Diaper, Milk, Beer) = 2.
An association rule is an expression of the form X

s,α
=⇒ Y , where X ⊆ I

and Y ⊆ I. The support s of the rule X
s,α
=⇒ Y is defined as σ(X ∪ Y )/|T |,

and the confidence α is defined as σ(X ∪ Y )/σ(X). For example, consider a
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rule {Diaper, Milk} =⇒ {Beer}, i.e. presence of diaper and milk in a trans-
action tends to indicate the presence of beer in the transaction. The support
of this rule is σ(Diaper, Milk, Beer)/5 = 40%. The confidence of this rule is
σ(Diaper, Milk, Beer)/σ(Diaper, Milk) = 66%. A rule that has a very high
confidence (i.e., close to 1.0) is often very important, because it provides an ac-
curate prediction on the association of the items in the rule. The support of a
rule is also important, since it indicates how frequent the rule is in the transac-
tions. Rules that have very small support are often uninteresting, since they do
not describe significantly large populations. This is one of the reasons why most
algorithms [3,27,5] disregard any rules that do not satisfy the minimum sup-
port condition specified by the user. This filtering due to the minimum required
support is also critical in reducing the number of derived association rules to
a manageable size. Note that the total number of possible rules is proportional
to the number of subsets of the itemset I, which is 2|I|. Hence the filtering is
absolutely necessary in most practical settings.

The task of discovering an association rule is to find all rules X
s,α
=⇒ Y , such

that s is greater than or equal to a given minimum support threshold and α is
greater than or equal to a given minimum confidence threshold. The association
rule discovery is composed of two steps. The first step is to discover all the
frequent itemsets (candidate sets that have more support than the minimum
support threshold specified). The second step is to generate association rules
from these frequent itemsets. The computation of finding the frequent itemsets
is much more expensive than finding the rules from these frequent itemsets.
Hence in this chapter, we only focus on the first step.

3 Serial Algorithms for Frequent Itemset Discovery

A number of serial algorithms have been developed for discovering frequent item-
sets. There are two broad commonalities among all the algorithms. First, they all
use the anti-monotone property of the itemset support criterion. This property
states that as the length of the itemset increases, its support either decreases
or stays the same; or in other words, a k-itemset is frequent only if all of its
(k − 1)-subitemsets are frequent. Apriori algorithm [3] was one of the first algo-
rithms, which pioneered the use of this property. Apriori used it systematically
to control the exponential growth in the number of possible itemsets that need
to be searched to get the desired frequent itemsets. The second commonality
among the algorithms is that they all need to search through a common itemset
lattice. Briefly, given an itemset I, a lattice is a systematic enumeration of all
the subsets of I, starting with an empty set at the bottom, all the singleton
itemsets at the first level, all 2-itemsets at second level, and so on. A k-itemset
that has k items in it and appears at the kth level of the lattice, is linked to all
its (k − 1)-subitemsets appearing at level k − 1. The manner in which the algo-
rithms decide to traverse this lattice, and the way they use the anti-monotone
property of support, are two of the crucial factors that determine their perfor-
mances. In this section, we first give a brief description of the Apriori algorithm,
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not only because of its historical importance but also because the primary par-
allel algorithms discussed in this chapter are based on Apriori. Later, we give a
comparative summary of many other serial algorithms.

3.1 Apriori Algorithm

The high level structure of the Apriori algorithm is given in Figure 1. The
Apriori algorithm consists of a number of passes. Initially F1 contains all the
items (i.e., itemset of size one) that satisfy the minimum support requirement.
During pass k, the algorithm finds the set of frequent itemsets Fk of size k that
satisfy the minimum support requirement. The algorithm terminates when Fk is
empty. In each pass, the algorithm first generates Ck, the candidate itemsets of
size k. Function apriori gen(Fk−1) constructs Ck by extending frequent itemsets
of size k − 1. This ensures that all the subsets of size k − 1 of a new candidate
itemset are in Fk−1. Once the candidate itemsets are found, their frequencies are
computed by counting how many transactions contain these candidate itemsets.
Finally, Fk is generated by pruning Ck to eliminate itemsets with frequencies
smaller than the minimum support. The union of the frequent itemsets,

⋃
Fk,

is the frequent itemsets from which we generate association rules.

1. F1 = { frequent 1-itemsets} ;
2. for ( k = 2; Fk−1 �= φ; k++ ) {
3. Ck = apriori gen(Fk−1)
4. for all transactions t ∈ T {
5. subset(Ck, t)
6. }
7. Fk = {c ∈ Ck | c.count ≥ minsup}
8. }
9. Answer =

⋃
Fk

Fig. 1. Apriori Algorithm

Computing the counts of the candidate itemsets is the most computationally
expensive step of the algorithm. One naive way to compute these counts is to
perform string-matching of each transaction against each candidate itemset. A
faster way of performing this operation is to use a candidate hash tree in which
the candidate itemsets are hashed [3]. The key idea behind a hash tree is that all
the candidates in a given transaction can be found relatively quickly by hashing
on the items of the transaction. Here we explain this via an example.

Figure 2 shows one example of the candidate hash tree with candidates of
size 3. The internal nodes of the hash tree have hash tables that contain links
to child nodes. The leaf nodes contain the candidate itemsets. First, let us see
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Fig. 2. Subset operation on the root of a candidate hash tree.
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Fig. 3. Subset operation on the left most subtree of the root of a candidate hash tree.
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how this hash tree is used to search for the candidate itemsets present in a given
transaction; i.e., how the subset function (step 5 in Figure 1) works.

The subset function traverses the hash tree from the root with every item
in a transaction as a possible starting item of a candidate. In the next level of
the tree, all the items of the transaction following the starting item are hashed.
This is done recursively until a leaf is reached. At this time, all the candidates
at the leaf are checked against the transaction and their counts are updated
accordingly. Figure 2 shows the subset operation at the first level of the tree
with transaction {1 2 3 5 6}. The item 1 is hashed to the left child node of the
root and the following transaction {2 3 5 6} is applied recursively to the left
child node. The item 2 is hashed to the middle child node of the root and the
whole transaction is checked against two candidate itemsets in the middle child
node. Then item 3 is hashed to the right child node of the root and the following
transaction {5 6} is applied recursively to the right child node. Figure 3 shows
the subset operation on the left child node of the root. Here the items 2 and 5
are hashed to the middle child node and the following transactions {3 5 6} and
{6} respectively are applied recursively to the middle child node. The item 3 is
hashed to the right child node and the remaining transaction {5 6} is applied
recursively to the right child node.

We just described how a hash tree is used. Now, let us see how it is con-
structed. Note that, a new hash tree is constructed in every iteration of the
algorithm. Initially, the hash tree contains only a root node, which is a leaf node
containing no candidate itemset. When each candidate itemset is generated, the
items in the set are stored in sorted order. Note that since C1 and F1 are cre-
ated in sorted order, each candidate set is generated in sorted order without any
need for explicit sorting. Each candidate itemset is inserted into the hash tree
by hashing each successive item at the internal nodes and then following the
links in the hash table. Once a leaf is reached, the candidate itemset is inserted
at the leaf if the total number of candidate itemsets are less than the maximum
allowed. If the total number of candidate itemsets at the leaf exceeds the maxi-
mum allowed and the depth of the leaf is less than k, the leaf node is converted
into an internal node and child nodes are created for the new internal node.
The candidate itemsets are distributed to the child nodes according to the hash
values of the items. For example, the candidate item set {1 2 4} is inserted by
hashing item 1 at the root to reach the left child node of the root, hashing item
2 at that node to reach the middle child node, hashing item 4 to reach the left
child node which is a leaf node.

As stated earlier, the runtime for the entire algorithm is dominated by the
counting process encoded in the subset function. More precisely, according to
the analysis presented in [15], at level k of the algorithm, the computation time
required per transaction for visiting the hash tree is proportional to the number
of candidate k-itemsets present in a transaction (NCk

), and the expected number
of distinct leaf nodes visited by the transaction. It is shown that as the number
of leaf nodes in hash tree grows larger, the runtime gets dominated more by
NCk

.
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3.2 Other Serial Algorithms

In the previous subsection, we described Apriori, one of the first and most pop-
ular algorithms for generating frequent itemsets. There are many other algo-
rithms proposed after the conception of Apriori. We will briefly describe some
representative algorithms, namely DHP [4], Tree Projection algorithms [11,12],
PARTITION [5], the sampling-based algorithms [7], a set of algorithms proposed
in [6], a family of algorithms proposed in [9], the DIC algorithm [10], the FP-tree
based algorithm [13], and a trie-based algorithm [8].

As stated earlier, these algorithms differ in their ways of traversing the item-
set lattice, and the ways in which they use the anti-monotone property of itemset
support. In the following, we classify the algorithms primarily based on their lat-
tice traversal strategies. Another dimension where the algorithms differ is the
way they handle the transaction database; i.e. how many passes they make over
the entire database and how they reduce the size of the processed database in
each pass. With these points in mind, we present a comparative summary of all
the algorithms.

Level-Wise Algorithms: A class of algorithms generates candidate k-itemsets
from frequent (k − 1)-itemsets. These are called level-wise algorithms. We have
already described Apriori, one of the first level-wise algorithms. Here we describe
some more. Like Apriori, DHP and breadth-first Tree Projection algorithms
make a pass over the entire database at every level of the algorithm. They differ
in the ways they optimize on the number of candidates generated, and the ways
that make the counting phase efficient.

DHP [4] (direct hashing and pruning) algorithm improves upon the Apriori
algorithm in two ways. First, it reduces the candidate space by looking ahead in
the transactions for potentially frequent (k+1)-itemsets while counting candidate
k-itemsets. This is achieved by hashing all potentially frequent (k + 1)-subsets
of each transaction to a common hash table, and using this hash table to prune
some (k + 1)-candidates without counting them. The algorithm, however, must
balance the trade-off between the size of the hash table and its effectiveness
in aggressive pruning. The second factor which allows DHP to improve upon
Apriori, is its idea of transaction trimming. While counting at level k, each item
in a transaction is checked for whether it appears in at least k different candidate
k-itemsets. If it does not, then it will not be present in any subsequent candidate
j-itemsets (j > k), and hence it can be removed from the transaction. Similarly,
while preparing the hash table at level k, if an item does not appear in any of
the (k + 1)-itemsets being hashed, then it can be removed from the transaction.
If the hashing scheme is effective in pruning many candidates at an early level,
then this transaction trimming scheme reduces the active transaction database
size substantially, which in turn can reduce the computation time spent per
transaction.

Tree Projection algorithms [11,12] achieve candidate space pruning as well as
counting efficiency by combining a novel idea of representing the candidates in
a lexicographic tree structure with a way of reducing the transaction database



92 Mahesh V. Joshi et al.

size in every pass by projecting the transactions onto this lexicographic tree. In
a lexicographic tree, each node is associated with a k-itemset. A node can be
extended into multiple children nodes via items that are lexicographically larger
than all the items in its itemset. The new children represent (k + 1)-itemsets.
Tree Projection algorithms grow the lexicographic tree progressively such that
only the nodes corresponding to frequent itemsets are generated. The level-wise
version of the algorithm grows the tree in a breadth-first manner. In iteration k,
it extends all the nodes at level k − 1. The candidate extensions of a given node
are formed by using only the frequent extensions at its parent. One of the key
features of the algorithm is that the counts for the itemsets represented by the
candidate extensions are gathered by using the set of projected transactions at the
parent. The concept of projection is involved. Briefly, the algorithm maintains
a list of active items and active extensions for each node. When a transaction is
projected at a node, only the items that occur in the active item list are kept.
The transaction gets recursively projected along the paths determined by active
extensions. The idea is, only those items in a transaction percolate down the tree
that can potentially be useful in extending the tree by one more level. With every
pass of the algorithm, many extensions become progressively inactive, which in
turn results in the reduction of active item list sizes at all nodes. Thus, the size of
the projected transaction set reduces progressively. This yields the algorithm its
efficiency in the counting phase. Use of sophisticated counting techniques such
as cache-blocking on the candidate count matrix at each node, further add to
the efficiency of the algorithm. The concept of projection can be thought of as a
more generalized form of transaction trimming used in DHP. Also, the concept
of active items and active extensions effectively render the lexicographic tree as
a precise, dynamic version of the hash-tree structures used in Apriori.

The PARTITION [5] and sampling-based algorithms [7] are level-wise, but
only on a small portion of the entire database. In fact, use of smaller subsets of
database allows them to optimize the database performance by making at most
two passes over the entire database.

PARTITION algorithm takes the idea of support monotonicity further. It
partitions the database into multiple parts, and observes that if an itemset is
frequent in the entire database then it is frequent in at least one of the partitions,
when the frequency is computed relative to the partition size. This observation
is used to prune the potential frequent itemsets by counting the candidates in
smaller local partitions. A level-wise algorithm is employed to generate all lo-
cally frequent itemsets. All such itemsets are gathered and their global counts
are collected in a second pass over the database. Thus, only two database passes
are needed. In order to achieve true gain in performance, the algorithm has to
minimize the effect of data skew across partitions by randomizing the partition-
ing scheme. It also has to take care of the trade-off between the partition size
and number of partitions. Finding locally large itemsets in smaller partitions is
quick, but the lower amount of information available in smaller partitions also
tends to give rise to many false positives because the support is counted with re-
spect to their small size. The PARTITION algorithm has one more novel feature
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as compared to Apriori, which can potentially accelerate the counting phase. It
uses vertical data layout in which the transaction-id list (tid-list) is stored for
each item. This is an inverted version of the horizontal layout used in Apriori,
where a list of items is stored for each transaction. It is made sure that the size of
each partition is such that all the required tid-lists in a partition fit in the main
memory. This allows the itemset support counting to be performed efficiently by
intersecting the tid-lists of its individual items.

The SPTID and SPEAR algorithms, proposed by [6] and summarized in [28],
are identical in spirit to PARTITION. SPTID uses the vertical layout whereas
SPEAR uses the horizontal layout of database. Their optimization over PARTI-
TION comes from the use of prefix tree as an efficient substitute for hash tree
in the counting phase. Prefix tree can avoid counting of unnecessary candidates,
and allows efficient search for subsets because many subsets are compressed into
a single path of the tree. This tree is similar in structure to the lexicographic tree
of Tree Projection algorithms. However, the lexicographic tree is used in a much
more sophisticated and effective manner by the Tree Projection algorithms.

The sampling-based algorithms proposed in [7] use a randomly sampled par-
tition of the database to find locally frequent itemsets in that partition. The gain
in performance is possible due to the less amount of data that the algorithms
work on, making it attractive for large databases. However, in order to ensure
the completeness of the frequent itemsets discovered, the algorithm has to do
several things. First, it has to reduce the support threshold used for discovering
frequent sets in the sampled data. This is done with the hope of capturing most
of the actual frequent itemsets. Despite of this reduction in support threshold
(which cannot be reduced below certain level), some itemsets will be missing.
The algorithm has a novel systematic strategy of checking for all the missing
itemsets. It introduces a concept of negative border of the locally frequent item-
sets. This border is formed by all minimal small itemsets; i.e., the sets which
are infrequent but all their subsets are frequent. Locally frequent sets and the
sets in their negative border are counted in the entire database, and these global
counts are used to see if any true frequent itemsets are lost by sampling. Since
the algorithm is based on a random sample, the authors present a probabilistic
analysis that relates the sample size, the limit on lowering support threshold,
and accuracy that can be achieved.

Non-level-wise Algorithms: The class of non-level-wise algorithms consists
of the hybrid lattice traversal technique proposed in [9], the DIC algorithm [10],
the SEAR and SPINC algorithms of [6], and the depth-first version of the tree
projection algorithm [12]. Like PARTITION and sampling-based algorithms, the
design goal for these algorithms is reduction in the number of passes made over
the entire database. However, the major point of difference is their itemset lat-
tice traversal technique. Instead of a level-wise (or breadth-first) traversal, they
interleave the depth-first and breadth-first searches with the database passes.
In other words, the candidate generation and candidate counting phases are
interleaved.
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The lattice traversal algorithms proposed in [9] use a vertical layout (simi-
lar to PARTITION). One pass is made over the database to generate the item
tid-lists. After that, no more passes are required over the database. Only the tid-
lists need to be scanned. A novel feature of all their algorithms is that they are
seeded by an itemset clustering method. The clustering allows them to identify
close approximations to the potentially maximal itemsets. This may substan-
tially prune the candidate search space by dividing the original itemset lattice
into smaller sub-lattices formed only by items belonging to same cluster. They
propose three different approaches to traverse these smaller itemset sub-lattices.
The bottom-up approach does a breadth-first traversal of the lattice starting
with the 2-itemsets. This is similar to the level-wise algorithms. But it faces a
problem of generating all the subsets of frequent itemsets, especially when the
goal is to find only the maximal frequent sets. The top-down approach caters
specifically to that need, and starts with potentially maximal itemsets given by
the clustering, and goes down the lattice until all the maximal frequent itemsets
are found. This approach faces the problem of costly multi-way intersections of
tid-lists as well as it suffers from the approximate nature of clusters. A hybrid
approach combines the good features of both approaches, and is shown to be
better than the two. Although it is true that the entire database is scanned
once, there are several passes made over the individual tid-lists. The main per-
formance gain achieved may be attributed to their clustering scheme to prune
the search space clubbed with an underlying assumption that the tid-lists for
individual items or 2-itemsets are not very large.

The DIC algorithm [10] is a recent non-level-wise algorithm which is actually
closer to the sampling-based algorithms. Instead of using a random sample of the
database and potentially losing some frequent item-sets, it proposes a systematic
search of the database that reduces the number of database passes to some
number between 1 and the total number of passes that would be made by a
level-wise algorithm. Unlike level-wise algorithms which count only k-itemsets in
one pass of the algorithm, DIC starts counting longer itemsets after some fixed
intervals during a given database pass. For example, in a database of 10000
transactions, it starts computing 1-itemsets at first transaction, then some 2-
itemsets start getting counted after M=1000 transactions, some 3-itemsets start
getting counted after 2*M=2000 transactions, and so on. The value of M can
be changed. Each itemset that the algorithm decides to count, gets counted in
each transaction. The algorithm keeps track of potential frequent itemsets and
potential minimal small itemsets. The counting starts only for those itemsets
whose subsets have been found frequent in the data visited so far. Essentially
the amount of lattice traversed by the algorithm is same as that by a level-wise
algorithm, but the dynamic nature of counting the itemsets gives the algorithm
a flexibility to reduce database passes. The crucial factor for its performance is
the ability to identify frequent subsets of a given itemset early enough so that the
itemset starts getting counted early. Ideally if the probability of seeing a given
itemset in any fraction of transactions is the same, then DIC performs very well.
However, if the dataset is not homogeneous, then the performance would suffer.
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The authors of DIC identify this problem and propose some remedies such as
randomization and relaxing the support threshold.

The SEAR algorithm of [6] uses the same prefix tree that is used in level-
wise SPTID and SPEAR algorithms by the same author. Its key feature is the
concept of pass bundling, which makes it a non-level-wise algorithm and allows it
to save on the number of database passes. In pass bundling, instead of generating
only k-candidates in a pass, candidates of length k + 1, k + 2 are also generated.
Generation stops when the candidates don’t fit in the memory. Then a single
database scan counts all these candidates. Of course, pass bundling can help only
in the lower levels of the tree, where the number of candidates is small, because
of the trade-off between the reduced I/O passes and increase in computation
due to lack of candidate pruning. Another algorithm, SPINC, given in [6] is
an optimization of the PARTITION-based algorithm SPEAR. Making use of
the sequential processing nature of partitions, SPINC starts gathering partial
global counts for the locally frequent candidates of a given partition in all the
subsequent partitions. Contrast this with PARTITION which waits until second
pass to gather global counts for all locally frequent itemsets. For large partition
sizes, SPINC can significantly reduce the counting workload in second database
pass. The early counting of some global candidates yields SPINC a non-level-
wise flavor in counting phase, although the local candidate generation is still
level-wise in each partition1. Refer to [6] for an empirical comparison between
SEAR, SPINC, SPTID, and SPEAR algorithms. It presents interesting results
as to the effectiveness of vertical versus horizontal layouts, and pros and cons of
using partitioning mechanisms.

The depth-first version of the tree projection algorithm [12] generates the
lexicographic tree in a depth-first manner, making it a non-level-wise algorithm.
The crucial factor for its performance is that the entire transaction database
needs to fit in the memory, which is not very practical for many transaction
databases. Hence, we will not review it in detail here.

Algorithms that Do not Generate Candidates: Finally, we briefly review
a class of algorithms [8,13] that choose a radically different approach to dis-
cover frequent itemsets. These algorithms do not subscribe to the generate-and-
count paradigm of previously described algorithms. They infer frequent itemsets
directly from the transaction database without candidate generation. The al-
gorithm based on FP-trees [13] uses a compact trie-like representation of the
transaction database that is used to directly infer the frequent itemsets involv-
ing a given frequent item. This compact representation is achieved using the
data structure called frequent pattern tree (FP-tree), which is a data structure
based on set-enumeration tree formed using frequency-ordered 1-itemsets. It is
constrained using the given transaction database in the following manner. Each

1 Although SPINC was proposed much earlier, its concept of starting counting earlier
is similar to that of DIC. Of course, the two differ substantially in how candidates
are generated, which eventually affects the number of I/O passes and number of false
positives generated by each.
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transaction is transformed to a frequency-ordered set of items and is mapped
to the set-enumeration tree. The counts of items on the path it gets mapped to
are incremented by one. All the occurrences of a given item are linked across
the tree. Once FP-tree is constructed, for each item, the algorithm finds all the
frequent itemsets having that item as the last item (in frequency-order). This is
achieved by using the prefix paths to all the occurrences of that item in the tree.
A systematic recursive decomposition of the prefix paths yields all the desired
frequent itemsets. If this process is mapped to a lattice traversal process, then
the algorithm essentially traverses the lattice in a top-down fashion (i.e. going
from longer itemsets down to smaller itemsets), starting with the itemset formed
by all the frequent items in the union of the items occurring in the prefix paths.
However, its recursion process breaks the lattice down into only the interesting
sub-lattices driven by the increasingly smaller FP-trees. The authors show their
algorithm to be an order of magnitude faster than the Apriori algorithm and
considerably faster than the Tree Projection algorithm.

A related algorithm proposed in [8], also uses the compact trie [29] repre-
sentation of the transaction database, to directly infer the frequent associations.
However, unlike FP-tree, which encodes the entire transaction database into a
trie-like structure, their algorithm constructs a trie only out of those subsets of
a transaction that contains less than a pre-specified number of items. This was
motivated by their observation that the largest frequent itemsets do not gener-
ally contain more than 8-10 items. Once the trie is constructed, they use all the
subsets present in the trie as potential frequent sets. However, unlike FP-tree
based algorithm, they do not give a systematic algorithm for inferring actual
frequent itemsets based on support.

This concludes our survey of the representative serial algorithms for comput-
ing frequent itemsets.

4 Parallel Formulations for Frequent Itemset Discovery

The enormity and high dimensionality of datasets typically available as input to
the problem of association rule discovery, makes it an ideal problem for solving
on multiple processors in parallel. The primary reasons are the memory and
CPU speed limitations faced by single processors. Despite of many improved
serial algorithms, the sheer amount of required computational work may result
in prohibitively large runtimes on single processors. Thus, it is critical to design
efficient parallel algorithms to do the task. Another reason for designing parallel
algorithms comes from the fact that many transaction databases are already
available in parallel databases or they are distributed at multiple sites to begin
with. The cost of of bringing them all to one site or one computer for serial
discovery of association rules can be prohibitively expensive.

We reviewed many different serial algorithms in previous subsection. Except
for a few, most of these algorithms involve generation of candidate itemsets
and counting them in the transaction database. This is especially true of the
level-wise algorithms such as Apriori. First, we present possible parallel formu-
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lations of such algorithms and map the existing parallel algorithms to these
formulations. In the end, we review parallel formulations of some non-level-wise
algorithms.

Before proceeding further, we would like to comment on the platforms of
applicability of the algorithms. The focus of this chapter is on algorithms that
are primarily designed for distributed memory parallel architectures, which use
message-passing as the primary means of inter-processor communications. Some
of the algorithms can be modified to work on shared memory architectures with
some effort, but design issues for such architectures are quite different from
those discussed here. As a matter of fact, the programming model for shared
memory architectures is simpler compared to that for the distributed memory
architectures. Moreover, shared memory architectures do not scale well to handle
large databases. Very little work has been done on parallel algorithms for shared
memory machines. A review of them can be found in [28].

The distributed shared memory (DSM) architectures are becoming more
popular nowadays, which allow a physically distributed memory to belong to
a globally shared logical address space. The algorithms designed for distributed
memory machines can be readily adapted to such architectures by relying on
the communication subsystem’s implementation of message passing via logical
shared memory. But, the performance of the algorithms can be certainly tuned to
the DSM architecture by re-designing some serial tasks to get them executed by
multiple symmetric multiprocessors (SMP) in a shared-memory fashion. Some
algorithms that we review in the last part of this section have been tuned in this
way [18,28].

4.1 Parallel Formulations of Level-Wise Algorithms

The computational work in level-wise algorithms can be viewed to consist of
two parts: the effort spent in generating the candidates and the effort spent
in counting them. In order to distribute this work among processors, multiple
possibilities emerge depending on how the transactions and candidate itemsets
are assigned to processors. The need for parallel algorithms comes from the
transaction database being too large (enormity of the database), or possible
number of frequent itemsets being too large (because of high dimensionality of
the database), or both. Correspondingly, in order to achieve concurrency, either
the candidates need to be counted in parallel, or they need to be generated in
parallel, or both these phases need to be done in parallel.

We assume that the transaction database is too large to be replicated among
all processors. For most practical problems in data mining, this is a fair or
rather necessary assumption. Usually, the transactions are distributed among
processors equally. Given this, the issue becomes how to distribute the candi-
dates among processors such that their counting and generation is effectively
parallelized. There are three possibilities. One is to replicate the candidates on
all processors, the other is to avoid replication, and the third is to allow par-
tial replication. In the following we review in detail various algorithms based on
these possibilities. The discussion takes into account the issues of minimizing
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parallelization overheads, extracting concurrency, and utilizing the total avail-
able memory effectively.

Replicating Candidate Itemsets

One possible way to parallelize is to simply replicate the candidate genera-
tion process on all the processors, and parallelize the counting process. Here are
a few representative algorithms that take this approach.

– Count Distribution (CD): In this parallel formulation of Apriori algo-
rithm, proposed in [30], each processor computes how many times all the
candidates appear in the locally stored transactions. This is done by build-
ing the entire hash tree that corresponds to all the candidates and then
performing a single pass over the locally stored transactions to collect the
counts. The global counts of the candidates are computed by summing these
individual counts using a global reduction operation [31]. This algorithm is
illustrated in Figure 4. Note that since each processor needs to build a hash
tree for all the candidates, these hash trees are identical at each processor.
Thus, excluding the global reduction, each processor in the CD algorithm
executes the serial Apriori algorithm on the locally stored transactions.
This algorithm has been empirically shown to scale linearly with the num-
ber of transactions [30]. A detailed scalability analysis is presented by [15].
Given N number of transactions and P number of processors, if M is the
total number of candidates that get generated, then they show that the par-
allel runtime of the algorithm is Ts/P +O(M), where Ts is the serial runtime
of the algorithm. The O(M) term comes from the hash tree construction and
global reduction of counts. This indicates that the algorithm is scalable in
number of transactions, however it does not parallelize the computation of
building the candidate hash tree. This step becomes a bottleneck with large
number of processors. Furthermore, if the number of candidates is large,
then the hash tree does not fit into the main memory. In this case, this al-
gorithm has to partition the hash tree and compute the counts by scanning
the database multiple times, once for each partition of the hash tree. The
cost of extra database scanning can be expensive on machines with slow I/O
system. Note that the number of candidates increases if either the number
of distinct items in the database increases or if the minimum support level of
the association rules decreases. Thus the CD algorithm is effective for small
number of distinct items and a high minimum support level.

– Parallel PARTITION Algorithm: The parallel formulation of the serial
PARTITION algorithm has been given in [5]. The serial algorithm has in-
herent parallelism in it as far as processing of each partition is concerned.
The algorithm is very similar to the count distribution algorithm, in that
the data is distributed and the candidate set is replicated among processors.
The difference is that the frequent itemsets are counted in four stages. In
the first stage, each processor discovers locally frequent itemsets assuming
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Fig. 4. Count Distribution (CD) Algorithm

that its local data is the entire database. Next, these itemsets are exchanged
among processors, forming the global candidate set. In the third stage, local
counts for these candidates are computed by scanning the local data again.
Finally, a communication operation is performed to add up the local counts
to get the global counts for the candidates, from which globally frequent
itemsets can be determined. As in the serial case, the vertical data layout
used in parallel PARTITION can make the counting phase efficient, and al-
lows it to avoid multiple scans of the local database. In this algorithm, the
size of the candidate set generated in second stage is dependent on the size
of local datasets and skew in the data. It could potentially be bigger than
the candidate set in CD because of false positives, and hence can cause the
algorithm to lose its main purpose of achieving efficiency by pruning based
on local counts.

– PDM Algorithm: Another parallel algorithm which is based on the serial
Apriori-like algorithm is PDM [16], which is a parallel formulation of the
DHP [4] algorithm. The approach to parallelization is very much similar to
the CD algorithm. The difference is in the fact that DHP differs from Apri-
ori in its use of hash tables to look ahead into the potential candidates of
next phase. The phase of candidate generation is parallelized using a parallel
nested loop join algorithm. Each processor generates a small disjoint subset
of entire candidate set. These sets are exchanged by all nodes to generate
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global candidate set. The crucial point in the parallel formulation of count-
ing phase is the construction of the hash table in parallel. While counting
k-itemsets, the hash table stores the counts of k + 1-itemsets appearing in
transactions. Note that, as in DHP, the hash table is used for pruning the
candidates in the subsequent candidate generation pass. This makes it nec-
essary for each processor to have a global copy of the hash table, which has
global counts for each location. However, since the transactions are parti-
tioned across processors, each processor will have the counts due to local
transactions only. A simple approach of gathering global counts for each lo-
cation in the hash table is to do a global exchange of all local hash tables.
The potential of requiring a large hash table size, especially for 2-itemsets,
makes this simple approach inefficient. The paper proposes an optimization
over this by observing the fact that not all entries in the local hash tables
need to be exchanged with other processors. An entry in the global hash
table will be greater than support threshold, s, only if at least one processor
has its corresponding local entry greater than s/p, where p is the number of
processors. This fact is used to determine which entries should be exchanged
using global broadcast. Rest of the entries in the hash table are exchanged
using a clue-and-poll procedure which reduces the amount of communica-
tion. Since the same hash table and the entire candidate set is available to
all the processors, the transaction trimming feature of DHP algorithm is
easily maintained in PDM as well. Each processor tries to reduce the size
of transactions in its local partition. Overall, PDM is similar to CD. But,
effective parallelization of hash table construction, the possible advantages
gained by a good hashing function, and the transaction trimming might give
PDM an edge over CD.

– Count Distributed Tree Projection Algorithm: This formulation pro-
posed in [11] is based on the CD algorithm described above. Identical lexico-
graphic tree, upon which the tree projection algorithms are based, is built on
each processor and counts are communicated at every level. As with CD, this
parallel formulation works well only if the lexicographic tree fits in memory,
and its scalability with number of candidates is poor.

– Some Other Replication Based Algorithms: The NPA (Non-Partition-
ed Apriori) algorithm, proposed in [17] is identical to CD algorithm. The
PEAR algorithm given in [6], is also identical in spirit to the CD algorithm;
the only difference being that it uses SEAR algorithm instead of Apriori
for the candidate generation and local support counting phases within each
processor. Finally, the PPAR algorithm of [6] is identical to the parallel
PARTITION algorithm. It is a parallel formulation of the SPEAR algorithm
discussed in section 3.2.
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Partitioning Candidate Itemsets

Given the problems possibly encountered because of the replication of can-
didates, an alternative approach would be to partition the candidates among
processors. However, many issues arise regarding how to partition them and
how to effectively parallelize counting for a given partitioning. Following algo-
rithms handle these issues. DD algorithm discussed first makes a simple yet weak
effort to parallelize. The next algorithm, IDD, improves upon it greatly. A few
other algorithms are also described in the end.

– Data Distribution (DD): This algorithm [30] addresses the memory prob-
lem of the CD algorithm by partitioning the candidate item-sets among the
processors. This partitioning is done in a round robin fashion. Each proces-
sor is responsible for computing the counts of its locally stored subset of the
candidate item-sets for all the transactions in the database. In order to do
that, each processor needs to scan the portions of the transactions assigned
to the other processors as well as its locally stored portion of the transac-
tions. In the DD algorithm, this is done by having each processor receive the
portions of the transactions stored in the other processors as follows. Each
processor allocates P buffers (each one page long and one for each proces-
sor). At processor Pi, the ith buffer is used to store transactions from the
locally stored database and the remaining buffers are used to store transac-
tions from the other processors. Now each processor Pi checks the P buffers
to see which one contains data. Let l be this buffer (ties are broken in favor
of buffers of other processors and ties among buffers of other processors are
broken arbitrarily). The processor processes the transactions in this buffer
and updates the counts of its own candidate subset. If this buffer corresponds
to the buffer that stores local transactions (i.e., l = i), then it is sent to all
the other processors (via asynchronous sends), and a new page is read from
the local database. If this buffer corresponds to a buffer that stores transac-
tions from another processor (i.e., l �= i), then it is cleared and this buffer is
marked available for next asynchronous receive from any other processors.
This continues until every processor has processed all the transactions. Hav-
ing computed the counts of its candidate item-sets, each processor finds the
frequent item-sets from its candidate item-set and these frequent item-sets
are sent to every other processor using an all-to-all broadcast operation [31].
Figure 5 shows the high level operations of the algorithm. Note that each
processor has a different set of candidates in the candidate hash tree.
The SPA (Simply Partitioned Apriori) algorithm, proposed in [17], is iden-
tical to DD. It partitions the candidates among processors in a round robin
manner. Each transaction is broadcast to all the processors so as to generate
a global count for all the candidates.
The DD algorithm exploits the total available memory better than CD, as
it partitions the candidate set among processors. As the number of proces-
sors increases, the number of candidates that the algorithm can handle also
increases. However, as reported in [30], the performance of this algorithm is
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significantly worse than the CD algorithm. The run time of this algorithm
is 10 to 20 times more than that of the CD algorithm on 16 processors [30].
The problem lies with the communication pattern of the algorithm and the
redundant work that is performed in processing all the transactions.

The communication pattern of this algorithm causes three problems. First,
during each pass of the algorithm each processor sends to all the other pro-
cessors the portion of the database that resides locally. In particular, each
processor reads the locally stored portion of the database one page at a time
and sends it to all the other processors by issuing P − 1 send operations.
Similarly, each processor issues a receive operation from each other proces-
sor in order to receive these pages. If the interconnection network of the
underlying parallel computer is fully connected (i.e., there is a direct link
between all pairs of processors) and each processor can receive data on all
incoming links simultaneously, then this communication pattern will lead to
a very good performance. In particular, if O(N/P ) is the size of the database
assigned locally to each processor, the amount of time spent in the commu-
nication will be O(N/P ). However, even on the parallel computer with fully
connected network, if each processor can receive data from (or send data to)
only one other processor at a time, then the communication will be O(N).
On all realistic parallel computers, the processors are connected via a sparser
networks (such as 2D, 3D or hypercube) and a processor can receive data
from (or send data to) only one other processor at a time. On such ma-
chines, this communication pattern will take significantly more than O(N)
time because of contention within the network.
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Second, in architectures without asynchronous communication support and
with finite number of communication buffers in each processor, the proposed
all-to-all communication scheme causes processors to idle. For instance, con-
sider the case when one processor finishes its operation on local data and
sends the buffer to all other processors. Now if the communication buffer of
any receiving processors is full and the outgoing communication buffers are
full, then the send operation is blocked.
Third, if we look at the size of the candidate sets as a function of the number
of passes of the algorithm, we see that in the first few passes, the size of the
candidate sets increases and after that it decreases. In particular, during the
last several passes of the algorithm, there are only a small number of items
in the candidate sets. However, each processor in the DD algorithm still
sends the locally stored portions of the database to all the other processors.
Thus, even though the computation decreases, the amount of communication
remains the same.
The redundant work is introduced due to the fact that every processor has to
process every single transaction in the database. In CD (see Figure 4), only
N/P transactions go through each hash tree of M candidates, whereas in DD
(see Figure 5), all N transactions have to go through each hash tree of M/P
candidates. Although, the number of candidates stored at each processor
has been reduced by a factor of P , the amount of computation performed
for each transaction has not been proportionally reduced. According to the
analysis presented in [15], in general, the amount of work per transaction
will go down by a factor much smaller than P .
The detailed analysis of parallel runtime is given in [15], according to which
the algorithm is not scalable with respect to number of transactions, but it
scales well with respect to number of candidates.

– Intelligent Data Distribution (IDD): This algorithm was proposed in
[32]. It solves the problems of the DD algorithm. First, in IDD, the locally
stored portions of the database are sent to all the other processors by us-
ing a ring-based all-to-all broadcast described in [31]. Compared to DD,
where all the processors send data to all other processors, IDD performs
only a point-to-point communication between neighbors, thus eliminating
any communication contention that DD algorithm faces. Thus, the all-to-all
broadcast operation takes O(N) time on any parallel architecture that can
be embedded in a ring. Furthermore, if the time to process a buffer does
not vary much, then there is little time lost in idling. Also, when it is im-
plemented using asynchronous communication operations, the computation
and communication operations can be overlapped.
Second problem of DD that IDD improves upon is that of redundant work.
In order to eliminate the redundant work due to the partitioning of the can-
didate item-sets, IDD finds a fast way to check whether a given transaction
can potentially contain any of the candidates stored at each processor. This
cannot be done by partitioning Ck in a round-robin fashion. However, if
Ck is partitioned among processors in such a way that each processor gets
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item-sets that begin only with a subset of all possible items, then the items
of a transaction can be checked against this subset to determine if the hash
tree contains candidates starting with these items. The hash tree is traversed
with only the items in the transaction that belong to this subset. Thus, the
redundant work problem of DD is solved by the intelligent partitioning of
Ck.
These points can be understood better by looking at Figure 6, which shows
the high level picture of the algorithm. In this example, Processor 0 has all
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the candidates starting with items 1 and 7, Processor 1 has all the candidates
starting with 2 and 5, and so on. Each processor keeps the first items of
the candidates it has in a bit-map. In the Apriori algorithm, at the root
level of hash tree, every item in a transaction is hashed and checked against
the hash tree. However, in IDD, at the root level, each processor filters
every item of the transaction by checking against the bit-map to see if the
processor contains candidates starting with that item of the transaction. If
the processor does not contain the candidates starting with that item, the
processing steps involved with that item as the first item in the candidate
can be skipped. This reduces the amount of transaction data that has to go
through the hash tree; thus, reducing the computation. For example, let {1
2 3 4 5 6 7 8} be a transaction that processor 0 is processing in the subset
function discussed in Section 3.1. At the top level of the hash tree, processor
0 will only proceed with items 1 and 7 (i.e., 1 + 2 3 4 5 6 7 8 and 7 +
8). When the page containing this transaction is shifted to processor 1, this
processor will only process items starting with 2 and 5 (i.e., 2 + 3 4 5 6 7
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8 and 5 + 6 7 8). Figure 7 shows how this scheme works when a processor
contains only those candidate item-sets that start with 1, 3 and 5.
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Fig. 7. Subset operation on the root of a candidate hash tree in IDD.

Thus for each transaction in the database, IDD partitions the amount of
work to be performed among processors, thus eliminating most of the re-
dundant work of DD. Note that both the judicious partitioning of the hash
tree (indirectly caused by the partitioning of candidate item-set) and the
filtering step are required to eliminate this redundant work.
The intelligent partitioning of the candidate set used in IDD brings up the
issue of load balancing. One of the criteria of a good partitioning involved
here is to have an equal number of candidates in all the processors. This gives
about the same size hash tree in all the processors and thus provides good
load balancing among processors. Note that in the DD algorithm, this was
accomplished by distributing candidates in a round robin fashion. This does
not give any guarantees of load balance. Even in IDD, a naive method for
assigning candidates to processors can lead to a significant load imbalance.
For instance, consider a database with 100 distinct items numbered from 1
to 100 and that the database transactions have more data items numbered
with 1 to 50. Let the candidates be partitioned between two processors. If
all the candidates starting with items 1 to 50 are assigned to processor P0

and all candidates starting with items 51 to 100 to processor P1, then there
would be more work for processor P0.
To achieve an equal distribution of the candidate item-sets, the authors of
IDD use a partitioning algorithm that is based on bin-packing [33]. For each
item, they first compute the number of candidate item-sets starting with
this particular item. Note that at this time they do not actually store the
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candidate item-sets, but they just store the number of candidate item-sets
starting with each item. Then a bin-packing algorithm is used to partition
these items in P buckets such that the sum of numbers of the candidate
item-sets starting with these items in each bucket are roughly equal. Once the
location of each candidate item-set is determined, then each processor locally
regenerates and stores candidate item-sets that are assigned to this processor.
Note that bin-packing is used per pass of the algorithm and the amount of
time spent on bin-packing is minor compared to the overall runtime. Figure 6
shows the partitioned candidate hash tree and its corresponding bitmaps in
each processor.
Note that this scheme will not be able to achieve an equal distribution of
candidates if there are too many candidate itemsets starting with the same
item. For example, if there are more than M/P candidates starting with
the same item, then one processor containing candidates starting with this
item will have more than M/P candidates even if no other candidates are
assigned to it. This problem gets more serious with increasing P . One way
of handling this problem is to partition candidate item sets based on more
than the first items of the candidate item sets. In this approach, whenever
the number of candidates starting with one particular item is greater than
the threshold, this item set is further partitioned using the second item of
the candidate item sets.
Note that the equal assignment of candidates to the processors does not
guarantee the perfect load balance among processors. This is because the
cost of traversal and checking at the leaf node are determined not only by
the size and shape of the candidate hash tree, but also by the actual items
in the transactions. However, in the experiments, authors [32] have observed
a reasonably good correlation between the size of candidate sets and the
amount of work done by each processor. For example, with 4 processors, the
load imbalance was 1.3% in terms of the number of candidate sets, which
translated into 5.4% load imbalance in the actual computation time. With
8 processors, load imbalance was 2.3% in the number of candidate sets,
and this resulted in 9.4% load imbalance in the computation time. Since the
effect of transactions on the work load cannot be easily estimated in advance,
IDD scheme only ensures that each processor has roughly equal number of
candidate itemsets in the local hash tree.
A detailed analysis of the load balancing issues and scalability of IDD is
given in [15]. In summary, IDD has the flexibility of minimizing the data
movement cost by overlapping the counting computation with data com-
munication. Moreover, it does not perform any redundant computation as
in DD, which makes it more scalable than DD with respect to number of
transactions, and it is scalable with respect to the number of candidates.

– HPA Algorithm: The HPA (Hash Partitioned Apriori) algorithm, given in
[17], is similar in spirit to the IDD algorithm. It tries to reduce the commu-
nication overhead of sending each transaction to every processor. It assigns
the candidates to processors using a hash function, which determines the
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processor a candidate gets assigned to. In the counting phase, if candidate
k-itemsets are being counted, then each transaction in local database is first
processed to find all the k-itemsets present in it. Each such itemset is hashed
using the same hash function as used for partitioning the candidates to de-
rive the destination processor, and is sent to that processor. This partitioning
due to hashing function can be considered similar to the mechanism of par-
titioning candidates in IDD. The hashing-based candidate distribution of
HPA may lead to load imbalances.

– Intelligent Data Distributed Tree Projection Algorithm: This for-
mulation proposed in [11] is based on the IDD algorithm. The lexicographic
tree, upon which the tree projection algorithms are based, is distributed
among different processors based on the first item in the tree. Using the ac-
tive item lists at the root of each of the processor’s lexicographic tree, only
relevant transactions can be communicated to a given processor. This can
save on the communication overhead.

Hybrid Approach: Partial Replication of Candidate Itemsets

We saw two approaches: pure replication of candidates and pure partition-
ing with no replication. However, according to analyses of these approaches,
especially for CD and IDD, it can be seen that each approach has some issues
regarding scalability. In particular, CD is scalable with respect to number of
transaction because of replicated candidate sets, whereas IDD is scalable with
respect to number of candidates. This hybrid approach is essentially an attempt
to see if two approaches can be combined via partial replication of candidates, to
achieve better scalability than both. In the following, we discuss some algorithms
that have been able to do this successfully.

– HD (Hybrid Distribution) Algorithm: The IDD algorithm exploits the
total system memory by partitioning the candidate set among all proces-
sors. The average number of candidates assigned to each processor is M/P ,
where M is the number of total candidates. As more processors are used, the
number of candidates assigned to each processor decreases. This has two im-
plications. First, with fewer number of candidates per processor, it is much
more difficult to balance the work. Second, the smaller number of candidates
gives a smaller hash tree and less computation work per transaction. Even-
tually the amount of computation may become less than the communication
involved. This would be more evident in the later passes of the algorithm as
the hash tree size further decreases dramatically. This reduces overall effi-
ciency of the parallel algorithm. This will be an even more serious problem
in a system that cannot perform asynchronous communication.
The Hybrid Distribution (HD) algorithm addresses the above problem by
combining the CD and the IDD algorithms in the following way. Consider
a P -processor system in which the processors are split into G equal size
groups, each containing P/G processors. In the HD algorithm, we execute
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the CD algorithm as if there were only P/G processors. That is, we partition
the transactions of the database into P/G parts each of size N/(P/G), and
assign the task of computing the counts of the candidate set Ck for each
subset of the transactions to each one of these groups of processors. Within
each group, these counts are computed using the IDD algorithm. That is, the
transactions and the candidate set Ck are partitioned among the processors
of each group, so that each processor gets roughly |Ck|/G candidate item-
sets and N/P transactions. Now, each group of processors computes the
counts using the IDD algorithm, and the overall counts are computing by
performing a reduction operation among the P/G groups of processors.
The HD algorithm can be better visualized if we think of the processors as
being arranged in a two dimensional grid of G rows and P/G columns. The
transactions are partitioned equally among the P processors. The candidate
set Ck is partitioned among the processors of each column of this grid. This
partitioning of Ck is identical for each column of processors; i.e., the proces-
sors along each row of the grid get the same subset of Ck. Figure 8 illustrates
the HD algorithm for a 3× 4 grid of processors. In this example, the HD al-
gorithm executes the CD algorithm as if there were only 4 processors, where
the 4 processors correspond to the 4 processor columns. That is, the database
transactions are partitioned in 4 parts, and each one of these 4 hypothetical
processors computes the local counts of all the candidate item-sets. Then
the global counts can be computed by performing the global reduction oper-
ation. However, since each one of these hypothetical processors is made up
of 3 processors, the computation of local counts of the candidate item-sets
in a hypothetical processor requires the computation of the counts of the
candidate item-sets on the database transactions sitting on the 3 processors.
This operation is performed by executing the IDD algorithm within each of
4 hypothetical processors. This is shown in the step 1 of Figure 8. Note that
processors in the same row have exactly the same candidates, and candidate
sets along the each column partition the total candidate set. At the end of
this operation, each processor has complete count of its local candidates for
all the transactions located in the processors of the same column (i.e., of a
hypothetical processor). Now a reduction operation is performed along the
rows such that all processors in each row have the sum of the counts for the
candidates in the same row. At this point, the count associated with each
candidate item-set corresponds to the entire database of transactions. Now
each processor finds frequent item-sets by dropping all those candidate item-
sets whose frequency is less than the threshold for minimum support. These
candidate item-sets are shown as shaded in Figure 8(b). In the next step,
each processor performs all-to-all broadcast operation along the columns of
the processor mesh. At this point, all the processors have the frequent sets
and are ready to proceed to the next pass.
The HD algorithm determines the configuration of the processor grid dy-
namically. In particular, the HD algorithm partitions the candidate set into
a big enough section and assign a group of processors to each partition. Let
m be a user specified threshold. If the total number of candidates M is less



Efficient Parallel Algorithms for Mining Associations 109

1, 2

4, 5

7, 8

1

0

3

2, 3

8, 9

5, 6

3

1

2

6, 8

6, 7

3, 4 0

2

3

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

All-to-all
Broadcast

All-to-all
Broadcast

All-to-all
Broadcast

All-to-all
Broadcast

Shift
Data

Shift
Data

Shift
Data

Shift
Data

Step 2: Reduction Operation Along the Rows

Step 3: All-to-all Broadcast Operation Along the Columns

Step 1: Partitioning of Candidate Sets and Data Movement Along the Columns

Data Shift

Data Shift

Data Shift

Data Shift

Data Shift

Data Shift

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Data Shift

Data Shift

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

1, 2

4, 5

7, 8

0

1

2

2, 3

8, 9

5, 6

0

1

2

6, 8

6, 7

3, 4 1

4

0

1, 2

4, 5

7, 8

2

3

1

2, 3

8, 9

5, 6

0

0

2

6, 8

6, 7

3, 4 0

1

1 6, 8

6, 7

3, 4 1

0

1

2, 3

8, 9

5, 6

1

1

2

1, 2

4, 5

7, 8

0

2

3

Candidate Hash Tree Candidate Hash TreeCandidate Hash TreeCandidate Hash Tree

Candidate Hash Tree Candidate Hash TreeCandidate Hash TreeCandidate Hash Tree

Candidate Hash Tree Candidate Hash TreeCandidate Hash TreeCandidate Hash Tree

6, 8

6, 7

3, 4 2

7

5 6, 8

6, 7

3, 4 2

7

5 6, 8

6, 7

3, 4 2

7

5 6, 8

6, 7

3, 4 2

7

5

1, 2

4, 5

7, 8

3

6

9

1, 2

4, 5

7, 8

3

6

9

1, 2

4, 5

7, 8

3

6

9

1, 2

4, 5

7, 8

3

6

9

2, 3

8, 9

5, 6

4

3

8

2, 3

8, 9

5, 6

4

3

8

2, 3

8, 9

5, 6

4

3

8

2, 3

8, 9

5, 6

4

3

8

Fig. 8. Hybrid Distribution (HD) Algorithm in 3× 4 Processor Mesh (G = 3, P = 12)



110 Mahesh V. Joshi et al.

than m, then the HD algorithm makes G equal to 1, which means that the
CD algorithm is run on all the processors. Otherwise G is set to �M/m�.
The HD algorithm inherits all the good features of the IDD algorithm. It
also provides good load balance and enough computation work by maintain-
ing minimum number of candidates per processor. At the same time, the
amount of data movement in this algorithm has been cut down to 1/G of
the IDD. A detailed parallel runtime analysis of HD is given in [15]. It shows
that HD is scalable with respect to both number of transactions and number
of candidates. The analysis also proves the necessary conditions under which
HD can outperform CD. Detailed experimental results which compare CD,
DD, IDD, and HD formulations of Apriori algorithm are given in [32]. HD
is shown to be faster and more scalable as compared to the other algorithms.

– HPA-ELD Algorithm: The paper [17] that proposed the HPA algorithm,
proposes another algorithm called HPA-ELD (Hash-Partitioned Apriori with
Extremely Large Itemsets Duplication). This algorithm reduces the commu-
nication required by HPA, by using partial replication of candidates. It first
sorts the itemsets based on their frequency of appearance and replicates the
most frequently occurring itemsets over all processors. For the replicated
candidates, NPA (or CD) algorithm is used to collect global counts. For
the rest, HPA algorithm is used. Because of the replication of most frequent
itemsets, HPA-ELD is less sensitive to the data skew. Also, it also utilizes the
local processor memory efficiently in case of relatively small size of candidate
itemsets. This replication of highly frequent itemsets to all processors is sim-
ilar in spirit to the HD algorithm. However, HD replicates some candidates
on a small number of processors, instead of on all processors. According
to the performance comparisons of NPA, SPA, HPA, and HPA-ELD pre-
sented in [17], HPA-ELD performs better for the smaller support thresholds,
whereas NPA performs better for large support thresholds. However, as with
HPA, the performance of HPA-ELD is critically dependent on the hashing
scheme, and the paper does not provide any theoretical results regarding the
scalability of the algorithm.

4.2 Other Parallel Formulations

Along with the parallel formulations of level-wise algorithms, presented in pre-
vious subsections, many other schemes have been proposed in the literature so
far[19,18]. This section reviews these formulations in a comparative manner.

Parallel formulation, DMA, designed specifically for distributed databases is
described in [19]. It uses an idea of pruning based on local count. The found-
ing principle of DMA is similar to that of PARTITION: a globally frequent
itemset (when support is counted with respect to the entire database) has to
be locally frequent in at least one of the processors (when support is counted
with respect to the local database). DMA uses this principle to compute heavy
itemsets at each site. These are the itemsets which are frequent locally as well
as globally. The k + 1-candidates are locally generated using the local heavy
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k-itemsets instead of using the globally frequent k-itemsets. Use of heavy item-
sets can generate much smaller number of candidates overall, when compared
to the CD algorithm which uses globally frequent k-itemsets. Local counts for
these candidates are collected by scanning the database once. The candidates
which are not locally frequent are pruned away and the remaining candidates
are communicated to all other processors. Each processor measures the local
count for each candidate received from remote processors, and sends it back to
the processor who requested it. Adding up local and remote counts, each pro-
cessor determines which of the candidates are globally frequent and forms the
local heavy set. Local heavy sets are exchanged by a broadcast operation to
find global frequent sets, and the algorithm continues to the next iteration. Note
that DMA uses horizontal data layout similar to CD and DD, unlike the vertical
data layout used in PARTITION. There are several optimizations possible in
this main DMA algorithm, especially for reducing the communication overheads
and the number of database passes. Following two paragraphs give their brief
description.

DMA is designed for distributed environments characterized by low band-
width interconnection network; hence, it has mechanisms to optimize the com-
munication overheads. It assigns each candidate a host site, and uses a count
polling procedure to gather the global count for it by systematic coordination of
the requests for local counts from remote sites. In this form, DMA is similar in
nature to the DD algorithm where candidates as well as the data are distributed
across processors. This DMA algorithm is identical to the FDM algorithm with
local pruning given in [20]. A global pruning strategy is also described in [20],
which may reduce the number of candidate itemsets. It makes the local counts
of each (k − 1)-candidate available at all sites and uses them to prune some k-
candidates. The idea is that a k-candidate’s global count is bounded from above
by the sum of the upper bound on its local count at all the processors, which
is in turn determined by the minimum support of its (k − 1)-subsets at each
processor.

If DMA is implemented naively, in each iteration, each processor would need
to make two passes over its local database; one for counting the candidates
generated from local heavy itemsets, and second for candidates received from
remote processors. The paper identifies this and proposes an optimization for
making only a single scan by generating all the candidates that would be gen-
erated at all remote sites, and collecting counts for these along with the locally
generated candidates. This optimization brings the algorithm closer to the CD
algorithm, except that the candidate set generated in DMA could be potentially
much smaller than the one in CD (because of the use of heavy itemsets). In the
performance results shown in the paper, DMA performs better than CD, mainly
because of the reduction in the number of candidates generated. It should be
noted that although DMA uses the same principle as PARTITION, its sensitivity
to the problems of small partition size and data skew is less than PARTITION.
This is because PARTITION, in an effort of reducing the database scans, gen-
erates all locally frequent itemsets in its first scan of the database. It does not
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have the flexibility of interleaving the global information with local information
in every iteration over k. This causes it to generate many false positives which
need to be counted in the second pass over the database.

As noted earlier, DMA is designed for distributed environment. A version of
it, called FPM (Fast Parallel Mining), suitable for parallel environment (faster
interconnection network) is given in [21] and summarized in [28]. It simply re-
places the count polling mechanism of DMA with an all-to-all broadcast of local
supports to all the processors. The authors also provide an entropy-based mea-
sure to analyze data-skew among the processors by computing probabilities of
itemsets at each processors. Similar to DMA, FPM also outperforms CD algo-
rithm.

The last set of algorithms that we will discuss here is the parallel formula-
tions of the itemset-clustering based lattice traversal algorithms given in [9]. As
described in section 3.2, these algorithms try to find potential maximal frequent
itemsets by pruning the search space of itemsets. This pruning is achieved by
finding clusters of related items, using either the equivalence class method or
the hypergraph clique method. Each cluster corresponds to a potential maximal
itemset. Such itemsets form disjoint sub-lattices of the entire itemset lattice.
The idea behind the parallel formulations given in [18] is essentially to identify
such sub-lattices and assign them to different processors so that the processing
of each sub-lattice can be done entirely independently. The algorithms try to
achieve load balance by estimating the work needed for each sub-lattice and de-
termining the number of sub-lattices to be assigned to each processor. In order
to achieve independent processing of each sub-lattice, the algorithms bring all
the transaction data (tid-lists) required for that sub-lattice to the processor as-
signed to process the sub-lattice. These algorithms offer ideal opportunity to be
designed for DSM parallel architectures. Once the sub-lattices are assigned to
multi-processor nodes, the frequent itemset generation within each sub-lattice
can be performed by running a shared memory parallel algorithm on multiple
SMP processors available within the node.

These parallel algorithms have the same advantages that are enjoyed by their
serial counterparts, specifically those of doing at most two database scans and
performing efficient counting by simple tid-list intersection. Along with these, the
parallel formulations have the advantage of reducing communication overhead
involved in communicating candidates or counts. But, these algorithms have
limitations also. First, they have to pay the cost of replicating parts of the
database across multiple processors. Second, the amount of concurrency that
the algorithm can achieve depends entirely on the quality of clusters it can find,
and on the transaction dataset. If the number of clusters is very few, then the
algorithm may not fully utilize the total number of processors available, thus
making it unscalable to larger number of processors. In the worst case, the
algorithm may reduce to serial algorithm with a single processor working on
the entire problem because of lack of multiple maximal potential itemsets. The
hypergraph clique based clustering can be used avoid such worst case scenarios.
But, clique based techniques tend to become expensive based on how dense the
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hypergraph gets, which in turn depends on the nature of transactions and the
support threshold level. Another possibility where these algorithms can become
expensive is when the number of clusters is such that the items appearing in
different clusters have a large overlap. In such cases, the algorithm may end up
replicating a large part of the database to all the processors. As an aside, the
idea of itemset clustering using equivalence classes used in these algorithms is
similar to the Candidate Distribution algorithm of[14], which assigns candidates
to processors based on their equivalence classes.

5 Bringing in the Sequential Relationships

The data collected from scientific experiments, or monitoring of physical sys-
tems such as telecommunications networks, or from transactions at a supermar-
ket, have inherent sequential nature to them. Sequential nature means that the
events occurring in such data are related to each other by relationships of the
form before (or after) and together. The concept of item-sets and association
rules discussed so far takes into account only the together part of the relation-
ship, the information provided by the before/after relationships is ignored. This
information could be very valuable in finding more interesting patterns hidden
in the data, which could be useful for many purposes such as prediction of events
or identification of better sequential rules that characterize different parts of the
data.

In this section, we discuss the concept of sequential associations, more com-
monly known as sequential patterns, and algorithms to discover them.

5.1 Universal Sequential Associations: Definition

Sequential associations are defined in the context of an input sequence data
characterized by three columns: object, timestamp, and events. Each row records
occurrences of events on an object at a particular time. An example is shown in
Figure 9(a). Alternative way to look at the input data is in terms of the time-line
representations of all objects as illustrated in Figure 9(b). Note that the term
timestamp is used here as a generic term to denote a measure of sequential (or
temporal) dimension.

Various definitions of object and events can be used, depending on what kind
of information one is looking for. For example, in one formulation, object can
be a telecommunication switch, and event can be an alarm type occurring on
the switch. With this, the sequences discovered will indicate interesting patterns
of occurrences of alarm types occurring at a switch. In another formulation,
object can be a day, and event can be a switch or a pair of switch and type of
the alarm occurring on it. This will give interesting sequential relations between
different switches or switch-alarm type pairs over a day. In another example,
if an object is a customer and events are the items bought by the customer,
then the discovered sequential patterns will throw insight into the relationships
between items bought by customers.
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Given this input data, the goal is to discover universal sequential associa-
tions or patterns. A universal pattern is defined as a relationship between sets
of events, which conforms to the given event constraints, structural constraints,
and timing constraints. Detailed description can be found in [24]. For the pur-
pose of discussion in this chapter, we will assume a simplified representation
given in Figure 10. Although simplified, this representation still preserves the
key generalization capabilities of universal formulation. The simplified universal
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sequential pattern is essentially a sequence of sets of events, which conform to
the given timing constraints. As an example, the sequential pattern (A) (C,B)
(D), encodes a relationship that event D occurs after an event-set (C,B), which in
turn occurs after event A. However, this pattern may not be useful by itself. For
example, if events are alarms, then D could be occurring hours after event A,
which may not be useful in predicting dependence of D on A. Similarly, if alarms
B and C occur just a few milliseconds apart, then putting a strict order on their
occurrences may not be very useful; i.e. events within a event-set should be al-
lowed to happen independent of their order but within a short time duration.
These issues motivate a need to incorporate timing constraints in the sequential
pattern definition. In particular, the occurrences of events in a sequential pattern
are governed by the following timing constraints:

– Maximum Span(ms): The maximum allowed time difference between the
latest and earliest occurrences of events in the entire sequence.

– Event-set Window Size(ws): The maximum allowed time difference be-
tween the latest and earliest occurrences of events in any event-set.

– Maximum Gap(xg): The maximum allowed time difference between the
latest occurrence of an event in an event-set and the earliest occurrence of
an event in its immediately preceding event-set.

– Minimum Gap(ng): The minimum required time difference between the
earliest occurrence of an event in an event-set and the latest occurrence of
an event in its immediately preceding event-set.

The constraints and structure described above form just one part of the
definition. The other important part is to define what is an interesting sequence.
We assume that the interestingness of a sequence to be defined based on how
many times it occurs in the input data; i.e. its support. If the support is greater
than a user-specified support threshold, then the sequence is called frequent or
interesting. The number of occurrences of a sequence can be computed in many
ways. Five different methods of counting are described in [24], out of which four
are described below.

The method COBJ (Count Objects) counts at most one occurrence of a
sequence for every object. In the example shown in Figure 11, (1)(2) has two oc-
currences, one for object A and one for object B, assuming ms > 2. This method
may not capture the sequences which are exhibited many times within a single
object, which could really determine its interestingness. In the second method
CWIN (Count Windows), the support of a sequence is equal to the number of
span-size windows it appears in. Each span-size window has a duration of ms,
and consecutive windows have an overlap of ms − 1 units. Windows can span
across a single object; i.e., no window can span across multiple objects. The
support is added over all objects to get final support for a sequence. As shown
in Figure 11(a), with ms = 4, sequence (1)(2) has support of 3 for Object A,
because it occurs in windows starting at time-points 0, 1, and 2. For object B,
it occurs in 5 windows, hence the total support is 8. In other counting meth-
ods, instead of counting the span-windows, actual occurrences of a sequence are
counted. Two options, CDIST (Count Distinct Occurrences with No Overlap)
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Fig. 11. Illustration of Methods of Counting Support

and CDIST O (Count Distinct Occurrences with Overlap), are illustrated in Fig-
ure 11(b) and Figure 11(c), respectively. In CDIST, an event-timestamp pair is
considered at most once in counting occurrences of a given sequence. So, there
is only 1 occurrence of (1)(2) for Object A in the example, because there is no
corresponding event 2’s occurrence for event 1@2, 2@4 was used up in first occur-
rence. In CDIST O, the occurrences are counted such that each new occurrence
found has at least one different event-timestamp pair than previously found oc-
currences. So, (1)(2) has 3 occurrences for object B, and total of 5 occurrences,
using this method.

The choice of which counting method to use is dependent on the problem
and the judgment of the person using the discovery tool. For the purpose of our
discussion in this paper, we will assume the CWIN method, because it is fairly
general as compared to COBJ method in the way it counts multiple occurrences
within an object.

As stated earlier, the definition of universal sequential patterns presented
above is a simplified version of a more sophisticated representation given in
[24], which allows specification of more constraints on the pattern. Among the
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prominent ones are the structural constraints in the form of a directed acyclic
graph (dag), and the event constraints. As a matter of fact, the simplified version
described here represents a most general version of a single path of the dag-
based representation. In the remainder of this chapter, unless otherwise stated,
whenever we refer to universal sequential patterns, the reader should assume the
simplified form of Figure 10.

The universal sequential patterns actually unify and generalize the notions
of generalized sequential patterns (GSP) proposed in [25] and episodes proposed
in [34], both of which can be shown to be the special cases of the universal
formulation. If the maximum span constraint is considered ineffective (ms → ∞)
and COBJ method is used for counting, then the formulation is identical to
GSP. If constraint xg ≥ ms and the CWIN counting method are used, then
the formulation is equivalent to the episodes of [34]. In fact, for algorithmic
convenience, the generic notion of episodes is broken down into two special kinds
of episodes: serial and parallel. In addition to xg ≥ ms constraint and CWIN
counting method, if we impose ng = 0 and set ws such that each event-set
is restricted to have only one event, then the universal formulation becomes
equivalent to serial episodes. On the other hand, if additional constraints are set
to ws = ms and ng ≥ ms, then the formulation is equivalent to the parallel
episodes.

There are a few other formulations of sequential patterns proposed in the
literature [26,35]. In terms of representation capability, they can be shown to
be the special cases of the sophisticated version of universal sequential patterns
given in [24]. The formulation of [26] is equivalent to a dag that has a rigid struc-
ture, only the ng and xg timing constraints, and stricter event constraints. The
formulation given in [35] is based on regular expressions (RE). The deterministic
finite automaton representation of their formulation can be shown to be a special
case of the universal sequential patterns of [24]. Also, each of the paths of this
automaton can be represented by the simplified universal sequential associations
of Figure 10.

In summary, the formulation of universal sequential associations, with its
representational capabilities and versatility of counting methods, is fairly general
for a wide variety of sequential data.

5.2 Serial Algorithms for Sequential Associations

The complexity of discovering frequent sequences is much more than the com-
plexity of mining non-sequential associations. The reason is that, the maximum
number of sequences having k events is O(mk2k−1), where m is the total num-
ber of distinct events in the input data. In contrast, there are only (m

k ) possible
item-sets of size k, given m distinct items. Using the definition of interestingness
of a sequence, and the timing constraints imposed on the events occurring in
a sequence, many of these sequences can be pruned. But in order to contain
the computational complexity, the search space needs to be traversed in a man-
ner that searches only those sequences that would potentially satisfy both the
support and timing constraints. The GSP algorithm given in [25] addresses this
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issue by building frequent sequences level-wise. Like Apriori, it makes use of the
anti-monotonicity property of the support. The frequent sequences having k− 1
events can be used to build a candidate sequence having k events, such that all
its (k − 1)-subsequences are frequent. The algorithm also takes into account the
timing constraints relevant to the formulation of [25]. This algorithm has been
modified in [24] to handle the universal sequential patterns. The main modifi-
cations are done in order to take into account the multiple counting strategies
and to account for the maximum span (ms) constraint. Especially when the
counting strategies other than COBJ are used, entire timeline of each object
needs to be scanned to count all occurrences of every candidate. Data structures
such as hash tree can be used to quickly find the candidates that may exist in
a given timeline, but such structures will be helpful only for the first occurrence
of a candidate. The rest of the occurrences need to be found by scanning the
entire remaining timeline. A detailed description of how the algorithm works
using hash tree structures is given in [24].

A few other algorithms also exist for discovering sequential patterns, but
they cater to formulations of sequential patterns that are less general than the
universal sequential associations. In particular, the algorithm SPADE proposed
in [36], assumes the formulation of [22] with no timing constraints. The SPIRIT
algorithms of [35] cater to their formulation based on regular expressions.

5.3 Parallel Formulation: Issues, Challenges, and Some Solutions

If the input sequence data has following features, then serial2 algorithms briefly
described in the previous subsection face severe limitations.

– Enormity; i.e., large number of objects and/or large time-lines for many
objects. Serial algorithms would take a very long time to in the counting
phase for such datasets.

– High dimensionality; i.e., large number of events. The number of candidates
generated for such datasets will be very large; hence, either they may not
fit in the memory available for a single processor, or they would make the
hash tree data structures act counter-productively if their size and structure
is not optimally managed.

This motivates the need for parallel formulations. The design strategies used
for parallel algorithms in the context non-sequential associations can be used as
a starting point for parallelization in the context of sequential patterns. How-
ever, specific design issues arise because of the different ways in which universal
sequential patterns generalize over standard associations. The crucial factors are
the lengths of the object time-lines defined in terms of the number of events hap-
pening on them, the value of maximum-span timing constraint (ms), and the

2 The terms serial and sequential should not be confused. Traditionally, sequential and
serial are both used to describe algorithms that would run on single processor ma-
chines. Here, we use the term serial to represent such algorithms, and reserve the
term sequential to indicate the temporal or sequential nature of the input data
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total number of objects. In this section, we briefly discuss the issues and research
challenges involved in developing effective parallel formulations. In particular,
we describe two parallel formulations, EVE (event distribution) and EVECAN
(event and candidate distribution) [37].

EVE-S: Simple Event Distribution Algorithm. This algorithm is essen-
tially an extension of the CD algorithm for discovering non-sequential associa-
tions, except that the transactions are replaced with more generic objects. For
shorter time-lines (less number of events happening on the object) and relatively
large number of objects, the input data is distributed such that the total num-
ber of events is as evenly distributed as possible within the constraint that a
processor gets the entire timeline of every object allocated to it. The assumption
here is that the computational work associated with an object is proportional
to the number of events happening on it. The counting phase is performed in
an embarrassingly parallel way, except for the final communication operation re-
quired to accumulate the candidate counts. EVE-S is illustrated in Figure 12. A
similar algorithm called NPSPM (non-partitioned sequential pattern mining) is
proposed by [17]. They assume the restricted GSP[25] formulation of sequential
patterns. Also, they cater only to the supermarket transaction scenario, which
indeed is fitting for the EVE-S algorithm also, because usually object (customer)
time-lines contain small number of transactions, each in turn consisting of small
number of events (items).

Global Reduction of Candidate Counts

Count
Local

Count
Local

Count
Local

P0 P1 P2

Objects

Fig. 12. Illustration of EVE-S algorithm.
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EVE-R: Event Distribution with Partial Data Replication. This for-
mulation is designed for the scenario in which there are relatively small number
of objects (less than the number of processors), each object has a long timeline
(in terms of duration as well as number of events), and the span value (ms) is
relatively small. The input data is distributed as follows. The timeline for each
object is split across different processors such that the total number of events
assigned to different processors is similar. Note that the sequence occurrences
are computed in span-size windows. We assume that the span value is small such
that no span window spans across more than two processors. But, still each pro-
cessor will have some span-windows that do not have sufficient data to declare
the occurrence of an sequence in them. This is resolved in EVE-R by gathering
such missing data from neighboring processors. Each processor gathers data that
is required to process the last span-window beginning on that processor. This
is illustrated in Figure 13. Since we assume that span-windows do not straddle
more than two processors, just the neighbor-to-neighbor communication is suf-
ficient. Once every span-window is complete on all processors, each processor
processes only those span-windows which begin at the events originally assigned
to it. For example, processor P0 processes windows that begin at time instances
0, 1, 2, and 3, whereas processor P1 will process windows that begin at 4, 5, 6,
and 7. By distributing the events equitably, load balance can be achieved. As
in EVE-S algorithm, the occurrences are collected by a global communication
(reduction) operation, in the end.

0 1 2 3 4 5 6 7 8 9 10 11

P2P0 P1

span-window

P0

0 1 2 3 4 5 6 7

P1

8 9 10 114 5 6 7

P2

8 9 10 11

Fig. 13. Illustration of EVE-R algorithm.

EVE-C: Complex Event Distribution Algorithm. This formulation de-
picts the most complex scenario as far as distribution of the counting workload
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is concerned. This happens when there are small number of objects, each object
has a long timeline (in terms of duration as well as number of events), and the
span value is large such that after splitting the object time-lines across proces-
sors, the span-windows straddle more than two processors. There are two ways
to handle this.

One way is to replicate the data across processors such that no processor has
any incomplete or partial span-window. This is the same idea used in EVE-R.
What makes it different is the fact that the amount of replication can become
very large in this case. So, if processors do not have enough disk space to hold
the entire replicated information, this approach may not be feasible. Even when
there is enough disk space available on each processor, the replication of data
may result in a lot of replication of work. The details are given in [37], but to
summarize, when data is replicated, there is trade-off between the approach of
replicating the work with no communication cost (except for the data replication
cost), and the approach of avoiding work replication by paying the extra cost of
communicating the candidate occurrences.

The second way to handle this is not to replicate the data. Now, two kinds
of situations need to be handled. In the first situation, those occurrences that
are found completely on a single processor might contribute to span-windows
that begin on other processors. Care should be taken to avoid the double count-
ing which, as shown in [37], requires communication of ranges of occurrences of
candidates between processors. Second situation occurs when some candidates
cannot be declared to occur in some span-windows because there of the insuffi-
ciency of the data available on a single processor. This scenario actually gives rise
to the most complex method of parallelizing the counting process. The details
are given in [37], but the key idea is that only partial occurrences of candidates
can be found by each processor. This partial work needs to be communicated
to other processors to complete the search. First issue is amount of concur-
rency that can be achieved in this process, which can be increased by breaking
down the granularity of computation and doing asynchronous communications.
The second and more serious issue comes from the nature sequential association
discovery problem, in which each span-size window has a potential to support
exponential number of sequences. Hence, the amount of partial work that needs
to be transferred can quickly become large. In summary, avoiding replication of
data can make the algorithm very expensive.

Thus depending on the scenario, there is a trade-off between the cost of
replicating and storing the data versus the cost of communicating large amount
partial work among processors. A detailed discussion is given in [37].

Event and Candidate Distribution (EVECAN) Algorithm. In the set of
EVE algorithms described above, it is assumed that the candidates are replicated
over all the processors. This may not be desirable when the number of candidates
is very large, and given the complexity of sequential patterns, such scenarios
are not uncommon. EVE algorithms face two inefficiencies when the number of
candidates is large. First, the set of candidates may not fit in the memory of a
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processor, in which case they need to be counted in parts. This involves multiple
I/O passes over the disk for counting the candidates. Secondly, EVE algorithms
builds candidates serially on all processors, thus losing out on extracting the
possible concurrency. The amount of time spent in generating the large number
of candidates can be significantly large.

These issues are addressed in the second formulation, called EVECAN (event
and candidate distribution) [37]. In this algorithm, the input data is partitioned
similar to EVE. But, now the candidates are also distributed. They are stored
in a distributed hash table. The hashing criterion is designed to maintain equal
number of candidates on all processors. One simple hash function can be based
on the lexicographical ordering of candidates and splitting them among proces-
sors such that all candidates assigned to one processor have a common prefix
sequence. The non-local candidates required for the candidate generation phase
are obtained using the scalable communication structure of the parallel hashing
paradigm introduced in [38]. In the counting phase, all the processors must count
all the candidates. There are two options. In the first option, the candidates are
kept stationary at processors and the input data is circulated among processors
in a fashion similar to that of the round-robin scheme proposed for IDD algo-
rithm of [32]. But this option may work only when the span value is small, in
which case the granularity of communication could be the span-size windows.
However, for large values of span, it could become very expensive to send all the
span-windows to all the processors. In such cases, the second option can be used,
which is to circulate the candidates in a round-robin fashion. In both the options,
a hash function is used to do a relatively quick search of whether a span-window
can contain the local or the remotely received candidates. Figure 14 pictorially
depicts the EVECAN algorithm.

Another set of parallel algorithms are given in [39]. These are also based on
distribution of objects as well as candidates. However, these algorithms assume
the restricted sequential pattern format given in [25]; hence, there is no notion
of span (ms), and they count only one occurrence of a sequence in a given ob-
ject’s timeline (COBJ counting method). Also they assume market basket type
of data, in which the object time-lines are usually very short. SPSPM (Sim-
ple Partitioned Sequential Pattern Mining) algorithm distributes the candidates
in a simple round-robin manner, whereas HPSPM (Hash Partitioned Sequen-
tial Pattern Mining) distributes candidates in a more intelligent manner using
hash functions. These are straight-forward extensions of the SPA and HPA al-
gorithms [17] designed for the parallel discovery of non-sequential associations.
The counting in SPSPM is performed in a way similar to the DD algorithm for
non-sequential associations, where every object’s timeline is sent to every pro-
cessor. HPSPM, in kth iteration, generates all the k-sequences (sequences with
k events) present in each object’s timeline and hashes them using the same hash
function as was used for hashing the candidates to distribute them among pro-
cessors. Each k-sequence is sent to the processor it hashes to, and is searched for
in the list of candidates stored there. The HPSPM algorithm has been shown to
perform better than NPSPM and SPSPM [39].
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Rotate Candidates in
Round-Robin Manner

Rotate Objects in
Round-Robin Manner
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Objects
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OR
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Fig. 14. Illustration of EVECAN algorithm for parallel discovery of universal sequen-
tial associations.

If HPSPM is to be extended to discover universal sequential patterns, then
it faces precisely the same issues which motivate the EVECAN design discussed
above. In its current formulation, HPSPM will face huge amount of communica-
tion overhead in the presence of large object timelines and large span constraint.
EVECAN suggests systematic way to handle this by using the communication
mechanisms similar to that of IDD. Also, EVECAN suggests an alternative pos-
sibility of reducing the overhead by communicating the candidates instead of
object subsequences.

6 Summary

In this chapter, we presented an evolutionary and comparative review of many
existing algorithms for solving a very popular and important problem of mining
associations from data. We considered the traditional non-sequential associations
which originated from the transaction or market basket kind of data as well as
the more generalized sequential association formulation which is useful to wider
variety of datasets in real world. The chapter mainly elaborates on various design
issues involved in parallel formulations of association discovery algorithms, and
how existing parallel algorithms map to only a few categories of formulations.
In the process, a comprehensive survey of many existing serial algorithms is



124 Mahesh V. Joshi et al.

also given. Although many parallel (and serial) algorithms exist today, no single
algorithm is superior to all the rest, and the research in the discovery of associ-
ations remains active. In particular, there are many serial algorithms that have
emerged recently, for which no effective parallel algorithms have been developed
yet. Even some existing parallel algorithms can be improved for their scalabil-
ity, portability to different kinds of architectures, or applicability to generalized
formulations.

Overall, this chapter provides a comprehensive account of existing serial and
parallel algorithms for mining non-sequential as well as sequential associations
with respect to the design issues and different parallelization strategies.
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Abstract. There have been proposed efficient ways of enumerating all
the association rules that are interesting with respect to support, con-
fidence, or other measures. In contrast, we examine the optimization
problem of computing the optimal association rule that maximizes the
significance of the correlation between the assumption and the conclu-
sion of the rule. We propose a parallel branch-and-bound graph search
algorithm tailored to this problem. The key features of the design are (1)
novel branch-and-bound heuristics, and (2) a rule of rewriting conjunc-
tions that avoids maintaining the list of visited nodes. Experiments on
two different types of large-scale shared-memory multi-processors con-
firm that the speed-up of the computation time scales almost linearly
with the number of processors, and the size of search space could be
dramatically reduced by the branch-and-bound heuristics.

1 Introduction

Many organizations are seeking strategies for processing or interpreting massive
amounts of data that will inspire new marketing strategies or lead to the next
generation of scientific discoveries. In response to those demands, in recent years,
decision support systems and data mining systems have rapidly attracted strong
interests, and numerous optimization techniques for computing decision trees,
clusters, and association rules have been proposed. Among those techniques,
the development of efficient ways of computing association rules has attracted
considerable attention.

Association Rules. Given a set of records, an association rule is an expression
of the form X ⇒ Y , where X and Y are tests on records, and X and Y are called
the assumption and the conclusion, respectively. Consider the market basket
analysis problem [1]. An example of an association rule is: “50% of customers
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who purchase bread also buy butter; 20% of customers purchase both bread and
butter.” We will describe the rule by

(Bread = 1) ⇒ (Butter = 1).

We call 50% the confidence of the rule and 20% the support of the rule.
The significance of an association rule has been evaluated by support and con-

fidence [1,2]. Higher support implies that the coverage of the rule is sufficiently
large, while higher confidence shows that the prediction accuracy of using the
assumption X as a test for inferring the conclusion Y is sufficient. In their pio-
neering work, Agrawal et al. [1,2] define that an association rule is interesting if
its support and confidence are no less than given thresholds, and they propose
Apriori algorithm that enumerates all the interesting association rules. The idea
of Apriori algorithm has been explored by many researchers [2,8,9,10,11,12].

Motivating Example. Higher support and higher confidence, however, are not
necessarily sufficient for evaluating the correlation between the assumption and
the conclusion of an association rule. Brin et al. [5] address this problem, and
the following example illustrates this issue.

Example 1. Consider the super market basket analysis problem [1]. Let Bread,
Butter and Battery be Boolean attributes. Suppose that the support and the
confidence of the following rule are 29% and 48.3%, respectively:

(Bread = 1) ∧ (Butter = 1) ⇒ (Battery = 1),

which means that customers who purchase both bread and butter may also buy
batteries. This implication differs from our common sense, but the support and
the confidence are fairly high, and hence one may conclude that the rule presents
some unknown behavior of the customers. From a statistical viewpoint, however,
we also ought to look at the negative implication that when customers who do
not purchase both bread and butter may also buy batteries. In Table 1, which
is called a contingency table, the row (Bread = 1) ∧ (Butter = 1) and the row
not((Bread = 1)∧ (Butter = 1)) show the number of customers who do and do
not meet (Bread = 1) ∧ (Butter = 1), while the column (Battery = 1) and the
column not(Battery = 1) shows their corresponding numbers, similarly.

(Battery = 1) not(Battery = 1) Sum

(Bread = 1) ∧ (Butter = 1) 29 31 60

not((Bread = 1) ∧ (Butter = 1)) 21 19 40

Sum 50 50 100

Table 1. Contingency Table

Note that Battery = 1 holds for 50% of all the customers, which is higher
than 48.3%, and hence customers satisfying (Bread = 1)∧ (Butter = 1) are less
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likely to meet Battery = 1. Thus there is a slight negative correlation between
(Bread = 1) ∧ (Butter = 1) and Battery = 1, though it is not significant.

The above example suggests that we should measure the statistical signifi-
cance of the correlation between the assumption and the conclusion. To measure
the significance of correlation, the χ2 value has usually been applied to the con-
tingency table associated with the rule. The benefit of using the χ2 value is that
we can evaluate the significance of an association rule by a single value rather
than multiple values such as support and confidence. All association rules can
be ordered by their χ2 values. We are then interested in finding the optimal
association rule that maximizes the χ2 value. Or we want to list the best n asso-
ciation rules in descending order of χ2 value. We can also provide a cutoff value
— say, at the 95% significance level — for χ2, and then we can enumerate all
the association rules whose χ2 values are no less than that threshold. We will
consider those problems, and we call an association rule correlated if its χ2 value
is optimal, sub-optimal or no less than a given threshold value.

Related Work. Brin et al.[5] have studied this problem from a slightly different
aspect. Instead of finding correlated association rules, they focus on the com-
putation of a set of primitive tests that are not independent by the chi-squared
test. Using the strategy of Apriori algorithm [2], they present an algorithm for
enumerating all the sets of primitive tests that are not independent, but the
algorithm is not intended to compute correlated association rules.

Example 2. Let us consider the market basket analysis problem again. Suppose
that (Spaghetti = 1), (Tabasco = 1), and (Battery = 1) are not independent,
because (Spaghetti = 1) and (Tabasco = 1) are correlated. We however cannot
conclude that (Spaghetti = 1) ∧ (Tabasco = 1) ⇒ (Battery = 1) is a correlated
association rule, since the assumption and the conclusion may not be correlated
at all.

One may try to use Brin et al.’s algorithm to enumerate instances of X ∪Y that
are not independent and then try to derive correlated association rules. But there
could be numerous instances of X∪Y from which no correlated association rules
could be created, because even if primitive tests in X are correlated, X and Y
are not correlated at all.

To keep the computation efficient, Brin et al. use a minimum support thresh-
old as a pruning criteria. In practice, selecting a minimum support threshold
requires some considerations, because using a higher threshold often results in
pruning important patterns with lower support, while using a lower threshold
might produce a huge amount of patterns, which is computationally costly. From
the viewpoint of statistics, only the χ2 value is essential, and hence Brin et al.
discuss the possibility of avoiding the heuristics of using the minimum support
threshold. We will work in this direction.

Overview. We define our problem more formally. Given a set of Boolean at-
tributes, we select B as a special attribute and call it an objective attribute,
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while we call all the other attributes conditional. We use conditional attributes
in the assumption of a rule. Consider all the association rules of the form

(A1 = v1) ∧ . . . ∧ (Ak = vk) ⇒ (B = 1),

where vi = 0 or 1. We first remark that it is NP-hard to compute the optimal
conjunction in the assumption that maximizes the χ2 value. One may try to
modify Apriori algorithm to compute the optimal conjunction, but this approach
may not be promising, because Apriori algorithm is designed to enumerate all
the possible association rules of interest, while our optimization problem targets
the optimal conjunction or sub-optimal ones.

To cope with such optimization problems, one common approach is an it-
erative improvement graph search algorithm that initially selects a candidate
conjunction by using a greedy algorithm and then tries to improve the ensemble
of candidate conjunctions by a local search heuristic; that is, from a conjunction
we generate a neighboring conjunction that is obtained by replacing one primi-
tive test with another, by deleting a test, or by inserting a new test. Figure 1(a)
represents the search space of all conjunctions by an undirected graph in which
a pair of neighboring conjunctions is connected by an edge. Starting from the
initial conjunction represented by the square dot, we want to search the graph
without visiting the same node more than once. Figure 1(b) illustrates such an
example.

(a) (b)

Fig. 1. The figure (a) shows the search space of conjunctions. The figure (b)
shows the distributed search tree rooted at the square black dot.

To accelerate the performance of graph search, parallelizing the search has
been studied for various discrete optimization problems [3,6]. We will exploit
this approach for searching the optimal conjunction. To avoid the repetition of
visiting the same node, conventional graph search algorithms maintain the list of
visited nodes [3,6], which however could be a severe bottleneck of parallel search.
We instead propose a rule of rewriting a conjunction to others. We first apply the
rewriting rule to the initial conjunction to obtain child conjunctions, and then
we repeat application of the rule to descendant conjunctions so that we can visit
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every conjunction just once without maintaining the list of visited conjunctions.
Moreover, each application of the rewriting rule can be well parallelized.

If the initial conjunction is empty, it is rather trivial to build such a search
tree. For instance, we can create one child of a conjunction by inserting one
primitive test. In general, however, an arbitrary conjunction could be selected
as the initial conjunction, and we need to create a neighboring conjunction by
using one of replacement, deletion, or insertion, which makes the extraction of
a search tree non-trivial.

To reduce the size of the search tree, we develop a branch-and-bound heuris-
tics appropriate for the significance of correlation. We also develop implemen-
tation techniques such as materialization of projections and maintenance of dis-
tributed priority queues.

2 Preliminaries

Attributes, Records, and Primitive Tests. The domain of a Boolean at-
tribute is {0, 1}, where 0 and 1 represent true and false, respectively. Let B be
a Boolean attribute, let t denote a record (tuple), and let t[B] be the value for
attribute B. A primitive test has the form B = v where v is either 0 or 1. A
record t meets B = v if t[B] = v. A conjunction of primitive tests t1, t2, . . . , tk is
of the form t1 ∧ t2∧ . . .∧ tk. A record t meets a conjunction of primitive tests if t
satisfies all the primitive tests. We simply call primitive tests and conjunctions
tests.

Association Rules. From a given set of Boolean attributes, we select one
as a special attribute and call it the objective attribute. We call all the other
attributes conditional. Let B be the objective attribute. An association rule has
the form:

(A1 = v1) ∧ . . .∧ (Ak = vk) ⇒ (B = v),

where Ai(i = 1, . . . , k) is an conditional attribute, and each of vi and v is either 0
or 1. For instance, (Bread = 1)∧(Butter = 1) ⇒ (Battery = 1) is an association
rule.

Y is true. Y is false Sum of Row

X is true. |Rt
1|(= y) |Rf

1 |(= x− y) |R1|(= x)

X is false. |Rt
2|(= m − y) |Rf

2 |(= n− x− (m− y)) |R2|(= n− x)

Sum of Column |Rt|(= m) |Rf |(= n−m) |R|(= n)

Table 2. Contingency Table

Consider association rule X ⇒ Y . Let R be a set of records over R, and let
|R| denote the number of records in R. Let R1 be the set of records that meet the
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assumption X, and let R2 denote R − R1. We call a record t positive (negative,
resp.) if t satisfies (does not meet) the conclusion Y . Let Rt and Rf denote
the set of positive and negative records in R, respectively. Table 2 summarizes
numbers of records that meet each condition. Since R is given and fixed, we
assume that |R|, |Rt|, and |Rf | are constants, but |Rt

1|, |Rt
2|, |Rf

2 |, and |Rf
2 |

may vary according to the choice of the assumption X. Let n and m denote
|R| and |Rt| respectively, then |Rf | = n − m. Let x and y denote |R1| and |Rt

1|
respectively. Observe that if we specify the values of x and y, the values of all
the other variables are determined.

Chi-Squared Value. The chi-squared value is a normalized deviation of obser-
vation from expectation. Table 2 presents observed numbers of records. Expected
numbers are calculated as follows: In the entire relation, the probability that a

positive record occurs is |Rt|
|R| = m

n . Since the observed number of records satis-

fying X is |R1|, the expected number of records meeting both X and Y is |R1|
times m

n . Table 3 presents expected numbers of records. The chi-squared value

Y is true. Y is false

X is true. |R1|mn |R1|n−m
n

X is false. |R2|mn |R2|n−m
n

Table 3. Expected Numbers of Records

is defined as the total of the squared difference between the observed number
and the expected number divided by the expected number for each cell; that is,

(|Rt
1|−|R1|m

n )2

|R1|m
n

+ (|Rf
1 |−|R1|n−m

n )2

|R1|n−m
n

+ (|Rt
2|−|R2|m

n )2

|R2|m
n

+ (|Rf
2 |−|R2|n−m

n )2

|R2|n−m
n

.

Since all the variables are determined by x and y, we will refer the above formula
by χ2(x, y). If X and Y are independent, the observed number is equal to the
expected number (in this case, y

x = m
n ), and therefore χ2(x, y) is equal to 0. In

the chi-squared test, if χ2(x, y) is greater than a cutoff value – say, at the 95%
significance level —, we reject the independence assumption.

Convexity of Function. Let φ(x, y) be a function that is defined on (x, y) ∈ D.
φ(x, y) is a convex function on D if for any (x1, y1) and (x2, y2) in D and any
0 ≤ λ ≤ 1,

φ(λ(x1, y1) + (1 − λ)(x2, y2)) ≤ λφ(x1, y1) + (1 − λ)φ(x2, y2).

Let (x3, y3)=λ(x1, y1)+(1−λ)(x2 , y2), then φ(x3, y3)≤max(φ(x1, y1), φ(x2, y2)).

Proposition 2.1. χ2(x, y) is a convex function defined on 0 ≤ y ≤ x.
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Proof. For any δ1 and δ2, define V = δ1x + δ2y. Prove ∂2χ2(x, y)/∂V 2 ≥ 0.

The convexity of χ2(x, y) is crucial to prove the intractability of computing
the optimal conjunction. We also use the convexity to derive an effective branch-
and-bound heuristics.

Theorem 1. Let S denote a set of conjunctions that use conditional attributes,
and Y be the objective conclusion. It is NP-hard to find the optimal conjunction
X ∈ S such that the chi-squared value of X ⇒ Y is maximum.

Proof. The case for the entropy value is proved in [7]. In the proof, the convexity
of the entropy function is essentially used. The argument carries over to the case
for the chi-squared value, because the chi-squared function is also convex.

3 Parallel Branch-and-Bound Graph Search

Search Space as an Undirected Graph. Let V denote the set of all conjunc-
tions that use conditional attributes. A conjunction C1 is adjacent to another
conjunction C2 if C1 is obtained by replacing a primitive test in C2 with another,
by deleting a primitive test in C2, or inserting a new one to C2.

Example 3. Let C be the conjunction (A1 = 1) ∧ (A2 = 0) ∧ (A3 = 1). C is
adjacent to (A1 = 1) ∧ (A2 = 0) ∧ (A4 = 0), because (A3 = 1) in C is replaced
by (A4 = 0). Also, C is adjacent to (A1 = 1) ∧ (A3 = 1) and (A1 = 1) ∧ (A2 =
0) ∧ (A3 = 1) ∧ (A5 = 1).

Let E denote the set of undirected edges between pairs of adjacent nodes in
V ; that is, E = {(C1, C2) | C1 is adjacent to C2}. The undirected graph (V, E)
represents the search space of all conjunctions. We call (V, E) the undirected
graph of adjacency. Figure 1(a) in Section 1 presents an example. We define the
distance between nodes v and u by the length of the shortest path between v
and u. Put another way, the distance shows the minimum number of operations
on primitive tests to generate u from v.

Requirements on Search Tree. Suppose that we are given an arbitrary node
t1 ∧ . . . ∧ tk in the search space (V, E) as the initial conjunction. To realize the
local search strategy starting from t1 ∧ . . . ∧ tk, we need to generate a search
tree rooted at t1 ∧ . . .∧ tk such that (1) the depth from t1 ∧ . . .∧ tk to any node
v in the tree is equal to the distance between t1 ∧ . . . ∧ tk and v in (V, E), and
(2) each conjunction is enumerated to appear just once in the tree. For instance,
Figure 1(b) illustrates such a search tree rooted at the square black dot.

To build a search tree, we first present a way of creating a unique path from
the root of the initial conjunction to the node of any conjunction. We then show
how to assemble all the paths into a search tree.
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Creating a Unique Path from the Initial Conjunction to Any
Conjunction. We introduce a way of representing a conjunction uniquely with
respect to the initial conjunction. We develop this idea motivated by techniques
for enumerating geometric objects [4]. We assume that all the primitive tests are
sorted in a total order, and we denote the order by x1 < x2. For simplicity of
presentation, we introduce a dummy test ⊥ that is strictly smaller than any test
t; that is, ⊥ < t. Let S denote the set of all the primitive tests. Let t1 ∧ . . .∧ tk
be the the initial conjunction given. Let C denote an arbitrary conjunction of
primitive tests in S. We represent C by a list of primitive tests according to the
following steps:

1. If ti(1 ≤ i ≤ k) appears in C, place ti at the i-th position in the list.
Otherwise, leave the i-th position open.

2. Sort all the primitive tests that appear in C but are not in {t1, . . . , tk}, in
the ascending order. Let SL denote the sorted list. Select and remove the
first primitive test in SL, and assign it to the leftmost open position. Repeat
this process until SL becomes to be empty.

Observe that any conjunction can be represented by the unique list of primitive
tests, and hence we call it the canonical list.

Example 4. Let t1 ∧ t2 ∧ t3 ∧ t4 ∧ t5 be the initial conjunction. Its canonical
list is [t1, t2, t3, t4, t5]. Let © denote an open position. The canonical list of
t4 ∧ a1 ∧ t2 ∧ a2 ∧ t5 ∧ a3, where a1 < a2 < a3, is obtained as follows: We first
create [©, t2,©, t4, t5] by placing each ti of t4 ∧ a1 ∧ t2 ∧ a2 ∧ t5 ∧ a3 at the
i-th position. We then assign a1 and a2 respectively to the first and the third
positions, which are open, and we append a3 at the end of the list. Consequently
we have [a1, t2, a2, t4, t5, a3].

The canonical list of t4 ∧ a1 ∧ a2, where a1 < a2, is obtained similarly. We
first create [©,©,©, t4,©], and then assign a1 and a2 into the first and the
second positions, respectively. Thus we obtain [a1, a2,©, t4,©].

We show how to rewrite the canonical list of the initial conjunction to that of
an arbitrary target conjunction, which creates a unique path from the root to any
node. Intuitively, we scan two lists together from left to right, and when we find
different primitive tests at the same position, we perform one of replacement,
deletion, or insertion so that the initial conjunction is transformed into the target
conjunction after the scan.

Example 5. Consider canonical lists [t1, t2, t3, t4, t5] and [a1, t2, a2, t4, t5, a3].
Since the two primitive tests at the first position are different, we replace t1
by a1. We then see the difference at the third position, and we replace t3
by a2. Finally, a3 at the sixth position of [a1, t2, a2, t4, t5, a3] does not appear
in [t1, t2, t3, t4, t5], and hence we insert a3. Consequently we have rewritten
[t1, t2, t3, t4, t5] to [a1, t2, a2, t4, t5, a3] by the following sequence of operations:

[t1, t2, t3, t4, t5]
replacement→ [a1, t2, t3, t4, t5]

replacement→
[a1, t2, a2, t4, t5]

insertion→ [a1, t2, a2, t4, t5, a3]
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We have applied three operations, and the distance between t1 ∧ t2 ∧ t3 ∧ t4 ∧ t5
and a1 ∧ t2 ∧ a2 ∧ t4 ∧ t5 ∧ a3 in the graph of conjunctions is also 3.

There are some issues on sequences that use deletion.

Example 6. Consider the following two sequences

– [t1, t2, t3, t4, t5]
deletion→ [©, t2, t3, t4, t5]

insertion→ [a1, t2, t3, t4, t5]

– [t1, t2, t3, t4, t5]
replacement→ [a1, t2, t3, t4, t5]

The second sequence gives the minimum length path in the undirected graph of
adjacency. The following two sequences show another issue:

– [a1, t2, t3, t4, t5, t6]
deletion→ [a1,©, t3, t4, t5, t6]

replacement→ [a1,©, a2, t4, t5, t6]

– [a1, t2, t3, t4, t5, t6]
replacement→ [a1, a2, t3, t4, t5, t6]

deletion→ [a1, t2,©, t4, t5, t6]

[a1,©, a2, t4, t5, t6] is not a canonical list, because © appears before a2.

In each case of the above example, we want to derive the second sequence only.
We can solve this problem by using the rule that we do not allow replacement
nor insertion once deletion is used. We will prove that this restriction does not
overlook the canonical list of any conjunction.

Making Canonical Lists Distributable to Arbitrary Multiple Processes.
We present a way of distributing the canonical lists of conjunctions to arbitrary
multiple processes so that each process can continue to rewrite independently.
Consider the following sequence again:

[t1, t2, t3, t4, t5]
replacement→ [a1, t2, t3, t4, t5]

replacement→
[a1, t2, a2, t4, t5]

insertion→ [a1, t2, a2, t4, t5, a3]

Suppose that we assign the third canonical list [a1, t2, a3, t4, t5] to one process.
We want to avoid giving to the process the history of creating the previous
two canonical lists, because in general the history could be lengthy. We rather
provide minimum information to the process so that the process can continue to
rewrite the canonical list. For instance, it is enough to provide the information
that primitive tests up to the third position have been updated, a2 is the largest
primitive test that has been most recently added, and no primitive test has been
deleted. With this information, we can then append a3, which is greater than
a2, at the end of [a1, t2, a2, t4, t5].

In general, we add the following auxiliary information to a canonical list
[x1, . . . , xn], and we represent the extension by 〈[x1, . . . , xn], n, i, max, dmode〉,
which we also call a canonical list.

– n: The number of primitive tests in the canonical list.
– i: Let j be an index such that i ≤ j. We can update the primitive test at

the j-th position in the next step.
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– max: max denotes the largest primitive test among all the primitive tests
that have been added. In the next step, we need to add a new primitive test
that is greater than max when we perform replacement or insertion. For the
initial conjunction we set max to ⊥, where ⊥ is the dummy test smaller
than any primitive test.

– dmode: For the initial conjunction, dmode = 0. Once deletion is applied,
dmode is set to 1. When dmode = 1, only deletion is applicable.

Application of replacement, insertion or deletion to is defined as follows:

– Replacement: When i ≤ n and dmode = 0, we can replace the j-th (j ≥ i)
primitive test with x such that max < x and x 6∈ {t1, . . . , tk}.
〈[x1, . . . , xn], n, i, max, 0〉 replacement→
〈[x1, . . . , xj−1, x, xj+1, . . . , xn], n, j + 1, x, 0〉.

– Insertion: When dmode = 0, we can insert x such that max < x and
x 6∈ {t1, . . . , tk} at the end of the list.
〈[x1, . . . , xn], n, i, max, 0〉 insertion→
〈[x1, . . . , xn, x], n + 1, n + 2, x, 0〉.

– Deletion: When i ≤ n, we can delete the j-th (j ≥ i) primitive test, and
we set dmode to 1.
〈[x1, . . . , xn], n, i, max, dmode〉 deletion→
〈[x1, . . . , xj−1,©, xj+1, . . . , xn], n− 1, j + 1, max, 1〉
Table 4 presents two examples of such sequences.

〈[t1, t2, t3, t4, t5], 5, 1,⊥, 0〉 〈[t1, t2, t3, t4, t5, t6], 6, 1,⊥, 0〉
replacement→ 〈[a1, t2, t3, t4, t5], 5, 2, a1, 0〉 replacement→ 〈[a1, t2, t3, t4, t5, t6],6, 2, a1, 0〉
replacement→ 〈[a1, t2, a2, t4, t5], 5, 4, a2, 0〉 replacement→ 〈[a1, a2, t3, t4, t5, t6], 6, 3, a2, 0〉
insertion→ 〈[a1, t2, a2, t4, t5, a3], 6, 7, a3, 0〉 deletion→ 〈[a1, a2,©, t4, t5, t6], 5, 4, a2, 1〉

deletion→ 〈[a1, a2,©, t4,©, t6], 4, 6, a2, 1〉

Table 4. Examples of Distributable Sequences

Theorem 2. Let A and B denote a given initial conjunction and an arbitrary
conjunction. There exists a unique sequence of application of replacement, inser-
tion or deletion that rewrites the canonical list of A to that of B. Furthermore,
the number of instances of application is equal to the distance between A and
B in the undirected graph of adjacency.

Proof. The proof is an induction on the number of positions where the two
primitive tests disagree in A and B, and let d denote the number. Observe that
d is equal to the distance between A and B in the undirected graph of adjacency.
We construct a unique sequence of rewriting A into B by applying one of the
three operations d times.
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Suppose that the initial conjunction A contains n primitive tests in it, and
its canonical form is [t1, . . . , tn]. Let nB denote the number of primitive tests
in B. In what follows, for simplicity and readability, we assume that A and B
denote their canonical forms.

We first consider the base case when d = 1. Since d = 1, the number of
primitive conjunctions nB is either n − 1, n or n + 1. In each case, we can
generate B from A by the application of deletion, replacement, or insertion.

– When nB = n − 1, B must contain an open position ©, and suppose that
© is located at the j-th position. Deleting the j-th primitive test in A yields
B.

– When nB = n, suppose that A and B disagree at the j-th position. B can
be generated by replacing the primitive test at the j-th position in A with
that at the j-th position in B.

– When nB = n + 1, A and B are equal except that B has an extra primitive
test at the (n + 1)-th position, and hence B can be created by inserting the
last primitive test of B into A.

When d > 1, we consider the three cases below:

– When nB < n, B must contain some open positions, and let j denote the last
position where © is located. Replace © at j-th open position in B with the
primitive test at the j-th position in A, and let B′ denote the result. By the
inductive hypothesis, there exists a unique sequence of (d−1) operations that
rewrite A into B′. Note that B can be rewritten from B′ by one operation
of deletion.

– When nB = n, A and B disagree at d positions, and let j denote the last
position of disagreement. Let B′ denote the result of replacing the primitive
test at the j-th position in B with that at the j-th position in A. B′ can be
obtained from A by (d − 1) operations by the inductive hypothesis, and B
can be generated from A by one operation of replacement.

– When nB > n, B has extra (nB − n) primitive tests at the end. Let B′

denote the result of deleting the last primitive test from B. By the inductive
hypothesis, there is a unique sequence of (d−1) operations to rewrite A into
B′. We can obtain B by the application of insertion to B′.

Distributable Search Tree. The distributable search tree is a binary tree that
displays all the sequences from the initial canonical list to the canonical list of
any conjunction. Figure 2 illustrates such an example. Theorem 2 implies that
any distributable search tree meets the two requirements on search trees; that
is, (1) the depth from the root to any node v in the tree is equal to the distance
between the root and v in the graph of adjacency, and (2) each conjunction is
enumerated to appear just once in the tree.

Furthermore any node in a distributable search tree can be assigned to any
process in a flexible manner.
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〈[t1 , t2, t3, t4, t5], 5, 1, ⊥, 0〉

. . .
deletion

↙ . . .
replacement

↓ . . .
insertion

↘ . . .
〈[©, t2, t3, t4, t5], 4, 2, ⊥, 1〉 〈[a1 , t2, t3, t4, t5], 5, 2, a1 , 0〉 〈[t1, t2, t3, t4, t5, a1], 6, 7, a1, 0〉

. . .
deletion

↓ . . . . . .
replacement

↓ . . . . . .
insertion

↓ . . .
〈[©, t2, ©, t4, t5], 3, 4, ⊥, 1〉 〈[a1 , t2, a2, t4, t5], 5, 4, a2, 0〉 〈[t1, t2, t3, t4, t5, a1, a2], 7, 8, a2, 0〉

. . .
deletion

↓ . . . . . .
replacement

↓ . . . . . .
insertion

↓ . . .
〈[©, t2, ©, ©, t5], 2, 5, ⊥, 1〉 〈[a1 , t2, a2, t4, a3], 5, 6, a3, 0〉 〈[t1, t2, t3, t4, t5, a1, a2, a3], 8, 9, a3 , 0〉

. . . ↓ . . . . . . ↓ . . . . . . ↓ . . .

Fig. 2. Example of Distributable Search Tree

Best-First Search. Next we discuss how to traverse the distributed search
tree. Suppose that we compute an initial conjunction by a greedy algorithm
that always makes the choice that looks best at the moment. Next we need to
consider how to scan the distributed search tree rooted at the initial conjunction.
One may try the depth-first search or the breadth-first search, but when we look
for the conjunction that maximizes the chi-squared value, we should make a
locally optimal choice in hope that this choice will lead to the global optimal
solution. We therefore select the best-first search strategy that expands a node
whose chi-squared value is maximum at the moment.

We implement the best-first search by using a priority queue. First we insert
the initial conjunction into the empty queue. We repeat the process that we
remove the first node v from the queue, compute the chi-squared value of v,
update the best chi-squared value if necessary, use the chi-squared value of v to
prioritize each child of v, and insert all the chide nodes of v into the queue.

Later in this section we show how to distribute the queue to multiple pro-
cesses, but before that we show two techniques to improve the performance of
the best-first search.

Branch-and-Bound Heuristics. Suppose that we examine a node v in a
distributable search tree. The following theorem shows how to compute an upper
bound of the best chi-squared value that could be obtained by scanning all the
nodes in the subtree rooted at v. If the upper bound is smaller than the optimum
chi-squared value at the moment, we can ignore and prune the subtree.

Theorem 3. Let v be a node in a distributed tree. Suppose that

v = 〈[x1, . . . , xi, xi+1, . . . , xk], k, i + 1,−,−〉.
Let a (b, resp.) denote the number of (positive) records that meet x1 ∧ . . . ∧ xi.
Let w be an arbitrary descendant of v. Note that the conjunction of w contains
x1 ∧ . . .∧ xi. Let p (q, resp.) denote the number of (positive) records that meet
the conjunction of w. Recall that χ2(p, q) is the chi-squared value of w, and we
have:

χ2(p, q) ≤ max{χ2(b, b), χ2(a − b, 0)}.
Proof. Let n and m denote respectively the number of records and the number of
positive records in the entire relation. Consider the points (a, b) and (p, q) in the
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two-dimensional Euclidean plane. It is easy to see that (p, q) falls in the convex
region whose vertexes are (0, 0), (b, b), (a, b), and (a − b, 0). To be more precise,
we have 0 ≤ p ≤ a ≤ n, 0 ≤ q ≤ b ≤ m, q ≤ p, b ≤ a, and (p − q) ≤ (a − b).
When y/x = m/n, χ2(x, y) is zero and minimum. Because of the convexity of
χ2(x, y), it follows that χ2(p, q) ≤ max{χ2(b, b), χ2(a − b, 0)}.

Materialized Projections. Let v = 〈[x1, . . . , xi, xi+1, . . . , xn1], n1, i+1,−,−〉
be an arbitrary node in a distributed tree. Note that any node in the subtree
rooted at v must contain all the primitive tests in {x1, . . . , xi}, because none
of {x1, . . . , xi} is updated in the subtree. We call the set of records that meet
x1 ∧ . . . ∧ xi the materialized projection for v.

A materilized projection could be very large in practice. To utilize the main
memory efficiently, we implemented a materialized projection by creating a bit
array of indexes to records in the materialized projection. If the bit of an index is
on, the record of the corresponding index belongs to the materialized projection.
For instance, the size of a bit array for a large database containing ten million
records is 1.25MB. Such bit arrays may still require large memory space during
the execution, especially when the queue becomes to be long during the compu-
tation and cannot fit in the main memory. In this case, we put aside nodes with
lower priorities, which might not be processed for a while, to the secondary disk
at the moment, and later we restore them back to the main memory.

We now discuss the benefit of associating the materialized projection with
each node. Let w = 〈[x1, . . . , xi, yi+1, . . . , yn2 ], n2, j+1,−,−〉 be a descendant of
v. When we compute the chi-squared value of w, we need to count the number
of records that satisfy the conjunction of w. It suffices to check if each record in
the materialized projection for v also satisfies yi+1 ∧ . . .∧ yn2 . The materialized
projection could be much smaller than the entire relation. Since counting the
number of records that satisfy a conjunction is the crucial step of the whole
computation, the use of materialized projections could reduce the computation
time substantially. The materialized projection of each node can be computed
in an incremental manner; that is, the materialized projection for a child node
is a subset of that for its parent.

Distributing Priority Queue to Multiple Processes. It remains to par-
allelize the single process version of the best-first search. The key extension is
to divide the single queue into multiple disjoint queues and to distribute them
to multiple processes. Balancing sizes of queues among multiple processes at
run time is rather straightforward, because any node can be processed by any
process. Each process maintains its own queue and broadcasts the locally best
chi-squared value to the others when the value is updated.

There are a couple of concerns that do not arise previously. The first issue is
that broadcasting the update of the locally best chi-squared value may increase
the communication overhead between the processes. Another concern is that
short delay of the broadcast may slightly deteriorate the overall performance,
because the branch-and-bound heuristics uses the best chi-squared value at the
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moment. Tests however show that updates do not occur so often, and therefore
those concerns are not serious in practice.

Listing Best n Conjunctions. We have so far presented an algorithm for
computing the optimal conjunction, but it is easy to modify the algorithm to
list the best n conjunctions. To this end, we can change to maintain the list of
the best n conjunctions instead of the best conjunction. After this modification,
the branch-and-bound heuristics still works, because we can use the n-th node
instead of the best node to prune the search space according to Theorem 3.

4 Experimental Results

Implementation. We implemented our algorithm by using C++ and POSIX
thread library. Experiments were performed on two different types of large
scaled shared-memory multi-processors. One is Sun Microsystems Ultra Enter-
prise 10000 with 64 UltraSPARC processors running at 250MHz, 16GB of main
memory, and 1MB of L2 cache for each processor, working under Solaris 2.5.1.
Another is SGI Origin 2000 with 128 R10000 processors running at 195MHz,
24GB main memory, and 4MB L2 cache for each processor, running under IRIX
6.5SE. We limit the size of main memory to 2GB in order to verify that our
implementation uses at most 2GB of main memory. In the case of SGI Origin
2000, since the time to access the remote memory is almost three times larger
than the time to access the local memory, we had to implement each thread to
keep a local copy of the entire relation to accelerate the overall performance.

Test Data. We randomly generated such a relation that the relation contains
one hundred thousand records and the value of an attribute in a record is equal
to 1 with a probability of p. We show the experimental results when p = 0.3,
because in this case, the execution time was at most several hours, and therefore
we can measure the speed-up and the effect of the branch-and-bound heuristics
in a reasonable amount of time. The relation contains one hundred conditional
attributes and one objective attribute. We used one hundred primitive tests of
the form (A = 1), where A is a conditional attribute. As the conclusion, we used
(B = 1), where B is the objective attribute. We selected the initial conjunction
in a greedy manner. We applied our implementation to the test data until the
algorithm terminates; that is, all the queues become to be empty, and the optimal
conjunction is identified.

Effect of Branch-and-Bound Heuristics. Since there are one hundred prim-
itive tests, the algorithm could generate 2100 conjunctions in the worst case. As
a result of the branch-and-bound heuristics, however, the algorithm generates
much less conjunctions. We have performed the cases when numbers of threads
are 1, 2, 4, 8, 16, 32, 64, and 128. The total number of conjunctions inserted
into the distributed queues ranges from 24194 to 24463. We have observed that
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every conjunction examined during the search contains at most four primitive
tests. Note that the number of all conjunctions with at most four primitive
tests is about 4.3 × 106. This figure again indicates that the branch-and-bound
heuristics can drastically reduce the search space.

Effect of Maintaining Distributed Queues. In order to analyze the effect
of maintaining distributed queues assigned to multiple processes, Table 5 shows
the statistics of the number of conjunctions inserted into each queue. Consider
the set of the numbers of conjunctions inserted into all distributed queues. For
each number of threads, Table 5 presents the minimum number, the maximum
number, the average number, and the standard deviation of the set of those
numbers. Observe that the standard deviation of each case is fairly small, which
implies that distributing conjunctions to multiple threads works well.

Enterprise 10000 Origin 2000
#(threads) min max avg s.d. min max avg s.d.

2 12106 12176 12141 35 11431 12852 12141.5 710.5
4 5544 6473 6070.5 335.7 5843 6382 6093.8 201.3
8 2734 3411 3035.3 226.4 2814 3223 3057.9 128.6

16 884 2085 1523.4 309.7 1364 2106 1528.9 166.8
32 453 1189 764.5 150.3 551 1169 746.0 142.1
64 244 632 383.6 101.0 201 765 382.2 103.0

128 N/A N/A N/A N/A 85 413 191.1 67.9

Table 5. Statistics of Numbers of Conjunctions Inserted into Distributed Queues

Speed-Up. The speed-up ratio of n threads is defined as the ratio of the exe-
cution time of one thread to the execution time of n threads. Figure 3 (a) and
(b) present that the speed-up scales almost linearly with the number of threads
on both Sun Microsystems Ultra Enterprise 10000 and SGI Origin 2000. Table
6 shows the execution time in seconds.

Enterprise 10000 Origin 2000
#(threads) Execution Time Speed-up Ratio Execution Time Speed-up Ratio

1 6,760 1.00 6,503 1.00
64 202 33.47 219 31.30

128 N/A N/A 135 48.17

Table 6. Execution Time in Seconds and Speed-up Ratio
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Fig. 3. Speed-up Ratio

Optimizing the Objective Criteria. Until the system finds the optimal con-
junction, it outputs the optimal conjunction at the moment. Let X and Y denote
the assumption and the conclusion of an association rule. Table 7 presents candi-
dates of the optimal conjunction that the system output during the computation
when the system was executed as 64 threads on Sun Enterprise 10000.

X is true. X is false.
Assumption X Y is true. Y is false. Y is true. Y is false. χ2

[t1, t2] 9807 4240 20575 65378 12014.836
[a10, t2] 5962 411 24420 69207 12841.383
[a15, a23, a90] 5810 161 24572 69457 13445.606
[t1, a39, a90] 5833 148 24549 69470 13559.018

Table 7. Candidates of Optimal Conjunctions Calculated During the Compu-
tation ([t1, t2] is the initial conjunction, and [t1, a39, a90] is the optimal one.)

Relationship between Execution Time and Size of Search Space. We
have so far presented the performance of our system applied to the set of one
hundred thousand records such that the value of each attribute in a record
is equal to 1 with a probability of p = 0.3. If we use higher values for the
probability p, the number of conjunctions examined increases, and therefore the
total execution time also grows. Table 8 summarizes the performance results
of executing our algorithm as 32 threads on SUN Ultra Enterprise 10000. The
execution time does not always scale to the number of conjunctions examined,
since time to handle a longer conjunction with more primitive tests decreases
because of the effect of using materialized projections. The execution time also
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depends on the structure of the search tree. But in general, the growth of the
number of conjunctions raises the execution time.

p Execution Time Number of
in Seconds Conjunctions

0.3 354 24,463

0.4 1,396 74,169

0.5 2,525 233,148

0.6 8,261 803,280

Table 8. Relationship between the Performance and the Size of Search Space

5 Conclusion

We have examined the optimization problem of computing the optimal conjunc-
tion maximizing the chi-squared value that indicates the significance of the cor-
relation between the assumption and the conclusion of the rule. Although this
optimization problem is NP-hard, we have introduced a novel data structure
called the distributable search tree, and we have presented how to construct this
tree and how to speed up the performance of searching the distributable search
tree on multiple processes. Our technique carries over to the general cases when
we use the entropy function, the gini index, or the correlation coefficient as
evaluation criteria.

In Section 4, we use a synthesis data to evaluate the performance of our
system. In practice, we have been applying our system to the analysis of multiple
factors leading to a common disease such as diabetes, or high blood sugar level.
This case poses another problem of finding a conjunction to split data into two
classes so that the average of the objective numeric attribute values in one class
is substantially higher than that in the other class. It is however NP-hard to find
the optimal conjunction that maximizes the interclass variance [7]. Developing
an effective branch-and-bound heuristics for this case is an interesting problem.
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Abstract. One of the most important problems in data mining is dis-
covery of association rules in large database. In our previous study, we
proposed parallel algorithms and candidate duplication based load bal-
ancing strategies for mining generalized association rules and showed our
algorithms could attain good performance on 16 nodes parallel computer
system. However, as the number of nodes increase, it would be difficult
to achieve flat workload distribution.
In this paper, we present the candidate partition based load balancing
strategy for parallel algorithm of generalized association rule mining.
This strategy partitions the candidate itemsets so that the number of
candidate probes for each node is equalized each other with estimated
support count by the information of previous pass. Moreover, we imple-
ment the parallel algorithms and load balancing strategies for mining
generalized association rules on a cluster of 100 PCs interconnected with
an ATM network, and analyze the performance using a large amount
of transaction dataset. Through the several experiments, we showed the
load balancing strategy, which partition the candidate itemsets with con-
sidering the distribution of candidate probes and duplicate the frequently
occurring candidate itemsets, can attain high performance and achieve
good workload distribution on one hundred PC cluster system.

1 Introduction

Recently, PC (Personal computer) clusters have become a hot research topic in
the field of parallel and distributed computing. Today’s parallel computer sys-
tems are moving away from proprietary hardware components to commodity
parts for CPUs, disks and memories. While an interconnection network has not
yet been commoditized, ATM technology becomes the standard for high speed
communication. Moreover, PC performance is increasing incredibly rapidly these
days and the price of PCs remains inexpensive compared with that of worksta-
tion. Thus looking over recent technology trends, ATM connected PC clusters are
very promising platform for massively parallel processing. We developed a PC
cluster system consisting of 100 PCs for parallel processing[1]. We believe that
data intensive applications such as data mining are very important applications
for parallel processing.

Data mining has attracted a lot of attention for discovering useful informa-
tion such as rules and previously unknown patterns existing between data items

M.J. Zaki, C.-T. Ho (Eds.): Large-Scale Parallel Data Mining, LNAI 1759, pp. 145–160, 2000.
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embedded in large databases, which allows effective utilization of large amount
of accumulated transaction log. Association rule mining is one of the most im-
portant problems in data mining. Association rule is the rule about what items
are bought together within the transaction, such as “70% of the customers who
buy A and B also buy C”. Usually, the classification hierarchy over the data
items is available. Users are interested in generalized association rules that span
different levels of the hierarchy, since sometimes more interesting rules can be
derived by taking the hierarchy into account[2,3]. In our previous study, we pro-
posed parallel algorithms and the candidate duplication based load balancing
strategies for mining generalized association rules, and evaluated their perfor-
mance on 16-node shared-nothing parallel machine[4]. In [4], we showed that
our algorithms could attain good performance on 16 nodes system. However, as
the number of processor increase, it would be difficult to achieve flat workload
distribution.

In this paper, we present the candidate partition based load balancing strat-
egy for parallel algorithms of generalized association rule mining. This strategy
partitions the candidate itemsets so that the number of candidate probes for each
node is equalized each other with estimated support count by the information
of previous pass. In our previous study, we proposed the candidate duplication
based load balancing strategies, in which the workload is not considered at can-
didate partitioning. Moreover, we implement the parallel algorithms and the
load balancing strategies for mining generalized association rules on a cluster of
100 PCs interconnected with an ATM network, and analyze the performance of
our algorithms using a large amount of transaction dataset. In [5], the parallel
algorithms for mining flat association rules are experimented on 128 processor
system. However, the transaction data is not read from actual disk in the exper-
iments. In that experiments, the small transactions are kept in the buffer, and
the transactions are read from the buffer instead of the actual disks. The size of
transaction data does not exceed 50MBytes. On the other hand, the transactions
are read from the actual disk and used a large amount of transactions (1GBytes)
in our experiments.

This paper is organized as follows. In next section, we explain the parallel
algorithms for mining generalized association rules. In section 3, we present load
balancing strategies for parallel generalized association rule mining. In section
4, we show our large scale PC cluster system. Performance evaluations are given
in section 5. Section 6 concludes the paper.

2 Parallel Generalized Association Rule Mining

First we introduce some basic concepts of generalized association rules presented
in [2]. Let I = {i1, i2, . . . , im} be a set of items. Let T be a classification hierarchy
on the items, which organize relationships of items in a tree form, shown in Figure
1. An edge in T represents an is-a relationship. Let D = {t1, t2, . . . , tn}(ti ⊆ I)
be a set of transactions, where each transaction t has an associated unique
identifier called TID. We say a transaction t contains a set of items X, if X
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Fig. 1. The classification hierarchy

is a subset of t and the ancestor of items in t. The itemset X has support s in
the transaction set D, if s% of transactions in D contain X, here we denotes
s = supp(X). An generalized association rules with classification hierarchy is an
implication of the form X ⇒ Y , where X, Y ⊂ I, X ∩Y = φ and no item in Y is
an ancestor of any item in X. Each rule has two measures of value, support and
confidence. The support of the rule X ⇒ Y is supp(X∪Y ). The confidence c of the
rule X ⇒ Y in the transaction set D means c% of transactions in D that contain
X also contain Y , which can be written as the ratio supp(X ∪Y )/supp(X). Here
a rule x ⇒ ancestor(x) is redundant, since its confidence is always 100%.

The problem of mining generalized association rules is to find all the rules that
satisfy a user-specified minimum support(min supp) and minimum confidence
(min conf) on the assumption that we are given a set of transactions D and a
classification hierarchy over the items. This problem can be decomposed into
two subproblems:

1. Find all itemsets that have support above the user-specified minimum sup-
port. These itemsets are called the large itemsets and the other itemsets are
called small itemsets.

2. For each large itemset, derive all rules that have more than user-specified
minimum confidence as follows: for large itemset X and any Y (Y ⊂ X), if
supp(X)/supp(X − Y ) ≥ min conf , then the rule (X − Y ) ⇒ Y is derived.

The second subproblem, which derive the association rules, is processed in a
straightforward manner. However, because of the large size of transaction data
sets used in data mining, the first subproblem, which requires scanning the
database, is a nontrivial problem. Most of association rule mining research focus
this first subproblem.

Here we explain the Cumulate algorithm for finding all large itemsets, pro-
posed in [2]. Our parallel algorithms are based on this algorithm. First, the
Cumulate algorithm generates candidate itemsets, then scans the transition
database to determine whether the candidate itemsets satisfy the user speci-
fied minimum support. In the first pass (pass 1), support count for each item
is counted by scanning the transaction database. All the items which satisfy
the minimum support are picked out. These items are called large item (L1).
Hereafter k-itemset is defines a set of k items. The second pass (pass 2), the
2-itemsets are generated using L1 which is called the candidate 2-itemsets (C2),
and delete any candidate in C2 that consists of an item and its ancestor. Note
that we need not count any itemset which contains both an item and its an-
cestor. Then the support count of C2 is counted by scanning the transaction
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database. At the end of scanning the transaction data, the large 2-itemsets (L2)
which satisfy minimum support are determined. The following pass to find the
large k-itemset is as described bellow.

1. Generate candidate itemsets:
The candidate k-itemsets (Ck) are generated using large (k − 1)-itemsets
(Lk−1) as follows: join Lk−1 with Lk−1 and delete all the k-itemsets whose
some of the (k− 1)-itemsets are not in Lk−1. If k is 2, delete any candidates
in C2 that consists of an item and its ancestor.

2. Count support:
Read the transaction database, add all ancestors of the items in a transaction
t that are present in Ck. Increment the support count of the candidates in
Ck that are contained in t.

3. Determine large itemsets:
The candidate itemsets in Ck are checked for whether they satisfy the min-
imum support or not, then the large k-itemsets (Lk) are determined.

This procedure terminates when the large itemset becomes empty.

2.1 Parallel Algorithms

In this section, we describe parallel algorithms on shared-nothing parallel ma-
chines, NPGM(Non Partitioned Generalized association rule Mining) and H-
HPGM (hash) (Hierarchical Hash Partitioned Generalized Association Rule Min-
ing), proposed in [4].

2.2 Non Partitioned Generalized Association Rule Mining: NPGM

If the size of all the candidate itemsets is smaller than the size of the memory
of each node, all the nodes can hold whole candidate itemsets. In such a case,
parallelization is straightforward. By partitioning the transaction database over
all the nodes, the transaction data can be read and candidate itemsets can be
counted in parallel. In NPGM, the candidate itemsets are copied over all the
nodes, each node can work independently and the final statistics are gathered
into a coordinator node where minimum support conditions are examined. The
procedure of pass k is as follows.

1. Generate candidate itemsets:
Each node generates Ck using Lk−1. If k is 2, delete the candidates that
contains an items and its ancestor.

2. Count support:
Each node reads the transaction database from its local disk, generates ex-
tended transaction t′ by adding all ancestors of the items in a transaction t
that are present in Ck.
Increment the support count of the candidates in Ck that are contained in
t′.
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3. Determine large itemsets:
After reading all the transaction data, all node’s support count are gathered
into the coordinator node and checked to determine whether the minimum
support condition is satisfied or not.

If the size of all the candidate itemsets exceeds the local memory of a single
node, the candidate itemsets are partitioned into fragments, each of which can
fits within the local memory of a single node, and the above process is repeated
for each fragment. The disk I/O becomes prohibitively costly when the candidate
itemsets becomes large.

2.3 Hierarchical Hash Partitioned Generalized Association Rule
Mining: H-HPGM(Hash)

H-HPGM(hash) partitions the candidate itemsets among the nodes taking the
classification hierarchy into account so that all the candidate itemsets whose
root items are identical be allocated to the same node, which eliminates commu-
nication of the ancestor items. Thus the communication overhead can be kept
low. The procedure of pass k is as follows.

1. Generate candidate itemsets:
Each node generates Ck in the same way as NPGM. For each candidate, the
destination node ID is determined by applying the hash function to replacing
each item of the candidate itemset with their root items. If the ID is its own,
insert it into the candidate table(Cn

k ).
2. Count support:

Each node reads the transaction database from its local disk and generates
extended transaction t′ by replacing the item in t with the large item in its
ancestors which is closest to the bottom, if there are small items. For each
node n, select the related items from t′ and send them to n-th node. For the
itemsets received from other nodes and those locally generated, generate k-
itemset from the itemsets and increment the support count of this k-itemset
and its all ancestor candidates.

3. Determine large itemsets:
After reading all the transactions, each node can determine the large itemset
in Cn

k . The coordinator node gather all the large k-itemset.

3 Load Balancing Strategy

In this section, we present two kinds of load balancing strategies, the candi-
date partition based strategy and the candidate duplication based strategy. The
candidate partition based strategy equalizes the number of candidate probes
with estimated support count by the statistics of data. The candidate duplica-
tion based strategy, which was proposed in our previous study[4], duplicates the
frequently occurring candidate itemset among all the nodes.
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3.1 Candidate Partition Based Load Balancing Strategy

In H-HPGM(hash), each node probes the itemsets generated with received item-
set against its own candidate table. The number of candidate probes is associated
with the support of assigned candidate itemsets. This means that the workload
depends on the assigned candidate itemsets. Some itemsets have higher support
value, which cause a large number of candidate probes. In our load balancing
strategy, we assign the candidate itemsets so that the number of candidate probes
for each nodes be equal each other. Here, we have to set the weighting factor for
each itemset. Since real support value is attained after the execution, the exact
weighting factor is not available before the execution. In our load balancing strat-
egy, we set the weighting factor from the statistics of data obtained at previous
pass. H-HPGM(hash) algorithm is consisted with several passes. For each pass,
the transaction database is scanned and the large k-itemsets are determined. At
pass k, we can utilize the support value of large (k− 1)-itemset. Suppose X is a
candidate itemset at pass k, the support count of all the size-(k−1) subsets of X
are available. The upper bound of the support value of X is the minimum value
of the support count of all the size-(k − 1) subsets of X[6,7], i.e., the maximum
value of support value of itemset X is defined as follows:

max supp(X) = min{supp(Y ) | Y ⊂ X, and |Y | = k − 1} (1)

Here, supp(Y ) means the support of itemset Y . Thus, we estimate the support
of candidate k-itemset using the support of large (k − 1)-itemsets and employ
them to set the weighting factor.

H-HPGM with Statistics: H-HPGM(stat). H-HPGM(hash) partitions the
candidate itemsets among the nodes so that all the candidate itemsets whose
root items are the same be allocated to the same node. That is, H-HPGM(hash)
divides the candidate itemsets into the hierarchy of the candidate itemsets and
allocates such whole hierarchy to a node. Thus the granule is a hierarchies, that
is, a tree.

We set the weighting factor for the granule of candidate partition, that is,
the combination of trees. The weighting factor of the combination of trees X is
defined by following.

W (X) =
∑

y∈Y

max supp(y) (2)

Here, W (X) means the weighting factor of X, Y means all the descendant can-
didate itemsets of X. For example, we consider that the taxonomy of items at
pass 2 is given in Figure 2. The weighting factor of the combination of trees
{1, 1} and {1, 2} are calculated as follows:

W ({1, 1}) = min{supp({4}), supp({5})}+ min{supp({5}), supp({10})}

W ({1, 2}) = min{supp({1}), supp({2})}+ min{supp({1}), supp({6})}
+ . . .

+ min{supp({7}), supp({10})}+ min{supp({10}), supp({15})}
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Fig. 2. Taxonomy at Pass 2

(1) for each size-k combination of root items x do
(2) Select the minimum node n whose weight is smallest of all the nodes
(3) Cn

k := x and all descendant candidates of x
(Cn

k means the set of candidates allocated to n-th node)
(4) CW (n) + = weight of x

(CW (n) means the sum of weight of allocated candidates to n-th node)
(5) end

Fig. 3. The procedure to allocate the size-k combination of root items

The procedure to calculate the weighting factor and to allocate the candidate
itemsets among the nodes at pass k are as follows.

1. Generate the size-k combination of root items.
2. Calculate the weighting factor of the size-k combination of root items using

the equation (2).
3. Sort the size-k combination of root items based on their weight.
4. The size-k combination of root items are allocated among the nodes so that

the sum of weighting factor of allocated size-k combination is equalized for
each node (Figure 3).

3.2 Candidate Duplication Based Load Balancing Strategy

In the case that the size of the candidate itemsets is smaller than the available
system memory, H-HPGM(hash) and H-HPGM(stat) do not use the remaining
free space. If the transaction data is skewed, that is, there are some itemsets
which appear very frequently in the transaction data, the node which is allo-
cated such itemsets will receive a lot of transaction data, which incurs a system
bottleneck. The candidate duplication based strategies handle this problem by
identifying such frequently occurring itemsets, duplicating them among all the
nodes and counting the support locally. The duplicated candidates are processed
in the same way as NPGM. The remaining candidates are partitioned and pro-
cessed in the same way as H-HPGM(stat).

In the candidate duplication based load balancing strategy, the effect increase
as the size of duplicated candidate itemsets increase. In order to attain both flat
workload distribution and flat distribution of the number of candidate itemsets
among the nodes, we modify the equation of setting the weighting factor as
follows:

W (X) =

∑
y∈Y max supp(y)

# of transactions
+

CN(X)
CNk − CND

(3)
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Here, CN(X) means the number of descendant candidate itemsets of X, CNk

means the number of candidate itemsets at pass k, CND means the number of
duplicated candidate itemsets. Y means the descendant candidate itemsets of X
excluding the duplicated candidate itemsets.

We named the load balancing strategy using the equation(3), H-HPGM(stat+).
The procedure to allocate the partitioning candidate itemsets among the nodes
is obtained by replacing the equation (2) in step 2 with equation (3) in the
procedure of H-HPGM(stat).

1. Same as H-HPGM(stat).
2. Calculate the weighting factor of the size-k combination of root items using

the equation (3)
3. – 4. Same as H-HPGM(stat).

For example, we consider that the taxonomy of items at pass 2 is given
in Figure 2. Assume the number of duplicated candidate itemsets is 0. The
weighting factor of the combination of trees {1, 1} and {1, 2} are calculated as
follows:

W ({1, 1}) = [min{supp({4}), supp({5})}+ min{supp({5}), supp({10})}]
/ {# of transactions}

+ {2 / 45}

W ({1, 2}) = [min{supp({1}), supp({2})}+ min{supp({1}), supp({6})}
+ . . . + min{supp({10}), supp({15})}] / {# of transactons}

+ {16 / 45}

H-HPGM(stat+) with Tree Grain Duplicate: H-HPGM-TGD(stat+).
H-HPGM-TGD(stat+) detects the tree whose candidate itemsets contain fre-
quently occurred items, duplicates them among the nodes and counts the sup-
port count locally for those itemsets like in NPGM. The procedure to detect the
duplicated candidates in pass k is as follows.

1. Count up the number of candidates allocated for each node by generating
the k-itemsets using Lk−1 and calculate the size of free memory space.

2. Count the number of descendant candidates for each root k-items combina-
tion.

3. Generate k-items combination from root items. Here, these k-items combi-
nation contain the items consisting of the same items, such as {1, 1}.

4. Sort the combination of root items based on those item’s frequency of ap-
pearance.

5. Choose the most frequently occurring combination of root itemsets and du-
plicate them and their descendant candidate itemsets among the nodes.

6. The remaining candidate itemsets are partitioned in the same way as H-
HPGM(stat+).
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H-HPGM(stat+) with Path Grain Duplicate: H-HPGM-PGD(stat+).
H-HPGM-PGD(stat+) picks up the leaf large items and sorts them based on
their support value. Then it chooses the most frequently occurring itemsets and
copies them and their all ancestor itemsets over all the nodes. Since the granule
of candidate duplication employed in H-HPGM-PGD(stat+) is smaller than H-
HPGM-TGD(stat+), it can balance the load among the nodes more effectively.
The procedure to detect the duplicated candidates in pass k is as follows.

1. – 3. Same as H-HPGM-TGD(stat+).
4. Pick up the large items in Lk−1 which is the closest to the bottom, and sort

them based on their support value.
5. Choose the first several most frequently occurring items using the sorted list

derived at “4”, and duplicate it and its all ancestor candidates among the
nodes.

6. Same as H-HPGM-TGD(stat+).

H-HPGM(stat+) with Fine Grain Duplicate: H-HPGM-FGD(stat+).
H-HPGM-FGD(stat+) checks the frequently occurring itemsets which consists
of the any level items. It duplicates them and their all ancestor itemsets over all
the nodes. Thus only the frequent candidate itemsets are duplicated. The granule
of candidate duplication becomes finer. The procedure to detect the duplicated
candidates in pass k is as follows.

1. – 3. Same as H-HPGM-TGD(stat+).
4. Sort the large items based on their count support value.
5. Choose the first most frequently occurring candidate itemsets, and duplicate

them and their all ancestor candidates among the nodes.
6. Same as H-HPGM-TGD(stat+).

4 Large Scale PC Cluster System

4.1 Components of Cluster

Our PC cluster system[1] consists of one hundred 200MHz Pentium Pro PCs,
connected with an 155Mbps ATM switch as well as by 10Mbps Ethernet network.
Figure 4 shows an overview of the PC cluster. Each node consists of components
shown in Table 1. We use the RFC-1483 PVC driver for IP over ATM. TCP/IP
is used as a communication protocol. HITACHI’s AN1000-20, which has 128
ports, is used as an ATM switch.

5 Performance Analysis

We implement the parallel algorithms and the load balancing strategies on the
PC cluster system. The transaction database is evenly partitioned over the local
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(HITACHI AN1000−20)
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Fig. 4. An overview of the PC cluster

Table 1. Each node of PC cluster
CPU Intel 200MHz Pentium Pro
Chipset Intel 440FX
Main memory 64MBytes
Disk drive For OS

Western Digital Caviar 32500 (EIDE, 2.5GB)
For database

Seagate Barracuda (Ultra SCSI, 4.3GB)
OS Solaris2.5.1 for x86
ATM NIC Interphase 5515 PCI ATM Adapter

disk of all the nodes. Solaris socket library is used for the inter-process communi-
cation. All processes are connected with each other by socket connections, thus
forming mesh topology. To evaluate the performance of the proposed parallel
algorithms, synthetic dataset emulating retail transactions is used. The gener-
ation procedure is described in [2]. Table 2 shows the meaning of the various
parameters and the characteristics of the dataset used in our experiment.

5.1 Execution Time

We show the number of candidate itemsets and large itemsets, and the execution
time at each pass in Table 3. 64 nodes in PC cluster system are used, and the
minimum support is set to 0.3% in this experiments.

NPGM can attain the best performance when the number of candidate item-
sets is small, since NPGM does not require the communication of transaction
data for the support count process. When the number of candidate itemsets
becomes large such as pass 2, the single node’s memory cannot hold the en-
tire candidate itemsets, the performance of NPGM is degrade. H-HPGM(hash)
and H-HPGM(stat) partition the candidate itemsets among the nodes. These
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Table 2. Parameters of dataset
Parameter
Number of transactions 20,000,000

(file size 1GB)
Average size of the transactions 5
Average size of the maximal potentially large itemsets 5
Number of maximal potentially large itemsets 10,000
Number of items 50,000
Number of roots 100
Number of levels 5–6
Fanout 5

Table 3. # of candidate itemsets and large itemsets, and execution time at each
pass

Execution time (sec)
Pass C L NPGM H-HPGM H-HPGM H-HPGM-

(hash) (stat) FGD(stat+)
1 50000 1361 3.4 3.4 3.4 3.4
2 881548 4188 592.8 272.9 178.5 153.9
3 31404 970 116.2 195.1 157.4 118.1
4 3153 176 69.3 132.6 101.1 70.9
5 927 86 52.8 89.7 82.0 53.4
6 322 5 13.6 31.1 28.5 13.7

Total 848.1 724.8 550.9 413.4

C : Number of candidate itemsets
L : Number of large itemsets

candidate partition based algorithms outperform than NPGM when the num-
ber of candidate is large. Because of the effect of the candidate partition based
load balancing strategy, H-HPGM(stat) achieves better performance than H-
HPGM(hash) at all the range of minimum support. When the number of candi-
date itemsets is small, the performance of H-HPGM(hash) and H-HPGM(stat)
is worse than NPGM. H-HPGM(hash) and H-HPGM(stat) partition the can-
didate itemsets at all the pass. When the number of candidate becomes small
compared with the number of nodes, the number of the allocated candidate
itemsets for each node decrease, the most of memory space does not utilized.
H-HPGM-FGD(stat+) can archive good performance at all the passes. In the
case that each node’s memory can hold the entire candidate itemsets, H-HPGM-
FGD(stat+) behaves the same way as NPGM. Because of some overhead, the
execution time of H-HPGM-FGD(stat+) is a little longer than that of NPGM
when the number of candidate itemsets is small. The whole execution time of
H-HPGM-FGD(stat+) is best.

In Figure 5, we show the execution time at pass 2 varying the minimum sup-
port. Hereafter, we show only the result at pass 2, since the number of candidate
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Fig. 5. Execution time

itemsets and the execution time for pass 2 is the longest. 64 nodes in PC cluster
system are used in this experiment. We show the result of the best workload
distribution, named Flat, as an ideal result. By using the real support count
information to set the weighting factor, we can attain the most flat workload
distribution.

The execution time of all the algorithms increases when the minimum sup-
port becomes small. Especially, the execution time of NPGM increases sharply.
When the minimum support reduces, the number of candidate itemsets increases.
On the other hand, the candidate partitioned methods can attain good per-
formance at the small minimum support. The performance of H-HPGM(stat)
and H-HPGM(stat+) is almost equal. The difference of these two algorithm is
whether the weighting factor takes the distribution of candidate itemsets into
account. H-HPGM-FGD(stat+) attains the best performance of all the range of
minimum support.

5.2 The Distribution of Allocated Candidate Itemsets for Each
Node

Figure 6 shows the distribution of allocated candidate itemsets for each node at
pass 2. The vertical axis is the standard deviation of the number of candidate
itemsets for each node. The minimum support is varying from 0.2% to 0.5%.

H-HPGM(stat+) attains flat candidate distribution. Since H-HPGM(stat+)
sets the weighting factor considering not only the distribution of workload but
also the distribution of the number of candidate itemsets among the nodes, it
can attain flat distribution of candidate itemsets.

5.3 Performance with Varying the Size of Duplicated Candidates

Here, we show the performance of load balancing strategies with varying the size
of duplicated candidate itemsets at pass 2. Figure 7 shows the execution time.
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Figure 8 is the workload distribution. Figure 9 is the percentage of candidate
probes for duplicated candidate itemsets to all the candidate probes. Figure 10 is
the average amount of received messages for each node. In these experiments, the
minimum support is set to 0.3% and 64 nodes of PC cluster system is activated.

As the size of duplicated candidate itemsets increases, the execution time of
candidate duplication based load balancing strategy is reduced and the workload
distribution becomes balanced. The candidate duplication based load balancing
strategies detect the frequently occurring candidate itemsets and duplicate them
so that the remaining free space could be utilized as much as possible. Espe-
cially, H-HPGM-FGD(stat+) can reduce the execution time at small candidate
duplication size. Since H-HPGM-FGD(stat+) employs the smallest granule du-
plication strategy, it can show the ability if the remaining free memory space
is small. Figure 9 shows that the small size of duplicated candidates occupies
the large number of candidate probes in the candidate duplication based load
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balancing strategies. In these strategies, we duplicate the frequently occurring
candidate itemsets. Support count process for duplicated candidate itemsets can
be locally processed like as NPGM, which reduce the communication overhead
and effective to attain flat workload distribution.

5.4 Speedup

Figure 11 shows the speedup ratio with varying the number of nodes used 16,
32, 64 and 100. The curves are normalized by the execution time of 16 nodes
system. Here, the minimum support is set to 0.3%.

The load balancing strategies attain higher linearity than H-HPGM(hash).
Since H-HPGM(hash) partitions the candidate itemsets using hash function
without considering the load balancing and duplicates no candidate itemsets,
the workload skew degrades the linearity. Though H-HPGM(stat) partitions
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the candidate itemsets taking the load balancing into account, it cannot at-
tain sufficient linearity. On the other hand, H-HPGM-FGD(stat+), duplicating
the frequently occurring candidate itemsets and partitioning the other candidate
itemsets with considering the load balance, can attain the highest linearity. In
Figure 11, H-HPGM-FGD(stat+) achieves good performance on one hundred
nodes system. By considering both the distribution of workload and that of the
number of candidate itemsets, we can attain good performance.

6 Conclusions

In this paper, we presented the candidate partition based load balancing strate-
gies for parallel mining algorithms of generalized association rule and evaluated
their performance through the implementation on large scale PC cluster system.
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H-HPGM(hash) partitions the candidate itemsets using hash function with-
out considering the load balance and duplicates no candidate itemsets, it can-
not attain flat workload distribution. H-HPGM(stat) partitions the candidate
itemsets so that the number of candidate probes for each node is equalized
each other with estimated support count by the information of previous pass.
This estimated support count might contain some error, but it attain better
performance than H-HPGM(hash) which using no weighting factor. However,
as the number of processor increase, it would be difficult to achieve sufficient
flat workload distribution. H-HPGM-TGD(stat+), H-HPGM-PGD(stat+) and
H-HPGM-FGD(stat+) combine the candidate partition based load balancing
strategy and the candidate duplication based load balancing strategy. Support
counting for duplicated candidate itemsets can be locally processed, which re-
duce the communication overhead and the workload skew.

We examined the effectiveness of parallel algorithms and their load balancing
strategies on large scale parallel computer system using the large amount of
transaction dataset. Our system is consisted with one hundred PC’s and 1GBytes
transaction database was used for experiment. As far as the authors know, there
has no research on parallel data mining over such large scale systems using such
large amount of transaction database. Through several experiments, we showed
H-HPGM-FGD(stat+) could attain high performance and achieve sufficiently
good workload distribution on one hundred PC cluster system.
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Abstract. We present pSPADE, a parallel algorithm for fast discov-
ery of frequent sequences in large databases. pSPADE decomposes the
original search space into smaller suffix-based classes. Each class can be
solved in main-memory using efficient search techniques, and simple join
operations. Further each class can be solved independently on each pro-
cessor requiring no synchronization. However, dynamic inter-class and
intra-class load balancing must be exploited to ensure that each proces-
sor gets an equal amount of work. Experiments on a 12 processor SGI
Origin 2000 shared memory system show good speedup and excellent
scaleup results.

1 Introduction

The sequence mining task is to discover a sequence of attributes, shared across
time among a large number of objects in a given database. For example, consider
a web access database at a popular site, where an object is a web user and
an attribute is a web page. The discovered patterns are the sequences of most
frequently accessed pages at that site. This kind of information can be used to
restructure the web-site, or to dynamically insert relevant links in web pages
based on user access patterns. There are many other domains where sequence
mining has been applied, which include discovering customer buying patterns in
retail stores, identifying plan failures [1], finding network alarm patterns [2], and
so on.

The task of discovering all frequent sequences in large databases is quite
challenging. The search space is extremely large. For example, with m attributes
there are, in the worst case, O(mk) potential sequences of length at most k. For-
tunately, in practice only a small fraction of all potential sequences are shared
among many database objects or transactions, the so-called frequent sequences.
Nevertheless, given the search complexity, serial algorithms cannot provide scala-
bility, in terms of the data size and the performance, for large databases. Because
there is always this limit to the performance of a single processor, we must rely
on parallel multiprocessor systems to fill this role.
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Two approaches for utilizing multiple processors have emerged: distributed
memory, in which each processor has a private memory; and shared memory, in
which all processors access common memory. A shared-memory architecture has
many desirable properties. Each processor has direct and equal access to all the
memory in the system. Parallel programs are easy to implement on such a system.
A different approach to multiprocessing is to build a system from many units,
each containing a processor and memory. In a distributed memory architecture,
each processor has its own local memory that can only be accessed directly by
that processor. For a processor to have access to data in the local memory of
another processor, a copy of the desired data elements must be sent from one
processor to the other, utilizing the message passing programming paradigm. Al-
though a shared memory architecture offers programming simplicity, the finite
bandwidth of a common bus can limit scalability. A distributed memory archi-
tecture cures the scalability problem by eliminating the bus, but at the cost of
programming simplicity. It is possible to combine the best of both the worlds by
providing a shared global address space abstraction over physically distributed
memory. Such an architecture is called distributed-shared memory (DSM) sys-
tem. It provides ease of programming, yet retains scalability at the same time.
The shared-memory abstraction can be provided in hardware or software.

The target architecture we use in this paper is hardware distributed-shared
memory (HDSM). Our HDSM platform is a 12 processor SGI Origin 2000 system,
which is a cache-coherent non-uniform memory access (CC-NUMA) machine. For
cache coherence the hardware ensures that locally cached data always reflects
the latest modification by any processor. It is NUMA because reads/writes to
local memory are cheaper than reads/writes to a remote processor’s memory.
The main challenge in obtaining high performance on these systems is to ensure
good data locality, making sure that most read/writes are to local memory, and
reducing/eliminating false sharing, which occurs when two different shared vari-
ables are (coincidentally) located in the same cache block, causing the block to
be exchanged between the processors due to coherence maintenance operations,
even though the processors are accessing different variables. Of course, the other
factor influencing parallel performance for any system is to ensure good load
balance, i.e., making sure that each processor gets an equal amount of work.

In this paper we present pSPADE, a parallel algorithm for discovering the
set of all frequent sequences, targeting shared-memory systems. pSPADE is an
asynchronous algorithm, in that it requires no synchronization among proces-
sors, except when a load imbalance is detected. For sequence mining on large
databases with millions of transactions the problem of I/O minimization becomes
paramount. However, most current algorithms are iterative in nature, requiring
as many full database scans as the longest frequent sequence, which is clearly
very expensive. Some of the methods, especially those using some form of sam-
pling, can be sensitive to the data-skew, which can adversely effect performance.
Most approaches also use very complicated internal data structures which have
poor locality [3], and add additional space and computation overheads. pSPADE
has been designed such that it has good locality and has little false sharing.
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The key features of our approach are as follows:

1. We use a vertical idlist database format, where we associate with each se-
quence a list of objects in which it occurs, along with the time-stamps. We
show that all frequent sequences can be enumerated via simple temporal
idlist intersections.

2. We use a lattice-theoretic approach to decompose the original search space
into smaller pieces — the suffix-based classes — which can be processed
independently in main-memory. This decomposition is recursively applied
within each parent class to produce even smaller classes at the next level,

3. We propose an asynchronous algorithm, where processors work on separate
classes at the first level, without any need for sharing or synchronization.
To ensure good load balance, we propose a dynamic load balancing scheme,
where any free processors joins a busy processor in solving newly formed
classes at higher levels.

pSPADE is based on SPADE [4], a sequential algorithm for efficient enumer-
ation of frequent sequences, and thus shares many of its performance features.
pSPADE not only minimizes I/O costs by reducing database scans, but also min-
imizes computational costs by using efficient search schemes. The vertical idlist
based approach is also relatively insensitive to data-skew. In fact, idlist skew
leads to faster support counting, since the result of an intersection of two lists is
always bounded by the size of the smaller idlist. An extensive set of experiments
is performed on a 12 processor SGI Origin 2000. pSPADE delivers reasonably
good speedup, and scales linearly in the database size, and a number of other
database parameters.

The rest of the paper is organized as follows: We describe the sequence dis-
covery problem in Section 2 and discuss related work in Section 3. Section 4
describes the serial algorithm, while the design and implementation issues for
pSPADE are presented in Section 5. An experimental study is presented in Sec-
tion 6, and we conclude in Section 7.

2 Sequence Mining

The problem of mining sequential patterns can be stated as follows: Let I =
{i1, i2, · · · , im} be a set of m distinct attributes, also called items. An itemset is
a non-empty unordered collection of items (without loss of generality, we assume
that items of an itemset are sorted in increasing order). All items in an itemset
are assumed to occur at the same time. A sequence is an ordered list of itemsets.
The itemsets in a sequence are ordered according to their associated time-stamp.
An itemset i is denoted as (i1i2 · · · ik), where ij is an item. An itemset with k
items is called a k-itemset. A sequence α is denoted as (α1 7→ α2 7→ · · · 7→
αq), where the sequence element αj is an itemset. A sequence with k items
(k =

∑
j |αj|) is called a k-sequence. For example, (B 7→ AC) is a 3-sequence.

An item can occur only once in an itemset, but it can occur multiple times in
different itemsets of a sequence.
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A sequence α = (α1 7→ α2 7→ · · · 7→ αn) is a subsequence of another sequence
β = (β1 7→ β2 7→ · · · 7→ βm), denoted as α � β, if there exist integers i1 < i2 <
· · · < in such that αj ⊆ βij for all αj. For example the sequence (B 7→ AC) is a
subsequence of (AB 7→ E 7→ ACD), since the sequence elements B ⊆ AB, and
AC ⊆ ACD. On the other hand the sequence (AB 7→ E) is not a subsequence
of (ABE), and vice versa. We say that α is a proper subsequence of β, denoted
α ≺ β, if α � β and β 6� α. A sequence is maximal if it is not a subsequence of
any other sequence.

A transaction T has a unique identifier and contains a set of items, i.e.,
T ⊆ I. A customer, C, has a unique identifier and has associated with it a
list of transactions {T1, T2, · · · , Tn}. Without loss of generality, we assume that
no customer has more than one transaction with the same time-stamp, so that
we can use the transaction-time as the transaction identifier. We also assume
that the list of customer transactions is sorted by the transaction-time. Thus
the list of transactions of a customer is itself a sequence T1 7→ T2 7→ · · · 7→ Tn,
called the customer-sequence. The database, D, consists of a number of such
customer-sequences.

A customer-sequence, C, is said to contain a sequence α, if α � C, i.e., if
α is a subsequence of the customer-sequence C. The support or frequency of a
sequence, denoted σ(α), is the the total number of customers that contain this
sequence. Given a user-specified threshold called the minimum support (denoted
min sup), we say that a sequence is frequent if occurs more than min sup times.
The set of frequent k-sequences is denoted as Fk.

Given a database D of customer sequences and min sup, the problem of
mining sequential patterns is to find all frequent sequences in the database. For
example, consider the customer database shown in figure 1. The database has
three items (A, B, C), four customers, and twelve transactions in all. The figure
also shows all the frequent sequences with a minimum support of 75% or 3
customers.

3 Related Work

3.1 Serial Algorithms

The problem of mining sequential patterns was introduced in [5]. They also pre-
sented three algorithms for solving this problem. The AprioriAll algorithm was
shown to perform equal to or better than the other two approaches. In subse-
quent work [6], the same authors proposed the GSP algorithm that outperformed
AprioriAll by up to 20 times. They also introduced maximum gap, minimum gap,
and sliding window constraints on the discovered sequences. Recently, SPADE [4]
was shown to outperform GSP by a factor of two in the general case, and by
a factor of ten with a pre-processing step. We therefore based pSPADE on our
sequential SPADE method.

The problem of finding frequent episodes in a sequence of events was pre-
sented in [7]. An episode consists of a set of events and an associated partial or-
der over the events. Our definition of a sequence can be expressed as an episode,
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however their work is targeted to discover the frequent episodes in a single long
event sequence, while we are interested in finding frequent sequences across many
different customer-sequences. They further extended their framework in [8] to
discover generalized episodes, which allows one to express arbitrary unary con-
ditions on individual episode events, or binary conditions on event pairs. The
MEDD and MSDD algorithms [9] discover patterns in multiple event sequences;
they explore the rule space directly instead of the sequence space.

The GSP Algorithm. Before we proceed further, we need to give some more
details on GSP, since it is forms the core of the previous work on parallel sequence
mining.

F1 = { frequent 1-sequences };
for (k = 2;Fk−1 6= ∅; k = k + 1) do

Ck = Set of candidate k-sequences;
for all customer-sequences E in the database do

Increment count of all α ∈ Ck contained in E
Fk = {α ∈ Ck |α.sup ≥ min sup};

Set of all frequent sequences =
⋃

k
Fk;

Fig. 2. The GSP Algorithm
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GSP makes multiple passes over the database. In the first pass, all single
items (1-sequences) are counted. From the frequent items a set of candidate 2-
sequences are formed. Another pass is made to gather their support. The frequent
2-sequences are used to generate the candidate 3-sequences, and this process is
repeated until no more frequent sequences are found. There are two main steps
in the algorithm.

1. Candidate Generation: Given the set of frequent (k−1)-sequences Fk−1,
the candidates for the next pass are generated by joining Fk−1 with itself. A
pruning phase eliminates any sequence at least one of whose subsequences
is not frequent. For fast counting, the candidate sequences are stored in a
hash-tree.

2. Support Counting: To find all candidates contained in a customer-sequence
E , all k-subsequences of E are generated. For each such subsequence a search
is made in the hash-tree. If a candidate in the hash-tree matches the subse-
quence, its count is incremented.

The GSP algorithm is shown in Figure 2. For more details on the specific mech-
anisms for constructing and searching hash-trees, please refer to [6] (note: the
second iteration is optimized to directly use arrays for counting the support of
2-sequences, instead of using hash trees).

3.2 Parallel Algorithms

While parallel association mining has attracted wide attention [10,11,12,13,14,15,
16] there has been relatively less work on parallel mining of sequential patterns.
Three parallel algorithms based on GSP were presented in [17]. All three ap-
proaches partition the datasets into equal sized blocks among the nodes. In
NPSPM, the candidate sequences are replicated on all the processors, and each
processor gathers local support using its local database block. A reduction is per-
formed after each iteration to get the global supports. Since NPSPM replicates
the entire candidate set on each node, it can run into memory overflow prob-
lems for large databases. SPSPM partitions the candidate set into equal-sized
blocks and assigns each block to a separate processor. While SPSPM utilizes
the aggregate memory of the system, it suffers from excessive communication,
since each processor’s local database has to be broadcast to all other processors
to get the global support. HPSPM uses a more intelligent strategy to partition
the candidate sequences using a hashing mechanism. It also reduces the amount
of communication needed to count the global support. Experiments were per-
formed on an IBM SP2 distributed memory machine. HPSPM was shown to be
the best approach.

The main limitation of all these parallel algorithms is that they make re-
peated passes over the disk-resident database partition, incurring high I/O over-
heads. Furthermore, the schemes involve exchanging the remote database parti-
tions during each iteration, resulting in high communication and synchronization
overhead. They also use complicated hash structures, which entail additional
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overhead in maintenance and search, and typically also have poor cache local-
ity [3]. As we shall show in the experimental section, pSPADE is successful in
overcoming all these problems.

pSPADE bears similarity to our previous parallel association mining work [16],
but it differs in three important respects. First, the itemset search space forms
a very small subset of the the sequence search space. Many of the optimiza-
tions proposed for generating clique-based partitions of the search space no
longer work. The temporal idlist intersections also differ significantly from the
non-temporal joins in associations. Second, the association work presented dis-
tributed memory algorithms, while pSPADE targets shared-memory systems,
the first such study for parallel sequence mining. Finally, pSPADE uses a re-
cursive dynamic load balancing scheme, in contrast to the purely static load
balancing scheme used for association mining in [16].

4 The Serial SPADE Algorithm

In this section we describe SPADE [4], a serial algorithm for fast discovery of
frequent sequences, which forms the basis for the parallel pSPADE algorithm.

Sequence Lattice. SPADE uses the observation that the subsequence relation �
defines a partial order on the set of sequences, also called a specialization relation.
If α � β, we say that α is more general than β, or β is more specific than α.
The second observation used is that the relation � is a monotone specialization
relation with respect to the frequency σ(α), i.e., if β is a frequent sequence, then
all subsequences α � β are also frequent. The algorithm systematically searches
the sequence lattice spanned by the subsequence relation, from the most general
to the maximally specific frequent sequences in a breadth/depth-first manner.
For example, Figure 3 A) shows the lattice of frequent sequences for our example
database.

Support Counting. Most of the current sequence mining algorithms [6] assume a
horizontal database layout such as the one shown in Figure 1. In the horizontal
format the database consists of a set of customers (cid’s). Each customer has a
set of transactions (tid’s), along with the items contained in the transaction. In
contrast, we use a vertical database layout, where we associate with each item
X in the sequence lattice its idlist, denoted L(X), which is a list of all customer
(cid) and transaction identifiers (tid) pairs containing the atom. Figure 3 B)
shows the idlists for all the frequent items.

Given the sequence idlists, we can determine the support of any k-sequence
by simply intersecting the idlists of any two of its (k − 1) length subsequences.
In particular, we use the two (k − 1) length subsequences that share a common
suffix (the generating sequences) to compute the support of a new k length
sequence. A simple check on the cardinality of the resulting idlist (actually, the
number of distinct cids) tells us whether the new sequence is frequent or not.
Figure 3C) shows this process pictorially. It shows the initial vertical database
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with the idlist for each item. The intermediate idlist for A 7→ B is obtained by
intersecting the lists of A and B, i.e., L(A 7→ B) = L(A) ∩ L(B). Similarly,
L(AB 7→ B) = L(A 7→ B) ∩ L(B 7→ B). The temporal intersection is more
involved; exact details will be discussed below.

Lattice Decomposition – Suffix-Based Classes. If we had enough main-memory,
we could enumerate all the frequent sequences by traversing the lattice, and per-
forming temporal intersections to obtain sequence supports. In practice, however,
we only have a limited amount of main-memory, and all the intermediate idlists
will not fit in memory. SPADE breaks up this large search space into small,
independent, manageable chunks which can be processed in memory. This is
accomplished via suffix-based equivalence classes. We say that two k length se-
quences are in the same class if they share a common k − 1 length suffix. The
key observation is that each class is a sub-lattice of the original sequence lattice
and can be processed independently. For example, Figure 4A) shows the effect
of decomposing the frequent sequence lattice for our example database, by col-
lapsing all sequences with the same 1-length suffix into a single class. There are
two resulting suffix classes, namely, {[A], [B]}, which are referred to as parent
classes. Each class is independent in the sense that it has complete information
for generating all frequent sequences that share the same suffix. For example, if
a class [X] has the elements Y 7→ X, and Z 7→ X. The only possible frequent
sequences at the next step can be Y 7→ Z 7→ X, Z 7→ Y 7→ X, and (Y Z) 7→ X.
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It should be obvious that no other item Q can lead to a frequent sequence with
the suffix X, unless (QX) or Q 7→ X is also in [X].
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Fig. 4. A) Initial Decomposition: Suffix Length 1, B) Level 2 Decomposition:
Suffix Length 2, C) Recursive Decomposition: Class Tree

SPADE recursively decomposes the sequences at each new level into even
smaller independent classes. Figure 4B) shows the effect of using 2-length suf-
fixes. If we do this at all levels we obtain a tree of independent classes as shown in
Figure 4C). This computation tree is processed in a breadth-first manner, within
each parent class. In other words, parent classes are processed one-by-one, but
within a parent class we process the new classes in a breadth-first search (BFS).
Figure 5 shows the pseudo-code for the breadth-first search in SPADE. The in-
put to the procedure is a list of classes PrevL, along with the idlist for each of
their elements. Frequent sequences are generated by intersecting the idlists of
all pairs of sequences in each class and checking the cardinality of the resulting
idlist against min sup. The sequences found to be frequent at the current level
form classes for the next level NewL. This level-wise process is repeated until
all frequent sequences have been enumerated. In terms of memory management
it is easy to see that we need memory to store intermediate idlists for at most
two consecutive levels within a parent class. Once all the frequent sequences for
the next level have been generated, the sequences at the current level can be
deleted.
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SPADE (min sup,D):
F1 = { frequent items or 1-sequences };
F2 = { frequent 2-sequences };
C = { parent classes Ci = [Xi]};
for each Ci ∈ C do Enumerate-Frequent-Seq(Ci);

//PrevL is list of frequent classes from previous level
//NewL is list of new frequent classes for current level
Enumerate-Frequent-Seq(PrevL):

for (; PrevL 6= ∅; PrevL = PrevL.next())
NewL = NewL ∪ Get-New-Classes (PrevL.item());

if (NewL 6= ∅) then Enumerate-Frequent-Seq(NewL);

Get-New-Classes(S):
for all sequences Ai ∈ S do

for all sequences Aj ∈ S, with j ≥ i do
R = Ai ∪Aj ;
L(R) = L(Ai) ∩ L(Aj);
if (σ(R) ≥ min sup) then Ci = Ci ∪ {R};

CList = CList ∪ Ci;
return CList;

Fig. 5. Pseudo-code for SPADE

Constructing Parent Classes. The SPADE algorithm performs BFS search for
each parent class. Each parent class is constructed from the set of frequent 2-
sequences. A sequence of the form Y 7→ X or Y X is added to the suffix class
[X]. Let N = |I| be the number of frequent items, and A the average idlist
size in bytes. A naive implementation for computing the frequent 2-sequences
requires

(
N
2

)
idlist intersections for all pairs of items. The amount of data read

is A · N · (N − 1)/2, which corresponds to around N/2 data scans. This is
clearly inefficient. Instead of the naive method, we use a preprocessing step to
gather the counts of all 2-sequences above a user specified lower bound. Since
this information is invariant, it has to be computed once, and the cost can be
amortized over the number of times the data is mined. For another method
that doesn’t require pre-processing, and for additional details on the SPADE
algorithm, we refer the reader to [4].

Disk Scans. Before processing each of the parent classes from the initial decom-
position, all the relevant item idlists for that class are scanned into from disk
into memory. All the other frequent sequences are enumerated using temporal
joins. If all the initial classes have disjoint set of items, then each item’s idlist
is scanned from disk only once during the entire frequent sequence enumeration
process over all sub-lattices. In the general case there will be some degree of
overlap of items among the different sub-lattices. However, only the database
portion corresponding to the frequent items will need to be scanned, which can
be a lot smaller than the entire database. Furthermore, sub-lattices sharing many
common items can be processed in a batch mode to minimize disk access. Thus,
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our algorithms will usually requires only a few database scans, in contrast to the
current approaches which require as many scans as the longest frequent sequence
(this can be reduced somewhat by combining candidates of multiple lengths in
later passes).

Temporal Idlist Intersection. We now describe how we perform the temporal
idlist intersections for two sequences, since this forms the heart of the computa-
tion of SPADE, and is crucial in understanding the parallelization strategies.

Given a suffix equivalence class [S], it can contain two kinds of elements: an
itemset of the form XS or a sequence of the form Y 7→ S, where X and Y are
items, and S is some (suffix) sequence. Let’s assume without loss of generality
that the itemsets of a class always precede its sequences. To extend the class
for the next level it is sufficient to intersect the idlists of all pairs of elements.
However, depending on the pairs being intersected, there can be up to three
possible resulting frequent sequences:

1. Itemset vs Itemset: If we are intersecting XS with Y S, then we get a new
itemset XY S.

2. Itemset vs Sequence: If we are intersecting XS with Y 7→ S, then the
only possible outcome is new sequence Y 7→ XS.

3. Sequence vs Sequence: If we are intersecting X 7→ S with Y 7→ S, then
there are three possible outcomes: a new itemset XY 7→ S, and two new
sequences X 7→ Y 7→ S and Y 7→ X 7→ S. A special case arises when
we intersect X 7→ S with itself, which can only produce the new sequence
X 7→ X 7→ S.

Consider the idlist for the items A and B shown in Figure 3 B). These are
taken to be sequence elements A 7→ ∅ and B 7→ ∅ for the class [∅]. To get
the idlist for the resultant itemset AB, we need to check for equality of cid-tid
pairs. In our example, L(AB) = {(1, 10), (1, 30), (2, 20), (4, 30)}. It is frequent at
75% minimum support level (i.e., 3 out of 4 customers). Note that support is
incremented only once per customer.

To compute the idlist for the sequence A 7→ B, we need to check for a follows
temporal relationship, i.e., for a given pair (c, t1) in L(A), we check whether
there exists a pair (c, t2) in L(B) with the same cid c, but with t2 > t1. If this is
true, it means that the item B follows the item A for customer c. The resultant
idlist for A 7→ B is shown in Figure 3 C). We call A 7→ B the forward follows
intersection. The idlist of B 7→ A is obtained by reversing the roles of A and B.
We call B 7→ A the reverse follows intersection. As a further optimization, we
generate the idlists of the (up to) three possible new sequences in just one join.

5 The Parallel pSPADE Algorithm

In this section we describe the design and implementation of the parallel pSPADE
algorithm. We begin with a brief review of the SGI Origin architecture.
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5.1 SGI Origin 2000

The SGI Origin 2000 machine is a hardware distributed shared memory CC-
NUMA (cache-coherent, non-uniform-memory-access) machine, in which shared
main memory is distributed amongst the nodes. This shared memory is acces-
sible to every processor in the system. It is also modular and scalable; that is,
the system can be increased in size (scaled) by adding node boards in a hyper-
cube topology, and connected by the CrayLink interconnect. Figure 6 shows the
configuration of our 12 processor Origin. It also shows what a full 16-processor
system would look like. A ’P’ denotes a processor; ’N’ a node board, containing
two processors and some amount of memory; and ’R’ a router that routes data
between nodes.
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Fig. 6. 12 Processor SGI Origin 2000

5.2 pSPADE: Design and Implementation

pSPADE will be best understood when we imagine the computation as a dy-
namically expanding irregular tree of independent suffix-based classes, as shown
in Figure 7. This example tree represents the search space for the algorithm,
with a maximum of five levels. There are three independent parent suffix-based
equivalence classes. These are the only classes visible at the beginning of com-
putation. Since we have a shared-memory machine, there is only one copy on
disk of the database in the vertical idlist format. It can be accessed by any pro-
cessor, via a local file descriptor. Given that each class in the tree can be solved
independently the crucial issue is how to achieve a good load balance, so that
each processor gets an equal amount of work. We would also like to maximize
locality and minimize/eliminate cache contention.

There are two main paradigms that may be utilized in the implementation
of parallel sequence mining: a data parallel approach or a task parallel approach.
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In data parallelism P processors work on distinct portions of the database, but
synchronously process the global computation tree. It essentially exploits intra-
class parallelism, i.e., the parallelism available within a class. In task parallelism,
the processors share the database, but work on different classes in parallel, asyn-
chronously processing the computation tree. This scheme is thus based on inter-
class parallelism.

Data Parallelism. As mentioned above, in a data parallelism approach, P
processors work on distinct partitions of the database (i.e., idlists), but syn-
chronously process the global computation tree. In other words, we only need to
describe how the work of a single node of the computation tree is performed in
parallel among all the available processors. Each node corresponds to an equiva-
lence class of frequent sequences, which needs to be expanded to the next level.
The main computation within each class is simply the temporal idlist intersec-
tions that are performed for all pairs of elements in the class.

Data parallelism can come in two flavors, since we can partition the idlists
horizontally or vertically. In horizontal partitioning we split each idlist into blocks
and assign these horizontal blocks to processors, while in a vertical partitioning
we assign a separate idlists to each processor. The first case corresponds to,
what we call, idlist parallelism, in which we partition each idlist into P ranges
over the customer sequence cids (for example, processor 0 is responsible for the
cid range 0 · · · l, processor 1 for range l + 1 · · ·2l, and so on). Each processor is
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responsible for 1/P of the cids. The other case corresponds to, what we call,
join parallelism, where each processor picks a sequence (along with its idlist)
and performs intersections with the other sequence idlists in the same class,
generating new classes for the next level.

Idlist Parallelism. There are two ways of implementing the idlist parallelism. In
the first method a single intersection is performed in parallel among the P proces-
sors. Each processor performs the intersection over its cid range, and increments
support in a shared variable. A barrier synchronization must be performed to
make sure that all processors have finished their intersection for the candidate.
Finally, based on the support this candidate may be discarded if infrequent or
added to the new class if frequent. This scheme suffers from massive synchro-
nization overheads. As we shall see in Section 6, for some values of minimum
support we performed around 0.4 million intersections. This scheme will require
as many barrier synchronizations.

The other way of implementing idlist parallelism is to use a level-wise ap-
proach. In other words, at each new level of the computation tree (within a
parent class), each processor processes all the new classes at that level, per-
forming intersections for each candidate, but only over its local block. The local
supports are stored in a local array to prevent false sharing among processors.
After a barrier synchronization signals that all processors have finished process-
ing the current level, a sum-reduction is performed in parallel to determine the
global support of each candidate. The frequent sequences are then retained for
the next level, and the same process is repeated for other levels until no more
frequent sequences are found.

Figure 8 shows the pseudo-code for the single and level-wise idlist data par-
allelism. The single idlist data parallelism requires modification to the Get-New-
Classes routine in the SPADE algorithm, by performing each intersection in
parallel followed by a barrier (we prefix the modified routine with SID – Sin-
gle IDlist). The level-wise idlist data parallelism requires modification to the
Enumerate-Frequent-Seq routine in the SPADE algorithm, by performing lo-
cal intersection for all classes at the current level, followed by a barrier before
the next level can begin (we prefix the modified routine with LID – Level-
wise IDlist). Figure 9 depicts the two methods pictorially. For example, in
the single idlist method we perform a single intersection, say between items
A and B, in parallel; processor P0 performs intersections on the cid range 1
to 500, while P1 performs the joins over the cid range 501-1000. Note that
even though the ranges are equal, the actual cid’s falling in those blocks may
be skewed. Figure 9 also shows the level-wise idlist parallelism. In this ap-
proach, all processors perform the

(
5
2

)
+ 5 = 15 possible intersections (i.e., for

AA, AB, AC, AD, AE, BB, BC, · · ·, DE) in parallel over their cid block, which
is then followed by a sum-reduction to get global support.

We implemented the level-wise idlist parallelism and found that it performed
very poorly. In fact, we got a speed-down as we increased the number of proces-
sors (see Section 6). Even though we tried to minimize the synchronization as
much as possible, performance was still unacceptable. Since a candidate’s mem-
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ory cannot be freed until the end of a level, the memory consumption of this
approach is also extremely high. We need to keep the temporary idlists of all
newly generated candidates (both infrequent and frequent) since we can’t say if a
candidate is frequent until all processors have finished the current level. We were
thus unable to run this algorithm for low values of minimum support. Also, when
the local memory is not sufficient the Origin allocates remote memory for the
intermediate idlists, causing a performance hit due to the NUMA architecture.

SID-Get-New-Classes(S):
for all sequences Ai ∈ S do

for all sequences Aj ∈ S, with j > i do
R = Ai ∪Aj ;
do in parallel for all processors p

Lp(R) = Lp(Ai) ∩ Lp(Aj);
barrier;
L(R) =

⋃
p
Lp(R);

if (σ(R) ≥ min sup) then Ci = Ci ∪ {R};
CList = CList ∪ Ci;

return CList;

LID-Enumerate-Frequent-Seq(PrevL):
while (PrevL 6= ∅)

do in parallel for all processors p
NewLp = NewLp ∪

Get-New-Classes (PrevL.item());
PrevL = PrevL.next();

end while
barrier;
NewL =

⋃
p∈P

NewLp;

if (NewL 6= ∅) then
Enumerate-Frequent-Seq(NewL);

Fig. 8. Single vs. Level-Wise Idlist Data Parallelism

Join Parallelism. Join parallelism is based on the vertical partitioning of the
idlists among processors. Each processor performs intersections for different se-
quences within the same class. Once the current class has been expanded by
one level, the processors must synchronize, before moving on to the next class.
Figure 9 shows how join parallelism works. P0 gets the items A, C, and E, and
is responsible for generating and testing all candidates which have those items
as a prefix (i.e., the candidates AA, AB, AC, AD, AE, CC, CD, CE, and EE).
P1 on the other hand is responsible for all candidates with the prefix B or D
(i.e., BB, BC, BD, BE, DD, and DE). While we have not implemented this ap-
proach, we believe that it will fare no better than idlist parallelism. The reason
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is that it requires one synchronization per class, which is better than the sin-
gle candidate idlist parallelism, but still much worse than the level-wise idlist
parallelism, since there can be many classes.

Task Parallelism. In task parallelism all processors have access to one copy of
the database, but they work on separate classes. We present a number of load
balancing approaches starting with a static load balancing scheme and moving
on to a more sophisticated dynamic load balancing strategy. It is important to
note that we use a breadth first search for frequent sequence enumeration within
each parent class, but the parent classes themselves are scheduled independently
for good load balance.

Static Load Balancing (SLB). Let C = {C1, C2, C3} represent the set of the
parent classes at level 1 as shown in Figure 7. We need to schedule the parent
classes among the processors in a manner minimizing load imbalance. In our
approach an entire parent class is scheduled on one processor. Load balancing
is achieved by assigning a weight to each parent equivalence class based on the
number of elements in the class. Since we have to consider all pairs of items for
the next iteration, we assign the weight W 1

i =
(|Ci|

2

)
to the class Ci. Once the

weights are assigned we generate a schedule using a greedy heuristic. We sort
the classes on the weights (in decreasing order), and assign each class in turn to
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the least loaded processor, i.e., one having the least total weight at that point.
Ties are broken by selecting the processor with the smaller identifier. These steps
are done concurrently on all the processors since all of them have access to C.
We also studied the effect of other heuristics for assigning class weights, such as
W 2

i =
∑

j |L(Aj)| for all items Aj in the class Ci. This cost function gives each
class a weight proportional to the sum of the supports of all the items. We also
tried a cost function that combines the above two, i.e., W 3

i =
(|Ci|

2

) ·∑j |L(Aj)|.
We did not observe any significant benefit of one weight function over the other,
and decided to use W 1.

SLB (min sup,D):
C = { parent classes Ci = [Xi]};
Sort-on-Weight(C);
for all Ci ∈ C do //create work Queue

Pj = Proc-with-Min-Weight();
QPj = QPj ∪ Ci;

for all processors Pj

for all classes Ci ∈ QPj do Enumerate-Frequent-Seq(Ci);

Fig. 10. The SLB (Static Load Balancing) Algorithm

Figure 10 shows the pseudo-code for the SLB algorithm. We schedule the
parent classes on different processors based on the class weights. Once the parent
classes have been scheduled, the computation proceeds in a purely asynchronous
manner since there is never any need to synchronize or share information among
the processors. If we apply W 1 to the class tree shown in Figure 7, we get
W 1

1 = W 1
2 = W 1

3 = 3. Using the greedy scheduling scheme on two processors, P0

gets the parent classes C1 and C3, and P1 gets the parent class C2. The two nodes
process these classes in a BFS manner. We immediately see that SLB suffers from
load imbalance, since after processing C1, P0 will be busy working on C3, while
after processing C2, P1 has no more work. The main problem with SLB is that,
given the irregular nature of the computation tree there is no way of accurately
determining the amount of work (i.e., the number of frequent sequences that
might be generated from it) per class statically.

Inter-Class Dynamic Load Balancing (CDLB). To get better load balancing we
can utilize inter-class dynamic load balancing. Instead of a static or fixed class
assignment of SLB, we would like each processor to dynamically pick a new
parent class to work on from the list of parent classes not yet processed.

We also make use of the class weights in the CDLB approach. First, we
sort the parent classes in decreasing order of their weight. This forms a logical
central task queue of independent classes. Each processor atomically grabs one
class from this logical queue. It processes the class completely and then grabs
the next available class. This is essentially a self-scheduling scheme [18]. Note
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that each class usually has a non-trivial or coarse amount of work, so we don’t
have to worry about contention among processors to acquire new tasks. Since
classes are sorted on their weights, processors first work on large classes before
tackling smaller ones, which helps to achieve a greater degree of load balance.
The pseudo-code for CDLB algorithm appears in Figure 11. The compare-and-
swap (CAS) is an atomic primitive on the Origin. It compares classid with i. If
they are equal it replaces classid with i + 1, returning a 1, else it returns a 0.
The use of CAS ensures that processors acquire separate classes to work on.

CDLB (min sup,D):
C = { parent classes Ci = [Xi]};
Sort-on-Weight(C);
shared int classid=0;
for each processor Pj do in parallel

for (i = 0; i < |C|; i + +)
if (compare and swap (classid, i, i + 1))

Enumerate-Frequent-Seq(Ci);

Fig. 11. The CDLB (Dynamic Load Balancing) Algorithm

If we apply CDLB to our example computation tree in Figure 7, we might
expect a scenario as follows: In the beginning P1 grabs C1, and P0 acquires C2.
Since C2 has less work, P0 will grab the next class C3 and work on it. Then P1

becomes free and finds that there is no more work, while P0 is still busy. For
this example, CDLB did not buy us anything over SLB. However, when we have
a large number of parent classes CDLB has a clear advantage over SLB, since
a processor grabs a new class only when it has processed its current class. This
way only the free processors will acquire new classes, while others continue to
process their current class, delivering good processor utilization. We shall see in
Section 6 that CDLB can provide up to 40% improvement over SLB. We should
reiterate that the processing of classes is still asynchronous. For both SLB and
CDLB, false sharing doesn’t arise, and all work is performed on local memory,
resulting in good locality.

Recursive Dynamic Load Balancing (RDLB). While CDLB improves over SLB
by exploiting dynamic load balancing, it does so only at the inter-class level,
which may be too coarse-grained to achieve a good workload balance. RDLB
addresses this by exploiting both inter-class and intra-class parallelism.

To see where the intra-class parallelism can be exploited, let’s examine the
behavior of CDLB. As long as there are more parent classes remaining, each
processor acquires a new class and processes it completely using BFS search. If
there are no more parent classes left, the free processors are forced to idle. The
worst case happens when P−1 processors are free and only one is busy, especially
if the last class has a deep computation tree (although we try to prevent this
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case from happening by sorting the classes, so that the classes predicted to be
small are at the end, it can still happen). We can fix this problem if we provide
a mechanism for the free processors to join the busy ones. We accomplish this
by recursively applying the CDLB strategy at each new level, but only if there
is some free processor waiting for more work. Since each class is independent,
we can treat each class at the new level in the same way we treated the parent
classes, so that different processors can work on different classes at the new level.

1. shared int FreeCnt = 0; //Number of free processors
2. shared int GlobalF lg = 0; //Is there more work?
3. shared list GlobalQ; //Global list of classes

pSPADE (min sup,D):
4. GlobalQ = C = { parent classes Ci = [Xi]};
5. Sort-on-Weight(C);
6. Process-GlobalQ();
7. FreeCnt + +;
8. while (FreeCnt 6= P )
9. if (GlobalF lg) then
10. FreeCnt− −; Process-GlobalQ(); FreeCnt + +;

Process-GlobalQ():
11. shared int classid = 0;
12. parallel for (i = 0; i < GlobalQ.size(); i + +)
13. if (compare and swap (classid, i, i + 1))
14. RDLB-Enumerate-Frequent-Seq(Ci);
15. GlobalF lg = 0;

RDLB-Enumerate-Frequent-Seq(PrevL):
16. for (; PrevL 6= ∅; PrevL = PrevL.next())
17. if (FreeCnt > 0) then
18. Add-to-GlobalQ(PrevL.next()); GlobalF lg = 1;
19. NewL = NewL ∪ Get-New-Classes (PrevL.item());
20. if (NewL 6= ∅) then RDLB-Enumerate-Frequent-Seq(NewL);

Fig. 12. The pSPADE Algorithm (using RDLB)

Figure 12 shows the pseudo-code for the final pSPADE algorithm, which
uses the recursive dynamic load balancing (RDLB) scheme. We start with the
parent classes and insert them in the global class list, GlobalQ. Each processor
atomically acquires classes from this list until all parent classes have been taken,
similar to the CDLB approach (Process-GlobalQ() on line 6 is the same as the
main loop in CDLB). Note that each parent class is processed in a BFS manner.

As each processor finishes its portion of the parent classes, and no more parent
classes are left, it increments the shared variable FreeCnt, and waits for more
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work. When a processor is processing the classes at some level, it periodically
checks if there are any free processors (line 17). If so, it keeps one class for itself,
and inserts the remaining classes at that level (PrevL) in GlobalQ, emptying
PrevL in the process, and sets GlobalF lg. This processor continues working on
the classes (NewL) generated before a free processor was detected. Note that all
idlist intersections are performed in the routine Get-New-Classes() (as shown in
Figure 5).

When a waiting processor sees that there is more work (i.e., GlobalF lg = 1),
it starts working on the classes in GlobalQ. Finally, when there is no more
work in the global queue, FreeCnt equals the number of processors P , and
the computation stops. To reiterate, any class inserted into the global queue is
treated as a parent class, and is processed in a purely breadth-first manner. If
and when a free processor is detected, a busy processor adds all classes on its
current level into the global queue for shared processing.

Let’s illustrate the above algorithm by looking at the computation tree in
Figure 7. The nodes are marked by the processors that work on them. First, at
the parent class level, P0 acquires C1, and P1 acquires C2. Since C2 is smaller,
P1 grabs class C3, and starts processing it. It generates three new classes at
the next level, NewL = {X1, X2, X3}, which becomes PrevL when P1 starts
the next level. Let’s assume that P1 finishes processing X1, and inserts classes
Z1, Z2 in the new NewL.

In the meantime, P0 becomes free. Before processing X2, P1 notices in line 17,
that there is a free processor. At this point P1 inserts X3 in GlobalQ, and empties
PrevL. It then continues to work on X2, inserting Y1, Y2, Y3 in NewL. P0 sees the
new insertion in GlobalQ and start working on X3 in its entirety. P0 meanwhile
starts processing the next level classes, {Z1, Z2, Y1, Y2, Y3}. If at any stage it
detects a free processor, it will repeat the procedure described above recursively
(i.e., inserting remaining classes in GlobalQ). Figure 7 shows a possible execution
sequence for the class C3. It can be seen that RDLB tries to achieve as good a
load balance as possible by keeping all processors busy.

The RDLB scheme of pSPADE preserves the good features of CDLB, i.e., it
dynamically schedules entire parent classes on separate processors, for which the
work is purely local, requiring no synchronization, and exploiting only inter-class
parallelism so far. Intra-class parallelism is required only for a few (hopefully)
small classes towards the end of the computation. We simply treat these as
new parent classes, and schedule each class on a separate processor. Again no
synchronization is required except for insertions and deletions from GlobalQ. In
summary, computation is kept local to the extent possible, and synchronization
is done only if a load imbalance is detected.

6 Experimental Results

In this section we present the parallel performance of pSPADE. Experiments
were performed on a 12 processor SGI Origin 2000 machine at RPI, with 195
MHz R10000 MIPS processors, 4MB of secondary cache per processor, 2GB of
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main memory, and running IRIX 6.5. The databases were stored on an attached
7GB disk in flat-files. Since there is only one I/O node in our setup, all disk I/O
is serial.

Dataset C T S I D Size

C10T5S4I1.25D1M 10 5 4 1.25 1M 320MB
C10T5S4I2.5D1M 10 5 4 2.5 1M 320MB
C20T2.5S4I1.25D1M 20 2.5 4 1.25 1M 440MB
C20T2.5S4I2.5D1M 20 2.5 4 2.5 1M 440MB
C20T2.5S8I1.25D1M 20 5 8 1.25 1M 640MB
C20T5S8I2D1M 20 5 8 2 1M 640MB
C5T2.5S4I1.25DxM 5 2.5 4 1.25 1M-10M 110MB-1.1GB

Table 1. Synthetic Datasets

Dataset MinSup # FreqSeq Time(P=1) #Seq/Time

C10T5S4I1.25D1M 0.25% 96344 379.7s 254
C10T5S4I2.5D1M 0.33% 180381 625.5s 289
C20T2.5S4I1.25D1M 0.25% 67291 270.3s 249
C20T2.5S4I2.5D1M 0.25% 80648 240.4s 335
C20T2.5S8I1.25D1M 0.33% 55484 236.9s 234
C20T5S8I2D1M 0.5% 179999 1200.8s 150

Table 2. Sequential Time and Number of Frequent Sequences

Synthetic Datasets: We used the publicly available dataset generation code
from the IBM Quest data mining project [19]. These datasets mimic real-world
transactions, where people buy a sequence of sets of items. Some customers
may buy only some items from the sequences, or they may buy items from
multiple sequences. The customer sequence size and transaction size are clustered
around a mean and a few of them may have many elements. The datasets are
generated using the following process. First NI maximal itemsets of average
size I are generated by choosing from N items. Then NS maximal sequences
of average size S are created by assigning itemsets from NI to each sequence.
Next a customer of average C transactions is created, and sequences in NS are
assigned to different customer elements, respecting the average transaction size
of T . The generation stops when D customers have been generated. Like [6] we
set NS = 5000, NI = 25000 and N = 10000. Table 1 shows the datasets with
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their parameter settings. We refer the reader to [5] for additional details on the
dataset generation.

Table 2 shows, for the different datasets, the minimum support used in the
experiments reported below, the total number of frequent sequences found, the
serial time, and the number of frequent sequences enumerated per second (note:
the number of intersections performed is 2-3 times higher). The distribution of
frequent sequences as a function of length is plotted in Figure 13. The figure also
shows the total number of frequent sequences obtained and the total number
of joins performed. The number of joins corresponds to the total number of
candidates evaluated during the course of the algorithm.
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Fig. 13. Number of Frequent Sequences and Candidate Joins

6.1 Serial Performance

The performance of SPADE, the serial version of pSPADE, was studied in [4],
and it was compared against GSP [6]. It was shown that SPADE outperforms
GSP by more than an order of magnitude if we pre-process the data and store
the supports of all frequent 2-sequences above a minimum threshold. The per-
formance comparison of SPADE vs. GSP is shown in Figure 14.

There are several reasons why SPADE outperforms GSP:

1. SPADE uses only simple temporal join operation on idlists. As the length
of a frequent sequence increases, the size of its idlist decreases, resulting in
very fast joins.

2. No complicated hash-tree structure is used, and no overhead of generating
and searching of customer subsequences is incurred. These structures typi-
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Fig. 14. Serial Performance: SPADE vs. GSP (0.25% Minimum Support;
D200K)

cally have very poor locality [3]. On the other hand SPADE has good locality,
since a join requires only a linear scan of two lists.

3. As the minimum support is lowered, more and larger frequent sequences are
found. GSP makes a complete dataset scan for each iteration. SPADE on
the other hand restricts itself to only a few scans. It thus cuts down the I/O
costs.

These benefits of SPADE carry over to pSPADE. For these reasons we chose not
to parallelize GSP for comparison against pSPADE. It should be noted that it
is possible to optimize GSP further to reduce the number of database scans by
generating candidates of multiple lengths at the same time (if memory permits).
However, the base GSP, as described in [6] does not do this.

6.2 Parallel Performance

Data vs. Task Parallelism We first present the results for the level-wise idlist
data parallel algorithm we described in Section 5.2. Figure 15A) shows the results
for four databases on 1, 2, and 4 processors. We find that the data parallel
algorithm performs very poorly, resulting in a speed-down with more processors.
The level-wise approach does well initially when the number of tree nodes or
classes is relatively few. However, as computation progresses more and more
classes are generated and consequently more and more barriers are performed.
In fact there are almost as many classes as there are frequent itemsets, requiring
as many barriers. For example, for the C20T2.5S4I2.5D1M dataset, the data
parallel approach may have performed around 80648 barriers. Since data parallel
approach doesn’t perform well, we only concentrate on task parallelism in the
remainder of this section.
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Static vs. Dynamic Load Balancing. We now present results on the effect of
dynamic load balancing on the parallel performance. Figure 15B) shows the
performance of pSPADE using 8 processors on the different databases under
static load balancing (SLB), inter-class dynamic load balancing (CDLB), and
the recursive dynamic load balancing (RDLB). We find that CDLB delivers
more than 22% improvement over SLB in most cases, and ranges from 7.5% to
38% improvement. RDLB delivers an additional 10% improvement over CDLB
in most cases, ranging from 2% to 12%. The overall improvement of using RDLB
over SLB ranges from 16% to as high as 44%. Thus our load balancing scheme
is extremely effective. All results reported below use the recursive dynamic load
balancing scheme.
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Fig. 15. A) Level-Wise Idlist Data Parallelism, B) Effect of Load Balancing

Parallel Time and Speedup. Figure 16 shows the total execution time and the
speedup charts for each database using the minimum support values shown in
Table 1. We obtain near perfect speedup for 2 processors, ranging as high as 1.91.
On 4 processors, we obtained a maximum of 3.2, on 8 processors the maximum
was 5.6, and on 12 the maximum speedup was 7.2. As these charts indicate,
pSPADE achieves relatively good speedup performance. However, the speedup
on C20T5S8I2D1M was not as good. If one looks at the distribution of the
frequent sequence lengths for C20T5S8I2D1M in Figure 13 we see that it has
many more large frequent sequences compared to other datasets, and has longer
idlist sizes as well. Many frequent items imply that there is more overlap of
items among the classes, and along with longer idlists this causes more disk
reads. In itself this is not a problem, but since the our SGI Origin system only
supports serial I/O, this results in increased disk contention, which in turn limits



Parallel Sequence Mining on Shared-Memory Machines 185

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12

T
o

t
a

l
 
T

i
m

e
 
(
s
e

c
)

Number of Processors

C10T5S4I1.25D1M

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

S
p

e
e

d
u

p

Number of Processors

C10T5S4I1.25D1M

100

200

300

400

500

600

700

0 2 4 6 8 10 12

T
o

t
a

l
 
T

i
m

e
 
(
s
e

c
)

Number of Processors

C10T5S4I2.5D1M

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 2 4 6 8 10 12

S
p

e
e

d
u

p

Number of Processors

C10T5S4I2.5D1M

0

50

100

150

200

250

300

0 2 4 6 8 10 12

T
o

t
a

l
 
T

i
m

e
 
(
s
e

c
)

Number of Processors

C20T2.5S4I1.25D1M

1

2

3

4

5

6

7

0 2 4 6 8 10 12

S
p

e
e

d
u

p

Number of Processors

C20T2.5S4I1.25D1M

0

50

100

150

200

250

0 2 4 6 8 10 12

T
o

t
a

l
 
T

i
m

e
 
(
s
e

c
)

Number of Processors

C20T2.5S4I2.5D1M

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 2 4 6 8 10 12

S
p

e
e

d
u

p

Number of Processors

C20T2.5S4I2.5D1M

40

60

80

100

120

140

160

180

200

220

240

0 2 4 6 8 10 12

T
o

t
a

l
 
T

i
m

e
 
(
s
e

c
)

Number of Processors

C20T2.5S8I1.25D1M

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 2 4 6 8 10 12

S
p

e
e

d
u

p

Number of Processors

C20T2.5S8I1.25D1M

200

300

400

500

600

700

800

900

1000

1100

1200

1300

0 2 4 6 8 10 12

T
o

t
a

l
 
T

i
m

e
 
(
s
e

c
)

Number of Processors

C20T5S8I2D1M

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12

S
p

e
e

d
u

p

Number of Processors

C20T5S8I2D1M

Fig. 16. pSPADE Parallel Performance



186 Mohammed J. Zaki

1M 2M 4M 8M 10M
00

25

50

75

100

125

150

175

200

C5T2.5S4I1.25

Number of Customers [millions]

To
ta

l E
xe

cu
tio

n 
Ti

m
e 

[s
ec

]

1M 2M 4M 8M 10M
00

0.5

11

1.5

22

2.5

33

3.5

44

4.5

C5T2.5S4I1.25

Number of Customers [millions]
R

el
at

iv
e 

Ex
ec

ut
io

n 
Ti

m
e

Fig. 17. Sizeup

0

10

20

30

40

50

60

70

80

90

0.250.10.0750.050.0250.01

T
o

t
a

l 
T

im
e

 
(
s
e

c
)

Minimum Support (\%)

C20T5S8I2D1M

C5T2.5S4I1.25D1M

0

100000

200000

300000

400000

500000

600000

700000

0.250.10.0750.050.0250.01

C
o

u
n

t

Minimum Support (\%)

C20T5S8I2D1M

# Frequent
# Join

1000

1500

2000

2500

3000

3500

4000

4500

0.250.10.0750.050.0250.01

S
e

q
u

e
n

c
e

s
/
T

im
e

Minimum Support (\%)

C20T5S8I2D1M

C5T2.5S4I1.25D1M

Fig. 18. Effect of Minimum Support (C5T2.5S4I1.25D1M)

the speedup possible for this dataset. The serial I/O is also one of the causes
preventing us from achieving better speedups on other datasets. The other reason
is that beyond 8 processors, there isn’t enough work for 12 processors, i.e., the
computation to overhead (class partitioning, disk contention, etc.) ratio is small.
Furthermore, while we do try to schedule disjoint classes on different processors,
we have made no attempt to fine-tune the affinity scheduling of threads and
the idlists accessed. Since the Origin is has NUMA architecture, there is further
scope for performance tuning by allocating groups of related classes to processors
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that are topologically close, or at least among the two processors on the same
node board (see Figure 6).

6.3 Scaleup

Figure 17 shows how pSPADE scales up as the number of customers is increased
ten-fold, from 1 million to 10 million (the number of transactions is increased
from 5 million to 50 million, respectively). The database size goes from 110MB to
1.1GB. All the experiments were performed on the C5T2.5S4I1.25 dataset with a
minimum support of 0.025%. Both the total execution time and the normalized
time (with respect to 1M) are shown. It can be seen that while the number of
customers increases ten-fold, the execution time goes up by a factor of less than
4.5, displaying super-linear scaleup.

Finally, we study the effect of changing minimum support on the parallel
performance, shown in Figure 18. We used 8 processors on C5T2.5S4I1.25D1M
dataset. The minimum support was varied from a high of 0.25% to a low of 0.01%.
Figure 18 shows the number of frequent sequences discovered and the number of
joins performed (candidate sequences) at the different minimum support levels.
It also shows the number of frequent sequences enumerated per second. Running
time goes from 6.8s at 0.1% support to 88s at 0.01% support, a time ratio of 1:13
vs. a support ratio of 1:10. At the same time the number of frequent sequences
goes from 15454 to 365132 (1:24), and the number of joins from 22973 to 653596
(1:29). The number of frequent sequences are, in general, not linear with respect
to the minimum support. In the worst case, the number of sequences increase
exponentially with decreasing support. However, it appears that for the range
of support values we looked at the execution time is near-linear. It is interesting
to note that the efficiency of pSPADE increases with decreasing support, i.e., it
lists more frequent sequences per second on lower support values.

7 Conclusions

In this paper we presented pSPADE, a new parallel algorithm for fast mining of
sequential patterns in large databases. We carefully considered the various par-
allel design alternatives before choosing the best strategy for pSPADE. These
included data parallel approaches like idlist parallelism (single vs. level-wise)
and join parallelism. In the task parallel approach we considered different load
balancing schemes such as static, dynamic and recursive dynamic. We adopted
the recursive dynamic load balancing scheme for pSPADE, which was designed
to maximize data locality and minimize synchronization, by allowing each pro-
cessor to work on disjoint classes. Finally, the scheme minimizes load imbalance
by exploiting both inter-class and intra-class parallelism. An extensive set of
experiments was been conducted on the SGI Origin CC-NUMA shared memory
system, to show that pSPADE has good speedup and excellent scaleup proper-
ties.

This work opens several research opportunities, which we plan to address in
future work:
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1. pSPADE works on the assumption that each class and its intermediate idlists
fit in main memory. The mean memory utilization of pSPADE is less than
1% of the database size, but the maximum usage may be as high as 10% [16].
This means that on our Origin system, we can handle around 20GB datasets.
One solution for handling larger datasets is to write intermediate idlists to
disk when we exceed memory. This requires minimal modification to the
pSPADE. However, we need to consider the case where even a single idlist
may not fit in memory. In this case we bring in the portion of the two
idlists that fit in memory and perform joins on the memory-resident portions,
repeating the process until the two list have been joined completely. We plan
to implement these techniques in the future.

2. Extending pSPADE to run on CLUMPS or clusters of SMP machines, which
are becoming increasingly popular. We could utilize pSPADE on each SMP
node, while message passing would be required for load balancing among
nodes.

3. pSPADE uses only simple intersection operations, and is thus ideally suited
for direct integration with a DBMS. We plan to implement pSPADE directly
on top of a parallel DBMS.

4. Extending pSPADE for parallel discovery of quantitative and generalized
sequences – where the quantity of items bought is also considered, and where
we introduce time gap constraints, sliding windows, and impose a taxonomy
on the items, respectively.
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Abstract. Classification and regression are fundamental data mining
techniques. The goal of such techniques is to build predictors based on
a training dataset and use them to predict the properties of new data.
For a wide range of techniques, combining predictors built on samples
from the training dataset provides lower error rates, faster construction,
or both, than a predictor built from the entire training dataset. This
provides a natural parallelization strategy in which predictors based on
samples are built independently and hence concurrently. We discuss the
performance implications for two subclasses: those in which predictors
are independent, and those in which knowing a set of predictors reduces
the difficulty of finding a new one.

1 Introduction

Many data mining algorithms generate predictors. A training dataset, consisting
of a large set of input vectors and label pairs, is provided. The goal is to build a
predictor that predict labels for previously unseen vectors. The error rate is the
fraction of examples that are misclassified by the predictor. Predictors can be
ranked by their error rate, which may be determined using a test dataset or an
estimation technique. If the labels being predicted are class labels, the process
is called classification; if the labels are numeric, the process is called regression
[2].

In practice, the size of the training dataset is extremely large, and the number
of computations needed to build a predictor large as well. It is natural to consider
using parallelism to build predictors more quickly, or to make it possible to use
more sophisticated predictors than would otherwise be possible.

In this paper we discuss, in an algorithm-independent way, the computation,
data access, and communication requirements of two classes of predictor-building
data mining algorithms. We show that parallelism can be expected to provide
almost linear speedup for one class, and superlinear speedup for the second.
This superlinear speedup does not depend on architectural idiosyncrasies, but
on fundamental properties of the underlying algorithms.

A sequential predictor-building algorithm must perform computations, and
must access the data of the training dataset. Let w denote the computation
required, in units of instruction executions (or, equivalently, clock cycles). The
time required for data access is the product of the number of elements accessed,
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say d, and the time per access, say r. If r is also expressed in units of instruction
times, then the data access time for an algorithm, dr, is in the same units as
w. Note that r is typically in the range of hundreds to thousands of instruction
times. The time complexity of a sequential data mining algorithm has the form
w + dr or MAX(w, dr) or something in between depending on how data access
is overlapped with computation.

2 Exploiting Parallelism in Generating Predictors

Suppose that we want to parallelize an arbitrary algorithm using p processors.
The best we can hope for is that the computation has been perfectly divided be-
tween the processors, so that the parallel computation time is w/p. Similarly, the
data access time could have been divided perfectly so that it is dr/p. However,
any non-trivial parallel algorithm will require some communication between pro-
cessors during its execution, and this will add to the overall cost of the program.

Suppose that the total amount of communication required by the parallel
program is c (say c messages of fixed size for simplicity). The effect of this
communication on the overall time cost of the program depends on how the
communication is arranged, in particular how balanced it is. Suppose, for exam-
ple, that all of the communication originated at one processor. Then the time
taken to complete it would be cg, where g is the cost of sending one message
(again, expressed in units of instruction times for consistency). However, if the
required communication is balanced, so that each processor sends c/p messages,
then the time taken for communication is cg/p.

Thus the cost of a parallel version of a sequential algorithm with computation
w, data access dr, and balanced communication is at best:

parallel cost =
w

p
+

dr

p
+

cg

p

=
seq cost

p
+ communication overhead

(Possibly the maximum of these three terms could be used instead, but it makes
little difference to the conclusions we draw.) The communication overhead can
be reduced by (a) communicating infrequently, (b) communicating small data,
or (c) communicating in a balanced way.

Parallel programs also suffer performance penalties from another kind of im-
balance: of the intervals between communication. This synchronization overhead
means that one processor must wait for another to reach a consistent state be-
fore both can proceed. It is reduced by dividing the work (computation and data
access) evenly among the processors – but of course it is not possible in general
to predict these quantities accurately in advance.

When approaching an application domain such as data mining, it is tempting
to parallelize algorithms in a fine-grained way. This temptation is to be resisted
since it tends to cause large volumes of communication, and a great deal of syn-
chronization overhead (for the same reasons that humans do not perform well
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when ‘micro-managed’). Fortunately, the structure of most predictor-building
algorithms is such that coarse-grained parallelization strategies work well. In
general, the following properties have been observed across a wide range of pre-
dictors:

– Using a relatively small subset (a few percent) of the training dataset pro-
duces a predictor that is fairly accurate (within a few percentage points);

– Using the entire training dataset produces a predictor that is more accurate,
but

– Combining predictors trained on subsets of the training dataset produces the
best predictors of all (combining may be done by voting, for classification;
by averaging for regression; and by true merging when a technique for doing
do is known).

This last technique, pasting together predictors trained on different subsets of
the training dataset, naturally lends itself to parallelism. Instead of sequentially
generating training data subsets and building predictors on each one, we can
generate data subsets by partitioning and build predictors independently at dif-
ferent processors. The merging step differs depending on exactly what kind of
predictor is being built, but the sequential merge implied above is easily replaced
by a parallel merge, provided that the merge operation itself is associative (as
voting or averaging are).

Pasting techniques tend not to be very sensitive to the size of sample used
to train each predictor. Intuitively, a small sample is unlikely to represent the
training data well. As the sample size increases, the sample becomes an increas-
ingly accurate representation of the training data, from which almost all the
knowledge can be extracted at reduced cost. The curve of accuracy of prediction
against sample size typically shows a very sudden jump from poor accuracies to
quite good ones – and often at samples whose size is both absolutely quite small
(< 50, say) and a small fraction of the training dataset (a few percent).

There are two different classes of predictors for which parallelization differs
slightly, while parallel performance differs a lot; when

A. The work required to build a predictor depends only on the amount of data
used to build it; or

B. The work required to build a predictor depends on the amount of data used
to build it, but can be reduced if other predictors are already known.

An example of the first kind of predictor is a decision tree. Decision trees are
brittle in the sense that small changes in the training data give rise to very dif-
ferent trees. It has been shown [5,3] that generating decisions trees from subsets
of the training data and then using voting to determine class labels has smaller
error rates than generating a single decision tree. Here, the merge operation is
the addition of each newly-generated tree to a voting pool. It is even possible to
recreate the transparency of decision trees by merging this pool of trees into a
single tree, called a born-again tree [6].

An example of the second kind is neural networks. If a neural network is
trained using a deterministic technique then, after it has seen some data, it has
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accumulated an error vector. This error vector is an encapsulated predictor in
the sense that applying it to the current weight set produces a new neural net
that is a better predictor than the original. The merge operation is therefore the
application of an error vector to update a set of weights. In sequential neural
net learning, this updating can occur after a single example, or after a batch of
any size [1]. The particular error vector produced depends on how accurate the
network is already. The fixed amount of work required to learn from the next
batch produces better and better error vectors, improving the speed of learning
superlinearly [10].

Another example of the second kind in which predictor improvement is su-
perlinear is inductive logic learning [8,9]. Algorithms repeatedly find hypotheses
that account for the training data. Each accepted hypothesis ‘covers’ a part of
the training data which is not examined in subsequent steps. Hence, the more hy-
potheses that already exist, the smaller the work required to find the remaining
ones.

3 Parallelizing Independent Predictors

The essential structure of predictor-building algorithms of the first kind is:

while error rate still improving
generate a new predictor
merge it into the previous predictors

If the loop executes k times, then the sequential cost of such algorithms can
be expressed as:

cost = k [cost(predictor) + cost(merge)]

(The test for whether the error rate is improving may itself be significant for
some techniques, for example where a testing set is used. This would add another
term inside the brackets.)

Provided that the merge operation is associative (and we have seen that it
often consists of adding the newest predictor to a set), such algorithms can be
parallelized like this:

while error rate still improving
forall p

generate new predictors in each processor
merge the p predictors using a reduction

The parallel cost of this new formulation is:

parallel cost =
k

p
[cost(predictor) + log p cost(merge)]

Of course, the parallel formulation will require some communication during the
merge step, but the objects communicated are predictors, whose size is typically
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independent of the size of the data. Hence this term tends to be a small constant
(| predictor | g) that can be folded into the cost of the merge itself.

For small p, this cost formula gives approximately linear speedup. For large
p, the cost is dominated by the logarithmic term which becomes, in the limit, a
single reduction over p predictors.

Notice that we have assumed that the parallel algorithm examines a pth frac-
tion of the data at each processor. This is not necessary – as we discussed above,
a much smaller sample is likely to produce a predictor of the same accuracy.
Corresponding reductions in the cost(predictor) term are possible.

Two techniques for selecting the subsets of the training data used for pro-
ducing each predictor have been studied in the literature: bagging, and arcing
[3,4]. Bagging is uniformly random selection, while arcing (adaptive resampling
and combining) increases the relative likelihood of inclusion for objects that are
more likely to be misclassified. Arcing has also been called boosting [7]. The mo-
tivation for using such techniques in sequential prediction is twofold: to reduce
the stiffness of some classification techniques, and to reduce the work required to
build predictors. In some experiments, combining predictors built from samples
of a few hundred objects produced error rates comparable to training on entire
datasets with many thousands of objects.

Parallelism in training benefits from both the relative independence of train-
ing predictors in different processors (giving speedups proportional to p) and the
freedom to use small samples to build each predictor (which is also, of course,
available in sequential training). Because bagging requires random samples for
each processor, a mechanism to ensure that the data distributed to each proces-
sor is a random sample of the whole training dataset is necessary, but this can
be achieved by a ‘front end’ to the disk storage system that responds to requests
for data with a random subset of the dataset.

Parallelizing arcing predictors is more difficult, partly because it is not yet
understood how arcing works, although it is known to work well. The known
arcing algorithms have an apparent sequential dependency – the sample used
for training the i+1st predictor depends on either the ith predictor or all of the
previous predictors. An obvious parallelization strategy is to have all processors
exchange their newly-generated predictor at the end of each phase, and therefore
use all of the known predictors to generate their next data sample. It is unclear
what performance to expect from this algorithm, because our understanding of
arcing is still limited. It certainly does no worse than the sequential algorithm; it
seems intuitive that generating p times as many predictors at each phase should
provide at least linear speedup. It is even conceivable that parallel arcing might
be a dependent algorithm since having access to a larger set of predictors pre-
sumably makes it easier to find ‘difficult’ boundaries. Arcing seems remarkably
impervious to the precise structure of the algorithm, so there are grounds for
optimism.
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4 Parallelizing Dependent Predictors

The essential structure of predictor-building algorithms of the second kind is:

while error rate still improving and still work to do
generate a new predictor
merge it with the previous predictors

(reducing the remaining work)

Suppose that the amount of work required to compute the i + 1st predictor
is an α fraction (0 < α < 1) of the work required to compute the ith predictor.
The loop may still execute until the error rate stops improving, but would more
typically stop when there is no remaining work to be done. We express this using
some minimum remaining work such that the loop terminates when αk < min.
The sequential cost of such an algorithm can be expressed as:

cost =
k∑

i=0

[
αicost(predictor) + cost(merge)

]

Especially when α is much less than 1, such algorithms tend to terminate much
more quickly than those of the first kind.

The parallel version of such an algorithm has this structure:

while error rate still improving and work to do
forall p

generate new predictors in each processor
merge the p predictors using a reduction

(reducing the remaining work by the total amount
completed by all of the processors)

When such an algorithm is parallelized, we get speedup because of the use of
multiple processors. More importantly, we also get speedup because the i + 1st
iteration of the outside loop in all processors uses all of the progress in the
previous loop.

The parallel complexity can be expressed as:

parallel cost =
k/p∑
i=0

[
αipcost(predictor) + cost(merge)

]

Thus on the first iteration using, say, 4 processors, each processor examines all
of its data. On the second, however, each need only examine an α4 fraction of
the data, on the next an α8 fraction, and so on. This reduces the computation
component substantially, although the required communication is reduced only
to the extent that the total number of iterations is reduced.

Whether or not sampling, in the sense of bagging or arcing, can be used in
algorithms such as these depends on the data mining technique used. For neural
network training, batch learning is a sampling technique. On the other hand,
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inductive learning is a covering technique and, as such, all training data must
be seen and accounted for.

The parallelization technique discussed in this section has been applied to
both neural network learning [10] and inductive logic learning (Yu Wang, un-
published work) and significant speedups from both sources do occur.

5 Discussion and Conclusions

We have presented an analysis of the parallel complexity of prediction treat-
ing sequential algorithm, in their plain or sample-based forms, as black boxes.
We have shown that techniques based on pasting together predictors trained on
samples have relatively small overheads when parallelized. Hence, as well as the
performance gains of the pasting approach, they may be expected to demon-
strate almost linear speedup. Techniques in which the work required to generate
the next predictor is reduced by the existence of previous predictors allow each
processor to benefit from the construction of p predictors in the time it takes
to generate one. Hence, as well as the almost linear speedup due to parallelism,
they exhibit another speedup due to this sharing of common progress. Our cal-
culations suggest that there is more to be gained by parallelizing data mining at
large grain, using the replicated sequential algorithm as a building block, than
in trying to parallelize algorithms internally.
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Abstract. Multidimensional aggregates are frequently computed to im-
prove query performance in Online Analytical Processing applications.
We present a new method for decision tree based classification trees using
the aggregates computed in the multidimensional data model. The struc-
ture imposed on data in a explicit multidimensional storage mechanism
leads to efficient dimensional operations. Decision tree based classifica-
tion algorithms perform computations to find the best split point at each
node of the tree. Efficient computation of the split in the decision tree
can be done by using the one-dimensional aggregates if the cell values
are the class-id values, and counts are maintained for each class. This is
used repeatedly at the nodes of the decision tree to calculate splits and
manage data. Previous parallel approaches for decision-tree based clas-
sification use sorted attribute lists and hash tables to compute the split
point and split the data appropriately. The amount of data communi-
cated is proportional to the product of number of records in the training
set, and the number of dimensions, at each level of the tree, in the worst
case. Parallel formulation of our approach uses data communication pro-
portional to the product of the sum of cardinality of all dimensions and
the number of non-classified nodes at each level of the tree. Communica-
tion volume is greatly reduced in our approach and is done in one phase
of communication at each level of the tree, by coalescing messages. Pre-
liminary results from our experiments on a coarse-grained, distributed
memory parallel machine (IBM-SP2) show good performance.

1 Introduction

Classification of large data sets has received considerable attention in the data
mining literature recently. The objective of classification is to build a model of the
classifying attribute based upon the other attributes of the record. A set of sam-
ple records called the training data set is given, consisting of several attributes.
Attributes can either be continuous, if they come from an ordered domain, or
categorical, if they are from an unordered domain. One of the attributes is the
classifying attribute that indicates the class to which the record belongs. Several
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classification models have been used in the past, notably neural networks [1], ge-
netic algorithms [2], and decision trees [3,4]. Among these models, the decision
tree models are considered to be the most useful in the domain of data mining
because they are relatively inexpensive to construct, easy to interpret and easy
to integrate with data base systems. Also, for a variety of problem domains they
yield comparable or better accuracy as compared to the other models [1].

A decision tree recursively partitions the training set until each partition
consists entirely or dominantly records from one class. Each non-leaf node of the
tree contains a split point which is a test on an attribute and determines how the
data is partitioned. Once the decision tree is built from the training set it can
be used to classify future instances. The decision-tree based classifiers that can
handle large data sets are important because use of larger data sets improves
the classification accuracy [1].

Previous work in classifying large data sets has been to use sampled data sets
or multiple partitions of the data set [1,5]. Recent work has focused on using the
entire data set, in classifiers like SLIQ [6] and SPRINT [7]. A parallel classifier
in the same spirit has been developed in ScalParC [8]. Classifiers like CART [3]
and C4.5 [4] perform sorting at every node of the decision tree, which makes
them expensive for large data sets since disk-based sorting is required at each
node. The approach of SPRINT, SLIQ is to sort the continuous attribute once
in the beginning and maintain the sorted order in the subsequent splitting steps.
Separate lists are kept for each attribute which maintains a record identifier for
each sorted value. In the splitting phase the same records need to be assigned
to a node, which may be in a different order in the different attribute lists. A
hash table is used to provide a mapping between record identifiers and the node
to which it belongs after the split. This mapping is then probed to split the
attribute lists in a consistent manner. A framework for instantiating several of
these algorithms is presented in [9], which uses attribute value and class-label
pairs (AVC-sets) to make the splitting criteria decision. It is also a greedy top-
down approach as the others, except that it works on the AVC-sets at each node
of the decision tree. This allows it to use memory more efficiently and perform
much better than the attribute-list approaches.

Table 1. Training set data

Row-id Age Car-Color Gender Class-id

0 10 Green F 0

1 50 Blue M 1

2 40 Yellow F 0

3 30 Green F 0

4 20 Red M 1

5 40 Blue M 0

6 20 Yellow M 1
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Fig. 1. (a) Classification tree for training set (b) Classification tree embedded
on a cube

Table 1 is an example training set with three attributes, Age, Car color and
Gender, and a class attribute. Age is a continuous attribute, whereas both Car
color and Gender are categorical attribute. For a categorical attribute having c
distinct classes it is assumed that the splitting decision forms c partitions, one
for each of its values. Figure 1(a) shows the classification tree for it. At each
node the attribute to split is chosen that best divides the training set. Several
splitting criteria have been used in the past to evaluate the goodness of a split.
Calculating the gini index is commonly used [3]. This involves computing the
frequency of records of each class in each of the partitions. If a parent node
having n records and c possible classes is split into p partitions, the gini index
of the ith partition is ginii = 1 − ∑c

j=1(nij/ni)2, where ni is the total number
of records in partition i, of which nij records belong to class j. The gini index of
the total split is given by ginisplit =

∑p
i=1(ni/n)ginii. The attribute with the

least value of ginisplit is chosen to split the records at that node. The matrix
nij is called the count matrix. The count matrix needs to be calculated for each
evaluated split point for a continuous attribute.

Categorical attributes have only one count matrix associated with them,
hence computation of the gini index is straightforward. For the continuous at-
tributes an appropriate splitting value has to be determined by calculating the
ginisplit and choosing the one with the minimum value. If the attribute is sorted
then a linear search can be made for the optimal split point by evaluating the
gini index at each attribute value. The count matrix is calculated at each pos-
sible split point to evaluate the ginisplit value. The gini index calculations and
the node splits for the example above are given in Figure 2. At Node 0, the
attribute Gender yields the optimal ginisplit value of 0.214. This creates a split
with one partition with M values for gender and another with F values. After
this split is made, two child nodes are created. The record values need to be
partitioned consistently between the two nodes for the split-attribute and the
non-split attributes. Splitting the split-attribute is straightforward by adjusting
pointer values. The challenge is to split the non-split attributes efficiently. Ex-
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Fig. 2. Gini index calculation for the attributes and node splitting

isting implementations such as SPRINT and ScalParC maintain a mapping of
the row-id and class-id with the values assigned to each node. The values are
split physically among nodes, such that the continuous attribute maintain their
sorted order in each node to facilitate the sequential scan for the next split de-
termination phase. A hash list maintains the mapping of record ids to nodes.
The record ids in the lists for non-splitting attributes are searched to get the
node information, and perform the correct split.

2 Proposed Classification Using Multidimensional
Aggregates

Multidimensional analysis, OLAP queries and association rule mining are per-
formed efficiently using the materialized aggregates in the data cube. A multidi-
mensional chunk based infrastructure for OLAP and multidimensional analysis
for high dimensional data is developed in [10], which optimizes the building of
the data cube operator [11]. In this model an attribute is treated as a dimension,
and records are points in a multidimensional space. Dimensional operations can
be performed more efficiently in such a model since a structure is imposed in
the storage of data. Multidimensional arrays are the most intuitive and simple
structures for this. However, data sets with large dimension cardinalities and
a high number of dimensions cannot be handled using arrays. Also, most data
sets are sparse and multidimensional arrays lead to redundant storage in such a
scenario. We have used a chunk based implementation to sparse data in a bit-
encoded sparse structure (BESS) which encodes the indices of the element in a
chunk. Dimensional operations are efficiently performed on compressed chunks,
which allow a large number of dimensions to be used.

We propose that classification trees can be built using structure imposed on
data using the multidimensional data model. Gini index calculation relies on the
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count matrix which can be efficiently calculated using the dimensional model.
Each populated cell represents a record in the array. For the base cube (which is
a multidimensional representation of the records without any aggregation) the
class value of the record is stored in each cell. The gini index calculation uses
the count matrix which has information about the number of records in each
partition belonging to each possible class.
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To evaluate split points for a continuous attribute the ginisplit needs to be
evaluated for each possible split point in a continuous attribute and once for a
categorical attribute. This means the aggregate calculations present in each of
the 1 dimensional aggregates can be used if they have number of records belong-
ing to each class. Therefore for each aggregate we store the number of records in
each class. Figure 3(a) gives an example training set with two dimensions, A, a
continuous dimension and B a categorical dimension and two class values 0 and
1.

Figure 3(b) is the corresponding multidimensional model. The continuous
dimensions A is stored in the sorted order. The aggregates store the number of
records mapping to that cell for both classes 0 and 1. To calculate the ginisplit

for the continuous attribute attribute A it is now easy to look at the A aggregate
and sum the values belonging to both classes 0 and 1 on both sides of the split
point under consideration to get the count matrix. Gini index calculation is done
on an attribute list which in the case of a multidimensional model is a dimension.
Count matrix is repeatedly calculated on the sorted attribute list which is readily
available in the cube structure as a higher level one dimensional aggregate. Each
dimension is sorted in the dimensional structure as shown in Figure 3(b).

Figure 4 illustrates the classification tree building process using the multidi-
mensional model and the aggregates maintained at the highest level of the cube
structure, one for each dimension.

The challenge is to calculate the one dimensional aggregates efficiently and
keep them updated to reflect the partitions after each split. The simple method
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Fig. 4. Gini index calculation for the attributes and node splitting with multi-
dimensional aggregates

of computing each level 1 aggregate is to do so from base data. Some alternative
strategies that enumerate some intermediate values to optimize the computation
of the one-dimensional aggregates have been described in [12].

3 Related Work

In this section we will briefly discuss the previous efforts in parallel classifica-
tion [13,7,8] on distributed memory machines, significant of which are parallel
SPRINT [7] and ScalParC [8] since they do not require resorting at each node.
Classification on fine-grained shared memory machines has addressed in [14].
The issues involved on such architectures are much different than distributed
memory machines and hence we do not discuss that work here.

Parallelization of tree methods, especially multidimensional binary search
trees (k-d trees), quadtrees and octrees for hierarchical methods have received
considerable attention in the areas of scientific processing [15]. Classification
trees fall under a similar paradigm.

The parallel version of SPRINT partitions each attribute list by sorting each
one using a parallel sort with probabilistic splitting. This gives approximately
equal sections to each processor of each sorted attribute list. Split points are
found by first doing a prefix sum operation for the count of values below and
above the first split point on each processor followed by building the count ma-
trices locally on each processor. After calculating the gini index locally, the pro-
cessors communicate to determine which split point has the lowest value. Since
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there is only one count matrix for categorical attributes, they are constructed
locally and one processor collects the global count and calculates the gini values.

Each processor splits its splitting attribute list locally. rids are collected
from all processors to build the hash table on each processor. The non-splitting
attribute lists then probe this table with rids to determine the split locally. This
has a space complexity of O(N) and makes it unscalable in memory requirements.
ScalParC on the other hand maintains a distributed hash table for the splitting
phase which has a space complexity of O(N/P ). However, the splitting phase is
slightly different in their case. A distributed hash table, called the node table is
maintained by hashing a rid with a hash function h(rid) = (p = rid div N/P, l =
rid mod N/P ), where the first field is the processor number and the second is the
local index on that processor. After the splitting decision, each processor uses the
rids of the split attribute to construct hash buffers with (l, child) entry destined
for all processors p calculated by the hash function. An all-to-all personalized
communication phase exchanges these to update the distributed node table.
For each non-split attribute list, the distributed node table is queried by filling
out a communication buffer with rids (enquiry buffer) and sending it to the
processor p which then fills it with the child label and sends it back. Two all-
to-all personalized communication phases are needed to achieve this.

The size of the node table at each level is usually of size O(N/P ). Also, each
processor sends O(N/P ) elements from each of the non-splitting attribute list.
However, there are cases when a processor has to hash all global rids at some
level and the other processors need to send O(N) elements to be queried by the
node table on a single processor [8]. Hence, the worst case complexity is O(N).

4 Parallel Classification Using Multidimensional
Aggregates

Parallel classification on the multidimensional cube is similar to the sequential
classification algorithm, except the fact that each processor calculates the ag-
gregates locally and then needs to update counts for each partitioned dimension
from other processors. This is done by a communication phase which calculates
a prefix sum on the first split point for continuous attributes since each split
point is evaluated by computing the ginisplit . For categorical attributes, how-
ever, a processor can sum the counts for a value of the categorical dimension
and calculate the gini index. Note that separate processors can compute the gini
value for a categorical attribute.

4.1 Dimension Partitioning and Gini Index Calculation

Figure 5 shows a one dimensional partitioning of the multidimensional base cube
and the associated local aggregate calculations. Each processor builds the ag-
gregate locally and for each continuous attribute determines the gini index for
the values that lie in its partition. For non-distributed dimensions, each proces-
sor locally calculates the aggregates and then does a reduce all (sum) on the
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aggregates for each such dimension. Each processor then works on a part of the
aggregate list to calculate the gini index values. This results in computation be-
ing partitioned between processors. If the size of the dimension i is di, then each
processor Pj, 0 ≤ j < P , calculates the gini index from (di/P )Pj to (di/P )Pj+1

for each dimension. For categorical attributes also the computation can be dis-
tributed similarly if a reduce all is performed on the aggregated dimensions.
Otherwise a reduce (sum) operation gets the aggregates on a single proces-
sor which does the calculation. Since dimensions with categorical attributes are
usually small we use the latter approach.
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Fig. 5. One and two dimensional partitioning of dimensions

Another alternative is to perform a two dimensional partitioning by selecting
the two largest dimensions and partitioning the multidimensional base cube on
a 2-dimensional processor grid as shown in Figure 5. This may provide better
load balancing in some cases. The communication pattern for the two distributed
dimension changes but remains the same for the rest. The non-distributed di-
mensions get the aggregates locally and do a reduce all (sum) to sum each di-
mensional aggregate independently on each processor. Each processor then works
at calculating the gini index in contiguous portions as in the one-dimensional
partitioning case. For the distributed dimension A in the figure the reduce for
the dimension on processor Pj is done on processor (Pj/PY )PY , where P the
number of processors is divided into a two dimensional grid in the dimensions X
and Y as PX × PY . The processors P0 + i ∗ PY , i = 0, . . .PX then calculate the
local sums of class ids and need a prefix sum to get the values updated across
processor boundaries with the number above and below in each class. Each of
these processors then calculates the gini index for the local dimension values.
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Similarly, for dimension B a reduce operation is done on processor Pj%PY

and again a prefix sum is done between processors P0 + i, i = 0, . . .PY to
calculate the gini index locally.

4.2 Node Splits

Once the ginisplit is calculated for all attributes (dimensions), each processor
picks out the minimum and the attribute it is related to. A Reduce (minimum)
gets the minimum and the attribute which is the split attribute. Each processor
then partitions the split attribute locally. Each processor maintains a mapping
of dimension indices to the node they belong to, as they are split. In other
words, a global tree representation is present on each node. Each node keeps the
dimensional boundaries of the dimensions split, defining a hypercube the node
encapsulates. The aggregates are then calculated within the node boundaries.
The communication required is for each dimension, but now there are multiple
count values, one for each active node which has not yet been classified.

Let na be the number of attributes (dimensions) divided into nd, the set
of distributed dimensions and nu, the set of non-distributed dimensions. For
non-distributed dimensions these need to be aggregated using a Reduce (sum)
on all processors to distribute the computation of the gini index calculation.
The amount of data communicated at a level k of the classification tree is
O(N k

n |Du|), where N k
n is the number of active nodes at a level k, and |Du|

is the sum of dimension sizes of dimensions di ∈ nu. For a distributed dimen-
sion a local aggregation is done for each dimension for each node and then a
Parallel prefix (sum) is done. The data communicated for this operation at
level k is O(N k

nnd). The total data communicated at level k of the classification
tree is then O(N k

n (|Du| + nd)) = O(N k
n |Da|), |Da| = |Du| + |Dd|, because the

number of split dimensions is usually one or two. This is the case for our imple-
mentation where the optimization of message-coalescing, reduces the number of
communication messages by combining the messages as one buffer.

For the scalable record based classification algorithm (ScalParC) the com-
plexity of communication at each level is O(na

N
P ) at each level and O(naN)

in the worst case, where N is the size of the training set. The number of ac-
tive nodes at any level is much smaller than the size of the training set. Also,
the sum of dimension sizes, |Da|, is also much smaller when compared to N .
Thus, N k

n × |Da| < N , for a large N . This makes the overall communication re-
quirement of our multidimensional classification algorithm better. Computation
of the 1-D aggregates and the gini index calculations has the time complexity
O(N

P
+ NnDa) in our method, whereas ScalParc requires O(N

P
na), to compute

the gini indices and O(Nna) in the worst case.
A broadcast of the prefix sum from the last processor is followed by the local

calculation of the gini index and a Reduce (minimum) for the gini value which
determines the attribute used for the split. Notice that for a non-distributed cat-
egorical attribute B the calculation is distributed across processors by letting
each processor work on a section since all information is available on each pro-
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cessor as a result of the reduce. Suppose the ginisplit results in selecting A = 25
as the split point in the example.
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Fig. 6. Node split of dimension A = 25, and the count arrays for each node

Figure 6 shows the split at each processor into L and R nodes labeled 00 and
01 respectively. The counts of each dimension are done for each node on each
processor. The steps for parallel gini index calculations are done for each node
on every processor. Communication can be concatenated for the nodes at each
level following the idea of concatenated parallelism in [15] for each active node.

4.3 Communication Optimizations

Only one collective communication operation is performed for all nodes at each
level. This is due to the fact that information that needs to be communicated for
all nodes is stored contiguously. Each node has the counts of class id. values for
each dimension. This is combined using a Reduce (sum) operation across all
nodes as described in a previous section. The count matrices for each dimension
are allocated contiguously for each active node as shown in Figure 7. Each node
allocates memory for each dimension, di, for each class. At each level only the
unclassified nodes (active nodes) are represented and need to participate. Algo-
rithm 1 describes the steps of the overall parallel algorithm for classification.

5 Performance Results

We use the synthetic data generator introduced by Agrawal et al. in [16]. It is a
widely used synthetic set used by many others, primarily because there are no
large real data sets available.
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Algorithm 1. Multidimensional Classification Algorithm

/* set the root node to represent the entire multidimensional space */
for i ← 0 to k

begini = 0
endi = |di|

n active nodes = 1;
while(n active nodes > 0)

For each chunk c
Get chunk boundary values in each dimension

For each active node j, (0 ≤ j < n active nodes)
Determine if chunk c is contained within node j,[begini, endi), for all i, else if
it overlaps or else not in range.

For each active node j, (0 ≤ j < n active nodes)
Compute the contribution of chunk c to 1-dimensional aggregate if the chunk is inclu-
sive or overlapping to the node j.

One Reduce (sum) communication operation for consolidating k 1-dimensional aggregates
on all processors.
For each active node j, (0 ≤ j < n active nodes)

Check if node j is already classified within the threshold level.
If the node is not classified

For each attribute i, 0 ≤ i < k,
Compute gini indices for each dimension i recording the minimum value
and corresponding i (spliti) and the split point.

Update for the child node, begini and endi for spliti using the split point and
copy the others from the parent node j.
Add the number of child nodes to the count of active nodes.

Update n active nodes as the count of child nodes.
end
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The synthetic set has nine attributes as shown in Table 2. U(x : y) denotes
the integer uniform distribution with values v : x ≤ v ≤ y. The data set can be
generated with different classification functions that assign labels to the records
produced. We use Function 1, which is the default, for our performance study.
We have used various subsets of the data to evaluate the performance of our al-
gorithm, varying the number of dimensions, the number of records and the clas-
sification threshold. We observe good speedup and scale-up performance for our
experiments performed mainly on a 16 node IBM SP2 with thin nodes (120Mhz
processor) running AIX and having 128 MB main memory per processor. We
present a subset of our results in this section to illustrate performance.

Table 2. The sizes of the dimensions in data set used

Predictor Attribute Distribution Max. number of entries

Salary U(20K,150K) 131

Commission 0, if(salary > 75K) else U(10K,75K) 66

Age U(20, 80) 61

Education U(0, 4) 5

Car U(1, 20) 20

Zip Code U(nine zip codes) 9

House Value U(0.5× k × 100K,1.5× k × 100K)
k depends on ZipCode 1351

Home Years U(0, 30) 31

Loan U(0, 500K) 501

Figure 8(a),(b) shows the time for classifying 1 million and 5 million records
with 8 dimension (again without Loan attribute) and classification threshold
value set to T = 0.8. The 5 million records data set is We observe that most
of the time is taken for the 1 dimensional aggregate calculations and the gini
computations, a small fraction taken by communication and maintenance of the
classification tree.

Figure 8(c) shows the classification performance for a 9 dimensional data
set with 1 million records. The major component of the computation is the 1-
dimensional aggregate calculations for all nodes. This is the parallel component
and we see good speedup as the number of processors is increased. The other
phases of communication and gini index calculations as shown in the figure are
small portions of the entire time. Communication increases slightly as number
of processors increase, due to the increase in p term in the complexity of the
Reduce global communication operation. We are currently running experiments
with larger data sets and will include the results in the final version.



Efficient Parallel Classification Using Dimensional Aggregates 209

4 8 16
Number of Processors

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0
34.0

T
im

e
 (

in
 s

e
c
o
n
d
s
)

1M, 8 dimensions, T = 0.8

Classification (10 levels)
Communication 

8 16 32
Number of Processors

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

T
im

e
 (

in
 s

e
c
o

n
d

s
)

5M, 8 dimensions, T = 0.8

Classification (10 levels)
1-D Aggregates + Gini 

4 8 16
Number of Processors

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0

140.0

T
im

e
 (

in
 s

e
c
o
n
d
s
)

1M, 9 dimensions, T = 0.8

Classification (20 levels)
1-D Aggregates
Communication
Gini Calculations

(a) (b) (c)

Fig. 8. Classification of a 8 dimensional data set for 10 levels, with classification
threshold T = 0.8 for (a) 1M records (b) 5M records (c) Classification of a 9
dimensional data set for 20 levels, with classification threshold T = 0.8 for 1M
records

6 Conclusions

In this article we introduce classification using decision trees on an explicit multi-
dimensional storage scheme. The split point for a node in the classification tree
is chosen after computing the counts of records belonging to each class for each
attribute value, in each dimension. A multidimensional representation make a
1-dimensional computation for each dimension from the base cube very efficient.
A parallel framework is used to parallelize this calculation, and one round of
communication is required at each level of the tree by concatenating (coalesc-
ing) communication for each node together. Results on a synthetic benchmark
[16], widely used for classification algorithms performance, shows good parallel
performance.
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Abstract. In this paper a concern about the accuracy (as a function
of parallelism) of a certain class of distributed learning algorithms is
raised, and one proposed improvement is illustrated. We focus on learning
a single model from a set of disjoint data sets, which are distributed
across a set of computers. The model is a set of rules. The distributed
data sets may be disjoint for any of several reasons. In our approach,
the first step is to construct a rule set (model) for each of the original
disjoint data sets. Then rule sets are merged until an eventual final rule
set is obtained which models the aggregate data. We show that this
approach compares to directly creating a rule set from the aggregate
data and promises faster learning. Accuracy can drop off as the degree
of parallelism increases. However, an approach has been developed to
extend the degree of parallelism achieved before this problem takes over.

1 Introduction

Training data may be distributed across a set of computers for several reasons.
For example, several data sets concerning telephone fraud might be owned by
separate organizations who have competitive reasons for keeping the data pri-
vate. However, the organizations would be interested in models of the aggregate
data.

Another example is very large datasets that will not fit in a single memory
which are useful in the process of learning a classifier or model of the data. It
is now possible to have training data on the order of a terabyte which will not
fit in a single computer’s memory. A parallel approach to learning a model from
the data will solve the practical problem of how to deal with learning from large
data sets.

This paper describes an approach that learns a single model of a distributed
training set in the form of a set of rules. A single model may be an advantage in
the case that it will be applied to a large amount of data. For example, consider
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the problem of visualizing “interesting” regions of a large data set. A set of
rules might be learned which can do this. These rules would then be applied to
similarly large data sets to guide the user to the interesting regions.

This paper examines an approach to generating rules in parallel that is related
to work by [1,2]. A set of rules will be generated from disjoint subsets of the full
data set used for training. Given N disjoint subsets of the full dataset there
will be N sets of rules generated. Each subset of data may reside on a distinct
processor. The distributed rule sets must be merged into a single rule set. Our
focus is towards using a large N with very large training sets.

The final set of merged rules should be free of conflicts and have accuracy
equivalent to a set of rules developed from the full dataset used for training.
We discuss an approach to building a single, accurate set of rules created from
N rule sets. The question of how similar to one another rule sets developed
sequentially and in parallel might be is explored. Experimental results on several
small, representative datasets show that accuracy tends to decline as N increases.
A method to reduce this tendency is presented.

In Section 2 the generation of rules in parallel and the combination of rule
sets is discussed. Section 3 contains experimental results and a discussion of
the issues shown by an analysis of them. Section 4 contains a summary of the
strengths and open questions associated with the presented approach to learning
in parallel.

2 Generating Rules in Parallel and Combining Them

The disjoint subsets of extremely large data sets may also be very large. In
principle any approach that produces rules can be used to learn from each data
set. It is possible, for example, to learn decision trees [3,4] in a fast, cost effective
manner. Learning a decision tree, pruning it and then generating rules from the
pruned tree will be an effective competitor from a time standpoint to other rule
generation approaches such as RL [5] or RIPPER [6].

In the work reported here, rules are created directly by traversing pruned
decision trees (with the obvious optimization of removing redundant tests). The
process of creating rules from decision trees in a more time consuming fashion
has been covered in [3,7]. In learning rules it is often the case that a default
class is utilized. However, it is desirable to avoid having default classes for ex-
amples because the lack of a model for some examples cannot be resolved in a
straightforward way when rule sets are merged.

Each rule that is created will have associated with it a measure of its “good-
ness” which is based on its accuracy and the number and type of examples it
covers. We are using a normalized version of Quinlan’s certainty factor [8,2] to
determine the accuracy of a rule R over an example set E as:

acc(R, E) = (TP − 0.5)/(TP + ρFP ), (1)

where TP is the number of true positives examples covered by R when applied
to E, FP is the number of false positives caused by R when applied to E, and



Learning Rules from Distributed Data 213

ρ is the ratio of positive examples to negative examples for the class of the rule
contained in the training set.

A rule, R, must have acc(R,E) ≥ t for some threshold t in order to be
considered acceptable over a set of E examples. When a rule is built on a single
subset of data, its accuracy may change as it is applied to each of the other
subsets of data. The rule can be discarded whenever its accuracy is less than t
or only after it has been applied to all of the distributed examples and has an
accuracy below the threshold.

Discarding a rule as soon as it is below the accuracy threshold will save the
testing time on other processors and some communication time required to send
it and its current TP/FP count to another processor. Testing time is not likely to
be very high and communication time for one rule will generally be low. So, the
per rule savings may be relatively low. On the other hand a rule which performs
poorly on one partition and then improves to be acceptable or quite good will
be ruled out under the incremental deletion approach. Our approach will be to
only delete rules after testing is complete.

2.1 Merging Rule Sets Generated in Parallel

In [9] it is shown that any rule which is acceptable, by the accuracy definition in
(1), on the full training set will be acceptable on at least one disjoint subset of
the full data. This suggests that a rule set created by merging sets of acceptable
rules learned on disjoint subsets of a full training set will contain rules that would
be found on the full training set. Earlier work on building rules in parallel and
then merging them [2] found that the merged set of rules contained the same
rules as found by learning on the full data set and some extras. In that work, the
training set was large, over 1,000,000 examples. The same paper expressed the
belief that the same rule set would be found in parallel as generated sequentially.

However, in Figure 1 we show a small illustrative data set for which the rules
learned by merging disjoint rule sets built on a disjoint 2 partition of the data
do not include any rules learned by training on the full data set. Information
gain is used to choose the attribute test for each node in the decision tree [4].

Figure 1 shows that a merged rule set, with each of the constituent rule
sets developed in parallel on a disjoint training set, may in the extreme contain
no rules in common with the rules created by training on the union of all the
subsets (i.e. the full training set). The final merged rule set will depend upon
how the examples are partitioned. The mix of examples needs to reflect the mix
of available training examples.

The example data set and results from it shown in Figure 1 suggest that the
accuracy of merged rules may well be different from the accuracy of the rules
created from the full training set. Our experimental results will examine how
different the accuracy may be and how it is affected by the number of partitions
made from the training data.

As rule sets are merged, contradictions may be introduced in the sense that
an example may be classified into different classes by two rules. As an individual
rule is applied to more labeled examples its accuracy may change significantly.
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Processor 1 gets examples BCD
and produces the rules:

if attr 1 > 2 then C1.
if attr 1 <= 2 then C2.

if attr 2 > 3 then C2.
if attr 2 <= 3 then C1.

or

Processor 2 gets examples AEF
and produces the rules:

if attr 1 <= 1 then C1.
if attr 1 > 1 then C2.

From the full training set we get the rules:

if attr 1 > 4 then C2.
if attr 1 <= 4 and attr 2 <= 3 then C1.
if attr 1 <= 4 and attr 2 > 3 then C2.

Fig. 1. An example where rules built in parallel on disjoint subsets must be
different from rules built on the full data set. Using information gain to decide
the splits.

Consider two rules R1 and R2 which classify an overlapping set of examples into
two different classes. As the rules are applied to all of the subsets of the original
training examples, the accuracy of one of them is expected to become less than
a well-chosen threshold, t. Hence, one will be removed and the conflict resolved.
However, it is possible for partially conflicting rules to survive.

For example, from the Iris data set [10] using 2 partitions we get the rules
shown in Figure 2. The final accuracy after they have been applied to all training
examples (but learned only from the examples in one partition) is shown in
the second set of brackets associated with the rule. Both rules perform quite
well when the accuracy measure in (1) is applied to them. If the conflict is
not resolved, then rule ordering will affect the rules’ performance. A reasonable
choice might be to give higher priority to the rule with a better value of acc(R,E).
Alternatively, conflict can be resolved as shown in [11,1]. Essentially conditional
tests can be added to one or both rules resulting in specialization of the rules.
Any examples left uncovered can then be classified by a newly created rule.
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Here, we will remove the lowest performing conflicting rule with any uncovered
examples being assigned to the majority class.

if petal width in cm > 0.4 and

petal length in cm > 4.9

then class Iris-viginica [1/23]

[1/40]

if 0.5 < petal width in cm <= 1.6

then class Iris-Versicolor [0/23]

[4/48]

Fig. 2. Example of two rules from 1 fold of an Iris data 2 partition which have
conflicts but survive to the final set. The numbers in brackets are the false pos-
itives and number of examples covered respectively. The second set of numbers
for a rule is its accuracy after it is applied to the partition on which it was not
learned.

Another type of conflict occurs when two rules for the same class created
from different disjoint subsets have coverage which overlaps. For example, the
rules shown in Figure 3, can be combined as the second more general rule. In
general when there are overlaps among rules for the same class, the more general
test is used.

a) if x > 7 and x < 15 then Class1

b) if x > 9 and x < 16 then Class1

c) if x > 7 and x < 16 then Class1

Fig. 3. Two overlapping rules, a and b, can be replaced by the third, c.

3 Experiments

The experiments reported here are from two datasets from the UC Irvine database
[10] both of which consist of all continuous attributes. The IRIS data set [12]
has 150 examples from 3 classes and the PIMA Indian diabetes data set has 768
examples from 2 classes. We are interested in how the accuracy is affected by
partitioning these small data sets into N disjoint subsets, learning decision trees
on the subsets, generating rules from the decision trees and then merging the
rules into a final set of rules.

Our experiments were done using 10 fold cross validation [13]. For an indi-
vidual data set and a given number of disjoint subsets, N, 10 partitions of the
data were made each consisting of 90% of the train data with a unique 10% held
back for testing. From each fold, N disjoint subsets are created. C4.5 is applied
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to each of the N subsets and rules are created from the generated decision tree.
The rules created from the jth subset of data are then applied to the N-1 other
subsets. The accuracy of each rule must be greater than the chosen threshold,
t, in order for the rule to remain in the final set of rules. The default for the
threshold t was chosen as 51, just slightly better than guessing every example
belongs to the class of the rule. For the Iris data we chose t=75 rather arbitrarily.
Setting t in an appropriate and systematic way must still be addressed.

For the Iris data, we have done an experiment with N=2. With the default
C4.5 release 8 parameters the results on Iris for 10-fold cross validation and the
results from the approach described here (with 2 different choices for certainty
factors or cf’s for use in pruning) are given in Table 1. The average number of
rules was 6.5 for the default cf=25 and 3.1 for cf=1.

The reason for decreasing the certainty factor for pruning was to make the
rules produced on the data subsets more general and less likely to overfit on the
small number of examples. On this dataset there was a small positive impact.

Table 1. Results on the Iris data set using 10-fold cross-validation for a 2 pro-
cessor partition. sd - standard deviation.

C4.5 % Pruned (cf=25) % Pruned (cf =1)%
Correct ± sd Correct ± sd Correct ± sd

95.3 ± 6.01 94 ± 6.96 94.7 ± 5.81

The results for the simulated parallel approach are insignificantly worse than
for C4.5 with default parameters but comparable to C4.5 with the cf=1 (94.7%
and std= 5.81%).

A more interesting experiment is to look at a significant number of partitions.
With the larger Pima data set, experiments were run with N=2, N=4, . . ., N=10,
and N=12. The results of a 10-fold cross-validation experiment with C4.5 using
its default pruning (cf=25) were an average accuracy of 73.90% with sd=4.26%
and an average of 23.8 rules. Figure 4 shows plots of accuracy, standard deviation
and the number of rules for 10-fold cross validation experiments with each of the
above N disjoint partitions. The performance of rules created from the unpruned
tree, the pruned tree with the certainty factor of 25 and a certainty factor of 1 are
shown. It can be seen that the accuracy of the rule set generally decreases as N
increases. The standard deviation tends to get large, suggesting that performance
on some folds is quite poor. The number of rules that remain in the final set
remains fairly constant as N is increased. There are significantly less rules, after
conflict resolution, than when training is done on the full data set.

3.1 Discussion

The results obtained here come from small datasets. However, we believe the
issue of rule accuracy falling off can also occur with larger datasets. Our results
are consistent with those found in [14] where experiments were conducted on
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Fig. 4. Results from PIMA dataset experiments.

data sets related to the human genome project. It was found that more partitions
resulted in lower performance on unseen data. Their approach to combining the
classifiers was different, relying on voting among the learned set of classifiers.

Some success in mitigating the effect of learning in parallel may be gained
by using a combiner or arbitrator approach to integrating multiple classifiers
[15,16]. However, such approaches entail retaining all N classifiers learned in
parallel and may be problematic for large N. There is not a single model of the
data either.

In [2] an approach similar to ours was used on a very large dataset (over
1,000,000 examples) and there was no drop off in accuracy for partitions up to
N=4. Our results suggest that accuracy would fall off as N increased.

If there are enough representative examples of each class in each of N disjoint
partitions, the combined ruleset will have high accuracy. Clearly, the limit case
is that each of the N subsets has an example which exactly or in the case of
continuous data, almost exactly, matches each of the examples in the other
subsets. So, the data really consists of only |Si| distinct examples, where |Si| is
the set of examples at the ith compute node.
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The very worst case is that |Si| = C, the number of classes in the data. In
this case each subset consists of just one example of each class. Clearly, this is
an unreasonable choice for N and no one would make it in practice.

Under the approach to parallel rule generation covered here there is the usual
question of how large N can be before communication costs begin to slow the rule
generation process significantly. However, there is the more important question
of determining an N for which the accuracy of the resultant rule set is acceptable.
In datasets that are too large to learn from on a single processor, it will not be
possible to know what the maximum accuracy is.

Clearly with this approach a tradeoff between accuracy and speed exists.
The use of more processors promises that each can complete its task faster
on a smaller training set at the usual cost of coordinating the work of all the
processors and waiting for the combination of rules to be completed. However,
there is a second accuracy cost that will be paid at some point as N becomes
large. What the point of significant accuracy falloff is and how to recognize it is
an open question.

Improving Highly Parallel Performance. On very small datasets, the rules
learned will tend to be too general. A good rule on one dataset may prove to
wrongly classify many examples on another processor which belong to a different
class. Specializing such rules by adding conditional tests to them can help rule
out some or all of the examples that are incorrectly classified on a given processor
by a rule created on a different processor.

In a couple of small experiments, we have adopted the following strategy
to improve rule performance. Any rule that is within 5% of the acceptability
threshold and was created on a processor other than the current processor is a
candidate for specialization. The rule is specialized by taking the examples that
are classified by the rule and growing a decision tree on them. Then one takes the
test(s) along the best branch and adds this to the rule to create a new specialized
rule. The specialized rule as well as the original rule will be tested against the
next subset of examples. The accuracy of the specialized rule is only reported on
the examples available on the current processor. Both the original rule and the
specialized rule can be further specialized as new data is encountered as long as
their performance remains within 5% of the threshold, t.

A good feature of this approach is that there will be no decrease in perfor-
mance as long as the original rule remains in the final rule set, but has a lower
priority than its specializations. Any examples left uncovered by the specialized
rules will still be classified by the more general rule. Of course, the general rule
will only exist at the end if its accuracy value is above the threshold.

As a simple example of the potential for improvement consider the example
of Figure 1. Assume you got the second set of rules using attribute 2 (Att2) from
processor 1 (Proc1) and applied them to the examples held by processor 2. The
rule

if Att2 <= 3 then C1
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now gets only 2/5 examples correct. If it is specialized to be

if Att2 <= 3 and Att1 < 5 then C1

the rule will cover 3/3 examples correctly. Further it essentially matches the
second rule obtained from the whole training set in Figure 1. This example
shows how specialization would work.

On the Pima data, specialization was applied to the two partition case raising
the accuracy slightly from 73.38% to 73.77%.

Rule specialization could be decided upon in other ways than in our experi-
ment. For example, after learning, a pessimistic estimate of the rules performance
[3] could be generated. For a test subset on which the classification performance
of the rule was more that x% below the estimate, specialization could be carried
out. To get a better estimate of the performance of a specialized rule, it might
be tested against all the data on which it was not created (e.g. broadcast to all
processors). This would make the conflict resolution process more accurate.

4 Summary

This paper discusses an approach to creating rules in parallel by creating dis-
joint subsets of a large training set, allowing rules to be created on each subset
and then merging the rules. It is shown that this approach can provide good
performance. It is also pointed out that the rules discovered in parallel may be
different from those discovered sequentially. While it is true that rules which
perform well on the full data set will perform well on at least one subset of the
data, it is not necessarily the case that these rules will be discovered.

In an empirical study, it is shown that the accuracy of the merged rule sets
can degrade as the number of processors, N, is increased. This raises the question
of how to choose N to maximize speed and keep accuracy high. The approach
discussed here uses a threshold of goodness for rules. Rules that perform below
the threshold are deleted from the final rule set. The question of how to most
effectively set the threshold is an open one.

It is shown that the performance of rules can be improved by further spe-
cializing those that are under performing. Conditions can be added as the rules
are applied tested on data stored on other processors. Both the specialized rules
and original rules remain as long as their accuracy is above the threshold.

We have pointed out issues and potential fixes to an approach that promises
to provide scalable, accurate rules generated from a parallel computing system.
It will enable learning from large distributed data sets.
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Abstract. This paper presents the Collective Hierarchical Clustering
(CHC) algorithm for analyzing distributed, heterogeneous data. This al-
gorithm first generates local cluster models and then combines them to
generate the global cluster model of the data. The proposed algorithm
runs in O(|S|n2) time, with a O(|S|n) space requirement and O(n) com-
munication requirement, where n is the number of elements in the data
set and |S| is the number of data sites. This approach shows significant
improvement over naive methods with O(n2) communication costs in the
case that the entire distance matrix is transmitted and O(nm) commu-
nication costs to centralize the data, where m is the total number of
features. A specific implementation based on the single link clustering
and results comparing its performance with that of a centralized cluster-
ing algorithm are presented. An analysis of the algorithm complexity, in
terms of overall computation time and communication requirements, is
presented.

1 Introduction

The field of Knowledge Discovery from Data (KDD) emerged in the recent past
as a result of the dramatic evolution of the technology for information storage,
access, and analysis. The ability of various organizations to collect, store and
retrieve huge amounts of data has necessitated the development of algorithms
which can extract useful information from these databases. The field of KDD
addresses this issue.

Distributed knowledge discovery (DKD) is a result of further evolution of the
KDD problem. DKD embraces the growing trend of merging computation with
communication. It considers all the new dimensions of the knowledge discov-
ery process in the context of the emerging distributed computing environments.
DKD accepts the fact that data may be inherently distributed among different
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loosely coupled sites connected by a network and the sites may have heteroge-
neous data. It offers techniques to discover new knowledge through distributed
data analysis and modeling using minimal communication of data.

Account number Amount Location Previous record Unusual transaction

11992346 -42.84 Seattle Poor Yes
12993339 2613.33 Seattle Good No
45633341 432.42 Portland Okay No
55564999 128.32 Spokane Okay Yes

Table 1. Homogeneous case: Site A with a table for credit card transaction
records.

Account number Amount Location Previous record Unusual transaction

87992364 446.32 Berkeley Good No
67845921 978.24 Orinda Good Yes
85621341 719.42 Walnut Creek Okay No
95345998 -256.40 San Francisco Bad Yes

Table 2. Homogeneous case: Site B with a table for credit card transaction
records.

DKD must deal with different possibilities of data distribution. Different sites
may contain data for a common set of features of the problem domain. In case
of relational data this would mean a consistent database schema across all the
sites. This is the homogeneous case. Tables 1 and 2 illustrate this case using an
example from credit card transaction domain.1 There are two data sites A and
B, connected by a network. The KDD objective is to find patterns of fraudulent
transactions. Note that both the tables have the same schema.

The data sites may also be heterogeneous. In other words, sites may contain
data for different features. Let us illustrate this case with relational data. Table
3 shows two data-tables at site X. The table on the left contains weather-related
data and the one on the right contains demographic data. Table 4 shows the
content of site Y, which contains holiday toy sales data. The objective of the
KDD process is to detect relations between the toy sales and the demographic
and weather related features.

This paper presents an adaptation of the existing Single Link Clustering
Algorithm to the heterogeneous case. The proposed algorithm first generates
local cluster models of the data at each of the sites, and then transmits these
1 Please note that the credit card domain may not always have consistent schema.

The domain is used just for illustration.
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City Temp. Humidity Wind
Chill

Pullman 20 24% 14
Spokane 32 48% 23
Seattle 63 88% 62

Portland 51 86% 46
Richland 47 52% 41

City Size Average Proportion of
earning small business

owners

Pullman Small Low 0.041
Spokane Medium Medium 0.022
Seattle Large High 0.014

Portland Large High 0.017
Richland Medium Medium 0.031

Table 3. Heterogeneous case: Site X with two tables, one for weather and the
other for demography.

City Best Selling Price Number Items Sold
Item (In thousands)

Spokane Snarc Action Figure 47.99 23
Pullman Power Toads 23.50 2
Richland Light Saber 19.99 5
Seattle Super Squirter 24.99 142

Portland Super Fun Ball 9.99 24

Table 4. Heterogeneous case: Site Y with one table holiday toy sales.

models to a facilitator site, which combines the models into a global model. It
will be shown that this process can be accomplished in the same asymptotic
time as the existing optimal single link clustering algorithms, with a significant
savings compared to naive methods in communication costs.

The rest of this paper is arranged as follows. Section 2 provides background
information concerning agglomerative hierarchical clustering algorithms and a
brief overview of other related efforts, including related work both in terms of
clustering algorithms and DKD in general. Section 3 defines the problem of gen-
erating local models using known clustering algorithms in a heterogeneous space,
and shows the flaws of a naive approach. Section 4 derives a set of bounding equa-
tions for generating a global model from a set of locally generated models, and
uses these to derive the CHC algorithm. Section 5 examines the time complexity
of the CHC algorithm. Section 6 provides empirical results. Ongoing and future
work is discussed in Section 7. Finally, section 8 concludes this paper.

2 Background

This section presents a brief overview of agglomerative hierarchical clustering,
and single link clustering in particular. Furthermore, this section presents an
overview of other related efforts.
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2.1 A Brief Overview of Agglomerative Hierarchical Clustering

Hierarchical clustering transforms a set of points, with an associated dissimi-
larity metric between two given points, into a tree structure, known as a den-
drogram [1]. The dendrogram represents a sequence of combinations of sets of
points when viewed from from the bottom of the tree. The dendrogram can also
be viewed as a series of partitionings of the data into clusters when viewed from
the top of the tree. Each leaf node of a dendrogram represents a single point from
the data set, and each internal node represents a partitioning of the data set into
two clusters. An agglomerative algorithm builds the dendrogram from the leaf
nodes up, whereas a partitional algorithm builds the tree from the top down.
The algorithm presented in this paper is based upon the single link clustering
algorithm, which is an agglomerative hierarchical clustering method.

As noted, in addition to the set of points that form the leaves of the den-
drogram, a dissimilarity metric must be selected. The dissimilarity between two
points or clusters is frequently measured in terms of a distance between the
points or clusters. Common distance metrics used include the Euclidean dis-
tance metric and the “city-block” distance metric. The algorithm presented in
this paper is based upon the use of the Euclidean distance metric for the measure
of dissimilarity; however, it is extensible to other distance metrics as well.

In general, an agglomerative hierarchical clustering algorithm consists of
three primary steps [1]:

1. Initialize each individual point as a single cluster.
2. Determine the smallest measure of dissimilarity between two clusters, and

merge these clusters.
3. Continue to merge the two least dissimilar clusters until all points are con-

tained in a single cluster.

The algorithm presented in this paper focuses on single link clustering, also
referred to as nearest neighbor clustering. This method combines two sub-clusters
into a single cluster by choosing the two remaining unconnected clusters that
have the shortest distance as measured by the closest pair of points between
the two clusters. In the case of single link clustering, the distance between two
individual sub-clusters that have been merged is stored as the internal nodes of
the dendrogram.

There are a number of other related methods of clustering that differ pri-
marily in how the distance between points within a cluster and between two
separate clusters is measured. An overview of various methods of hierarchical
agglomerative clustering can be found in [1].

Once the dendrogram is generated, a level of dissimilarity is chosen. All sub-
trees that contain either a single point or a dissimilarity measure which is less
than the chosen level of dissimilarity, and whose parent node has a measure of
dissimilarity greater to or equal to the chosen level of dissimilarity become indi-
vidual clusters. Note that once the dendrogram has been generated, this chosen
level of dissimilarity may be changed to increase and decrease the granularity of
the clusters.
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Feature

Point f1 f2 f3 f4

p1 1.00 1.00 1.00 1.00

p2 1.25 1.00 1.25 1.25

p3 1.00 1.25 2.00 2.00

p4 3.00 3.25 2.25 2.25

p5 3.25 3.00 3.00 3.00

p6 3.25 3.50 3.25 3.25

Fig. 1. Example data set consisting of 6 points, each described by four features

p1 p2 p3 p4 p5 p6

p1 0.000 0.433 1.436 3.491 4.131 4.630

p2 0.433 0.000 1.118 3.182 3.758 4.272

p3 1.436 1.118 0.000 2.850 3.182 3.640

p4 3.491 3.182 2.850 0.000 1.118 1.458

p5 4.131 3.758 3.182 1.118 0.000 0.612

p6 4.630 4.272 3.640 1.458 0.612 0.000

Fig. 2. Distance matrix for points p1 through p6 as described in Figure 2.1, using
the Euclidean distance metric.

As an example of monolithic single link clustering, let us consider a data set
consisting of set of six points, p1 through p6, each described by four features
f1 through f4, as shown in Figure 2.1. Note that the values of each feature are
assumed to have the same significance.

Using the Euclidean distance metric, we find that the points p1 through p6

have the distances as shown in Figure 2.1. Note that for large data, we would
not compute these distances and store them in a matrix such as shown, as this
would entail an n2 memory requirement; however, it is useful for the purpose of
illustration.

To apply single link clustering, we would first initialize each point as an
individual cluster. The smallest amount of dissimilarity between two clusters at
this point is between points p1 and p2. We would therefore join these two clusters
and set the distance of the connecting node to 0.433. At this point, the smallest
distance between two clusters is now between the single point clusters consisting
of points p1 and p2, and that that distance is 0.621. We now find that the two
pairs of clusters consisting of {{p1, p2}, {p3}} and {{p4}, {p5, p6}} both have a
distance of 1.118, and we therefore combine these clusters. Finally, we find that
the two clusters consisting of {p1, p2, p3} and {p4, p5, p6} have a shortest distance
(in this case, between points p3 and p4, have a distance of 2.850. We merge these
final two clusters, and our dendrogram is complete. By following these steps, the
dendrogram shown in Figure 3 is generated.

The decision of what level of dissimilarity should be used to determine which
internal nodes of the dendrogram, representing the partitioning of the data,
should become the actual clusters is not firmly defined; rather, it is somewhat a
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1 2 3 4 5 6

0.433

0.612

1.118 1.118

2.850

Fig. 3. Dendrogram generated from the monolithic dataset shown in Figure 2.1.

matter of heuristics and a matter of the desired granularity. For the purpose of
this example, we will choose a level of dissimilarity somewhere between 1.118 and
2.850, as shown by the heavy dashed line in Figure 3. This results in two clusters,
consisting of points {p1, p2, p3} in the first cluster, and points {p4, p5, p6}.

The monolithic single link clustering algorithm has been well known for a
number of years. An early version, SLINK, presented in [2], is still considered to
be the standard of comparison. The SLINK algorithm runs in O(n2) time and
O(n) space.

2.2 Related Work

There are numerous recent efforts directed towards scaling up clustering algo-
rithms in order to allow practical use with the huge data sets commonly asso-
ciated with KDD. In [3], an adaptation of the K-Means clustering algorithm is
presented that is able to cluster huge monolithic data sets with a single scan of
the data. The authors show that their approach is both faster and more accurate
than a sampling based approach. Another approach toward scaling up clustering
algorithms is presented in [4]. The authors present an algorithm applicable to
clustering in a KDD environment, which in addition to being scalable, is well
suited to handling noise in the dataset. Another such approach is presented in [5].
Here the authors present the CLARANS algorithm, that is also intended to scale
up clustering algorithm for KDD applications. CURE, and algorithm which uti-
lizes a combination of both random sampling and partitioning for clustering in
the KDD domain is presented in [6].
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A number of recent efforts have proposed parallel based approaches to the
problem of scaling clustering algorithms up for use in KDD environments. In [7],
the author shows an adaptation of the SLINK [2] and other agglomerative hier-
archical clustering algorithms to a multiprocessor environment to parallelize the
clustering process. In [8], the authors adapt the K-Means algorithm to run in a
parallel environment.

The PADMA system [9,10] achieves scalability by locating agents with the
distributed data sources. An agent coordinating facilitator gives user requests to
local agents that then access and analyze local data, returning analysis results to
the facilitator, which merges the results. The high level results returned by the
local agents are much smaller than the original data, thus allowing economical
communication and enhancing scalability. The authors report on a PADMA
implementation for unstructured text mining.

There exists very little literature for analyzing data from heterogeneous sites.
Learning from heterogeneous data sites is discussed in [11] from the perspective
of inductive bias. This work notes that such partitioning of the feature space
can be addressed by decomposing the problem into smaller sub-problems when
the problem is site-wise decomposable. The WoRLD system [12] addressed the
problem of concept learning from heterogeneous sites by developing an “activa-
tion spreading” approach. This approach first computes the cardinal distribution
of the feature values in the individual data sets. Next, this distribution infor-
mation is propagated across different sites. Features with strong correlations to
the concept space are identified based on this first order statistics of the car-
dinal distribution. The selected features are used for learning the appropriate
concept. Since the technique is based on the first order statistical approximation
of the underlying distribution, it may not be appropriate in general for non-
convex concept space. The propagation of marker activation records from one
site to another is accomplished through basic database operations. This makes
the approach easily implementable in database systems. Nevertheless, a general
methodology for learning functions from distributed, heterogeneous data sites
with guaranteed control of accuracy and minimal communication overhead is
still an open issue.

In the recent past Kargupta and his colleagues [13] considered this case
and proposed the collective data mining (CDM) framework that makes use of
orthonormal basis functions for correct local analysis. This work describes the
Collective Data Mining methodology that can learn different popular data mod-
els such as regression, decision trees in a distributed environment. Interested
readers may refer to [14] for additional experimental and theoretical analysis
of this framework. The main motivation behind this framework is that direct
application of existing machine learning and statistical algorithms to local data
sites may produce partials models that are completely incorrect and possibly am-
biguous. CDM makes use of orthonormal representations to guarantee accurate
learning of local models and their subsequent aggregation.

To the best knowledge of the authors, there exists no published work on
distributed clustering techniques for heterogeneous data sites.
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The following section defines the problem of hierarchical clustering in a het-
erogeneous environment.

3 Problem Definition

Suppose we have some set of sites S, each of which has access to some subset
of the total number of features F , our goal is to generate a global model that
is equivalent to the model that would be generated if the data were centralized;
that is, we wish our dendrogram to have the same structure. In general, there
are four criteria that are critical to the generation of a global model from some
set of local models:

1. The dendrogram representing global model should have the same general
structure as the dendrogram that would be generated if the data set was
centralized and a known clustering algorithm run on this centralized data.

2. As an added constraint, it is not acceptable to transmit the entire dataset to
a single site for processing; rather, local models could be generated at each of
the |S| sites, and these local models transmitted to a facilitator site, which
will generate our global model. Obviously, it is not appropriate to transmit
the entire dissimilarity matrix, as the cost of such transmission would be
O(|S|n2).

3. Furthermore, asymptotic time complexity of the algorithm should be less
than or equal to the asymptotic time complexity of generating the model on
a single site from monolithic data.

4. Finally, the global model should not only indicate the sets of clusters and
their membership, but also should have a metric of the dissimilarity be-
tween the points and between the clusters. We will show that there exists
a naive method of generating a global model that meets some of the above
requirements, but gives no information about the proximity of the points.

We shall assume in the following discussion that there is some unique key
associated with each element in the overall dataset that is accessible to each
of the local sites. For example, if a local telephone company and an insurance
company wished to build local models on of their customers in a given area, a
good choice for a unique key to identify members the elements of the dataset
(customers) might be the phone number. Given that there exists a unique key
of this nature to identify the rows of the database, there also must exit some
function f(key) that, given the set of keys, will return an linear enumeration
between [0, n-1] of the keys. This fact will be utilized in the following algorithm.

As an example, suppose there are two sites, S = {s1, s2}. We will use the
data set from the previous example, shown in Figure 2.1. Suppose site s1 has
access to the subset {f1, f2} of the overall feature set F = {f1, f2, f3, f4}, and
s2 has access to the subset {f3, f4}.

If the single link clustering algorithm is applied at each of the two sites s1

and s2, with no interaction or information sharing between the two sites, the
dendrograms shown in Figures 4 and 5 would be generated.
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Fig. 4. Dendrogram generated at site s1, with access to features {f1, f2} from
the data set shown in Figure 2.1.

In this example, a dissimilarity between 0.354 and 2.282 was chosen for site
s1, and between 0.354 and 1.061, shown as a bold dashed line in figures 4 and 5.
Heuristically, this is somewhat a natural place to split the dendrogram into the
clusters, since this is the point where the dissimilarity between the clusters begins
to increase rapidly. Note that this is a common heuristic for choosing the point
at which to divide the dendrogram into the various clusters. Given this choice,
site s1 has two clusters, c1,1 ∈ {p1, p2, p3} and c1,2 ∈ {p4, p5, p6}. In this case,
the local model agrees with our dendrogram generated from the monolithic data,
with the exception that there is a difference in the hierarchical structure of cluster
c1,2. The dendrogram generated at site s2, however, is significantly different
from the monolithically generated dendrogram. At site s2, three clusters have
been generated: c2,1 ∈ {p1, p2}, c2,2 ∈ {p3, p4} and c2,3 ∈ {p5, p6} The choice of
dissimilarity used to split the dendrogram is insignificant; there is no choice of the
measure of dissimilarity that will result in a clustering such as was generated from
the monolithic data. In other words, no matter where the dendrogram is split up
to generate the boundaries between clusters, the membership of the clusters will
be different from the membership of the clusters in the monolithically generated
model.

Once the local models have been generated, we wish to transmit these models
to a central facilitator site in order to combine them into a global model. One
possible solution to this problem would be to transmit the cluster membership
lists to the facilitator, that in turn would take the element-wise intersection of
all of the clusters between each site. In the above example, this would result in
a total of four clusters:
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1 2 3 4 5 6

0.354 0.354 0.354
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1.061

Fig. 5. Dendrogram generated at site s2, with access to features {f3, f4} from
the data set shown in Figure 2.1.

{{p1, p2, p3}, {p4, p5, p6}} ∩ {{p1, p2}, {p3, p4}, {p5, p6}} =

{{p1, p2}, {p3}, {p4}, {p5, p6}}
Note that this approach does indeed generate a set of clusters that, given

a choice of a level of dissimilarity between 0.612 and 1.118 could have been
generated by the monolithic model. Thus, the first criteria is partially met; the
clusters generated from the local models are indeed a subset of those generated
by the monolithically generated model. However, we do not have a dendrogram
representing the structure of the clustering. The second criteria has also been
met; the transmission cost for such a scheme is O(n), as all that has to be
transmitted are the unique keys of the points. Likewise, the third criteria has
been met, as the cost of generating the local models is identical to the cost
of generating the monolithically generated model; in fact, this scheme allows
for parallelization of the clustering, although, there is the added cost of the
intersection of the clusters. However, the fourth criteria is not met in any way;
there is no more information that can be gained from the global model except
which points fall into which clusters. Therefore, this scheme is not adequate
given the stated criteria for generating a global model from the local models.
Therefore, we will examine a technique for bounding the dissimilarity between
two points and/or clusters given two or more dendrograms. The following section
derives an algorithm that meets all of the listed criteria.
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4 Collective Hierarchical Clustering

In this section, we will derive a lower and upper bound for the distance between
two points given only the set of local models. Furthermore, we will show how
these bounds can be used to generate a global model of the data. Finally, we
will provide a specific implementation of the CHC algorithm that meets all of
the specified criteria.

4.1 Bounding of Euclidean Distances Between Points

For the following discussion, we will assume that the Euclidean distance metric
will be the measure of dissimilarity (see Section 7 for a discussion on ongoing
work concerning other distance metrics). Furthermore, we will also assume that
any necessary feature selection and scaling of the features have already been
performed.

Given two points, p1 and p2, with m = |F| features each consisting of F ∈
{f1, f2, ...fn}, the Euclidean distance between these two points is defined as:

distactual (p1, p2) =

√
√
√
√

m∑

i=1

(fp1,i − fp2,i)
2 (1)

This can be expanded as follows:

distactual (p1, p2) =

√
√
√
√

m∑

i=1

(
f2

p1,i − 2fp1,ifp2,i + f2
p2,i

)
(2)

dist2actual (p1, p2) =
m∑

i=1

(
f2

p1,i − 2fp1,ifp2,i + f2
p2,i

)
(3)

Hence, if the distance matrix generated at each local site were transmitted
to the facilitator site responsible for generating the global model, the distances
could be approximated by:

distapprox (p1, p2) =

√
√
√
√

m∑

i=1

(
f2

p1,i + f2
p2,i

)
(4)

and the clustering algorithm being used could be applied to the resulting
approximate distances. However, this approach does not take into account the
cross terms, which in many cases are significant. Furthermore, this approach
would require the transmission of the distance matrices generated at each of
the |S| local sites, which would have a transmission cost of O

(|S|n2
) |, not to

mention that these matrices can very easily be prohibitively large to be generated
at the local sites, let alone gathered at the facilitator site.

We can, however, given a dendrogram in which the leaves contain only the
unique key identifying the point that is represented by the leaf, generate both a
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minimum and a maximum bound of the distance between the two points. Noting
that the transmission cost is O(n) to send each of the locally generated models
to the facilitator (see Section 5), such a bounding of the actual distance would
allow the generation of a global model from the local models with the desired
dissimilarity information and within the transmission cost constraints.

If we have more than one site, each of which has some subset of the features,
we can rewrite Equation 1 as follows:

distactual (p1, p2) =

√
√
√
√
√

|S|∑

j=1




∑

i∈Fj

(fp1,i − fp2,i)
2



 (5)

We wish to find an upper and a lower bound for the |S| individual summations
in Equation 5.

Given any two points, the shortest distance between these two points is rep-
resented in the dendrogram as the distance value stored in the lowest root of the
subtree connecting the two leaves. This follows from the definition of how the
dendrogram is generated.

Given a single dendrogram representing a single link clustering, the shortest
distance between two points is represented in the dendrogram as the value stored
the lowest common subroot connecting the the two leaves that represent the two
points. Hence, we can place a lower bound for each of the |S| summation terms
in Equation 5. Therefore, we may state that:

distactual (p1, p2) =

√
√
√
√
√

|S|∑

j=1




∑

i∈Fj

(fp1,i − fp2,i)
2





≥
√
√
√
√
|S|∑

j=1

d2
commonroot,j (6)

where dcommonroot,j is the distance value stored in the lowest connecting
subroot of jth locally generated dendrogram. This leads directly to the equation
for the lower bound of the distances:

distmin (p1, p2) =

√
√
√
√
|S|∑

j=1

d2
commonroot,j (7)

In order to generate an upper bound on the distance between two given points
in a single dendrogram, we observe that the maximum possible distance between
these two points is the sum of the distances on the shortest path connecting the
two leaf nodes of the dendrogram. In the case that the path connecting two leaf
nodes is of length one, this is obvious. However, this is not immediately intuitive
when the path is longer. We will show by example why this is the case.
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A

B

C

D

Fig. 6. The set of points {A, B, C, D}, with AB < CD < CB.

Consider the set of points {A, B, C, D} shown in Figure 6. Let AB < CD <
CB. This would result in the dendrogram shown in Figure 7. Say that we were
trying to find the maximum distance possible between points between points
A and D with only the information provided in the associated dendrogram.
Certainly, we know precisely the distance between A and B, and also, between
C and D. We also know the minimum of of the four distances AC, AD, BC
and BD, represented by BC in the dendrogram. However, we do not know that
this distance is in fact BC . For example, the distance represented as BC in the
dendrogram might actually be AD, as shown by the dashed line in Figure 6. Now,
if we were attempting to put an upper bound on the distance between A and D,
given only the information in the dendrogram, it would make sense to sum up the
distances along the shortest path in the dendrogram given the relative positions
of the points in this example, as in the worst case, the points would actually lie
on a straight line. However, if we were trying to find the upper distance bound
between B and C, which is actually equal to the distance represented at the
highest level of the dendrogram, we would still have to assume the worst case,
that the points were in the straight line consisting of the sequence {C, D, A, B}.
Therefore, we can bound the maximum possible distance between two points in
the dendrogram as being less than the sum of the distances on the shortest path
connecting the two leaf nodes of the dendrogram.

Now, consider that we have more than one dendrogram, and wish to find a
total maximum distance between two points. In a manner similar to that used
for the lower distance bound, we can place an upper bound on the total distance
as follows:

distactual (p1, p2) =

√
√
√
√
√

|S|∑

j=1




∑

i∈Fj

(fp1,i − fp2,i)
2
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Fig. 7. The dendrogram representing the points shown in Figure 6.

≤
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∑

shortpath,j

dpathnode





2

(8)

where shortpath, j is the shortest connecting path between the two leaf nodes
representing the points in jth locally generated dendrogram, and dpathnode is the
distance contained in a given node along that path. Hence, the upper distance
bound is defined as:

distmax (p1, p2) =

√
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√
√
|S|∑

j=1




∑

shortpath,j

dpathnode





2

(9)

Hence, a lower and upper bound have been established for the distances
between any two given points when the only information available are the locally
generated dendrograms, each of which have only the unique keys associated
with the points for data in the leaf nodes of the dendrogram which represent
those points. The next step in the process is to use these bounds to build a
global dendrogram from the locally generated dendrograms that meets the stated
criteria for the global model.

4.2 Generation of the Global Model

Once the local models have generated dendrograms based upon the available
features at each of the local sites and have transmitted these to the facilitator
site, the facilitator is responsible for combining these locally generated models
into a global model. In order to do this, the facilitator will use the bounded
distances described previously and some function f(min, max) to generate a
metric of dissimilarity between the points, and, given this metric, will build the
global dendrogram.
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There are a number of possible choices for the function f(min, max) to gen-
erate the dissimilarity metric (see Section 7 concerning future work for more
details). One choice for the dissimilarity metric is the simple mean of the mini-
mum and the maximum distances. While this will not result in an exact equiva-
lent measure of dissimilarity between a dendrogram generated from a monolithic
data set and the global dendrogram generated from some set of local models, it
will give a reasonably good approximation of the relative dissimilarities between
two given points. In the case of the Euclidean distance metric, using the average
of the minimum and maximum possible distances between the points yields the
dissimilarity function of:

distave (p1, p2) =

√∑|S|
j=1 d2

commonroot,j +

√
∑|S|

j=1

(∑
shortpath,j dpathnode

)2

2
(10)

After the function f(min, max) has been chosen, the facilitator must re-
cluster the points in the dataset using f(min, max) as the measure of dissimi-
larity. The resulting dendrogram is the global model of the data.

4.3 CHC - Collective, Hierarchical Clustering from Distributed,
Heterogeneous Data

We are now ready to state the general form of the CHC algorithm:

1. At each local site, apply the chosen hierarchical clustering algorithm to the
dataset and generate a local dendrogram.

2. Transmit the locally generated dendrograms to the facilitator site.
3. Using a statistic based on the bounds (e.g., average), generate the global

dendrogram.

The following discussion concerns itself with one possible implementation of
the CHC algorithm.

4.4 Implementation of the CHC Algorithm for Single Link
Clustering

In order to generate the global model from the local models in a reasonable
amount of time and given a memory constraint, we will take advantage of the
reducibility property [15], which allows us to perform clustering in O(n2) time
and in O(n) space. The reducibility property requires that when two clusters i
and j are agglomerated, the new cluster i + j cannot be any closer to any other
clusters than either i or j were. This property is satisfied in the case of single
link clustering [7]. As a consequence of the reducibility property being satisfied,
we need not store the entire n × n distance matrix containing every distance
between every pair of points, but, rather, only two one-dimensional arrays of
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(0) Function BuildLocalModel( input: LocalModels )

(1) For each {i : 0 ≤ i < n}
(2) For each {k : 0 ≤ k < |s|}
(3) Traverse tree k to compute upper and lower distance bounds

between point i and each other point j, j < i
Store as:

LowerBound(j, k)← lower bound between i, j
UpperBound(j, k)← upper bound between i, j

(4) Apply Equation 10 to determine average distance metric for

each (j, k)
While doing so track the minimum distance and store as:

N (i)← key of the closest point

D(i)← distance to closest point

(5) Initialize array Π(n) to be pointers to each of the initial

clusters, e.g., the set of n points

(6) Repeat n− 1 times

(7) Cluster1← indexOf(min(D))
(8) Cluster2← N (Cluster1)
(9) Agglomerate( Cluster1, Cluster2 )

(10) Update Π, N and D as necessary

(11) End

Fig. 8. An efficient algorithm for building the global model from the local models.

length n. Each element of the first of these arrays, N , is initialized such that
element i contains the key of the closest other point (cluster) j. Each element
of the second of these arrays, D, is initialized such that element i contains the
associated distance dist(i, j) for the key of j stored in N (i).

Determining the minimum distances does not require that the entire n × n
distance matrix is generated and stored all at one point in time; rather, only
one row of this matrix needs be generated at any point in time. Once this row
is generated, the minimum distance between the point represented by the index
of the row and all points such that their key is less than the key of the current
row is found, and this value is used for the appropriate cells in D and N . The
algorithm for generating D and N is shown in Figure 8.

In order to demonstrate how the CHC algorithm may be applied to single
link clustering, we will continue with the example started in Section 2.1. Recall
that the features are heterogeneous, , S = {s1, s2}, with the feature values given
in Figure 2.1, and that site s1 has access to the subset {f1, f2} of the overall
feature set F = {f1, f2, f3, f4}, and s2 has access to the subset {f3, f4}.

First, each of the local sites s1 and s2 generates a dendrogram, using the
single link clustering algorithm, based upon the feature information available at
that site, as shown in Figures 4 and 5. These dendrograms are transmitted to
the facilitator site.
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1 2 3 4 5 6

0.433

0.645

3.326

2.017

1.463

Fig. 9. Global dendrogram as generated by the facilitator from data available
from local dendrograms generated at sites s1 and s2, shown in Figures 4 and 5.

Using the dissimilarity metric as given in Equation 10, the dendrogram shown
in Figure 9 is generated from the two local models, using the given dissimilarity
metric and the single link clustering algorithm.

The overall structure of the globally generated dendrogram is similar to the
dendrogram generated from the monolithic data shown in figure 3. However, it
should be noted that the dissimilarity metric stored in the internal nodes is an
approximation of the dissimilarity between the partitions. In fact, the only case
where an exact measure of the distance can be generated from the local models
is the case where the length of the path between two given nodes in the local
models is exactly one, as is the case between points p1 and p2. However, the
measure of dissimilarity given does provide enough information to determine a
level at which to split the global dendrogram into the individual clusters. In this
case, the measure of dissimilarity is chosen to be between 2.017 and 3.326, as,
heuristically, this is the point at which the level of dissimilarity rises most sharply.
Using this level of dissimilarity to determine the individual cluster membership,
the global model in this example results in two clusters, one containing the set
of points {p1, p2, p3}, the other containing the set of points {p4, p5, p6}. This
result is the desired one: the dendrogram generated from the local models is
approximately equivalent to the dendrogram generated from the monolithic data
set as shown in Figure 3. Furthermore, while not exact, the dissimilarity values
stored in the internal nodes is allowed a division of the points into individual
clusters without explicit knowledge of the exact coordinates of the points that is
equivalent to the division of the points performed on the monolithically generated
dendrogram. It should also be noted that, given the similarity of the structures of
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the two dendrograms, that if the dendrogram is divided at some lower point, for
example between 0.612 and 1.118 for the monolithically generated dendrogram
and between 0.645 and 1.463 for the global model that was built from the local
models, the cluster membership will remain the same for both clusterings.

The CHC algorithm shown in in Figure 8 therefore meets the first require-
ment; that is, that the general structure of the global dendrogram generated from
the local models is that of the dendrogram which would have been generated had
the data been transmitted to a single site. Furthermore, the the global model
meets the forth requirement, that the global model not only indicates the sets of
clusters and their membership, but also has a measure of dissimilarity between
the points and between the clusters. In the next section, the time complexity
of the CHC algorithm is analyzed, and we will show that the second and third
requirements for the algorithm are also met.

5 Time Complexity and Transmission Costs

There are two issues involved in the computation of the time complexity: 1. the
cost of transmission of the local models to the facilitator site, and, 2. the com-
putational cost of generating the global dendrogram from the locally generated
dendrograms.

The first cost analysis, that of transmission of the local models to the fa-
cilitator site, turns out to be rather straight forward. Given the nature of the
tree that represents the dendrogram, with a total of n points represented as
the leaves of the tree, it follows that there will always be n − 1 leaves. As it is
not necessary to transmit any information about the points represented as the
leaves, and as the keys of the points have been structured such that the leaves
are linearly enumerated, the number of features is not relevant to the cost of
transmitting the local models.

If the nodes of the tree are enumerated using a standard in-order (left-node-
right) traversal of the locally generated dendrogram, the tree can be flattened
into an array of length 2n−1. This format is well adapted to transmission. When
the tree is flattened, each internal node will be represented as a cell in the array,
with four elements: 1. the node’s number, 2. the node number of the left child, 3.
the node number of the right child, and 4. the distance associated with the node.
Each leaf node will contain the node number and the key, which will be used to
position the node properly in the array representing the base of the dendrogram.

Given that there are 2n − 1 elements in this array, and that each element
in the array contains at most 4 items, the cost of transmission of a given local
model to the facilitator site is given by:

CTlocal = O (4 × (2n − 1)) = O (n)

Therefore, the overall cost of transmission for all of the local models to the
facilitator site is given by:

CTtotal = O (|S|n)



Collective, Hierarchical Clustering from Distributed, Heterogeneous Data 239

Which is effectively O(n), when |S| is a constant and |S| � n.
In order to evaluate the time and space complexity of the CHC algorithm, we

first note that there are two primary loops, one represented by lines (1) through
(4) in Figure 8, the other represented by lines (6) through (10). We will examine
each of these separately. Line (5) is an O(n) operation, and is not consequential
to the overall analysis, as will be shown in the following discussion.

The first line of the first loop, line (1), iterates over each of the points in the
tree in order to find the closest other point such that the key (represented by
the index) of the other point is less than that of the point under consideration.
Obviously, we must perform this n times; hence, the outer loop has a time
complexity of O(n).

Line (2) is a nested loop within the loop which began on line (1). As we
must extract information from each of the local models, this will add a factor of
O(|S|) to the overall time complexity of the first loop.

Line (3) is the process by which the bounds for the distances are determined.
It is only necessary to traverse the tree once in order to determine the distance
bounds between a given leaf node (point) and all other points. This traversal is
an O(n) operation. As this traversal is nested within the loop began on line line
(2), this adds a further factor of O(n) to the overall time complexity. Hence, the
overall complexity of the loop began on line (2) is O(|S|n). Without considering
line (4), then, the time complexity of the loop began on line (1) is then O(|S|n2)

Finally, the first primary loop contains line (4), which, it should be noted,
is not contained within the loop defined on line (2). Hence, as the process of
finding the minimum dissimilarity metric as defined in Equation 10 for each of
the O(n) elements for the under consideration, the components of which are
stored in O(|S|) arrays of length O(n) is itself O(|S|n). Therefore, line (4) adds
nothing further to the overall time complexity of the loop began on line (1).
Thus, the time complexity of the first primary loop, which began on line (1),
remains O(|S|n2).

Note that to this point, the total memory usage involves the following data
structures:

– 2× |S| reusable arrays to store the upper and lower bounds of the distances
between the current point under consideration and those points whose index
is less than the index of the point currently under consideration. Each of
these arrays uses O(n) space. Hence, the space complexity of these arrays is
O(|S|n).

– 2×|S| tree structures representing the locally generated models, each of size
2n − 1. The space complexity for these data structures is thus O(|S|n).

– The arrays N and D. These arrays are both of length n, and thus, have an
overall space complexity of O(n).

Thus, the overall space complexity of algorithm through the termination of
the first primary loop, which includes lines (1) through (4) is O(|S|n).

Recall that line (5) is an O(n) operation, and is not consequential to the
overall analysis, as we have already determined that the time complexity to this
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point in the algorithm is of O(|S|n2). Furthermore, the space involved on line
(5) is O(n), which is less than the O(|S|n) needed for the first primary loop.

The second primary loop begins on line (6) and includes the rest of the
algorithm. Note that this section of the algorithm is an adaptation of the SLINK
algorithm [2]. The loop that begins on (6) repeats O(n) times.

Line (7) is a entails a traversal of the array D. Note that the index of the
array is the key of the point with which the element value is associated; therefore,
it is not possible to sort this array and also maintain the O(1) lookup time in
line (8). As line (7) is nested within the second primary loop which began on
line (6), and line (7) entails an O(n) operation, the overall time complexity of
the second primary loop to this point is O(n2).

As noted, line (8) is an O(1) operation, and, therefore, adds nothing to the
overall time complexity of the second portion of the algorithm.

By using the pointer representation for maintaining the current highest levels
of agglomeration in the array Π , the agglomeration in line (9) becomes an O(1)
operation. This is also true of the updates necessary in line (10). (See [2] for
details). Hence, neither of these lines add any significant amount of time to the
overall time complexity of the second primary loop, and, hence, this loop remains
with a time complexity of O(n2).

The space complexity of the second loop is easily shown to be O(n). As the
only new data element being utilized is the tree which is built using the Π array,
and this dendrogram will contain, including the base nodes as initialized in the
Π array, 2n − 1 elements, the overall space complexity of the second portion of
the algorithm is O(n).

Given that the first loop was shown to have a time complexity of O(|S|n2),
line (5) a time complexity of O(n), and the second loop to have a time complexity
of O(n2), our overall time complexity is given by:

O(|S|n2) + O(n) + O(n2) = (11)

O(|S|n2) (12)

When |S| is a constant and |S| � n, we can rewrite Equation 12 as:

time = O(n2) (13)

This time complexity is of the same order as that shown for the SLINK
algorithm [2], and, hence, is considered to be the optimal possible.

Furthermore, the overall space complexity for the first primary loop was
shown to be O(|S|n), and O(n) for the second. Once again, when when |S| is a
constant and |S| � n, we can write:

space = O(n) (14)

Hence, the overall time and space requirements are equivalent to that of the
SLINK algorithm, and, therefore, equivalent to those which would be required for
optimal clustering using the single link method on monolithic data. However, in
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order to transmit all of the data from the various remote sites would take O(n2)
time and bandwidth, while our method uses only O(n) time and bandwidth.
Therefore, the second requirement specified for the algorithm has been met,
that the transmission cost be less than or equal to that of transmitting the entire
data set to a single site. Furthermore, the third requirement that the algorithms
asymptotic time complexity should be less than or equal to the asymptotic time
complexity of generating the model on a single site from monolithic data has
also been met. As noted at the conclusion of the previous section, the first and
forth requirements for the algorithm have also been met; therefore, the given
algorithm meets all of the requirements specified.

The following section provides empirical results generated using the algo-
rithm.

6 Empirical Results

The data set used for testing the algorithm was the Boston Housing Data set,
available from the UCI Machine Learning Repository, at

http://www.ics.uci.edu/AI/ML/MLDBRepository.html.
This data set contains 506 instances with 14 features. All data was normal-

ized to the range [0, 1], and the feature values were considered to be of equal
significance. A total of three dendrograms were generated. The first of these,
B1, was generated using the canonical single link clustering algorithm for mono-
lithic data. The second, B2, was generated from two local models, the first of
which was built from features [1, 7], the second from features [8, 14]. The third
global model, B3, was generated from three local models, the first of which was
built from features [1, 5], the second from features [6, 10], the third from features
[11, 14].

In order to determine the accuracy of the CHC algorithm relative to the
monolithic single link clustering algorithm, the dendrograms were “split” at
different points resulting in different number of clusters, in a manner similar
to the example followed throughout the discussion of the algorithm, in which,
the monolithically generated dendrogram and the dendrogram generated in the
distributed manner were split such that there were 2 clusters in each. The den-
drograms were split such that there were 2, 3, 5 and 10 clusters. Figure 10 shows
the accuracy for B2 and B3 at these levels of division. In order to measure the
accuracy, a “best-fit” method was used. This method consisted of comparing
the clusters generated from the monolithic data to those generated using the
CHC algorithm. The clusters were compared in decreasing order of size of the
monolithically generated clusters. The cluster generated from the distributed
local models that contained most of the points also contained in given mono-
lithically generated cluster was considered to be the best-fitting cluster. Any
points that were not in this point-wise intersection of the best-fitting clusters
were considered to be incorrectly placed. Hence, the values displayed in Fig-
ure 10 represent the ratio of points that resulted from the described intersection
operation to the total number of points in the dataset. Note that the differing

http://www.ics.uci.edu/AI/ML/MLDBRepository.html
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B1 Compared To:

Number Divisions B2 B3

2 92.4% 88.7%

3 82.2% 88.5%

5 83.0% 86.5%

10 79.8% 76.8%

Fig. 10. Comparative results at different levels of division of the dendrogram
between the monolithically generated dendrogram (B1) and the global model gen-
erated from two sites (B2) and the global model generated from three sites (B3).

results are a consequence of the sequence of agglomeration at the higher levels
of the dendrograms.

The following section addresses future work to be performed.

7 Future Work

This paper presented an algorithm for distributed single link clustering of het-
erogeneous data. The general method for bounding of the distances presented in
this paper are specific to the Euclidean distance metric and single link clustering.
Therefore, future work will include the following activities:

– Expansion of the method of bounding distances to handle other agglomera-
tive, hierarchical clustering methods, such as average link and complete link
clustering.

– Expansion of the general form of the algorithm to handle other distance
metrics, such as the Manhattan distance metric.

– Expansion of the general form of the algorithm to cover clustering meth-
ods such as density based clustering in a similar manner, with the same
requirements as specified in Section 3.

– Inclusion of the algorithm into the existing Collective Data Mining (CDM)
[13] system BODHI, a Java based communication and interface package.

– Further generation of results on larger data sets.
– Examination of the statistic given in Equation 10 to determine if a better

metric of dissimilarity is achievable. This would result in a higher accuracy of
classification for the distributed models when compared to the monolithically
generated model.

The following section concludes this paper.

8 Conclusion

This paper has presented a set of requirements for a distributed clustering algo-
rithm which operates on heterogeneous data, and the Collective Hierarchical
Clustering (CHC) algorithm which meets, and in some cases, exceeds those
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requirements. The time complexity of this algorithm has been shown to be
O(|S|n2), and the space requirements of this algorithm have been shown to be
O(n). This indicates that the CHC algorithm is capable of performing the anal-
ysis of the data in the same order of time and space as the equivalent centralized
version of the algorithm.

The transmission cost for assembling the local models at a central facilitator
site have been shown to be independent of the number of features at each site,
with an overall communication requirement of O(n) and a time complexity for
transmission of O(n). This is a significant improvement over centralizing the
data to a single site, which has a communication cost of O(nm), when there are
n elements and m features in the data set. Furthermore, the CHC algorithm has
both significantly lower communication costs and lower time complexity than
transmitting the entire distance matrix to a centralized cite, which has an O(n2)
communication cost and time complexity.

The empirical results and examples shown in this paper demonstrate that
the CHC algorithm is indeed a feasible approach to distributed, heterogeneous
clustering.

Finally, the bounding metrics presented in this paper are adaptable by their
nature to other hierarchical clustering algorithms. This indicates that this al-
gorithm is adaptable to other clustering methods. Efforts are being directed to
this end.
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Abstract. To cluster increasingly massive data sets that are common
today in data and text mining, we propose a parallel implementation of
the k-means clustering algorithm based on the message passing model.
The proposed algorithm exploits the inherent data-parallelism in the k-
means algorithm. We analytically show that the speedup and the scaleup
of our algorithm approach the optimal as the number of data points in-
creases. We implemented our algorithm on an IBM POWERparallel SP2
with a maximum of 16 nodes. On typical test data sets, we observe nearly
linear relative speedups, for example, 15.62 on 16 nodes, and essentially
linear scaleup in the size of the data set and in the number of clusters
desired. For a 2 gigabyte test data set, our implementation drives the 16
node SP2 at more than 1.8 gigaflops.

1 Introduction

Data sets measuring in gigabytes and even terabytes are now quite common in
data and text mining, where a few million data points are the norm. For exam-
ple, the patent database (www.ibm.com/patents/), the Lexis-Nexis document
collection containing more than 1.5 billion documents (www.lexisnexis.com), and
the Internet archive (www.alexa.com) are in multi-terabyte range. When a se-
quential data mining algorithm cannot be further optimized or when even the
fastest available serial machine cannot deliver results in a reasonable time, it is
natural to look to parallel computing. Furthermore, given the monstrous sizes of
the data sets, it often happens that they cannot be processed in-core, that is, in
the main memory of a single processor machine. In such a situation, instead of
implementing a disk based algorithm which is likely to be considerably slower,
it is appealing to employ parallel computing and to exploit the main memory of
all the processors.

Parallel data mining algorithms have been recently considered for tasks such
as association rules and classification, see, for example, Agrawal and Shafer [1],
Chattratichat et al. [2], Cheung and Xiao [3], Han, Karypis, and Kumar [4],
Joshi, Karypis, and Kumar [5], Kargupta, Hamzaoglu, and Stafford [6], Shafer,
Agrawal, and Mehta [7], Srivastava, et al. [8], Zaki, Ho, and Agrawal [9], and

M . J. Zaki , C. -T. Ho (E d s. ) : Large -S c al e Paral l e l Data M i n i n g, LNAI  1759, p p . 245–260 , 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Zaki et al. [10]. Also, see Stolorz and Musick [11] and Freitas and Lavington [12]
for recent books on scalable and parallel data mining.

In this paper, we consider parallel clustering. Clustering or grouping of sim-
ilar objects [13] is one of the most widely used procedures in data mining [14].
Practical applications of clustering include unsupervised classification and taxon-
omy generation [13], nearest neighbor searching [15], scientific discovery [16,17],
vector quantization [18], time series analysis [19], and multidimensional visual-
ization [20,21].

Our interest in clustering stems from the need to mine and analyze heaps
of unstructured text documents. Clustering has been used to discover “latent
concepts” in sets of unstructured text documents, and to summarize and label
such collections. Clustering is inherently useful in organizing and searching large
text collections, for example, in automatically building an ontology like Yahoo!
(www.yahoo.com). Furthermore, clustering is useful for compactly summarizing,
disambiguating, and navigating the results retrieved by a search engine such as
AltaVista (www.altavista.com). Conceptual structure generated by clustering
is akin to the “Table-of-Contents” in front of books. Finally, clustering is useful
for personalized information delivery by providing a setup for routing new in-
formation such as that arriving from newsfeeds and new scientific publications.
For experiments describing a certain syntactic clustering of the whole web and
its applications, see [22]. For detailed review of various classical text clustering
algorithms such as the k-means algorithm and its variants, hierarchical agglom-
erative clustering, and graph-theoretic methods, see [23,24]. Recently, there has
been a flurry of activity in this area, see [25,26,27,28,29]. For our recent work
on matrix approximations using a variant of the k-means algorithm applied to
text data, see [30]. Our results have been extremely promising; their applicabil-
ity to extremely large collections of text documents requires a highly scalable
implementation, and, hence, the motivation for this work.

In this paper, as our main contribution, we propose a parallel clustering al-
gorithm on distributed memory multiprocessors, that is, on a shared-nothing
parallel machine, and analytically and empirically validate our parallelization
strategy. Specifically, we propose a parallel version of the popular k-means clus-
tering algorithm [31,13] based on the message-passing model of parallel com-
puting [32,33]. To the best of our knowledge, a parallel implementation of the
k-means clustering algorithm has not been reported in the literature. In this
paper, our focus in on parallelizing the classical direct k-means algorithm.

We now briefly outline the paper, and summarize our results. In Section 2,
we present the k-means algorithm. In Section 3, we carefully analyze the compu-
tational complexity of the k-means algorithm. Based on this analysis, we observe
that the k-means algorithm is inherently data-parallel. By exploiting this par-
allelism, we design a parallel k-means algorithm. We analytically show that the
speedup and the scaleup of our algorithm approach the optimal as the number of
data points increases. In other words, we show that as the number of data points
increases the communication costs incurred by our parallelization strategy are
relatively insignificant compared to the overall computational complexity. Our

www.yahoo.com
www.altavista.com
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parallel algorithm is based on the message-passing model of parallel computing;
this model is also briefly reviewed in Section 3. In Section 4, we empirically study
the performance of our parallel k-means algorithm (that is, speedup and scaleup)
on an IBM POWERparallel SP2 with a maximum of 16 nodes. We empirically
establish that our parallel k-means algorithm has nearly linear speedup, for ex-
ample, 15.62 on 16 nodes, and has nearly linear scaleup behavior. To capture the
effectiveness of our algorithm in a nutshell, note that we are able to to drive the
16 node SP2 at nearly 1.8 gigaflops (floating point operations) on a 2 gigabyte
test data set. In Section 5, we include a brief discussion on future work.

Our parallelization strategy is simple but very effective; in fact, the simplicity
of our algorithm makes it ideal for rapid deployment in applications.

2 The k-Means Algorithm

Suppose that we are given a set of n data points X1, X2, · · · , Xn such that each
data point is in Rd. The problem of finding the minimum variance clustering of
this data set into k clusters is that of finding k points {mj}k

j=1 in Rd such that

1
n

n∑
i=1

(
min

j
d2(Xi, mj)

)
, (1)

is minimized, where d(Xi, mj) denotes the Euclidean distance between Xi and
mj . The points {mj}k

j=1 are known as cluster centroids or as cluster means.
Informally, the problem in (1) is that of finding k cluster centroids such that
the average squared Euclidean distance (also known as the mean squared error
or MSE, for short) between a data point and its nearest cluster centroid is
minimized. Unfortunately, this problem is known to be NP-complete [34].

The classical k-means algorithm [31,13] provides an easy-to-implement ap-
proximate solution to (1). Reasons for popularity of k-means are ease of interpre-
tation, simplicity of implementation, scalability, speed of convergence, adaptabil-
ity to sparse data, and ease of out-of-core implementation [30,35,36]. We present
this algorithm in Figure 1, and intuitively explain it below:

1. (Initialization) Select a set of k starting points {mj}k
j=1 in Rd (line 5 in

Figure 1). The selection may be done in a random manner or according to
some heuristic.

2. (Distance Calculation) For each data point Xi, 1 ≤ i ≤ n, compute its
Euclidean distance to each cluster centroid mj , 1 ≤ j ≤ k, and then find the
closest cluster centroid (lines 14-21 in Figure 1).

3. (Centroid Recalculation) For each 1 ≤ j ≤ k, recompute cluster centroid
mj as the average of data points assigned to it (lines 22-26 in Figure 1).

4. (Convergence Condition) Repeat steps 2 and 3, until convergence (line 28
in Figure 1).

The above algorithm can be thought of as a gradient-descent procedure which
begins at the starting cluster centroids and iteratively updates these centroids to
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decrease the objective function in (1). Furthermore, it is known that k-means will
always converge to a local minimum [37]. The particular local minimum found
depends on the starting cluster centroids. As mentioned above, the problem of
finding the global minimum is NP-complete.

Before the above algorithm converges, steps 2 and 3 are executed a number of
times, say �. The positive integer � is known as the number of k-means iterations.
The precise value of � can vary depending on the initial starting cluster centroids
even on the same data set.

In Section 3.2, we analyze, in detail, the computational complexity of the
above algorithm, and propose a parallel implementation.

3 Parallel k-Means

Our parallel algorithm design is based on the Single Program Multiple Data
(SPMD) model using message-passing which is currently the most prevalent
model for computing on distributed memory multiprocessors; we now briefly
review this model.

3.1 Message-Passing Model of Parallel Computing

We assume that we have P processors each with a local memory. We also assume
that these processors are connected using a communication network. We do
not assume a specific interconnection topology for the communication network,
but only assume that it is generally cheaper for a processor to access its own
local memory than to communicate with another processor. Such machines are
commercially available from vendors such as Cray and IBM.

Potential parallelism represented by the distributed-memory multiproces-
sor architecture described above can be exploited in software using “message-
passing.” As explained by Gropp, Lusk, and Skjellum [32, p. 5]:

The message-passing model posits a set of processes that have only local
memory but are able to communicate with other processes by sending
and receiving messages. It is a defining feature of the message-passing
model that data transfers from the local memory of one process to the
local memory of another process require operations to be performed by
both processes.

MPI, the Message Passing Interface, is a standardized, portable, and widely avail-
able message-passing system designed by a group of researchers from academia
and industry [32,33]. MPI is robust, efficient, and simple-to-use from FORTRAN
77 and C/C++.

From a programmer’s perspective, parallel computing using MPI appears as
follows. The programmer writes a single program in C (or C++ or FORTRAN
77), compiles it, and links it using the MPI library. The resulting object code is
loaded in the local memory of every processor taking part in the computation;
thus creating P “parallel” processes. Each process is assigned a unique identifier
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1:
2:
3: MSE = LargeNumber;
4:

5: Select initial cluster centroids {mj}k
j=1;

6:
7:
8: do {
9: OldMSE = MSE;
10: MSE′ = 0;
11: for j = 1 to k
12: m′

j = 0; n′
j = 0;

13: endfor;
14: for i = 1 to n
15: for j = 1 to k
16: compute squared Euclidean

distance d2(Xi, mj);
17: endfor;
18: find the closest centroid m� to Xi;
19: m′

� = m′
� + Xi; n′

� = n′
� + 1;

20: MSE′ = MSE′ + d2(Xi, m�);
21: endfor;
22: for j = 1 to k
23:
24:
25: nj = max(n′

j , 1); mj = m′
j/nj ;

26: endfor;
27: MSE = MSE′;
28:} while (MSE < OldMSE)

Fig. 1. Sequential k-means Algorithm.

1:
2:
3: MSE = LargeNumber;
4:

5: Select initial cluster centroids {mj}k
j=1;

6:
7:
8: do {
9: OldMSE = MSE;
10: MSE′ = 0;
11: for j = 1 to k
12: m′

j = 0; n′
j = 0;

13: endfor;
14: for i = 1 to n
15: for j = 1 to k
16: compute squared Euclidean

distance d2(Xi, mj);
17: endfor;
18: find the closest centroid m� to Xi;
19: m′

� = m′
� + Xi; n′

� = n′
� + 1;

20: MSE′ = MSE′ + d2(Xi, m�);
21: endfor;
22: for j = 1 to k
23:
24:
25: nj = max(n′

j , 1); mj = m′
j/nj ;

26: endfor;
27: MSE = MSE′;
28:} while (MSE < OldMSE)

Fig. 2. Parallel k-means Algorithm. See
Table 1 for a glossary of various MPI rou-
tines used above.

MPI Comm size() returns the number of processes
MPI Comm rank() returns the process identifier for the calling process
MPI Bcast(message, root) broadcasts “message” from a process with identifier

“root” to all of the processes
MPI Allreduce(A, B, MPI SUM) sums all the local copies of “A” in all the processes

(reduction operation) and places the result in “B” on
all of the processes (broadcast operation)

MPI Wtime() returns the number of seconds since
some fixed, arbitrary point of time in the past

Table 1. Conceptual syntax and functionality of MPI routines which are used in
Figure 2. For the exact syntax and usage, see [32,33].



250 Inderjit S. Dhillon and Dharmendra S. Modha

between 0 and P − 1. Depending on its processor identifier, each process may
follow a distinct execution path through the same code. These processes may
communicate with each other by calling appropriate routines in the MPI library
which encapsulates the details of communications between various processors.

Table 1 gives a glossary of various MPI routines which we use in our parallel
version of k-means in Figure 2. Next, we discuss the design of the proposed
parallel algorithm.

3.2 Parallel Algorithm Design

We begin by analyzing, in detail, the computational complexity of the sequential
implementation of the k-means algorithm in Figure 1.

We count each addition, multiplication, or comparison as one floating point
operation (flop). It follows from Figure 1 that the amount of computation within
each k-means iteration is constant, where each iteration consists of “distance
calculations” in lines 14-21 and a “centroid recalculations” in lines 22-26. A
careful examination reveals that the “distance calculations” require roughly
(3nkd + nk + nd) flops per iteration, where 3nkd, nk, and nd correspond to
lines 15-17, line 18, and line 19 in Figure 1, respectively. Also, “centroid recal-
culations” require approximately kd flops per iteration. Putting these together,
we can estimate the computation complexity of the sequential implementation
of the k-means algorithm as

(3nkd + nk + nd + kd) · � · T flop, (2)

where � denotes the number of k-means iterations and T flop denotes the time
(in seconds) for a floating point operation. In this paper, we are interested in
the case when the number of data points n is quite large in an absolute sense,
and also large relative to d and k. Under this condition the serial complexity of
the k-means algorithm is dominated by

T1 ∼ (3nkd) · � · T flop. (3)

By implementing a version of k-means on a distributed memory machine with
P processors, we hope to reduce the total computation time by nearly a factor of
P . Observe that the “distance calculations” in lines 14-21 of Figure 1 are inher-
ently data parallel, that is, in principle, they can be executed asynchronously and
in parallel for each data point. Furthermore, observe that these lines dominate
the computational complexity in (2) and (3), when the number of data points
n is large. In this context, a simple, but effective, parallelization strategy is to
divide the n data points into P blocks (each of size roughly n/P ) and compute
lines 14-21 for each of these blocks in parallel on a different processor. This is
the approach adopted in Figure 2.

For simplicity, assume that P divides n. In Figure 2, for µ = 0, 1, · · · , P − 1,
we assume that the process identified by “µ” has access to the data subset
{Xi, i = (µ) ∗ (n/P ) + 1, · · · , (µ + 1) ∗ (n/P )}. Observe that each of the P
processes can carry out the “distance calculations” in parallel or asynchronously,
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if the centroids {mj}k
j=1 are available to each process. To enable this potential

parallelism, in Figure 1, a local copy of the centroids {mj}k
j=1 is maintained for

each process, see, line 7 and lines 22-26 in Figure 2 (see Table 1 for a glossary
of the MPI calls used). Under this parallelization strategy, each process needs to
handle only n/P data points, and hence we expect the total computation time
for the parallel k-means to decrease to

T comp
P =

T1

P
∼ (3nkd) · � · T flop

P
. (4)

In other words, as a benefit of parallelization, we expect the computational
burden to be shared equally by all the P processors. However, there is also a
price attached to this benefit, namely, the associated communication cost, which
we now examine.

Before each new iteration of k-means can begin, all the P processes must
communicate to recompute the centroids {mj}k

j=1. This global communication
(and hence synchronization) is represented by lines 22-26 of Figure 2. Since, in
each iteration, we must “MPI Allreduce” roughly d ·k floating point numbers, we
can estimate the communication time for the parallel k-means to be

T comm
P ∼ d · k · � · T reduce

P , (5)

where T reduce
P denotes the time (in seconds) required to “MPI Allreduce” a float-

ing point number on P processors. On most architectures, one may assume that
T reduce

P = O(log P ) [38].
Line 27 in Figure 2 ensures that each of the P processes has a local copy

of the total mean-squared-error “MSE”, hence each process can independently
decide on the convergence condition, that is, when to exit the “do{ · · · }while”
loop.

In conclusion, each iteration of our parallel k-means algorithm consists of
an asynchronous computation phase followed by a synchronous communication
phase. The reader may compare Figures 1 and 2 line-by-line to see the precise
correspondence of the proposed parallel algorithm with the serial algorithm. We
stress that Figure 2 is optimized for understanding, and not for speed! In particu-
lar, in our actual implementation, we do not use (2k+1) different “MPI Allreduce”
operations as suggested by lines 23, 24, and 27, but rather use a single block
“MPI Allreduce” by assigning a single, contiguous block of memory for the vari-
ables {mj}k

j=1, {nj}k
j=1, and MSE and a single, contiguous block of memory for

the variables {m′
j}k

j=1, {n′
j}k

j=1, and MSE′.
We can now combine (4) and (5) to estimate the computational complexity

of the parallel k-means algorithm as

TP = T comp
P + T comm

P ∼ (3nkd) · � · T flop

P
+ d · k · � · T reduce

P . (6)

It can be seen from (4) and (5) that the relative cost for the communication
phase T comm

P is insignificant compared to that for the computation phase T comp
P ,

if
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P · T reduce
P

3 · T flop
� n . (7)

Since the left-hand side of the above condition is a machine constant, as the num-
ber of data points n increases, we expect the relative cost for the communication
phase compared to the computation phase to progressively decrease.

In the next section, we empirically study the performance of the proposed
parallel k-means algorithm.

4 Performance and Scalability Analysis

Sequential algorithms are tested for correctness by seeing whether they give the
right answer. For parallel programs, the right answer is not enough: we would
like to decrease the execution time by adding more processors or we would like to
handle larger data sets by using more processors. These desirable characteristics
of a parallel algorithm are measured using “speedup” and “scaleup,” respectively;
we now empirically study these characteristics for the proposed parallel k-means
algorithm.

4.1 Experimental Setup

We ran all of our experiments on an IBM SP2 with a maximum of 16 nodes.
Each node in the multiprocessor is a Thin Node 2 consisting of a IBM POWER2
processor running at 160 MHz with 256 megabytes of main memory. The pro-
cessors all run AIX level 4.2.1 and communicate with each other through the
High-Performance Switch with HPS-2 adapters. The entire system runs PSSP
2.3 (Parallel System Support Program). See [39] for further information about
the SP2 architecture.

Our implementation is in C and MPI. All the timing measurements are done
using the routine “MPI Wtime()” described in Table 1. Our timing measurements
ignore the I/O times (specifically, we ignore the time required to read in the data
set from disk), since, in this paper, we are only interested in studying the efficacy
of our parallel k-means algorithm. All the timing measurements were taken on
an otherwise idle system. To smooth out any fluctuations, each measurement
was repeated five times and each reported data point is to be interpreted as an
average over five measurements.

For a given number of data points n and number of dimensions d, we gener-
ated a test data set with 8 clusters using the algorithm in [40]. A public domain
implementation of this algorithm is available from Dave Dubin [41]. The advan-
tage of such data generation is that we can generate as many data sets as desired
with precisely specifiable characteristics.

As mentioned in Section 2, each run of the k-means algorithm depends on the
choice of the starting cluster centroids. Specifically, the initial choice determines
the specific local minimum of (1) that will be found by the algorithm, and it
determines the number of k-means iterations. To eliminate the impact of the
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initial choice on our timing measurements, for a fixed data set, identical starting
cluster centroids are used–irrespective of the number of processors used.

We are now ready to describe our experimental results.

4.2 Speedup

Relative speedup is defined as the ratio of the execution time for clustering a data
set into k clusters on 1 processor to the execution time for identically clustering
the same data set on P processors. Speedup is a summary of the efficiency of
the parallel algorithm.

Using (3) and (6), we may write relative speedup of the parallel k-means
roughly as

Speedup =
(3nkd) · � · T flop

(3nkd) · � · T flop/P + d · k · � · T reduce
P

, (8)

which approaches the linear speedup of P when condition (7) is satisfied, that
is, the number of data points n is large. We report three sets of experiments,
where we vary n, d, and k, respectively.

Varying n: First, we study the speedup behavior when the number of data
points n is varied. Specifically, we consider five data sets with n = 213, 215,
217, 219, and 221. We fixed the number of dimensions d = 8 and the number
of desired clusters k = 8. We clustered each data set on P = 1, 2, 4, 8, and
16 processors. The measured execution times are reported in Figure 3, and
the corresponding relative speedup results are reported in Figure 4. We can
observe the following facts from Figure 4:
– For the largest data set, that is, n = 221, we observe a relative speedup

of 15.62 on 16 processors. Thus, for large number of data points n our
parallel k-means algorithm has nearly linear relative speedup.
But, in contrast, for the smallest data set, that is, n = 211, we observe
that relative speedup flattens at 6.22 on 16 processors.

– For a fixed number of processors, say, P = 16, as the number of data
points increase from n = 211 to n = 221 the observed relative speedup
generally increases from 6.22 to 15.62, respectively. In other words, our
parallel k-means has an excellent sizeup behavior in the number of data
points.

All these empirical facts are consistent with the theoretical analysis presented
in the previous section; in particular, see condition (7).

Varying d: Second, we study the speedup behavior when the number of dimen-
sions d is varied. Specifically, we consider three data sets with d = 2, 4, and
8. We fixed the number of data points n = 221 and the number of desired
clusters k = 8. We clustered each data set on P = 1, 2, 4, 8, and 16 pro-
cessors. For the sake of brevity, we omit the measured execution times, and
report the corresponding relative speedup results in Figure 5.
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Fig. 3. Speedup curves. We plot execution time in log10-seconds versus the number of
processors. Five data sets are used with number of data points n = 213, 215, 217, 219, and
221. The number of dimensions d = 8 and the number of clusters k = 8 are fixed for all
the five data sets. For each data set, the k-means algorithm required � = 3, 10, 8, 164
and 50 number of iterations, respectively. For each data set, a dotted line connects
the observed execution times, while a solid line represents the “ideal” execution times
obtained by dividing the observed execution time for 1 processor by the number of
processors.

Varying k: Finally, we study the speedup behavior when the number of desired
clusters k is varied. Specifically, we clustered a fixed data set into k = 2, 4, 8,
and 16 clusters. We fixed the number of data points n = 221 and the number
of dimensions d = 8. We clustered the data set on P = 1, 2, 4, 8, and 16
processors. The corresponding relative speedup results are given in Figure 6.
In Figure 5, we observe nearly linear speedups between 15.42 to 15.53 on
16 processors. Similarly, in Figure 6, we observe nearly linear speedups be-
tween 15.08 to 15.65 on 16 processors. The excellent speedup numbers can
be attributed to the fact that for n = 221 the condition (7) is satisfied. Also,
observe that all the relative speedup numbers in Figures 5 and 6 are essen-
tially independent of d and k, respectively. This is consistent with the fact
that neither d nor k appears in the condition (7).

4.3 Scaleup

For a fixed data set (or a problem size), speedup captures the decrease in execu-
tion speed that can be obtained by increasing the number of processors. Another
figure of merit of a parallel algorithm is scaleup which captures how well the par-
allel algorithm handles larger data sets when more processors are available. Our
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Fig. 4. Relative Speedup curves corresponding to Figure 3. The solid line represents
“ideal” linear relative speedup. For each data set, a dotted line connects observed
relative speedups.

scaleup study measures execution times by keeping the problem size per proces-
sor fixed while increasing the number of processors. Since, we can increase the
problem size in either the number of data points n, the number of dimensions d,
or the number of desired clusters k, we can study scaleup with respect to each
of these parameters at a time.

Relative scaleup of the parallel k-means algorithm with respect to n is de-
fined as the ratio of the execution time (per iteration) for clustering a data set
with n data points on 1 processor to the the execution time (per iteration) for
clustering a data set with n · P data points on P processors–where the number
of dimensions d and the number of desired clusters k are held constant. Observe
that we measure execution time per iteration, and not raw execution time. This
is necessary since the k-means algorithm may require a different number of it-
erations � for a different data set. Using (3) and (6), we can analytically write
relative scaleup with respect to n as

Scaleup =
(3nkd) · T flop

(3nPkd) · T flop/P + d · k · T reduce
P

. (9)

It follows from (9) that if

T reduce
P

3 · T flop
� n , (10)
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Fig. 5. Relative speedup curves for three data sets with d = 2, 4, and 8. The number
of data points n = 221 and the number of clusters k = 8 are fixed for all the three
data sets. The solid line represents “ideal” linear relative speedup. For each data set, a
dotted line connects observed relative speedups. It can be seen that relative speedups
for different data sets are virtually indistinguishable from each other.

then we expect relative scaleup to approach the constant 1. Observe that condi-
tion (10) is weaker than (7), and will be more easily satisfied for large number
of data points n which is the case we are interested in. Relative scaleup with re-
spect to either k or d can be defined analogously; we omit the precise definitions
for brevity. The following experimental study shows that our implementation
of parallel k-means has linear scaleup in n and k, and surprisingly better than
linear scaleup in d.

Scaling n: To empirically study scaleup with respect to n, we clustered data
sets with n = 221 ·P on P = 1, 2, 4, 8, 16 processors, respectively. We fixed the
number of dimensions d = 8 and the number of desired clusters k = 8. The
execution times per iteration are reported in Figure 7, from where it can be
seen that the parallel k-means delivers virtually constant execution times in
number of processors, and hence has excellent scaleup with respect to n. The
largest data set with n = 221 · 16 = 225 is roughly 2 gigabytes. For this data
set, our algorithm drives the SP2 at nearly 1.2 gigaflops. Observe that the
main memory available on each of the 16 nodes is 256 megabytes, and hence
this data set will not fit in the main memory of any single node, but easily
fits in the combined main memory of 16 nodes. This is yet another benefit
of parallelism–the ability to cluster significantly large data sets in-core, that
is, in main memory.



A Data-Clustering Algorithm on Distributed Memory Multiprocessors 257

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

R
e

la
ti
v
e

 S
p

e
e

d
u

p

Fig. 6. Relative speedup curves for four data sets with k = 2, 4, 8, and 16. The number
of data points n = 221 and the number of dimensions d = 8 are fixed for all the four
data sets. The solid line represents “ideal” linear relative speedup. For each data set, a
dotted line connects observed relative speedups. It can be seen that relative speedups
for different data sets are virtually indistinguishable from each other.

Scaling k: To empirically study scaleup with respect to k, we clustered a data
set into k = 8 · P clusters on P = 1, 2, 4, 8, 16 processors, respectively. We
fixed the number of data points n = 221, and the number of dimensions
d = 8. The execution times per iteration are reported in Figure 7, from
where it can be seen that our parallel k-means delivers virtually constant
execution times in number of processors, and hence has excellent scaleup
with respect to k.

Scaling d: To empirically study scaleup with respect to d, we clustered data
sets with the number of dimensions d = 8 ·P on P = 1, 2, 4, 8, 16 processors,
respectively. We fixed the number of data points n = 221, and the number
of desired clusters k = 8. The execution times per iteration are reported in
Figure 7, from where it can be seen that our parallel k-means delivers better
than constant execution times in number of processors, and hence has sur-
prisingly nice scaleup with respect to d. We conjecture that this phenomenon
occurs due to the reduced loop overhead in the “distance calculations” as d
increases (see Figure 2). The largest data set with d = 8 ·16 = 128 is roughly
2 gigabytes. For this data set, our algorithm drives the SP2 at nearly 1.8
gigaflops.
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Fig. 7. Scaleup curves. We plot execution time per iteration in seconds versus the
number of processors. The same data set with n = 221, d = 8, and k = 8 is used for
all the three curves–when the number of processors is equal to 1. For the “n” curve,
the number of data points is scaled by the number of processors, while d and k are
held constant. For the “k” curve, the number of clusters is scaled by the number of
processors, while n and d are held constant. For the “d” curve, the number of dimensions
is scaled by the number of processors, while n and k are held constant.

5 Future Work

In this paper, we proposed a parallel k-means algorithm for distributed memory
multiprocessors. Our algorithm is also easily adapted to shared memory multi-
processors where all processors have access to the same memory space. Many
such machines are now currently available from a number of vendors. The basic
strategy in adapting our algorithm to shared memory machine with P processors
would be the same as that in this paper, namely, divide the set of data points n
into P blocks (each of size roughly n/P ) and compute distance calculations in
lines 14-21 of Figure 1 for each of these blocks in parallel on a different processor
while ensuring that each processor has access to a separate copy of the centroids
{mj}k

j=1. Such an algorithm can be implemented on a shared memory machine
using threads [42].

It is well known that the k-means algorithm is a hard thresholded version
of the expectation-maximization (EM) algorithm [43]. We believe that the EM
algorithm can be effectively parallelized using essentially the same strategy as
that used in this paper.
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