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Preface

There are two main approaches to the theoretical study of liquid crystals: continuum and
molecular.

The first, well covered in various good books [Chandrasekhar, 1992; de Gennes and
Prost, 1993; Virga, 1994; Kleman and Lavrentovich, 2003; Stewart, 2004; Oswald and
Pieranski, 2005, 2006; Barbero and Evangelista, 2006], considers anisotropic systems at
macroscopic level and typically deals with optical and elastic properties as well as with
many practical electro-optical applications of liquid crystals. At the continuum level, liquid
crystals are assumed to exist and their properties (e.g. elastic constants and viscosities) to
be known, insofar as they are needed to parameterize the relevant equations. Molecules,
phase transitions and spectroscopic properties are not normally taken into consideration. In
this line of work computer simulations typically refer to a determination of the preferred
orientation (director) or of the ordering tensor field that minimize the elastic free energy
under a variety of boundary conditions, while dynamics is normally related to the solution
of hydrodynamics equations for anisotropic fluids.

The other main line of investigation deals with the molecular organization of liquid
crystals and how their macroscopic behaviour can be understood in terms of constituent
molecules (or colloidal particles, as appropriate) and their interactions, particularly with
the help of computer simulation techniques. It is definitely this microscopic approach that
we shall follow in this book, discussing in some detail the main types of liquid crystal phases
as well as theoretical and computer simulation approaches. I believe that such a book does
not exist at the moment and that it might be useful to have one. On one hand, books dealing
with liquid crystals [de Gennes, 1974; Chandrasekhar, 1992; Chaikin and Lubensky, 1995;
Collings and Hird, 1997; Khoo, 2007; Blinov, 2011] hardly talk of computer simulations,
since they are focussed on other aspects or, possibly, because their development is relatively
recent. On the other, good textbooks on computer simulations also exist [Frenkel and Smit,
2002; Berendsen, 2007; Allen and Tildesley, 2017], but none deals specifically with liquid
crystals. This is a major problem, since computer simulations of liquid crystals need to
go beyond the standard calculations of thermodynamics properties or radial distributions
and should relate to relevant experiments in the field. In particular, this requires developing
appropriate methodologies to calculate the anisotropic, tensorial, observables, order param-
eters, space and time correlation functions, director field and defects, that are characteristic

xiii
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features of liquid crystals, and to make contact with what is actually measurable, e.g. from
spectroscopic or diffraction experiments. Some of these aspects have been addressed in
multi-author books [Luckhurst and Gray, 1979; Pasini and Zannoni, 2000; Lavrentovich
et al., 2001; Pasini et al., 2005b], some of which I have co-edited. However, these books are
now at least 15 years old, while very many new applications, e.g. all the predictive atomistic
simulations of liquid crystals, have been developed more recently. It is also worth stressing
that liquid crystals are an intrinsically interdisciplinary topic and many of the background
tools needed for their understanding are drawn from different curricula, especially physics
and chemistry, but also mathematics, biology, etc. A similar problem arises even within a
single discipline when we wish to treat different anisotropic materials like low-molar-mass
liquid crystals, polymers and membranes. At the moment, these topics are presented sepa-
rately in reviews or book chapters. While these have the advantage of a detailed treatment of
specific advanced topics, we aim here at a consistent approach that tries to amalgamate the
various topics. For example, much of the background required to understand the application
to liquid crystals of different spectroscopic techniques, such as Nuclear Magnetic Reso-
nance (NMR), Fluorescence Depolarization (FD), Dielectric Relaxation (DR), X-ray, etc., is
largely similar, even though the different fields have developed independently and often with
a different jargon and notation for the same quantities, so that a unified treatment should now
be timely. Such an approach, in terms of order parameters and correlation functions, is also
key to predicting observables from computer simulations and comparing with experimental
results. The book provides the basic conceptual and technical tools needed by a student
towards the end of an undergraduate curriculum or at the beginning of a postgraduate course
(in physics, chemistry, material sciences, engineering or mathematics), or more generally
by someone starting research in liquid crystals. The book has grown from undergraduate
and graduate courses that I have taught for a number of years at Bologna University as well
as from lectures that I have given at a number of summer schools and at universities around
the world, from Southampton to Kuala Lumpur. On the basis of this experience, I have made
an effort to put together some of the contents useful for a fairly gentle introduction to liquid
crystals at molecular level.

In summary, the organization of the book is as follows. The first part of the book intro-
duces the various kinds of mesophases and their phase transitions from the thermodynamic
point of view (Chapters 1 and 2) as well as in terms of order parameters (Chapter 3). The
essentials of how various experimental techniques (Linear Dichroism (LD), FD, NMR, etc.)
can be employed to determine order parameters are introduced. Pair correlations and their
relation to various experimental quantities (elastic constants, X-ray scattering) are presented
in Chapter 4, while the reorientational dynamics of molecules in liquid crystals is described
in Chapter 6, with a detailed discussion of orientational correlation functions and of their
properties. The calculation of these time dependent correlation functions using stochastic
models (rotational diffusion in particular) is also presented. Connection with experiments
providing information on dynamic properties is introduced with Linear Response Theory
and some important cases (DR, ionic transport, thermal conductivity, viscosities) examined
in some detail. Given the huge variety of liquid crystal phases, the systems are chosen
with modelling and simulations in mind. Simulations are also viewed as a set of ‘computer
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experimental’ techniques able to generate ‘configurations’, i.e. snapshots of the positions
and orientations of a sample ofN molecules at equilibrium. The availability of these sets of
configurations or of trajectories, i.e. of their time evolution, will, perhaps unconventionally,
be assumed to be available, at least in principle. even in the first part of the book, so
as to connect the various concepts introduced to characterize the liquid crystal phases to
simulations. However, the details of how to perform the simulations will only be given in
the second part of the book. Intermolecular and more generally particle–particle interactions
are introduced in Chapter 5 and Molecular Field and Onsager theories, the most important
approximate statistical mechanical approaches currently used, are discussed in Chapter 7.
We then turn to computer simulation techniques. Both Monte Carlo (MC) and Molecular
Dynamics (MD) methodologies are introduced in Chapter 8 and in Chapter 9, respectively,
with special attention given to the calculation of anisotropic properties. The following chap-
ters are devoted to the application of computer simulation techniques to liquid crystals at
multiple length scale: Lattice (Chapter 10), Off Lattice Molecular (Chapter 11) and fully
Atomistic models (Chapter 12). Most of the required mathematics is covered in a series
of Appendices, hopefully making the book fairly self contained. Thus, spherical tensors,
Wigner matrices, quaternions and other tools useful for dealing with rotations, which have
normally to be extracted from books on angular momentum and quantum mechanics, are
treated here with our applications in mind. Even simpler topics, like orthogonal basis sets,
Dirac delta functions and Fourier transforms, typically treated in a physics curriculum, but
not always in chemistry courses, are covered, with an eye to the practical user. The majority
of chapters also have a detailed treatment of some ‘simple’ but relevant cases (sections) that
can be read independently from the rest and could be used, e.g. for undergraduate courses.
If the huge increase in computer performance and resources continues (it has been of a
factor of the order of 105 in the last 20 years), the vision is that computer simulations will
become very widespread and used more and more by industry and by non-specialists in the
field. Knowing the basic ingredients of computer simulations thus seem important even for
potential users, rather than just for developers, even when dealing with materials as complex
as liquid crystals.

In closing I wish to thank the many friends, students and colleagues that have helped
providing advice and support. I am particularly grateful to Lara Querciagrossa, also for
much essential help with the figures, and to Sergio Cataliotti who have both carefully read
and corrected all the chapters. I am indebted to Andy Emerson, Alessandro Porreca and Ric-
cardo Tarroni for some figures and to Matteo Babbi, Gianni Bendazzoli, Roberto Berardi,
Martin Čopič, Raffaele della Valle, Juho Lintuvuori, Luca Muccioli, Silvia Orlandi, Guido
Raos, Matteo Ricci, Lorenzo Soprani, Marco Mazza and Francesco Spinozzi for reading,
correcting and commenting on some parts of the draft. All remaining errors are of course
my responsibility. I am also very grateful to Oleg Lavrentovich for the beautiful image of a
liquid crystal texture used for the cover and last, but certainly not least, to Roberto Berardi
(unfortunately now prematurely deceased) and to Geoffrey Luckhurst for many essential
discussions over the last few decades.

Part of this book was written at the Isaac Newton Institute, Cambridge, UK, and I am
extremely grateful for the hospitality and for the stimulating atmosphere and the discussions
with many colleagues that I thoroughly enjoyed there.
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1

Phases and Mesophases

Any process which is not forbidden by a conservation law actually does
take place with appreciable probability.

M. Gell-Mann, Il Nuovo Cimento 4, 1956

1.1 Introduction

It takes two antithetic words to indicate liquid crystals (LCs) and this gives immediately
a hint of the complexity and the fascination of the state of matter that we are about to
investigate. Despite this, liquid crystals are not necessarily exotic in their composition or
rare in their occurrence, and indeed tens of thousands of liquid-crystalline compounds have
been described already.

To start from the very beginning, here we define an equilibrium phase of matter as a
molecular organization stable within a certain range of thermodynamic variables, e.g. in
a certain temperature interval. We are all familiar with the crystalline solid, liquid and
gas phases and with their macroscopic properties. For example, we know that crystals
have a particular shape that they maintain over time and that they typically have different
properties along different directions. Thus, if we measure some optical property of a crystal
by sending a beam of light along its different axes we typically find different values. Such
a material is accordingly called anisotropic. At the other extreme, liquids can flow and take
the shape of their container and their physical properties are the same in any direction, thus
liquids are isotropic. The gaseous state too is isotropic, like a liquid. As we shall see the
gas state, except for the density, is indeed very similar to the liquid state, to the point of
not being fundamentally distinct from it. On a microscopic level we can imagine an ideal
crystal as formed by its constituent particles (molecules or atoms, ions, nanoparticles, …)
with positions regularly arranged on a lattice and, as long as they are non-spherical, with
orientations parallel, or however very precisely organized, as shown schematically in
Fig. 1.1a. A structure like this is said to possess both positional and orientational order. In
a liquid, molecular positions and orientations are instead disordered overall, as sketched in
Fig. 1.1b. We can expect a certain amount of correlations in the positions and orientations
of nearby molecules, since each of them will have to adjust to its neighbours to avoid
occupying the same space and to optimize attractive interactions. However, this local
correlation will rapidly disappear as the separation between molecules increases, so that in

1
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2 Phases and Mesophases

Figure 1.1 (a) A sketch of the molecular organization of a crystal and (b) of an isotropic
fluid formed by elongated particles. The grey shade indicates the particles orientation.

an ordinary liquid (or gas) we have no long range order. It is apparent that there is a relation
between the order at molecular level and the macroscopic properties of a system, and much
of this book will be devoted to trying to establish and analyze this connection. It is also
worth realizing that there is no rule of nature that forbids the existence of states of matter
with long-range order intermediate between that of crystals (three-dimensional positional
and orientational) and that of liquids (no positional and no orientational). Since all that is
not forbidden can take place in nature or be artificially prepared, we do indeed have a variety
of intermediate phases, some examples of which are schematically shown in Table 1.1, with
order decreasing from top to bottom. It is reasonable to expect that phases like the plastic
crystal that have positional, but not orientational, order will be formed by molecules of
globular shape that can reorient without disrupting the structure. In practice, tetrahedral (e.g.
tetrachloromethane, neopentane), octahedral (e.g. tetramethylbutane), cyclic (cyclobutane),
bridged (camphor, adamantane) molecules, etc., give rise to plastic crystals. These rather
special crystals have isotropic optical properties and usually they can be easily cut
or extruded. Some, e.g. perfluoro cyclohexane, can even flow under their own weight
[Kovshev et al., 1977].

When molecules significantly deviate from a globular form, e.g. when they are elongated
or discoidal, we have the possibility of phases with orientational order and with a reduced
or altogether absent positional order intervening between the crystal and the liquid
phases. These intermediate phases or mesophases are called liquid crystals [de Gennes,
1974; Chandrasekhar, 1992; de Gennes and Prost, 1993; Chaikin and Lubensky, 1995;
Collings and Hird, 1997; Khoo, 2007; Blinov, 2011]. Liquid crystals can be obtained
from the isotropic liquid by cooling, or from the crystal by heating, and these materials
are called thermotropic. However, liquid crystal phases can also be formed by mixing
a liquid with one or more components formed by anisotropic particles in a suitable
concentration range (lyotropics, colloidal suspensions, …). In the next few sections we
shall briefly describe the properties of both families, starting from thermotropics. In these
systems the phase transformations can be reversible, with or without hysteresis, and in
this case, they are called enantiotropic or, as found in a number of materials, the phase
transformations take place only in one direction, e.g. upon cooling, and these are called
monotropic.
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1.1 Introduction 3

Table 1.1. A sketch of the molecular organization of various phases
of matter displaying a combination of positional and orientational
order

Phase Positional order Orientational order

Crystal Yes, 3D Yes

Plastic crystal Yes, 3D No

Columnar LC Yes, 2D Yes

Smectic LC Yes, 1D Yes

Nematic LC No Yes

Liquid No No

Gas No No
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4 Phases and Mesophases

Figure 1.2 Microscopic representation of a nematic monodomain. The molecules tend to be
aligned parallel to a common director d , here along the vertical direction. Their orientation
with respect to the director is indicated by the grey level, from white when parallel, to black
when perpendicular.

1.2 Nematics

The characteristic property of the molecular organization of nematic liquid crystals is that
their molecules tend, on average, to be parallel to one another and to a preferred direction d,
called the director. The director at a certain position in space r can have a different orienta-
tion from that at another position r ′, but a nematic can be easily aligned by relatively weak
external fields of various kinds: magnetic fields of the order of a few tenths of Tesla, electric
fields of the order of Volts per micron [de Gennes and Prost, 1993] or even by surfaces,
at least for sufficiently thin layers [Jérôme, 1991], yielding a monodomain sample with a
uniform director d . The resulting aligned nematic, schematically shown in Fig. 1.2, has
normally uniaxial symmetry around the director, in the sense that its physical properties
do not change if we rotate of an arbitrary angle around this direction and here, unless
explicitly stated, we shall always assume this to be the case. The properties of nematics
are also invariant when we turn a sample upside down, so that d and−d are equivalent and,
if we consider d as a unit vector, only its direction will be important. The symmetry of a
monodomain nematic can thus be taken to be equivalent to that of a cylinder or, using group
theory terminology (see, e.g., [Lax, 1974]), D∞h. This is consistent with molecules forming
mesophases (mesogens) being apolar or, as is normally the case, being distributed with the
same probability along ±d. The formal description of orientational order will be discussed
in detail in Chapter 3, but the tendency of molecules yielding nematics (nematogens) to
be parallel to d can be quantified as a first approximation by a simple order parameter S
first introduced by Tsvetkov [1939]. Consider each mesogen to be a uniaxial object whose
orientation is given by a unit vector u

S ≡ 〈P2〉 = 3

2
〈(u · d)2〉 − 1

2
, (1.1)

where u · d ≡ cosβ, with β the angle between the molecular axis and the director,P2(cosβ)
is the second Legendre polynomial [Abramowitz and Stegun, 1965] and the angular brackets
indicate an average over all the molecules in the system. It is easy to see that 〈P2〉 is a scalar
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1.2 Nematics 5

Figure 1.3 The temperature dependence of the Miesowicz shear viscosities η1, η2, η3 for
5CB [Chmielewski, 1986]. In the inset we show a sketch illustrating the definition of these
three viscosities [Orr and Pethrick, 2011] for the nematic flowing in a channel with a certain
velocity ν along x (ν||x), and a flow velocity gradient across the channel (∇∇∇νx ||y). Each
viscosity is measured aligning the director with an external magnetic field H oriented in
different directions: H ||d||y for η1, H ||d||x for η2 and H ||d||z for η3.

and that it has the properties that we would intuitively expect an order parameter to possess.
For a system of molecules perfectly aligned with respect to d, that we take to define our Z
laboratory axis, β = 0 or β = π for every molecule and 〈P2〉 = 1. At the other extreme,
for a completely disordered system, such as an ordinary isotropic fluid, we have

〈cos2 β〉 = 〈u2
Z〉 = 〈u2

X〉 = 〈u2
Y 〉 =

1

3
, (1.2)

since in an isotropic system there will be no preference for any of the three axes and also
u2
Z + u2

X + u2
Y = 1. Therefore, for a disordered system we have 〈P2〉 = 0.

Nematics have long-range orientational order but not long-range positional order and
their molecules can move and reorient quite easily, like in a liquid. Indeed the viscosities
and the densities of materials in their nematic or isotropic liquid phases are quite similar,
typically differing less than 5% on both sides of the transition [Ibrahim and Haase, 1976;
Dunmur et al., 2001; Würflinger and Sandmann, 2001]. The orientational order gives, how-
ever, different optical, dielectric, diamagnetic and rheological properties in different direc-
tions with respect to the director, i.e. a nematic liquid crystal is anisotropic. The viscosity
itself is different for different relative orientations of the flow velocity v, of the director
and of the flow velocity gradient [Miesowicz, 1946], as sketched in Fig. 1.3, where we also
plot the three Miesowicz viscosities (η1,η2,η3) for 4-n-pentyl-4′-cyano-biphenyl (5CB),
showing that the lowest one corresponds to flow along the director (η2) [Chmielewski, 1986;
Orr and Pethrick, 2011].
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6 Phases and Mesophases

1.2.1 Optical Properties

Even though the molecules of a nematic tend to arrange parallel to each other, defining
a local preferred direction, the director will not point in any specific direction on a macro-
scopic scale in the absence of a field, for example when we obtain a nematic by cooling from
the liquid or melting from the crystal. Rather, its direction will vary continuously so as to
maintain on the one hand local uniaxial and on the other macroscopic isotropic symmetry.
We can think of the molecules as being aligned within local domains, but with the domains
being themselves randomly oriented one with respect to the other. This inhomogeneity
gives rise to the scattering of visible light by an unoriented nematic (see Fig. 1.4) and
to its characteristic turbid, milky appearance, which disappears at the nematic-isotropic
transition, for this reason also called the clearing point. In turn, the strong scattering of
visible light indicates that local domains leading to birefringence inhomogeneities have
dimensions ξ of the order of the wavelength of visible light, i.e. a few hundred nanometres,
corresponding to a number of spontaneously correlated molecules of the order of 108. The
strong correlation between individual molecules indicated by this huge size is at the origin
of the aforementioned easy alignment of nematics under an external field. Indeed a uniform
alignment can be obtained by magnetic fields of the order of 0.1T or, e.g., by electric fields
of the order of 1 V/μm. The free energy contribution corresponding to application of an
electric field E is (see, e.g., [Khoo, 2007])

GE = −
1

2
�ε (d ·E)2. (1.3)

The alignment will thus tend to be in the direction of the applied electric field, E, or
perpendicular to it, if the dielectric susceptivity anisotropy of the material, �ε = ε‖ − ε⊥,

Figure 1.4 Relative scattering coefficient as a function of the ratio between size of the
inhomogeneous domains, ξ , and incoming light wavelength λ [Tilley, 2000]. The milky
appearance of nematics (inset) indicates that ξ is of the order of a few hundred nanometres,
the visible light wavelength.
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1.2 Nematics 7

is positive or negative, respectively. A good alignment will be achieved if this free energy
overcomes the thermal disordering energy. In the same way for an applied magnetic field H

GB = −
1

2
�χ (d ·H )2, (1.4)

where �χ is the diamagnetic susceptivity anisotropy �χ = χ‖ − χ⊥.
An aligned nematic has the optical properties of a uniaxial crystal, like calcite or quartz,

with the director representing the optical axis, and shows birefringence [Jenkins and White,
2001]. A beam of light, propagating through the sample at an angle with respect to the
optical axis, is split in two beams with parallel and perpendicular polarization, correspond-
ing to the refractive indices parallel and perpendicular to the director, n‖, n⊥. Thus, in a
liquid crystal the refractive index, n, is a tensor (see Appendix B). In a laboratory fixed
system with the z-axis parallel to d, the 3 × 3 matrix representing the refractive index
tensor will be diagonal, with components (n⊥,n⊥,n‖). A simple experimental setup for
measuring the birefringence, �n = n‖ − n⊥, i.e. the difference between the parallel (or
extraordinary) and perpendicular (or ordinary) components of the refractive index tensor,
is shown in Fig. 1.5a. The intensity of a beam of light with wavelength λ emerging through

P
2
 (–45°)

(a)

(b)

P
1
 (45°)

Figure 1.5 (a) Sketch of an experimental setup to measure the birefringence of an aligned
nematic from the intensity of light transmitted through the two polarizers P1 and P2 at±45◦
with respect to the director d . (b) Refractive indices n‖ and n⊥ for the nematic 5CB in the
visible (λ = 546.1 nm) as a function of temperature [Karat and Madhusudana, 1976]. The
vertical dashed line indicates the transition to isotropic.
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8 Phases and Mesophases

the two crossed polarizers set at ±45◦ from the director of a vertically aligned sample of
thickness δ is (see Appendix L)

I = I0 sin2(πδ�n/λ), (1.5)

where I0 is the input intensity. The birefringence �n = n‖ − n⊥ typically decreases with
increasing temperature, as shown in Fig. 1.5b, indicating an increasing disorder in the
molecular organization. At a well-defined temperature TNI , the nematic-isotropic transition
temperature, the anisotropy vanishes abruptly and the material becomes an ordinary
isotropic liquid. We note, however, that even above the transition the isotropic phase has
some short-range ordering, with ordered clusters of molecules of a typical size (coherence
length) ξI , that grows larger on approaching the nematic transition from above. This
pretransitional effect is observed in a relatively large range of temperatures above TNI
(some 10–20 degrees) and is demonstrated by the anomalously large susceptivity to an
applied electric field (Kerr effect) or magnetic field (Cotton–Mouton effect) measured, e.g.,
by the induced birefringence �n. Thus (see, e.g., [Haynes et al., 2014]),

�n = λKE2, (1.6)

where λ is the wavelength of the probe light, K is called the Kerr constant and E is the
electric field applied. The Kerr susceptivity of nematic liquid crystals is linked to the size
of the oriented domains, as we shall see in Section 4.11, and increases on cooling from
the isotropic phase, diverging as the temperature approaches a characteristic temperature,
TNI��� , which is typically ≈1K below the nematic-isotropic transition temperature TNI , as
we see in Fig. 1.6, although it can vary for different nematics [Blachnik et al., 2000]. The
easy alignment of a nematic when applying an external field is even more strikingly shown
by surface alignment. A thin (a few microns thick) nematic film on a glass or polymer slab

Figure 1.6 Kerr constant K (◦◦◦) and its inverse K−1 ( ��� ) as a function of temperature for
5CB (obtained from the birefringence �n at a wavelength λ = 441.6 nm). The divergence
temperature TNI∗ = 33.8◦ C is 1.33 degrees below TNI [Coles and Jennings, 1978]. By
comparison, K of 5CB in a dilute solution of CCl4 is only 2.8 (V−2 pm).

https://doi.org/10.1017/9781108539630.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.002


1.2 Nematics 9

Figure 1.7 Sketch of a twisted nematic (TN) display pixel in electric field off and on states.

can be aligned by surface interactions. An alignment of the director along a certain easy
axis can be achieved by simply rubbing or lapping the support surface with a soft tissue.

The possibility of changing between the director orientation established by surface forces
in a small, micron-size region (a pixel) and that obtained by switching on and off an electric
field, with the resulting change in the pixel optical properties, is at the heart of the many
applications of these mesophases in the electro-optic display industry, where liquid crystal
displays (LCDs) have become dominant for applications ranging from mobile phones, TV
screens, etc. (see, e.g., [den Boer, 2005; Semenza, 2007; Kim and Song, 2009]). In Fig. 1.7
we see a sketch of the director configurations at rest and with the electric field on for one of
the simplest and most widespread LC display types: the twisted nematic (TN). In a TN LCD,
a few microns thick film of a nematic with �ε > 0 is confined between two glass slides
G1, G2, each treated so as to induce a uniform alignment along a certain direction of the
surface: u1, u2, u1⊥u2. Going across the film from one surface to the other, the director
changes in a helical way between the two perpendicular boundary directions. This chiral
structure will be able to rotate the plane of the back illumination light, linearly polarized
along u1 by a first polarizer P1, so that at rest (off) light will be able to emerge through
the second polarizer, P2, set along u2. However, an electric field can be applied to the pixel,
printed with a transparent conducting ink (typically, Indium-Tin Oxide, ITO) and connected
to the device circuitry. Applying to the pixel a suitable voltage across the two surfaces,
the small nematic volume (voxel) subjected to the field aligns along the field direction,
blocking transmission through the pixel. The pixel then operates as an optical switch: it will
appear black when the helix is completely unwound, or partially transparent, according to
a number of grey levels nG (typically nG = 256) established by changing the applied field.
When the field is switched off again, the LC interaction with the surfaces will re-establish
the original situation of transparency. Colours are obtained by additive synthesis having,
instead of a single pixel a set of three (sub-pixels) so close that the eye does not spatially
resolve them. Illuminating with red, green and blue (RGB) light respectively, n3

G colours
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10 Phases and Mesophases

can be obtained. Each of the three lights is typically obtained from a white back-light by
a colour filter. A more recent and better approach is to illuminate with UV light a film
containing semiconductor quantum dots (QDs) [Reed, 1993; Ness and Niehaus, 2011], for
instance, CdSe nanoparticles of three different sizes that emit respectively rather pure red,
green and blue lights, more easily filtered than the original white light. Even more simply a
blue light-emitting diode (LED) can be used to illuminate the polymer film containing two
QDs emitting in the red and the green [Luo et al., 2014].

1.2.2 Defects

When a thin film of nematic on an untreated glass slide is observed between crossed polar-
izers, the birefringence coupled to the distribution of director orientations in the sample
yields a typical texture, shown in Fig. 1.8a, called schlieren [de Gennes, 1974; Brochard,
1977]. The black threads correspond to regions where the director is in the plane parallel
to one of the crossed polarizers or where the system is locally isotropic. The points or
lines where these differently oriented directors meet, represent singularities of the director
field corresponding to topological defects [Frank, 1958; Mermin, 1979; Kleman, 1982;
Trebin, 1982; Lavrentovich et al., 2001; Muševič, 2017]. For nematics we note singularities
(noyeaux) with two and four brushes (see Fig. 1.8) that correspond to defects with strength,
or winding number, s = 1

2 and s = 1, respectively (Fig. 1.8b). The value of the winding
number, s, can be assigned, assuming for simplicity that in the thin film the director dis-
tribution is two-dimensional, by drawing a closed circuit around the defect and observing
the total angle of rotation, αd , of the director upon returning to the same point. Clearly,
αd is a multiple of π and s = αd/(2π ), and the s is just 1/4 of the number of brushes
observed. The sign of the defect can be obtained following the movement of the brushes
as the polarizers are rotated: the sign is taken to be positive if the brushes rotate in the
same direction as that of the crossed polaroids and negative if the brushes rotate in the
opposite direction.

Crossed polarizers Topological defects

(a) (b)

Figure 1.8 The schlieren texture of nematics between (a) crossed polarizers and (b) two
topological defects showing the origin of the black threads. The two deep black regions
correspond to hotspots, where the nematic has turned isotropic.
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1.2 Nematics 11

The procedure to classify defects can be generalized to director distributions in three
dimensions considering a closed sphere surrounding the singular point and applying the
methods of algebraic topology, in particular so-called homotopy groups, beyond the scope
of this book and well treated elsewhere, e.g. by Kurik and Lavrentovich [1988] and Mermin
[1990]. An important point is that, while in two dimensions an infinity of different strengths:
s = ±1/2,±1,±3/2, . . . can in principle occur, in 3D only defects of strength 1/2 can
exist. The polarizing optical microscope (POM) textures of thin films of liquid crystals
do not depend on the specific chemical nature of the compound, but, as we shall see, are
characteristic, given a certain surface treatment of the film, of the different categories of
liquid crystals. Indeed, this constitutes an important practical tool in assigning liquid crystal
types [de Gennes, 1974; Gray and Goodby, 1984; Neubert, 2001a].

1.2.3 Elastic Constants

Nematics also present an elastic response: when their director is deformed by applying some
weak external field, they return to the original molecular organization as the stimulus is
released, somehow similarly to what happens to crystals but not to isotropic liquids [Frank,
1958; Nehring and Saupe, 1971; Stephen and Straley, 1974; Clark, 1976; Crawford and
Žumer, 1995; Kleman and Lavrentovich, 2003]. To see how this effect can be observed, let
us imagine we align a liquid crystal film with a uniform director in any point of the material
and consider this is the state at rest. We can then try to deform the material and write the
elastic free energy density Gel for the slightly distorted nematic, following Frank [1958], as
an expansion in powers of the (small) gradient components of d . In the various notations
commonly used these are dij ≡ ∇idj ≡ [∇∇∇d]ij ≡ [∇∇∇ ⊗ d]ij . The free energy density can
be written as a sum of a bulk term Gbel, and a surface term Gsel:

Gel ≡ Gel(d,∇∇∇d) = Gbel + Gsel, (1.7)

where Gel(d,∇∇∇d) should be invariant for arbitrary sample rotations and changes of sign of d.
Retaining only combinations allowed by symmetry and considering only quadratic terms
like in the classical Hooke’s law of elasticity gives the classical Frank–Oseen expression
[Oseen, 1933; Frank, 1958; Stewart, 2004]:

Gbel =
K11

2
(∇∇∇ · d)2 + 1

2
K22[d · (∇ × d)]2 + 1

2
K33|d × (∇ × d)|2. (1.8)

The last bulk term can also be written as +K33
2 [d · (∇ d)]2 and the surface term contains

divergence terms [Kleman and Lavrentovich, 2003]:

Gsel = −K24∇∇∇ · (d ×∇∇∇ × d + d∇ · d)+K13∇∇∇ · (d∇ · d). (1.9)

The total elastic free energy is obtained integrating over all the sample volume: G totel =∫
V

drGel (d(r),∇∇∇d(r)) . We see that the expression for Gbel contains only three essential
modes of deformation of the director: (∇ · d), [d · (∇×d)], |d × (∇ × d)|, called splay, twist
and bend, shown in Fig. 1.9. The corresponding splay, K11, twist, K22, and the bend, K33,
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12 Phases and Mesophases

Splay: K11 Twist: K22 Bend: K33

Figure 1.9 A sketch of the splay, twist and bend deformations of a liquid crystal correspond-
ing to the Frank elastic constants K11, K22 and K33.

elastic constants [Frank, 1958] express the resistance of the material to these deformations.
When calculating the total bulk free energy by volume integration only the first term, Gbel,
survives, while the second, Gsel, involving the saddle-splay constant K24 and the mixed
splay-bend constantK13, averages to 0. However, these contributions should be considered
when the system is confined or in any case a surface [Crawford and Žumer, 1995].

The elastic constants (or moduli) are positive, different from one another as they
correspond to physically different distortions, they change with temperature and pressure
and are fairly small, with typical values of the order of piconewtons (see, e.g., Table 1.3). For
low-molar-mass nematic liquid crystals the differences between the three elastic constants
are normally relatively small [Stannarius, 1998a; Dunmur, 2001] and, accordingly, the
approximation of equal elastic constants in nematics is often made in theoretical work.
Within this assumption of K11 = K22 = K33 = K, K24 = 0 and the identity Eq. A.27,
the integrand becomes the scalar contraction (Eq. A.22) of the director gradient [Ball, 2017]:
G totel = 1

2 K
∫
V

dr ||∇∇∇d||2. However, it is worth mentioning that in various important cases
we may expect the elastic constants to differ significantly. For instance, de Gennes [1977]
observed that splay distortions should be unlikely to occur, and, correspondingly, K11

should be very large for systems of long rods, like those of polymeric LC (see Section
1.3) because of the crowding of rods at one end caused by splay. This was experimentally
observed for a main-chain polyester [Zhengmin and Kleman, 1984] where K11 ≈ 0.1 pN
≈ 10K33. For another polyester, Martins et al. [1983] found K11 ≈ 2− 3K33. In other LC
types, like the twist-bend nematic phase found in certain dimers (see Section 1.5), the bend
elastic constant K33 is much smaller than the other two [Borshch et al., 2013].

In a great variety of instances, the equilibrium distribution of the director can be obtained
by setting up and minimizing the elastic free energy subject to appropriate boundary
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Figure 1.10 A space filling atomistic model of the structure of the nematogen 5CB.

conditions. As discussed by Ericksen [1966], the constants should obey the inequalities
[Kleman and Lavrentovich, 2003]:

K11 ≥ 0, K22 ≥ |K24| ≥ 0, K33 ≥ 0, 2K11 −K22 −K24 ≥ 0. (1.10)

1.2.4 Nematogenic Molecules

Nematics are formed of anisotropic molecules, that is, by molecules, typically non-
spherical, which have different properties in different directions. The simplest kind of
nematogen molecules, and for a long time the only ones, have elongated (also called
calamitic) structures. In Fig. 1.10 we show, as an example, the nematogen molecule 5CB.
As we can see from a space filling model, where each atom is represented by a sphere of
characteristic radius, this molecule is relatively elongated, consisting of a fairly rigid core
and of a flexible alkyl chain, although the aspect ratio (length to width ratio) is not by itself
the only factor determining the existence or absence of a mesophase.

In thermotropic materials, nematic phases can be obtained by simply melting a crystal
or cooling from an ordinary isotropic phase. In general, the nematicity range is from a few
degrees to a few tens of degrees Celsius; then another transition to a solid or to another
liquid crystal phase takes place. In Table 1.2 we list the nematic ranges for a few common
liquid crystals, taking also the opportunity to introduce their code names. We note that when
dealing with nematics we are nearly always in the neighbourhood of a phase transition. In
particular, as we see from the data in Table 1.2, the temperature range of nematicity for the
pure materials listed here (TKN − TNI )/(273.15+ TNI ) is at most 30% from the nematic-
isotropic transition temperature and is not much larger even for mixtures like E63 or Phase 5
especially designed to broaden the interval. The code names in Table 1.2 conform to their
common usage and will be used throughout the book. They correspond to the following
chemical compositions:

• E63: a commercial mixture (from BDH) of six cyano-biphenyls and terphenyl with a
particularly wide nematic range.

• Phase 5: a eutectic mixture with the approximate percent content: 4-butyl, 4′-methoxy
azoxybenzene (25 wt%), 4-methoxy, 4′-butyl azoxybenzene (40 wt%), 4-ethyl,
4′-methoxy azoxybenzene (12 wt%) and 4-methoxy, 4′-ethyl azoxybenzene (23 wt%).

• E7: a commercial liquid crystal mixture (from Merck) containing approximately [Lee
et al., 2008] 45.53 wt% 5CB, 28.74 wt% 7CB, 16.28 wt% 8OCB ([1,1′-biphenyl],
4-carbonitrile, 4′-octyloxy) and 9.46 wt% 5CT ([1,1′,4′-1′′-terphenyl], 4-carbonitrile,
4′′-pentyl).
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Table 1.2. The melting, TKN , and clearing, TNI , temperatures for some mixtures
and for pure nematics with their structural chemical formula

Nematic TKN (◦C) TNI (◦C) Formula

E63 −20.1 87.4 Mixture
Phase 5 −5.1 74.9 Mixture
E7 <−30 58.3 Mixture
E9 6.9 82.4 Mixture

MBBA 20.2 45.9

5CB 22.5 35.0

NAD 22.9 48.9

I52 23.9 103.6

PCH5 29.9 55.1

HAB 40.0 47.0

5FTP 60.0 120.0

PAA 118.1 135.3 O N+

N O

O–

AAD 168.9 182.9

P5 400.9 444.9

• E9: a mixture of 15% 4-propyl, 4′-cyano-biphenyl, 38% 4-pentyl, 4′-cyano-biphenyl,
38% 4-heptyl, 4′-cyano-biphenyl and 9% 4-pentyl, 4′-cyano-terphenyl.

• MBBA: (4-methoxy benzylidene)-4′-n-butylaniline (a Schiff base).
• 5CB: 4-n-pentyl-4′-cyano-biphenyl.
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Table 1.3. Some physical properties of the common nematics PCH5, 5CB and MBBA.
PCH5 melts at TKN = 30◦C and becomes isotropic at TNI = 54.9◦C, while for
5CB TKN = 22.5◦C and TNI = 35.0◦C and for MBBA TKN = 22.0◦C and TNI = 48.0◦C

PCH5(a) PCH5(a) 5CB MBBA
Property 30.3◦C 46.7◦C 25.0◦C 25.0◦C

Density, ρ(g cm−3) 0.9630 0.9496 1.022 1.042(d)

Shear (dynamic) viscosity, η (mPa s) 13.96 8.45 28(d) 23(d)

Rotational viscosity, γ1(mPa s) 83.2 32.6
Surface tension, γ (mN/m) 30
Refractive index, n‖ at λ = 589 nm 1.6040 1.5849 1.71(c) 1.764(d)

Refractive index, n⊥ at λ = 589 nm 1.4875 1.4860 1.53(c) 1.549(d)

Dielectric constant, ε‖ at 1 kHz 17.1 15.9 18.5(c) 4.7(f )

Dielectric constant, ε⊥ at 1 kHz 5.0 5.7 7.0(c) 5.4(f )

Elastic constant, K11(pN) 8.5 5.9 6.2(b) 6.0(f )

Elastic constant, K22(pN) 5.1 3.9 3.9(b) 4.0(f )

Elastic constant, K33(pN) 16.2 9.9 8.2(b) 7.5(f )

Diamagnetic anisotropy, 3.9 3.7 1.13(e) 9.7(f )

�χ (10−8m3 kg−1)

(a)[Finkenzeller et al., 1989], (b)[Dunmur, 2001], (c)[Cummins et al., 1975], (d, e)[Pestov and Vill,
2005]: (d)@ 30◦C, (e)(@ 25.6◦C, (f )[Priestley et al., 1975].

• NAD: 2,4-nonadienic acid.
• I52: 4-ethyl-2-fluoro-4′-[2-(trans-4-n-pentyl-cyclohexyl)-ethyl]-biphenyl n-propyl-cyclohexyl-

ethyl-6-fluoro-n-butyl-biphenyl.
• PCH5: 4-n-pentyl-4′-cyano-phenylcyclohexyl.
• HAB: 4,4′-diheptyl-azobenzene.
• 5FTP: 4,4′′-pentyl-2′,3′-difluoro-terphenyl [Gray et al., 1989].
• PAA: 4,4′-dimethoxy-azoxybenzene.
• AAD: anisaldazine.
• P5: p-quinquephenyl.

These are just a few common examples of nematics. In Table 1.3 we report, as an example,
a few important physical properties for the nematics PCH5, 5CB, and MBBA.

There are now tens of thousands of known compounds giving nematic phases with
extremely different chemical structures [Gray, 1962; Demus, 1989; Kaszynski et al., 2001].
In particular, a variety of aromatic, aliphatic, polar and non-polar compounds have been
found to yield nematics.

A very interesting class of compounds is also that of mesogens incorporating a metal, or
metallomesogens (see, e.g., Fig. 1.11), that somehow combine the characteristics of liquid
crystals with those of metal coordination complexes [Hudson and Maitlis, 1993; Donnio
and Bruce, 1999]. In particular the introduction of metal atoms with a certain hybridization
adds enormous possibilities of precisely directing ligands in space, beyond what is allowed
by the linear, triangular or tetrahedral geometry of carbon single, double and triple bonds
(sp, sp2 and sp3 hybridization) with the effect of varying the shape of a mesogen molecule
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K
173.7◦C
←−−→ N

200.7◦C
←−−→ I

Figure 1.11 An example of metallomesogen: a tetracoordinated nickel (II) complex
[Serrano and Sierra, 1996].

in a controlled way. The relation between molecular structure and mesogenic behaviour
is far from obvious, also because many factors like shape or polarizability anisotropy that
might intuitively favour nematicity could favour crystallization too, and possibly to a greater
extent. Whether a liquid-crystalline phase is observed or not is a result, not just of one
single overwhelming factor, but of a quantitative competition between different possible
candidate organizations. However, synthetic chemists have mastered the art of making good
candidate mesogenic molecules, developing effective sets of practical rules based on the
type of fragments (e.g. rigid or non-rigid cores and chains of some chemical nature, . . .)
forming the candidate molecule as well as the way they are assembled together [Gray, 1979;
Hird, 2001; Neubert, 2001b].

1.3 Polymeric Nematics

We have implicitly assumed that the liquid crystals we have introduced are ‘low molar
mass’, certainly a rather ill-defined term that, just to fix ideas, we could apply to molecules
containing up to one hundred atoms or so. However, a large and important class of materials
of high molecular weight: liquid crystal polymers (LCPs) [Blumstein, 1985; Khokhlov,
1991; Donald and Windle, 1992; Shibaev and Bobrovsky, 2017], can be obtained if the
nematogens are also reactive monomers (RM), i.e. if they contain suitable reactive groups
that lead to polymerization. LCPs have orientational order similar to ordinary nematics, but
are typically much more viscous (100 times or more). The fundamental requirement for a
molecule to act as a monomer M is the ability to connect to two or more other molecules in
a repetitive fashion via polymerization. There are many routes to this process [Flory, 1953;
Finkelmann, 1982] and discussing them is clearly beyond the scope of this book. However,
it is useful to consider at least one example: the category of addition polymerization via free
radical reaction kinetics [Broer et al., 1988; Thiem et al., 2005]. The basic steps are:

(i) Initiation step. Some external stimulus (usually heat or light of suitable wavelength)
is used by an added initiator, R2 (see Fig. 1.12) to form reactive activated species, for
instance by fragmentation in two free radicals R• (or more generally a R•A and R•B).
Each R• can react with a monomer M to form a new activated species RM• completing
the initiation process:

R2
hν−→ 2R•

R• +M −→ RM•. (1.11)
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Figure 1.12 (a) A mesogenic monomer: methyl substituted 1,4-phenylene-bis{4-[6-
(acryloyloxy) hexyloxy] benzoate} with end reactive acrylates [Broer et al., 1989; Thiem
et al., 2005]. On the bottom are (b) the photoinitiators benzoyl peroxide and (c) 2,2-
dimethoxy-1,2-diphenylethan-1-one (Irgacure 651© from Ciba©).

(ii) Propagation stage. Reaction of the activated species with monomers causes rapid chain
growth:

R(M)kM
• +M−→R(M)k+1M•. (1.12)

(iii) Termination step ends the reaction. The polymer chain length grows until, after a
certain number of steps, the process is terminated by a quencher species Q which can
react with the activated species M• but cannot participate in further reactions:

R(M)nM• + Q−→R(M)n+1Q . (1.13)

A practical example is that where the monomer M is a reactive mesogen, with two active
acrylates groups at the end of the molecule (see Fig. 1.12). The acrylate functional group is
particularly reactive, due to the vinyl double bond. Initiation starts by irradiation of the
mixture of monomer with photoinitiator (even in very small concentration, �1%) at a
wavelength where the host reactive mesogens do not absorb light, so that the photopoly-
merization can proceed homogeneously through the whole sample. When the active groups
are at the end of the elongated monomer, a main-chain polymer consisting of a string of
monomer units is formed. However, with an alternative strategy mesogenic substituents
can be attached to the chain backbone, forming side-chain polymers [Finkelmann, 1982;
Finkelmann and Rehage, 1984; McArdle, 1989]. In Fig. 1.13 we see schematic examples
of main-chain and side-chain polymers [Blumstein, 1978; Finkelmann, 1982; Finkelmann
and Rehage, 1984; Samulski, 1985; Gleim and Finkelmann, 1989]. Alignment of LCP
chains can be achieved by mechanical stretching of the material in various ways [Xue
et al., 2015]. Some interesting classes of composite materials can be obtained performing
polymerization of reactive monomers and nematics. Thus, for immiscible liquid crystals
(roughly 30%–50%) and partially polymerized but still liquid RMs an emulsion can be
formed, which results, by further polymerization (curing) of the RMs, in a phase separation
producing a dispersion of micron size droplets of LC in a solid polymer. Films of these
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(a) (b) (c)

Figure 1.13 Schematics of (a) main-chain, (b) side-chain end-on and (c) side-chain side-on
nematic LC polymers showing how monomers are connected to the backbone.

polymer dispersed liquid crystals (PDLCs) [Doane, 1990] scatter visible light giving a
non-transparent state that, if the nematic trapped inside the droplets has positive dielectric
anisotropy, can be switched to transparent subjecting them to an electric field across the
film, with applications, e.g. for smart windows (even if the off opaque state may be non-
ideal in many cases).

Increasing the polymer concentration to 60%–80% together with a fast curing with
stronger light intensity gives nanosize droplets. A film of such a composite is transparent
in the visible, even though it can still be switched, giving fast modulation of light useful in
photonics applications. In particular, holographic gratings for switchable transmissive and
reflective diffractive optics can be fabricated by the coherent interference of laser radiation
of the reactive mixture, hence the name H-PDLC for these materials [Bunning et al., 2000].

A third type of polymer–nematic composites is obtained for low (1%–10%) polymer
content, cured in a way that yields a uniform dispersion of the polymer chains (polymer
stabilized LC, PSLC) or a polymer network in the nematic. The polymer provides some
memory of the original orientation of the polymer chains to the system, facilitating and
speeding up switching. A polymer network LC (PNLC) film with homeotropic (i.e. perpen-
dicular to the surface) polymer chains orientations loaded with a nematic with negative
dielectric anisotropy can be converted from transparent to opaque when a field applied
across the film is switched on.

1.4 Chiral Nematics

Chiral1 nematics, N∗, also called cholesterics, are a naturally twisted variety of nematics,
where the director assumes a helical configuration. They can be produced by chiral meso-
gens or by adding a chiral solute to a nematic [Chilaya and Lisetski, 1986; Oswald and
Pieranski, 2005], see Fig. 1.14. Curiously, cholesterol esters were the first liquid crystals of
any kind discovered (by the botanist Reinitzer in 1888) [Sluckin et al., 2004]. Maybe this is
less surprising, when thinking that chiral liquid-crystalline structures abound in plant and

1 Any geometrical figure, or a group of points or a particle in a d-dimensional space (d = 1,2,3), is said to be chiral if it cannot
be superimposed to its mirror image by any rotation in the same space. The two mirror images or enantiomers can be called
Left (L) or Right (R).
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Figure 1.14 A chiral mesogen: (a) cholesteryl chloride and two chiral dopants: (b) CB15
and (c) S811 [Ko et al., 2009].

Figure 1.15 (a) Chiral threaded rods in contact cannot be placed exactly parallel to each
other, but naturally adopt a twisted mutual orientation when trying to align. (b) They then
form a helical organization. Changing the chirality of the rod changes the handedness of the
resulting helix.

animal systems [Mitov, 2017]. To see how a chiral mesogen can induce the formation of a
twisted structure, a simple hard particle model made of threaded rods can help (Fig. 1.15).
The molecular organization in cholesterics is normally represented as in Fig. 1.16, with
nematic-like planes twisted one with respect to the next. This model is compatible with the
optical properties of cholesterics, but in reality, the system has a uniform distribution of
centres of mass, and no true layer structure is present. The repeat distance or pitch, p, i.e.
the distance over which the local director of the cholesteric helix rotates of 360◦, is typically
of a few hundred nanometres, so that on a local, molecular scale, very little difference exists
between cholesterics and nematics. The environment around a molecule and the ordering of
the molecule with respect to the local director is thus quite similar, with the difference that
the director remains perpendicular to the helix axis while progressively rotating around it.
If the director d describes a right-handed screw along the laboratory z-axis, in a right-handed
coordinate system, its explicit form can be written as:

d(z) = (
cos[q0z+ φ], sin[q0z+ φ],0

)
, (1.14)
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(a) (b)

Figure 1.16 A simplified representation of the structure of a cholesteric in terms of nematic
regions (‘pseudo-layers’) (a) twisted one with respect to the other, and (b) a view from top,
showing the effective uniaxiality around the helix axis.

where φ is an arbitrary phase and q0 = 2π/p corresponds to the repeat distance along the
column (pitch) p, with q0 positive or negative for a right- or left-handed material. The sense
of the cholesteric helix is reversed if the chirality of the mesogen is reversed. However, no
general way exists of relating the left or right twist of the helix to the absolute conformation
or the sign of the optical activity of the mesogen. The fact that chirality is essential to
produce optical activity and to give rise to a cholesteric does not mean that the two are
directly related but just that they are both not forbidden under the same conditions.

The Frank elastic energy of a chiral nematic, Gchel , is very similar to the nematic one, but
contains the wave vector q0:

Gchel =
K11

2
(∇ · d)2 + K22

2
[d · (∇ × d)+ q0]2 + K33

2
|d × (∇ × d)|2 . (1.15)

The helical structure implies that the plane of polarization of a beam of light propagating
along the helix axis will be rotated by an amount proportional to the number of helix
windings and thus to the sample thickness in an ideally oriented sample. A one-millimetre-
thick sample of uniformly aligned cholesteric can give an optical rotation of the order of
104–105 degrees, a huge amount compared with that caused by single-molecule optical
activity or to optical rotation in crystals. By means of comparison, the plane of polarization
is rotated by 0.665 degrees upon passing through 1 mm of a water solution containing 10 g/l
of sucrose, a simple chiral molecule. The pitch in cholesterics can vary a lot with the nature
of the material and for cholesterol esters is in the range 300–500 nm. For a given material
the pitch can be easily changed with a variety of perturbation agents: temperature, pressure,
impurity concentration, etc.

Cholesteric phases can be also induced by the addition of a small quantity of an
anisotropic chiral dopant to a nematic (see Fig. 1.14). The pitch of the induced cholesteric
phase, p, is inversely proportional to the chiral dopant concentration C∗, but it is usually
longer than that of pure materials, with reflection bands in the infrared (IR) rather than in the
visible region. The inverse of the proportionality constant is called helical twisting power:
HTP ∝ 1/(p C∗). The two chiral dopants CB15 and S811 shown in Fig. 1.14(b, c) are an
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example of solutes that have large and opposite helical twisting power: HTP ≈ 7μm−1

and HTP ≈ −11μm−1 respectively, when dissolved in the nematic mixture E7 [Ko et al.,
2009].

1.4.1 Selective Wavelength Reflection

It is important to note that the periodic structure of cholesterics can act as a diffraction grid
for light with wavelength of the same order of magnitude of its repeat distance. According
to classical Bragg law, if we have a beam of white light incident at an angle θ with respect to
the helix axis on a transparent cholesteric with an idealized perfectly planar surface, to have
constructive interference we need the difference in optical path (the geometric difference
of path times the refractive index) to be a multiple of the wavelength n(θ )p sin θ = mλ,
with m an integer, n(θ ) the effective refractive index and p being the helix pitch. Assuming
nearly normal incidence, θ ≈ 90◦, this implies selective reflection of light (cf. Fig. 1.17a)
at the wavelength λ = p(n‖ + n⊥)/2 with the bandwidth �λ = p(n‖ − n⊥), where n|| and
n⊥ are the extraordinary and ordinary refractive indices of the untwisted liquid crystal. In
practice, only the first-order reflection (m = 1) appears at normal incidence [Sage, 2011].
At oblique incidence, higher-order reflections can also occur but are generally much weaker.
To complicate things further, Bragg’s law does not hold exactly when the helix axes are not
uniformly aligned, with the incidence angle θ1 and the observation angle θ2 that can be
different, leading to a more complex expression [Sage, 1992; Yang et al., 1997]. We should
also note that the reflected light is circularly or elliptically polarized and has the same hand-
edness as that of the helical structure of the cholesteric phase. A left-handed helix reflects
left-handed light, whereas right-handed light passes unaffected (so 50% of the intensity of
an unpolarized incident radiation is lost to reflection). Incidentally, this is the opposite of
the behaviour of a mirror which reflects circular polarized light with opposite handedness.

(a) (b)

Figure 1.17 (a) Typical spectrum of the reflected light intensity from a cholesteric illu-
minated with linearly polarized light at normal incidence [Hong et al., 2003] showing
the reflection band of width �λ centred at λmax . (b) The temperature dependence of the
reflected λmax , proportional to the helix pitch, in cholesteryl chloride [Hanson et al., 1977].
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A material capable of interacting with light in a well-defined way is called a photonic
material and in this sense an oriented cholesteric is a one-dimensional (1D) photonic mate-
rial showing, as described, a band gap around λmax . A more complete treatment for arbitrary
incidence can be found [e.g., Dreher et al., 1971; Yang and Wu, 2006]. Thin (5–10μm thick)
cholesteric films with planar alignment of the mesogens at the surface can be prepared (e.g.
using a rubbed polyimide alignment layer) yielding a stable planar texture with helices
as will be discussed in Section 1.4.2. On a black background, so that the light that is not
selectively reflected and is more or less completely absorbed, we can have a reflection
colour corresponding to a certain pitch. If we perturb the cholesteric, e.g. by changing
temperature, the pitch will also change to a first approximation linearly with temperature
and accordingly the reflected colour will change as well. This effect is commonly used to
obtain a thermographic map of a surface underlying the cholesteric film. The possibility
of easily locating hotspots in a surface has led to applications ranging, e.g. from the non-
invasive detection of breast cancer to that of anomalous hot areas in electronic circuits [Sage,
2011]. In most cholesterol derivatives the helix winds itself when temperature increases,
with a slow decrease in p on increasing temperature as we see in Fig. 1.17b, typically
dp/dT ≈ −0.28%/ oC [Pindak and Ho, 1976], while non-steroid chiral nematics usually
have dp/dT ≈ 0 [Chilaya and Lisetski, 1986].

Another fascinating application of cholesterics is in the realization of cavity-less dye
lasers. These employ a fluorescent dye dissolved in the cholesteric, e.g. the laser dye
4-(dicyanomethylene)-2-methyl-6-(4-di-methylamino-styryl)-4-H-pyran (DCM), that emits
across the reflection band of the host (see Fig. 1.17a). After suitable optical pumping of the
dye above a threshold intensity (typically≈ 105 W/cm2), the fraction of the fluorescent light
with emitted wavelength within the transmission bandgap is trapped inside the cholesteric
that acts like a cavity resonator. A monochromatic laser light is instead emitted at the band
edge (see Fig. 1.18). Note that for a helix with a certain handedness, the light with opposite

Figure 1.18 An example of cholesteric bandgap (dot-dashed), the emission spectrum of the
dissolved dye (dashed) and the laser emission at the transmission band edge (continuous
line) [De Santo, 2016].
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handedness is unaffected by the structure while that with the same circular polarization
shows the band gap. Thus, for instance, for a right-handed helix the emitted light with left
circular polarization is transmitted, while the right-handed one is selectively reflected, as
discussed before [Chandrasekhar, 1992] and shows lasing. A reason for particular interest
in these lasers is that they can be tuned by varying the cholesteric pitch and a number of
methods have been used: by the application of an external field to a change of concentration
of a chiral agent, etc.

Systems with a cholesteric-like disposition of side mesogenic units have also been pre-
pared [Blumstein, 1978]. It is particularly interesting and somehow surprising that the heli-
cal structure of chiral reactive mesogens can be consolidated by polymerization, leading to
a well-defined cholesteric pitch, and reflection colour, that will not change with temperature
any further.

1.4.2 Cholesteric Textures

Chiral nematics exhibit textures at the polarizing microscope that are quite different from
those of nematics. The texture of a thin film of cholesterics will depend on the orienta-
tions of the mesogens (and then of the helices) with respect to the support surface [Demus
et al., 1998]. In Fig. 1.19 we show the main texture types and a sketch of the molecular
organizations originating them, well discussed in literature [de Gennes, 1974]. The planar
organization selectively reflects incident light as discussed before, while the polydomain
one strongly scatters.

A planar configuration realized with a cholesteric film sandwiched between two plates
with proper surface treatment can be transformed in a homeotropic one with the helix
unwound if the LC has a positive dielectric anisotropy (�ε > 0) and a field higher than the
critical value Ec = (π2/p)

√
(K22/(ε0�ε) is applied [Yang et al., 1997]. Alternatively,

applying an intermediate strength field the reflecting planar configuration can be trans-
formed into a strongly scattering focal-conic one where helical domains still exist but are
disordered in space. It is interesting to note that both textures, when created, can last without
an applied field, providing the basis for a bistable, low power consumption, device. These
changes of optical properties, that can be driven pixel by pixel are the basis for a class of
cholesteric based reflective LCD [Yang et al., 1997].

1.4.3 Blue Phases

For certain strongly chiral materials, typically among those that have a short pitch, other
molecular organizations called Blue Phases (BPs) are formed between the cholesteric and
the isotropic phase [Crooker, 1983; Kitzerow and Bahr, 2001; Kikuchi, 2008; Rahman et al.,
2015]. For instance, cholesteryl oleate has the following sequence of phases, including one
of layered smectic phases discussed Section 1.7 [Voets et al., 1989]:

K
41.37◦C←→ SA

49.09◦C←→ Chol
53.58◦C←→ BPI

54.39◦C←→ BPII
54.87◦C←→ I,
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(a)

(b)

(c)

Figure 1.19 Sketches of the arrangement of cholesteric helices in films with different surface
alignment (left) and corresponding observed textures between cross polarizers (right).
(a) Planar structure with helix axes perpendicular to the support surface. The dark lines in
the Grandjean texture (right) are called oily streaks [Dierking, 2003]. (b) Helices with local
axis parallel to the surface (homeotropic alignment of mesogens) and fingerprint texture
[Giordano et al., 1982]. (c) polydomain distribution of helices and real texture [Dierking,
2003].

and cholesteryl nonanoate has three BPs:

Chol
90.29◦C←→ BPI

90.80◦C←→ BPII
90.88◦C←→ BPIII

91.07◦C←→ I.

These BPs are, differently from cholesterics, optically isotropic: BPI and BPII are cubic,
while BPIII has spherical symmetry as the isotropic phase [Crooker, 2001] even though
they still have large optical activity. The simplest way of visualizing the structure of BPs is
probably that of arbitrarily starting from one constituent molecule and a twist propagating
from it, not only in a direction perpendicular to its axis, like in a cholesteric, but also in the
other perpendicular direction. This structure is called a double twist cylinder (see Fig. 1.20).
The various phases have complicated superstructures, formed by packing the double twist
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(a) (b)

Figure 1.20 (a) Cylindrical structure with twist in two perpendicular directions away from
the cylinder axis or double twist. The twist increases moving away from the centre of the
cylinder and is around 45◦ at the tube boundary. (b) As three cylinders meet at a corner the
directors form a defect [Cao et al., 2002; Kleman and Lavrentovich, 2003].

Figure 1.21 The simple cubic (sc) and body centred cubic (bcc) structure of blue phases
(a) BPII and (c) BPI and the corresponding unit cells of defect lines (b, d) [Dubois-Violette
and Pansu, 1988].

cylinders in various ways. In practice, the unit cells are body-centred cubic for BPI and
simple cubic for BPII (Fig. 1.21).

The first BPs only existed in a narrow temperature range and thus were of limited interest
for applications, but this has completely changed with the discovery of wide temperature
range materials [Coles and Pivnenko, 2005] and of a procedure for stabilizing BPs, widening
their temperature range of existence, by the inclusion of suitable polymers, e.g. obtained
polymerizing the monomers directly in the BP [Kikuchi et al., 2002]. This stabilization
has led to applications in displays, exploiting the very high susceptivity of the BP to an
applied electric field: the Kerr effect already discussed (see Eq. 1.6). The field turns the
optically isotropic BP into a birefringent medium and opens the possibility of realizing
very fast response (<1 ms) displays based on BPs that do not require an aligning film. For
instance, while no light would emerge between crossed polarizers at field off, light would
be observed as the field is switched on (see Eq. 1.5), even though rather high voltages, of the
order of 5 V/μm, some 10 times higher than those of a twisted nematic LCD seen before,
are required [Endo et al., 2016].

The periodicity of BPs along different directions is similar to that of cholesterics and also
gives the possibility of mirror-less dye lasing, but with emission in three directions rather
than in just one as for cholesterics [Cao et al., 2002].
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Figure 1.22 A possible model for the twist-bend phase of the cyano-biphenyl dimer CB7CB.

1.5 Twist-Bend Nematic Phase

We have seen how chiral mesogens originate spontaneously twisted nematic (cholesteric)
structures with an overall chirality determined by the chirality of the mesogen. More intrigu-
ingly twisted nematics have also been predicted in systems of achiral molecules [Dozov,
2001] and observed first in materials containing flexible alkyl spacers with an odd number
of CH2 (methylene) units [Ungar et al., 1992]. In particular, a number of studies have been
performed on cyano-biphenyl dimers [Cestari et al., 2011; Borshch et al., 2013; Chen et al.,
2013; Zhu et al., 2016] like 4′,4′-(heptane-1,7-diyl)-bis([1′,1′-biphenyl]-4′-carbo-nitrile)
(CB7CB), shown in Fig. 1.22, where the pitch of the structure is found to be around 8 nm
using various experimental techniques and in particular soft X-ray resonant scattering at
the absorption band edge of the carbon atoms of the molecules [Zhu et al., 2016]. It is
amazing that in this phase formed from non-chiral mesogens the pitch is some 50 times
shorter than that of typical cholesterics originated from chiral mesogens, as we have seen
in Section 1.4. The original prediction was that the twist-bend phase should occur when
K33 < 0 and K11/K22 > 2 [Dozov, 2001]. Experimentally, these materials have a very
low bend elastic constant, with K33 < K11 [Adlem et al., 2013] but this situation does not
seem general or clear [Parthasarathi et al., 2017]. The detailed structure of the twist-bend or
heliconical phase NTB, for example, its single or double helical structure, is still an object
of much debate [Mandle et al., 2015; Tuchband et al., 2017; Mandle and Goodby, 2018].
In any case, the very short pitch of the structure promises to open the way to various novel
applications.

1.6 Biaxial Nematics

The occurrence of nematic phases with biaxial symmetry (Nb), where a second director,
corresponding to a preferred orientation of the transversal axis, perpendicular to the first,
main one, exists, as shown in Fig. 1.23, has been theoretically predicted for a long time
[Freiser, 1970] to occur for mesogens of biaxial, rather than uniaxial, symmetry. However,
Nb systems were only relatively recently reported in compounds like p-dodecyloxy ben-
zoate diester of 2,5-bis (p-hydroxyphenyl)-1,3,4-oxadiazole (ODBP-Ph-OC12) [Acharya
et al., 2004; Luckhurst, 2004; Madsen et al., 2004; Merkel et al., 2004; Tschierske and
Photinos, 2010] and organo siloxane tetrapodes [Merkel et al., 2004; Figueirinhas et al.,
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Figure 1.23 Two orthogonal transversal views of a biaxial nematic with the main director
along the vertical (z-axis). The difference of the two images shows that molecules tend to
stack while maintaining positional disorder [Berardi and Zannoni, 2000].

Figure 1.24 Biaxial nematic mesogens: (a) oxadiazole [Acharya et al., 2004; Madsen et al.,
2004] and (b) organosiloxane tetrapode [Merkel et al., 2004; Figueirinhas et al., 2005].

2005] (see Fig. 1.24). This may seem strange, since hardly any mesogen is uniaxial, and just
looking at molecular shapes they could be better approximated by particles with different
thickness in the two directions transversal with respect to the long axis. However, it turns
out that the factors favouring biaxial packing also tend to favour biaxial crystal and layered
structures, rather than nematic organizations where molecules have to be able to slide one
with respect to the other. The observation of a biaxial nematic is thus a difficult compromise
to achieve. Biaxial nematics are a matter of active current study both theoretically and
experimentally [Luckhurst and Sluckin, 2015]. One of the potential applications explored
is the possibility of using an electric field to also control the orientation of the transverse
director of a biaxial nematic LC, beyond the only one afforded by the standard uniaxial
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materials. In particular, the expectation is that switching this secondary director could be
much faster, as also supported by computer simulations [Ricci et al., 2015].

The expression for the elastic free energy for biaxial nematics is much more complex
than that for their uniaxial analogue (cf. Eqs. 1.8 and 1.9). The number of invariant terms
in an expansion of the free energy to second order of the director derivatives increases to
12 bulk elastic constants and 3 additional surface-like coefficients [Govers and Vertogen,
1984; Stewart, 2015]. Three of the bulk elastic constants describe twist deformations, six
of them refer to splay and bend deformations, and the remaining three refer to the coupling
of bend and twist deformations.

1.7 Orthogonal Smectics

1.7.1 Smectic A

Smectics [Gray and Goodby, 1984; Oswald and Pieranski, 2006] have a layered structure,
as shown in Fig. 1.25, with the mass density not constant as in a uniform fluid, but rather
periodic in one dimension. They are thus more ordered than simple nematics and, although
still fluids, are more viscous and generally more similar to crystalline phases than nematics
and cholesterics. The layered structure corresponds to an ordering in the molecular positions
reduced with respect to the three-dimensional one of crystals (cf. Table 1.1). There is a whole
family of smectic structures [Goodby and Gray, 1979; Gray and Goodby, 1984; Sackmann,
1989; Goodby and Gray, 1999] corresponding to different molecular organizations within
the layer and accordingly to different observable properties. We shall indicate a generic
smectic phase with Sm and the various smectic types that we are going to introduce as
SA, SB, . . . with further subscripts or accents as needed to identify subtypes. We describe
first the simplest smectic structure, the smectic A (SA), with molecules perpendicular to
the layer and devoid of long-range positional order in the layer itself (Fig. 1.25). In these
systems each layer can be thought of, in first approximation, as a two-dimensional liquid,
even if it is worth noting that this is somewhat oversimplified. For instance, the molecular
mobility along the director, i.e. across the layers, is in many cases actually higher than
inside the layers, as found experimentally and with atomistic simulations (see Chapter 12)
for 4-n-octyl-4′-cyano-biphenyl (8CB). Disrupting the layered structure is an energetically

(a) (b)

Figure 1.25 (a) The layered structure of a smectic A formed of cylindrically symmetric
molecules and (b) a top view showing the fluid-like disorder inside each layer.
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(a) (b) (c)

Figure 1.26 Elastic constants of nCBs (n = 5,6,7,8) as a function of the relative tempera-
ture: (a) splay, K11, (b) twist, K22 and (c) bend, K33. Results of different experiments are
marked separately [Stannarius, 1998b; Pasechnik et al., 2009].

costly process, so of the three Frank deformations seen earlier (Fig. 1.9), only splay (K11)
is allowed, while bend and twist are forbidden. Thus, the elastic constants K33 and K22

related to these deformations will increase and diverge at the transition from nematic to
smectic, for a material that presents both phases, for instance 8CB, as shown in Fig. 1.26.
In a smectic, the elastic free energy density Gel has to include a term which describes the
layer elasticity [Kleman and Lavrentovich, 2003]. In a SA, we can consider the deformations
of a uniform smectic layer with director d along the layer normal, d||z and centred at
position z0 = z0(x,y) with layer spacing �z0 = �z0(x,y). When at rest the layer is flat,
so that position z0, layer spacing �z0, and director d are constant. As the smectic is slightly
deformed so that the thickness can vary slightly (by a relative amount γ ≡ (�z − �z0)/�z0)
but maintaining the layers parallel and the local director untwisted, we can write [Kleman
and Lavrentovich, 2003; Oswald and Pieranski, 2006]

Gel =
K11

2
(∇ · d)2 + B

2
γ 2, (1.16)

where B is a Young’s modulus for layers dilation. The preferred organizations are thus
those that can be formed without destroying the layers. As an example, we see in Fig. 1.27
a typical smectic A texture at the polarizing microscope, the focal conic [Gray and Goodby,
1984], whose origin is strictly linked to the layered organization. In fact, the smectic layers
can easily roll and in general take on superstructures that do not involve breaking the layers
themselves. In practice, a Swiss roll structure can close in a torus leaving a circular line of
discontinuity (or an ellipsoidal one when deformed) as well as a straight line at the joining
of the rolls. A particularly interesting way of studying the layered structure of smectics is in
films freely suspended across the opening of a thin glass or metal plate, where they form a
sort of membrane containing a controlled number of layers (from one or two to thousands).
In Table 1.4 we give the transition temperatures for some smectogens. Note that the first
one, HAB, is an analogue of the nematic PAA (see Table 1.2), from which it just differs for
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Table 1.4. A few smectic A liquid crystals. We report the melting, TKA, the
smectic A-nematic, TAN , and the clearing temperature TNI or TAI

Smectogen TKA(◦C) TAN (◦C) TNI (◦C)

4,4′-heptyl azoxybenzene (HAB) 34 54 71
4-n-pentyl-4′-cyano-biphenyl (8CB) 21 32.5 40
Octyloxy-cyano-biphenyl (8OCB) 55 66.7 79.8
Smectogen TKA(◦C) TAI (◦C)
Diethyl 4,4′-azoxy benzenedicarboxylate 114 122.7

(a) (b)

Figure 1.27 (a) The focal-conic fan texture of a smectic A phase observed under the
microscope through crossed polarizers and (b) the director tends to lie in the plane of the
substrate and the smectic layers are curved across the fans [Dierking, 2003].

a longer alkyl chain. Note also that we can have compounds that go directly from smectic
to isotropic phase, as shown in the last entry in Table 1.4.

1.7.2 Strongly Polar Smectics

Only one type of smectic A exists for rod-like, head-tail symmetric, molecules. However, a
number of subtypes have been found for smectics formed by asymmetric, polar, molecules,
particularly those with strong dipolar end groups and long aromatic cores (see Fig. 1.28).
Considering a highly ordered smectic, one has monolayer structures SA1 with the polar
molecules randomly oriented up and down in the layer and a periodicity similar to the
molecular length �m. Especially with strong terminal dipoles (typically −CN or −NO2),
bilayer phases SA2 with (antiferroelectric) ordering of the molecules, up in one layer and
down in the next and periodicity similar to 2�m, are formed. Partial bilayer structures SAd

occur when there is some interdigitation, as we see in Fig. 1.28, with a resulting periodicity
�z intermediate between �m and 2�m. For instance, in 8CB �z ≈ 1.4�m [Gray and Goodby,
1984]. In both these bilayer phases the dipoles of one layer are schematized as up (down)
and their effect is cancelled by those of the adjacent layer. In the antiphase smectic A or
S
Ã

there is instead a modulation of dipole orientation inside each layer, with regions of
opposite dipoles separated by defect walls which can additionally form a regular stripe
or array structure [Levelut et al., 1981; Berardi et al., 1996a]. A change from one type
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Figure 1.28 Schematic organization of mesogens with a strong axial dipole (black arrow)
in smectic A phases showing (a) monolayers in SA1 , (b) bilayers in SA2 , (c) interdigitated
structures in SAd and (d) alternating stripes of up and down dipoles in SÃ [Berardi et al.,
2002].

of organization to another can occur with temperature. For instance, in p-heptylphenyl-p′-
nitrobenzoyloxybenzoate (DB7NO2) we have the sequence

SA2

68◦C←→ SÃ
87◦C←→ SA1

94◦C←→ N.

The behaviour is also observed in mixtures, e.g. of pentylphenyl cyanobenzoyloxy ben-
zoate (DB5CN) and cyanobenzoyloxypentyl stilbene (C5 stilbene) [Young et al., 1994]. It
is interesting that in some of these strongly associated systems, after cooling from nematic
to smectic, a new, re-entrant, nematic is obtained upon further cooling (see, for instance,
Chapter 2). The different types of pairing lead to different effective repeat units and corre-
spondingly to different X-ray patterns (cf. [Ostrovskii, 1993] and references therein). The
possibility of positional order within the layers opens the way to a number of smectic phases
[Collings, 1990]. Here we see only a few important ones.

1.7.3 Twist Grain Boundary Smectics

When a cholesteric also has a smectic A, e.g. for cholesteryl nonanoate and decanoate, the
pitch diverges at the smectic transition temperature TAN . A typical temperature dependence
is [Pindak et al., 1974; Pindak and Ho, 1976]

p(T ) = p0 + a(T − TAN )−ν, (1.17)

where p0 is the pitch far away from the smectic transition and ν is a critical exponent
(see Chapter 2). For cholesteryl nonanoate and decanoate ν ≈ 0.66, similar to theoretical
predictions, but other values have been found in different materials [Chilaya and Lisetski,
1986]. In the smectic A phase formed of chiral molecules or S∗A, Renn and Lubensky
[1988] have predicted and Goodby et al. [1989] have observed a helical phase constituted of
smectic slabs of a certain thickness �b (≈ 20 nm) separated by surfaces containing regularly
spaced screw dislocations or twist grain boundaries. This phase that has on the one hand

https://doi.org/10.1017/9781108539630.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.002


32 Phases and Mesophases

(a)

(b)

K
72.2◦C←−−→ S∗I

76.9◦C←−−→ S∗C
91◦C←→ SA

102◦C←→ TGBA∗ 108◦C←→ N∗ 113.2◦C←−−→ BPI
115.9◦C←−−→ I.

Figure 1.29 (a) A schematic representation of the TGB smectic phase, showing the twisting
of SA slabs of typical thickness �b [Zhang et al., 2006a]. (b) The chiral compound
4-[4′-(1-methyl heptyloxy)] biphenyl-4-(10-undecenyloxy) benzoate (11EB1M7) and its
phase transitions. The S∗I and S∗C are chiral versions of the tilted smectics of Fig. 1.32.

(a) (b)

Figure 1.30 (a) The layered structure of a smectic B and (b) a sketch of its local hexagonal
clustering.

smectic planes and on the other an average director twist is called twist grain boundary
(TGB or TGBA*) (see Fig. 1.29).

1.7.4 Smectic B

Smectic B (SB) systems have a layered structure with molecules perpendicular, on average,
to the layer normal and are therefore superficially similar to smectic A (cf. Fig. 1.30a).
However, they have a higher viscosity than smectic A and, differently from them, here
we have some hexagonal clustering of the molecular centres, as schematically represented
in Fig. 1.30b. This kind of ordering is called bond order (see Section 4.9.2) and the
smectic B phase can be considered as a bond-orientationally ordered version of a smectic A
[Brock et al., 1989]. The clusters of hexagonally ordered molecules can themselves be
orientationally ordered or disordered with respect to one another. In this last case the
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(a) (b)

Figure 1.31 (a) The structure of a smectic E and (b) a sketch of the herringbone arrangement
of the short molecular axes of its mesogens.

structure of what is called a crystal smectic B (SBK ), to distinguish it from the locally hexatic
(SB) one, is really very similar to a true crystal. An example of a molecule giving smectic B
phases is: 4′-n-butyloxy benzylidene-4-n-octylaniline (4O.8) [Birgeneau et al., 1981; Per-
shan et al., 1981; Gray and Goodby, 1984] which has the sequence [Juszynska et al., 2011]:

SBK

37.35◦C←−−→ SB
47.95◦C←−−→ SA

62.15◦C←−−→ N
77.85◦C←−−→ I.

1.7.5 Smectic E

In describing the smectic B phase, we have focussed on the layer structure, with molecules
essentially orthogonal to the layer, and on the fact that the centres have a hexagonal order,
more or less correlated. In reality we should consider also the fact that the molecules are
not cylindrically symmetric and that the short axes can have a preferred orientation too.
Indeed, while in the smectic B phase the short axes are disposed in a way that preserves
a macroscopic uniaxial symmetry, in the smectic E phase, which is very similar to the
smectic B, we have instead a herringbone arrangement of the short axes (cf. Fig. 1.31b) and
the resulting mesophase is biaxial. As for the SB, we can have a more crystal like variety,
SEK . An example of a compound having a smectic B and a crystal E phase is n-hexyl-4′-n-
pentyloxy biphenyl-4-carboxylate (65OBC). This has a two-dimensional hexatic structure
and transitions [Van Roie et al., 2005]:

solid
52.7◦C←−−→ SEK

60.3◦C←→ SB
67.7◦C←−−→ SA

83.7◦C←−−→ I.
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(a) (b)

Figure 1.32 (a) Molecular organization in a monoclinic SC phase and (b) schlieren texture
of a smectic C [Sepelj et al., 2007].

Figure 1.33 A scheme of the various smectic phases with local hexagonal order: the
orthogonal smectic B and the tilted smectic I and F.

1.8 Tilted Smectics

1.8.1 Smectic C

The smectic C phase corresponds to a tilted version of a smectic A, as sketched in
Fig. 1.32a, without long range positional ordering inside the layers. However, there exist
tilted versions of the upright monolayer, SA1 , and bilayer, SA2 , phases discussed in Section
1.7.2, i.e. the SC1 and SC2 . In the same way there exist tilted versions of the smectic B phase.
These can be further distinguished by the direction of the tilt with respect to the hexagonal
neighbour structure, as can be seen in the summary Fig. 1.33. Thus, SI and SF are tilted
SB with inclination direction pointing towards a vertex of the hexagonal cluster of nearest
neighbours or perpendicular to a hexagon side. As for the SB, this positional hexagonal
order is only local, if instead it has a long-range character, the SJ, SG phases, the analogous
versions of the crystal SB are obtained. Yet another version, the smectic L (SL), with tilt
direction intermediate between that shown in Fig. 1.33 for SI and SF has been proposed
[Chaikin and Lubensky, 1995] and found in some experiments [Chao et al., 1998]. The
director d makes an angle, called the tilt angle θ , with the layer normal, which can vary
with temperature in some materials, e.g. in terephtalydene-bis-(4-n-butylaniline) (for short
TBBA) while it is temperature independent in others, like 4,4′-di-n-heptyloxyazoxybenzene
(HAB). For materials that present both a SA and a SC phase, the layer spacing normally
shrinks going from SA to SC and this corresponds to the simple idea of a rigid molecule
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Table 1.5. The melting, TKC , smectic C-nematic, TCN , and nematic-isotropic,
TNI , transition temperatures for a few smectic Cs

Smectogen TKC (◦C) TCN (◦C) TNI (◦C)

4,4′-heptyloxyazoxybenzene (HAB) 74 94 124
4,4′-octyloxyazoxybenzene (OAB) 80 108 126
4-octyloxy benzoic acid (OOBA) 101 108 145

tilting away from the normal of a tilt angle. However, this is not the case in the so-called
DeVries smectics, that have recently attracted much interest. A possible explanation is that
for these systems the molecules are distributed in a kind of conical (and thus uniaxial)
way around the layer normal (see [Lagerwall and Giesselmann, 2006; Gorkunov et al.,
2007]) even in the SA phase. It is worth pointing out that some materials exhibit a rich LC
polymorphism. For instance, TBBA shows the following cascade of phases [Doucet et al.,
1973]:

solid
113.0◦C←−−→ SB

144.1◦C←−−→ SC
172.5◦C←−−→ SA

199.6◦C←−−→ N
236.5◦C←−−→ I.

In Table 1.5 we give the temperature of transition for some common smectic C materials.
An ordered smectic C has a C2h symmetry, with the twofold axis perpendicular to the
director and in the layer plane. The presence of the inversion centre is not compatible
with a macroscopic polarization, which is a vector. The optical properties of a smectic C
are similar to those of a biaxial crystal. A polarizing microscope texture of this phase is
shown in Fig. 1.32b. Note the nematic-like aspect but with four streak-only centres. For
polar smectogens monolayer, partial bilayer and bilayer smectic C phases can exist as for
smectic A.

1.8.2 Chiral Smectic C

When the smectogen molecules are chiral or when a chiral solute is added to a smectic
C, a phase with macroscopically helical symmetry called chiral smectic C or S∗C can be
generated. A centre of symmetry cannot exist any more and the symmetry of the phase is
reduced from C2h to C2. If we visualize the director in a smectic layer as tilted, we can
think that its tip rotates as we move through the layers (see Fig. 1.34), thus generating
a helix of given pitch. If the molecules possess a transverse dipole the projection of the
dipole in the layer plane is randomly distributed in the layer plane itself and thus there is
no resulting net dipole. However, the dipoles can be easily oriented by applying an electric
field along a direction parallel to the layer planes. The basic constraint of preserving the
tilted structure can then be maintained with the macroscopic polarization along the C2 axis.
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Figure 1.34 A sketch of the smectic C∗ molecular organization showing the tilted layers
twisting along the layer normal.

The system is ferroelectric and is the basis for certain electro-optic displays [Gray, 1987].
An example of compound of this kind is (S)-4-n-decyloxy benzylidene amino-2′-methyl
butyl cinnamate (DOBAMBC):

solid
76◦C←→ SC∗

95◦C←→ SA
117◦C←→ I.

Another compound is (S)-4′-(decyloxy)-4-[(1-methylheptyl)oxy]-2-nitro phenyl-[1,1′-
biphenyl]-4-carboxylic acid ester (W314) [Jang et al., 2001]

solid
31.2◦C←−−→ SC∗

89.9◦C←−−→ SA∗
124◦C←−−→ I.

1.8.3 Banana Phases

Ferroelectric S∗C phases are formed by chiral mesogens, so that the discovery [Niori et al.,
1996] that ferroelectric phases could be formed by non-chiral mesogens, with an unusual
banana, rather than rod-like, shape (see Fig. 1.35) was particularly striking [Jákli et al.,
2018]. Excluding a molecular chirality of some conformations, allowed by internal flex-
ibility, a helical S∗C structure can ensue from the supramolecular chirality of the smec-
tic layers with tilted bow molecules endowed with a transversal dipole moment (see Fig.
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K
97.7◦C−−−−→←−−−−
72.2◦C

B3

156.4◦C−−−−→←−−−−−
139.9◦C

B2

161.4◦C−−−−→←−−−−−
158.1◦C

I

Figure 1.35 Chemical structure and atomistic model of a bent shape mesogen exhibiting
tilted smectic (‘banana’) mesophases (B2, B3) together with its transition temperatures
[Niori et al., 1996; Pelzl et al., 1999].

(a) (b) (c)

Figure 1.36 Chirality resulting from tilted bent shape mesogens belonging to a smectic layer.
The dipole moment μ is transversal to the bow. (b) A sketch of the banana molecule and of
(a) a view from the front and (c) back sides.

1.36). The stack of layers can tilt in the same direction (sinclinic) or in opposite directions
(anticlinic) with respect to the layer normal (see Fig. 1.37). Successive smectic layers can
be either ferroelectric (with the same direction of polar order) or antiferroelectric (with
opposite directions). It is worth noting that the packing of the banana molecules leads to
smectic rather than nematic phases, even though nematic phases have been found, e.g. from
4-cyanoresorcinol with short terminal alkyl chains [Keith et al., 2010]. Indeed, a variety
of smectic organizations has been found [Link et al., 1997; Pelzl et al., 1999; Coleman
et al., 2003] and a specific nomenclature: B1, B2, … , B7 was suggested, with the subscript
n corresponding to a conventional indexing of the different phases. This can be a bit con-
fusing, since the phases are rather different and not smectic B after all, and a more recent
approach to nomenclature has been based on the arrangement of layers and of layer polarity
leading to ferroelectricity or antiferroelectricity (see Fig. 1.37). A detailed treatment of the
classification is reported in the reviews by Reddy and Tschierske [2006] and Jákli et al.
[2018]. As for the rather complex physical properties features of the various phases, these
are definitely beyond the aims of this book, and we just refer to specific treatments, like
those found in [Pelzl et al., 1999; Coleman et al., 2003; Reddy and Tschierske, 2006; Jákli
et al., 2007; Takezoe and Eremin, 2017; Jákli et al., 2018].
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Figure 1.37 A sketch of the molecular organizations that can be obtained in two contiguous
layers of banana molecules: (a) sinclinic ferroelectric (SCSPF); (b) sinclinic antiferroelectric
(SCSPA); (c) anticlinic ferroelectric (SCAPF); (d) anticlinic antiferroelectric (SCAPA). The
z-direction is along the smectic layer normal.

(a) (b)

Figure 1.38 A sketch of (a) a main-chain and (b) a side-chain smectic LC polymer.

1.9 Smectic Liquid Crystal Polymers

Besides a nematic organization of the side chains in a linear polymer like that in Fig. 1.13,
a smectic organization can also exist. Various other types of low-molar-mass liquid crystals
presented earlier on have analogues in the polymer field. Here we see, in Fig. 1.38, a
sketch of the structure of a smectic main-chain and side-chain polymer where strong lateral
interactions of the monomers lead to layered organizations.

1.10 Discotic and Columnar Phases

Disc-like molecules can organize themselves, face parallel, and produce a variety of dis-
cotic phases [Chandrasekhar, 1982; Guillon, 1999; Bushby and Lozman, 2002; Kumar,
2002; Sergeyev et al., 2007; Bisoyi and Kumar, 2010; Wohrle et al., 2016; Gowda and
Kumar, 2018]. The basic unit is typically a disc or board shape core with flexible chain
substituents as, for example, in hexa-n-alkanoates of benzene and triphenylene or in a vari-
ety of phthalocyanines, both with and without central metal, or condensed aromatics, like
hexabenzocoronene (see Table 1.6). Thus, we can have discotic nematics [Praefcke, 2001]
formed by single mesogens, ND, or by short columnar stacks NC (see Fig. 1.39) or the
chiral variety, nematic N∗D, i.e. discotic cholesteric. Although nematic discotics ND do exist,
their occurrence is quite rare and more often the molecules organize in long columnar
aggregates [Chandrasekhar, 1988] (cf. Fig. 1.40) and actually in the large majority of cases
the transition is directly from the isotropic to a columnar phase. The discotic phases can
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Table 1.6. Some discotic molecules and their phase transitions (see text
and Figs. 1.40 and 1.42)

Molecule Chemical structure

(a) HHTT [Fontes et al., 1988]
R = C6H13

K
62◦C−−−→ Dh

h

70◦C←−−→ Dd
h

93◦C−−−→ I

(b) Phthalocyanine [Sergeyev et al., 2007]
R = CH2OC12H25

K
79◦C−−−→ D

185◦C−−−−→ Dh
260◦C−−−−→ I

(c) Hexabenzocoronene: HBC-(C14)6 [Pisula et al., 2005]
R = C14H29

K
114◦C←−−−→ Do

h

≈ 420◦C←−−−−−→ I

of course be polymerized, like we have seen for rod-like nematics, and in Fig. 1.41 we
see an example of a discotic nematogen that can be made reactive by introducing acrylate
end groups. There can be various kinds of columnar organizations, usually labelled gener-
ically D (or Col by other authors) phases [Luz et al., 1985] if additional details about the
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(a) (b)

Figure 1.39 Schematic organization of (a) a nematic discotic, ND and of (b) a columnar
nematic, NC.

(a) (b) (c)

Figure 1.40 Uniaxial columnar liquid crystals with (a) molecular disorder (Dd
h) or (b) some

positional order (Do
h) inside the disc stacks and (c) hexagonal arrangement of the columns.

〈m〉

〈6–m〉

m

Figure 1.41 A reactive discotic nematogen consisting of a triphenylene core with a total of
six alkoxybenzoate substituents (R), of which an average number 〈m〉, with 〈m〉 = 2, 4 or 6
have reactive acrylate end groups (top right ones) and the remaining 〈6−m〉 are devoid of
polymerizable acrylate and thus inactive [Kim et al., 2017].

structure are not available. More specific features of the arrangement inside the columns are
indicated with superscripts, with the organization of the columns themselves indicated by
subscripts. Thus, if the discs belonging to a column are not regularly positioned, so that we
have one-dimensional disorder along the columns the further superscript d is added. If the
discs are instead ordered inside the columns, a superscript o, or h if the order is helicoidal
(like in the case of HHTT), is employed. A tilt of the mesogens with respect to the column
axis is indicated by a superscript t.

The columns themselves can form a more or less regular two-dimensional (2D) array,
corresponding to a 2D positional order of the columns, that is manifested with a subscript
(h for hexagonal, r for rectangular, …) as well as orientational order of the molecules. In
Fig. 1.40 we see hexagonal, uniaxial phases with or without order inside the column: Do

h
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(a) (b) (c)

Figure 1.42 Liquid crystals with (a) a tilted arrangement of the columns and (b) a column
arrangement which is on average upright, Ddt

r , Dd
r (see text) or (c) oblique disordered

columns, Dd
rt.

and Dd
h. In the absence of further subscripts the columns are assumed to be upright with

respect to a hypothetical support surface, while an oblique arrangement of the column
axis is marked by a subscript t. Note that, even if chains attached to the periphery of the
molecules are not explicitly shown, they play an important role in stabilization. Symmetric
substituted discotics tend to give a hexagonal column arrangement and typically give a
planar alignment of the discs, i.e. homeotropic alignment of the columns when deposited on
a planar surface. Unsymmetrical discotic molecules tend to give tilted phases with rectan-
gular columnar 2D arrangements and their surface alignment is typically non-homeotropic
but side on, with the column axes parallel to the surface. Having said that, systems like
some substituted phthalocyanines can change morphology with a change of temperature.
We also see in Fig. 1.42 various (upright Dd

r , Ddt
r or oblique Dd

rt) biaxial phases with a
rectangular 2D lattice of the columns. The organization shown for the Ddt

r phase corresponds
to the model proposed by Goldfarb et al. [1983a] in their studies of truxene-hexalkanoate
derivatives, with the molecules tilted with respect to the column axis in opposite (anticlinic)
directions in alternating columns. The macroscopic symmetry of the Ddt

r phase is in any
case orthorhombic, while that of the Dt phase is monoclinic. While columnar mesophases
are easily found, ND are available (see Table 1.7) but much more rare [Gasparoux, 1980;
Praefcke, 2001; Bisoyi and Kumar, 2010]. The presence of substituents with large steric
hindrance seems important in producing the discotic nematic as well as or instead of the
stacked, columnar mesophases. Note that in a ND phase the molecule symmetry axis is on
average aligned with respect to the director, like in a normal calamitic nematic. However,
the anisotropy in molecular properties with values larger in the plane of the rings (e.g. the
polarizability for an aromatic core) tends to be negative rather than positive. Yet another
possibility is that the columns themselves form a nematic phase, called a columnar nematic
NC. These thermotropic systems have been prepared from a mixture of strong electron donor
disc molecules (superdiscs) with small electron acceptor molecules that very efficiently
pack in columns [Praefcke et al., 1992]. Examples of superdiscs include pentakis (phenyl
ethynyl) phenyl derivatives, while electron acceptor dopants include 2,4,7 trifluorenone. It
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Table 1.7. The crystal-columnar, TKD , columnar-nematic, TDND ,
and nematic-isotropic, TNDI , transition temperatures for a few
hexa-R-benzoate triphenylene discotics [Gasparoux, 1980]

R substituent TKD(◦C) TDND (◦C) TNDI (◦C)

C6 H13O 186 193 274
C9H19O 154 183 227
C10H21O 142 191 212
C11H23O 145 179 185

solid
−36◦C←−−→ ND∗

23.4◦C←−−→ I

Figure 1.43 The molecular structure and transitions of a chiral discotic nematic mesogen
[Langner et al., 1995].

is interesting to realize that the liquid crystal is formed by the combination of molecules not
necessarily mesogenic by themselves.

Chiral discotic nematic, N∗D, are also fairly rare. However, an example [Langner et al.,
1995] is shown in Fig. 1.43.

1.10.1 Columnar LC Properties

Columnar liquid crystals are particularly promising as semiconductors for organic electronic
applications [Sergeyev et al., 2007; Bisoyi and Kumar, 2010; Kaafarani, 2011]. Liquid
crystals are typically insulators in the isotropic phase, with charge mobilities of the order
of 10−5 cm2/(V s) like the majority of organic compounds. However, as the molecular
organization changes from isotropic to columnar by lowering the temperature, the charge
mobility increases by more than two orders of magnitude, as we see in Fig. 1.44. Note
from the figure that the mobility is even higher in the crystalline phase, but the values refer
to a nearly ‘perfect crystal’, while in practice it is difficult to avoid structural defects that
considerably lower the performance in the crystal phase. These defects, or grain boundaries
where different orientations of the crystal domain clash, can instead be avoided by the
fluidity and self-healing capabilities typical of the liquid crystals, even in the rather stiff
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Figure 1.44 Charge mobility data of positive carriers in HHTT measured by time of flight
(TOF) and pulse-radiolysis time-resolved microwave conductivity (PR-TRMC) [Warman
and Van de Craats, 2003]. The dotted lines represent phase transitions.

(a) (b)

Figure 1.45 Two pyramidic molecules: (a) a fully organic one [Malthête et al., 1989] and
(b) an organometallic one [Xu and Swager, 1993].

columnar phase. Another interesting feature is that the conductivity is strongly anisotropic,
mainly directed along the columns, where the distance between the electron rich cores is
of around 3.5–3.8 Å, the typical ‘thickness’ of a π−electron system, while the separation
between the columns is, for HHTT, of around 20 Å. Even if this intercolumnar distance
depends of course on the lengths of the chains and on the bulkiness of the substituents, it
is so large anyway to reduce intercolumnar charge hopping, leading to strong conductivity
anisotropy.

Other potential applications of columnar liquid crystals can be found in organic light-
emitting diodes (OLED) [Benning et al., 2000] or in organic solar cells [Idé et al., 2014].

1.10.2 Bowlic Liquid Crystals

An interesting family of liquid crystals has been realized from bowlic or pyramidic shaped
molecules, as, for example that in Fig. 1.45a, which is formed by a cone-shaped tribenzo-
cyclononene (TBCN) core with three flat triangular substituents 3,4,5-tris-(p-n-dodecyloxy
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benzyloxy) benzoyloxyl (DOBOB) groups [Malthête et al., 1989]. This particular com-
pound forms a single hexagonal columnar phase stable up to 145–150◦C. Organometallic
type molecules of this category have also been synthesized using a metal like tungsten or
vanadium in a suitable hybridization state to orient its ligands in some appropriate directions
[Xu and Swager, 1993; Atwood et al., 2001], like in Fig. 1.45b. Other bowlic mesogens
have been put forward, e.g. based on tribenzocyclononenes [Zimmermann et al., 1985],
cyclovtryveratrilene [Cometti et al., 1992], calix[4]arenes [Demus, 1989; Swager and Xu,
1994], and C60 fullerene molecules [Sawamura et al., 2002]. In the latter case, the C60

apex of each of these molecules fits perfectly into the cavity of a neighbouring one. These
molecules can pile up in columns, similar to what discotics do, but with the important
difference that the constituent particles are intrinsically asymmetric and that the stacking
might preserve and enhance this asymmetry, yielding an overall polarity of the column.
For a molecule with an axial dipole, like that of the mesogen in Fig. 1.45b, this offers in
principle the possibility of creating simple ferroelectric fluid systems. Indeed, it can be
shown, if the columns are arranged in a hexagonal structure [Guillon, 2000], that the dipole
of overall polar individual columns cannot be balanced, for symmetry reasons, by that of
an equal number of antiparallel columns with the result of obtaining a much sought-after
ferroelectric columnar phase. Unfortunately, this objective, although not forbidden by some
fundamental law, has not been realized, at least as yet.

1.11 Lyotropics

1.11.1 Micelles

We consider now phases, generically called lyotropics, formed by amphiphilic molecules
A-B consisting of two parts A and B with different affinity to a certain host solvent C
(see Fig. 1.46). A classic example is that of elongated molecules formed by lyophilic
and lipophilic parts dissolved in a polar solvent (typically water) [Linden and Fox, 1975;
Wennerström and Lindman, 1979; Tiddy, 1980; Charvolin and Hendrikx, 1985; Seddon,
1990; Figuereido Neto and Salinas, 2005; Fong et al., 2012]. When the solvent C is water,
common amphiphilic molecules (also called surfactants) can be classified as:

• Anionic – with a negatively charged hydrophilic group carboxyl (RCOO− M+),
sulphonate (RSO−3 M+), or sulphate (RSO−4 M+).

• Cationic – with the hydrophile bearing a positive charge, as for example, the quaternary
ammonium halides (R4N+ X−).

• Non-ionic – where the hydrophilic moiety has no charge but derives its water solubility
from highly polar groups such as polyoxyethylene (POE) (–OCH2CH2O–), sugars or
similar groups.

• Amphoteric (and zwitterionic) – in which the molecule is neutral overall, but has both a
positive and a negative charge on its structure as, for instance, for the principal chain of
the sulphobetaines (Fig. 1.46f), instead of needing a separate counterion.

A simple example of a system of the first or second kind is a soap-water mixture. The
amphiphilic molecules tend to organize themselves so as to segregate the hydrophobic
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Figure 1.46 Some common water-soluble amphiphilic molecules: (a) potassium stearate
(aliphatic, anionic); (b) cetyltrimethylammonium bromide (CTAB) (aliphatic, cationic);
(c) sodium p-dodecyl benzene sulphonate (partly aromatic, anionic); (d) di (ethylene
glycol) dodecyl ether (non-ionic); (e) a fluorinated-protonated amphiphile; (f) a zwitterionic
molecule: lauryl sulphobetaine.

chains from the water. Different molecular arrangements occur, depending on the chemical
structure of the amphiphile and on its concentration, as we see in Fig. 2.28 for potassium
stearate, a typical example of these soaps [Luzzati et al., 1957].

When a certain critical micellar concentration (CMC) is reached, globular aggregates
exposing the hydrophilic part of the molecule to the solvent, while having chains with
a favourable reciprocal interaction on the inside (micelles), can be formed. The CMC of
amphiphilic molecules with a net charge is normally very low (e.g. around 8 mM for SDS,
sodium dodecyl sulphate [Wennerström and Lindman, 1979]), but strongly influenced by
the ionic strength of the medium that acts, through a charge screening, towards dampening of
the electrostatic repulsion between the ions. For instance, the CMC of the detergent sodium
dodecyl sulphate is reduced tenfold when the NaCl concentration is raised from 0 M to
0.5 M. The shape of the micelles themselves can vary, as we sketch in Fig. 1.47, in order to
optimize the local curvature, e.g. when we have a mixture of different amphiphiles where
the size of the polar heads and of the chain lengths change [Israelachvili, 1992].

Spherical micelles. The simplest system is that of a suspension of isolated spherical
micelles (Q phase). The polar heads are outside if the solvent is a polar one. The chains are
directed toward the centre, although an arrangement that avoids excessive steric hindrance
has to be found showing that the model in Fig. 1.47 can be too simple. Increasing the
concentration of amphiphilic molecules in water means micelles come in contact and
various structures can be formed. The diameter of these micelles is close to two molecular
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(a) (b)

Figure 1.47 An atomistic representation of (a) a spherical micelle and (b) an idealized
cartoon rendering of its section.

(a) (b)

Figure 1.48 (a) Sketch of the hexagonal phase of cylindrical micelles and (b) of a section
orthogonal to the micelle axis.

lengths (thus a few nanometres) and the connected high surface curvature is favoured by a
cone-like molecular geometry typical of a polar head larger than the chain cross section.

Elongated micelles. Elongated micelles, e.g. cylindrical ones, can organize themselves so
as to form, in turn, ordered structures. In Fig. 1.48 we see a sketch of the hexagonal, H,
(also called middle) phase. All the phases we have seen have polar heads in contact with
the solvent and inside chains, even though reverse micelles with chains pointing outside
towards the solvent could be formed by suitably changing from water to a hydrophobic
solvent [Tiddy, 1980]. More complex molecular architectures can be obtained increasing
the concentration of amphiphiles so that micelles come into contact with each other [Luzzati
et al., 1968].

Micellar architectures. Cubic arrays of spherical micelles can be obtained, e.g. with palmi-
toyl lysophosphatidyl choline (PLPC) [Landau et al., 1997]. In Fig. 1.49, we see instead an
example of a so-called I (intermediate) or cubic phase, where the target of separating the
immiscible water and lipid regions is met with a fusion process of the individual aggre-
gates forming regular arrays of bilayer micellar units with a rather fascinating bicontinuous
organization with water outside. In these systems a lipophilic solute molecule, e.g. a dye,
should be able to migrate through all the sample without ‘getting wet’, so to speak. Phases
of this type, e.g. 1-mono palmitoleoyl-rac-glycerol (MOG) have proved to be particularly
useful in assisting the crystallization of proteins [Landau and Rosenbusch, 1996; Landau
et al., 1997]. Note that, although the local surrounding of one of the mesogenic molecules is
anisotropic, the overall macroscopic cubic symmetry gives optical isotropy to these phases
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Figure 1.49 A bicontinuous cubic lyotropic phase of type I obtained by replicating the
double layer micellar unit with water outside the structure as well as in the network channel
inside.

that have the physical aspect of highly viscous, transparent materials. Other types of cubic
phases, typically obtained from lipid bilayers, are based on a tetrahedral repeating unit and
are denoted G (the gyroid type) and D (the diamond type) [Kulkarni, 2012].

Templating. In terms of applications, the ordered micellar arrangements are particularly
important as templates in sol-gel synthesis of materials with a well-ordered and regular
nanoporous structure [Raimondi and Seddon, 1999; Soler-Illia et al., 2002]. In practice,
an organosilicate like tetraethyl orthosilicate (TEOS) that can hydrolyze and yield silica
in the presence of water is added to the lyotropic system with the result of embedding the
micelles in a silica matrix. A calcination is then performed, burning out the amphiphile
forming the micelles, thus leaving empty nanopores. The extraordinary thing is that when
performed with due care this rather invasive sequence of processes preserves the former
micellar structure, leaving a solid nanoporous material with the original architecture [Attard
et al., 1995]. Note also that the diameter of the spherical or cylindrical nanopores can be
varied changing the chain length of the starting amphiphiles, providing a way of tuning the
size of the cavities of these artificial zeolites and their effect on the molecules trapped inside,
like significantly altering the melting point of water confined inside (see, e.g., [Findenegg
et al., 2008]). The soft-templating methodology has been much extended and mesoporous
(2–50 nm pore size) materials of many compositions beyond silicates, e.g. polymers, car-
bons, metals, metal oxides and of different dimensionality, have been prepared [Zhao et al.,
2019]. Templating and fabrication applications are not the only available for lyotropics LCs
and many others are used in drug delivery, as discussed, for example, by Chen et al. [2014].

1.11.2 Lamellar Phases, Bilayers and Membranes

Bilayer structures, like those shown in Fig. 1.50, with the chains separated from the water by
the polar heads often form at higher amphiphile concentrations. Lamellar phases are similar
to smectics, in having a one-dimensional periodic structure, but numerous organizations
exist, corresponding to different arrangements of the chains. This variety has even caused
some confusion in their nomenclature. Here we shall try to base our notation on the system
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Figure 1.50 Cross-sectional sketch of some of the main bilayer phases. From the left: subgel
(L c), gel with untilted chains (Lβ ), gel with tilted chains (Lβ ′ ), rippled gel (Pβ ′ ) and liquid-
crystalline fluid (Lα) [Koynova and Caffrey, 1998] .

initially proposed by Luzzati [Tiddy, 1980] where a code name is built using a capital letter
for the phase type: L for (planar) lamellar, H for hexagonal and Q for spherical micelles, then
roman numerals I, II to denote normal and reverse structures, if this needs to be specified
[Seddon and Templer, 1993]. A subscript α is used to indicate, where appropriate, a fluid,
liquid-like, while β is for a gel, solid-like, state of the molecular chains in the layers, and c
for a solid-crystalline chain organization. In addition, the label γ indicates a phase with a
sequence of α and β layers.

The tilt of the chains is indicated by adding a prime to the α, β or γ subscripts. For
instance, the lamellar, hexagonal and reversed hexagonal illustrated earlier on could be
called Lα , HI and HII. The Lα phase, also called liquid crystal, or neat phase in soap-water
systems, has a fluid like organization of the chains above a certain temperature (Kraft point)
but below it forms gels with networks of lamellar domain. Coagels, consisting of hydrated
crystalline phases [Lo Nostro et al., 2003], also form. When the lamellar phase is rippled
rather than just flat it is called P instead of L. Lamellar phases have a flat interface with
water having a negligible curvature and they are more easily obtained from amphiphiles
with nearly cylindrical overall shape. This is typically obtained with amphiphilic molecules
with two chains attached to the polar head, like in the phospholipids that are the main
constituents of biological membranes. By contrast, we may remark that the various spherical
or cylindrical micelles that we have discussed until now are, typically, formed by a relatively
large polar head and a single chain, that confer an overall cone-like, rather than cylinder-like
shape to the amphiphiles [Israelachvili, 2011]. Upon shaking up a lamellar water suspen-
sion, the bilayers, particularly the phospholipid made ones, tend to close up upon themselves
forming spherical vesicles like those shown in Fig. 1.51. These can be monolamellar, as in
Fig. 1.51a, with diameter of 25–30 nm if the suspension is shaken at length with ultrasound
(sonicated). Otherwise multilamellar smectic structures, with various bilayer shells, dis-
posed onion-skin-like called liposomes [Deamer, 2010], are obtained. It is worth stressing
that although liposomes can appear similar, at first sight, to spherical micelles, they are very
different, as they have a water pool inside and their size is more than two orders of magnitude
larger. Multilamellar liposomes typically range in diameter from 0.1 to 5μm [Mabrey-Gaud,
1981] and are characterized by temperature dependent reversible order-disorder transitions
occurring in a narrow temperature range. Multilamellar vesicles represent a more stable
state with respect to the single layer ones and freshly prepared unilamellar vesicles tend
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(a) (b)

Figure 1.51 (a) Perspective and front view of an atomistic sketch of monolamellar vesi-
cle (section). (b) A freeze fracture electron microscopy of 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC) multilamellar liposomes [Francescangeli et al., 2003].

Figure 1.52 The fluid mosaic model of a cell membrane showing the liquid-crystalline
organization of the lipids and the transmembrane proteins. The bush-like structures shown
on the top are glyco-proteins [NIST Center for Neutron Research, 2016].

to fuse and give rise to multilamellar liposomes [Suurkuusk et al., 1976]. We also note
that, although liposomes are macroscopically isotropic, they have local orientational order.
Thus, they can show the same properties in every direction when a methodology probing at
a macroscopic level, e.g. a rheological method to determine viscosity, is used and can appear
ordered when a spectroscopic technique probing the structure at a local, molecular level is
employed instead [Zannoni, 1981]. The bilayer structure common in phospholipid systems
[Mabrey-Gaud, 1981] is particularly important because it models the organization found in
the real membrane surrounding a cell. It is indeed similar to the ‘enclosing envelope’ of a
eukaryote animal cell (see Fig. 1.52), i.e. a cell of an organism where a membrane encloses
nucleus, mitochondria and other membrane bound organelles [Brown and Wolken, 1979;
Lehninger et al., 2005]. The lipid cell membrane, called the plasma membrane, is of great
biomedical importance because it is necessarily involved in the transport of chemicals and
ions to and from the cell. The current, textbook, model for these lipid biomembranes is the
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fluid mosaic model [Singer and Nicolson, 1972] sketched in Fig. 1.52. In essence, it is based
on a lipid double layer, with globular proteins embedded inside or going across the bilayer
itself.

The amount of proteins, lipids and other components varies from system to system. In
red blood cells membrane proteins constitute 60%–70% of the total dry weight, with lipids
making up 20%−40%. Note that the microscopic organization of the membrane bilayer is
essentially that of a liquid crystal. The influence of the state, e.g. the order and fluidity of
the lipids on the properties of the membrane is a topic of great current interest. To compli-
cate the picture, in a real membrane the lipids themselves are mixtures of many different
kinds, so that we can have other phenomena like separation (segregation) of the various
components in certain thermodynamic conditions. As already mentioned, phospholipids are
typical components of the bilayer and artificial membranes can be prepared from them. In
particular, model systems like dimyristoil-phosphatidyl choline (DMPC) and dipalmitoyl-
phosphatidyl choline (DPPC) have been very well studied experimentally (see Section 2.14)
and with computer simulations (Section 12.7.2).

1.11.3 Discoidal Micelles and Bicelles

Nematic lyotropics can be formed by discoidal micellar units. A nematic lyotropic sys-
tem of this type, with a structure similar to that shown in Fig. 1.39a can be obtained,
for example, with 30.35% potassium laurate (KL), 7.04% decanol and 62.61% water at
a temperature of 17◦C [Charvolin and Hendrikx, 1985]. Discotic bilayer micelles, some-
times called bicelles, [Sanders and Landis, 1995] can be prepared from suitable mixtures of
phospholipids of different length. For instance, a mixture of dihexanol phosphatidylcoline
(DHPC) and dimyristoyl phosphatidylcoline (DMPC) in aqueous solution at room temper-
ature or just above goes from gel to a liquid crystal formed of bicelles of thickness ≈ 4 nm
[Sanders and Schwonek, 1992] that has proved to be particularly useful as a solvent of weak
and tunable anisotropy for Nuclear Magnetic resonance (NMR) studies of biomolecules,
where they provide an environment similat to that of real biomembranes [Tjandra and Bax,
1997].

It seems that in these systems a disc-like phospholipid bilayer formed by the longer chains
(DMPC) is surrounded by a rim of the short chain lipids (DHPC). In a magnetic field these
bicelles align with the disc axis, i.e. the bilayer normal, perpendicular to the field, although
the addition of small amounts of lanthanides ions (e.g. Eu3+) changes the alignment of
the axis to being parallel to the field [Vold and Prosser, 1996]. The radius of the bicelles
increases from roughly 1 nm to 100 nm as the ratio of DMPC to DHPC increases from
0.01 to 100.
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While we have discussed up to now thermotropic systems that change molecular orga-
nization by varying temperature and lyotropics, where transformations are driven by mod-
ifications in composition of a solution, a number of systems, particularly natural ones, are
amphitropic, in the sense that they show both types of behaviour. Phospholipids are an
example [Chapman, 1975], phthalocyanines [Eichhorn et al., 1998] and many sugars are
others [Blunk et al., 2009; Hashim et al., 2012].

1.12 Chromonics

Chromonics [Lydon, 1998, 2004] are a kind of lyotropic system but, differently from those
seen until now, they are formed dissolving in water amphiphilic mesogens (ionic or non-
ionic) that typically have an aromatic structure, with a fairly rigid and planar disc-like or
plank-like core (Fig. 1.53), instead of the aliphatic, flexible, and elongated shape of common
lyotropics. These mesogens have their polar, hydrophilic groups disposed around the periph-
ery of the molecules rather than at one end. The molecules form one-dimensional stacks
of various length in solution, without a critical concentration, rather than zero-dimensional
(closed on themselves) micelles. The face-to-face aggregates can form a disordered nematic
phase (Fig. 1.54a), but also more ordered arrays of columns, in particular, various hexagonal
(H) phases (see, e.g., Fig. 1.54b). In the hexagonal phases the columns lie in a somewhat
hexagonal array, differently from the more dilute nematic N phase where the columns are
separated by a larger water amount. Some of these materials are in use as food dyes, and their
suggestive common names (Fig. 1.53, caption) are inherited from that area. Chromonics are
also used for optical devices, where a common orientation of the liquid-crystalline columns

(a) (b)

(c) (d)

Figure 1.53 Some common chromonic mesogens: (a) 6-hydroxy-5-[(4-sulphophenyl) azo]-
2-naphthalenesulphonic acid, also called Sunset Yellow (SSY) or Edicol [Edwards et al.,
2008]; (b) 3-[6-( 3-carboxyanilino)-4-(3-methyl-1H-imidazol-s-ium-1-yl)-1,3,5-triazin-1-
ium-2-yl] aminobenzoate or just n-methyl imidazol (NMI) [Mohanty et al., 2006];
(c) disodium cromoglycate (DSCG), also called Cromolyn or Intal and (d) Direct Blue.
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(a) (b)

Figure 1.54 A sketch of a chromonic nematic (N) with (a) its columnar stacks aligned by
flow in the direction of the arrow and (b) of a hexagonal (H) chromonic phase.

is achieved by a mechanical shearing force. Successive evaporation of the solvent can result
in anisotropic solid films that can, e.g. linearly polarize incident light over a rather wide
interval of wavelengths. If the columns are aligned parallel to the shearing direction (see
Fig. 1.54a), the direction of the absorption transition moment (see Section 3.4.2 for the
aromatic cores would typically be in the plane of the molecule, so that the component of an
unpolarized light incident on the film with polarization along the stacks will be transmitted
and the component with polarization perpendicular to it will be well absorbed.

It is interesting that the elastic constants of chromonics are rather different in relative
magnitude from those of nematics. While in simple nematics K11, K22 and K33 have val-
ues comparable to each other (see Table 1.3 and Fig. 1.26), in chromonics the twist con-
stant K22 is nearly an order of magnitude smaller than the other two. For instance, for
Sunset Yellow at a concentration of 29%, Zhou et al. [2012] found K11 = 4.3± 0.4 pN,
K22 = 0.70± 0.07 pN and K33 = 6.10± 0.06 pN.

1.13 Ionic Liquid Crystals

Thermotropic ionic liquid crystals [discussed in detail in Binnemans, 2005; Axenov and
Laschat, 2011; Salikolimi et al., 2020] are a class of liquid-crystalline compounds typi-
cally obtained from anisotropic organic salts. Their defining property stems from being
constituted of anions and cations, making them quite different from ordinary thermotropics,
and it is not surprising that various of their properties, particularly their ion conductivity,
differ significantly from those of conventional liquid crystals. Like ordinary, isotropic, ionic
liquids, these compounds have a very low vapor pressure and thus low volatility. The ionic
interactions tend to stabilize smectic-like lamellar mesophases. Most of the systems studied
so far are imidazolium-derived ionic liquid crystals [Axenov and Laschat, 2011], as we see
in Fig. 1.55. In the first type (Fig. 1.55a), the imidazolium group acts as a mesogenic core,
which is substituted by one or multiple long aliphatic tails. In most of such cases, alkyl
substituted imidazolium salts do not form nematics, but only smectic mesophases where
the molecules are arranged in layers. This is due to the electrostatic interactions in the head
group region and to the weaker van der Waals forces in the hydrophobic tails (see Chapter 5).
The imidazolium group could also be connected via a flexible spacer to a conventional liquid
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Figure 1.55 Some imidazolium-based ionic liquid crystal [Axenov and Laschat, 2011].

crystal mesogen on the tail ends (Fig. 1.55b). In these types of imidazolium-based materials,
the liquid-crystalline properties originate from their strong amphiphilic character. The ionic
interactions of the imidazolium groups stabilize both SA and SE phases. However, some
imidazolium units with two pendant cyano-biphenyl groups show a monotropic nematic
[Goossens et al., 2008]. Stable columnar phases have been obtained for the compounds,
where imidazolium groups have been attached on the tail ends of discotic molecules.

A series of salts with two mesogenic cyano-biphenyl groups attached to a central pyri-
dinium cationic unit via a flexible alkyl spacer was instead shown to exhibit only a nematic
phase with a thermal range influenced by the various counterions employed and spacer
length [Pana et al., 2016].

1.14 Colloidal Suspensions

An interesting and increasingly important [Mitov, 2012; Muševič, 2017] set of liquid crys-
tals is obtained from suspensions of anisometric colloidal particles, where one or more of
their dimensions is nanometric to micrometric in size. For particles up to this range of sizes
the effects of gravity can, to a good approximation, be neglected and various isotropic and
anisotropic phases [Manoharan, 2015] can be observed as a result of the balance between
attractive forces leading to some sort of aggregation and repulsive forces tending to stabilize
the suspension. These forces will be examined in Chapter 5, while for now we just wish to
mention that the particles in liquid-crystalline suspensions can be of inorganic, mineral,
polymeric or even biological origin. Amphiphilic particles (anisotropic Janus particles)
can also be studied [Conradi et al., 2009]. For all these suspensions a very direct evi-
dence of the formation of a liquid crystal is the observation of light transmission through
crossed polarizers, due to the onset of anisotropy (see Fig. 1.56). Let us briefly examine
the main types.

Mineral colloids. Classic examples are suspensions of particles of mineral origin [Davidson
and Gabriel, 2005; Lekkerkerker and Vroege, 2013], e.g. rod-like bohemite (AlOOH) [Buin-
ing et al., 1994] or platelets of gibbsite (γAl(OH)3) in toluene [van der Kooij et al., 2000].
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Figure 1.56 The formation of an anisotropic nematic in a suspension of platelets as their
volume fraction increases from (a) to (d) monitored by the transmission through crossed
polarizers due to the onset of birefringence [van der Kooij and Lekkerkerker, 1998].

In Fig. 1.56 we see such an example for a suspension of platelet shaped particles. Note
that such a discotic nematic phase is obtained easily in colloidal suspensions, while it is
extremely difficult to find it in thermotropic materials, where normally the transition is
from isotropic to columnar upon cooling. It is also interesting that some of these suspensions
convincingly appear to be biaxial nematics [Vroege, 2013], once again a phase very difficult
to find, if at all, in thermotropic materials [Luckhurst and Sluckin, 2015].

Inorganic nanorods. Other liquid crystal assemblies (nematics and smectics) can be
formed from suspensions of inorganic nanocrystals. In Fig. 1.57 we see an example of
cadmium selenide nanorods from Alivisatos group [Li et al., 2002]. This is particularly
interesting for semiconductor nanocrystals or quantum dots (QDs) in view of their optical
absorption and fluorescence properties [Reed, 1993]. Indeed, when at least one of their
sizes is in the range of a few nanometres, the quantum confinement is at the origin of
fluorescence light emission at well-defined wavelengths depending on the particle size.
Thus, a spherical or a rod-like QD can generate, in particular, a narrow red, green or blue
emission band when illuminated with suitably UV light just choosing their diameter (for a
sphere) or cross section (for a rod) to be of the appropriate size.

Note that the suspending host fluid does not have to be isotropic, but could be a liquid
crystal. Indeed, novel hybrid systems have been obtained by Mundoor et al. [2018] using
micron long, charged, inorganic colloidal nanorods of bare NaYF4:Yb/Er, with length-to-
diameter ratios of 40–110. These nanorods tend to align perpendicularly to the 5CB director
and form uniaxial and biaxial nematic phases of the composite mixture. They present very
interesting optical properties due to the upconverting properties of the lanthanide-doped
nanorods that can absorb multiple photons in the infrared and emit in the visible [Wang and
Li, 2007].
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(a) (b) (c)

Figure 1.57 A liquid crystal suspension formed by CdSe nanorods of length (a) 11, (b) 20
and (c) 40 nm and width of ≈ 3.2 nm, respectively [Li et al., 2002].

Carbon nanotubes. Nematics can be formed by multiwall carbon nanotubes (CNT) in
aqueous suspensions, e.g. CNT with average length ≈675 nm, average width ≈25 nm
and concentration ≈4.8 vol% [Song et al., 2003a]. Single-wall nanotubes in strong acid
suspensions [Rai et al., 2006] have also been studied.

Viruses. Viruses are of particular interest as model system of giant ‘molecules’ because,
while being of colloidal size, each particle has the same length, diameter, mass and charge
distribution, avoiding the polydispersity typical of other systems. This makes comparison
with theory and computer simulations easier, eliminating the uncertainties and in general
the effects due to an often unknown distribution of sizes and shapes. For instance, virus
suspensions can form at a sufficiently high-volume fraction not only nematics, but also
layered, smectic systems, that could be difficult to obtain from particles of different length.
This was demonstrated in suspensions of tobacco mosaic virus (TMV) [Zasadzinski and
Meyer, 1986; Dogic and Fraden, 2006] that, as shown in Fig. 1.58a and b, give nematic
phases.

TMV is a plant virus, with rod-like shape [Caspar, 1964], 18 nm in diameter and 300 nm
in length. TMV self-assembles from proteins and a single strand of RNA,≈ 6000 nucleotides
and ≈ 2130 copies of a single kind of polypeptide, the coat protein, each with 158 amino
acids. The RNA forms a helical core, with a cylinder of protein subunits clustered around
it. Another well-studied filamentous virus is fd. It has dimensions of about 880 nm in
length and 6.6 nm in diameter. There are specialized proteins at the ends of the virus used
for infection. The protein shell has a hollow core in the centre into which the DNA is
contained and a helical coat, thus suspensions of fd virus are chiral nematics. Differently
from TMV the virus is semiflexible, with a persistence length of 220–280 nm. fd as a virus
is a bacteriophage that infects certain strains of Escherichia coli bacteria. Note that all the
virus particles studied are strictly helical and thus chiral molecules. However, only some
viruses form cholesterics (see Fig. 1.58c). Conventionally, when dealing with phases of
nematic or smectic formed (as in Fig. 1.58d) the intrinsic chirality is neglected and they are
considered effectively as achiral rods [Dogic and Fraden, 2006].
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Figure 1.58 (a) Tobacco mosaic virus (TMV) water suspension, viewed between crossed
polarizers, showing coexistence between the isotropic phase floating above the birefringent
nematic one [Dogic and Fraden, 2006]. (b) Electron micrograph of a TMV nematic
suspension [Gelbart and BenShaul, 1996]. (c) Image between crossed polarizers P1 and P2 of
a fd virus cholesteric suspension phase. The pitch p corresponds to twice the repeat distance
between the black stripes [Dogic and Fraden, 2000]. (d) Optical micrograph of a fd smectic.
The fd particles lie in the plane of the photo with their long axis normal to the parallel lines
(smectic layers). The layer spacing is 0.92 μm. [Dogic and Fraden, 1997, 2006].

Large differences in elastic constants can be expected in liquid crystals originated from
suspensions of long rod particles, e.g. virus like tobacco mosaic virus (TMV) [Hurd et al.,
1985], nanotubes [Song et al., 2003a] or nanocrystal suspensions [Li et al., 2002].

1.15 Lyotropic Liquid Crystal Polymers

Polymer liquid crystals have become quite important for industrial applications since they
can yield materials with extremely interesting mechanical properties. To quantify this, we
recall that in a tensile stress-strain test an increasing force per unit area, the tensile stress�,
is applied to a specimen and the resulting changes in length (strain λ) are measured. For
a small applied force the behaviour of the material is elastic, with the sample recover-
ing its original shape when the stress is released and � = EY λ, the classical Hooke’s
law of springs, holds. This initial slope EY is called Young’s modulus or tensile modulus.
Upon pulling the specimen, a maximum load is reached before the sample develops a
‘neck’ and tensile strength is defined as the maximum load over original cross-section
area. Let us consider, as an example, one of the most commonly used liquid crystal poly-
mers, Kevlar (du Pont©), a para-substituted aromatic polyamid (aramid), whose structure is
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Table 1.8. Values of Young’s modulus and tensile strength for some
engineering materials [Anderson et al., 1990; Collyer, 1990]

Young’s modulus,EY Tensile strength
Material (GPa) (MPa)

Polyamide 66 3 80
Polyamide 66–30 vol.% glass fibre 8 160
Vectra (thermotropic LCP) 10–40 140–240
Aluminium 71 80
Ultradrawn polyethylene 117 3670
Kevlar (LCP fibre) 139 2700
Mild steel 210 460

(a) (b)

Figure 1.59 Chemical structure of two LCP. (a) Poly-para-phenylene terephthalamide or
Kevlar (DuPont©). (b) Poly-meta-phenylene isophthalamide or Nomex (DuPont©).

shown in Fig. 1.59a, prepared polymerizing p-phenylene-diamine and terephtaloyl chloride.
This main-chain polymer has high viscosity and is practically insoluble in organic solvents
and only yields to very strong acids. The lyotropic liquid crystal obtained dissolving it in
sulphuric acid can be spun to produce high-performance fibres. Chain alignment favours
hydrogen-bonded sheet structures with the molecules forming stacks disposed radially with
the chain backbone along the fibre axis. The Young’s modulus of Kevlar,EY = 139 GPa and
its tensile strength, 2.7 GPa, outperform those of aluminium [Anderson et al., 1990; Collyer,
1990] and compare favourably with other materials (see Table 1.8). Another similar LCP is
Nomex (Fig. 1.59b).

1.16 Liquid Crystal Elastomers

An elastomer (rubber) is, in general, a molecular network formed by polymer chains with
a certain, relatively low (e.g. 10%), percentage of cross links between the strands. Rubbers
owe their characteristic elastic properties to this peculiar structure. In a liquid crystal elas-
tomer (LCE), mesogenic units are embedded in the network [de Gennes, 1974; Anderson
et al., 1990; Benning et al., 2000; Warner and Terentjev, 2003; de Jeu, 2012; Ohm et al.,
2012] as shown in Fig. 1.60. As a result of this connected mesogenic structure a significant
thermal actuation can arise, with changes in the form factor of an LCE sample that take
place as the temperature crosses the isotropic-liquid crystal transition of the mesogenic
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Figure 1.60 Sketch of a main-chain LCE in its (a) isotropic, disordered and (b) anisotropic,
aligned nematic phase. (c) The chemical structure of a main-chain LCE [Brommel et al.,
2011].

components. In Fig. 1.61a we report the actuation induced by temperature for four LCE
materials from Finkemann group and we see that elongation can change by as much as
a huge 400%. Various ways have been proposed to achieve the temperature change in
a localized region (a pixel) by dispersing graphite or carbon nanotubes in the LCE and
illuminating the specific area [Torras et al., 2013]. More generally, LCE unique mechanical
properties are derived from the pronounced coupling between a macroscopic strain and the
underlying mesogenic orientational order. As the latter can be controlled by a number of
external stimuli [Ohm et al., 2012] beyond temperature, e.g. electric field, or ultraviolet light
in the case of photo-responsive azobenzene-based elastomers, LCEs have great potential for
application in various sensing devices, as well as for actuation. The potential applications of
such actuators are fascinating, ranging from artificial muscles [de Gennes et al., 1997], heart
valves, haptic displays [Torras et al., 2013] and other biomedical applications, to micro-
and nano-electromechanical devices like soft robots, as well as electro-optical systems like
adaptive lenses, where their high deformability and low weight make them particularly
promising. Among the possible actuation stimuli, the external electric field is particularly
appealing, even if quite difficult to implement since a rather strong field is required to
induce deformations. Side-chain [Finkelmann and Rehage, 1984] and main-chain [Ortiz
et al., 1998; Donnio et al., 2000] LCEs have been prepared. Side-chain polymeric materials
are somehow easier to prepare and treat, even if main-chain LCEs show the bigger actuation.
Fig. 1.61b shows the unusual and very interesting stress-strain curve of a main-chain LCE at
a few different temperatures. An initial stress gives a linear, Hookean behaviour, with a rela-
tive steep slope (stiff modulus) but then a flat plateau, corresponding to a large deformation
obtained with nearly zero stress (supersoft elasticity), while a further increase in pulling
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(a) (b)

Figure 1.61 (a) The important elongation/contraction of monodomain LCE samples going
through the NI transition, as shown by four different co-elastomer materials from Finkel-
mann group [Wermter and Finkelmann, 2001]. (b) The characteristic non-Hooke stress-
strain trend, with a supersoft flat region of a main-chain LCE whose structure is shown
above the stress-strain plot. Here�n is the nominal or engineering stress (i.e. load divided by
original cross-section area) and λn = �L/L is the applied nominal strain (i.e. deformation
by unit length) [Ortiz et al., 1998].

gives again a normal Hooke behaviour. The phenomenon has been the object of intense
theoretical study [Warner and Terentjev, 2003] and, recently, of computer simulations to be
described later in Chapter 11 [Skačej and Zannoni, 2014].

1.17 Active Liquid Crystals

It is a common observation that many categories of living bodies show some sort of ori-
entational if not positional order. On very different length scales, colonies of bacteria or
fish shoals or flocks of birds or even herds of much larger animals are often spontaneously
arranged in a manner far from disordered [Marchetti et al., 2013]. In particular, swarming
and swimming represent instances of behaviour where motile bacteria migrate rapidly and
collectively on surfaces. In many cases the constituent elements can be assimilated to rigid,
self-propelled rods, but highly flexible, snake-like, active bodies, are also observed, like in
the case of the strain of Vibrio alginolyticus shown in Fig. 1.62 [Böttcher et al., 2016].

It is worth noting that similar ordering effects take place not only in living systems
endowed with some ‘intelligence’, but also in so-called active colloidal systems. A well-
known case is that of Janus micron size colloidal particles [Ebbens et al., 2012; Jiang and
Granick, 2012; Wang et al., 2015] with half body covered by a catalytic coating that reacts
with the host solvent yielding a gas (in the classic example platinum coating and hydrogen
peroxide solvent liberating oxygen).

Comparing all these, living or inanimate, systems with the anisotropic structures dis-
cussed until now for the various kinds of liquid crystals, it is apparent that some sort of LC
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Figure 1.62 Swarming of a colony of snake-like Vibrio alginolyticus bacteria on a surface
[Böttcher et al., 2016].

orientational order exists. There is, however, an important difference, since in all active
systems the common characteristic is that the particles are propelled by some form of
internal force and the resulting phases are thus not in equilibrium. The existence of an
ordered state is dependent on the internal energy source (food, fuel or other) and can only
persist until this is not exhausted. For reasons of space, we shall not treat in detail active
systems in this book, even though the techniques discussed in this book will be of help in
their microscopic description too.
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Phase Transitions

Beside their famous technical applications in optics and electronic dis-
plays, liquid crystals can certainly be regarded as a paradise of the physics
of phase transitions.

P. Barois, Phase Transitions in Liquid Crystals, 1992

2.1 Transitions between Phases

In Chapter 1 we have seen that matter does not just exist in three states of aggregation and
that we can have, under fairly ordinary conditions, a variety of liquid crystalline phases with
different molecular organizations and properties. We have seen that many of these materials
have a cascade of phases between the most ordered and the fully disordered, and it is clear
that the description and classification of the transitions from one microscopic organization
to another is quite relevant for the study of liquid crystals. Here we approach the study of
liquid crystal phase transitions from an elementary point of view, and, also to recall the
terminology employed, we start with the most familiar thermotropic transitions: the solid-
liquid and the liquid-gas. We focus, at least to start with, on one-component systems and
on the thermodynamic classification of the different types of transition. We then present
the powerful tool of Landau theory [Landau, 1965; de Gennes, 1974], which introduces
a generic macroscopic order parameter, η, to be specified in detail case by case for the
different phases involved, as a ‘transformation coordinate’ from one phase to another. We
shall also consider models, such as the Ising, Heisenberg andXY ones originally employed
for magnetic systems [Stanley, 1971; Ma, 1976; Uzunov, 2010]. This is important because
phase transitions present characters of universality [Kadanoff, 1966; Spencer, 2000] that
allow the classifying together of systems apparently extremely different and the language
employed to describe the variety of liquid crystal transitions, particularly for those involving
smectic phases, refers to these prototype models. Most of the phase transitions for the variety
of liquid crystals suspensions, lyotropics and the other systems presented in Chapter 1 have
not been studied with the same level of detail as thermotropics, and we shall just report the
essential experimental facts currently available for each of the systems, particularly with
a view to providing data to compare with the results of the computer simulations to be
discussed in Chapters 10–12.

61
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2.2 Phase Diagrams for One-Component Systems

Phase transformations are concerned, from the macroscopic point of view, with more or
less sudden changes between thermodynamic states belonging to two different microscopic
organizations or phases. We may start therefore by recalling that the equilibrium state of a
system of N particles is defined by a set of thermodynamic variables such as pressure P ,
temperature T , and volume V . In a multicomponent system, additional variables, such as
the concentration of the various components, need to be specified. Additional variables
have also to be introduced when external fields, e.g. electric or magnetic, act upon the
system. Here we start considering a one-component system not subjected to external fields.
Not all of the three variables P,T and V are independent, and the equation linking them
is called the equation of state for the system. A well-known and rather trivial example
is the equation of state for a perfect gas, an idealized system assumed to be formed of
non-interacting point size molecules with number density ρ = N/V . For such a system,
elementary statistical thermodynamics gives the ideal gas law P = NkBT/V, where kB is
Boltzmann’s constant, kB = 1.3806×10−23 JK−1. A diagram showing the relation between
P,T and V is called a phase diagram. Quite often, constant volume or constant temperature
sections of the (P,T ,V ) surface are considered. These are called respectively the (P,V )
(or Andrews) and the (P,T ) diagram. In the ideal gas case the (P,V ) diagram consists of
just a set of hyperbolas, each corresponding to a different temperature. Since the ideal gas
model assumes no intermolecular interactions, it shows no condensation and thus no phase
transitions. For real systems, even gaseous ones, the equation of state is not known in its
analytic form and has to be determined experimentally or put forward in some approximate
form coming from theory or computer simulations. In Fig. 2.1 we show, as an example, the
experimental (P,V ) diagram for benzene (data from [NIST, 2017]). At high temperatures
the diagram somehow resembles the ideal gas one, but below a critical temperature TC the
system shows the familiar condensation (see, e.g., [Pryde, 1969; Atkins, 1978]) transition,
characterized by a jump in volume from the gas (VG) to the liquid (VL), that becomes more
pronounced as we lower the temperature. The point where the gas, isotropic liquid and solid
phases coexist is called the triple point, indicated in this case with a subscriptGIS or just T .
The point (TC,PC) on the critical isotherm where the curvature changes sign is called the
critical point. As an example, for benzene the critical point is at TC = 288.85◦C with
PC = 48.26 atm and ρC = 3.9 mol/l [NIST, 2017], while the triple point is at TT = 5.35◦C
withPT = 0.0477 atm. For CO2, the critical point is at TC = 30.98◦C withPC = 72.81 atm,
while the triple point is at TT = −56.60◦C with PT = 5.11 atm [NIST, 2017]. The liquid
does not exist below TT and since PT is above 1 atm for CO2, in this case we have a direct
transformation from solid to gas (a sublimation) by increasing the temperature at standard
atmospheric pressure.

At the critical point we have VL = VG = VC , the so-called critical volume VC . Thus, the
liquid-gas transition along the critical isotherm is a continuous one and has a qualitatively
different behaviour. Fluids with T > TC and P > PC are called supercritical and have
interesting properties: densities much lower than those of normal liquids and viscosities and
diffusion characteristics of gases. This makes some of them particularly useful as extraction
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(a) (b)

Figure 2.1 (a) The (P,V ) diagram for benzene with a few isotherms: (A) 270◦C, (B) 280◦C,
(C) 288.90◦C, (D) 300◦C, (E) 310◦C. (b) The corresponding van der Waals diagram, show-
ing the liquid-gas coexistence ( ), the spinodal ( ) curves and also, shaded, a
Maxwell equal area construction.

solvents. For instance, supercritical CO2 is used to extract caffeine from coffee beans. After
filtration, and a return to normal conditions, the CO2 evaporates away from the solid caffeine
residue (and can be recompressed for another cycle). Fluids where only T or P are higher
than the critical values are called subcritical: those with T < TC and P > PC that can
be turned to liquid changing pressure could be called subcritical liquids, and those where
T > TC and P < PC are subcritical gases. This classification is often more detailed than
necessary if we are interested only in the general properties, and we shall often use the
generic term fluid (F) for super- and subcritical fluids. A well-known approximate equation
of state for fluids is the van der Waals (vdW) one [Kipnis et al., 1996]:(

P + aN
2

V 2

)
(V −Nb) = NkBT , (2.1)

where a, b are positive constants that allow the equation to be parameterized for different
gases and are related to the molecules’ mutual attraction and to their excluded volume,
respectively. The equation is plotted in Fig. 2.1b for a set of isotherms. Note that for a
certain region of the van der Waals (P,V ) diagram (Figure 2.1b) we have (∂P/∂V ) > 0,
a result not physically plausible and that implies thermal instability, since the volume
should decrease by increasing the pressure. The region is limited by the metastability limit
(spinodal) curve, dashed in Fig. 2.1b. The absence of a flat liquid-vapour line similar
to experiment is mended by drawing a horizontal tie line, positioned so that the areas
comprised above and below the line and the van der Waals curve are equal (the so-
called Maxwell construction [Stanley, 1971; Swendsen, 2012]). For benzene the vdW
parameters are a = 18.062 atm l2 mol−2 and b = 0.1193 l mol−1, while for CO2 we have
a = 3.592 atm l2 mol−2 and b = 0.04286 l mol−1. The critical variables TC,PC and VC
can be determined from the condition that the critical isotherm has a point of inflection, i.e.
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Figure 2.2 (a) Schematic pressure-temperature, (P,T ), diagram for an ordinary fluid. The
solid lines indicate phase transitions. The dotted lines are not transition lines, but just a guide
to locate the triple point at TT ,PT and the critical point at TC , PC . The F→F ′ path around
the critical point shows a condensation to liquid without crossing a transition line. (b) The
(P,T ) diagram for benzene.

that the first and second derivatives equal 0: (∂P/∂V )TC = 0 and
(
∂2P/∂V 2

)
TC
= 0. This

gives TC = 8a/(27bkB ), PC = a/(27b2), VC = 3Nb and PCVC = 3TC/8. The van der
Waals equation predicts that all fluids should obey a universal equation of state when using
reduced units: (

P ∗ + 3/V ∗2)(3V ∗ − 1) = 8T ∗, (2.2)

which is a cubic in V ∗: 3P ∗V ∗3 − P ∗V ∗2 − 8T ∗V ∗2 + 9V ∗ − 3 = 0, where T ∗ ≡ T/TC ,
P ∗ ≡ P/PC and V ∗ ≡ V/VC . The (P,T ) diagram of a system (see Fig. 2.2) offers another
representation of the condensation transition and also allows us to easily include in the
same diagram the melting transition. We see from the generic sketch in Fig. 2.2a and more
specifically in Fig. 2.2b for benzene, that the various states of aggregation correspond to
different regions of the phase diagram separated one from the other by transition lines,
where the phase changes take place. It may be useful to summarize what could be the overall
view of the (P,V ,T ) state diagram, and a sketch of the whole three-dimensional diagram,
of which the (P,V ) and (P,T ) diagrams represent orthogonal sections, is shown in Fig. 2.3.
Note that according to this definition there is no real distinction between a liquid and a gas. In
fact, the vapour pressure line ends up in the critical point, making it quite possible to go from
liquid to gas and vice versa by going around the critical point, e.g. with the path fromF toF ′
in Fig. 2.2a thus avoiding the crossing of a phase transition line. In some (paradoxical) way,
as Fisher [1972] commented: ‘This happily disposes of the problem of liquids, they are just
dense gases!’. The situation on the melting line is quite different, where there does not seem
to be a critical point. In other words, it is not possible to go from a crystalline solid to liquid
or vice versa without crossing a transition line and thus undergoing a phase transition. We
may wonder if this is just because we have not gone high enough in pressure or if it should
be like that in any case. The answer, substantiated by rigorous symmetry arguments, is that
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Figure 2.3 A sketch of a 3D (P,V ,T ) phase diagram. The gas (G), liquid (L) and solid
(S) regions as well as the coexistence regions for the mixtures gas-liquid and gas-solid are
marked explicitly, while the solid-liquid region is hatched. Note that since we focus on the
structure of each phase we do not distinguish between a gas below the critical isotherm (often
called vapour) and that above it (adapted from [Glasser, 2002]).

there is no critical point on the melting line [Landau, 1965; Fisher, 1972]. That is, there is no
thermodynamic condition beyond which liquids and crystals become identical, because the
symmetry of the two phases is different and the organizations of constituent molecules in
the two phases are mutually exclusive, at least when the system is a true bulk one and when
it is not subject to external symmetry breaking fields. Molecules are either orderly arranged,
and we have a crystal, or disordered in which case we have a liquid (cf. Fig. 1.1). Symmetry,
however, does not tell us anything on the fluidity or solidity of a system, and indeed liquids
can become kinetically arrested at low temperature and turn into disordered solid glasses.

In Fig. 2.4 we show a sketch of yet another commonly used representation of the
phase diagram, the temperature-density one. This (T ,ρ) plot is quite useful in showing
also the shape and extent of regions where two phases coexist in equilibrium, with an
interface surface separating them. For benzene TT = 5.35 oC, PT = 0.0477 atm and
ρT = 0.002074 mol/l for the vapour and 11.4766 mol/l for the liquid. The boiling point at
P = 1 atm is at TB = 80.15◦C, with ρB = 0.035687 mol/l for the gas in equilibrium with
the liquid (vapour) and ρB = 10.4075 mol/l for the liquid. Note that, although this form of
the diagram, exhibiting solid, liquid and gas, is the most common one, it does not have to
be universal. In particular, obtaining a liquid just by cooling from the gas phase is related
to the existence of attractive forces. For instance, a fluid made of hard repulsive spheres
(see Chapter 5) does not have a liquid phase but only fluid and solid phases. This would
ideally correspond to moving up the triple point so as to eliminate the liquid state pocket
(hatched area in Fig. 2.4) when it goes above the critical point, as might be the case for C60

fullerene [Hagen et al., 1993]. All that has been said thus far applies to ordinary isotropic
liquids. Let us now see what we expect the (P,T ) phase diagram of a liquid crystal to be.
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Figure 2.4 Schematic temperature-density (T ,ρ) diagram for an ordinary fluid showing gas
(G), liquid (L), supercritical fluid (F) and solid (S) phases and the coexistence regions. The
subscripts C and T refer to the critical and the triple points, respectively. The liquid exists
only in the hatched area between TT and TC .

In an idealized situation we could imagine, for a system showing a nematic phase, to
have a new region of the phase diagram, located between the liquid and the solid, and for
this reason often called a mesophase. In a liquid crystal we can have more than one triple
point, e.g. solid-nematic-gas and nematic-liquid-gas. However, the situation is much more
complicated as we have many different phases and topologies possible. In Fig. 2.5 we show
two possible phase diagrams [de Miguel et al., 1996] where, by increasing temperature at a
certain pressure, the nematic can only be brought in equilibrium with the supercritical fluid,
without passing through an isotropic liquid (Fig.2.5a) or where the nematic can sublimate
to vapour directly or go to vapour via the isotropic phase if the temperature is below TC

(Fig.2.5b). The diagrams do not show the crystal solid phase K, and considering its position
would offer further possibilities of phase sequences and coexistence.

In Fig. 2.6 we see part of the experimental phase diagram obtained for 5CB and 8CB
[Shashidhar and Venkatesh, 1979]. Of course, additional regions will be present if different
solid phases or different liquid crystal phases exist. The full phase diagram of a system
showing the variety of phases is difficult to obtain. However, some studies are available
for fairly large portions of the (P,T ) phase diagram. In Fig. 2.7 we see two examples
of part of the experimental phase diagram (a) for the smectogen p-ethoxybenzoic acid
[Chandrasekhar, 1992] and (b) for n-heptyloxyphenyl-4′-n-decyloxy benzoate (70PDOB)
[Kalkura et al., 1982].

In general, we can say that a liquid crystal phase will correspond to an area of the phase
diagram comprised between regions belonging to other thermodynamic phases, possibly
including other liquid crystal phases, hence the name mesophases often used as a synonym
for liquid crystals, as we have seen in Chapter 1. There are still many possible shapes of
the phase diagram. For instance, for the two experimentally obtained portions of the (P,T )
diagrams reported in Fig. 2.7, no nematic-gas direct transition line appears, differently from
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(a)

(b)

Figure 2.5 Two possible types of temperature-density (T ,ρ) and pressure-temperature
(P,T ) phase diagrams for liquid crystals showing isotropic liquid (I), supercritical fluid
(F), nematic (N) and smectic (Sm) phases. (a) The top plates correspond to a system
where N is only stable at high pressures and temperatures. (b) The bottom plates refer to
a case where nematic-gas phase coexistence occurs for a range of temperatures between the
gas-nematic-smectic TGNSm and the gas-liquid-nematic triple point TGIN (adapted from
[de Miguel et al., 1996]).

(a) (b)

Figure 2.6 A portion of the experimental (P,T ) phase diagram for the liquid crystals
(a) 5CB and (b) 8CB. The symbols indicate independent sets of measurements. The lines
are a guide for the eye [Shashidhar and Venkatesh, 1979].
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(a) (b)

Figure 2.7 (a) (P,T ) diagram for p-ethoxybenzoic acid showing the solid-smectic-nematic
triple point [Chandrasekhar, 1992] and (b) that for 70PDOB showing also the SC phase
(hatched region) and the solid-smectic C-smectic A triple point [Kalkura et al., 1982].

the hypothetical cases in Fig. 2.5. It may be of course that experiments cannot cover a wide
enough portion of the phase diagram and it is difficult to draw general conclusions from
just a limited portion. Computer simulations can help a little in this respect, as we shall see
in Chapters 10–12. To understand the various types of mesophases and phase transitions as
well as to differentiate between them we shall have to resort to statistical thermodynamics,
as discussed in Chapters 3, 4 and 7. Let us start however with some recollections of ordinary
thermodynamics. We know that the behaviour of a one-component system with internal
energy U and entropy S at a temperature T is regulated by its Helmholtz free energy A (see,
e.g., [Pippard, 1966]), A = U − T S, as long as we work at constant volume. If, instead, we
work at a constant pressure P and temperature, T , we shall have to consider the Gibbs free
energy:

G = H − T S, (2.3)

where we have introduced the enthalpy function H = U + PV . We wish to examine now
how either A or G vary as we move from one phase to another. We recall that the free energy
of a system in equilibrium at certain thermodynamic conditions (pressure, temperature,
etc.) should be the lowest possible one between those of the various potential molecular
organizations in competition. Thus, a crystal phase can occur when the free energy of this
candidate organization is lower than that of the liquid, but, moreover, what we have simply
indicated as a crystalline phase can correspond to various morphologies with different free
energy and thus we can have various different and well-defined crystal phases (polymorphs)
by varying external conditions. The phenomenon is very common for inorganic (sulphur and
quartz being classic examples [Eggers et al., 1964]) and even more for molecular crystals
from organic materials [Bernstein, 2007].
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(a) (b)

Figure 2.8 (a) Sketch of the free energy G for two virtual phases α and β as a function
of temperature T . In Tαβ the two curves cross and a transition between α and β occurs.
(b) Similar sketch for three competing molecular organizations: solid (S), nematic (N) and
isotropic (I).

2.3 Ehrenfest Classification of Phase Transitions

An astonishing feature of many transitions, also very familiar ones, like the crystallization
of liquid water, is the fact that the molecular organization of a huge number of molecules
can suddenly change from a disordered one to a beautifully ordered crystal structure at a
very precise temperature. This is unusual, recalling the statement dating back to Lucretius
‘natura non facit saltus’ (nature does not make jumps) normally obeyed at least for classic,
non-quantum, systems. However, the discontinuous behaviour can be understood consider-
ing the free energy of each of the two phases that are interconverted at the transition, e.g. the
isotropic liquid and crystal or isotropic liquid and nematic, or in general, α and β. Changing
the thermodynamic driving variables, the temperature say, the free energy of each of the two
molecular organizations candidate to exist will vary, indeed continuously and without jumps
for each of the two potential phases, as we see in Fig. 2.8a. However, the two curves cross
at a temperature Tαβ where the free energy of phase β becomes lower than that of phase α.
Since the phase that we observe at equilibrium is the one with the lowest free energy among
all the candidate ones, for temperatures lower than Tαβ the stable phase will be α, while for
temperatures above Tαβ the stable phase will be β. At the microscopic level we shall have a
switch from the molecular organization corresponding to phase α to that of phase β, clearly
more stable in the assigned conditions. At the transition point the free energy of the two
phases is the same. Thus, at constant volume, Uα − TαβSα = Uβ − TαβSβ, and we have at
Tαβ a change in energy, the latent heat:

Uβ −Uα = Tαβ (Sβ − Sα). (2.4)

Quite similarly we have, at constant pressure, Hβ − Hα = Tαβ (Sβ − Sα). If more than one
molecular organization with similar free energy is involved, as is often the case for liquid
crystals, the argument can be repeated considering successive intersections of the respective
curves and a succession of transitions takes place, as shown in Fig. 2.8b.

Let us now consider one transition point and examine the different ways that a transition
can occur. In general, the two free energy curves in Fig. 2.8a may cross with different slopes
in Tαβ and in this case the resultant free energy for the stable phase will have an edge point,
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with the slope being different on the two sides of the curve. In this case, we may expect a
sudden change of all quantities connected to free energy derivatives at a phase transition. In
particular, the first partial derivative of the free energy G (or A) with respect to temperature,
i.e. the entropy S, will undergo a sudden change at Tαβ .

We can express this mathematically using the definition of the delta function in terms of
a formal derivative of the Heaviside step function H (x − a) which is 1 for x > a and 0
for x < a (see Appendix D). Considering the free energy G as a piecewise continuous and
differentiable function of temperature, we have:

G(T ) = Gα(T )H (Tαβ − T )+ Gβ (T )H (T − Tαβ ) (2.5)

and from the partial derivative with respect to temperature

S(T ) = −
(
∂G
∂T

)
P

= [Sα(T )− Sβ (T )]H (Tαβ − T ), (2.6)

where we have used the fact that Gα(T ) = Gβ (T ) at Tαβ . An attempt at classifying phase
transitions based on the behaviour of free energy derivatives is due to Ehrenfest [Pippard,
1966]. According to his scheme a transition is called of order n if the first (n−1) derivatives
of the free energy (either G or A) are continuous across the transition, while the nth deriva-
tive shows a discontinuity. We sketch the free energy derivatives for such a first-order and
second-order phase transition in Fig. 2.9. As we see, the free energy first derivative (entropy)

(a) (b)

Figure 2.9 A sketch of the behaviour of the free energy G and its derivatives, entropy S
and heat capacity CP , at (a) a first- and (b) a second-order transition according to Ehrenfest
classification.
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makes a finite jump�Sαβ at a first-order phase transition, with the product Tαβ�Sαβ being
the latent heat that we have already introduced. Examples are the liquid-gas transition for
temperatures below TC , the solid crystal-liquid, the solid-gas sublimation (see Fig. 2.3) or
the nematic-isotropic phase change. Recalling that the heat capacity CP can be written as
the ratio of the infinitesimal amount of heat absorbed by the sample to produce a corre-
spondingly small temperature increment, it can be written as:

CP =
(
∂ H
∂T

)
P

= T
(
∂S
∂T

)
P

= −T
(
∂2G
∂T 2

)
P

. (2.7)

The heat capacity at Tαβ , being the derivative of a step function, can be formally written as a
delta function-like peak (see Appendix D), corresponding to the fact that temperature does
not increase while we provide the energy needed to complete the passage from one phase
to the other:

CP (T ) = [Cα(T )− Cβ (T )]H (Tαβ − T ) + T (Sβ − Sα) δ(T − Tαβ ). (2.8)

Very roughly we expect therefore the latent heat to be bigger when the transition is asso-
ciated with a large change in the structure and organization of the system. We can forecast
a transition corresponding to a profound disordering of the system, like the change from
crystal to ordinary liquid, to produce a large change in entropy and thus to have a significant
latent heat. Even if this is a very familiar situation, it does not imply that a discontinuity in
the free energy slope is a characteristic of every transition. Indeed, for a second type of
transition, the change is continuous with Sβ = Sα at T = Tαβ (see Fig. 2.9b). According to
the Ehrenfest scheme, the jump we have observed in the first derivative should appear in the
specific heat, i.e. in the second derivative of the free energy for a second-order transition.
An analogous treatment can be done at constant volume. In that case the constant volume
heat capacity CV at a certain temperature can be written as

CV =
(
∂ U
∂T

)
V

= T
(
∂S
∂T

)
V

= −T
(
∂2A
∂T 2

)
V

. (2.9)

Incidentally, we have CP−CV = −T (∂V /∂T )2P (∂P/∂V )T and, since (∂P /∂V )T < 0, the
right-hand side (RHS) will be positive and CP > CV . The nematic-isotropic transition, as we
see from Table 2.1, is a weak first-order one in the sense that the typical transition entropy is
an order of magnitude smaller than that for melting. The volume change at the NI transition
is also much smaller than that at melting. Typical volume changes are 3%–9% at the crystal-
mesophase, 0.1%–0.4% at the nematic-isotropic, and 0.01%–0.2% at the smectic A-nematic
transitions, respectively [Pestov and Vill, 2005]. For PAA we have �VKN/VK ≈ 11.03%
and �VNI/VN ≈ 0.36% [McLaughlin et al., 1964].

In some circumstances the less stable phase can be continued beyond its range of stability
and we talk in this case of metastable states. For example, a liquid can be supercooled below
its solidification point.

While the Ehrenfest description is in accord with experiment for a first-order phase
transition, this is not quite the case for continuous transitions, like the liquid-gas one at
the critical point or the transition from ferromagnetic to paramagnetic behaviour, taking
place at the Curie temperature, the order-disorder transition in alloys, some polymorphic
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Table 2.1. Entropy of transition (�SKN/R) for crystal-nematic and
nematic - isotropic (�SNI /R), with R the gas constant, for various
nematogens (see Table 1.2). Data from [Pestov and Vill, 2005]

�SKN/R TKN (◦C) �SNI /R TNI (◦C)

MBBA 6.15 22.0 0.43 48.0
5CB 6.98 24.0 0.4 35.3
6CB 10.18 14.3 0.16 30.1
7CB 15.0 10.8 0.36 30.0
PAA 9.09 118 0.17 135.3
PCH5 7.14 30.0 0.33 55.0

(a) (b)

Figure 2.10 (a) Molar heat capacity vs temperature for the second-order triclinic-monoclinic
transition of p-terphenyl occurring at 193.55 K [Chang, 1983] and (b) excess over ideal value
heat capacity for the second-order NSA transition of 4O.8 [Birgeneau et al., 1981]. The
dashed lines represent the background variation and each symbol a set of measurements.

transformations in solids and the fluid-superfluid transitions in Helium and, as we shall see,
some smectic-nematic transitions. There is no a priori reason why the free energy should
behave according to the Ehrenfest scheme at a continuous transition and indeed normally
it does not. In particular, for transitions not of the first order, the shape of the heat capacity
peak is typically different from that predicted by Ehrenfest and shown in Fig. 2.9. Instead
of a finite jump in heat capacity we have a divergence of the heat capacity with a certain
functional dependence on temperature. In Fig. 2.10a, we see, as an example, the solid state
transition between the triclinic and monoclinic phase of p-terphenyl that takes place over a
few degrees [Chang, 1983]. The shape of this curve is reminiscent of a greek lambda and
this kind of transition is referred to as a λ transition. Often the term second order is used for
all transitions higher than the first, adopting the Ehrenfest nomenclature beyond its original
meaning. A somewhat similar example of continuous transition for liquid crystals is shown
in Fig. 2.10b for a smectic-nematic transition.

In general, first-order phase transitions correspond to situations with a sharp change of
microscopic organization of some kind, while higher-order transitions occur by continuous
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modifications of the structure from one phase to the other. The possibility of continuous
change in second-order transitions is normally associated with precursor or pretransitional
phenomena that imply a manifestation of some of the properties of the new phase before
this is reached. Indeed, one can consider the probability that a chance fluctuation in the
disordered phase (β) will create a cluster of m ordered molecules (molar fraction x) with
the local structure of the new phase (α). The probability that this takes place is propor-
tional to the Boltzmann exponential weight factor and will be very low if the entropy of
transition �Sαβ is relatively large and negative, as at a first-order transition. However, if
�Sαβ is 0, or very small as at a second- or nearly second-order transition (cf. Table 2.1), the
pretransitional effects will be non-negligible. A classic example is the liquid-gas transition
at the critical point. This change of phase normally occurs with a change of volume and
a latent heat, i.e. as a first-order transition. However, at a critical point this is not so, and
fluctuations become so extensive to lead to inhomogeneous clusters of any size and even
comparable to the wavelength of visible light, leading to a strong light scattering called
critical opalescence [Stanley, 1971]. It is interesting to see that predicting the order of a
phase transition from the molecular structure is extremely difficult, if even at all feasible.
This is illustrated in Fig. 2.26 where the transitions for very similar n-alkyl-cyano-biphenyl
mesogens only differing in the length of the alkyl (methylene) chain show rather different
behaviour.

2.4 The Clausius–Clapeyron Equation

Going back to the (P,T ) phase diagrams, we see (e.g. in Fig. 2.2) that they consist of
transition lines, collections of points where the equilibrium between the two phases exist
as P and T change. The slope of the (P,T ) diagram transition lines can change from one
type of material and of transition to another. If we consider two close equilibrium points
(T0,P0) and (T ,P ) on a transition line (see Fig. 2.11) we have Gα(T0,P0) = Gβ (T0,P0)

Figure 2.11 Two nearby equilibrium points (T0,P0) and (T ,P ) on a transition line used
to derive the Clausius–Clapeyron equation for its slope. Each point corresponds to the
intersection of the free energy curves for the solid and liquid phases (see Fig. 2.8).
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but also Gα(T,P ) = Gβ (T,P ). Since the two state points are close, we can write Gα(T,P )
and Gβ (T,P ) as the first terms in a Taylor expansion, starting from an equilibrium point at
T0,P0:

Gα(T ,P ) = Gα(T0,P0)+
(
∂Gα
∂P

)
T0

dP +
(
∂Gα
∂T

)
P0

dT + · · · , (2.10a)

Gβ (T ,P ) = Gβ (T0,P0)+
(
∂Gβ
∂P

)
T0

dP +
(
∂Gβ
∂T

)
P0

dT + · · · . (2.10b)

Subtracting the two equations, and recalling that the partial derivative of the free energy with
respect to pressure is the volumeV = (

∂G/∂P
)
T

, while the partial derivative with respect to
temperature is the entropy S = − (

∂G/∂T
)
P
, we have thenVαdP−SαdT = VβdP−SβdT .

If (Vβ−Vα) �= 0, this is more often written as the Clausius–Clapeyron equation for the slope
of a transition line:

dP

dT
= (Sβ − Sα)

(Vβ − Vα)
, (2.11)

which expresses a general result for first-order thermodynamic transitions. The slope of
a transition line corresponding to a change of phase α → β that reduces the entropy
(e.g. a crystallization) will be positive if the volume per particle of the low entropy phase
is smaller (e.g. along the liquid-solid transition line for CO2 and most compounds), and
negative otherwise. Thus, for materials that expand when crystallizing, like water (4%),
gallium (1%), silicon (10%) and many silicates, the slope of the melting curve is negative.
For these materials we also expect melting by just increasing the pressure.

Turning to liquid crystals, the nematic-isotropic (NI) transition is a weak first-order
one, i.e. the entropy (and latent heat) and the volume (and density) variations for an NI
transition are small and in any case much smaller than for a crystal-nematic, KN, or crystal-
isotropic fluid, KI, (see, e.g., [Würflinger and Sandmann, 2001]). Since both �SNI and
�VNI decrease with respect to the melting ones, it is difficult to predict in general which of
the KN or NI transitions will be steeper. It is worth stressing that the Clausius–Clapeyron
relation is a local one, and that it does not imply a linearity of the transition lines. Let us see
an example. The smectic phase normally occurs at lower temperatures than the nematic one,
which is quite reasonable since, as we said earlier on, it is more ordered. However, this does
not have to be the case, as demonstrated by the so called re-entrant nematics, that arise for
instance in smectic formed by molecules with strong terminal dipoles (cf. Section 1.7.2).
In these systems, e.g. the 4-cyano-4′-octyloxy biphenyl (COOB) compound, in a certain
pressure range above the atmospheric, cooling down from the isotropic phase becomes
nematic and then, by further cooling, a smectic A phase. On the other hand, a further
decrease in temperature yields a nematic phase again, before the solid. The relevant portion
of the phase diagram is shown in Fig. 2.12a. There is a strong similarity of this diagram
with the universal one proposed a long time ago by Tamman showing melting by cooling
(or inverse melting) in a region of the phase diagram (see Fig. 2.12b) discussed by Greer
[2000] and experimentally observed in certain polymer systems [Rastogi et al., 1999].
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(a) (b)

Figure 2.12 (a) (P,T ) diagram of COOB showing isotropic (I), nematic (N), supercooled
nematic (N(sc)) , supercooled smectic A (SA(sc)), and re-entrant nematic (N(r)) [Cladis
et al., 1977]. (b) Sketch of universal Tamman phase diagram [Greer, 2000].

(a) (b)

Figure 2.13 A sketch of the temperature variation of the order parameter η at (a) a first- and
(b) second-order phase transition.

2.5 Empirical Order Parameters

What we have seen until now about phase transitions concerns macroscopic thermodynamic
quantities. However, transitions involve changes in molecular organization, as we have very
schematically seen in Table 1.1. A fundamental microscopic quantity, that we shall discuss
at length in Chapter 3 is the order parameter, η say, that for the moment we intend simply
as a suitable property that changes at the phase transition going to 0 in the more disordered
phase. At a first-order phase transition the order parameter changes discontinuously to 0
(see in Fig. 2.13a) upon increasing temperature, while at a higher-order transition, the
order parameter approaches 0 continuously, as we see in Fig. 2.13b. A common example of
continuous transition, as a function of temperature, is the liquid-gas one, where an empirical
order parameter η describing the approach to the critical temperature TC can be taken
proportional to the difference between the density of the liquid and the gas, ρL − ρG, at a
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max

–

Figure 2.14 Variation with reduced temperature T/TC of the liquid-gas transition order
parameter (ρL − ρG)/ρL,max in terms of the coexisting liquid, ρL, and gas, ρG, densities
and scaled by the highest liquid density ρL,max . Data for Ne (•), Kr (���), N2 (���), CH4 (◦◦◦)
[Guggenheim, 1945] and for H2O (�), benzene (�) [NIST, 2017].

Figure 2.15 Continuous decay to 0 of order parameter η as reduced magnetization
M(T )/M(0) vs scaled temperature for a cobalt (�), iron (×), magnetite (+), nickel (◦◦◦)
ferromagnet on approaching the critical Curie point at TC [Pathria, 1972]. The line is just a
guide for the eye.

certain temperature. It is possible to see in Fig. 2.14 that the decay of this order parameter
is actually fairly universal for simple fluids formed of particles of nearly spherical shape,
also of different chemical nature, at the same reduced temperature T/TC . This principle
of corresponding states [Guggenheim, 1945] does not hold very well for more complex
molecules, even for relatively simple ones, like benzene (Fig. 2.14). Let us consider, as
a second example of continuous transition, ferromagnets, where nothing very apparent
takes place in the (P,T ) phase diagram, except that, by increasing the temperature, the
macroscopic magnetizationM is reduced and eventually destroyed at the Curie temperature,
as we see in Fig. 2.15. For magnetic systems a suitable order parameter η is the absolute
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value M of the magnetization vector M . Also, in this case, we see from Fig. 2.15 that
magnets with different chemical nature have quite similar behaviour at the same reduced
temperature T/TC . For nematics, the most characteristic feature when approaching the
clearing transition from below is the decrease in the anisotropy of tensor properties, e.g. the
difference between the parallel and perpendicular components of the refractive index tensor
n, and its sudden disappearance at TNI . A natural empirical order parameter could then be
the anisotropy�n = n‖ −n⊥ and we could take η(T ) ∝ �n(T ), scaled to have 0 ≤ η ≤ 1,
if the refractive index anisotropy is positive. The proportionality constant is not so easy to
estimate without a molecular theory (see Chapter 3), but as we can see from Fig. 1.5b, the
refractive index anisotropy, differently from the two cases just seen, jumps discontinuously
to 0 at TNI . Another way of seeing this discontinuity, is to realize that having order and
disorder at the same time corresponds to a coexistence between the ordered and disordered
phases. This behaviour is a characteristic feature of first-order transitions.

As long as we are interested in orientational order, the birefringence could be used also
to characterize the anisotropy in colloidal suspensions, or lyotropics or even smectics.

2.6 Critical Exponents

The critical behaviour, i.e. the asymptotic features of physical properties approaching a con-
tinuous phase transition, is typical of a certain class of systems and has been studied in detail
over the last few decades. The topic is relevant for liquid crystals, since various smectic-
nematic transitions are of second-order type and even the nematic-isotropic transition, while
being first order, is a very weak one, and has many features of a continuous phase change.
We mentioned before that near a second-order transition fluctuations that involve clusters
of all lengths, i.e. of any length scale, take place. This gives rise to scale invariance and
suggests that the behaviour of certain properties may also be scale invariant, which in turn
hints that their temperature dependence on approaching the transition may be scale free,
like in particular a power law. Indeed, for a power law f (x) = ax−ξ scaling the argument
by a constant c maintains the same functional form

f (x) = ax−ξ x:=cx�⇒ a(cx)−ξ = c−ξ f (x) ∝ f (x). (2.12)

Here we just summarize the concept of critical exponent and show some classic examples,
that we shall later use in Sections 2.7, 2.8 and 2.12 as reference cases to compare with liquid
crystal transitions. The temperature dependence of the heat capacity can be represented by
the asymptotic power law near the critical point

CP =
{

(A/α)�T −αr + B, for T > TC
(A′/α′) (−�Tr )−α′ + B ′, for T < TC,

(2.13)

where�Tr ≡ (T −TC)/TC and α,α′ are the heat capacity critical exponents, characterizing
the curves above and below TC . The ratio (A/α)/(A′/α′), important in determining the
shape of the heat capacity peak is called amplitude ratio. A related quantity obtained
experimentally is the excess heat capacity, also fitted by the same exponent [Thoen, 1995],
e.g. CP = αA�T −αr /(1 − α), for T > TC . The critical exponents represent an important
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characteristic of a second-order phase transition. Clearly, classical Ehrenfest behaviour
which corresponds to a finite jump, rather than a divergence, would give exponents
α = α′ = 0. The same arguments can obviously be applied also to CV . Critical exponents
can also be defined for changes in other quantities that play an analogous role in apparently
very different transitions [Stanley, 1971]. This similarity proves very useful in transferring
mathematical methods and ideas from one field to the other. The continuous decay to
0 of η (e.g. Figs. 2.13b–2.15) as TC is approached from below can be represented by a
power law with a critical exponent β:

η ≈ (−�Tr )β, T < TC . (2.14)

Yet another type of important critical behaviour is that of susceptibilities relative to a (van-
ishingly small) applied external field. When considering a magnetic field H , this material
response quantity, χ , is the susceptibility for magnetic or non-magnetic, diamagnetic, sys-
tems like liquid crystals, respectively: χ = (dM/dH )H=0 , where M is the magnetization.
Approaching the Curie temperature, where the magnetization goes to 0, the susceptibility
should vary as χ ≈ (−�Tr )−γ . The corresponding quantity for a simple fluid is the isother-
mal compressibility, with the pressure playing the role of the external field

κT = − 1

V

(
∂2G
∂P 2

)
T

= 1

V

(
∂V

∂P

)
T

. (2.15)

It is worth noting that these exponents are not all independent but, since they describe
the behaviour of quantities linked by thermodynamic relations, they are also connected by
important equations called scaling laws [Widom, 1996] that are either independent on space
dimensionality nd or that instead involve this dimensionality explicitly [Stanley, 1971].
According to the universality hypothesis for second-order phase transitions [Nelson, 1977;
Spencer, 2000; Bellini et al., 2001] the critical exponents depend on the fundamental prop-
erties of the transition, e.g. the spatial dimensionality, the range of interaction and the
symmetry of the system, rather than on the fine details of the potential between the particles.
In Table 2.2 we give a brief summary of experimental values of exponents for some classical
transitions: that for magnets at the Curie point and that for fluids at the critical point.
The similarity of exponents, e.g. for decay to 0 of the order parameter, is nothing short
of impressive. Phase transitions, even corresponding to extremely different materials, can
thus be grouped in a limited number of universality classes with well-defined exponents.
Moreover, phase transitions corresponding to seemingly extremely different systems can
be understood in terms of simpler models that share the same universality class. In the next
section we briefly look at some of these simple prototype models.

Note that, as we have listed them, the critical exponents do not appear to be related to the
anisotropy of a material, except for the order parameter one. However, experiments sensitive
to structural order and correlation in the positions and orientations between constituent
particles in different directions, such as X-ray diffraction, will require anisotropic critical
exponents in the data analysis [Barois, 1992].
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Table 2.2. A summary of experimental exponents for various continuous transitions:
magnetization-demagnetization (Curie point) and critical point liquid-gas phase
transitions. Here: F: Ferromagnet, AF: Antiferromagnet, LG: Liquid-Gas. References: (a)
[Ma, 1976]; (b) [Widom, 1996]; (c) [Stanley, 1971]; (d) [Zemansky and Dittman, 1997].

System Tc(oC) α α′ β γ γ ′ Ref.

F: Fe 770.9 −0.120 −0.120 0.34 1.33 1.33 (a)
F: Ni 358.48 −0.10 −0.10 0.33 1.32 1.32 (a)
F: YFeO3 369.9 0.354 1.33 (a)
AF: FeF2 −194.84 0.11 0.11 (a)
AF: RbMnF3 −190.05 −0.139 −0.139 0.32 1.40 1.40 (a)
LG: CO2 31.06 0.124 0.124 0.345 1.20 1.20 (a)
LG: Ar −122.29 < 0.4 < 0.25 0.362 1.20 1.20 (d)
LG: Xe 16.64 0.08 0.08 0.34 1.203 1.203 (a)
LG: 4He −267.911 0.127 0.159 0.355 1.170 1.170 (c)
LG: vdW 0 0 1/2 1 1 (b)

Figure 2.16 A sketch of the free energy G for a system of two reagents A and B going to
the product C as a function of a reaction coordinate q.

2.7 Landau Theory

One of the most successful theories for phase transitions was put forward by Landau many
years ago [Landau, 1965; Landau and Lifshitz, 1980]. In his approach the free energy of
a system that undergoes a transition between two different phases is studied as a function
of one or more order parameters differentiating the various types of microscopic organiza-
tions for the system (e.g. positional and orientational order parameters for smectics, or just
orientational for nematics). The specific nature of η will change for different materials and
reflect the symmetry of the phases, as we have seen in Section 2.5, but does not need to be
detailed at this stage. Indeed, each η can be considered as a kind of generalized coordinate
describing the passage from one phase to the other, a bit like the reaction coordinate used
in chemistry (see Fig. 2.16) describes in a general (and inevitably generic) way the change
from the free energy of a set of reagents to that of a set of products. The aim is then to
describe a wide range of different physical systems and capture the general behaviour of
free energy and related properties at second- and first-order-type transitions. The theory,
originally applied with success to magnets and polymorphic transformations in crystals, has
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been extended by de Gennes [1974] and by a number of other authors [Stephen and Straley,
1974; Gramsbergen et al., 1986a; Vertogen and de Jeu, 1988] to nearly every liquid crystal
transition and other systems [Binder, 1987; Tolédano and Tolédano, 1987]. In particular,
the theory for various types of smectics has been discussed in detail by Pikin [1991]. Here
we keep the treatment very simple, considering first the case of a system characterized
by a scalar order parameter, η, that vanishes in the more disordered phase. The basis of
Landau theory consists in assuming that the (non-equilibrium) free energy in the proximity
of the phase transition can be written as a power series in terms of the order parameter η,
supposed to be small enough for the expansion to converge. The Gibbs free energy density
(or equivalently, the free energy, since we have a uniform system) is therefore written, at
constant pressure, as

G = G0+
(
∂G
∂η

)
η=0

η+ 1

2!

(
∂2G
∂η2

)
η=0

η2+ 1

3!

(
∂3G
∂η3

)
η=0

η3+ 1

4!

(
∂4G
∂η4

)
η=0

η4+· · · ,
(2.16)

where G0 is the free energy of the disordered, η= 0, state. Since we are interested in vari-
ations with respect to this reference state we can let G0= 0 without loss of generality. At a
given temperature and retaining a finite number of terms this is a polynomial in η, whose
minima, identified by the conditions

(
∂G/∂η

)
η=0 = 0 and

(
∂2G/∂η2

)
η=0 > 0, represent

stable configurations. In particular, if the free energy has to be a minimum, its first derivative
with respect to η at a fixed T (and/or P ) will have to be 0. We can then write, more concisely

G(η,T ) = G2(T )η2 +G3(T )η3 +G4(T )η4 +G5(T )η5 +G6(T )η6 + · · · , (2.17)

whereG2(T ) ≡ 1
2

(
∂2G/∂η2

)
η=0,G3(T ) ≡ 1

6

(
∂3G/∂η3

)
η=0,G4(T ) ≡ 1

24

(
∂4G/∂η4

)
η=0,

. . . , are unknown coefficients that can, in general, depend on temperature T . The free
energy, Eq. 2.17, cannot be studied as such, but it is interesting to see its behaviour when
making some (drastic) assumptions on the Gi coefficients. Landau suggested that they can
be assumed to be constants, G3(T ) = −g3, G4(T ) = g4, G5(T ) = g5, G6(T ) = g6, with:
gi ≥ 0, . . . (but notice the minus sign in front of g3), while the variation of G2(T ) with
temperature is taken to be

G2(T ) = a(T − T ∗), (2.18)

where T ∗ is a certain characteristic temperature and a > 0. In this way, the coefficient
G2(T ) can invert its sign, changing the curvature of the free energy curve and transforming
the system from stable to unstable at some temperature. With these assumptions, the free
energy G for an isotherm at a given temperature T will just depend on η and, truncating for
now at η4, we have

G(η,T ) = a(T − T ∗)η2 − g3η
3 + g4η

4. (2.19)

The value of the equilibrium order parameters η at that T will be obtained minimizing
the free energy. We can now consider various scenarios resulting from different choices of
coefficients.
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´

�

Figure 2.17 Sketch of the free energy at various temperatures below and up to the transition
at a second-order phase change (here we only show the η ≥ 0 part of the plot).

2.7.1 Second-Order Phase Transitions

Let us describe first what happens if, for a certain physical system, we have g3= 0, e.g.
if, because of symmetry reasons, G(η,T ) = G(−η,T ), as for the magnetization transition.
Then the free energy will be just

G(η,T ) = a(T − T ∗)η2 + g4η
4. (2.20)

Minimization of G(η,T ) gives G ′(η,T ) = 2a(T − T ∗)η + 4g4η
3 = 0, showing that one,

trivial, solution is the disordered one with η = 0. At T > T ∗ only this disordered state will
be stable. When T < T ∗ the equilibrium state is instead an ordered one (see Fig. 2.17) with

η(T ) = ±
√
a(T ∗ − T )/(2g4). (2.21)

The order decreases continuously approaching the transition at T = T ∗, so the behaviour
is that of a second-order transition, with TC = T ∗ as we see in Figs. 2.13b and 2.15. It is
also clear that the critical exponent for the order parameter is in this case β = 1/2.

2.7.2 First-Order Phase Transitions

We can now consider what happens if the cubic contribution is non-vanishing (g3 �= 0) and
verify that this can produce quite a dramatic effect. The first derivative of the free energy in
Eq. 2.19 is

G ′(η,T ) = 2a(T − T ∗)η − 3g3η
2 + 4g4η

3 = 0. (2.22)

Excluding again the trivial η = 0, isotropic solution, giving G ′ = 0, Eq. 2.22 reduces, for
η �= 0, to the quadratic 2a(T − T ∗)− 3g3η+ 4g4η

2 = 0, which has a solution for an order
parameter

η±(T ) = 3g3

8g4

[
1±

√
1− 32ag4(T − T ∗)

9g2
3

]
, (2.23)
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Figure 2.18 A sketch of the free energy G vs order parameter η at four temperatures near a
first-order phase transition: T <TC , T = TC , TC < T < T †, T � TC , where TC is the
transition temperature (TC = TNI for a nematic-isotropic transition).

where a local minimum exists when argument of the square root is non-negative, i.e as long
as the temperature is lower than a temperature T † = T ∗+9g2

3/(32ag4). The order parameter
at the temperature T †, which is the limit of metastability of the ordered phase upon heating
(superheating temperature), is η(T †) = g3/g4. Above this temperature, the only stable solu-
tion is the disordered one, η = 0. Substituting η± in G(η,T ) and solving for G(η±,T ) = 0,
we see that we can have a double minimum in G with equal well depths (Fig. 2.18), cor-
responding to the coexistence of a disordered and of an ordered phase, characteristic of a
first-order phase transition, at the transition temperature TC :

TC = T ∗ +
g2

3

4ag4
. (2.24)

Replacing TC in Eq. 2.23 gives

ηC = g3

2g4
= 1

2
η(T †). (2.25)

The entropy of transition can be obtained differentiating the free energy with respect to T ,
giving �SC = (ag2

3)/(18g2
4). Thus, the transition has a latent heat, ag2

3TC/(18g2
4), as long

as g3 �= 0. Elimination of a,g3 and g4 in terms of TC,T ∗ and ηC using the formulas
just obtained, allows reformulating the temperature dependence of the order parameter in
Eq. 2.23 as

η(T ) = 3

4
ηC

[
1+

(
1− 8(T − T ∗)

9(TC − T ∗)
) 1

2
]

. (2.26)

https://doi.org/10.1017/9781108539630.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.003


2.7 Landau Theory 83

Figure 2.19 The free energy density G for the liquid crystal MBBA plotted as a function of
the Landau order parameter η at a temperature of 55◦(A), 46.1◦(B), 45.9◦(C) and 45◦C (D).
Data from Poggi et al. [1976].

We see that Landau theory predicts a (pseudo) critical exponent for the order parameter
β = 1

2 . Clearly, ηC will tend to 0 if (g3/g4) does the same and in this case TC = T ∗ sug-
gesting that T ∗ is the transition temperature of a normally virtual second-order transition.

It is apparent that the symmetry of the phases involved has a profound effect on the type
of transition, as we have already alluded in various points before. We can summarize them
recalling some general considerations put forward by Anderson [1981], who suggested a
classification in three typologies:

(i) When the two phases have the same symmetry (e.g. the liquid-vapour transition),
the transition may be first order. However, a switch from first to second order can
occur at an isolated critical point, a Landau point, if the cubic term, g3, in the free
energy expansion depends on some external variable which can be used to vary it and
bring it to 0. For the liquid-gas, the role of this external field can be played by the
pressure. When the pressure reachesPC , the order parameter, i.e. the density difference
between the two fluids, ρL−ρG, vanishes, and the first-order character of the transition
disappears.

(ii) When the two phases have different symmetry, but the symmetry group of the more
ordered phase, G1, is a subgroup of that of the other more symmetric phase, G0. In
this case, the symmetry is lowered at the transition, and we talk of broken symmetry.
The transition may be first or second order depending on details, but there can never
be a disappearance of the transition line, since symmetry cannot change continuously,
according to what Anderson [1981] has called the First Theorem of Condensed Matter
Physics.

(iii) If the symmetry of the two phases involved in the transition is intrinsically different,
e.g. an ordinary liquid and a crystal, the cubic term g3 will always be different from 0
and the transition will accordingly be first order. For instance, we do not have a critical
point on the liquid-solid crystal transition line (see, e.g., Fig. 2.2) [Landau and Lifshitz,
1980].

For liquid crystals the most common transition is that between a nematic with a uniform
order parameter η and an isotropic phase occurring at the transition temperature TNI = TC .

https://doi.org/10.1017/9781108539630.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.003


84 Phase Transitions

The properties of a uniform nematic are unchanged by rotation around the director, so
the symmetry of the phase is uniaxial or cylindrical (D∞h), i.e. that of a subgroup of
the special orthogonal group, SO(3), of rotations in space corresponding to the isotropic
phase, like in case (ii) just mentioned. The NI transition is first order, even though a weak
one, i.e. with a small latent heat. T ∗ is slightly lower than TC , suggesting that the virtual
second-order transition is not observed on cooling down from the isotropic phase because
of the preliminary occurrence of the first-order one. At T ∗ the order parameter would be
η∗ = η(T ∗) = (3g3)/(4g4) = 3ηC/2. We do not expect a critical point on the NI transition
line because of the difference between the spherical symmetry of the isotropic and the
uniaxial symmetry of the nematic, already mentioned in Section 1.2. However, a critical
point may be recovered, at least in principle, if a liquid crystal with positive dielectric (or
diamagnetic) anisotropy is subjected to an external uniaxial electric (or magnetic) field,
so that both the nematic and the para-nematic phases share the same uniaxial symmetry
[Nicastro and Keyes, 1984; Hornreich, 1985; Vause, 1986]. In practice the fields required
appear to be extremely high and systems where the critical point can be determined have
not been found to date.

The application of a magnetic or electric field F [Lelidis and Durand, 1993, 1994]
induces in any case some order η above TC and contributes a term−αηF to the free energy,
that becomes

G(η,T ) = a(T − T ∗)η2 − g3η
3 + g4η

4 − αηF . (2.27)

Minimization with respect to η gives 2a(T − T ∗)η − 3g3η
2 + 4g4η

3 − αF = 0. Since we
are above TC and η is very small we can neglect the term from η2, finding the pretransitional
order parameter

η = αF

2a(T − T ∗) . (2.28)

The pretransitional susceptivity, χ = αη/F = α2/[2a(T − T ∗)], should increase with
critical exponent γ = 1 on approaching the transition from above. In Fig. 2.19 we show
the free energy versus order parameter curve calculated at four different temperatures with
the parameters experimentally determined by Poggi et al. [1976] for the nematic MBBA,
i.e. a = 0.045 J cm−3K−1, g3 = 0.197 J cm−3 and g4 = 0.307 J cm−3. We show the free
energy for a temperature in the isotropic phase (A), where η = 0 is the only stable solution,
a temperature just above and just below the nematic-isotropic transition of 46.0◦C (B and
C) and for a temperature inside the nematic phase (D). In this case, the only stable solution
is the ordered one. Note that only the minima of G(η,T ) represent equilibrium points, while
the probability of observing a fluctuation corresponding to a state with order parameter η
at temperature T can be written [Landau and Lifshitz, 1980] as

P (η,T ) ∝ exp [−G/(kBT )]. (2.29)

As we shall see in Sections 10.2 and 12.4, computer simulations can provide histograms of
the order parameters observed at a certain T , i.e. essentially of P (η,T ) and thus establish a
link with Landau theory.

https://doi.org/10.1017/9781108539630.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.003


2.8 Lattice Models 85

2.7.3 Tricritical Behaviour

Judging just from an algebraic point of view it is clear that other transitional behaviours
could become available for different combinations of gn coefficients in the Landau expan-
sion, in particular when the non-negligible fifth, g5, or sixth, g6, order term appear in the
free energy expansion Eq. 2.19. We have seen before that the absence of the cubic term
leads to a second-order transition when the expansion of G is truncated to η4. However, the
inclusion of higher terms in the expansion can lead to obtaining a first-order transition even
when the cubic term, or more generally, the odd terms are 0 by symmetry. In particular, the
case g3 = 0,g4 < 0,g5 = 0,g6 > 0 of the expansion truncated at the sixth order,

G(η,T ) = a(T − T ∗)η2 + g4η
4 + g6η

6, (2.30)

leads to a change from second order to first order when g4 = 0, and to a tricritical point
(TCP), where the second order becomes a first-order one, when g4 < 0 [Gramsbergen
et al., 1986a; Chaikin and Lubensky, 1995]. In this last case the prediction is of an order
parameter exponent β = 1

4 and of specific heat exponents below and above the transition
α = 0, α′ = 0.5. Thus, experimental determination of the exponents could shed some light
on the type of transition [Mukherjee and Saha, 1997]. Unfortunately, a consensus does not
seem to exist as yet on these experimental values and a variety of exponents have been found
[Gramsbergen et al., 1986a]. From our point of view one disappointing aspect of this type
of treatment is the lack of molecular interpretation for the coefficients a, g3, g4,…. We shall
see in Chapter 7 that this interpretation can be, in some instances, obtained by a comparison
with molecular field theories.

2.8 Lattice Models

Much of our knowledge on the fundamentals of phase transitions is obtained from some
remarkably simple and yet very rich models, such as the Ising, Heisenberg and XY models
[Ma, 1985; Uzunov, 2010; Friedli and Velenik, 2017]. These were mainly developed for
phase transitions in magnetic systems, but we shall briefly summarize them here since
they are often used, also in the liquid crystal field, as prototypes of certain categories of
transitions and of their critical exponents.

It is in many ways amazing that simple lattice models can also be useful for investigating
the phase transitions of mesogens with the complex chemical structures seen in Chapter 1.
This is due to the fact that continuous and nearly continuous transitions are of general, fairly
universal, nature and can be classified into universality classes, each characterized by its
space dimensionality, nd , number of angular degrees of freedom, no, and critical exponents.
In turn, different systems can be expected to belong to the same universality class, and share
its critical exponents, if their particles position and orientation are respectively defined in
real spaces Rnd and O(no) with the same space and orientational dimensionality nd = 1,2,3
and no = 1,2,3, respectively. Here we briefly introduce some of the most studied models
and their critical exponents.
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2.8.1 Ising Model

In its simplest form the model consists of a set of interaction centres μi , (often called spins)
which can take the values ±1 for spin up or down on a regular lattice. The pair potential is
nearest neighbours, attractive, and the total energy, UN , for N spins is

UN = −1

2

∑
〈ij 〉
εijμiμj . (2.31)

The variable μ can take the values ±1 for spin up or down (so that the number of orien-
tational degrees of freedom for the spins is no = 1). The constant εij is different from 0
and equal to ε only for nearest neighbour pairs, indicated as 〈ij〉, and can be chosen to be
positive to describe ferromagnetic or negative to describe antiferromagnetic coupling. The
determination of the phase transition of the model is simple when the spins are on a one-
dimensional (nd = 1) lattice (the only case solved by Ising). In this case, there is no phase
transition. In two dimensions (2D), this nd = 2, no = 1 model was solved analytically in
landmark work by Onsager [1944]. The heat capacity for the square lattice has a logarithmic
divergence at the transition temperature kBTC/ε = 2(sinh−1 1)−1 ≈ 2.26918. The average
value of the variable μ represents the magnetization and thus the order parameter for the
system and is [Ma, 1985]

M = cosh2[2ε/(kBT )]

sinh4[2ε/(kBT )]

[
sinh2

(
2ε

kBT

)
− 1

]1/8

, (2.32)

and near the critical pointM ∝ (TC − T )1/8. In three dimensions (3D), or nd = 3,no = 1,
the Ising model has not been solved analytically, as indeed no 3D model has. However,
it has been the subject of an enormous number of approximate treatments and computer
simulations. The transition temperature for the simple 3D cubic lattice is kBTC/ε ≈ 4.5115
[Hasenbusch et al., 1999]. One reason for particular interest in the Ising model is that it can
be used to study fluids, and in particular the liquid-gas transition, as well as magnets. An
equivalent lattice gas model [Stanley, 1971] for a fluid in a volume V can be introduced
by dividing up the volume in N cells of volume V (of molecular dimension). A cell can be
occupied by one (and only one) molecule or it can be empty. The interaction between two
cells i and j is assumed to be

Uij =
⎧⎨⎩
∞, if i and j try to occupy the same cell
−ε, for i and j neighbouring occupied cells

0, otherwise.
(2.33)

A correspondence between lattice gas and Ising models can be established defining a cell
occupation variable oi = 1

2 (1 + μi) from a fictitious ‘spin’ μi . In each configuration one

has
∑N
i=1 oi = N . The mapping of properties from the lattice gas to the Ising model is well

described elsewhere (see, e.g., [Stanley, 1971]). Critical exponents for the 3D Ising model
are given in Table 2.3. Comparing these exponents with the experimental ones for various
transitions in Table 2.2, we can see the excellent agreement with those for the liquid-gas
transition approaching the critical point. The two transitions are then said to belong to the
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Table 2.3. Critical exponents for some classical lattice models from (a) [Stanley, 1971],
(b) [Uzunov, 2010], (c) [Lau and Dasgupta, 1989], (d) [Holm and Janke, 1993, 1997],
(e) [Campostrini et al., 2001], (f) [Stephenson, 1971] and (g) Landau theory exponents
for various combinations of the gi expansion coefficients [Gramsbergen et al., 1986a]

System α α′ β γ γ ′ ν Ref.

Ising 2D 0 0 1/8 7/4 7/4 1 (a,b)

Ising 3D 0.125 0.125 0.324 1.25 1.27 (f )

Heisenberg 2D 0.447 (a)

Heisenberg 3D −0.118 0.364 1.390 0.704 (c,d)

XY 3D −0.015 −0.02 0.348 1.318 1.32 0.671 (e)

Landau second order 1/2 (g)
(g3 = 0, g4 > 0,
g5 = 0, g6 = 0)

Landau first order 0 0 1/2 1 1 (g)
(g3 > 0, g4 > 0,
g5 = 0, g6 = 0)

Landau tricritical 1/2 1/2 1/4 1 1 (g)
(g3 = 0, g4 = 0,
g5 = 0, g6 < 0)

same universality class. The Ising model, with only two spin orientations allowed, is not
particularly suited to describe orientational transitions, like the nematic-isotropic in liquid
crystals, even if it can be applicable to some isotropic-isotropic ones (see Section 2.10)
[Lubensky and Stark, 1996]. In any case it is worth mentioning that the exact solution of the
2D version of the Ising model provides an invaluable way of testing some of the computer
simulation methodologies described in Chapters 8 and 10.

2.8.2 Potts Model

The Potts model [Straley, 1974; Wu, 1982; Binder, 1987] is a lattice system where the spins
can assume a set of q quantized and equally spaced orientations and interact directly only
with nearest neighbours. The lattice is typically assumed to be a 2D rectangular one, i.e. to
have nd = 2, but the model has been also generalized to other dimensions or other lattice
types. In 2D its total energy is

UN = −1

2

∑
〈ij 〉
εij cos(φi − φj ), (2.34)

with φj = 2πj/q and j = 1, . . . ,q, εij = ε for nearest neighbours 〈ij〉 and 0 otherwise.
The 2D model with ε > 0 has a first-order transition if q ≥ 5 [Peczak and Landau, 1989].
When q ≤ 4 a continuous transition is observed, as in the Ising model, to which it reduces
when q = 2. The model has been recently generalized to a ‘dynamic’ version where the
spins can hop from an occupied to a non-occupied lattice site. This Potts model has also
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been used for liquid crystal studies [Bailly-Reyre and Diep, 2015] and it is interesting as an
example of weak first-order phase transition when q = 5.

2.8.3 Heisenberg Model

The classical version of the 3D Heisenberg model consists again of a regular lattice where
each site is described by a unit vector ui (spin) that can assume continuously varying
orientations in space, with say polar angles (αi,βi) and with nearest neighbour interaction
εij . The energy of the system of spins is

UN = −1

2

∑
〈ij 〉
εijP1(cosβij ), (2.35)

where βij is the relative orientation between spins i and j , P1(cosβij ) = ui ·uj is a first-
rank Legendre polynomial (see Eqs. A.48) and the constant εij = ε can be chosen to be
positive to give a preference to parallel alignment of the spins, i.e. to describe ferromagnetic
behaviour, or negative to describe antiferromagnetic coupling. The transition temperature
has been estimated from computer simulations [Chen et al., 1993; Holm and Janke, 1993] as
kBTC/ε ≈ 1.4430 for the simple cubic lattice, and there is a conjecture [Brown and Ciftan,
1996] that it might be kBTC/ε = 1/ ln 2. The Heisenberg universality class corresponds to
the critical behaviour of isotropic magnets, for instance the Curie transition in ferromagnets
such as Fe, Ni and EuO [Campostrini et al., 2002], as we can see comparing the critical
exponents in Table 2.3.

2.8.4 XY Model

In the XY or plane rotator model each site is characterized by a vector (or ‘spin’) lying in
a plane (so the number of components of the vector is no = 2) and interacting to yield

UN = −1

2

∑
〈ij 〉
εij cosφij, (2.36)

where φij is the angle between the spins at sites i and j , so that the system has a continuous
symmetry. For dimensions nd ≤ 2 the model should strictly have no true transition, accord-
ing to Mermin and Wegner’s theorem [Mermin and Wagner, 1966; Hohenberg, 1967], that
states that systems with continuous symmetries and sufficiently short-range interactions
cannot spontaneously order, breaking this symmetry, at some finite temperature, if nd ≤ 2.
However, Kosterlitz and Thouless [1973] (KT) have shown that the spins can give stable
pairs of structures (vortices) that allow a sort of fairly long-range correlation in the system
with power law decay below a transition temperature and that unbind with correlations
rapidly decaying above. In the LC field, the smectic A-smectic C transition falls into the
XY-universality class: its order parameter can be given as a two-component vector

(
dx,dy

)
,
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Figure 2.20 (a) The 3D LL cubic lattice model. The particles sitting at the lattice sites
have direction ui and interact with their nearest neighbours uj with the potential Uij /ε in
Eq. 2.37 shown in (b) as a function of the relative orientation angle βij .

projection of the director onto the smectic layer plane. Disclinations, i.e. discontinuous
changes of the direction of

(
nx,ny

)
, correspond here to the defects of the KT model. Quasi

2D, freely suspended smectic films with thickness from a few nanometres to microns and
their transitions have been studied and discussed in terms of their compliance with XY
behaviour [Young et al., 1978; Bahr, 1994; de Jeu et al., 2003].

For a 3D cubic lattice (3D XY, nd = 3, no = 2) Monte Carlo simulations [Gottlob and
Hasenbusch, 1993] indicate that the model has a transition at kBTC/ε = 2.20167. The
heat capacity exponent is α = −0.002. The model has been used to explain the so-called
λ transition from normal to superfluid helium but also in classifying certain smectic
transitions. The 3D XY model has been used for discussing various LC transitions (see
Section 2.12.1) as, ideally, the nematic-smectic A transition should belong to the same
universality class [Garland and Nounesis, 1994].

2.8.5 Lebwohl–Lasher Model

A natural generalization of the Heisenberg model to systems, like nematics, where the
constituent particles are characterized by a molecular direction, rather than by a polar vector,
is the Lebwohl and Lasher [1972] (LL) lattice model, where molecules (or small tight
clusters of molecules) are represented by centres of interaction (‘spins’) placed at the sites
of a simple cubic lattice and interacting with a nearest neighbour second-rank pair potential.
The Hamiltonian is

UN = −1

2

∑
i,j

εijP2(cosβij ) ≡ −ε
2

∑
〈ij 〉

(
3

2
(ui · uj )2 − 1

2

)
≡ −ε

2

∑
〈ij 〉
Uij, (2.37)
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where εij is a positive constant ε, for neighbouring sites i and j , indicated with 〈ij〉, and 0
otherwise. βij is the relative orientation between the i and j spins, i.e. cosβij = ui ·uj (see
Fig. 2.20). No analytic solution exists for the orientational phase transition of the model,
but we shall see that many analogies exists with the nematic-isotropic phase transition and
that, more generally, the model is an extremely useful one in that it captures the essential
orientational properties of nematics. In particular, the model has a weak first-order transition
from an ordered state with 〈P2〉 > 0 to a disordered, isotropic one at kBTNI /ε ≈ 1.1224.
The temperature dependence of the order and its value at the transition are also similar to
experiment for many real nematics. This system has been studied by a number of authors
using a great variety of theoretical techniques in particular, computer simulations [Fabbri
and Zannoni, 1986; Zhang et al., 1992; Shekhar et al., 2012], as we shall see in detail later
in Chapter 10. A discrete version of the LL model, analogous to the Potts model but with
a P2 interaction, like in Eq. 2.37, was studied by Lasher [1972]. Even for a rather large set
of allowed orientations (twelve) for the spins, the model presents marked differences with
the continuous LL version, with a much too strong order parameter at the order-disorder
transition.

After this general discussion on phase transitions, their classifications and main features,
and a brief introduction to the foremost classical lattice models, we now turn to examining
the main liquid crystal transitions.

2.9 The Nematic-Isotropic Transition

2.9.1 Main Features

The nematic-isotropic transition is arguably the most important of the transitions presented
by liquid crystalline materials. Upon heating it takes place at the point where liquid crystals
lose their orientational order and become ordinary isotropic fluids. In Table 2.1 we have
reported the transition entropies for some popular nematics both for the transition from
crystal to nematic and from nematic to isotropic. On the basis of the classification scheme
that we have seen before, the nematic-isotropic transition is definitely first order, since
it has a non-zero latent heat. However, its transition entropy is very low compared, for
example, to the ordinary entropies of melting (see Table 2.1) and some characters of a
second-order transition are present. In particular, important pretransitional effects appear
in the isotropic phase as the nematic-isotropic transition is approached [Stinson and Litster,
1970]. As an example, the experimental heat capacity versus temperature curve for MBBA
is shown in Fig. 2.21 [Anisimov, 1987]. The small variation in entropy suggests that the
change in orientational order and the rather dramatic disappearance of anisotropy on going
from liquid crystal to liquid is not associated with a big structural change [Luckhurst and
Zannoni, 1977]. We shall see in Chapter 12 that this is confirmed by detailed atomistic
simulations. The volume change at the nematic-isotropic transition is also much smaller
than that at the crystal to nematic transition, as already mentioned in Section 2.3 [Würflinger
and Sandmann, 2001], hinting that the molecular organization of a liquid crystal is much
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Figure 2.21 The temperature dependence of the heat capacity CP near the nematic-isotropic
transition for MBBA [Anisimov, 1987].

more similar to its liquid than to its solid phase. Note that, even if the entropy change
is very small, the fact that the volume change is also small accounts (see Eq. 2.11) for
the relatively large slope of the nematic-isotropic transition line (see Figs. 2.6 and 2.7).
The pressure normally has a stabilizing effect on the ordered phase that remains stable at
higher temperatures. Indeed, there are instances of materials that do not present a nematic
phase at ordinary atmospheric conditions, while they do have one under a sufficiently
high pressure.

2.9.2 The Effect of Molecular Structure

It is reasonable to assume that in thermotropic systems an increase in the nematic-isotropic
transition temperature indicates a system more resilient to disordering (thermally robust),
so that we can take a higher transition temperature as an indication of a higher stabil-
ity of the nematic phase. A classic demonstration is the so called odd-even effect, which
corresponds to a large alternation in properties and in mesophase transition temperatures,
in particular for homologous series containing n methylene, CH2, units as n varies from
even to odd. Examples of this effect have been known in particular from the chemical
synthesis work of Gray et al. [1973] and Gray [1979] and in Fig. 2.22 we show one
such case for the ω-phenyl-n-alkyl 4-p-cyano benzylidene amino cinnamates series. Even
though the lowest NI transitions are monotropic ones, observed only upon undercooling, the
changes in clearing temperatures upon heating are impressive for such small, and apparently
innocuous, chemical changes in the series. The large change in clearing temperature has
been explained qualitatively considering the most stretched conformation of each molecule
and observing that the terminal phenyl is in line with the long molecular axis only for the
even terms (Fig. 2.22). While this has certainly an element of truth, it is clear that there are

https://doi.org/10.1017/9781108539630.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.003


92 Phase Transitions

(a) (b)

Number of CH2 in the w-phenyl-n-alkyl group

Figure 2.22 (a) The odd-even alternation of the NI transition temperature (•) in the
ω-phenyl-n-alkyl 4-p-cyano benzylidene amino cinnamates series. (N) indicates a mono-
tropic nematic transition. Asterisks (∗∗∗) indicate a transition to crystal (K), while the lines
are just a guide for the eye [Gray and Harrison, 1971]. (b) The chemical structure of three
homologues (n = 0,1,2), showing the torsional angles φ1 and φ2 and the odd-even shape
change in the fully stretched conformation. The thick grey lines through atoms 1 and 2
indicate the chosen reference molecular axes u [Berardi et al., 2004a].

a large number of conformations for each of these molecules and that the fully stretched
one is unlikely to be the only (or perhaps even the most) populated one anyway, leaving the
argument on shaky ground. We shall see later, in Section 12.3, how atomistic simulations
[Berardi et al., 2004a] can clarify this issue.

2.10 Blue Phases

Blue phases have been well studied theoretically [Lubensky and Stark, 1996] by scan-
ning calorimetric techniques, in particular by Thoen [1988] and Crooker [2001]. Note that
the isotropic phase and BPIII have the same isotropic symmetry and that, according to
the discussion in Section 2.7, when varying the chirality χ a liquid-gas-like critical point
Pχ terminating a line of coexistence can then be expected in the temperature-chirality
phase diagram sketched in Fig. 2.23a [Lubensky and Stark, 1996]. Such a critical point
has been experimentally found [Garland, 2001]. In Fig. 2.23 a certain chirality is chosen,
in practice by selecting a suitable compound: cholesteryl nonanoate and the sequences of
BP phases observed by Thoen [1988] is reported. The strongest transition is by far the
isotropic to BPIII, with a latent heat more than one order of magnitude larger than the
other two.
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(a) (b)

Figure 2.23 (a) Theoretically proposed qualitative BP phase diagram as chirality increases
[Lubensky and Stark, 1996] up to critical point Pχ . (b) Adiabatic calorimetry of cholesteryl
nonanoate, showing the transitions between the cholesteric, BPI, BPII, BPIII and isotropic
phases. The BP latent heats (in J/mol) are: 18 (Cholesteric-BPI); 5.8 (BPI-BPII); 1.9 (BPII-
BPIII); 170 (BPIII-Iso), much weaker than those typical of nematic-isotropic transitions
[Thoen, 1988; Crooker, 2001].

Figure 2.24 The phase diagram for the discotic HHTT obtained using wide angle X-ray
diffraction (WAXD). The sequence crystal, hexagonal columnar, isotropic: K → Dd

h → I

on heating and I → Dd
h → Dh

h → K transition sequences on cooling isotropic (I), columnar

disordered hexagonal (Dd
h), helicoidal (Dh

h) and crystalline (K) are shown. Solid and broken
lines refer to the phase sequences observed during heating and cooling scans, respectively
[Maeda et al., 2003].

2.11 Columnar Liquid Crystals

The number of experimental phase diagrams available for discotics systems is even smaller
than that of LCs formed by rod-like molecules seen until now. In Fig. 2.24 we see one of
the few examples available for a rather large pressure range, that of the columnar phases
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of HHTT, introduced in Section 1.10 and whose charge transport properties have been
shown in Fig. 1.44. The system exhibits two triple points: one at 40 MPa and 77◦C for the
K−Dh

h−Dd
h coexistence [Maeda et al., 2003] and the other, extrapolated at 285 MPa, 118◦C

for the K− Dd
h − I phases [Maeda et al., 2001]. Rather large differences are also shown in

Fig. 2.24 between heating and cooling thermal scans.

2.12 Smectic Transitions

Given the variety of smectic liquid crystals, it is nearly impossible to examine all the dif-
ferent combinations of transitions they present. Thus, we shall concentrate on what are
probably the most important and well studied to date: the smectic A-nematic and the smectic
A-smectic C.

2.12.1 Smectic A-Nematic Transitions

In the variety of liquid crystal transitions taking place in materials exhibiting smectic phases
some are foreseen to be possibly of second order. In particular, for materials that have a
nematic and smectic transition, the smectic-nematic transition is predicted to change char-
acter from first to second order as the width of the nematic range increases, e.g. as signalled
by the decrease in the ratio TAN/TNI [McMillan, 1971, 1972]. McMillan theory, discussed
later in Chapter 7 assumes that the change in behaviour can be driven by systematically
changing some molecular feature, e.g. in a series of homologous compounds like the nCBs,
by a change in the chain length.

At a macroscopic level, Landau theory can be applied to the Sm-N transition, expanding
the free energy around the nematic at the smectic transition temperature. A generalization
needed with respect to Section 2.7 is that now two order parameters need to be consid-
ered, since a smectic is a layered system, endowed with positional, as well as orienta-
tional, order. As for the orientational order, we could use the same parameter η previously
used for the nematic considering the deviation of the order from the value at the transition
δη ≡ η− ηNS . For the positional parameter order we can use an empirical parameter τ that
is 0 in the nematic phase and different from 0 in a periodic, structured phase. If we refer for
simplicity to a smectic phase formed by virus particles, where the layers are directly visible,
like in Fig. 1.58d we could consider as positional order parameter

τ = 〈cos(2πz/�z)〉 , (2.38)

where z is the position of the particles and �z the spacing along the layer normal (see Section
3.2). Clearly, τ is 0 for uniform, nematic or isotropic arrangements of the particles and can
be normalized to 1 for a perfectly periodic structure. The free energy expanded in terms of
the two order parameters can be written as [Barois, 1999; Oswald and Pieranski, 2006]

G(τ,η,T ) = a(T − T ∗)τ 2 + g40τ
4 − g21τ

2δη + g02δη
2 + · · · . (2.39)
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Figure 2.25 The refractive index anisotropy �n (at a wavelength λ = 632.8 nm) of
di-n-hexyl and di-n-octyl azoxybenzene plotted as a function of temperature near their
SA-nematic transition indicating a continuous second order transition for n = 6 and a
discontinuous first-order one for n = 8 [de Jeu, 1973].

The first and second subscripts in the expansion coefficients gmn refer to the power of the
positional and orientational parameters, respectively. For g21 > 0 and g02 > 0, the energy
has a minimum in δη for δη = g21τ

2/(2g40). Substituting, this gives

G(τ,T ) = 1

2
a(T − T ∗) τ 2 + 1

4
bτ 4 + · · · , (2.40)

where b = g40 − g2
21/g20. The transition can be of first order if b becomes negative and

this could happen if δη is large, as we could expect if the nematic range is small. This is
to a good extent verified experimentally [Thoen, 1995]. The simplified description we have
just seen gives only an idea of the Landau theory applications to the variety of liquid crystal
transitions. In this generalized approach, after identification of a suitable order parameter
(scalar, vector, tensor) the free energy is expanded in a generalized Taylor series in terms
of invariant combinations of the order parameters. A detailed treatment, particularly for
smectics, can be found in the classic book of de Gennes [1974] and a number of other
works (e.g. [Chu and McMillan, 1977; Kovshev et al., 1977; Gramsbergen et al., 1986a;
Tolédano and Tolédano, 1987; Pikin, 1991]).

From the microscopic theory standpoint, we shall see in Chapter 7 that the Mean Field
Theory developed by McMillan [1971, 1972] predicts a first-order transition for TAN/TNI
sufficiently close to 1 and a switch from first to second order for TAN/TNI < 0.87 at a
Landau tricritical point. The TCP is predicted for TAN/TNI = 0.87. Thus, small nematic
ranges would give a first-order transition and large nematic ranges a second-order one. This
variation has been studied experimentally in certain homologous series. For instance, de Jeu
[1973] has studied the series of di-n-alkyl azoxybenzenes (nAB). The change in behaviour is
very apparent looking at the temperature dependence of the birefringence for two members
of the series, as we do in Fig. 2.25. While the longer homologue shows a clear break at the
smectic-nematic, there is hardly anything showing for the hexyl compound. The calorimetry
data are given in Table 2.4. Thus, some liquid crystal transitions are experimentally found
to have essentially second-order character in the sense that the entropy jump is 0 within
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Table 2.4. Latent heat �H (kJ/mol) for the phase transitions in some
nCB and nAB (n-alkyl-4-azobenzene) mesogens: crystal-smectic A (KA),
smectic A- nematic (AN), nematic-isotropic (NI), smectic A-isotropic (AI)
(a) [Marynissen et al., 1983] and (b) [de Jeu, 1973]

Mesogen �HKA �HAN �HNI �HAI TAN/TNI Ref.

8CB 25.7 ≤ 0.0004 0.612 – 0.978 (a)
9CB 34.5 ≤ 0.005 1.20 – 0.994 (a)
10CB 36.0 – – 2.83 − (a)
11CB 43.2 – – 3.8 − (a)
6AB 11.7 0.02 0.57 – 0.887 (b)
7AB 12.6 0.16 1.1 – 0.952 (b)
8AB 19.4 2.30 2.30 – 0.993 (b)

experimental error. For pure nCB only two cases, 8CB and 9CB, can be used to test the
McMillan prediction and do not seem to quite verify it. A further test has been done on
mixtures on 9CB and 10CB and the results indicate a stronger first-order transition as
TAN/TNI gets closer to 1, i.e. for narrow nematic ranges [Thoen, 1995]. The type of smectic
A polymorphism also seems to affect the observed heat capacity anomaly. For NA and NAd-
type transitions in materials with moderately large nematic ranges, the critical heat capacity
contribution becomes very small (or even undetectable). However, quite large CP anomalies
are observed for NA1 and NA2 transitions to SA1 and SA2 phases for compounds with very
large nematic ranges [Thoen, 1995]. As another example, the transition entropies for the
cascade of phases of TBBA, given as �S/R, i.e. in dimensionless form, are:

Solid
5.661←→ SB

1.084←→ SC
≈0←→ SA

0.074←→ N
0.177←→ I.

We can see that the entropy change is quite different at the various transitions, e.g. the SC

to SA transition is second order. We report in Table 2.4 the heats of transition for various
cyano-biphenyls with smectic phases, measured by Marynissen et al. [1983].

In Fig. 2.26 we show a calorimetric scan for these four cyano-biphenyls. We see that
the behaviour of the heat capacity is not consistent with the simplified Ehrenfest scheme,
since rather than showing a jump, the heat capacity diverges as TAN is approached. The
heat capacity critical exponents can be determined by fitting the experimental CP data to
Eqs. 2.13, obtaining for 8CB (α = 0.31±0.03) and for 9CB (α = 0.50±0.05) [Marynissen
et al., 1983]. The McMillan [1971] criterion applied to 8CB (TAN/TNI = 0.978) and 9CB
(TAN/TNI = 0.994) would predict these transitions to be first order, in view of the short
nematic range, but the transitions are second order. The N−SA transition in 9CB seems
actually very close to a tricritical point, where the transition switches from second order to
first order, since the expectations at this point are of α = α′ = 0.5 (see Table 2.3). According
to a conjecture of de Gennes [1972], the fact that the SA order parameter has two components
suggests that the NA transitions should be similar to that of superfluid helium and belong
to the 3D XY universality class, that has critical exponent values (α = α′ = −0.02), albeit
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Figure 2.26 Molar heat capacity CP for four cyano-biphenyls: 8CB, 9CB, 1OCB, 11CB

as a function of temperature. T (n)
KA

, T (n)
AN

, T (n)
NI

, T (n)
AI

indicate the transition temperatures
for the nth homologue. The vertical dashed lines indicate the first-order transitions and the
separation between the lines at a given transition indicates the width of a two-phase region
[Marynissen et al., 1983].

with an inverted CP amplitude. The asymmetry of the heat capacity peak appears to be
fairly consistent with this inverted XY behaviour at least for 8CB. In particular, CP (T )
decays on the hot side of the transition to a value higher than that on the cold side.
However, it now seems from a number of experimental observations (see also [Garland
et al., 1983]) that this transition exhibits a non-universal critical behaviour and that it does
not follow the 3D XY model. It is expected that XY behaviour will be observed when
the McMillan ratio TAN/TNI < 0.94 [Marynissen et al., 1983]. In practice the situation
seems even more complicated because of the presence of various types of smectic phases, as
discussed in Chapter 1. For instance, crossover from 3D XY to tricritical behaviour has been
reported [Nounesis et al., 1991] for N–SA1 mixtures of octyloxyphenyl-nitrobenzoyloxy
benzoate (DB8ONO2) and decyloxyphenyl-nitrobenzoyloxy benzoate [Nounesis et al.,
1991]. The transition in dimer-like smectics SA2 to nematic has been investigated by Wen
et al. [1991]. Choosing 4′-n-heptyloxy-carbonylphenyl-4′-(4′′-cyano-benzoyloxy) benzoate
(7APCBB),

Solid
121.50◦C−→ SC2

141.61◦C←→ SA2

144.41◦C−→ N
209.41◦C−→ I,

a material with a wide nematic range and thus a rather small McMillan ratio, 0.86, so as
to avoid as far as possible the possibility of first-order transition or tricritical behaviour
they found a second-order transition well characterized in terms of 3D XY exponents
(α = −0.07) and non-inverted amplitude ratio. A brief summary of exponents for various
LC transitions is given in Table 2.5.
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Table 2.5. A summary of experimental results for various liquid crystal phase
transitions. Abbreviations: 1st, first order; 2nd, second order; CP, critical point;
TCP, tricritical point. BP is any of the three Blue Phases (adapted from
[Garland, 2001], where more details can be found)

Transition Experiment Comments and additional Refs.

N–I 1st, pretrans. [Lubensky and Priest, 1974]
BPIII–I 1st→ CP [Lubensky and Stark, 1996]
BP–BP 1st See Fig. 2.23b, [Thoen, 1988]
N*–BP 1st See Fig. 2.23b, [Thoen, 1988]
SA–I 1st Weak pretransition
N–SAm 2nd→ TCP→ 1st Monolayer Sm from non-polar mesogens
N–SAd 2nd→ TCP→ 1st See Fig. 1.28
N–SA1 XY→ TCP Monolayer Sm from polar mesogens
N–SA2 1st and 2nd seen
N–SC 1st [Swift, 1976]
SA1 –SA2 Ising-like
SA1 –SÃ 1st Unusual Cp wings
SÃ–SA2 Broad 1st coexistence
SAd –SA2 1st→ CP (unusual)
SAd –SA1 1st→ N(r) region Re-entrant
SA–SBH Unusual 2nd/weak 1st
SA–SBK 1st Weak pretransition Cp wings

2.13 Liquid Crystal Polymers

The thermal behaviour of liquid crystal polymers (LCPs) is to some extent similar to that
of low-molar-mass liquid crystals, but with the important difference that, like for most
polymers, a completely crystalline polymer is very hard, if at all possible, to obtain, and on
cooling down from the isotropic melt a glass transition may occur. The LCP materials that
can show a crystalline phase are principally the main-chain ones and, in this case, the poly-
mer above the melting and before the isotropic transition behaves similarly to low molecular
weight liquid crystals, including flow, even though with a much higher viscosity. A different
situation is observed for non-crystallizable polymers, most polymers with mesogenic side
group. In this case, the LC state is limited below by the glass transition temperature Tg ,
shown in the calorimetry by the typical step, rather than a peak (see Fig. 2.27). The glass
transition is not a true thermodynamic one as the ones described in previous sections, but
rather corresponds to a situation where the increase of viscosity when cooling down a melt
is so high that a number of degrees of freedom of the molecules are effectively frozen in, not
allowing the system to explore all the positions, orientations and conformations eventually
leading to a true crystalline state. The value of Tg then needs to be defined according to
an experimental protocol, and in particular specifying a cooling rate (e.g. in Fig. 2.27 it is
10◦C/min).
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Figure 2.27 DSC curves, showing the dependence of CP on temperature for two liquid
crystalline side-chain polymers with a polyacrylate backbone (structure on top) and n = 2
and n = 6. The phases observed are: isotropic melt (I), nematic (N), smectic (Sm) and glassy
liquid crystal [Portugall et al., 1982; Wassmer et al., 1985].

2.14 Lyotropics

The situation regarding the transitions from one molecular organization to another is even
more complicated in the case of mixtures, instead of the pure materials we have treated until
now. In particular, in the lyotropic systems obtained from amphiphilic molecules in a sol-
vent, that we have qualitatively described in Section 1.11, phase changes are not only driven
by temperature, but are also brought about by changing the composition, e.g. the amount
of solvent with respect to the amphiphiles (see, e.g., [Tiddy, 1980]). Given these additional
complications with respect to one-component thermotropics, it is not surprising that many
details on the transitions involved, like the critical exponents or the type of transition, are
normally not available. This difficulty is even more pronounced for computer simulation
studies aimed at investigating the full phase diagrams of lyotropic systems, in view of the
huge parameter space to be considered when changes in chemical compositions have to be
taken into account. We, anyway, report a few examples from the better investigated systems.

2.14.1 Micellar Systems

A relatively simple example is that of a binary system, that of potassium stearate-water,
whose phase diagram in Fig. 2.28 [Charvolin and Hendrikx, 1985] shows the variety of
phases that can arise changing the concentration of the amphiphilic molecules and temper-
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Figure 2.28 Phase diagram of the potassium stearate (see Fig. 1.46)-water system. Isotropic
solutions are obtained above the lyotropic-isotropic temperatures TYI and gel-coagel waxy
non-equilibrium phases below TYG. A phase, Q, of spherical micelles, occurring at high
water content, gives rise to hexagonal and lamellar phases increasing the amphiphile
concentration in the intermediate temperature region. An intermediate phase (Iα) is also
observed. The hatched regions are biphasic [McBain and Sierichs, 1948; Charvolin and
Hendrikx, 1985].

Figure 2.29 Ternary phase behaviour of a silicon oil-water-trisiloxane surfactant M(D′En)M
with a polar head and polar chain. Here M is a microemulsion and Lα a lamellar phase
[Li et al., 1996] .

ature, allowing to switch the molecular organization between the various micellar systems
as summarized in Chapter 1.

Another example, this time of a three-component system is reported in Fig. 2.29. Note
that, although the typical amphiphile with a polar head and lipid chain is most common, the
opposite situation can also be found, as illustrated in this system, where the syloxane head
is essentially non-polar, while the chains are polar because of the oxygens.

https://doi.org/10.1017/9781108539630.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.003


2.14 Lyotropics 101

(a) (b)

Figure 2.30 (a) Phase diagram for the ternary system KL, decanol and D2O, with 6.24 wt%
of 1-decanol [Yu and Saupe, 1980] and (b) refractive indices showing the occurrence of a
biaxial nematic phase in this lyotropic system [Santoro et al., 2006].

2.14.2 Biaxial Micellar Phases

The first experimentally found of the much sought after biaxial nematic phases [Luckhurst
and Sluckin, 2015] and probably the one which has received the most convinced consensus
on its nature, is actually a lyotropic micellar one, discovered by Yu and Saupe [1980] in
an appropriate range of concentration and temperature of a ternary system of potassium
laurate (KL) with 1-decanol and D2O. The NB phase is bracketed between two uniaxial
phases that appear to be formed by cylindrical micelles, NC and by disc-like bilayer micelles
ND as seen in Fig. 2.30. The evidence for phase biaxiality was based in particular on
optical observations. Fig. 2.30 shows the change from two (parallel and perpendicular to
the director) to three refractive indices on moving from the uniaxial to biaxial phase.

2.14.3 Membrane Bilayers

As we have seen in Chapter 1, suspensions of phospholipids in water can give rise under suit-
able conditions to bilayer structures [Luzzati and Tardieu, 1974; Chapman, 1975; Mabrey-
Gaud, 1981]. In large multilamellar liposomes of phosphatidyl-cholines (lecithins), such as
dimyristoil-phosphatidyl choline (DMPC) and dipalmitoyl-phosphatidyl choline (DPPC,
also called DPL) the calorimetric scan typically shows two peaks, as we see in Fig. 2.31:
one, normally at lower temperature and weaker, called the pretransition and a sharper one
at higher temperature, called the main transition. Transition enthalpies and entropies for
some typical lipid systems are reported in Table 2.6. Qualitatively the interpretation is
that below the main transition the lipids are in a gel state, with the chains typically in the
stretched, all-trans, conformation. The chain positions themselves can have different orga-
nizations (Fig. 2.32). Thus, below the pretransition, the structure in DPPC has crystalline
tilted chains, Lβ ′ and in the intermediate phase between the pretransition and TM it becomes
hexagonal Pβ ′ . This intermediate phase is further complicated by the existence of bilayer
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Table 2.6. Transition temperature (◦C), enthalpy (kJ/mol) and entropy (R units) jump
for some liposomes.We give the ‘pretransitional’ (P) and ‘main’ (M) values (see text)
for DMPC (a) [Mabrey-Gaud, 1981] and for DPPC. For DPPC we also show data
for freshly prepared unilamellar vesicles (b) [Suurkuusk et al., 1976]

Lipid TP �HP �SP TM �HM �SM Ref.

DMPC 14.2 4.2 1.75 23.9 22.8 9.22 (a)
DPPC multilamellar 35.4 6.7 2.6 41.2 34.3 13.1 (b)
DPPC monolamellar 36.9 16.3 3.7 41.2 12.1 15.5 (b)

Figure 2.31 Calorimetric scan for DPPC multilamellar vesicles in a buffer at pH 7.4. The
Lβ ′ – Pβ ′ (pretransitional) and the Pβ ′ –L̇α (main) phase changes (see Fig. 1.50) are indicated
by the dashed lines [Losada-Perez et al., 2014] .

Figure 2.32 The DPPC-D2O phase diagram. L denotes a one-dimensional lamellar struc-
ture; P denotes a two-dimensional monoclinic lattice. In the α and β phases, the hydrocarbon
chains are liquid-like and solid-like, respectively. The prime indicates that the carbon chains
are tilted with respect to the lamellar plane. The broken lines indicate that the phase boundary
is uncertain [Ulmius et al., 1977; Jönsson et al., 1984].
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Water/cromolyn molecules(a) (b)

Figure 2.33 (a) Phase diagram for disodium cromoglycate (Cromolyn)-water showing the
various phases formed [Cox et al., 1971]. (b) A portion of the phase diagram for the nonionic
chromonic TP6EO2M when changing the amphiphile concentration [Boden et al., 1986].
The coexistence regions are hatched.

undulations (ripples) with wavelengths of about 200 Å. Above the main transition we have
chain melting through trans-gauche isomerization and the bilayer can be roughly assimi-
lated to a two-dimensional liquid crystal fluid phase called Lα . In real membranes we have
mixtures of various lipids as well as other components and the combination of transition
behaviour gives rise to a smooth continuous change [Martonosi, 1974].

2.14.4 Chromonics

As for ordinary lyotropics, various chromonic phases can be obtained by changing tem-
perature and concentration, even if the change in molecular organization is continuous,
rather than depending on some threshold molar fraction. Upon increasing the concentration
of amphiphilic chromonic, hexagonal phases are often formed, as we see for instance in
Fig. 2.33a for DSCG and in Fig. 2.33b for the non-ionic discotic 2,3,6,7,10,1 I-hexa-(1,4,7-
trioxa-octyI)-triphenylene (TP6EO2M), obtained functionalizing a discotic triphenylene
with hydrophilic groups on the periphery, dissolved in water [Boden et al., 1985, 1986;
Boden, 1990].

2.15 Phase Diagrams for Colloidal Suspensions

Although the equations of state for gases are very far from those of liquid crystals, at
least thermotropic ones, it is worth noting an important analogy with colloidal suspen-
sions, where the building blocks are particles from nano up to micron size that can form
isotropic and anisotropic suspensions, as we have seen in Section 1.14. Colloidal suspen-
sions have phase diagrams similar, in some sense, to atomic or molecular systems and

https://doi.org/10.1017/9781108539630.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.003


104 Phase Transitions

Figure 2.34 Schematic (Π,φ) theoretical diagram for a colloidal suspension that presents
gas, solid and liquid phases: G= gas, L= liquid, S= solid, F= fluid; Tc, critical point; Tp ,
triple point. The dashed lines represent two isotherms. The insets represent experimental
examples from an aqueous dispersion of γFe2O3 magnetic particles, surface coated with
tri-sodium citrate molecules (pH≈ 7) [Dubois et al., 2000].

phases equivalent to gas, liquid, fluid and solid can exist. In carrying on this very use-
ful analogy the osmotic pressure Π replaces the pressure P and the volume fraction of
particles φ is used instead of the density ρ employed for simple liquids. The diagram
(Π,φ) thus replaces the standard diagram (P,ρ), as we see in Fig. 2.34. The colloidal gas
phase corresponds to a solution of low volume fraction, with particles free to explore the
whole sample volume, the liquid corresponds to a dense phase with positionally disordered
particles in solution, while the crystal phase corresponds to a regularly organized solid
phase. Liquid-crystalline phases can be obtained for anisotropic colloidal suspensions, as
we have seen in Chapter 1, upon increasing the concentration of anisometric particles. Phase
coexistence is possible, and easily detected by direct observation through crossed polarizers,
as we have seen, for example, in Fig. 1.56. However, colloidal dispersions differ from
simple molecular systems in some aspects. First, as the osmotic pressure is more difficult to
measure than the pressure P , the (Π,φ) diagram is experimentally difficult to build directly
and not many such representations are available in literature. Second, and more funda-
mentally, colloidal particles are usually polydisperse, differently from atomic or molecular
systems, and present a certain spread in size around the average, a situation that has a
deep influence on the phase diagrams, complicating the comparison with corresponding low
molecular systems.

2.15.1 Carbon Nanotubes

The phase behaviour of single-wall carbon nanotubes (SWNTs) in acids is quite similar
to that of rod-like macromolecule dispersions, and in particular they show the so-called
Flory chimney [Zhang et al., 2006b], recalling a theory developed for suspension of
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Figure 2.35 Postulated phase diagram of SWNTs in superacids. In 102% sulphuric acid
(oleum), the biphasic region extends from a concentration of 100 ppm to 8%. These critical
concentrations are expected to vary with the strength of the acid used [Rai et al., 2006].

Figure 2.36 Phase diagram of CdSe nanorods suspensions showing isotropic, nematic and
biphasic (hatched) regions [Li et al., 2004].

rod-like molecules such a TMV [Flory, 1956] and applied to other systems, e.g. benzyl
alcohol solutions of the synthetic polypeptide poly(γ -benzyl-α, L-glutamate) or PBLG
[Horton et al., 1990]. Fig. 2.35 shows a hypothetical phase diagram of SWNTs in 102%
H2SO4 [Rai et al., 2006]. With increasing concentration, SWNT-superacid dispersions
transition from an isotropic solution, where individual SWNTs are randomly oriented, to
a biphasic system, where a birefringent ordered liquid phase is in equilibrium with the
isotropic phase. These biphasic dispersions of rods should be separable into isotropic and
ordered phases by application of external forces, such as ionic or centrifugal forces (or just
gravity) [Rai et al., 2006]. Raising the concentration increases the proportion of ordered
phase until the system becomes a fully liquid crystalline system. The critical concentrations
at which this occurs is extremely low (a few parts per million!), which is reasonable
considering the very high aspect ratio of the carbon nanotubes.
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2.15.2 Mineral Suspensions

The phase diagram of suspensions colloidal particles will depend on their shape anisotropy.
For CdSe nanorods with an aspect ratio (length/diameter) of about 15, the experimental
phase diagram is shown in Fig. 2.36 [Li et al., 2004]. We see that at around 12% volume
fraction the system enters a biphasic region, then becomes nematic, as shown by the pictures
in Fig. 1.57.

https://doi.org/10.1017/9781108539630.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.003


3

Order Parameters

If I am to know an object, though I need not know its external properties,
I must know all its internal properties.

L. Wittgenstein, Tractatus Logico-Philosophicus, 1922

… we can imagine liquid crystals as bodies in which the molecules, or
more precisely their centres of mass, are distributed completely randomly,
as in ordinary liquids. Anisotropy of the liquid crystal is caused by the
equal orientation of its molecules; for instance, if the molecules have an
elongated shape, then all of them can be arranged with their axes in one
direction.

L. D. Landau, Collected Papers of L. D. Landau, 1965

3.1 Single Particle Distributions

In Chapter 2 we discussed how to describe phase transitions from a macroscopic point of
view. We also saw how Landau’s theory of phase transitions relies on the introduction of at
least one phenomenological order parameter, η. Here we wish to tackle the problem of
giving a molecular level description of a liquid crystal phase and of its order parameters. This
is not so trivial, given not only the variety of liquid crystals that we have briefly described,
but also that of the constituent, mesogenic, particles ranging from more or less complex
molecules, as in thermotropic systems, to colloidal particles some 2–3 orders of magnitude
larger. For a truly bulk system, but even for a very thin film containing perhaps an order of
magnitude of 1012 molecules, the microscopic description we are looking for is necessarily
a statistical one [Balescu, 1975; Landau and Lifshitz, 1980]. This does not have to mean
that configurations (i.e. sets of individual positions, orientations and possibly other degrees
of freedom of all the molecules) are always not available. This is true for the bulk samples
mentioned earlier, but not for systems of a few thousand to perhaps a few million molecules
at equilibrium in certain thermodynamics conditions studied with computer simulations.
These techniques, e.g. the Monte Carlo (MC) and Molecular Dynamics (MD) methods,
that we will describe in some detail in Chapters 8 and 9, do actually generate molecular
configurations and the problem then becomes that of reducing to the essential the huge
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amount of information available, rather than in its inaccessibility. We can also think of
another example, when dealing with colloidal suspensions observed with some microscopy
technique, where again a large set of positions and orientations of the particles can be
extracted with some image analysis software. In general, we could adopt the definition
of Fano [1957], that the state of a system is represented by the information required to
calculate all the average properties of interest. To be more specific, let us consider a system
of N identical molecules in a given state of aggregation, or phase (cf. Chapter 1) at certain
thermodynamic conditions (temperature, pressure, …). Since we focus on liquid crystals
and they are formed by rather large molecules, as we have seen in Chapter 1, these can be
considered as classical objects, and their quantum mechanical nature will only determine
their physical properties (e.g. the bond lengths, angles, partial charges, etc.) and interactions.
For a collection of such molecules where a complete, atomistic level description is available,
we call a configuration the set of positions of all the Na , atoms for each molecule. The
complete information about a system of N such molecules at time, t , is represented by its
configuration X̃(t) = (r1(t), r2(t), . . . ,rNa×N (t)), i.e. by the set of positions r i(t) of all
the atoms of all the molecules. This can be a bit overdetailed, if we want to avoid ‘missing
the forest for the trees’ and in many generic (i.e. not chemically specific) models of liquid
crystals, a molecular, rather than atomistic, level description is adopted, with the molecules
assumed to be represented by classical, rigid particles with centre of mass at position r i and
orientation�i . This simplified description applies also when we consider colloidal particles,
where their inner structure is not relevant or unknown. The configuration of such a system
of N particles at time t is then represented by X̃(t) = (X1(t), X2(t), . . . ,XN (t)), i.e. by the
set of generalized coordinates Xi(t) of all the particles, with Xi(t) ≡ r i(t),�i(t) with r i

the coordinates of the centre of mass and �i ≡ �MiL ≡ �iL, the orientation of particle
i frame, Mi , with respect to a chosen laboratory frame L and specified by a sufficient set
of parameters (angles, or as we shall see later, quaternion components). In many cases, a
further assumption of effective cylindrical symmetry of the particles is made, which means
that �i = (αi,βi), with 0 ≤ αi ≤ 2π , 0 ≤ βi ≤ π as illustrated in Fig. 3.1a, is sufficient to
specify the molecular orientation. When a particle, while being still rigid, is non-uniaxial,
an additional angle, γi , 0 ≤ γi ≤ 2π , is needed to fully determine the molecular orientation
(Fig. 3.1b). Indeed, for any rigid particle the orientation can be given by three Euler angles
(α,β,γ ) [Rose, 1957].

It is worth pointing out that, even when retaining a coarse-grained, rather than atomistic,
level description, real molecules are typically non-rigid, for they can have intramolecular
rigid fragments that can move, e.g. flexible chains or rings that can rotate with respect to
each other [Maruani and Toro-Labbe, 1983; Zannoni, 1985] and internal degrees of free-
dom φi specifying the conformations will need to be specified. We shall have therefore to
expect that, beyond a certain level of sophistication, features like deviation from cylindrical
symmetry and flexibility will have to be taken into account [Zannoni, 1985] and we shall
discuss these complications in Sections 3.10–3.12. The enormous number of positional and
orientational coordinates specifying the various configurations can be used in calculating
average properties. Let us consider a single molecule property A depending on particle
position and orientation. The value observed for this property as obtained, for instance, by
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Figure 3.1 (a) The two angles α,β defining the orientation of a cylindrically symmetric
particle and (b) the three Euler angles α,β,γ [Rose, 1957] required for a generic rigid
particle. Here, to avoid confusion, we indicate laboratory frame axes with capital letters,
X,Y,Z and molecular frame with lower case x,y,z.

some spectroscopic technique, can be determined as an average over all the molecules in
the sample at a given time t , followed by an average over many independent samples (taken
at the same time, or over many times, or both):

〈A〉 =
〈〈
A (Xi(t))

〉
S

〉
t
, (3.1)

where the angular brackets indicate an average and the additional subscripts, if any, specify
some detail of the type of average. Here 〈. . .〉S is a sample average, taken over all the N
molecules in the sample at a certain time, and 〈. . .〉t is a time average over a sufficiently
large number Nt of snapshots of the system at different times:

〈A〉 = 1

N

〈
N∑
i=1

A
(
Xi(t)

)〉
t

= 1

Nt

Nt∑
j=1

[
1

N

N∑
i=1

A
(
Xi(tj )

)]
. (3.2)

The procedure has to be repeated when we want to calculate any other single molecule
average property, say 〈B〉, which is not very convenient. However, if we have a sufficiently
large number of molecular configurations available, we can also divide the total range of
the variable X into sufficiently small multi-dimensional intervals�XJ , J = 1, . . . ,M and
count the number of molecules that for all the available configurations fall in each such
bin, creating a histogram of the number of molecules n(XJ (t)) populating each bin, out
of the total of N . For instance, for rigid molecules we can count the number of molecules
n(rJ (t),�J (t)) that have a position-orientation belonging to one of the M bins we have
divided their full range into, at time t . In practice we could use a binning function, that we
can write as

�(X −XJ ) =
{

1, if X falls into the J th bin of width �XJ

0, otherwise.
(3.3)
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To avoid confusion, we use lower case subscripts to indicate molecules and capital letters
to label the bins. We can then write

〈A〉 ≈
M∑
J=1

1

N

〈
N∑
i=1

�
(
Xi −XJ

)〉
t

A(XJ ), (3.4a)

≈
M∑
J=1

〈
n
(
XJ (t)

)〉
t

N
A(XJ ), (3.4b)

=
M∑
J=1

P (XJ )�XJA(XJ ), (3.4c)

where we have introduced the probability density P (XJ ), with dimensions inverse to those
of X, for a molecule to be found at a certain generalized coordinate bin XJ . Taking the limit
of a series of bins of decreasing width, the binning function becomes a delta function (see
Appendix D) and we can obtain the classical statistical expression

〈A〉 ≡ 〈A(X)〉X =
∫

dXP (X)A(X). (3.5)

It is very useful to write P (X) using delta functions (Appendix D) as

P (X) = 〈
δ(X −X′)

〉
X′ . (3.6)

The formula can be easily verified using the definition of single particle average. Thus,

〈A(X)〉X =
〈∫

dX′ δ(X −X′) A(X′)
〉
X

=
∫

dX′A(X′)
〈
δ(X −X′)

〉
X
, (3.7a)

= 〈A(X′)〉X′ . (3.7b)

This is simply related to the probability of finding any one of the N molecules at coordi-
nate X, i.e. P (1)(X), that we need in order to calculate global, rather than single, molecule
properties that require considering all the molecules in the sample, e.g. the number density
P (1)(X) = NP (X). Note that at the moment we have not given any prescription to obtain
P (X) from the molecular interactions, arguably the main task of statistical mechanics (see
Chatpers 4 and 7) and of computer simulations, which will be discussed in Chapters 8
and 9. The multidimensional histogram obtained is averaged over a sufficiently large set
of sample configurations, e.g. recorded at a set of different times as in the MD technique
(Chapter 9) or, as we shall see in Chapter 8, generated with a suitable stochastic process, as
in the MC method. To be more specific, in the simple case of rigid particles with position r

and orientation � we have P (X) = P (r,�) and dX = drd� with dr = dxdydz and
d�, respectively, dα sinβdβ and dα sinβdβdγ for a rigid molecule of uniaxial or arbitrary
symmetry. Thus, the integration over positions gives the volume V of the sample:

∫
V

dr =∫
dxdydz = V and the integration over orientations gives the total angular measure, V�.

Thus,
∫
V�

d� = V�, where, in 3D, V� = 8π2 or just V� = 4π for cylindrical symme-
try where γ is not present (Fig. 3.1). In general, to simplify notation, we shall not write
explicitly the integration range unless needed, intending the integrals to be extended to all
relevant space.
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The probability density P (r,�) contains all the microscopic information needed to cal-
culate one-particle properties [Zannoni, 1979c]. In turn, the structure and ordering of the
system will be reflected by P (r,�). We are interested in studying this single-particle (or
singlet) distribution in various phases and in examining how it changes at the various phase
transitions. Before getting involved in details concerning the calculation of distribution
functions it is worth examining if we can make some general statements about them. The
first is that P (r,�) is non-negative and normalized, as:∫

VX

dXP (X) =
∫
V,V�

drd�P (r,�) = 1, (3.8)

since we must have our particle somewhere in space.
Let us now consider as a first example a uniform system, i.e. a system whose properties

do not change if we translate the sample or, equivalently, translate the origin of the coor-
dinate system. This could be the case of an ordinary isotropic liquid or of a nematic, but
not of a smectic or a crystal, where molecular positions are regularly arranged in one or
three dimensions. For such a uniform fluid the single particle probability density will be
independent of the position of molecules with respect to the laboratory frame and:

P (1)(r,�) = NP (r,�) = ρP (�), (3.9)

where the proportionality factor, ρ ≡ N/V , is the number density and P (�) is a purely ori-
entational distribution function normalized as

∫
V�

d�P (�) = 1. For an ordinary isotropic
fluid P (�) must be a constant, so that P (�) = 1/V�. In this case, if we limit ourselves
to one-particle properties, all that can change at the liquid-gas transition is just the density.
We can then take as order parameter the difference between the density of the liquid and
that of the gas at coexistence [Stanley, 1971], suitably normalized. We have already done
this, purely on macroscopic grounds, in Section 2.5 (see, in particular, Fig. 2.14), where
we have shown the order parameter versus temperature for a number of simple fluids. The
situation is, however, quite different in anisotropic systems, as we shall see in detail in the
next sections.

3.2 Positional Order

3.2.1 One-Dimensional Order: Smectics

We now start examining the description of the one-dimensional (1D) positional order
present in smectics. We can visualize how such a system looks, considering for simplicity
a smectic formed by nanorods (Fig. 3.2). To simplify the issue we only consider 1D posi-
tional order such as the molecular centres of mass ordering along the director d (d‖z say),
in a smectic A. When this ordering is perfect, as sketched in Fig. 3.3a, the centres of
mass lay exactly on regularly spaced parallel layers and the positional distribution P (z)
consists of a series of Dirac delta functions separated by the lattice spacing �z. If the
order is not complete the peaks of the distribution will become broader (Fig. 3.3b). In the
limit of no positional order (e.g. a nematic), the distribution becomes flat. In any case for
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Figure 3.2 Transmission electron microscopy (TEM) image of a smectic formed by self-
assembled CdSe/CdS nanorods on a polar liquid (dimethylacetamide). The inorganic
nanorods are 28.4 nm in length and 5.8 nm in diameter and have a capping layer of octadecyl
phosphinic acid [Diroll et al., 2015]. The arrow indicates the director d.

(a) (b)

Figure 3.3 A 1D periodic system with (a) complete and (b) incomplete positional order in
one dimension. On the bottom we have the probability density P (z) of finding the particle
centre at position z.

a smectic like system, such as the ones in Fig. 3.3, P (z) remains a periodic function of
position z.

P (z) = P (z+ k�z), k = ±1, ± 2, . . . . (3.10)

This implies that we can limit ourselves to considering P (z) with 0 ≤ z ≤ �z. More-
over, we can expand P (z), like any other periodic function, in Fourier series [Arfken and
Weber, 1995], i.e. write it as a suitable combination of sines and cosines or harmonics
(cf. Appendix E). If the distribution is an even one, i.e. P (z) = P (−z), it will suffice to
consider a basis set of similarly even functions: the cosines:

{
cos(2πnz/�z)

}
. We have

therefore

P (z) =
∞∑
n=0

pn cos(2πnz/�z) = p0 + p1 cos(2πz/�z)+ p2 cos(4πz/�z)+ · · · . (3.11)

The coefficient pm can be obtained multiplying both sides of Eq. 3.11 by the mth basis
function, cos(2πmz/�z), and integrating over z,
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∫ �z

0
dzP (z) cos

(
2πmz

�z

)
=

∞∑
n=0

pn

∫ �z

0
dz cos

(
2πnz

�z

)
cos

(
2πmz

�z

)
,

=
∞∑
n=0

pm�z

2
(δm,0δn,0 + δm,n), (3.12)

where we have used the orthogonality of the cosine functions (Eq. A.44). We find therefore
that the coefficients

pm = 2

�z(δm,0 + 1)

∫ �z

0
dzP (z) cos

(
2πmz

�z

)
= 2

�z(δm,0 + 1)

〈
cos

(
2πmz

�z

)〉
(3.13)

are positional averages of the basis functions and that the averages

τn =
〈
cos

(
2πnz

�z

)〉
(3.14)

represent our set of positional order parameters. They tend to 1 when the layer distribution
is perfectly regular (Fig. 3.3a), and thanks to the orthogonality of the basis (Eq. A.44), to 0
when instead the distribution of positions is random, so that P (z) is a constant. We see that
τ1 is just the positional order parameter τ that we introduced empirically when discussing
Landau theory for smectics in Section 2.12. The order, e.g. τ1 = 〈cos(2πz/�z)〉, normally
decreases with increasing temperature so that the observables connected to it will decrease
as well. We can in turn write P (z) as

P (z) = 1

�z
+ 2

�z
〈cos(2πz/�z)〉 cos(2πz/�z)+ · · · , (3.15a)

= 1

�z
+ 2

�z

∞∑
m=1

τm cos(2πmz/�z). (3.15b)

The result also follows from the delta function expansion in Eq. D.28 ,

P (z) = 〈δ(z− z′)〉z′ = 1

�z
+ 2

�z

∞∑
n=1

〈cos
(
n2π(z− z′)/�z

)〉z′, (3.16a)

= 1

�z
+ 2

�z

∞∑
n=1

〈
cos

(
n2πz′/�z

)〉
z′ cos (n2πz/�z) , (3.16b)

for −�z/2 ≤ z ≤ �z/2, using the standard trigonometric expression cos(θ − ψ) =
cos(θ ) cos(ψ)+ sin(θ ) sin(ψ) and averaging, since 〈sin(n2πz′/�z)〉 = 0. It might be worth
mentioning that the treatment we just discussed means that if long-range positional order
exists, it can be described in terms of order parameters without, however, proving the
existence of such an order. Indeed, Peierls [1936] has shown that the fluctuations of layers
positions in a 1D lattice diverge logarithmically with the linear size of the sample and
should destroy the possibility of having such long-range order when increasing size to the
asymptotic limit. However, in practice the effect should be noticeable only on huge sizes
of the order of 1 km [Kleman and Lavrentovich, 2003], while experiments on smectics
are typically for samples of 10−4–10−3 m and quasi-long-range order, if not strictly true,
long-range order is definitely observable.
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3.2.2 Two-Dimensional Order

Two-dimensional positional order can be found, e.g. in certain discotic phases, where we
have columns of mesogenic molecules which have no positional order inside the column,
while the column themselves are arranged on a hexagonal (Dd

h) or rectangular lattice (Dd
r )

(cf. Section 1.10). The concept of 2D positional order may also be useful to describe the
structural order of molecules adsorbed on a surface. In both cases we have to consider the
probability distribution of finding the particles at a certain position (x,y) of the laboratory
plane. Now we assume that the molecular organization we are considering is periodic on
average along x and y, with repeat distances �x , �y , respectively. Expanding in a product of
harmonics relative to the x- and y-direction we have

P (x,y) = 1

�x�y
+ 4

�x�y

∑
nx,ny

〈
cos

(
2πnxx

�x

)
cos

(
2πnyy

�y

)〉

× cos

(
2πnxx

�x

)
cos

(
2πnyy

�y

)
, (3.17)

with nx,ny > 0. The averages
〈
cos

(
2πnxx
�x

)
cos

( 2πnyy
�y

)〉
are in this case the order param-

eters. Arguments are available against the existence of true long-range positional order also
in 2D [Landau, 1965; Fisher, 1972], although a little less severe than those for 1D systems,
but again the problem does not forbid systems of realistic, observable size [Hoover et al.,
1974; Denham et al., 1980].

3.2.3 Three-Dimensional Order: Crystals

The treatment can be easily generalized to 3D positional order, as needed for crystals,
expanding P (x,y,z) in harmonics over x,y,z.

P (x,y,z) = 1

�x�y�z
+ 8

�x�y�z

×
∑

nx,ny,nz

〈
cos

(
2πnxx/�x

)
cos

(
2πnyy/�y

)
cos

(
2πnzz/�z

) 〉
× cos

(
2πnxx/�x

)
cos

(
2πnyy/�y

)
cos

(
2πnzz/�z

)
. (3.18)

3.3 Orientational Order for Uniaxial Molecules

We now turn to the description of long-range orientational order. It is a central issue for
liquid crystals, since this is the only kind of order common to all the various mesophases,
and the one allowing us to distinguish anisotropic from isotropic liquids. We start by
considering the simplest case of a molecule that can be considered of effective uniaxial
symmetry, be it a rod-like or disc-like shape, and that is embedded in a uniaxial phase. We
do not distinguish by now if the molecule is a solute or one of the mesogens. Similarly
to what we have done for the description of positional order, we start with the probability
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Figure 3.4 A histogram of P (α,χ ), χ ≡| cosβ | for a model liquid crystal as obtained by
MD simulation of the Lebwohl–Lasher lattice model at three dimensionless temperatures:
(a) T ∗ = 0.50, (b) 0.88 in the nematic and (c) T ∗ = 1.30 in the isotropic phase [Zannoni
and Guerra, 1981].

of finding the molecule at a certain orientation with respect to the axis of the mesophase,
i.e. the director. As we have already mentioned these single-particle polar angles give the
molecular orientation of the particle in question, i.e. P (�) ∝ P (α,β), if our molecules
have cylindrical symmetry. The detailed form of P (α,β) is of course unknown, but some
constraints imposed on it by symmetry can nevertheless be easily taken into account. If
we take the laboratory z-axis parallel to the director, and if the mesophase is uniaxial
around the director then rotating the sample about z should leave all observable properties
unchanged. This means that the probability for a molecule having an orientation (α,β)
should be the same whatever the angle α, i.e. P (α,β) ∝ P (β). For example, we show in
Fig. 3.4 a histogram of the full singlet orientational distribution obtained from a molecular
dynamics computer simulation of the Lebwohl–Lasher model (see Eq. 2.37) [Zannoni and
Guerra, 1981], discussed in Chapter 10. We see that the distributions in the ordered phase
strongly depend on the angle β but not on α corresponding to the macroscopic uniaxiality
around the director just stated. For such a system, we are thus justified in considering from
now on only the dependence on the angle β. Another experimental finding for nematics
and most smectics is that nothing changes on turning the aligned sample upside down.
Thus, we should have

P (β) = P (π − β). (3.19)

This is quite reasonable if we think of the molecules of interest as cylindrically symmetric
objects in which head and tail are not distinguishable (cf. Fig. 3.1). However, most mesogen
molecules are polar and, like for instance 5CB (see Fig. 1.10), have dipole moments. In
practice, the symmetry expressed by Eq. 3.19, that is verified experimentally in nematics,
means that the molecular arrangement is such as to have, on average, the same number of
molecules pointing up and down, so that no overall polarization (no ferroelectricity) results.
Note that no fundamental argument forbids uniaxial ferroelectric nematics and indeed these
have been predicted by theory and simulations [Biscarini et al., 1991; Berardi et al., 2001],
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Figure 3.5 The first two (a) odd and (b) even Legendre polynomials PL(x) vs x ≡ cosβ.

although experimental confirmation is only very recent [Chen et al., 2020]. Here we just
limit ourselves to the common case of non-polar nematics. It is convenient to normalize
P (β) so that ∫ π

0
dβ sinβP (β) =

∫ 1

−1
dx P (x) = 1, (3.20)

since there is the certainty of finding the molecule at some angle β. Note that the change of
variable from β to x = cosβ is particularly convenient, as it absorbs the volume element and
here we shall normally use P (x), which is flat for an isotropic system. In a real experiment
it would be extremely difficult to get the kind of complete information on the orienta-
tional distribution pictured in the histogram. A useful approach is, however, that of trying
to approximate P (x) in terms of a set of quantities that we can obtain from experiment.
Reasoning as we have done for the positional distribution, we can try to expand P (x). For
this we need a set of functions that are orthogonal when integrated over dx ≡ dβ sinβ.
Such a set of functions is that of Legendre polynomials PL(x) (see Appendix A and [Rose,
1957]), for which we have the orthogonality relation Eq. A.50. The explicit form of these
polynomials is really very simple and the first few terms are given in Eqs. A.48. In Fig. 3.5
we show a graph of P1(x), P3(x) and P2(x), P4(x) versus x, showing the useful property
that PL(x) is an even function of x if the rank L is even and an odd one if L is odd, i.e.
PL(x) = (−1)LPL(−x). Since cos(π − β) = − cosβ this means that in writing our even
orientational distribution in terms of PL(x) functions only even L terms need be retained.
Clearly, the odd terms will be present if P (x) is not even, as for ferroelectric liquid crystal
phases. Limiting ourselves to the more common case of non-polar nematics (see Eq. 3.19)
we can write

P (x) =
∞∑
J=0

pJPJ (x), J even. (3.21)
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The Lth expansion coefficient can be found multiplying both sides of Eq. 3.21 by PL(x)
and integrating over dx:

〈PL〉 =
∫ 1

−1
dxP (x)PL(x) =

∞∑
J=0

pJ

∫ 1

−1
dxPJ (x)PL(x) = 2

(2L+ 1)
pL, (3.22)

with pL = (2L+ 1)〈PL〉/2. The averages 〈PL〉 represent our orientational order parame-
ters. In particular, recalling the explicit expressions (Eqs. A.48d and A.48f),

〈P2〉 =
〈

3

2
x2 − 1

2

〉
, (3.23)

〈P4〉 =
〈

35

8
x4 − 30

8
x2 + 3

8

〉
. (3.24)

The knowledge of the (infinite) set of 〈PL〉 would completely define the distribution:

P (x) = 1

2
+ 5

2
〈P2〉P2(x)+ 9

2
〈P4〉P4(x)+ · · · + 2L+ 1

2
〈PL〉PL(x)+ · · · . (3.25)

It is worth mentioning that this expansion could be obtained more directly by writing the
distribution as the average of a delta function (Eq. 3.6) and expanding the delta function in
Legendre polynomials (Eq. D.29):

P (x) = 〈δ (x − x ′)〉x′ = ∞∑
L=0

2L+ 1

2
〈PL〉PL (x) . (3.26)

Again, we can limit L to even values, since all odd 〈PL〉 will be 0 by symmetry. On
going from an ordered to a disordered system, the order parameters jump discontinuously
to 0 since the nematic-isotropic transition is of the first-order type, even if weakly so
(cf. Section 2.9).

3.4 Experimental Determination of Orientational Order Parameters

The second-rank order parameter 〈P2〉 is proportional to the anisotropy in various exper-
imentally measurable properties. We shall examine this relation for molecules of differ-
ent symmetry in a rather general way in Section 3.10 and Appendix G. However, just to
make contact with real life measurements, we briefly consider here some simple examples
of experiments for the determination of the order parameters 〈P2〉 and 〈P4〉 for uniaxial
molecules (or colloidal particles) in a uniaxial liquid crystal phase. To determine 〈P2〉 we
start with a macroscopic method (diamagnetic anisotropy) useful for liquid crystal materials
as such and with a spectroscopic method suitable for determining the order of solute dye
molecules dissolved in liquid crystals (linear dichroism).
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3.4.1 Diamagnetic Susceptivity

Placing a diamagnetic material in an external magnetic field H , a magnetization M (per
unit volume), is induced [Leenhouts et al., 1979] and M = χH, where χ is the magnetic
susceptibility, a second-rank tensor. The work dw performed by a small change in the field,
dH, is

dw =M · dH =
∑
a,b

χabHb dHa; a,b = X,Y,Z. (3.27)

If we have a field parallel to the laboratory Z-axis: H (Z) = (0,0,H (Z)) which varies from
0 to H along Z with a certain constant gradient ∂H/∂Z, then the sample is subject to a
force fZ ,

fZ = χZZ ∂H
∂Z

H, (3.28)

that can be simply measured with a suitable balance [O’Connor, 1982]. Thus, if H and
∂H/∂Z are known, the diamagnetic susceptivity can be determined. In a uniaxial liquid
crystal two components χLAB

‖ ≡ 〈χLAB
ZZ 〉 and χLAB

⊥ = 〈χLAB
XX 〉 = 〈χLAB

YY 〉 corresponding to
the director parallel or perpendicular to the magnetic field direction, can be obtained. The
difference between the parallel and perpendicular components is related to the orientational
order in the system. To see this, we recall first that intermolecular magnetic interactions
are of negligible strength and thus the measured χLAB is the average of independent single
molecule contributions in the lab frame. χLAB can then be related to the magnetic suscep-
tibility χMOL in the molecular frame where it is diagonal, through the Cartesian rotation
matrix R (see Section B.1). Thus, assuming that χMOL is uniaxial,

χLAB
‖ = 〈χLAB

ZZ 〉 =
∑
a,b

〈RZaχMOL
ab R

T
bZ 〉δa,b = 〈R2

Zz〉χMOL
‖ + [〈R2

Zx〉 + 〈R2
Zy〉]χMOL

⊥ (3.29a)

= 〈cos2 β〉χMOL
‖ + 〈sin2 β〉χMOL

⊥ = χ̄MOL + 2

3
�χMOL〈P2〉, (3.29b)

since 〈cos2 β〉 = (1/3)+ (2/3)〈P2〉 and 〈sin2 β〉 = (2/3)+ (2/3)〈P2〉. Similarly,

χLAB
⊥ = [〈χLAB

XX 〉 + 〈χLAB
YY 〉]/2, (3.30a)

= 1

2

∑
a,b,a′,b′

(〈
RXaχ

MOL
ab RTbX

〉
δa,b +

〈
RYa′χ

MOL
a′b′ R

T
b′Y

〉
δa′,b′

)
, (3.30b)

= 〈sin2 β〉χMOL
‖ + 1

2
〈1+ cos2 β〉χMOL

⊥ = χ̄MOL − 1

3
�χMOL〈P2〉, (3.30c)

where Rab ≡ Rab(α,β,γ ) are elements of the Cartesian rotation matrices connecting the
laboratory to the molecule fixed system [Rose, 1957] (see Eq. B.8 for an explicit expression)
and χ̄MOL = 1

3 (χMOL
‖ + 2χMOL

⊥ ) is the scalar susceptivity. We have then

�χLAB ≡ χLAB
‖ − χLAB

⊥ = �χMOL〈P2〉. (3.31)
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(a) (b)

Figure 3.6 (a) OHMBBA diamagnetic anisotropy,�χLAB, vs reduced temperature, T/TNI
for two sets of measurements (◦◦◦) and (•) [Leenhouts et al., 1979]. (b) 〈P2〉 for MBBA (�),
APAPA (���), MBCA (+) [Leenhouts et al., 1979] and 5CB (∗∗∗) [Pohl and Finkenzeller, 1990]
as obtained from diamagnetic anisotropy as a function of T/TNI .

Thus, determining�χLAB (see Fig. 3.6a) immediately gives 〈P2〉 if�χMOL ≡ χMOL
‖ −χMOL

⊥
is known. A small set of values for common nematics is reported in Table 1.3.

Temperature dependence of 〈P2〉. De Jeu and coworkers [Leenhouts et al., 1979] have
measured the diamagnetic susceptivity anisotropy in a series of Schiff’s base nematics
which include the popular mesogens MBBA (cf. Table 1.2), anisylidene-p-aminophenyl
acetate (APAPA), 4-methoxybenzylidene-4′-cyanoaniline (MBCA) and in Fig. 3.6b we
report the dependence of the 〈P2〉 they obtained on reduced temperature TR ≡ T/TNI . In
Fig. 3.6b we also show a plot of the orientational order of the nematic 5CB, as measured by
Pohl and Finkenzeller [1990]. We see that the order decreases with increasing temperature
and then suddenly jumps to 0, as expected for this first-order phase transition. The trend is
similar for the different compounds, even though the detailed behaviour is not universal.
The temperature dependence of the order parameter is empirically well represented by the
so-called Haller [1975] equation

�χ (TR) = �χ (0) (1− TR)βH , (3.32)

where �χ (0) and βH are fitting parameters. The exponent βH that also describes the tem-
perature dependence of 〈P2〉 when approaching the transition has values βH = 0.17−0.22
for most liquid crystals. For the diamagnetic results on Schiff bases in Fig. 3.6b, Leenhouts
et al. [1979] found βH = 0.17 (MBBA) and 0.185 (APAPA), while for MBCA the value
was rather different: βH = 0.134. A study of the order parameter variation with temperature
has been performed with many techniques, some of which we are now going to explore.
The results, even for the same material, are not as unequivocal as might be expected. The
experimental values, even for the most studied materials are fairly scattered, e.g. for 5CB
the reported exponents βH range from 0.172 [Wu and Cox, 1988] to 0.19 [Horn, 1978]. In
an analysis of refractive index anisotropy data, Chirtoc et al. [2004] have actually stated that
all their data for 5, 6, 7, 8CB can be fitted with a unique exponent βH = 0.25.
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3.4.2 Linear Dichroism (LD)

As a second example of experimental determination of 〈P2〉, let us consider an optical
absorption experiment, where we assume to have a cylindrically symmetric (rod-like or disc-
like) dye dissolved at low concentration in a uniaxial liquid crystal, and that its molecules be
aligned to some extent by the surrounding liquid crystal solvent. We send a linearly polarized
beam of light on the sample and we measure the absorption parallel and perpendicular to the
director. The probability of absorption of light plane polarized along the unit vector e can be
written, if we assume the exciting light beam to be of relatively weak intensity, according to
standard time dependent perturbation theory [Atkins, 1983; Michl and Thulstrup, 1986] as

Pabs ∝ 〈|e ·μ(a)|2〉 =
∑
i,j

eie
∗
j 〈μ(a)

i μ
(a)∗
j 〉 =

∑
i,j

Eij 〈A(a)
ij 〉, i,j = x,y,z, (3.33)

with μ(a) the absorption transition moment [Michl and Thulstrup, 1986]:

μ(a) ≡ 〈ψexc|μ̂|ψ0〉, (3.34)

i.e. the matrix element of the electric dipole operator μ̂ between the ground and excited
states with wave functions ψ0 and ψexc. The vector μ(a) is, to a good approximation, a
molecular quantity for a certain excited state, i.e. for the state reached with the incident
radiation frequency. We have also introduced the absorption transition tensor containing the
relevant molecular information as the direct product A(a) = μ(a)⊗μ(a)∗. Similarly, we have
also defined a light polarization tensor, containing all the information about the experimental
disposition of the polarizer [Zannoni, 1979d] as the direct product E = e ⊗ e∗. Eq. 3.33
holds for an arbitrary orientation of the transition moment with respect to the molecular
axis. Here, however, we assume for simplicity to have chosen a cylindrically symmetric dye
molecule with μ(a) parallel to the molecule axis, so that μ(a) = μ(a)(0,0,1) and [A(a)]MOL

ij =
[μ(a)]2δi,j . In the laboratory frame, that we take with the Z-axis parallel to the director, the
transition moment components will be μ(a) = μ(a)(sinβ cosα, sinβ sinα, cosβ). Thus, the
intensity of light, polarized parallel or perpendicular to the director, that is absorbed by the
sample will be

〈[A(a)]LAB
‖ 〉 = 〈[A(a)]LAB

ZZ 〉 ∝
[
μ(a)]2〈cos2 β〉 = [

μ(a)]2
(1

3
+ 2

3
〈P2〉

)
, (3.35a)

〈[A(a)]LAB
⊥ 〉 = 1

2

〈
[A(a)]LAB

XX + [A(a)]LAB
YY

〉 ∝ 1

2

[
μ(a)]2〈sin2 β〉 = [

μ(a)]2
(1

3
− 1

3
〈P2〉

)
.

(3.35b)

The anisotropy of the intensity of light of a certain wavelength absorbed, i.e. the linear
dichroism, 〈�[A(a)]LAB〉 ≡ 〈[A(a)]LAB

‖ − [A(a)]LAB
⊥ 〉, will be proportional to the order param-

eter of the solute dye [Michl and Thulstrup, 1986]:〈
�[A(a)]LAB

〉 ∝ 1

3

[
μ(a)]2〈P2〉, (3.36)

and should drop to 0 when the system becomes isotropic. This anisotropy can therefore be
used to monitor orientational phase transitions and to determine 〈P2〉 of the dye. Although
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this is of course not the same as the host nematic, it can mimic it if the probe has been
judiciously chosen to be as similar as possible to that of the host nematogens.

3.4.3 Fluorescence Depolarization and 〈P4〉
A difficulty in determining the fourth-rank order parameter 〈P4〉 is the lack of convenient
fourth-rank tensorial quantities to measure. A way out is to employ a technique that can
provide the square of a second-rank property. Continuing with optical methods, such a
technique is Fluorescence Depolarization (FD) and Polarized Raman [Southern and Glee-
son, 2007; Sanchez-Castillo et al., 2010], that we shall not discuss here, another one. In
the FD technique, the orientational order and the rotational motion of fluorescent dyes
(chromophores) is studied by first exciting them with short pulses of plane polarized light
and then observing the polarization of their emitted fluorescence as a function of time on a
nanosecond scale. Fluorescence is an extremely sensitive technique and a dye concentration
of 10−3 w/w (or even much lower according to the type of dye) can be used, with the
advantage of causing only a little perturbation of the liquid crystals solvent. In an idealized
FD experiment, the system is probed with an extremely short light pulse, plane polarized
in a certain direction ei. What we mean by extremely short is that the pulse duration should
be much shorter than the fluorescence and reorientation time scales in the experiment. This
condition is of course only approximately met in real experiments and normally numeri-
cal deconvolution techniques [Arcioni et al., 1990] will have to be applied to correct for
the finite duration of the pulse as well as for the instrument response time. The emitted
fluorescence light is collected through a second polarizer (analyzer) set at a direction of
polarization eo placed on a certain observation direction. In such an idealized experiment
the fluorescence intensity can be recorded at a time t elapsed from the initial pulse. In more
detail, if light of a suitable wavelength is employed, absorption takes place and an excited
state is formed. This excited state may undergo some, usually rapid, internal conversion
process, normally followed by emission from the lowest vibrational level of the excited
singlet state (see Fig. 3.7). If we assume these processes to be independent from each other,
we can write the fluorescence intensity emitted from a molecule at a time t after excitation
as a product:

IF (t) ∝ 〈
Pabs(0)Pem(t)F (t)

〉
, (3.37)

where Pabs(0) stands for the probability that the molecule is excited at time t = 0, F (t) that
it is still in the excited state at time t , and Pem(t) the emission probability [Zannoni, 1979d].
The form of the intrinsic fluorescence decay F (t) depends on the detailed photophysics of
the dye molecule and in practice it is often approximated with an exponential or a sum of
exponentials. In general, we can assume that F (t) is characterized by an effective decay
time τF . This characteristic time is normally in the picosecond to nanosecond range, so that
using fluorescence, we can hope to study motional processes that take place on this time
scale, since these are the ones that can effectively modulate the decay. The probability of
absorption in Eq. 3.37 can be written down as before, in terms of the transition moment μ(a)

between the ground and excited state (Eq. 3.34). Quite similarly the emission probability
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Figure 3.7 A schematic representation of the absorption and fluorescence processes. The
photon absorbed promotes the molecule to a vibrational level (horizontal line) of the excited
state at fixed nuclei position (Franck–Condon vertical transition). After a fast internal
relaxation to the lowest vibrational level of the excited state, the molecule emits a lower
energy (longer wavelength) fluorescence photon.

will involve an emission transition moment μ(e) = 〈ψ0 | μ̂ |ψ ′exc〉, where ψ ′exc is the wave
function of the emitting state, that can typically be different from the initially excited state
ψexc, because of very fast internal electronic relaxation [Michl and Thulstrup, 1986]. Thus,

IFio (t) = 〈∣∣ei ·μ(a)(0)
∣∣2 ∣∣eo ·μ(e)(t)

∣∣2〉F (t), (3.38)

where we have assumed an isotropic fluorescence decay F (t) and we indicate with
angular brackets an average over all the motions experienced by the probe molecule up to
time t . When the chosen dye emits so fast that the molecule has not had time to reorient,
IFio (t) ≈ IFio (0). In particular, referring to the experiment represented schematically in
Fig. 3.8 we have, when μ(a)‖μ(e)‖u, with u the effective molecular symmetry axis, the
intensities depend explicitly on 〈P2〉 and 〈P4〉.
IFZZ(0)

F (0)
= [μ(a)]2[μ(e)]2〈cos4 β〉 = [μ(a)]2[μ(e)]2

[
8

35
〈P4〉 + 4

7
〈P2〉 + 1

5

]
, (3.39a)

IFZX(0)

F (0)
= [μ(a)]2[μ(e)]2〈cos2 β sin2 β〉 = [μ(a)]2[μ(e)]2

[
− 8

35
〈P4〉 + 2

21
〈P2〉 + 2

15

]
.

(3.39b)

This is approximately the case for the probes 1,6, diphenyl-hexatriene (DPH) [Zannoni,
1979d; Zannoni et al., 1983] and p-dimethylamino-p-nitro-stilbene (DMANS) [Dozov and
Penchev, 1980] shown in Fig. 3.9. It is convenient to introduce the depolarization ratio r (t),
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Figure 3.8 A schematic representation of a fluorescence polarization experiment. Light with
polarization ei, vertical (V) or horizontal (H), impinges from direction x on a monodomain
liquid crystal sample (d||z) containing fluorescent dyes. The emitted radiation intensity is
observed either at a right angle, along y or (filtering out the residual incoming light) in the
forward direction x through a polarizer ef set either vertically or horizontally.

r (t) = IFZZ(t)− IFZX(t)

IFZZ(t)+ 2IFZX(t)
, (3.40)

that can be determined combining the results of a right angle and a forward geometry
experiment (see Fig. 3.8). For ‘long’ times, i.e. for an emission fluorescence time so
long that the molecule has had the time to fully reorient, the average of the product:
〈|ei ·μ(a)(0) |2 |eo ·μ(e)(t) |2〉 in Eq. 3.38 becomes the product of the averages:
〈|ei ·μ(a)(0) |2〉 〈|eo ·μ(e)(∞) |2〉 and the limiting value of r(t) for long times becomes just
the orientational order parameter of the probe:

r(∞) = 〈P2〉. (3.41)

However, at the other limiting case, for t = 0, the depolarization ratio is

r (0) =
[2

5
+ 11

7
〈P2〉 + 36

35
〈P4〉

]/[
1+ 2〈P2〉

]
. (3.42)

Thus, r(t) starts from a value depending on 〈P2〉 and 〈P4〉 and goes to a plateau value equal
to 〈P2〉. The order parameter 〈P4〉 can then be extracted from the initial value r(0). As an
example, 〈P2〉 and 〈P4〉 and their temperature dependence have been determined [Wolarz
and Bauman, 2006] for the stilbene dye DMANS dissolved (≈3%w/w) in the nematics
5CB, 7CB and PCH7 (Fig. 3.9). Note that 〈P2〉 obtained from LD (Section 3.4.2) and FD
are in fairly good agreement. What can be obtained in practice from a certain experiment
will depend on the relative time scales of the fluorescence decay and reorientation process,
thus on the molecular feature of the probe and the medium fluidity. We shall discuss the
information on the reorientation dynamics of a fluorescent probe obtainable from the full-
time dependence of r(t) in Chapter 6.
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Figure 3.9 Order parameters of the fluorescent stilbene dye, DMANS, dissolved in the
nematic, PCH7, as a function of reduced temperature T/TNI , assuming transition moments
parallel to the dye long axis. The lines are a guide for the eye, the bars give an error
estimate. Shown: 〈P2〉 evaluated from absorption dichroic ratio (•) and 〈P2〉 (���) and 〈P4〉
(�) obtained from fluorescence measurements [Wolarz and Bauman, 2006].

3.5 Orientational Order from Computer Simulations

The calculation of orientational order parameters is clearly of particular importance in com-
puter simulations of model liquid crystals. It also requires the development of some algo-
rithms as compared to simulations of isotropic fluids, while the thermodynamic observables
are calculated essentially with the standard techniques developed for ordinary liquids. In
practice, computer simulations can provide, as discussed later in Chapters 8 and 9, a number
of equilibrium configurations of a system formed by N particles and we can consider the
determination of the second- and fourth-rank parameters in a way similar to setting up a
virtual experiment.

3.5.1 Second Rank

The second-rank order parameter 〈P2〉 can be calculated in principle by averaging P2(x)
over the normalized probability P (x) of finding the molecule at an orientation x = cosβ =
u ··· d of the molecular axis (represented by the unit vector u) with respect to the director d:

〈P2〉 =
∫ 1

−1
dx P (x)P2(x). (3.43)

The problem in using this definition is that in simulations we do not work in a director frame
but in an arbitrary laboratory frame, and normally, in the absence of an external field that
aligns the director along a desired direction. Thus, we do not know the orientation of d in
each configuration and we have no guarantee that it will not change with time and remain the
same. BecauseP2(x) is not a scalar, we cannot normally calculate 〈P2〉 as in Eq. 3.43 in each
configuration and then average the result over many of these. To find a way out it is helpful to
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think that a computer simulation can be considered as an experimental technique where we
can choose our observables at will. Thus, we can introduce a simple virtual single-molecule
matrix property A, whose only non-vanishing component is along a suitable particle fixed
direction [Fabbri and Zannoni, 1986]. For a uniaxial particle this could be a unit vector
parallel to the molecular symmetry axis, u = (0,0,1), and we can define A as the direct
square (see Appendix A),

A = u⊗ u, (3.44)

with Cartesian components, in the molecule fixed frame,AMOL
ab = δa,zδb,z, for a,b = x,y,z.

This matrix, apart from a proportionality constant, is the same as the absorption tensor we
introduced earlier in Eq. 3.34, if the transition moment μ(a) is parallel to molecular effective
symmetry axis u [Michl and Thulstrup, 1986]. Of course, we do not need to push the analogy
too far, but it may be helpful to think of simulations as an experiment that produces pseudo-
experimental data. 〈ALAB〉, the sample average of A in our arbitrary laboratory frame, is
obtained writing the components of ALAB in terms of the molecule fixed components and
summing over all the particles:

〈ALAB
ab 〉S =

1

N

N∑
i=1

{∑
a′b′

[Ri]aa′[Ai]
MOL
a′b′ [R

T
i ]b′b

}
= 〈RazRbz〉S ≡ 2

3
Qab + 1

2
δa,b, (3.45)

where we have introduced the ordering matrix Q with elements

Qab = 3

2

〈
[Ri]aZ [Ri]bZ − 1

2
δa,b

〉
S
, (3.46)

where 〈. . .〉S indicates an average over all the i molecules in the sample, and [Ri]aa′ are the
elements of the Cartesian rotation matrix (see Eq. B.8) transforming from the laboratory
frame to the frame attached to molecule i , that we have already used in Section 3.4.1. The
sample ordering will in general change with time, so that

Q(t) = 1

2N

N∑
i=1

[
3ui(t)⊗ ui(t)− 1

] = 1

2

〈
3ui(t)⊗ ui(t)− 1

〉
S

. (3.47)

We can write explicitly the instantaneous ordering matrix Q of the sample configuration as
(time argument omitted)

Q = 3

2N

N∑
i=1

⎛⎜⎝ sin2 βi cos2 αi − 1
3 sin2 βi cosαi sinαi sinβi cosβi cosαi

sin2 βi cosαi sinαi sin2 βi sin2 αi − 1
3 sinβi cosβi sinαi

sinβi cosβi cosαi sinβi cosβi sinαi cos2 βi − 1
3

⎞⎟⎠ . (3.48)

Note that Q is symmetric and that the sum of its diagonal elements is 0, i.e. it is traceless:
TrQ = 0. Diagonalization of the sample averaged 〈ALAB〉S with the unitary matrix X
identifies the director frame where

〈ADIR
ZZ〉S =

∑
XaZXbZ〈ALAB

ab 〉S = 〈cos2 β〉S = 2

3
〈P2〉S + 1

3
, (3.49)
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and Q is also diagonal

Q =
⎛⎝− 1

2 〈P2〉S − ξ 0 0
0 − 1

2 〈P2〉S + ξ 0
0 0 〈P2〉S

⎞⎠ . (3.50)

The sample biaxiality parameter ξ makes the ordering with respect to the laboratory
x- and y-directions different and will tend to 0 at large sample sizes if the mesophase has
uniaxial symmetry. It is now obvious that the rotation diagonalizing 〈ALAB〉S or equivalently
Q defines the orientation of the director frame in our laboratory frame. The director itself is
defined by the eigenvector corresponding to the largest eigenvalue, λmax , of Q. If we take
this to define the z-axis of the director frame, and we call l and m the unit vectors along
the other two axes, we can also write

Q = 〈P2〉
(

d ⊗ d − 1

3
1
)
+ ξ(m⊗m− l ⊗ l

)
, (3.51)

with m = d × l. The second-rank order parameter referred to the director in the sample,
〈P2〉λ, is obtained from this λmax as 〈P2〉λ,S = λmax . Thus, we can define a Q tensor for
every configuration, say Q(j ) for the j th one. By diagonalizing Q(j ), we obtain an order
parameter P (j )

2 and a director d(j ). Even if the director can change from one configuration

to another, since the P (j )
2 , being the eigenvalues of a matrix, are rotationally invariant (i.e.

scalars), we can calculate

〈P2〉λ = 1

M

M∑
j=1

(λmax)(j ), (3.52)

where (λmax)(j ) is the largest eigenvalue of the matrix Q(j ). Note that (λmax)(j ) ≥ 0, thus
〈P2〉λ is never going to be negative and even for an isotropic system it will approach 0 from
above with a value of the order of 1/

√
N . Eppenga and Frenkel [1984] have suggested

that a better estimate of the order parameter in the isotropic phase can be obtained by
averaging the intermediate, rather than the largest eigenvalue of the matrix. The resulting
〈P2〉λ2 approaches 0 faster in the isotropic phase [Eppenga and Frenkel, 1984; Fabbri and
Zannoni, 1986]. The calculation of the orientational distribution P (x) with respect to the
director strictly involves transforming the orientations, after each diagonalization, to the new
director frame. An alternative procedure is to transform the order parameters to the director
frame after every diagonalization. Once the rotation (�L′L) carrying the old laboratory frame
into the new one has been found, the order parameters calculated in the old frame can be
transformed to the new one. Using the closure property of Wigner matrices (cf. Eq. F.14)
we have in fact that

〈
DL
m,n(�ML)

〉 = ∑L
q=−LDL

q,m(�L′L)
〈
DL
q,n(�ML′ )

〉
. A simpler situa-

tion arises if the director orientation is known and fixed, e.g. when d is pinned along the
z-direction by an external field or a surface. In this rather special case we can simply write
〈P2〉LAB as an average over M equilibrium configurations of the sample order parameter,
〈P2〉(j ). We have

〈P2〉LAB = 1

M

M∑
j=1

〈P2〉(j ), (3.53)
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where 〈P2〉(j ) ≡ 1
N

∑N
i=1 P2(ui · d) is the order parameter computed for the j th config-

uration. In this particular case it may be even simpler to calculate a histogram for the
probability density P (x) and subsequently determine the desired order parameters 〈PL〉LAB

by integration.

3.5.2 Fourth-Rank Order Parameter

We can generalize the frame independent procedure by defining a convenient fourth-rank
virtual molecular property as the direct square F = A ⊗ A, of the matrix A = u ⊗ u

[Fabbri and Zannoni, 1986]. We note that in the molecule fixed frame the fourth-rank
property defined in this way has only one non-vanishing component, FMOL

zzzz , i.e. FMOL
abcd =

δa,zδb,zδc.zδd,z ,where a,b,c,d = x,y,z. The sample average of F is

〈FLAB〉S = 〈ALAB ⊗ ALAB〉S = 〈(XADIRXT )⊗ (XADIRXT )〉S, (3.54a)

= (X⊗ X)〈ADIR ⊗ ADIR〉S(XT ⊗ XT ) = (X⊗ X)〈FDIR〉S(XT ⊗ XT ). (3.54b)

We then write the components in the director frame in terms of those in the molecular frame
using the rotation matrix R:〈

FDIR
〉
S
= 〈

(RAMOLRT )⊗ (RAMOLRT )
〉
S
, (3.55a)

= 〈
(R⊗ R)AMOL ⊗ AMOL(RT ⊗ RT )

〉
S
= 〈

(R⊗ R)FMOL(RT ⊗ RT )
〉
S

. (3.55b)

In particular

〈F DIR
ZZZZ〉S = 〈(RZZ)4〉S = 〈x4〉S =

∑
a,b,c,d

XaZXbZXcZXdZ〈F LAB
abcd〉S, (3.56)

giving the fourth-rank order parameter 〈P4〉 as 〈P4〉S = 35

8
〈x4〉S − 30

8
〈x2〉S + 3

8
. A fur-

ther average of 〈P4〉S over equilibrium configurations yields 〈P4〉λ. We shall see later,
in Chapter 10, an application of this methodology to obtain 〈P4〉 for the Lebwohl–Lasher
model (see Fig. 10.4).

3.6 Landau–deGennes Q-Tensor Approach

The Q matrix (tensor) order parameter can be employed to write a Landau expression for
the anisotropic free energy avoiding the explicit use of the director field d which is singular
at defect points. The free energy is independent of an arbitrary rotation of the laboratory
system and thus can be expanded in powers of invariants of the tensor Q. For a symmetric
traceless tensor like Q, these invariants are just (see Eq. B.13), Tr

(
Q2

)
and 1

3 Tr(Q3). The
Landau–deGennes phenomenological expression for the free energy density in the vicinity
of the nematic-isotropic transition and in the presence of an external field H can then be
written as [de Gennes, 1971; Gramsbergen et al., 1986a; Mori et al., 1999; Mottram and
Newton, 2014]

G tot = GL + Gsurf + Gfield, (3.57)
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where the field coupling term is, e.g. for a magnetic field H ,

Gfield = −1

2
�χHαQαβHβ, (3.58)

while the Landau free energy term GL depends on the elements of Q and all derivatives of
its elements,

GL = G0 +
1

2
A(T )QαβQαβ −

1

3
B(T )QαβQβγQγα +

1

4
C(T )QαβQαβQγδQγδ + · · · , (3.59)

where G0 is the free energy of the disordered state, and we use the convention of implicit
summation over repeated Greek subscripts. We also assume, like in Section 2.7, that
A(T ) = a(T − T ∗) with a > 0, and temperature independent B(T ) = b, C(T ) = c.
Beyond this Landau-type expansion, the Frank elastic deformation energy (see Section
1.2.3) that penalizes small spatial non-uniformities can also be written in a rotationally
invariant form in terms of tensor components Qαβ (r) and their derivatives with respect to
Cartesian coordinates, eα , eβ , eγ . This Q(r) expansion can be written as [Mori et al., 1999;
Mottram and Newton, 2014]:

Gel =
[
L1

2

(
∂Qαβ

∂eγ

)2

+ L2

2

∂Qαβ

∂eβ

∂Qαγ

∂eγ
+ L3

2

∂Qαγ

∂eβ

∂Qαβ

∂eγ

]

+
[
L4

2
ελαγQλβ

∂Qαβ

∂eγ
+ L6

2
Qλγ

∂Qαβ

∂eλ

∂Qαβ

∂eγ

]
+ · · · . (3.60)

HereLi are elastic constants that can be obtained from a comparison with the Frank expres-
sion for the free energy. In the case of a uniaxial nematic

Qαβ (r) = 3

2
〈P2〉

(
dα(r)dβ (r)− 1

3
δα,β

)
, (3.61)

where dα(r), dβ (r) are components of the director at position r , and the explicit connection
to the Frank elastic constantsKii introduced in Section 1.2.3 is [Mori et al., 1999; Mottram
and Newton, 2014]:

L1 = (K33 −K11 + 3K22)/
(
6〈P2〉2

)
, (3.62a)

L2 = (K11 −K22 −K24)/〈P2〉2, (3.62b)

L3 = K24/〈P2〉2, (3.62c)

L4 = 2q0K22/〈P2〉2, (3.62d)

L6 = (K33 −K11)/
(
2〈P2〉3

)
, (3.62e)

where q0 is the wave vector of the phase (0 for a nematic and �= 0 for a chiral nematic
liquid crystal). Writing the free energy deformation density in this way, instead of the
Frank expression in terms of the director, presents various numerical advantages, fully dis-
cussed elsewhere for many applications, e.g. pretransitional phase transitions in boundary
layers [Sheng, 1982] and liquid crystal droplets [Kralj et al., 1991], wetting phenomena
[Sluckin and Poniewierski, 1985; Nobili and Durand, 1992], surface-induced bulk align-
ment [Zhuang et al., 1994] and defects [Schopohl and Sluckin, 1987; Fukuda et al., 2002]
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so shall not be discussed in detail here. It is also worth mentioning that the theory has
also been generalized to the treatment of smectic phases [Biscari et al., 2007; Mei and
Zhang, 2015]. The surface free energy will also have to be introduced according to the
real (or virtual) experimental conditions [Mottram and Newton, 2016]. In static equilibrium
situations, minimization of the total free energy, obtained by integration over the sample,
leads, following the classic procedures of calculus of variations, to a set of Euler–Lagrange
differential equations in the bulk of the material and at the surface, for each of the dependent
variables. The solution of the bulk equations subject to the surface boundary conditions
provides the equilibrium configuration of the ordering tensor components Qαβ (r) across
the sample [Mottram and Newton, 2016].

3.7 Physical Significance of Order Parameters

Quite similarly to what we have said for the second-rank order parameter, the higher-order
parameters 〈P4〉, 〈P6〉, etc., are respectively 1 for complete order and 0 for an isotropic
system. We may therefore wonder if there is an advantage in considering more than one
order parameter. That this is the case becomes apparent if we refer to Fig. 3.10 where the
Legendre polynomials P2(x) and P4(x) are shown as a function of x = cosβ. We have
indicated with A, B, C, D regions which correspond to different combinations of the signs
of the Legendre polynomials. As we can deduce from Fig. 3.10, if we measure 〈P2〉 and find
that 〈P2〉 > 0, (e.g. 〈P2〉 = 0.6 in Fig. 3.10) this will mean that the majority of molecules

have an orientation β between 0 and the so-called magic angle, β = cos−1
√

1
3 ≈ 54.7◦,

Figure 3.10 The angular dependence of the second- and fourth-rank Legendre polynomials
P2(x), P4(x) (dash-dot lines) and of four (not normalized) distributions compatible with
the same 〈P2〉 = 0.6 but different 〈P4〉:P (d)(x) peaked along the director, a tilted one,
P (t)(x) peaked at a tilt angle in region C, a delta-like at a cone-angle βt , P (δ)(x) and a box-
like P (b)(x). The angular regions A, B, C, D correspond to combinations of the Legendre
polynomials of different sign.
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where P2(x) = 0. This is what we normally expect for an elongated molecule and could be
compatible with the distribution of molecular orientationsP (d) shown as the continuous line
in Fig. 3.10. If, on the other hand, 〈P2〉 < 0, then we may infer that on average molecules
will have an orientation giving a negative P2 (e.g. in region D, with β between 54.7 and
90 degrees). This could be the case for a disc-like solute molecule in a liquid crystal. In
many instances the orientation of the effective symmetry axis of the molecule of interest
with respect to the director will not be at all obvious, and a determination of 〈P2〉 provides
important information. For instance, if our molecule was dissolved in an oriented bilayer
membrane (Figs. 1.50 and 1.52) we would learn from the sign of 〈P2〉 if the molecule is on
average aligned parallel or perpendicular to the bilayer normal.

Let us now consider the fourth-rank Legendre polynomial P4(x) and its average 〈P4〉.
The zeros of P4 between 0◦ and 90◦ fall at β ≈ 30.56◦ and β ≈ 70.12◦. Suppose we
have now measured 〈P2〉 and 〈P4〉 with some experimental technique. If 〈P2〉 > 0 and
〈P4〉 > 0, then the distribution of orientations will be such that the majority of molecules has
a long axis orientation between 0◦ and 30.5◦ (region A). We might, however, find a positive
〈P2〉, as before, and a negative 〈P4〉. This would suggest a different type of orientational
distribution, for example, a tilted one, P (t), with a peak between 30.5 and 54.7 degrees,
as shown in Fig. 3.10. Other possible distributions can also be examined and tested. One
is a delta-like distribution P δ(x) = δ(x − xδ) where only one orientation: xδ = cosβδ =√

(4〈P2〉 + 3)/6. This implies also a well-defined value of 〈P4〉. In our example, 〈P2〉 = 0.6
would correspond to xδ = 0.9487, i.e. β0 ≈ 31◦ which in turn would give 〈P4〉 = −0.02.
Yet another possibility is that of box function P (x) = const for x0 < x < 1, or 0 ≤ β ≤ β0

which gives [Luckhurst and Yeates, 1976]

〈P2〉 = x0 (x0 + 1) /2, (3.63)

〈P4〉 = x0 (x0 + 1) (7x2
0 − 3)/8, (3.64)

which can be solved for x0. In our example, x0 = 0.704. This distribution corresponds to a
cone fully populated inside. The qualitative physical significance of other combinations of
order parameters can be deduced in a similar way. This could also be extended if we knew
〈P6〉 etc. Every higher-order parameter restricts the bounds on P (x) and thus increases our
knowledge on the system. It is also interesting to note that the introduction of additional
order parameters, and thus of additional coefficients in the expansion, does not lead to
a revision of the lower-order ones. This stability is a general characteristic of orthogonal
expansions as opposed to non-orthogonal ones, e.g. simple power expansions. What we are
saying does not mean, of course, that the expansion in Eq. 3.21, is so rapidly convergent
that we only need the first few terms to reconstruct P (x). Actually, this will not be the case,
at least in general, even though a knowledge of 〈P4〉 as well as that of 〈P2〉 can be very
useful to discriminate between various models of molecular organization inside the liquid
crystal. An example of a distribution function of this type will be reported later, together
with other distributions, in Fig. 3.12. As an illustration of the kind of inconsistencies that
one can obtain reconstructing the distribution from the first few terms, consider again an
example where we have 〈P2〉 = 0.6. Then P (x), as given by the orthogonal expansion
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truncated at P2, is shown in Fig. 3.12 as the dashed line. We see that P (x) constructed
in this way can even become negative, which is certainly unphysical when we think that
P (x) is the probability of finding a molecule at a certain orientation. Note that any property
depending only on 〈P2〉 is calculated correctly using this P (x). However, 〈P4〉 and the
higher-order parameters calculated with the second-rank approximation are 0, because of
the orthogonality of the Legendre polynomials. Thus, the orthogonal approximation is exact
for terms that we have included but very bad if we want higher terms. Inclusion of more
terms in the orthogonal expansions can of course improve the approximation. For instance,
we show again in Fig. 3.12 that inclusion of the fourth-rank term (dot-dashed curve) avoids
at least in this case the negative region of P (x). We should also remember that all 〈PL〉
tend to 1 for complete order, so that we expect the neglect of higher terms to be bad at low
temperatures, where the order is higher.

3.8 Maximum Entropy

As we have seen, orthogonal expansions of the orientational distribution provide a formally
exact way of writing down the order parameters in terms of quantities, the first few of which
we might be able to determine. The representation of the distribution obtained when we
know only the terms of rank 2, 4 or anyway of the first few symmetry allowed ranks, is
exact up to that level but gives a poor approximation of the whole behaviour of the distri-
bution. The method of Maximum Entropy (ME) [Jaynes, 1957b, 1957a; Levine and Tribus,
1978; Zannoni, 1988] approaches the problem of making use of the limited experimental
information available on the distribution from a very different point of view. It tries to find
the most probable or least biased distribution amongst the infinite number of them that
agrees with the available data, typically a set of averages of some quantity. From this point
of view, we cannot predetermine the form of the distribution in the absence of a certain
amount of evidence, so that before actually knowing something about the distribution we
should assume it is a flat, constant one with all the states equally probable. To be clearer,
we can examine how to construct an ME distribution for a discrete system.

3.8.1 A System with Discrete States

Let us consider a system that can exist in a set of n discrete states (e.g. a coin or a die with
n faces). We introduce a probability density vector p = (p1,p2, . . . ,pn) containing the
probabilities pi of finding the system in the ith state. We require pi to be dimensionless
and non-negative, pi ≥ 0, and the distribution to be normalized, so that

∑n
i=1 pi = 1. We

can now try to obtain some information on the pi by performing measurements on a set of
M independent observable properties {A(k)} = (A(1), A(2), . . . ,A(M)). In practice, we try to
infer the best estimate of the set pi from the knowledge of the experimentally determined
mean values of the set of properties. The average of the kth observable is

〈A(k)〉 =
n∑
i=1

piA
(k)
i , k = 1, . . . ,M . (3.65)

https://doi.org/10.1017/9781108539630.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.004


132 Order Parameters

In the trivial case of a two-state system (say a coin), n = 2, the average of one observ-
able determines p: 〈A(k)〉 = p1A

(k)
1 + (1 − p1)A(k)

2 . In most practical cases, when the
number of states exceeds the number of constraints, i.e. of experimental observables, there
is an infinity of distributions satisfying the given constraints. This is clearly the case of
a continuous distribution of orientations �i or positions r i . According to the ME prin-
ciple [Jaynes, 1957b, 1957a] the most likely distribution is the one that maximizes the
Boltzmann–Shannon entropy, that we can write as

S(p) = −
n∑
i=1

pi lnpi, (3.66)

subject to the given constraints. Introducing a set of M + 1 Lagrange multipliers λj we
reduce the problem to that of searching the unconstrained maximum of the extended func-
tion L [Zannoni, 1988]

L = −
n∑
i=1

pi lnpi − λ0

(
n∑
i=1

pi − 1

)
−

M∑
j=1

λj

(
n∑
i=1

A
(j )
i pi − 〈A(j )〉

)
. (3.67)

Thus, at the extremum point

∂L

∂pi
= − lnpi − 1− λ0 −

M∑
j=1

λjA
(j )
i = 0, (3.68a)

∂L

∂λ0
= 1−

n∑
i=1

pi = 0, (3.68b)

∂L

∂λj
=

n∑
i=1

A
(j )
i pi − 〈A(j )〉 = 0. (3.68c)

The solution gives an approximation to the distribution that is of exponential nature, i.e.

pi = 1

Z0
exp

[
λ1A

(1)
i + λ2A

(2)
i + · · · + λMA(M)

i

]
, (3.69)

with the normalization constant, Z0 = exp (−λ0), given by

Z0 =
n∑
i=1

exp
[
λ1A

(1)
i + λ2A

(2)
i + · · · + λMA(M)

i

]
. (3.70)

The distribution obtained a posteriori from a set of known (experimentally determined)
quantities A(k) can be tested by calculating (predicting) the value of new, different observ-
ables. If they are not satisfactorily obtained, they can be included in the procedure to give a
refined version of the distribution and the procedure repeated.

3.8.2 Orientational Distributions

The problem of finding the best, in the sense of least-biased approximation to the whole
continuous distribution P (x), or in general P (�), starting from a knowledge of a set of
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order parameters 〈PL〉, say up to rank L′, can be approached using Information Theory
[Jaynes, 1957b, 1957a] again. In practice, we proceed by generalizing the example just
seen for a discrete variable to a set of continuous variables representing the orientations.
Correspondingly, we shall have integrals over the angles rather than sums and we shall
have to choose a set of independent observablesA(k)(�). For effectively uniaxial molecules
in a uniaxial phase our input is a set of order parameters 〈PL〉, that we assume to be known
[Bower, 1981, 1982]. We then determine the distribution maximizing the entropy function

S ∝ −
∫ 1

−1
dx P (x) lnP (x), (3.71)

with P (x), as x, dimensionless and subject to the constraints∫ 1

−1
dxP (x) = 1, (3.72a)∫ 1

−1
dxP (x)PL(x) = 〈PL〉, (3.72b)

where x = cosβ, for the known 〈PL〉 (e.g. those from L = 0,2, . . . to Lmax). Using the
Lagrange multipliers technique as for the discrete case, we find that the ME distribution has
the form

P (x) = exp

⎧⎪⎨⎪⎩
Lmax∑
L=2
L even

aLPL(x)

⎫⎪⎬⎪⎭ = exp(a0) exp

⎧⎪⎨⎪⎩
Lmax∑
L=2
L even

aLPL(x)

⎫⎪⎬⎪⎭ ≡ exp{−U (x)}/Z0,

(3.73)
where the function U (x) ≡ U (cosβ) plays the role of a dimensionless angular dependent
pseudo-potential. The coefficients aL are obtained imposing the constraints that the 〈PL〉,
L = 0,2, . . . ,Lmax calculated from P (x) have the known (experimental) values, while
the normalization condition corresponds of course to 〈P0〉 = 1. The information theory
approach is thus in any case an a posteriori one. It allows constructing an approximate full
distribution from available information, but on the other hand, it can make no prediction
on what the distribution will be at, say, a different temperature. The approach also does not
say anything on the molecular origin of the distribution itself. It is just a way of translating
the experimental information into the most probable distribution compatible with the data
themselves. As more and more order parameters or in general observables become available
the estimate of P (x) can be refined. The method does not rely on a priori assumptions and as
the number of terms increases the sequence of maximum entropy approximations converges
to the true one. It is also important to stress that at any level of approximation the distribution
obtained is positive and of exponential character. It may be worth discussing in some detail
the differences between the orthogonal and the ME approximations.

We now consider briefly what inferences can be made about the molecular organization
starting from a knowledge of a small number of order parameters and in particular of 〈P2〉
and 〈P4〉.
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(i) Knowing 〈P2〉 only. To start with we suppose that only the second-rank order parameter,
〈P2〉, has been determined. The ME distribution associated with this 〈P2〉 will be

P (x) = exp[a2P2(x)] /Z0 (3.74)

with a2 determined by the condition

〈P2〉 =
∫ 1

−1
dx P2(x) exp[a2P2(x)] /Z0 (3.75)

and where the normalization constant is

Z0 =
∫ 1

−1
dx exp[a2P2(x)] = 2M

(1

2
,

3

2
,

3

2
a2

)
, (3.76)

in terms ofM(a,b,z), the Kummer confluent hypergeometric function [Erdélyi et al., 1953],

M
(
n+ 1

2,n+ 3
2,z

)
≡ (2n+ 1)

∫ 1
0 dxx2n ezx

2
. It is easy to see that [Zannoni, 1975] 〈P2〉 =

M
(

3
2,

5
2,

3
2a2

)/
M
(

1
2,

3
2,

3
2a2

)
. Z0 and 〈P2〉 can also be written in terms of another special

function, the Dawson function [Abramowitz and Stegun, 1965]:

D(x) ≡ e−x
2
∫ x

0
dt et

2
, (3.77)

that gives Z0 = 2 exp (a2)D
(√

3a2
2

)
/
√

3a2/2. Expressing the result in terms of special

functions immediately puts at our disposal the very large number of recurrence relations,
asymptotic expansions, etc. available for them. We shall see later that an identical functional
form for the average order parameter can be obtained by various approximate theoreti-
cal treatments, like the Mean Field theories of Maier and Saupe [1958] (Section 7.2) and
Onsager [1949] (Section 7.6). In view of this wide applicability, it is worth discussing this
distribution in some detail. Eq. 3.75 can be solved for a2 in terms of 〈P2〉 and in Fig. 3.11

(a) (b)

Figure 3.11 (a) The maximum entropy parameter a2 plotted against 〈P2〉 obtained from
Eq. 3.75 ( ) and the analytic approximation a2 = 5〈P2〉 ( ). (b) 〈P4〉 vs 〈P2〉 as obtained
by integration over the distribution in Eq. 3.74 ( ) and the approximate analytic expression
〈P4〉 = 5〈P2〉2/7 ( ) [Fabbri and Zannoni, 1986].
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3.8 Maximum Entropy 135

we show the resulting curve for positive 〈P2〉 as the full line. We see that for positive 〈P2〉
the distribution is peaked at x = ±1 (or β = 0,π ), so that the majority of molecules will be
parallel to the director. This is normally the case when we dissolve an elongated molecule
in a nematic.

A useful estimate of a2 from 〈P2〉 can be obtained by first expanding 〈P2〉 in Eq. 3.75
as a series of powers of a2: 〈P2〉 = 1

5a2 + 1
35a

2
2 − 1

175a
3
2 − · · · . Reversion of this series

[Abramowitz and Stegun, 1965] gives a2 in a power series in 〈P2〉 [Fabbri and Zannoni,
1986]

a2 = 5〈P2〉 − 25

7
〈P2〉2 + 425

49
〈P2〉3 − · · · . (3.78)

The series diverges at 〈P2〉 = 1 but it can still be useful for realistic order parameters found
in nematics. The very simple approximation

a2 = 5〈P2〉, (3.79)

shown as the dashed line in Fig. 3.11a is useful to get a good idea of a2 and thus, of
the distribution at least up to 〈P2〉 = 0.6. Having determined a2 we can immediately
plot the distribution P (x). For example, if we assume 〈P2〉 = 0.6, as in Section 3.7, we
obtain the approximate ME distribution as the continuous line in Fig. 3.12. We note that
a2 becomes negative as 〈P2〉 changes sign and that the corresponding distribution becomes
peaked at x = 0,(β = π/2). Physically this will normally happen when we study a disc-
like molecule dissolved in a nematic, since in this case its plane will tend to align with
the host molecules and its molecular z-axis (the disc symmetry axis) will be preferentially
aligned perpendicular to the director.

The distribution in Eq. 3.74 can be used to calculate the fourth-rank order parameter 〈P4〉
by integration (see Eq. 3.72b). The curve obtained is shown in Fig. 3.11b as the continuous
line. A simple analytic approximation for the dependence of 〈P4〉 on 〈P2〉 can be obtained

Figure 3.12 The distribution P (x) in Eq. 3.74 corresponding to 〈P2〉 = 0.60 and
〈P4〉 = 0.244 ( ) and its approximations using the orthogonal expansion in Eq. 3.25
truncated at P2 ( ) and at P4 ( ).
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expanding 〈P4〉 in powers of a2 and substituting in Eq. 3.78. This gives a series with large
terms of alternating sign and poorly convergent unless terms are properly grouped together.
However, the simplest approximation which retains just the first term, i.e.

〈P4〉 = 5

7
〈P2〉2, (3.80)

is actually a good approximation up to 〈P2〉 ≈ 0.6 as we see from the dashed line in
Fig. 3.11b. Note that 〈P4〉 is correctly predicted to be positive even for negative 〈P2〉. In
a similar way we can obtain an approximate expression for 〈P6〉:

〈P6〉 = 375

1001
〈P2〉3, (3.81)

showing that, at least for the simple distribution Eq. 3.74, the order parameter 〈P6〉 <
〈P4〉 < 〈P2〉. Actually, it is interesting to note that a recurrence relation can be obtained
for the order parameters obtained from Eq. 3.74 [Zannoni, 1975]. Let us start from the even
moments of the distribution:

〈x2n〉 =
∫ 1

0 x
2n exp

(
ξx2

)
dx∫ 1

0 exp
(
ξx2

)
dx

≡ Z2n(ξ )

Z0(ξ )
〈x2n〉 = 1

2n+ 1

M
(
n+ 1

2,n+ 3
2,ξ

)
M
(

1
2,

3
2,ξ

) , (3.82)

where ξ ≡ 3
2a2 and we have used the derivatives of Kummer functions [Abramowitz and

Stegun, 1965]

Z2n(ξ ) = dn

dξn
Z0 = dn

dξn
M
(1

2
,

3

2
,ξ
)
= 1

2n+ 1
M
(
n+ 1

2
,n+ 3

2
,ξ
)

. (3.83)

Substitution of the moments in the general expression for the Legendre polynomials yields
the order parameters of any rank in terms of ξ or of 〈P2〉. We can also derive a recurrence
relation for 〈PL〉 starting from that for the Legendre polynomials (Eq. A.51). Multiplying
by P (x) and integrating both sides gives

L〈PL〉 = (2L− 1)〈xPL−1〉 − (L− 1)〈PL−2〉. (3.84)

The problem is then to evaluate 〈xPL′ 〉, where L′ = L − 1 is odd. Integrating by parts,
using PL′(0) = 0 for odd L′, as well as the derivative relation in Eq. A.52,

d

dx
PL′ (x) = (

2L′ − 1
)
PL′−1 +

(
2L′ − 5

)
PL′−3 +

(
2L′ − 9

)
PL′−5 + · · · + P0, (3.85)

we obtain [Zannoni, 1975]

〈PL〉 =
(2L− 1)

3La2

⎧⎨⎩e
3
2 a2

Z0
−

(L−2)/2∑
n=0

[
(2L− 3− 4n)+ 3a2(L− 1)

(2L− 1)
δ0,n

]
〈PL−2−2n〉

⎫⎬⎭ . (3.86)
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The first few terms are

〈P2〉 = 1

2a2

{
e

3
2 a2

Z0
− (1+ a2)

}
, (3.87a)

〈P4〉 = 7

12a2

{
e

3
2 a2

Z0
−
(

5+ 9a2

7

)
〈P2〉 − 1

}
, (3.87b)

〈P6〉 = 44

36a2

{
e

3
2 a2

Z0
−
(

9+ 30a2

22

)
〈P4〉 − 5〈P2〉 − 1

}
. (3.87c)

Asymptotic expressions for high values of a2 (i.e. high order) can also be obtained from
the corresponding formulae for the Kummer functions [Abramowitz and Stegun, 1965]. In
particular, in this high-order limit we find

〈P2〉 = 1− 1

a2
− 1

3a2
2

+ O
(
a−3

2

)
, (3.88a)

〈P4〉 = 1− 10

3a2
+ 25

9a2
2

+ O
(
a−3

2

)
, (3.88b)

where O
(
a−3

2

)
indicates the order of magnitude of the neglected terms.

(ii) Knowing 〈P2〉 and 〈P4〉. We now turn to the case where both 〈P2〉 and 〈P4〉 have been
experimentally determined. The first thing we might try is to test if the distribution derived
using just the information on 〈P2〉, is consistent with the observed 〈P4〉. If this is not the
case, and the experimental (or simulated) 〈P4〉 does not fall on the curve in Fig. 3.11b, we
can improve our maximum entropy distribution using Eq. 3.73 with L = 0,2,4. To do this
we have to find a2 and a4 from our given 〈P2〉 and 〈P4〉. The first thing to observe is that the
domain of the functions a2(〈P2〉,〈P4〉), a4(〈P2〉,〈P4〉) consists of the set of allowed values
of 〈P2〉,〈P4〉. To find these bounds it is useful to invoke Schwarz inequality [Abramowitz
and Stegun, 1965](∫ b

a

dx u(x)v(x)

)2

≤
(∫ b

a

dx u2(x)

)(∫ b

a

dx v2(x)

)
, (3.89)

where the functions u(x), v(x) are arbitrary as long as the integrals exist. Taking a,b to be the
extremes of the angular range together with u(x) ≡ f (x)P (x)1/2 and v(x) ≡ g(x)P (x)1/2

with P (x) the normalized distribution, we have

〈f (x)g(x)〉2 ≤ 〈f 2(x)〉〈g2(x)〉. (3.90)

In particular, if we take g(x) = 1, we have 〈f (x)〉2 ≤ 〈f 2(x)〉. A useful pair of inequalities
for our purposes is 〈cos2 β〉2 ≤ 〈cos4 β〉 ≤ 〈cos2 β〉. The explicit form of P2(x) and P4(x),
Eq. A.48, together with these inequalities yields a lower and upper bound on 〈P4〉:

35

18
〈P2〉2 − 5

9
〈P2〉 − 7

18
≤ 〈P4〉 ≤ 5

12
〈P2〉 + 7

12
, (3.91)

that define the region of space where possible values of 〈P2〉, 〈P4〉 consistent with their
respective trigonometric form should lie. It goes without saying that it makes sense to check
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(a) (b)

Figure 3.13 (a) The maximum entropy coefficients a2 and (b) a4 in the distribution
P (β) ∝ exp[a2P2(cosβ) + a4P4(cosβ)] shown as a function of 〈P2〉 and 〈P4〉 [Chiccoli
et al., 1988c].

(a) (b)

Figure 3.14 (a) The order parameters 〈P2〉 and (b) 〈P4〉 as a function of the maximum
entropy coefficients a2 and a4 in the distribution P (β) ∝ exp[a2P2(cosβ) + a4P4(cosβ)]
[Chiccoli et al., 1988c].

that experimental values do fall within this area. The parameters a2,a4 can be explicitly
determined from 〈P2〉, 〈P4〉 solving the non-linear system

〈P2〉 =
∫ 1

−1
dxP2(x) exp[a2P2(x)+ a4P4(x)]

/∫ 1

−1
dx exp[a2P2(x)+ a4P4(x)], (3.92a)

〈P4〉 =
∫ 1

−1
dxP4(x) exp[a2P2(x)+ a4P4(x)]

/∫ 1

−1
dx exp[a2P2(x)+ a4P4(x)]. (3.92b)

and the results are shown in Fig. 3.13. We also plot, in Fig. 3.14, 〈P2〉 and 〈P4〉 in terms
of a2 and a4. We note that, although we normally expect 〈P2〉 to be greater than 〈P4〉 as it
was the case in the P2 distribution [Pottel et al., 1986] (see Fig. 3.11), a range of solutions
exists also for 〈P4〉 greater than 〈P2〉. Indeed, an interesting case is that of 〈P4〉 > 〈P2〉,
with the values falling on a curve like the continuous one in Fig. 3.15a. This unusual
behaviour has been found to be consistent with fluorescence depolarization data of the probe
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(a) (b)

Figure 3.15 (a) the dependence of the fourth-rank order parameter 〈P4〉 on the second-rank
one 〈P2〉 for a purely fourth-rank distribution, Eq. 3.93 ( ). We also show the analytical
approximation (see text) in Eq. 3.97 ( ). (b) The angular variation of the normalized pure
P4 distribution P (cosβ) ∝ exp[a4P4(cosβ)] in Eq. 3.93 with a4 = 1,2,3.

Figure 3.16 ME uniaxial orientational distributions P (β) corresponding to various input
〈P2〉–〈P4〉 pairs inside the region of allowed values (in grey) comprised within the bounds
of Eq. 3.91. The curves marked L = 2, L = 4 correspond to a pure P2 (Maier–Saupe like,
Eq. 3.74) and pure P4 (Eq. 3.93) distribution.

diphenyl-hexatriene obtained for the fluorescent probe DPH embedded in DMPC membrane
vesicles [Pottel et al., 1986]. In turn, the behaviour agrees with that predicted by a pure P4

effective potential model [Zannoni, 1979b], which corresponds to a probability density

P (x) = exp [a4P4(x)]
/∫ 1

−1
dx exp [a4P4(x)]. (3.93)
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We can obtain, also in this case, a simple approximation to the 〈P4〉 versus 〈P2〉 curve
[Zannoni, 1988]. A Taylor expansion of the expressions for 〈P2〉 and 〈P4〉 with respect to
a4 yields the first few terms as

〈P2〉 =
10a2

4

693
+ 10a3

4

3003
+ 1010a4

4

26189163
+ · · · , (3.94)

〈P4〉 = a4

9
+ 9a2

4

1001
− 1367a3

4

1378377
+ 457a4

4

2909907
+ · · · , (3.95)

Reversion of the series for 〈P4〉 gives a4 in terms of 〈P4〉

a4 = 9〈P4〉 − 6561〈P4〉2
1001

+ 273458673〈P4〉3
17034017

+ · · · (3.96)

and, with a little of computer algebra (see, e.g., [Harris, 2014])

〈P4〉 =
√

77

90
〈P2〉 1

2 − 69

260
〈P2〉 + 7794479

1007760
√

770
〈P2〉 3

2 + · · · . (3.97)

This simple power series in 〈P2〉 1
2 gives a good representation of the curve for 〈P2〉 up

to 0.9. In Fig. 3.15a we show the analytical approximation to the 〈P4〉 vs. 〈P2〉 curve from
the truncation in Eq. 3.97 and the curve obtained by direct numerical integration. Using
Eq. 3.97 it is quite easy to test if a set of 〈P2〉, 〈P4〉 values corresponds to a pure P4

distribution as plotted in Fig. 3.15b. Note that this distribution shows a maximum not only
for molecules parallel to d, but also a smaller one for molecules perpendicular to it.

In essence, the ME approach offers a way of converting measured values of 〈P2〉 and 〈P4〉,
whose significance is not immediately easy to understand, in the most likely distributions
compatible with those values, allowing an immediate interpretation of experimental results
in terms of preferred orientations. As an example we show in Fig. 3.16 the most likely
distributions obtained from various pairs of order parameters 〈P2〉, 〈P4〉.

3.9 Orientational Order Parameters from X-ray Diffraction

An experimental technique that can in principle provide also orientational order parameters
of rank higher than 4, is X-ray diffraction (XRD), whose basic principles are described in
Appendix J. Let us start considering a system of N rigid molecules, each with M point
scattering centres (atoms in real molecules or in a realistic model). Then the scattered
intensity at scattering vector q is

I (q) ∝
〈∣∣∣∣∣

N∑
i=1

M∑
a∈i
Ea,i(q)

∣∣∣∣∣
2〉
, (3.98a)

∝
N∑
i=1

M∑
a∈i

N∑
j=1

M∑
b∈j
ba,i(q) b∗b,j (q)

〈
eiq · (ra,i−rb,j )

〉
, (3.98b)

where Ea,i is the field scattered by centre a on molecule i and the sums in Eq. 3.98b
run on theN molecules i and j , as well as on theM atoms a,b belonging to each of them and
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located at ra,i , rb,j , respectively. Eq. 3.98b can be used to obtain I (q) if the coordinates of
all atoms are available, e.g. from the atomistic simulations discussed in Chapter 12, possibly
approximating ba,i with the number of electronsZa on that atom. Simpler, and perhaps more
illuminating, formulas can be written if we can assume the same scattering factor, b(q), for
all centres. Then

I (q) ∝ |b(q)|2S(q), (3.99)

where we have introduced the structure factor S(q)

S(q) = 1

N

N∑
i,j=1

M∑
a,b=1
a∈i,b∈j

〈
eiq · (ra,i−rb,j )

〉
, (3.100a)

= 1

N

N∑
i,j=1

M∑
a,b=1
a∈i,b∈j

{
δi,j δa,b + δi,j

〈
eiq · (ra,i−rb,i )

〉
+ (1− δi,j )

〈
eiq · (ra,i−rb,j )

〉}
,

= 1+ Ss(q)+ Sd (q). (3.100b)

Here, apart from the first constant term which is irrelevant, we have regrouped terms in the
‘self’ contribution, from atoms in the same molecule:

Ss(q) = 1

N

N∑
i

M∑
a,b∈i

〈
eiq · (ra,i−rb,i )

〉
(3.101)

and the ‘distinct’ one, where each of the nuclei involved belongs to two different molecules:

Sd (q) = 1

N

N∑
i,j=1
i �=j

M∑
a,b=1
a∈i,b∈j

〈
eiq · (ra,i−rb,j )

〉
. (3.102)

If nuclei a and b belong to molecules i and j then ra,i − rb,j = r ij + ha,i − hb,j,

where ha,i , hb,j locate the nuclei a, b in their respective molecular frames and r ij is
the separation vector, joining the centres of the two molecules. The single molecule and
intermolecular term can, to some extent, be separated performing the XRD experiment in
different conditions or looking at different q. We shall assume that this is the case and
consider only the single molecule scattering term, while the intermolecular one will be
treated in Chapter 4.

Writing the laboratory frame position of each atomic centre as ra,i = r i + ha,i, where r i

is the position of the molecular frame origin of the ith molecule and ha,i the position of atom
a in that frame, we have, leaving out the now redundant i label, that the single molecule
contribution becomes

Ss(q) =
M∑

a,b=1

〈
eiq ·hab

〉
, a �= b, (3.103)

where hab = ha−hb is the intramolecular separation vector between two scattering centres.
The Bragg-like reflection condition will be obtained for q = 2π/hab. To obtain a relation
with the order parameters we can use the Rayleigh plane wave expansion (see Eq. J.7) to
write
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Ss(q) =
∑
L

M∑
a,b=1

iL(2L+ 1)jL(qhab)
〈
DL

0,0(q̂ · ĥab)
〉
, a �= b, (3.104)

with jL(x) a spherical Bessel function [Abramowitz and Stegun, 1965] and the cap over the
vectors indicating their unit length. Now, applying the closure relation of Wigner rotation
matrices, Eq. F.13 we can write the relative orientation between the interatomic vector ĥab

and q̂ in terms of rotations of �qd from director d to q̂, of the rotation �Md from director
to molecule fixed frame M and of the further rotation �habM that brings from M to ĥab as
follows: 〈

DL
0,0(q̂ · ĥab)

〉 =∑
m

〈
DL∗

0,m(�dhab )
〉
DL∗
m,0(�qd ), (3.105a)

=
∑
m,p

DL∗
m,0(�qd )

〈
DL
m,p(�Md )

〉
DL
p,0(�habM), (3.105b)

=
∑
p

DL∗
0,0(�qd )〈DL

0,p(�Md )
〉
DL
p,0(�habM), (3.105c)

where we have used the uniaxiality of the LC phase to write 〈DL
m,p(�Md )〉 =

δm,0〈DL
0,p(�Md )〉. Substituting Eq. 3.105c into Eq. 3.104 shows that the single molecule

scattering depends on a series of order parameter of increasing rank L. If the scatter-
ing centres are along the molecular axis, with direction along the unit vector u, then
�habM = (0,0,0) and DL

p,0(0,0,0) = δp,0 for all a,b pairs. Thus,

Ss(q) =
∑
L
even

M∑
a,b=1
a �=b

iL(2L+ 1)jL(qhab)〈PL(q̂ · d)〉d〈PL〉, (3.106)

where 〈PL〉 is an orientational order parameter of rank L with respect to the director d:
〈PL〉 = 〈DL

0,0(�Md )〉 = 〈PL(u · d)〉. For a nematic or an orthogonal non-polar smectic
(e.g. a SA), L has to be even. The geometry of the various experiments normally performed
on liquid crystals is shown in Fig. J.5. The average 〈. . .〉d is instead over the distribution
of directors, assumed to be static during the experiment. Thus, if we have an isotropic
polydomain in the area observed, 〈PL(u · d)〉 = δL,0. Then Ss(q) = j0(q�z) and the
information on the order parameters is lost, even if the system is locally oriented (e.g. a
spherical bilayer membrane vesicle, as in Fig. 1.51). If instead the sample is a monodomain
with q̂||d, then 〈PL(q̂ · d)〉 = (−1)L and we have

Ss(q||d) =
∑
L even

iL(2L+ 1)jL(q�z)〈PL〉, (3.107a)

≈ j0(q�z)− 5j2(q�z)〈P2〉 + 9j4(q�z)〈P4〉 + · · · . (3.107b)

The first few spherical Bessel functions have a very simple form, e.g. j0(x) = sin x/x,
j2(x) = (

3− x2
)

sin x/x3 − 3 cos x/x2. At the Bragg reflection condition, when the
argument q�z = 2π we have j0(2π ) = 0, j2(2π ) = −(3/4π2), j4(2π ) = [5/(2π2) −
105/(16π4)]. Thus, the experimental data contain in principle information on order
parameters higher than four. However, if the order parameters of higher rank get smaller,
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(T – TNI) (°C)

Figure 3.17 Experimental XRD 〈P2〉 (���) and 〈P4〉 (�) order parameters for 5CB close to
(T −TNI ) (◦C). The lines are from a pure P2, Maier–Saupe-like distribution (see Chapter 7)
[Sanchez-Castillo et al., 2010].

e.g. if〈P6〉 < 〈P4〉 < 〈P2〉, higher reflections will attenuate and be difficult to obtain, also
recalling the decrease of the atomic scattering factor b(q) with increasing q [Leadbetter
and Norris, 1979]. In general, order parameters higher than L = 2 remain hard to obtain
with XRD [Jenz et al., 2016]. However, in Fig. 3.17 we see the order parameters 〈P2〉 and
〈P4〉 for 5CB obtained from XRD [Sanchez-Castillo et al., 2010].

3.10 Non-Cylindrical Molecules in Uniaxial Phases

In Sections 3.3–3.9 we have considered in some detail the treatment of cylindrically sym-
metric particles. This allows us to skip some explicit steps, since the logic here is the same,
even though the algebra is somewhat more complicated. To start with, we note that when
the rigid molecule of interest, which we still assume to be dissolved in a uniaxial phase,
cannot be assimilated to a rod-like or a disc-like particle, we need an extra angle in defining
its orientation (Fig. 3.1b). Thus, if β is the angle between the z-axis of the particle and
the director (taken to be the laboratory z-axis), the extra angle γ is an angle of rotation
around the molecular z-direction [Rose, 1957]. The probability of finding the molecule at a
specific orientation,P (β,γ ), can be expanded like any other function of the two Euler angles
(β,γ ), in a complete basis set of spherical harmonics DL

0,n(β,γ ). These are often written as

spherical harmonics, YL,m(β,α) = [(2L+ 1)/4π]1/2DL∗
0,n(β,γ ) (cf. Eq. F.11) and the first

few are given explicitly in Eqs. A.54a–A.54f. Sticking to our Wigner-type notation,

P (β,γ ) =
∞∑
L=0

L∑
n=−L

pLnD
L
0,n(β,γ ). (3.108)

Orthogonality of the basis set immediately permits identifying the coefficients pLn and
obtaining
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P (β,γ ) = 1

4π

∞∑
L=0

L∑
n=−L

(2L+ 1)〈DL∗
0,n〉DL

0,n(β,γ ). (3.109)

The averaged Wigner orientation matrices 〈DL
0,n〉 provide a complete characterization of

P (β,γ ) and represent the orientational order parameters for the problem. Since P (β,γ ) is
real, recalling the expression for the complex conjugate of a Wigner function (Eq. F.6), we
have 〈DL∗

0,n〉 = (−1)n〈DL
0,−n〉, and the number of independent quantities is correspondingly

reduced. At second-rank level, L = 2, there are at most five independent order parameters
〈D2

0,n〉, n = −2, − 1.0,1,2 .

3.10.1 Molecular Symmetry

Whatever the formalism used, the relevant order parameters for molecules belonging to a
certain point group can be listed. A fairly detailed treatment of the effect of symmetry on
the order parameters is given in Appendix G. Here, in Table 3.1, we just report the results
for various molecular symmetries and a uniaxial LC phase.

3.10.2 Cartesian Description: Ordering Matrices

An alternative definition for order parameters in uniaxial phases can be obtained by expand-
ing the singlet orientational distribution P (β,γ ) in terms of the components (or direction

Table 3.1. The second- and fourth-rank independent orientational order parameters
〈DL

0,n〉 for molecules of various point group symmetry (we use the Schönflies notation,
see, e.g., [Lax, 1974]) in a uniaxial phase; n2, n4 are the number of independent terms
[Zannoni, 1979c]

Point group n2 〈D2
0,n〉 n4 〈D4

0,n〉

C1, Ci 5 〈D2
0,0〉,〈D2

0,1〉 9 〈D4
0,0〉, 〈D4

0,1〉,〈D4
0,2〉

〈D2
0,2〉 〈D4

0,3〉, 〈D4
0,4〉

Cs , C2, C2h 3 〈D2
0,0〉, 〈D2

0,2〉 5 〈D4
0,0〉, 〈D4

0,2〉,〈D4
0,4〉

C2V , D2, D2h 2 〈D2
0,0〉, Re〈D2

0,2〉 3 〈D4
0,0〉, Re〈D4

0,2〉, Re〈D4
0,4〉

C3, S6 1 〈D2
0,0〉 3 〈D4

0,0〉, 〈D4
0,3〉

C4,C4h,S4 1 〈D2
0,0〉 3 〈D4

0,0〉, 〈D4
0,4〉

C3V , D3, D3d 1 〈D2
0,0〉 2 〈D4

0,0〉, Re〈D4
0,3〉

C4V , D2d , D4h, D4 1 〈D2
0,0〉 2 〈D4

0,0〉, Re〈D4
0,4〉

C5, C5h, C5V 1 〈D2
0,0〉 1 〈D4

0,0〉
D4d , D5, D5h, D5d 1 〈D2

0,0〉 1 〈D4
0,0〉

C3h, C6, C6h, C6V 1 〈D2
0,0〉 1 〈D4

0,0〉
D3h, D6, D6h, D6d 1 〈D2

0,0〉 1 〈D4
0,0〉

C∞, C∞V ,C∞h, D∞h 1 〈D2
0,0〉 1 〈D4

0,0〉
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cosines) da ≡ dza(β,γ ), (a = x,y,z) of the director (
∑
a d

2
a = 1) with respect to a molecule

fixed frame [Saupe, 1966; Buckingham, 1967a; Zannoni, 1979c; Turzi, 2011; Kwak and
Kim, 2016]. Thus, for non-polar phases

P (β,γ ) = 1

4π
+ 5

4π

∑
a,b

Sabdadb + 9

4π

∑
a,b,c,d

Sabcddadbdcdd + · · · . (3.110)

For non-polar phases, like nematics, only the terms with an even number of indices (even
rank tensors) are different from 0. In particular, the symmetric and traceless second-rank
matrix with elements

Sab = 3

2

〈
dadb

〉− 1

2
δa,b, (3.111)

is called the Saupe ordering matrix and

Sabcd = 35

8
〈dadbdcdd〉 − 5

8

(〈dadb〉δcd + 〈dadc〉δb,d + 〈dadd〉δb,c + 〈dbdc〉δa,d
+〈dbdd〉δa,c + 〈dcdd〉δa,b

)+ 1

8

(
δa,bδc,d + δa,cδb,d + δa,dδb,c

)
. (3.112)

The following bounds [Buckingham, 1967b] hold:

− 1

2
� S11,S22,S33 � 1 ; − 3

4
� S31,S32,S12 � 3

4
; − 3

7
� S3333 � 1. (3.113)

As we see the Cartesian description rapidly becomes quite complicated and even at fourth-
rank level is rather heavy. The description of ordering in terms of Wigner matrices is nor-
mally more convenient for theoretical manipulations in view of the simple transformation
properties of these functions under rotation (cf. Appendix F). However, the ordering matrix
formalism is very convenient and most frequently used in the analysis of experimental
data, which normally involve only second-rank tensors anyway, as we see in the next
subsections of Section 3.10.

3.10.3 Brick-like Biaxial Molecules

In many physical situations, the assumption is made that the molecules of interest can
be considered as effective brick-like (D2h) biaxial particles [Straley, 1974; Cuetos et al.,
2017]. This case, which includes many compounds relevant in experimental studies, e.g.
anthracene, perylene, pyrene, etc., will now be discussed in some detail. First, we choose
our molecular frame axis along the three twofold symmetry,C2, axes. Since we can turn our
biaxial particle upside down without changing anything we only need to retain in Eq. 3.109
functions that are invariant for this transformation. Remembering that the spherical harmon-
ics DL

0,n(β,γ ) are multiplied by (−1)L under the same operation (cf. Appendix F), we see
that we only need to expand in Wigner matrices with even rank L.

Since the principal frame of the ordering matrix is determined by symmetry, at second-
rank level there are two relevant order parameters, 〈D2

0,0〉, Re〈D2
0,2〉 or, e.g. Szz, Sxx −Syy .

While 〈D2
0,0〉 measures the alignment of the z molecular axis with respect to the director,

as we have seen for cylindrical molecules, Re〈D2
0,2〉 is a molecular biaxiality parameter.
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Figure 3.18 Allowed regions for the order parameters, 〈D2
0,2〉 and 〈P2〉.

It provides the difference in ordering of the x and y molecular axes in that liquid crystal
solvent and at the given thermodynamic conditions. We have, explicitly,

Re〈D2
0,2〉 =

√
(3/8) 〈sin2 β cos 2γ 〉 = 〈[1− P2(cosβ)] cos 2γ 〉 /

√
6. (3.114)

The maximum of biaxiality is obtained when the single particle orientational distribution
P (β,γ ), instead of being uniformly distributed in γ , is so peaked that only γ = 0, or
respectively γ = π/2, are possible. In these two limits, P (β,γ ) reduces to P (β)δ(γ ) and
P (β)δ(γ − π/2), so in general the biaxiality order parameter is bounded as

(〈P2〉 − 1)/
√

6 ≤ Re〈D2
0,2〉 ≤ (1− 〈P2〉)/

√
6. (3.115)

In Fig. 3.18 we show the regions of allowed order parameters determined in this way. When
〈P2〉 = 1 the biaxiality reduces to 0. In general, Re〈D2

0,2〉 can take values inside the triangu-
lar region defined by Eq. 3.115 as 〈P2〉 varies. An interpretation of the physical significance
of the various combinations of 〈P2〉 and Re〈D2

0,2〉, that is perhaps more immediate, can be
obtained by constructing approximate molecular distributions consistent with a given set of
these order parameters with the ME technique introduced earlier for cylindrical molecules.

3.10.4 Linear Dichroism

The ordering matrix elements are easily related to the measurement of the averaged compo-
nents of a second-rank tensor. For example, let us consider a spectroscopic technique that
measures the components of a certain tensor A in the laboratory frame. The technique could
be again absorption spectroscopy and then the tensor would be the absorption tensor, but it
could equally well be entirely different. For instance, in a magnetic resonance technique, A
would be identified with a magnetic interaction tensor (see Appendix I). The average of A
along the director in our laboratory frame with d||Z is:

〈ALAB
ZZ 〉 =

∑
k,l

〈RZkAMOL
kl R

T
lZ〉 =

∑
k,l

〈dkdl〉AMOL
kl . (3.116)
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We can rewrite Eq. 3.116 adding and subtracting the scalar, isotropic value of the tensor,
i.e. a = 1

3 TrAMOL = 1
3 Tr〈ALAB〉 = 1

3

∑
k,l Aklδk,l, where we assume the laboratory and

molecular components to be connected by rotations. We find

〈ALAB
‖ 〉 = a + 2

3

∑
k,l

SklA
MOL
kl (3.117)

in terms of the Saupe ordering matrix S (Eq. 3.111). We also have the component perpen-
dicular to the director

〈ALAB
⊥ 〉 ≡ 〈ALAB

XX〉 = 〈ALAB
YY 〉 =

1

2

(
3a − 〈ALAB

‖ 〉), (3.118a)

= a − 1

3

∑
k,l

SklA
MOL
kl = a − 1

3
Tr(STAMOL). (3.118b)

The observed anisotropy is then

�ALAB ≡ 〈ALAB
‖ 〉 − 〈ALAB

⊥ 〉 =
∑
k,l

SklA
MOL
kl = Tr(STAMOL). (3.119)

The Saupe ordering matrix S describes the average orientation of the chosen molecule frame
in the laboratory. In the molecular frame diagonalizing S, which we call the ordering matrix
frame, we have

�ALAB = AMOL
xx Sxx + AMOL

yy Syy + AMOL
zz Szz (3.120)

and

〈ALAB
‖ 〉 = a + 1

3
(2AMOL

zz − AMOL
xx − AMOL

yy )Szz + 1

3
(AMOL
xx − AMOL

yy )(Sxx − Syy). (3.121)

The S matrix is, as we have already mentioned, traceless and symmetric. Its components
are explicitly

S =
⎛⎝〈 3

2 sin2 β cos2 γ − 1
2 〉 〈sin2 β cos γ sin γ 〉 〈sinβ cosβ cos γ 〉

〈sin2 β cos γ sin γ 〉 〈 3
2 sin2 β sin2 γ − 1

2 〉 〈sinβ cosβ sin γ 〉
〈sinβ cosβ cos γ 〉 〈sinβ cosβ sin γ 〉 〈 3

2 cos2 β − 1
2 〉

⎞⎠ . (3.122)

The order parameters can be easily converted from the Saupe to the Wigner rotation matrix
(spherical harmonics) form

Sxx − Syy =
√

6 Re〈D2
0,2〉, (3.123a)

Sxy = −
√

3

2
Im 〈D2

0,2〉, (3.123b)

Sxz = −
√

3

2
Re〈D2

0,1〉, (3.123c)

Syz =
√

3

2
Im 〈D2

0,1〉, (3.123d)

Szz = 〈D2
0,0〉 = 〈P2〉. (3.123e)
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In particular, the observed anisotropy of a second-rank property A is

�ALAB = 〈P2〉
[
AMOL
zz − 1

2
AMOL
xx − 1

2
AMOL
yy

]
+
√

3

2
Re〈D2

0,2〉
[
AMOL
xx − AMOL

yy

]
. (3.124)

It should be stressed that other equivalent formulations for describing orientational order
have been given. For instance, a set of ordering constants particularly used in optical spec-
troscopy is that of orientation factors [Michl and Thulstrup, 1986]Kab = 〈(a ·Z)(b ·Z)〉 =
2
3Sab + 1

3δa,b, where a, b are unit vectors parallel to the x, y or z molecular axes and
Z ‖ d . The Cartesian formulation can be extended to higher ranks both for the S matrices
and the orientation factors although it becomes progressively more complicated than the
spherical one as the rank increases, as mentioned earlier. The same complications also
arise when we want to establish relations between measured quantities of arbitrary rank
and their molecular counterpart. An alternative and simpler possibility is to use, rather than
the standard Cartesian components Aab of a tensor quantity, certain suitable combinations
AL,m, called spherical components that transform between themselves in a convenient way
under rotation (see Appendix B). In particular, the (2L+1) spherical components of rank L
transform under rotation as

A
L,m
LAB =

L∑
n=−L

DL∗
m,n(α,β,γ )AL,nMOL, (3.125)

where the Wigner function DL∗
m,n(α,β,γ ) ≡ DL∗

m,n(�ML) of the three Euler angles define the
rotation from laboratory to molecule frame.

Here we just wish to start showing the immediate applicability of this formalism to our
linear dichroism problem. First, we find from Eq. B.22i the explicit expression for AZZ .
This is, in the lab frame where measurements are made,

ALAB
ZZ = −

1√
3
A

0,0
LAB +

√
2

3
A

2,0
LAB. (3.126)

The first term on the right is a scalar, −A0,0
LAB/

√
3 = TrA / 3 = a (Eq. B.21a) and does

not change with rotations. For the second, we just use Eq. 3.125. The averaged measurable
spherical components will be

〈AL,mLAB 〉 =
∑
n

〈DL∗
m,n〉AL,nMOL. (3.127)

For a uniaxial phase the invariance for rotation around z requires:

〈DL
m,n〉 = δm,0〈DL

0,n〉. (3.128)

The measured absorption parallel to the director can then be written as

〈ALAB
‖ 〉 = 〈ALAB

ZZ 〉 = a +
√

2

3

∑
n

〈D2∗
0,n 〉A2,n

MOL. (3.129)
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Quite similarly the measured perpendicular component will be

〈ALAB
⊥ 〉 = 1

2

(
〈ALAB
XX〉 + 〈ALAB

YY 〉
)
= a −

√
1

6

∑
n

〈D2∗
0,n〉A2,n

MOL. (3.130)

For a biaxial molecule the observable anisotropy of 〈A〉 is

〈ALAB
‖ 〉 − 〈ALAB

⊥ 〉 =
√

3

2

[
A

2,0
MOL〈D2

0,0 〉 + 2Re
(
A

2,2
MOL〈D2∗

0,2〉
)]

. (3.131)

Thus, the measurement of at least two anisotropy values is required to determine both 〈D2
0,0〉

and 〈D2
0,2 〉. Moreover, the parameter of deviation from cylindrical symmetry, 〈D2

0,2〉, only

becomes measurable when the tensor A has an off axis component so that A2,2
MOL �= 0. If the

molecule has effective cylindrical symmetry, in the sense that the order parameters

〈D2
0,n〉 = 〈D2

0,0〉δn,0 = 〈P2〉δn,0 (3.132)

within experimental error, then we recover the uniaxial case:

〈P2〉 =
〈ALAB

‖ 〉 − 〈ALAB
⊥ 〉

(AMOL)‖ − (AMOL)⊥
. (3.133)

We should be well aware of the fact that the order parameter 〈P2〉 measured for a molecule
dissolved in a liquid crystal is not the same as that of the pure liquid crystal, since solute-
solvent terms in the anisotropic potential acting on the molecule are different from the
solvent-solvent ones. This also means that except special cases where the solute is very
similar to the solvent, probe techniques give information on the behaviour of solutes in
anisotropic phases and thus, only indirectly report on the phase itself. While this has been
initially perceived as a limitation of these class of measurements, there is instead a lot of
scope for learning about the behaviour of interesting classes of molecules in liquid crystals
[Burnell and de Lange, 2003].

3.10.5 Nuclear Magnetic Resonance Dipolar Couplings

The effective spin Hamiltonian for a pair of nuclear spins Îi and Îj (e.g. 1H or 13C) inter-

acting through their magnetic dipoles can be written (see Appendix I) as Ĥ D = Îi [Tij ]Îj ,
where [Tij ] is the second-rank dipolar coupling tensor, whose explicit form is given in
Eq. I.6. In the usual high-field approximation [Emsley and Lindon, 1975] only the part of
the interaction Îi[Tij ]Îj commuting with [Îi]Z is retained. Here [Îi]Z is the nuclear spin
projection operator, quantized along the magnetic field H of the spectrometer, which in
turn is assumed to define the laboratory z-axis. Within the limits of the approximation this
means that the energy levels separation and thus the observed splittings are proportional
to the average couplings 〈[T LAB

ij ]ZZ〉, where the average indicated by the angular brackets
is over all the molecular reorientations taking place during the NMR observation time
windows. As mentioned in Appendix I, this is normally of the order of microseconds,
sufficient to cover equilibration of molecular motions for a ‘small’ molecule reorienting in
low viscosity ordinary liquids or nematics. This in turn means that these are the quantities
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(a)

(b)

Figure 3.19 (a) The proton NMR spectrum of benzene in the isotropic phase and (b) in a
liquid crystal solvent [Schmidt-Rohr et al., 1994].

that we can extract from the spectra, i.e. our observables. Since the trace of [Tij ] is 0,
NMR dipolar couplings cannot be measured in isotropic fluid phases, while the averaged
〈[Tij ]ZZ〉 components are non-vanishing and measurable in anisotropic phases. In Fig. 3.19
we see for example the proton NMR spectrum of benzene in the isotropic phase and as a
solute dissolved in a liquid crystal. The measured dipolar couplings, normally called Dij ,
are obtained fitting the spectra calculated from the spin Hamiltonian to the experimental
one and we can write:

Dij ≡ 〈 [T LAB
ij ]ZZ〉 =

√
(2/3)

〈
[Tij ]2,0

LAB

〉
, (3.134a)

= −h γi γj
4π2

〈
P2(r̂ ij · Ĥ )

r3
ij

〉
= − μ0

8π2
γiγj�

〈
3 cos2 θij − 1

2r3
ij

〉
, (3.134b)

where r̂ij and Ĥ are unit vectors along the internuclear vector rij and the spectrometer
magnetic field, respectively, with cos θij = r̂ij · Ĥ , while μ0 = 4π × 10−7T2J−1m3

is the magnetic permeability in vacuum, γi = giμN/� is the nuclear gyromagnetic ratio
of nucleus i,μN = 5.051 × 10−27JT−1m3 is the so called nuclear magneton. In general,
r ij will depend on molecular orientation and conformation, thus dipolar couplings can in
principle be useful for recovering geometrical distribution functions. To relate the observed
〈T 2,0
ij 〉 to molecular constants and order parameters, we write down the coupling T 2,0

ij in the
laboratory frame and then transform it to a molecule frame. This requires introducing a few
auxiliary coordinates systems:

(i) L (or LAB) frame: this is our laboratory coordinate system, with z||H the spectrometer
magnetic field direction.
(ii) d frame, with z||d the average director.
(iii) d ′ frame, with z||d ′ the instantaneous director orientation.
(iv) M (or MOL) frame. This is a reference system fixed on the molecule, e.g. the frame
that diagonalizes its ordering matrix.
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〈
[Tij ]2,0

LAB

〉 = ∑
m,m′,n

D2∗
0,m(�dL)

〈
D2∗
m,m′ (�d ′d ) D2∗

m′,n(�Md ′) [Tij ]2,0
MOL

〉
, (3.135)

where the Wigner rotation matrix D2
p,q (�BA) connects frameA to frame B and the angular

brackets indicate an average over all the relevant motions. In an ordinary NMR experiment
with a nematic solvent the director aligns along the spectrometer magnetic field or perpen-
dicular to it according to the positive or negative sign of the diamagnetic anisotropy �χ of
the liquid crystal host. It can usually be assumed that director fluctuations can be neglected,
and if this is the case, D2

m,m′ (�d ′d ) = δm,m′ . If, furthermore, the mesophase is uniaxial, i.e.
invariant for an arbitrary rotation around the director, a δm,0 restriction in Eq. 3.128 follows.
The observed, average couplings

〈
[Tij ]2,0

LAB

〉
can thus be written as〈

[Tij ]2,0
LAB

〉 = P2(d ·H )
∑
n

〈
D2∗

0,n [Tij ]2,n
MOL

〉
. (3.136)

We note that to be able to obtain a motionally averaged spectrum the dynamics of the
molecule has to be fast on the NMR time scale. If this is not true, we have in fact that
the NMR spectrum will be a superposition of spectra coming from the differently oriented
domains, a so-called polycrystalline or powder or poly-liquid-crystalline-type spectrum. If
we can assume our probe molecule to be a rigid one, the Tij couplings will be constant in
the chosen molecule frame, and〈

[Tij ]2,0
LAB

〉 = P2(d ·H )
∑
n

〈D2∗
0,n〉[Tij ]2,n

MOL, (3.137)

where 〈D2
0,n〉 are orientational order parameters. If the molecule is rigid so that the inter-

nuclear distances rij are essentially constant (neglecting vibration fluctuations), then the
average in Eq. 3.134b can be approximated with 〈P2(cos θij )〉 /r3

ij .

3.10.6 Deuterium Nuclear Magnetic Resonance

One of the most convenient and most often used observables obtainable from NMR spectra
measured in anisotropic solvents, is a set of nuclear quadrupolar splittings for nuclei with
spin Ik ≥ 1, notably deuterons, 2H or D [Emsley and Lindon, 1975; Photinos et al., 1990;
Ernst et al., 1991; Dong, 1997; Sugimura and Luckhurst, 2016]. For such a nuclear spin
Ik in a given local chemical environment (e.g. the Deuterium of an aliphatic or aromatic
C-D bond), the quadrupole coupling tensor qk , written in a suitable molecular frame is
[qk]Mq = eQkVk / [2�Ik(2Ik − 1)], where Qk and Vk are the quadrupole moment and
the electric field gradient tensor at the site of nucleus k, measured with respect to the
local molecular frame Mq which makes qk diagonal and with quadrupolar biaxiality
ηk ≡ ([qk]yy − [qk]xx)/[qk]zz. For the case of a C-D bond, the principal system of the
quadrupolar tensor, Mq has z-axis along the bond. The tensor qk is traceless and thus its
motionally averaged value can be measured only in anisotropic phases. In particular, for
uniaxial liquid crystals, the only relevant component is 〈 [qk]LAB

ZZ〉, where Z is the laboratory

https://doi.org/10.1017/9781108539630.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.004


152 Order Parameters

magnetic field direction that we take to be parallel to the mesophase director. Using spherical
components we can write, similarly to what we did in Sections 3.10.4 and 3.10.5,

〈 [qk]
2,0
LAB 〉 =

2∑
n=−2

〈D2∗
0,n(�Md )〉[qk]2,n

MOL, (3.138a)

= [qk]
2,0
Mq

2∑
n=−2

〈D2∗
0,n(�Md )〉

{
D2∗
n,0(�qM)− ηk√

6

[
D2∗
n,2(�qM)+D2∗

n,−2(�qM)
]}
,

(3.138b)

where�qM represents the orientation of the principal quadrupole frame Mq (i.e. of the C-D
bond in essence), in the molecular ordering matrix (M ≡ MOL) eigenframe and we have
assumed the director to be along the magnetic field. If this is not the case, and the director
makes an angle with H , the RHS should be multiplied byP2(d ·H ). Since in Eq. 3.138b one
has products of geometric factors and order parameters, the determination of absolute values
of the latter requires knowing the geometry of the solute and quadrupolar tensor parameters.
In practice, quadrupolar splitting constant and asymmetry parameter are relatively standard
[Jacobsen and Pedersen, 1981]. For C-D bonds the value of qzz =

√
2/3[qk]

2,0
Mq

changes

with the hybridization: for sp ≈ 200 kHz, sp2 ≈ 185 kHz, sp3 ≈ 170 kHz [Millet and
Dailey, 1972]. The biaxiality parameter η is much smaller (≈ 0.05 kHz) and can normally
be neglected. For a given deuteron the Deuterium NMR (DNMR) spectrum contains a pair
of lines (a doublet) and the average value of this quadrupolar component for nucleus k
obtained from the splitting can be written, neglecting the small quadrupolar biaxiality η, as

�νk = 3

2

〈
[qk]ZZ

〉 ≡ √
3

2

〈
[qk]

2,0
LAB

〉
, (3.139)

where 〈 [qk]2,0
LAB 〉 ≈ [qk]

2,0
Mq

∑2
n=−2〈D2∗

0,n(�Md )〉D2∗
n,0(�′qM). For a molecule with approxi-

mate brick-like shape only n = 0, ± 2 terms appear. In Fig. 3.20 we show as an example
the order parameter Syy − Sxx =

√
6Re〈D2

0,n(�Md )〉 versus −Szz = −〈D2
0,0(�Md )〉 for

nitrobenzene in various nematics. In all cases a qzz = 185 kHz was assumed [Catalano
et al., 1983].

3.10.7 Maximum Entropy Distributions

Having determined a set of biaxial order parameters 〈DL
0,n〉 we can obtain the ‘best’

(flattest) distribution compatible with them using Information Theory and the ME method
[Jaynes, 1957a; Zannoni, 1988] with a simple generalization of the uniaxial case discussed
in Section 3.8.2 as

P (β,γ ) = exp
{∑
L,n

aLnD
L
0,n(β,γ )

}
≡ 1

Z0
exp

{−U (β,γ )
}

(3.140)

with

−U (β,γ ) ≡
Lmax∑
L=2
L even

∑
n

aLnD
L
0,n(β,γ ) (3.141)
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Figure 3.20 Ordering matrix components for fully deuterated nitrobenzene in EBBA(•),
PCH7(�), ZLI-1167(�) from DNMR. The lines correspond to biaxiality estimates for the
same solute obtained assuming the attractive (dispersive) (—–) or repulsive (- - -) interac-
tions discussed in Chapters 5 and 7 with the dotted lines ( ) indicating their uncertainty
limits [Catalano et al., 1983].

and where the coefficients aL,n are obtained solving the non-linear system of consistency
constraints

〈DL
0,n〉 =

∫ π

0
dβ sinβ

∫ 2π

0
dγ DL

0,n(β,γ ) exp
{∑
L,n

aLnD
L
0,n(β,γ )

}
, (3.142)

with a0,0 derived from the normalization constraint 〈D0
0,0〉 = 1. For a biaxial solute where

〈D2
0,0〉 and Re〈D2

0,2〉 are determined, we have simply

P (β,γ ) = exp
{
a[P2(cosβ)+ ξReD2

0,2(β,γ )]
}∫ π

0 dβ sinβ
∫ 2π

0 dγ exp
{
a[P2(cosβ)+ ξReD2

0,2(β,γ )]
}, (3.143)

with a ≡ a2,0, ξ ≡ a2,2/a2,0. The parameter ξ is a measure of deviation from cylindrical
symmetry, that reduces to 0 for uniaxial molecules. To illustrate the interplay between
order parameters and distributions, we show in Fig. 3.21 a few examples of distributions
corresponding to particles of different shapes: biaxial particles similar to a distorted disc (a),
(c), uniaxial discs (b) and rods (d), elongated biaxial objects with 〈P2〉 ≥ 0 and Re〈D2

0,2〉 =
±0.05 (e,f). In cases (a–c) the particle has a greater probability of having its plate-like core
aligned parallel to the surrounding host molecules and thus the normal to that core (taken as
z-axis) perpendicular to the director. The sign of the order parameter tells us which of the two
axes in the plane is most aligned. It is interesting to note that biaxiality effects are somewhat
magnified for oblate molecules. If we recall the explicit expression of Re〈D2

0,2〉 (Eq. 3.114),
we see that, for a rod-like molecule, β tends to approach 0 as the order increases and hence
sin2 β and ultimately Re〈D2

0,2〉will vanish (see Fig. 3.22). This behaviour is different for an

oblate-like molecule, whereβ in a similar situation approachesπ/2 and sin2 β approaches 1,
thus allowing the dependence on the angle γ to emerge. Notice that here we have no means
of knowing if ξ is a single molecule property or not. The ME formalism just converts order
parameters in distributions, without offering a molecular interpretation to what is observed.
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Figure 3.21 Maximum entropy orientational distributions P (β,γ ) for a biaxial solute
molecule in a uniaxial host phase. The solute order parameters (〈P2〉, Re〈D2

0,2〉) are:
(a) (−0.3,0.2), (b) (−0.2,0.0), (c) (−0.3,−0.2), (d) (0.6,0.05), (e) (0.4,0.0), (f) (0.6,−0.05).
The light grey area of allowed order parameters is limited by the inequalities in Eq. 3.115.

Figure 3.22 A plot of the order parameter Re〈D2
0,2〉 vs 〈P2〉 for the biaxial distribution in

Eq. 3.143 and for ξ = (a) 0.2, (b) 0.4, (c) 0.6 calculated either by numerical integration
(continuous lines) or from the approximate analytic expansion Eq. 3.147 (dashed lines).

However, as we shall see in Chapter 7, Eq. 3.143 is formally identical to that obtained
with Mean Field Theory [Luckhurst et al., 1975], e.g. starting from dispersive interactions.
Curves of Re〈D2

0,2〉 versus 〈D2
0,0〉 or equivalently of (Sxx − Syy) vs Szz at constant ξ are

often used when analyzing experimental data. In Fig. 3.22 we see such a family of curves
for various values of the biaxiality parameter ξ .

We shall now try to find some simple approximations for the biaxial order parameters
calculated for integration over the distribution in Eq. 3.143. To do this we consider a fixed
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ξ and start with an expansion in terms of a. The first few terms are:

〈P2〉 = 1

5
a − (ξ2 − 2)

70
a2 − (ξ2 + 2)

350
a3 + 3ξ4 + 12ξ2 − 20

7700
a4 + · · · , (3.144)

Re〈D2
0,2〉 =

ξ

10
a − ξ

35
a2 − (ξ3 + 2ξ )

700
a3 + 3ξ3 + 2ξ

1925
a4 + · · · . (3.145)

Reversion of Eq. 3.144 gives

a = 5〈P2〉 + (25ξ2 − 50)〈P2〉2
14

+ (125ξ4 − 325ξ2 + 850)〈P2〉3
98

+ · · · . (3.146)

Substituting a in Eq. 3.145 and regrouping we find

Re〈D2
0,2〉 = 〈P2〉

(〈P2〉 − 1
)2
{ξ

2
+ 5ξ3 − 2ξ

28
〈P2〉 + · · ·

}
. (3.147)

We see from Fig. 3.22 that the simple approximation in Eq. 3.147 (dashed line) is quite
reasonable throughout the range and very good for 〈P2〉 up to 0.6–0.7. At low order param-
eters, e.g. when we study the order induced by a field in the isotropic phase (pretransitional
phenomena), the biaxiality order parameter is linear in 〈P2〉 and the slope immediately gives
a hint of ξ : Re〈D2

0,2〉 ≈ 1
2ξ 〈P2〉.

An example: pyridine in nematics. The second-rank order parameters for pyridine
in the commercial nematic 4-cyano-4′-alkyl bicyclohexane mixture ZLI-1167 and in
4-ethoxybenzylidene-4′-n-butylaniline (EBBA) at different temperatures, determined using
proton NMR [Catalano et al., 1983], are shown in Fig. 3.23a. The molecular coordinate
system assumed has the z-axis perpendicular to the pyridine plane and the y-axis going
through the positions of the nitrogen and of the hydrogen in para position. We see that the
behaviour in the two solvents is very different, showing that order parameters are in general
solute-solvent rather than just solute properties. While on one hand this represents a source
of complication, it also offers an interesting handle towards probing specific interactions in
the fluid phase. The construction of distributions corresponding to these different situations,
as shown in Fig. 3.21, can help in determining the most probable orientation. As a specific
example we show in Fig. 3.23b the ME probability distributions for pyridine in the liquid
crystal mixture, ZLI-1167, at the lowest temperature employed. A similar plot for pyridine
in EBBA hardly shows a dependence on the angle γ because of the small biaxiality values
(cf. Fig. 3.23a).

3.11 Orientational Order in Biaxial Phases

Biaxial phases have been found in smectics and more recently in nematics (see Section 1.6).
It is easy to see that the stacking of biaxial particles could give rise to a macroscopic biaxially
symmetric phase, as shown in Fig. 1.23. In this case the short axes are aligned in addition
to the long ones. The symmetry of the most common liquid crystal phases is summarized
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(a) (b)

Figure 3.23 (a) The molecular biaxiality order Re〈D2
0,2〉 vs 〈P2〉 for pyridine dis-

solved in the nematics EBBA (squares) and ZLI-1167 (triangles) [Catalano et al., 1983].
(b) The ME probability distribution P (β,γ ) for pyridine in ZLI-1167 at 〈P2〉 = −0.207,
Re〈D2

0,2〉 = 0.0624 [Zannoni, 1988].

in Table 3.2. In a non-uniaxial phase the purely orientational distribution will depend in
general on the three Euler angles, α,β,γ (Fig. 3.1b). Thus,

P (α,β,γ ) =
∑
Lmn

pLmnD
L
m,n(α,β,γ ) = 1

8π2

∑
L,m,n

〈DL ∗
m,n〉DL

m,n(α,β,γ ), (3.148)

where we have exploited the fact that Wigner matrices DL
m,n [Rose, 1957; Zannoni, 1979c]

are an orthogonal basis set over the molecular orientations (α,β,γ ) (see Eq. F.10). The ori-
entational order parameters will thus be averages of Wigner rotation matrices 〈DL

m,n〉. In the
presence of molecular and/or phase symmetries (Appendix G), only suitably symmetrized
combinations need to be considered. For brick–like, D2h, biaxial molecules and phase this
means that only 4 parameters, instead of the 25 possible 〈DL

m,n〉 are required for the rank

L = 2. Using the shorthand R J
q,p for theD2h symmetrized basis functions [Biscarini et al.,

1995],

R J
q,p =

1

2
Re

[
DJ
q,p +DJ

q,−p
]
= 1

4

[
DJ
q,p +DJ

−q,−p +DJ
q,−p +DJ

−q,p
]
, (3.149a)

= 1

2

[
cos(qα) cos(pγ )

(
dJ−qp(β)+ dLqp(β)

)+ sin(qα) sin(pγ )
(
dJ−qp(β)− dJqp(β)

)]
,

(3.149b)

where J,q,p are even. Explicitly [Berardi and Zannoni, 2015]

〈R 2
0,0〉 =

3

2

〈
cos2 β

〉
− 1

2
= 3

2

〈
(z · d)2

〉
− 1

2
, (3.150a)

〈R 2
0,±2〉 =

√
3

8

〈
sin2 β cos 2γ

〉
=
√

3

8

〈
(x · d)2 − (y · d)2

〉
, (3.150b)

〈R 2
±2,0〉 =

√
3

8

〈
sin2 β cos 2α

〉
=
√

3

8

〈
(z · l)2 − (z ·m)2

〉
, (3.150c)
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Table 3.2. Symmetry of the main liquid crystal phases [Singh, 2000].
Notation for point group symmetry (cf. Appendix G) as in [Cotton,
1990]. T (n) indicates the translational symmetry group in n dimensions

Point group and
translational

Liquid crystal phase degrees of freedom

I. Achiral phases:
Calamitic, micellar, nematic (N) D∞h × T (3)

Nematic discotic (ND), columnar nematic (NC) D∞h × T (3)

Biaxial nematic (Nb) D2h × T (3)

Calamitic orthogonal smectic or lamellar (SA) D∞h × T (2)

Tilted smectic phase (SC) C2h × T (2)

Orthogonal and lamellar hexatic phase (SB) D6h × T (1) locally
D6h × T (2) globally

Tilted and lamellar hexatic phases (SF and SI) C2h × T (1) or T (2)

Discotic columnar: hexagonal order of columns, D6h × T (1)

ordered or not within columns (Do
h or Dd

h )

Rectangular array of columns (Do
r or Dd

r ) D2h × T (1)

Molecules tilted within columns (Dto or Dtd) C2h × T (1)

II. Chiral phases:
Cholesteric, twisted nematic (N∗) D∞ × T (3)

Tilted smectic C phase (S∗C) C2 × T (2)

Tilted and lamellar hexatic phases C2 × T (1) or T (2)
(S∗F and S∗I )

〈R 2
±2,±2〉 =

1

4
〈(1+ cos2 β) cos 2α cos 2γ 〉 − 1

2
〈cosβ sin 2α sin 2γ 〉,

= 1

4

〈
(x · l)2 − (x ·m)2 − (y · l)2 + (y ·m)2

〉
. (3.150d)

Note that the notation includes the special case of uniaxial phases in Table 3.1 where q = 0.
In the Cartesian expressions for the R 2

q,p we have scalar products of the three orthogonal
unit vectors l, m, d defining the laboratory director frame and the corresponding axes x, y,
and z of the molecular frame.

Unfortunately, a variety of notations, explicitly compared by Rosso [2007] have been
used for order parameters. A few commonly used that we report for convenience are [Bisi
et al., 2007; Rosso, 2007]:

S = 〈R 2
0,0〉, T =

√
2/3〈R 2

2,0〉, S′ =
√

6〈R 2
0,2〉, T ′ = 2〈R 2

2,2〉, (3.151a)

S = 〈R 2
0,0〉, P =

√
2〈R 2

2,0〉, U =
√

2〈R 2
0,2〉, F = 2〈R 2

2,2〉. (3.151b)
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3.11.1 Biaxial Order Parameters from Simulations

Let us consider the determination of order parameters from simulated configurations. We
shall assume our sample here to be a monodomain orthorhombic (i.e. with D2h symmetry)
biaxial nematic, call it a ‘block’ for simplicity (Fig. 1.23) even though, as stressed by
Photinos and colleagues, lower symmetry phases may occur [Vanakaras and Photinos,
2008; Karahaliou et al., 2009; Peroukidis et al., 2009]. Even if the sample has this simple
symmetry, in a simulated sample, we have two problems: finding the orientation of the block
(its principal or director frame) and the order of the molecules with respect to that frame.
Let us start assuming that our block is aligned with the lab axes.

In an ideal experiment the director frame and the order parameters could be determined
choosing one or more second-rank tensor properties A(a) whose components A(a)

MOL are
assumed to be known and measuring all its components, i.e 〈A(a)

LAB〉 in the laboratory frame
XYZ. The director frame l, m, d is, reducing the matrix to its diagonal form, identified by
the eigenvector matrix X .

XT 〈A(α)
LAB〉SX = a(α) = diag (a(α)

l ,a
(α)
m ,a

(α)
d ). (3.152)

Note that we have omitted the property superscript label for the eigenvector matrix, since
the director frame should be the same for different observable properties. In mathematical
terms, this means that the matrices corresponding to different properties should commute.

The observed principal values of a second-rank tensor A(α)are connected to the biaxial
order parameters. For a biaxial mesogen (or a biaxial solute dissolved in a biaxial phase)
[Biscarini et al., 1995] we have:

a
(α)
l = − 1√

3
[A(α)]0,0 − 1√

6

[
〈D2

0,0〉[A(α)]2,0
MOL + 2Re〈D2∗

0,2〉A2,2
MOL

]
+Re〈D2∗

2,0〉[A(α)]2,0
MOL + Re〈D2∗

2,2 +D2∗
2,−2〉[A(α)]2,2

MOL, (3.153a)

a(α)
m = − 1√

3
[A(α)]0,0 − 1√

6

[
〈D2

0,0〉[A(α)]2,0
MOL + 2Re〈D2∗

0,2〉[A(α)]2,2
MOL

]
−
[
Re〈D2∗

2,0〉[A(α)]2,0
MOL + Re〈D2∗

2,2 +D2∗
2,−2〉[A(α)]2,2

MOL

]
, (3.153b)

a
(α)
d = − 1√

3
[A(α)]0,0 +

√
2

3

[
〈D2

0,0〉[A(α)]2,0
MOL + 2Re〈D2∗

0,2〉[A(α)]2,2
MOL

]
, (3.153c)

where [A(α)]2,n
MOL are spherical components of A(α). In a real experiment the director frame

could be defined by the procedure for obtaining a properly aligned monodomain, perhaps
with the help of an electric and a magnetic external field so as to align the main director d

and a secondary transversal one, say l.
Computer simulations present some differences. On one hand we would normally like

to avoid applying external fields since, given the limited number of molecules they would
probably have to be rather strong to be effective and thus, possibly influence properties.
This means that even if a biaxial monodomain is formed, it can be at an unknown and
fluctuating orientation. On the other hand, however, we have the advantage that in sim-
ulations we can choose our observable properties at will. The simplest we can imagine,
[A(α)

MOL]i,j = δα,iδα,j , with α = x,y,z, so that we have three matrices A(x), A(y), A(z)
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with only the xx or yy or zz element, respectively, equal to 1 and all the others, 0. We can
calculate first the sample average of each of the three matrices as

〈A(α)
LAB〉S = 〈R(α)TA(α)

MOLR(α)〉S (3.154)

and then diagonalize each one, finding its eigenvalues matrix a(α). For an ideal orthogonal
(D2h) biaxial phase the three matrices should commute, with [〈A(α)

LAB〉S,〈A(β)
LAB〉S] = 0,α �= β

and should be simultaneously diagonalized by the same eigenvector rotation matrix, X.

XT 〈A(α)
LAB〉SX = a(α). (3.155)

However, the average matrices may not exactly commute because of numerical errors due
to the finite size of the sample or because of fluctuations, or for the formation of local
cybotactic clusters. If the matrices 〈A(α)

LAB〉S do not exactly commute, they could still have
fairly similar eigenvectors. In this case it is still possible to define biaxial order parameters if
a similarity transformation to the nearly diagonal form, with off diagonal elements non-zero
but smaller than a given threshold, can be found. The problem can be tackled numerically as
described by Berardi and Zannoni [2015], e.g. using the algorithms of Flury and Constantine
[1985] and Flury and Gautschi [1986]. The transformation to nearly diagonal form identifies
the eigenvalues a(α)

i , with i = l, m, and d , that can then be used to define the order
parameters. The eigenvectors can be labelled to give a right-handed frame (i.e. l × m =
d , m × d = l, and d × l = m), but in any case reflection of one eigenvector, say
l → −l, does not affect the order parameters. This is also true for permutations of the
molecular labels since the axis of preferential alignment can be different in various phases.
Conventionally, the zi molecular axis is assigned to the direction of preferential alignment,
e.g. for elongated mesogens this is usually the longer axis, while for disc-like mesogens
the shortest one. However, particularly for biaxial mesogens, making a priori the proper
assignment on the basis of molecular symmetry, i.e. the permutation which provides the
most physically meaningful 〈R 2

m,n〉 (see Eqs. 3.156a–3.156d), is not always simple. For
instance, the (wrong) assignment of swapped m, and d axes can result in a deceivingly
high 〈R 2

2,2〉 and rather small 〈R 2
0,0〉. In practice, a convenient conservative criterion is

that of selecting the permutations giving the highest values of 〈R 2
0,0〉, and the smallest

positive values of 〈R 2
2,2〉. The first part of this prescription is consistent with the standard

algorithm for calculating order parameters [Zannoni, 1979c], while the second part prevents
overestimating the phase biaxiality. Once the physically meaningful axis labelling described
previously has been performed, the second-rank order parameters can be computed from the
eigenvalues of the rearranged ordering matrices for the three molecular axes as [Biscarini
et al., 1995; Berardi and Zannoni, 2015]

〈R 2
0,0〉 =

3

2
a

(z)
d − 1

2
= 1− 3

2

(
a

(x)
d + a(y)

d

)
, (3.156a)

〈R 2
2,0〉 =

√
3

8

(
a

(z)
l − a(z)

m

)
=
√

3

8

(
−a(x)

l + a(x)
m − a(y)

l + a(y)
m

)
, (3.156b)

〈R 2
0,2〉 =

√
3

8

(
a

(x)
d − a(y)

d

)
=
√

3

8

(
−a(x)

l − a(x)
m + a(y)

l + a(y)
m

)
, (3.156c)

〈R 2
2,2〉 =

1

4

(
a

(x)
l − a(x)

m − a(y)
l + a(y)

m

)
. (3.156d)
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This procedure can also be generalized to biaxial mixtures [Berardi and Zannoni, 2015].
Average 〈R 2

m,n〉 obtained with computer simulations will be shown in Chapter 10 (see Fig.
10.8) and in Chapter 11 (see Fig. 11.25). Considering only the case of rigid biaxial molecules
in biaxial phases, an application of the symmetry arguments mentioned earlier shows that
we can have four order parameters: 〈D2

0,0〉, Re〈D2
0,2〉, Re〈D2

2,0〉, Re〈D2
2,2 +D2

−2,2〉. Note
that the observation of phase biaxiality does not require an off axis molecular tensor or even
biaxiality in the molecular tensor (i.e. it can be obtained even when we have A2,2

MOL = 0).
Indeed, phase biaxiality can be examined using a uniaxial probe. For example, the DNMR
spectrum of fully deuterated benzene C6D6 is often used. The phase biaxiality can split the
‘perpendicular’ quadrupole lines in the spectra in an x and a y pair, as verified experimen-
tally in various systems [Allender and Doane, 1978; Goldfarb et al., 1983b; Doane, 1985a,
1985b]. In a real situation observation or not of phase biaxiality will of course depend on
the relative magnitude of the terms in Eqs. 3.153b–3.153c and on the sensitivity of the
experiment. The difference between al and amm will be, for a uniaxial tensor A,

al − am = 2Re〈D2∗
2,0〉A2,0

MOL. (3.157)

3.11.2 A Tilted Biaxial Phase: Smectic C

We now turn to the case of tilted biaxial phases, such as the smectic C and some of the
columnar liquid crystals described in Chapter 1. The purely orientational order parameters,
which define the distribution, P (�), can be classified simply according to the point group
for the system. Consider an ideal smectic C formed of uniaxial molecules as an example
(see Fig. 1.32). According to this simple model we can choose a laboratory frame with axes
x, y, z where the director d makes an angle θ , the tilt angle, with z parallel to the layer
plane and y along the layer normal. As discussed in Appendix G the symmetry operations
of the C2h group give the restrictions

〈DL
m,n〉 = (−1)m〈DL

m,n〉 = (−1)L+m〈DL
m,n〉. (3.158)

Thus, L and m have to be even. The relevant second-rank order parameters should then be
〈D2

0,n〉and 〈D2
2,n〉 = (−1)n〈D2∗

−2,n〉. Note that, even if the particles constituting the phase
have cylindrical symmetry, we still have two independent order parameters, corresponding
to the biaxiality of the phase. This is perhaps more transparent in Cartesian coordinates. We
can define a mesophase ordering matrix Q

QLAB
AB = (3〈dAdB〉 − δA,B )/2; A,B = x,y,z, (3.159)

formally identical to the molecular (Saupe) ordering matrix. Here, however, it is the phase
that is not cylindrically symmetric instead of the particles, and so we take dA ≡ dAz to be the
direction cosines for a molecule in the laboratory frame. Now, from the assumed symmetry
of the smectic C, it is clear that QLAB can be diagonalized by a rotation of the angle θ , with
tan 2θ = 2QLAB

xy /(Q
LAB
yy −QLAB

xx ), around z. The tilt angle θ represents the orientation of the
director in the (xy) plane. The eigenvalues of Q are
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q1 = −1

2
QLAB
zz + ρ, q2 = −1

2
QLAB
zz − ρ, q3 = QLAB

zz , (3.160)

where ρ =
√

1
2

[
(QLAB

xx −QLAB
yy )2 + 4(QLAB

xy )2
]

is a phase biaxiality parameter. If, on the
other hand, the molecules forming the biaxial phase are themselves biaxial there will be
four order parameters: 〈R 2

0,0〉, 〈R 2
2,0〉, 〈R 2

0,2〉, 〈R 2
2,2〉 like in Eqs. 3.150a–3.150d. Other

combinations of molecular and mesophase symmetries can be treated along the same lines
as the need arises employing the results given in Section 3.11. The methods presented here
also apply to the various types of discotic mesophases (see Chapter 1).

3.11.3 Cartesian Formulation

Let us consider again the measurement of an observable average property which behaves
as a second-rank tensor 〈A〉. We imagine for completeness that all nine components of the
representative matrix can be measured in a given laboratory frame. The laboratory frame
components will be connected to their molecular counterparts through a simple rotation:

〈ALAB
ij 〉 =

∑
k,l

〈RikAMOL
kl R

T
lj 〉, (3.161)

Rik is the rotation matrix connecting laboratory to molecule frame with components, e.g.
Rik = dik , the direction cosine of the molecular k-axis. If the molecule is rigid or if the
tensor AMOL

kl does not fluctuate in the molecular frame (e.g. we have a dipolar coupling
between two nuclei belonging to the same rigid fragment) then

〈ALAB
ij 〉 =

∑
k,l

〈RikRTlj 〉AMOL
kl . (3.162)

We rewrite this equation by adding and subtracting aδi,j on the right-hand side, with
a = TrALAB/3 = TrAMOL /3 as

〈ALAB
ij 〉 = aδi,j +

2

3

∑
i,j

Cij,klA
MOL
kl , (3.163)

where C is a fourth-rank tensor (see Appendix B), defined as

Cij,kl ≡ 3

2
〈RikRjl〉 − 1

2
δi,j δk,l, (3.164)

and can be called a superordering matrix, reducing to 0 in an isotropic liquid. We define in
general a laboratory principal frame through the transformation which makes the C matrix
block diagonal in the first two indices. Using this formalism a suitable tensor A can be
defined in the molecular frame and all its average components 〈ALAB

ij 〉, determined in the
lab frame. In the principal laboratory frame the average tensor should be diagonal with
eigenvalues

〈aLAB
ii 〉 = 〈ALAB

ij 〉δi,j = a +
2

3

∑
k,l

CiiklA
MOL
kl . (3.165)
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In a uniaxial phase there are only two independent quantities of the average tensor 〈ALAB〉,
e.g. the trace and the components parallel to the director, i.e. 〈aLAB

zz 〉. Thus, in turn only one
block of the superordering matrix needs to be specified, i.e. Skl = Czzkl . In other words, in
a uniaxial phase the superordering matrix reduces to the usual Saupe matrix. Another case
mentioned earlier is that of a biaxial phase formed of uniaxial particles. In this case we only
need Qij = Cijzz and the superordering matrix can be reduced to the Q tensor discussed
earlier.

3.11.4 Triclinic Biaxial Phases

When the positions are on average distributed on some regular lattice, defined by the prim-
itive vectors a1,a2,a3 we can write

P (r,�) =
∑

k,L,m,n

[
(2L+ 1)

8v0π2

] 〈
e−ik · r

′
DL∗
m,n(�′)

〉
eik · rDL

m,n(�), (3.166)

with k a point in the reciprocal lattice. As a particular case, when k=0 th system is uniform as
a nematic but with a tilted set of directors, instead of an upright one like we have treated until
now. Phases of this type and their order parameters have been discussed by Karahaliou et al.
[2002, 2009] and by Kwak and Kim [2016]. A full treatment considering various molecular
symmetries could be carried out as previously seen but, since not many experimental or
simulated data have been determined, even for the much simpler biaxial systems already
considered, we shall not dwell any more into these phases here.

3.12 Flexible Molecules

As our description of molecular order becomes more realistic, dealing with detailed
chemical structures, rather than generic particles, it becomes important to develop ways of
describing orientational order in flexible molecules. We now wish to briefly mention how
the present treatment of order parameters can be generalized to molecules with internal
degrees of freedom. This is an important problem because most molecules of practical
interest, including molecules forming liquid crystals, possess some internal flexibility
[Orville-Thomas, 1974; Maruani and Serre, 1983]. Here we shall only consider one
mechanism for internal flexibility, that of internal rotation, since this often represents
the most important mechanism able to provide large changes in molecular shape.

Typically, we might have multiring molecules with some degree of internal rotation or
molecules with floppy chain substituents (see Fig. 3.24) [Zannoni, 1985; Berardi et al.,
1996b, 1998b]. In addition to this, solutes with internal degrees of freedom dissolved in
liquid crystals or membranes can be studied with various techniques. The assumption of
rigidity (and quite often that of cylindrical symmetry) has usually been made in the past on
the grounds of simplicity and of the inadequacy of experimental data in studying molecular
structures at this level of sophistication. This is not necessarily true anymore. As a matter of
fact, the quality and quantity of data becoming available, particularly from NMR techniques
applied to isotopically substituted molecules, now often demands going beyond the rigid
molecule approximation. The problem of a general formalism for describing orientational
order in non-rigid particles is also relevant in the field of computer simulations, given
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Figure 3.24 A sketch of a multirotor molecule consisting of N linearly connected
anisotropic rigid fragments M1, M2, . . . ,MN with their local coordinate frame. Flexibility
results from the internal rotations of dihedral angles φ1, φ2, …, φN−1 as shown.

the huge amount of information they provide. As an example, in an atomistic Molecu-
lar Dynamics simulation, all the positions and orientations of the submolecular fragments
would be determined at every time step considered. Therefore, the need arises to condense
this embarrassingly large amount of data into a set of quantities which, on one hand, contains
the relevant information and, on the other, can hopefully be experimentally determined.

We consider the case of a flexible multirotor molecule, treated as a set of N rigid frag-
ments linked by N − 1 bonds [Zannoni, 1985; Berardi et al., 1996c] shown in Fig. 3.24.
Each rotor has its local reference system Mk and the relative conformation of adjacent
fragments Mk , Mk+1 is defined by a dihedral angle φk . The overall conformational state
is then specified by the set � ≡ (φ1 ,φ2 , . . . , φN−1) and we assume as reference geom-
etry that with all angles φk = 0. In the case of continuous degrees of freedom, each
angle φk can assume any real value in the range [0,2π ]. However, in a number of cases,
a discrete treatment, exemplified by the so-called rotational isomeric state (RIS) model
[Flory, 1969], in which the angles φk take only some discrete values φ(j )

k , or more sim-
ply jk , is well established. For alkyl chains, these values are the so-called trans, gauche+

and gauche− states with φk = 0, ± 2π/3 as typical values. As in previous sections, the
Euler angles (α,β,γ ) describe the rotation � ≡ �M1L from the LAB system, with the
Z-axis along the director, to the frame attached to the first (‘rigid’) molecular fragment M1

(Fig. 3.24) and define accordingly its molecular orientation.

3.12.1 One Internal Degree of Freedom

We start examining in detail the simplest case of a non-rigid molecule formed by two rigid
distinguishable parts M1 and M2 connected by a bond and rotating one with respect to the
other. This could be, for instance, an unsymmetrically substituted biphenyl or bithienyl. Let
us take one of the fragments, M1, say, as the ‘rigid’ part, where we place the molecular
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frame. The second fragment of the molecule can rotate through an angle φ around a certain
bond directed along r . We now imagine the molecule embedded in a uniform isotropic or
anisotropic fluid phase. The molecule we consider could be a mesogen in its nematic or
isotropic phase or it could equally well be a solute molecule dissolved in such a phase. The
single molecule orientational-conformational distribution function for our internal rotor can
be written for a uniform system like a nematic as

P (r1,�M1L,r2,�M2L) = Pr (�1L,�2L) = Pr (�1L,φ), (3.167)

where r1,r2 give the position of the two fragments in the laboratory and the inter-fragment
vector r is taken to be constant while internal or external reorientation takes place. We shall
omit writing down explicitly this dependence on the internal axis orientation and distance
parameter r from now on, when there is no risk of confusion. In the biphenyl type molecule
mentioned above the internal rotation axis r is along the ring-ring ‘long’ axis. It should be
noticed that by writing the distribution as a function of the two labelled orientations �1

and �2 we have made use of the physical distinguishability of the two groups, i.e. that it
is possible to devise an experiment that can tell which part we are looking at. If, on the
contrary, there is permutation symmetry P1,2 for the two parts we should consider just one
independent orientation� and writeP (�,φ), dropping unnecessary subscripts. We can now
write the one particle distribution as

P (�,φ) = 〈δ(�−�′) δ(φ − φ′)〉 =
∑ 2L+ 1

16π3 pLmn|qD
L∗
m,n(�) e−iqφ, (3.168)

where we have used the representation of the two types of angular δ functions in an orthog-
onal basis of Wigner matrices (see Eq. F.10) and, for the internal rotation, in a Fourier
basis, i.e.

δ(φ − φ′) = 1

2π

∞∑
q=−∞

eiq(φ−φ′). (3.169)

The coefficients pLmn|q are, as in previous similar expansions, the order parameters. The
vertical line in the coefficients pLmn|q separates the indices L,m,n referring, as before, to
rotations from the internal ones, here: q = 0,±1,±2, . . . and as usual the sum is extended
to all the coefficients not appearing on the left-hand side. The angle φ, 0 ≤ φ ≤ 2π is the
dihedral rotation angle around r . The orthogonality relation of the chosen basis immediately
allows definition of the expansion coefficients. For nematics

pLmn|q = 〈DL
m,n(�) eiqφ〉, (3.170)

where the angular brackets denote an orientational average over the distribution P (�,φ).
We have here three types of order parameters:

(i) Purely orientational order parameters.

〈DL
m,n(�)〉 = pLmn|0. (3.171)

This type of expansion coefficient is essentially an ordinary orientational order parameter
for the molecular frame. It gives the average orientation of the chosen rigid part of the
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molecule with respect to the director frame. For a truly rigid molecule the ordering matrix
is of course unique and the parameters determined give information on the total ordering
matrix. Thus, in the rigid molecule limit, if we wish to employ symmetry to reduce the
number of independent parameters, it is the overall point symmetry of the molecule that
should be employed and not the local one. If, instead, the rigid fragment is connected to
the rest of the molecule via a single bond (i.e. if it is an internal rotor), then local sym-
metry operations may become feasible and be applied. As an example in the two-ring-type
molecules already mentioned if the fragment where the molecular frame has been located
possesses D2 symmetry, then the single particle distribution can be simplified using this
local symmetry independently on the second ring orientation. This means that feasible
local symmetry operations of this kind can be treated exactly as we have seen for rigid
molecules. In the example given we shall have the restriction that L has to be even. The
possibility of having independent fragments implies, however, that in a flexible molecule
the orientation of one subunit does not automatically determine the orientation of the other
fragments. We also note that the expansion separates completely the laboratory frame oper-
ations from the internal motion. The rotation DL

m,n(�) ≡ DL
m,n(�M1L) is the one affected

by mesophase symmetry operations. Thus, for example, we have for uniaxial mesophases,
pLmn|q = δm,0pL0n|q , whatever the conformation. Similarly, if the phase has a plane of
symmetry perpendicular to the director, then L has to be even. Other operations can be
applied as already seen for rigid molecules.

(ii) Internal order parameters. We define purely internal order parameters the averages

〈 eiqφ〉 = p000|q, q = 0, ± 1, ± 2, . . . . (3.172)

These parameters describe the ordering of the second part of the molecule with respect to
the first one, irrespective of the overall orientation. They can be different from 0 even in the
isotropic phase if there is some preferential orientation of the second fragment around the
internal axis. The internal order parameters for a rigid molecule with the second fragment
at an angle φ0 from the first one will just be exp(iqφ0). By suitable definition of axis
system this becomes just 1. A flexible molecule can be defined as a molecule with internal
order parameters deviating from the theoretical rigid value, whatever the frame. At the
other extreme, we have p000|q = 0 when the distribution P (�,φ) does not depend on the
internal angle φ. Apart from the trivial case of a cylindrical fragment this indicates a uniaxial
distribution of the second subunit around the rotation axis. The coefficient p000|q = 0 thus
indicates complete internal disorder around the rotation axis. Internal order parameters are
determined by the energy barrier to rotation. Thus, if the energy barrier in the medium is
U (φ), then the internal order parameters are obtained from the Boltzmann expression

p000|q =
∫

dφ eiqφ e−U (φ)/(kBT )/∫ dφ e−U (φ)/(kBT ). (3.173)

If the medium effect on the barrier can be neglected, U (φ) is the same as the gas phase
potential UG(φ) obtainable in principle from an ab initio or semi-empirical theoretical
calculation [Leach, 2001]. In turn, the determination of the parameters p000|q can provide
information on internal barriers, and medium effects can be obtained by comparison with
separate quantum chemistry calculations in the gas phase.
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(iii) Mixed internal-external order parameters. The third type of coefficients in Eq. 3.170
are

pLmn|q = 〈DL
m,n(�) eiqφ〉. (3.174)

These terms describe coupling between internal and external degrees of freedom. They can
be used to recover purely orientational order parameters for the second subunit from those
of the first one. In fact, writing down explicitly the transformations between frames, we
have

〈DL
m,n(�M2L)〉 =

∑
m′
〈DL

m,m′ (�M1L)DL
m′,n(�M2M1 ) 〉, (3.175a)

=
∑
m′
e−im

′αM2M1 dLm′,n(βM2M1 ) 〈DL
m,m′ (�M1L) e−inφ〉, (3.175b)

=
∑
m′
e−im

′αM2M1 dLm′,n(βM2M1 )pLmm′|−n, (3.175c)

where (αM2M1,βM2M1) indicate the orientation of the internal rotation axis. Note that here
−L ≤ m′,n ≤ L so that only a subset of mixed order parameters is needed to obtain the
ordering matrix for the second ring. This provides a sort of sum rule for the mixed order
parameters. For a rigid molecule it reduces to

〈DL
m,n(�M2L)〉 =

∑
m′
〈DL

m,m′ (�M1L)〉DL
m′,n(�M1M2 ), (3.176)

since the transformation linking the two frames is a time independent one. In this case the
orientation� = (�M1L) is sufficient to completely define the state of the particle. Eq. 3.176
simply gives the relation between the orientational order parameter when expressed in the
two frames. For a molecule where the internal rotation axis coincides with the molecular
frame z-axis, we have dLp,n(0,0) = δp,n and

〈DL
m,n(�M2L)〉 =

〈
DL
m,n(�M1L) e−inφ

〉
= pLmn|−n, (3.177)

so that in this case the sum rule reduces to just one term. We have already mentioned when
considering the purely orientational parameters that in the present treatment the different
frame transformations employed to specify the orientational and internal state are well
separated, thus making it possible to apply symmetry simplifications referring to internal
or external degrees of freedom. We have also said that mesophase symmetry does not put
restrictions on the internal order parameters. Here, however, we have the possibility of
implementing fragment symmetry. In simple cases this can be done by direct inspection.
For example, the order parameters for a molecule with a para (i.e. along the z-axis) biaxial
substituent are pLmn|q,q = 0,∓2,∓4, . . . . Similarly, if we have a methyl substituent or,
more generally, a substituent with C3 symmetry around the internal rotation axis, then
q = 0,∓3, . . . . In more complex cases the methods developed within the group theory
of non-rigid molecules can be employed [Altmann, 1977; Renkes, 1981; Maruani and
Serre, 1983]. Our purpose here is not that of giving a systematic treatment for various
rotor symmetries but it is useful to be aware that the formalism allows full exploitation of
local symmetry if needed.
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Figure 3.25 Structure of the cis-form of 2,2′-bithienyl (DTH) with the torsional angle
φ describing a rotation around the axis z connecting the two rings. The orientational-
conformational distribution: P (β,γ0,φ) obtained by Berardi et al. [1994] analyzing data
from Ter Beek et al. [1991] is shown for γ0 = 15◦.

An example of rotameric molecule: bithienyl. To give a specific example of a molecule
with one degree of internal rotation made up of two rigid fragments, we consider the
bithienyl shown in Fig. 3.25. The first thing to point out is that the set of three Euler angles
�we have used until now is only sufficient to specify the state of a rigid fragment, e.g. it can
describe the orientation of a suitable molecular frame. When the molecule has additional
degrees of internal freedom more variables have to be introduced. For a two-ring molecule
an angle φ giving the orientation of one ring with respect to the other could do. Thus, we
can define an orientational-conformational state (�,φ) by choosing a molecular frame M1

on one molecular fragment and giving its orientation � ≡ (�M1L) with respect to the
laboratory frame and then giving the angle φ that the second ring makes with the first one.
We write the probability of finding the molecule in a certain orientational-conformational
state as the probability of finding the first fragment at orientation � with respect to the
laboratory director frame and the second fragment at an angle φ from the first, i.e. P (�,φ).
This one particle distribution is then expanded in a composite Wigner–Fourier basis set
[Zannoni, 1985]. We have for a molecule dissolved in a uniaxial phase, where � = (β,γ ),

P (β,γ,φ) = 1

8π2

∞∑
L=

0,2,...

L∑
n=−L

∞∑
q=−∞

(2L+ 1)pL0n|qDL
0,n(β,γ ) eiqφ, (3.178)

where in general q = 0,±1,±2, . . . . The angle φ, with 0 ≤ φ ≤ 2π is the dihedral rotation
angle around the inter-fragment vector connecting the two thiophenes. A particular subset of
these parameters allows the recovery of purely orientational order parameters for the second
subunit. The ME method outlined earlier can be generalized to yield the best distribution
compatible with a given set of order parameters. For instance, if an experiment determines
a set of second-rank order parameters p20n|q , this distribution will be of the form

P (β,γ,φ) = exp
{∑
n,q

an|qD2∗
0,n(β,γ ) eiqφ

}
, (3.179)
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where the coefficients an|q are obtained by minimizing the squared difference between the
measured quantities and those obtained by integrating Eq. 3.179. The ME approach has
been applied to analyzing the experimental proton NMR dipolar couplings of a number
of solutes [Catalano et al., 1991; Berardi et al., 1992]. In the case of bithienyl the purely
orientational order parameters for the two rings as well as an approximate rotamer dis-
tribution can be obtained. In Fig. 3.25 we show the results for the average purely inter-
nal distribution P̄ (φ) and for the orientational-conformational distribution P (β,γ,φ) in
2,2′-bithienyl obtained analyzing data from Ter Beek et al. [1991] with the ME method
described in Berardi et al. [1994].

3.12.2 Multirotor Molecules

We can now extend the treatment to the more general case of a flexible molecule in a uniform
anisotropic solution, which has the orientational-conformational distribution P (�,�) with
the normalization condition

∫
d�d�P (�,�) = 1. The purely conformational distribution

P (�) is obtained by integration over the orientational variables P (�) = ∫
d�P (�,�).

The orientational-conformational distribution can be formally considered as an averaged
product of Dirac delta functions that counts the particles in the various intervals

P (�,�) =
〈
δ(�−�′) δ(φ1 − φ′1) δ(φ2 − φ′2) . . . δ(φN−1 − φ′N−1)

〉
�′,�′

, (3.180)

where the symbol 〈. . .〉�′,�′ represents the average over primed variables. Eq. (3.180) can
be expanded as

P (�,�) =
∑
L,m,n;

q

pLmn|q
[

2L+ 1

8π2(2π )N−1

]
WL
m,n;q (�,�), (3.181)

where, generalizing the previous notation for the expansion coefficients, the indices before
the vertical bar sign | in pLmn|q , i.e. L,m,n, refer to orientational order (we would
add positional order indices after a semicolon as we did before if we had positional
order too) and the set q ≡ (q1, . . . ,qN−1) refers to the internal order for non-rigid
molecules. The mixed Wigner–Fourier basis functions W are defined as WL

m,n;q (�,�) ≡
DL∗
m,n(�) eiq1φ1+···+iqN−1φN−1 . The expansion coefficients pLmn|q ≡ pLmn|q1,...,qN−1 are the

order parameters for the orientational-conformational problem

pLmn|q =
∫

d�d�P (�,�)WL∗
m,n;q (�,�) ≡

〈
WL∗
m,n;q (�,�)

〉
�,�

. (3.182)

These order parameters form an infinite set that fully describes the molecular orientational-
conformational order. In particular, we find as special cases the usual Saupe ordering matrix
components Szz = 〈P2〉 = p200|0,...,0, Sxx − Syy =

√
6 Re 〈D2

0,2 〉 =
√

6 Rep202|0,...,0,

Sxz =
√

3/2 Re 〈D2
0,1〉 =

√
3/2 Rep201|0,...,0, where the Sij were given in Eq. 3.111.

From the expansion coefficients we can compute the orientational order parameters of the
single fragments, k measuring the average orientation of reference frame Mk with respect
to the LAB system. For clarity, we consider simply connected structures, as sketched in
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Fig. 3.24 and we call �2 ≡ �M2M1 the Euler angles giving the orientation of frame
M2 with respect to M1 in the reference conformation, �3 ≡ �M3M1 the orientation of
frame M3 with respect to M1 and so on, until �k . We also call αk and βk the polar angles,
measured with respect to frame Mk , defining the local orientation of the chemical bond
associated to the dihedral angle φk , as shown in Fig. 3.24. Using these definitions and
measuring all orientations and angles with respect to the reference conformation we obtain
the purely orientational order parameters of frame Mk as

〈DL
m,n(�MkL) 〉 =

∑
1,...,k−1
1,...,k−1

pLm1|1,...,k−1,n,0,...,0G
L
1,...,k−1,1,...,k−1,n

, (3.183)

where we write pLm,1|1,...,k−1,0,...,0 to indicate pLm,1|1,...,k−1,k,...,N−1 with all subscripts, if
any, from k toN − 1 equal to 0, since the internal degrees of freedom for the fragments fol-
lowing the one of interest do not enter in the expression. TheGL

1,...,k−1,1,...,k−1,n
coefficients:

GL
1,...,k−1,1,...,k−1,n

=
∑

r1,...,rk−1

[
k−1∏
s=1

e−iasαdLas,bs (βs) e+irsαs dLrs,bs (βs)

]

×
[
k−1∏
s=2

DL
rs−1,s

(�s)

]
DL
rk−1,n

(�k), (3.184)

collect all the chemical bond geometric information known from the molecular architecture
and supposedly unaffected by the surrounding, while dLm,n(β) are small Wigner matrices
(Appendix F). The order parameters, 〈DL

m,n(�MkL) 〉 are then a linear combination of coef-
ficients pLmn|1,...,N−1 , weighted by the constant geometrical G coefficients. The formalism
can be useful since the purely orientational order parameters of one or all fragments with
respect to the lab frame can be obtained by some experiments, e.g. proton or deuterium
NMR, and these can help to obtain information of the internal, conformational order of the
molecule. As an example we can now apply these general transformation rules to the case
of alkyl chains (R(CH2)nR′), or just of an alkane if R = R′ is a CH3 [Rosen et al., 1993;
Berardi et al., 1996b, 1998b]. For simplicity, we fix the reference frame M1 in one of the
terminal molecular fragments R. The remaining systems Mk are collinear to M1, with their
zk-axis parallel to the direction of full molecular elongation and the xk-axis pointing along
the symmetry axis of each ĤCH group, on the same side of the H atoms. Assuming the ĈCC
angle θ to be equal for all fragments, we define ψ ≡ (π − θ )/2 and using Eq. 3.183, we
write the kth frame order parameter as

〈DL
m,n(�MkL) 〉 =

∑
1,...,k−1
1,...,k−1

(−1)2+4+···+[k/2] pLm1|1,...,k−1,0,...,0

× dL
1,1

(ψ) . . . dL
k−1,k−1

(ψ) dL
2,1

(ψ) . . . dLn,k−1
(ψ), (3.185)

where [k/2] is the integer part of k/2. In the case of discrete conformations, like those
implied in the RIS model mentioned before [Flory, 1969; Dill and Bromberg, 2011] we can
introduce the distribution functionP (�,j ) representing the probability of finding a molecule
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with orientation within the range [�,� + d�] and conformation j ≡ (j1, . . . ,jN−1). In
this case, the normalization condition becomes

∑
j

∫
d�P (�,j ) = 1. Again, the confor-

mational distribution P (j ) is obtained integrating over the other degrees of freedom �

P (j ) =
∫

d�P (�,j ). (3.186)

The orientational-conformational order parameters are

pLmn|j1,...,jN−1 =
∫

d�P (�,j ) DL
m,n(�), (3.187)

and they are the expansion coefficients of the orientational distribution function for the
molecule in a given conformation j . For alkyl chains described using the discrete RIS model
we have (cf. Eq. 3.183)

〈DL
m,n(�MkL)〉 =

∑
j

pLmn|j1,...,jN−1

∑
1,...,k−1
1,...,k−1

(−1)2+4+···+[k/2] e−i[1φ
(j1)
1 +···+k−1φ

(jk−1)
k−1 }

× dL
1,1

(ψ) . . . dL
k−1,k−1

(ψ) dL
2,1

(ψ) . . . dLn,k−1
(ψ). (3.188)

The knowledge of these order parameters for fragment Mk is sufficient to calculate any
single particle and bond observable of an alkyl chain. For instance, the order parameter for
a CH bond in a methylene group, often measured from DNMR experiments (cf. Appendix I)
after replacing the hydrogens with deuterons as SCD , can be written as SCD = − 1

2Szz +
1
2 (Sxx−Syy) cosχ , where Szz = 〈D2

0,0〉Mk
, Sxx−Syy =

√
6Re〈D2

0,2〉Mk
and χ is the ĤCH

bond angle. It is important to realize that NMR is not the only technique that can be used to
get information on the conformations of flexible molecules dissolved in LC and indeed this
generalized order parameters formalism, coupled with the ME approach, can be applied to
the analysis of experimental data from a variety of techniques, also combined together, as
shown in Berardi et al. [1998b].

3.13 Order in Smectics

After having considered the description of purely positional and orientational order, we now
briefly introduce ordering in smectic mesophases, where both types of order exist at the
same time.

Cylindrically symmetric particles and smectic. We start considering a smectic A formed
of cylindrically symmetric particles. We assume the phase to be uniformly aligned and to
have uniaxial symmetry around the director (parallel to the z laboratory axis). We also
assume the centres of mass of the molecules to be randomly distributed in the x,y plane
while they may organize in layers along the z-direction. The single particle distribution
function can thus be written as P (z,x), x = cosβ and expanded as

P (z,x) =
∞∑
L=0

∞∑
nz=0

pL;nzPL(x) cos(nz2πz/�z), L even, (3.189)
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in a product basis set of Legendre polynomials for orientations and Fourier harmonics for
position. The distribution is normalized as

∫ 1
−1 dx

∫ �z
0 dzP (z,x) = 1. Orthogonality of the

basis gives at once the coefficients pL;nz

pL;nz =
2L+ 1

�z

∫ 1

−1
dx

∫ �z

0
dzP (z,x)PL(x) cos

(
nz2πz

�z

)
,

= 2L+ 1

�z

〈
PL(x) cos

(
nz2πz

�z

)〉
, nz �= 0, (3.190a)

where the angular brackets 〈. . .〉 have been used to indicate a positional-orientational
average over P (z, cosβ). Explicitly, p0;0 = 1/�z, p2;0 = 5〈P2〉/2�z, p0;1 =
〈cos(2πz/�z)〉/�z ≡ τ1/�z, p2;1 = 5〈P2(x) cos(2πz/�z)〉/�z = 5σ/�z, . . .. These first
few terms show the three kinds of order parameters present in a smectic phase. Thus,
〈P2〉 is the usual orientational order parameter familiar from work on nematics, while
τ1 ≡ 〈cos(2πz/�z)〉 is a purely positional order parameter expressing how effectively
molecules are arranged in layers. The last type of parameter, σ , is a mixed order parameter
related to the extent of translational orientational coupling. We shall comment on their
relation to XRD experimental results in Chapter 4.

Non-cylindrical molecules in smectics. We now consider a rigid non-cylindrically sym-
metric molecule in a system with a layer structure and positional disorder inside the layer,
such as smectic A or smectic C. The probability of finding the molecule at a specific
position-orientation, P (z,β,γ ), can be expanded as we have seen earlier on in a complete
basis set of spherical harmonics. Thus we get, generalizing Eq. 3.108,

P (z,β,γ ) =
∑
L,n;nz

pLn;nz cos(2πnzz/�z) DL
0,n(β,γ ). (3.191)

The orthogonality of the basis set immediately gives the coefficients pL,n;nz . We can thus
write the distribution as

P (z,β,γ ) = 1

4π�z
+ 1

2π

∞∑
nz=1

∞∑
L=0

L∑
n=−L

2L+ 1

�z

〈
cos(2πnzz/�z) DL∗

0,n

〉
× cos(2πnzz/�z) DL

0,n(β,γ ), nz �= 0. (3.192)

The set of positional-orientational order parameters 〈cos(2πnzz/�z)DL∗
0,n〉 yields a complete

characterization of P (z,β,γ ).

Flexible molecules in smectics. The treatment introduced in Section 3.12 for flexible
molecules can be generalized to a smectic. Since a general treatment would bring con-
siderable complications, difficult to justify, we only consider, like in Section 3.12.1, the
simple example of a single internal rotation characterizsed by an angle φ. The one particle
distribution for the molecule formed by two connected rigid fragments, Eq. 3.167 embedded
in a smectic A is now

P (r1,�1L,r2,�2L) = Pr (z,�1,�2) = Pr (z,�1,φ), (3.193)

https://doi.org/10.1017/9781108539630.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.004


172 Order Parameters

that can be written,

P (z,�,φ) = 〈δ(z− z′) δ(�−�′) δ(φ − φ′)〉z′,�′,φ′, (3.194a)

=
∑ 2L+ 1

2�z16π3
(1+ δp,0)pLmn;p|aDL∗

m,n(�) cos(qpz) e−iaφ, (3.194b)

where qp ≡ (2pπz/�z) and a = 0, ± 1, ± 2, . . .. In this case we have positional-
orientational-internal order parameters 〈DL∗

m,n(�) cos(qpz) e−iaφ〉 describing not only the
purely orientational, positional or internal order, but also, in the mixed ones, the coupling of
the different types of degrees of freedom, such as the effect of layering on conformations,
a field that is still quite unexplored.

In plane orientational order. It is convenient to consider the limiting case of a smec-
tic where the long axis (u, say) of the mesogens is nearly completely aligned while the
transversal is only partially ordered. In a smectic B the transversal molecular axis (v, say) is
isotropically distributed, while in a smectic E, there is a herringbone order (see Section 1.7).
The orientational order parameter for molecules lying flat on the surface and thus reorienting
in two dimensions can be obtained with simple modifications of what we have seen until
now. We define a 2× 2 matrix property B, with elements Bab = δa,yδb,y . The sample
average of B in our arbitrary laboratory frame is obtained relating the Cartesian components
of BLAB to the molecule fixed components and summing over all particles:

〈BLAB
ab 〉S =

1

N

N∑
i=1

{∑
a′b′

[Ri]aa′[Bi]
MOL
a′b′ δa′,yδb′,y[RTi ]b′b

}
= 〈RayRby〉S, (3.195)

where we have used the 2D rotation matrix connecting lab to molecule frame R(φ) =(
cosφ sinφ
− sinφ cosφ

)
. We can introduce a 2 × 2 traceless ordering matrix P, analogous to

the 3D ordering matrix Q (Eq. 3.50), as

P = 2

(
〈sin2 φ〉 − 1

2 〈sinφ cosφ〉
−〈sinφ cosφ〉 〈cos2 φ〉 − 1

2

)
(3.196)

and we can identify the 2D order parameter as its largest eigenvalue:

〈T2〉 = 〈2 cos2 φ − 1〉 = 〈cos(2φ)〉, (3.197)

where Tn = cos(nφ) is a Chebishev polynomial of order n [Abramowitz and Stegun, 1965].
〈Tn〉 is nothing but the first term in the orthogonal expansion of the distribution P (φ),

P (φ) =
∑
n

cnTn(φ). (3.198)

For a smectic B (Section 1.7.4) we expect 〈T2〉 = 0, while for a smectic E (see Section
1.7.5), 〈T2〉 �= 0 [Luckhurst et al., 1987; Baggioli et al., 2019].
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3.14 Columnar Phases 173

3.14 Columnar Phases

The positional orientational distribution for a non-cylindrically symmetric molecule in a
columnar phase with some positional order of the columns in the x,y plane, e.g. a Drd

rectangular discotic phase [Goldfarb et al., 1983b; Kats and Monastyrsky, 1984], with the
column axes parallel to z, will be

P (x,y,β,γ ) = 1

4π�x�y
+ 1

2π

∑
nx,ny

∑
Ln

2L+ 1

�x�y

〈
cos

(2πnx
�x

x
)

cos
(2πny
�y

y
)
DL∗

0,n(β,γ )

〉

× cos
(2πnx
�x

x
)

cos
(2πny
�y

y
)

DL
0,n(β,γ ), (3.199)

with nx,ny �= 0 and
∫ π

0 dβ sinβ
∫ 2π

0 dγ
∫ �x

0 dx
∫ �y

0 dy P (x,y,β,γ ) = 1. The positional-
orientational order parameters

pLn;nxny ∝
〈
cos

(2πnx
�x

x
)

cos
(2πny
�y

y
)

DL∗
0,n(β,γ )

〉
(3.200)

express any regularity in the 2D arrangement of the columns and the coupling to molecular
orientation. If the mesophase is formed by disc-like particles we can reduce Eq. 3.199 to

P (x,y,β) = 1

2�x�y
+ 2

∑
nx,ny

∑
L

2L+ 1

�x�y

〈
cos

(2πnx
�x

x
)

cos
(2πny
�y

y
)
PL(cosβ)

〉

× cos
(2πnx
�x

x
)

cos
(2πny
�y

y
)
PL(cosβ), (3.201)

with
∫ π

0 dβ sinβ
∫ �x

0 dx
∫ �y

0 dyP (x,y,β) = 1.
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4

Distributions

The statistical mechanics of liquids is difficult; the statistical mechanics
of nematics is still worse! Even for the simplest physical models, no exact
solution has been worked out.

P. G. de Gennes, The Physics of Liquid Crystals, 1974

4.1 Phase Space Distributions

As we have seen in Chapter 3, the microscopic configurations of a system of classical
particles (atoms or molecules or colloids) correspond to their set of generalized coordinates
X̃ ≡ (X1,X2, . . . ,XN ). These in turn can be detailed according to the level of description
adopted. In computer simulations of liquid crystals both atomistic and generic models,
where mesogenic molecules are replaced by some suitably shaped rigid body, are important
and we shall try to take into account both the ‘atomistic’ description in terms of spherical
particles and the one for rigid anisotropic bodies.

For an atomistic description, the configuration is given by X̃ ≡ (r1,r2, . . . ,rN ), where r i

is just the position of each of the N atoms and, as before, we use an upper tilde to indicate
the whole set of coordinates. The same description is also appropriate, on a different length
scale, to the description of suspensions of spherical nanoparticles or quantum dots.

For rigid, non-spherical, particles each Xi is instead given by the centre of mass posi-
tions, r i , and the orientations �i , referred to some laboratory frame, i.e. �i ≡�iL of the
N rigid bodies. In this case X̃ ≡ (̃r,�̃) ≡ (r1,�1,r2,�2, . . . ,rN,�N ). If we are also
interested in the dynamics of the system (Chapter 6), e.g. so as to be able to generate
molecular trajectories like in the molecular dynamics simulations technique described later
(Chapter 9), we will need to complement the description with the velocities,

.
ri , where

we use the upper dot to indicate a time derivative, or the moments, pi = m
.
r i , of all

atoms. This complete description of a dynamic configuration corresponds to a point in

the 6N dimensional phase space, that we will indicate with the notation X̃XX ≡ (X̃,
.
X̃). In

particular X̃XX ≡ (̃r,p̃) ≡ (r1,p1,r2,p2, . . . ,rN,pN ) for a collection of atoms or of spherical
particles or, in the case of a system of N rigid anisotropic particles, X̃XX ≡ (̃

r,�̃,p̃,J̃
) ≡(

r1,�1,p1,J 1, . . . ,rN,�N,pN,JN
)
, where, together with the centre of mass positions r i

and momenta pi we have also introduced orientations �i and angular momenta J i = I
.
�i

174
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with I the inertia tensor and
.
�i the angular velocity of the ith particle [Goldstein et al.,

2001]. As the system of particles evolves in time this point in phase space will change and
its trajectory provides a description of the time evolution of the system (see Chapter 6).
Here, however, we are only dealing with the description of systems at equilibrium and
static instead of dynamic (i.e. time or frequency dependent) properties. We recall that in
Chapter 3 we introduced the probability density of finding the system in a certain configu-
ration in an a posteriori way, basically supposing to have at our disposal a sufficiently large
number of configurations and counting the frequency of occurrence of certain coordinates
Xi . We have also focussed on single molecule properties. Now we wish instead to examine
how the probability of observing a certain configuration can be linked ‘bottom up’ to the
interaction potential energy between molecules and to external thermodynamic variables
like, for example, temperature and/or pressure. It is reasonable to expect that this link
will be a function of the energy of a particular set of coordinates and of temperature, but
for the explicit form, not at all obvious, we have to resort to statistical mechanics. To
proceed, the first thing is to specify the ‘experimental’ conditions, i.e. how our sample
interacts with the environment. Once these are established, and assuming our system is
at equilibrium, we can either study our sample following its evolution in time or somehow
consider an arbitrarily large number of samples (an ensemble). If the system can evolve in
time covering all its phase space, i.e. it is ergodic, a necessary condition for the equivalence
of a time average for a single system followed for a sufficiently long time and the average
for an ensemble of systems at equilibrium is satisfied. However, from a rigorous point of
view stricter conditions should apply, e.g. that the dynamics of the system is ‘chaotic’,
with trajectories that diverge exponentially in time, no matter how close they are initially
[Coveney and Wan, 2016]. A brief list of the main sets of conditions for real or computer
simulated experiments is:

Canonical (NVT ). The system of N particles, contained in a volume V , is in contact
with a thermostat, and thus can exchange energy with the environment, to keep the
temperature T constant. At equilibrium the total energy is an observable property
and will not be exactly constant but will show very small fluctuations around its
average value.

Isothermal-isobaric (NPT ). For this ensemble the system ofN particles is maintained
at constant temperature and pressure, but the volume and then the density can vary.

Grand canonical (μV T ). In this case the system can exchange energy and molecules
with the surrounding environment. Both the total energy and number of particles
will be subject to small fluctuations about the mean of both quantities.

Microcanonical (NVE). The system is completely isolated from the environment. Here
the number of molecules N, and volume V are fixed for the system and energy E,
linear momentum pT , angular momentum J will be constant in time. The temper-
ature will be an observable and at equilibrium it will fluctuate in time around an
average value.

The detailed treatment of the different ensembles is the task of statistical mechanics and
beyond the scope of this book, particularly since there are many excellent books dealing with
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that in general (see, e.g., [Balescu, 1975; Mazenko, 2000; Tuckerman, 2010; Swendsen,
2012]) and more specifically for liquids [Gray and Gubbins, 1984; Santos, 2016]. Here we
wish to summarize the main facts, without any attempt at rigorous demonstrations, with the
main aim of summarizing the expressions needed to set up later on computer simulations
(see Chapters 8 and 9) for the calculation of physical properties in the various ensembles for
systems that can be anisotropic fluids. We start from the, perhaps most common, canonical
conditions.

4.2 Canonical Conditions

The problem of determining the functional form of the probability distributions in terms of
the internal energy of a certain system was solved by Boltzmann and then Gibbs [1902], who
showed that for a homogeneous system of N particles in equilibrium in a certain volume V
at temperature T , the equilibrium distribution is [Balescu, 1975]

�(X̃,
.
X̃) = exp[−HN (X̃,

.
X̃)/(kBT )]

/∫
dX̃d

.
X̃ exp[−HN (X̃,

.
X̃)/(kBT )], (4.1a)

= 1

Z (N,V,T )
exp[−HN (X̃,

.
X̃)/(kBT )], (4.1b)

where �(X̃,
.
X̃) is the probability density, such that �(X̃,

.
X̃) dX̃d

.
X̃ is the probability of

occurrence of a configuration with particle 1 in the phase space infinitesimal volume ele-
ment dX1d

.
X1 centred at X1,

.
X1, particle 2 inside dX2d

.
X2 centred at X2,

.
X2, and so on.

Thus,

Z (N,V,T ) =
∫

dX̃d
.
X̃ exp[−HN (X̃,

.
X̃)/(kBT )], (4.2)

provides the normalization and is called the phase integral [Gray and Gubbins, 1984]. The
Hamiltonian HN ,

HN (X̃,
.
X̃) = UN (X̃)+KN (

.
X̃), (4.3)

is the sum of the total interaction energy between the N particles UN (X̃) that will be

discussed in detail later, in Chapter 5, and the kinetic energy contributions KN (
.
X̃). This

canonical Boltzmann–Gibbs distribution �(X̃,
.
X̃) can be immediately obtained, applying

the Jaynes Maximum Entropy principle introduced in Section 3.8.2, when the input observed

quantity is the total average energy E = 〈
UN (X̃)+KN (

.
X̃)

〉
[Jaynes, 1957b, 1957a; Santos,

2016]. The problem becomes that of finding the distribution that maximizes the associated
Gibbs entropy functional

S[�] = −kB〈�(X̃,
.
X̃) ln[νN�(X̃,

.
X̃)]〉 = −kB

∫
dX̃d

.
X̃�(X̃,

.
X̃) ln[νN�(X̃,

.
X̃)], (4.4)

where νN is a constant making the argument of the log dimensionless. It is often taken
as νN ≡ N !hdN , with h Planck’s constant and d the space dimensionality, while N ! is
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inserted to allow for the indistinguishability of particles. The distribution should reproduce
the observed energy E, so that

E =
∫

dX̃d
.
X̃ HN (X̃,

.
X̃) �(X̃,

.
X̃), (4.5)

as well as obey the normalization condition
∫

dX̃d
.
X̃ �(X̃,

.
X̃) = 1. To find the �maximizing

S[�] subject to these conditions, we introduce as in Section 3.8 a Lagrange multiplier, λi ,
for each relation that has to be obeyed, reducing the constrained maximization problem of
the extended functional L,

L = −kB
∫

dX̃d
.
X̃ �(X̃,

.
X̃) ln[νN�(̃r,p̃)]− λ1

(
E −

∫
dX̃d

.
X̃ �(X̃,

.
X̃)HN (X̃,

.
X̃)

)
− λ0

(
1−

∫
dX̃d

.
X̃ �(X̃,

.
X̃)

)
, (4.6)

to the unconstrained one. Proceeding as in Section 3.8 gives the maximum entropy distri-
bution as

�(X̃,
.
X̃) = 1

Z (N,V,T )
exp

[
λ1

kB
HN (X̃,

.
X̃)

]
, (4.7)

with the normalization condition determining λ0

Z (N,V,T ) =
∫

dX̃d
.
X̃ exp

[
λ1

kB
HN (X̃,

.
X̃)

]
= νN exp

(
1− λ0

kB

)
. (4.8)

Differentiating S in Eq. 4.4 with respect to energy, after inserting �(X̃,
.
X̃) from Eq. 4.7,

gives

dS
dE

= d

dE

[−kB ln νN − λ1E + ln Z (N,V,T )
] = 1

T
= −λ1. (4.9)

Identifying λ1 with −1/T gives the Gibbs–Boltzmann distribution:

�(X̃,
.
X̃) = 1

Z (N,V,T )
exp

[
−HN (X̃,

.
X̃)/(kBT )

]
. (4.10)

We also have, as a link to thermodynamics −kB ln Z (N,V,T ) = (E − T S) /T = A/T ,
where A is the Helmholtz free energy, the thermodynamic potential of the canonical ensem-
ble. We shall now consider in turn the special cases of spherical and anisotropic constituent
particles.

4.2.1 Spherical Particles

For a system of N identical spherical particles of mass m, that we can call ‘atoms’ (A) for
simplicity, we have the classic Hamiltonian

H A
N (̃r , p̃) = UA

N (̃r)+KT
N (p̃), (4.11)

with the total interaction energy between particles UA(̃r) depending on radial separa-
tions and the translational kinetic energy KT

N (p̃) = ∑N
i=1 (pi ·pi)/(2mi). The integral
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ZA(N,V,T ) in Eq. 4.10 is often written, dividing by the previously defined νN, as the
canonical partition function

QA(N,V,T ) = 1

νN

∫
dp̃ exp [−KT

N (p̃)/(kBT )]
∫

d̃r exp [−UA
N (̃r)/(kBT )],

(4.12a)

= 1

νN
ZA(N,V,T ) = 1

νN
QT
P Z

A(N,V,T ), (4.12b)

where QA(N,V,T ) is dimensionless and essentially the classical limit of its quantum ana-
logue [Balescu, 1975; Hansen and McDonald, 2006]. Here, and in what follows, we shall
assume d = 3 unless otherwise specified, but it is worth mentioning that for particles con-
fined to a surface, d = 2. We also have

QT
P =

1

h3N

∫
dp̃ exp

[−∑
a

p̃2
a

2mkBT

] = λ−3N, (4.13)

where λ =
√
h2/(2πmkBT ) is called the thermal or De Broglie wavelength. As long as the

Hamiltonian is separable in a sum of a potential and a kinetic term, as in Eq. 4.11, we can
write: �A(̃r , p̃) = 1

νN
PA(̃r)P T(p̃), where PA(̃r) is

PA(̃r) = exp[−UA
N (̃r)/(kBT )] /ZA(N,V,T ), (4.14)

while P T(p̃) is the Maxwell distribution of linear momenta,

P T(p̃) =
N∏
i=1

PA(pi) =
1

λ3N

N∏
i=1

exp
[
− pi ·pi

2mkBT

]
. (4.15)

In the case of no interaction between particles, UN = 0, (ideal gas limit), the partition can
be evaluated explicitly

QA,id(N,V,T ) = 1

N !

[
1

λ3

∫
dp exp

[
− p ·p

2mkBT

]N [∫
V

dr

]N
= V N

N ! λ3N . (4.16)

The usage of classical mechanics in our treatment is valid as long as λ � r̄ , the typical
interparticle separation distance. It is easy to see that this is well satisfied not only for the
mesogenic molecules we have seen in Chapter 1, but also for most molecular fluids, except
perhaps hydrogen and helium, not of central interest here [Hansen and McDonald, 2006].
The free energy of the ideal gas becomes, using the Stirling approximation for large N , i.e.
lnN ≈ N (lnN − 1),

AA,id(N,V,T ) = −kBT ln QA,id(N,V,T ) = kBTN [ln(ρλ3)− 1]. (4.17)

Having written the partition function as a product of a configurational and a kinetic term,
we obtain in general the Helmoltz free energy as a sum of an ideal term for non-interacting
molecules and an excess one containing the particle-particle interactions:

AA(N,V,T ) = AA,id(N,V,T )+ AA,ex(N,V,T ), (4.18a)

= kBTN [ln(ρλ3)− 1]− kBT ln
[
ZA(N,V,T )/V N

]
. (4.18b)
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The configurational integral for a single-component system with pairwise radial interactions
can be rewritten, using the so called Mayer expansion:

e−U
A
N (̃r)/(kBT ) =

N−1∏
i=1

N∏
j=i+1

e−U
A
ij /(kBT ) = 1+

∑
i>j

�ij +
∑

�ij�i′j ′ + · · · , (4.19)

where �ij = exp[−UA
ij /(kBT )− 1]. This gives the virial series [Santos, 2016], in powers

of the number density ρ = N/V
AA(N,V,T )

NkBT
= [ln ρ − 1]+ B2ρ + 1

2
B3ρ

2 + · · · . (4.20)

The virial coefficients B2 and B3 are proportional to β1 and β2, the first two irreducible
cluster integrals, β1, β2,

β1 = −2B2 = β1(j,j ′) = 1

V

∫
drjdrj ′�jj ′, (4.21a)

β2 = −3

2
B3 = β2(j,j ′,j ′′) = 1

V

∫
drjdrj ′drj ′′�jj ′�j ′j ′′�j ′′j . (4.21b)

4.2.2 Rigid Anisotropic Particles

Turning now to a system of N identical rigid anisotropic particles or ‘bodies’ (B), which
could be molecules or nanoparticles or viruses (particles) still in canonical conditions, the

situation is a little more complicated. The classical Hamiltonian HN (X̃,
.
X̃) can be written

as

H B
N (̃r,�̃,p̃,J̃ ) = UB

N (̃r,�̃)+KB
N (p̃,J̃ ). (4.22)

The kinetic energy is in this case the sum over the N particles of the translational and
rotational contributions, i.e.

KB
N (p̃,J̃ ) =

N∑
i=1

[
pi ·pi

2m
+ 1

2

.
�i · Ii ·

.
�i

]
=

N∑
i=1

∑
α=
x,y,z

[
p2
i,α

2m
+ J 2

i,α

2Ii,α

]
, (4.23)

wherem is the mass and I is the inertia tensor of the particles in their molecule fixed frame,
with principal components Ix,Iy,Iz. Note that, even if all the molecules have the same iner-
tia tensor, we need the particle subscript i in Eq. 4.23 since we work in a laboratory system
common to all particles, where each of them has orientation �iL and will have a different
inertia tensor, ILAB

i ≡ ILAB
i (�iL) connected to I = IMOL

i as ILAB
i = R(�iL) I RT (�iL).

In the case of a rigid molecule formed by a set of nb spherical particles of mass mk,i
placed at position hk,i = rk,i − r i with respect to the centre of mass of the molecule
r i at r i = 1

mi

∑nb
k=1mk,irk,i , wheremi =

∑nb
k=1mk,i is the ith particle mass, the Cartesian

components of the inertia tensor of particle i can be written as

[Ii]ab =
nb∑
k=1

mk,i

[
δa,bh

2
k,i − (hk,i)a(hk,i)b

]
, a,b = x,y,z, (4.24)
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with h2
k,i =

∑
a(hk,i)2

a . If we have instead a rigid particle with a certain continuous distri-
bution of mass, ρm(h), the sums over the tensor of inertia components become integrals:

Iab =
∫

VP
dh ρm(h) (δa,bh

2 − hahb), (4.25)

where the integral is over the particle shape domain VP . In matrix form

I =
∫

VP
dhxdhydhz ρ(hx,hy,hz)

⎛⎜⎝h
2
y + h2

z −hxhy −hxhz
−hxhy h2

z + h2
x −hyhz

−hxhz −hyhz h2
x + h2

y

⎞⎟⎠ . (4.26)

For a uniform system ρ(hx,hy,hz) reduces to a constant and can be taken outside the
integral. It is convenient to choose the particle fixed coordinate system as that diagonal-
izing I. For symmetric bodies this system might be trivial to locate by inspection. As a
few relevant examples, we have, for a biaxial ellipsoid of mass m with semiaxes a,b,c,
Ia = 1

5m
(
b2 + c2

)
, Ib = 1

5m
(
a2 + c2

)
and Ic = 1

5m
(
a2 + b2

)
in the particle fixed

coordinate frame defined by the ellipsoid symmetry axes. For a uniaxial ellipsoid, two
of the eigenvalues are the same: I‖, I⊥ and the particle is elongated (prolate) if I‖ <
I⊥ and squashed or discotic (oblate) if I‖ > I⊥. For the limiting case of a sphere of
radius r = a = b = c, that separates the two previous cases, Ia = Ib = Ic = I =
(2/5)mr2. Similarly, for a solid cylinder of radius r , height h and mass m, I‖ = 1

2mr
2,

I⊥ = Ix = Iy = 1
12m

(
3r2 + h2

)
. As a last example, for a solid orthogonal block of height

h, width w, depth d , and mass m: Ih = 1
12m

(
w2 + d2

)
, Iw = 1

12m
(
d2 + h2

)
and Id =

1
12m

(
w2 + h2

)
. For a more realistic molecular model (see, e.g., Fig. 1.10) symmetry would

typically be lacking. However, a simple numerical diagonalization [Press et al., 1992]:
I = U�I UT , with�I = diag (Ia,Ib,Ic) determines the principal values, while the columns
of the eigenvector matrix U define the three axes of the body fixed inertia frame. Going
back to the overall distribution and the partition function, they can be factorized as [Gray
and Gubbins, 1984]: PB(̃r,�̃,p̃,J̃ ) = P T

P (p̃)PB
J (J̃ )PB(̃r,�̃) and

QB(N,V,T ) = QT
PQ

B
JQ

B(N,V,T ), (4.27)

where we have used the labels (N,V,T ) for configurational and P , J for linear and angular
momentum. We can now consider each of the three terms in turn. The translational contri-
bution (and thus QT

P and P T
P (p̃)), is the same as before. The angular momentum partition

function is

QB
J =

V N�

h(f−3)N

∫
dJ̃ e−

∑
i,α J

2
iα/(2kBT Iα) = �−NJ . (4.28)

with f the number of degrees of freedom per particle (5 for linear, 6 for non linear ones).
For non-linear molecules, V�, the angular volume, is 8π2 and

�J =
(

h2

8π2kBT Ix

) 1
2
(

h2

8π2kBT Iy

) 1
2
(

h2

8π2kBT Iz

) 1
2

(non-linear), (4.29)
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while, for linear molecules, V� = 4π and �J = h2

8π2IkBT
. The positional-orientational

configurational probability density P (̃r,�̃) studied earlier in Chapter 3 is

PB(̃r,�̃) = exp[−UB
N (̃r,�̃)/(kBT )]/[N !QB(N,V,T )] , (4.30)

where

QB(N,V,T ) = 1

N !

∫
d̃rd�̃ e−U

B
N (̃r,�̃)/kBT = Z(N,V,T )

N !
(4.31)

is the purely configurational partition. Having written the full partition function as a prod-
uct of configurational and kinetic terms, we obtain the free energy as a sum of an ideal
gas term for non-interacting molecules and a configurational or excess one containing the
interactions:

AB = A id,B + Aex,B, (4.32)

where the kinetic (translational and rotational) ideal term,

A id,B = −kBT ln
[
QT
PQ

B
J

]
= −kBT ln

[
V NV N�

N ! λ3N�NJ

]
= NkBT ln

(
ρλ3�J

eV�

)
, (4.33)

has the analytic form obtained from Eqs. 4.13 and 4.28 and the configurational free energy,
normally the really relevant one, is

Aex,B = −NkBT ln[Q(N,V,T )]. (4.34)

4.3 Isobaric-Isothermal Ensemble

Let us now go back to the simpler case of a system formed of atoms or spherical particles
(now omitting the superscript A since no confusion can arise). If necessary, the rigid body
expressions just derived can be generalized following the same procedure. In this case
pressure, rather than volume, as well as T and N, is a fixed parameter. These conditions
correspond to the vast majority of ordinary experiments and standard tabulated values for
physical properties are often reported at N,P,T fixed, e.g. at P = 1 atm and room temper-
ature (25◦C). The relevant free energy (thermodynamic potential) is the Gibbs free energy,
G = E + PV − T S. The distribution is

�(̃r,p̃) = exp[−(HN + PV )/(kBT )]∫∞
0 dV

∫
d̃rdp̃ exp[−(HN + PV )/(kBT )]

(4.35)

and the isothermal-isobaric partition function

�(N,P,T ) = 1

V0νN

∫ ∞

0
dV

∫
d̃rdp̃ exp[−(HN + PV )/(kBT )], (4.36a)

= 1

V0

∫ ∞

0
dV exp[−PV/(kBT )]Q(N,P,T ), (4.36b)

where V0 is a reference volume making the expression dimensionless.
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4.4 Grand Canonical Ensemble

In this case, the number of particles can change and the input constraints when maxi-
mizing the entropy functional entail the number of particles, the energy, as well as the
normalization:

∞∑
N=0

∫
d(̃r,p̃ : N ) �(̃r,p̃ : N ) = 1, (4.37a)

∞∑
N=0

∫
d(̃r,p̃ : N ) �(̃r,p̃ : N )HN (̃r,p̃ : N ) = E, (4.37b)

∞∑
N=0

N

∫
d(̃r,p̃ : N ) �(̃r,p̃ : N ) = 〈N〉, (4.37c)

where we have introduced the notations (̃r,p̃ : N ) and d(̃r,p̃ : N ) for the set of coordinates
and momenta (̃r,p̃) appropriate for a certain number N of particles and for the correspond-
ing volume element. The entropy maximization gives

�(̃r,p̃ : N ) = exp[−(HN −Nμ)/(kBT )]

νN  
, (4.38)

where μ is the chemical potential and

 =
∞∑
N=0

eμN/kBT

νN

∫
d̃rdp̃ exp[−HN/(kBT )], (4.39)

is the grand partition function. The grand canonical average of a generic property A will be

〈A〉 =
∞∑
N=0

∫
d(̃r,p̃ : N ) �(̃r,p̃ : N )A(̃r,p̃ : N ) (4.40)

and the grand potential [Santos, 2016]: �(T ,V ,μ) = −PV = −kBT ln TVμ.

4.5 Microcanonical Conditions

The microcanonical conditions correspond to a system of particles in isolation obeying
Hamilton equations of motion, thus with constant total energy, momentum and angular
momentum. The partition function is in this case [Tuckerman, 2010]

�(N,V,E) = E0

N !h3N

∫
dp̃

∫
d̃r δ(HN (̃r,p̃)− E), (4.41)

where E0 makes the RHS dimensionless and N ! comes from the indistinguishability of the
particles. An average observable will be

〈A〉 =
∫

d̃rdp̃A(̃r,p̃) δ(HN (̃r,p̃)− E)∫
d̃rdp̃ δ(HN (̃r,p̃)− E)

. (4.42)

Microcanonical constant energy conditions are not easy to implement for real experiments
but represent rather natural conditions for following the evolution of an isolated system of
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particles by solving their Newton equations of motion. This is the basis of the molecular
dynamics simulation method discussed in Chapter 9 .

4.6 Structural Properties

We note that, as long as we are interested in static structural properties, A(X̃), depending
only on positions (and orientations), the calculation of their average only requires the con-
figurational distribution as the kinetic part at the numerator and denominator will factor
out. Considering canonical conditions, here and in the following sections, unless stated
otherwise, the probability of finding particle 1 at X1, particle 2 at X2 and so on up to particle
N at XN is the N particle distribution [Balescu, 1975; Landau and Lifshitz, 1980]:

P (X̃) = exp [−UN (X̃)/(kBT )] /Z(N,V,T ), (4.43)

where Z(N,V,T ) = ∫
dX̃ exp [−UN (X̃)/(kBT )], with dX̃ ≡ dX1, . . . ,dXN is the con-

figurational integral. The average of a collective property depending on the coordinates of
all the N particles, A(X̃), will then be

〈A〉 =
∫

dX̃ A(X̃) exp [−UN (X̃)/(kBT )]/Z(N,V,T ). (4.44)

For instance, the average potential energy is

U = 〈
UN (X̃)

〉 = ∫
dX̃ UN (X̃) exp [−UN (X̃)/(kBT )]/Z(N,V,T ). (4.45)

In particular, for rigid, non-spherical particles, the N particle distribution can be written in
terms of a full set of molecular positions and orientations as

P (̃r,�̃) = exp [−UN (̃r,�̃)/(kBT )] /Z(N,V,T ), (4.46)

where the normalization factor ZN = Z(N,V,T ) = ∫
d̃r d�̃ exp [−UN ( r̃,�̃)/(kBT )]

ensures that the integral of the probability density in Eq. 4.46 over all space is 1. If we start
from this N particle distribution, the probability of finding particle 1 at (r1,�1) and the
others anywhere will be obtained from Eq. 4.46 by integrating over all coordinates except
those of particle 1 (see, e.g., [Feynman et al., 1963]). The probability density of finding any
one particle at (r1,�1) and the others anywhere is N times this, i.e.

P (1)(r1,�1) = N

Z(N,V,T )

∫
dr2d�2 . . . drNd�N e−UN ( r̃,�̃)/(kBT ). (4.47)

We have already discussed the single particle distribution P (1)(r,�), or rather P (r,�) =
P (1)(r,�)/N and its expansion in Chapter 3, but the importance of Eq. 4.47 is that it offers
a way of constructing the distribution bottom up, from molecular information. Here we
wish anyway to proceed by defining the ‘generic’ probability of finding any two particles
at (r1,�1,r2,�2) as the pair distribution

P (2)(r1,�1,r2,�2) = N (N − 1)

Z(N,V,T )

∫
dr3d�3 . . . drNd�N e−UN ( r̃,�̃)/(kBT ). (4.48)
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The procedure can be extended [Zannoni, 1979c; Hansen and McDonald, 2006], to intro-
duce the probability P (n) of finding any subset of n particles in an infinitesimal volume
element at (r1,�1,r2,�2, . . . ,rn,�n). The general n-particle distribution P (n) represents
all the information needed to compute any equilibrium observable of the system. Normally
we need to concern ourselves only with single-particle and two-particle properties. For these
properties the information given by the single particle (see Chapter 3) and, respectively,
the pair distribution is complete. In fact, they constitute all we need to know to be able to
calculate the average of any single-particle property dependent on position and orientation,
A(r,�), as we saw in Chapter 3 and of any pair property A(r1,�1,r2,�2). We can write
this two-particle average as

〈
A(X1,X2)

〉 = ∫
dX1dX2P

(2)(X1,X2)A(X1,X2)∫
dX1dX2P (2)(X1,X2)

. (4.49)

The pair distribution just defined is normalized as∫
dX1dX2P

(2)(X1,X2) = N (N − 1). (4.50)

The generic n-particle distribution

P (n)(X1,X2, . . . ,Xn) = N !

(N − n)!Z(N,V,T )

∫ N∏
i=n+1

dXi exp [−UN (X̃)/(kBT )]

(4.51)

is normalized to the number of n-tuples:∫ n∏
i=1

dXi P
(n)(X1,X2, . . . ,Xn) = N !

(N − n)!
. (4.52)

As we have seen in Chapter 3, a useful way of writing the one-particle distribution is through
the introduction of Dirac delta functions (see Appendix D). In a similar way we can define
the pair distribution in terms of positional and orientational delta functions. In particular,
for rigid particles, where Xi = (r i,�i)

P (2)(r1�1,r2,�2) = N (N − 1)
〈
δ(r1 − r ′1) δ(�1 −�′1) δ(r2 − r ′2) δ(�2 −�′2)

〉
,

(4.53a)

≡ N (N − 1)P (r1�1,r2,�2), (4.53b)

with the normalization
∫

dr1d�1dr2d�2 P (r1,�1,r2,�2) = 1. Even though an explicit
functional form of the pair distribution is of course not available, a few general results can
be provided. As the separation between the particles becomes very large the joint probabil-
ity of finding molecule 1 at X1 and molecule 2 at X2 will just be the product of these
two independent events and the pair distribution will tend to the product of two single
particle ones.
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lim
r→∞ P (r1�1,r2,�2) = lim

r→∞
〈
δ(r1 − r ′1) δ(�1 −�′1) δ(r2 − r ′2) δ(�2 −�′2)

〉
, (4.54a)

= 〈
δ(r1 − r ′1) δ(�1 −�′1)

〉 〈
δ(r2 − r ′2) δ(�2 −�′2)

〉
, (4.54b)

= P (r1, �1)P (r2, �2). (4.54c)

We can introduce, for uniform systems like nematics, the ‘reduced’ pair distributions
G(r,�1,�2) and g(r,�1,�2) [Zannoni, 1979c]:

P (2)(r1,�1,r2,�2) = N2P (r1,�1,r2,�2) = ρ2G(r1,�1,r2,�2), (4.55a)

= ρ2VG(r,�1,�2,�r ), (4.55b)

= ρ2VP (�1)P (�2) g(r,�1,�2,�r ), (4.55c)

where r ≡ r2 − r1 = r r̂ , dr = r2drd�r . The pair correlation g(r,�1,�2,�r ) has the
long-range behaviour lim

r→∞ g(r,�1,�2) = 1, while for the other reduced pair distribution

function or spatial-orientational correlation function we have

lim
r→∞G(r,�1,�2,�r ) = P (�1)P (�2), (4.56)

and the normalization
∫

drd�1d�2G(r,�1,�2,�r ) = V , with dr = drr2. Thus, at large
separations, the only orientational correlation between particles will be that indirectly com-
ing from the fact that both molecule 1 and 2 are separately parallel to the same director, if
that exists. In particular, no long-range orientational correlation between particles exists in
a normal isotropic fluid. The correlationG(r,�1,�2,�r ) = P (�1)P (�2) g(r,�1,�2,�r ),
although very informative, is difficult to visualize and in LCs we may also choose, as will
be discussed later in Section 4.9.1 to introduce a further reduced radial-angular distribution
representing the distribution in space of the vector connecting molecular positions:

g(r,�r ) =
∫

dr1 d�1 d�2 G(r1,�1,r,�r,�2)
/∫

dr1d�1d�2, (4.57a)

= 〈g(r1,�1,r,�r,�2)〉r1,�1,�2, (4.57b)

which tends to 1 for large separations and, for uniaxial molecules and uniform uniaxial
phases, reduces to g(r,βr ). Going back to the full distribution, g(r,�1,�2), the limiting
value is often subtracted to define the total correlation function h(r,�1,�2) which tends
to 0 at large separations

h(r,�1,�2) = g(r,�1,�2)− 1, (4.58)

or more generally, h(X1,X2) = g(X1,X2) − 1. Similarly, we can define for anisotropic
fluids

H (r,�1,�2) = G(r,�1,�2)− P (�1)P (�2), (4.59)

removing again the appropriate asymptotic limit. The pair correlation function can be
inverted ex-post in terms of an effective potential of mean force and torqueW (r,�1,�2):

W (r,�1,�2) = −kBT ln g(r,�1,�2), (4.60)
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which is of course changing with temperature or other state variables. For very dilute fluid
systems, when the density is sufficiently low, configurations with three or more particles
interacting simultaneously are extremely rare and, as long as they can be neglected, we can
expect

g(r,�1,�2) ≈ exp [−U (r1,�1,r2,�2)/(kBT )] (4.61)

and

G(r,�1,�2) ≈ P (�1)P (�2) exp [−U (r1,�1,r2,�2)/(kBT )]. (4.62)

We can imagine this low-density approximation to be more applicable to dilute suspen-
sions of anisotropic colloidal particles (see Section 1.14) rather than to dense condensed
thermotropic systems.

Another limiting situation can be obtained for very short pair separations. If the
molecules have a hard impenetrable core, there is vanishing probability of finding a second
particle nearer than a contact distance σ (r,�1,�2) from the first one. In this case,

g(r,�1,�2) = 0, when σ (r,�1,�2) →∞. (4.63)

The condition is expressed much more simply for spherical particles, even if they possibly
have an anisotropic interaction (e.g. an embedded dipole or quadrupolar term). In this case,

g(r,�1,�2) = g(r,�1,�2,�r ) = 0, if r < σ . (4.64)

If the constituent particles are even simpler, say not only of spherical shape, but also
endowed with isotropic interactions, the pair correlation g(r,�1,�2,�r ) will only depend
on the interparticle distance r , so that

g(r,�1,�2,�r ) = g(r), (4.65)

where g(r) is the important radial distribution that we shall now examine more closely. From
a practical point of view the radial distribution function, g(r), [Hansen and McDonald,
2006] is just the average number density of molecules at a distance r from one chosen as
the origin (Fig. 4.1a), divided by the bulk density:

g(r) = 〈ρ(r)〉
ρ

= 1

4πr2ρ
〈δ(r − r12)〉r12

. (4.66)

Thus, g(r) represents the probability, relative to the bulk one, of finding the centre of mass
of a second particle at a distance r from one chosen as the origin. For the limiting case of
no interactions at all (like in a perfect gas), we have U (X̃) = 0 and g(r) = 1. Recalling the
normalization of P (2) in Eq. 4.50, we obtain at once the normalization for g(r) as∫ 2π

0
dα

∫ π

0
dβ sinβ

∫
V

dr r2 g(r) = V

N

∫
dr 〈δ(r − r12)〉r12

= V . (4.67)
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Figure 4.1 (a) Calculation of the radial distribution g(r) = 〈ρ(r)〉/〈ρ〉, where ρ(r) =
n(r)/V (r) is the density of the shell at r . (b) g(r) for some ideal 3D lattices.

In a crystalline solid made up of spherical particles, neighbours are located only at certain
well-defined distances rk typical of the lattice type and the radial distribution will consist of
a sequence of spikes with intensity proportional to the number of neighbours zk at each rk:

g(r) = 1

4πr2ρ

∑
k

zk δ(r − rk). (4.68)

In Fig. 4.1b we show as an example the radial distribution for various simple lattices.
In an ideal crystal the pattern of ‘spikes’ will be regular over distances as large as we
wish. This is a manifestation of the positional long-range order in a crystal. The fact that
only spikes appear depends on the certainty with which we can define the position of the
particles building up our crystal. Even though in a real crystal we might have less than
complete certainty due to thermal oscillations etc., the radial distribution will still consist
of a sequence of very well-defined peaks.

4.6.1 Site-Site Radial Distribution Functions

We have seen that g(r) is a complete representation of the pair distribution for spherical
particles in isotropic liquids. For particles of arbitrary symmetry, it is possible and often
convenient to have a radial distribution for the centres of mass. However, we can always
define site-site radial distributions gAB considering a point (or site) A on particle 1 and
a point B on particle 2 and their distance vector rAB. As an example in a simulation of
water, it could be interesting to look at different oxygen-oxygen, oxygen-hydrogen and
hydrogen-hydrogen site-site correlations gOO(r), gOH(r) and gHH(r), as well as the one
between centres of mass, g(r). gAB(r) can be obtained by counting the density of particles
that have their site-site separation rαβ at distance r normalized by the average density ρ, i.e.

gAB(r) = 1

4πρr2 〈δ(r − rAB)〉rAB = g(rAB,�1,�2,�r )(r), (4.69)
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(a) (b)

Figure 4.2 (a) Centre of mass radial distribution of p-quinquephenyl (P5). g(r) at temper-
atures T = 750 K (isotropic), 690 K (nematic), 650 K (SA) and 610 K (crystal) and inset
of a close-up across the NI transition. (b) Radial distribution gPP(r) between the centre of
a phenyl ring on a P5 molecule with that of a phenyl ring on another P5 from atomistic
simulations of p-quinquephenyl [Olivier et al., 2014].

where we have used the overbar to indicate that gAB(r) can be formally obtained integrating
g(rAB,�1,�2,�r ) over orientations at separation rAB = r , as indicated by the argument.
Here, unless differently specified, we shall write simply g(r) when the two sites correspond
to the c.o.m. of the two particles, whatever their symmetry. In Figure 4.2a we show the
radial distributions, g(r), of p-quinquephenyl (P5) in the nematic phase, obtained using as
reference centre the molecular centre of mass. Even though LCs are characterized by the
long-range order described in Chapter 3, also some short-range order exists in liquid crys-
tals, as shown in Fig. 4.2a for the g(r) of ρ-quinquephenyl c.o.m. obtained from atomistic
computer simulations [Olivier et al., 2014] (see Section 12.2). As expected, this short-range
order, manifested by the relatively sharp first few peaks in g(r), is more pronounced in the
smectic than in the nematic and decreases as the temperature of the liquid is increased. In
Fig. 4.2b we show an example of site-site radial distribution, where each site is the centre
of one of the phenyl rings.

4.7 The Pair Distribution in Various Phases

We can now return to the pair distributionG(r,�1,�2) = G(r,�1,�2,�r ) and examine its
features for various types of phases and symmetry. Although this distribution allows us to
calculate any pairwise static property, we should point out that it is very difficult to obtain
and to visualize G in its full form. Indeed, even for rigid particles, G depends on up to
3+ 3+ 3+ 2 = 11 variables (three positional, and the rest angular) implying that even if
we have a large numberM of configurations (snapshots) of the system, obtained from some
computer simulation technique, it would be hardly possible to build a multidimensional
histogram ofGwith sufficient resolution (in terms of the number of bins for every variable)
and adequate population. In particular, we would need to fill each bin with a number of
events nH sufficiently high to make the errors, roughly ≈ 1/

√
nH , acceptable. The two
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options available are: (i) expand G(r,�1,�2,�r ) in a suitable orthogonal basis set and
concentrate on calculating a small but significant number of expansion coefficients or (ii)
calculate and represent histograms not of the full pair distribution, but of reduced functions
obtained by integrating the full distribution over some of the variables. In Sections 4.8
and 4.9 we shall discuss both these approaches.

4.8 Invariant Expansion of the Pair Distribution

For a uniform fluid we can start from the distribution G(r,�1,�2,�r ), (Eq. 4.55c), where
r = r2 − r1 is the intermolecular vector of length r and orientation �r = (αr,βr ). In the
absence of an external field our system can be assumed to be macroscopically isotropic, in
the sense that its properties have to be independent from an arbitrary rotation of the coor-
dinate frame. This applies to an ordinary fluid, but also to a polydomain nematic obtained
from cooling down from its isotropic phase without an external aligning field. In this case,
nothing should change for an arbitrary rotation of the sample (or of the laboratory system).
In computer simulations we deal necessarily with finite samples of a few hundred to a few
hundred thousand particles, according to the different models adopted and thus at any instant
of time t a sample director d(t) will always exist. If we recall that the turbidity of an unori-
ented liquid crystal indicates that the size of a typical oriented domain approaches micron
size (see Fig. 1.4), thus containing hundreds of millions of molecules, it seems unavoidable
that the simulated sample will correspond to a correlated domain and exhibit ‘long-range’
order. This sample director will, however, fluctuate in time in the absence of an external
field so as to eventually re-establish the original spherical symmetry of the starting isotropic
system. The pair distribution will thus depend on the Wigner rotation matrices DL1

m1,n1 (�1L),
DL2
m2,n2 (�2L) and D

L3
m3,0

(�rL), but only through their rotationally invariant combinations
[Jepsen and Friedman, 1963; Steele, 1963; Blum and Torruella, 1972; Stone, 1978; Zannoni,
1979c]. In Appendix G we discuss how to build these scalar and orthogonal combina-
tions Sk1,k2

L1,L2,L
(�1L,�2L,�rL) which, in the notation of Stone [1978] (cf. Appendix G,

Eq. G.19) are

S
k1,k2
L1,L2,L

(�1L,�2L,�rL)

= (i)L1−L2+L
√

2L+ 1
×

∑
q1,q2

C(L1,L2,L;q1,q2) DL1∗
q1,k1

(�1L) DL2∗
q2,k2

(�2L) DL
q1+q2,0(�rL).

(4.70)

In Appendix G we provide a tabulation of the first few of these Stone invariants in Cartesian
coordinates. Note that with this formulation and the convention of Rose [1957], that we
have adopted for the Euler angles, the indices k1 and k2 are referred to the particles and
their symmetries, as we saw in Section 3.10. In particular, for ranks L = 2,4, the values
that k1 and k2 can assume for the various point groups are listed in Table 3.1. We can now
expand the pair correlation, similarly to what we did in Chapter 3 for the single-particle
distribution, as
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G(r,�1L,�2L,�rL) =
∑
L1,k1,
L2,k2,L

G
k1,k2
L1,L2,L

(r) Sk1,k2
L1,L2,L

(�1L,�2L,�rL), (4.71)

where the expansion coefficients can be written, thanks to the orthogonality of the S func-
tions (Eq. G.23) , as

G
k1,k2
L1,L2,L

(r) =
∫

d�1L d�2L d�rLG(r,�1L,�2L,�rL) Sk1,k2∗
L1,L2,L

(�1L,�2L,�rL), (4.72a)

≡ cL1,L2,LS
k1,k2∗
L1,L2,L

(r), (4.72b)

where cL1,L2,L ≡ (2L1+1)(2L2+1)(2L+1)/(V�1V�2V�r ) and from now on we indicate
with a long overbar an average over all the variables not appearing on the left-hand side,
performed while keeping the remaining ones, in inside brackets, fixed. In practice, this is
an average over (�1L,�2L,�rL) for particles at distance r:

S
k1,k2
L1,L2,L

(r) =
〈
δ (r − r12) S

k1,k2
L1,L2,L

(�1L,�2L,�rL)
〉
, (4.73)

where we have concisely written 〈. . .〉 instead of 〈. . .〉r12,�1L,�2L,�rL , as we shall do in gen-
eral, unless confusion arises. The product V�1V�2V�r corresponds to the ‘angular normal-
ization constant’ for the angles required to specify the orientations. If all three Euler angles
are needed for �1 and for �2, then V�1V�2V�r = (8π2)(8π2)(4π ) = 256π5. If the
molecules have axial symmetry, we have V�1V�2V�r = (4π )(4π )(4π ) = 64π3. In this way

S
0,0
0,0,0(r) = 〈δ (r − r12)〉 = 4πr2ρ g(r). (4.74)

The quantities Sk1,k2
L1,L2,L

(r) are in a way two-particle analogues of the order parameters of
Chapter 3. They provide important structural quantities for the description of a certain
mesophase. While the expansion Eq. 4.71 is hardly usable to reconstruct the whole pair
distribution, it can be very useful to identify in a systematic way the first few relevant pair

correlation functions Sk1,k2
L1,L2,L

(r), for assigning phase type and for structural characteri-
zation. To see this and to establish a relation with the single-particle order parameters, it
is useful to consider that in the limit of large intermolecular distances, the average of the
product of rotation matrices becomes the product of the averages and

lim
r→∞ S

k1,k2
L1,L2,L

(r)

= (i)L1−L2+L
√

2L+ 1
×

∑
q1,q2

C(L1,L2,L;q1,q2) 〈DL1∗
q1,k1

(�1L) 〉 〈DL2∗
q2,k2

(�2L) 〉〈DL
q1+q2,0(�rL)〉.

(4.75)

Here we have for simplicitly indicated, rather loosely, with r →∞ a scale of separations
much larger than the typical nearest neighbours distances (say many nanometres), but not a
truly macroscopic one.
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Figure 4.3 The rotationally invariant pair correlations S2,2,0(r∗) and S4,4,0(r∗) as a function
of dimensionless distance r∗ for a model LC (specifically the uniaxial Gay–Berne model
[Berardi et al., 1993] discussed in Chapters 5 and 11) at three dimensionless temperatures
in the isotropic (T ∗ = 3.6), nematic (T ∗ = 2.8) and smectic (T ∗ = 2.0) phase.

4.8.1 Macroscopic Disorder with Local Order

In a number of cases, e.g. spherical micelles or liposomes, the system can appear isotropic
on a scale larger than the aggregates, while being definitely ordered on the local scale of
constituent molecules or of solutes used as molecular probes for fluorescence polarization
[Zannoni, 1981] or ESR spectroscopy [Zannoni et al., 1981] studies. For an isotropic dis-
tribution of the intermolecular vectors at large distances we have 〈DL

q1+q2,0
(�rL)〉 = δL,0

δ−q1,q2 and, recalling that according to Eq. F.27, C(L1,L2,0;q1,−q1) = (−1)L1−q1δL1,L2/√
2L1 + 1, we find the limiting value to be a sum of products of order parameters

lim
r→∞ S

k1,k2
L1,L2,0

(r) = δL1,L2√
2L1 + 1

∑
q1

(−1)L1−q1〈DL1 ∗
q1,k1

〉〈DL1 ∗
−q1,k2

〉. (4.76)

In the large separation limit, i.e. r � σc, with σc the scale of molecular dimensions, but
again not asymptotically large, the average invariants tail to a plateau corresponding to a
sum of products of the order parameters of the same rank L1 when L1 = L2, or 0 otherwise
[Zannoni, 1979a]. Let us now briefly see the most common cases.

(i) Locally uniaxial phases. Phase uniaxiality around the local director taken as z-axis
gives δq1,0 and

lim
r→∞ S

k1,k2
L1,L2,0

(r) = δL1,L2√
2L1 + 1

(−1)L1
〈
DL1 ∗

0,k1

〉〈
DL1 ∗

0,k2

〉
, (4.77)

where L1 has to be even for a non-polar liquid crystal, e.g. an ordinary nematic, but
can be odd for ferroelectric phases. For non-cylindrical particles,

lim
r→∞ S

2,2
2,2,0(r) = 1√

5
〈D2 ∗

0,2〉〈D2 ∗
0,2〉. (4.78)

As we have seen in Chapter 3 , the biaxial order parameter 〈D2 ∗
0,2〉 is rather small and,

given unavoidable numerical errors, it might be difficult to distinguish a real plateau
from the reference null background.
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(ii) Locally uniaxial phases formed by uniaxial particles. The pair correlation for meso-
genic particles with effective uniaxial symmetry can be obtained letting δk1,0 and δk2,0

(see Table 3.1). Considering also the δq1,0 coming from phase uniaxiality, as in the
previous case, yields

G(r,�1L,�2L,�rL) =
∑

L1,L2,L

cL1,L2,LSL1,L2,L(r) SL1,L2,L(�1L,�2L,�rL), (4.79)

using the notation SL1,L2,L (r) ≡ S0,0
L1,L2,L

(r). At large separations

lim
r→∞ SL1,L2,0(r) = (−1)L1δL1,L2√

2L1 + 1
〈PL1〉2. (4.80)

In particular,

S2,2,0(r) = 1√
5

〈
δ (r − r12)

(
3

2

(
ẑ1 · ẑ2

)2 − 1

2

)〉
r12

, (4.81)

S4,4,0(r) = 1

3

〈
δ (r − r12)

(
+35

8
(ẑ1 · ẑ2)4 − 30

8
(ẑ1 · ẑ2)2 + 3

8

)〉
r12

(4.82)

and, at large inter-particle distances (see Fig. 4.3),

lim
r→∞ S2,2,0(r) = 1√

5
〈P2〉2 and (4.83a)

lim
r→∞ S4,4,0(r) = 1

3
〈P4〉2. (4.83b)

Thus, examining if these pair correlations decay to a plateau, rather than to 0, we
can confirm that a phase is anisotropic if the plateau value is above the estimated
background error. In a cooling down sequence of simulations starting from the isotropic
phase, the onset of a plateau in these invariants indicates an isotropic-liquid crystal
phase transition.

(iii) Polar phases. Nematics are not polar, i.e. the director is not a true vector endowed with
a sense as well as an orientation, and indeed in Chapter 3 we have employed reflection
symmetry (Eq. 3.19). However, the occurrence of polar nematics, and in particular of
ferroelectric ones if the molecules are endowed with a suitable electric dipole, is not
forbidden by some fundamental law. Thus, computer simulations on simple models
can and have been employed to try to find some molecular design features of help
in the search for ferroelectric nematics. The general invariant limit, Eq. 4.77, can be
used to test the existence of phase polarity. In particular, a convenient pair invariant
is S1,1,0(r) = −(1/

√
3)〈δ(r − r12)(ẑ1 · ẑ2)〉. For large particle-particle separations

we have

lim
r→∞ S1,1,0(r) = − 1√

3
〈P1〉2, (4.84)

that is different from 0 only for a polar, e.g. for a ferroelectric, phase. In Fig. 4.4 we
show an example for a model system of tapered particles introduced in Berardi et al.
[2001, 2004b] that exhibits a polar phase. We see that after a separation corresponding
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Figure 4.4 The pair correlation S1,1,0(r∗) for a polar nematic system of tapered model
particles (see inset) as a function of dimensionless distances, r∗ [Berardi et al., 2001].

to particle size where a second particle cannot be present and thus S1,1,0(r) = 0,
the tapered particles are on average parallel rather than antiparallel giving a negative
plateau as from Eq. 4.84, thus confirming the overall phase polarity.

(iv) Biaxial phase of uniaxial particles. We could imagine such a phase as a system of
rods adopting on average a cross-like configuration, as observed in the suspensions of
inorganic nanorods in 5CB briefly mentioned in Section 1.6 [Mundoor et al., 2018] or
in systems of discs organized in a ‘house of cards’ style. In this case,

lim
r→∞ S2,2,0(r) = 1√

5

(
〈R 2

0,0〉2 + 2〈R 2
2,0〉2

)
, (4.85)

where RL
m,n are the D2h symmetry adapted Wigner functions [Biscarini et al., 1995]

defined in Eq. 3.149 . In the limit of vanishing biaxiality this reduces to Eq. 4.83a .
(v) Biaxial phases of biaxial particles. For an orthogonal biaxial nematic withD2h phase

symmetry, we have, for L1 = L2 = 2, that q1 = 0, ± 2 and k1,k2 = 0, ± 2. Some
relevant expressions for second-rank invariants and their limiting values are

S
2,0
2,2,0(r) =

√
3

2
√

10

〈
δ (r − r12)

((
x̂1 · ẑ2

)2 − (
ŷ1 · ẑ2

)2
)〉
, (4.86)

lim
r→∞ S

2,0
2,2,0(r) = 1√

5

(
〈R 2

0,0〉〈R 2
0,2〉 + 2〈R 2

2,0〉〈R 2
2,2〉

)
(4.87)

and

S
2,2
2,2,0(r) = 1

4
√

5

〈
δ (r − r12)

( (
x̂1 · x̂2

)2 − (
x̂1 · ŷ2

)2 − (
ŷ1 · x̂2

)2 + (
ŷ1 · ŷ2

)2

− 2
(
x̂1 · ŷ2

) (
ŷ1 · x̂2

)− 2
(
x̂1 · x̂2

) (
ŷ1 · ŷ2

) )〉
,

(4.88)

lim
r→∞ S

2,2
2,2,0(r) = 1√

5

(
〈R 2

0,2〉2 + 2〈R 2
2,2〉2

)
. (4.89)

This asymptotic limit provides a useful route to check the single-particle order param-
eters obtained as described in Chapter 3. However, only products or squares of order
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Figure 4.5 Scalar S2,0
2,2,0(r∗) and S2,2

2,2,0(r∗) vs dimensionless distance r∗ for a system of
biaxial particles showing biaxial and uniaxial phases: (a) T ∗ = 2.6 (biaxial smectic), (b) 2.8
(biaxial nematic), and (c) 3.0 (uniaxial nematic) [Berardi and Zannoni, 2000].

parameters are obtained in this way, thus missing their individual signs. From Fig. 4.5
we see clearly that these invariants and particularly their tail can detect the onset of a

biaxial phase. Thus, S2,0
2,2,0(r) and S2,2

2,2,0(r) decay to 0 in isotropic and uniaxial phase
but to a plateau if the phase is biaxial [Berardi and Zannoni, 2000].

(vi) Cholesteric and other chiral phases. Recalling that the effect of the inversion
operator on the Wigner matrices composing the Stone invariant will produce a

factor (−1)L1+L2+L3 (see Appendix G), it follows that the correlations Sk1,k2
L1,L2,L

(r)
with (L1 + L2 + L3) odd will be 0 in a non-chiral phase. To follow the onset of a
chiral phase we can then monitor invariant correlations with (L1 + L2 + L3) odd. In
particular, the following invariant

S2,2,1(r) =
〈
δ(r − r12) S2,2,1(�1L,�2L,�rL)

〉
,

= −
√

3

10

〈
δ(r − r12)

(
ẑ1 · ẑ2 × r̂

) (
ẑ1 · ẑ2

) 〉
(4.90)

has been employed for various chiral systems [Berardi et al., 1998c; Memmer, 1998;
Berardi et al., 2003a; Chiccoli et al., 2013]. In Fig. 4.6 we see, as an example, the
invariant calculated for discotic particle characterized by a chirality strength parame-
ter χ [Memmer, 1998]. S2,2,1(r) is 0 for the non-chiral discs and upon increasing χ
gives a cholesteric and a Blue Phase.

4.8.2 Isotropic Phases

If the intermolecular vector has an isotropic distribution not only in the very large
separation limit, but also in the range of a few particle dimensions, then we can consider
also in this intermediate range, 〈DL

−q1−q2,0(�rL)〉 = δL,0δq1+q2,0 which in turn gives:
C(L1,L2,0;q1,−q1) = (−1)L1−q1δL1,L2/

√
2L1 + 1 (formally just as in the previous

cases). However, the orientations of the two particles will be, in general, correlated each
other, so that the average Stone invariants become
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Figure 4.6 The radial pseudoscalar orientational pair correlation functions S2,2,1(r∗) as
a function of scaled particle separation r∗ for different values of a chirality strength
parameter χ : in the discotic nematic phase (χ = 0, ), in the discotic cholesteric phase
(χ = 0.85, ) and in a discotic Blue Phase (χ = 1.25, ) [Memmer, 1998].

S
k1,k2
L1,L2,0

(r) = (−1)L1δL1,L2√
2L1 + 1

∑
q1

(−1)−q1 〈DL1∗
q1,k1

(�1L) DL1∗
−q1,k2

(�2L) 〉, (4.91a)

= (−1)L1+k2δL1,L2√
2L1 + 1

〈DL1
k1,−k2

(�21) 〉, (4.91b)

showing that for isotropic systems formed by rigid particles of arbitrary symmetry,
only relative orientations of the two particles are relevant. Relabelling, for convenience,
CJ,k1 ≡ cJ,J,0(−1)J+k1/

√
2J + 1, we have, using the notation of Eq.4.57,

g(r,�21) =
∑
J,k1,k2

CJ,k1D
J
k1,−k2

(�21)(r) DJ
k1,−k2

(�21), (4.92)

where DJ
k1,−k2

(�21) = Sk1,k2
J,J,0(�21). For uniaxial molecules with a principal axis u, sym-

metry requires δk1,0 and δk2,0, while cL1,L1,0 ≡ (2L1 + 1)2/(16π2) and g(r,�21) reduces to
g(r,β21) with β12 the angle between the symmetry axes of the particles. In Fig. 4.7 we show
this radial angular distribution for benzene obtained from neutron scattering experiments
[Headen et al., 2010]. The peaks indicate that some structuring still persists in the liquid
at short range. However, after just two closest approach distances the peaks have already
disappeared. In this sense this is just short-range order. We note that this description, while
it concerns isotropic liquids, also formally applies to simple lattice models where the inter-
particle vector has a sufficiently high symmetry. Thus, for example, it applies to the Heisen-
berg and to the Lebwohl–Lasher models with the spins at the site of a simple cubic lattice.
We can expand g(r,β21) in terms of Legendre polynomials of the relative orientation:

g(r,β21) =
∑
J

CJGJ (r)PJ (cosβ21), (4.93)

with CJ ≡ (−1)JCJ,0 = (−1)J cJJ0/
√

2J + 1 and the normalization∫
dβ12 sinβ12 g(r,β21) = g(r). (4.94)
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Figure 4.7 The radial-angular distribution g(r,β21) of liquid benzene obtained from neutron
scattering [Headen et al., 2010].

Here we have introduced the angular-radial correlation of rank J , GJ (r)

GJ (r) = PJ (u1 ·u2)(r) = DJ
0,0(�21)(r), (4.95a)

=
J∑

q=−J

〈
δ(r − r12) DJ∗

q,0 (�1L)D
J
q,0 (�2L)

〉
, (4.95b)

with

G0(r) = S0,0,0(r) = 〈δ(r − r12)〉 = 4πr2ρ g(r). (4.96)

In an ordinary liquid, long-range order is absent andGJ (∞) = δJ,0. A particularly, impor-
tant case is the second-rank space-orientational correlation

G2 (r) = P2 (u1 ·u2)(r) = 1

2

〈
δ(r − r12)

(
3(u1 ·u2)2 − 1

)〉
r12
, (4.97)

shown in Fig. 4.8 which decays to a plateau 〈P2〉2 [Zannoni, 1979a].

4.8.3 Thin Film Systems

In most applications, liquid crystals are not employed in bulk quantities but in very thin
(nano- to micro-) thick films and then it is important to study and simulate and describe
LCs in these confined environments. In the case of thin films confined between two plane
parallel slabs, it is natural to study the various types of order across the film. Considering
a laboratory system with the z-axis perpendicular to the surfaces, it may be convenient
to adapt the scalar correlations we have just introduced for particles at various distances
z1, z2 from one of the two surfaces. In particular, we can define, using r12‖z [Berardi et al.,
1998a],
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(a) (b)

Figure 4.8 (a) Calculating the orientational pair correlation. (b) The angular-radial corre-
lation G2(r∗) for the Lebwohl–Lasher lattice model at various temperatures T ∗ below and
above the transition, as indicated on the graph. The distance r∗ is measured in lattice units
[Fabbri and Zannoni, 1986].

(i) Surface-particle radial distribution. A density profile across film normalized by the
average density:

g0(z) ≡ S0,0,0(z) = 1

LxLyρ
〈δ(zi − z)〉zi . (4.98)

In the case of smectics and particularly if the layer planes are parallel to the surfaces,
we would expect this to be some sort of sinusoid.

(ii) Orientational correlations inside the film.

S0,2,2(z) = 1√
5LxLyρ

〈
δ(zi − z)

(
3

2
u2
zi −

1

2

)〉
zi

. (4.99)

This could allow us to see, e.g. the propagation of ordering of a certain type from
some surface alignment layer. We can also look at the correlation between particles at
different distances z1 and z2 from the support surface (at z = 0) inside the film:

SL1,L2,L3 (z1,z2) = 1

(LxLyρ)2

∫
dx1dy1d�1dx2dy2d�2

× P (2)(r1,�1L,r2,�2L) SL1L2L3 (�1L,�2L,�rz ), (4.100)

= 1

(LxLyρ)2

〈
δ(zi − z1) δ(zj − z2) SL1L2L3 (�1L,�2L,�rz )

〉
zi,zj

.
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Figure 4.9 Chiral correlation S2,2,1(z∗) for a nematic sandwiched between a chiral surface
at z∗ = 0 and T ∗ = 3.2 and a planar achiral one at z∗ = 35.6 (in particle width units)
[Berardi et al., 1998c]. We see chirality propagating from the surface inside the film and
then vanishing as the achiral surface approaches.

For instance:

S2,2,0(z1,z2) = 1

2
√

5(LxLyρ)2

〈
δ(zi − z1) δ(zj − z2)

(
3(ui ·uj )2 − 1

)〉
zi,zj

.

(4.101)

(iii) Chirality across the film. An example is that of a nematic film confined between two
planar surfaces, one of which is chiral and the other a flat, planar achiral monodomain
[Berardi et al., 1998c]. The propagation of chirality away from the surface can be
monitored by the quantity

S2,2,1(z) =
√

3√
10LxLyρ

〈δ(zi − z) uxiuyi〉zi, (4.102)

as shown in Fig. 4.9. The twisting of the director between two different distances, z1

and z2, away from the chiral surface could instead be followed using

S2,2,1(z1,z2) = −√3√
10 (LxLyρ)2

〈δ(zi − z1) δ(zj − z2) (ui ·uj × r̂z) (ui ·uj )〉zi,zj .
(4.103)

4.8.4 Non-Uniform Fluids: Smectics

For smectics, and in general for non-uniform fluids, the general pair distribution
G(r1,�1,r2,�2) = G(r1,�r1,�1,r,�r,�2), with r = r2 − r1. To carry out an invariant
expansion like we did for uniform fluids we need to build and employ rotational invariant
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combinations of four, rather than three, rotation matrices. This can be done (see, e.g.,
[Longa et al., 2001]), however, it becomes very cumbersome and not easily usable. It is
more convenient to introduce reduced distributions, as we shall now describe.

4.9 Reduced Distributions

As mentioned in Section 4.7, in view of the difficulties in examining the pair distribution
in full, it is often useful to introduce reduced distributions, involving only a subset of posi-
tional and/or orientational coordinates. The reduction is typically done in two ways. One is
integrating over some of the angular or positional coordinates. The other is freezing some
coordinates at a certain fixed value.

4.9.1 Anisotropic Radial Distributions

As a first example, we go back to the angular-radial distribution g(r,�r ) in Eq. 4.57b, the
distribution in space of the intermolecular vector r with length r , the distance of the centres
of mass and orientation�r = (αr,βr ) with respect to the laboratory frame. For systems that
are uniaxial around the director we can first locate d by calculating and diagonalizing the
ordering matrix Q. Then we can consider orientations defined with respect to a laboratory
system with z ‖ d. As long as the system has uniaxial symmetry its properties are invariant
for an arbitrary rotation around the director and we do not need to consider the angle, αr , so
that the intermolecular vector distribution reduces to g(r) = g(r,�r ) = g(r, cosβr )/2π .
It is worth noting that this reduced distribution can be obtained both for uniform and non-
uniform systems like smectics or crystals. As an example, in Fig. 4.10 we see a set of
histograms of g(r,βr ) for a model liquid crystal (a system of the so-called Gay–Berne
ellipsoidal particles that we shall discuss in Chapters 5 and 11) at various temperatures
and phases [Berardi et al., 1993]. The three-dimensional representation shows at once that
the distribution changes quite significantly with temperature. Not surprisingly it is flat (and
thus devoid of angular dependence) in the isotropic phase, but far from isotropic in the
nematic phase. The very low temperature one (T ∗ = 1.8) shows that for molecules along
the director (cosβr = 1) a second molecule is found slightly below the particle length.
However, if we move transversally to the director (cosβr = 0), very sharp, well-defined
peaks appear. At least six orders of peaks occur, indicating a high degree of structure in
the layer. A more careful look at the spiltting of the second peak suggests the presence of
hexagonal ordering , as expected in a smectic B or a crystalline layer structure. In particular
we have first the sharp nearest neighbours peak, then a double peak with similar intensities
around r∗ = 2, another double peak with 2 : 1 intensity factor between r∗ = 2.6 and 3.0.
These would appear at r∗ = 1.73 and 2 and at 2.646 and 3 for the perfect triangular lattice.
At T ∗ = 2.0 the structure is quite similar, although less resolved. We still have order in
the layer but the characteristic features of hexagonal ordering are not evident. Apart from
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Figure 4.10 The anisotropic radial distribution g(r∗, cosβr ) for a system of rod-like
molecules in the highly ordered smectic B (a), smectic A (b), nematic (c) and isotropic
(d) phases. The specific cases refer to the so-called Gay–Berne GB(3,5,1,3) model of liquid
crystals, discussed in detail in Sections 5.6.3 and in 11.5.1, at T ∗ = 1.8 (a), 2.0 (b), 2.8
(c), 3.5 (d). Here r∗ is the interparticle separation scaled by the particle width, βr the angle
between the interparticle vector and the director and T ∗ the dimensionless temperature
[Berardi et al., 1993].

looking at g(r, cosβr ) as a whole, it is also convenient to expand it, as

g(r, cosβr ) = g(r,r̂ · d) = g(r)
∑
L>0

(2L+ 1)gL(r)PL(r̂ · d), (4.104)

where g(r) = 1
2

∫
d cosβrg(r, cosβr ) is the standard radial distribution. The set of quanti-

ties gL(r) represent a sort of order parameters of the intermolecular vector with respect to
the director:

gL(r) = 1

2 g(r)

∫
d cosβrg(r, cosβr )PL(cosβr ) = 〈PL(cosβr )〉. (4.105)

Note that, even if these coefficients appear to be similar to the GL(r) in Eq. 4.95, they
are actually quite different since those express the angular-radial correlation between two
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(a) (b)

z (Å) T (K)12

Figure 4.11 (a) The two-particle density correlation function g(z12) in a crystal (—-) and
smectic A ( ) phase and (b) the first few positional order parameters τn as a function
of temperature for p-quinquephenyl as obtained from atomistic simulations [Olivier et al.,
2014].

molecules, while the gL(r) refers to the orientational distribution in space of the molecular
centres. We can also define a positional pair correlation function along the director

g(z12) =
∫

dr r2dβr sinβrδ(r cosβr − z12) g(r, cosβr )∫
dr r2dβr sinβr δ(r cosβr − z12)

. (4.106)

This provides an important way of characterizing the onset of a smectic phase, where g(z12)
will have a sinusoidal profile. In Fig. 4.11a we see an example for p-quinquephenyl result-
ing from analyzing atomistic configurations generated with molecular dynamics computer
simulations [Olivier et al., 2014] (see Chapters 9 and 12). It is convenient to expand g(z12)
in a Fourier series:

g(z12) =
∞∑
n=0

gn cos(qnz12). (4.107)

Note that this expansion is very (and possibly confusingly) similar to that of the single-
particle positional distribution Eq. 3.15b. However, the expansion coefficients are approx-
imately proportional to squares of the positional order parameters, i.e. to τ 2

n rather
than to τn,

g(z12) =
∞∑
n=0

(
2〈cos(qnz12)〉
�z(δm,0 + 1)

)
cos(qnz12) ≈

∞∑
n=0

(
2τ 2
n

�z(δm,0 + 1)

)
cos(qnz12), (4.108a)

= 1

�z
+ 2

�z

∞∑
n=1

τ 2
n cos(qnz12), (4.108b)
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where qn ≡ 2πn/�z. The approximation comes from

gn = 〈cos [qnz2] cos [qnz1]+ sin [qnz2] sin [qnz1]〉 , (4.109a)

≈ 〈cos [qnz2]〉〈cos [qnz1]〉 + 〈sin [qnz2]〉〈 sin [qnz1]〉 , (4.109b)

≈ 〈cos [qnz2]〉〈cos [qnz1]〉 = τ 2
n, (4.109c)

where we have used the even parity of the single-particle distribution. In Fig. 4.11b we
report the first few positional order parameters τn for p-quinquephenyl.

4.9.2 Hexatic Bond Order

The reduction scheme we have just described leads to various distributions of the inter-
molecular vector with respect to the director, taken as the z-axis of our laboratory system. We
have also demonstrated that these distributions can be quite telling to distinguish isotropic,
nematic and smectic systems, However, as we have seen in Chapters 1 and 2 there are a
number of different smectic phases characterized by a different ordering inside the layers.
The description of this structuring in smectic layers is not simple, when thinking of the
variety of smectic phases characterized by some regular clustering of the particles in the
smectic layer at short and/or long range. For instance, the local clustering of centres of
mass in a smectic B has a hexagonal character, while in smectic A this is absent. Quite
similarly, if we consider the ordering of molecular stacks in an oriented columnar system,
we can also have hexagonal or rectangular arrangements in the planes transversal to the
column axis. To quantify these situations, we can focus first on molecules belonging to the
same layer and their centres of mass. Introducing an order parameter like the hexatic order
parameter employed by Halperin and Nelson [1978] to quantify order in a two-dimensional
crystal of discs, where the close-packing is hexagonal. To do this let us introduce again
an intermolecular vector distribution but this time for the projection of the intermolecular
vectors on the smectic planes. We can start by defining a right-handed coordinate system
(e1, e2, e3), with the z-axis along the layer normal (for an upright smectic this coincides
with the director d), e1 an arbitrary reference axis in the layer plane, and e2 = e3 × e1. We
then consider a particle k, with position rk and identify the set S (d,rk) of first neighbour
particles, at position rj . To look at the structuring around the particle we can consider the
unit vectors ŝkj , such that e3(rk) · skj = 0, joining each neighbour j in the same layer
to particle k chosen as the origin (these are normally called bonds even if of course no
chemical bond is involved). In general, the cluster S (d,rk) for the particle at position rk

can be defined by its Voronoi cell, Vor(rk), i.e. the region of space no further from the point
at r than to any other point rj in the set, i.e.

Vor(rk) =
{
r : |r − rk| �

∣∣r − rj
∣∣ , for all particles rj

}
. (4.110)

These cells (see Fig. 4.12) are convex non-overlapping polyhedra that share common faces,
and their partition of the whole sample space is called the Voronoi tessellation [Torquato
and Stillinger, 2010]. We can introduce a radial, in plane, distribution.
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Figure 4.12 Hexagonal order in a smectic layer. The continuous and dotted lines are
respectively the edges of the Voronoi and Delaunay cells around molecule k (dark grey)
resulting from tessellation of space [Torquato and Stillinger, 2010]. The hexatic order
parameter is calculated considering for every neighbour in the layer (light grey) the angle θkj
from the arbitrary reference frame axes e1 to skj around the layer normal e3 at position rk .

G(rk,skj,αkj ) ∝
∑
m

ψm(skj ) eimαkj , (4.111)

where skj = [(xj − xk)2 + (yj − yk)2]
1
2 is the radial distance between the two particles.

If the distribution of neighbours around particle k has local Cni symmetry around e3, e.g.
tetradic, with nearest neighbour number nk = 4 or hexatic nk = 6, we can express the
bond order with respect to the ideal tetradic or hexatic distribution where the bonds have an
angular spacing 2π/ni as

ψnk (rk) =
1

nk

nk∑
j=1

ei[θkj (r i )−j2π/nk] = 1

nk

nk∑
j=1

einkθkj (rk). (4.112)

The sum on j runs over the nk neighbours of this particle and θkj is the angle between
the particles k and j and the reference axis e1. If nk = 6 and the system has hexagonal
symmetry around d , we have that the local hexatic bond angle order parameter [Steinhardt
et al., 1983; Brock et al., 1986; Selinger and Nelson, 1988; Kamien, 1996; Torquato and
Stillinger, 2010] is then, for particle k,

ψ6(rk) = 1

6

6∑
j=1

ei6θkj (rk) (4.113)

and the global hexatic order parameter is a sample average

〈ψ6〉 =
∣∣∣∣∣ 1

N

N∑
k=1

ψ6,k

∣∣∣∣∣ . (4.114)

The bond order is not necessarily short-ranged across the layer. It is thus useful to also
introduce a space correlation function of the hexatic order:

GH6 (r) = 〈
ψ6(r0)ψ∗6 (r0 + r)

〉
(4.115)
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Figure 4.13 Hexatic bond order parameter ψ6 vs temperature for the SC-SI transition
in a monodomain of (racemic) 4-(2-methylbutyl) phenyl 4′-(octyloxy)-(1, 1′)-biphenyl-4-
carboxylate (8OSI) with the following sequence of cooling down transitions [Brock et al.,

1986]: I
174.5◦C−→ N

170.0◦C−→ SA
133.4◦C−→ SC

79.9◦C−→ SI
75.1◦C−→ SJ

61.7◦C−→ SK.

and its asymptotic limit for large separations between the two clusters:

lim
|r|→∞

GH6 (r) = 〈ψ6(r0)〉〈ψ∗6 r)〉, (4.116)

which will be 0 in a normal smectic B, where the local neighbour cluster is not just repli-
cated across the sample but can be deformed and/or rotated (cf. Chapter 1). In a crystal
smectic B, the local order hexatic bond order decays instead as a power law and is main-
tained at fairly long r , with the axis of the hexagonal cluster remaining the same. Quite
similarly we can describe the positional regularity of columns of flat mesogens aligned
with their axes perpendicular to a surface, considering virtual transversal slices and the
in plane (e.g. tetradic or hexatic) bond order of the discotic mesogens (see Fig. 4.12). It
is worth noting that, notwithstanding their name, the bond-orientational order parameters
just described are pairwise quantities, differently from the single-particle positional order
parameters described in Chapter 3. It is also not forbidden by symmetry to have a phase
of matter in which the positional order is short range as in a liquid or glass, but the bond
order is long range as in a crystalline solid [Kosterlitz and Thouless, 1973; Halperin and
Nelson, 1978; Brock et al., 1986]. In a way, this is the case of a transition between a SA, SB

and SBK where the hexagonal order changes but the positional order and the layer spacings
are very similar. Clearly, the concept of hexatic order applies also to tilted smectic phases
(see Section 1.8) and in Fig. 4.13 we show an example of ψ6 for a SC-SI transition [Brock
et al., 1986].

4.10 Some Thermodynamic Properties

The distribution functions introduced earlier can be used to write down expressions for the
various thermodynamic functions. Quite often these will be too complicated to be practically
applicable as such, but they nevertheless constitute the basis for approximate formulations
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or for algorithms to be used in computer simulations. Some relevant formulas particularly
useful for this purpose are given here.

Free energy. The canonical Helmoltz free energy (Chapter 2) is related to the configura-
tional partition:

A = −kBT lnQ(N,V,T ), (4.117)

with Q(N,V,T ) ≡ Z(N,V,T )/N ! Note that the free energy as such is not a directly
observable quantity, unlike its derivatives with respect to temperature and volume.

Entropy.

S = −
(
∂A
∂T

)
V

= −kB
〈
lnP (X̃)

〉 = −kB ∫ dX̃ P (X̃) lnP (X̃). (4.118)

Energy. We start from the classical thermodynamic formula and obtain a formula in terms
ofQ(N,V,T )

U = A + T S = A − T
(
∂A
∂T

)
V

= −T 2
(
∂

∂T

(
∂A
∂T

)
V

)
V

=
(
∂(A/T )

∂(1/T )

)
V

, (4.119a)

= kBT 2
(
∂ lnQ(N,V,T )

∂T

)
V

. (4.119b)

The total configuration energy of a system ofN particles is most often assumed to be a sum
of pairwise contributions, as we shall discuss in detail in Chapter 5, and in turn the observed
average can be written in terms of the pair distribution. For pairwise interactions,

UN = 1

2

N∑
i

N∑
j �=i
U (Xi,Xj ) (4.120)

and the average internal energy is

U = 〈UN 〉 = 1

2N (N − 1)

∫
dX1dX2P

(2)(X1,X2)U (X1,X2). (4.121)

For rigid anisotropic particles,

U = 1

2
ρ2

∫
dr1d�1dr2d�2G(r1�1,r2,�2)U (r1,�1,r2,�2) (4.122)

and for a uniform system, e.g. a nematic,

U = V

2
ρ2

∫
drd�1d�2P (�1)P (�2)g(r,�1,�2)U (r,�1,�2). (4.123)

Heat capacity. The constant volume specific heat is given by Eqs. 2.7 and 2.9. Differenti-
ating the microscopic expression for the energy (Eq. 4.45) with respect to temperature we
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can show, that the heat capacity is related at constant N,V,T to the mean square fluctuations
in the energy:

CV =
(
∂U
∂T

)
V

=
(
∂〈U〉
∂T

)
V

= 1

kBT 2

(
〈U2
N 〉 − 〈UN 〉2

)
, (4.124a)

= 1

4kBT 2

⎧⎪⎨⎪⎩
N∑

i,j,k,l=1
i �=j �=k �=l

[〈
U (Xi,Xj )U (Xk,Xl)

〉− 〈
U (Xi,Xj )

〉〈
U (Xk,Xl)

〉]

+
N∑

i,j,=1
i �=j

〈
U (Xi,Xj )2〉− 〈

U (Xi,Xj )
〉2⎫⎪⎬⎪⎭ , (4.124b)

= 1

2
ρ2

∫
dr1d�1dr2d�2 U (r1,�1,r2,�2)

∂

∂T
G(r1�1,r2,�2), (4.124c)

where the last equation applies to rigid molecules and temperature independent potentials.
Eq. 4.124a shows that CV is a non-negative quantity. This in turn implies from Eq. 2.9
that the free energy has to be a downward concave function of temperature (see Fig. 2.8),
since its second derivative with respect to temperature has to be negative. Note that the
heat capacity is not a pairwise quantity, even if the potential is a pairwise one. CV does
not depend only on the pair distribution at a given temperature but also on its derivative. If
we try to perform the derivative we see that the microscopic expression depends on more
than two particles simultaneously. Thus, the specific heat is really a collective property
and it is reasonable that it can change significantly and diverge at a phase transition where
the collective organization changes. Similar formulas hold for the constant pressure heat
capacity in terms of the enthalpy H of the N particle system:

CP =
(
∂H
∂T

)
P

= 1

kBT 2

(
〈H2〉 − 〈H〉2

)
. (4.125)

Pressure. We start from the thermodynamic definition of pressure for a system of N
particles in equilibrium at canonical conditions:

P = −
(
∂A
∂V

)
T

= kBT
(
∂ lnQ(N,V,T )

∂V

)
T

= kBT

Q(N,V,T )

(
∂ lnQ(N,V,T )

∂V

)
T

.

(4.126)

To derive a molecular expression for the pressure we can render the volume dependence of
the configurational integral Q(N,V,T ) an explicit one by changing the positional variable
r i to dimensionless units si . Thus, letting

r i = V 1
3 si, (4.127)

for i = 1, . . . ,N and, using as before a tilde to indicate collectively the set ofN coordinates

Q(N,V,T ) = V N

N !

∫
d̃s d �̃ e−UN ( s̃, �̃)/(kBT ). (4.128)

https://doi.org/10.1017/9781108539630.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.005


4.10 Some Thermodynamic Properties 207

P = NkBT

V
− V

N

ZN

∫
d̃s d �̃

∂UN ( s̃, �̃)

∂V
e−UN ( s̃, �̃)/(kBT ), (4.129a)

= NkBT

V
−
〈
∂UN ( r̃, �̃)

∂V

〉
, (4.129b)

where the first term is the ideal gas contribution. For pairwise interactions, (Eq. 4.120) we
can write

∂UN ( r̃, �̃)

∂V
=
∑
i<j

∂U (r ij,�i,�j )

∂r ij
· ∂r ij
∂V

, (4.130)

where, differentiating Eq. 4.127, ∂r ij /∂V = r ij /(3V ). This gives the virial equation for
pairwise interactions. For rigid anisotropic particles

P = ρkBT − 1

3V

∑
i

∑
j>i

r ij ·
(∇r ij U (r ij,�i,�j )

)
�i,�j

, (4.131a)

= ρkBT − 1

3V

∑
i

∑
j>i

rij

(
∂U

(
rij,�i,�j

)
∂rij

)
�i,�j

, (4.131b)

i.e. P depends on derivatives of the centre of mass separation between particles i and j
taken at constant orientation of the molecules [Allen and Tildesley, 2017]. For a system of
spherical particles (or atoms) we have simply

P = ρkBT + 1

3V

∑
i

∑
j>i

〈
r i ·f ij

〉
, (4.132)

recalling that the force acting on a particle i due to a particle j is the gradient on the potential
energy felt by that particle: f ij = −∇iUij = −f j i and the virial equation of state

P = ρkBT − 2

3
πρ2

∫
drij g(rij ) r3

ij

dUij (r)

drij
. (4.133)

Writing the temperature in terms of the kinetic energy K , and using the equipartition theo-
rem which assigns kB/2 to each of the nf independent degrees of freedom for each particle:

T = 2K

nfNkB
= 1

nfNkB

N∑
i=1

mivi · vi, (4.134)

we can get an expression suitable for microscopic calculations. More generally, one can
define a pressure tensor �, with elements

!ab = 1

V

N∑
i=1

(
mivi,avi,b + ri,afi,b

)
, a,b = x,y,z. (4.135)

For bulk fluids the pressure is just P = 1
3 Tr( �) [Heinz et al., 2005]. This is obvious for

an isotropic liquid, but it has been shown to hold also for nematic liquid crystals [Allen
and Masters, 1993]. Note, however, that the thermodynamics expressions for the pressure
just shown give a global, sample averaged value. It may be convenient, particularly for
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Figure 4.14 A small volume element V used to define local mechanical pressure or stress.
We show a facet Ax perpendicular to x and the force components Fx and Fz.

inhomogeneous systems (e.g. when interfaces are present) to resort to the mechanical defi-
nition [Heinz et al., 2005; Berendsen, 2007] of pressure as a force acting over a certain local
surface (Fig. 4.14). We can imagine dividing the sample into a 3D grid of very small virtual
cubes (voxels) of volume V centred at a point r that contains the c.o.m. ofN (r) particles and
limited by surfacesAb perpendicular to the laboratory frame axes. If Fa(r) is the component
of the force in the material along axis α and acting on the surface Aβ perpendicular to β,
then the element !ab(r) of the local pressure tensor �(r) is:

!ab(r) = Fa(r)

Ab
. (4.136)

Note that this is the negative of the stress tensor σ used to characterize hard and soft solids,
polymers and elastomers, in particular liquid crystal elastomers (see Sections 1.15 and 1.16).
The diagonal components σxx , σyy , σzz are the normal (tensile or compressive) stresses. The
off-diagonal components, σxy , σxz, σyz, . . ., are instead shear stresses. The force component
Fa(r) across the surface Ab can be calculated summing over the pairwise forces fij,a
between two particles i,j whose separation vector r ij intersects surface Ab [Irving and
Kirkwood, 1950; Heinz et al., 2005]

!ab(r) = 1

V

N (r)∑
i=1
i∈V (r)

mivi,avi,b + 1

Ab

N (r)∑
i=1

rij∩Aβ

fij,a . (4.137)

The sign convention assumed is fij is the force on the particle with higher a coordinate.
The averages involved in the previous equations can be formally written in term of the pair
distribution, e.g.

P = ρkBT − ρ2

6V

∫
dX1dX2G(X1,X2)

(
r · ∇1U (X1,X2)

)
. (4.138)

Thermal expansion coefficient. We just recall the definition

αp ≡ 1

V

(
∂V

∂T

)
P,N

= 1

V

(
∂2G
∂T ∂P

)
N

= − 1

V

(
∂S
∂P

)
T ,N

. (4.139)
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Isothermal compressibility. The isothermal compressibility, also called inverse isothermal
bulk modulus, is defined as (see Eq. 2.15)

κT = − 1

V

(
∂V

∂P

)
T

= − 1

V

(
∂2G

∂P 2

)
T

= 1

ρ

(
∂ρ

∂P

)
T

. (4.140)

The compressibility can be related to the mean square fluctuations in the volume or in the
number of particles [Allen and Tildesley, 2017]

κT = V

kBT

〈N2〉 − 〈N〉2
〈N〉2 = 1

ρkBT

〈(δN )2〉
〈N〉 = 〈(δV )2〉NPT

kBT 〈V 〉NPT , (4.141)

where δN = N−〈N〉. Thus, κT > 0. The last expression is particularly convenient to obtain
κT > 0 from simulations. We can rewrite κT in terms of distributions writing 〈N2〉−〈N〉2 =
〈N〉 + 〈N (N − 1)〉 − 〈N〉2 and recalling the normalization of P (n) (Eq. 4.52), we have for
large N,

κT = 1

ρkBT
+ V

kBT

∫
dX1dX2

[
P (2)(X1,X2)− P (1)(X1)P (1)(X2)

]
, (4.142)

where ρ = 〈N〉/V . For a uniform fluid, e.g. a nematic formed of rigid mesogens,
we can write P (1)(X1) = ρP (�1) and P (2)(X1,X2) = ρ2VG(r,�1,�2,�r ) = ρ2VP (�1)
P (�2)g(r,�1,�2,�r ), so that we have, integrating over r1,

κT = 1

ρkBT
+ 1

kBT

∫
drd�1d�2

[
G(r,�1,�2,�r )− P (�1)P (�2)

]
. (4.143)

In simple isotropic fluids, P (�1) = 1/V�1 and g(r,�1,�2,�r ) = g(r,�12)

κT = 1

ρkBT
+ 4π

kBT V�

∫
drr2d�12

[
g(r,�12)− 1

]
. (4.144)

For spherical particles,

κT = 1

ρkBT
+ 4π

kBT

∫
drr2 [g(r)− 1] . (4.145)

4.10.1 Virial Expansion

The equation of state for a realistic gas is approximated as a power series in the density ρ,
the so called virial expansion:

P

kBT
= zρ = ρ + B2(T )ρ2 + B3(T )ρ3 + · · · , (4.146)

where z is the compressibility factor z = P/(ρkBT ) and B2, B3, . . . ,Bn are the second,
third and nth virial coefficients. If the potential energy can be written as a sum of pair-
wise interactions terms U (Xi,Xj ) (see, later. Eq. 5.2b), they are related to the integrals of
combinations of the Mayer functions �ij

�ij ≡ �(Xi,Xj ) ≡ e−U (Xi,Xj )/(kBT ) − 1. (4.147)
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In particular, for rigid particles, we have in terms of the configurational integrals Zn

B2(T ) = −1

2VV 2
�

(
Z2 − Z2

1

)
= −1

2VV 2
�

∫
dr1d�1dr2d�2�12(r12,�1,�2). (4.148)

and, for fluids of spherical particles:

B2(T ) = −2π

V

∫
dr r2

{
e −U (r)/(kBT ) − 1

}
. (4.149)

B2 and the other virial coefficients depend on temperature. Moreover, B2 > 0 for purely
repulsive interaction and, we expect it to be positive, if the repulsive part of the potential
dominates, and viceversa if the attractive part prevails. We can get an idea of this also
taking the second virial from the van der Waals equation of state, Eq. 2.1, BvdW

2 = b −
(a/NkBT ). Vliegenthart and Lekkerkerker [2000] noticed that for isotropic attractive repul-
sive potentials of various types B2(Tc) ≈ −6V at the critical point, with V = (π/6)σ 3 the
spherical particle volume. We shall see some explicit examples of second virial coefficients
in Chapter 5. Going to the third virial coefficient [Boublik and Nezbeda, 1986]:

B3(T ) = − 1

3VV 3
�

(
Z3 − 3

Z2
2

Z1
+ 3Z2Z1 − Z3

1

)
, (4.150a)

= − 1

3VV 3
�

∫
dX1dX2dX3�(X1,X2)�(X1,X3)�(X2,X3). (4.150b)

A virial series for the free energy has been obtained, going through the grand canonical
ensemble, using diagrammatic methods [Balescu, 1975; Santos, 2016] to represent all the
interactions among the particles as linear graphs and properly simplifying and reducing
them to a cluster expansion. The virial series can also be obtained directly in the canon-
ical ensemble approximating the configurational integral, QN , and Eq. 4.126, following
Van Kampen [1961] (but see [Pulvirenti and Tsagkarogiannis, 2012] for a mathematically
rigorous derivation).

4.10.2 Surface Tension

The thermodynamic definition relates the surface tension γ at constant temperature and
pressure to the variation in free energy A as the area A = AMM ′ of the interface between
two materialsM ,M ′ is changed

γMM ′ =
(
∂A
∂A

)
T ,V

= −kBT
(
∂ lnQ(N,V,T )

∂A

)
T ,V

. (4.151)

To derive a molecular expression for the surface tension we can proceed as we did for the
pressure to get a virial type expression, by making the surface dependence of the configu-
rational integral Q(N,V,T ) an explicit one by changing the positional variable to dimen-

sionless units. In practice, we can use ra = A 1
2 sa , and ∂ra/∂A = a/(2A), with a = x,y,z.
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Figure 4.15 The contact angle θ for a liquid in contact with a solid surface. γSG, γSL and
γLG are the surface tensions at the solid-gas, solid-liquid and liquid-gas interfaces.

The surface tension can be written in terms of the average of the potential energy derivative
with respect to the area as [Harasima, 1958]

γ =
〈
∂UN ( r̃,�̃)

∂A

〉
= 1

2A

∑
i<j

〈
r ij · ∂U (r ij,�i,�j )

∂r ij
− 3zij

∂U (r ij,�i,�j )

∂zij

〉
, (4.152a)

= 1

2Vz

∫ z′

−z′
dz

∑
i<j

〈(
xij
∂Uij

∂xij
+ yij ∂Uij

∂yij

)
− 2zij

∂Uij

∂zij

〉
, (4.152b)

where Vz is the volume of a thin element of thickness 2z′ and area A equal to the sample
cross section [Martin del Rio et al., 1995]. Surface tension values for some smectic materials
have been obtained by literally blowing bubbles of a free-standing smectic film [Stannarius
and Cramer, 1997] and using the simple relation between the pressure difference p and the
local radius of curvature R, p = 4γ /R.

A balance of the forces at a contact point (see Fig. 4.15) gives, for an isotropic liquid and
surface, the classical Young equation

γSG = γSL + γLG cos θ, (4.153)

where θ is the contact angle. It tends to 0 if the liquid wets the surface and will be above
90◦ if, on the contary, the liquid is surface repellent. In the terminolgy developed for the
common case of a water droplet, the surface would be called hydrophilic, and in the second
case hydrophobic, or superhydrophobic if the contact angle tends to approach 180◦ with
the droplet resembling a sphere just touching the surface. However, for an anisotropic fluid,
like a liquid crystal, we can have [Vanzo et al., 2016]

γSG = γSL(φ)+ γLG(φ) cos θ (φ). (4.154)

A few experimental results for the surface tension of nematics are: γ = (26.8± 0.3)× 10−3

N/m at T = 26.8◦ C for ZLI 4237-100 and γ = (24.0 ± 0.3) × 10−3 N/m at T = 26◦ for
8CB.

Note that the phase transition temperatures in a thin smectic film change from the bulk
values. For instance, 8CB presents in bulk a SA between 22 and 33◦, while in free-standing
films the smectic A has a wider range, between 12◦ and 33◦ [Dash and Wu, 1997].
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Figure 4.16 Inverse optical birefringence B2/�n in the isotropic phase of MBBA as
induced by an applied magnetic field with induction B = 1.7T. The pretransitional optical
birefringence �n diverges at TNI� , slightly below TNI = 45.7◦C [Blachnik et al., 2000].

4.11 Pretransitional Behaviour

We shall now examine how the correlation coefficients are related to pretransitional
behaviour in a nematic, considering the isotropic phase of a nematogen material above
TNI . As we have already seen the pair distribution for a macroscopically isotropic system
depends in general on the distance and the relative orientation of the two molecules (see
Eq. 4.92). As mentioned in Chapter 1, when a suitable external field is applied to an
isotropic liquid a small long-range order is induced. The magnitude of this ordering is
proportional to the intensity of the applied field while the proportionality constant is a
material susceptivity. The induced anisotropy can be detected optically by monitoring
the refractive index anisotropy �n (see Fig. 1.5) or by using any other sensitive enough
technique. These field induced effects are rather small for normal liquids, but very large
ordering effects corresponding to electric and magnetic birefringence perhaps tens of
times those of an ordinary liquid, take place in nematogen materials above their isotropic
transition [Chandrasekhar, 1992]. A particularly neat demonstration of magnetic field
(Cotton–Mouton) effect detected by NMR has been given [Attard et al., 1982; Luckhurst,
1988], while an NMR detected electric field (Kerr effect) has been reported by Hilbers and
MacLean [1972] and Ruessink et al. [1988]. A typical feature in all these experiments is that
the induced ordering increases as the temperature approaches the transition. However, these
pretransitional effects do not diverge at the transition temperature but at a slightly lower
one, TNI��� [Stinson and Litster, 1970; Mukherjee, 1998], as we see, for example, in Fig.
4.16 [Blachnik et al., 2000] and we already mentioned in Sections 1.2.1, 2.7.2 and 2.9.1.
The straight line in Fig. 4.16 is the linear fit corresponding to Landau theory expectations
(see Eq. 2.28). Notice the deviation close to the transition where the simple theory is
not adequate [Blachnik et al., 2000]. Similar deviations are also observed [Skačej and
Zannoni, 2021] in computer simulations of the Lebwohl–Lasher lattice model (Chapter 10).

https://doi.org/10.1017/9781108539630.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.005


4.11 Pretransitional Behaviour 213

The conventional wisdom is that TNI��� is the temperature of transition of a hypothetical
second-order phase transition that does not take place because it is intercepted by the
occurrence of the first-order one. We can write down some theory of pretransitional effects
and show that they depend on the pair orientational correlations existing between molecules
even above the transition temperature. We start by considering the ordering induced by a
uniform field which tends to align the liquid crystal molecules parallel to itself and which
we could imagine to be a magnetic field, just to fix ideas. The average of a property A in
the presence of a perturbation λU ′ = λBφ(X̃) of intensity B dependent on the orientation
of all molecules can be written as a series expansion in the small parameter λ as1

〈A〉 =
∫

dX̃A e−U 0 e−λU ′∫
dX̃ e−U 0 e−λU ′ =

∫
dX̃A e−U 0

[
1− λU ′ + λ2U ′2 − · · · ]∫

dX̃ e−U 0
[
1− λU ′ + λ2U ′ 2 − · · · ] , (4.155a)

= 〈A〉0 − λ〈AU ′〉0 + λ〈A〉0〈U ′〉0 + O (λ2), (4.155b)

where U 0 ≡ U0(X̃)/(kBT ) and U 0 ≡ U ′(X̃)/(kBT ) are dimensionless and

〈A〉0 =
∫

dX̃A(X̃) exp [−U 0(X̃)]
/∫

dX̃ exp [−U 0(X̃)] (4.156)

is the field-off average. If the phase is isotropic and A is anisotropic, then 〈A〉0 = 0 and
similarly, if the perturbation U ′ is anisotropic like in our case, then 〈U ′〉0 = 0. Then

〈A〉 = −λ〈AU ′〉0 + O (λ2). (4.157)

As a specific example, the anisotropic magnetic energy of a molecule with magnetic
susceptibility anisotropy �χ in a magnetic field H is

U ′
mag = −

1

3μ0

�χH 2

kBT

N∑
i=1

P2(cosβi), (4.158)

where βi is the angle between H and the principal axis of the molecular frame that diagonal-
izes the diamagnetic susceptivity, so that in this case λ = −�χ/(3μ0), B = H 2. Another
common example is that of an electric field E, where for purely dielectric interactions with
particles with dielectric anisotropy �ε, we would have

U ′
el = −

ε0

3

�εE2

kBT

N∑
i=1

P2(cosβi) (4.159)

and λ = −ε0�ε/3 and B = E2, while βi is the angle between field direction and the
principal axis of molecular susceptivity tensor, with its z-axis along its major value. The
order parameter with respect to the applied field, 0 in the isotropic phase, in the presence of
the field becomes (see Eq. 4.157)

1

a − λ b + λ2c

1− λ d + λ2e
= a + (ad − b) λ+

(
−ae + c + ad2 − bd

)
λ2 +O

(
λ3
)

).
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〈P2〉T ,B = ξB = λB

NkBT

〈
N∑
i=1

P2(cosβi)
N∑
j=1

P2(cosβj )

〉
T ,B

. (4.160a)

The order parameter induced by the field is thus, in a linear regime, i.e. for not exceedingly
strong fields, just proportional to the strength of the applied field, while the field suscepti-
bility ξ is the derivative evaluated at 0 field

ξ = lim
B→0

∂

∂B
〈P2〉T ,B . (4.161)

Differentiating Eq. 4.160a with respect to B, the susceptibility can thus be rewritten, recall-
ing that that in the isotropic phase the unperturbed (zero field) order parameter is zero, as

ξ = (λ/NkBT )
∑
i

∑
j

〈
P2(cosβi)P2(cosβj )

〉
B=0, (4.162a)

= (λ/kBT )
∑
j

〈
P2(cosβ1)P2(cosβj )

〉
B=0. (4.162b)

The two-particle average in Eq. 4.162b can be formally performed using the pair distribution
for a macroscopically isotropic fluid, g(r,β12). This in turn is rewritten in terms of the
pairwise correlation G2(r) obtaining

〈P2(cosβ1)P2(cosβ2)〉 = 1

V

∫
dr d cosβ1d cosβ2 g(r,β12)P2(cosβ1)P2(cosβ2),

= 1

5V

∫
drr2 g(r)G2(r) = 1

5N
g2, (4.163)

where the coefficient g2 is defined as the zero-field average

g2 = 5

N

∑
i

∑
j

〈
P2(cosβi)P2(cosβj )

〉
B=0 . (4.164)

The field susceptibility ξ then becomes ξ = (λ/kBT )g2. The quantity g2 contains the
molecular information on the existing orientational pair correlations and is sometimes called
a second-rank Kirkwood coefficient by analogy with the first-rank dipolar correlation coef-
ficients introduced in the study of dielectric properties [Böttcher et al., 1973]. Having deter-
mined g2, the divergence temperature TNI��� can then be obtained by fitting T/g2 versus T
[Fabbri and Zannoni, 1986].

4.12 Pair Correlations and X-ray Scattering

Regularities, or in general non-uniformities, in a molecular organization can produce inter-
ferences with radiation of suitable wavelength and produce diffraction patterns that depend
and somehow contain information on the organization itself. To show this, we consider again
the X-ray experiment discussed in Appendix J and in Section 3.9. We have already exam-
ined the single molecule, self, contribution in Section 3.9 and we now focus on the inter-
molecular term to extract positional correlations and with some approximations, positional
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order parameters. Let us thus return to XRD experiments and consider the intermolecular
contribution,

Sd (q) = 1

N

N∑
i,j=1
i �=j

M∑
a,b=1
a∈i,b∈j

〈
ei[q · (ra,i−rb,j )]

〉
, (4.165)

and see how it can provide information on pair correlations. We write ra,i − rb,j = r ij +
ha,i −hb,j, where ha,i , hb,j locate the nuclei a, b in their respective molecular frames and
r ij is the separation vector, joining the centres of molecules i and j . With these notations

Sd (q) = 1

N

N∑
i,j=1
i �=j

M∑
a,b=1
a∈i,b∈j

〈
eiq · (ha,i−hb,j ) eiq · r ij

〉
. (4.166)

We then use the Rayleigh expansion (see Eq. J.7) and find:〈
eiq · (ha,i−hb,j ) eiq · r ij

〉
=

∑
L,L′,L′′

iL+L
′
(−i)L′′ (L+ 1)(2L′ + 1)(2L′′ + 1)

× jL′ (qha,i)jL′′ (qhb,j )jL(qrij )
〈
DL′

0,0(q̂ · ĥa,i)DL′′
0,0(q̂ · ĥb,j ) DL

0,0(q̂ · r̂ ij )
〉
, (4.167a)

where jL(qr) is a spherical Bessel function [Abramowitz and Stegun, 1965]. Now, repeat-
edly applying the closure relation of Wigner matrices we have:

DL′
0,0(q̂ · ĥa,i) =

∑
m′

DL′
0,m′ (�dha,i ) DL′

m′,0(�qd ), (4.168a)

=
∑
m′,n′

DL′∗
m′,0(�qd )DL′

m′,n′(�Mi d )DL′
n′,0(�ha,iMi

) (4.168b)

and

DL′′
0,0(q̂ · ĥbj ) =

∑
m′′,n′′

DL′′∗
m′′,0(�qd ) DL′′

m′′,n′′ (�Mj d ) DL′′
n′′,0(�hbjMj

), (4.169)

DL
00(q̂ · r̂ ij ) =

∑
m

DL∗
m,0(�qd ) DL

m,0(�rij d ), (4.170)

where (�Mi d ) is the rotation from the lab (director) frame d to the ith molecule frame Mi ,
(�ha,iMi

) the rotation from the molecular frame to scattering centre a. Collecting terms, we
find〈

DL′
0,0(q̂ · ĥa,i)DL′′

0,0(q̂ · ĥb,j ) DL
0,0(q̂ · r̂ ij )

〉
=
∑〈

DL′′∗
m′′,0(�qd ) DL′∗

m′,0(�qd ) DL∗
m,0(�qd )

〉
d

DL′
n′,0(�ha,iMi

)DL′′
n′′,0(�hbjMj

)

×
〈
DL′
m′,n′ (�Mi d ) DL′′

m′′,n′′ (�Mj d ) DL
m,0(�rij d )

〉
, (4.171a)

where we have considered an average over the distribution of directors and a (separate)
average over molecular reorientations. Director fluctuations are normally much slower than
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molecular reorientations and 〈. . .〉d can be considered a static sum of contributions from the
distribution of directors. We now consider two limiting cases, (i) for a locally ordered but
macroscopically isotropic sample and (ii) for a monodomain.

(i) Poly-liquid crystalline samples. A first possibility is that of a non-aligned poly-liquid
crystalline system, with an isotropic distribution of directors. For this, using the Gaunt
integral of three Wigner rotations matrices (Eq. F.32), we get〈

DL′
0,0(q̂ · ĥa,i)DL′′

0,0(q̂ · ĥb,j ) DL
0,0(q̂ · r̂ ij )

〉
=
∑

C(L′,L′′,L;0,0)DL′
n′,0(�ha,iMi

)DL′′
n′′,0(�hbjMj

)
(i)−L′+L′′−L√

2L+ 1

× (−1)−n
′−n′′ (i)L

′−L′′+L
√

2L+ 1

∑
m,m′

C(L′,L′′,L; −m′, −m′′),
〈
DL′∗
−m′,−n′ (�Mi d ) DL′′∗

−m′′,−n′′ (�Mj d ) DL
m,0(�rij d )

〉
(4.172a)

=
∑

C(L′,L′′,L;0,0)DL′
n′,0(�ha,iMi

)DL′′
n′′,0(�hbjMj

)
(i)−L′+L′′−L√

2L+ 1

× (−1)−n
′−n′′

〈
S
−n′,−n′′
L′,L′′,L (�1L,�2L,�rL)

〉
, (4.172b)

when recalling the definition of Stone invariants (Eq. G.19).
(ii) Smectic A monodomain and positional-orientational order parameters. We now

derive, following Palermo et al. [2013], an explicit expression for the distinct molecules
contribution to the scattered intensity Sd (q) in the particular case of X-ray reflections
from the smectic A monodomain planes with q = (0,0, qn), qn ≡ 2πn/d, thus if the
scattering vector is parallel to the laboratory, z axis, q||z.

Sd (00n) = 1

N

N∑
i,j
i �=j

M∑
a∈i,b∈j

〈
eiqnzij eiqnddd·(hhha,i−hhhb,j )

〉
(4.173)

〈
eiqnzij eiqqq·hhha,i e−iqqq·hhhb,j

〉
=

∑
L,L′

eiπ(L′−L′′)/2(2L′ + 1)(2L′′ + 1)jL′ (qha,i)jL′′ (qhb,j )
∑
m′,n′
m′′,n′′

DL′∗
m′,0(�qd )DL′′∗

m′′,0(�qd )

×DL′
n′,0(�haiMi

) DL′′
n′′,0(�hbjMj

)
〈
cos (qnzij )DL′

m′,n′(�Mi d )DL′′
m′′,n′′ (�Mj d )

〉
(4.174)

where zij = zi − zj . It is clear that the distinct term contains information relevant
for smectic positional correlations, since it depends on molecule-molecule distances.
Assuming a uniaxial smectic the director along z, as well as effective uniaxial molecular
symmetry we have, in the particular case of reflections from the smectic A planes with
q = (0,0,qn), qn ≡ 2πn/�z,
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Sd (00n) = 1

N

N∑
i,j
i �=j

M∑
a∈i
b∈j

〈
eiqnzij eiqnz ·ha,i e−iqnz ·hb,j

〉
, (4.175)

where zij = zi−zj . Before dealing with Eq. 4.175 for a molecule containing a number
of atoms located at a generic position ha it is useful to see, with a simple special case,
how information on translational order is contained in this expression. To do this, let
us assume that the molecules contain only one relevant scattering centre (e.g. a metal
atom) at the molecular origin, so that ha,i = hb,j = 0. In this case,

Sd (00n) = 1

N

N∑
i,j
i>j

〈
eiqnzij

〉
≈ 1

N

N∑
i,j
i>j

〈
eiqnzi

〉 〈
e−iqnzj

〉
∝ (τn)2. (4.176)

So, as long as the approximation applied to Eq. 4.176 is valid, the dominant term is

Sd (001) ∝ τ 2
1 = 〈cos(2π/�z)〉2. (4.177)

We can now go back to Eq. 4.175 and apply the Rayleigh expansion, Eq. J.7, to the
exponentials, e.g.

exp[iqnz ·hbj ] =
∑
L

iL(2L+ 1)jL(qnhbj )DL
0,0(ẑ · ĥbj ). (4.178)

Applying again the closure relation of Wigner rotation matrices (see Eq. F.13) we can
introduce the rotation from (in this case parallel to the scattering vector) to molecular
frame �Mjd and finally that from molecular frame to atom b: �hbjMj

DL
0,0(ẑ · ĥbj ) = DL

0,0(d · ĥbj ) (4.179a)

=
∑
p

DL∗
0,p(�Mj d )DL∗

p,0(�hbjMj
), (4.179b)

In view of the assumed effective cylindrical symmetry of the molecules we have

Sd (00n) = 1

N

∑
L,L′

N∑
i,j
i �=j

M∑
a∈i,b∈j

cnLL′
〈
cos(qnzij )PL(cosβai)PL′ (cosβbj )

〉
ij
,

= cn00
〈
cos(qnzij )

〉
ij
+ 2cn02

〈
cos(qnzij )P2(cosβj )

〉
ij

+ cn22
〈
cos(qmnij )P2(cosβi)P2(cosβj )

〉
ij + · · · . (4.180)

The first term is the only one retained in the classical formulation [Leadbetter, 1979;
Seddon, 1998], which assumes, moreover,〈

cos(qnzij )
〉
ij
≈ 〈cos(qnzi)〉2. (4.181)
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Thus, for the first two reflections, the intensity is proportional to the first two trans-
lational order parameters: Sd (001) ≈ c100τ

2
1 and Sd (002) ≈ c200τ

2
2 , and so on. The

experimental determination of translational order parameters is, however, rather dif-
ficult and has been reported for only a very limited number of cases [Leadbetter and
Norris, 1979; Kapernaum and Giesselmann, 2008]. Explicit results for positional and
mixed translational-orientational order parameters have been obtained using atomistic
simulations (see Chapter 12) by Palermo et al. [2013].
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5

Particle–Particle Interactions

It seems that in these liquid crystals, though the molecules are freely
mobile, just as are those of water, they are yet subject to, or endowed
with, a ‘directive force’, a force which confers upon them a definite con-
figuration or ‘polarity’, the ‘Gestaltungskraft’ of Lehmann.

D’Arcy Thompson, On Growth and Form, 1917

5.1 Intermolecular Interactions

Up to now we have seen what liquid crystals are and how their molecular organization
can be described in terms of single and pair particle distributions. We have discussed how
these can be expanded in terms of a linear combination of suitable orthogonal functions,
but we have not yet started to examine which properties of nematogenic molecules or
particles can give rise to a certain phase behaviour. The link between microscopic and
macroscopic properties is based, as we have seen in Chapter 4, on the Gibbs–Boltzmann
distributions for the various sets of experimental conditions. In particular, we have seen
in Section 4.2 that the probability of occurring of a certain molecular configuration, at a
certain temperature T and density ρ (canonical conditions) depends on the potential energy
between molecules. Indeed, the starting point of any molecular modelling is the energy of
interaction between molecules or more generally particles, and here we examine briefly
some of the most important and most often used interactions. Starting for simplicity with
spherical particles, the pair interaction potential Uij (r) will depend on their separation,
and we expect it to contain a steric repulsive part at short distance (the space occupied
by a particle being excluded to the others) as well as an attractive part at much larger
separations. The two contributions will balance at some intermediate distance giving the
classical profile sketched in Fig. 5.1. Both types of interactions are important and it is often
believed that packing effects are mainly responsible for the molecular organization of solid
and liquid phases [Chandler et al., 1983] and that attractive contributions mainly determine
the density at given temperature and pressure and the vapour to liquid condensation. It is
natural these days to think that the existence of liquid crystal phases results from a balance
of various intermolecular interactions which are present in every compound, even though in
different amounts. However, it is striking that, around one hundred years ago, the existence
of fluid ordered phases was still so mysterious that a special driving force was invoked
[Thompson, 1917].
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Figure 5.1 Schematic drawing of the pair potential U (rij ) between two spherical particles
i and j as a function of their separation rij .

Even if the total interaction energy of a system of N particles, UN will depend on the
coordinates of all of them, it would be unfeasible to write a functional form for this depen-
dence. The potential energy of the system is then normally written as a sum of effective
interaction terms involving more and more particles [Sinanoglu, 1967]:

UN = U total
N −

∑
i

U isolated
i .

= 1

2

∑
i �=j
U isolated
i,j + 1

3!

∑
i �=j �=k

U isolated
i,j,k + 1

4!

∑
i �=j �=k �=l

U isolated
i,j,k,l + · · · , (5.1)

where the terms U isolated
i,j , U isolated

i,j,k , . . . represent the contribution from the interaction
between two, three and increasingly larger sets of distinct constituents in the absence of the
others. UN tends to 0 when the particles are so far apart that they can be considered to be
isolated, Fortunately, it is often a good approximation to assume that UN can be written as
a sum of ‘effective’ pairwise interactions Uij so that:

UN = UN (X̃) ≡ UN (X1,X2, . . . ,XN ), (5.2a)

= 1

2

∑
i �=j
Ui,j =

N∑
i=1

N∑
j>i

U (Xi,Xj ), (5.2b)

where Xi is, as in previous chapters, the set of coordinates specifying the state of molecule i
and X̃ the collective set of Xi,i = 1, . . . ,N . The interaction potential Uij between two
particles at a certain distance and orientation (or pair potential) corresponds to the difference
between the energy of the two molecules in that configuration and, respectively, at infinite
separation. Note that the word ‘effective’ for the pair potential underlines the fact that
U (Xi,Xj ) is not the potential between two molecules in vacuum at 0 degrees Kelvin, as
could be obtained with some Quantum Chemistry (QC) technique, even at a high level of
sophistication (see, e.g., [Cramer, 2004]). Indeed, the ‘effective’ pair interaction normally
contains a few parameters that, properly tuned, somehow take into account the effect of
being in condensed medium, with the unavoidable presence of multiparticle interactions.
Apart from this, many model potentials for the simulation of liquids or liquid crystals
make other drastic assumptions, like that of considering the interacting particles as rigid
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bodies, neglecting internal degrees of freedom, or of assuming a particle symmetry higher
than that of the real molecule. Looking at the many explicit chemical structures shown in
Chapter 1 (see, e.g., Table 1.2) it is clear that this is a drastic approximation, given the nearly
inevitable presence of flexible chains or of internal rotations between fragments that can
alter the overall molecular shape as the conformations change. However, the approximation
of rigidity is often used in so-called molecular resolution models where a generic particle
rather than a detailed chemical structure is considered. If the aim is that of simulating
systems of real molecules and predicting their properties, this can be viewed at most as a
drastic form of preliminary coarse graining. In any case, leaving aside the quest of realism,
it is of great interest to consider simplified models where only some type of interactions are
retained (e.g. only repulsive or only attractive) to see what the minimal sufficient conditions
are to obtain certain types of LC phases (e.g. nematics, or smectics). Moreover, as we have
seen in Chapter 1, many liquid crystal phases are formed by suspensions of nano or colloidal
particles or viruses, where dealing with chemical details is out of question. We shall thus
consider both generic and atomistically detailed models, and start by dealing with rigid
particles as constituents.

For rigid molecules the pair potential will in general depend on the positions r i , rj and
the orientations �i , �j of the two molecules with respect to some coordinate frame, i.e.

Uij = U (r i,�i,rj,�j ) = U (r ij,�i,�j ), (5.3)

where r ij = r i − rj and the second equality holds since there is no privileged position in
free space (translational invariance) as is the case in the absence of external inhomogeneous
fields. Still talking in general terms, the potential will also be invariant for space inversion
(changing the sign of all coordinates). In some cases, it can be useful to write the pair
potential as a combination of terms with well-defined angular dependence. We can do this
by expanding this unknown function of the orientations of the two particles and of the
intermolecular vector r (see Fig. 5.2), i.e. of �i ≡ (αi,βi,γi), �j ≡ (αj,βj,γj ), �r ≡
(αr,βr ) in a basis set of products of Wigner matrices or, in the case of uniaxial molecules,

Figure 5.2 The intermolecular (IM) frame with its z-axis along the centre-centre vector r ij .
Also shown are two uniaxial particles with their axes ui , uj at angles (αi,βi ), (αj,βj ) with
respect to the IM frame.
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of spherical harmonics D
Li∗
mi,0

(αi,βi) D
Lj
mj,0

(αj,βj ) DL
m,0(αr,βr ), as we did in Chapters

3 and 4 for the single and pair orientational distributions (cf. also Appendix G). There
are two coordinate frames that are, in different ways, convenient for this expansion: one
is a laboratory (LAB) fixed one. The other, that we shall consider to begin with, is the
intermolecular (IM) frame. In this system, that has the origin in one of the two molecules
(typically in its centre of mass) and the z-axis pointing along the intermolecular vector r ij

joining the centres of the two molecules, we have [Steele, 1963; Sweet and Steele, 1967;
Humphries et al., 1972]

U (rij,�irij ,�jrij ) =
∑
Li,Lj ,

mi,mj

uLiLjmi ;ninj (rij )δmi,mj DLi
mi,ni

(�irij )D
Lj∗
mj,nj (�jrij ), (5.4)

where the coefficients uLiLjmi ;ninj (rij ) are related to the specific interactions between the
two molecules. Note that we have taken mi = mj , since the potential has to be invariant
for an arbitrary rotation, of say, an angle φ around the IM frame (z-axis here). Such a
rotation would give, recalling the form of the Wigner matrices (Eq. F.4), a multiplication
for exp[−iφ(mi − mj )], so that invariance requires δmi,mj . For uniaxial molecules a sim-
ilar argument for an arbitrary rotation around molecular axes zi , zj gives the restriction
δni,0, δnj,0, thus Eq. 5.4 simplifies, for cylindrically symmetric molecules to a spherical
harmonics expansion:

U (rij,�irij ,�jrij ) =
∑

Li,Lj,m

uLiLjm(rij ) D
Li
m,0(�irij ) D

Lj∗
m,0(�jrij ), (5.5a)

=
∑

Li,Lj,m

y LiLjm(rij )YLi,m(βirij ,αirij )YLj,−m(βjrij ,αjrij ), (5.5b)

with yLiLjm(rij ) ≡ 4π (−1)m uLiLjm(rij )/
√

(2Li + 1)(2Lj + 1) and the index m going
from −min(Li,Lj ) to min(Li,Lj ). Since the potential has to be real, the coefficients have
the property uLiLjm = uLjLi−m. If molecules i and j are identical, a permutation of the
two particles should also leave the potential invariant. This implies that uLiLjm = uLjLim
in Eq. 5.5a. The general expansion will of course be truncated retaining only a few terms
and some empirical form will often be chosen for the remaining coefficients, but Eq. 5.5a
shows, at every level of truncation, what the angular dependence will be.

Another form of the potential, more convenient for computer simulations, is obtained
transforming Eq. 5.4 to a laboratory frame, common to all ij molecular pairs. To empha-
size the axis systems involved it is convenient to rewrite the orientations referred to the
IM vector r ij as rotations from the laboratory using the closure relation of Wigner matri-
ces (cf. Eq. F.13), i.e. DL

m,n(�irij ) =
∑L
q=−LDL∗

qm(�rijL) DL
q,n(�iL). The potential should

also be invariant for an arbitrary rotation of the laboratory frame. It is then convenient to
expand the pair potential in terms of the rotational invariants (see Appendix G) [Stone,
1978] that we have already used in the expansion of the pair correlation in Section 4.8.
We then have

U (rij,�iL,�jL,�rijL) =
∑

u
k1k2
LiLjL

(rij )S
ki,kj
Li,Lj,L

(�iL,�jL,�rijL), (5.6)
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where the rotationally invariant functions S
ki,kj
Li,Lj,L

(�i,�j,�rij ) are defined as in Eq. G.19.
The coefficients of the laboratory and intermolecular expansion can be related to each other
using the properties of rotation matrices (cf. Appendix G), obtaining

u
ninj
LiLjL

(rij ) =
∑

(−)miC(LiLjL; −mimi) uLiLjmi ;ninj (rij ), (5.7)

where C(LiLjL; − mimi) are Clebsch–Gordan coefficients (Section F.1.1). In practice,
we shall find the expansion in the IM frame more convenient when we examine the explicit
orientation dependence of the intermolecular potential, while the LAB frame expression in
terms of invariants is more apt to formal theoretical treatments, e.g. the Mean Field Theory
discussed in Chapter 7. It is, however, worth pointing out that the general expansions in
Eqs. 5.4 and 5.6 that start from spherically symmetric potentials and introduce anisotropy by
adding angular dependent contributions of progressively increasing rank Li,Lj , although
quite elegant do not necessarily converge. In particular, they do not converge well for
molecules that significantly deviate from spherical symmetry, like the rod-like or disc-like
particles that typically give rise to LCs. In practice, we will then have to resort to either
empirical or atomistic potentials without systematically expand their angular dependence.
Here we shall discuss both, starting with spherical particles, that can be particularly useful,
when suitably assembled together, for building models of particles of complex shape.

5.2 Spherical Particles

This first term in the pair potential expansion contains every type of interaction depending
on inter-particle separation alone:U (rij ) = u000(rij ). This is of course the only term present
in systems formed of truly spherical particles such as noble gases or, more appropriately for
soft matter, many colloidal particles. A number of empirical potentials have been introduced
and we briefly discuss a few of the most important and commonly used ones in what follows.

5.2.1 Hard Spheres (HS)

In this case we have no attraction between particles of diameter σh, but also no possibility
for interpenetration. The pair potential is

UHS(rij ) =
{

0, for rij > σh
∞, for rij ≤ σh . (5.8)

Note that for this potential, like for any other hard particle interaction, the effect of temper-
ature, normally arising through the Boltzmann factor is cancelled out. Thus, the partition
function and all other thermodynamic quantities resulting from this type of potential will
depend on density alone and the driving forces for going from one phase to another will be
the entropy of the system at a certain density. A number of quantities that we have previously
introduced can be calculated exactly for this potential. An example is the second virial
coefficient (see Eq. 4.20) for the hard sphere model, trivially obtained by integration as

BHS
2 = 2π

∫ σh

0
drij r

2
ij =

2π

3
σ 3
h = 4Vh, (5.9)
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where Vh is the particle volume. A number of higher virial coefficients have been obtained,
analytically up to BHS

4 [Santos, 2016]:

BHS
3 = 5

8

(
BHS

2

)2
, BHS

4 = 2707

4480
+ 219

√
2

2240π
− 4131 cos−1(1/3)

4480π

(
BHS

2

)3
(5.10)

and then, up to BHS
11 numerically [Schultz and Kofke, 2014]. The HS model has a first-order

freezing transition, as shown since the early days of computer simulations by Alder and
Wainwright [1957] and Wood and Jacobson [1957]. This is somehow surprising since the
behaviour for a hard-particle system is entropy controlled and common sense would suggest
the entropy of the crystal be lower than that of the disordered fluid. This turns out not to
be the case as discussed by Chaikin et al. [2006]. To briefly summarize the argument, we
can start from the entropy per particle of the ideal gas: Si = kB lnV . The van der Waals
correction for the available volume gives

S = kB ln(V − Vp) = kB ln[V (1− φ)], (5.11)

with φ = Vp/V the packing fraction i.e. the volume fraction Vp occupied by the particles.
In a similar way, for a hard particle system, considering that not all the unoccupied volume
is reachable by the particles and thus available, there is an actual maximum volume Vmax ,
so that

S = kB ln[V {1− (φ/φmax)}]φ→φmax, (5.12)

where φmax = Vmax/V corresponds to the maximum packing ratio that can be reached for
a certain particle organization (crystal, disordered, . . .). Finding the densest packing for a
given particle shape is a basic problem in geometry. According to the famous Kepler conjec-
ture, that has only been proved rather recently [Lagarias, 2011], the densest arrangement of
spheres in 3D has a packing fraction φmax = π/

√
18 ≈ 0.7405, and is crystalline, realized

by stacking variants of the face-centered cubic (FCC) lattice packing [Donev et al., 2004a].
If instead we are trying to find the densest packing experimentally (e.g. by shaking arrays
of spheres) or by computer simulations, we see that for a disordered (random) organization
of particles, the systems gets stuck at a packing φJ and that we are not able to add more
spheres beyond that maximum volume fraction. Thus,

S = Si + kB ln{1− (φ/φJ )}φ→φJ . (5.13)

To decide if the lowest free energy (or highest entropy, being the system devoid of internal
energy) is for this random (glassy) state or for the crystal, we should consider that if the
organization is a crystalline one, the maximum packing will be φcryst . When φcryst > φJ
there will be a crystallization for entropic effect in the HS system. In practice, for hard
spheres φcryst = 0.74, while φJ ≈ 0.64 [Torquato and Stillinger, 2010] and thus crys-
tallization takes place! The crystal formed stacking the spheres can be FCC or hexagonal
closed packed (HCP), both with the same closed packed volume. Woodcock [1997] has
found by computer simulations a slight but significative free energy difference, with the
FCC more stable by about 0.005 RT per mol.
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(a) (b)

g(r)

r

Figure 5.3 (a) The phase diagram for hard spheres [Lekkerkerker and Anderson, 2002] and
(b) its pair distribution g(r), as a function of scaled distance r in units of σh at volume
fraction φ = 0.41 (fluid), φ = 0.56 (approaching fluid-solid coexistence) and φ = 0.64
(crystal) [Rosenbluth and Rosenbluth, 1954].

The HS system has no liquid-vapour transition but is, however, quite important because
it can produce at the right density a system that closely mimics a real simple fluid or a
suspension of microspheres (see the phase diagram in Fig. 5.3a). Indeed, the success of
these simple models with no attractive part has contributed to generating the widely shared
view that only steric forces control the structure and dynamic of liquids [Chandler et al.,
1983]. In Fig. 5.3b, the HS pair distribution g(r) obtained with the Monte Carlo computer
simulation methods discussed in Chapter 8 is shown. Clearly, g(r) is 0 for r ≤ σh. In terms
of the packing (or volume) fraction φ, which for HS is just φ = NVh/V = πρσ 3

h /6, the
equation of state of a system of hard spheres can be very well approximated by the Carnahan
and Starling [1969] heuristic equation, written as a Padé approximant [Baker and Gammel,
1970], i.e. a ratio of two polynomials in φ, for the compressibility factor:

zHS = P

ρkBT
= 1+ φ + φ2 − φ3

(1− φ)3
. (5.14)

This equation provides an important reference for a variety of thermodynamic perturbation
theories [Santos, 2016]. It has also been generalized to m component mixtures of hard
spheres of possibly different size σhi and mole fraction [Mansoori et al., 1971].

5.2.2 Square Well Potential

The square well potential, USW, introduces particle-particle attraction considering spheres
with hard repulsive core of diameter σh surrounded by an outer shell of diameter σa = λσh
with an attractive range of thickness (σa − σh) and well depth ε:

USW(rij ) =
⎧⎨⎩

0, for rij > σa
−ε, for σh < rij < σa
∞, for rij ≤ σh

. (5.15)
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Table 5.1. A few square well potential parameters [Croxton, 1975]

System σh(nm) (σa − σh)(nm) λ ε/kB (K)

Neon 0.238 0.187 1.786 19.5

Argon 0.316 0.185 1.585 69.4

Nitrogen 0.330 0.187 1.567 53.7

Carbon dioxide 0.392 0.183 1.467 119.0

Methane 0.290 0.127 1.438 692.0

Water 0.261 0.120 1.460 1290.0

(a) (b)

Figure 5.4 (a) The square well potential USW showing the hard repulsive core diameter σh
and the attractive well of thickness (σa − σh) as a function of particle separation r = rij .

(b) The liquid-vapour coexistence for λ ≡ σa/σh = 1.25. Reduced density ρ∗ = ρσ 3
h

and
temperature T ∗ = kBT/ε are used [Vega et al., 1992].

In Fig. 5.4a we sketch the square well potential and in Table 5.1 we list the width and depth
parameters for a few molecules. The square well potential has been extensively studied
with a variety of theoretical techniques and with computer simulations (see, e.g., [Vega
et al., 1992]). Differently from the HS model, USW can have a liquid and gas phase, instead
of just a fluid one. In Fig. 5.4b we show the liquid-vapour coexistence for a square well
fluid obtained [Vega et al., 1992] using Monte Carlo computer simulations. The shape
of the coexistence curve changes with the range. The apparent critical exponent for the
liquid-gas transition order parameter η ∝ ρL − ρG, (see Eq. 2.14 and Fig. 2.14): β =
(∂ ln(ρL − ρG))/(∂ ln |�Tr |), where �Tr = (T − Tc)/Tc, has the near-universal value of
β ≈ 0.325, for λ = 1.25,1.375,1.5 and 1.75, while for the system with a larger attractive
range: λ = 2, a near classical value of β ≈ 0.5 is obtained [Vega et al., 1992]. The square
well potential can be considered a sticky sphere version of the HS one, which it includes
as a special case. The second virial coefficient for the SW potential, easily calculated by
integration:

BSW
2 (T ) = BHS

2

[
1− (

λ3 − 1
) (

e−ε/(kBT ) − 1
)]
, (5.16)
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(a) (b)

Figure 5.5 (a) The 12–6 LJ potential and the corresponding LJ force. (b) The (12–6) and
short-range (36–18) LJ potentials. Distances in units of σ , energies in units of ε.

shows a change of sign with temperature as the balance between the positive (repulsive)
contribution and the negative (attractive) one, where aggregation occurs. The temperature
that corresponds to an ideal gas behaviour (B2 = 0) is known as the Boyle temperature TB

[Gamez and Caro, 2015] and for this potential is: T ∗B = kBTB/ε =
{
ln
(
λ3/(λ3 − 1)

)}−1.

5.2.3 Lennard–Jones Potentials

Each pair potential of this family, first put forward by Mie in 1903 (see, e.g., Israelachvili
[2011]) is the sum of a repulsive and an attractive term varying with separation as inverse
power laws with exponents (m,n):

UMie(rij ) = 4ε

{(
σ

rij

)m
−
(
σ

rij

)n}
, (5.17)

where ε,σ are positive constants chosen to model the strength and the range of the interac-
tion and m,n are positive integers. The most often used choice for two spherical particles
moving in 3D space is the Lennard–Jones (LJ) 12–6 potential with m = 12, n = 6:

ULJ(rij ) = 4ε

{(
σ

rij

)12

−
(
σ

rij

)6
}

. (5.18)

The potential changes from attractive to repulsive for rij = σ and has its minimum at
rij = 21/6σ , with well depth ε. Thus, σ gives the sphere diameter and σ/2, called the van
der Waals (vdW) radius, or the corresponding vdW volume πσ 3/6 are often used to give
an idea of the size of the particle represented by an LJ. In Fig. 5.5a we show as an example
the LJ potential in reduced units (σ = 1, ε = 1), together with the force exerted on an LJ
particle by another approaching one:

F LJ(rij ) = −dULJ(rij )

drij
= −24ε

σ

{
2

(
σ

rij

)13

−
(
σ

rij

)7
}

. (5.19)

https://doi.org/10.1017/9781108539630.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.006


228 Particle–Particle Interactions

Table 5.2. A small selection of
parameters for the Lennard–Jones
(12–6)-potential between two
identical particles [Atkins, 1978]

Particle ε/kB (K) σ (nm)

Ar 119.8 0.340

Xe 221.0 0.410

H2 38.0 0.292

O2 118.0 0.346

N2 95.1 0.370

Cl2 257.0 0.440

Br2 520.0 0.427

CO2 189.0 0.449

CH4 148.0 0.382

In Fig. 5.5b we see that changing from 12–6 exponents to 36–18 has the effect of shortening
the range of the potential. Lennard–Jones parameters are available for a variety of systems
and are used in the construction of more complex potentials. In Table 5.2 we report a small
compilation of LJ parameters. In computer simulation it is often convenient to neglect the
interaction for particles at a distance larger than a cut off rc and use the cut and shifted
potential ULJS:

ULJS(rij ) =
{
ULJ(rij )− ULJ(rc), for rij < rc
0, for rij ≥ rc . (5.20)

When the interaction is between two different particles the parameters are normally obtained
with a linear average of the diameters and a geometric average of the well depths (Lorentz–
Berthelot mixing rules), i.e.

σAB = σAA + σBB
2

, (5.21a)

εAB = √εAA εBB . (5.21b)

Other prescriptions also employed for mixed parameters are, the ‘geometric’:
σAB = √

σAσB , εAB = √
εAεB and the ‘sixth power’ one: σij = [(σ 6

i + σ 6
j )/2]1/6,

εAB = 2
√
εAεBσ

3
Aσ

3
B/(σ

6
A + σ 6

B ) available, for instance, in the computer simulation
package LAMMPS [Plimpton, 1995].

A system of LJ particles (Lennard–Jonesium), in itself one of the most widely studied
models for condensed systems, gives rise to solid, liquid and vapour. In Fig. 5.6 we show
the LJ radial distribution g(r) in various phases. Although the (12–6) LJ potential is by
far the most common one used to deal with simple fluids, other exponents can be chosen,
e.g. to change the range of the attractive and repulsive forces, as might be appropriate, for
instance, for large colloidal particles where the interaction range extends effectively for only
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g(r)

r

Figure 5.6 Radial distribution g(r) for the (12–6) LJ model, as a function of interparticle
distance r in units of σ at three different temperatures in the crystal, liquid and gas phase.
The solid corresponds to a molecular dynamics simulation of Argon at 50 K [Rowley, 2015].

(a) (b)

Figure 5.7 (a) Temperature-density (kBT/ε vs. ρσ 3) phase diagram for (12–6) and
(b) (36–18) LJ potentials showing that only the longer ranged (12–6) one forms a liquid
(hatched region) [Vliegenthart and Lekkerkerker, 2000].

a fraction of the particle diameter. In Fig. 5.7 we show the effect of changing the exponents
on the potential and the resulting T ,ρ phase diagram [Vliegenthart and Lekkerkerker, 2000].
Notice the suppression of the liquid phase for the short-range variant.

The second virial coefficient B2 can be written in closed form for a r−nij interaction in
terms of gamma function "(x) [Abramowitz and Stegun, 1965], giving [Balescu, 1975]

BLJ
2 (T ) = 2π

3
σ 3

[(
4ε

kBT

)1/4

"

(
3

4

)
−
(

4ε

kBT

)1/2

"

(
1

2

)]
, (5.22)

where "(3/4) = 1.22541, "(1/2) = √π . Higher virial coefficients have been calculated
numerically andB2 toB5 are reported as a function of temperature by Barker and Henderson
[1976].

Since the LJ potential has both an attractive and a repulsive part, it is interesting to exam-
ine their relative importance. In the so-called van der Waals picture it is only the repulsive
forces that determine the structure of a (non-associated) liquid, while the attractive forces
may be neglected or introduced at a perturbative level [Andersen et al., 1976; Chandler et al.,
1983]. This is the case, e.g. for an LJ fluid where the radial distribution of the repulsive core
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(a) (b)

Figure 5.8 (a) The pair distribution g(r) vs r for the LJ fluid ( ) compared with that of the
repulsive part of the potential ( ) at T ∗ = 0.75 and ρ∗ = 0.87 [Weeks and Broughton,
1983]. (b) g(r) for the Hexon liquid ( ) and for its core liquid ( ) at T ∗ = 0.60 and
ρ∗ = 0.8895. Distances in units of σ [LaViolette and Stillinger, 1985].

and the full potential give essentially the same result (cf. Fig. 5.8b). However, it should be
remembered that this approach has limitations, since attractive interactions are necessary
to justify the condensation of gases and the formation of liquids. In the words of Fisher
[1972] ‘… if one wants some sort of phase transitions - if one wants a gas to condense -
there must be attractive forces, otherwise the atoms will not particularly like being next
to one another!’. Properties that depend on the presence of attractive forces include the
liquid-vapour interface and the ability of fluids to resist to a certain extent of stress, that
is to a negative pressure [Zheng et al., 1991]. In many ways the latent heat of vaporization
can also be associated with attractive forces and indeed attractive dispersive interactions
(cf. Section 5.8) have been used to estimate it with some success [Homer and Mohammadi,
1987]. It is worth noting that, while Fig. 5.8a shows that the LJ radial distribution at short
range is determined by the repulsive forces, this may not be the general case. In an interesting
exercise LaViolette and Stillinger [1985] introduced a simple pair potential whose liquid
structure cannot be satisfactorily predicted from the repulsions alone. Its form is

UHexon(rij ) =
{
A(r−mij − r−nij ) exp[1/(rij − a)], for rij < a
0, for rij ≥ a, (5.23)

withm = 12, n = −3, a = 2, A = 1.914166098. The potential, fairly similar to the LJ one
for this parametrization, has been called Hexon to recall both noble gases and the hexagonal
symmetry of its crystal. We see that the pair distribution for Hexon (Fig. 5.8b) shows non-
negligible differences from the purely repulsive structure.

5.3 Buckingham Potential

Another popular potential, that we can consider as a variant of the LJ potential where the
repulsive part is taken as an exponential, is the Buckingham potentialUB(rij ) [Buckingham,
1938]
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UB
ij = UB

ij (rij ) = A exp(−Brij )− C

r6
ij

, (5.24)

whereA,B and C are constants. Even if its application to LC has been limited, the potential
is often used for solid molecular crystals [Gavezzotti, 1997] and is included in various simu-
lation packages, like LAMMPS [Plimpton, 1995]. A potential problem is that the repulsive
term is finite as UB

ij → 0, while the attractive one tends to −∞. Modifications of the
potential that mend this are available [Stone, 1996].

5.4 Atomistic Force Fields

In a sense the ultimate model based on multi-spherical beads is the class of atomistic poten-
tials, where the spherical beads correspond to atoms placed at the appropriate geometry so
as to represent a specific chemical structure. This category of potentials is the closest to a
realistic modelling of chemical structures, allowing for proper chemical composition and
structure as well as complete conformational freedom. The total potential energy of a molec-
ular system is calculated considering the molecules and their constituent atoms as classical
objects, whose properties (geometrical arrangements, sizes, charges, etc.) are determined
using quantum mechanical methods or empirically estimated. The potential energy of such
a molecular mechanics system can be written as a sum of effective multiparticle interaction
terms somewhat similar to Eq. 5.1:

UN =
∑
A

[∑
i<j

U
(A)
i,j +

∑
i<j<k

U
(A)
i,j,k +

∑
i<j<k<l

U
(A)
i,j,k,l + · · ·

]
+
∑
A

∑
B>A

∑
i∈A,j∈B

U
(A,B)
i,j ,

(5.25)

where in Eq. 5.25 the terms are grouped in terms of molecules, considering contributions
where the atoms belong to the same molecule (A) or, respectively to two different molecules
(A, B) with, say, i ∈ A, j ∈ B. In practice, the intramolecular sums usually involve, as we
shall see, not more than four-body terms. The contributions are usually parametrized to
reproduce some key experimental property and in this way the contributions are really
effective potential terms including some collective contributions. A set of atomistic poten-
tials, also called Force Field (FF) allows us to model molecules with a certain chemical
composition and structure and appropriate internal degrees of freedom.

Several formulae and parametrization schemes have been proposed, which can be orga-
nized in various broad classes of FFs [Leach, 2001; Roscioni and Zannoni, 2016] of different
level of sophistication. The so-called ‘class I’ FFs are based on a division of the total energy
of the system into bonded (bonds, angles and torsions) and non-bonded (dispersion and
electrostatic) interactions. This category, that includes AMBER, GROMOS, CHARMM and
OPLS (see Table 5.3) is the one we shall describe in more detail and employ in LC simula-
tions, with the aim of reproducing molecular morphologies and thermochemical properties
such as density, transition temperatures and phase organizations.

Other classes of FFs also aim at reproducing more specific details or spectral features,
e.g. vibrational spectra. In the class I molecular mechanics FFs, a predefined connectivity
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Table 5.3. Some popular FFs relevant for the simulation of liquids, liquid crystals
and functional organic materials

AMBER Assisted Model Building and Energy Refinement, widely used also
for proteins and DNA [Weiner et al., 1984; Cornell et al., 1995]

GAFF General AMBER FF [Wang et al., 2004; Yang et al., 2006]

CHARMM Chemistry at Harvard Molecular Mechanics, used both
for small and macromolecules
[Brooks et al., 1983, 2009; Zhu et al., 2012; Yu and Klauda, 2020]

CVFF Consistent Valence Force Field, used for small building block
fragments [Braun et al., 1999], macromolecules, liquid crystals
[Ennari et al., 1997] and cholesterol derivatives [Liang et al., 1995]

COSMOS-NMR Hybrid QM/MM FF with experimental order parameter constraints.
Includes semi-empirical calculation of atomic charges and NMR
properties [Sternberg et al., 2007]

DREIDING A generic FF for organic, biological and main-group inorganic
molecules [Mayo et al., 1990]

GROMOS Groningen Molecular Simulation FF and package, a general-purpose
package for the study of biomolecular systems [Scott et al., 1999]

MM1(a), MM2(b) Molecular Mechanics code, with successive versions
MM3(c), MM4(d) (a)[Allinger et al., 1971], (b)[Allinger, 1977], (c)[Allinger et al., 1989]

(d)[Allinger et al., 1996]

OPLS Optimized Potential for Liquid Simulations
[Jorgensen et al., 1996; Sambasivarao and Acevedo, 2009]

UFF A Universal FF with parameters for the full periodic table
[Rappé et al., 1992]

between atoms is assumed, precluding simulations that involve bonds to break and form,
as in chemical reactions. Methods to overcome this limitation allowing for bond breaking,
like the ReaxFF one, that employ a bond strength order formalism, have been introduced
[van Duin et al., 2001; Senftle et al., 2016], but will not be discussed here. Going back
to non-reactive FFs, several expressions and parametrization schemes have been proposed
(see [Muccioli et al., 2014] for a brief summary) and some of the FFs typically used for
LC simulations are reported in Table 5.3. Note that the optimization of these FFs and their
adaptation to modern, e.g. graphic processing units (GPUs), based computer architectures
continues [Jasz et al., 2020]. Classical FFs, e.g. MM3/MM4 [Allinger et al., 1989], are
also often included as part of quantum mechanics/molecular mechanics (QM/MM) mixed
schemes, where a small region of interest is studied with an ab initio method, while the
extended molecular environment is modelled classically. They have found wide use for
chemical problems, but not much for applications to liquid crystals. Some exceptions are
for systems, like azobenzene based LCs, where the molecular geometry may change due to
photoexcitation [Mukherjee et al., 2012].

It is worth pointing out that the quality of FFs, i.e. their ability to reproduce and predict
properties, depends heavily of their parameters being adjusted for a certain ‘basket’ of
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compounds. Thus, excellent FFs are available for biological systems (lipid membranes,
proteins, . . .) where extensive tuning has been performed over the years (see Section 12.7.2).
Much less exists for functional organic materials and LCs, although efforts have been made
[Cook and Wilson, 2001a; Tiberio et al., 2009; Boyd and Wilson, 2015, 2018]. We shall not
discuss in detail the various atomistic FFs here, but we wish to illustrate the general terms
that contribute in somewhat different forms to all of them. To do this we write the interaction
energy as a sum of contributions coming from atoms bonded or not-bonded. Bonded atoms
clearly belong to the same molecule, while non-bonded interactions can be from atom pairs
belonging to the same molecule or to different ones. A typical expression is

UN = Ubonded + Unon-bonded,

= (
U stretch + Ubend + UDHT + UDHI)+ (

ULJ + U e), (5.26)

determining the force field as a sum of contributions from chemically bonded atoms includ-
ing stretching: U stretch, bending: Ubend, proper and improper torsional terms: UDHT, UDHI

as well as of non-bonded Lennard–Jones (LJ), ULJ, and electrostatic, U e, terms. We shall
now describe these various contributions.

5.4.1 Intramolecular Bonded Interactions

In a molecular mechanics model each atom is a spherical bead of a certain type ti . The atom
types correspond to the chemical nature and to a certain hybridization in the molecular
structure. For instance, a carbon connected with a single bond like that in a methylene chain
(sp3 hybridization), one connected to a double bond like in ethylene (sp2 hybridization)
and one connected to a triple bond like in acetylene (sp hybridization) will correspond to
different types. This is quite reasonable since the bond corresponds to different strength
and geometries. Although the detailed form of the energy for a bond stretching or bending
is generally unknown, in a stable chemical compound we are normally dealing with small
deviations from the equilibrium values of the respective bond length r

ti tj
eq and bond angle

θ
ti tj tk
eq , for atoms i,j,k of type ti,tj,tk , values that correspond to a minimum of the poten-

tial energy. Additional atom types can be introduced to allow for differences in the local
chemical environment even if atom type and hybridization are the same. For instance, in
the MM2, MM3 and MM4 force fields of Allinger and collaborators (see, e.g., Allinger
et al. [1996]) in addition to sp3,sp2, and sp, the following types of carbon atom are distin-
guished: carbonyl, cyclopropane, radical, cyclopropene and carbonium ion [Leach, 2001].
To reduce the number of particles and consequently computer demands, it is also fairly
common to employ for large molecules a United Atom (UA) coarse graining, where CH,
CH2 and CH3 groups are considered as suitably parameterized spherical interaction sites
(pseudo-atom types).

As long as the potential function is continuous and differentiable with respect to the
relevant coordinate we can Taylor expand it around its minimum (corresponding to the
equilibrium value) obtaining a polynomial. Normally only the quadratic terms are retained,
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Figure 5.9 A sketch of the main intramolecular potential contributions (see text): stretch,
bend, dihedral torsion (DHT) and improper dihedral (DHI) with the respective variables:
rij , θijk , φijkl , ψijkl .

obtaining harmonic potentials describing oscillations around the equilibrium values. More
explicitly we have bond stretching:

U stretch =
∑

stretchings

1

2
K
ti tj
r

(
rij − rti tjeq

)2
, (5.27)

where rij is the interatomic separation, rij = |r ij | = |rj − r i | and

Ubend = 1

2

∑
bendings

K
ti tj tk
θ

(
θijk − θ ti tj tkeq

)2
(5.28)

describes the bending fluctuations of the angle, θijk = cos−1
[−(r ij · rjk)/(rij rjk)

]
, as in

Fig. 5.9. The stretching and bending force constantsK
ti tj
s andK

ti tj tk
b are typically obtained

by fitting spectroscopic observables or from QC calculations, but these parameters are fairly
transferable and good libraries exist (Table 5.3), in particular the Molecular Mechanics
series MM1 [Allinger et al., 1971], MM2 [Allinger, 1977], MM3 [Allinger and Lii, 1987],
MM4 [Allinger et al., 1996]; AMBER [Weiner and Kollman, 1981; Cornell et al., 1995].

A small selection of force constants, helping to give an idea of the order of magnitude
of the terms involved, is reported in Tables 5.4, 5.5 and 5.6. Table 5.5 shows an example
of the same stretching parameters in different FFs, showing that even for these ‘simple’
parameters differences up to 30% in the elastic constantKr can occur. Clearly, if the United
Atoms approximation mentioned before is employed, the parameters have to be modified
with respect to those of the full or ‘All Atom’ (AA) description (see, e.g., [Yang et al., 2006;
Tiberio et al., 2009] and references therein).

Contributions involving four atoms i,j,k,l are typically introduced to describe the rela-
tive orientation of a molecular fragment with respect to another connected to it by the i-j
bond, e.g. the torsion of one ring with respect to another one in a polyphenyl or polythienyl
or a methylene in an alkyl chain. The dihedral contribution is typically calculated using
QC at some level of theory, e.g. density functional theory (DFT) or one of the many other
methods available [Cramer, 2004] for determining the optimized energy for a number of
dihedral angles φijkl (see Fig. 5.9),
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Table 5.4. Bond lengths r
ti tj
eq and stretching

constant K
ti tj
r for carbon bonds of various types

(hybridization). Bond lengths req in Å and force
constants in kcal mol−1Å−2 [Allinger, 1977]

Bond type r
ti tj
eq K

ti tj
r

Csp3 − Csp3 1.523 634
Csp3 − Csp2 1.497 634
Csp2 = Csp2 1.337 1380

Csp3 − O 1.208 222
Csp3 − Nsp3 1.438 734
C-Namide 1.345 1438

Table 5.5. Bond stretching parameters for three FFs. Bond lengths
req in Å and force constants Kr in kcal mol−1Å−2 [Rappé and
Casewit, 1997]

AMBER CHARMM DREIDING

Atom pair req Kr req Kr req Kr

N− Camide 1.334 980 1.330 942 1.34 700
Camide − O 1.229 1140 1.215 1190 1.25 1400
Camide − Csp3 1.522 670 1.524 374 1.46 700
N− Csp3 1.526 620 1.530 471 1.53 700
C sp3 − H 1.449 710 1.450 844 1.41 700
N− H 1.090 622 1.100 660 1.09 700

Table 5.6. Typical bond angles θ (deg) and
bending force constants Kθ (kcal mol−1deg−1) for
various common chemical bonds [Allinger, 1977]

Angle type θ
ti tj tk
eq K

ti tj tk
θ

Csp3 − Csp3 − Csp3 109.47 0.0198
Csp3 − Csp3 − H 109.47 0.0158
H− Csp3 − H 109.47 0.0140
Csp3 − Csp2 − Csp3 117.2 0.0198
Csp3 − Csp2 = Csp2 121.4 0.0242
Csp3 − Csp2O 122.5 0.0202
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Figure 5.10 Quantum chemistry torsional potential UDHT(kcal/mol) for the angles φ1 and
φ2 of P5 (top chemical sketch) and different levels of theory as indicated (see text). [Olivier
et al., 2014].

φijkl = cos−1
[

(r ij × rjk) · (rjk × rkl)

|r ij × rjk| |rjk × rkl |
]

(5.29)

and fitting it to a Fourier series:

UDHT =
∑

torsions
ijkl

∑
n

V
ijkl
n

[
1+ cos

(
nφijkl − γijkl

)]
, (5.30)

where the sum is over all torsions and γijkl is a phase factor. Some FFs (e.g. AMBER)
retain only one term in the sum, but in general as many terms as needed for a good fit can
be used. In Fig. 5.10 we see, as an example, the torsional potential energy as a function
of the outer and inner φ1(o), φ2(o) internal angles for p-quinquephenyl (P5) calculated
with the Gaussian09 [Frisch et al., 2009] code as described in [Olivier et al., 2014]. The
rather obscure codewords in Fig. 5.10 are needed to identify the various level of QC theory
employed. The ones referred to here are: AM1 (Austin Model 1, a QC code for solving
the electronic Schrödinger equation at semiempirical level [Dewar et al., 1985]) and MP2
(Møller–Plesset second-order perturbation theory [Cramer, 2004; Lewars, 2016; Irikura,
2019]). The acronym MP2 OPT corresponds to optimizing geometry with MP2 CC-pVDZ
calculations, while MP2 SP refers to single point B3LYP/cc-pVTZ/MP2/cc-pVDZ.

An additional type of contribution can come from four atoms belonging to a branched,
rather than linearly connected, set of atoms. These ‘improper dihedral’ bending terms are
often used to enforce a specific out of plane angle or, more commonly, planarity or to
maintain chirality at certain positions using in some cases a harmonic term or, also,

UDHT =
∑

improper
torsions ijkl

mmax∑
m=0

V
ijkl
m cos(mψijkl − ηijkl), (5.31)
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Table 5.7. A small set of LJ parameters for
the OPLS AAFF [Jorgensen et al., 1996]

Atom type σ (nm) ε (kcal mol−1)

O 0.296 0.210

N 0.325 0.170

C in C=O 0.375 0.105

Other C 0.350 0.066

H on C 0.250 0.030

where ηijkl is a phase angle and the so-called Wilson off-plane angle ψijkl (see Fig. 5.9),

defined by ψijkl = sin−1
[−r il · (r ij×r ik)
ril |r ij×r ik |

]
, measures the angle between r il and the plane

defined by r ij and r ik for three-coordinated atoms (see Fig. 5.9). An example could be the
use of an improper torsion to constrain a benzene ring to be planar or restrict movements
of the cyclobutanone oxygen so as to keep the molecule planar [Leach, 2001]. Other cases
of chemical moieties, where these geometry constraining terms are useful, are given by
Schlick [2002].

5.4.2 Non-Bonded Lennard–Jones Interactions

The non-bonded interactions include intramolecular and intermolecular pairwise terms
modelling steric repulsive and attractive van der Waals interactions. In practice, in Eq. 5.26
these are represented by (12–6) Lennard–Jones terms, ULJ analogous to Eq. 5.18, that we
rewrite for convenience as

ULJ
ij = 4

∑
LJ pairs

f LJ
ij εti tj

[(
σti tj

rij

)12

−
(
σti tj

rij

)6
]

. (5.32)

Here σti tj is the pseudo-contact distance, where the interaction changes from attractive to
repulsive, εti tj is the strength of interaction (potential well depth) and f LJ

ij is a scaling param-
eter for the i,j pair introduced to avoid including non-bonded contributions for atoms that
are already chemically bonded (labelled as 1–2) and for atoms sharing a common bonded
atom (1–3), while for atoms which are 1–4 connected they are scaled by a factor. Following
the recommendations suggested for using OPLS parameters [Jorgensen et al., 1996] within
the AMBER force field: if atoms i and j belong to the same molecule and are separated by
less than three consecutive bonds, f LJ

ij = 0; if i and j are separated by three consecutive

bonds f LJ
ij = 1/8, while for all other cases f LJ

ij = 1. Other choices are used in different
FFs [Schlick, 2002]. Tabulations of LJ parameters are available (see Table 5.7) for various
atom types while LJ parameters for mixed interactions are usually obtained using Lorentz–
Berthelot rules (Eq. 5.21b), i.e. linear additivity for atomic diameters and geometric mean
for the potential well depths [Allen and Tildesley, 2017]. Note that this is an empirical rule
and not a unique choice. Another fairly common choice is to use geometric means for both
σ and ε [Abraham et al., 2014]. LJ interactions are normally calculated within a certain
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Figure 5.11 Density ρ as a function of the LJ well depth εC (kcal/mol) for an orthorhombic
sample of p-quinquephenyl at 660 K using the AMBER values for the remaining LJ
parameters (σC = 3.816 Å; εH = 0.015 kcal/mol, σH = 2.918 Å. The dashed horizontal
line corresponds to the experimental density ρexpt [Olivier et al., 2014].

cut-off distance of a few σ . However, it is important to stress that LJ parameters, particu-
larly ε, capture in an effective pairwise interaction some of the many body effects of the
system studied. Thus, rather than using QC values, even of high quality, but obtained in the
gas phase, it is important to optimize the specific LJ parameters comparing the simulated
results for some relevant observable with available experimental ones. As an example, we
show in Fig. 5.11 the effect of varying the carbon atom LJ well depth, εC, on the mass density
ρ of p-quinquephenyl (P5) obtained from computer simulations [Olivier et al., 2014], com-
paring it with the experimental one. Standard AMBER parameters (εC = 0.086 kcal/mol,
σC = 3.816 Å; εH = 0.015 kcal/mol, σH = 2.918 Å) [Jorgensen et al., 1996] give a den-
sity significantly lower than experiment (0.78 g/cm3 at 660 K). Parameters from another
popular FF, CHARMM (εC = 0.07 kcal/mol, σC = 3.9848 Å; εH = 0.022 kcal/mol,
σH = 2.64 Å) give no stable condensed phase at this temperature. A parameterization based
on high level QC calculations for benzene dimers (εC = 0.115 kcal/mol, σC = 3.844 Å;
εH = 0.011 kcal/mol, σH = 2.46 Å) [Sherrill et al., 2009] favours instead solid over
liquid phases and too high densities ranging from 1.07 to 1.21 g/cm3 in the 600–720 K
temperature range. However, tuning the single well depth εC at a certain T while leav-
ing the other parameters unchanged gives a value (εC = 0.105 kcal/mol) that provides
satisfactory results for the nematic-isotropic transition and the cascade of P5 morpholo-
gies [Olivier et al., 2014]. A toolkit for fitting non-bonded FF parameters is described in
Hedin et al. [2016].

It is worth pointing out that even though transferability is an important desirable feature
of an, FF, in practice, we can only expect a specifically tuned FF to be applicable to similar
molecules, but not universally.
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5.4.3 Computing Partial Charges

Even in an overall neutral molecule, every atom is expected to have a different electron
affinity and thus a different partial charge, ek . Quantum chemistry offers a number of ways
for assigning a net atomic charge within a molecule, which unfortunately means that there
is no unique way of partitioning the overall electron density, as there is no partial charge
observable. The simplest method is the Mulliken population analysis [Szabo and Ostlund,
1996; Cramer, 2004], which starts considering a closed shell molecule with N electrons
paired inN/2 occupied molecular orbitals (MO) ψi , written as a linear combination of nor-
malized atomic orbital (AO) basis functions ϕr , i.e. ψi (r) =

∑AO
r=1 cirϕr (r), where each

cir is the coefficient of the basis function r in the ith MO. The overall electron population is

N = 2
MO∑
i

∫
dr ψi (r) ψ

∗
i (r) = 2

AO∑
r,s

(
MO∑
i=1

circ
∗
is

)(∫
drϕr (r) ϕ

∗
s (r)

)
, (5.33a)

=
AO∑
r

Prr +
AO∑
r,s
r �=s

PrsSrs =
AO∑
r,s

PrsSrs = Tr(PS), (5.33b)

where Prs = 2
∑MO
i cir c

∗
is is the charge density matrix and S is an AO overlap matrix

(cf. Section A.2.1). The first term in Eq. 5.33b refers to electrons associated with only
single basis functions that thus belong entirely to the atom on which that basis function
is centred. The second term in the same equation, involves sharing of electrons between
atoms and assigning charges which has long been an argument of debate. In the origi-
nal form proposed by Mulliken, in order to compute the atomic population Nk , the elec-
trons are equally shared between the two bonded atoms. Considering that the partial charge
on atom k of atomic number Zk is ek = Zk −Nk, the difference between the positive
charge of the protons and the electron population obtained summing on all basis functions
centred at k:

ek = Zk −
AO∑
r∈k

(PS)rr . (5.34)

In practice, the resulting partial charges can be very sensitive to the basis set orthogonality
and size, even though robustness can be improved performing a Löwdin orthogonalization
(Section A.2.1) over the atomic orbitals, so that the second term in Eq. 5.33b vanishes. The
Mulliken method has the advantage of not adding extra costs to a QC calculation, but there
are many other approaches to estimate partial charges, in particular, at least for relatively
small molecules, those that assign the effective charge on every atom by fitting V QC(r), the
molecular electrostatic potential (MESP) obtained from a QC calculation,

V QC(r) =
M∑
k=1

Zk

|r −Rk| −
∫

dr ′ρ(r)

|r ′ − r|, (5.35)
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where Rk is the position of nucleus k of atomic number Zk and ρ(r) the electron density.
This is calculated on a grid of points around the molecule and partial charges are determined
by a direct fit to this MESP [Singh and Kollman, 1984; Chirlian and Francl, 1987; Besler
et al., 1990; Bayly et al., 1993; Berardi et al., 2004d]. There are a variety of methods
depending on the type of grid around the molecules, e.g. based on spherical shells at a certain
distance apart, centred on each atom with points symmetrically distributed on the surface
[Chirlian and Francl, 1987] or based on a cubic grid in CHELPG [Breneman and Wiberg,
1990]. A good survey of these methods is reported by Leach [2001]. Another possibility
that has been used in the literature is more empirical, with atomic charges adjusted to
fit the computer simulated properties of crystals or liquids. In particular, the OPLS non-
bonded parameters are derived by fitting the enthalpy of vaporization and density of liquids
determined by Monte Carlo calculations [Jorgensen and Tirado-Rives, 1988].

5.4.4 Computing Electrostatic Energy: Ewald Sums

Once partial charges are known, electrostatic interactions are described, in principle very
simply, by the classical Coulomb law, which in vacuum, with dielectric constant ε0 is

U e = 1

2

N∑
k,m

′ ek em

4πε0rkm
, (5.36)

where the prime indicates that the sum excludes pairs of atoms belonging to an intramolec-
ular set M with k = m or k and m either (1–2), (1–3) or (1–4) connected (see defini-
tions in Section 5.4.2). In some schemes connected atoms 1–4 also contribute, but with
a scaling factor (1/2) [Jorgensen et al., 1996]. Although very simple to write, Eq. 5.36
has the fundamental problem of being only conditionally convergent. In practice, if we
try to limit the contribution of the interacting charges to those within a certain cut-off
distance rc, i.e. limit the sum to rkm ≤ rc, very different results can be obtained when
the sum is truncated at different cut-offs. A way to transform the sum in a convergent
one is the classic Ewald method [de Leeuw et al., 1980a, 1980b; Frenkel and Smit, 2002;
Arnold and Holm, 2005; LeSar, 2013], which applies to an infinite periodic lattice. This is
particularly appealing since this is always the case when the actual sample is replicated using
the so-called periodic boundary conditions, as normally employed in computer simulations
at least when simulating a bulk system (see Chapters 8 and 9). In practice, the electrostatic
energy is computed assuming a periodic lattice consisting of the overall neutral sample box
of edges (a1, a2, a3) surrounded by infinitely many replicas at Rn = ni a1+nj a2+nk a3,
with n = (ni,nj,nk) and ni,nj,nk integers. In the Ewald method the Coulomb energy is
rewritten as a sum of two absolutely convergent series: one, U e

dir, in direct (real) space and
the other, U e

rec in reciprocal Fourier space [de Leeuw et al., 1980a; Essmann et al., 1995]:

4πε0U
e = U e

dir + U e
rec =

1

2

∑
Rn

N∑
k,m=1

′′ ek em

|rk − rm +Rn|, (5.37)
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where, rk is the position of the charge ek and the double prime indicates that pairs of the
set M introduced before are excluded in the primary box, i.e. when Rn = 0,

U e
dir =

1

2

∑
Rn

N∑
k,m

′′ ekem
erfc (α |rkm +Rn |)

|rkm +Rn| − 1

2

N∑
k,m∈M

ekem
erf (α |rkm|)
|rkm| , (5.38a)

U e
rec =

1

2πV

∞∑
q �=0

exp
(−π2|q|2/α2

)
|q|2 |S(q)|2 − α√

π

N∑
k=1

e2
k . (5.38b)

Here V = a1 · a2 × a3 is the sample volume, q = h1b1 + h2b2 + h3b3 is a point in the
reciprocal lattice, with hi integers. The reciprocal lattice vectors bi are bi = aj × ak/V ,
and ai · bj = δi,j, with i,j,k an even permutation of 1,2,3, while erfc(x) = 1−erf(x) is the
complementary error function [Abramowitz and Stegun, 1965]. The separation parameter
α determines which part of the Coulomb sum is performed in real or in reciprocal space and
is typically chosen so that erfc(αrc) is small at the real space cut-off distance rc. Finally,
S (q) = ∑N

m=1 ej exp (i2πq · rm) is the electrostatic structure factor. We should point out
that in the Ewald potential given above, the so-called tinfoil boundary conditions are implic-
itly assumed: the sample and its retained images are immersed in a perfectly conducting
medium and hence the dipole term on the surface of the Ewald sphere is 0 [de Leeuw et al.,
1980a]. It is worth noting that this choice can significantly affect long-range properties, like
the overall ferroelectric order of an LC polar sample, which may appear or not if conducting
boundaries or a vacuum surrounding the sample are used, as shown in [Wei and Patey, 1992;
Ayton and Patey, 1996].

The standard Ewald summation is very demanding in terms of resources as it scales with

the number of particles, N, as N
3
2 [Perram et al., 1988]. However, optimized implemen-

tations such as the particle mesh Ewald (PME) [Darden et al., 1993] and smooth particle
mesh Ewald (SPME) [Essmann et al., 1995] based on interpolation methods [Hockney,
1989] that use the very efficient fast Fourier transform (FFT) for the reciprocal lattice
contribution allow this to reachN logN scaling. Further modifications and developments of
the technique have been proposed, e.g. the staggered mesh Ewald (StME) algorithm [Cerutti
et al., 2009] further improves the accuracy of computed forces by an order of magnitude.

5.4.5 Tuning the Atomistic Force Fields

As we have already noted, for most practical cases it is necessary to adjust at least in part
the Force Field. In doing that it is important to avoid double counting as all intramolecular
electrostatic and dispersive interactions between the atoms are implicitly included in the QC
calculation. For instance, when obtaining the torsional barrier relative to the variation of an
angle φ, one possibility is to subtract from the calculated QC energy UQC(φ) the molecular
mechanics one, calculated from the original FF with the torsional contribution set to 0,
UMM
c (φ). In practice, to evaluate this, one can compute a Boltzmann distributionPMM

c (φ;T )
by performing a short (a few nanoseconds) MD simulation of an isolated molecule at a
temperature so high that the conformations corresponding to all angles are well populated
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(even something like T = 1000 K or more), and that a thorough exploration of the potential
energy surface (PES) can be achieved. UMM

c (φ) can then be obtained through a Boltzmann
inversion of the distribution [Berardi et al., 2005; Pizzirusso et al., 2011]:

UMM
c (φ) = −kBT lnPMM

c (φ;T )− U0, (5.39)

where kB is the Boltzmann constant and U0 shifts to 0 the minimum of the energy. The
corrected force field contribution is therefore:

UDHT(φ) = UQC(φ)− UMM
c (φ) (5.40)

and can be expanded in Fourier series (see Eq. 5.30) for an easy on the fly evaluation during
the simulation.

5.5 Hard Anisotropic Particles (Shape Matters!)

This very simple class of purely repulsive potentials is based on the idea that the structure of
a crystal or of a liquid is just determined by optimal packing. The idea is probably one of the
oldest, and indeed, structures of crystals, based on the wood particle models of Professor
Daniell (Kings’ College, London), kept at the Science Museum in London, date back to
around 1830. In line with this idea, a number of models with only anisotropically shaped
hard particles, without attractions, have been among the first to be studied, particularly by
Frenkel and collaborators [Allen et al., 1989, 1993]. They are still actively investigated and
have been recently reviewed [Mederos et al., 2014]. Hard particle (HP) models represent a
natural generalization of the hard-core potentials between spherical particles:

UHP(r ij,�i,�j ) =
{∞, for rij ≤ σh(r̂ ij,�i,�j )

0, for rij > σh(r̂ ij,�i,�j )
(5.41a)

=
{∞, if r ij ∈ Vex

(
�i,�j

)
0, otherwise,

, (5.41b)

where the contact function σh(r̂ ij,�i,�j ) gives the minimum distance between two non-
overlapping particles at fixed orientations and fixed relative interparticle vector. The overlap
condition defines a region of space Vex

(
�i,�j

)
excluded to particle j because of the pres-

ence of particle i (and vice versa) [Allen et al., 1993]. Note that the Boltzmann factor for hard
particles does not depend on temperature and thus their molecular organization is controlled
by the entropy, which in turn depends on the volume accessible to the particles. In a system
of particles devoid of attractive energy a phase change from disordered (e.g. liquid) to
ordered (e.g. crystal or nematic) necessarily requires an increase in entropy (see Sec.5.2.1).
The only relevant parameter in the canonical ensemble is then the density ρ or, equivalently,
the volume fraction φ which for a monodisperse system, is φ = ρV, where V is the volume
of a particle. The simplest particles to study are rigid convex bodies, [Kihara, 1963; Allen
et al., 1993] characterized by the geometrical requirement that a line segment connecting
any two points on their surface lies entirely within it and that a tangential plane (the local
supporting plane) can touch their surface at one and only one contact point. Considering
an origin inside a convex body, the surface is described, in polar coordinates, by a vector
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Figure 5.12 A sketch of two convex particles i, j in 2D and of their support functions h(ϑi ),
h(ϑj ) with close contact points r(ϑi ), r(ϑj ) and surface-surface distance sij .

function r(ϑ,ϕ). Another description is in terms of the supporting function h(θ,ϕ) the
perpendicular distance from the origin to the supporting plane (see Fig. 5.12). We can write
h(θ,ϕ) = r(ϑ,ϕ) · n̂, where n̂ is the unit vector in the direction of the normal to the tangent
plane. There is a variety of differently shaped particles relevant as model mesogens that fall
into the definition, e.g. spheres, prolate and oblate spherocylinders and ellipsoids, also if
tapered at one end. It is interesting that these different shapes, like any convex body, can be
characterized by three metrics: volume, V surface area, S, and mean curvature integral, R,
normalized by 4π :

R = 1

4π

∫∫
dϑdϕ r

(
∂n̂

∂ϑ
× ∂n̂
∂ϕ

)
= 1

4π

∫∫
dϑdϕ h(θ,ϕ) sinϑ, (5.42a)

S =
∫∫

dϑdϕ n̂

(
∂r

∂ϑ
× ∂r

∂ϕ

)
, (5.42b)

V = 1

3

∫∫
dϑdϕ r

(
∂r

∂ϑ
× ∂r

∂ϕ

)
. (5.42c)

The scalar (isotropically averaged) second virial coefficient for any pair of hard convex
bodies is given by the exact Isihara–Hadwiger relation [Kihara, 1967; Boublik and Nezbeda,
1986] as

BHP
2 = RS+ V = (1+ 3ξ )V (5.43)

in terms of R,S,V, while ξ is a size independent asphericity parameter, ξ = RS/3V. For
instance, given a sphere of radius σh/2, V = πσ 3

h /6, S = πσ 2
h , R = σh/2, we find

BHS
2 = 2πσ 3

h /3 = 4Vh as it should (Eq. 5.9). The concept of support plane is useful when
we have to determine the surface-surface distance between two convex particles i and j at
separation r ij (see Fig. 5.12), which amounts to the distance sij between the two support
planes. The computational aspects are discussed in detail in Allen et al. [1993].

5.5.1 Hard Ellipsoids (HE)

Ellipsoids with semi-axes a, b and c can be obtained by an affine deformation of a sphere.
A linear pulling or squeezing along one axis gives a uniaxial prolate or, respectively, oblate
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Table 5.8. Mean radius of curvature RHE, surface, SHE and volume VHE

of prolate hard ellipsoids (a = b < c) where the ellipticity
η =

√
(a2 − c2)/a, and the same for oblate (a < b = c) ones, with

ellipticity ε =
√

(b2 − a2)/b [Singh and Kumar, 2001]

metric prolate oblate

RHE c

2

[
1+ 1− η2

2η
ln

(
1+ η
1− η

)]
a

2

(
1+ sin−1 ε

ε
(
1− ε2

)1/2

)

SHE 2πa2

[
1+ sin−1 η

η
√

1− η2

]
2πb2

(
1+ 1− ε2

2ε
ln

1+ ε
1− ε

)

VHE 4π

3
a2c

4π

3
b2a

ellipsoid, while scaling along two axes gives a biaxial ellipsoid. The function S(h) describ-
ing the surface of a hard ellipsoidal particle is given by SHE = (x2/a2) + (y2/b2) +
(z2/c2) = 1, where a, b, and c are three semi-axes of the ellipsoid and (x,y,z) are the
components of the centre-to-surface vector h = âx + b̂y + ĉz, with (â,b̂,ĉ) the basis
vectors along the principal axes. The ratio of the largest to the smallest semi-axes, is the
maximal aspect ratio of the ellipsoid. An expression for the second virial coefficient of
identical ellipsoidal particles can be obtained using the Isihara–Hadwiger formula, Eq. 5.43.
For the general case of biaxial ellipsoids, expressions for RHE and SHE have been derived
by Singh and Kumar [1996, 2001]. Explicitly, the mean radius of curvature and the surface
are given by

RHE = a

2

[√
1+ εb
1+ εc +

√
εc

{
1

εc
F (ϕ,k1)+ E (ϕ,k1)

}]
, (5.44a)

SHE = 2πa2
[

1+
√
εc (1+ εb)

{
1

εc
F (ϕ,k2)+ E (ϕ,k2)

}]
, (5.44b)

VHE = 4π

3
abc, (5.44c)

where F (ϕ,k) is an elliptic integral of the first kind and E(ϕ,k) is an elliptic integral of
the second kind [Abramowitz and Stegun, 1965], with the amplitude ϕ = tan−1

(√
εc
)

and
k1 =

√
(εc − εb)/εc, k2 =

√
[(εb(1+ εc)]/[εc(1+ εb)], while the ellipsoid anisotropy is

εb = [(b/a)2 − 1], εc = [(c/a)2 − 1]. These, together with Eq. 5.43, can give numerical
values of the second virial coefficient for identical hard biaxial ellipsoids [McBride and
Lomba, 2007]. The expressions become much more manageable for the special case of
uniaxial ellipsoids, shown in Table 5.8.
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5.5.2 Hard Spherocylinders (HSC)

A spherocylinder, also called a capsule, is a cylinder of length l and diameter d = 2w
with hemispherical caps of the same diameter d at both ends, thus with length l + d. The
potential between two hard spherocylinders is

UHSC(r ij,ui,uj ) =
{

0, if there is no overlap
∞, otherwise.

(5.45)

The potential, like that for hard ellipsoids, is particularly suitable to model elongated objects
and it reduces to that of hard spheres when l = 0. For a prolate hard spherocylinder the
fundamental measures are:

RHSC = 1

4
l + 1

2
d, (5.46a)

SHSC = πd(d + l), (5.46b)

VHSC = π d2
(

1

6
d + 1

4
l

)
. (5.46c)

The Isihara–Hadwiger relation, Eq. 5.43, allows calculating the coefficient B2 needed for
the imperfect gas virial expansion. When l = 0 this reduces to 8VHS for the two-molecule
system; if this volume is distributed among the two particles, it gives the conventional result
of four times the volume of a hard sphere, an important quantity in the van der Waals
equation of state. The coefficient B2, as considered until now, is an isotropic average of
the anisotropic Mayer function (Eq. 4.147). We shall see in Section 7.6 that the coefficient
BHSC

2 (β12), representing the excluded volume of two spherocylinders, i.e. the volume denied
to the second spherocylinder by the presence of first when their relative orientation is fixed,
is key in setting up Onsager theory for anisotropic phases.

5.5.3 Hard Polyhedra Particles (HPP)

Suspensions of sufficiently anisotropic hard rod-like and disc-like particles give liquid crys-
tal phases upon increasing concentration (Section 1.14). However, it is interesting to see
if rigid polyhedra of other shapes can, just on the basis of entropy optimization, yield
LC phases or other molecular organizations, possibly with novel material properties. The
problem is of increasing importance in view of the variety of nanoparticle shapes that have
and are being synthesized [Glotzer et al., 2004; Vogel et al., 2015; Boselli et al., 2020] as
we also see from the few examples in Fig. 5.13 comprising both convex (a, b, c, f) and non-
convex particles (d, e). At high density the thermodynamically stable phase for a system of
hard particles is typically the one with the highest packing density [Chaikin et al., 2006].
Extensive numerical simulations of polyhedra packing have been performed, particularly in
the groups of F. A. Escobedo [John et al., 2008; Agarwal and Escobedo, 2011; Escobedo,
2014] and of S. Glotzer [Damasceno et al., 2012] and the formation of columnar, nematic
and smectic phases has been observed. Interestingly, none of the polyhedra yielding LCs
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1000 nm

Figure 5.13 Nanoparticles and microparticles of different shapes experimentally prepared:
(a) A triangular Au prism [Malikova et al., 2002], (b) Pt nanocubes [Chan et al., 2012], (c)
silica ellipsoids covered by haematite [Sacanna et al., 2006], (d) CdSe/CdTe tetrapods [Fiore
et al., 2009], (e) Au nanorings [Ozel et al., 2015] and (f) rhombic GeSe2 flakes on a mica
substrate [Zhou et al., 2017].

corresponds to simple Platonic (regular and identical faces) or Archimedean solids (regular
faces with identical vertices [Damasceno et al., 2012]. The thermodynamic behaviour of
hard particles can be understood through entropy maximization. Packing efficiency plays
an increasingly important role towards higher density and induces a preferential alignment
of flat facets. Because packing efficiency increases with contact area, the alignment can
be interpreted as the result of an effective, many-body directional entropic force arising
from the increased number of configurations available to the entire system, causing suitably
faceted polyhedra to order. Virial coefficients for a number of convex polyhedral particles
have been discussed [Irrgang et al., 2017] and in particular second virial coefficients have
been obtained using Eq. 5.43, after showing that the (normalized) integrated mean curvature
for a polyhedron is given by RHP = ∑

i li(π − θi)/(8π ), where the summation runs over
all edges with edge length li and dihedral angle θi between adjacent faces. Volume, VHP,
and surface, SHP, of the HPP are easily calculated by summing over suitably carved-up
components.

5.6 Attractive-Repulsive Rigid Particles

Given that real molecules have both attractive and repulsive interactions, it is desirable to
find a simple generalization of the LJ potential for anisotropic particles. Clearly, the contact
distance (size) σ , and the interaction energy strength (attractive well depth), ε, parameters
in an LJ-like potential, Eq. 5.17, will need to depend on positions and orientations
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of the two molecules, becoming σ (r ij,�i,�j ) = σ (rij,�i,�j,�rij ) and ε(r ij,�i,�j ) =
ε(rij,�i,�j,�rij ). In the next few sections we introduce a way of obtaining these anisotropic
expressions starting from the Gaussian model for ellipsoidal molecules.

5.6.1 Gaussian Overlap Models

In order to develop a soft attractive-repulsive model to handle anisotropic particles, a very
useful suggestion was that of Berne and Pechukas [1972], that is to assume that the inter-
action energy of two identical ellipsoidal particles can be taken to be proportional to their
overlap. To calculate explicitly this overlap a molecule can be represented by a 3D Gaussian
distribution, so as to take advantage of the fact that the overlap between two Gaussian
functions is another Gaussian. Thus, a particle i of a certain type A with centre at r i and ori-
entation, �iL with respect to the laboratory frame, corresponds to a Gaussian G(r i,�iL,r)
that, except for a normalization factor, can be written as [Berardi et al., 1995]

Gi = G(r i,�iL,r) = exp

[
−1

2
(r − r i)

TMT
i [S]−2Mi (r − r i)

]
, (5.47)

where S is a diagonal shape matrix whose elements, σx , σy , σz, are the length of the axes of
the ellipsoid (in units of a certain convenient σ0), while Mi ≡ R(�iL) is the rotation matrix
transforming from laboratory to the ith molecule frame. A particle shape biaxiality can be
defined as

λS =
√

3

2

σx − σy
2σz − σx − σy . (5.48)

To make the definition unambiguous, we conventionally assign the axes x,y and z so as to
obtain the lowest biaxiality. In practice, for a prolate object we choose σz > σx � σy while
for an oblate particle we adopt σy � σx > σz. Using this prescription λS can vary from 0,
corresponding to a uniaxial object as considered in the original treatment by Gay and Berne
[1981], to 1/

√
6 for an object of spherical symmetry, i.e. when all three σi tend to σ with

the ordering above. When the first molecule is centred at the origin, r i = 0, and the second
at a separation vector, r ij from it, we have the overlap integral

Qij (r ij,�i,�j )

=
∫ ∞

0
dr G(r i,�i,r)G(rj,�j,r), (5.49a)

=
∫ ∞

0
dr exp

{
−1

2

[
rTMT

i [S]−2Mir − (r ij − r)TMT
j [S]−2Mj (r ij − r)

]}
.

(5.49b)

The great advantage of using Gaussians is that the product of two of them is another Gaus-
sian, so their overlap integral can be calculated analytically. A convenient way is to write
the convolution integral Eq. 5.49b as the inverse Fourier transform of the product of Fourier
transforms of Gi and Gj (see Section E.2.1 and [Bracewell, 2000]). We find in this way
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Qij (r ij,�i,�j ) = det([S]2)

(
π3

8 det([Aij ])

)1/2

exp

[
−1

2
rTij [Aij ]−1r ij

]
, (5.50)

where det([S]2) = (σxσyσz)2 and [Aij ] is a symmetric matrix defined as

[Aij ] ≡ [A(�i,�j )] = MT
i [S]2Mi +MT

j [S]2 Mj . (5.51)

Armed with these results for the overlap, one can proceed towards developing an (empirical)
expression for the pair potential [Berne and Pechukas, 1972].

5.6.2 Berne–Pechukas Potential

For uniaxial molecules (with σx = σy �= σz) both det([Aij ]) and [Aij ]−1 can be calculated
analytically [Berne and Pechukas, 1972] and one can assume, for two identical uniaxial
molecules, an interaction potential

U (rij,ui,uj,r̂ ij ) = ε0 ε(ui,uj ) exp

{
−

r2
ij

σ 2(ui,uj,r̂ ij )

}
, (5.52)

where ui , uj , r̂ ij are unit vectors giving the orientations �iL,�j,�rijL of the two particles
and of the intermolecular vector respectively and the pre-exponential coefficient ε(ui,uj )

is:
{
1− χ2 (ui ·uj )2

}− 1
2 , where χ is a shape anisotropy parameter,

χ =
(
σe
)2 − (

σs
)2

(σs)
2 + (σe)

2
= κ2 − 1

κ2 + 1
, (5.53)

with κ = σe/σs the aspect ratio, and a contact distance σ (ui,uj,r̂ ij ) related to the molecular
shape:

σ (ui,uj,r̂ ij ) = σ0

{
1− χ

2

[
(r̂ ij ·ui + r̂ ij ·uj )2

1+ χ (ui ·uj )
+ (r̂ ij ·ui − r̂ ij ·uj )2

1− χ (ui ·uj )

]}− 1
2

, (5.54)

where ε0, σ0 are scaling parameters. It should be noted that this ‘soft’ contact distance
is similar but not identical to the ‘hard’ geometrical one between impenetrable ellipsoids
(see [Everaers and Ejtehadi, 2003; Zheng and Palffy-Muhoray, 2007] for a discussion). An
expression for ε and σ in terms of the rotational invariants SL′,L′′,L ≡ SL′,L′′,L(ui,uj,r̂ ij )
for uniaxial ellipsoids (Eq. G.25) was given by Stone [1979] as:

ε(ui,uj ) =
√

3ε0

(
3− χ2 −

√
20χ2S2,2,0

)− 1
2
, (5.55)

σ (ui,uj,r̂ ij ) = 3σ0
(
ε0/ε(ui,uj )

) {
9− 6χ − χ2 +

√
280χ2S2,2,2

−
√

20
[
χ2S2,2,0 + (3χ − 2χ2)(S2,0,2 + S0,2,2)

]}− 1
2
. (5.56)

The interaction parameters ε(ui,uj ) and σ (ui,uj,r̂ ij ) obtained in this way can be, some-
what arbitrarily, plugged in the classic Lennard–Jones potential to produce an anisotropic
(12–6) pair potential. This model has been used in various early off-lattice simulations
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[Kushick and Berne, 1973b; Tsykalo and Bagmet, 1978; Kabadi and Steele, 1985; Tsykalo,
1991] and in statistical mechanics studies [Monson and Gubbins, 1983] but presents various
limitations. One is that its well depth only depends on the relative orientation of the two
particles. Thus, for instance, the potential well depth for two parallel molecules is the
same if the molecules lie side by side or head-to-head, which is not realistic (cf. [Stone,
1979]). Moreover, the well width varies with the molecular orientation with respect to the
intermolecular vector.

5.6.3 Uniaxial Gay–Berne Potentials

An improved version of the previous potential is the Gay–Berne one [Gay and Berne, 1981;
Adams et al., 1987], which has a shifted, rather than scaled, Lennard–Jones-like form.
Omitting for conciseness the particle type label A, since all particles are of the same type,

UGB(r ij,ui,uj ) = 4ε0 ε
(μ,ν)(ui,uj,r̂ ij )

×
[( σc

rij − σ (ui,uj,r̂ ij )+ σc

)12

−
(

σc

rij − σ (ui,uj,r̂ ij )+ σc

)6]
,

(5.57)

where ε0 is an energy scale, while the length scale σ0 is contained in σ (ui,uj,r̂ ij ), as defined
in Eq. 5.54. The other parameter with dimensions of length, σc, is a range of interactions that
typically, but not necessarily equals the unit distance σ0. For instance, σc < σ0 can be used
to describe interactions in systems of interacting colloidal particles, where we can expect
the effective interaction range to be shorter than the particle size. Apart from this rather
non-standard case, σc depends on the ellipsoid being prolate or oblate, as will be discussed
in Section 11.5.1. The potential is 0 at the contact distance rij = σ (ui,uj,r̂ ij ). The energy
term is written as a product:

ε(μ,ν)(ui,uj,r̂ ij ) = [
ε1(ui,uj,r̂ ij )

]μ [
ε2(ui,uj )

]ν
, (5.58)

where

ε1(ui,uj,r̂ ij ) = 1− χ
′

2

[
(ui · r̂ ij + uj · r̂ ij )2

1+ χ ′(ui ·uj )
+ (ui · r̂ ij − uj · r̂ ij )2

1− χ ′(ui ·uj )

]
, (5.59a)

ε2(ui,uj ) =
[
1− χ2(ui,uj )2

]−1/2
. (5.59b)

The attractive anisotropy parameter χ ′ is defined as

χ ′ = ε
1/μ
s − ε1/μ

e

ε
1/μ
s + ε1/μ

e

= κ ′1/μ − 1

κ ′1/μ + 1
, (5.60)

with κ = σe/σs = σ‖/σ⊥ and κ ′ = εs/εe = ε‖/ε⊥, where e stands for a configuration
of particles i and j corresponding to ui‖uj = 1, ui‖r̂ ij = 1, uj‖r̂ ij = 1 and s to that
with ui‖uj = 1, ui ⊥ r̂ ij = 0, uj ⊥ r̂ ij = 0. For a rod-like particle the subscripts e
and s thus refer, respectively, to an end-to-end and side-by-side configuration, the length
to breadth ratio is κ > 1, while the ratio of the well depths is κ ′ > 1. In this case, the
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Table 5.9. The GB strength of interaction ε for end-to-end (ee),
side-by-side (ss), cross (×), and tee (T) configurations and for
κ ≡ σe/σs = 3, κ ′ ≡ εs/εe = 5, ε0 = 1, with exponents (μ = 2,
ν = 1) or (μ = 1, ν = 3) [Berardi et al., 1993]

Config. ε(ui,uj, r̂ ij )/ε0 GB(3,5,2,1) GB(3,5,1,3)

(ee) (1/κ ′)(1− χ2)−ν/2 1
3

25
27

(ss) (1− χ2)−ν/2 1
15

5
27

(×) 1 1 1

(T) [2/(κ ′1/μ + 1)]μ 4/(51/2 + 1)2 8/(51/3 + 1)3

UGB

Figure 5.14 (a) The Gay–Berne GB(3,5,2,1) potential for two particles parallel to the z-axis
as the position of the centre of the second molecule moves in the zx plane around the first one
placed at the origin. The two deep minima correspond to side-side positions. (b) A contour
plot of the same potential map. Notice the spurious unphysical well very close to the origin.
All distances are expressed in σ0 units and energies in ε0 units.

length parameter one takes σc = σ0 = σs. For a discotic the subscript e corresponds to a
face-to-face approach, so that we have κ < 1, κ ′ < 1 and the usual choice made [Bates
and Luckhurst, 1996] is σc = κσ0 = σf . The potential also depends on two parameters, μ
and ν that can help to tune the shape of the potential well. In Table 5.9 we show the effect
of changing μ and ν at certain special orientations. In Fig. 5.14 we see a representation of
the GB potential surface as in the original formulation, i.e. for μ = 2,ν = 1 [Gay and
Berne, 1981]. In Fig. 5.15a we consider some sections for the most significant orientations
for two approaching molecules: side-by-side (ss), end-to-end (ee) and transversal both for
μ = 2,ν = 1 and for μ = 1,ν = 3, as proposed by Berardi et al. [1993]. We see that, even
though the profile is qualitatively similar in both cases, the well depth and profile change
significantly with the different parameterizations. In particular, forμ = 1,ν = 3 the ss inter-
action is stronger, favouring parallel alignment and leading, as we shall see in Chapter 11,
to a wider nematic range. A convenient notation to summarize the parameters determining
a GB potential has been introduced by Bates and Luckhurst [1999a] as GB(κ,κ ′,μ,ν). The
choice GB(κ ,κ ′,0,0) has been used by Andrienko et al. [2001], while GB(1,1,0,0) reduces
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Table 5.10. Dimensionless units for the Gay–Berne
model. Here σ0, m0, ε0, τ0 are the units of length,
mass, energy and time. For rod-like molecules
σ0 = σs, while for discotics σ0 = σf (see text).
Conversion to real units is effected choosing a specific
mesogen. For example, for 8CB: σ0 = 0.5 nm,
m0 = 4.8× 10−22 kg, ε0 = 1.4× 10−21 J , giving
τ0 = 0.3 ns and P0 = 112 bar. [Vanzo et al., 2012]

Distance r∗ ≡ r/σ0

Mass m∗ ≡ m/m0

Volume V ∗ ≡ V/σ 3
0

Number density ρ∗ ≡ ρσ 3
0 , ρ = N/V

Temperature T ∗ ≡ T/T0, T0 = ε0/kB
Energy U∗ ≡ U/ε0
Pressure P ∗ ≡ P/P0, P0 = ε0/σ 3

0

Time t∗ ≡ t/τ0, τ0 =
√
mσ 2

0 /ε0

Force f ∗ ≡ σ0f/ε0

Inertia moment I∗ ≡ I/I0, I0 = m/σ 2
0

Charge q∗ ≡ q/q0, q0 =
√

4πε0ε0σ0

Viscosity η∗ ≡ σ 2
0 η/

√
mε

Elastic constants K∗α = Kασ0/(kBT )

to the ordinary spherical LJ potential. It is convenient to employ scaled, dimensionless
variables for all quantities, that we report for convenience in Table 5.10 and that, unless
otherwise specified, we indicate with an asterisk. For an elongated molecule it is assumed
that σ0 = σs . The GB potential can also be used to model discotic mesogens employing
oblate ellipsoids with thickness σf and diameter σs. In Fig. 5.15b we see an example with
a parametrization [Emerson et al., 1994] based on the dimensions of a triphenylene core,
namely, shape anisotropy κ = σf/σs = 0.345 and interaction anisotropy κ ′ = εs/εf = 0.2,
but using instead energy parameters μ = 1 and ν = 3 as in Bacchiocchi and Zannoni
[1998]. Note that the unit length σ0 for discotic, although assumed to be σ0 = σs in early
simulations [Emerson et al., 1994] is more reasonably assumed to be σ0 = σf [Bates and
Luckhurst, 1996]. Various applications of uniaxial GB potentials for elongated or discotic
particles to liquid crystals will be discussed in Section 11.5.2.

5.6.4 Biaxial Gay–Berne Potentials

While modelling rod-like or disc-like molecules with elongated or squashed ellipsoids is
quite reasonable as a first option, a simple observation of many of the mesogens presented
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(a) (b)

Figure 5.15 (a) A plot of the GB potential UGB/ε0 as a function of intermolecular
separation: r/σ0 for the GB(3,5,2,1) ( ) and GB(3,5,1,3) ( ) prolate models and side-
by-side,    , and end-to-end configurations [Berardi et al., 1993]. (b) The same for two
discotic mesogens GB(0.345,0.2,1,3), i.e. with thickness to diameter ratio σff/σss = 0.345,
well depth ratio εss/εff = 0.2 and parameters μ = 1,v = 3. Here σ0 = σs in both cases
[Bacchiocchi and Zannoni, 1998; Zannoni, 2001b].

in Chapter 1 (e.g. in Table 1.2), shows that they are better represented as biaxial, rather than
uniaxial, particles with different length, breadth and width. It is possible to generalize the
GB potential to a biaxial version following the procedure we have just seen but starting with
the overlap between two Gaussian ellipsoids particles with axes lengths σ (P)

x , σ (P)
y , σ (P)

z and

attractive interaction strengths ε(P)
x , ε(P)

y and ε(P)
z , for particles of type P = A or B [Berardi

et al., 1998a]. Assuming the two particles to be not necessarily identical is essential to
studying mixtures of two different nematogens [Berardi and Zannoni, 2015; Querciagrossa
et al., 2017], but also to treat solutes, not necessarily mesogenic, in an LC host solvent, as
is typically the case for spectroscopic studies. The coefficients ε(P)

a are related to the well
depths for the homogeneous side-by-side, face-to-face, and end-to-end interactions. Note
that a particle P can have both a shape biaxiality

λ(P)
σ =

√
3

2

σ
(P)
x − σ (P)

y

2σ (P)
z − σ (P)

x − σ (P)
y

(5.61)

and an attractive interaction biaxiality

λ(P)
ε =

√
3

2

(
ε

(P)
x

)−1/μ − (
ε

(P)
y

)−1/μ

2
(
ε

(P)
z

)−1/μ − (
ε

(P)
x

)−1/μ − (
ε

(P)
y

)−1/μ
. (5.62)

Both parameters can now be used to model particles and it is important to realize that λ(P)
ε

and λ(P)
σ can be quite distinct. For instance, we can imagine that molecules of essentially

the same shape can be endowed with some lateral substituents that, thanks to some specific
attractive interaction, favour side-by-side attraction enhancing the tendency to transversal,
rather than a face-to-face arrangement of the molecules. We shall see some examples of
that in Chapter 11. The resulting generalized anisotropic GB potential for two, possibly
dissimilar particles, A, B, is [Berardi et al., 1998a],
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UGBX
ij ≡ UGBX

AB (rij,�i,�j,r̂ ij ) = 4ε0 ε
(μν)
AB (�i,�j,r̂ ij )

×
{[

σc

rij − σAB(�i,�j,r̂ ij )+ σc

]12

−
[
σc

r ij
− σAB(�i,�j,r̂ ij )+ σc

]6
}
,

(5.63)

where the ‘minimum contact distance’ σc determines the width of the potential wells and
lies in the range 0 < σc �

(
min[σ (A)

a ] + min[σ (B)
a ]

)
/2. In practice, we typically assume

σc = 1
2

(
σ

(A)
c + σ (B)

c

)
, the average of the parameters σ (P)

c . The orientations �i , �j of
the two particles with respect to a common laboratory frame can be expressed as Euler
angles, (αi,βi,γi) and (αj,βj,γj ), or more conveniently for numerical calculations, as the
two unitary quaternions ui and uj defining the rotations linking laboratory and molecular
frames (see Appendix H). The distance and energy units are σ0 and ε0. The pseudo-contact
distance is

σAB(�i,�j,r̂ ij ) = (2 r̂
T
ij [AAB(�i,�j )]−1 r̂ ij )−1/2 (5.64)

and, similarly to the uniaxial case [Gay and Berne, 1981], the anisotropic interaction term
is written as the product

ε
(μν)
AB (�i,�j,r̂ ij ) = ενAB(�i,�j ) ε′μAB(�i,�j,r̂ ij ), (5.65)

where μ and ν are empirical exponents. The strength coefficient is

εAB(�i,�j ) =
[

2σ (A)
c σ

(B)
c

det
[
AAB

(
�i,�j

)]]1/2

, (5.66)

where the scaling constants σ (P)
c are σ (P)

c = (
σ

(P)
x σ

(P)
y +σ (P)

z σ
(P)
z

)(
σ

(P)
x σ

(P)
y

)1/2, for particles
P = A,B. The overlap matrix [AAB] (Eq. 5.51) for a pair of particles A, B with orientation
�i , �j is

[AAB] = AAB(�i,�j ) = MT
i [S(A)]2Mi +MT

j [S(B)]2Mj . (5.67)

The other dimensionless interaction parameter ε′ is written as

ε′AB(�i,�j,r̂ ij ) = 2 r̂
T
ij [BAB]−1r̂ ij, (5.68)

where the matrix [BAB] is defined as [BAB] = MT
i [E(A)]Mi + MT

j [E(B)]Mj in terms

of the diagonal interaction matrix [E(P)] with elements [E(P)]ab = δa,b(ε0/ε
(P)
a )1/μ. The

generalized biaxial potentialUGBX
ij reduces to the standardUGB

ij one [Gay and Berne, 1981]
when the molecules become identical and uniaxial, except for the fact that a tunable σc is
used instead of σ⊥. For a given particle-particle configuration (r ij,�i,�j ), the potential
has two minima at r±ij = σAB(�i,�j,r̂ ij )− σc(1± 21/6) and is 0 at rij = σAB(�i,�j,r̂ ij )
and rij = σAB(�i,�j,r̂ ij ) − 2σc, thus σc is related to the width of the potential well.
The minimum at r+ij is not physically meaningful, but if σAB(�i,�j,r̂ ij ) > 2σc part of its
branch of the curve could be found at positive (and thus potentially occurring) values of
rij . This unphysical region should be avoided in Monte Carlo simulations (see Chapter 8),
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(a) (b)

Figure 5.16 (a) Uniaxial and (b) biaxial interaction energy UGBX
ij

for two identical GB
particles (μ = 2, ν = 1) with fixed orientations�i = �j = (0,0,0) moving on the xy plane
(r̂ ij ⊥ ẑ). Approach along the x, y axes corresponds to the aa, bb configurations described
in Table 5.11. In (a) we consider uniaxial molecules with σx = σy = σc = 1, σz = 3
(λσ = 0), and εx = εy = 1, εz = 0.2. In (b) we show a biaxial case with σy = σc = 0.6
(λσ = 0.111), and εy = 1.25. All distances are expressed in σ0 units and energies in ε0
units [Berardi et al., 1995].

where the molecules are allowed to move with not necessarily small coordinate jumps,
since this would lead to unphysical and possibly unlockable configurations. It is also worth
realizing that when σc � σAB(�i,�j,r̂ ij ), as could be the case if σc is taken close to the
in plane dimensions for two oblate molecules approaching face to face, UGBX

ij (0) can be
finite and even small rather than tending to∞ as desired. The introduction of the parameter
σc, with 0 < σc ≤ min(σx,σy,σz), allows the extension of the potential to variously shaped
objects. Having provided these general expressions for two possibly different molecules, it is
convenient to focus on the important special case of two identical molecules. It is also quite
useful to examine specific well-defined configurations and for the purpose of representation
we consider the biaxial ellipsoids previously introduced as parallelepipeds with the faces
orthogonal to x, y and z labelled as a, b and c. In other words, face a is parallel to the yz
plane, b to the xz plane and c to the xy one. Given two identical molecules with a fixed
mutual orientation we then consider their interaction energy as a function of separation r .
In particular, we choose the twelve configurations described in Table 5.11, where every
axis of the second frame is parallel (antiparallel) or perpendicular to those of the first one.
All the mutual orthogonal orientations can be generated starting with the two molecules
aligned, i.e. xi‖xj , yi‖yj , zi‖zj , and performing a rotation of the second molecule of Euler
angles � = (α,β,γ ). Every rotation generates three approaching configurations, each of
them along one axis of the first molecule. Each of these is identified with a two-letter code
formed by the names of the faces coming in contact so that axes perpendicular to both faces
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Table 5.11. Sketch of selected configurations for two identical biaxial GB particles,
with r̂ ij direction and (α,β,γ ) angles of the second particle with respect to the first.
We give σ (�i,�j,r̂ ij ), ε(�i,�j ) and ε′(�i,�j,r̂ ij ) values, with

τ ≡
√

2/[(σ 2
x + σ 2

z )(σ 2
x + σ 2

y )(σ 2
y + σ 2

z )] [Berardi et al., 1995; Ricci et al., 2019]

Sketch angles σ (�i,�j, r̂ ij ) ε(�i,�j ) ε′(�i,�j, r̂ ij )

r̂ ij‖x̂i
(0,0,0)

σx
σxσy + σ 2

z

2σz
√
σxσy

( εx
ε0

)1/μ

r̂ ij ||ŷi
(0,0,0)

σy
σxσy + σ 2

z

2σz
√
σxσy

( εy
ε0

)1/μ

r̂ ij‖ẑi
(0,0,0)

σz
σxσy + σ 2

z

2σz
√
σxσy

( εz
ε0

)1/μ

r̂ ij‖x̂i
(0,0,π/2)

√
σ 2
x + σ 2

y

2

(σxσy + σ 2
z )
√
σxσy

(σ 2
x + σ 2

y )σz
2/
[( ε0
εx

)1/μ +
( ε0
εy

)1/μ]

r̂ ij‖ẑi
(0,0,π/2)

σz
(σxσy + σ 2

z )
√
σxσy

(σ 2
x + σ 2

y )σz

( εz
ε0

)1/μ

r̂ ij‖x̂i
(0,π/2,0)

√
σ 2
x + σ 2

z

2

(σxσy + σ 2
z )
√
σxσy

(σ 2
x + σ 2

z )σy
2/
[( ε0
εx

)1/μ + ( ε0
εz

)1/μ
]

r̂ ij‖ŷi
(0,π/2,0)

σy
(σxσy + σ 2

z )
√
σxσy

(σ 2
x + σ 2

z )σy

( εy
ε0

)1/μ

r̂ ij‖x̂i
(0,π/2,π/2)

√
σ 2
x + σ 2

z

2
√
σxσy (σxσy + σ 2

z )τ 2/
[( ε0
εx

)1/μ + ( ε0
εz

)1/μ
]

r̂ ij‖ŷi
(0,π/2,π/2)

√
σ 2
x + σ 2

y

2
√
σxσy (σxσy + σ 2

z )τ 2/
[( ε0
εx

)1/μ + ( ε0
εy

)1/μ
]
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Table 5.11. Continued

Sketch angles σ (�i,�j, r̂ ij ) ε(�i,�j ) ε′(�i,�j, r̂ ij )

r̂ ij‖ẑi
(0,π/2,π/2)

√
σ 2
y + σ 2

z

2
√
σxσy (σxσy + σ 2

z )τ 2/
[( ε0
εy

)1/μ + ( ε0
εz

)1/μ
]

r̂ ij‖x̂i
(π/2,π/2,π/2)

σx
(σxσy + σ 2

z )
√
σxσy

(σ 2
y + σ 2

z )σx

( εx
ε0

)1/μ

r̂ ij‖ŷi
(π/2,π/2,π/2)

√
σ 2
y + σ 2

z

2

(σxσy + σ 2
z )
√
σxσy

(σ 2
y + σ 2

z )σx
2/
[( ε0
εy

)1/μ + ( ε0
εz

)1/μ
]

define the intermolecular vector. In Fig. 5.16 we see a representation of the potential surface
for two molecules approaching side by side for uniaxial and biaxial particles (λσ = 0 and
λσ = 0.111). Switching on the biaxiality allows different approach distances and interaction
strengths for the two shorter axes of the molecules. In Table 5.11 we list the independent
configurations (12 out of 15) obtained rotating β and γ equal to 0 orπ/2 and with their codes
and we give the respective analytic expressions for σ , ε and ε′. For a uniaxial object there
are only four unique configurations of this type: aa ≡ ab′ ≡ bb (side-by-side), cc ≡ cc′

(end-to-end), ac ≡ ac′ ≡ cb′ ≡ bc′ ≡ cb ≡ (tee), aa′ ≡ ba ≡ bb′ (cross). Specific
numerical examples of dimensions and interaction coefficients for the representation of
oligophenyls, from biphenyl to p-quinquephenyl, approximated with rigid biaxial GB ellip-
soids are given in [Berardi et al., 1998a]. A few other versions of biaxial pair potentials
inspired by Gaussian overlap have been put forward by Cleaver et al. [1996], Perram et al.
[1996], and Everaers and Ejtehadi [2003].

5.6.5 Soft Core Gay–Berne Potential

Although the GB potential in its uniaxial and biaxial variants is extremely useful in simu-
lating LC phases, as we shall see in some detail in Chapter 11, in a number of situations it
can be convenient to consider a softer version of the potential where molecules can to some
extent overlap. Berardi et al. [2009, 2011] have introduced such a soft-core variant of the
standard GB potential where the attractive part, corresponding to UGBS

ij < 0 , is still given

by the GB potential UGB
ij , while the repulsive (UGBS

ij ≥ 0) branch is replaced by a function

growing more slowly than the standard one ∝ r−12
ij . It is also convenient to assume that the

https://doi.org/10.1017/9781108539630.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.006


5.6 Attractive-Repulsive Rigid Particles 257

soft-core term does not diverge to infinity for vanishing values of distance but takes a finite
(possibly large compared to kBT ) value. We thus have

UGBS
ij = [

1− f (rij,�i,�j,r̂ ij )
]
UGB(rij,�i,�j,r̂ ij )

+ f (rij,�i,�j,r̂ ij )USC(rij,�i,�j,r̂ ij ), (5.69)

where UGB (or UGBX for biaxial particles) is the standard Gay–Berne potential, given
explicitly in Eq. 5.57 (or Eq. 5.63 for biaxial particles), and we assume identical molecules.
The soft-core repulsive potential is assumed to have a linear dependence on the particle-
particle separation:

USC(rij,�i,�j,r̂ ij ) = m[rij − σ (�i,�j,r̂ ij )], (5.70)

where σ (�i,�j,r̂ ij ) is the anisotropic contact term of the GB potential. The sigmoidal
seaming function is

f (rij,�i,�j,r̂ ij ) = exp
[
k
(
rij − σ (�i,�j,r̂ ij )

)]
1+ exp

[
k
(
rij − σ (�i,�j,r̂ ij )

)], (5.71)

with the parameter k defining the steepness of the logistic function at its inflection point. The
GB and SC surfaces are smoothly joined at r = σ (�i,�j,r̂ ij ), where the GB pair potential
goes to 0. As we can see from Fig. 5.17 the softness can be varied by changing the slope
parameter m. This could be useful to model, e.g. polymer particles or colloidal particles
covered with a stabilizing layer of flexible chains in an attempt to allow for the possibility
of two such particles to come closer than a formally impenetrable geometric barrier would
allow. We shall see in Chapter 11 that another field of application is in the modelling of LC

Figure 5.17 Side-by-side interaction energy Uij /ε0 as a function of separation rij /σ0 of
standard (a) and soft-core (b, c, d) uniaxial GB ellipsoids with σ⊥ = σc = σ0, σ‖ = 3σ0

and ε⊥ = ε0, ε‖ = 0.2ε0, μ = 1 ν = 3, and slopes m/
(
ε0σ

−1
0

) = , − 40 (b), − 30 (c), and
−20 (d) [Berardi et al., 2009].
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elastomers [Skačej and Zannoni, 2011, 2012, 2014] where avoiding the harsh repulsion of
the standard GB potential is essential for the simulation to avoid being stuck.

5.7 Electrostatic Multipoles

We have discussed up to now various empirical potentials that try to take into account
repulsions and attractions. An important missing contribution in these generic potentials is,
however, the electrostatic one. As we have seen in Section 5.4, in atomistic or chemically
detailed models the electrostatic contributions are typically calculated by summation of the
charge-charge Coulomb interactions, in particular using the Ewald method (Section 5.4.4).
In molecular scale, empirical models, where the information on the individual atoms and
their position is not available, it is often interesting to study the effect of some simple charge
distributions and introduce molecular properties linked to these charge distributions to be
able to see their effect on physical properties and phase transitions with computer simulation
techniques (see Chapter 11).

In this section we wish to introduce the multipolar approximation to a charge distribution,
and in particular define important quantities like dipoles and quadrupoles, as these are
very useful to ‘decorate’ a simple generic empirical potential like the spherocylindrical and
ellipsoidal systems introduced so far.

We start by considering a certain set of charges ek whose position hk in the particle fixed
frame of particle i is assumed to be known. The electrostatic potential as sensed by a unit
test charge at a point r away from the origin (cf. Fig. 5.18), V e(r) can be considered as a
sum of contributions from the various charges given by Coulomb’s law:

V e(r) = 1

4πε0

∑
k

ek
1

|r − hk| . (5.72)

If we examine the charge distribution from a distance much larger than the distance of the
point charges from the origin and between themselves (as sketched in Fig. 5.18), we can
expand the potential in a Taylor series of the separation |r − hk| in powers of hk starting
from the point r . Using the expression for the Taylor expansion of a scalar function of a
vector r − hk around r (cf. Appendix C), we have, at second order,

4πε0 V
e(r) =

∑
k

ek
1

|r − hk|, (5.73a)

=
∑
k

ek
1

r
−
∑
k

ek∇∇∇ 1

r
·hk + 1

2!

∑
k

ek∇∇∇∇∇∇ 1

r
:::hkhk + · · · , (5.73b)

= q e

r
−∇∇∇ 1

r
···
(∑

k

ekhk

)
+ 1

2
∇∇∇∇∇∇ 1

r
:
(∑

k

ekhkhk

)
+ · · · , (5.73c)

= q e

r
−∇∇∇ 1

r
···μ+ 1

3
∇∇∇∇∇∇ 1

r
: Q+ · · · , (5.73d)

= q e

r
− T(1)(r) ···μ+ 1

3
T(2)(r): Q+ · · · , (5.73e)
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Figure 5.18 The distribution of set of charges k positioned at hk in their molecular frame
as viewed from a distant point r .

where we have introduced the first two multipolar tensors T(n)(r) (given explicitly in
Eqs. C.9b–C.9d), i.e. the dipolar and quadrupolar ones. In particular, T(1)(r) is a vector,
T(2)(r) is a second-rank tensor (Eq. C.10) and so on. In Eq. 5.73e we also use the contraction
symbols for two tensors, implying a sum over all products of the two corresponding tensorial
components (see Appendix B.5). The first few terms in the expansion correspond to:

(i) Total charge of the molecule, q e, which is simply the algebraic sum of the various
partial charges ei distributed on the molecule itself, irrespective of their location:

q e =
∑
k

ek . (5.74)

We deal mainly with thermotropics and uncharged molecules, although in lyotropics or
in ionic liquid crystals this is not the case, and there the total charge will be extremely
important. The second term depends on:

(ii) Electric dipole vector μ, which is determined by the separation between the centres
of the positive and negative charges on the particle:

μ =
∑
k

ek hk . (5.75)

The overall dipole is 0 for a symmetric molecule, like benzene or p-quinquephenyl.
To a certain extent the total dipole of a molecule can be estimated by the vector addi-
tion of local dipoles assigned to chemical bonds between two atoms or between two
moieties, and tables of group dipoles are available [Ouellette and Rawn, 2015]. A list
of dipoles for some polar molecules and mesogens is given in Table 5.12. Tabulations
of experimental dipoles are available [Le Fèvre, 1964], but very few indeed for LC
forming molecules. Molecular dipoles can be obtained using a variety of QC codes
using ab initio wave function or electronic density functional theory (DFT) methods.
However, it is worth noting that the calculation of molecular dipoles using the widely
used DFT QC codes that are optimized from the point of view of energy minimization,
rather than electron distribution, may be troublesome and lead even to ‘absurd’ results
as discussed in Hait and Head-Gordon [2018] and easily verified even for simple
molecules like toluene.1 An additional source of complication is that in the case of

1 Calculated using ADF [te Velde et al., 2001] with DFT with a CGA-BLYP_D3BJ functional form and a triple zeta basis set
with polarization (see ADF manual for details [Baerends et al., 2021].
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Table 5.12. Dipole moments (in Debye) of a few molecules and source.
Refs. (a) experimental [Le Fèvre, 1964]; (b) QC, plane waves [Adam
et al., 1997]; (c) experimental [Minkin et al., 1970]; (d) QC, DFT
[Zannoni, 2020]; (e) [Pestov and Vill, 2005]

Molecule μ, μ (D) Ref.

Toluene 0.37 (a)

0.39, (0.00, 0.00, 0.39) (d)

Fluorobenzene 1.57 (a)

1.39, (0.00, 0.00,−1.39) (d)

Nitrobenzene 4.24 (a)

4.20,(0.00, 0.00,−4.20) (c)

5.1, (0.00, 0.00,−5.10) (d)

PAA 2.3 (e)

2.03, (−0.72, 1.54,−1.10) (d)

MBBA 3.2 (e)

2.05, (−0.21, 0.00, 2.04) (d)

5CB 6.50 (b)

5.08 (in C6H14 at 25◦C) (e)

6.330, (−0.117.−0.194,−6.329) (d)

non-rigid molecules, like practically all the LC mesogens (see Chapter 1), the molec-
ular dipole, like other higher multipoles, is dependent on conformation, making the
comparison between results of different provenance difficult. Here we have calcu-
lated the values in Table 5.12 using for this purpose the conformer obtained from the
PubChem data base [Kim et al., 2016] reported to the molecular frame shown.
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Most mesogens are actually endowed with electric dipoles, and one of the first theo-
ries about the molecular origin of liquid crystallinity by Max Born (no less!), assumed
that dipoles were needed for the formation of LC phases [Sluckin et al., 2004]. This
was discounted by the fact that symmetric, apolar, molecules like p-quinquephenyl
can form LC phases. Indeed, simple theoretical models for mesogens, like the hard
ellipsoids and spherocylinders or the Gay–Berne model yield LC phases even if apo-
lar. However, the presence of one or more dipoles is important for establishing the
properties of liquid crystals, as we have seen in Chapter 1, particularly for smectics
(see Section 1.7.2). We shall examine this more in detail in Chapter 11 and see how
important not only the existence of a dipole, but also its position and orientation in the
molecule is in order to modify, sometimes radically, the type of LC phase obtained.
Going back for now to the multipole expansion, the third term is:

(iii) Electric quadrupole. It contains a quadratic dependence on the distances of the
charges from the centre and can be different from 0 also for molecules that have
no net dipole moment or charge. For example, it can be different from 0 if we have
four equal charges with alternating signs placed at the vertices of a square. Because of
this, the contribution is called quadrupolar. Another, more common case at least for
molecular systems (e.g. CO2, p-difluorobenzene, …), is that of an axial quadrupole
with single charges of a given sign at the two ends of a rod-like particle and a double
charge of opposite sign at the centre. It is worth noting that instead of using the charge
distribution second moment tensor Q, its traceless version, the electric quadrupole
tensor � [Buckingham, 1967b] is often used. Its Cartesian components are:

%ab = 3

2
Qab − 1

2
Qaaδa,b = 1

2

∑
k

ek(3hk,ahk,b − h2
k,aδa,b). (5.76)

The advantage of defining traceless electrostatic multipoles is that these vanish for a
spherically symmetric distribution of charges. For a uniaxial molecule with symmetry
axis along u, � reduces to � = 1

2Θ (3u ⊗ u − 1) and depends on just one physical

parameter Θ ≡ %‖ ≡ %zz =
√

2
3%

2,0 in the spherical notation of Appendix B,
since %zz = −2%xx = −2%yy . We give in Tables 5.13 and 5.14 a list of molecular
quadrupole moments for some small molecules and mesogens. For tetrahedral symme-
try the quadrupole vanishes (and so does the dipole of course) and it may be necessary
to go to the next multipole in the expansion, the octupole.

In a multipolar expansion the focus is normally on the first non-zero component and,
for molecules forming LCs, anisometric by nature, a quadrupole is typically the highest
multipole needed so we do not discuss octupoles and higher multipoles [Kielich, 1972].

It is important to note that only the first, non-vanishing multipole is independent of
the choice of origin [Buckingham, 1967b]. Thus, for an ion, the dipole and quadrupole
moments vary with the origin. Similarly, in an uncharged but polar molecule, like
fluorobenzene or 5CB, μ is independent of the origin, i.e. the dipole μ′ relative to
a new origin O ′ at the point r ′ = (r ′a,r ′b,r

′
c) from the old origin O is equal to μ, while

the quadrupole � depends on the shift in origin and

�′
ab = �ab −

(
3

2
r ′aμb +

3

2
r ′bμa − r ′ ·μ δa,b

)
. (5.77)
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Table 5.13. Quadrupole tensor principal values for a few molecules.
The z-axis is chosen along the highest symmetry axis. For
naphthalene and anthracene, z is parallel to the long axis and y out
of the molecule plane. Units are Buckingham (1B=1DÅ) (a) [Gray
and Gubbins, 1984]; (b) [Zannoni, 2020]; (c) [Graham et al., 1998];
(d) [Johnson, 2019]; (e) Clark et al. [1997]

Molecule %xx %yy %zz Ref.

Nitrogen 0.7 0.7 −1.4 (a)
Benzene 4.35 4.35 −8.7 (a)

5.05 5.05 −10.1 (b)
Carbon dioxide 2.139 2.139 4.728 (c)
Hexafluorobenzene −4.75 −4.75 9.5 (a)
Naphthalene 8.71 −13.5 6.89 (a)

6.52 −12.82 6.30 (d)
Anthracene 10.4 −18.30 7.94 (a)

8.12 −16.15 8.03 (b)
Fluorobenzene 7.34 −5.82 −1.52 (a)

8.13 −7.12 −1.02 (b)

Table 5.14. QC calculated quadrupole tensor components (in
Buckingham) for a few mesogens already shown in Table 5.12 (same
coordinate system). For p-quinquephenyl, z is parallel to the long axis
and x is across the terminal ring plane. Ref. (a) [Zannoni, 2020]

Molecule %xx %xy %xz %yy %yz %zz Ref.

PAA −15.53 -9.95 −24.04 −9.47 33.71 25.00 (a)
MBBA −6.18 -0.07 15.40 −4.43 −0.07 10.61 (a)
5CB 22.47 -4.66 1.32 4.83 1.91 −27.30 (a)
Quinquephenyl (P5) −33.90 13.81 20.08 (a)

This makes it very difficult to compare quadrupoles from different calculations, partic-
ularly if the molecules are flexible. In Tables 5.13 and 5.14 we report quadrupoles both
experimentally and from QC calculations and we see that they compare well for apolar
molecules. % for 5CB has also been obtained by using a first-principles electronic
structure plane wave QC code typically used for solid state applications [Clark et al.,
1997; Clark, 2001], but the coordinate system is however different from the one used
here which in the absence of full coordinate information, as mentioned, makes the
comparison not meaningful.

The electrostatic field generated by a set of charges ek at positions hk with respect
to the particle centre, as sensed by a test charge at a position r can be written as the
gradient of the electrostatic potential:
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4πε0 Ee(r) =
∑
k

ek
r − hk

|r − hk|3 = −∇
∇∇V e(r), (5.78)

where ε0 = 8.854 × 10−12 C2/Nm2. The vector Ee at a ‘distant’ position from the
molecule can be viewed as the superposition of the fields generated by the charge qe,
the dipole μ, the quadrupole �, etc. of the molecule itself

4πε0E
e(r) = −q e[T(1)(r)+ T(2)(r) ·μ− 1

3
T(3)(r): �+ · · · ]. (5.79)

The field generated by a dipole is ED(r) = 1
4πε0r

5 [3(μ · r) r− r2μ]. We recall that the
direction of the field at a certain position is represented by the tangent to the field line
at that point. The intensity of the field is given instead by the number of lines passing
through a unit normal area (i.e. the flux). The field around a quadrupole is [Kielich,
1972]

EQ(r) = 1

4πε0r7 [5(r ·� · r) r − 2r2� · r]. (5.80)

For uniaxial molecules this is EQ(r) = 3Θ

8πε0r5
[(5 cos2 β − 1) r − 2ru cosβ], where

u is again the molecule axis.

5.7.1 Pairwise Electrostatic Interactions

The electrostatic interaction energy between two particles i and j with a certain point charge
distribution (in vacuum) is just

4πε0U
e
ij =

∑
k∈i

∑
m∈j

ek,iem,j

rkm
. (5.81)

Assuming that the two molecules are far apart, the charge-charge separation distance rkm
(Fig. 5.19), i.e. rkm = |rk − rm| = |r ij + hk,i − hm,j |, depends mainly on the separation
between the two molecule centres rij ≡ |rj − r i |, much larger than the distance of the
charges from the respective centres, given by vectors hk,i , hm,j . Expanding in a double
Taylor series of these small displacement vectors we can rewrite the interaction energy in
terms of the multipoles q e, μ, �, of the two molecules and after some algebra we find,
neglecting octupoles and higher terms [Buckingham, 1967b; Kielich, 1972]

4π ε0U
e
ij =

q e
i q

e
j

rij
+ (
q e
i μj − μiq

e
j

) ·T(1)(r ij )

+
(

1

3
q e
i [�j ]+ 1

3
[�i]q

e
j − μiμj

)
:T(2)(r ij )

+
(
−1

3
μi[�j ]+ 1

3
[�i]μj

)
...T(3)(r ij )+ · · · . (5.82)

Note that the two molecules are not necessarily identical, as indeed could be the case of a
solute with a certain set of electric multipoles in a isotropic or liquid crystal solvent. This
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Figure 5.19 Two interacting charge distributions with centre-centre separation r ij larger
than those between the individual charges at positions hk,i , hm,j and the origin of their
particle coordinate frames.

case has been much studied both with computer simulations and experimentally, particularly
using NMR [Burnell and de Lange, 2003; Pizzirusso et al., 2012b]. We now examine briefly
some of the main contributions to the electrostatic pair potential:

(i) Ion-ion. Coulomb interaction between the two total charges q e
i , q e

j

U I I
ij =

q e
i q

e
j

4πε0rij
. (5.83)

(ii) Dipole-ion.

UD I
ij = −qe

j

(
μi · r ij

)
/r3
ij = −qe

jμi cosβi/r
2
ij . (5.84)

Here the force is along the centre-centre direction, with the dipole orienting with its
end of a certain sign approaching the opposite sign of the ion. A classical case showing
the importance of this interaction is the easy dissolution of an ionic salt like NaCl in
water.

(iii) Dipole-dipole. The explicit frame independent form of the dipole-dipole interaction
picked from Eq. 5.82 is

UDD
ij = − 1

4πε0
μi ···T(2)(r ij ) ···μj = −

1

4πε0r
5
ij

[3(μi · r ij )(μj · r ij )− r2
ij (μi ·μj )].

(5.85)

It is worth stressing that the interaction energy, although independent on a overall
rotation of the coordinate frame (it only depends on scalar products), does depend
on the orientation of the intermolecular vector. For instance, the energy of two dipoles
parallel to one another but side by side (intermolecular vector parallel to x, say) or
head to tail (intermolecular vector parallel to z) is clearly different. In this last case,
i.e. in the intermolecular frame, the explicit trigonometric dependence is:

UDD
ij = − μiμj

4πε0 r
3
ij

[2 cosβi cosβj − sinβi sinβj cos(αj − αi)] (5.86)

and is plotted in Fig. 5.20a. Note that dipole-dipole interactions disfavour parallel
(↑↑↑↑↑↑) and favour antiparallel (↑↑↑↓↓↓) side-by-side alignment, while they stabilize paral-
lel (→→→→→→) and destabilize antiparallel (→→→←←←) end-to-end configurations. In units of
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(a) (b)

Figure 5.20 (a) Dipole-dipole UDD∗
ij

and (b) dipole-quadrupole UDQ∗
ij

interaction energy
(dimensionless units) as a function of the angles βi , βj relative to the intermolecular frame
z-axis.

(μiμj )/(4πε0r
3
ij ) UDD→→→→→→ = −2,UDD

↑↑↑↓↓↓ = −1, UDD
↑↑↑↑↑↑ = +1, UDD→→→←←← = +2. Notice also

that if the two dipoles are both at the so-called magic angle of arccos(1/
√

3) ≈ 54.74◦

from r ij , then UDD
↗↗↗↗↗↗ = 0.

(iv) Quadrupole-ion. In an arbitrary frame

U
Q I
ij = 1

4πε0

q e
j

r5
ij

(r ij · [�i] · r ij ) (5.87)

and for axially symmetric molecules UQ I
ij = 1

4πε0

Θiq
e
j

r3
ij

P2(cosβi).

(v) Dipole-quadrupole.

U
DQ
ij = − 1

4πε0r
7
ij

[5(μi · r ij )(r ij · [�j ] · r ij )− 2r2
ij (μi · [�j ] · r ij )]. (5.88)

For axially symmetric molecules

U
DQ
ij = − 3μiΘj

8πε0r
4
ij

[5 cosβi cos2 βj − 2 cosβij cosβj − cosβi]. (5.89)

In Fig. 5.20b we show a plot of the dipole-quadrupole interaction in the intermolecular
frame.

(vi) Quadrupole-quadrupole.

U
QQ
ij = 1

12πε0r
9
ij

{
35(r ij · [�i] · r ij )(r ij · [�j ] · r ij )

− 20r2
ij (r ij · [�i] · [�j ] · r ij )+ 2r4

ij [�i]:[�j ]
}

. (5.90)
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(a) (b)

–4

Figure 5.21 (a) A plot of the quadrupole-quadrupole interaction energy UQQ∗
ij

(dimension-
less units) in the intermolecular frame. Here αi = αj . (b) Crystal structure of benzene,
viewed down the c-axis of the unit cell [Schweizer and Dunitz, 2006].

The trigonometric form of the potential for uniaxial molecules with axial quadrupole
is (cf. Fig. 5.21a)

U
QQ
ij (αij,βi,βj ) = 3

16πε0

ΘiΘj

r5
ij

{
1− 5 cos2 βi − 5 cos2 βj − 15 cos2 βi cos2 βj

+ 2[4 cosβi cosβj − sinβi sinβj cos(αj − αi)]2
}

. (5.91)

Some special cases are UQQ(0,0,90) = −4, UQQ(0,45,45) = −13/4, UQQ(0,0,0) = +8,
UQQ(0,90,90) = +3, UQQ(90,90,90) = +1, UQQ(30,30,30) = +3/16, all in units of
3ΘiΘj/(16πε0r

5
ij ). Thus, the potential between two axial quadrupoles with the same sign

(as, in particular, for two identical molecules) disfavours parallel side-by-side alignment
unless the second molecule slides along the first bringing the positive and negative partial
charges of the two molecules closer. Accordingly, when the two molecules are kept parallel
a staggered configuration with an intermolecular vector tilted with respect to the two molec-
ular axes is favoured. The potential also has a minimum at 90 degrees thus somewhat favour-
ing perpendicular alignment of two molecules and collective herringbone-type molecular
organizations. This is consistent with the crystal structure of CO2, of acetylene as well as of
benzene (see Fig. 5.21b) and flat condensed aromatics like coronene [Bannister et al., 2019]
which form the inner core of discotic mesogens like HBC (see Table 1.6). More relevantly
for liquid crystals, quadrupolar interactions have been invoked (see, e.g., [Goossens, 1987])
as a possible source of the tilt in smectic C phases. The importance of the sign of quadrupo-
lar interactions in apolar molecules is also outlined by the T-shaped structure of binary
complexes of benzene in the gas phase [Steed et al., 1979]. It is interesting that mixtures of
molecules like benzene and hexafluorobenzene that have very similar shape but quadrupoles
of opposite signs give rise to strong attractive interactions for parallel configurations. The
complex resulting from an equimolar mixture of benzene and hexafluorobenzene melts at
23.7◦C and thus is more stable than benzene that melts at 5.5◦C or of hexafluorobenzene
that melts at 3.9◦C [Hird, 2007]. This type of attractive interaction has been invoked to

https://doi.org/10.1017/9781108539630.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.006


5.7 Electrostatic Multipoles 267

Table 5.15. Expansion coefficients yLiLjm for the main types of
electrostatic interactions between two uniaxial molecules (Eq. 5.5b)

Li Lj m 4πε0yLiLjm(rij ) Interaction type

0 0 0 qe
i
qe
j
/rij Ion-ion

1 0 0 μiq
e
j
/
√

3r2
ij

Dipole-ion

1 1 0 2μiμj /3r
3
ij

Dipole-dipole

1 1 1 μiμj /3r
3
ij

Dipole-dipole

2 0 0 Θiq
e
j
/
√

5r3
ij

Quadrupole-ion

2 1 0
√

3Θiμj /
√

5r4
ij

Quadrupole-dipole

2 1 1 Θiμj /
√

5r4
ij

Quadrupole-dipole

2 2 0 6ΘiΘj /5r
5
ij

Quadrupole-quadrupole

2 2 1 4ΘiΘj /5r
5
ij

Quadrupole-quadrupole

2 2 2 ΘiΘj /5r
5
ij

Quadrupole-quadrupole

explain the stability of certain columnar arrangements obtained from a mixture of discotic
mesogens [Bates and Luckhurst, 1998; Hughes et al., 2003]. However, even if the qualitative
argument holds, it should be mentioned that on its basis alone the structures of benzene and
hexafluorobenzene could be expected to be very similar, while they are not [Schweizer and
Dunitz, 2006].

Other families of systems where we might expect quadrupolar interactions to be
important are suspensions of crystalline flakes of clays like kaolinite, with negatively
charged faces and positive edges, which can lead to a house of cards-type of self-aggregate
arrangements.

Notice that these various interactions have different distance dependence as well as angu-

lar dependence. In general, the range of electrostatic interactions is r
−Li−Lj−1
ij if Li , Lj are

the order of the multipoles on the two molecules. This is also shown in Table 5.15, where
we give a summary of the expansion coefficients in the spherical harmonics expansion, Eq.
5.5b.

A limitation of the standard treatment with the charge distribution represented by a series
of central multipoles is the need for a large separation between molecules. This requirement
is clearly not satisfied for anisotropic molecules in contact in a condensed phase. In this
case the distance between partial charges on different molecules can be much closer than
the centre-centre distance rendering the multipolar series non-convergent. A generalization
of the treatment due to Stone and colleagues considers instead distributed multipoles and
polarizabilities [Stone, 1981, 1985; Price and Stone, 1983].

5.7.2 Electrostatic Interactions between Particles in Suspension

The importance of electrostatic interactions is of course very different for simple ther-
motropic materials and amphiphilic, chromonics, or DNA suspensions, or in general with
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ionic systems. This is not surprising since ionic interactions are dominant when they exist.
When modelling mesogenic molecules, e.g. lyotropics or DNA or proteins, in solutions
one possibility is simply to treat both solutes and solvent (typically water) explicitly at full
atomistic level. On the other hand, this increases enormously the size of the calculation
with the inclusion of solvent degrees of freedom that may not be fully relevant, e.g. to
study phase morphologies. One possibility often adopted is that of modelling the solvent
with a continuous medium with a certain dielectric constant ε. However, in evaluating the
importance of interactions between charged nanoparticles suspended in some solvent, it
is important to realize that the effective Coulomb interaction energy between two charges
ei , ej embedded in a medium with dielectric constant ε is [Dill and Bromberg, 2011;
Israelachvili, 2011]

W e es
ij = eiej

4πε0εrij
, (5.92)

which can be very different from that in vacuum (ε = 1).W e es
ij , albeit being very similar to

the standard Coulomb expression, is actually quite different, since it is actually a free energy,
and like other effective potentials obtained a posteriori by taking the log of a Boltzmann
distribution (inverting it), it depends on temperature. From a practical point of view the
presence of the material dielectric constant ε has the effect of reducing (screening) the
attractive and repulsive electrostatic interactions. In particular, for the most common case
of water suspensions, recalling that for water at room temperature ε = 78, the effects can
clearly be big. Moreover, the screening effect can vary with temperature. In these systems
changing the ionic strength, e.g. by adding salts to the solutions, can vary the importance
of electrostatic interactions and even change the phase transition sequences. One way to
account for this is to use expressions for screened Coulombic interactions, similar to Debye–
Hückel theory, e.g. [Ninham and Lo Nostro, 2010]

W ee =
N∑
i<j

eiej

4πε0ε rij
e−rij /λD, (5.93)

where λD is the Debye screening length. This is expected to be valid for the low-salt concen-
trations, like the physiological concentrations that are generally encountered in biological
systems. For water solutions, the dielectric constant, ε, takes the value of water. The Debye
length in a system with M different charged species, with the j th species of charge ej and
concentration cj in a medium with permittivity ε is:

λD = κ−1
D =

(
ε0εkBT∑M
j=1 cj e

2
j

)1/2

. (5.94)

Thus, changes in the salt concentrations can vary λD . For example, a system with[
Na+

] = 50 mM (similar to physiological conditions), gives λD = 13.603 Å [Knotts IV
et al., 2007].
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5.8 Inductive and Dispersive Interactions

The classical treatment we have just described is sufficient to treat the interaction between
the permanent distribution of charges on two molecules. However, another important type
of interaction deals with instantaneous deformations of the charge distribution of a molecule
caused by the charge distribution of another one. This type of interactions has to be treated
using quantum mechanics and indeed it consists of intermolecular electronic correlation
effects. The different orbitals on each molecule have different size and shape and the defor-
mation induced by the other molecule amounts to fluctuations in the electron density around
an atom or molecule, which consists of promotions from the initial ground state to higher
states and back. In practice, we consider the set of interaction terms that we have obtained
(Eq. 5.81) as an operator Û

e
:

Û
e = 1

4πε0

∑
k∈i

∑
m∈j

ek,iem,j

rkm
. (5.95)

and apply QM perturbation theory [Buckingham, 1967b; Gray and Gubbins, 1984; Stone,
1996]

If we assume that molecules i,j have unperturbed Hamiltonians Ĥ i , Ĥ j obeying their

respective Schrodinger equations Ĥ i |ni〉 = E (0)
ni
|ni〉 and Ĥ j |nj 〉 = E (0)

nj
|nj 〉, where we

indicate with |ni〉 an eigenstate of Ĥ i with eigenvalue E (0)
ni

(in practice a vibronic state),
then for two molecules in the ground state at infinite separation

[Ĥ i + Ĥ j ]|0i0j 〉 = [E (0)
0i
+ E

(0)
0j

]|0i0j 〉, (5.96)

with |ninj 〉 = |ni〉|nj 〉. When the molecules get closer, even if still so far away that the over-
lap between their electron clouds is negligible, we can apply standard quantum mechanical
perturbation theory [Landau and Lifshitz, 1958] and get the first-order energy correction to
the ground state as

E (1) = 〈0i0j |Û e|0i0j 〉. (5.97)

This gives back the standard electrostatic interaction energy, corresponding to the expec-
tation value of the perturbation over the ground state |0i0j 〉, that we have considered until
now. The second-order correction is

E (2) = −
∑
ma,nj

′′′ 〈0i0j |Û e|minj 〉〈minj |Û e|0i0j 〉
E (0)
mi
+ E (0)

nj
− E

(0)
0i
− E

(0)
0j

, (5.98)

where the prime in the sum indicates that at least one of the indices has to be greater than 0,
so that the energy denominator is non-vanishing. We see that at this stage different type
of terms, corresponding to excitations of higher states on one or both of the molecules,
and a return to the ground state, caused by the perturbation, can appear. The involvement
of higher states with different wave functions corresponds to the intuitive classical notion
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of the electron distribution of one molecule being deformed and fluctuating as the second
molecule approaches. The first type of terms, e.g.

U ind = −
∑
ma>0

〈0i0j |U e|mi0j 〉〈mi0j |U e|0i0j 〉
E (0)
mi
− E

(0)
0i

, (5.99)

are called inductive and represent the distortion of the charge distribution on molecule i
caused by molecule j (or vice versa). The second type of terms, called dispersive, describe
the interaction between mutually distorted charge distributions, e.g.

Udisp = −
∑
ma>0
nj >0

′′′ 〈0i0j |Û e|minj 〉〈minj |Û e|0i0j 〉
E (0)
mi
+ E (0)

nj
− E

(0)
0i
− E

(0)
0j

, (5.100)

with a similar term for the fluctuations of the electron cloud of the first molecule under
the effect of the second. Different physical contributions can be obtained inserting in
these expressions the previously obtained multipolar expression for the interaction energy,
Eq. 5.82, now treated as a perturbation operator.

5.8.1 Inductive Interactions and Polarizability

The permanent multipoles of a molecule interact with the multipoles they induce in neigh-
bouring molecules by electronic polarization giving a multipole-induced -multipole-type
interaction. Here we shall limit ourselves to induced dipoles μind, that we can formally
write expanding in a Taylor series of the field E and its gradient∇E acting on the molecule,
obtaining its components as [Buckingham, 1967b]

μind
a =

∑
b

αabEb + 1

2

∑
b,c

βabcEbEc + 1

6

∑
b,c,d

γabcdEbEcEd + 1

3

∑
b,c

Aabc∇bEc + · · · ,

(5.101)

where the linear susceptivity second-rank tensor α is the molecular polarizability and the
third rank β and the fourth rank γ are hyperpolarizabilities corresponding to non-linear
higher-rank contributions, that have to be included if the acting field is particularly strong.
For axially symmetric molecules we can write αab = ᾱδa,b+ 1

3�α
(
3uaub − δa,b

)
, where u

is a unit vector along the molecule axis and ᾱ ≡ 1
3 Trα = 1

3

(
α‖ + 2α⊥

)
the scalar polariz-

ability and �α ≡ α‖ − α⊥, its anisotropy. Similarly

βabc = β⊥
(
uaδb,c + ubδc,a + ucδa,b

)+ (
β‖ − 3β⊥

)
uaubuc. (5.102)

The non-linear terms are normally not important for intermolecular interactions and will
be neglected here. The third-rank tensor Aabc is to be taken into account in a non-uniform
field, like that generated by the charge distribution of a neighbouring molecule. A is the
dipole-quadrupole polarizability, describing the dipole induced by a field gradient. For an
axially symmetric C∞v molecule

Aabc = 1

2
A||ua

(
3ubuc − δb,c

)+ A⊥ (ubδa,c + ucδa,b − 2uaubuc
)

. (5.103)
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Notice that only the first non-vanishing moment is independent of the choice of origin.
Thus, for an ion, the dipole and quadrupole moments depend on the origin and an origin
can be chosen as a charge centre so thatμ = 0, while for an uncharged molecule,μ is origin
independent, while the quadrupole is not.

To give the polarizability α a molecular interpretation, we can apply QM perturbation
theory to calculate the change in energy of a molecule in the ground state (n = 0) subjected
to an external electric field E. We start from the perturbation energy H ′ = −E ·μind, where
μind is the molecular dipole in the presence of the field, that we rewrite, using Eq. 5.101 as∑
a

Eaμ
ind
a =

∑
a,b

EaαabEb +
1

2

∑
a,b,c

EaβabcEbEc + 1

6

∑
a,b,c,d

EaγabcdEbEcEd

+ 1

3

∑
a,b,c

EaAabc∇bEc + · · · . (5.104)

From QM perturbation theory we have instead that the equivalent perturbation energy for a
molecule is, to second order,

E = E 1 + E 2 = −
∑
a

〈0|μ̂a|0〉Ea −
∑
k �=0

Ea
〈0|μ̂a|k〉〈k|μ̂b|0〉

E
(0)
k − E

(0)
0

Eb, (5.105)

with a,b = x,y,z. Comparing the two energy expressions Eqs. 5.104 and 5.105, we see
that the polarizability tensor is

α =
∑
k �=0

〈0|μ̂|k〉〈k|μ̂|0〉
E

(0)
k − E

(0)
0

. (5.106)

The polarizability represents the deformability of the molecule electron cloud in the external
field, obtained with virtual transitions from the ground to the excited levels and back. Given
the different shape and extension of the wave functions of the different states, it corresponds
to a quantum mechanical way of representing what would be classical fluctuations in shape.
To see the physical significance of the polarizability it is useful to make the mean energy
approximation [Unsöld, 1927] to replace the denominator:

α ≈ 1

Ē

∑
k �=0

〈0|μ̂|k〉〈k|μ̂|0〉 = 1

Ē
〈0|μ̂⊗ μ̂|0〉 − 1

Ē
〈0|μ̂|0〉 ⊗ 〈0|μ̂|0〉, (5.107)

which shows that the polarizability is related to the mean square fluctuations of the dipole.
Notice that the polarizability exists also for a non-polar molecule. We give in Table 5.16
a small list of molecular polarizabilities for some simple molecules. In Table 5.17 we give
instead the full set of components of α for some mesogens. We notice that the polarizability
is origin independent [Stone, 1996], so we can compare the results with others in literature,
e.g. those of Clark [2001] for 5CB. Going back to inductive interactions, the induced dipole
will depend on the field at molecule i and on the polarizability αi of the molecule. In
particular μind

i = αi ···E(ij ), where E(ij ) is the field produced by molecule j and felt by
molecule i. The induced interaction energy is

U ind
ij = −1

2
[E(ij ) ·μind

i +E(j i) ·μind
j ], (5.108)
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Table 5.16. Principal polarizabilities (Å3) of a few molecules. We
choose the z-axis along the highest symmetry axis and y out of the
molecule plane for planar molecules. For naphthalene and
anthracene z is parallel to the long axis and x in the molecule
plane. Refs. (a) Zannoni [2020]; (b) [Le Fèvre, 1965]; (c) [Le Fèvre
et al., 1967]; (d) [Gray and Gubbins, 1984]; (e) [Le Fèvre and
Murthy, 1969]; (f) [Le Fèvre and Radom, 1967]

Molecule αxx αyy αzz Ref.

Cyclohexane 10.04 10.04 9.05 (a)
Benzene 11.2 11.2 7.3 (b)

10.8 10.8 3.7 (a)
Fluorobenzene 11.1 7.73 11.3 (d)
Naphthalene 16.6 11.3 21.8 (f)
Anthracene 24.6 15.9 35.9 (f)

24.56 11.38 44.06 (a)
Triphenylene 39.0 39.0 15.5 (e)

Table 5.17. QC calculated polarizability tensor components
(in Buckingham) for a few mesogens in the molecular frames of
Table 5.12. Refs. (a) QC DFT [Zannoni, 2020]; (b) QC plane waves
[Clark, 2001]. For p-quinquephenyl, z is along the long axis and x in
the terminal ring plane

Molecule αxx αxy αxz αyy αyz αzz Ref.

PAA 20.12 −6.53 −7.17 25.77 5.41 67.32 (a)
MBBA 28.30 0.02 2.03 25.05 0.06 58.66 (a)
5CB 27.95 −1.53 1.20 21.14 2.39 59.11 (a)

27.64 −2.07 −0.90 26.67 −2.65 66.15 (b)
Quinquephenyl −33.90 13.81 20.08 (a)

where E(ij ) is the field generated on molecule i by molecule j . In particular, we have, using
the expressions for the field already seen, the first few interaction contributions [Kielich,
1972]:

Ion-induced dipole. An ion with charge ei induces a dipole in molecule j . In the following
we write only the first of the two terms in Eq. 5.108. For two charged polarizable molecules
another term with i,j exchanged has of course to be added

U I D′
ij = − e2

i

8πε0r
6
ij

(r ij · [αj ] · r ij ), (5.109)

where we use D′ to indicate an induced dipole. If the polarizable molecule is axially sym-

metric, we have U I D′
ij = − e2

i ᾱj

[
�αj
3ᾱj
P2(cosβj )+ 1

2

]
/(4πε0r

4
ij ).
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Permanent dipole-induced dipole. The permanent dipoles of polar molecules interact
with the dipoles they induce in neighbouring molecules by electronic polarization giving
a dipole-induced dipole interaction:

UDD′
ij = − 1

8πε0r
10
ij

[
9(r ij · [αj ] · r ij )(μi · r ij )2,

− 6r2
ij (r ij · [αj ] ·μi)(μi · r ij )(μi · r ij )+ r4

ij (μi · [αj ] ·μi)
]
. (5.110)

For axial symmetry this reduces to

UDD′
ij = − μ2

i

8πε0ᾱj r
6
ij

[
(α⊥)j (3 cos2 βj + 1)+�αj (3 cosβi cosβj − cosβij )2]. (5.111)

Permanent quadrupole-induced dipole. This term, like the previous one, could be of
interest for studies of solute alignment in LCs:

U
QD′
ij = −1

8πε0r
14
ij

{
25(r ij · [αj ] · r ij )(r ij · [�i] · r ij )2 + 4r4

ij (r ij · [�i] · [αj ] · [�i] · r ij )

− 20r2
ij (r ij · [αj ] · [�i] · r ij )(r ij · [�i] · r ij )

}
(5.112)

and for axially symmetric molecules

U
QD′
ij = − 9Θ2

i

32πε0r
8
ij

{
(α⊥)j (1− 2 cos2 βi + 5 cos4 βi)+�αj (5 cosβj cos2 βi

− 2 cosβij cosβi − cosβj )2
}

. (5.113)

5.8.2 Dispersive Interactions

As we have seen, inductive effects need at least one of the two molecules to have permanent
multipoles. However, even non-polar molecules can have an instantaneous dipole moment
due to charge fluctuations and this instantaneous dipole will polarize another molecule and
induce a new instantaneous dipole moment. The attractive interaction energy between the
two induced dipoles is called a London, van der Waals or dispersive interaction [Bucking-
ham, 1967b]. The dispersive interaction between two molecules i and j can be obtained,
in the static polarizability approximation, by inserting the electrostatic energy operator in
Eq. 5.100. For two uncharged molecules this operator is

4π ε0Û
e
ij = −μ̂iμ̂j :T(2)(r ij )+

(
−1

3
μ̂i�̂j + 1

3
�̂iμ̂j

)
...T(3) (r ij )+ · · ·, (5.114a)

= Ûμμij + Û
μ%

ij , (5.114b)

where Û
μ%

ij ≡ Û
μ%

ij + Û%μij . In particular, retaining only the first and most important
term, i.e. the dipole-dipole interaction, Eq. 5.85 in the second-order perturbation expression
Eq. 5.100, we have
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UD′D′
ij = −

∑
mi>0
nj >0

′′′ 〈0i0j |Ûμμij |minj 〉〈minj |Û
μμ

ij |0i0j 〉
E (0)
mi
+ E (0)

nj
− E

(0)
0i
− E

(0)
0j

, (5.115a)

= − 1

(4πε0)2

∑
mi>0
nj >0

′′′ 〈0i0j |μ̂i ·T(2)
ij · μ̂j |minj 〉〈minj |μ̂i ·T(2)

ij · μ̂j |0i0j 〉
E (0)
mi
+ E (0)

nj
− E

(0)
0i
− E

(0)
0j

,

= − 1

(4πε0)2

∑
mi>0
nj >0

′′′ 〈0i |μ̂i |mi〉〈mi |μ̂i |0i〉 ·T(2)
ij :::〈0j |μ̂j |nj 〉〈nj |μ̂j |0j 〉 ·T(2)

j i

E (0)
mi
+ E (0)

nj
− E

(0)
0i
− E

(0)
0j

,

(5.115b)

where T(2)
ij = ∇∇∇∇∇∇(1/rij ) is the dipolar tensor (see Eq. C.10). Approximating the denomi-

nator as a product of denominators [Unsöld, 1927],

1

E (0)
mi
+ E (0)

nj
− E

(0)
0i
− E

(0)
0j

≈ W ij

1

E (0)
mi
− E

(0)
0i

1

E (0)
nj
− E

(0)
0j

, (5.116)

where Wij is a proportionality constant, an expression involving the polarizabilities of the
two molecules can be obtained:

UD′D′
ij = − W ij

(4πε0)2 [αi] · [T(2)
ij ] ::::::::: [αj ] ·T(2)

ij ]. (5.117)

Rewriting this scalar tensorial contraction in a spherical tensor form (cf.Section B.4) gives
an expression particularly convenient for theoretical manipulations [Luckhurst et al., 1975].
Using Eq. B.30 we find

UD′D′
ij = − Wij

(4πε0)2

∑
L,m

[αi ·T(2)
ij ]L,m[αj ·T(2)

ij ]L,m
∗
, (5.118)

which can be rewritten decoupling the products of dipolar tensor and individual polarizabil-
ities in terms of spherical components of the individual polarizability, αL,mi , αL,mj and of

the dipolar tensor T Li,qij , e.g.

[αi ·T(2)
ij ]L,m = (−1)L+1

∑
Li,Lj,q

√
(2Li + 1)(2Lj + 1) W (Lj,1,Li,1;1,L)

× C(Lj,Li,L;m− q,q) T Li,q ∗ij α
Lj,m−q
j , (5.119)

where C(a,b,c;d,e) are Clebsch–Gordan (Eq. F.18b) and W (a,b,c,d;e,f ) are Racah
coefficients (Eq. F.23). The previous expression is a scalar, thus frame independent. If we
specialize in the intermolecular frame (Fig. 5.2), the dispersive interaction between two
particles at a distance rij can be written as [Luckhurst et al., 1975]

UD′D′
ij = − W ij

(4πε0)2

∑
Li,Lj,m

wD′D′
LiLjm

(rij )αLi,m ∗i α
Lj,m

j , (5.120)
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with the potential coefficients

wD′D′
LiLjm

(rij ) = 30

r6
ij

√
(2Li + 1)(2Lj + 1)

∑
L

W (Lj,1,2,1;1,L)

×W (2,1,Li,1;1,L)C(Lj,2,L;m,0)C(2,Li,L;0,m). (5.121)

Transforming the polarizabilities to their principal molecular frame, the potential becomes

UD′D′
ij =

∑[ −W ij

(4πε0)2w
D′D′
LiLjm

(rij )αLi,ni ∗i αj
Lj,nj

]
DLi
m,ni

(�irij ) D
Lj ∗
m,nj (�jrij ), (5.122)

with Lp = 0,2, np = 0, ± 2, p = i,j . This is now in the form of Eq. 5.4, and

uD′D′
LiLjm;ninj =

[ −W ij

(4πε0)2
wD′D′
LiLjm

(rij )αLi,ni ∗i α
Lj,nj
j

]
. (5.123)

The rather fierce-looking equations above become rather simple for some important special
cases. For two cylindrically symmetric molecules with polarizability, α2,n

i = α2,0
i δn,0 or in

Cartesian coordinates: α‖ and α⊥ components, the interaction becomes

UD′D′
ij =

∑[ −W ijw
D′D′
LiLjm

(
rij
)

4πε2
0

√
2Li + 1

√
2Lj + 1

α
Li,0 ∗
i αj

Lj,0
]
Y ∗Li,m(�irij )YLj,−m(�jrij ),

(5.124a)

=
∑

Li,Lj,m

yD′D′
LiLjm

(rij )YLi,m(�irij )YLj,−m(�jrij ), (5.124b)

where ᾱ = (α‖ + 2α⊥)/3, �α = (α‖ − α⊥) = √3/2α2,0. The explicit form is

UD′D′
ij = − 3Wij

4(4πε0)2r6
ij

{
2ᾱi ᾱj − ᾱj�αi

3
− ᾱi�αj

3
+�αiαj,⊥ cos2 βi

+�αjαi,⊥ cos2 βj + �αi�αj
3

(3 cosβi cosβj − cosβij )2
}

. (5.125)

and for two identical molecules:

UD′D′
ij = − Wij

4(4πε0)2r6
ij

{
6ᾱ2 + ᾱ�α[3 cos2 βi + 3 cos2 βj − 2]

+ (�α)2(3 cosβi cosβj − cosβij )2
}

. (5.126)

The coefficients are:

yD′D′
000 (rij ) = − 3W ij

4πε2
0r

6
ij

ᾱ2, (5.127a)

yD′D′
200 (rij ) = yD′D′

020 (rij ) = �α√
5ᾱ
yD′D′

000 (rij ), (5.127b)

yD′D′
220 (rij ) = 3yD′D′

222 (rij ) = (�α)2

3ᾱ2 yD′D′
000 (rij ). (5.127c)
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For atoms or spherical particles �α = 0, and Eq. 5.125 reduces essentialy to the classical
London–van der Waals formula with the well-known r−6

ij dependence on distance:

UD′D′
ij = − 3Wij

2(4πε0)2r6
ij

ᾱi ᾱj . (5.128)

The importance of the attractive dispersive interaction increases as α increases and when
this happens, we expect the stability of a condensed phase to increase. Since at the boiling
point the phase changes from a condensed to a gas phase where molecules are far apart,
we may take the boiling point temperature TB as a rough indicator of the importance of
dispersive forces in a set of particles otherwise as similar as possible. As we have seen
before (Eq. 5.115a) α is linked to the mean square fluctuations of the induced dipole. If
we recall that any dipole is the product of a charge on the negative and positive pole times
their distance d, i.e. μ = ed, it is easy to see that the polarizability is related to the space
available for charge delocalization and to the number of electrons. For example, in the
series of noble gas atoms, since α increases over 25 times from He to Rd, the boiling points
TB of the noble gases increase: helium −269◦C, neon −246◦C, argon−186◦C, krypton
−152◦C, xenon −108◦C, radon −62◦C. More generally, and even more approximately, if
we consider molecules with the same chemical composition (brute formula) and different
shape, we expect polarizability to be larger for the larger one. For instance, the linear
n-pentane has TB = 36.1◦C while the more spherical neopentane has TB = 9.5◦C.

Notice that dispersive interactions are always attractive and tend to bring two anisotropic
molecules parallel to each other. Indeed, these interactions have been originally invoked
[Maier and Saupe, 1958] as a possible source of the collective long-range alignment in
nematics. However, these cannot be sufficient to explain the phenomenon [Kaplan and
Drauglis, 1971] and other mechanisms, such as steric repulsions, should be considered,
even if dispersion forces should certainly play an important role in molecular alignment.
The scalar part also plays a role in ordering, in association with anisotropic repulsive forces,
because of the incomplete space averaging following from the steric repulsion [Gelbart and
Gelbart, 1977].

5.8.3 Interaction between Colloidal Particles

In closing this short section on dispersive interactions, it is worth pointing out that what we
have discussed concerns only atomic or molecular scale interactions. When dealing with
the interactions between colloidal particles with dimension one to two orders of magni-
tude larger than simple molecular systems, the colloidal particle can be considered as an
assembly of interaction centres and the total interaction is obtained summing (integrating)
over all the volume occupied by the two colloidal particles. In this way the centre-centre
distance dependence will inevitably change with the shape of the particles [Israelachvili,
2011]. For instance, if we imagine each colloidal particle to be formed by a set of small
molecular size volume elements (elementary voxels) with an r−6

ij distance dependence and
if ρ1(ri), ρ2(rj ) is the density of these centres belonging to the two particles P1 and P2:
i ∈ P1 and j ∈ P2, made of materials M1, M2 respectively, then the effective interaction

https://doi.org/10.1017/9781108539630.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.006


5.8 Inductive and Dispersive Interactions 277

energy between two rigid particles of arbitrary shape with centre-centre distance vector R12

and orientation �1,�2 will be, assuming additivity,

WD′D′
M1M2

(R12,�1,�2) = −
∫
V1

dVi

∫
V2

dVj
w12ρ1(ri)ρ2(rj )

r6
ij

= AM1M2

∫
d�1

∫
d�2S (R12,�1,�2), (5.129)

where the Hamaker constant,2

AM1M2 = π2w12ρ1ρ2, (5.130)

contains all the material dependent properties and we have assumed that particles 1, 2 have
a uniform composition and density. Here wij = w12,∀i ∈ P1,∀j ∈ P2 depends on the
polarizabilities:w12 ∝ α1α2 of the voxels of particles P1 and P2 and a number of correction
factors, for non-additivity, etc. The Hamaker constants can be determined empirically and
extensive tabulations for various materials exist [Visser, 1972]. Their order of magnitude is
typically of the order of 10−19 J [Israelachvili, 2011].

The original derivation of Hamaker was for spherical particles [Hamaker, 1937]. How-
ever, for colloidal particles giving LC suspensions (Section 1.14), anisometry is essential.
The factor S ≡ S (R12,�1,�2):

S (R12,�1,�2) =
∫
V1(�1)

dVi

∫
V2(�2)

dVj
1

π2r6
ij

(5.131)

is the result of the integration over the volume of the two particles and will necessarily
depend on the shape of the two particles and their distance and orientation. For simple
geometries the integration can be performed analytically and is reported (e.g. in [Mahanty
and Ninham, 1976; Israelachvili, 2011]). A few important cases are shown in Table 5.18.
A very interesting example is that of Everaers and Ejtehadi [2003] for two possibly different
hard biaxial ellipsoids with semiaxes σ (i)

e and where the term γ12η12 in Table 5.18 is

η12χ12 = 2

σ

{(
1

R1
− 1

R′1

)(
1

R2
− 1

R′2

)
sin2 θ +

(
1

R1
+ 1

R2

)(
1

R′1
+ 1

R′2

)}− 1
2

,

(5.132)

while M1, M2 are the rotation matrices specifying the orientation of the two ellipsoids
(see Section 5.6.1). Order of magnitude calculations show that for colloidal particles the
total attractive energy is of the same order of magnitude as thermal energies when their
mean size (≈V1/3, where V is the volume) is of the order of magnitude of the particle
separation, regardless of whether the particles are spherical, rod-like, or plate-shaped. At
smaller separations the order of attractive energies is plates > rectangular rods > cylin-
ders > spheres [Vold, 1957]. At separations such that W ≈ 10kBT the attraction between
spheres varies nearly as R−1, but for rods and cylinders it varies approximately as R−2 and
for platelets as R−3. Likewise, we have that, at small separations, a parallel orientation is

2 The factor π2 is conventionally included.
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Table 5.18. Geometrical factor S = S (Ri,�A,�B ) for (a) two spheres of radius a1 and
a2 [Hamaker, 1937]; (b) two facing blocks [Russel et al., 1989]; (c) two parallel and (d)
two crossed cylinders [Mahanty and Ninham, 1976]; (e) two hard biaxial ellipsoids
[Everaers and Ejtehadi, 2003]. These should be multiplied by the Hamaker constant H12

to get the attraction energy

Disposition Expression Ref.

− 1

6

(
2a1a2

R2
12 − (a1 + a2)

2
+ 2a1a2

R2
12 − (a1 − a2)

2
+ ln

R2
12 − (a1 + a2)

2

R2
12 − (a1 − a2)

2

)

−
(

16

9

)
a3

1a
3
2

R6
12

, for R12 � a1 + a2

(a)

− l2

12π

(
1

h122
+ 1

(h12 + d1 + d2)
2
− 1

(h12 + d1)
2
− 1

(h12 + d2)
2

)
(b)

− 1

24

l

a

(
a

R12 − 2a

)3/2 (
1− R12 − 2a

a
+ 1√

2π
ln
R12 − 2a

a
+ · · ·

)
,

for a � R12 − 2a

− 3π

8

la4

R5
12

(
1+ 25

4

a2

R2
12

+ 31.9
a4

R4
12

+ 150.7
a6

R6
12

+ · · ·
)
,

for l � R12 � a

− a
4l2

R6
12

(
1− l2

2R2
12

+ · · ·
)
, for l � R12

(c)

− 1

6

a

R12 − 2a

(
1− 3

2

R12 − 2a

a
+ · · ·

)
, for a � R12 − 2a

− π
2

(
a

R12

)4
(

1+ 5a2

R2
12

+ 21.87
a4

R4
12

+ · · ·
)
, for a � R12

(d)

U
RE−squared
A (M1,M2,R12) =−

1

36

(
1+ 3η12χ12

σc

h12

)
×

2∏
i=1

∏
e=x,y,z

(
σ

(i)
e

σ
(i)
e + h12/2

) (e)

greatly favoured over a perpendicular one for rods while, for rectangular rods, orientation
with the largest faces opposite each other is preferred. These differences diminish as the
particle separation increases but remain important so long as the van der Waals’ attraction
itself is of the order of kBT or larger.

When considering the interaction between the two particles, we have implicitly assumed
until now that they are in vacuum. However, in normal applications, like the suspensions
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Table 5.19. A small selection of Hamaker constants
[Parsegian, 2006]

AMM(zJ) A(zJ)
Material (M) in water in vacuum

Water − 55.1
Polystyrene 13 79
Hydrocarbon (tetradecane) 3.8 47
Polymethyl methacrylate 1.47 58.4
Diamond (IIa) 138 296
Mica (monoclinic) 13.4 98.6
Mica (muscovite) 2.9 69.6
Quartz (silicon dioxide) 1.6 66
Aluminium oxide 27.5 145
Rutile (titanium dioxide) 60 181

of viruses or nanoparticles giving rise to LCs we have a liquid and we have to consider the
effect of an intervening medium. The theory of the effect is clearly outside the scope of this
book and well treated elsewhere [Parsegian, 2006; Israelachvili, 2011].

At an approximate level we can account for the intervening medium with a modified
Hamaker constant AM1M3M2 for two particles acting across the medium, replacing AM1M2 .
On the basis of a theory due to Lifshitz, AM1M3M2 is always positive for two identical
particles, hence their interaction always attractive. Approximate values of AM1M2M1 can
be obtained as

AM1M2M1 ≈ AM2M1M2 ≈
(
A

1/2
M1M1

− A1/2
M2M2

)2
, (5.133)

where AM1M1 and AM2M2 are the Hamaker constants of the individual media, respectively.
In the case of surfaces with adsorbed layers, for instance particles coated with a polymer or
with a stabilizing layer, Eq. 5.133 can be written in terms of the Hamaker constants of the
individual media: core particle, layer and solvent medium (see Table 5.19). Other approx-
imate relations are AM1M3M2 ≈ ±(AM1M3M1 AM2M3M2

)1/2 or alternatively AM1M3M2 ≈(√
AM1M1 −

√
AM3M3

)(√
AM2M2 −

√
AM3M3

)
. Note that for two dissimilar materials the

sign can be negative, hence the apparent paradoxical result of vdW interaction leading to
repulsion even if originated from always attractive dispersions forces. Israelachvili [2011]
also reports a more theoretically sound approximate relation for the non-retarded Hamaker
constant for two macroscopic phases 1 and 2 interacting across a medium 3:

AM1M3M2 ≈
3

4
kBT

(
ε1 − ε3

ε1 + ε3

)(
ε2 − ε3

ε2 + ε3

)
+ 3hνe

8
√

2

(
n2

1 − n2
3

) (
n2

2 − n2
3

)(
n2

1 + n2
3

)1/2 (
n2

2 + n2
3

)1/2 [ (
n2

1 + n2
3

)1/2 + (
n2

2 + n2
3

)1/2 ],
(5.134)
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where νe is the main electronic absorption frequency in the UV and n is refractive index of
the media in the visible (where n2 = εvis(ν)). We shall not discuss this any further, except
for noting that matching of refractive indices can reduce or cancel the vdW effects.

5.9 Distributed Effective Charges

The various permanent or induced and dispersive potential terms described in the last few
sections are important, when added to a generic pair potential like the purely repulsive
or repulsive-attractive models introduced in this chapter to test the variety of phases that
these simple molecular features can generate. We shall see some examples of this approach,
particularly for dipoles and quadrupoles, in Chapter 11. The multipolar expansion, although
elegant, has, however, the major disadvantage of not being convergent at short distances.
Indeed, the single-centre multipolar expansion is not justified for densely packed anisomet-
ric molecules. It is easy to see that this is the case for long rods or large discs, where the
distance between some point charges on two adjacent molecules can be easily shorter than
the respective charge-centre distance on each molecule. This problem is particularly severe
in the simulations of LC phases, where the details of the charge distribution can generate a
variety of molecular organizations, e.g. different smectic phases with bilayer, interdigitated
or striped molecular arrangements [Berardi et al., 1996a]. Some of these structures and of
the even more complex phases based on polyphilic mesogens [Tschierske, 2001] would
probably be impossible to obtain without considering a realistic distribution of the charges.

A reasonable alternative between the fully atomistic and the central multipole approaches,
comes from suitably placing a reduced set of effective charges that produces an electrostatic
field equivalent to the one coming from the full charge atomic distribution [Berardi et al.,
2004d]. Since a generic model does not have the atoms by definition, it is necessary to
identify how many charges to decorate the models with, where to locate them and what
charges to assign in order to reasonable reproduce the subtleties of a specific charge
distribution. To illustrate the method, we can consider, as an example, the case of two
discotic molecules, hexa-thio triphenylene (HT-T) and the very similar hexa-thio-aza-
triphenylene (HT-AT) [Orlandi et al., 2007] represented in Fig. 5.22. The hexa-alkyl
substituted moieties show LC phases [Maeda et al., 2001; Kumar, 2004, 2006] while
the corresponding HT-ATs, even if similar in shape, diameter, volume and absence of
permanent dipole, do not form mesophases [Roussel et al., 2003], if not modified by
the inclusion of hydrogen bonding side groups [Gearba et al., 2003; Palma et al., 2006].
In order to understand the cause of the different behaviour, we can focus on the central
core, shown in Fig. 5.22, modelled with a GB uniaxial oblate ellipsoid with parameters
[Orlandi et al., 2007]: μ = 1, ν = 0, diameter σe = 19.25 Å, face-to-face thickness
σf = 3.75 Å, interaction energies εe = 9 kcal/mol and εf = 60 kcal/mol. In order to
endow the simple GB model with a charge distribution appropriate to the molecule of
interest, the first step is to start from an atomistic level model and obtain the atomic charges
by one of the available methods outlined in Section 5.4.3. For our example case of HT-T and
HT-AT these were calculated at their equilibrium geometry by a direct fit of the molecular
electrostatic potential (ESP) [Besler et al., 1990]. These partial charges could be used to
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Figure 5.22 Chemical structure of HT-T (a) and HT-AT (e) with SR an n-alkylthio chain
together with their atomistic space-filling model grayscaled according to their atomistic (b),
(f) and effective (c), (g) charge distributions (negative charges in black, positive grey), On the
right oblate GB models for HT-T and HT-AT decorated with their effective charges (d),(h)

[Orlandi et al., 2007]. For octyl-HT-T (K
55◦C←→ Dd

h
87◦C←→ I) [Gramsbergen E. and B., 1986b].

For octyl-HT-AT (K1
49◦C←→ K2

93◦C←→ I) [Roussel et al., 2003].

directly decorate the GB discs previously parametrized. However, exploring the whole
phase diagram with such a large number of charges is not very practical because of the
computationally overwhelming number of electrostatic interacting pairs to be evaluated. We
can then try to get a sufficiently good approximation to the ESP using a smaller number ne of
effective charges, determining their optimal positions and values by fitting their electrostatic
potential to the atomistic one. The global minimization can be performed in different ways,
but one convenient way is to employ a genetic algorithm (GA) [Goldberg, 1989] as in
[Berardi et al., 2004d] to explore the space of charge positions, g(i) = (r (i)

1 , . . . ,r
(i)
ne ).

The actual charge values can instead be determined with a least square fit to the QC
reference ESP, U e, calculated atM grid points pj outside the molecular surface and stored
as a M-dimensional vector uuue. For each individual attempt g(i), the corresponding ne
dimensional vector of effective charges, e(i), is computed as the least square solution to the
overdetermined linear equation system [D(i)] e(i) = vvve, which has on the left a (M+1)×ne
matrix D(i) = D(i)

(
g(i)

)
containing in the firstM rows the electrostatic potential generated

by the trial charges and a last row with equal elements w (e.g. w = M/50) added to
constrain the total trial charge equal within an error threshold to the real one q e. Thus,

[D(i)]e(i) =

⎡⎢⎢⎢⎢⎣
1

|r (i)
1 −p1|

· · · 1
|r (i)
nQ
−p1|

· · · · · · · · ·
1

|r (i)
1 −pM |

· · · 1
|r (i)
nQ
−pM |

w · · · w

⎤⎥⎥⎥⎥⎦
⎛⎝ ei1
· · ·
eine

⎞⎠ = vvv =

⎛⎜⎜⎝
U e

1
· · ·
U e
M

wq e

⎞⎟⎟⎠ (5.135)
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and, formally e(i) = (
[D(i)]T [D(i)]

)−1
[D(i)]T vvv. Other rows with additional constraints

(e.g. reproduction of the molecular dipole) can also be added. For the specific cases we
are discussing a sufficient number of charges turns out to be ne = 12 for HT-T and 22
for HT-AT instead of the original 36 and 30 atomic charges (see Fig. 5.22 (d) and (h)).
Fig. 5.22 shows that a major difference of the two charge distributions is the presence of
an effective central charge in the case of HT-AT, while the core region is essentially neutral
for HT-T, thus making columnar stacking easier. The Coulombic potential obtained from
the full and the reduced sets of charges, for fairly packed, liquid like configurations of two
molecules is similar even at short distances and for configurations that can be expected
to be particularly important, like face-to-face for the discotic HT-T [Orlandi et al., 2007].
The good agreement of the pair potential at close approach and for a variety of approach
directions is important for the simulation of condensed phases, where molecules are likely
to be in close contact. The electrostatic energy for a model HT-T system of N=1000 GB
decorated with 12 charges, deviates from that of the full set of 36 charges for less than 5%
both in the isotropic and in the columnar phases. The method has proved to be a useful
tool in modelling complex mesogens, e.g. for the coarse-grain simulation of the phases of
banana molecules [Francescangeli et al., 2009] or of triphenylenes [Lamarra et al., 2012]
and even for complex organic molecules used in organic electronics [Ricci et al., 2019].
While the potential described are of quite general use, they have not included two wide
classes of LCs described in Chapter 1: chiral phases and lyotropics, and we shall now
briefly deal with these.

5.10 Chiral Interactions

The introduction of a chiral term in the pair potential is essential to describe the various
chiral phases, in particular cholesterics. Chiral discriminating terms are normally quite small
in absolute terms, but they are not averaged out by molecular reorientations as is the case,
e.g. for permanent dipole-dipole interactions, and they can have a large effect on phase
organization. An example is the change from nematic to a long-pitch cholesteric for the
simple substitution of a hydrogen with a deuterium which makes a certain organic mesogen
chiral [Coates and Gray, 1973]. Chiral terms can arise from:

Hard particle chiral models. These should be particularly important to model suspensions
of chiral viruses and other biological systems [Barry et al., 2006]. The simplest model is
probably obtained by arranging a set of hard spheres on a helix [Frezza et al., 2013] and we
shall see some examples of the phases obtained in Chapter 11. Another possibility is that
of having twisted hard particles, e.g. hard chiral polyhedra [Belli et al., 2014; Dussi et al.,
2015].

Gay–Berne with a twist. The GB potential provides an effective model for non-chiral
mesogens with attractive as well as soft repulsive interactions, so it seems worth modifying
it by adding a chiral contribution in an attempt to simulate chiral phases. Cholesterics,
in particular, are just chiral nematics with essentially the same local structure of normal
nematics, but with a twisting director. In building an empirical model potential, we recall
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that the pair potential has to be rotationally invariant and comply with head-to-tail molecular
symmetry, thus looking at the table of chiral invariant in Appendix G it is reasonable to add
to the GB potential a term that has an angular form like the pseudoscalar in Eq. G.64 ,
i.e. S2,2,1(ui,uj,r̂ ij ) = −√3/10[ui ·uj × r̂ ij ](ui ·uj ), where ui , uj , r̂ ij are unit vectors
along the two molecular axes and the centre-centre vector, respectively. However, a distance
dependence has still to be (arbitrarily) chosen, e.g. by analogy with pseudoscalar interac-
tions of dispersive nature. Going back to the second-order dispersion energy expression, Eq.
5.100, and retaining the first two terms in the electrostatic energy operator in Eq. 5.114a, i.e.
U
μμ
ij +Uμ%ij , perturbation theory will now give a sum of three types of terms. The distance

dependence comes from the multipolar tensors T(n) and the first term, proportional to the
square of the matrix elements of Uμμij , will contain T(2)T(2) and have, as we have already

seen, a r−6
ij distance dependence. The second, mixed, term U

μμ
ij U

μ%
ij , will contain T(2)T(3)

and then go as r−7
ij and the last term U

μ%
ij U

μ%
ij containing T(3)T(3) will depend on r−8

ij .

Thus, the mixed chiral pseudoscalar term depends on r−7
ij [Goossens, 1971; Vandermeer

and Vertogen, 1979]. Consistently with this, Memmer et al. [1993] assumed the empirical
twist term as

U
χ
ij = Uχ (r ij,ui,uj )

= 4ε
(
ui,uj,r̂ ij

) ( σ0

rij − σ
(
ui,uj,r̂ ij

)+ σ0

)7 [(
ui × uj

) · r̂ ij ] (ui ·uj ) , (5.136)

where all quantities are the same as in the standard GB potential in Eq. 5.57. This chiral
potential has been used to study bulk systems [Memmer et al., 1993, 1996; Memmer, 1998]
and the induction of chirality in a nematic from a chiral surface in a non-chiral nematic film
[Berardi et al., 1998c]. It is worth mentioning that chiral attractive-repulsive models can
also be built combining two or more non-chiral GB particles so as to form a chiral object.
An example is that of chiral discotics formed by two different biaxial GB particles, used to
study chiral nematic [Memmer et al., 1996] or columnar [Berardi et al., 2003a] phases.

5.11 Hydrogen Bonds

The ‘hydrogen bond’ or just ‘H-bond’ [Pimentel and McClellan, 1960; Gilli and Gilli, 2009]
is more difficult to define precisely than other chemical bonds. Citing from the classical
definition [Pauling, 1960]: ‘. . . under certain conditions an atom of hydrogen is attracted
by rather strong forces to two atoms, instead of only one, so that it may be considered to
be acting as a bond between them …’. This implies that there are three atoms forming the
hydrogen bond: the hydrogen donor D, the acceptor A and the hydrogen atom between these
two atoms. According to Pauling [1960], ‘the hydrogen bond is largely ionic in character,
and is formed only between the most electronegative atoms.’ A more modern and general
definition from IUPAC [Arunan et al., 2011] is that ‘The hydrogen bond is an attractive
interaction between a hydrogen atom from a molecule or a molecular fragment X − H in
which X is more electronegative than H, and an atom or a group of atoms in the same or a
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different molecule, in which there is evidence of bond formation’. More practically, hydro-
gen bonds are specific, short-range, and directional partially bonded interactions. They
occur between hydrogen atoms, bound covalently to an electronegative atom (usually F,
N, or O), and thus acquiring a partial positive charge, and an additional electronegative
atom that can be the same as X or different. Distances of 2.5−3.2 Å between hydrogen-
bond donor X and Y and X−H . . .Y angles of 130−180◦ are typically found, but the
strength is higher when the three atoms involved are aligned with the hydrogen donor
pointing directly at the acceptor electron pair. As a result of its at least partial electrostatic
nature, the strength of a hydrogen bond depends also on its microscopic environment and
on the local dielectric constant ε of the surrounding medium. The free energy for hydrogen
bonding can vary between that of a physical van der Waals interaction ≈1−5 kJ/mol to
one approaching a chemical covalent bond ≈ − 150 kJ/mol [Perrin and Nielson, 1997],
but usually is in the range of ≈−20 kJ/mol. Although their strength is weaker than ionic
or covalent bonds, they provide in general the dominant contribution to specific molecular
recognitions in biological systems. Most important is their help in forming and maintaining
the double helical structure of DNA, through the hydrogen bonding between the base pairs
linking one complementary strand to the other and enabling replication. Hydrogen bonds are
also essential to maintaining the structural integrity of α-helix and β-sheet conformations
of peptides and proteins and in folding them into the specific shape appropriate to their
biochemical functions [Wermuth et al., 2015]. Turning to LCs proper, a key molecular
ingredient for the formation of mesophases is the presence of a sufficiently pronounced
anisotropy of shape or of some other suitable interaction. Even if this rules out very many
candidate molecules, some of these would-be mesogens endowed with appropriate chemical
structure could attach one to the other and dimerize through terminal hydrogen bonds,
yielding newly formed dimers that are sufficiently elongated or ‘squashed’ to be able to
form a liquid crystal phase. The existence of such pre-mesogenic species that can generate
nematic, smectic or columnar liquid crystalline phases via H-bond-induced self-assembly
is widely reported in the literature [Gray, 1962; Kato, 1998]. In particular, a classic case is
that of carboxylic acids like benzoic acids that can dimerize maintaining the rod-like shape
while increasing the length of the resulting aggregate (see Fig. 5.23). In a model proposed by
Berardi et al. [1993] having the benzoic acids in mind, an anisotropic H-bond pair potential
is added to the usual GB interaction (Section 5.6.3), representing the molecule as an ellipsoid
with axes σ‖ and σ⊥. The interaction of a donor-acceptor (DA) site in molecule i with an
acceptor-donor site in molecule j leading to the formation of a double H-bond is

UXX′
ij = UDA

ij + UDA
j i , (5.137)

where

UDA
ij = 15ε0 εDA

(
r̂DA,ûD,ûA

) {(σDA

rDA

)12

−
(
σDA

rDA

)10
}

(5.138)

with

εDA
(
r̂DA,ûD,ûA

) = ε+DA

ε0

{(
1+ ûD · r̂DA

2

)(
1− ûA · r̂DA

2

)}ξ
, (5.139)
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Figure 5.23 (a) Dimerization of two benzoic acids (R is a substituent, e.g. H or OCnH2n+1)
shown with chemical structures, (b) Gay–Berne models decorated with H-bond donor (D)
and acceptor (A) sites (b) and (c) space filling atomistic models with R = H. (d) Schematic
of interaction of donor and acceptor with orientation ûA, ûD and site-site separation rDA ≡
rD − rA = rDA r̂DA [Berardi et al., 1993].

where ε+DA is the well depth for the DA interaction, while the exponent ξ gives an angular
sensitivity which determines the amplitude of the DA well. The configuration that maxi-
mizes the interaction is that with sites D and A aligned parallel and antiparallel to the inter-
site vector (see Fig. 5.23d). We assume the donor and acceptor sites to be placed at a certain
fixed distance rDA between them. For the benzoic acids we take D and A to be so close that
rDA = 0 and that they are positioned in near terminal position along the monomer axis at a
distance d from the centre. This potential has been used to simulate nematics [Berardi et al.,
1999] showing that in a system of short (σ‖/σ⊥ = 2) dimerizing rods, the nematic-isotropic
transition temperature is increased by as much as 25% by the preliminary formation of a
significant fraction of elongated dimers in the isotropic phase.

5.11.1 Water Pair Potential

Water is of course one of the foremost cases of a system where the H-bond is important
[Gallo et al., 2016]. A water potential is essential for simulation of most biological systems
and of lyotropic LCs at atomistic resolution and water has been investigated with computer
simulations for a few decades, since the pioneering works of Barker and Watts [1969] and
Rahman and Stillinger [1971], while it still remains an extremely active area of research
[Gallo et al., 2016]. Some general facts for water are:

(i) Every water molecule shares on average three to four hydrogen bonds with neighbour-
ing water molecules.

(ii) The strength of a H-bond in the liquid phase is ≈ 12kJ/mol weaker than a covalent
bond but stronger than dispersion forces
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Table 5.20. Parameters for common water pair potentials (see text and Fig. 5.24).
References: (a) [Jorgensen et al., 1983], (b) [Berendsen et al., 1987],
(c) [Abascal and Vega, 2005]

Model SPC TIP3P SPC/E TIP4P/2005 TIP4P

Ref. (a) (a) (b) (c) (a)

rOH, Å 1.0 0.9572 1.0 0.9572 0.9572
θHOH, deg 109.47 104.52 109.47 104.52 104.52
AOO × 10−3, kcal Å12/mol 629.4 582.0 629.4 731.3 600.0
COO, kcal Å6/mol 625.5 595.0 625.5 736.0 610.0
eO −0.82 −0.834 −0.8476 −1.1128 0.0
eH 0.41 0.417 0.4238 0.5564 0.52
eM 0.0 0.0 −0.98 −1.07 −1.04
rOM, Å 0.0 0.0 0.15 0.15 0.15

Figure 5.24 The water TIP4P model potential (see text). M is the location of the negative
charge, that in the SPC and TIP3P models resides on the oxygen.

(ii) The hydrogen bond network is a space-filling random network with a high local tetra-
hedral structure, but a large number of defects to the fifth neighbour, that is interacting
weakly, favouring the mobility of water molecules.

The most popular simple rigid geometry models for water: the simple point charge (SPC)
[Berendsen et al., 1981, 1987] and the ‘transferable intermolecular potential with 3 points’
(TIP3P) consists of a non-polarizable set of one LJ and three charges: two positive ones, eH

on the hydrogens and a negative one, eO = −2eH, on the oxygen [Jorgensen and Jenson,
1998] in which the total interaction energy is:

Uww
ij = AOO

(rOO)
12
− COO

(rOO)
6
+ 1

4πε0

3∑
a=1
a∈i

3∑
b=1
b∈j

eaebe
2

rab
, (5.140)

where the parameters AOO, COO are determined by fitting to bulk properties (TIP3P) or to
MD data (SPC). The extended SPC (SPC/E) model adds an average polarization correction
to the potential energy function of around 1.25 kcal/mol (5.22 kJ/mol). The SPC/E model
results in a better density and diffusion constant than the SPC model.

https://doi.org/10.1017/9781108539630.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.006


5.11 Hydrogen Bonds 287

In the TIP4P model, apart from changes in the parameters, the site of negative charge
is moved away from the oxygen to a point M located 0.15 Å along the bisector of the
HOH angle (see Fig. 5.24). The modified version TIP4P/2005 [Abascal and Vega, 2005] is
parametrized to provide a qualitatively correct description of the phase diagram of water and
a good description of the vapour-liquid equilibria, surface tension, global phase diagram, ice
properties, maximum in its density, structure, equation of state at high pressures, diffusion
coefficient and viscosity. The parametrization of these 3- and 4-points models is given in
Table 5.20.
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6

Dynamics and Dynamical Properties

Flowing crystals! Is that not a contradiction in terms?
O. Lehmann, Über fliessende krystalle, 1889

6.1 Introduction

We have examined up to now time-independent, static, structural properties. Here we wish
instead to discuss time, or equivalently frequency dependent observable properties, like
the dielectric constant or the viscosity of an isotropic or anisotropic fluid. To do this we
consider the dynamic evolution of a molecular system, starting with a formal classical
mechanics approach [Berne and Pecora, 2000]. We then introduce the concept of correlation
functions, key to the interpretation of many spectroscopic properties and describe their
general properties. For liquid crystals, the distinctive feature is, as we have seen, the bias
in the distribution of molecular orientations due to the existence of a preferred orientation
(director) and of non-vanishing order parameters. This affects many properties dependent on
molecular orientation, introducing macroscopically observable anisotropies, as discussed at
least for some typical experimental techniques and single molecule properties in Chapter 3.
Here we shall similarly introduce the description of single-molecule time-dependent prop-
erties, first in general terms and then with application to some experimental techniques.

6.2 Dynamic Evolution of Molecular Properties

To start with, we consider a system of N particles at equilibrium in a volume V at temper-
ature T (canonical conditions). The equilibrium distribution of the system in phase space,

�0(X̃,
.
X̃), was introduced in the Chapter 4 (see Eq. 4.1) and we employ the notation for

variables introduced there (adding for clarity a subscript 0 here for the equilibrium distri-
bution). In particular, for a classical system described by a Hamiltonian H ≡H (̃r,p̃) the
equations of motion for coordinates1 r i and momenta pi are

∂H

∂pi
= .

r i,
∂H

∂r i
= − .

pi . (6.1)

1 Note that more generally X can consist of positions but also of orientational variables.
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The time derivative of a property A at the state point X̃XX(t), will be

.
A(t) ≡ dA(t)

dt
= ∂A

∂t
+
∑
i

(
∂A

∂pi

.
pi +

∂A

∂r i

.
r i

)
= ∂A

∂t
+H×A, (6.2)

where the differential evolution operator H× 2, with dimensions t−1, is defined [Landau
and Lifshitz, 1993] as

H× ≡ −
∑
i

(
∂H

∂r i

∂

∂pi
− ∂H
∂pi

∂

∂r i

)
=
∑
i

(
f i ·

∂

∂pi
+ 1

mi
pi ·

∂

∂r i

)
, (6.3)

where f i is the force acting on particle i. The evolution operator is conveniently written
also as H× = {f,H } using the classical Poisson brackets definition, that for any two
dynamical variables f , g is:

{f,g} =
N∑
i=1

[
∂f

∂r i

∂g

∂pi
− ∂f

∂pi

∂g

∂r i

]
. (6.4)

Thus, we can also write dA
dt = {A,H } + ∂A

∂t
. This also has the advantage that, by replac-

ing the Poisson brackets with its corresponding term in quantum mechanics, the commuta-
tor: [f̂ ,ĝ] = f̂ ĝ − ĝf̂ ] we can write an evolution equation for an operator Â as

dÂ

dt
= − i

�
[Â,Ĥ ]+ ∂Â

∂t
= − i

�
Ĥ
×
A+ ∂Â

∂t
, (6.5)

where Ĥ
×

is called the evolution superoperator. We shall use it only much later, when
discussing the evolution of spin levels in magnetic resonance (Section 10.8.2), so by now
we just stick to our classical mechanics treatment. If the property does not directly depend
on time, ∂A/∂t = 0, and the evolution of A(t) will be given by the Heisenberg evolution
equation [Friedman, 1985]

A(t) = etH
×
A(0). (6.6)

Note that this evolution is purely mechanical (temperature does not appear). In particular,
the time evolution of the equilibrium probability distribution � (X̃XX ) will be

d�

dt
= ∂�

∂t
+H×�. (6.7)

However, since the total density must be conserved in time,
.
�(X̃XX ) = 0, and evolution takes

place through the Liouville equation

∂�

∂t
= −H×�. (6.8)

In the absence of external interventions, the Hamiltonian, that we can call the unperturbed
Hamiltonian, H 0, does not modify the equilibrium distribution �0

H×
0 �0 =H×

0
1

Z 0
e−H 0/kBT = − 1

kBTZ 0
e−H 0/kBTH×

0 H 0 = 0, (6.9)

2 The Liouville operator L ≡ −iH× is also often used to write dynamic evolution equations.
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with Z 0 the canonical phase integral, Eq. 4.2. In other words, �0 is an eigenfunction of
the operator H×

0 corresponding to a 0 eigenvalue. At the same time, for such a stationary
system in the absence of external time-dependent fields, H×

0 〈A〉 = 0, i.e. an average
equilibrium observable is constant in time and, in turn, it does not provide information on
the microscopic dynamics. A more useful way to study time-dependent effects is to consider
the correlation between the value of the property A at an arbitrary initial time t0 and at a
successive time t0 + t , as given by the equilibrium autocorrelation function CAA(t)

CAA(t) = 〈
A(t0)A∗(t0 + t)

〉
. (6.10)

More generally, we can consider the cross-correlation between two properties A and B,
CAB (t), that can be written as

CAB (t) = 〈
A(t0)B∗(t0 + t)

〉 = 〈
A(0)B∗(t)

〉 = 〈
A(0) etH

×
0 B∗(0)

〉
, (6.11a)

=
∫

dX̃XXA(X̃XX) etH
×
0 B∗(X̃XX) �0(X̃XX). (6.11b)

A time correlation function is thus an average of the product of a property A, at a certain
time t0 with the complex conjugate of a property B (possibly the same as A) taken at time
t0 + t . If our system is at equilibrium, its properties will be independent on the initial time
for observations, i.e. there should be no dependence on t0 and the system is stationary. The
evolution operator is a combination of derivatives and thus it follows the standard rules
of derivatives. For instance, H×(AB) = (H×A)B + A(H×B). In particular, since the
average 〈AB〉 is constant in time, H×

0 〈AB〉 = 0, and given two properties A,B we have
the antisymmetric relation,〈

AH×
0 B

〉 = ∫
dX̃XX �0AH 0

×B = −
∫
dX̃XX �0H

×
0 AB = −

〈
(H×

0 A)B
〉
, (6.12)

and, more generally, 〈
A etH

×
0 B

〉 = 〈 (
e−tH

×
0 A

)
B
〉
. (6.13)

In practice, the dependence of properties on microscopic motion is most often observed
determining their dependence on the frequency of a certain measuring field. Instead of
correlation functions, experimental results are in this case related to their Fourier–Laplace
transforms, the so-called spectral densities at a certain frequency ω :

jAB (ω) =
∫ ∞

0
dt eiωtCAB (t) =

〈
A(0)

1

H× − iωB
∗(0)

〉
. (6.14)

6.3 Single Particle Dynamics

In most experimental techniques for studying condensed phases dynamics the focus is on
following the positions and orientations of the molecules in time (or correspondingly look-
ing at the frequency dependence of dynamic observables). The single particle dynamics in
liquids or liquid crystals cannot be described by the one particle distribution P (X) that we
have discussed in Chapter 3 just introducing time as an extra variable. Indeed, if we are at
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equilibrium and we have a stationary system, P (X) is a purely static quantity that can be
calculated just from configurational Boltzmann averages, ignoring the dynamics altogether.
A more suitable quantity describing dynamics is instead the joint distributionP (X1t1;X2t2)
giving the probability that a molecule has position-orientation X1 at time t1 and X2 at time t2
(see Appendix K). We shall not consider, for the time being, linear and angular velocities
of the particles although these will be discussed later in this chapter.

At equilibrium the origin of time is not relevant and the joint distribution can only depend
on the time difference, t = t2 − t1. Thus, we simply consider the joint distribution as
P (X0;X,t). This is a real, non-negative quantity normalized as∫

dX0dXP (X0;X,t) = 1. (6.15)

It is clear that the probability of finding the molecule at X0 at time 0 and at X at time t will
become for a very long time t , a product of two independent quantities: the probability of
finding the molecule at X0 and that of finding the molecule at X. Thus,

lim
t→∞P (X0;X,t) = P (X0)P (X), (6.16)

where P (X0), P (X) are the single-particle distributions studied in previous chapters.
At time 0, the molecule has not yet moved and the angles X0, X will be the same:
P (X0;X,0) = P (X0)δ(X−X0). It is also clear that the probability of finding the molecule
at X will be the sum over all the possible X0 of the joint distribution, i.e∫

dX0P (X0;X,t) = P (X), (6.17)

and of course
∫

dXP (X0;X,t) = P (X0). In principle, it should be possible to compute
P (X0;X,t) as a multidimensional histogram. In practice, this is not quite feasible, as it is
easy to see from a quick consideration of the amount of storage required.

6.4 Orientational Correlation Functions

In general, the properties of interest can involve positions, orientations, linear and angular
velocities, etc. [Berne, 1971]. Here, however, we shall mainly concentrate on properties
that depend on orientations, since these are possibly the most characteristic ones of LC
systems and, as we shall see, they are the ones needed to interpret a number of experimental
observables. The correlation function between two single-particle properties A(�), B(�),
varying with the molecular orientation � ≡ (α,β,γ ), can be written as

CAB (t) = 〈
A(0)B(t)∗

〉 = ∫
d�0A(�0)

∫
d�P (�0;�,t)B(�)∗, (6.18)

where P (�0;�,t) is the joint probability distribution for orientations. In writing Eq. 6.18
we have already used the fact that at equilibrium any experiment should not depend on
the time origin. The properties A, B are generally tensors and the relation to the Wigner
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matrices correlation functions is made more transparent when we consider their spherical
components (see Appendix B). Thus (see Eq. B.18),〈

A
L,m
LAB (0)BL

′,m′∗
LAB (t)

〉 =∑
n,n′

φLL
′∗

mn;m′n′(t)A
L,n
MOLB

L′,n′∗
MOL , (6.19)

where we have introduced the Wigner rotation matrix orientational correlation functions

φLL
′

mn;m′n′ (t) =
〈
DL
m,n(�0)DL′∗

m′,n′ (�t )
〉
. (6.20)

A most important case is that of autocorrelation functions, where A = B. Typical observ-
ables behave under rotation as tensor properties of first and second rank L, with spherical
components AL,m (cf. Appendix B). We have in mind Infrared Absorption [Gordon, 1968;
Dozov et al., 1984] and Dielectric Relaxation [Nordio et al., 1973; Williams, 1994], where
rank 1 properties are studied and Raman [Gordon, 1968; Jen et al., 1973; Southern and
Gleeson, 2007; Sanchez-Castillo et al., 2010] and NMR [Emsley, 1985; Dong, 1997] or
Electron Spin Resonance (ESR) [Nordio, 1976; Freed et al., 1994] where second-rank prop-
erties are typically studied. Another useful technique is Fluorescence Depolarization (FD)
[Zannoni, 1979d; Zannoni et al., 1983], where the cross-correlation between the second-
rank absorption and emission tensors of a chromophore molecule are investigated. In all
these experiments and in all the others that probe properties of well-defined tensorial rank,
the information in the correlation functions of the corresponding rank is sufficient to inter-
pret or predict the outcome of the experiment. Since, as we have mentioned, first- and
second-rank properties are particularly prominent, it follows that first- and second-rank
correlation functions provide a great deal of the information we are likely to need, even
though they represent only a very little part of the information contained in P (�0;�t).

6.5 Orientational Joint Distributions

In Chapter 3 we saw the advantages of expanding the single-particle distribution in an
orthogonal basis set. A similar expansion can be performed for times t �= 0 in a product
basis set of Wigner rotation functions at time 0 and time t . Considering only rigid particles
and orientational variables the joint distribution can be written as

P (�0;�,t) =
∑

PLL
′

mn,m′n′ (t) DL∗
m,n(�0) DL′

m′,n′ (�), (6.21)

where the expansion coefficients can be identified at once, using the orthogonality of the
basis set and the normalization condition Eq. 6.15, as the averages

PLL
′

mn,m′n′ (t) =
(2L+ 1)(2L′ + 1)

64π4

〈
DL
m,n(�0)DL′∗

m′,n′(�)
〉
. (6.22)

Thus, the expansion coefficients are essentially the Wigner rotation matrix reorientational
correlation functions φLL

′
mn;m′n′ (t). As we see, the orientational correlation functions play

for dynamics the same role that order parameters play for the statics. They represent a
systematic way of approaching the information contained in the full distribution. Moreover,
orientational correlation functions corresponding to certain ranks L,L′ represent all the
information we need to calculate correlation functions and thus indirectly experimental
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observables corresponding to those ranks and it is thus very important to extract them from
computer simulations generating time dependent configurations (Chapter 9). The number
of correlation functions up to a given rank is, however, very high, just judging from all the
possible combinations of subscripts m,n,m′,n′ we can make. So, even if all the correlation
functions can be calculated it is essential to use all the general arguments we can produce
to identify the independent ones. We list the main ones here.

Reality. The reality of P (�0;�,t) and the general complex conjugation property of the
Wigner rotation matrices (Eq. F.6) give

φLL
′∗

mn;m′n′(t) = (−1)m−n+m
′−n′φLL

′
−m−n;−m′−n′ (t). (6.23)

Thus, correlation functions of the type φLL
′∗

00;00(t) should be real whatever the symmetry of
the molecule and of the mesophase.

Time reversal symmetry. Under the operation of time reversal, the coordinates and the
angular momentum are invariant, while the linear momentum changes sign: t → −t;
r → r; p → −p; J → J . The Wigner matrices DL

mn are invariant being only a function
of coordinates, while their correlation functions follow the usual [Berne and Pecora, 2000]
symmetry rule for a system following classical mechanics, i.e. that the real part of the
correlation functions is invariant under time reversal: ReφLL

′
mn;m′n′ (t) = ReφLL

′
mn;m′n′(−t),

while the imaginary part changes sign: ImφLL
′

mn;m′n′(t) = −ImφLL
′

mn;m′n′ (−t).

6.5.1 Mesophase Symmetry

The symmetry operations of the mesophase and of the molecule will limit the number of
independent correlation functions, as we can demonstrate, using standard Group Theory
methods,
(cf. Appendix G) in various essentially equivalent ways [Blum and Torruella, 1972; Lax,
1974; Versmold, 1977; Zannoni, 1979c; Briels, 1980; Lynden-Bell, 1980; Steele, 1980,
1983; Pick and Yvinec, 1983]. We shall only give a few examples here.

Isotropic phases. The requirement of invariance for an arbitrary rotation of the labora-
tory frame implies that only relative orientation correlation functions should be present.
Thus only correlation functions:

〈
DL
n,n′ (�t0)

〉 =∑L
q=−L φLLqn;qn′(t) can be different from 0.

Notice in particular that in isotropic fluids we have no coupling between properties of
different rank.

Uniaxial mesophases. In a uniaxial phase an arbitrary rotation about the director, taken as
the z laboratory axis, should leave the system unchanged. Thus,

φLL
′

mn;m′n′ (t) =
〈
DL
m,n(�0)DL′∗

m′,n′ (�t )
〉
δm,m′ ≡ φLL′mn;n′(t) δm,m′, (6.24)

where we have removed an unnecessary subscript. Notice that in LCs the number of inde-
pendent correlation functions is much higher than in an isotropic fluid. Moreover, certain
couplings between properties of different rank can be admissible, as we shall briefly see in
Section 6.8.
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6.5.2 Particle Symmetry

Here we consider transformations of the molecule system that leave the joint distribu-
tion unchanged. Strictly, one should consider the point symmetry of the molecule. How-
ever, this could be quite misleading, since most molecules of interest in spectroscopy of
LC phases would have essentially no symmetry, while nematogen molecules can be quite
successfully treated as effectively uniaxial or biaxial. This means that their reorientation
can often be considered as that of an effective molecule of higher symmetry. This, how-
ever, leaves the possibility of lower symmetry observables being studied. For example,
nematogen molecules are normally treated as uniaxial D∞h molecules and yet they are
often dipolar. The rationale behind this seemingly contradictory situation is that both the
orientational and reorientational behaviour are dominated by interactions that are normally
different from those actually used to probe the system and thus observed. For instance, most
nematogens possess dipoles and yet the nematic phases that they form are not ferroelectric.
Thus, a dipole can be carried around by a molecule without influencing its orientational
properties in a determinant and perhaps even in a significant way. If a molecule with no
symmetry interacts with its neighbours only through an effective second-rank tensor, then its
molecular dynamics trajectories will look as those of molecules of true ellipsoidal shape. In
the limiting case that the reorientation of a molecule is diffusional (see Section 6.14.1), then
its lowest effective symmetry can be that of its diffusion tensor, i.e. biaxial. Another example
of the need to carefully consider what symmetry we should invoke for a molecule is that
of submolecular properties. A quadrupolar interaction of a C-D bond, say, can be observed
by DNMR [Vold, 1985; Dong, 1997], as seen in Section 3.10.6, but is not determining
the reorientation of the molecule it belongs to in any significant way. Thus, it would be
wrong to eliminate it on the basis that it is not compatible with uniaxial symmetry. The non-
realization of the difference between the effective symmetry group and the point group of
the molecule including its observables has led to some erroneous or misleading statements
in the literature. The discussion of symmetry selection rules is also often confused in the
literature. For instance, it is claimed [Fisz, 1987] that correlation functions φ12

11;11(t) ought
to be 0 by symmetry in uniaxial systems. We shall see in Section 6.8 that this is not the
case. Here we do not intend to tackle the topic of a systematic symmetry classification
of orientational correlation functions. Rather we shall just list as examples the symmetry
restrictions that result for the practically important cases of uniaxial and biaxial particles
reorienting in a uniaxial mesophase.

Uniaxial particles. If the particles are uniaxial, an arbitrary rotation around the molecular
frame should leave everything unchanged. Thus, eliminating an unnecessary subscript on
the right-hand side, φLL

′
mn;n′(t) = φLL

′
mn (t) δn,n′ .

Biaxial particles. The following selection rules hold forD2h symmetry [Dozov et al., 1987]:

φLL
′

mn;n′(t) = (−1)L+L
′
φLL

′
m−n;−n′(t) = (−1)L+L

′−n−n′φLL
′

−mn;n′(t) = (−1)n+n
′
φLL

′
mn;n′(t).

(6.25)
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Table 6.1. Initial (t = 0) values for the reorientational correlation functions of
first rank φ11

mn;n′(0) = 〈D1
m,nD

1∗
m,n′〉 for biaxial molecules reorienting in

uniaxial phases (left column). In the right column the φ11
mn(0) = φ11

mn;n′(0)
symmetry allowed for uniaxial molecules (n = n′)

Biaxial molecule Initial value Uniaxial molecule

φ11
10;0(0) = φ11

01;1(0) = φ11
0−1;−1(0) − 1

3 〈P2〉 + 1
3 φ11

10(0) = φ11
01(0) = φ11

0−1(0)

φ11
01;−1(0) = φ11

0−1;1(0) −
√

2
3 Re〈D2

0,2〉 −
φ11

00;0(0) 2
3 〈P2〉 + 1

3 φ11
00(0)

φ11
11;1(0) = φ11

1−1;−1(0) 1
6 〈P2〉 + 1

3 φ11
11(0) = φ11

1−1(0)

φ11
11;−1(0) = φ11

1−1;1(0) 1√
6

Re〈D2
0,2〉 −

6.6 Correlations at Short and Long Times

Although the time dependence of correlation functions is of course unknown a priori and
indeed an important target for studies of the dynamics of molecules, some general state-
ments on their limiting values at short and long times and about their range of variations
can be made. Here we briefly review some important properties.

Initial values. The initial values of the reorientational autocorrelation functions will just
be averages of products of Wigner rotation functions. More specifically, for auto- or cross-
correlations,

φLL
′

mn;n′(0) = 〈
DL
m,nD

L′∗
m,n′

〉 = (−1)n−n
′
φL

′L
−m−n′;−n(0) = φLL′−m−n;−n′ (0),

= (−1)m−n
′

L+L′∑
J=|L−L′|

C(L,L′,J ;m, −m)C(L,L′,J ;n, − n′)〈DJ
0,n−n′

〉
, (6.26a)

where C(A,B,C;d,e) are the Clebsch–Gordan coefficients discussed in Appendix F and
tabulated elsewhere [Pasini and Zannoni, 1984b]. In the next few tables we give explicit
results for first (Table 6.1), mixed (Table 6.2) and second (Table 6.3) rank correlation func-
tions for biaxial or uniaxial particles reorienting in a uniaxial phase. We see that these
initial values can contain information on order parameters of rank higher than L,L′. The
expressions for probes with uniaxial symmetry can be obtained from Eqs. 6.26a by letting
the various biaxial order parameters, e.g. 〈D2

0,2〉, 〈D4
0,2〉, 〈D4

0,4〉 go to 0.

φLL
′

mn (0) = 〈
DL
m,nD

L′∗
m,n,

〉
δn,n′ = φL′L−m−n(0) = φLL′−m−n(0), (6.27a)

= (−1)m−n
L+L′∑

J=|L−L′|
C(L,L′,J ;m, −m)C(L,L′,J ;n, − n)〈PJ〉. (6.27b)
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Table 6.2. Same as Table 6.1 but for mixed first and second
rank φ12

mn;n′(0) = 〈D1
m,nD

2∗
m,n′〉.

Biaxial molecule Initial value Uniaxial molecule

φ12
1−1;−1(0) = −φ12

11;1(0) − 1
2 〈P2〉 φ12

1−1(0) = −φ12
11(0)

φ12
1−1;1(0) = −φ12

11;−1(0) − 1√
6

Re〈D2
0,2〉 0

φ12
10;−2(0) = −φ12

10;2(0) 1√
3

Re〈D2
0,2〉 0

φ12
10;0(0) 0 0

Correlation functions bounds. In general, the initial value CAB (0) = 〈AB∗〉. This has to
be greater or equal to 0 if B = A, i.e. for autocorrelations. Applying the Schwarz inequality
(see Eq. 3.89) yields 0 ≤ ∣∣〈A(0)B(t)∗〉∣∣ ≤ √〈AA∗〉〈BB∗〉. Moreover, 〈[A(0)±B(t)][A(0)±
B(t)]∗〉 = 〈AA∗〉 + 〈BB∗〉 ± 2Re〈A(0)B∗(t)〉, and thus the further bound

∣∣ReCAB (t)
∣∣ ≤

1
2

[〈AA∗〉 + 〈BB∗〉] is obtained. For Wigner rotation matrices time correlation functions∣∣ReφLL
′

mn;m′n′(t)
∣∣ ≤ 1

2

[
φLLmn;mn(0)+ φL′L′

m′n′;m′n′(0)
]
. As a special case, if we have A = B, we

see that the autocorrelation cannot take values greater than the initial one:∣∣ReCAA(t)
∣∣ ≤ 〈AA∗〉, (6.28)

and in particular
∣∣ReφLLmn (t)

∣∣ ≤ φLLmn (0). Note that even the autocorrelation functions can
be negative, at least this is not forbidden by the present inequalities, as long as Eq. 6.28 is
satisfied.

Asymptotic long-time values. In view of Eq. 6.16 we have

φLL
′

mn;m′n′ (∞) = 〈DL
m,n〉〈DL′∗

m′,n′〉, (6.29)

so that the long-time limit is a product of order parameters. For a uniaxial phase we have
δm,m′ and thus

φLL
′

mn;n′(∞) ≡ φLL′mn;mn′(∞) = 〈DL
0,n〉〈DL′∗

0,n′ 〉 δm,0. (6.30)

For a uniaxial molecule, which requires δn,n′ as well, we can write

φLL
′

mn (∞) ≡ φLL′mn;mn(∞) = 〈PL〉〈PL′〉δm,0δn,0 , (6.31)

where we have eliminated unnecessary subscripts. For example, the first-rank correlation
function φ11

00;0(t) will tend to 0, while the second-rank one φ22
00;0(t) will tend to the square

of the order parameter, 〈P2〉2.

Correlation functions and exponential model. It is often convenient to define normalized
autocorrelation functions

CAA(t) ≡ CAA(t)− CAA(0)

CAA(0)− CAA(∞)
, (6.32)
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Table 6.3. Same as Table 6.1 but for second-rank correlation functions
φ22
mn;n′(0) = 〈D2

m,nD
2∗
m,n′〉

Biaxial molecules Time 0 value Uniaxial molecules

φ22
0−2;0(0) = φ22

02;0(0)

= φ22
00;−2(0) = φ22

00;2(0) 3
70

√
60Re〈D4

0,2〉 − 2
7 Re〈D2

0,2〉 –

φ22
0−2;2(0) = φ22

02;−2(0) 3
35

√
70Re〈D4

0,4〉 –

φ22
01;1(0) = φ22

0−1;−1(0) φ22
01 (0) = φ22

0−1; (0)

= φ22
10;0(0) − 12

35 〈P4〉 + 1
7 〈P2〉 + 1

5 = φ22
10(0)

φ22
0−1;1(0) = φ22

01;−1(0) − 6
35

√
10Re〈D4

0,2〉 − 1
7

√
6Re〈D2

0,2〉 –

φ22
00;0(0) 18

35 〈P4〉 + 2
7 〈P2〉 + 1

5 φ22
00 (0)

φ22
0−2;−2(0) = φ22

02;2(0) φ22
0−2(0) = φ22

02(0)

= φ22
20;0(0) 3

35 〈P4〉 − 2
7 〈P2〉 + 1

5 = φ22
20(0)

φ22
1−2;−2(0) = φ22

12;2(0) φ22
1−2(0) = φ22

12(0)

= φ22
2−1;−1(0) = φ22

21;1(0) − 2
35 〈P4〉 − 1

7 〈P2〉 + 1
5 = φ22

2−1(0) = φ22
21(0)

φ22
1−2;2(0) = φ22

12;−2(0) − 2
35

√
70Re〈D4

0,4〉 –

φ22
11;1(0) = φ22

1−1;−1(0) 8
35 〈P4〉 + 1

14 〈P2〉 + 1
5 φ22

11 (0) = φ22
1−1(0)

φ22
11;−1(0) = φ22

1−1;1(0) 4
35

√
10Re〈D4

0,2〉 − 1
14

√
6Re〈D2

0,2〉 –

φ22
10;2(0) = φ22

12;0(0) = φ22
10;−2(0) = φ22

1;−2,0(0) − 1
35

√
60Re〈D4

0,2〉 − 1
7 Re〈D2

0,2〉 –

φ22
2−2;−2(0) = φ22

22;2(0) 1
70 〈P4〉 + 2

7 〈P2〉 + 1
5 φ22

2−2(0) = φ22
22(0)

φ22
2−2;0(0) = φ22

22;0(0) = φ22
20;2(0) = φ22

20;−2(0) 1
140

√
60Re〈D4

0,2〉 + 2
7 Re〈D2

0,2〉 –

φ22
2−2;2(0) = φ22

22;−2(0) − 1
70

√
70Re〈D4

04〉 –

φ22
2−1;1(0) = φ22

21;−1(0) − 1
35

√
10Re〈D4

0,2〉 + 1
7

√
6Re〈D2

0,2〉 –

φ22
22;−1(0) − 1

12 〈P2〉 + 1
12 –

that vary between 1 and 0, in view of the bound Eq. 6.28. It is convenient to define also a
characteristic relaxation time

τA ≡
∫ ∞

0
dt CAA(t). (6.33)

For each orientational correlation function, we would have a characteristic time for decaying
to equilibrium

τLmn =
∫ ∞

0
dt
φLLmn (t)− φLLmn (∞)

φLLmn (0)− φLLmn (∞)
= JLmn(0), (6.34)
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where JLmn(ω) is the spectral density associated with the correlation function, i.e. its
Fourier–Laplace transform at frequency ω. Similar characteristic times τLmn,L′m′n′ can be
associated to cross-correlations. Note that often (e.g. [Nordio and Segre, 1979; Arcioni
et al., 1988]) the normalization factor in the denominator is not included and one uses char-
acteristic times which are just areas under φLLmn (t) − φLLmn (∞). A very simple interpolating
time dependence for the correlation functionCAA(t) that has the correct time dependence at
time 0 and at time infinity is one that assumes that the normalized autocorrelation function
decays exponentially. For orientational autocorrelation functions this assumption gives the
simple form

φLLmn (t) =
[
φLLmn (0)− φLLmn (∞)

]
e−t/τLmn + φLLmn (∞), (6.35)

where τLmn is the characteristic decay or relaxation time for that particular correlation func-
tion. With the further assumption that orientational autocorrelation functions of all ranks L
relax with the same characteristic time, this becomes equivalent to the so-called Strong
Collision model [Nordio and Segre, 1979]. The name comes from the fact that a dynamic
consisting of short collisions, so strong as to cause the molecule to forget completely its
starting orientation, would have such a type of decay. In anisotropic systems the weaker
assumption that τLmn reduces to τn, i.e. that each irreducible component in an equation like
Eq. 6.35 relaxes with its characteristic time, has often been made [Luckhurst and Sanson,
1972].

Short-time expansion. The time dependence of the orientation correlation functions is of
course unknown and we have no general way of predicting even the functional form of this
time behaviour, even if often one or more exponential decays are assumed. If we perform
molecular dynamics simulations, correlation functions can be calculated from the time
trajectories. In this case, our problem may be an overabundance of data, since the number
of orientational correlation functions, even though somewhat limited by symmetry, is still
huge. Thus, it might be tempting to fit a set of correlation functions to some semiempirical
time dependence (e.g. continued fraction or sum of exponentials or Gaussians). In this
case, it is essential to restrict the fit so that as many general constraints as possible are
implemented. We have already seen some of these, e.g. the initial and the asymptotic values
of φLL

′
mn;m′n′ (t). Indeed, all the initial values and asymptotic values can be written in terms

of a limited number of orientational order parameters appropriate to the system. Other such
constraints can be obtained from a short-time Taylor expansion of φLL

′
mn;n′(t):

ϕLL
′

mn;n′(t) ≡ ReφLL
′

mn;n′(t) =
∑
p

[
d2p

dt2p
ϕLL

′
mn;n′(t)

]
t=0

t2p

(2p)!
, (6.36a)

= ϕLL′mn;n′ (0)− 1

2!
..
ϕLL

′
mn;n′ (0)t2 + 1

4!

....
ϕLL

′
mn;n′(0)t4 + · · · . (6.36b)

Note that odd time derivatives do not contribute, since here we are considering only the
real part of the orientational correlation functions. The first few coefficients of the short-
time expansion in isotropic fluids have been obtained for linear molecules [Gordon, 1968]
and for symmetric tops [St. Pierre and Steele, 1981]. Coefficients up to the fourth for a
symmetric top in a uniaxial environment have been obtained by Pasini and Zannoni [1984a].
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This work has been extended to biaxial molecules reorienting in a uniaxial LC [Pasini et al.,
1991] using Eq. 6.36b, and

d2p

dt2p
ϕLL

′
mn (t) = Re

〈
dp

dtp
DL
m,n(�t )

dp

dtp
DL′
m,n(�t )

∗
〉
, (6.37)

that is proved using the stationarity relation. To evaluate the derivative
.
DL
mn(αβγ ) = −i(m .

α + n .
γ ) DL

mn(αβγ )+ e−i(mα+nγ ) .
d
L

mn(β), (6.38)

we need the time derivatives of the Euler angles in terms of angular velocities. To do this, we
recall that the angular velocity

.
� is the time derivative of the rotation vector � [Landau and

Lifshitz, 1993] directed along the rotation axis. Following the convention of Rose [1957]
for the Euler angles (see Fig. 3.1b) we have � = αZ + βy′ + γ z, where αZ is a positive,
right-handed, rotation about the laboratory Z-axis, βy′ a rotation of β about the new y′-axis
and, finally, γ z a rotation of γ about the body fixed z. We can rewrite � in terms of rotations
�X,�Y,�Z , about the three laboratory axes. Using capitals for clarity, X,Y,Z to refer to
laboratory axes and lower case, x,y,z to refer to the molecular frame, it is not difficult to
prove that

� = �XX +�YY +�ZZ. (6.39)

We can now derive expressions for the angular velocity
.
� [Landau and Lifshitz, 1993]

starting with the rotation vector, δ� = δαZ+δβy′ +δγ z, where x′ = −X sinα+Y cosα,
y′ = X cosα + Y sinα and z = Z cosβ + x′ sinβ = Z cosβ + (X cosβ + Y sinα) sinβ.
Collecting terms, we have

δ� = (−δβ sinα + δγ cosα sinβ) X + (δβ cosβ + δγ sinα sinβ) Y + (δα + δγ cosβ)Z

= δ�XX + δ�YY + δ�ZZ.
(6.40)

The angular velocity components referred to the lab frame are therefore
.
�X = − sinα

.
β + sinβ cosα

.
γ, (6.41a)

.
�Y = cosα

.
β + sinβ sinα

.
γ, (6.41b)

.
�Z = cosβ

.
γ + .

α. (6.41c)

In a similar way we find the molecule fixed angular velocity components:
.
�x = − sinβ cos γ

.
α + sin γ

.
β, (6.42a)

.
�y = sinβ sin γ

.
α + cos γ

.
β, (6.42b)

.
�z = cosβ

.
α + .

γ . (6.42c)

From these, the time derivatives of α,β,γ can be written as
.
α = [− .

�x cos γ + .
�y sin γ ]/ sinβ, (6.43a)

.
β = .

�x sin γ + .
�y cos γ, (6.43b)

.
γ = [

.
�x cos γ cosβ − .

�y sin γ cosβ + .
�z sinβ]/ sinβ. (6.43c)
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Second derivatives can be formally written recalling the angular equivalent of Newton’s
law, i.e. Euler equation [Landau and Lifshitz, 1993],

I
..
�+ .

�× (I · .
�) = N, (6.44)

where I is the inertia tensor (see Eq. 4.24) and N the torque, i.e. the moment of the force
acting on the molecule. We assume to have a set of molecules with uniaxial inertia tensors,
interacting through certain pairwise interactions, Uij . If we just call U the potential acting
on the molecule at r under consideration, N = −r × ∇∇∇U . The second derivatives of the
Euler angles are thus expressed in terms of body frame angular velocities and moments of
inertia I‖,I⊥ as well as of the torque components Nα = −∂U/∂α,Nβ = −∂U/∂β,Nγ =
−∂U/∂γ . After substitution we find [Zannoni, 1979a]

..
α = [

(I‖ − 2I⊥)
.
α

.
β cosβ sinβ + I‖

.
β

.
γ sinβ +Nα −Nγ cosβ

]
/
(
I⊥ sin2 β

)
, (6.45a)

..
β = [−I‖ .

α
.
γ sinβ − (I‖ − I⊥)(

.
α)2 cosβ sinβ +Nβ

]
/I⊥, (6.45b)

..
γ =

{
−I 2

‖
.
γ

.
β cosβ sinβ + [I⊥ + (I⊥ − I‖) cos2 β

]
I‖

.
β

.
α sinβ,

+ [I⊥ + (I‖ − I⊥) cos2 β]Nγ − I‖Nα cosβ
}/(

I⊥I‖ sin2 β
)
. (6.45c)

In particular, for a linear rotor, I‖ = 0 and Eqs. 6.45 reduce to

..
α = −2

.
α

.
β cotβ +Nα/I⊥ sin2 β, (6.46a)

..
β = (

.
α)2 sinβ cosβ +Nβ/I⊥. (6.46b)

Using the Maxwell distribution: P (
.
�) ∝ exp

[− .
� · I · .

�/(2kBT )
]

(Section 4.2.2) to aver-

age over angular velocities gives
〈 .
�a

.
�b

〉 = 0 for a �= b as well as
〈 .
�2n
a

〉 = (2n)!

n!

(
kBT

2Ia

)n
.

We can then obtain, after some algebraic manipulation, the coefficients in Eq. 6.36b. Up to
second rank these are [Pasini et al., 1991]

ϕ11
00;0(0) = 2

3
〈P2〉 + 1

3
, (6.47a)

..
ϕ11

00;0(0) = kBT

3

[( 1

Ixx
+ 1

Iyy

)(
1− 〈P2〉

)
+
√

6
( 1

Iyy
− 1

Ixx

)
Re〈D2

0,2〉
]
, (6.47b)

ϕ12
00;0(0) = 0, (6.47c)

ϕ12
11;1(0) = 1

2
〈P2〉, (6.47d)

ϕ22
00;0(0) = 18

35
〈P4〉 + 2

7
〈P2〉 + 1

5
, (6.47e)

..
ϕ22

00;0(0) = 3kBT

35

( 1

Iyy
− 1

Ixx

)[
6
√

10Re〈D4
0,2〉 + 5

√
6Re〈D2

0,2〉
]

+ 3kBT

35

( 1

Ixx
+ 1

Iyy

)(
− 12〈P4〉 + 5〈P2〉 + 7

)
. (6.47f)

We see that the correlation functions initial values depend just on order parameters, the
second derivatives (curvature) at time 0 depend also on inertia moments. It is only at fourth
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order, as shown in Pasini et al. [1991], that a direct dependence of the orientational corre-
lation functions on intermolecular torques comes in. This is true in general and provides
an important set of constraints for the short-time behaviour of orientational autocorrelation
functions. The formulas for the higher moments become very complicated, at least for a
human (they are just a few lines of a high-level language, so coding them is no problem),
but can be found in Pasini et al. [1991]. In the isotropic limit, where the order parame-
ters reduce to 0, the individual m,n angular momentum components correlation functions
become degenerate and one recovers, multiplying by the number of components (2L+ 1),
the known formulas for normal liquids [Wegdam et al., 1977; St. Pierre and Steele, 1981]

ϕ11(0) = 3ϕ11
00;0(0) = 1 (6.48a)

..
ϕ11(0) = 3

..
ϕ11

00;0(0) = kBT
( 1

Ixx
+ 1

Iyy

)
, (6.48b)

ϕ22(0) = 5ϕ11
00;0(0) = 1, (6.48c)

..
ϕ22(0) = 5

..
ϕ22

00;0(0) = 3kBT
( 1

Ixx
+ 1

Iyy

)
. (6.48d)

Note that the expressions obtained for second-order derivatives allow the definition of a
Gaussian approximation for the short-time behaviour of the orientational correlation func-
tions, e.g.

φLL
′

mn (t) = φLL′mn (0)− ..
φLL

′
mn (0)t2/2+ · · · ∼= φLL′mn (0) exp

(
− ..
φLL

′
mn (0) t2

2φLL′mn (0)

)
. (6.49)

6.7 Translational Diffusion

Let us now consider translational motion and in particular the time dependence of the mean
square displacement (MSD) of a particle from an arbitrary initial position r(t):

〈
�r2(t)

〉 = 1

N

N∑
i=1

〈
�r2

i (t)
〉
. (6.50)

The MSD can be evaluated from the particle trajectories obtained from real observations,
e.g. on colloidal particles or obtained from computer simulations, like the molecular dynam-
ics ones to be discussed in Chapter 9. Einstein has shown that in the case of Brownian motion
in 3D,

MSD = 〈
�r2(t)

〉 = 6DTt, (6.51)

where DT is a translational diffusion coefficient and the average is over all initial condi-
tions. To calculate the MSD on the LHS we start by writing r(t) in terms of successive
displacements. Using

�r(t) = r(t)− r(0) =
∫ t

0
dt ′

dr

dt ′
=
∫ t

0
dt ′ v(t ′), (6.52)
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we have, writing each step in detail,

〈
�r2(t)

〉 = 〈[∫ t

0
dt1v (t1)

]
·
[∫ t

0
dt2v (t2)

]〉
, (6.53a)

=
∫ t

0
dt1

∫ t

0
dt2

〈
v(t1) · v(t2)

〉 = 2
∫ t

0
dt1

∫ t1

0
dt2

〈
v(t1) · v(t2)

〉
, (6.53b)

= 2
∫ t

0
dt1

∫ t1

0
dt2

〈
v(0) · v(t2 − t1)

〉 = 2
∫ t

0
dt1

∫ t1

0
dτ 〈v(0) · v(τ )〉, (6.53c)

= 2
∫ t

0
dt1DT(t1) ≈ 2tndDT, (6.53d)

where we used first the stationarity condition, i.e. the independence of the starting obser-
vation time and then a change of variable τ = t1 − t2. The last equation follows from the
definition of the translational diffusion coefficient (Eq. 6.51)

DT = 1

nd

∫ ∞

0
dτ 〈v(0) · v(τ )〉, (6.54)

where nd = 1,2,3 is the dimensionality of the space involved in the particle movement. The
equation relating diffusion coefficient to linear velocity correlation function belongs to
a family of similar relations linking transport coefficients to time correlation functions
called Green–Kubo relations [Balescu, 1975; Kubo, 1986]. Note that the velocity correlation
function is even in time, so that at short time the MSD has to be quadratic and not linear in
time and it is the behaviour at longer times that becomes linear, as sketched in Fig. 6.1 for
a diffusive process or in certain, more unusual conditions, sub-diffusive or super-diffusive
(Fig. 6.1b). In aligned liquid crystals the diffusion can be different in different directions
with respect to the director, and is described by a tensor DT = 〈�r ⊗�r〉, with elements

(DT)ab = 1

nd

∫ ∞

0
dτ 〈va(0)vb(τ )〉, a,b = x,y,z. (6.55)

(a) (b)

sub-diffusion

diffusion
super-diffusion

Figure 6.1 (a) A sketch of the MSD in a fluid, showing diffusive, linear, behaviour at long
times, with the slope giving the diffusion constant and in solids (glasses or crystals) with
only oscillations around an essentially constant position (b) Behaviour of the MSD∝ tα for
α = 1 (diffusive), α < 1 (sub-diffusive) and α > 1 (super-diffusive) cases.
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(a) (b)

Figure 6.2 Velocity autocorrelation functions in the directions parallel, Cv‖ (t∗) =
〈v‖(0) v‖(t∗)〉 ( ), and perpendicular, Cv⊥ (t∗) = 〈v⊥(0) v⊥(t∗)〉 ( ), to the director in
a (a) nematic and (b) smectic phase. Results are from MD simulations of a system of Gay–
Berne GB(3,5,1,3) elongated ellipsoids (Section 5.6.3). Dimensionless temperature T ∗ and
time t∗ were defined in Table 5.10.

In an isotropic phase we only have DT = Tr(DT), corresponding to Eq. 6.54. In a nematic
or a smectic the principal values are

(DT)‖ = 1

nd

∫ ∞

0
dτ 〈v‖(0) v‖(τ )〉, (6.56)

with v‖ = (v · d) d = vz, for movements along the director d (with d||z) and

(DT)⊥ = 1

nd

∫ ∞

0
dτ 〈v⊥(0) v⊥(τ )〉, (6.57)

where v⊥ = 1
2 (vx + vy) = v − (v · d) d . In Fig. 6.2 we report an example for a system of

attractive-repulsive Gay–Berne particles (cf. Section 5.6.3). The diffusion coefficients at a
certain temperature (and thus order parameter 〈P2〉) can be related to those of the completely
ordered system D

(0)
‖ , D

(0)
⊥ as [Blinc et al., 1974]

(DT)⊥ = 1

3
〈TrDT〉(1− 〈P2〉)+ 〈P2〉(DT)(0)

⊥ , (6.58a)

(DT)‖ = 1

3
〈TrDT〉(1− 〈P2〉)+ 〈P2〉(DT)(0)

‖ . (6.58b)

In Fig. 6.3 we show, as an example, the MSD parallel and perpendicular to the director
obtained from the simulation of a system of Gay–Berne model mesogens (described in
detail in Sections 5.6.3 and 11.5). We see that, both in the nematic and smectic phase, the
MSD is essentially the same in the two directions perpendicular to the director, consistently
with the uniaxial symmetry of the LC. We also see that motion is an order of magnitude
faster in the nematic than in the smectic phase, but also that in both cases the MSD is larger
along the director than transversally to it. While this is to be expected in the nematic, it is
hard to reconcile with the simple textbook model of a smectic as a stack of liquid like layers.
Indeed, if that was the case, we would expect easier motion inside the layers than across
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(a) (b)

Figure 6.3 MSD 〈(�z∗)2〉, 〈(�x∗)2〉, 〈(�y∗) 2〉 along d||z and transversal to it (x,y) of a
Gay–Berne model LC (see Sections 5.6.3 and 11.5) in the (a) nematic and (b) smectic phase.
Time t∗ and lengths in dimensionless units (Table 5.10).

Figure 6.4 Translational diffusion coefficients parallel (D‖), perpendicular (D⊥) to the
director in the nematic and isotropic (Diso) phase of (a) 5CB from NMR measurements
[Dvinskikh and Furó, 2001]. (b) The diffusion coefficients in the isotropic, nematic, smectic
A and re-entrant nematic phase of a 6OCB-8OCB (27 wt% 6OCB) mixture [Dvinskikh and
Furó, 2012].

them. This seems actually to be happening for another system studied in literature [Vaidya
et al., 1994] where, for a perfectly aligned fluid of hard spherocylinders (Sections 5.5.2 and
11.4.2), molecular dynamics simulations find, in dimensionless units, (DT)∗‖/(DT)∗⊥ = 9.05
(nematic) and (DT)∗‖/(DT)∗⊥ = 0.15 (smectic). Experimentally the translational diffusion
of molecules in nematic and smectic phases has been studied with NMR and in Fig. 6.4
we report some results on the isotropic and nematic phase of (a) 5CB [Dvinskikh and
Furó, 2001] and (b) on an LC system of 6OCB-8OCB showing nematic, smectic and re-
entrant nematic phases [Dvinskikh and Furó, 2012]. We see that in this case motion along
the director is faster and D‖ > D⊥ even in the smectic phase.

Considering now orientational variables, we can, quite similarly to the previous case,
consider angular velocities

.
� and introduce a rotational diffusion tensor with components

Dab = 1

no

∫ ∞

0
dτ

〈 .
�a(0) · .

�b(τ )
〉
, a,b = x,y,z. (6.59)
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Figure 6.5 The correlation function of the transversal component of the angular velocity
C .

�⊥
( t∗) = 〈 .

�⊥(0) · .
�⊥(t∗)〉/〈 .

�⊥(0) · .
�⊥(0)〉 as a function of scaled time t∗ for the Gay–

Berne GB(3,5,2,1) model for two-state points at scaled temperature and density (units as
in Table 5.10) T ∗ = 0.60, ρ∗ = 0.19 (a, isotropic), T ∗ = 0.94, ρ∗ = 0.33 (b, nematic)
[de Miguel et al., 1992].

The angular velocity correlation functions on the RHS can be obtained directly from molec-
ular dynamics simulations. Some examples of interest for liquid crystals are by Kushick
and Berne [1973a], Tsykalo and Bagmet [1978] and Tsykalo [1991]. For a symmetric top
particle, the correlation function of

.
�⊥, the component of the angular velocity perpendicular

to the orientation of the top axis is a particularly interesting observable. We expect C .
�⊥(t)

to reflect how hindered the reorientation of the long axis is and how this is affected by
the onset of orientational ordering in a liquid crystal. As an example we show, in Fig. 6.5,
C .
�⊥ (t∗) obtained from MD of the Gay–Berne model of liquid crystals introduced earlier

(Section 5.6.3). We see that in the ordered phase the correlation function of the angular
velocity perpendicular component exhibits a negative region corresponding to a change in
the sense of rotation of the particle long axis which in turn indicates some sort of angular
oscillatory (librational) motion in the LC phase, while the decay is similar to an exponential
in the isotropic phase [de Miguel et al., 1992].

It is worth pointing out that extracting full angular velocity time correlations from exper-
iments is hardly possible, and even obtaining their time integral (the rotational diffusion
coefficients) normally requires assuming a certain stochastic model (e.g. a diffusional one)
for molecular reorientations as we shall discuss later in Section 6.14.

6.8 Time Correlation Functions from Trajectories

As already mentioned, time correlation functions can be obtained from observed trajecto-
ries. For example, considering two properties A(t), B(t),

CAB (t) = 〈A(0)B∗(t)〉 = lim
τ→∞

1

τ

∫ τ

0
dt0A(t0)B∗(t0 + t) (6.60)

can be evaluated from the sequence of values for the two properties obtained from the
recorded values. In practice, trajectories consist of a sequence of configurations at suc-
cessive times separated by a small time increment �t . For a single molecule property A
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(a) (b) (c)

Figure 6.6 (a) The first-rank: �11
00(t∗), (b) second-rank: �22

00(t∗) and (c) mixed-rank:

�12
11(t∗), time correlation functions vs. reduced time t∗ for the LL model [Zannoni and

Guerra, 1981]. The curves correspond to dimensionless temperatures T ∗ = 1.30 (A),
0.95 (B), 0.68 (C).

that assumes the value Ai for molecule i, the time correlation at time t = n�t can be
approximated with

CAB (n�t) ≈ 1

Nm

Nm∑
i=1

1

M − n
M−n∑
k=1

Ai(k�t)B
∗
i ([k + n]�t), (6.61)

whereNm is the number of particles used as time origins (a number large enough to achieve
sufficiently good statistics). The autocorrelation CAA(t) is of course just a special case
of Eq. 6.61. An estimate of the errors σ [CAA(t)] involved in calculating the normalized
autocorrelation function CAA(t) with the finite sum in Eq. 6.61 has been given by Zwanzig
and Ailawadi [1969].

6.8.1 Orientational Correlation Functions: An Example

As we have discussed in the previous sections the Wigner rotation correlation functions
φLL

′
mn (t) provide a systematic approximation to the information contained in the joint distri-

butions. We have calculated all the φLL
′

mn (t) up to rank 2 for the Lebwohl–Lasher model [Zan-
noni and Guerra, 1981] and here we present a few illustrative examples. In Fig. 6.6a we see
the normalized first-rank correlation function �11

00(t )=〈D1∗
00(�0)D1

00(�t )〉/〈D1∗
00D

1
00〉 ≡

φ11
00(t )/φ11

00(0), that in a real situation could correspond to the reorientation of an axial
dipole. We notice a rapid decay to 0 at the isotropic temperature (A), but a very slow decay
indeed in the ordered system. The decay becomes slower as the temperature decreases (C).
Note that the long-time limit of the first-rank correlation function is 0, so we have a very
large increase in the dipolar correlation time, as is also found in real systems. In Fig. 6.6b
we show instead the second-rank correlation �22

00(t ) ≡ 〈D2∗
00(�0)D2

00(�t )〉/〈D2∗
00D

2
00〉 ≡

φ22
00(t )/φ22

00(0), still relative to long axis tumbling motion. At first glance the behaviour
may seem similar, but this is not the case, because now the long-time asymptotic limit
for the second-rank correlation function is non-zero in view of the long-range order
limit (cf. Eq. 6.31). Finally, we show in Fig. 6.6c the mixed-rank correlation �12

11(t) ≡
〈D1∗

11(�0)D2
11(�t )〉/〈D1∗

11D
2
11〉 ≡ φ12

11(t∗)/φ12
11(0). Only two curves, belonging to the LC

phase, are shown, since mixed-rank correlations are 0 in the isotropic phase. We also notice
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that at very short times all the curves are rounded, consistent with the analytic results
in Section 6.6. For the mixed-rank function (Fig. 6.6c), the initial value and the second
moments are: φ12

11(0) = ϕ12
11(0) = 1

2 〈P2〉 and
..
φ12

11(0) = ..
ϕ12

11(0) = 1
2kBT 〈P2〉/I‖. We see

that only when the order goes to 0 the initial value and the second moment vanish. Thus,
this correlation function is not forbidden in an LC and it is only a matter of determining
it using a suitable experimental technique (an example is discussed by Nordio and Segre
[1977]). MD is an ideal technique from the point of view of determining unusual correlation
functions, since having determined the trajectory, any dynamic quantity can, a posteriori,
be calculated.

6.9 Contact with Experiment: Linear Response Theory

Let us consider the measurement of a property A of a molecular system through the appli-
cation of a weak measuring field F (t) [Berne, 1971; Friedman, 1985; Zannoni, 2000].
We assume canonical (N,V,T ) conditions and a system with an unperturbed Hamiltonian
H 0 ≡ H 0(̃r,p̃) and that a weak field F (t) (the field used to perform a measurement of a
certain property) is switched on at time t = 0 and that it interacts with the system through
the perturbation Hamiltonian

H 1 = −B (̃r,p̃)F (t). (6.62)

The property coupling to the fieldB depends in the most general case on the coordinates and
the momenta of all molecules. We assume that the observed value of property A changes
from its static equilibrium value in the absence of the field, i.e. 〈A〉0. Since the applied
field is weak the observed non-equilibrium value in the presence of the field at time t ,
〈δA(t)〉F , should be linear in the field strength. Considering that the system may not react
instantaneously to the field, what we observe at time t is a sum of the contributions from all
possible time lags τ between application and observation

〈δA(t)〉F =
∑
τi

KAB (τi)F (t − τi) =
∫ ∞

0
dτKAB (τ )F (t − τ ). (6.63)

The observed value is a convolution of the field F with a ‘kernel’ KAB whose functional
form depends on the type of applied field and the observable property. The dynamics of
molecular phenomena is most often explored measuring a certain observable property as
a function of frequency rather than a direct time-dependence from a given starting event
(there are exceptions of course, e.g. time-domain fluorescence depolarization experiments).
We can write the Fourier–Laplace transform of the time-dependent response as

〈δÃ(ω)〉F ≡
∫ ∞

0
dt eiωt 〈δA(t)〉F =

∫ ∞

0
dt eiωt

∫ t

−∞
dτKAB (τ )F (t − τ ), (6.64a)

=
∫ ∞

0
duF (u)

∫ ∞

0
dt eiωtKAB (t − u), (6.64b)

=
∫ ∞

0
du eiωuF (u)

∫ ∞

0
dτKAB (t − u) eiω(t−u), (6.64c)

= χAB (ω) F̃ (ω), (6.64d)
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where the Fourier–Laplace transform χAB (ω) = ∫∞
0 dτKAB (τ ) exp (iωτ ) is called a sus-

ceptibility and we have used the fact that the Fourier transform of the convolution integral
of two functions is the product of the Fourier transform of each function by the convolution
theorem (Section E.2.1). Eq. 6.64d refers to macroscopic quantities, but it is clear that if we
could obtain a microscopic expression for the susceptibility we would be able to calculate
the response to a measuring field. The great importance of Linear Response Theory is
that it gives a molecular interpretation to the susceptibility in terms of fluctuations of the
unperturbed system. This is particularly important for computer simulations, since it allows
us to perform the calculation of the observables for a variety of different techniques, each
measuring the response to some different external field from the same simulation performed
in the absence of any field, rather than repeating the simulation in the presence of each
different field and experimental set up.

Let us now walk through the derivation of the desired micro-macro relation. We
start adding to the unperturbed Hamiltonian the time-dependent perturbation H 1(t) =
−B (̃r,p̃)F (t), so that H (t)=H 0+H 1(t). The perturbation produces an evolution of �0:

H×
1 (t)�0 =H×

1 (t)
1

Z
e−H 0/(kBT ) = − 1

kBTZ
e−H 0/(kBT )H×

1 (t)H 0, (6.65a)

= 1

kBT
�0

.
B (̃r,p̃)F (t), (6.65b)

since, using the definition of the evolution operator H× (Eq. 6.3),

H×
1 (t)H 0 = −H×

0 H 1(t) = +H×
0 B (̃r,p̃)F (t), (6.66a)

= F (t)H×
0 B (̃r,p̃) = F (t)

.
B (̃r,p̃). (6.66b)

In the presence of H 1(t) the distribution becomes, at first order, �(t) = �0 + δ�(t) and the
non-equilibrium average change in the observable A is

〈δA(t)〉F =
∫

d̃rdp̃A(̃r,p̃) δ�(t). (6.67)

From the Liouville equation we have, keeping only linear terms,
.

δ �(t) = −H×
0 δP −H×

1 (t)�0 = −H×
0 δ� −

�0

kBT

.
H 1(t). (6.68)

This is a simple first-order linear equation with general solution is3

δ�(t) = − 1

kBT

∫ t

−∞
dt ′ e−(t ′−t)H×

0 /(kBT )�0
.

H 1(t ′). (6.69)

If we substitute the perturbation, Eq. 6.62, we have

〈δA(t)〉F = 1

kBT

∫ t

−∞
dt ′F (t ′)

∫
d̃rdp̃A(̃r,p̃) e−(t ′−t)H×

0 /(kBT ) .
B (̃r,p̃)�0(̃r,p̃),

= 1

kBT

∫ 0

−∞
dτF (t + τ )〈A(0)

.
B(τ )〉 = 1

kBT

∫ 0

−∞
dτF (τ + t)C

A
.
B

(τ ), (6.70a)

3 The known differential equation is
.
y(t)+ Py = Q(t) if P =H×

0 , Q(t) = −βρ0
.

H 1 that with y = y0 when t = t0 has the

solution eP t y − eP t0y0 =
∫ t
t0

eP t
′
Q(t ′)dt ′.
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where we have shifted the time origin letting τ = t ′ − t , t = t ′ − τ . We can do one further
manipulation, noticing that

C
A

.
B

(t) = d

dt
CAB (t) = −C

A
.
B

(−t), (6.71)

sinceCAB (t) is invariant for time reversal:CAB (t) = C∗AB (−t). We can then write [Gordon,
1968; Hansen, 1977; Böttcher and Bordewijk, 1978]

〈δA(t)〉F = 1

kBT

∫ ∞

0
dτ C

A
.
B

(τ )F (τ + t). (6.72)

This beautiful equation shows that the observed response in a property A to the perturba-
tion −BF (t) can be obtained from the equilibrium time correlation functions 〈A(0)Ḃ∗(t)〉
that we can calculate in the absence of the perturbation, for instance from molecular dynam-
ics simulations of the unperturbed system. The AB susceptivity can be expressed in a partic-
ularly useful way for a monochromatic field: F (t) = F0 exp(iωt) and we have, comparing
with Eq. 6.63,

χAB (ω) = 1

kBT

∫ ∞

0
dt C

A
.
B

(t) eiωt (6.73)

or, integrating by parts,

χAB (ω) = CAB (0)

kBT
− iω

kBT

∫ ∞

0
dt CAB (t) eiωt, (6.74)

whereCAB (t) is the time correlation function for the measured and field coupling properties
A and B. We now proceed to show some examples of applications to experimental tech-
niques, paying attention to ordered phases, identifying the relevant correlation functions.

6.10 Dielectric Properties

When a material is placed in an electric field E, a polarization PE , i.e. a total electrical
dipole moment P per unit volume, PE = P /V is observed and is proportional to the prob-
ing field E when this is weak,

PE = χEEE = (ε − 1)

4π
E, (6.75)

where χEE ≡ χ (e) is called the dielectric susceptivity and, like the dielectric permittivity, ε,
is a property of the material.4 For a liquid crystal, χEE and ε will be second-rank tensors.
The permittivity is in general a complex quantity: its real part can in principle be obtained by
measuring the ratio of the capacity of a flat cell (a parallel plate condenser) filled with the LC
sample,CS , and the capacity of the empty cellC0. In the absence of aligning fields or surface
effects, measurements will give ε = CS/C0, the scalar dielectric constant (ε = Tr ε/3).
In practice, it is not convenient to use DC fields because of ionic impurities transport and
other practical problems, so a low frequency AC field is used instead. Again, for practical

4 In the SI system ε0 appears instead of 1/4π .
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reasons, C0 is determined using a reference material with a known dielectric constant (e.g.
cyclohexane, that has ε = 2.019 at T = 22◦C). The current through the capacitor in the
frequency domain has two components: one out of phase, giving the real component ε′:
IC(ω) = −iωε′C0E(ω) and one in phase, the imaginary part ε′′: IL(ω) = ωε′′C0E(ω),
related to the energy dissipation of the same cell. Their ratio, the so-called loss tangent:
tan δ = ε′′/ε′ is often employed. If the liquid crystal can be aligned, e.g. by a bias electric
field, or using a magnetic field if the liquid crystal is a nematic, or some suitable surface
treatment in a thin flat cell, specific components of the dielectric permittivity tensor ε, can
be measured. We can now try to connect ε to microscopic quantities. It should be said that
the field felt by the molecules inside the sample is not necessarily the external applied one,
and a correction depolarization factor should be applied to find the actual field acting on,
say, a small virtual cavity containing a molecule. This correction factor has been developed
for isotropic polar liquids [Glarum, 1960; Fatuzzo and Mason, 1967] and for anisotropic,
liquid crystal fluids [Luckhurst and Zannoni, 1975]. Since we are focussing on molecular
aspects, here we leave these complications out, since if needed they can be considered as
separate corrections.

6.10.1 Theory of Dielectric Response

We start by considering a system of N molecules with permanent electric dipole moments
μi (Eq. 5.75) to which a uniform external electric field E(t) = E0 exp(iωt) is applied. The
system has an instantaneous total dipole (polarization)

P = 1

N

N∑
i=1

μi, (6.76)

while the general perturbation H 1 = −B(X̃XX )F (t) in Eq. 6.62 becomes

H 1 = −P (�̃) ·E(t). (6.77)

This depends on all molecular orientations, but not on molecular positions, since the field
is assumed to be uniform, i.e. essentially the same at every position. The Green-Kubo
expression for the dielectric susceptivity follows from general Linear Response Theory
(Eqs. 6.73 and 6.74) as:

χPP (ω) = 1

kBT

∫ ∞

0
dt eiωt C

P
.
P

(t) = 1

kBT

(
1− iω

∫ ∞

0
dt eiωt CPP (t)

)
, (6.78)

whereCPP (t) is the overall dipole correlation function matrix with, after removing the static
long-time components (which will be 0 anyway for non-ferroelectric systems),

[CPP ]ab(t) =
〈
Pa(0)Pb(t)

〉− 〈Pa(0)〉〈Pb(∞)〉, a,b = x,y,z. (6.79)

Another equivalent expression is:

χPP (ω) = 〈P ⊗ P 〉
kBT

(
1− iω

∫ ∞

0
dτ eiωt ĈPP (t)

)
, (6.80)
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in terms of the scaled correlation ĈPP (t) = CPP (t)/CPP (0). The dielectric susceptivity is
recovered in the limit of very low frequency, ω→ 0 as

χPP (0) = 〈P ⊗ P 〉/(kBT ). (6.81)

Alternatively, using the Fourier–Laplace transform L (defined in Appendix E)

χPP (ω) = 〈P⊗⊗⊗P 〉
kBT

L

{
d

dt
ĈPP (t)

}
. (6.82)

CPP (t) is the total dipole moment correlation function of a macroscopic volume containing
N dipoles. To connect it to molecular correlation functions, we can write, using Eq. 6.76,

〈P (0) ⊗ P (t)〉 =
N∑
i=1

N∑
j=1

〈μi(0)⊗ μj (t)〉, (6.83a)

=
N∑
i=1

〈μi(0)⊗ μi(t)〉 + 2
N∑
i=2

i−1∑
j=1

〈μi(0)⊗ μj (t)〉, (6.83b)

for a system of identical molecules. The dipole correlation is therefore a sum of a single
molecule correlation term:

φμμ(t) = 〈μ(0)⊗ μ(t)〉, (6.84)

depending on the motion of the dipole of a molecule and of an intermolecular dipole cor-
relation term between the dipole of a molecule at time 0 and that of another molecule at a
later time. This term, very difficult to evaluate, is most often neglected, and we will do the
same here.

Empirical expressions. Before turning to LCs, it is convenient to consider some empirical
correlation function expressions, frequently used when dealing with isotropic liquids, where
the correlation matrix φμ μ(t) reduces to the scalar φμμ(t) = Trφμμ(t). In particular, in
analyzing experimental data, empirical relaxation models are often used. The simplest,
called the Debye model, is a single exponential decay with a time τμ:

φμμ(t) = exp (−t/τμ), (6.85)

which, upon Fourier–Laplace transform (Eq. E.22), yields the complex Lorentzian
expression,

ε(ω) = ε∞ + ε0 − ε∞
1+ iωτμ , (6.86)

with real and imaginary parts,

ε′(ω) = Re[ε(ω)] = ε∞ + ε0 − ε∞
1+ ω2τ 2

μ

, (6.87a)

ε′′(ω) = Im [ε(ω)] = (ε0 − ε∞)ωτμ
1+ ω2τ 2

μ

. (6.87b)
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Figure 6.7 Cole–Cole plot for a single exponential time decay of the dipole correlation
corresponding to a semicircle in frequency space.

This can be immediately generalized to a sum of similar profiles if the decay is a sum of
exponentials with different relaxation times and pre-exponential factors. Experimental data
are often presented as a Cole–Cole plot, showing ε′′(ω) versus ε′(ω). For a single relaxation
(Eq. 6.85), this is a semicircle (Fig. 6.7):

ε′′(ω)2 = (ε0 − ε′(ω))(ε′(ω)− ε∞). (6.88)

Another common empirical expression is the stretched exponential or Kolrausch–Williams–
Watts (KWW) decay [Kohlrausch, 1854; Williams and Watts, 1970]:

φ(t) = exp [−(t/τμ)β ], with 0 < β ≤ 1. (6.89)

It is a very slow function of time giving broad dispersion curves. For β = 1/2 the complex
permittivity has the simple analytic form

ε(ω)− ε∞
ε0 − ε∞ =

√
π

i4ωτμ
exp

(
1

i4ωτμ

)
erfc

(
1√
i4ωτμ

)
(6.90)

in terms of the complementary error function erfc(x).5 This empirical curve is very widely
used to characterize non-exponential relaxation data particularly in glass-forming systems,
where the stretching exponent β can give a one-parameter characterization of the material.
Another approach often used in the analysis of experimental data is to employ, instead of
some other form for the time decay of the dipole correlation function, an empirical form
for the frequency dependence of its Laplace transform, like the Havriliak–Negami equation
[Böttcher and Bordewijk, 1978; Delafuente et al., 1994],

ε(ω) = ε∞ + ε0 − ε∞[
1+ (iωτ )1−α]β . (6.91)

The special case with β = 1 is called Cole–Cole equation [Cole and Cole, 1941; Ganzke
et al., 2004].

5 The complementary error function id defined as [Abramowitz and Stegun, 1965]

erfc z = 2√
π

∫ ∞
z

dt e−t2 .

https://doi.org/10.1017/9781108539630.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.007


6.10 Dielectric Properties 313

Frequency-dependent permittivities. The orientational correlations φ11
mn(t) needed to cal-

culate the permittivities can be obtained from simulations, as we have seen in Section 6.8.1
for a very simple case. We shall also discuss, in Section 6.14.1, a theory of molecular
rotational diffusion in LCs, that allows calculation of all the needed orientational corre-
lation functions. We can now relate the single-particle dipole moment time correlation
function, Eq. 6.84, to orientational correlations for a molecule reorienting in a liquid crys-
tal. The relevant components of the correlation matrix measured in the laboratory director
frame will be 〈μZ(0)μZ(t)〉 and 〈μX(0)μX(t)〉. Using spherical components (Appendix B):

μLAB
Z = μ1,0

LAB and, μLAB
X = 1√

2

(
μ

1,−1
LAB − μ1,1

LAB

)
, we find

〈μ1,m
LAB(0)μ1,m′∗

LAB (t)〉 =
∑

q,p,q ′,p′

〈
D1∗
m,p(�0d ) D1

m′,p′ (�td )
〉
μ

1,p
MOL μ

1,p′∗
MOL , (6.92)

where the μ1,p
MOL are spherical components of the molecular dipole moment. For a uniaxial

probe and mesophase the Wigner rotation matrix correlation functions are〈
D1∗
m,p(�0d ) D1

m′,p′ (�td )
〉 = 〈

D1∗
m,p(�0d )D1

m′,p′ (�td )
〉
δm,m′δp,p′ ≡ φ11∗

mp (t). (6.93)

Writing down the terms needed for the parallel and perpendicular dipole correlation function
we have [Nordio et al., 1973]:

〈μZ(0)μZ(t)〉 = μ2
z φ

11∗
00 (t)+ (μ2

x + μ2
y)φ11∗

01 (t), (6.94a)

〈μX(0)μX(t)〉 = μ2
z φ

11∗
10 (t)+ (μ2

x + μ2
y)φ11∗

11 (t). (6.94b)

Thus, in the nematic phase we have up to 4 correlation functions if the molecule has an off
axis dipole with components all different from 0:

ε‖(ω)− 1

4π
= χZZ(ω) = 1

kBT

(
〈μZμZ〉 − iω

∫ ∞

0
dτ eiωt 〈μZ(0)μZ(t)〉

)
, (6.95)

ε⊥(ω)− 1

4π
= χXX(ω) = 1

kBT

(
〈μXμX〉 − iω

∫ ∞

0
dτ eiωt 〈μX(0)μX(t)〉

)
. (6.96)

In general, the long axis correlation function φ11
00(t) will decay in the nematic with a much

longer time, giving rise to a characteristic peak in ε′′‖ (ω) shifted down in frequency (in the
MHz region) with respect to the others that are related to the spinning of the molecule around
its long axis and that often have similar characteristic frequency, corresponding to decay
times of the correlation functions φ11∗

01 (t), φ11∗
10 (t), φ11∗

11 (t) of the same order of magnitude
(in the 100 MHz–GHz region) [Ganzke et al., 2004].

In Fig. 6.8 we see that this is consistent with the case of a mesogen, PAA, whose dipole
moment components were given earlier in Table 5.12. Considering ε′′‖ (ω) we see indeed that
one absorption peak, that corresponds to the long axis tumbling, is occurring at much lower
frequency. Given the difficulty in observing molecular dynamics trajectories for times as
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(a)

(b)

Figure 6.8 (a) Dielectric permittivities ε′‖, ε
′
⊥ and (b) dielectric losses ε′′‖ , ε′′⊥ vs. frequency

ν = ω/2π for PAA at T = 125◦C. The symbols are experimental data [Martin et al., 1971].

long as microseconds, comparison with experiments could be simpler for molecules with a
transversal dipole rather than just one along the long axis (like nCB).

Dielectric constant. We have, considering the case of a zero-frequency experiment by
letting ω→ 0

(ε‖ − 1)kBT

4π
= 〈μZμZ〉 = μ2

z

(
1

3
+ 2

3
〈P2〉

)
+ (μ2

x + μ2
y)

(
1

3
− 1

3
〈P2〉

)
, (6.97a)

(ε⊥ − 1)kBT

4π
= 〈μXμX〉 = μ2

z

(
1

3
− 1

3
〈P2〉

)
+ (μ2

x + μ2
y)

(
1

3
+ 1

6
〈P2〉

)
. (6.97b)

Thus, the anisotropy of the dielectric permittivity is related to

�ε = 4π

kBT

[
μ2
z〈P2〉 −

(μ2
x + μ2

y)

2
〈P2〉

]
= 4πμ2

kBT
〈P2〉P2(cos θ ), (6.98)

where θ is the angle that the dipole makes with the molecular z-axis. We see that, as far as the
permanent dipole moment (the only we consider in our simplified treatment) is concerned,
the dielectric permittivity anisotropy can be positive or negative if the angle θ is below or
above the magic angle (≈55◦), where P2(cos θ ) changes sign.
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6.11 Ionic Conductivity

Let us consider a fluid system containing N mobile particles (ions,…) with charge ek
subjected to a perturbation consisting of a periodic electric field. The perturbation Hamil-
tonian is

H ′ = −B (̃r,p̃) E e−iωt = −
(∑

k

ekrk

)
E e−iωt . (6.99)

We now calculate the current induced by the field, i.e. the flux of charges:
j (t) = ∑N

k=1 ek〈
.
rk〉, by applying again Linear Response Theory. Referring to the gen-

eral treatment in Section 6.9, we see that in this case the measured property A is the
time derivative of the field coupling property B, i.e. A = .

B. In the frequency domain
j (ω) = σ (ω)E. The susceptibility, i.e. the frequency dependent conductivity σ (ω) can be
obtained from the general result in Eq. 6.73 as

σ (ω) = 1

kBT

∫ ∞

0
dt Cjj (t) eiωt, (6.100)

where

Cjj (t) =
∑
k,k′
ekek′ 〈vk(0)vk′ (t)〉. (6.101)

In the anisotropic case, e.g. for ions in LCs, the conductivity should be different in the
different directions, yielding a tensor correlation:

[Cjj ]ab(t) =
∑
k,k′
ekek′

〈
vk,a(0)vk′,b(t)

〉
. (6.102)

In particular, for an oriented, monodomain, liquid crystal we have in the director frame

σaa(ω) = 1

kBT

∑
k,k′
ekek′

∫ ∞

0
dt 〈vk,a(0)vk′,a(t)〉 eiωt, (6.103a)

≈ 1

kBT

∑
k

e2
k

∫ ∞

0
dt 〈vk,a(0)vk,a(t)〉 eiωt . (6.103b)

As an example of application, the zero-frequency conductivity of an ionic solution with
species A,B will be

σ (0) = 1

kBT

∫ ∞

0
dt
∑
A,B

[
δA,BρA〈jA(0)jA(t)〉 + V ρAρB〈jA(0)jB (t)〉]. (6.104)

The ionic conductivity in liquid crystals is expected (and found) to be anisotropic. There
is a limited number of examples available. In Fig. 6.9 we see dielectric and conductivity
results for 5CB (nematic) and 8CB (nematic and smectic) [Jadzyn and Kedziora, 2006].
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(a) (b)

Figure 6.9 The dielectric constant and conductivity components (ε||, ε⊥) and log σ||, log σ⊥
for (a) 5CB in the isotropic and nematic phase and for (b) 8CB as a function of T (◦C) in the
isotropic, nematic and smectic phases [Jadzyn and Kedziora, 2006].

6.12 Thermal Conductivity

We can formulate thermal conductivity in the framework of Linear Response Theory
[Sarman, 1994], by considering a heat field, Fe, with the property that the energy dissipated
is proportional to J QFe and with the constraint that, with the thermostat off, the stationary
condition for �, the N particle distribution function, is satisfied (d�/dt = 0). Given the
expression for the thermal conductivity λ as heat current for small values of the heat field,

lim
Fe→0

J Q = λFe , (6.105)

where the heat field Fe is identified with the negative of the logarithmic temperature gradient
∇∇∇ ln T , JQ is the heat current, T is the absolute temperature. In an aligned anisotropic
system, the heat conductivity is a tensor, with three independent components, λaa , a = x,y,
z in the director frame, where the components refer to the temperature gradient and the heat
current in different directions.

In a nematic liquid crystal subjected to a temperature gradient ∇T a heat flow is induced
and follows the generalized Fourier’s law [Evans and Murad, 1989; Sarman and Laaksonen,
2011] which, in a uniaxial nematic liquid crystal (and assuming that the system remains in
the same phase during the experiment), gives〈

JQ
〉 = − [

λ‖dd + λ⊥(1− dd)
] · ∇T , (6.106)

where d is the nematic director and λ‖ and λ⊥ are the parallel and perpendicular components
of the heat conductivity tensor. The heat conductivity components can be obtained by MD
simulations [Sarman and Laaksonen, 2011] in terms of an equilibrium time correlation
function, using the Green–Kubo relation:

λaa = V

kBT 2

∫ ∞

0
dt
〈
JQ
a (t)JQ

a (0)
〉
, (6.107)
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Figure 6.10 The time (scaled units) evolution of heat current correlation functions parallel

C
J

Q
‖ J

Q
‖

(t) = V
kBT

〈
J

Q
‖ (t)JQ

‖ (0)
〉

( ) and perpendicular C
J

Q
⊥ J

Q
⊥

(t) = V
kBT

〈
J

Q
⊥ (t)JQ

⊥ (0)
〉

( ) to the cholesteric axis in a system of prolate chiral GB ellipsoids (see text) [Sarman
and Laaksonen, 2013].

where JQ
a and λaa are the heat flux vector and the heat conductivity in the a-direction,

a = x,y,z, while V is the volume of the system. The heat flux vector for rigid molecules is
given by [Ravi et al., 1992]

J QV = 1

2

N∑
i=1

pi

m

⎛⎝p2
i

m
+ .

�M,i · IM ·
.
�M,i +

N∑
j=1

Uij

⎞⎠
+ 1

2

N∑
i,j=1

r ij

(
pi ·f ij
m

+ .
�M,i ·NM,ij

)
, (6.108)

where pi and
.
�i are the linear momentum and angular velocity of particle i, Uij is the pair

potential between molecules i and j, and f ij and NM,ij are the force and torque exerted on
molecule i by molecule j, r ij = r i− rj where rj and r i are the positions of particles i and
j , whilem is the molecular mass and IM is the inertia tensor in the molecule principal frame.
Numerical results for a system of rigid molecules can be obtained from the heat flux vector
and forming the heat current correlation function in an equilibrium molecular dynamics
simulation (Chapter 9). Sarman has calculated the thermal conductivity of nematic [Sarman,
1994] and cholesteric LCs [Sarman and Laaksonen, 2013] consisting of various prolate
and oblate soft ellipsoid fluids, respectively. In the nematic fluid, the thermal conductivity
parallel to the director λ‖, is greater than that perpendicular to the director λ⊥. In the fluid
of discotic particles, the reverse is true and λ⊥ > λ‖. The torque exerted by the temperature
gradient on the molecules favours twisting of the prolate ellipsoids towards the orientation
perpendicular to the temperature gradient. The oblate ellipsoids are instead twisted towards
the parallel orientation.

As for cholesterics, in Fig. 6.10 we see an example for a system of chiral mesogens
[Sarman and Laaksonen, 2013], where the pair potential chosen is that originally proposed
by Memmer et al. [1993]: UGBχij = UGBij + λχUχij , where UGBij is a Gay–Berne with the

parameterization GB(4.4,20,1,1) [Bates and Luckhurst, 1999a] (cf. Section 5.6.3) and Uχij
the pseudoscalar term introduced in Eq. 5.136 with the chiral parameter of λχ = 0.45, which
gives an equilibrium pitch of 45σ0. In this case, the thermal transport is easier transversally
to the helix axis.
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6.13 Viscosities

We consider a liquid (or liquid crystal) film of thickness h along y and we assume that a
certain shear force (i.e. tangential force) f x is applied along x (see Fig. 1.3). Introducing
some terminology, we define the shear strain, i.e. the tangential displacement over thickness
as ε = δx/h, and correspondingly the shear rate

.
ε = ∂vx/∂y. The shear stress or tangential

force per area is σ = fx/A. For an ideal viscous liquid σ (t) = η
.
ε, where η is called

the shear viscosity or dynamic viscosity. To obtain a microscopic expression for the shear
viscosity we consider an idealized experiment where a certain shear rate

.
ε is applied and a

certain shear stress σxy (force/area) observed. Thus, each layer of fluid is subject to a certain
external velocity v(y) depending on y, and we have a velocity gradient. The elements of the
stress tensor (the negative of the pressure tensor) are defined by:

σab = 1

V

[ 1

m

∑
i

piapib +
∑
i

∑
j>i

(rij )a(fij )b
]
, a,b = x,y,z, (6.109)

where V is the volume of the system, pi is the linear momentum of molecule i, and r ij and
f ij are, respectively, the distance vector and force between molecules i and j . In our case
we have

σxy = 1

V

[ 1

m

∑
i

pixpiy +
∑
i

∑
j>i

(rij )x(fij )y
]
. (6.110)

In order to apply Linear Response Theory we have to identify a perturbation in the form of
Eq. 6.62. A body moving with a fixed velocity VVVB has an extra term added to the Hamiltonian
[Landau and Lifshitz, 1993] H 1 = pT · VVVB , where pT is the total linear momentum of the
molecular system: pT =

∑
i mivi . In our case each layer has its own momentum so that

the perturbation is

H 1 =
∑
i

mi

∫ yi

0
dy (vix )

∂Vix
∂y

(6.111)

and the coupling property B employed in the Linear Response Theory (cf. 6.62) is thus
formally B =∑

i mi
∫ yi

0 dy(vix) and6

.
B =

∑
i

mi

∫ yi

0
dy

.
vix +

(∑
i

mivix

)
.
yi,

=
∑
i

miyiaix +
(∑

i

mivix

)
viy =

∑
i

fixyi +
∑
i

mivixviy ≡ σxy, (6.112)

where f i is the force acting on molecule i. We see that the derivative of the coupling term
is the stress tensor σxy . The viscosity is then determined by a shear stress autocorrelation
If we imagine the applied perturbation to be sinusoidal with frequency ω we have

η(ω) = 1

V kBT

∫ ∞

0
dt eiωt 〈σxy(0)σxy(t)〉 (6.113)

6 We recall that
d

dt

∫ b(t)

a(t)
f (x,t)dx =

∫ b(t)

a(t)

∂f (x,t)

∂t
dx + f (b,t)

db

dt
− f (a,t)

da

dt
.
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and the usual viscosity η when ω = 0. This is the so-called Green–Kubo formula for
the viscosity and allows η(ω) to be calculated from equilibrium molecular dynamics
simulations.

Liquid crystal viscosities. Considering, more specifically, liquid crystals, the dynamical
description of a compressible nematic requires six coefficients [Smondyrev et al., 1995]:
three shear viscosities, ν1,ν2 and ν3; two bulk viscosities, ν4 − ν2 and ν5; and a director
rotational viscosity, γ1. To calculate these viscosities from correlation functions of the stress
tensor and the director, we consider a coordinate system where the z-axis is parallel to the
average orientation of the director, and the x and y axes are perpendicular to the director.
Starting from the elements of the stress tensor defined by Eq. 6.109, the five viscosities
ν1,ν2,ν3,ν4 and ν5 associated with shear and compression are given in terms of Green–
Kubo-like formulas [Forster, 1974]:

ν1 = V

2kBT

∫ ∞

0
dt

{〈[σzz(t)− σ (t)][σzz(0)− σ (0)]〉 − 〈σxy(t)σxy(0)〉}, (6.114a)

ν2 = V

kBT

∫ ∞

0
dt 〈σxy(t)σxy(0)〉, (6.114b)

ν3 = V

kBT

∫ ∞

0
dt 〈σxz(t)σxz(0)〉, (6.114c)

ν4 = V

kBT

∫ ∞

0
dt 〈σ (t)σ (0)〉, (6.114d)

ν5 = V

kBT

∫ ∞

0
dt 〈σzz(t)σ (0)〉, (6.114e)

where σ (t) = 1
2

(
σxx(t)+ σyy(t)

)
. The νi viscosity coefficients are related to the experi-

mentally measurable Miesowicz viscosities ηi briefly described in Chapter 1 (see Fig. 1.3)

η1 = ν3 + 1

4
γ1(1− λ)2 + λγ1, (6.115a)

η2 = ν3 + 1

4
γ1(1− λ)2, (6.115b)

η3 = ν2. (6.115c)

The parameter λ is a reactive coefficient which determines the response of the director to
shear flow and for PAA: λ = 1.15± 0.10 [Forster, 1974]. Typical experimental results for
the three Miesowicz shear viscosities are shown in Fig. 1.3. As the nematic order parameter
increases, η2 decreases at first as the temperature is lowered and then rises, as observed
experimentally in PAA and MBBA [Langevin, 1972], and in the cyano-biphenyl homo-
logues. The viscosity η2 is associated with shear flow parallel to the director, so its value
drops when the nematic order becomes appreciable.

The calculation of the director rotational viscosity, γ1, is important for applications

as it determines, e.g. the on and off switching times: τon =
( γ1h

2

V 2−V 2
0

)
/(ε0�ε) and

τoff = (γ1h
2)/(Kπ2), of a twisted nematic display [Hirschmann and Reiffenrath, 1998] (see

Fig. 1.7), where γ1 is the twist viscosity, h is the cell thickness, K is a linear combination
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Figure 6.11 Rotational viscosity γ1 vs. 〈P2〉 for two GB systems (Section 5.6.3):
GB(3,5,2,1) at density ρ∗ = 0.345 (•) and GB(3,1,2,1) at ρ∗ = 0.345 (���) [Cuetos et al.,
2002].

of elastic constants of the material [Tarumi et al., 1992], V is the voltage applied across the
cell, V0 is the threshold voltage, ε0 is the permittivity of vacuum and �ε is the dielectric
anisotropy. In terms of microscopic correlations [Sarman and Evans, 1993]

γ1 = (kBT )/[V
∫ ∞

0
dt
〈
�

(d)
2 (t)�(d)

2 (0)
〉
]. (6.116)

In Fig. 6.11 we show the results of N,V,T molecular dynamics simulations calculations
[Cuetos et al., 2002] that proceeds by determining first the director, d and its first deriva-
tive,

.
d , from which the director angular velocity,

.
�d = d × .

d is calculated. These are then
transformed to a coordinate frame with the director along the z-axis, such that the director

angular velocity,
.
�

(d)
d becomes

( .
�

(d)
d,x,

.
�

(d)
d,y,0

)
. The latter is important because the director

can diffuse on the timescale of the simulations, while Eq. 6.116 was derived under the
assumption that the director orientation is constant.

6.14 Molecular Reorientation as a Stochastic Process

In the previous sections we have discussed the generalities of dynamic processes in
condensed media and liquid crystals and their description in terms of correlation func-
tions. We have also established a connection between these correlations and measurable
properties. However, many experimental techniques do not provide access to the full time
(or frequency) dependence of correlations functions, or in other words, the relative raw
experimental results cannot be fully mapped into them. The only practical way to analyze
results is often to fit experimental data to some model of single-molecule motion, assuming,
for instance, that reorientation takes place in a Brownian fashion through small incremental
angular steps and then use experimental data to extract, by some sort of fitting, the
parameters of the model, e.g. diffusion coefficient (integrals of correlation functions,
like in Eq. 6.59). Comparison with computer simulation data is then also more likely to
take place comparing these reduced information parameters with experiment. The problem
is particularly severe (and interesting) in liquid crystals, where anisotropy multiplies the
number of observables, and it is important to identify the quantities that experiments can
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in principle determine. Here we shall then consider stochastic models and particularly the
most important one: rotational diffusion.

6.14.1 Rotational Diffusion

The diffusional model is based on the hypothesis that molecular reorientation can be con-
sidered a stochastic Markov process (Appendix K) evolving through small angular steps
under the influence of collisions with the surrounding molecules and of any orienting torque
provided by the long-range orientational order present in the medium. Angular momenta
relaxation is assumed to be so fast with respect to orientational relaxation that it can be
neglected when treating reorientations. The conditions under which this is possible have
been discussed in detail in the literature (see, e.g., [Steele, 1976]). We only notice here that
a rotational diffusion mechanism is particularly plausible when the reorienting molecule
that is observed (e.g. a solute) is bulkier than the surrounding solvent ones. In practice, the
diffusion model has been very successful in describing reorientation of molecules not only
much larger but also comparable in size with those of the solvent. Indeed, the rotational
diffusion model has been applied to the interpretation of a variety of experiments in liquids
and in liquid crystals where a time decay or a linewidth is fitted by a dynamic model [Tarroni
and Zannoni, 1991].

In an experiment probing molecular reorientation in liquids what is normally important
are the correlation functions between spherical components of rankL,L′ of the tensor prop-
erties A, B under consideration or their Fourier transform at frequency ω, i.e. the spectral
densities JLL

′
AB (ω) [Gordon, 1968], and a most important case is that of autocorrelation func-

tions, where the two properties are the same. For instance, in magnetic resonance, A, B could
be some second-rank, L = 2, magnetic tensor relevant to the experiment being performed
and in particular dipolar and quadrupolar interactions have been studied [Dong, 2016],
Raman techniques [Kirov et al., 1985; Fontana et al., 1986; Wang et al., 1988]. In Infrared
Dichroic [Dozov et al., 1984; Simova et al., 1988] and dielectric relaxation measurements
[Nordio et al., 1973; Williams, 1994; Sebastian et al., 2017], tensors of rank L = 1 are
studied. In a Fluorescence Depolarization experiment AL,m, BL,m would be second-rank
absorption and emission tensors, respectively (as we have seen in Sec.3.4.3) [Zannoni,
1979d; Arcioni et al., 1987; Bauman et al., 2008]. When we deal with rigid molecules
and when intermolecular contributions to the observed quantities can be neglected, the
various experiments mentioned can be interpreted in a unified way in terms of orientational
correlation functions φLL

′
mn;m′n′ (t). Writing the laboratory fixed components in the chosen

molecular frame we have in fact〈
A
L,m
LAB (0)BL

′,m′∗
LAB (t)

〉 =∑
n,n′

〈
DL
m,n(0)DL′∗

m′,n′ (t)
〉
A
L,n
MOLB

L′,n′∗
MOL , (6.117a)

=
∑
n,n′

φLL
′∗

mn;m′n′ (t)A
L,n
MOLB

L′,n′∗
MOL , (6.117b)

with DL∗
m,n a Wigner rotation matrix (Appendix F) connecting the two frames and n,n′ range

from −min(L,L′) to +min(L,L′). If the relaxation of the angular variables is assumed to
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be a stochastic Markov process (Appendix K), the orientational correlation functions can
be written as

φLL
′

mn,m′n′(t) =
∫ ∫

d�0d�P (�0) DL
m,n(�0)P (�0|�t) DL′∗

m′,n′ (�), (6.118)

where � ≡ (α,β,γ ) is the set of three Euler angles defining molecular orientation.
P (�0|�t) is the so-called conditional probability, giving the probability of finding a
molecule at orientation� at time t , if the orientation of the molecule was�0 at time 0. The
orientational distribution function P (�), represents the equilibrium probability of finding
a molecule at orientation � that we discussed in Chapter 3, i.e.

P (�) = exp[−U (�)]/
∫

d� exp[−U (�)], (6.119)

with U (�) ≡ U (�)/kBT . The effective anisotropic potential acting on the reorienting
molecule as a result of all the others could then be obtained from an orientational distri-
bution obtained from Mean Field Theory (see, Chapter 7) or from some computer simu-
lation (see, e.g., Fig. 3.4) as U (�) = − lnP (�) + U 0 with U 0 a constant. As we have
seen in Chapter 3, this can also be obtained from some measured order parameters using
the Maximum Entropy approach for uniaxial (Eq. 3.73) or biaxial (Eq. 3.141) molecules.
Note that the distribution P (�) and the potential U (�) obey the same symmetry as the
mesophase. Here we assume the probe to be biaxial (or uniaxial as a special case), but the
host solvent to be uniaxial, so that P (�) = P (β,γ ) and the orientational order param-
eters are the average Wigner rotation matrix 〈DL

m,n(�)〉 (see Section 3.10). The case of
effectively uniaxial molecules reorienting in a biaxial phase has been treated in Berggren
et al. [1993], that of biaxial molecules dissolved in a biaxial phase in Berggren and Zannoni
[1995]. For a molecule undergoing rotational diffusion in an anisotropic potential U (�),
the conditional probability P (�0|�t) evolves in time according to the differential evolution
equation [Nordio and Segre, 1979]:

∂P (�0|�t)
∂t

= −ĴD
[
Ĵ+ ĴU (�)

]
P (�0|�t), (6.120a)

= −
∑
i=
x,y,z

DMOL
ii

[
Ĵ2
i + Ĵi[ĴiU (�)]

]
P (�0|�t), (6.120b)

where Ĵ = (Ĵx,Ĵy,Ĵz) is the dimensionless angular momentum operator (Eqs. F.34 and
F.39c) and D is the rotational diffusional tensor (Eq. 6.59). Note that only derivatives of the
potential U (�) enter, so an additive constant U 0 is irrelevant. We assume that the molecule
starts its evolution from a certain orientation �0, i.e. that the initial condition is

P (�0|�0) = δ(�−�0). (6.121)

In Eq. 6.120b we have implicitly chosen the molecular frame where D is diagonal. The
analysis of experimental dynamic data offers the possibility of getting rotational diffusion
coefficients for the molecule acting as spectroscopic probe, which may be different from the
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solvent ones or, at least in some spectroscopic techniques, identical to those of the solvent.
When we assume rotation to be diffusional, all our knowledge of the molecule and of its
symmetry is contained in its diffusion tensor. Thus, as long as we can identify the diffusion
frame, the most general or the least symmetric case possible is that of a biaxial diffusion ten-
sor, whereDMOL

xx �= DMOL
yy �= DMOL

zz . This case has been treated for isotropic liquids (U (�) =
0), by various authors and analytic solutions are available for symmetric and asymmetric
rotors [Edwardes, 1892; Perrin, 1934; Freed, 1964; Huntress, 1970; Chuang and Eisenthal,
1972]. In this limit the Wigner rotation matrices are eigenfunctions of the diffusion operator,
ĴDĴ. Thus, even for asymmetric rotors, there are no mixed-rank correlation functions in
isotropic fluids. An orientational autocorrelation function of rankL decays at most as a sum
of (2L+ 1) exponentials. In anisotropic solvents the problem is made more complicated by
the absence of analytic solutions but at the same time more interesting by the increase in
the number of observable correlation functions [Zannoni, 2000] and with the possibility
to study anisotropic interactions. To determine P (�0|�t) the diffusion operator can be
given a matrix representation in a basis of Wigner rotation matrices. The resulting matrix
is not diagonal and a sufficiently large basis set of Wigner functions (up to a certain rank
Jmax is needed). In LCs a mixing of certain contributions of different rank can take place
and orientational correlation functions are generally given by a sum of an infinite number
of exponentials. After Nordio et al’s. classical papers on uniaxial molecules in uniaxial
orienting potentials [Nordio and Busolin, 1971; Nordio and Segre, 1979], the diffusion
model has also been solved for molecules behaving like symmetric rotors (DMOL

xx = DMOL
yy )

while having a non-negligible biaxial order [Polnaszek et al., 1973; Nordio and Segre,
1975; Bernassau et al., 1982; Dozov et al., 1987; Arcioni et al., 1988]. This is clearly
important since the ordering matrix for a number of probe and liquid crystal molecules has
been determined experimentally and found to deviate from cylindrical symmetry (see, e.g.,
papers in [Emsley, 1985]). Estimating the effective orienting potential from the measured
biaxial order parameters 〈D2

0n〉, is possible, e.g. with the maximum entropy technique (seen
in Chapter 3). Numerical, non-perturbative solutions were presented for the analysis of
ESR spectra by Polnaszek et al. [1973]. Both in this case and in the simpler uniaxial case
[Nordio and Busolin, 1971] it was found that terms of rank as high as Jmax ≈ 20 were
needed in the matrix representation to obtain sufficiently accurate results over the entire 〈P2〉
range, even though a few terms are sufficient for low-order parameters or for some of the
correlation functions. It should be stressed that a feature present in all the mentioned works
was the assumption of a diffusional tensor with cylindrical symmetry,DMOL

xx = DMOL
yy , which

somewhat contrasts with the lower symmetry of the anisotropic potential. The complications
increase further when a fully asymmetric rotorDMOL

xx �= DMOL
yy �= DMOL

zz in a biaxial potential
U (β,γ ) is considered. Here we describe the rotational diffusion of asymmetric rotors subject
to biaxial potentials in a rather general way, following the treatment by Tarroni and Zannoni
[1991]. Having a theory connecting observables to order parameters and the diffusion tensor
components is essential for their determination. The theory has been applied to the analysis
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Figure 6.12 The spinning and tumbling reorientation processes for an elongated molecule
with their respective characteristic times τ‖ (spinning) and τ⊥ (tumbling).

of NMR data in LCs [Dong and Shen, 1996; Dong, 1997; Domenici et al., 2005]. To start
with we rewrite our biaxial rotational diffusion tensor in a more convenient form as:

DMOL = Dρ
⎛⎝1+ εM 0 0

0 1− εM 0
0 0 ηM

⎞⎠ , (6.122)

where Dρ ≡ DMOL
xx +DMOL

yy

2 , εM ≡ DMOL
xx −DMOL

yy

DMOL
xx +DMOL

yy
, ηM ≡ 2DMOL

zz

DMOL
xx +DMOL

yy
. Here εM gives the

diffusion tensor biaxiality and ηM the ratio between the spinning diffusion coefficientDMOL
zz ,

which refers to rotations around the z-axis and that of the z-axis itself or tumbling (see
Fig. 6.12). In the cylindrical symmetry limit εM reduces to 0, while Dρ and ηM become D‖
and D⊥, respectively. With these definitions, we can rewrite Eq. 6.120b as:

1

Dρ

∂P (�0|�t)
∂t

=
{
−(1+ εM)

[
Ĵ2
x + Ĵx(ĴxU )

]− (1− εM)
[
Ĵ2
y + Ĵy(ĴyU )

]
− ηM

[
Ĵ2
z + Ĵz(ĴzU )

]}
P (�0|�t), (6.123a)

=
{
−[Ĵ2

x + Ĵx(ĴxU )
]− [

Ĵ2
y + Ĵy(ĴyU )

]− ηM

[
Ĵ2
z + Ĵz(ĴzU )

]
− εM

[
Ĵ2
x + Ĵx(ĴxU )

]+ [
Ĵ2
y + Ĵy(ĴyU )

]}
P (�0|�t), (6.123b)

≡ �P (�0|�t). (6.123c)

The diffusion operator � or propagator, as written, is not self-adjoint, but detailed bal-

ance ensures that it can be symmetrized by the transformation �̄ = P−
1
2 (�) �P

1
2 (�) =

exp
[ 1

2U (�)
]
� exp [− 1

2U (�)]. We add an overbar (here and in what follows) to indicate
a symmetrized operator or quantity. Applying the symmetrizing transformation yields

exp
[U (�)

2

]
[Ĵ2
i + Ĵi(ĴiU )] exp

[−U (�)

2

]
= Ĵ2

i −
1

4
(ĴiU )2 + 1

2
(Ĵ2
iU ); i = x,y,z.

(6.124)

Taking advantage of this property the symmetrized propagator can be rewritten as:

�̄ = −
(
∇2 + 1

2
(∇2U )− 1

4
(Ĵ+U )(Ĵ−U )− 1

4
ηM (ĴzU )2

)
− εM

(
1

2
(Ĵ2
+ + Ĵ2

−)+ 1

4
[(Ĵ2
+ + Ĵ2

−)U ]− 1

8
[(Ĵ+U )2 + (Ĵ−U )2]

)
= �̄

a + �̄
b
,

(6.125)
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where ∇2 = Ĵ2
x + Ĵ2

y + ηĴ2
z is the Laplacian operator in terms of angular momentum and

Ĵ± = Ĵx ± iĴy are step-up and step-down (or ladder) operators. The �̄
b

term follows from
the non-cylindrical symmetry of the diffusion tensor. The symmetrized form of the diffusion
equation is:

1

Dρ

∂P̄ (�0|�t)
∂t

= �̄P̄ (�0|�t), (6.126)

where P̄ (�0|�t) is the symmetrized conditional probability related to the unsymmetrized
one by the transformation:

P̄ (�0|�t) = exp
[U (�)

2

]
P (�0|�t) exp

[−U (�0)

2

]
= P− 1

2 (�)P (�0|�t)P 1
2 (�0).

(6.127)

The expression for the reorientational correlation functions becomes

φLL
′

mn;m′n′(t) =
∫ ∫

d�0d�DL
m,n(�0)DL′∗

m′,n′ (�)P
1
2 (�0)P

1
2 (�)P̄ (�0|�t). (6.128)

The symmetrized diffusional equation Eq. 6.126 can be given a convenient matrix represen-
tation by expanding the anisotropic potential U (�) as well as the symmetrized conditional
probability P̄ (�0|�t) in a basis of Wigner matrices (Appendix F). For a uniaxial liquid
crystal host phase

U (�) =
∑
J,q

aJqD
J
0,q (�), (6.129)

and

P̄ (�0|�t) =
∑
Lmn

√
2L+ 1

8π2
CLmn(�0,�t) DL

m,n(�). (6.130)

The expansion coefficients CLmn(�0,�t) at time 0 can be evaluated using the initial condi-
tion Eq. 6.121 and the representation of δ(�−�0) in the Wigner matrices basis, Eq. F.10 ,
so that the time 0 initial condition becomes

CLmn(�0,�0) =
√

2L+ 1

8π2 DL∗
m,n(�0). (6.131)

Substituting Eq. 6.130 into the diffusion equation Eq. 6.126, multiplying both sides on
the left for DL′∗

m′,n′ (�) and integrating over � we obtain the system of linear differential
equations

1

Dρ

∂

∂t
CL′m′n′ (�0,t) =

∑
Lmn

R̄L′m′n′,LmnCLmn(�0,t), (6.132)

where R̄L′m′n′,Lmn are matrix elements of the �̄ operator.

R̄L′m′n′,Lmn =
√

(2L′ + 1)(2L+ 1)

8π2
〈DL′

m′,n′ | �̄ |DL
m,n〉, (6.133a)

≡
√

(2L′ + 1)(2L+ 1)

8π2

∫
d�DL′∗

m′,n′ (�) �̄DL
m,n(�). (6.133b)
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This matrix representation is real and symmetric [Nordio and Segre, 1979; Tarroni and
Zannoni, 1991]. In the presence of an anisotropic potential U (�) the matrix will not be
diagonal, but instead the matrix will have a band form, with bandwidth determined by
the maximum rank of the contributions to U (�) in Eq. 6.129. If the medium is uniax-
ial, as we assume here, then there will be no coupling between terms with different m,
so the diffusion matrix R will be block diagonal and we can employ m to label these

blocks: (R̄
(m)

)Ln,L′n′ ≡ R̄Lmn,L′m′n′ δm,m′ . The explicit expressions for the matrix elements
(R̄(m))Ln,L′n′ are a bit cumbersome but are reported in Tarroni and Zannoni [1991], where
the general formulas are adapted to the important specific case of a potential containing
only second-rank interactions. Eq. 6.132 can be rewritten as the matrix equation for the
coefficients:

.
C(m)(t) = DρR̄

(m)
C(m)(t). (6.134)

Then, if X̄
(m)

is the eigenvector matrix diagonalizing R̄
(m)

to r̄(m), i.e. R̄
(m)

X̄
(m) = X̄

(m)
r̄(m),

the solution to Eq. 6.134 becomes

C(m)(t) = X̄
(m)

e[tDρ r̄(m)] (X̄
(m)

)T C(m)(0), (6.135)

where we have used the fact that X̄ is a unitary matrix, being the eigenvector matrix of a
self-adjoint operator, and thus that its inverse is just its transpose. Inserting the initial time
coefficient (Eq. 6.131) gives

C
(m)
Jp (t) =

∑
(X̄

(m)
)Jp,K e[tDρr̄

(m)
K

](X̄
(m)

)J ′p′,K

√
2J ′ + 1

8π2
DJ ′∗
mp′ (�0), (6.136)

where we have used the single index K to label the eigenvalues of R̄(m). For t →∞ all the
exponentials decay to 0 except the one corresponding to the eigenvalue r̄ (0)

0 , corresponding
to the equilibrium distribution, recovered from the limiting equilibrium condition

lim
t→∞P (�0|�t) = P (�). (6.137)

The final expression for the LL′ correlation function of a probe of arbitrary symmetry
reorienting in a uniaxial medium, like a nematic or a smectic A, can be written as a series
of exponentials

φLL
′

mn;n′(t) ≡ φLL
′

mn;m′n′(t)δm,m′ =
∑
K

(
b
m,nn′
LL′

)
K

exp [tDρr̄
(m)
K ], (6.138)

where the explicit expression for the coefficients
(
b
m,nn′
LL′

)
K

is given in Tarroni and Zannoni

[1991]. We now consider the important case of second-rank correlation functions: L =
L′ = 2, that arise in most experiments mentioned until now (in particular NMR [Dong,
1997]), and we take an effectively uniaxial probe molecule. The two correlation functions
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more often accessed by experiments, and that are thus worth calculating from computer
simulations will be:

φ22
00(t) = 〈P2 (cosβ(0)) P2 (cosβ(t))〉 , (6.139)

φ22
02(t) =

√
3

8

〈
sin2 β(0) sin2 β(t) ei2(γ (0)−γ (t))

〉
. (6.140)

Even in this relatively simple case the orientational correlation functions are a sum of an
infinite number of exponentials

φ22
mn(t) =

∑(
bmn

)
K

exp
(
t/τKmn

)
, (6.141)

where the reciprocal eigenvalues of the diffusion matrix, i.e.

τKmn = 1
/{
D⊥rmnK t − (

D‖ −D⊥
)
n2
}
, (6.142)

play the role of decay times for the various exponentials and

(bmn22 )K = 1

5

∑
J ′

(2J ′ + 1)(X(mn))2,K (X(mn))−1
K,J ′ 〈D2

mnD
J ′∗
mn 〉. (6.143)

In Fig. 6.13 we show, as an example, the first three pre-exponential coefficients and the
corresponding decay times for the long-axis reorientational correlation in Eq. 6.141. Note
that this correlation function does not depend onD‖ and then does not report on the speed of
reorientation around the molecular symetry axis. As Fig. 6.13 shows, in this case the expan-
sion can be quite safely truncated to the first term over a wide range of parameters 〈P2〉 and
thus of temperatures. On the other hand, such a quick convergence is not always guaranteed,
especially at relatively high order. Note that, even if the correlation functions are a sum of
many exponentials, all of these can be calculated from a knowledge of the relevant diffusion
tensor components and the order parameters characterizing the potential. In analyzing real
or computer imulated data, these few parameters are the only to be determined by fitting.

(a) (b)

Figure 6.13 (a) The first three pre-exponentials
(
b00)

K
and (b) the relative relaxation times

τK00 in units ofD−1
⊥ (see Eq. 6.141) as a function of the order parameter 〈P2〉 for the second

rank correlation function φ22
00 (t) of a uniaxial probe reorienting in a P2 potential [Zannoni

et al., 1983].
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6.14.2 Fluorescence Depolarization

Going back to the short description of a Fluorescence Depolarization (FD) experiment in
Section 3.4.3 and the sketch in Fig. 3.8, that we invoked to describe the obtainment of
fourth-rank order parameter 〈P4〉 in a special case of a fluorescence emission time τF much
shorter than the typical fluorophore reorientation time τR , we now wish to consider the more
general (and common) case of the two times being of the same order of magnitude, so that
a time-dependent FD has to be considered. To do this we go back to Eq. 3.38, rewritten as:

IFio (t) = F (t) 〈| ei ·μ(a)(0) |2 |eo ·μ(e)(t) |2〉, (6.144a)

= F (t) 〈|Ei : A(a)
LAB(�0,0)||Eo : A(e)

LAB(�,t)|〉, (6.144b)

= F (t)
∑
L,L′

I
L,L′
io (t) ; L,L′ = 0,2, (6.144c)

where IL,L
′

io (t) = ∑
m,m′ E

L,m∗
i E

L′,m′∗
o

〈
[A(a)

LAB(�0)]L,m[A(e)
LAB(�t )]L

′,m′ 〉 and Ei = ei ⊗ e∗i ,
Eo = eo ⊗ e∗o are the input and output polarization tensors and A(a) = μ(a) ⊗ μ(a)∗,
A(e) = μ(e) ⊗ μ(e)∗ the absorption and emission tensors. We have written the Cartesian
contractions in Eq. 6.144b in the more convenient spherical tensor form, using the rela-
tions in Appendix B. Rotating the polarizer ei or the analyzer eo at a certain angle from
the vertical, by a rotation around the incoming or outgoing axis, the various fluorescence
intensities can be obtained. The expressions can be easily written in terms of the Wigner
rotation matrices correlation functions by writing the lab frame absorption and emission
tensor spherical components in terms of their molecular fixed counterparts (see Eq. 6.19).
To be specific, let us assume that the input polarizer is set vertical, i.e. ei ‖ Z, then the

required spherical components of the polarization tensors are E2,m
i =

√
2
3 δm,0. Moreover,

if we set the analyzer at an angle ε to the vertical, the output polarizer tensor components

will beE2,m′
o =

√
2
3 D

2∗
m′,0(0,ε,0). Considering a uniformly aligned sample with the director

parallel to the laboratory Z-axis (Fig. 3.8), we find for molecules of arbitrary symmetry

I
0,0
Z,ε =

1

9
, (6.145a)

I
0,2
Z,ε =

1

3

√
2

3
D2

0,0(0,ε,0)
∑
n

〈D2
0,n 〉

[
A

(e)
MOL

]2,n∗
, (6.145b)

I
2,0
Z,ε =

1

3

√
2

3
D2
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, (6.145c)

I
2,2
Z,ε =

2

3
D2

0,0(0,ε,0)�0(t), (6.145d)

for vertical excitation and observation through a polarizer set at an angle ε from the vertical.
Note that the dynamic information is all contained in the quantities �q (t),

�q (t) ≡
∑
n,n′

[
A

(a)
MOL

]2,n[
A

(e)
MOL

]2,n∗
φ22
qn;n′(t). (6.146)
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Placing the analyzer at the magic angle εm ≈ 54.7◦ cancels the dynamic molecular reorien-
tation contribution to the intensity as well as the first static contribution. Thus, this magic
angle experimental setting can serve to obtain the fluorescence decay time. We also find in
particular for the analyzer set at ε = 0 and π

2 that

IZZ

F (t)
= 1

9
+ 1

3

√
2

3

∑
n

〈D2∗
0,n 〉

([
A

(e)
MOL

]2,n + [
A

(a)
MOL

]2,n)+ 2

3
�0(t) (6.147)

and

IZX

F (t)
= 1

9
+ 1

3
√
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0,n 〉

(
2
[
A

(a)
MOL

]2,n − [
A

(e)
MOL

]2,n)− 1

3
�0(t). (6.148)

The polarization anisotropy ratio rZZ,ZX(t) that can be determined from both a right angle
and a parallel geometry experiment (see Fig. 3.8), becomes

rZZ,ZX(t) = IZZ(t)− IZX(t)

IZZ(t)+ 2IZX(t)
=

√
1
6

∑
n

[
A

(e)
MOL

]2,n〈D2∗
0,n 〉 +�0(t)

1
3 +

√
2
3

∑
n

[
A

(a)
MOL

]2,n〈D2∗
0,n 〉

, (6.149)

for a probe with arbitrary symmetry in a uniaxial mesophase. Note that in this idealized
case the fluorescence decay F (t) has factored out and rZZ,ZX(t) depends only on ordering
and reorientational dynamics. Limiting expressions for the fluorescence intensities and the
polarization ratio rZZ,ZX(t) for short times can be derived at once using the previously seen
initial values of the orientational autocorrelation functions. The long-time limit of rZZ,ZX(t)
is obtained using Eq. 6.31. This gives a particularly simple result for rZZ,ZX(∞), i.e.

rZZ,ZX(∞) =
√

3

2

∑
n

〈D2∗
0,n 〉

[
A

(e)
MOL

]2,n. (6.150)

Similar expressions can be obtained for other combinations of the input and output polariz-
ers. In particular,

rXX,XZ(t) = IXX(t)− IXZ(t)

IXX(t)+ 2IXZ(t)
, (6.151a)

=
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(6.151b)

and

rXX,XY (t) = IXX(t)− IXY (t)

IXX(t)+ 2IXY (t)
, (6.152a)
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.

(6.152b)
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We see that at least in principle the FD experiment may depend on a number of order param-
eters. In particular, the initial values of the intensity contain order parameters of rank up to
4 while the long-time limit second-rank ones. In practice, even though symmetry may limit
the number of independent order parameters, these unknowns are normally too numerous.
For example, if the molecule is biaxial, we have seen in Sec.3.10 that the independent order
parameters up to rank 4 are 〈D2

0,0〉, 〈D2
0,2〉, 〈D4

0,0〉, 〈D4
0,2 〉, 〈D4

0,4 〉, which are probably a
bit too many to determine.

Uniaxial fluorescent probes. Considering the common case of a molecule approximately
uniaxial, either rod-like like DPH (see Fig. 6.14a) or discotic, like perylene (Fig. 6.14b), we
have IAB = F (t)〈[μ(a)

A

]2(0)
[
μ

(e)
B

]
(t)〉 with A,B = X,Y,Z. Thus,
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with �L(t) as in Eq. 6.146 but with a δn,n′ . We can consider two common fluorescent
probes. The first is a rod-like one, DPH, that we have already encountered in Section 3.4.3,
where we mentioned that it has both absorption and emission transition moments par-
allel to the long axis. The second probe: perylene, is instead a flat aromatic molecule
(Fig. 6.14b-top) with a shape roughly approximating that of a disc with a diameter of
≈ 8 Å. It is convenient to choose the molecular z-axis for perylene perpendicular to the
ring so as to accentuate its near cylindrical symmetry about the short D2h axis. Since
perylene will presumably align with the ring parallel to the director when dissolved in an
ordered phase, we expect the order parameter 〈P2〉 of its highest symmetry axis, which is
perpendicular to the molecule plane, to be negative. The UV-VIS absorption spectrum of
perylene presents two main, well-structured, transitions [Berlman, 1971] corresponding to
two transition moments lying in the ring plane and perpendicular to one another as shown
in Fig. 6.14b (top).

6.14.3 Connection between Deterministic and Stochastic Approaches

We have introduced the diffusion equation as a stochastic model for the reorientation of
molecules in liquid crystals and isotropic liquids. However, it is worth mentioning that such
a microscopic, single-molecule equation is related to the overall molecular dynamics of a
system of molecules, from which it can be formally derived by systematically projecting
out from the collective time evolution all the unnecessary degrees of freedom. In this way
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(a) (b)

Figure 6.14 The time dependence of the FD ratio r(t) for two common, nearly uniaxial,
fluorescent probes dissolved in an oriented monodomain nematic. (a) DPH, a probe with
absorption, μ(a), and emission, μ(e), dipole moments parallel to the long molecular axis. The
results are for 〈P2〉 = 0 (A),0.2 (B),0.4 (C),0.6 (D),0.8 (E), while for 〈P2〉 = 1, r(t) = 1
[Zannoni, 1979d]. (b) A discotic probe, perylene, with transition moments in absorption at
λa ≈ 252 nm and emission at λe ≈ 410 nm,that are perpendicular to one another and to
the disk axis. The perylene order parameters 〈P2〉 are 0.0 (A), −0.2 (B), −0.3 (C), −0.4 (D)
[Zannoni et al., 1983]. Rotational diffusion and D‖/D⊥ = 10 have been assumed for both
probes.

irreversibility in time is inevitably introduced as a consequence of the reduction in informa-
tion that does not allow us to reverse time trajectories. The details of the various procedures,
to achieve the projection from N particles to one particle dynamics, are clearly outside the
scope of this book, but are treated in detail in various works, for example by Grabert [1982],
and Zwanzig [2001].
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7

Molecular Theories

7.1 Molecular Fields

Once we have assumed a certain form of intermolecular potential, however simple, for
a system of particles of interest, it is worth realizing that no exact analytical solution is
going to be available for its thermodynamics, or more generally, to predict the phases it can
generate. Even if computer simulations will eventually be performed, it is often important
to obtain an approximate preliminary description, e.g. to have a tentative location of the
phase transition or, for liquid crystals, an estimate of the order parameters, employing
some theoretical approach. Historically a first approach of this type is the Mean Field or
Molecular Field Theory (MFT) one where, rather than describing in detail the effects of
particle-particle interactions and their variation with separation, orientation, etc., the drastic
assumption is made to consider just a single particle interacting with an effective field
created by all the others in the system. Since each molecule can itself be contributing to the
generation of this field for the others, a self-consistency condition is also introduced. The
approach has been used, assuming different names, in most fields of physics: Weiss theory
for magnetism [Stanley, 1971], Hartree-Fock for quantum mechanics [Schatz and Ratner,
1993], Debye-Hückel for ionic solutions [Chaikin and Lubensky, 1995], etc. The MFT of
nematics put forward by Maier and Saupe [1958] was one of the first successful attempts
on the theoretical front to understand liquid crystallinity. In their pioneering work they
considered the mesogenic molecules to behave like uniaxial rods and London dispersion
(and thus attractive) interactions (cf. Section 5.8.2) to be the dominant intermolecular force
leading to anisotropic alignment. They then proceeded to evaluate the average anisotropic
potential acting on a molecule by effect of all the others in the system. If we could monitor
this mean field in a real situation, we would see it continuously fluctuating with time as a
consequence of the surrounding molecules moving about. In MFT the effective potential
acting on a molecule with a certain position-orientation is instead assumed to be constant
in time, with a strength depending only on the order of the surrounding environment. The
main advantage of the treatment lies in its simplicity and this in turn makes it applicable to
a variety of situations. Thus, for example, MFTs have put forward not only for nematics,
but also for smectic A [McMillan, 1971] and smectic C [McMillan, 1973; Selinger and
Nelson, 1989] phases as well as, in a unified way for all of these together [Pajak and
Osipov, 2013]. Molecular field descriptions for twisted, cholesteric systems have also been
proposed [Van der Meer et al., 1976]. Importantly the predictions of MFT have proved to
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be, at least for most properties of nematics, very (perhaps even surprisingly) successful at a
semi-quantitative level. It is interesting to understand why this is the case and especially if
it is a fortunate coincidence or not, since this can serve as a guide for applying MFT to more
complex and realistic cases. Since we have computer simulation results at hand the natural
thing to do to try and assess MFT performance will be to compare those with the simulation
results on the same model system. The plan of this chapter is thus the following. First, we
illustrate the MFT procedure when applied to a simple LL or Maier–Saupe like model. We
shall work through this example in detail since it is a good prototype for all mean field
calculations even on more complex potentials. After this detailed and somewhat tutorial
example, we shall develop a more general MFT for rigid molecules of arbitrary symmetry.
In particular, we shall discuss the theories by Humphries et al. [1972] and Luckhurst et al.
[1975] for uniaxial and biaxial particles.

7.2 Maier–Saupe Theory: A Simple Introduction

As in any, however simple, molecular theory the starting point is an intermolecular potential,
and the mean field potential has to be obtained from this by some averaging procedure. In
this example we choose a system of cylindrically symmetric particles and a pair of particles,
say 1, 2, with axes u1, u2 interacting via the purely anisotropic pair potential [Zannoni,
1979b]

U
(L)
12 = U (L)(r12,β12) = −uL(r12)PL(cosβ12), (7.1)

where PL is a Legendre polynomial, cosβ12 = u1 ·u2 and uL(r12) ≥ 0. This contains as
special cases the 3D ferromagnetic Heisenberg model (Section 2.8.3) when L = 1 (in this
case the particles are polar, in the sense that head and tail can be differentiated), the disper-
sive [Saupe, 1974] and Lebwohl and Lasher [1972] potentials (Section 2.8.5), important for
nematics, when L = 2 (non-polar particles) and also the case of L > 2 that could model
molecules preferring to align along more than one relative orientation [Zannoni, 1979b].
The uL(r12) in Eq. 7.1 gives the strength of the interaction as a function of the separation
vector r12, however, to obtain a potential for a particle in a uniform mean field, we can
formally average over r12 obtaining a purely orientational potential

U
(L)
12 = −uLPL(cosβ12), (7.2)

where the overbar in uL indicates an average over the distribution of intermolecular vectors,
i.e. 〈. . .〉r . Note that no dependence on the intermolecular vector direction or distance is
present at this point, so that the effective potential is uniform in space, thus not suitable
for a smectic, but still compatible with a nematic phase. We now need to average over the
orientations of one of the two molecules, say molecule 2. We start by separating the relative
orientations β12 in Eq. 7.1 recalling the spherical harmonics addition theorem (see Eq. F.15)

U
(L)
12 = −uL PL(cosβ12) = −uL

L∑
q=−L

DL∗
q,0(�1L)DL

q,0(�2L), (7.3a)

= −uL
L∑

q=−L
eiqα1LdL−q,0(β1L)dLq,0(β2L) e−iqα2L, (7.3b)
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where we have employed the explicit form of the Wigner rotation matrices DL
q,0(�2L),

Eq. F.4. We can now average over the orientations of molecule 2, multiplying by the distribu-
tion P (�2L) and integrating over d�2L = dα2Ldβ2L sinβ2L. Although P (�2L) is unknown,
it should possess the symmetry of the phase we are trying to study. Thus, if we search for a
uniaxial nematic phase with a director d along z, P (�2L) = P (cosβ2) and integration over
dα2L just yields δq,o (cf. Eq. A.46) so that

〈U (L)
12 〉α2 = −uL PL(cosβ1)PL(cosβ2), (7.4)

where we have used the fact that dL00(βi) = PL(cosβi) and simplified the notation βiL to
βi . Averaging on β2 gives an effective field potential dependent on an order parameter 〈PL〉

U
(L)
1 (x) ≡ 〈U (L)〉α2,β2 (x) = −uL 〈PL〉PL(x), (7.5)

where x = cosβ1 and we have eliminated the subscript since only a molecule is now present.
Clearly, if we use this potential to calculate the order parameter appearing in U (L)

1 , a self-
consistency condition is obtained:

〈PL〉 =
∫ 1

−1
dxPL(x) euL〈PL〉PL(x) /(kBT )/Z

(L)
1 , (7.6)

where the orientational configuration integral is

Z
(L)
1 =

∫ 1

−1
dx euL〈PL〉PL(x)/(kBT ). (7.7)

On a qualitative level we remark that the pseudopotential Eq. 7.8 is quite reasonable since
the anisotropic molecular field trying to align a molecule along the field is proportional to
the order parameter and it reduces to 0 in the isotropic phase. In particular, for L = 1, we
have a model for a polar anisotropic phase (a ferromagnetic or ferroelectric system). This is
a system very well studied with MFT [Stanley, 1971] and with computer simulations [Chen
et al., 1993; Holm and Janke, 1993]. For L = 2 we have the Maier–Saupe (MS) theory for
nematics and using this as a superscript

UMS(x) ≡ U (2)
1 (x) = −u2〈P2〉P2(x). (7.8)

The pseudopotential can now be used to calculate any average single-particle property using
the Boltzmann expression

P (x) = (1/ZMS
1 ) ea2P2(x), (7.9)

with a2 ≡ u2〈P2〉/(kBT ) expressing the strength of the anisotropic molecular field and
ZMS

1 = Z(2)
1 in Eq. 7.7. The order parameter 〈P2〉 is then

〈P2〉 =
(
1/ZMS

1

)∫ 1

−1
dx P2(x) ea2P2(x). (7.10)

We have already encountered this integral in Eq. 3.75 and expressed it in terms of spe-
cial functions. The self-consistency requirement, of 〈P2〉 being the same on the two sides,
constitutes a necessary condition, typical of MFT. A simple intuitive approach to solving
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(a) (b)

Figure 7.1 (a) The order parameter 〈P2〉 vs the molecular field strength parameter a2. (b)
The self-consistent values of 〈P2〉 vs scaled temperature T ∗ = kBT/ε, with ε = ū2/z, and
z = 6 the nearest neighbour number for a cubic lattice to ease comparison with simulations.

(a) (b)

Figure 7.2 Lebwohl-Lasher model results. (a) MFT energy −U∗ vs temperature T ∗. (b)
The heat capacity C∗

V
= C∗

V
/N from MFT ( ) and MC simulations (◦◦◦). Dimensionless

units [Fabbri and Zannoni, 1986].

the implicit Eq. 7.10 is a graphical one, locating the intersection between the 〈P2〉 versus
a2 curve, plotted in Fig. 7.1a and the straight line 〈P2〉 = a2kBT / u2. From this plot (or
from a table of 〈P2〉 versus the strength of molecular field parameter a2) and from Eq. 7.10
we can obtain the temperature corresponding to a certain 〈P2〉. The self-consistent 〈P2〉 is
plotted versus scaled temperature in Fig. 7.1b. We now examine the various thermodynamic
observables.

Mean field energy. The mean field energy is just the average of the effective potential.
When calculating the total energy U of the whole system ofN particles we have to multiply
for a factor of (1/2) to avoid counting a particle twice (one as reference and the other as
‘environment’). Thus, the total energy is U = −Nu2 〈P2〉2/2. In the special case of the
LL model, discussed in detail in Chapter 10, where ε = u2/z, with ε > 0 (z = 6 for a
cubic lattice used in simulations) the single-particle energy in dimensionless units is just
U∗ = U/(Nε) = −3〈P2〉2 and is plotted in Fig. 7.2a.

Heat capacity. As we have mentioned before, the heat capacity per particle C∗V = C∗V /N
can be obtained by differentiating the energy with respect to T (Eq. 4.124a) and in Fig. 7.2b

https://doi.org/10.1017/9781108539630.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.008


336 Molecular Theories

we show the MFT result for C∗V together with the Monte Carlo simulation results for the
LL model [Fabbri and Zannoni, 1986]. From Fig. 7.2b we get a clear indication of the
location of the phase transition. We see that MFT significantly overestimates the transition
temperature (17% for the Lebwohl–Lasher model). Thus, it is much easier for molecules to
form an ordered mesophase according to MFT than it is, for the same starting pair potentials,
if we do not perform the rather drastic approximations we have performed. This is actu-
ally a rather general feature of MFT, also for more complex potentails. However, here we
have the possibility of calculating entropy and free energy and of proceeding quantitatively
from these.

Entropy. The entropy can be obtained from standard statistical thermodynamics
(Chapter 4) as

S = −NkB〈lnP (x)〉 = −N
T
u2〈P2〉2 +NkB lnZMS

1 . (7.11)

Free energy. We have

A = U − T S = −N
2
U −NkBT lnZMS

1 = +Nu2

2
〈P2〉2 −NkBT lnZMS

1 . (7.12)

Note that this simple version of MFT is not fully thermodynamically consistent since the
correct expression for A can be obtained in this way but not from the statistical thermody-
namic expression from the average of lnP . In other words,ZMS

1 is not the complete partition
function. The problem we are left with is that of determining if there is an orientational phase
transition or not. To do this we should see if there is a temperature region where the free
energy calculated from Eq. 7.12 is lower than that of the reference isotropic phase, taken
as 0. We see that indeed at T ∗ = kT /ε ≥ TNI = 1.321 a nematic phase has a lower
free energy and thus is more stable than the disordered phase. The free energy curve meets
the abscissa with a finite slope. Thus, the free energy of the most stable phase will have
an edge point at the transition. Remembering the thermodynamic relations in Chapter 2
we see that MFT predicts the NI transition to be a first-order one. The values of the most
important transition quantities are reported later in Table 7.1. It is worth noting that the
absolute value of the transition temperature cannot really be predicted by MFT applied to
induced dipole-induced dipole dispersive interactions (Section 5.8.2), as imagined in the
original derivation by Maier and Saupe [1958, 1959]. Kaplan and Drauglis [1971] have
shown that, using reasonable estimates for the polarizability anisotropy and other molecular
parameters to calculate the effective field strength parameter u2, the NI transition obtained is
completely wrong (not surprising since important terms like short-range steric interactions
are completely missing). A rationalization proposed [Luckhurst and Zannoni, 1977] is that
both short- and long-range forces are important in determining the molecular organization
in a nematic phase but that they operate at quite different levels. Thus, short-range forces
could be responsible for the formation of highly ordered groups or clusters of molecules,
less anisometric than its constituent particles due to the local packing. As a consequence,
the anisotropic short-range forces between clusters would become of minor importance.
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(a) (b)

Figure 7.3 (a) The second-rank and fourth-rank order parameters 〈P2〉 and 〈P4〉 obtained
from MC simulation of the LL model (�) [Fabbri and Zannoni, 1986] and from MFT ( )
plotted against reduced temperature T/TNI . (b) 〈P2〉 from MFT ( ) and experiments on
the nematics MBBA (�), OH-MBBA ('), MBCA (×), APAPA (�) [Leenhouts et al., 1979],
5CB (∗∗∗), HAB (���) [Picken, 2001], anisaldazine (�) [Blinc et al., 1968], PAA ( ) [Pines
and Chang, 1974]; and three 4,4′-disubstituted benzoic acid-phenylesters: MBA5PE ( ),
HBA5PE (•), MBBAHPE (((() [Ibrahim and Haase, 1976]. Full chemical names correspond-
ing to the abbreviations are given in Appendix N.

The anisotropy in the polarizability of the cluster will be approximately proportional to the
number of particles in the cluster and therefore the dispersive interaction energy between
clusters would become dominant. The clusters are expected to be essentially the same above
and below TNI , in agreement with the small entropy of transition observed experimentally.

Order parameters. In Fig. 7.3a we compare the MFT 〈P2〉 and 〈P4〉 with the Monte Carlo
results for the LL model (see Section 10.2.1 for details on the simulation). To compare
MFT results for the order parameters with experiment, it is convenient to employ reduced
temperatures: T/TNI , since the NI transition temperature changes very significantly with
chemical composition (see, e.g., Table 1.2). In Fig. 7.3b we compare MFT results for 〈P2〉
with experimental data for various nematics (some data were already shown in Fig. 3.6).
The Maier–Saupe theory based on second-rank interactions predicts that all liquid crystals
should have a universal behaviour for the order parameter 〈P2〉 versus reduced temperature
curve, with 〈P2〉NI = 0.429 and 〈P4〉NI = 0.12 (see Table 7.1). Even if no universality
can be claimed, and data for some compounds appear quite different at low temperature, the
similarity of the curves is apparent. The agreement is, however, not perfect and shifts up and
down with respect to the MS curve of the experimental results, as well as changes of slope,
can be observed. The measured 〈P2〉 at the transition are, however, reasonably similar to the
MFT ones. For instance, NMR results were: 〈P2〉NI = 0.338± 0.001 [Emsley et al., 1981]
for 5CB and 〈P2〉NI = 0.404 ± 0.005 for 4′-n-propyl-4-n-cyano bicyclohexane (CCH3)
[Dong et al., 1989]. It is worth mentioning that, differently from the results just mentioned,
the order parameters experimentally measured are most often for probe molecules dissolved
in liquid crystals and not for pure nematogens (see Section 7.3.3).
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7.3 Generalized Mean Field Theory for Uniaxial Nematics

We saw in Chapter 3 how the order of biaxial molecules can be described in terms of
Wigner matrix averages, or of distributions [Berardi et al., 2002; Tschierske, 2001]. Here
we wish to write down an MFT for a uniform system formed of rigid molecules of arbitrary
symmetry. In particular, we discuss the so called LZNS theory for non-cylindrical particles
as developed by Luckhurst et al. [1975]. We start from the general pair potential between
two rigid particles of arbitrary symmetry (see Eq. 5.6) written as an expansion in rotational
invariants as

−U (r12,�1L,�2L) =
∑

u
k1k2
L1L2J

(r12)Sk1,k2
L1,L2,J

(�1L,�2L,�rL), (7.13)

where the scalar functions Ski,k2
L1,L2,J

(�1L,�2L,�rL) [Stone, 1978] are the same already used
in Chapter 4 and discussed in Appendix G. We now take the three averages described before.
The first is performed over the orientations of the intermolecular vector �rL assuming that
they are distributed isotropically, which gives

〈
DJ
−m1−m2,0(�r )

〉
�r
= δJ,0δm1+m2,0,

−U12 = U (r12,�1,�2) =
∑

u
k1k2
LL0(r12)Sk1,k2

L,L,0(�1L,�2L), (7.14a)

=
∑
L

(−1)L√
2L+ 1

∑
k1.k2

(−1)k2u
k1k2
LL0(r12)DL

k1,−k2
(�21), (7.14b)

after recalling the expressions for the Stone invariants (Eq. G.19) and the relevant Clebsch–
Gordan coefficients (Eq. F.27), together with the Wigner matrices closure, Eq. F.14. We
see that the assumption of isotropic distribution of intermolecular vectors has caused L1

to equal L2 (just called L from now on) and has made the pair potential dependent only
on relative orientations. It is useful to note that in most theoretical treatments a specific
interaction rank is chosen, typically L = 2. In this case, the expression Eq. 7.14b holds
also for lattice models with sufficient symmetry, e.g. on a cubic lattice where the isotropic
average is replaced by a sum over nearest neighbours taken over the six inter-particle vectors
at the lattice distance r12 = a. Assuming L = 2, we have

−U12 = 1√
5

∑
k1.k2

(−1)k2u
k1k2
220 (r12)D2

k1,−k2
(�21). (7.15)

For biaxial (D2h) particles only k1, k2 even (i.e. 0, ± 2) are allowed and

−U12 = U (r12,�21) = 1√
5

∑
k1.k2

u
k1k2
220 (r12)R 2

k1,−k2
(�21), (7.16)

where R 2
m,n are the real symmetrized Wigner functions defined in Eq. 3.149b. For two

identical molecules

−U ′
12 =

u00
220√
5

{
R 2

0,0(�21)+ 2λ20[R 2
2,0(�21)+R 2

0,2(�21)]+ 4λ22R
2
2,2(�21)

}
, (7.17)

with λ20 = u20
220/u

00
220 = u02

220/u
00
220, λ22 = u22

220/u
00
220. This potential has been put forward

by Straley [1974] and more recently by Sonnet et al. [2003] and its phase diagram has
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been studied with MC simulations by Preeti et al. [2011]. For a dispersive potential, where
u
qn

220 = k12α
2,q
1 α

2,n
2 , or other separable potentials where the pair interaction coefficients can

be factorized as a product of single molecule properties, one obtains the second-rank biaxial
potential studied by Luckhurst and Romano [1980a] and Biscarini et al. [1991]

−U ′
12 =

u00
220√
5

{
R 2

0,0(�21)+ 2λ[R 2
2,0(�21)+R 2

0,2(�21)]+ 4λ2R 2
2,2(�21)

}
, (7.18)

with λ = α2,2/α2,0. Referring to Eq. 7.16, it is worth considering the case of two possibly
different molecules and symmetries, as, for example, for a mixture of mesogens or for a
solute (not necessarily mesogenic) in a nematic solvent. If the molecules are not identical
we have uqn220 �= u

nq

220. For the case of a dispersive potential uqn220 = k12α
2,q
1 α

2,n
2 , so that

the biaxiality parameters are λ(1)
2 = α2,2

1 /α
2,0
1 , λ(2)

2 = α2,2
2 /α

2,0
2 , λ22 = λ(1)

2 λ
(2)
2 . We shall

consider solutes in Section 7.3 and now return to the general expression in Eq. 7.14b for the
pair potential. We can perform yet another average, albeit a formal one, on the molecular
separations and obtain the purely orientational effective pair potential

−U12 =
∑

uLk1k2 S
k1,k2
L,L,0(�1,�2), (7.19)

where −uLk1k2 ≡ 1
V

∫
dr12r

2
12u

k1k2
LL0(r12)g(r12), and g(r12) is the radial distribution defined

in Chapter 4. Note that in this way the mean field interaction between particles does not
depend on their separation any more! The final average we have to take is over the orienta-
tions of the second molecule, keeping into account the symmetry of the candidate-oriented
phase we are considering. Recalling the explicit expression for the Stone invariants Eq. G.19
we can write the mean field potential acting on one molecule in a uniform phase as

−U (�1) =
∑

uLk1k2

〈
S
ki,k2
L,L,0(�1,�2)

〉
�2
=
∑ (−1)L+quL,k1k2√

2L+ 1
〈DL

q,−k2
〉DL

q,k1
(�1).

(7.20)

If we wish to calculate the properties of a candidate phase with a certain symmetry (e.g.
uniaxial or biaxial) we can first use this symmetry to find the order parameters 〈DL

q,−k2
〉

appropriate for such a phase using the techniques presented in Chapter 3 and Appendix G.
This does not imply that the phase exists or that it is more stable than the isotropic or of some
other competing molecular organization. We just calculate what would happen for such a
mesophase. Then, after that, we shall compute the free energy of this candidate phase and
compare it with that of the others (particularly the isotropic one) and decide which has the
lowest free energy and thus is going to exist at certain thermodynamic conditions. We now
proceed by specializing in various cases.

7.3.1 Uniaxial Phases of Uniaxial Mesogens

For a uniaxial phase, with the director defining the z laboratory axis, a rotation of
an arbitrary angle α around the director should leave everything the same. This gives
〈DL

q,−k〉= 〈DL
0,−k〉δ0,q . Similarly, for a uniaxial molecule, the single-particle distribution

will not depend on rotations of an arbitrary angle γ around the molecular z-axis, so
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(a) (b)

Figure 7.4 (a) 〈P2〉 as a function of temperature T ∗ for the HJL potential with
λ4 = −0.4 (a),−0.2 (b),0.0 (c),0.2 (d),0.4 (e),0.6 (f). We also show the results of two Monte
Carlo simulations for a 10 × 10 × 10 lattice with λ4 = −0.2 (�) and 0.2 (�) [Fuller et al.,
1985]. (b) The same plot vs reduced temperature T/TNI . Curve (c) corresponding to the
Maier–Saupe limit λ4 = 0 is dashed.

that 〈DL
0,k2
〉 = 〈PL〉δk2,0. With the shorthand uL ≡ (−1)L/

√
2L+ 1uLL0, the effective

potential reduces to

−U (x) =
∑
L

uL〈PL〉PL(x), (7.21)

with x ≡ cosβ. Only even L terms are allowed in a non-polar nematic, to comply with the
D∞h symmetry of the mesophase, which implies invariance for β −→ π−β (cf. Chapter 3).
The simplest of these potentials with the even symmetry required for a nematic, is that with
L = 2, corresponding to the Maier–Saupe case that we have treated in detail earlier in this
chapter. The effect of fourth-rank terms on phases with D∞h symmetry has been studied
by Humphries–James–Luckhurst (HJL) truncating the series in Eq. 7.21 to the first two
anisotropic contributions L = 2,4 [Humphries et al., 1972].

−UHJL(x) = u2[〈P2〉P2(x)+ λ4〈P4〉P4(x)], (7.22)

with λ4 ≡ u4/u2. The orientational order parameters obtained from this potential will obey
the consistency equations

〈PL〉 =
(
1/ZHJL

1

) ∫ 1

−1
dxPL(x) exp

{ u2

kBT
[〈P2〉P2(x)+ λ4〈P4〉P4(x)]

}
, (7.23)

where L = 2,4 and the single-particle orientational pseudo-partition function is

ZHJL
1 =

∫ 1

−1
dx exp

{ u2

kBT
[〈P2〉P2(x)+ λ4〈P4〉P4(x)]

}
. (7.24)

The energy per particle isUHJL = − 1
2u2

[〈P2〉2 + λ4〈P4〉2
]
, and the Helmholtz free energy

per particle isAHJL = 1
N

A = 1
2u2

[ 〈P2〉2+λ4〈P4〉2
]−kBT lnZHJL

1 . The transition temper-
ature for a given λ4 can be determined by evaluating the order parameters 〈P2〉 and 〈P4〉 from
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Table 7.1. Transition temperatures and properties for the HJL potential.
The λ4 = ∞ results are for a pure P4 potential

λ4 kBTNI /ε 〈P2〉NI 〈P4〉NI 〈P6〉NI [C∗
V

]NI [Snet ]NI

−1.0 1.2787 0.282 0.033 −0.001 5.69 −0.184

−0.8 1.2826 0.296 0.039 0.000 5.92 −0.202

−0.6 1.2878 0.314 0.047 0.002 6.24 −0.226

−0.4 1.2948 0.338 0.060 0.005 6.68 −0.262

−0.2 1.3050 0.374 0.082 0.011 7.34 −0.319

0.0 1.3212 0.429 0.120 0.024 8.35 −0.418

0.2 1.3491 0.516 0.194 0.058 9.64 −0.609

0.4 1.3997 0.630 0.320 0.134 9.78 −0.938

0.6 1.4793 0.723 0.448 0.234 8.30 −1.304

0.8 1.5810 0.778 0.538 0.318 7.01 −1.587

1.0 1.6961 0.808 0.597 0.379 6.23 −1.787

∞ 0.7508 0.430 0.561 0.300 19.58 −1.259

the consistency condition in Eq. 7.23 and using these to evaluate the Helmholtz free energy.
The results are given in Table 7.1 for a few λ4 values and including the pure P2 and P4 cases
[Zannoni, 1979b]. As before we have considered u2 = 6ε to facilitate comparison with the
cubic lattice version of the HJL model and its simulation results [Fuller et al., 1985], shown
in Fig. 7.4. We note the increase in TNI obtained for λ4 > 0, indicating stabilization of the
nematic phase and much smaller effect in the opposite direction for λ4 < 0. In Fig. 7.4b
we have plotted the second-rank order parameter versus reduced temperature T/TNI for
a number of λ4 values. We note that at the same T/TNI the order is shifted upwards or
downwards with respect to the Maier–Saupe case (λ4 = 0) as λ4 increases or decreases and
the order parameter at the transition changes correspondingly. The comparison of curves
(c) and (e) with the two MC simulations corresponding to λ4 = ±0.2 [Fuller et al., 1985]
just shows, as for the LL case, the important overestimation of TNI caused by the molecular
field approximation. However, the curves are fairly parallel to one another and the slope of
〈P2〉 near transition temperature is quite similar. The effect on the 〈P4〉 versus 〈P4〉 curve is
not too great. In particular, 〈P4〉 remains always positive.

7.3.2 Uniaxial Phases of Biaxial Mesogens

Even if a nematic phase is uniaxial, its constituent mesogens are not and their shape could
often be better approximated with lath-like biaxial objects (see the formulas in Table 1.2).
Assuming the mesogens to be all identical, as well as rigid and biaxial, we have, specializing
Eq. 7.20 for the assumed uniaxial phase symmetry, that 〈DL1

q1,k2
〉 = 〈DL1

0,k2
〉δq1,0 and

−U (β,γ ) =
∑ (−1)L√

2L+ 1
uLk1k2〈DL

0,k2
〉DL

0,k1
(β,γ ). (7.25)
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(a) (b)

Figure 7.5 (a) The second rank uniaxial 〈P2〉 and (b) biaxial order parameter for uniaxial
phases formed of biaxial particles with a certain biaxiality λ plotted as a function of reduced
temperature [Zannoni, 1975].

This should hold both for polar and non-polar mesophases and it gives the effective average
potential acting on a molecule by the combined action of all the other molecules in the
system. This has to be taken together with the set of self-consistent equations

〈DL
0,k2
〉 = (

1/ZUX
1

) ∫
dβ sinβdγ DL

0,k2
(β,γ )

exp
[∑ (−1)LuLk1k2

kBT
√

2L+ 1
〈DL

0,k2
〉DL

0,k1
(β,γ )

]
, (7.26)

with the normalization integral

ZUX
1 =

∫
dβ sinβdγ exp

[∑ (−1)LuLk1k2

kBT
√

2L+ 1
〈DL

0,k2
〉DL

0,k1
(β,γ )

]
. (7.27)

The strength of the MFT potential is proportional to the orientational order parameters
〈DL

0,k2
〉. The effective potential for molecules of a certain symmetry can be obtained as

special cases of Eq. 7.25 using the procedure in Appendix G. Here we consider only inter-
actions of second rank (L = 2). Moreover, we assume that the molecules have biaxial D2h

symmetry, so that [Luckhurst et al., 1975]

−U (β,γ ) = 1√
5

∑
k1,k2

u2k1k2〈D2
0,k2
〉D2

0,k1
(β,γ ), (7.28)

with k1,k2 = 0, ± 2. We consider, in particular, the case of two molecules interacting via
dispersion interactions (Chapter 5), although the theory can really be applied to any second-
rank interaction potential. This LZNS theory was developed by Luckhurst et al. [1975]
for biaxial solutes in a uniaxial solvent. Theories for slightly different models of biaxial
particles were developed by Freiser [1970] and Straley [1974] who looked particularly at
the formation of biaxial nematic phases, rather than the effects of molecular biaxiality on
uniaxial phases (see Section 7.3.3). In Fig. 7.5 we see the effect of going from uniaxial to
biaxial mesogens on the order parameters 〈P2〉 and 〈D2

02〉. The dependence of 〈D2
02〉 on
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〈P2〉 for various biaxialities λ was already shown in Fig. 3.22 in the context of maximum
entropy analysis of experimental data.

7.3.3 Biaxial Solutes in Uniaxial Phases

In many spectroscopic techniques a nematic is studied by adding a solute (probe) molecule
whose spectrum is recorded and analyzed to obtain indirect information on the LC system.
The probe concentration is kept as low as possible to reduce perturbations of the system and
the amount needed depends on the sensitivity of the technique and can significantly vary.
For instance, concentrations of a few percent w/w are typically needed for NMR, DNMR
studies, of 10−3 w/w for ESR, and even lower for Fluorescence Depolarization experiments.
In all these cases it is reasonable to assume that probe-probe interactions are negligible at
these dilutions and that the surrounding of a probe is essentially an unperturbed nematic.
If the solute is similar enough to the mesogens the probe technique can also be assumed to
mimic their behaviour. If we assume second-rank interactions the effective potential acting
on a probe molecule (P),UXS(β,γ ), in a uniaxial LC solvent (S) formed by biaxial mesogens
and at infinite dilution is given by [Catalano et al., 1983]

−UP(β,γ )/(kBT ) = ηaP2(cosβ)+ ηbD2
0,2(β,γ ), (7.29)

where the effective field coefficients are ηa = − 1√
5
[u200〈P2〉S + 2u220〈D2

0,2〉S]/(kBT )

and ηb = − 2√
5
[u202〈P2〉S + 2u222〈D2

0,2〉S]/(kBT ). The coefficients uLmn are average
solute-solvent interaction terms. The solvent orientational ordering is described by the order
parameters 〈D2

0,2〉S. The solute order parameters are related to UP(β,γ ) by the Boltzmann
averages:

〈P2〉P = 1

ZP
1

∫
dβ sinβdγ P2(cosβ) exp[−UP(β,γ )/(kBT )], (7.30a)

〈D2
0,2〉P =

√
3√

8ZP
1

∫
dβ sinβdγ sin2 β cos 2γ exp[−UP(β,γ )/(kBT )], (7.30b)

where the normalization integral is ZP
1 =

∫
dβ sinβdγ exp[−UP(β,γ )/kBT ]. Since the

MFT biaxial potential is formally identical to the maximum entropy expression discussed
in Section 3.10.7, we can also recall the approximate analytic expression Eq. 3.147 obtained
using computer algebra [Zannoni, 1988], i.e. with ξ = 2λ, Re〈D2

02〉 ≈ λ〈P2〉
(〈P2〉 − 1

)2.
The apparent solute biaxiality is in this model

λP = ηb

2ηa
= u202〈D2

0,0〉S + 2u222〈D2.
0,2〉S

u200〈D2
0,0〉S + 2u220〈D2

0,2〉S
. (7.31)

In general, λP will depend on the solute-solvent coefficients u2mn and on the solvent order
parameters and be in general temperature dependent. However, two important special cases
should be considered. First, if the solvent biaxial order parameter, 〈D2

0,2〉S is negligible, λP is

a constant for that solute-solvent combination. Indeed, putting 〈D2
0,2〉S = 0 and combining

equations gives λP = u202/u200. Second, there will not only be temperature independence
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but also no solvent dependence in λP if the solute-solvent interactions can be decomposed
into a product of averaged single-particle second-rank properties with elements X2,n

P , X2,m
solv

for the solute and solvent, respectively, so that, e.g.

u2mn ∝ X2,m
S X

2,n
P . (7.32)

Thus, the solute biaxiality is

λP = X
2,2
P

X
2,0
P

=
√

3

2

[XP]xx − [XP]yy
2[XP]zz − [XP]xx − [XP]yy

. (7.33)

Note that even though we have assumed separability of the solute-solvent interaction coef-
ficients (Eq. 7.32) we have not specified as yet the physical nature of the solute (or sol-
vent) molecular biaxiality. Two natural, but by no means unique, choices could be traced
to the biaxiality in the polarizability if dispersive forces are considered to be the domi-
nant interaction or, in the molecular shape anisotropy, if packing and steric repulsion are
thought to be the main contribution to ordering. We now consider some models proposed for
evaluating λ.

Dispersion forces model. As we have already seen, when the orienting potential is deter-
mined by anisotropic dispersive interactions [Luckhurst et al., 1975] the solute-solvent
coefficients actually separate in a product of molecular polarizability tensors αP, αS for the
probe solute and the solvent, thus verifying in this case Eq. 7.32 and we have simply u2qn =
k12α

2,q
S α

2,n
P . The probe biaxiality is λP

α =α2,2/α2,0=
√

3
2 (αxx −αyy)/(2αzz − αxx − αyy).

Straley box model. The effect of steric forces is not easy to evaluate for a biaxial object.
Straley [1974] proposed to consider the solute molecule enclosed in the smallest possible
orthogonal box of length L, breadth B, width W . Within this approach the coefficients for
two equal molecules say of type (A) are [Luckhurst et al., 1975]

u
(AA)
200 =

{
−2B

(
W 2 + L2

)
− 2W

(
L2 + B2

)
+ L

(
W 2 + B2

)
+ 8WBL

}/
3, (7.34a)

u
(AA)
220 =

(
L2 − BW

)
(B −W )/

√
6, (7.34b)

u
(AA)
222 = −L(W − B)2/2. (7.34c)

In general, when considering steric models, we have to point out that separability is
assumed, but not demonstrated. In particular, if we (arbitrarily) assume that a geometric

mean relation holds for the coefficient obtained from u
(AB)
2qp =

√
u

(AA)
2qp u

(BB)
2qp .

Shape tensor. We can also get an estimate of the shape anisotropy considering a molecule
as set ofm steric interaction centres (spheres in lieu of the atoms or groups of atoms) at posi-
tion r i and defining a shape tensor F [Catalano et al., 1983] depending on the distribution
of these centres in the molecule. We take this tensor to have the same form of an inertia ten-
sor but with sizes replacing the masses: Fab =

∑m
i=1 di

{
[r i · r i − (ri,a)2]δa,b − ri,ari,b

}
,

a,b = x,y,z where i runs over the particles forming the molecules and di is a typical size
of the spherical centres. In practice, we can take di to be the cubic root of the appropriate
van der Waals volume VvdW [Bondi, 1964].
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Van der Est–Burnell continuum elastic model. In their analysis of solute order in nemat-
ics studied with NMR, Van der Est et al. [1987] assumed that the ordering potential acting
on a molecule could be phenomenologically interpreted as an elastic potential acting on the
solute. Thus, the liquid crystal host is viewed as a deformable continuum and the deforma-
tion is assumed to be

U (β,γ ) = kε[C (β,γ )]2, (7.35)

where C (β,γ ) is the contour length of the projection of the molecule on the plane perpen-
dicular to the director. This in turn is evaluated modelling the molecule as a collection of van
der Waals spheres and taking the contour as that of a minimal stretchable tube containing
the molecule.

Zimmermann–Burnell. In an extended version of the model, Zimmerman and Burnell
[1990] assumed

U (β,γ ) = kε[C (β,γ )− kξ z(β,γ )]C (β,γ ), (7.36)

where z(β,γ ) is the length of the projection of the solute molecule along the director:

z(β,γ ) = Zmax(β,γ )− Zmin(β,γ ) (7.37)

with Zmax(β,γ ), Zmin(β,γ ) projections of the molecule onto the director ddd||ZZZ and kε , kξ
parameters. The model has been further extended and tested [Burnell and de Lange, 1998].

Ferrarini–Moro–Nordio–Luckhurst (FMNL) model. In the model of Ferrarini et al.
[1992] the potential of mean torque acting on a rigid molecule is assumed to be proportional
to the surface exposed to the surrounding environment in a certain direction and is written as

U (β,γ )/(kBT ) = ε
∫
S

dSP2(n̂S · d), (7.38)

where the integral is over the surface, S, of the particle, n̂S is a unit vector normal to the
surface in a certain point and d is the director. The parameter ε, expressing the strength of
interaction, has dimensions of a length to the minus 2 to make the right-hand side dimen-
sionless. This expression can be brought to a form similar to previous ones introducing a
surface tensor with spherical components

S2,m = −
∫
S

dSD2
0,m(θ,φ), (7.39)

where θ,φ give the orientation of the surface vector nS

U (β,γ )/(kBT ) = −ε
∑
m

S2,m∗D2
0,m(β,γ ), (7.40)

For a rectangular block the surface of each face can be easily evaluated giving S2,0 =
−[2Azz − (Axx − Ayy)]/

√
6 and S2,±2 = −(Axx − Ayy)/2, where Aaa is the area of the

face perpendicular to axis a = x,y,z. Note that a set of tangent spheres however disposed
has a surface tensor and biaxiality zero. Overlap will reduce the problem, but the biaxiality
is then somewhat dependent on the specific prescription employed. Thus, for a molecule
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having a lath shape with length L, width W and breadth B, the molecular biaxiality is
according to the model [Ferrarini et al., 1992, 1994; Luckhurst, 2001],

u200 = [(W + B)L− 2BW ]2 , (7.41a)

u220 =
√

3/2L(W − B) [(W + B)L− 2BW ] , (7.41b)

u222 = (3/2)L2(W − B)2, (7.41c)

with λ =
√

3
2 [L(B −W )]/[L(B +W )− 2BW ].

7.4 Biaxial Nematic Phases

We now depart from the assumption that the phase will be necessarily uniaxial even for
biaxial mesogens and derive an MFT for the dispersive interactions (Chapter 5) between
identical biaxial molecules [Straley, 1974; Remler and Haymet, 1986]. Starting again from
Eq. 7.20 and considering rank L = 2 interactions,

−U12 =
∑

(−1)quLn1n2 (r12)
〈
DL
q,n1

(�1L)
〉
DL
−q,n2

(�2L) , (7.42)

where uLn1n2 =
∑
m(−1)mūLmn1n2/(2L+1). Now, we consider the possibility of candidate

mesophases with orthorhombic D2h symmetry. In this case, DL
q,n1

= DL
q,−n2

and for iden-
tical particles the permutation symmetry of the pairwise intermolecular potential ensures
that uLqp = uLpq . The reality of the pair potential requires that uLqp = (−1)q+puL−q−p.
Thus, using the set of symmetrized Wigner functions R 2

m,n (Eq. 3.149), one obtains the
anisotropic single-particle mean-field potential as:

−UBX(�) = [u200〈R 2
0,0〉 + 2u220〈R 2

0,2〉]R 2
0,0(�)+ [u220〈R 2

0,0〉 + 2u222〈R 2
0,2〉]R 2

0,2(�)

+ [u200〈R 2
2,0〉 + 2u220〈R 2

2,2〉]R 2
2,0(�)+ [u220〈R 2

2,0〉 + 2u222〈R 2
2,2〉]R 2

2,2(�).

(7.43)

If the potential is separable, e.g. for the interaction coefficients for dispersive interactions
[Luckhurst et al., 1975], u2qp = X2qX2p and

−UBX(�) = u200

{
ηU [R 2

0,0(�)+ λR 2
0,2(�)]+ ηB [R 2

2,0(�)+ λR 2
2,2(�)]

}
, (7.44)

with ηU = 〈R 2
0,0〉 + 2λ〈R 2

0,2〉 and ηB = 〈R 2
2,0〉 + 2λ〈R 2

2,2〉 and where the angu-
lar brackets indicate the average on the single-particle orientational distribution. Thus, as a
result of the separable-type potential, we have only two independent parameters: u200 and
λ = α2,2/α2,0 and two independent effective mean field components ηU and ηB , acting on
a single molecule. The MFT internal energy is given by:

−UBX

kBT
= u200

2kBT

{[〈R 2
0,0〉 + 2λ〈R 2

0,2〉
]2 + 2

[〈R 2
2,0〉 + 2λ〈R 2

2,2〉
]2
}
, (7.45)
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Figure 7.6 MFT phase diagram for biaxial and uniaxial phases. The scaled transition
temperatures T ∗

NI
( ) and T ∗

NBN
( ) with T ∗ = kBT/ε, u200 = εz, are plotted as a

function of the molecular biaxiality λ [Biscarini et al., 1995].

while the entropy, referred to one particle is:

SBX

kB
= −u200

kBT

{[〈R 2
0,0〉 + 2λ〈R 2

0,2〉
]2 + 2

[〈R 2
2,0〉 + 2λ〈R 2

2,2〉
]2
}
+ lnZBX

1 . (7.46)

The mean field free energy is obtained from its standard expression as:

ABX

kBT
= u200

2kBT

(
η2
U + 2η2

B

)− lnZBX
1 , (7.47)

where the single-particle pseudo-partition function ZBX
1 is :

ZBX
1 =

2π∫
0

dα

π∫
0

dβ sinβ

2π∫
0

dγ exp
[−UBX(α,β,γ )/(kBT )

]
. (7.48)

The complete set of order parameter up to rank 4 describing the system is: 〈P2〉, 〈R 2
0,2〉,

〈R 2
2,0〉, 〈R 2

2,2〉, 〈P4〉, 〈R 4
0,2〉, 〈R 4

0,4〉, 〈R 4
2,0〉, 〈R 4

4,0〉, 〈R 4
2,2〉, 〈R 4

2,4〉, 〈R 4
4,2〉 and 〈R 4

4,4〉.
All the order parameters are non-vanishing if the system has a stable biaxial phase. In
a uniaxial phase, the order parameters 〈RL

m,n〉 with non-zero m vanish. In the isotropic
phase, all the order parameters are of course 0. Comparing the free energies for the isotropic,
uniaxial and biaxial phases gives the phase diagram in Fig. 7.6. The curves for the second-
rank order parameters: 〈P2〉, 〈R 2

0,2〉, 〈R 2
2,0〉 and 〈R 2

2,2〉 are also reported, together with the
MC computer simulation results for the same potential in Fig. 10.8 [Biscarini et al., 1995].
To ease comparison with that nearest neighbour lattice representation of the model (see
Section 10.3.1), the temperature in Fig. 7.6 is expressed as T ∗ = kBT /ε, with ε = u200/z

and z = 6 nearest neighbours number for a cubic lattice. Increasing the biaxiality we see a
transition from calamitic uniaxial N+ to biaxial nematic NB. The NB phase becomes more
stable and exists up to higher temperatures, until at λ = 1/

√
6 the deformed rod (pro-

late) shape becomes cubic and then further squashing brings the shape to be more flat-like
(oblate). For λ > 1/

√
6 the nematic phase becomes a discotic one N−, but thermodynamic

results for a prolate particle at (λ,T ∗) in the phase diagram can be mapped onto the point(
λ′,T ∗′

) = (
[(3− λ√6)/(

√
6+ 6λ)],[(24T ∗)/[(6λ+√6)2]

)
for the dual oblate particle.
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7.5 Uniaxial Smectic Phases

A simple and successful MFT of the smectic A phase, originally developed by McMillan
[1971, 1972], and more recently revisited [Marguta et al., 2006] is based on the assumption
that smectic ordering is promoted by the anisotropic attractive interactions, extending the
Maier–Saupe model for nematics, with inclusion of the molecular separation, as well as the
relative orientation in the starting pair potential, which is taken as, for uniaxial molecules:

−U (�1,r1) =
∑〈

uL00(r12)S0,0
L,L,0(�1,�2)

〉
r2.�2

, (7.49a)

=
∑ (−1)L+q√

2L+ 1

〈
uL(r12) DL

q,0(�2)
〉
r2.�2

DL
q,0(�1), (7.49b)

where the simplified notation uL(r12) = uL,00(r12) is used. The potential is an empirical
one and, like in the Maier–Saupe one, steric repulsions are not taken into account. McMillan
made the ansatz that the positional-orientational pair potential is separable and

−U12 (r12, cosβ12) = u0(r12)+ u2(r12)P2(cosβ12) = −w e−(r12/σ)
2
[δ2 + P2(cosβ12)],

(7.50)

with u0(r12) = δ2u2(r12) = −δ2w e−(r12/σ)
2
, where σ is the range of the interaction, w is

the interaction strength of the anisotropic term and δ2 = u0/u2. Using the Fourier series of
a Gaussian (Eq. E.11)

g(x) =
√
πσ

d

∞∑
n=−∞

αn cos

(
n2πx

d

)
, (7.51)

with αn ≡ e−[nπσ/d]2
, we have u0(r12) ≈ −δ2w

√
πσ

d

[
1+ α1 cos

(
2πr12

d

)]
and

−U12 ≈
√
πσw

d

[
1+ α1 cos

(
2πr12

d

)]
[δ2 + P2(cosβ12)], (7.52a)

≈
√
πσw

d

[
δ2 + P2(cosβ12)+ α1δ2 cos

(
2πr12

d

)
+ α1 cos

(
2πr12

d

)
P2(cosβ12)

]
.

(7.52b)

Averaging over the orientations and positions of one of the two molecules and assuming
the candidate mesophase of which we are testing the stability against nematic and isotropic
to be of smectic A type, i.e uniaxial around the director, say the z-axis of the lab, and with
positions periodically distributed along z, we have, as seen in Eq. 3.189

P (z,x) =
∞∑
L=0

∞∑
nz=0

pL;nz cos(nzqz)PL(x), L even, (7.53)

with x = cosβ1, q = 2π/�z and �z the layer spacing, while the expansion coefficients pL;n
are order parameters given by

pL;n = 〈cos(nqz)PL(x)〉 . (7.54)
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Figure 7.7 Positional (τ ), mixed (σ ), and orientational (〈P2〉) and order parameters vs
reduced temperature T/TNI according to McMillan theory for smectic A with parameters
α = 0.85, and δ2 = 0. The solid lines correspond to the exact solution; the dashed lines
correspond to McMillan’s approximation [Marguta et al., 2006].

McMillan makes some further approximations, but the numerical calculation can be per-
formed in full, as shown by Marguta et al. [2006] (see Fig. 7.7). The effective potential,
neglecting an irrelevant scalar term, is

−USM (z,x) = u2
[〈P2〉P2(x)+ c0:1τ cos

(
2πz

�z

)
+ c2;1σ cos

(
2πz

�z

)
P2(x)

]
, (7.55)

with c0:1 = α1δ2/u2, c2;0 = 1, c2;1 = α1/u2. The order parameters have to be deter-
mined self-consistently as usual. The expressions can be integrated analtically on z, giving
[Kventsel et al., 1985]

〈P2〉 = (�z/Z
SM
1 )

∫ 1

−1
dxP2(x) exp {(u2/kBT ) 〈P2〉P2(x)} I0(ζ ), (7.56a)

σ = (�z/Z
SM
1 )

∫ 1

−1
dxP2(x) exp {(u2/kBT ) 〈P2〉P2(x)} I1(ζ ), (7.56b)

τ = (�z/Z
SM
1 )

∫ 1

−1
dx exp {(u2/kBT ) 〈P2〉P2(cosβ)} I1(ζ ), (7.56c)

where I1(ζ ), I0(ζ ) are modified Bessel functions of order n [Abramowitz and Stegun, 1965]:
In(z) = 1

π

∫ π
0 dθ ez cos θ cos(nθ ), with ζ = u2

(
c2;1σP2(x)+ c0:1τ

)
/ (kBT ). The pseudo-

partition is

ZSM
1 = �z

∫ 1

−1
dx exp {(u2/kT ) 〈P2〉P2(cosβ)} I0(ζ ). (7.57)

In Fig. 7.7 the order parameters are plotted as a function of the reduced temperature T/TNI .
Beyond the pioneering McMillan study, various extensions have been proposed. An MFT
for biaxial molecules has been put forward by Teixeira et al. [2006]. The MFT has also been
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extended to smectic C phases [McMillan, 1973]. A fairly general density functional theory
including smectics has also been developed by Lipkin and Oxtoby [1983].

The connection between mean field and Landau–de Gennes theories has been studied
by Katriel et al. [1986] and more recently in rigorous mathematical terms by Ball and
Majumdar [2010].

7.6 Density Functional Onsager Theory

In general, a statistical mechanics Density Functional Theory (DFT) considers the free
energy as a suitable functional of the one-particle probability density P (X). In particu-
lar, this can consist of a virial expansion of the pressure (or of the osmotic pressure as
appropriate, e.g. if we are describing a colloidal suspension) or equivalently of the free
energy in terms of the number density ρ (or of the volume fraction φ). This approach
is probably more appropriate for lyotropic liquid crystals or colloidal suspensions where
composition (volume fraction) is the relevant thermodynamic variable driving the disorder-
order transition. As we have seen in Section 1.14, suspensions of rod-like or plate-like
particles undergo a isotropic-nematic phase transition as a function of rod concentration. In
this case, anisotropic shape and aspect ratio are likely the key ingredients to liquid crystalline
behaviour, as assumed in hard-core interaction models (Section 5.5). While at low rod
concentrations a suspension is isotropic, the particles tend to align to avoid the particle-
particle contact with their high cost in energy. At the same time the greater translational
freedom along the director can actually bring a counter-intuitive increase of entropy in the
nematic phase. Onsager [1949] considered nematic ordering in a system of hard, rigid rods
devoid of attractive interactions and with aspect ratio L/D � 1, where L is the length and
D is the diameter of the rod. At low densities it is possible to express the free energy of such
a system in the form of the virial expansion, as obtained with the ‘trick’ of considering a
particle at a certain orientation �i as the ith different component of a mixture. In this way
the free energy can be built from the mixing entropy of a multicomponent mixture. Given
its importance, we reproduce here the essential steps of the Onsager [1949] derivation. We
start by considering a system ofN rigid particles in a volume V at temperature T (canonical
conditions) and write the Helmoltz free energy A, starting from the configurational partition
Q(N,V,T ) given in Eq. 7.58

QB(N,V,T ) = 1

N !

∫
d̃rd�̃ exp [−UB

N

(̃
r,�̃

)
/(kBT )] = Z(N,V,T )/N ! (7.58)

and

A(N,V,T ) = A id(N,V,T )−NkBT ln[Qex(N,V,T )], (7.59)

where the ideal term for non-interacting particles given in Eq. 4.33 is

A id(N,V,T ) = NkBT ln[λ3�J/V�]+NkBT [ln ρ − 1]. (7.60)
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Following Onsager [1949] we can define a configuration integral for a suspension of Np
spherical particles in the volume V , as

Qex(Np,V ,T ) =
∫

dr̃ exp [−U/(kBT )] /Np! (7.61)

and we have from the virial expansion Eq. 4.20 that

lnQex(Np,V ,T ) = Np
{

1− ln

(
Np

V

)
+ 1

2
β1

(
Np

V

)
+ 1

3
β2

(
Np

V

)2

+ · · ·
}
, (7.62)

where βi are the so-called irreducible integrals defined in Eqs. 4.21a and 4.21b, and in
particular β1 = β(j,j ′) and β2 = β(j,j ′,j ′′) involve interactions of two and three particles
(j,j ′) and (j,j ′,j ′′) . Quite similarly, for a mixture of N1, . . . ,Ns, . . . particles of different
type in suspension, we have

lnQex(Np,V ,T ) =
∑
j

Nj [1− ln(Nj/V )]+ 1

2V

∑
j,j ′
β1

(
j,j ′

)
NjNj ′

+ 1

3V 2

∑
j,j ′,j ′′

β2
(
j,j ′,j ′′

)
NjNj ′Nj ′′ + · · · . (7.63)

In a system of anisotropic particles, we can formally consider that the particle types
correspond to their orientation. Dividing the angular space in ns solid angle bins��1, . . .,
��i, . . . ,��s centred at the respective orientations �1, . . . ,�i, . . . ,�ns, these bins will
have relative populations of particles �Ni/Np = P (�i)��i , with i = 1,2, . . . ,ns and
where P (�i) is the orientational distribution density introduced in Chapter 3. The irre-
ducible integralsβ1(j,j ′),β2(j,j ′,j ′′) correspond formally toβ1(�j,�j ′),β2(�j,�j ′,�j ′′ )
for fixed orientations �j , �j ′ , �j ′′ of the particles involved. Taking a continuum limit and
replacing the sums by integrals we have

lnQex(Np,V ,T ) = Np
{

1− ln

(
Np

V

)
−
∫

d�1P (�1) ln
[
V�P (�1)

]
+
(
Np

2V

)∫
d�1d�2β1 (�1,�2) P (�1)P (�2)

+
(
N2
p

3V 2

)∫
d�1d�2d�3β2 (�1,�2�3) P (�1)P (�2) P (�3)+ · · ·

}
(7.64)

and, simplifying the notation, we have the free energy as

�A
NkBT

= [ln ρ − 1]+
∫

d�1P (�1) ln[V�P (�1)]+ B2ρ + B3ρ
2 + · · · (7.65)

in terms of the virial coefficients appearing in the density expansion of the (osmotic) pres-
sure, where
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B2 = − 1

2V

∫
d�1

∫
d�2β1 (�1,�2) P (�1)P (�2) , (7.66a)

B3 = − 1

3V

∫
d�1

∫
d�2

∫
d�3β2 (�1,�2,�3) P (�1)P (�2) P (�3) . (7.66b)

The second term in Eq. 7.65 is the orientational entropy and the third one is the packing
entropy that is related toB2, the second virial coefficient for two rigid particles. The equilib-
rium orientational distribution function is obtained by minimizing the reduced free energy
with respect to P (�), subject to the normalization constraint

∫
d�1P (�1) = 1. Introducing

a Lagrange multiplier λ, as we did in Sections 3.8 and 4.2, and minimizing yields

P (�1) ∝ exp
{
− 2ρ

∫
d�2B2 (�1,�2) P (�2)

− 3

2
ρ2

∫
d�2d�3B3(�1,�2,�3)P (�2)P (�3)+ · · ·

}
, (7.67)

where the proportionality constant is determined by the normalization of P (�). In Onsager
theory only terms in B2 are retained, while the third and higher terms are neglected. This
gives the single-particle distribution

P (�1) =
exp

[
− 2ρ

∫
d�2B2 (�1,�2) P (�2)

]
∫

d�1 exp
[
− 2ρ

∫
d�2B2 (�1,�2) P (�2)

] . (7.68)

To proceed with a numerical calculation, a model for the particles has to be assumed and
an expression for B2 (�1,�2) obtained. Onsager theory is particularly convenient for hard
particles, where B2 is easier to evaluate, even though it is not limited to these potentials.
More specifically the Mayer function (Eq. 4.147) for hard-core potentials is just:

�(r12,�1,�2) = e[−UHP
12 /(kBT )] − 1 =

{−1, if particles overlap
0, if particles do not overlap

(7.69)

and B2 (�1,�2) is

B2 (�1,�2) =
∫

dr12�(r12,�1,�2) = 1

2
V HP

exc (�1,�2) , (7.70)

with V HP
exc (�1,�2) the excluded volume or covolume [Vroege and Lekkerkerker, 1992], i.e.

the volume of space where a particle cannot enter because of the presence of another one.
The orientationally averaged value entering the free energy expression Eq. 7.65 will be

B2 = 1

2

〈
Vexc

〉 = 1

2

∫
d�1d�2P (�1)P (�2)Vexc(�1,�2). (7.71)

For non-attracting particles all terms will be purely entropic in nature and the system will be
athermal. The excluded volume has been studied in detail for some simple particle shapes.

Hard cylinders. In the original treatment Onsager dealt with hard cylinders of diame-
ter d1, d2 and length l1, l2 and cylinders capped with hemispheres of the same diameter
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(the spherocylinders introduced in Section 5.5.2). The excluded volume of two cylinders of
diameter d1 and d2 and length l1 and l2 is [Onsager, 1949]:

V CYL
exc (�1,�2)

= −βCYL
1 (l1,d1;l2,d2;β12) = 2BCYL

2 (�1,�2) ,

= (π/4)d1d2 (d1 + d2) sinβ12 + l2
{

(π/4)d2
2 + d1d2E(sinβ12)+ (π/4)d2

1 | cosβ12|
}

+ l1
{

(π/4)d2
1 + d1d2E(sinβ12)+ (π/4)d2

2 | cosβ12|
}
+ l1l2 (d1 + d2) sinβ12,

(7.72)

where β12 is the angle between the axes of the two rods and

E(sinβ12) = 1

4

∫ 2π

0
dψ

(
1− sin2 β12 sin2 ψ

)1/2
(7.73)

is a complete elliptic integral of the second kind [Abramowitz and Stegun, 1965].

Hard spherocylinders. For two spherocylinders the excluded volume V HSC
exc is instead

V HSC
exc = π

4
(d1 + d2)

2 (l1 + l2)+ π
6
(d1 + d2)

3 + l1l2 (d1 + d2) sinβ12. (7.74)

For identical HSCs this is [Onsager, 1949; Gelbart and Gelbart, 1977]

V HSC
exc = 8VHSC + 2l2d |sinβ12| = 2l2d |sinβ12| + 2πld2 + 4

3
πd3, (7.75)

where VHSC = π
4 ld

2 + π
6 d

3 is the volume of a HSC (Eq. 5.46c). For long rods (l � d) the
term containing l2 is dominant and B2 (�1,�2) = 1

2 V
HSC
exc ≈ dl2| sinβ12|, while for hard

spheres the excluded volume is V HS
exc = 2BHS

2 = 4
3πd

3 = 8VHS. In this limit the equation
of state for a HSC suspension is given by

P

kBT
= ρ + 1

2
ρ2

(
8VHSC + 2l2d〈| sinβ12|〉

)
. (7.76)

Hard ellipsoids. We have introduced this popular model in Section 5.5.1. An analytic (albeit
too complex to report here) expression for the second virial has been given by Isihara
[1951], Straley [1973] and Camp et al. [1996]. Very often, however, the hard Gaussian
overlap (HGO) model [Bhethanabotla and Steele, 1987; Rigby, 1989; Schmid and Phuong,
2002] is used, where the potential energy UHGO

ij between molecules is assumed to be purely
repulsive, and given by

UHGO
ij =

{∞ if r � σ
(
r̂,ui,uj

)
0 if r > σ

(
r̂,ui,uj

) , (7.77)

with σ
(
r̂,ui,uj

)
given by Eq. 5.54 interpreted as the distance of closest approach between

a pair of molecules of the ellipsoid aspect ratio κ = σ‖/σ⊥. This function gives the exact
HE contact distance if the particles i and j are approaching colinearly (‘head-on’), while it
overestimates it by a factor of at most

√
2/
√

1+ 2κ/(κ2 + 1) <
√

2 otherwise:

BHGO
2 (cosβ12) =

2πσ 3
0

3(1− χ )

√
1− χ2 (cosβ12)

2. (7.78)
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In general, one way used for the numerical calculation consists of expanding the excluded
volume in a series of Legendre polynomials PL:

B2 (β12) = B2,0 +
∞∑
L=1

B2LPL (cosβ12) , (7.79)

where the expansion coefficients B2,L are given in Tjipto-Margo and Evans [1990]. How-
ever, the expansion is slowly convergent, and another approach is that of Camp et al. [1996].
Returning to Eq. 7.68 we see that it provides a self-consistent expression for P (�) that can
be solved numerically. In his original derivation Onsager [1949] made the functional ansatz

P (cosβ) = a cosh(a cosβ) / [4π sinh(a)], (7.80)

for the single-particle orientational distribution. In the isotropic phase, α = 0, while in the
N phase α > 0. Note that, in the hard-needle limit, the solution only depends on the scaled
density ρ∗ = ρ0l

2d .
The theory predicts a first-order phase transition between the I and N phases for the fol-

lowing values of packing fraction φ = (πd/4l)ρ∗: φI = 3.340 d
l
, and φN = 4.486(d/l). We

see this graphically in Fig. 7.8. The density gap becomes smaller as the particles go towards
the hard-needle limit. As the ratio l/d is reduced, end-particle effects in the excluded volume
become important, and there is no universal scaled density. An alternative, more systematic,
procedure for determining P (cosβ) [Isihara, 1951; Lasher, 1970] is to expand lnP (cosβ)
in Legendre polynomials. i.e. to write

P (cosβ) ∝ exp

{ J∑
L=0

aLPL(cosβ)

}
, (7.81)

Figure 7.8 The equation of state for the Onsager model. At the liquid crystal transition,
an anisotropic phase of density ρ = 5.3l−2d−1 is in equilibrium with an isotropic one of
density 4.2. The order parameter in the dense phase at the transition is 〈P2〉 = 0.78 [Straley,
1973].
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truncating at a certain J and minimizing in terms of αL. After having obtained P (�), one
can find the pressure by differentiation of the Helmholtz free energy with respect to the
volume.

Onsager theory predicts a ratio of nematic to isotropic phase densities at the NI transi-
tion ρ∗N/ρ

∗
I ≈ 1.34, a density change �ρ∗/ρ∗ ≈ 26%, much larger than the real one of

�ρ∗/ρ∗ ≤ 0.5% (cf. Section 2.3). The values of the entropy jump �SNI ≈ 8R and of
the order parameter 〈P2〉NI ≈ 0.85 at the transition are also much larger than the typical
nematic-isotropic experimental ones.

The theory works well for long rods and has been successfully applied in predicting
properties of lyotropic nematic phases made of stiff rod-like molecules such as viruses
[Straley, 1973; Fraden et al., 1993], long DNA double strands [Nakata et al., 2007; Bellini
et al., 2012], peptide nanotubes [Bucak et al., 2009], etc. but does not predict nematic phases
for aspect ratios l/d of a few units [Straley, 1973]. Indeed, for short rods the critical packing
fraction probably becomes larger than the maximum close-packing fraction and, below a
minimum molecular shape anisotropy the system might freeze before the critical density
for the isotropic-nematic transition is reached [Lee, 1987].

The theory was originally developed for rods, but can equally well be applied to disc-like
particles, defining the anisotropy ratio x as a ratio of the smallest to the largest dimension
for either rods or plates (i.e. for rods x = d/l, plates have x = l/d, while isotropic particles
will have x = 1, and completely anisotropic particles x = 0). This is quite relevant since, as
we mentioned in Section 1.14 (cf. Fig. 1.56) many LC suspensions are obtained from flat-
like particles of clays or other minerals. In Fig. 7.9 the transition concentrations are plotted
for both rods and plates as a function of the anisotropy ratio x [Forsyth et al., 1978]. It is
immediately apparent that the behaviour of plates differs markedly from that of rods. When
x = 0, the transition concentration ct of rods is infinite, while for thin plates, ct is finite. As x

Figure 7.9 Density of (a) hard-rod or (b) hard-plate dispersions at the Onsager phase
transition as a function of the anisotropy ratio x, the ratio of the smallest to the largest
dimension for either rods or plates (i.e. for rods x = d/l, plates have x = l/d). The
coexistence regions are hatched [Forsyth et al., 1978].
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increases, ct for rods decreases, while ct for plates increases. Note that the virial expansion
is actually performed in powers of the packing fraction φ = ρVHSC ≈ πρd2l � 1 if
l/d � 1, where VHSC is the volume of a spherocylinder. At a very low volume fraction of
rods the higher-order terms in the expansion can be neglected.

It is worth mentioning that the theory has also been extended to the smectic phase
[Mederos et al., 2014].

7.7 Generalized Onsager Theories

The most successful theories of nematic ordering in systems of hard convex bodies make
use of the Parsons–Lee correction to the excess free energy term. The theories of Parsons
[1979] and Lee [1987] essentially amount to interpolating between the accurate limiting
equations of state of Carnahan–Starling for hard spheres and of Onsager for infinitely
long, hard spherocylinders. The general idea is to map the thermodynamic properties of
the hard convex-body system into those of a hard-sphere system or, if possible, of some
other reference system, in particular the isotropic phase of the corresponding hard-body
system. Within the Onsager formulation coupled with the Parsons–Lee (PL) correction,
the free energy is expressed in terms of the second virial contribution and the excess free
energy of the system of interest is assumed to be proportional to that of a hard-sphere
system (see Section 5.2.1). Using the Carnahan and Starling [1969] equation of state,
which is an excellent approximation for HS, along with the relationships BHS

2 = 4VHS and
φ = NVHS/V , yields

Aex

NkBT
= 〈B2 (�1,�2)〉

BHS
2

AHS
ex (φHS)

NkBT
= 〈B2 (�1,�2)〉

4VHS

AHS
ex (φHS)

NkBT
, (7.82a)

= 〈B2 (�1,�2)〉
4

(4− 3φ)

(1− φ)2 , (7.82b)

where VHS is the volume of a hard sphere and φHS is the packing fraction of the hard-sphere
system

(
φHS = ρVHS

)
and the angular average is like in Eq. 7.71. Keeping into account the

correction

P (cosβ) = 1

Z
exp

[
− ρ G(φ)

2π

∫ 1

−1
d cosβ ′Vexc(β,β ′)P (cosβ ′)

]
, (7.83)

withG(φ) = (4− 3φ)/(2− 2φ)2. Other approximations, e.g. the extended Rosenfeld (ER)
which uses a different functional have been proposed [Cinacchi and Schmid, 2002]. The
results of the PL and ER correction are shown in Fig. 7.10 for HSC (7.10a) or HE (7.10b)
and significantly improve on the Onsager description that can make quantitatively correct
predictions only for very long rods (small d/l). One can see from Fig. 7.10 [Cinacchi and
Schmid, 2002] that the critical packing fraction approaches the close-packing fraction for
length/breadth≈ 5 so that the system may be expected to crystallize instead of becoming an
LC. Another interesting result of the computations is that the discontinuity in the packing
fraction at the isotropic-nematic phase transition becomes smaller as the molecular shape
anisotropy decreases. This PL approach, which manages to incorporate some many-body
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(a) (b)
Hard spherocyliders Hard ellipsoids

Figure 7.10 (a) The relative packing fractions referred to close-packing: φ/φcp = ρ/ρcp as
a function of d/l, the diameter to cylinder length ratio, for HSC and (b) the same as a function
of inverse aspect ratio a/b for hard ellipsoids. The points are from computer simulations
[Camp et al., 1996], while the lines are from Parsons–Lee (PL), extended Rosenfeld (ER)
and Onsager theory as indicated [Cinacchi and Schmid, 2002].

effects in a very simple way, has been shown to be surprisingly successful at predicting the
IN-transition parameters, even for short rods. Calculations and MC results for HE [Camp
et al., 1996] are reported in Fig. 7.10b.

7.7.1 Non-convex Particle: Hard Helices

As an example of application of generalized Onsager theory to more elaborate mesogenic
shapes we show some results from Frezza et al. [2013] for a system of hard helices formed
by ns fused spheres of diameter σ and with the same contour lengthLC = 10σ , but different
pitches and radii. The spheres are positioned at xi = r cos (2πti), yi = r sin (2πti) and
zi = pti , 1 ≤ i ≤ ns , where r is the radius and p the pitch of the helix. The long axis of
the helix ĥ, passes through the centre of the helix. As shown in Fig. 7.11, the centres of the
beads lie on an inner cylinder of radius r . The diameter of the outer cylinderW = (2r+σ ) is
the width of the helix rmax , while� = zns − z1 is the Euclidean length, so that the end-end
distance is�+ σ and the aspect ratio (�+ σ )/W . As the spheres are arranged in different
helical fashions L and LC will differ. Given the values of r,p and LC , the increment

�t = ti+1 − ti is determined by the equation LC /(ns − 1) = 2π�t
√
r2 + (p/(2π ))2.

Simulation results can be compared with theoretical results using Parsons [1979] and Lee
[1987, 1988] (PL) based on the assumption that the excess free energy is proportional to
that of a system of hard spheres (HS) at the same packing fraction (φ). Since PL theory was
developed for convex bodies, a modified PL (MPL) theory for non-convex particles like
the present ones was introduced [Varga and Szalai, 2000], employing an effective volume,
Vef, defined as the volume of the non-convex particle that is inaccessible to other particles,
instead of the hard spheres volume. This effective volume, larger than the geometrical
volume, has been evaluated for linear chains of hard spheres by Abascal and Lago [1985].
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(a) (b)

Figure 7.11 (a) Model rigid helix made up of ns = 15 partially fused hard spheres of diam-
eter σ and centres arranged on a helical string of fixed contour length L = 10σ , diameter r
and pitch p. (b) Pressure P ∗ = P/(kBTD3) vs volume fraction φ = Vhelices/V equation
of state from MC simulations with interpolating splines and equal area construction (line and
symbols) and Onsager theory results with modified Parsons–Lee correction (MPL–DFT) for
helices with p = 4 and r = 0.2 [Kolli et al., 2014b].

Results from the MPL density functional theory are compared with MC simulations
in Fig. 7.11 [Kolli et al., 2014a]. Interestingly, this system forms a screw-nematic phase,
where the helix twofold symmetry axes spiral around the main phase director, a phase
qualitatively similar to that observed in experiments on systems of colloidal suspensions
of helical flagella isolated from prokaryotic bacteria [Barry et al., 2006].
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8

Monte Carlo Methods

8.1 Introduction

The problem of calculating the thermodynamic observables of a fluid starting from a given
intermolecular potential is so complex that, apart from a few exceptional cases, there are
only two possibilities open: one is to use approximate theories (see Chapter 7), the other to
resort to computer simulations, consisting of numerical solutions to the problem of many
interacting particles. In this chapter we describe one of these techniques, the Monte Carlo
(MC) method, that aims to calculate averages of relevant observables by suitably generating
equilibrium configurations in a certain statistical ensemble. We shall discuss computer sim-
ulations mainly with applications to liquid crystals in mind, but we begin by describing the
general theory, aiming at a relatively concise summary since the topic is well covered in spe-
cific books [Newman and Barkema, 1999; Landau and Binder, 2000; Allen and Tildesley,
2017]. Monte Carlo methods have been defined in general as ‘that branch of experimental
mathematics which is concerned with experiments on random numbers’ [Hammersley and
Handscomb, 1965]. In condensed matter physics, however, the term is now universally
reserved for the technique devised by Metropolis et al. [1953] to evaluate statistical aver-
ages. Consider a system of N particles where the intermolecular potential is known, for
example, to be one of the pairwise interactionsU (Xi,Xj ) discussed in Chapter 5. For a con-
figuration defined by the set of positional-orientational coordinates X̃ = (X1,X2, . . . ,XN )
the potential energy is that seen in Eq. 5.2b. In the canonical ensemble (constant N ,V ,T )
any time independent property of interest, depending on positions and orientations, can be
written as the equilibrium average

〈A〉 =
∫

dX̃ A(X̃) exp [−UN (X̃)/(kBT )]
/∫

dX̃ exp [−UN (X̃)/(kBT )], (8.1)

where the denominator is the configurational integral Z(N,V,T ) (see Sec. 4.6). Note that
we have not included velocities here. Indeed, since they are not contained in the potential
and we only consider configurational propertiesA(X̃), depending on coordinates but not on
velocities, the integration over these kinetic contributions can be factored out and disappears
from the expression for the average. Since the intermolecular potential is assumed to be
known, the problem of calculating 〈A〉 is ‘reduced’ to performing a ≈ 6N dimensional
integration. Let us now imagine a real system and some idealized way of taking ‘snapshots’
in configurational space. From the j th configuration, i.e. from the set of positions and
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orientations specifying the state of the system in this j th photograph, we could calculate
the value of property A, call this A(j ). We could repeat the process,M times say. It is clear
that the average Eq. 8.1 would now be simply the arithmetic mean

〈A〉 = 1

M

M∑
j=1

A(j ), (8.2)

where M should be large enough to reduce the statistical uncertainty in 〈A〉 to acceptable
values. In this virtual experiment the substitution of the extremely complicated integral
Eq. 8.1 with the simple sum in Eq. 8.2 is possible since in a system at equilibrium a cer-
tain configuration, say the j th, occurs with a frequency given by its Boltzmann factor
exp[−U (j )

N /(kBT )]. The order according to which configurations are produced just changes
the order of the terms in Eq. 8.2 and is thus irrelevant, just the frequency they appear with is
significant. The idea behind the Metropolis MC method is to choose an arbitrary convenient
way of updating configurations consistent with the prescription above. It is also desirable
that the necessarily arbitrary or otherwise user-chosen starting state is ‘forgotten’ after a
sufficiently high number of configuration updates, so that what we obtain is independent
on that initial configuration. Another way of saying this is that the process should have
the desired asymptotic properties. In a list of wishes we could also add that the new con-
figuration should be produced by the smallest possible number of previous configurations,
since we should otherwise store all these in memory in order to produce the new state. It
turns out that evolution processes with these prerequisites exist in the realm of processes
which evolve in time with probabilistic laws, or as they are normally called stochastic
processes. The Metropolis technique consists of introducing a stochastic Markov process
in which asymptotically (i.e. for indefinitely long chains of updates) each configuration
recurs with a frequency proportional to its Boltzmann factor. We have briefly summarized
the characteristics of Markov processes in Appendix K.

8.2 Metropolis Method

The probability wj that a system, whose evolution is taken as Markovian, is to be found

in a state j , e.g. in a configuration X̃
(j )

with energy U (j ) at time step t , depends only
on its state at time (t − 1). More precisely, a discrete Markov process with m states is
completely described in terms of an m × m transition probability matrix whose elements

Πj,k ≡ Π (X̃
(j ) → X̃

(k)
), which give the probability of going from configuration j to

k, have the general properties (non-negativity and normalization) reported in Appendix K.
We consider discrete changes from one configuration to the next, but of course a contin-
uous process will be recovered for arbitrarily small steps. In our case we wish to model a
condensed phase where every state of the Markov process represents a configuration and
we require wj to obey, for a system of N particles in a volume V at a certain temperature
T (Section 4.2), a Boltzmann distribution

wj ∝ exp[−U (j )
N /(kBT )]. (8.3)
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The problem becomes that of selecting a transition matrix with elements!jk that will yield
in the asymptotic limit (Eq. K.5) the statistical weights in Eq. 8.3. One possible way (not
the only one) of achieving this is to impose the condition of microscopic reversibility or
detailed balance, that is

wjΠjk = wkΠkj, (8.4)

whatever j and k. This gives the ratio of transition probabilities

Πjk/Πkj = exp
[
−
(
U

(k)
N − U (j )

N

)
/(kBT )

]
. (8.5)

Thus, if we are in configuration j with energy U (j )
N and we wish to jump to configuration k

with energyU (k)
N the ratio of the transition probabilities in the two directions is related to the

energy difference and the temperature by a Boltzmann factor. An increase in temperature
will tend to make the transition between the two configurations equally likely even if the
energy factor is unfavourable. We shall try to concoct a transition matrix that satisfies Eq. 8.5
even though we should note from the outstart that this constraint still will not specify
a unique Markov process. That in turn implies that different transition matrices which
generate configurations with the correct frequency factor can be introduced and, why not,
that some may be more efficient than others in exploring phase space. The prescription
proposed by Metropolis et al. [1953] is to choose the transition probability for going from
j to k as

Πjk =
{
ajk, if U

(k)
N ≤ U (j )

N ,

ajk exp[−(U (k)
N − U (j )

N

)
/(kBT )], if U

(k)
N > U

(j )
N ,

(8.6)

with ajk constants and ajk = akj and the probability of remaining in the original config-
uration Πjj = 1 −∑

k �=j Πjk . It is easily verified that this transition probability obeys
Eq. 8.5. In practice, the process is realized rather simply by moving one particle at a time
in the following way. A starting configuration is chosen, typically with the N particles
in a box with a certain surrounding environment (boundary conditions) as described later
(Section 8.2.1) and the energy of this configuration, U (j )

N , is calculated. One particle is then
chosen, either sequentially or at random, and a new configuration is generated by giving this
particle a random displacement δX. The energy,U (k)

N , of this trial configuration is calculated,

and the move is accepted with a relative probability exp
[−(U (k)

N − U (j )
N

)
/(kBT )

]
. Thus, if(

U
(k)
N − U (j )

N

)
< 0 the new configuration is accepted. Indeed, in this case the Boltzmann

factor in Eq. 8.5 is greater than 1 so the probability of jumping to the new configuration
amounts to a certainty. If

(
U

(k)
N − U (j )

N

)
> 0, the move is instead accepted with a relative

probability exp
[−(U (k)

N − U (j )
N )/(kBT )

]
using a simple rejection technique. In practice, if

we have to generate values of a variable x in the range a ≤ x ≤ b distributed according
to a given non-negative distribution f (x) with a maximum value fmax we could do the
following. First extract a random value x′ in the range and calculate the value of the function
at this point f (x′). Now, to decide if the value x′ should be accepted or not, extract another
random number ξ in the range 0 ≤ ξ ≤ fmax . If ξ < f (x′), then x′ is accepted, otherwise
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it is rejected. A sufficiently large set of x′ values generated in this way has the correct
distribution f (x). In the present case the random variable to be tested is the displacement
δX and thus a uniformly distributed random number between 0 and 1 is generated. If this is
less than exp[−(U (k)

N −U (j )
N )/(kBT )] the move is accepted; if not, the original configuration

is restored and counted again. This procedure is then repeated, typically for a few hundred
thousand to a few million times in order to equilibrate the system. When equilibrium has
eventually been reached the new configurations generated can be used to calculate averages
according to Eq. 8.2. A flow diagram for the algorithm is shown in Fig. 8.1. It is worth

– –

Figure 8.1 A flow diagram of the Metropolis MC method.
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stressing that the time involved in proceeding along the MC Markov chain has in principle
nothing to do with real time. Indeed, in the MC method the true trajectory of the system in
phase space is replaced by the artificial Markovian trajectory chosen by us. In the common
realization of the algorithm, with one particle at a time moving, subsequent configurations
will be strongly correlated to the previous ones and some sort of dynamics is implied. If the
evolution process is a plausible physical process, e.g. a small step Brownian motion, we may
approach a somewhat realistic dynamic evolution, with at least some significance attached
to evolution time. Indeed, a timescale can be worked out by comparison with some known
dynamic information. On the other hand, one may also take advantage of the lack of strict
specifications on the Markov process to explore phase space in a much more efficient, albeit
non-dynamically realistic way. For instance, we may flip molecules in very ordered systems,
allowing accelerations of many orders of magnitude with respect to small step tumbling.
This is of great advantage in many cases where reaching equilibrium requires going through
some bottleneck. A particularly significant example is near a phase transition where a local
algorithm, with the update of one particle at a time, suffers from an abnormally large time
needed to reach equilibrium or critical slowing down, just as for real systems. Indeed, a large
group of molecules with the same orientation can be difficult to unlock and its ‘melting’
will essentially proceed at the boundary and propagate over distance proportionally to the
square of the distance. This will in turn require a power law increase in equilibration rate
with sample size near the transition [Swendsen, 1991]. In any case, it is useful to point out
the formal analogy of the MC evolution with an (artificial) dynamics for the system, where
the natural time unit is a cycle or sweep (an attempted move for every particle). For example,
we shall be able to use the same methods for calculating thermodynamic quantities, order
parameters, etc. both for the MC method and the Molecular Dynamics (MD) technique to be
described in Chapter 9. The difference with MD is that there the true dynamics is followed,
while in MC all we can guarantee is that, by construction, the process will, after a sufficiently
large number of steps, lead to equilibrium, in the sense that configurations will occur with a
frequency proportional to their Boltzmann factor. In practice, it is hardly possible to gauge a
priori how large this number of steps will be. We expect the convergence to depend in some
way on how efficiently we sample the configurational space and so it is clear that we want
to reach some balance between the number of configurations accepted and rejected. This
acceptance ratio can in turn be affected by the magnitude of the random displacement, δX,
assigned to the particle. Since the maximum jump length δX is not dictated by the method,
it can be adjusted to speed up convergence. As a rule of thumb, the maximum displacement
is typically chosen so that approximately half of the configurations are accepted and half
rejected. It is worth checking that this constraint, especially when built in some automatic
feedback loop, does not require in turn a displacement so low that the molecules hardly
move. In that case, a lower acceptance ratio should be accepted to get the evolution going.

We shall now comment on some general points such as boundary conditions, the choice
of the initial configuration and the calculation of thermodynamic observables. We shall then
discuss the calculation of order parameters and orientational pair correlation functions.
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(a) (b)

Figure 8.2 (a) A schematic representation of periodic boundary conditions (PBC) in 3D. The
sample box at the centre is surrounded by replicas on every facet. For a cubic box of side L
a particle at position r = (x,y,z) will have replicas with the same orientation, velocity, etc.
at (x ± L,y,z),(x,y ± L,z),(x,y,z± L), and so on. If a particle goes out of the box on one
side, one of its replicas will enter the box from the opposite side. (b) Sketch of minimum
image convention (MIC). The nearest distance between molecules i and j is between i and
j ′, not j , in the cubic sample box of side length L with PBC.

8.2.1 Boundary Conditions

Even though we are always forced to study a finite and relatively small system of interacting
particles, we have to consider clearly what type of system we are interested in studying. In
many cases we are not interested in the properties of the small sample itself but rather in
predicting those of the corresponding macroscopic system. In doing this we are hampered
not only by having to deal with a limited number of particles, but also by surface effects.
In order to reduce the latter, we do not normally use free boundary conditions, which
correspond to an isolated system ofN particles in vacuum, but instead employ the artifact of
periodic boundaries where the sample box is surrounded by exact replicas of itself, as shown
in Fig. 8.2. A particle at position (x,y,z) in a cubic box of side length Lwill have 26 nearest
ghost images at (x ± L,y,z), (x,y ± L,z), (x,y,z ± L), etc. These are in turn surrounded
by similar images, ad infinitum. The space-filling system obtained in this way does not
have free surfaces at all so we have remedied that part of the problem. Note, however,
that an additional spurious periodic correlation between particles has been introduced, as a
particle will be perfectly correlated with its images. It is worth mentioning that we do not
actually need to store copies of the sample box. The periodicity condition is equivalent to
say that the position of particle i in the sample box is defined modulo the box length in every
direction. Thus, xi := xi(modL) which means that the position can be considered as the
remainder of the division of the original position by the side length (same as the hours in a
day, that in a 24 hour clock we give mod 24). When using periodic conditions, the distance
r ij between two different particles, i and j , is usually taken according to the minimum image
convention (MIC), i.e. as the distance between the c.o.m. of i and the nearest image of j .
Thus, every particle is the centre of an identical box and accordingly a given molecule i
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interacts only with the image of another molecule j which is the nearest. If the range of the
molecular interactions is less thanL/2 this comprises all interactions. The MIC ensures that
every particle interacts with every other particle at most once. When applying the minimum
image convention to multisite molecules these are considered to be inseparable entities and
the minimum image convention is applied to the separation vector between the centres of
mass of two multisite molecules i and j only. The total potential energy is the sum over
all site-site interactions of the different particles. If the particles are rigid bodies, only
interactions between the possibly anisotropic (e.g. ellipsoidal) sites belonging to distinct
molecules (i �= j ) are taken into account:

U =
∑
i,j>i

∑
a∈i
b∈j

U (rab,�a,�b). (8.7)

The pair potential energy depends on the separation vector rab between the sites a and b
and, if the sites are anisotropic, on the orientations �ai and �bj of the individual sites
with respect to the common lab frame. If ha,i is the vector from r i , the centre of mass of
molecule i to the position of the ath site of molecule i, ra = r i + ha,i , the separation
vector between two distinct sites a ∈ i and j ∈ b is rab = rMIC

ij + ha,i − hb,j . The MIC
implies some care, e.g. for pressure calculations (cf. Section 4.10). The virial is generally
derived asW = (1/3V )

∑
i r i ·F i , where F i is the total force acting on the centre of mass

of molecule i (V being the volume). When introducing the separation vector rMIC
ij between

two molecules i and j we can express the virial by pairwise forces F ij between the centres
of mass of molecules i and j ;

W = 1

3V

∑
i,j>i

rMIC
ij ·F ij = − 1

3V

∑
i,j>i

rMIC
ij · ∇∇∇r ij U . (8.8)

Now we express the pair forces between the centres of mass F ij ≡ −∇∇∇r ij U by pair forces
F a,b ≡ −∇∇∇ra,b U that act between the centres of two distinct sites a ∈ i and b ∈ j . Due
to ∇∇∇rkl rai,bj = δik δjl 1 we can apply the chain rule for differentiation. This immediately
yields

W = 1

3V

∑
i,j>i

∑
a∈i
b∈j

rMIC
ij ·F ab = − 1

3V

∑
i,j>i

∑
a∈i
b∈j

rMIC
ij · ∇∇∇rab Ua,b. (8.9)

If the intermolecular potential is very long range, e.g. for Coulomb interactions between
charged or dipolar systems, the minimum image convention for calculating the interaction
energy is abandoned. Instead, the complete, space-filling system of the box and all its
periodic images is considered and special techniques, like the Ewald summation [Allen and
Tildesley, 2017] introduced in Section 5.4.4, are employed. Yet another method in use for
long-range interactions is to simply truncate the intermolecular potential at a given cut-off
distance and to take into account the long-range tail of the interaction using some form of
perturbation theory.

PBCs are introduced when trying to predict bulk properties while doing calculations
on small samples. There are, however, a number of cases where the system of interest is
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(a) (b)

Figure 8.3 Non-periodic boundary conditions, sketched in 2D: (a) free (FBC), with empty
space around the sample box B and (b) confined (CBC) with a certain ‘frozen in’ confining
material C surrounding the sample.

(a) (b)

Film thickness (nm)R (nm)

Figure 8.4 (a) Shift of the water melting (�) and freezing (���) temperature�T inside MCM41
and SBA15 artificial zeolite nanopores as a function of their pore radius R [Schreiber et al.,
2001]. (b) The glass transition temperature Tg as a function of film thickness for polystyrene
of three molecular weights (MW):120,000 (���); 500,800 (◦); 2,900,000 (���) [Keddie et al.,
1994]. The lines are a guide for the eye.

actually small. One is the case of nanodroplets, with air (vacuum) outside the sample
(see Fig. 8.3a). It is important to realize that in this case the properties can be very
significantly different from those of the corresponding bulk, e.g. the melting temperature
decrease (of a few hundred degrees!) with respect to the bulk in CdS nanocrystals of a
few nanometres [Goldstein et al., 1992] or the decrease in ferroelectric phase transition
temperature of some 50◦C for PbTiO3 nanocrystals of ≈25 nm [Ishikawa et al., 1988].
The other case is that of a material confined, e.g. to a nanopore (see Fig. 8.3b). We see
in Fig. 8.4a the shift of the water melting and freezing temperatures in nanopores of
the artificial zeolites MCM41 and SBA15 (we mentioned their fabrication by templating
from micelles in Section 1.11.1) as a function of their pore radius. The glass transition in
nano-thick polymer films also changes significantly, as we can see in Fig. 8.4b [Keddie
et al., 1994].
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Figure 8.5 (a) An illustration of a possible factor hindering convergence: two regions of
phase space A and B joined by a bottleneck. (b) A group of molecules that may be difficult
to unlock by single particle moves [Zannoni, 1979a].

8.2.2 Influence of the Initial Configuration

We have shown that, whatever the initial configuration, the MC procedure should, after
an asymptotically large number of steps, converge to equilibrium. Thus, in principle any
configuration, be it completely ordered, completely disordered or whatever, could be chosen
as a starting point. However, since we always perform a finite number of steps it is unwise to
overlook the choice of starting configuration. For instance, in simulations of simple fluids it
is normally very hard to start from an isotropic fluid and generate a crystal structure, even if
this would be the thermodynamically stable state at the temperature and density chosen.
If we want our system to reach a given region of phase space in a reasonable number
of steps, and hence computer time, then the starting point and the evolution strategy are
not unimportant. To visualize this, let us consider the situation sketched in Fig. 8.5a and
imagine that the system finds itself in region A of the configuration space, while we would
like it to reach region B. This is clearly not impossible since there exists an open path
from A to B, but it is easy to convince ourselves that the process may well require a
very long time due to the bottleneck shape of the pathway. A non-equilibrium state like
A having a relatively long lifetime is sometimes called a metastable state. The problem
can be particularly important in simulations of liquid crystals formed of elongated hard
particles. In this case, configurations like the one shown in Fig. 8.5b may prove very difficult
to unlock by moving one molecule at a time, as discussed. If at all feasible, obtaining the
same results for energy, order parameters or other properties from simulations started from
two different thermodynamic conditions, e.g. from previously generated configurations at
lower and higher temperatures or concentrations as appropriate for the system studied, can
be the touchstone for assessing if equilibrium instead of a long-lived metastable state has
been reached.

8.2.3 Evolution

The generation of new configurations normally proceeds selecting one molecule at a time
and giving it a random displacement. The particle is chosen sequentially or at random
between those that have not yet been selected. In any case, a set of N attempted moves
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(a cycle) represents an update for the system. For example, to generate a random displace-
ment from the position r i = (xi,yi,zi) of the ith particle we have to generate a new position
r ′i = (x′i,y

′
i,z
′
i). We may decide first on a maximum allowed displacement for the coordi-

nates: �x,�y,�z. Then for each coordinate, say the x, we extract a random number ξ
uniformly sampled between 0 and 1 and x′i = xi + ξ�x. The maximum displacement
is chosen to ensure a reasonable proportion of accepted to rejected moves. According to
common wisdom, the ratio of these two (the acceptance ratio) should be, as previously
mentioned, about 0.5. This is not mandatory, but in practice it is important to ensure that
the displacements required to get this rejection ratio are not too small, so that the system
actually samples configuration space. It is also worth remembering that MC is an integration
technique and that the variables (and the displacements) should be sampled with a weight
consistent with the relevant measure (volume element). For orientations α,β,γ the volume
element is dα sinβdβdγ so for α and γ we can proceed exactly as for positions. For the
angle β we could generate random displacements in x ≡ cosβ, but generating the new
cosβ in this way does not give a command on the extent of the angular jump. Thus, the
following procedure of Barker and Watts [1969] is often used. First, a random number is
used to choose the rotation axis: x, y, z then an angle θ is generated as another random
number between 0 and θmax . Thus, if ξ is a random number uniformly distributed between
0 and 1 an angle θ = ξθmax will be generated. Then a rotation from the previous orientation
to the new one is performed. For example, if we have a uniaxial molecule whose axis is
defined by the vector u and if a rotation around the y-axis has been randomly selected, we
shall have ⎛⎝ unew

x

unew
y

unew
z

⎞⎠ =
⎛⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞⎠⎛⎝ uold
x

uold
y

uold
z

⎞⎠ . (8.10)

It is clear that generating good, unbiased random numbers is the key to the success of
the method. This is far from easy [Knuth, 1998] as exemplified by plotting the would-be

(a) (b)

Figure 8.6 (a) A good random number generator, producing a distribution of points in the
(x,y) plane. (b) A bad one showing stripe patterns [Landau and Binder, 2000].
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random numbers obtained from two different generators as shown in Fig. 8.6. While the
one employed in Fig. 8.6a produces a (visually at least) uniform covering of (x, y) plane,
the one in Fig. 8.6b gives origin to geometrical patterns (stripes) that indicate an unwanted
correlation in the generated pairs of random numbers.

It is worth mentioning that in MC simulations of hard particles, trial moves are selected
using a random number generator, accepted if they do not lead to particle overlap and
rejected if they do.

8.3 Simulations in Non-Canonical Ensembles

8.3.1 Constant Pressure

In the isobaric isothermal ensemble (constantN , P , T ) introduced in Section 4.3, any time-
independent configurational property of interest can be written as the equilibrium average

〈A〉NPT =
∫

dX̃ A(X̃) exp[−HN (X̃)/(kBT )]∫
dX̃ exp[−HN (X̃)/(kBT )]

, (8.11)

where HN = UN + PV is the enthalpy function. Clearly, in this constant pressure con-
dition the volume of the system will adjust and change towards an equilibrium value and
represents a new degree of freedom we should integrate upon, even if this is not apparent
from Eq. 8.11. To be able to apply the MC method we should, however, find a way of
making the shape and volume dependence explicit and of bringing it into the exponent of
Eq. 8.11 as an effective pseudopotential. This can be done writing explicitly X = (r,�)
and transforming the particle positions to dimensionless variables as in Section 4.10 with
the geometric transformation r i = (H s)i where the matrix H contains the components of
the sample cell axis a,b,c that are now allowed to vary:

H ≡
⎛⎝ a1 b1 c1

a2 b2 c2

a3 b3 c3

⎞⎠ . (8.12)

The Jacobian determinant of the transformation is the volume of the sample box (see
Appendix A), and as already mentioned, we have to integrate over the volume as a new
degree of freedom

〈A〉NPT =
∫

dVV N
∫

ds̃d�̃A(s̃,�̃) exp[−(UN (s̃,�̃)+ PV )/(kBT )]∫
dVV N

∫
ds̃d�̃ exp[−(UN (s̃,�̃)+ PV )/(kBT )]

. (8.13)

It is convenient to write V N = exp(N lnV ), so that

〈A〉NPT =
∫

dV
∫

ds̃d�̃A(s̃,�̃) exp[−(UN (s̃,�̃)+ PV )/kBT +N lnV ]∫
dV

∫
ds̃d�̃ exp[−(UN (s̃,�̃)+ PV )/kBT +N lnV ]

. (8.14)
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This is in the form of the standard canonical MC integral that we have discussed before,
except that volume moves V old → V new are now allowed according to the Boltzmann factor

Πold→new = exp

[
−(P�V +�UN )/(kBT )+N ln

V new

V old

]
, (8.15)

where�V (−�Vmax < �V < �Vmax). In practice, the volume move is usually attempted
with probability 1/N (i.e. every cycle) and the maximum allowed volume jump �Vmax is
adjusted, as the maximum jump lengths of the other degrees of freedom, to give a satisfac-
tory acceptance ratio.

This procedure is most convenient if the box is cubic and after the move is accepted
the change of box side is recalculated isotropically. However, as long as the pressure is
isotropic we could use the same method by changing the box sides lengths La , Lb, Lc.
This is important for ordered anisotropic systems, e.g. smectic phases, formed of elongated
molecules where changing the shape of the box is essential to avoid perturbing the sample
too much.

8.3.2 Constant Stress

An important way of studying the mechanical properties of polymer systems, including
LC polymers and LC elastomers is that of stress-strain experiments, that we briefly men-
tioned in Section 1.15 when discussing materials like Kevlar and Nomex. Such mechanical
experiments (see Fig.1.61) can be simulated with isostress simulations [Skačej and Zannoni,
2011], a variant of the standard MC method where an external pulling force (or stress) is
applied along a certain direction, e.g. the z-axis. In this case, the applied stress induces
a deformation, �λz = �Lz/Lz, of the sample box length Lz along the z-axis. Given an
applied engineering stress Σzz for stretching/compression along the z-axis, the probability
of acceptance for the sample strain move is obtained adding the deformation work to the
internal energy, giving

Πold→new = min
{
1, exp

[− (�U −�zzV�λz) /(kBT )
] }
, (8.16)

where V denotes sample volume and T temperature. The rest of the MC evolution proce-
dure involving single-molecule translation and rotation moves, leading to the contribution
�U in Eq. 8.16, is the same as for the standard MC and shall not be discussed again
in this book. We shall see some examples of applications of the isostress procedure to
determine the elastic modulus of LC elastomers [Skačej and Zannoni, 2011, 2012, 2014] in
Chapter 11.

8.4 Calculation of Thermodynamic Observables

The various thermodynamic properties can be calculated in principle from their expression
as statistical averages over, say, M configurations starting from an already equilibrated
initial one Jin
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〈A〉 = lim
M→∞

1

M

Jin+M∑
J=Jin

A(J ). (8.17)

Let us now examine the error involved in the calculation of an observable. Since we use a
finite chain of M steps instead of an infinite one, we expect that our estimate will deviate
from the true expectation value 〈A〉true. It is known from the theory of Markov chains
that this deviation from 〈A〉true has an asymptotically Gaussian distribution [Binder, 1976].
Now, to estimate the standard deviation in a computer experiment we divide the chain of
states into a number of subchains. We then calculate averages of the quantity A in every
subchain, together with the usual average 〈A〉 over the complete chain. The statistical error
on 〈A〉 is then estimated as the standard deviation from the average:

σA = 1

Mα(Mα − 1)

[
Mα∑
α=1

(〈A〉α − 〈A〉)2

] 1
2

, (8.18)

whereMα is the number of sub-averages. For this estimate to be reliable we need the various
terms to be independent samples. It is not obvious that this is the case since in the Metropolis
method configurations are produced by a sequence of small single-particle moves. Thus,
we assume subchains to be long enough or distant enough so that they are statistically
uncorrelated. To comply with this restriction, one obviously requires the number of sub-
averages, Mα , to be as large as possible. In general, the MC average, 〈A〉, tends to the true

value as the number of configurations,M , increases according to 〈A〉 = 〈A〉true+O (M− 1
2 ),

where O (x) indicates the order of magnitude of its argument x. It is useful to examine
the behaviour of the subchain average to decide if convergence to equilibrium has been
achieved. If this is the case the sub-average should simply oscillate about the average and
not exhibit any systematic drift.

Any property of interest,A, is evaluated at every MC cycle and, after a certain number of
cyclesmJ (typically between 1000 and 2000), the valuesAi are averaged effectively coarse
graining the trajectory. A further overall average is then computed as the weighted average
overM of such supposedly uncorrelated segments

〈A〉 = 1

MC

M∑
J

mJA
J = 1

M

M∑
J

1

mJ

mJ∑
i

Ai, (8.19)

where MC = �MJ mJ is the total number of production cycles. The attendant weighted
standard deviation from the average σA is also calculated and gives the error estimates.
Error estimates for correlated series of data have been discussed by Flyvbjerg and Petersen
[1989].

The energy is the simplest property to calculate since its evaluation is already part of the
MC prescription. The pressure can be obtained from the average virial for differentiable
potentials or from the pair distribution at contact point for hard cores. We now wish to com-
ment briefly on some observables: energy, heat capacity, free energy and order parameters.

Energy. The calculation of energy presents no particular problem and is besides already
part of the MC evolution procedure. The average energy can be obtained by keeping track
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of the �UN at every move or, more simply, by computing the energy U (j )
N at the needed

configurations, for instance every cycle or every few cycles and calculating the average
value 〈UN 〉 as in Eq. 8.17. Normally the results are presented referring to a single molecule
〈U〉 = 〈U1〉 = 〈UN 〉/N .

Heat capacity. The constant volume specific heat, CV , is defined as the temperature deriva-
tive of the average internal energy (see Eq. 4.124a). Thus, we can calculate the internal
energy for a series of temperatures, and perform a numerical differentiation of 〈U〉 versus
T to find CV (T ). However, the differentiation of experimental or, in general, noisy data is a
well-known, ill-posed problem and every small error in the data may cause huge errors in the
numerical results. A first way to tackle this difficulty is through a smoothing interpolation,
for example, using suitable spline functions, i.e. a piecewise interpolating curve constructed
joining together polynomials of degree n at a certain set of points (knots) before numerical
differentiation [Fabbri and Zannoni, 1986]. An alternative is to use an inversion method
[Tikhonov and Arsenin, 1977], which consists of solving the integral equation [Chiccoli
et al., 1987]

U (T ) = U (T0)+
∫ T

T0

dT ′CV
(
T ′
)

. (8.20)

In our case energies are known at a set of temperatures, U (Ti) , which can be used to build
anM-component vector of energy differences U . We can thus write∫

(i)
dT ′CV

(
T ′
) = Ui, (8.21)

where the integral is extended to the ith energy interval. Choosing to calculate a vector C

containing CV at a grid of M temperatures and employing a suitable numerical integration
formula we reduce the integral equation to the matrix equation WC = U, where W is a
matrix containing the weigths for the chosen type of numerical integration (e.g. trapezoidal).
W will normally not be square, but rather rectangular, and the problem of finding C is solved
in terms of the generalized inverse matrix W−1 that can be obtained using a numerical
method (e.g. that by Rust et al. [1966]).

The estimate of errors in heat capacity calculations is rather complicated because of
the numerical schemes employed. A useful simulation procedure [Chiccoli et al., 1987]
is as follows. First, a rather large number (e.g. 100 or more) of plausible energy versus
temperature curves is generated by sampling energy values at each temperature from a
Gaussian distribution of width corresponding to the (known) standard deviation from the
mean energy at that point. Repeating the heat capacity calculation for every curve yields a
set of CV values whose average and standard deviation are our final results and errors.

A third procedure to obtain the heat capacity consists in determining average energy
fluctuations. We have (see Eq. 4.124a)

C∗V /kB =

⎡⎢⎣ 1

M

M∑
j

(
U (j )

)2 −
⎛⎝ 1

M

M∑
j

U (j )

⎞⎠2
⎤⎥⎦ /(kBT )2, (8.22)
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Figure 8.7 The heat capacity per particle C∗
V

as a function of temperature kBT/ε (dimen-
sionless units) for a 12× 12 2D Ising model obtained [Yang, 1961] with periodic boundary
conditions (◦◦◦) and free boundary conditions (•) and the true analytical curve ( ) deter-
mined by Onsager [1944].

where M is the number of snapshots considered. The dimensionless quantity on the right-
hand side of Eq. 8.22 or the analogous for the heat capacity at constant pressure CP with
enthalpy H instead of energy U , can be obtained directly form the simulations. However,
since it is a fluctuation determined quantity, it is often affected by large errors.

The heat capacity is a key quantity in systems showing phase transitions, since it is often
by an examination of its temperature dependence that a transition is located (see Chapter 2).
It is important to appreciate the effect of various boundary conditions on a phase transition
by looking at the changes induced on the heat capacity. We would intuitively expect the
space correlations between particles to be greatest for periodic boundary conditions (PBCs)
and a minimum for a system with free surfaces. Morerover, we would expect the ‘true’ bulk
result to lie somewhere in between these two extremes. Consequently, periodic and free
boundaries should give, respectively, an upper and lower bound for the transition tempera-
ture
TK : TFBC < TC < TPBC. In the same way we would expect order parameters obtained
with periodic boundaries to be greater than those calculated for a system with free surfaces
at the same temperature. The predicted trend is actually borne out by the classical MC
simulations of Yang [1961] on the 2D Ising model, shown in Fig. 8.7, by comparison with
the exact Onsager solution. Qualitatively similar behaviour is obtained for the 3D Ising
model [Landau, 1976] where, however, analytic solutions are not available. Increasing
the number of particles has the effect of restricting the upper and lower bounds; thus, for
instance, the peak in the specific heat shifts to higher temperatures for the isolated system
and to lower temperatures for periodic boundaries.

Free Energy. In the N,V,T ensemble the relevant free energy is the Helmholtz function
A = U − T S. This is a rather difficult quantity to evaluate because of the presence of the
entropy term. The fact is that quantities easily calculated with MC methods are average
quantities and we do not have such an expression for A. Nonetheless, we can actually make
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some progress in this direction. Given an arbitrary quantity A we can write its average as
Eq. 8.1. Thus, if we formally choose A = exp[UN (X̃})/kBT ], we have

Z(N,V,T ) = VV� /〈exp[+UN (X̃)/kBT ]〉. (8.23)

The partition function can therefore be calculated, in principle, as an average and the free
energy obtained from

A = −kB
(

lnZ(N,V,T ) − lnN !
)
. (8.24)

Unfortunately only very poor estimates of Z(N,V,T ) can be obtained by this method when
the system is somewhat ordered. In this case, in fact, important contributions to the sum-
mation come from configurations of high energy, with a small Boltzmann factor, which are
very poorly sampled by the MC procedure. This results in very slow convergence except
when the system is relatively disordered. A common method of evaluating the free energy
exploits an interpolating relation obtained from the Gibbs–Helmholtz equation

U(β) =
(
∂βT A
∂βT

)
V

, (8.25)

where βT ≡ 1/(kBT ), which gives upon integration∫ βT ′′

βT ′
dβT U(βT ) = βT ′′A(βT ′′ )− βT ′A(βT ′ ), (8.26)

and then the free energy at βT ′′ as

A(βT ′′ ) = (βT ′/βT ′′ )A(βT ′ )+ 1

βT ′′

∫ βT ′′

βT ′
dβTU(βT ). (8.27)

Thus, if the free energy at a temperature T ′ = 1/(kBβT ′ ) is known together with the
temperature dependence of the internal energy in the interval T ′ ≤ T ≤ T ′′, the free energy
at the new temperature T ′′ can be calculated from Eq. 8.25. This method was used, e.g. by
Lebwohl and Lasher [1972] in their simulations of a simple lattice model of liquid crystals
that we shall discuss in detail in Chapter 10. Similarly, one gets for the free energy as a
function of density [Frenkel, 1986]

A(ρ′′) = A(ρ′)+N
∫ ρ′′

ρ′
dρρ−2P (ρ). (8.28)

The free energy is calculated first at a very low density from, say, a virial expansion. Thermo-
dynamic integration of the density dependence of the pressure can then be used to extrap-
olate the free energy to the high densities of interest. Other methods for calculating free
energy differences between the systems of interest, characterized by a configurational poten-
tial energy UN , and a reference system with potential U0

N have been proposed by Valleau
and Torrie [1977]; that is

βT (A − A0) = − ln
〈
exp[−βT (UN − U0

N )]
〉
0
, (8.29)
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where the angular brackets indicate the canonical ensemble average over the reference sys-
tem. The calculation of free energies in computer simulations was advanced and discussed
in detail by Frenkel [1986].

8.5 Pair Correlation Coefficients

The reduced pair distributionG(r12,�1,�2) is not easy to evaluate in full from a computer
simulation. One possibility is to produce it as a multidimensional histogram, dividing the
range of separations and orientations into a number of intervals, then assigning the orienta-
tions and separations (r12,�1,�2) of every pair of molecules produced by the simulations
to the appropriate volume elements increasing the relative counters. The histogram of the
pair distribution is obtained by repeating the sorting process for a sufficient number of
equilibrium configurations and then normalizing. The procedure is limited on one hand
by the storage required which poses a limit to the resolution that can be obtained in the
histogram and, more seriously, by the need to have a number of counts in every bucket
of the histogram sufficiently high to have good statistics. An alternative procedure is to
evaluate the expansion coefficients of G(r12,�1,�2) in a product basis of Wigner rotation
matrices. For example, consider the case of a reduced pair distribution independent of the
orientation of the intermolecular vector, as for simulation on a cubic lattice or in overall
isotropic fluid, the most general, rotationally invariant form ofG(r12,�1,�2) is (cf. Chapter
4) G(r12,�1,�2) = g(r12,�12), a function of relative orientations �12. For cylindrically
symmetric particles we have just g(r12, cosβ12) which can be expanded in Legendre poly-
nomials PL(cosβ12) as in Eq. 4.93, with

g(r12, cosβ12) = g(r12)
∑
L

2L+ 1

2
GL(r12)PL(cosβ12) (8.30)

and expansion coefficients GL(r12) that represents an Lth rank angular correlation as dis-
cussed in Chapter 4:

GL(r12) = [1/g(r12)]
∫

d cosβ12g(r12, cosβ12)PL(cosβ12) = 〈PL(cosβ12)〉r12, (8.31)

where g(r12) is the radial distribution. The averages 〈PL(cosβ12)〉r12 can be calculated
during the course of a simulation using the following procedure. First, the range of inter-
particle separations is divided into a number of intervals (buckets) of width r each labelled
by an integer. Thus, to every separation r12 we can assign an integer number labelling one
of the buckets. Then, for a given configuration, a particle, i, is chosen as an origin and the
quantity of interest, PL(cosβij ), is computed and added for every pair i,j into the bucket
corresponding to the separation rij . The process is then repeated choosing another particle as
an origin and so on. Normalization is achieved by dividing the content of every bucket by the
number of pairs it holds. The sorting process is then repeated, as usual, for sufficiently many
equilibrium configurations to obtain the MC estimate ofGL(r12). Also, in this case, the size
of the buckets should be chosen large enough to have a sufficiently high number of counts nc,
remembering that the error in estimating the function will be inversely proportional to

√
nc

and this in turns limits the resolution that can be achieved.
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8.6 The Cluster Monte Carlo Method

We have already mentioned that, in general, the effect of periodic boundary conditions is that
of enhancing inter-particle correlations and thus increasing the transition temperature with
respect to the true one. On the other extreme, free-space boundary conditions underestimate
the interaction of our sample with the outside world and generally underestimate the transi-
tion temperature. To improve on this limitation and reduce finite size effects, another type
of boundary condition easily applicable, at least for lattice systems, to anisotropic systems
can be employed [Zannoni, 1986]. This method creates an environment outside the sample
box which has on average the same properties as the inside by using self-consistency and
maximum entropy (Section 3.8) [Levine and Tribus, 1978] principles. We briefly discuss the
method for a generic lattice system, then show an application to the LL model. We begin by
considering our sample box B of N particles as part of a global system G of NG identical
particles. The molecules are characterized by their orientation �i and interact through a
pair potential of a certain finite range. This length defines in turn a natural boundary area
between the sample ofN molecules inside the virtual box B and the world W ofNW particles
outside (see Fig. 8.8a for a nearest neighbour model). The energy UG of the global system
of NG = N +NW particles is

UG = UB + UBW + UW, (8.32)

where UB =
∑N
i=1

∑N
j=1 Uij ;i < j is the contribution from particles which are all

inside the sample box, while UBW = ∑N
i=1

∑NG
j=N+1 Uij comes from the interaction

between molecules inside and outside. Finally, UW is a purely external energy, i.e. UW =∑NG
i=N+1

∑NG
j=N+1 Uij i < j . The global average of a quantityA(�̃) = A(�1,�2, . . . ,�N )

dependent only on the orientations of the particles inside our virtual box will be

〈A〉G = 1

ZG

∫ N∏
i=1

d�i A(�̃) e−UB/(kBT )
∫ NG∏
i=N+1

d�i e−(UBW+UW )/(kBT ), (8.33)

where ZG =
∫ ∏NG

i=1 d�i exp[−UG/(kBT )]. We are typically interested in one- and two-
particle observables, e.g. order parameters and pair correlation functions, and our aim is to
rewrite 〈A〉G in a form amenable to some kind of MC calculation. We note first that for a
certain configurationW of the outside world the average of A is

〈A〉[W ] = 1

Z[BW ]

∫ N∏
i=1

d�i e−(UB+UBW )/(kBT )A(�̃), (8.34)

where we have defined the configuration integral for the molecules inside the
box when surrounded by a fixed configuration [W ] of the outside world as
Z[BW ] =

∫ ∏N
i=1 d�i e−(UB+UBW )/(kBT ). We can now rewrite 〈A〉G as an average over

the outside configurations 〈. . .〉W of 〈A〉[W ] since

〈A〉G = 1

ZG

∫ NG∏
i=N+1

d�i e−UW/(kBT )〈A〉[W ]Z[BW ] = 〈 〈A〉[W ] 〉W . (8.35)

https://doi.org/10.1017/9781108539630.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.009


8.6 The Cluster Monte Carlo Method 377

The average over the outside world can be performed through importance sampling, con-
sidering a finite number of configurationsMW for the molecules outside the box, i.e.

〈A〉G ≈ 1

MW

∑
[W ]

〈A〉[W ], (8.36)

where each average 〈A〉[W ] can be calculated with ordinary MC when the outside configu-
ration is known. The problem of approximating 〈A〉G based on just anN particle simulation
then becomes that of generating suitably sampled outside configurations with a distribution
Pout . In an ideal simulation over all NG molecules our N -particles MC sample is just a
virtual subsystem of a very large one without surface effects. In this case, all the (m) particles
distributions inside and outside the virtual box (as well as across the interface) have to be the
same:P (m)

in (�1,�2, . . . ,�m) = P (m)
out (�1′,�2′, . . . ,�m′ );m ≤ N , giving a self-consistency

condition. In particular, the single-particle distribution outside the sample should equal the
one inside, i.e. P (1)

in (�) = P (1)
out (�), and the order parameters inside and outside should be

the same. Thus, for a uniaxial phase made of uniaxial particles, 〈PL〉in = 〈PL〉out . We can
estimate the single-particle distribution for the molecules inside, either by direct construc-
tion of a histogram if the sample is big enough, or using the order parameters inside the
box and maximum entropy. Assuming that there exists a symmetry-breaking field director
d , say along the z laboratory axis we can calculate the order parameters 〈P2〉, 〈P4〉, etc.
with respect to this direction. Armed with these observables we can construct the best
maximum entropy inference for the molecular distribution as the exponential approximation
(Eq. 3.73) with the coefficients αL determined from the constraint that the available 〈PL〉
can be reobtained by averagingPL(x) over the distribution in Eq. 3.73. Having done this, the
�i necessary to replace the missing interactions can be generated sampling from this distri-
bution. The simplest approximation is that obtained from a knowledge of just 〈P2〉in, which
gives the least biased inference for the single-particle distribution for the ghost molecules
as P (x) = (1/Z) exp[a2P2(x)], with Z a normalization coefficient and a2 determined from
the constraint that 〈P2〉out = 〈P2〉in. Ghost molecule orientations are sampled from this
distribution thus creating in a self-consistent way a privileged laboratory direction. In a sense
we are simulating interactions with the outside with an inhomogeneously fluctuating field
whose average strength is proportional to the order parameter inside. The ghost surrounding
the sample is refreshed to sample a sufficient number of configurations [W ]. The director
pinning effect will thus be larger at lower temperatures while it will essentially vanish in
the isotropic phase.

An application to the Lebwohl–Lasher model. The results of CMC simulations [Zannoni,
1986] for the dimensionless energyU∗ = 〈U〉/Nε as a function of temperature show clearly
that a sharp change of slope occurs suggesting the onset of a first-order transition. The
calculation of 〈P2〉 and higher-rank order parameters presents no particular problem in
the CMC method because of the existence of a symmetry breaking direction. The 〈P2〉
calculated at different temperatures with respect to this direction are plotted in Fig. 8.8b for
the 10 × 10 × 10 system. The method has been successfully applied to the LL [Zannoni,
1986] and Heisenberg [Chiccoli et al., 1993] models.
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(a) (b)

Figure 8.8 (a) partition of a lattice system in a sample box B, a surrounding external world
W and a boundary region (grey shaded). (b) The second-rank order parameter calculated
with respect to the laboratory symmetry breaking direction, 〈P2〉, as a function of reduced
temperature T * for the 10× 10× 10 LL lattice [Zannoni, 1986].

In summary, the cluster MC procedure just described builds a ghost environment outside
a ‘small but significative’ MC sample that mimics the true one and its fluctuations at least
approximately. Note that in an ordinary PBC MC calculation the orientations �i of the
particles of the sample replicas surrounding the sample are identical to those inside, while
in CMC only the distributions (or the order parameters) inside and outside, are constrained
to be the same, reducing spurious space correlations. In essence, if MFT (Chapter 7) corre-
sponds to a molecule in the effective field of all the others, CMC corresponds toN particles
in the effective field of all the others.

8.7 Reweighting Techniques

Ferrenberg and Swendsen [1988] proposed a clever method for extending the range of
temperatures studied starting from a relatively small number of cases. In practice, simu-
lations are performed for a set of temperatures T and used to build histograms H (U,T ).
The normalized probability distribution function P (U,T ) of the energy is then given by

P (U,T ) = H (U,T )∑
U

H (U,T )
. (8.37)

Given this distribution function at T , the Ferrenberg–Swendsen method allows the calcula-
tion of thermodynamic quantities at a different temperature T ′ in the neighbourhood of T .
Specifically, thermodynamic quantities at T can be calculated using the distribution function
P (U,T ′) where

P
(
U,T ′

) = H (U,T ) e−
[
U/(kBT

′)− U/(kBT )
]

∑
U

H (U,T ) e−
[
U/(kBT

′)− U/(kBT )
] . (8.38)

This and various other “smart” MC methods are described in detail in [Allen and Tildesley,
2017].
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9

The Molecular Dynamics Method

I wish we could derive the rest of the phenomena of nature by the same
kind of reasoning from mechanical principles; for I am induced by many
reasons to suspect that they may all depend upon certain forces by which
the particles of bodies, by some causes hitherto unknown, are either
mutually impelled towards each other, and cohere in regular figures, or
are repelled and recede from each other; which forces being unknown,
philosophers have hitherto attempted the search of nature in vain; but I
hope the principles here laid down will afford some light either to that or
some truer method of philosophy.

I. Newton, preface to Principia, 1686.

9.1 Introduction

The calculation of dynamical quantities by computer simulations has to be performed by a
method that allows following of the time evolution of the system explicitly. The Molecular
Dynamics technique [Rahman and Stillinger, 1971; Barker and Henderson, 1976; Erpen-
beck and Wood, 1977; Zannoni, 1979a; Frenkel and Smit, 2002; Rapaport, 2004; Hansen
and McDonald, 2006; Allen and Tildesley, 2017] provides a practical way of achieving this
objective. It consists of setting up and solving time step after time step the Newton–Euler
equations of motion (in their generalized form) [Landau and Lifshitz, 1993] for a system
of N molecules. As a result of the calculation, we obtain fairly complete information on
the system. In Chapter 4 we considered two types of descriptions to be particularly relevant
for liquid crystals, called for convenience: atomistic and generic particle models. In the
first case the system is assumed to be formed of atoms, or more generally, of spherical
particles linked in some way so as to form molecules or some complex nanoparticle. For a
system described at atomistic level, we need the coordinates and velocities for each atom:
{r i, .

r i}, where as usual we use upper dots to indicate time derivatives, while for a system
of anisotropic rigid particles we need three coordinates to define the position of the cen-
tre of mass, r i , and three Euler angles to define �i , three linear velocity components to
define

.
r i and three angular velocity components to define

.
�i in some laboratory frame.

In phase space every configuration of the system i.e. the set of coordinates and velocities,
e.g. in the last case {r i, �i, .

r i,
.
�i}, is represented by a point. As the system evolves in

time this point will move describing a trajectory in phase space. In both cases what the
Molecular Dynamics method does by solving the appropriate equations of motion is to

379
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produce the information at a sequence of successive times t1, t2, . . . tn, discretizing the
time trajectory. We have already mentioned (Chapter 4) that the approximation of classical
behaviour holds if particle separations are much larger than the de Broglie wavelength. In the
case of timescales, quantum effects can be neglected for times much longer than �/(kBT )
which, at room temperature, means for times longer than ≈ 10−14 s.

In this chapter (as in previous ones) we indicate, when possible, with Xi a generic set
of variables for the ith particle, with X̃(t) the collection of the same variables for all the

particles and with
.
X̃(t) the relative velocities. In Chapter 5 we saw a variety of interaction

potentials. Here we shall confine ourselves to introducing the method for continuous dif-
ferentiable potentials, since hard-core systems require some relatively ad hoc techniques
[Erpenbeck and Wood, 1977] and develop the equations necessary to treat orientational
properties.

Variants of the method allow simulation to take place at constant temperature or in
other ensembles [Andersen, 1980; Abraham, 1986]. Here, however, we shall start from the
traditional microcanonical conditions.

Periodic boundary conditions (Section 8.2.1) are implied, as is commonly done in com-
puter simulations, to minimize surface effects. We recall that this amounts to considering
the sample box surrounded by identical replicas of itself. Thus, for a cubic box of side L
a particle at position r = (x,y,z) will have replicas with the same orientation, velocity,
etc. at (x ± L,y,z), (x,y ± L,z), (x,y,z ± L), and so on. If a particle goes out the box
on one side, then one of its replicas will enter the box from the opposite side. In this way
the density of particles remains constant. The introduction of periodic boundary conditions
leads inevitably to some spurious spatial correlation between particles with a separation
of the order of the sample box. As discussed in Chapter 8, this effect can be particularly
important when systems in the vicinity of a phase transition are studied, as is often the case
for simulation of mesophases. In Molecular Dynamics, periodicity also places a limit on the
longest time that can be meaningfully studied. This will be the time taken for propagating a
perturbation across the box, since for longer times we would have it coming back from the
other wall [Kushick and Berne, 1977]. In any case, this limit is normally of no practical
concern, since trajectories are followed for much shorter periods due to computational
restrictions.

9.2 Equations of Motion for Atomistic Systems

In the atomistic simulations considered here, the individual particles are spherical and
correspond to real atoms (in the so called ‘all-atom’ MD) or to united atoms where H atoms
are not described as such but are incorporated in the heavier atom they are attached to. This
slightly coarse-grained description is typically adequate to describe molecular organizations
and even to obtain phase transition temperatures [Tiberio et al., 2009], but should be
avoided if observables involving the hydrogen atoms themselves (e.g. proton NMR dipolar
couplings) are of interest [Pizzirusso et al., 2012b]. Other systems that we could consider
in this section are colloidal suspensions of spherical particles (‘colloidal atoms’) or their
aggregates. In any case, atoms are treated as classical particles of mass mi having, in
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9.3 Integration of the Atomistic Equations of Motion 381

a chosen laboratory frame, positions r i and momenta pi = mi .
r i = mi( .

ri,x,
.
ri,y,

.
ri,z) related

to the components of the particle velocity vi . Thus, X̃XX ≡ (̃r,p̃) ≡ (r1,p1,r2,p2, . . . ,rN,pN )
is the set of coordinates and momenta needed to specify a point in phase space. The system
has anN -particle Hamiltonian H , which is the sum of the potential U (̃r) and kineticK(p̃)
energy contributions:

H (̃r,p̃) = U (̃r)+K(p̃). (9.1)

We have already discussed the dynamic evolution in general terms in Chapter 6 for a system
described by a Hamiltonian H and the equations of motion for coordinates and momenta.
In particular, omitting for simplicity the arguments, we have that [Goldstein, 1980; Landau
and Lifshitz, 1993]

∂H

∂pi
= .

r i (9.2)

and

∂H

∂r i
= ∂U

∂r i
= − .

pi = −mi ..r i . (9.3)

In the absence of dissipative contributions, the force acting on particle i (e.g. an atom)
depends only on coordinates and corresponds to the gradient of the potential Ui acting on
that particle by effect of all the others:

f i = −
∂Ui

∂r i
= −∇∇∇ iUi = −∇∇∇i

∑
j �=i
Uij . (9.4)

Thus, Eq. 9.3 takes the familiar Newton equations of motion form

f i = miai, (9.5)

where a ≡ ..
r is the acceleration. The first item to examine is thus the potential energy

between particles, as we have already discussed in Chapter 5, so we can assume the forces
to be available when needed.

9.3 Integration of the Atomistic Equations of Motion

The set of coupled Newton equations (Eq. 9.3) can be integrated to compute positional and
angular coordinates and velocities as a function of time, i.e. to generate the trajectory of the
system in phase space. The numerical integration can be performed using one of the several
algorithms available. Thus, suppose we have positions r i(t) and velocities

.
r i(t) for every

particle at a time t and that we want to find their value at (t+�t), with�t a small time step
(typically of the order of 1 fs). A first-order Taylor expansion gives a simple finite difference
approximation for the derivatives

.
r and

..
r and yields the new velocity as

.
r i(t +�t) = .

r i(t)+ 1

mi
f i(t)�t + O (�t2), (9.6)
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1

11

Figure 9.1 A sketchy flow diagram of the Molecular Dynamics method.

where f i(t) ≡ f i (̃r(t)) is the force acting on the ith particle at time t , and we indicate with
O (�t2) the order of magnitude of the terms neglected (the ‘error’). The new position would
be

r i(t +�t) = r i(t)+ .
r i(t)�t + O (�t2). (9.7)

This method, sometimes called Euler method, is very easy and simple to understand but
performs very poorly. In general, the accuracy of these finite difference methods with respect
to the true solution is affected by the inevitable truncation errors intrinsic to the algorithm.
Even though they may seem negligible, given the mentioned small �t , this is not really
so, as many millions of time steps have to be performed in a typical simulation. More
sophisticated algorithms used in solving other differential equations can obviously be used.
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Note, however, that the improved accuracy in estimating the new coordinates and velocities
is counterbalanced by the need to calculate and store additional quantities. In particular,
while second derivatives of positions (forces) are easily available, higher derivatives would
be progressively much more expensive to calculate. An essential sketch of the MD workflow
is shown in Fig. 9.1 and in the next sections we list just a few of the most common and useful
algorithms employed to perform the various steps of the procedure.

9.3.1 Verlet Algorithm

A useful compromise between speed and accuracy is given by Verlet’s algorithm [Verlet,
1967; Allen and Tildesley, 2017]. If we carry the Taylor expansion Eq. 9.7 to third-order
for positive and negative time increments:

r i(t +�t) = r i(t)+ .
r i(t)�t + 1

2
..
r i(t)�t

2 + 1

6

...
r i(t)�t

3 + O (�t4), (9.8a)

r i(t −�t) = r i(t)− .
r i(t)�t + 1

2
..
r i(t)�t

2 − 1

6

...
r i(t)�t

3 + O (�t4), (9.8b)

and add them together, we find a third order predictor for the new position

r i(t +�t) = 2r i(t)− r i(t −�t)+ �t
2

mi
f i(t)+ O (�t4). (9.9)

Thus, the truncation error is now in principle O (�t4) instead of O (�t2), even if with the
finite digits of a computer adding large and small terms can lead to errors. Note that the
velocity does not appear in this formula. It can be obtained afterwards, subtracting the two
Eqs. 9.8, as the central difference

.
r i(t) = 1

2�t
[r i(t +�t)− r i(t −�t)]+ O (�t2), (9.10)

which has, however, errors at O (�t2). In certain applications, e.g. calculation of kinetic
energy and particularly where accelerations depend on velocities as well as on positions as
in the modified evolution equations used for constant temperature methods, this can be a
disadvantage.

A ‘velocity’ version of Verlet’s algorithm can, however, be introduced as

.
r i(t +�t/2) = .

r i(t)+ 1

2mi
f i(t)�t, (9.11a)

r i(t +�t) = r i(t)+ .
r i(t +�t/2)�t, (9.11b)

.
r i(t +�t) = .

r i(t)+
[
f i(t)+ f i(t +�t)

] �t
2mi

+ O (�t3). (9.11c)

The velocity Verlet algorithm explicitly provides the velocity at each step, is time reversible
and is ‘self-starting’ from the positions and velocities at the initial time.
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9.3.2 Leapfrog Integrator

A very popular method is the half-step or leapfrog integrator [Allen and Tildesley, 2017] that
takes its name from the fact that velocities and positions are not calculated simultaneously,
but alternatively at each half step. Velocities (Eq. 9.13) are obtained by combining two
Taylor expansions of the velocity at time step ±�t/2:

.
r i(t +�t/2) = .

r i(t)+ f i(t)�t

2mi
+ O (�t2), (9.12a)

.
ri(t −�t/2) = .

r i(t)− f i(t)�t

2mi
+ O (�t2), (9.12b)

to give an update of the velocity at t +�t/2
.
r i(t +�t/2) = .

r i(t −�t/2)+ f i(t)�t

mi
+ O (�t2), (9.13)

while the position is obtained using a half time step and shifting the time of another half
time step:

r i(t +�t) = r i(t)+ .
r i(t +�t/2)�t + O (�t3). (9.14)

The instantaneous velocities at time t can be computed as the average of the velocities at
time t−�t/2 and t+�t/2. The method is time reversible and symplectic (i.e. it conserves
phase space volume).

9.3.3 Gear Predictor-Corrector

Rahman and Stillinger [1971] have used the following [Gear, 1971] predictor-corrector
method

r ′i(t +�t) = r i(t −�t)+ 2�t
.
r i(t)+ O (�t3), (9.15a)

.
r ′i(t +�t) = .

r i(t −�t)+ �t
mi

f i(t)+ O (�t3), (9.15b)

giving

r i(t +�t) = r i(t)+ 1

2
�t

[ .
r i(t)+ .

r ′i(t +�t)
]+ O (�t3), (9.16a)

.
r i(t +�t) = .

r i(t)+ �t

2mi

[
f i(t)+ f ′i(t +�t)

]+ O (�t3). (9.16b)

Note, however, that the improved accuracy in estimating the new coordinates and velocities
is counterbalanced by the need to calculate and store additional quantities. There are of
course many other methods that try to increase �t and thus the observation time span
while maintaining accuracy [Leimkuhler and Matthews, 2015], but this typically requires
paying the price of some complicated algorithm and additional calculations. This leaves
out, in particular, methods requiring more than one evaluation of forces, normally the most
computationally expensive ones to calculate.
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9.3.4 Timescales

Having obtained the new configuration at time (t + �t) the procedure is repeated. Thus,
the continuous trajectory of the system in phase space is replaced by a series of points at
time intervals �t . A necessary condition for a good integration is that energy should be
conserved as long as the system is isolated, but this is not necessarily sufficient [Toxvaerd,
1983]. A true trajectory should also be time reversible and certain algorithms intrinsically
satisfy this, e.g. the simple Verlet’s one, Eq. 9.9, but reversibility can be obtained also for
time intervals so large as to give an otherwise incorrect evolution [Toxvaerd, 1982]. It is
worth stressing that whatever integration algorithm is used, it has to be stable in the sense
that the solution obtained should not diverge exponentially with time from the true one. This
requirement also determines the magnitude of the increment �t .

An important point to consider when simulating realistic systems of molecules is that
motions corresponding to different atoms or molecular fragments can have rather differ-
ent timescales (e.g. bond vibrations will typically be significantly faster than molecular
translations). This determines the need for a very short integration time step for a proper
integration and can be very demanding as forces between particles have to be calculated at
every time step, implying a waste of resources for properly dealing with bond stretching and
bending that are of somewhat secondary importance. Because each particle interacts with
all particles within the interaction range of the potential, the longer the range of the potential
the larger the number of force contributions that must be calculated at each time. One rather
drastic way of tackling the problem is that of fixing bond lengths, or more generally, the
distances between mass centres by implementation of a set of geometric (holonomic) con-
straints. One such algorithm, called SHAKE [Ryckaert et al., 1977; Ciccotti and Ryckaert,
1986] is widely used particularly for large molecules [McCammon and Harvey, 1987] and
implemented in some of the available MD engine packages like GROMOS [van Gunsteren
and Berendsen, 1987]. Among the various other algorithms that implement geometrical
constraints we mention RATTLE [Andersen, 1983], SHAPE [Tao et al., 2012] and LINCS
[Hess et al., 1997].

Instead of introducing constraints, more general approaches to the integration of the equa-
tions of motion that allow instead multiple timescales (MTSs) can be formulated starting
from the time evolution of the mechanical system of atoms with the help of the Liouville
operator [Friedman, 1985; Tuckerman, 2010]

L (. . .) = −i{H, . . .} = −iH×(. . .), (9.17)

where the classical Poisson brackets {H, . . .} [Goldstein, 1980; Friedman, 1985; Tuck-
erman, 2010] were defined in Eq. 6.4. The formal solution of the equation of motion
dA(t)/dt = iLA(t) for a dynamical variable A(t) ≡ A({r(t),p(t)}) leads, for a time inde-
pendent Hamiltonian, to the formal solution

A(t +�t) = e�tH
×
A(t), (9.18)
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where the propagator e�tH
×

is a unitary operator so that its inverse, the propagator for
going back in time, is its adjunct. If we just take A(t) = (r i(t),vi(t)) we can reobtain, for a
very small �t ,

r i(t +�t) = r i(t)+ vi�t + · · · , (9.19a)

vi(t +�t) = vi(t)+ 1

mi
f i�t + · · · . (9.19b)

The propagator formulation helps to ensure that the desired properties of MD integrators, as
time reversibility, symplecticity, and good conservation of total energy, are implemented. If
the Hamiltonian (and thus the Liouville operator) can be split into a sum of different terms,
each leading to different timescales, the propagator can be rewritten using some known
theorems [Tuckerman et al., 1991a, 1991b]. In particular, for any two linear operators A,B̂

the so-called symmetric Sprang–Trotter formula holds:

e(A+B)t = lim
n→∞

(
eB t/2n eA t/n eB t/2n

)n
. (9.20)

Applying this to an evolution operator consisting of a ‘slow’ (S) and ‘fast’ (F) part, i.e.

H× =H×
S +H×

F, (9.21)

we have, considering a relatively long time step�t , adequate for the integration of the slow
contribution, that

e�tH
× = e�t(H

×
S +H×

F ) = e
�t
2 H×

S ( e�tH
×
F ) e

�t
2 H×

S + O (�t3), (9.22a)

= e
�t
2 H×

S ( e
�t
n

H×
F )n e

�t
2 H×

S + O (�t3), (9.22b)

= e
�t
2 H×

S ( e�tFH×
F )n e

�t
2 H×

S + O (�t3), (9.22c)

where�tF = �t/n is now a ‘short’ time step suitable for the fast motion. Thus, the evolu-
tion can be performed doing a slow evolution step with H×

S followed by a sequence of evo-
lution steps performed only on the fast contribution with its appropriate short time step and
so on. The procedure can be repeated if more than two separable timescales can be individu-
ated leading to MTS algorithms [Procacci and Marchi, 2000; Tuckerman, 2010]. In practice,
there are a number of ways in which the separation can take place. In atomistic simulations,
bending and stretching are good candidates for the ‘fast’ timescale, while expensive to
calculate long-range interactions could be assigned to the ‘slow’ part, but also long-range
electrostatic contributions can be further partitioned between direct and reciprocal space,
carefully choosing the separation parameter α in Eqs. 5.38a and 5.38b. Time reversibility of
the trajectory is a necessary requirement. The propagators developed as described are clearly
unitary, therefore time reversible, automatically leading to more accurate approximations
of the true discrete time propagator [De Raedt and De Raedt, 1983; Yoshida, 1990].

The Liouville approach coupled with a suitable Sprang- Trotter factorization of the total
propagator allows developing efficient multiple time step integrators, e.g. the reversible
reference system propagator algorithm (r-RESPA) [Tuckerman et al., 1992]. The approach
is described, for example, in Tuckerman et al. [1991b], Procacci and Marchi [2000] and
Frenkel and Smit [2002], and is implemented in various MD packages, for instance,
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LAMMPS [Plimpton, 1995], ORAC [Procacci et al., 1997] and NAMD [Phillips et al.,
2005].

Similar factorizations allow the integration of the equations of rotational motion when
non-spherical particles are studied [Kamberaj et al., 2005; Allen and Tildesley, 2017] even
though care must be taken to avoid singularities and this is usually accomplished by using
quaternions [Altmann, 2005; Berardi et al., 2008a]. Multiple time-steps algorithms improve
efficiency allowing each timescale an appropriately chosen time step. However, such
approaches are hampered by possible resonance phenomena that enhance errors and limit
the largest time step to around 5–6 fs. The development of integration methods to increase
�t while maintaining accuracy continues and the results [Leimkuhler et al., 2013] seem to
indicate the possibility of an increase by more than an order of magnitude. More sophisti-
cated algorithms can obviously be used. Methods that do not require the storing of previous
information have the advantage of being self-starting. A class of methods of this kind, that
we shall not describe in detail, but that is well known in the solution of ordinary differential
equations are the Runge–Kutta methods in its various versions (see, e.g., [Moin, 2010]).

9.4 Equations of Motion for Rigid Anisotropic Particles

While atomistic simulations are needed to provide predictions on properties and phase
transitions for realistic, chemically detailed, models of mesogens, the majority of simula-
tions of liquid crystals has been and is still performed on the anisotropic molecular models
introduced in Chapter 5. Here we discuss the equations of motion for a system of anisotropic
rigid particles that obey classical mechanics.

Each particle will be characterized by position r , velocity
.
r , orientation with respect to

the fixed laboratory frame rotation vector � and angular velocity
.
�. For these systems, the

evolution of the centres of mass is exactly similar to what we have seen up to now in terms
of equations of motion (Newton’s ones) and their integration.

The potential acting on the ith rotor because of its interaction with the other particles is,
assuming effective pairwise additivity,

Ui =
∑
j �=i
U (r i,�i,rj,�j ). (9.23)

The summation in Eq. 9.23 is extended in principle to all the particles interacting with the
particle considered, even though in practice only those within a given cut-off range are often
taken into account. We do not enter here into the nature of the effective two body potentials
that we have discussed in Chapter 5, but we shall assume it to be a continuous and differ-
entiable function of positional and orientational coordinates as well as time independent.
Hard particles can be treated too with specific methods [Allen et al., 1993]. The kinetic
energy K of a system of rotors of individual mass mi and inertia tensor Ii is the sum of the
translational and rotational contributions K tr and K rot:

K tr = 1

2

N∑
i=1

mi
.
r i · .

r i, (9.24a)

K rot = 1

2

N∑
i=1

.
�i · Ii ·

.
�i . (9.24b)
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The inertia tensor components in the laboratory frame depend on the orientation of parti-
cle i, while in the molecule fixed system its Cartesian components have been defined in
Eq. 4.24 and, for continuous bodies, in Eq. 4.25. The dynamic evolution of the rotor can be
described by Lagrange’s equations [Landau and Lifshitz, 1993]

d

dt

∂L
∂

.
qα
− ∂L
∂qα

= 0,α = 1,2, . . . ,nf , (9.25)

where L = K − U is the Lagrangian function for the rotor under consideration, qα a gen-
eralized coordinate component and nf the number of degrees of freedom. For translational
degrees of freedom, qa = (rx,ry,rz), we obtain again Newton’s equation, like in Eq. 9.5.
The linear acceleration

..
r is obtained from the force, as in Eq. 9.3, acting on the particle with

centre of mass at r i , that is calculated as the gradient of the potential on the rotor. Similarly,
we can deduce the rotational equation of motion in the laboratory frame

NLAB
i = d

dt

(
ILAB
i · .

�
LAB

i

)
, (9.26)

where N i is the torque produced on the rotor under consideration by the effect of all the
others:

N i =
∑
k

(hk − ri)× f k . (9.27)

Eq. 9.26 can be rewritten in a frame moving with the molecule by using the vector formula
for the time derivative of a vector a attached to a frame moving with angular velocity

.
�

with respect to a reference frame:

.
aLAB = .

aMOL + .
�× a. (9.28)

Thus, we find from Eq. 9.28 the Euler equation describing the reorientation of the particle
[Landau and Lifshitz, 1993]

NLAB = IMOL
..
�MOL + .

�
MOL × (IMOL

.
�MOL). (9.29)

If our molecular fixed-coordinate system is the principal frame of the inertia tensor we have
explicitly for the j th particle

[Nj ]a = [Ij ]aa[
..
�j ]a + εaβγ [

.
�j ]β [Ij ]γ [

.
�j ]γ , (9.30)

where εαβγ is the Levi-Civita symbol (Eq. A.9) and to avoid clutter we have omitted the
superscripts indicating the coordinate frame. Summation on repeated Greek subscripts is
implied as usual when using εαβγ . In Eq. 9.30, Iaa , a = x,y,z, are the eigenvalues of the
inertia tensor of the particle and

.
�a , Na are, respectively, the components of the angu-

lar velocity and of the torque around the principal axes. As an example, again for the
j th rotor,

N j = −rj ×∇Uj = irj ĴUj, (9.31)

where we have introduced the dimensionless quantum mechanics angular momentum oper-
ator Ĵ (Eq. F.34) [Rose, 1957]. This is quite useful to write down at once the torque com-
ponents when the potential is written in terms of Euler angles (α,β,γ ). Using the well-
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known expressions for the angular momentum operator in terms of Euler angles, we get the
molecule fixed torque components

Nx = cos γ cotβNγ + sin γNβ − cos γ

sinβ
Nα, (9.32a)

Ny = − sin γ cotβNγ + cos γNβ − sin γ

sinβ
Nα, (9.32b)

Nz = Nγ, (9.32c)

where Nα≡ ∂U∂α , Nβ≡ ∂U∂β , Nγ≡ ∂U∂γ , while the space fixed components of the torque are

NX = cosα cotβNα + sinαNβ − cosα

sinβ
Nγ, (9.33a)

NY = sinα cotβNα − cosαNβ − sinα

sinβ
Nγ, (9.33b)

NZ = −Nα . (9.33c)

From the point of view of numerical integration of the equations of motion, these Euler
equations have the very inconvenient feature of diverging every time the molecule has
occasionally β = 0,π . Historically, a first attempt to remedy this problem was that of
adopting two coordinate frames and switching when the risk of singularity appeared
[Barojas et al., 1973]. This is clearly difficult to handle and error prone. The best approach
is to avoid the use of Euler angles altogether with use of quaternions.

9.4.1 Equations of Motion in Terms of Quaternions

For a linear molecule the Euler angles β,α become simply the polar angles (often called
θ and φ) of the particle, but the problem of the unnecessary singularity due to sinβ at
the denominator in the rotational equations of motion remains. A simple and elegant way
to overcome the problem for the linear rotors is that of replacing the representation of
orientations in terms of two angles (α,β) with one in terms of three direction cosines (the
Cartesian components of a unit vector directed along the axis of the rotor) and a nor-
malization condition. For rigid molecules of arbitrary symmetry which require the three
Euler angles, a similar approach involves representing the orientations in terms of four-
component quaternions [Evans, 1977; Zannoni and Guerra, 1981; Fincham and Heyes,
1985] (see Appendix H). Thus, instead of using three Euler angles�ML = (α,β,γ ), a unitary
quaternion uML = (u0,u1,u2,u3) with u2

0 + u2
1 + u2

2 + u2
3 = 1 is introduced to describe

the orientation of each molecule. As we show in Appendix H the two representations are
connected by simple equations: Eqs. H.22a–H.22f. The time derivative of quaternions can
be written in terms of angular velocities in the following way. First, we can use Eq. 9.28 to
write the time derivative of a constant length vector (∂a/∂t = 0)

.
aLAB = .

�× a = �a, (9.34)

where � is the antisymmetric angular velocities matrix

 =
⎛⎝ 0 − .

�z + .
�y

+ .
�z 0 − .

�x

− .
�y + .

�x 0

⎞⎠ (9.35)
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and
.
rLAB
α = .

(�× r)α = εαβγ
.
�βrγ . The vector r in the lab fixed frame can be related to the

molecular one:

rLAB = RT rMOL, (9.36)

with the time derivative

.
rLAB = .

RT rMOL = .
RT R rLAB = �r, (9.37)

where the Cartesian rotation matrix R = R(uML), function of the orientation written as a
quaternion uML, i.e., connects lab and body fixed frames and is given explicitly in terms of
quaternions in Eq. H.24. Thus,

.
RTR =  or, explicitly,

 αγ = εαβγ
.
�β = εγαβ

.
�β = RTαβ

.
Rβγ = Rβα

.
Rβγ . (9.38)

Multiplying both sides for εγαη and using Eq. A.13b, εγαηεγαβ = 2 δη,β , we have

εγαηεγαβ
.
�β = 2δη,β

.
�β = εγαη Rβα

.
Rβγ , (9.39)

and

.
�η = 1

2
εγαηRβα

.
Rβγ . (9.40)

Recalling the explicit definition of the Cartesian rotation matrix R in terms of quaternion
components, Eq. H.24, this gives the angular velocities in terms of quaternions and their
derivatives: ⎛⎜⎜⎝

0
.
�x.
�y.
�z

⎞⎟⎟⎠ = 2

⎛⎜⎜⎝
+u0 +u1 +u2 +u3

−u1 +u0 +u3 −u2

−u2 −u3 +u0 +u1

−u3 +u2 −u1 +u0

⎞⎟⎟⎠
⎛⎜⎜⎝

.
u0
.
u1
.
u2
.
u3

⎞⎟⎟⎠ = 2WT .
u. (9.41)

The 4×4 W matrix has been obtained adding equation:+u0
.
u0++u1

.
u1+u2

.
u2+u3

.
u3 = 0

resulting by differentiation of
∑3
i=0 u2

i = 1. The quaternion derivatives can be obtained
immediately, since the matrix W is orthogonal, so that its inverse is just its transpose:⎛⎜⎜⎝

.
u0
.
u1
.
u2
.
u3

⎞⎟⎟⎠ = 1

2

⎛⎜⎜⎝
+u0 −u1 −u2 −u3

+u1 +u0 −u3 +u2

+u2 +u3 +u0 −u1

+u3 −u2 +u1 +u0

⎞⎟⎟⎠
⎛⎜⎜⎝

0
.
�x.
�y.
�z

⎞⎟⎟⎠ = 1

2
W

.
�. (9.42)

If the angular velocities are obtained from Euler equation and the torques

N = −1

2
WT ∂U

∂u
, (9.43)

the integration of Eq. 9.42 can be carried out with some of the standard methods examined
before, e.g. leapfrog. However, it should be recalled that the sum of squares of the quaternion
components should be normalized, applying a correction factor at every time step, or at least,
frequently enough [Allen, 1984]. A Molecular Dynamics simulation of rigid bodies using
quaternions [Evans, 1977; Evans and Murad, 1977; Zannoni and Guerra, 1981; Fincham
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and Heyes, 1985; Berardi et al., 2008a] is most convenient, since the equations of rota-
tional motion are free of singularities and avoid using trigonometric functions. The use of
quaternions is now standard and is included in packages such as LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator) from Sandia Labs [Plimpton, 1995].

The orientational propagator can also be embedded in a simple multiple time step scheme
[Tuckerman et al., 1991a] with a standard velocity-Verlet propagator for the translational
motion to achieve an algorithm for the complete finite differences integration of the full
equations of motion for a rigid body.

9.4.2 Equilibration

The Molecular Dynamics process is started from a configuration which is rarely an equilib-
rium one for the desired temperature and density. The initial positions and orientations can
be chosen using existing information if available, e.g. an existing Monte Carlo configuration
could be used. For a model liquid crystal simulation, a convenient possibility could also be
to sample orientations from a molecular field distribution with a certain order parameter

P (cosβ) = exp[a cos2 β]/Z, (9.44)

where Z is a normalization coefficient and the approximation 〈P2〉 ≈ a/5 (see Eq. 3.79) is
adequate for the purpose. This initialization also ensures that some basic symmetry require-
ments are built in, e.g. that on average heads and tails of particles are equally represented.

Velocities can be sampled from a suitable Maxwell distribution (Eq. 4.15) to speed up the
approach to equilibrium or they can just be set in some rather arbitrary way (for example,
all with constant magnitude but random directions).

If a system is isolated, its total energy, linear and angular momentum pT and J will be
conserved (constant in time) while potential and kinetic energy, and therefore the temper-
ature, of the system will fluctuate. The pT and J conservation laws follow from general
symmetries: the translational and rotational invariance of physical laws. It should be noted
that in a simulation of a sample in an orthogonal box with periodic boundary conditions
energy and linear momentum are conserved but not angular momentum, since the system
is strictly not unchanged by rotation [Allen and Tildesley, 2017].

For an arbitrary choice there will be in general a net linear and angular momentum pT
and J , respectively. These should be subtracted out, e.g.

pi := pi − pT /N, (9.45)

where we use the symbol :=’ to indicate that the variable on the LHS is replaced by that
on the RHS, so that the box does not, so to speak, move around during the computation.
We note that the MD methodology as described up to now has been purely mechanical and
deterministic based, as we have seen, on setting up and solving the equations of motion
for a system of N particles in a box isolated from the outside (microcanonical conditions,
Section 4.5). We could say that, given adequate computers, Newton could have done it!
However, the temperature of the system was not set or even defined until now, and this is the
point at which statistical mechanics has to enter. Indeed, temperature can be obtained from
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the translational kinetic energyKtr, using the equipartition theorem of statistical mechanics
(see, e.g., [Pathria and Beale, 2011]) which assigns to every degree of freedom a kBT /2
contribution. Thus,

Ktr = 1

2

∑
i

mi
〈 .
r i · .

r i
〉 = 1

2
NkBTtrntr, (9.46)

where ntr is the number of translational degrees of freedom, from which we can obtain a
posteriori a ‘translational temperature’, Ttr. Quite similarly, if our particles are anisotropic
rigid bodies, we have for the rotational kinetic energy Krot

Krot = 1

2

〈∑
i

.
�i · Ii ·

.
�i

〉
= 1

2
NkBTrotnrot, (9.47)

where nrot is the number of rotational degrees of freedom. If N � 1, we can neglect
the number of conserved quantities that should be subtracted. Obviously for a system at
equilibrium, we should have Trot = Ttr = T .

In the first part of the simulation (the equilibration stage), the temperature needs, in
general, to be adjusted. For instance, we may expect that if, in the arbitrarily chosen initial
configuration, some particles are too close to each other, their high repulsive potential
energy will be transformed into kinetic energy as the particles are repelling each other,
causing them to rapidly burst away. If this is the case, the kinetic energy and temperature will
jump to values very high and unrealistic. Controlling the temperature to a desired one, T0,
can be done by multiplying the velocity of each particle by a scaling factor λ = √(T0/T ),
where T is the actual, current, temperature [Rapaport, 2004]. The method seems very drastic
(it is in a way) but amounts to a realization of the often invoked concept of a thermal bath
in thermodynamics, i.e. of a reservoir at temperature T0, which instantaneously adjusts the
temperature of a system with which it is put in thermal contact without modifying its own
temperature (the classic example is a bathtub full of water at T0 while the system to be
thermostated could be constituted by a small test tube immersed in it). Normally a series
of these adjustments will be necessary since, of course, the temperature is not a constant of
motion. After this preparation stage the system is left to equilibrate for an adequate number
of time steps (a few thousand, say). As a check of the reliability of the integration, the
constants of motion such as energy and angular momentum are monitored. They should not
drift systematically but be conserved. The temperature will not be constant at the desired
value but should only oscillate about its time average without a systematic drift. The mean
square amplitude of the equilibrium temperature fluctuations is an indication of the heat
capacity of the system. This has been shown, for spherical particles, by Lebowitz et al.
[1967], who obtained some general equations for relating averages obtained in the micro-
canonical N,V,E ensemble to the canonical ones. These are (correct to order O (1/N )) for
a generic property A,

〈A〉NVE = 〈A〉NVT − 1

2
kBT

2 ∂

∂T

(
(NCV )

−1 ∂A

∂T

)
(9.48)
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and for fluctuations 〈
�A2〉

NVE
= 〈
�A2〉

NVT
− kBT

2

NCV

(
∂A

∂T

)2

. (9.49)

Thus, for mean square fluctuations in temperature under the microcanonical conditions
characteristic of an MD simulation:〈

(�T )2
〉

T 2
= 2

3N

(
1− 3kB

2CV

)
. (9.50)

The requirement of constant total energy in the MD ensemble implies also that the fluctu-
ations in temperature, and thus in kinetic energy, have to be equal to the potential energy
fluctuations. For LC systems this may imply [Zannoni and Guerra, 1981] that large fluc-
tuations in temperature also cause large fluctuations in the order parameters since these
determine the internal energy.

9.5 Constant Temperature Molecular Dynamics

The simplest method for keeping a constant temperature is that proposed by Woodcock
[1971] and Rahman and Stillinger [1971], which amounts to scaling velocities, as we have
seen in the previous section, not only during equilibration but also at every time step during
production. This very simple velocity scaling method, although generating a constant kinetic
energy (rather than canonical) ensemble, is often used and even recommended [Fincham
and Heyes, 1985] because it is inexpensive and numerically stable [Abraham, 1986]. Much
more rigorous methods for canonical ensemble thermostats have been proposed but there
is no evidence to suggest that they produce different results if one accounts for the noise
inherent in any MD experiment [Fincham and Heyes, 1985]. In any case, the method, which
does not require additional user-defined parameters, as in other methods, is a very useful
tool that can hardly give wrong structural results.

9.5.1 Berendsen Thermostat

A less drastic approach proposed by Berendsen et al. [1984] is the weak-coupling thermostat
using a factor that depends on the deviation of the instantaneous kinetic energy K from the
average valueK0, corresponding to desired temperature T0. At each time step velocities are
rescaled by the factor λB :

λB =
√

1+ �t
τT

(
K

K0
− 1

)
, (9.51)

where �t is the MD time step and τT is a parameter with the dimension of a time defining
the coupling with the thermostat. The method does not reproduce a canonical ensemble,
as the condition of constant average kinetic energy does not correspond to the condition
of constant temperature, i.e. the fluctuations of the temperature and kinetic energy follow
different laws. Thus, this method leads to trajectories whose average values correspond to
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the ones of the canonical ensemble, but whose fluctuations do not [Fincham and Heyes,
1985; Frenkel and Smit, 2002].

9.5.2 Langevin Thermostat

In this approach the modification of the particle velocities to achieve the desired constant
temperature is achieved assuming a stochastic process, according to the Langevin equation
for each particle:

mi
d

.
r i(t)

dt
= f i(t)−miγi .

r i(t)+ f st
i (t), (9.52)

where γi is a friction coefficient determining the strength of the coupling of atom i to the
thermal bath, while f st

i (t) is a stochastic force, a Gaussian distributed stochastic variable
with 0 mean, 〈f st

i (t)〉 = 0, and a Dirac delta time correlation〈
f sti (t) ·f sti (t + τ )

〉 = 6miγikBT0 δ(τ ) δi,j . (9.53)

T0 is the temperature of the virtual thermal bath and has no correlation with prior velocities.
The friction coefficient should be small enough to avoid moving from the
Newtonian deterministic regime to an overdamped, Brownian diffusion one.

9.5.3 Nosè–Hoover Thermostat

This algorithm generates a canonical ensemble making use of the extended Lagrangian tech-
nique: the coupling with an external degree of freedom is performed by adding additional
coordinates to the classical Lagrangian. The method proposed by Nosé [1984] and Hoover
[1985] introduces an additional degree of freedom η, describing the external bath, and its
time derivative

.
η corresponding to a pseudo friction term used to scale particle velocities.

The following equations of motion are obtained:

.
rrri = pppi

mi
(9.54a)

.
pppi = fff i − .

ηpppi (9.54b)

..
η = 1

Mf

N∑
i=1

p2
i

2mi
− 3

2
NkBT0. (9.54c)

where Mf is a fictitious mass parameter determining the change of the friction η when
the kinetic energy and thermal equipartition value at the target temperature T0 in Eq. 9.54c
deviate from each other.

The whole system, that contains all “real” degrees of freedom plus η, is conservative and
obeys Liouville equation. It can be shown by direct substitution that the canonical distri-
bution � ∝ exp[−(K + U )/(kBT )] is its stationary, time independent solution. Therefore,
configurations sampled by this algorithm represent canonical ensemble, even though the
method can be difficult to tune. Differently from the former thermostats, this is an integral
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thermostat, with the instantaneous values of η and
.
η depending on all previous states of the

system.

9.6 Constant Pressure Molecular Dynamics

Molecular dynamics can be performed under external conditions corresponding to the dif-
ferent ensembles introduced in Chapter 4, in particular the important (N,P,T ) one. To do
this, the first step is to obtain the system pressure tensor � using the virial expression intro-
duced in Chapter 4 written as sum of the kinetic energy contribution (ideal gas contribution,
always positive) plus the interparticle energy contribution. The pressure P is then calculated
from the trace of the pressure tensor � (see Eq. 4.135). If a cut-off scheme is used, the virial
is calculated from the pairwise forces instead of being calculated from the total force acting
on each particle (see, e.g., [Paci and Marchi, 1996]).

The procedures for pressure control generally mimic the ones derived for thermostats: in
particular, one of the most used barostats is the weak-coupling barostat as well as the more
specific one by Parrinello and Rahman [1981]. The weak-coupling scheme can be applied
to couple the system to a ‘pressure bath’ [Berendsen et al., 1984]. Once fixed the desired
external pressure Pext, the task can be accomplished by periodically rescaling all centre of
mass coordinates and box size, either isotropically or anisotropically, following a first-order
relaxation law. In the isotropic case, this is just

dP

dt
= Pext − P

τP
, (9.55)

P (t +�t) = P (t)+ (
Pext − P (t)

)�t
τP
, (9.56)

where τP is the pressure coupling time constant. The coordinate scaling factor μ is given
by:

μ =
[

1+ �t
τP
κT (P − Pext)

] 1
3

, (9.57)

and that for the volume byμ3, with κT , ideally, the experimental isothermal compressibility
of the system. When the latter is not known, it is common practice to use another reference
compressibility (e.g. that of water), since κT influences only the pressure fluctuations fre-
quency and not the pressure itself, and many liquids have similar values.

To obtain an anisotropic coupling and eventually run a simulation with a non-cubic or
even non-orthogonal shaped box, which could be important for LC fluids made of strongly
anisometric molecules, one should deal [Parrinello and Rahman, 1981] with the 3 × 3 H
matrix, already introduced in Chapter 8 (see Eq. 8.12), whose elements are the components
of the vectors defining the simulation cell and whose determinant is the cell volume. An
approximate cell relaxation matrix M can be obtained from the pressure tensor �:

M =
[
κT

τP
(!!!− PextI)

]
. (9.58)
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The new H matrix is given by: H(t +�t) = H(t)+M H(t)�t . The coordinates scaling is
then accomplished as follows:

rrr(t +�t) = H(t +�t) H−1(t) rrr . (9.59)

A treatment of the generalized MD equations of motion and their integration is clearly
outside the scope of this simple introduction, but a detailed discussion is given, for instance,
by Tuckerman [2010]

From a technical point of view, using the Parrinello–Rahman technique, the computa-
tional box can undergo a spurious, physically insignificant overall rotation [Nosé and Klein,
1983]. The problem can be overcome by fixing the absolute orientation of the box in the
laboratory system used [Ferrario and Ryckaert, 1985].

In the extended Lagrangian formulation of Andersen [1980], each element of the
matrix H is treated as an extra degree of freedom, and a barostat mass is introduced,
that has the same effect of the τP of the weak-coupling scheme. The method works
with a fully anisotropic box; to simulate more symmetric boxes it is necessary to impose
some constraints on the evolution of H. This type of barostat can be used together with
the Nosé–Hoover thermostat, i.e. using a single extended Lagrangian, leading to the
so-called Nosé–Parrinello–Rahman scheme; the best choice of the associated masses is
the one that allows coupling between the relative vibrational modes of the system.

As in the case of the thermostats, only the extended Lagrangian barostat is able to repro-
duce correctly the observables fluctuations proper of the (N,P,H ), or the (N,P,T ), ensem-
ble; on the other hand, the correct average values can also be obtained with the simpler
weak-coupling barostat [Paci and Marchi, 1996].

9.7 Calculation of Static and Dynamic Properties

The mean value of a quantity A can be calculated as time averages from the configurations
obtained after the system has evolved to equilibrium

〈A〉 = lim
τ→∞

1

τ

∫ τ

0
dtA(t)≈ 1

MJ

MJ∑
J=1

A(tJ ). (9.60)

Thus, in Molecular Dynamics we do not calculate ensemble averages, as in the Monte
Carlo method (Chapter 5), but we assume that in its evolution the system explores, given
enough time, all phase space or at least the part of it relevant for our study (e.g. all the
translational and rotational motion needed for reaching equilibrium). From a practical point
of view, the calculation of static properties (energy, order parameters, pair distribution, etc.)
is obtained as an average over a significant number ofMJ configurations (Eq. 9.60). Since
in MD the evolution process is deterministic, immediately successive states are unavoidably
correlated, so that it is normally worth averaging over states J that are sufficiently spaced
in time to be considered independent.
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9.8 Hybrid Molecular Dynamics-Monte Carlo Methods

We have up to now considered Monte Carlo and Molecular Dynamics as two completely
independent methods. However, combining them in a hybrid methodology can be quite
powerful. One way to do this is to consider that in MC we describe updating configurations
as a Markov process, where a new candidate configuration is generated by moving one
particle at a time. While this is fine in many cases, it can also be problematic in cases
of particle clusters difficult to unlock (see Fig. 8.5b). Moreover, while it is practically
very convenient to move one particle at a time, there is no prescription in the Metropolis
MC procedure that this is mandatory. We could thus consider MD as a way of producing
collectiveN particles updates and select a configuration from a MD trajectory as a candidate
configuration subject to the usual MC acceptance test.

9.8.1 Hamiltonian Exchange Replica Method

In the hybrid replica methods several independent MD or MC simulations are run in par-
allel, each at a different temperature [Sugita and Okamoto, 1999; Lin and van Gunsteren,

2015] or using a different Hamiltonian H (X̃,
.
X̃) [Berardi et al., 2009], as we shall describe

here. After a chosen number of MC or MD time steps or exchange time period τex, pairs
of configurations (replicas) with different H are exchanged with a transition probability
governed by the detailed balance condition.

The acceptance probability for the Hamiltonian replica exchange can be realized
[Fukunishi et al., 2002; Liu et al., 2005] by considering two replicas with (slightly)
different potentials Un(X̃n) and Um(X̃m), where X̃n and X̃m represent the configurational
coordinates for the replicas n and m, respectively. Such an example is that of soft-core
GB potentials with different softness [Berardi et al., 2009]. The equilibrium probability
(Boltzmann distribution) for the nth replica can be written as

Pn(X̃n) = exp
[−Un(X̃n)/(kBT )

]
/Zn. (9.61)

Now considering the transition probability,Π (X̃n,Un;X̃m,Um) that the configuration X̃n in
the nth replica exchanges with the configuration X̃m in themth replica, the detailed balance
condition (see Section 8.2) can be written as [Frenkel and Smit, 2002]

Pn(X̃n)Pm(X̃m)Π (X̃n,Un;X̃m,Um) = Pn(X̃m)Pm(X̃n)Π (X̃m,Un;X̃n,Um). (9.62)

Substituting Eq. 9.61 into Eq. 9.62 the ratio of the transition probabilities can be
obtained as

Π (X̃n,Un;X̃m,Um)

Π (X̃m,Un;X̃n,Um)
= exp(−�nm), (9.63)

where�nm =
{[
Un(X̃m)+ Um(X̃n)

]− [
Un(X̃n)+ Um(X̃m)

]}
/(kBT ). This in turn yields

a Metropolis-type acceptance criteria for the transition

Π (X̃n,Un;X̃m,Um) =
{

1 if �nm ≤ 0,
exp(−�nm) if �nm > 0.

(9.64)
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Note that we have considered only the potential part of the Hamiltonian, since the kinetic
part is the same in this case. An example of application of the method to LC problems
involving a modified soft-core Gay–Berne potential has been shown [Berardi et al., 2009,
2011] to be a convenient way for accelerating simulations of anisotropic phases.

9.9 Simulation Packages

In most practical cases Molecular Dynamics simulations are performed employing some
more or less standard package as a basic MD ‘engine’ to generate trajectories, possibly with
the proviso that FFs have to be adjusted and specific observables have to be calculated. Thus,
we provide a small summary of the more common computer simulation packages suitable
for molecular simulation studies of organic materials [Muccioli et al., 2014] that often
come with an extensive support including manuals, tutorials, online forums. Moreover, the
more popular codes are continuously maintained and updated, an important aspect to take
into account as machines change architectures very often. It is worth noting that while the
standard packages provide MD trajectories (as sequences of instantaneous configurations),
the calculation of many observables of interest have to be specifically added by the end user
and suitable algorithms have often to be devised. The available MD packages differentiate
according to many factors:

(i) Features and capabilities, e.g. multiple timescale integration algorithms [Tuckerman
et al., 1992; Frenkel and Smit, 2002; Leimkuhler and Matthews, 2015], representation
of simulated objects (coarse grained or all-atoms), constrained dynamics (e.g. fixing
bond lengths with SHAKE [Ryckaert et al., 1977]) with many codes allowing for
multiple options.

(ii) Licence and cost, i.e. free academic, open source, commercial.
(iii) Portability, i.e. how easily the code can be compiled and run on different platforms,

from very common desktop computers and workstations to computer clusters or even
specifically designed hardware.

(iv) Performance and parallelization: the speed of a single processor has not increased
much in recent years, thus the actual performance of the different computer codes
is often due to the possibility of efficiently splitting work among multiple processors.
Nowadays the support of GPU boards is very important and allows to deploy graphics
cards alongside traditional CPUs.

(v) Extensibility of the code: the possibility of adding features which were not available
or even foreseen in the original code in order to tackle specific problems or to imple-
ment, for instance, new Force Fields for different materials, improved time evolution
algorithms, or methodologies for the evaluation of different observables.

The choice of a particular MD package depends on the first instance on the system being
studied, particularly on the model used to describe the interactions between the particles
and on its scalability (i.e. the computational efficiency as the number of processing units
increases), which can be a limiting factor when the system size exceeds tens or even hun-
dreds of thousand of particles. A necessarily partial list of computer programs to carry out
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Table 9.1. A small list of important simulation packages. Here C:
Commercial, FA: Free Academic, F/C: Free and Commercial versions. Refs:
(a) [Harvey et al., 2009], (b) [Cornell et al., 1995], (c) [Brooks et al., 2009],
(d) [Bowers et al., 2006], (e) [Smith, 2002], (f) [Limbach et al., 2006],
(g) [Berendsen et al., 1995], (h) [Morozov et al., 2011] (i) [Plimpton, 1995],
(j) [Phillips et al., 2005], (k) [Doi, 2003], (l) [Eastman et al., 2013],
(m) [Matthey et al., 2004], (n) [Rackers et al., 2018], (o) [Lagardere et al.,
2018], (p) [Rühle et al., 2009]

Name Website Licence Ref.

ACEMD http://multiscalelab.org/acemd C a

AMBER http://ambermd.org/ F/C b
CHARMM www.charmm.org/ C c
Desmond www.deshawresearch.com/ FA d
DL_POLY www.ccp5.ac.uk/DL_POLY/ FA e
ESPResSo http://espressomd.org/ F f
GROMACS www.gromacs.org/ F g
HOOMD http://codeblue.umich.edu/hoomd-blue/ F h
LAMMPS http://lammps.sandia.gov F i
NAMD www.ks.uiuc.edu/Research/namd/ F j
OCTA http://octa.jp/ F k
OpenMM https://simtk.org/home/openmm F l
ProtoMol http://protomol.sourceforge.net/ F m
Tinker https://dasher.wustl.edu/tinker/ F n
Tinker-HP http://tinker-hp.ip2ct.upmc.fr/ F o
VOTCA www.votca.org/ F p

MD simulations is reported in Table 9.1. The ones most extensively used for liquid crystals
and organic functional materials are probably:

NAMD [Phillips et al., 2005] is a simulation package which works with AMBER and
CHARMM potential functions, parameters and file formats and that is specifically
designed for high-performance simulation of large systems. Recent versions are is
able to run on heterogeneous architectures made up of multiple CPUs and GPUs.

LAMMPS [Plimpton, 1995] is a classical MD code implementing potentials for soft
materials (biomolecules, polymers, liquid crystals), solid-state materials (metals,
semiconductors), allowing simulations at atomistic and coarse-grained particle
level. The code is designed to be easy to modify or extend with new functionalities.
Most of its model potentials have been parallelized and run on systems with multiple
CPUs and GPUs, granting very good speed-ups, especially for the most complicated
anisotropic pair potential styles, like the Gay–Berne and other CG model potentials.

GROMACS [Hess et al., 2008; Abraham et al., 2014] is conceived to carry out simula-
tions with millions of particles, primarily for biochemical molecules like proteins,
lipids and nucleic acids, but also for polymers and organic functional materials. The
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package is particularly fast at calculating the nonbonded interactions. GROMACS
is freely available and continuously extended by a large user community. It also
has the advantage of providing a large selection of tools for trajectory analysis.
Recent versions provide support for single and multiple GPUs and hybrid Quantum-
Classical (QM/MM) simulations.

The output of an MD simulation typically includes a trajectory file containing the position
of every particle, saved with a given time increment. Trajectory files can be visualized with
specific codes such as VMD [Humphrey et al., 1996; Eargle et al., 2006], which offers also
basic tools for data analysis like Jmol [Jmol, n.d.; Scalfani et al., 2016], a powerful and
highly portable program written in Java, Mercury [Mercury, n.d.] particularly well suited to
visualize and manipulate crystal structures, and Avogadro [Avogadro, n.d.; Hanwell et al.,
2012], which offers advanced molecular modelling tools. Among the other visualizers avail-
able, we mention here OVITO [OVITO, n.d.; Stukowski, 2010], PyMOL [Schrödinger,
2010], Molekel [Varetto, n.d.], RasMol [Sayle and Milner-White, 1995; Sayle, 2000], FOX
[Favre-Nicolin and Cerny, 2004, 2007], QMGA [QMGA, n.d.; Gabriel et al., 2008], UCSF
Chimera [UCSF, n.d.; Pettersen et al., 2004] and BALLView [BALLView, n.d.; Moll et al.,
2006b, 2006a].

The vast choice of available packages might be a bit intimidating at first, so we offer a few
practical comments on some of the key issues. Given the high quality of many open-source
packages, they probably are to be preferred over commercial ones with closed sources, both
for their abundance of features (as everybody can contribute to further development) and
because the sources can be directly inspected to check how algorithms are implemented and
to modify them to suit particular needs. As many algorithms work well only under specific
conditions and many compromises are usually made, this is in some cases the most reliable
way of checking the validity of the simulation results.

As long as small samples and/or short timescales are needed and the package provides
the requested features, it really does not matter which code is used, and the one that is easier
to run is to be preferred. If instead the problem at hand requires pushing to the limits of what
can be accomplished currently, a well optimized code becomes the only choice. Given the
typical speed-ups of GPU systems, codes able to run on heterogeneous architectures (mixed
CPU/GPU) environments are currently amongst the best performing ones.
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10

Lattice Models

10.1 Introduction

As we saw in Chapter 2, lattice models play an important role in the theory of phase
transitions. Here we shall discuss in some detail these models with their applications to
liquid crystals and, in particular, in the next section, some results for the LL model for
nematics [Lebwohl and Lasher, 1972] introduced in Section 2.8.5. It may seem paradoxical,
at first, to choose a model of liquid crystals where the molecules are just represented with
unit vectors or quaternions (conventionally called ‘spins’) constrained on lattice sites, since
a characteristic of nematics is that of being ordered fluids in which orientational order
coexists with translational freedom. The resolution of the paradox is that when choosing
a lattice model, the aim is not to try and reproduce all the properties of a real liquid crystal,
but only its orientational properties. In any case, the main justification for studying lattice
models lies clearly in the hope that suitably chosen models will correctly contain, despite
their simplicity, the essential features of symmetry, dimensionality and form of interaction
needed to capture and reproduce the main features of nematics. If this proves to be the case,
lattice models have the advantage that they can be studied in far greater detail, e.g. using
larger number of particles, larger number of cycles, finer temperature grids, than atomistic
or even off-lattice molecular models. Lattice systems of 104–105 spins are now standard to
computer simulate and millions or many more can be employed if needed. In this perspective
the problem is not if a lattice model is a reasonable representation of liquid crystals but rather
if it can be satisfactory in simulating observed orientational properties such as ordering and
topological defects as well as the nematic-isotropic phase transition. Numerical experiments
on the LL and similar 3D systems have then a role somewhat similar to that of exactly soluble
Ising type models in 2D since, even in the absence of analytic solutions, they can provide
accurate results suitable for testing approximate theories. Possibly the conclusions reached
for the model system will then be applicable to real systems, at least if the essential physics
has been incorporated into the model. There is some hope that this can be the case for
nematics. In particular, as we saw in Chapter 2, the behaviour of the order parameters, their
critical exponents, etc. appears, near a second-order phase transition, to be if not universal,
fairly independent on details such as the exact nature of intermolecular interactions and
lattice structures. It is worth recalling, as an example, that an extremely simple represen-
tation of the gas-liquid transition is obtained with the lattice gas model [Stanley, 1971],
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where each lattice site can be empty or contain a particle and each particle interacts with
its nearest neighbours only (Eq. 2.33). The agreement between the lattice gas coexistence
curve and experiments for simple rare gases, nitrogen, etc., is remarkable, bearing in mind
the simplicity of the model. We also note that the nematic isotropic transition, even though
first order, is a very weak one, and many of its features are shared by the vast majority of
nematics (see Section 2.9), even if the behaviour is not really universal.

10.2 Lebwohl–Lasher Model

Here we wish to consider in some detail the application of the Monte Carlo method to the
Lebwohl and Lasher [1972] lattice model introduced in Section 2.8.5. In the LL model
molecules (or rather tightly packed clusters of neighbouring molecules whose short-range
order is assumed to be maintained through the temperature range examined [Pasini and
Zannoni, 2000]) are represented by unit vectors ui ‘spins’ placed at the sites of a simple
cubic lattice and interacting (see Eq. 2.37) with a pair potential Ui,j = −εijP2(cosβij ) ≡
−εijP2(ui ·uj ), where εij is a positive constant ε, for neighbouring sites i and j and 0
otherwise (see Fig. 2.20). Going back to the requirement that the basic physics and sym-
metries are kept into account, the LL potential in Eq. 2.37 has the appropriate symmetry
for a microscopic model of nematogens. In particular, it is invariant for head-tail exchange
(a coordinate inversion with respect to the centre of a particle) and for an arbitrary rotation.
The last requirement is important and lattice models where orientations are quantized (e.g.
Ising or Potts models) abandoning the continuous rotational symmetry and the possibility
of changing molecular orientations of arbitrary angles produce significant differences in
the order-disorder transition, as shown by simulations of Lasher [1972]. The model offers
an opportunity of comparison with theoretical treatments such as the Mean Field Theory
described in Chapter 7 [Maier and Saupe, 1960; Luckhurst, 1985], two-site cluster [Sheng
and Wojtowicz, 1976] and three- and four-site cluster theory [Van der Haegen et al., 1980].
The model was originally studied by Lebwohl and Lasher [1972], using the Metropolis MC
method discussed in Chapter 8, with periodic boundary conditions (PBCs) applied to the
sample box to minimize surface effects. Over the years samples of various sizes have been
studied. Lebwohl and Lasher [1972] and Jansen et al. [1977] have studied lattices from
10×10×10 to 20×20×20. Fabbri and Zannoni [1986], Cleaver and Allen [1991], Zhang
et al. [1992, 1993] and Shekhar et al. [2012] have examined 30 × 30 × 30 lattice systems
also using other techniques. A series of larger lattice sizes, up to 30 × 30 × 70 has been
studied by Priezjev and Pelcovits [2001] with MC and histogram reweighting to examine
the scaling behaviour of TNI with size. A much larger system, N = 200× 200× 200, has
also been studied Skačej and Zannoni [2021]. All these authors found that the model exhibits
a weak first-order orientational phase transition. For a soft potential, lacking repulsive forces
like the LL one, it is possible to reach virtually any ordered or disordered state from an
arbitrary starting configuration (the system is ergodic). Indeed, a series of runs in a heating
up or cooling down sequence lead to superimposable results except in the transition region,
where some hysteresis, as typical of first-order transitions, appears. To increases the rate
of approach to equilibrium, it remains of course convenient to start a new calculation from
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an equilibrium configuration at a nearby temperature. Given the simplicity and widespread
use of the model, we shall use it as a case study to illustrate methods useful also for other
LC systems.

10.2.1 Locating the Phase Transition

Energy. As we saw in Chapter 2 the most common experimental way of locating a thermal
phase transition is by monitoring the heat capacity, i.e. at constant volume, the energy
derivative (Eq. 2.9) with respect to temperature and this applies also to computer simulations
(Section 8.4). The average energy for the LL lattice system with PBC is

UN = −1

2

N∑
i,j=1
j �=i

εij
〈
P2(cosβij )

〉 = −1

2
NzεG2(a), (10.1)

where the coupling constant εij = ε, ε > 0 if i,j are nearest neighbours and 0 otherwise,
z = 6 is the number of nearest neighbours for a cubic lattice, a is the lattice spacing
and G2(a) = σ2 = 〈P2(cosβ12)〉 is the nearest-neighbours value of the second-rank pair
correlation (cf. Eq. 4.97). The zero-temperature limit for the dimensionless single-particle
energy U∗ = UN/(Nε) is just z/2 or 3 for the cubic lattice. Lebwohl and Lasher [1972]
have calculated the high temperature expansion as U∗ = −3/(5T ∗)−3/(35T ∗2)+· · · and
the low temperature expansion as U∗ = −3+ T ∗ + · · · . The results of an MC simulation
for U∗ against reduced temperature T ∗ = kBT /ε [Fabbri and Zannoni, 1986] are shown in
Fig. 10.1a. We see clearly that a sharp change of slope occurs around T ∗ = 1.11, suggesting
the onset of a phase transition.

Heat capacity. The heat capacity C∗V can be evaluated differentiating U∗ with respect to T ∗

as discussed in Section 8.4. The LL results are shown in Fig. 10.1b for various lattice sizes,
while the errors in C∗V have been estimated by sampling the energy from inside its error bar
and repeating the differentiation procedure a number of times. In Fig. 10.1b we see, as an
example, the size dependence of the heat capacity curve obtained for a system of N = 53,
103 and 303 particles. Judging from the width of the C∗V peak and scaling the temperature
to that of a real room temperature nematic we see that for the 103 system the uncertainty
is ±15K, which seems huge considering the simplicity of the model. Note that in studies
of liquid crystals the transition region is very important and that it has to be investigated.
Fortunately the effect, so significant for lattice models, may be somewhat less dramatic for
systems where particles have more degrees of freedom, like off-lattice molecular [Berardi
et al., 1993] and atomistic [Tiberio et al., 2009] systems (see Chapters 11 and 12). The order
of the transition is rather difficult to evaluate, and the task is made more complicated by the
fact that a true first-order transition cannot take place in a finite size system. It is, however,
very useful to examine not just the average energy values but also the histograms of the
frequency of occurrence of a certain energy value,P (U∗), during the simulation, i.e. looking
at the distribution of instantaneous observable values that concur to yield the average. We
would expect the histogram to be Gaussian away from the transition, while at the first-
order transition two peaks, corresponding to the two coexisting states, should be observed
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(a) (b)

Figure 10.1 (a) The average dimensionless energy per particle U∗ ≡ 〈U〉/Nε vs T ∗ [Fabbri
and Zannoni, 1986] and (b) the size dependent heat capacity C∗

V
= dU∗/dT ∗ for the

5× 5× 5, 10× 10× 10, 30× 30× 30 lattices. The lines are a guide for the eye.

Figure 10.2 Histograms of the distribution of energy values P (U∗) obtained for four
temperatures T ∗ in the transition region of the LL model [Fabbri and Zannoni, 1986].

according to Landau theory (Section 2.7.2). In general, the distributions consist of extremely
narrow symmetric peaks, but the behaviour changes and becomes particularly interesting
near the transition. In Fig. 10.2 we show four of these histograms in the temperature region
1.121 < T ∗ < 1.124 that clearly present two peaks whose relative intensity changes with
temperature, indicating that the transition is situated in this relatively narrow range. It is
of course desirable to have some metrics associated with the histograms’ shape and it
is convenient to resort to quantities used in statistics for this purpose, i.e. moments and
cumulants [Abramowitz and Stegun, 1965]. The nth central moment of the distribution
P (A) of a property A, m(A)

n , is

m(A)
n =

∑
j

(
Aj − 〈A〉

)n
P (Aj ), (10.2)
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Figure 10.3 A close up of the third moment of the energy distribution,m(U)
3 as a function of

temperature T ∗. The line through the points is just a guide for the eye [Fabbri and Zannoni,
1986].

where P (Aj ) is the population of the j th histogram bucket. It is convenient to also introduce
the cumulants kn of the same distribution defined in terms of the moments. In particular, for
the first four cumulants of P (A) we have the definitions k(A)

1 = 〈A〉, k(A)
2 = m

(A)
2 = σ 2

A,

k
(A)
3 = m(A)

3 = sA (σA)3 and k(A)
4 = m(A)

4 − 3
(
m

(A)
3

)2. The first cumulant gives the centre
and the second the variance, square of the standard deviation σA, while the third quantifies
the asymmetry about the centre (it is proportional to the so-called skewness sA). For a Gaus-
sian distribution cumulants above the second are 0. In particular, k(A)

4 , called kurtosis, can
be considered a measure of the non-Gaussianicity: it is positive for distributions with heavy
tails and a peak at 0, and negative for flatter densities with lighter tails. An examination
of the first four cumulants k3, k4 in comparison to k2 [Fabbri and Zannoni, 1986] shows
that the peaks are essentially Gaussian except near the transition, where the width of the
peaks becomes about twenty times larger than that of the peaks in the isotropic phase. In
the same region the third cumulant (Fig. 10.3) significantly differs from 0 and changes
sign across the transition helping us to determine its precise location. The orientational
transition temperature of the 30× 30× 30 LL model was estimated to be T ∗NI = 1.1232±
0.0006.1 We also note that the heat capacity peak is asymmetric and much steeper on the
hot (isotropic) side of the transition. We have seen in Chapter 2 that at a secoind-order
transition the temperature dependence of various properties as they approach the transition
can be characterized by critical exponents. The NI transition is a weak first-order one which
appears to intercept a very close second-order one. Pseudo-critical exponents for C∗V versus
T ∗ can be estimated by non-linear least square fitting to the expression (cf. Chapter 2)

C∗V = A
[
T ∗

T ∗NI
− 1

]−α
+ B. (10.3)

1 For the 200× 200× 200 LL model the estimate is T ∗
NI

= 1.1224+0.00007
−0.00003 [Skačej and Zannoni, 2021]
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(a) (b)

Figure 10.4 (a) The second- and fourth-rank order parameters 〈P2〉λ and 〈P4〉λ vs temper-
ature T ∗ with the lines as a guide for the eye and (b) plotted one against the other. Also
in part (b), the dashed curve is 〈P2〉(10/3) as from the continuum theory of Faber [1980],
while the solid line is obtained from the Maier–Saupe-like distribution in Eq. 3.74 [Fabbri
and Zannoni, 1986].

Assuming the T ∗NI previously determined, the data can be fitted using A = 0.363,
B = −1.44, α = 0.596. We recall that experimentally values of α very close to 0.5 have
been found (cf. Chapter 2).

Second- and fourth-rank order parameters. The order parameters for the LL model,
calculated using the techniques described earlier on (Section 3.5) are shown in Fig. 10.4.
In practice, the Q matrix, Eq. 3.47, is calculated and diagonalized every few cycles and its
largest eigenvalue is averaged to give 〈P2〉λ, the order parameter for the system with respect
to the instantaneous director (cf. Eq. 3.52) shown in Fig. 10.4a. The curve shows a smooth
decrease with T ∗ becoming very steep in the transition region. We note that 〈P2〉λ does not
go to 0 above the transition, but rather to a value of the order of 1/

√
N . This is of course

to be expected since 〈P2〉λ, corresponding to the largest eigenvalue of a traceless matrix,
is always non-negative. A better estimate of the order parameter in the isotropic phase is
given by the intermediate eigenvalue of Q, 〈P2〉λ2 , that can fluctuate around 0 [Eppenga and
Frenkel, 1984]. However, the problem is conceptual more than numerical and depends on
the absence of a bona fide director above the orientational transition.

The fourth-rank order parameter 〈P4〉, obtained as described in Section 3.5, is also shown

as a function of 〈P2〉 in Fig. 10.4b with a simple approximation, i.e. 〈P4〉 = 〈P2〉 10
3 , obtained

from Faber’s [1980] continuum theory of disordering by fluctuations. Although this repre-
sents well 〈P4〉 versus 〈P2〉 at high order, it largely underestimates 〈P4〉 when 〈P2〉 < 0.6.
A better approximation comes from 〈P4〉 = 5

7 〈P2〉2, obtained from a P (x) ∝ exp(aP2(x))
distribution, Eq. 3.74, and consistent also with that obtained by the Maier–Saupe MFT
(Chapter 7).

Pair properties. In practice, we use the following algorithm to evaluate the orientational
correlations defined in Chapter 4. Choose a total ofM particles as origins, then pick an origin
on particle i with orientation ui and consider spherical shells of a certain resolution �r .
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Count the number of particles nri within each shell (for a lattice this needs to be done
just once beforehand). Calculate, for each particle j falling within the shell, the Legendre
polynomial PL(ui ·uj ). Repeating, for all the particles in the sample and for allM particles
that we take as origins, gives the total average at r:

GL(r) = 〈PL(cosβij ) δ(rij − r)〉 = 1

M

M∑
i=1

1

nri

N∑
j �=i
PL(ui ·uj )�(rij − r), (10.4)

where the fuzzy delta function�(rij − r) is 1 when rij equal r within the chosen resolution
and 0 otherwise. When using PBC, every distance dependent property is determined modulo
the box length, i.e. as the remainder of the division between the distance and the box length.
The correlations would tend to spuriously grow for distances exceeding half the box length.
In particular, we have shown in Fig. 4.8 the angular pair correlation coefficient G2(r) at a
number of temperatures from T ∗ = 1.05 to 1.20 for the 30 × 30 × 30 LL model [Fabbri
and Zannoni, 1986]. The build-up of the orientational correlation when approaching the
transition from above is quite visible. If we concentrate on the right-hand side of the figure,
we see that the correlation decays to 0 in the isotropic phase and to a plateau in the liquid
crystal. The correlation functionsGL(r), representing the expansion coefficients of the pair
distribution, can be employed in investigating pretransitional behaviour.

Pretransitional behaviour. We saw in Section 4.11 that the susceptibility ξ of an isotropic
fluid to an applied magnetic or electric field F can be written as

ξ = λ

kT
g2 = 5

N
lim
F→0

∑
i

∑
j

〈P2(cosβi)P2(cosβj )〉F, (10.5)

where g2 is the second-rank Kirkwood coefficient [Ben-Reuven and Gershon, 1969;
Luckhurst, 1988]. For a lattice

g2 =
∑
k

zkG2(rk). (10.6)

Evaluation of g2 with Eq. 10.6 has the advantage, with respect to a direct summation over
the whole sample (Eq. 10.5), that spurious contributions to g2 due to the build-up of the
correlation at distances comparable to the box length are controllable by suitably truncat-
ing the sum. The divergence temperature of g2 can then be determined by fitting T ∗/g2

versus T ∗. However, the number of neighbours increases quadratically with distance and
great care has to be taken to ensure that the results are not dependent on the arbitrary cut-
off distance imposed. It is useful [Fabbri and Zannoni, 1986] to estimate the neglected tail
contributions to g2 by fitting a suitable analytical expression for the distance decay ofG2(r)
and use the analytic expression in conjunction with Eq. 10.7. For the LL model the Ornstein–
Zernike form

G2(r) = A

r
exp (−r/ξ2), (10.7)

where ξ2 is a correlation length, yields an excellent overall fit at the various temperatures
above the transition with essentially the same parameters A and kc = 1/ξ2 obtained by
fitting G2(r) truncated at different cut-offs (10, 15 and 20 lattice units). It is interesting to
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note that an Ornstein–Zernike form is expected theoretically [Chakrabarti and Bagchi, 2009]
and that Landau theory (cf. Section 2.7) predicts that the correlation length squared should
be linear in temperature. The MC results show that this is indeed the case. The temperature
of divergence of the correlation length is found in this way to be T ∗ = 1.1222 ± 0.009.
To estimate a truncation correction, we can now substitute the Ornstein–Zernike form for
G2(r) in Eq. 10.5 and extend the sum up to larger distances until convergence is reached.
A linear regression of the corrected values for T ∗/g2 in temperature gives an estimate for the
divergence temperature as TNI��� = 1.1201± 0.0006, bringing it nearer to TNI . Translating
to the temperature scale for a room temperature nematic, TNI��� would be about 1 degree
below the transition, in agreement with what is found experimentally for MBBA [Stinson
and Litster, 1970]. This result has been confirmed with a histogram technique by Zhang
et al. [1992, 1993].

10.2.2 Molecular Dynamics Simulations

The Lebwohl–Lasher model can be slightly generalized to a set of symmetric top particles
placed at the sites of a cubic lattice and interacting with the same pair potential. Molecular
dynamic simulations on this dynamic LL models have been performed by Zannoni and
Guerra [1981] and more recently by Chakrabarty et al. [2006]. The reduced units appropriate
to the model and used later are t∗ = t√ε/I⊥ and T ∗ = kBT /ε for time and temperature,
respectively. The integration of the equations of motion, written in quaternion form, was
performed with a Runge–Kutta–Gill fourth-order procedure [Romanelli, 1960; Gear, 1971].
The MD method presents some advantages over the MC method because it explores the
real-time trajectory. Thus, it can exploit the fact that the timescales for molecular and
director reorientation are normally well separated; in a real system separations are usually
larger than 3–4 decades. We can thus prepare the system with a certain director, e.g.
choosing appropriately as already described the starting configuration, and let it reach
orientational equilibrium, while preserving the average orientation. As long as this is
true, we can calculate static molecular properties considering the director as essentially
fixed in space. We can then obtain the full singlet orientational distribution discussed as
a histogram, as shown in Fig. 3.4 for three temperatures: one in the isotropic and two in
the orientationally ordered phase. We see that the distributions in the anisotropic phase
strongly depend on the angle β but not on α which corresponds to rotations around the
director, confirming the macroscopic uniaxiality around the director. The order parameters
of rank L can then be calculated by direct integration as in Eq. 3.43. In this rather
special case, it is not even necessary to calculate the full histogram if all we want is to
calculate an order parameter. Thus, 〈PL〉LAB can be simply calculated from an average
over a sufficiently large number of M equilibrium configurations of the sample order
parameter 〈PL〉S :

〈PL〉LAB = 〈〈PL〉S〉 ≡ 1

M

M∑
J=1

〈PL〉(J )
S = 1

M

M∑
J=1

[
1

N

N∑
i=1

PL(cosβ(J )
i )

]
. (10.8)

The method should be more accurate than that of integrating the histogram for the sin-
glet orientational probability P (β) over the Legendre polynomials, because of the limited
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(a)

(A)

(B)

(B)

(A)

(b)

Figure 10.5 (a) The second-rank pair correlation coefficient G2(r∗) plotted vs distance r∗
in lattice units for the planar LL model at temperatures T ∗ = 0.54 (A), 0.72 (B) from MC
simulations of a L× L = 80× 80 lattice [Chiccoli et al., 1988b]. (b) G2(r∗) vs r∗ for the
linear LL model with L = 40 (�) and L = 1000 (•) at temperatures T � = 0.02 (A) and
T � = 0.12 (B) [Chiccoli et al., 1988a]. The continuous curves are the analytic results of
Vuillermot and Romerio [1973a,1973b]

.

resolution in the angular grid that one needs to use in the histogram. The dynamic of the
model was studied in detail [Zannoni and Guerra, 1981] and in Chapter 6 we saw its
orientational time correlations functions of first, second and mixed rank (Fig. 6.6).

10.2.3 Space Dimensionality Effects: 2D and 1D Lattices

Systems of low dimensionality, e.g. monomolecular films forming a two dimensional layer,
can be quite important, for instance as models of Langmuir-Blodgett films or of liquid
crystalline patches on surfaces. The simplest interaction potential for these systems is still
the Lebwohl–Lasher one, but with molecular centres confined to a planar square lattice.
Since the molecules (or ‘spins’) can reorient in 3D we can call this a nd = 2, no = 3 model,
referring to lattice and spin dimensionality, while the ordinary 3D model we have studied
up to now is a nd = 3, no = 3. A 1D system (nd = 1, no = 3) was also studied and solved
analytically by Vuillermot and Romerio [1973b] who showed that it has no long-range
order and the absence of a phase transition. It is interesting to see what an MC simulation
[Chiccoli et al., 1987] would tell us in this case and if a false positive result is obtained.
We start with the planar system, and we show in Fig. 10.5a the pair correlation coefficient
G2(r∗), where r∗ = r/a is a dimensionless distance. The system should not have true
long-range order. A non-linear least square fitting up to a certain cut-off length Lf of the
second-rank correlation coefficients at various temperatures [Chiccoli et al., 1988b] can be
performed to the following two expressions:

(i) exponential decay to a plateau Ae:

G2(r∗) = (1− Ae) exp (−ker∗)+ Ae, (10.9)

(ii) power law decay to 0

G2(r∗) = Ap/(r∗)kp . (10.10)
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Figure 10.6 Histograms of frequency of occurrence of the second-rank order parameter
〈P2〉λ during simulations on the 80 × 80 LL lattice at temperatures T ∗ = 0.40 (a), 0.54
(b), 0.58 (c), 0.72 (d) [Chiccoli et al., 1988b].

We note that, different to the 3D model, when T < TNI , the curve does not tail off to a
plateau, at any temperature. The exponential decay law gives a better fit for the planar model
results above T ∗C (with Ae = 0), while the algebraic decay law gives a better representation
of the data below T ∗C , except near the order-disorder anomaly where the power law fit is
rather poor. At temperatures below T ∗C the decay parameter (1/kp) increases regularly as
the temperature decreases, tending to infinity at T ∗ = 0. Thus, the system presents some
sort of ‘long short-range order’, even though not a truly long-range one. The histograms of
the order parameter for the 2D LL model (Fig. 10.6) are quite different from those for the
3D model (Fig. 10.2): they do not show a double peak but just a single peak shifting to lower
values as temperature increases, as expected for a second-order transition (Section 2.7.1). It
is interesting to see if MC can give evidence of the absence of order in the 1D (d = 1,
n = 3) linear system. The two-particle angular correlations G2(r) for a N = 40 and
the N = 1000 linear system shows a very fast decay above the heat capacity anomaly,
which becomes somewhat slower as the temperature decreases. In Fig. 10.5b we show
G2(r) for two temperatures well below the heat capacity anomaly and the analytic results
of Vuillermot and Romerio [1973b], i.e.

G2(r) =
[

1

2

√
3T ∗

2
D−1

(√
3

2T ∗

)
− T

∗

2
− 1

2

]r
. (10.11)
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The size dependence of the heat capacity also shows [Chiccoli et al., 1988a] that the MC
results, upon increasing size L, rapidly converge to the analytic result of Vuillermot and
Romerio [1973a]:

Cv
NkB

= 1

2
− 3

4T ∗

√
3

2T ∗

(
1

3
T ∗ − 1

)
D−1

(√
3

2T ∗

)
− 3

8T ∗
D−2

(√
3

2T ∗

)
, (10.12)

whereD(x) is the Dawson function (Eq. 3.77). This indicates the absence of transition and
is very different from the marked size dependence of the nd = 3, no = 3 model (Fig. 10.1b).
Thus, a careful analysis of the pair correlation function and of the heat capacity and of their
size dependence, can give precise indications on the presence or not of a phase transition
and of its character.

10.3 Biaxial Lattice Models

Biaxial nematics (NB), fluids that possess two orthogonal preferred directions (directors)
rather than the single one of standard nematics, were briefly introduced in Section 1.6.
They have attracted considerable theoretical and experimental attention [Luckhurst and
Sluckin, 2015] since their existence was predicted, decades ago, by Freiser [1970] for a
fluid of biaxial particles interacting with a quadrupolar like potential. As most mesogenic
molecules are biaxial, it would seem natural to find this NB phase at least as frequently as the
standard uniaxial one. On the contrary, the phase has proved to be extremely elusive and has
long defied experimental attempts at preparing it (see [Luckhurst, 2001] for a review). The
reasons for interest in NB are both of fundamental and technological nature and start with
the challenge to understand why a phase that was predicted by MFT (see Section 7.4) is so
difficult to realize in practice. In particular, given that the approximations in MFT are known
to enhance order, it is interesting to see if a minimal lattice model with biaxial symmetry
can show biaxial phases when treated ‘exactly’ with computer simulations [Biscarini et al.,
1995; Berardi et al., 2008b; Preeti et al., 2011]. Here we start from the most general purely
orientational pair potential between two identical rigid particles with biaxialD2h symmetry
put forward by Straley [1974] and Luckhurst et al. [1975]. Assuming a 3D cubic lattice
with biaxial particles, or ‘spins’, fixed at its sites and an isotropic average over the nearest-
neighbours intermolecular vector directions r̂ ij , a biaxial model can be obtained as:

Uij − εijR 2
0,0(�ij )+ 2u220[R 2

0,2(�ij )+R 2
2,0(�ij )]+ 4u222R

2
2,2(�ij ), (10.13)

where the coupling parameter εij ≡ [u200]ij is taken to be a constant ε > 0 when i and j are
nearest neighbours and 0 otherwise. RL

m,n are combinations of the Wigner functions DL
mn

symmetry-adapted for theD2h group of the two particles, as defined in Eqs. 3.150a–3.150d,
which here are functions of the relative rotation angles from i to j , i.e.�ij ≡ (αij, βij, γij )
[Biscarini et al., 1995]. The model reduces to the uniaxial LL potential [Fabbri and Zannoni,
1986] when u220 = u222 = 0. Using ε to renormalize temperature to T ∗ ≡ kBT /ε the poten-
tial still contains two independent parameters, that make up a very large parameter space.
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Figure 10.7 Dispersive biaxial model phase diagram showing the transition temperature T ∗
between the uniaxial (N+,N−) and the biaxial (NB) nematic as well as isotropic (I) phases
vs biaxiality λ. MC results for 10× 10× 10 (�) and 8× 8× 8 (•) as well as 10× 10× 10
points mapped from

(
λ,T ∗

)
onto

(
λ′,T ∗′

)
(���). The lines are the MFT results (see Fig. 7.6)

[Biscarini et al., 1995].

10.3.1 Dispersive Biaxial Model

Assuming that this second-rank attractive pair potential is based on dispersion forces
(Section 5.8.2), the coefficients in Eq. 10.13 can be written as u2mn = kijα2,m

i α
2,n
j , where

α
2,p
i , α2,p

j are the spherical components of the polarizability tensor for molecules i,j
and kij is a constant, so that u220/u200 ≡ λ and u222/u200 = λ2 [Luckhurst et al., 1975;
Luckhurst and Romano, 1980a; Biscarini et al., 1991]. This gives (see Eq. 7.18),

Uij = −εij
[
P2(cosβij )+ 2λ[R 2

0,2(�ij )+R 2
2,0(�ij )]+ 4λ2R 2

2,2(�ij )
]
. (10.14)

The biaxiality parameter λ accounts for the deviation from cylindrical molecular symmetry:
when λ is 0, the potential reduces to the LL P2 potential, while for λ different from 0
the particles tend to align not only their major axis but also the other two. The value
λ= 1/

√
6 marks the boundary between a system of prolate (λ< 1/

√
6) and oblate molecules

(λ> 1/
√

6). This dispersive model has been simulated with the MC method by Luckhurst
and Romano [1980a] and more extensively by Biscarini et al. [1995] who obtained the
phase diagram shown in Fig. 10.7. The various orientational order parameters introduced
in Chapter 3: 〈P2〉, 〈R 2

0,2〉, 〈R 2
2,0〉 and 〈R 2

2,2〉, can be obtained from computer simu-
lations in a way similar to what we could do with real experiments introducing suitable
virtual molecular observables and determining their average in the laboratory system
[Biscarini et al., 1995]. Experimentally one would try to select a sufficient number of molec-
ular propertiesA(α)

MOL and measure their average values 〈A(α)
LAB〉. Then, through a diagonaliza-

tion of the average tensors 〈A(α)
LAB〉 one could determine their eigenvalues and from them the

order parameters, as discussed in Section 3.11.1 and more in detail in Biscarini et al. [1995].
Here the procedure, applied to the three matrices G ≡ A(x)

MOL = x ⊗ x, H ≡ A(y)
MOL = y ⊗ y

and F ≡ A
(z)
MOL = z ⊗ z, gives the results shown in Fig. 10.8. These indicate that, even

if MFT (Section 7.4) overestimates the transition temperatures, the topology of the phase
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Figure 10.8 The order parameters 〈R 2
0,0〉 ≡ 〈P2〉 (a), 〈R 2

0,2〉 (b), 〈R 2
2,2〉 (c), 〈R 2

2,0〉 (d)
vs temperature obtained from MC: λ = 0.2 (◦◦◦), λ = 0.3 (���������), λ = 0.40825 (���) and from
MFT (lines) [Biscarini et al., 1995].

diagrams obtained from MC simulations and MFT models is the same, with a Landau point
(Section 2.7.2) where a direct transition from NB to isotropic (I) phase takes place.

10.3.2 Straley Biaxial Model

The potential in Eq. 10.13 has also been studied beyond the dispersive interactions
limit. In this general potential the coefficients u2mn do not have a simple physical identifi-
cation in terms of single-molecule properties, as would be desirable. Using u200 = −ε
and the notation " = √(8/3)(u220/u200) and � = −(2u222/3u200), as employed by
Romano [2004b], De Matteis et al. [2005] and Preeti et al. [2011] to define a reduced
temperature T ∗ ≡ −kBT /ε, the potential in Eq. 10.13 still depends on both (",�),
while for dispersive interactions we had � = "2. Simple models that give an explicit
expression for u2mn or ", � from the length, breadth and width L, B and W of brick-
like molecules have been put forward. The model of Straley [1974], based on steric
repulsions, gives the expressions already seen in Eq. 7.34a–7.34c. For that of Ferrarini
et al. [1994] which assumes the interactions being proportional to the exposed surface
in the three different directions, the coefficients uLmn were given in Eqs. 7.41a–7.41c,
with λ = √3/2L(W − B)/ [(W + B)L− 2BW ]. The maximum biaxiality (λ = 1/

√
6) is

obtained for W−1 + L−1 = 2B−1. A phase diagram was also obtained for the specific
choice of " = 0 [Sonnet et al., 2003]. It was shown that in this case a coexistence line
between NB and I phases is obtained, and these findings were confirmed by MC at selected
state points [Romano, 2004a, 2004b; De Matteis et al., 2005]. However, for this case, a
biaxial phase should be the first one found on cooling down from the isotropic, so it should
be relatively easy to find, contrary to experimental evidence.

https://doi.org/10.1017/9781108539630.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.011


414 Lattice Models

(a) (b)

Figure 10.9 (a) Phase diagram for the Straley biaxial potential (Eq. 10.13) from MC simu-
lations on a 20× 20× 20 lattice as the biaxiality parameters " = √(8/3)(u220/u200) and
� = −(2u222/3u200) are varied. The two surfaces denote the I−Nu and Nu−Nb transitions.
(b) (T ∗,�) sections of the phase diagram for " = 0 (a), 0.2 (b),0.4 ≈ 1/

√
6 (c), and 0.6 (d)

[Preeti et al., 2011].

De Matteis et al. [2005] and Bisi et al. [2008] have analyzed the full Hamiltonian in
Eq. 10.13, showing that it yields a stable minimum for calamitic states (parallel side-
by-side blocks) only within a certain fan-shaped region of parameter space defined by
�− |"| + 1> 0 [Straley, 1974; Sonnet et al., 2003; De Matteis and Romano, 2009].
A detailed MC investigation of the phase diagram of the biaxial potential in Eq. 10.13 when
varying (",�) has given the phase diagram in Fig. 10.9 [Preeti et al., 2011]. The phase
diagram shows that over a wide range of parameters the molecular organization obtained
on cooling from the isotropic is a uniaxial nematic, while the biaxial phase is confined
to low temperatures where realistic systems probably would become smectic or crystals.
This is a rather more pessimistic view than that provided by the extended isotropic-biaxial
nematic transition line found in Romano [2004a; 2004b] and De Matteis et al. [2005], but
one which seems consistent with the persistent difficulty in finding biaxial nematics.

10.4 Confined Nematics: Films, Droplets, …

Confined nematics are a class of composite materials of wide interest both from the tech-
nological and basic research point of view [Crawford and Žumer, 1996]. The first aspect is
obvious since LCs are rarely used in bulk, but in displays and other electro-optical devices
they are employed in thin films, polymer dispersed droplets, channels where they are con-
fined in suitable geometries and boundaries. The academic interest is related to the effects
that confinement induces on the phase transitions and on the molecular organization inside
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these systems. This in turn stems from a competition between the effects of surface boundary
conditions, the nematic ordering inside the system and the disordering caused by temper-
ature. Many experiments and theories have been put forward to understand these phenom-
ena, but MC simulations seem to be a particularly useful method in studying relatively
small lattices of confined nematics, particularly in the presence of complex geometries or
boundary conditions not amenable to analytic solutions. The need to understand and predict
experiments where orientational, rather than positional, ordering plays the key role, makes
the simple spin models introduced in Chapter 2 a convenient and flexible tool to simulate
fairly realistic experimental conditions. In particular, MC of lattice models has proved use-
ful in investigating droplets with fixed surface anchoring [Pasini et al., 2000], mimicking
polymer dispersed liquid crystals [Doane, 1990; Bunning et al., 2000; Bacchiocchi et al.,
2009], nematic displays [Berggren et al., 1995; Chiccoli et al., 1998] and hybrid aligned
nematic cells [Lavrentovich et al., 2001; Chiccoli et al., 2002]. Here we briefly present
some illustrative examples of applications.

Since polarized optical microscopy (POM) textures are an important experimental tech-
nique to study LC devices [Ondris-Crawford et al., 1991], we start by discussing how these
can be obtained from simulations.

10.5 Polarized Optical Microscopy Textures

The intensity of light transmitted through a liquid crystal device can be calculated starting
from the simulated configurations [Berggren et al., 1994a] exploiting a matrix approach
described in detail in Appendix L [Ondris-Crawford et al., 1991; Xu et al., 1992; Kilian,
1993; Berggren et al., 1994b]. The basic idea of the matrix approach is that geometric ray
optics can be used and that the sample (droplet, film, . . .) can be divided into small volume
elements (voxels), or just the sites in a lattice model, whose effect on the propagating light
beam is described by a Müller matrix (see Eq. L.3) [Schellman, 1998]. Then the light
crossing the sample is retarded by the matrix resulting from the product of the Müller
matrices M(j ) corresponding to each site along the light path. Each matrix involves the
angles αj, βj , describing the director orientation of the j th voxel, taken from the simulation
data, and the phase difference which depends on the thickness of the transversed layer,
h, the wavelength of the incoming light, λ, and the LC refractive indices, n0 and ne. In
the examples shown here we have chosen visible light, λ = 545 nm, and refractive indices
n0 = 1.5 and ne = 1.7, similar to those of the nematic liquid crystal 5CB [Ondris-Crawford
et al., 1991]. To model a real POM experiment we consider crossed polarizers, Pin and Pout ,
placed at the front and back of the sample cell and obtain the Stokes vector of the outcoming
polarized and retarded light beam as (see Eq. L.4)

sout = Pout
〈∏
j

M(j )〉Pinsin, (10.15)

where sin corresponds to the Stokes vector of the incoming unpolarized light. The intensity
is proportional to the first element of the output Stokes vector, i.e. [sout ]0, and can be grey
coded with a normalized scale going from black (lowest) to white (highest) light intensity,
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with a certain number of different grey levels. To improve the quality of the optical image
we further average over a suitable number of equilibrated configurations as indicated by the
angular brackets in Eq. 10.15.

10.6 Topological Defects

Defects in a nematic liquid crystal (see Section 1.2.2) correspond to regions where the
orientational order vanishes and thus a molecular director cannot be properly defined. Even
though defects are treated quite exhaustively in many publications, particularly in terms of
director distributions and continuum theory or of their mathematical properties [Mermin,
1979; Kleman, 1982; Kleman and Lavrentovich, 2006], computer simulations provide an
important means of investigating defects in a number of situations where continuum theory
might be difficult to apply. It is worth starting by briefly reviewing the main types of defects,
considering that the curvature of the director around a given defect costs elastic energy.
In a 2D thin film the theory of Frank elasticity, in the one constant approximation, i.e.
assuming K11 = K22 = K33 = K , gives a simple expression for the director field at a
point p(x,y) from a defect taken as the origin. If φ is the angle made by d at that point with
the x-axis, the solutions take the simple form: d = (cosφ, sinφ,0), φ = s tan−1 (y/x)+ c,
where s is the strength and c the initial orientation angle. In this 2D limit there are infinitely
many different types of disclinations, each type being characterized by a half-integer or
integer topological charge s [Mermin, 1979; Afghah et al., 2018]. Topology tells us the
types of possible defects, but the ones actually observed should be those with lower elastic
energy, since defects of different strength have a different cost in elastic energy. Assuming
that a ‘core’ region extends from its origin to rc, the energy per unit length of an isolated
disclination line is given by [Nehring and Saupe, 1972; Hobdell and Windle, 1995]

Gel = Gc + πKs2 ln (R/rc) , (10.16)

with Gc the core elastic energy. Due to the s2 dependence all defects of strength |s| > 1
2

should be unstable with respect to defects of strength± 1
2 only. From observed POM images

the strength is obtained as the number of brushes divided by four, so essentially two brushes
defects should appear. However, considering the classical schlieren texture in a thin film
with tangential boundary conditions, quite stable four brushes defects of strength ±1 are
very frequently observed. One intuitive interpretation could be that each point represents a
disclination line running vertically from one surface to the other, producing an essentially
2D structure, with all molecules parallel to the sample surfaces. However, Meyer [1973]
and Cladis and Kleman [1972] showed that the elastic energy for a configuration with
s = +1 without singularity (coreless) with the director escaping to the third dimension
is independent of R and given by Gel = 3πK , thus lower than that in Eq. 10.16. The
picture emerging for a sample size of large R on a molecular scale is thus that of s = ±1/2
singularities at the surface connected by a line disclination. We shall examine this with
MC simulations in Section 10.7.1. By contrast, if a nematic director field is defined in 3D,
then there is only one type of disclination. It can be mathematicaly proven that all half-
integer disclinations are topologically equivalent to each other, while integer disclinations
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are topologically equivalent to a defect-free configuration and hence are not defects at all.
Thus, while in 2D the nematic director field can have infinitely many types of disclinations
that are not equivalent to each other, in 3D the nematic director field can have only one type
of disclination of strength 1/2 (sign not assigned). The switch from one situation to the
other, e.g. when the director is forced to a plane (so that the z-component of d tends to 0)
by the action of an external electic field in a nematic with negative dielectric anisotropy has
been studied with continuum theory based numerical simulations by Afghah et al. [2018].

10.6.1 Defect Detection

A non-trivial practical problem in computer simulations is that of examining sample
snapshots to locate the presence of defects and assigning their topological charge. In real
experiments, thanks to their birefringence they can be observed experimentally by optical
microscopy, in particular between polarizers, the so-called Polarized Optical Microscopy
(POM) technique. Quite naturally one possibility for simulation studies is to produce optical
textures, as we describe in detail in Appendix L, and treat them as observed POM images
(see examples later in this chapter). Another possibility is to define a suitable quantitative
measure, a metric, related to the ordering at each lattice site i or, more generally, small
volume (voxel) inside the sample. A convenient procedure is that of Westin et al. [2002]
originally developed to visualize properties characterized by a 3× 3 matrix with non-
negative eigenvalues (a semi-positive second-rank tensor), in particular water diffusion
tensors obtained from Magnetic Resonance Imaging (MRI) for medical purposes [Schultz
et al., 2017]. In the more specific case of liquid crystals [Callan-Jones et al., 2006] the
procedure starts by dividing the sample in a grid of voxels and defining for each voxel
V(i) a certain direct product matrix U (i) obtained from the molecular unit vector uj (in a
lattice model the ‘spin’) for the j th particle:

U (i) ≡ 〈u(i)
j ⊗ u

(i)
j 〉j =

1

Ni

Ni∑
j=1

uj ⊗ uj, with j ∈ V(i). (10.17)

where for a lattice Ni = 1 so that i = j , Note that this U, with TrU = 1, is simply related
to the Q matrix of the voxel as defined in Eq. 3.47: U(i) = (2/3)Q(i)+ (1/3). Diagonalizing
U(i) as U(i)X(i) = X(i)�(i) and ordering the eigenvalues of U(i) so that λ(i)

1 ≥ λ(i)
2 ≥ λ(i)

3 ,
the local director is parallel to the eigenvector corresponding to largest eigenvalue, λi1. The

Westin metric can be introduced as the eigenvalue combinations c(i)
l = λ

(i)
1 − λ(i)

2 , c(i)
p =

2(λ(i)
2 − λ(i)

3 ) and c(i)
s = 3λ(i)

3 , which measure the linearity, planarity and sphericity of a
second-rank tensor, respectively. The condition of unit trace allows a barycentric coordinate
representation of the local tensor space, and a concise graphical (or glyph [Bi et al., 2019])
representation of the tensor as an ellipsoid as shown in Fig. 10.10. Regions of well-ordered
uniaxial nematics correspond to λ1 � λ2 ≈ λ3, i.e. cl ≈ 1; planar ordering corresponds to
λ1 ≈ λ2 � λ3− i.e. cp ≈ 1; and the absence order (isotropy) corresponds to λ1 ≈ λ2 ≈
λ3− i.e. cs ≈ 1. In practice, a small threshold for cl is arbitrarily chosen, similar to the
highest values that could be obtained, given numerical errors, for a truly isotropic region of
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Figure 10.10 Barycentric coordinate system for Westin metrics. Note that cl + cp + cs = 1
and 0 ≤ cl ≤ 1,0 ≤ cp ≤ 1. The dashed line is the threshold of cl (here cl = 0.12) which
separates ordered uniaxial regions on the left of the line from the disordered defects core
ones on the right. The ellipsoids have orientation and semi-axes given by eigenvectors and
corresponding eigenvalues of the matrix U [Callan-Jones et al., 2006].

similar size, and a defect is assigned to regions with a value below that threshold. We shall
show a few examples of both techniques. It is worth noting that the Westin metric approach
is not limited to lattice models. For an atomistic or off-lattice model we could choose a
voxel sufficiently large to contain enough molecules to offer a sufficient statistical quality
to the results (the threshold mentioned before has to be meaningful). For a lattice model we
could do the same assuming, e.g. that each voxel is (i) a small cube Ni × Ni × Ni . In this
way we could analyze a particular 3D configuration looking for its instantaneous defects.
However, we could also shrink the voxel down to one containing perhaps the lattice site and a
neighbour shell and obtain a time average over a sufficiently high number of configurations:
〈U(i)〉t = 〈 〈u(i)

j (t)⊗u
(i)
j (t)〉j 〉t . If there exist stable defects, fixed at a certain position from

some geometric or topological constraint, they should appear in the average 〈U(i)〉t (see
Section 10.9).

10.7 Nematic Films

In thin nematic films, sandwiched between two flat surfaces with a null topological charge
(s = 0), the occurrence and nature of defects can be controlled by imposing external fields
or certain boundary conditions with the help of appropriate surface anchoring agents. Thus,
defects should be absent in a flat cell with a uniform monodomain alignment either parallel
to a certain direction of the surface, r, or tilted with respect to it. More generally, when
the film is so thin that the director can be considered to effectively live in 2D, homotopy
theory shows that there can be in principle infinitely many types of disclinations in director
orientations classified by their semi-integer or integer topological charge s [Mermin, 1979;
Ohzono et al., 2017; Afghah et al., 2018]. These various defects have of course different
free energy and in practice only the ones with smallest s are observed. The situation is
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(a) (b)

Figure 10.11 (a) A sketch of two cells with (a) random tangential boundary conditions and
(b) hybrid ones with homeotropic and planar boundaries at the top and bottom surfaces
(HAN cell).

different in a 3D bulk, where only half-integer defects are allowed, while integer ones can
be eliminated, e.g. by the escape in the third-dimension mechanism [Cladis and Kleman,
1972].

10.7.1 Tangential Boundary Conditions: Schlieren Textures

As a first example of generating optical POM textures it is natural to try to reproduce
the classic schlieren textures of nematics (Fig. 1.8). We can simulate these with nematic
films confined between two parallel plates with tangential, in-plane disordered, boundary
conditions (DTBC), as sketched in Fig. 10.11a, starting from the lattice model Hamiltonian,

UN =
∑
i,j∈F
i<j

Uij + JT

∑
i∈F
j∈S T

V
(T)
ij + JB

∑
i∈F
j∈S B

V
(B)
ij , (10.18)

where F, ST,SB are the set of particles (spins) inside the sample and at the top and bottom
surfaces of the film, respectively, and Uij , V (T)

ij , V (B)
ij are the pair potentials for nematogen-

nematogen and for nematogen-surface particles, depending on the relative orientation
�ij of the two spins. In the examples described here we assume Uij = V

(T)
ij = V

(B)
ij =

−εijP2(ui ·uj ), i.e. the LL potential, even if of course this does not have to be the case
and other interactions can be chosen, e.g. biaxial systems with dispersive interactions
(Eq. 10.14) have also been studied [Chiccoli et al., 2002]. When modelling a film, the
particle positions are fixed at the sites of a simple cubic lattice of dimensions L × L × h
and the strength of interaction εij is ε � 0, when i and j are nearest neighbours and 0
otherwise. The anchoring interactions at the interfaces couple the spins inside the sample
cell to the outer layer of spins with a fixed orientation consistent with the boundary condition
chosen and have strength JT , JB . Tangential boundary conditions are set by fixing random
(x,y) in-plane orientations of the spins at the top and bottom surfaces (see Fig. 10.11a).
Empty space is left at the four lateral faces of the lattice which is updated using the MC
method (Chapter 8). Lattices of various sizes at some selected temperatures T ∗ = kBT /ε
and different couplings with the surface spins, in particular, JT = JB = 0.5, which
corresponds to fairly weak anchoring have been studied. Simulations are normally started
with spins perpendicular to the confining surfaces, so as to be as different as possible from
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Figure 10.12 Evolution of a 120× 120× 16 LL film (Eq. 10.18) at T ∗ = 0.4 with random
planar anchoring of strength J = 0.5. POM textures after n = 6 (a), 7 (b), 8 (c), 60 (d) MC
kcycles, showing annihilation of a pair of +1 and −1 defects and formation of a schlieren
texture. On the right the vertical (d′) and horizontal (d′′) cross sections, five layers down the
surface, through an s = 1 defect. Refractive indices nx = ny = 1.5 and nz = 1.7, film
thickness d = 5.3 μm and light wavelength λ = 545 nm [Chiccoli et al., 2002].

the expected final result. In Fig. 10.12 we show the formation of four brushes defects
with strength s = ±1. The defects disappear by annihilation of a +1 and −1 pair as
those enclosed by a square in Fig. 10.12. The defects s = ±1 are not singular, as we
see from the section along the vertical axis, Fig. 10.12d′. This essentially agrees with the
mechanism proposed by Meyer [1973] and Cladis and Kleman [1972] of an ‘escape into
third dimension’ with a pair of point defect-boojums terminating the line at the confining
surfaces even if a strong enough anchoring at the bounding plates can hinder, to some
extent, the spins reorientation away from the surface normal.

10.7.2 Hybrid Aligned Nematic Films

Another type of confined system we consider here is a model of a hybrid cell, with random
planar orientation at the bottom surface and homeotropic, normal orientation at the top
(Fig. 10.11b). These conditions have been experimentally realized [Lavrentovich and
Nastishin, 1990] placing an LC film of 5CB on top of an isotropic liquid substrate such as
polyethylene glycol or glycerine and leaving a free air/LC surface, where these mesogens
align essentially perpendicular to the interface. The cells can also be fabricated with
photoalignment [Chiccoli et al., 2019] techniques. Lavrentovich and Nastishin [1990] have
demonstrated that these hybrid aligned nematic (HAN) films produce very interesting
POM textures, due to the presence of the two competing boundary conditions. MC
simulations prove quite useful in studying these systems. The HAN cell [Lavrentovich
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Figure 10.13 POM images of (a) a 30×30×10 and (b) a 25×25×10 portion of a 50×50×10
HAN film from MC simulations together with snapshots of the MC molecular organization
(a′), (b′) [Chiccoli et al., 1997]. On the bottom the predicted director distribution from
continuum theory [Lavrentovich and Pergamenshchik, 1995] in a uniform HAN film (a′′)
and in a deformed state with a strength |s| = 1 point surface defect (b′′). The Gaussian
curvature κG of the director field d(x,y), i.e. the product of the principal curvatures, κx and
κy , is 0 for the uniform HAN film and negative for the defect state (b′′).

and Pergamenshchik, 1995] is mimicked [Chiccoli et al., 1997] assuming a L × L × h
lattice where the spins of the bottom layer, z = 0, have random fixed orientations in the
horizontal (x,y) plane, while those of the top layer, z = h, are fixed along the surface
normal. Open, i.e. empty space, boundary conditions are assumed on the four lateral faces
of the cell [Chiccoli et al., 1997]. PBCs are avoided since the artificial periodicity might
be incompatible with a ground state that contains topological defects. The system shows
a TNI ≈ 5%–10% lower than that of the bulk LL model [Chiccoli et al., 1999a], that is
essentially unchanged upon increasing the horizontal dimensions of the cell. The molecular
organizations obtained (Fig. 10.13) vary across the sample going from the disordered
configuration of the bottom (first) layer to the aligned one of the top one. For films with
small L/h, the director is just bent in a vertical plane and the POM appears black. The
situation dramatically changes for large L/h (e.g. for L ≥ 50 with h = 10) where the
texture shows topological defects with four brushes emerging from the core [Kleman,
1982]. The defects are of strength s = ±1, and |s| = 1 is the lowest possible topological
charge of a defect in a HAN film. Simulations show that the core of the defect is located
near the lower surface; the distortions vanish as one moves towards the upper plate where
the spins orient along the z-axis. A striking result of the MC simulations is that the model
based exclusively on pure nearest-neighbours molecular interactions mimics the long-
range deformations with topologically stable defects in agreement with continuum theory
predictions (see Fig. 10.13).
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10.7.3 Gruhn–Hess–Romano–Luckhurst Model

The LL model we have used up to now has an important limitation in that it yields the
three elastic constants Kii as equal, even if, actually, this corresponds to the one-constant
approximation often used in theoretical work. While for low-molar-mass liquid crystals the
difference between the elastic constants is normally small [Stannarius, 1998b], the need to
account for the anisotropy in the elastic constants is particularly important for various sys-
tems where their values can differ considerably. In particular, as mentioned in Section 1.2.3,
large differences in elastic constants can be expected in polymer liquid crystals [Kleman,
1991; Song et al., 2003b, 2005] or in LCs originated from long viruses like TMV [Hurd
et al., 1985], nanotubes [Song et al., 2003a; Song and Windle, 2005] or other nanocrystal
suspensions [Li et al., 2002].

The values and anisotropy of the elastic constants should have an effect on POM textures.
Indeed, measuring geometrical features such as the disclination radii of the s = 1/2 defects
has been suggested as a means to determine at least some elastic constants in polymeric LCs
from transmission electron microscopy (TEM) images. In particular, Hudson and Thomas
[1989] found in this way the elastic anisotropy ε = (K11−K33)/(K11+K33) to vary from
negative (−0,15) to positive (+0.20) in two very similar hydroquinone based polymers,
TQT10H and TQT10M, differing only by a replacement of a hydrogen with a methyl.
Unfortunately, this hints that it is extremely difficult to make predictions on elastic constants
based on the similarity of molecular structures, differently from simple expectations such
as that of de Jeu [1981], that K11 : K22 : K33 = 1 : 1 : (l/w)2 for a molecule of length l
and width w. Given the importance of relating elastic constants to texture, a number of
numerical treatments based on minimization of the continuum free energy have been put
forward, e.g. by Kilian and Hess [1989], Sonnet et al. [1995], and for polymer LCs, by
Hobdell and Windle [1995]. Going back to microscopic simulations, the introduction of
biaxial contributions [Chiccoli et al., 2002] or other more complex spatially anisotropic
interactions in the pair potential can lift the degeneracy of elastic constants of the simple LL
model. However, elastic constants are not directly predictable from the microscopic model
and they would have to be obtained as observable properties, a task of considerable difficulty
in itself even for lattice models [Cleaver and Allen, 1991]. If the aim is a study of the effect
of elastic constants of the topological defects in nematic films this would imply modifying
the pair potential in a more or less arbitrary way and calculating on one hand defects and on
the other elastic constants and other related observables such as order parameters. Thus,
since both elastic constants and defects are, in this fully microscopic approach, results
of the simulation establishing a relation between them is a rather cumbersome process.
A much more direct approach was provided by Gruhn and Hess [1996], Romano [1998] and
Luckhurst and Romano [1999] by introducing an effective potential that directly depends
on classic splay, twist and bend elastic constants K11, K22 and K33. The particles interact
through the nearest-neighbour attractive pair pseudopotential

Uij = −εij
{
λ
[
P2

(
ui · sij

)+ P2
(
uj · sij

) ]+ μ[ (ui · sij ) (uj · sij ) (ui ·uj )− 1

9

]
+ P2

(
ui ·uj

) [
ν + ρ[P2

(
ui · sij

)+ P2
(
uj · sij

) ]]}
, (10.19)
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(a) (b)

Figure 10.14 Effect of elastic constant anisotropy on simulated POM textures for a 100 ×
100 × 12 GHRL nematic film in a schlieren geometry with surface anchoring couplings
JT = JB = J = 0.5, (a) K11 = 6.4 pN, K22 = 3.6 pN, K33 = 8.2 pN (similar to MBBA).
(b) K11 = 1.0 pN, K22 = 0.22 pN, K33 = 8.8pN (similar to TMV) [Chiccoli et al., 2010].

where εij = ε,ε > 0 for i,j nearest neighbours and 0 otherwise, sij = r ij /
∣∣r ij ∣∣,

r ij = r i − rj, with r i,rj the position vectors of the ith and j th lattice points; ui,uj

are unit vectors along the axis of the two particles (or ‘spins’) and P2 is a second-
rank Legendre polynomial. The parameters λ,μ,ν,ρ are defined in terms of the splay,
twist and bend elastic constants as λ = 1

3�(2K11 − 3K22 +K33), μ = 3�(K22 −K11),
ν = 1

3�(K11 − 3K22 −K33) and ρ = 1
3�(K11 −K33) with � a factor with dimensions

of length. We note that the pseudopotential in Eq. 10.19 is a mesoscopic, rather than a
truly molecular one, as indicated by the fact that it contains elastic constants, and thus it is
temperature dependent. The one-constant approximation,Kii = K, yields λ = μ = ρ = 0
and ν = −�K, formally reducing Eq. 10.19 to the LL potential. Here we wish to show
that a simple application of the Gruhn–Hess–Romano–Luckhurst (GHRL) pseudopotential
coupled with MC simulations can be a very effective way to observe the onset of textures
and their evolution in a variety of situations. We concentrate in particular on thin uniaxial
films with random planar (schlieren) conditions and consider two cases with the Uij in
Eq. 10.19 with different choices of elastic constants. In Fig. 10.14 we see simulated POM
textures for a nematic film in a schlieren geometry as obtained from an MC simulation of
a GHRL potential for the three elastic constants taken from different materials. The values
for Fig. 10.14a refer to a typical low-molar-mass nematic: MBBA [Dunmur, 2001], where
the elastic constants are rather similar and, in Fig. 10.14b, to a suspension of TMV virus
(see Section 1.14) with a large bending stiffness [Hurd et al., 1985]. The images are taken
after 104 MC sample sweeps with the film placed between crossed polarizers. We see rather
different textures consistently with the prevalence of two brush disclinations for long rigid
particles like carbon nanotubes and main chain polymers [Kleman, 1991].

10.7.4 Hybrid Aligned Nematic Film with Partial Disorder

As we have seen in Section 10.7.2 the molecular organization inside thin HAN films can
vary from a continuous bend type structure of the director connecting the planar degenerate
and homeotropic boundaries to a defective structure for very thin films, with thickness
h � L, the lateral size. It has also been reported that disclination lines can be formed in a
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Figure 10.15 Plots of the local director at lattice sites and of the cl Westin metric (Section
10.6.1) isosurfaces corresponding to a defect (black) for different values of ordering at
the bottom surface (z = 0). The frames refer to the first overlayer for a substrate with
〈T2〉 = 0.00, i.e. planar random (a), 2% (b), 20% (c), and 100%, i.e. perfect alignment
along x (d) [Chiccoli et al., 2019].

hybrid nematic cell where the two facing flat surfaces enclosing the nematic are respectively
treated to induce an orientation perpendicular to the surface at the top (z = h), as in the
previous case, and a homogeneous anchoring, with full alignment along a specific in-plane
direction at z = 0 [Buscaglia et al., 2010]. However, it is now possible to fabricate cells with
controlled order at the surface by photopolymerization of reactive mesogens illuminated
with suitably polarized light on a pixel-by-pixel basis [Kobashi et al., 2016; Chiccoli et al.,
2019]. The alignment at the surface can be quantified with a 2D order parameter 〈T2〉
[Denham et al., 1980] 〈T2〉 = 〈cos(2α)〉, where α is the orientation of a molecule belonging
to the surface plane with respect to the preferred direction of the surface. The two limiting
situations just described correspond to 〈T2〉 = 0 (planar degenerate) or 1 (perfect alignment
along one direction in the plane). The effect on the molecular organization inside a nematic
film in an intermediate situation with only partial surface order is not obvious and computer
simulations can be of use to see if there is some critical surface order that enforces the
transition from points to lines or walls, everything else being the same, or actually which
type of defects occurs. MC simulations and the Westin metric allow an inspection of the
transition from one type of disclination to the other and in Fig. 10.15 we see an example.
A comparison of MC simulations and real experiments [Chiccoli et al., 2019] indicates that
fully random, degenerate, anchoring favours point defects, while homogeneous alignment
favors the appearance of filament like defects. When the in-plane order of the bottom sur-
face assumes values intermediate between the two extremes, the transition seems mainly
due to the surface alignment rather than on the details of the nematic elastic constants.
Moreover, it appears from the simulated configurations that the transition from planar to
vertical alignment is a sudden one, starting from the bottom overlayer, rather than from
an intermediate one. The combined use of MC simulations and POM measurements can
be particularly useful. On one hand, the 2D polarized microscopy textures obtained from
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experiments can validate the MC simulations. On the other, the simulations, once validated,
allow a detailed computational 3D visualization of the molecular organization across a
film, complementing the 2D projections produced by POM experiments and offering an
important way of discriminating between models.

10.8 Polymer-Dispersed Liquid Crystal Droplets

Polymer-dispersed liquid crystals (PDLCs) [Doane, 1990; Kitzerow, 1994; Drzaic, 1995;
Crawford and Žumer, 1996] are composite materials that consist of microscopic nematic
droplets, with typical radii from a few hundred Angström to more than a micron, embed-
ded in a transparent polymer matrix. PDLC films are interesting for technical applications
like smart windows changing between opaque and transparent by the application of an
external field across the film [Drzaic, 1995; Drzaic and Drzaic, 2011] but PDLCs also
represent practical realizations of systems of fundamental interest for the study of topo-
logical defects [Mermin, 1979; Kleman and Lavrentovich, 2003]. A number of experimen-
tal works have considered different boundary conditions at the droplet surface, for exam-
ple, radial [Golemme et al., 1988b], axial [Ondris-Crawford et al., 1991], toroidal [Drzaic,
1988] and bipolar [Golemme et al., 1988b; Aloe et al., 1991; Ondris-Crawford et al., 1991]
(see Fig. 10.16). These surface anchorings can be obtained by suitably choosing the polymer
matrix and the preparation methods. Additional effects of interest come from the application
of external, electric or magnetic fields [Golemme et al., 1988b; Kilian, 1993; Berggren et al.,
1994b]. The PDLC model used in lattice simulations concentrates on a single droplet and
consists of an approximately spherical sample S carved from a cubic lattice with spins
interacting with the LL or GHRL potentials described before, while the surface effects are
modelled with an external layer of ‘ghost’ spins, G , with fixed orientations chosen to mimic
the desired boundary conditions. The droplet Hamiltonian is

UD
N =

∑
i,j∈
i<j

S

Uij + J
∑
i∈
j∈G

S

Vij, (10.20)

with the surface interaction terms Vij = Uij an LL potential, with the surface coupling
parameter J determining the anchoring direction for the spins inside the droplet with respect
to the ghost spins: parallel for J > 0 or perpendicular for J < 0, with |J | the strength.
The case J = 0 would be appropriate for a droplet in vacuum. Systems corresponding to

Figure 10.16 A sketch of droplets with radial (RBC), toroidal (TBC) and bipolar (BBC)
boundary conditions [Pasini et al., 2000].
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the following three different boundary conditions at the nematic-polymer interface (see
Fig. 10.16) have been found to be experimentally relevant and have been studied by MC
simulations [Pasini et al., 2000].

(i) Radial boundary conditions (RBCs) with the spins of the host matrix surrounding
the droplet oriented normally to the local surface, i.e. towards the centre of the droplet.

(ii) Toroidal boundary conditions (TBCs) obtained when the spins at the polymer inter-
face lie in planes perpendicular to the z-axis and are oriented tangentially to the droplet
surface.

(iii) Bipolar boundary conditions (BBCs) with the ghost spins oriented tangentially to
the droplet surface and belonging to planes parallel to the z-axis. MC simulations have
been used to study the effects of different boundary conditions [Chiccoli et al., 1990,
1992; Berggren et al., 1994b], and of an external applied field on PDLCs [Berggren
et al., 1992, 1994b; Chiccoli et al., 2000]. Particular attention has been devoted to
simulating quantities observable in real experiments. For instance, methodologies to
calculate powder deuterium NMR lineshapes and textures observable in polarized light
experiments corresponding to the microscopic configurations obtained from computer
simulations have been developed [Chiccoli et al., 1990; Berggren et al., 1994a; Chiccoli
et al., 1995, 2000]. Here we briefly summarize some examples that can also be of
general interest for other model droplets.

10.8.1 Ordering and Defects Inside Droplets

To examine the ordering inside the microdroplets, various second-rank orientational order
parameters can be introduced, since the usual one, 〈P2〉λ, obtained from the eigenvalues of
the ordering matrix (see Section 3.5), is not always very informative for a spherical droplet,
as it quantifies the nematic order with respect to a global director which may not exist as
such for this geometry. For instance, in the case of RBCs, it is not possible to distinguish
between a perfectly ordered radial configuration and a disordered one just from the value
of 〈P2〉λ which would ideally vanish (as ≈ 1/

√
N ) in both cases. In this case, it is useful to

define a radial order parameter, 〈P2〉R [Chiccoli et al., 1995, 2005]:

〈P2〉R = 1

N

N∑
i=1

P2(ui · r i), (10.21)

where r i is the radial vector of the ith spin. For a perfect hedgehog configuration 〈P2〉R = 1,
while for a truly disordered system 〈P2〉R = 0. Following the same reasoning it is possi-
ble to define a configurational order parameter, 〈P2〉C , which tends to 1 for a molecular
organization perfectly ordered according to a certain ideal structure. Thus,

〈P2〉C = 1

N

N∑
i=1

P2(ui · ci), (10.22)

where ci is the direction corresponding to the local surface induced alignment. For example,
in the bipolar case (Fig. 10.16b), ci is a local meridian that belongs to the plane defined by
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Figure 10.17 Sketch of (a) a radial and (b) a ring-core hedgehog in a droplet with RBCs and
snapshots from MC simulations showing (c) an equatorial and (d) a vertical section of the
nematic droplet with the aligned core in the middle. At the bottom (e) radial order parameter,
〈P2〉R and (f) rotational invariant T2,2,2 =

√
70 S2,2,2/2 vs distance r∗ in lattice units

from the centre of the droplet at reduced temperatures T ∗ = 0.4(•),0.7(�),1.0(�),1.3(�)
[Chiccoli et al., 1995].

the droplet axis (z-axis) and the radial vector r i , while being perpendicular to r i itself. The
configurational order across a droplet can be calculated by dividing the sphere in virtual con-
centric shells and calculating the relevant 〈P2〉C in each region. This in turn is important to
test theories of defect type and molecular organization for various BCs. MC simulations for
the three BCs in Fig. 10.16 have been performed [Berggren et al., 1992; 1994b; 1994a]. As
an example, we report in Fig. 10.17c,d,e the molecular organization and the corresponding
〈P2〉R across an RBC droplet. To examine the question of the defect core being a hedgehog
or a microscopic ring defect (Fig. 10.17a,b) it is useful to also calculate some of the average
Stone invariants introduced in Section 4.8.1. In particular, the average S2,2,2, where

S2,2,2(r) =
〈
δ (r − r12)

1√
70

[
2− 3 (ẑ1 · ẑ2)2 − 3 (ẑ1 · r̂)2

− 3 (ẑ2 · r̂)2 + 9 (ẑ1 · ẑ2) (ẑ1 · r̂) (ẑ2 · r̂)
]〉

(10.23)

can discriminate between radial and hyperbolic hedgehogs, since for a radial hedgehog
S2,2,2(r) = 0, while for the hyperbolic core it is expected to have a maximum at a certain
distance from the centre. The results in Fig. 10.17d,f [Chiccoli et al., 1995] indicate the
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presence of a small ordered core at the centre of the nematic droplet, consistent with a ring
disclination [Mori and Nakanishi, 1988], and a radius increasing with temperature. It is
interesting to note that in this RBC case the size of the aligned core does not depend on
the droplet size and has a radius of a few lattice units [Chiccoli et al., 1995] for all the
system sizes studied, hinting that the core size is a true material property rather than being
dependent on the droplet size and that for a large enough droplet the system appears to
have a hedgehog structure away from the core. Interestingly the MC simulation for an RBC
Heisenberg model (Section 2.8.3) droplet, modelling a magnetic droplet, shows a different
behaviour, with a true point-like core [Chiccoli et al., 1995]. The similar the behaviour of
properties calculated for different droplet sizes reinforces the argument that each of the spins
could really be considered to represent a microdomain of some tens of particles, and that
the results also are applicable to micron size PDLC droplets, that have been investigated
experimentally [Ondris-Crawford et al., 1991] by optical techniques.

10.8.2 Calculating Deuterium Nuclear Magnetic Resonance Spectra

Simulated droplets configurations from lattice models can be used to calculate other observ-
ables used to study PDLCs [Chiccoli et al., 1995, 1999b]. In particular, Deuterium Nuclear
Magnetic Resonance (DNMR) [Abragam, 1961; Emsley, 1985] is a powerful experimental
technique (see Appendix I) frequently applied to investigate not only solutes ordering, as
we have seen in Section 3.10.6, but also pure mesogens as long as they are, at least par-
tially, deuterated, i.e. with some isotope 2H (nuclear spin I = 1) replacing ordinary protons
[Golemme et al., 1988b; Ambrozic et al., 1997]. The technique is very convenient for the
study of these complex heterogeneous systems as it can selectively provide information on
the deuterons inside the PDLC droplets, embedded in the non-deuterated polymer matrix
ideally invisible to the experiment. An additional advantage is that DNMR is applicable also
to submicron droplets, where optical methods fail to yield useful information. DNMR spec-
tra provide information on the orientational ordering, director configurations and dynamic
processes such as diffusion inside the droplets. Here we briefly describe how simulated
configurations can be used to calculate DNMR spectra [Chiccoli et al., 2000]. As we have
already seen in Section 3.10.6 the contribution of a 2H nucleus k to the DNMR spectrum
in an aligned nematic, for effectively uniaxial molecules, consists of two lines at an average
frequency 〈νk〉,

〈νk〉 = νZ ± 〈νQ〉 = νZ ± δVQP2(d · Ĥ )
〈
P2(d ·uk)〉, (10.24)

where H is the spectrometer magnetic field, 〈P2(d ·uk)〉 = 〈P2〉 is the orientational
order, δVQ = 3qzzP2(cos θk)/4, with qzz the magnetic quadrupole constant and θk =
arccos(uD,k ·uk) the angle between the unit vector uD,k along the k-th C-D bond and the
molecule axis uk . For instance, for the 4′-methoxy-4-cyano-biphenyl-D3 (1OCB) molecule
employed by Golemme et al. [1988b], qzz = 175kHz and an angle θk = 59.45◦ for the C-D
of the CD3. In a monodomain sample the angle between d and Ĥ is just determined by the
sign of the diamagnetic anisotropy�χ (m). The splitting reduces to 0 in the isotropic phase,
where a single line at the Zeeman frequency νZ (Appendix I) is observed.

https://doi.org/10.1017/9781108539630.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.011


10.8 Polymer-Dispersed Liquid Crystal Droplets 429

Let us now turn to lattice simulations, where the local director can be approximated by the
individual vector uk that, we recall, essentially represents a short-range molecular cluster.
The MC procedure provides directly each orientation uk with respect to the lab frame with,
for a nematic with positive magnetic susceptibility anisotropy �χ (m) > 0, z||H ||d. If the
dynamics can be considered neglible on the measurement timescale, the spectrum will be of
the polydomain type, i.e. just a sum of contributions from all the N spins and the spectrum
I(ν), i.e. the absorption intensity as magnetic field frequency ν is scanned, will be

I (ν) =∝
〈 N∑
k=1

δ(ν − νk)
〉
=
〈 N∑
k=1

δ
(
ν − νz ∓ δQP2(ddd · uuuk)

) 〉
(10.25)

where the angular brackets indicate an average over simulated configurations. The spectrum
as written is constituted of delta functions (the so-called stick spectrum). In practice, how-
ever, each resonance peak will have a certain finite width, e.g. a Lorentzian shape with the
intrinsic line widthw (e.g. a typicalw could be≈200 Hz). In this case, the kth 2H provides,
considering the frequency origin at the Zeeman resonance, the double peak line shape

L [ν,νk,w] = w

[ν − νk]2 + w2
+ w

[ν + νk]2 + w2
, (10.26)

so that the full spectrum will be I(ν) ∝ 〈∑N
k=1 L [ν,νk,w]

〉
.

This static approach can be extended to also include dynamic effects, such as fluctuations
of molecular long axes. This might seem strange because, even if MC simulations provide
molecular orientations at a set of times, this is not a real-time sequence, but, as we have
seen in Chapter 8, the result of an arbitrary stochastic Markov process. However, if the
chosen MC sequence consists of physically plausible moves, e.g. of small rotations for
each particle, we could use the simulation results also to examine the effect of molecular
reorientations on the spectra, while leaving positions fixed, thus neglecting by now the effect
of the slower translational diffusion. A further technical problem in considering the effect
of molecular reorientations on I(ν) is that the nuclear spin Hamiltonian terms containing
Î± operators do not commute with ÎZ and can induce magnetic transitions when changing
orientations. However, at this level of generic, rather than atomistic, approach the so-called
adiabatic approximation where these terms are neglected can be adopted, leading to a major
simplification. In particular, in this limit we can use the simple form of the Linear Response
(LR) Theory introduced in Section 6.9 to obtain an expression for the susceptivity to an
applied probing field (here the radiofrequency magnetic field at frequency νk) in terms
of correlation functions. To apply the general LR expression, Eq. 6.73, we identify the
observable property A with the transversal nuclear magnetization component μX, μX =
|〈M|ÎX|M ′〉|, the magnetic dipole transition moment (see Eq. I.12b), which in this case is
also the physical property coupling to the probing magnetic field (Appendix I). Thus, using
the general LR expression, Eq. 6.73,

χμXμX (ω) = 〈μXμX〉
kBT

− iω

kBT

∫ ∞

0
dt 〈μX(0)μX(t)〉 eiωt, (10.27a)

= χ ′(ω)− iχ ′′(ω), (10.27b)
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where ω = 2πν, χ ′(ω) ≡ ReχμXμX(ω), χ ′′(ω) ≡ ImχμXμX(ω) and 〈μX(0)μX(t)〉 is the
correlation function of μX [Anderson, 1954; Gordon and Messenger, 1972], also called the
relaxation functionG(t). The absorption spectrum I(ω) is obtained as the imaginary part of
the susceptivity (similarly to the case of dielectric spectroscopy seen in Section 6.10) and the
DNMR line shape I(ν) is calculated as the Fourier–Laplace transform of G(t) [Abragam,
1961; Golemme et al., 1988a]

I(ν) ∝
∫

dt ei2πνt 〈μX(0)μX(t)〉 =
∫

dt ei2πνtG(t). (10.28)

In our case, having adopted the adiabatic approximation, where spin flip terms are neglected,
the spin Hamiltonians at different times commute and remain diagonal in the laboratory
frame with z ‖ H 0 even when molecular orientations and positions change, so that a new
orientation just corresponds to a new resonance frequency. Using Heisenberg’s equation of
motion and the notation of Appendix I, we have

dμX(t)

dt
= d

dt
〈M|ÎX(t)|M ′〉 = − it

�
〈M|Ĥ×

S ÎX|M ′〉, (10.29a)

= − it
�

[〈M|Ĥ S ÎX|M ′〉 − 〈M|ÎXĤ S |M ′〉], (10.29b)

= − it
�

(EM − EM ′ )〈M|ÎX|M ′〉 = −it2πνMM ′ μX = −it2πνk μX. (10.29c)

Integrating over time we have μX(t) = exp
(
i
∫ t

0 2πνk(t ′)dt ′
)
μX(0) and the relaxation

function G(t) is generated as

G(t) =
〈

exp
[
i2πνZt + i2π

∫ t

0
dt ′νk

(
r(t ′),u(t ′)

) ]〉
, (10.30a)

≈
〈

exp
[
i2πνZt + i2π

∑
j

�tj νk(r(tj ),u(tj )
]〉

. (10.30b)

Here νZ is the Zeeman frequency, νk(r(tk),u(tk)) is the instantaneous value of the quadrupo-
lar frequency shift corresponding to the position r

(
t ′
)

(here a lattice site ) and 〈. . .〉 stands
for the average for the nuclei k. In this approach the time is divided into short intervals of
length �tj so that the frequency νk can be represented by a single value at that ‘instant’.
This treatment does not include the effect of lifetime broadening, which can be introduced
by convoluting I(ν) with a Lorentzian or Gaussian curve of width w. The calculation of
the G(t) defined by Eq. 10.30b requires equilibrium molecular position, r(t) and orien-
tation u(t) and to perform averages over all possible initial states and over all possible
molecular ‘paths’.

Translational diffusion can be further simulated by a simple random-walk process
in which molecules jump between neighbouring lattice sites, always adjusting their
orientation to the local, instantaneous ui . Both types of motional effects thus affect
the instantaneous resonance frequency and, consequently, the line shape I(ν). As an
example, the DNMR spectrum can be calculated for an experiment where an electric
field is applied to the PDLC droplets. If the effect of the NMR spectrometer magnetic
field on the configuration is negligible, as is the case at least for submicrometre droplets
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(a) (b)

Figure 10.18 DNMR spectra I(ν) as a function of frequency (ν − νZ) /δνQ for an LL
droplet with radial BC in the nematic phase (T ∗ = 0.8) for different values of effective field
strength ξ . (a) Rotational diffusion only. (b) Fast translational diffusion limit. A hedgehog-
to-aligned structural transition occurs with increasing ξ [Chiccoli et al., 2000].

[Crawford et al., 1993], then the methodology can be used to study the effect of an
external field E of different strengths on the molecular organization via the DNMR
spectrum. The field can be introduced in the simulation by adding to the unperturbed
droplet Hamiltonian UD

N a field coupling term UF
N :

UF
N = −εξ

N∑
i=1

P2(ui · Ê), (10.31)

where Ê is a unit vector along the electric field direction and the effective strength param-
eter ξ depends on the anisotropy of the dielectric susceptivity anisotropy �ε and the field
intensity ∝ E2. In Fig. 10.18 we see some simulated spectra where translational diffusion
is either absent (Fig. 10.18a) or fast (Fig. 10.18b). It is apparent that the effect of increasing
field strength is that of transforming the organization of the system from a hedgehog type, as
we have seen before, to an aligned uniaxial one. In this case too we can define an appropriate
order parameter, 〈P2〉E , which now expresses the molecular alignment with respect to the
field,

〈P2〉E = 1

N

N∑
i=1

P2(ui · Ê). (10.32)

10.9 Liquid Crystal Shells

A thin film of nematic that wets, with tangential anchoring, a spherical colloidal particle,
has to exhibit defects with a total topological charge of 2, and actually four s = 1/2 defects
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(a) (b) (c)

Figure 10.19 (a) A nematic thin film coating a sphere with tangential anchoring and (b)
the four surface defects of topological charge 1/2. (c) Modification of the defects under the
action of a uniform electric field [Skačej and Zannoni, 2008].

placed in a tetrahedral arrangement (Fig. 10.19a) appear, making the particle a kind of
tetravalent ‘colloidal atom’ [Nelson, 2002]. Indeed, these defects represent spots of high-
free energy, particularly suitable for a chemical attack, e.g. by nucleic acid strands, so as
to build complex colloidal architectures using the now well-developed DNA technology
[Song and Deng, 2017; Seeman, 2020]. Mathematical techniques have been used to locate
the defects, through setting up and minimizing the Frank elastic energy like in Lubensky
and Prost [1992]. However, it is important to find ways for varying the valence of these
colloidal atoms, e.g. by application of some external field or by changing the particle shape,
and computer simulations can be useful in this respect or also when additional features, e.g.
particle biaxiality, are included.

MC simulations of LC ordering in spherical nematic shells can be based on the LL lattice
model considering the shell comprised between two concentric spheres carved from the
cubic lattice [Skačej and Zannoni, 2008]. Choosing inner and outer sphere radii of 30a
and 40a, yields a total of N = 148,968 shell particles. Tangential (planar degenerate) BCs
at both surfaces can be imposed by an additional layer of ‘ghost’ particles, with εij < 0
for the ghost-nematic interaction (this corresponds to strong planaring anchoring). It is
possible to visualize the nematic director field at its defects with the already described
(Section 10.6.1) method of Callan-Jones et al. [2006], calculating the average components
of the local ordering matrix Ui = 〈ui ⊗ ui〉 for each lattice site. The results in the absence
of external fields (Fig. 10.19b) reproduce the analytical tetrahedral defect structure. We
can now study the effect of applying a uniform electric field by adding to the LL Hamil-
tonian a coupling term, exactly like in Eq. 10.31. For a sufficiently strong field the four
s = 1/2 defect lines partially coalesce to form two pairs of s = 1 surface point defects at the
sphere poles (Fig. 10.19c) with the axis connecting the two poles parallel to the field direc-
tion. Note that the surface topological defect charge remains constant and equal to 2. The
valence can be further changed by the application of suitable multipolar fields as shown in
Skačej and Zannoni [2008].

The defect location, if not the valence, can also be changed, e.g. varying the shape
of the colloidal core from spherical to ellipsoidal uniaxial and biaxial colloidal particles
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[Bates et al., 2010]. Typically, four mutually repulsive half-strength defect lines penetrat-
ing the shell are observed, as for the spherical particles. For shells of constant thickness,
the defect lines tend to accumulate in the high curvature regions or, if the thickness of
the nematic coating varies across the surface, the defect lines tend to be located in the
thinnest regions.
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Molecular Simulations

11.1 Empirical Anisotropic Models

There are a number of convincing reasons to try to go beyond the lattice models of Chapter
10, even before requiring all the details of an atomistic approach. A very important one
is the need to abandon the fixed positions inherent in lattice models, an essential step to
simulate phases with partial positional order like the various smectic ones. Another reason
is to start introducing some precious features of molecular structure, like shape, charge
distribution, etc. and examine their relation to phase behaviour. Yet another reason is to
find the minimal or essential molecular features required to obtain some desired phase.
For instance: how elongated should a particle be to yield a nematic phase? How can we
obtain a certain smectic phase, or avoid one if we only want a nematic, e.g. a biaxial, one?
Empirical anisotropic models typically represent a molecule with a single particle or a few
connected ones [Zannoni, 2001b; Care and Cleaver, 2005; Allen, 2019]. In many ways
these are definitely more realistic than lattice models, as they allow molecular mobility
and a cascade of positionally ordered or disordered phases like smectics and, respectively,
nematics and isotropic (liquid and vapour) fluids. We introduced the main generic particle
models of this type, as well as their interactions, in Chapter 5. Here we wish to focus on
their applications to LCs. Due to their relative simplicity molecular models have allowed
the investigation of molecular order, dynamics and bulk material properties in quite large-
scale simulations (104−106 molecules) of a range of liquid crystalline phases [Allen, 2019].
Moreover, molecular potentials have been employed for the study of bulk properties of
phases not yet experimentally found and for which molecular structures are not available,
proving valuable in contributing design hints to synthetic chemists. Some examples include
biaxial [Berardi and Zannoni, 2000] and ferroelectric nematics [Berardi et al., 2001] still
actively pursued by synthetic chemists.

In terms of computer resources, molecular coarse-grained potentials, such as the
Gay–Berne (GB) model (Section 5.6.3), provide three key advantages over atomistic
potentials. Most obvious is the speed-up due to a reduction in the number of interacting
sites with respect to an atomistic model, albeit handling anisotropic, rather than spherical,
particles is unavoidably more demanding. However, almost as important, is the increase
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in time-step that can be achieved in a molecular dynamics simulation, with the associated
longer time windows that can be explored. Moreover, the reduction in the number of
degrees of freedom with respect to an atomistic model, can significantly speed up the phase
space exploration [Hughes et al., 2008; Lintuvuori and Wilson, 2008]. For liquid crystalline
systems, a major simulation cost is associated with taking a simulation through a phase
transition from a disordered to a more ordered phase. For instance, while gradually cooling
down an initially isotropic sample, the spontaneous onset of an ordered domain, large
enough to seed the formation of a liquid crystalline phase, requires long simulation times,
particularly if a first-order transition is involved and it is highly desirable to speed-up these
processes. While it would be attractive to have a general formalism for molecular models
including a variety of the interactions discussed in Chapter 5 and simultaneously present
in real molecules, it is often useful to introduce empirical forms for the potential, which
only include some basic features, one at a time avoiding unnecessary complications. This is
particularly important in computer simulations, where a huge number of evaluations of the
pair potential has to be performed. Here we report a few of the most relevant and commonly
used of these model systems and their applications to liquid crystals.

11.2 Anisotropic Spherical Particles

Soft or hard spherical particles with an embedded anisotropic interaction are possibly the
simplest type of off-lattice intermolecular potential that can be used to model LCs. Even
if these systems inevitably lack the important shape anisotropy characteristic of real meso-
gens, they provide interesting models to test theories and here we briefly review some of
the most important ones.

11.2.1 Maier–Saupe Spheres

The spherical particles models where the anisotropic contribution is a simple second-rank,
pseudo-dispersive, P2-type interaction essentially corresponds to the simple model used in
Section 7.2 to introduce Maier–Saupe Molecular Field Theory, and thus they are some-
times referred to as Maier–Saupe spheres. A specific example is that of soft Lennard–Jones
spheres (Section 5.2.3):

UMS(r ij,ui,uj ) = ULJ(rij )+ u2(rij )P2(ui ·uj ). (11.1)

The potential corresponds to LJ spheres (Eq. 5.18), each decorated at the centre with an
anisotropic interaction site with orientation ui . The model reduces to the Lebwohl–Lasher
one studied in Chapter 10, when molecule centres are fixed at the sites of a simple cubic
lattice and the range of u2(rij ) is restricted to nearest neighbours. Two forms for u2(rij )

have been studied by Luckhurst and Romano [1980b]: (A) u(A)
2 (r12) = −4λε (σ/r12)

6 or
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(a) (b)

Figure 11.1 Instantaneous configuration of 500 dipolar hard spheres at T ∗ = (1/μ∗)2 =
0.0816 and reduced density (a) ρ∗ = 0.01 and (b) ρ∗ = 0.8, in a box of side length
L = 36.84σ . Hard spheres belonging to chains of length larger than 20 beads are in black,
the others in grey, with a thin line representing the direction of the dipole moment. The state
in part (b) is ferroelectric with 〈P1〉 = 0.84 [Levesque and Weis, 1994].

(B) u(B)
2 (r12) = −4λε

{
(σ/r12)

12 + (σ/r12)
6}. It is worth noting that the repulsive part of

the potential is isotropic and does not depend on the orientation of the intermolecular vector.
MC simulations for the two forms of u2 (r12) were run for N = 256 and 864 particles with
the strength parameter λ = 0.15. It is found that both models yield a nematic phase with an
orientational order parameter 〈P2〉 at the isotropic-nematic transition that appear slightly
below that obtained with a mean field treatment, i.e. 0.429, as we see from Table 7.1 for
the λ4 = 0 case.

11.2.2 Dipolar Hard Spheres

A number of studies have discussed hard spherical particles with a permanent dipole, μ,
embedded. The pair potential is:

UDHS
ij = UHS (rij )+ UDD

ij , (11.2)

where UHS was given in Eq. 5.2.1, and the dipole-dipole interaction UDD
ij is, recalling

Eq. 5.86,

UDD
ij = − 1

r5
ij

[3(μi · r ij )(μj · r ij )− r2
ij (μi ·μj )] (11.3)

in units of 4πε0. Patey and Valleau [1974] studied the model with MC simulations compar-
ing the pressure calculated with the virial expression (Eq. 4.133) with various approximate
statistical theories within the isotropic phase, but no LC phase was discussed. Levesque
and Weis [1994] performed MC simulations for a system with reduced dipole moment
μ∗ = (μ2/σ 3kBT )1/2 = 3.5 along a low temperature isotherm, finding that the dipolar hard
spheres (DHS) system structure transforms from chain-like associations (Fig. 11.1a), at low
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reduced densities (ρ∗ ≡ ρσ 3 ≤ 0.2), to a ferroelectric type ordering for densities ρ∗ > 0.6.
The aspect of these chains, kept together by the favourable head-to-tail dipolar interactions,
is very similar to that of partially flexible polymers. de Gennes and Pincus [1970] predicted,
using qualitative arguments, that this should occur in ferromagnetic colloids, for which the
DHS model provides a simple model. Indeed, from a formal point of view, the dipole in
Eq. 11.2 could be either an electric or a magnetic one and the respective polar phases
would then be ferroelectric or ferromagnetic. Thus, for ρ∗ > 0.6, DHS can exhibit, at
sufficiently low temperatures, spontaneous orientational ordering of the dipole moments
which is, different from that of ordinary nematics, ferroelectric. This can be put to test,
since for normal, non-ferroelectric, nematics 〈P2〉 �= 0 and 〈P1〉 = 0, while for ferroelectric
nematics both 〈P2〉 and 〈P1〉 must be non-zero. A snapshot of a configuration at ρ∗ = 0.8
showing clear polar ordering is reproduced in Fig. 11.1b. Its global dipole (polarization)
P = |〈P1〉| is computed as the average value

P = 1

N

∣∣ N∑
i=1

μ̂i · d
∣∣, (11.4)

where μ̂i is a unit vector along the dipole moment of particle i and d is the instantaneous
director corresponding to the eigenvector associated with the largest eigenvalue of the order-
ing matrix Q (Eq. 3.47). The DHS systems, although apparently simple, turn out to be
difficult to equilibrate. At the lower density, ρ∗ = 0.6, a polarizationP = 0.83 was obtained
when starting from an initial perfectly polarized configuration. However, when the system
was started from an unpolarized state with random distribution of the dipole moments,
the polarization was extremely slow to build up and did not converge within the length
of the run, yielding, after 110,000 trial moves per particle, only P ) 0.30. The isotropic-
ferroelectric (IF) transition for DHS systems of different sizes at ρ∗ = 0.80 and 0.88 was
studied by Weis [2005] in a cooling-down temperature sequence (since T ∗ = (1/μ∗)2 this
is equivalent to increasing the dipole strength), who found a transition at T ∗IF ≈ 0.212 for
ρ∗ = 0.80 and at 0.263 for ρ∗ = 0.88. The dipolar energy of the periodic system (N,V,T )
was evaluated by means of an Ewald sum (Section 5.4.4) with conducting boundary con-
ditions. The parameter α controlling the relative contributions to the Ewald sum of the
direct and reciprocal space terms, was αL = 5.76, allowing the real-space term to restrict
contributions to the pair interaction truncated at half the box size of the simulation cell.
The term in reciprocal space included all lattice vectors k = 2πn/L, n = (

nx,ny,nz
)

with
|n|2 � n2

max = 64. Weis and Levesque [2006] have studied DHS systems with the same
technique and found a change from the isotropic-ferroelectric to the columnar ferroelectric
phase in the density range ρ∗ = 0.92−0.95. Solid phases of dipolar hard spheres with
various crystal symmetries were also studied and, in particular, MC simulations at low
temperatures [Levesque, 2017] point to the stability of a polarized solid phase with the
unusual number of 11 nearest neighbours, the so-called primitive tetragonal packing or
tetragonal close packing.
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Figure 11.2 The orientational order parameters 〈P1〉 and 〈P2〉 as a function of reduced
density ρ∗ for a system of soft dipolar spheres with N = 256 (◦), (���) and N = 864 (•),
(�) particles [Wei and Patey, 1992].

11.2.3 Dipolar Soft Spheres

The pair potential of two LJ (cf. Eq. 5.18) spheres with a dipole embedded in the centre
(also called the Stockmayer [1941] potential) is

UDLJ
ij = ULJ

ij + UDD
ij . (11.5)

Clusters of Stockmayer spheres aggregate in chains with head-tail alignment of the dipoles
that persist, for reduced dipoles μ∗ = 1, (μ∗ = μ/

√
εσ 3) through the solid-liquid coexis-

tence temperature. Wei and Patey [1992] considered a dipolar soft-sphere model defined by
the pair potential

UDSS
ij = USS

ij + UDD
ij , (11.6)

where the soft-sphere (DSS) potential is the repulsive part of the LJ one:USS
ij = 4ε(σ/rij )12

and the dipole-dipole interaction was given in Eq. 11.3. Here ε and σ are the LJ parameters
characterizing the soft-sphere potential, μi is the dipole moment of particle i, r ij = rj−r i,

and rij is the modulus of r ij . The possible existence of a nematic and/or ferroelectric
nematic phase was monitored using molecular-dynamics simulations and calculating the
first- and second-rank orientational order parameters, 〈P1〉 and 〈P2〉, respectively. For suf-
ficiently high dipole moments, the system presents an orientationally ordered phase having
ferroelectric order (Fig. 11.2). In summary, simulations have shown that the dipolar inter-
actions alone are sufficient to induce an orientationally ordered liquid phase for spherical
core systems both for the DSS potential and for the DHS potentials.

11.3 Anisotropic Aggregates of Spherical Particles

Even if the MS, DHS and DSS just seen yield some ordered phase, it is clear that in order to
treat liquid crystals it is essential to allow for the anisotropy in the shape of particles. One
simple possibility is to build such a potential by suitably joining together spherical particles
to form an anisotropic object, e.g. a linear chain. We shall consider briefly the cases of hard
and LJ beads.
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Figure 11.3 Equation of state for a system of rods made of eight fused spheres, with
L∗ = 4.2 showing the isotropic (�) and the nematic-smectic branch (�). The lines in the
isotropic branch correspond to the Boublik [1975] expression, Eq. 11.7 ( ) and to the
best-fit y expansion mentioned in the text ( ) [Whittle and Masters, 1991].

11.3.1 Linear Chains of Hard Spheres

Various models based on rigid chains of tangent or partially overlapping fused spheres have
been considered. In particular, systems of linearly fused hard spheres have been found
[Whittle and Masters, 1991] to exhibit nematic ordering for an overall length (Ltot ) to
breadth ratio L∗tot = Ltot /σ = 5.2 (obtained with eight equally spaced fused spheres of
diameter σ ) as we show in Fig. 11.3. As the number of spheres per molecule increases, and
their separation shrinks to 0, this system becomes equivalent to a hard spherocylinder fluid
(see Section 11.4.2). In this case, the hard spheres linear chains, non-convex, can be approx-
imated with spherocylinders (convex bodies). The isotropic branch is well represented by
Boublik’s [1975] equation of state for hard convex particles:

PV

NkBT
= 1+ (3ξ − 2)φ + (

3ξ2 − 3ξ + 1
)
φ2 − ξ2φ3

(1− φ)3
, (11.7)

where φ = ρVP = NVP /V (with VP the volume of the particle) is the packing frac-
tion and ξ is the asphericity factor for convex bodies already employed in Section 5.5:
ξ = RP SP /3VP , with RP the mean curvature and SP the surface area. Another useful
expression for the equation of state is the so-called y expansion [Barboy and Gelbart, 1979;
Hansen and McDonald, 2006]: (P (φ)VP )/(kBT ) =∑

n Cny
n, where y = φ/(1−φ) is the

volume fraction. An interesting feature of modelling elongated particles with a connected
set of spherical beads is the possibility of easily introducing flexibility, by allowing, e.g.
spring-like, instead of perfectly rigid, links connecting some or all the spheres. A semi-
flexible system of connected hard spheres was studied by Wilson and Allen [1993] and
more recently tangent and fused hard spheres with a rigid and a flexible segment have been
investigated [Cinacchi et al., 2005; Movahed et al., 2006; Oyarzun et al., 2013, 2015; van
Westen et al., 2013].
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Figure 11.4 MD results for a system of 11 soft repulsive beads linear chains. (a) Orienta-
tional correlationG2(r) for temperatures (A) 700 K, (B) 800 K, (C)1300 K, (D) 1500 K, (E)
1800 K. (b) Order parameter 〈P2〉 from diagonalization of the ordering matrix (•) and from
the large separation tail of G2(r) ≈ 〈P2〉2 (Eq. 4.97) (◦◦◦) [Paolini et al., 1993].

11.3.2 Linear Chains of Soft Repulsive Spheres

Rod-like anisotropic particles formed by a rigid linear chain of ns centres of force that
interact with other particles via a site-site potential corresponding to the repulsive part of
the LJ potential

U (rij ) = 4ε (σ/rij )12, (11.8)

where i and j are two sites belonging to different particles (with ns = 11) were studied by
Paolini et al. [1993]. The potential parameters used are σ = 3.9 Å and ε = 6.0× 10−22 J.
Of the 11 sites of each molecule, only the 2 at the extremes are true beads, each of mass
m = 1.993× 10−23 g, while the others are just massless centres of force. NPT MD sim-
ulations of N = 600 molecules have shown liquid crystal phases, and in Fig. 11.4 we
report the orientational order parameter 〈P2〉 and the orientational-radial correlation G2(r)
(Eq. 4.97).

11.3.3 Lennard–Jones Linear Chains

Extensive simulations of linear chains of ns = 8,10,12 LJ beads have been performed
[Rivera et al., 2016] and also in this case partially flexible models formed by a rigid core
and a flexible tail have been proposed. The freely jointed part is not subjected to any bond-
bending or torsional potential; thus it is free to adopt any possible molecular configu-
ration subject to the constraints of a rigid bond length and the pair interaction between
segments. Intermolecular pair interactions are evaluated for beads of different molecules
and for segments of the same molecule that are separated by two or more bonds. For longer
LJ oligomeric chains, the isotropic-nematic equilibrium is shifted towards lower densities
while the density difference between both coexisting phases is increased. An example of
the phase diagram for a rigid chain system built from 10 LJ spheres [Rivera et al., 2016],
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Figure 11.5 Reduced temperature T ∗ vs reduced monomer density ρ∗m phase diagram for
a system of 200 linear rigid chains of 10 LJ beads showing isotropic (I)-nematic (N) phase
equilibria. Solid lines are from the analytical equation of state of van Westen et al. [2013],
filled (•) and open (◦◦◦) symbols are simulation results for the isotropic and nematic phase,
respectively [Rivera et al., 2016].

shown in Fig. 11.5, compares, rather successfully, with the results of a generalized Onsager
theory (Section 7.6) for non-convex molecules [van Westen et al., 2013].

11.4 Anisotropic Hard Particles

Various authors, in particular Frenkel [1987], Allen et al. [1993] and Bolhuis and Frenkel
[1997] have shown that LC phases can be formed starting from hard ellipsoids and sphe-
rocylinders since, contrary to naive expectations, the formation of an anisotropic phase can
lead to an increase in entropy, e.g. for sufficiently anisotropic particles or high densities (see
Section 5.5). Here we focus on the LC phases obtained for the two most studied cases: hard
ellipsoids and hard spherocylinders, whose pair potential were introduced in Sections 5.5.1
and 5.5.2, respectively.

11.4.1 Hard Ellipsoids

The first off-lattice simulation of elongated objects yielding an anisotropic liquid was prob-
ably that of a 2D system of hard ellipses performed by Vieillard-Baron [1972] who found,
for an aspect ratio κ = 6, that the system showed isotropic, nematic and solid phases. The
2D system of hard ellipses has been recently revisited [Bautista-Carbajal and Odriozola,
2014] determining, with extensive MC runs, an area fraction-aspect ratio phase diagram for
1 ≤ κ ≤ 5 and identifying four regions: isotropic, nematic, plastic and solid.

In 3D a system of hard ellipsoids (Section 5.5.1) is quite interesting since it gives rise
for different elongations (see Fig. 11.6) to plastic crystals (when the ellipsoids are nearly
spherical), isotropic liquids, nematics and crystals [Frenkel and Mulder, 1985; De Michele
et al., 2007; Odriozola, 2012]. In particular, hard ellipsoids have been shown to form a
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Prolate ellipsoids Oblate ellipsoids

Figure 11.6 Phase diagram of hard uniaxial ellipsoids of length σ|| and breadth σ⊥ showing
fluid-solid (�) and isotropic (I)-nematic (N) (◦◦◦) transitions. Plastic crystal, face-centred
cubic (FCC) and SM2 solid phases are observed. The solid line is the maximum achievable
density [Donev et al., 2004a]. The dashed, dotted and dot-dashed lines are guides for the
eye indicating the fluid-solid, the I-N and the FCC-SM2 [Radu et al., 2009] transitions,
respectively. Some isotropic-nematic (+++) and nematic-solid (∗∗∗) points are from Frenkel
and Mulder [1985]. Adapted from [Odriozola, 2012].

nematic phase for length-to-breadth ratios κ > 2.75 [Frenkel and Mulder, 1985] without
the need to invoke attractive forces. As for any hard repulsive system, the transition from
one phase to the other will be dictated by the gain in total entropy and it is worth noting that
going from a disordered isotropic fluid to a nematic, while the system loses orientational
entropy, it gains translational entropy, e.g. by the increased possibilities of displacement
along the molecular axis allowed by the orientational order and fluidity of the nematic phase.
On the other hand, as it is apparent from the phase diagram in Fig. 11.6, the system does
not give a smectic phase for elongated ellipsoids or a columnar phase for discotic ones and
theoretical arguments have been put forward to justify this [Lebowitz and Perram, 1983;
Frenkel, 1987]. In particular, Lebowitz and Perram [1983] argued that a system of hard
parallel ellipsoids could be mapped into a system of spheres by a linear, volume preserving,
affine transformation. Thus, a hypothetical fully ordered HE smectic would be mapped into
a crystal of spheres instead of a stack of 2D liquid layers of spheres.

It is interesting to see how effectively ellipsoidal particles can pack. Given the pack-
ing fraction φ = Nπσ||σ 2

⊥/(6V ), the densest arrangement of hard ellipsoids with axes σi
for certain aspect ratios κ has been numerically found to be φ ≈ 0.7707 (see Fig. 11.7)
[Donev et al., 2004a,b; Chaikin et al., 2006]. As the jamming density approaches, the par-
ticles touch to form the contact network of the packing, exerting compressive forces on
each other but not being able to move despite thermal agitation. We can see that spheres
(κ = 1) give the worst packing with a jamming density φJ ≈ 0.64 (see Section 5.2.1) and
that the density φJ increases with κ , reaching densities as high as φJ ≈ 0.74 for the self-
dual ellipsoids (σx = √σzσy), which corresponds to β = 1/2, while for higher aspect ratios
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Figure 11.7 Jamming volume fraction φJ vs aspect ratio κ obtained numerically for 104

hard biaxial ellipsoids with axes ratios σx : σy : σz = 1 : κβ : κ , where κ > 1 is the aspect
ratio and β, (0 ≤ β ≤ 1) is the ‘oblateness’, with β = 0 corresponding to a prolate, β = 1
to an oblate uniaxial ellipsoid and β = 1/2 to a self-dual one [Chaikin et al., 2006].

there is a decrease in φJ . Numerical simulations and experiments on hard spheroids [Donev
et al., 2004b] have confirmed that ellipsoids can randomly pack more densely than spheres,
up to φ = 0.68 to 0.71 for spheroids with an aspect ratio close to that of M&M’s© sweets
and even approach φ ≈ 0.74 for ellipsoids with axes ratios near 1.25 : 1 : 0.8. Thus, the
density of jammed random packings of ellipsoids can approach that of the crystal packing,
raising the possibility of a thermodynamically stable glass [Man et al., 2005]. Careful free
energy calculations have shown that the most stable crystal phase of hard ellipsoids, the
SM2, has a simple monoclinic unit cell containing two ellipsoids with different orientation
[Radu et al., 2009].

11.4.2 Hard Spherocylinders

This simple potential is extremely important because it has been shown by computer
simulations [Frenkel, 1987] to give not only isotropic, nematic and crystal phases but also
smectic ones. We already introduced the pair potential and some geometrical metrics for
hard spherocylinders (HSCs) in Section 5.5.2 and in Section 7.6 we saw how HSCs have
been studied with classical Onsager theory and with the extended version of Parsons and
Lee starting from their second virial coefficient. Systems of HSCs with full orientational
freedom have been extensively investigated with computer simulations by Bolhuis and
Frenkel [1997], and the results show that the system presents a plastic crystal (rotator phase)
at low aspect ratios x ≡ (l+ d)/d and, as x increases, an isotropic liquid; then for x > 4.7,
nematic and smectic A phases and the high-density, orientationally ordered solid. Between
x = 1.35 and x = 4.1, only two phases occur: the low-density isotropic phase and the
high-density, orientationally ordered crystal phase. The smectic phase first becomes stable
at the I-SA-S triple point which is located at x ≈ 4.1. The N-Sm transition occurs at density
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Figure 11.8 Phase diagram of hard spherocylinders showing reduced density ρ∗ vs log of
the aspect ratio, x = (l + d)/d , with 1 < x < 100. Here ρ∗ = ρ/ρcp, with ρcp =
2/[
√

2 + (l/d)
√

3] the density for regular close packing of spherocylinders. The phases
shown are isotropic, nematic, plastic (P), smectic and solids (AAA, ABC). The dotted line
is an estimate for the first-order AAA-ABC transition [Bolhuis and Frenkel, 1997].

ρ∗ ≈ 0.5, where it is clearly first order, but the density jump at the N-Sm transition
is reduced upon increasing aspect ratio. The smectic to solid transition is located at
ρ∗ = 0.66−0.68 and is also first order [Bolhuis and Frenkel, 1997]. Here the reduced
density ρ∗ = ρ/ρcp, where ρcp = 2/(

√
2 + (l/d)

√
3) is the density relative to that of

regular close packing of spherocylinders.
The hard spherocylinder system is also important for the study of colloids formed by

rod-like inorganic [van Bruggen et al., 1996] or virus particles [Fraden et al., 1993; Dogic
and Fraden, 2006]. In this case, high anisometric ratios can be appropriate and the phase
diagram for 0 < l/d < 100 is shown in Fig. 11.8 [Bolhuis and Frenkel, 1997]. Two types of
solids are found. In the AAA solid the stacking is such that every particle is exactly above
a particle in the layer below, while in the ABC stacking the layers are shifted.

11.4.3 Dipolar Hard Spherocylinders

Weis et al. [1992] studied the orientational order in systems of dipolar hard spherocylinders
of aspect ratio x = (l + d)/d = 6 (see Fig. 11.8) with a longitudinal dipole moment
located at a distance 2.5d from the molecular centre. Starting from a close-packed
structure with hexagonal symmetry and all dipole moments aligned in the same direction
parallel to the z-axis, (N,P,T ) MC calculations were performed allowing not only
translations and rotations, but also head-tail flip moves to speed up dipole equilibration.
At density ρ∗ = ρd3 ≈ 0.13 and pressure P ∗ = Pd3/kBT = 3.8, the reduced dipole

μ∗ = (
μ2/d3kBT

)1/2
was varied between 0 and

√
6. The simulations showed formation

of a monolayer smectic A phase (cf. Fig. 1.28) with unpolarized layers. Different to the
case of dipolar hard spheres, a ferroelectric phase was not found. Further extensions of this
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work [Levesque et al., 1993] showed that, irrespective of the characteristics of the dipole
moment, such as position (from centre to the end of the molecule), strength (μ∗ varying
from 0 to

√
6) and direction (from parallel to perpendicular to the molecular axis), the

stable smectic A phase was found to have a monolayer SA1 structure and that in the case
of an axial dipole moment the layers were unpolarized. Thus, the rich variety of strongly
polar smectic A phases seen in Section 1.7.2 and in particular the rather common bilayer
SA2 or interdigitated partial bilayer SAd (like that found, e.g. in 8CB) was not observed.

11.5 Gay–Berne Models

The Gay–Berne (GB) pair potential [Gay and Berne, 1981], introduced in Section 5.6.3,
is probably the one most extensively applied to liquid crystals and studied, both theoreti-
cally and with computer simulations. The uniaxial GB model (Eq. 5.57) has proved to be
quite rich as it yields liquid, nematic, smectics and crystal condensed phases for elongated
molecules as well as nematic, columnar and crystals ones for discotic mesogens [Bates and
Luckhurst, 1999b; Zannoni, 2001a; Allen, 2019]. Other more complex structures can be
obtained by modifying the ellipsoidal shape of the particles, e.g. to tapered [Berardi and
Zannoni, 2000] or bowlic [Ricci et al., 2008] shapes or by combining various GB units with
flexible spacers to model polymeric and elastomeric LCs [Berardi et al., 2004c; Skačej and
Zannoni, 2014] as we shall see in the next few sections. An advantage of the GB potential is
its analytic formulation and its differentiability which has eased simulations with both MC
and MD. Initially simulation codes have typically been developed by individual groups,
making maintenance over time and general availability difficult. However, the GB potential
for uniaxial or biaxial particles has now been implemented in the open-source MD code
LAMMPS (see Section 9.9), developed and maintained at Sandia Labs [Plimpton, 1995],
making applications much easier. In what follows we briefly examine the main LC phases
obtained by the GB mesogens, with no intention of a full coverage of the vast literature, but
rather focussing on the modelling aspects more specific to LCs and showing representative
examples. We start by briefly summarizing the results that are obtained from elongated and
discotic uniaxial particles. We shall normally use scaled, dimensionless units, which were
reported in Table 5.10. For uniaxial mesogens it is convenient to express the parameters
defining the GB model in Eq. 5.57 by the concise notation of Bates and Luckhurst [1999a]:
GB(κ,κ ′,μ,ν), where κ = σe/σs is the aspect ratio and κ ′ = εs/εe is the ratio of lateral to
axial attractive well depths.

11.5.1 Rod-like Gay–Berne Mesogens

Fig. 11.9a shows the phase diagram obtained by Chalam et al. [1991] and extended by
Brown et al. [1998a], using MD and MC simulations, for the original version of the GB
potential, the GB(3,5,2,1) whose parameters were originally chosen to model a line of
four Lennard–Jones centres [Gay and Berne, 1981]. A close-up of the region inside the
dashed rectangle including the fluid-nematic, highly ordered smectic B (or solid) phase as
obtained by de Miguel [2002] using (N,V,T ) and (N,P,T ) MC simulations is shown in
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(a) (b)

(c) (d)

Figure 11.9 (a) The (T ,ρ) phase diagram for the GB(3,5,2,1) model from MD simulations
(�) showing isotropic liquid (I), vapour (G), isotropic fluid (F) and smectic SB (or solid S)
regions and the critical point, c, [Brown et al., 1998a]. (b) Detail of the region enclosed by
the dashed rectangle in part (a) [de Miguel, 2002]. (c) (P,T ) phase diagram of the same
model [de Miguel and Vega, 2002]. We see the ISG, a, and SNF, b, triple points as well as
the critical point, c, (see inset). In all plates phase boundaries are drawn as a guide for the
eye, with coexistence regions shaded. (d) MD results for the order parameter 〈P2〉 for the
same GB system at ρ∗ = 0.27 (on cooling) [Chalam et al., 1991]. Reduced units: T ∗, P ∗,
ρ∗ used.

Fig. 11.9b. Fig. 11.9c shows the global phase diagram of the model that has been gathered
by de Miguel and Vega [2002] with careful free energy calculations and locating the vapour-
isotropic liquid-solid triple point (GIS), a, at a temperature T ∗GIS = 0.445 and the isotropic
fluid-nematic-solid (FNS) triple point, b, at T ∗FNS = 0.85. Thus, the liquid exists only
in a very narrow range between T ∗GIS = 0.445 and the critical temperature T ∗C = 0.473
(see the sketch in Fig. 2.5a). This indicates that most LC-isotropic transitions discussed
in the literature for the GB(3,5,2,1) model really refer to a high-density supercritical fluid
rather than a liquid, as it would be intuitive to assume without a knowledge of the phase
diagram. de Miguel and Vega [2002] also suggested that the high-density phase classified as
smectic B could actually be a molecular solid (S) and not a smectic liquid crystal. However,
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(a) (b)

Figure 11.10 MC (N,V,T ) results for (a) heat capacity C∗
V

and (b) second- and fourth-rank
order parameters for the GB(3,5,1,3) model as a function of temperature T ∗at ρ∗ = 0.30
(dimensionless units). C∗

V
is shown for N = 512 (•) and N = 1000 (���) systems. 〈P2〉, 〈P4〉

of the N = 1000 system are from both cooling ((, ���) and heating (�, ���) sequences as well
as results forN = 512 (•). The vertical dashed line in both plates indicates the NI transition
[Berardi et al., 1993].

we already saw in Section 1.7.4 that highly ordered SB are very similar to solids, so in the
plates of Fig. 11.9 we leave the original assignment of the respective authors. In Fig. 11.9d
we show the order parameter 〈P2〉 as a function of temperature exhibiting a clear jump
at the isotropic fluid to high order smectic (solid). The nematic range of the GB(3,5,2,1)
system is rather narrow, but keeping the same aspect ratio and potential well anisotropy,
while choosing energy parameters μ = 1,ν = 2, i.e. GB(3,5,1,2) [Luckhurst et al., 1990],
or μ = 1,ν = 3, i.e. GB(3,5,1,3) [Berardi et al., 1993], makes the side-side interaction
of two molecules stronger (see Fig. 5.15). This in turn generates nematics with a wider
temperature range. In Fig. 11.10 we show some results for (N,V,T ) MC simulations with
N = 512 and 1000 GB particles interacting with the GB(3,5,1,3) potential at a density
ρ∗ = 0.30 [Berardi et al., 1993]. Fig. 11.10a shows the heat capacity as a function of
temperature and Fig. 11.10b the order parameters 〈P2〉 and 〈P4〉, calculated from diago-
nalization of the ordering matrix and subsequent averaging of the largest eigenvalue over
configurations as described in Section 3.5. Two transitions are clearly visible at tempera-
tures T ∗ ≈ 3.50 and T ∗ ≈ 2.40. We note that proper equilibration is confirmed by the
superposition of the results for 〈P2〉, 〈P4〉 that were started from the isotropic phase and
cooling ((, ���) or, respectively, that were started from the solid phase and heating (�, ���).
Taking the high temperature transition to be the isotropic to nematic, T ∗NI ≈ 3.50 and
considering a typical room temperature low-molar-mass rod-like mesogen, similar to 8CB
say, we can estimate the GB units of length and mass for the GB(3,5,1,3) model as given in
Table 5.10. The temperature dependence of 〈P2〉 in Fig. 11.10b is well represented by the
Haller-type expression [Haller, 1975] often used to fit experimental data, as we have seen
for the diamagnetic susceptivity in Eq. 3.32:

〈P2〉 = (1− T/TNI )βH − 〈P2〉iso, (11.9)
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where 〈P2〉iso is a small residual order parameter ≈ 1/
√
N appearing in simulation results

due to the finite sample size. The Haller exponent turns out to be βH = 0.17, in good agree-
ment with the values found for Schiff bases [Leenhouts et al., 1979] (0.17 ≤ βH ≤ 0.22),
and for 5CB [Wu and Cox, 1988] (βH = 0.172), discussed in Section 3.4.1. Order parameter
data for the original GB(3,5,2,1) model can also be fitted by Eq. 11.9 but with a larger
exponent, e.g. at densities ρ∗ = 0.30, 0.32, 0.35, the exponents are βH = 0.37, 0.43, 0.45
[Emsley et al., 1992], corresponding to a much steeper variation of 〈P2〉 with temperature.

The nature of the molecular organization in the different phases is not apparent from
either of the plots in Fig. 11.10, even if formation of a nematic and a layered structure
can be glimpsed from the representative snapshots reported in Fig. 11.10b. Much more
informative is the radial-angular distribution g(r, cosβr ) ≡ g(r,r̂ · d) giving the density of
particles at a distance r from one taken as the centre when the intermolecular vector r

makes an angle βr with respect to the director, so that g(r,1) refers to the distribution
of particles along the director and g(r,0) that perpendicular to it. This distribution was
introduced in Section 4.9 and was already shown there (Fig. 4.10), at four temperatures,
as an example. From those pictures the formation of spatially homogeneous nematic and of
layered smectic structures is apparent. At the lowest temperature a well-ordered SB (or solid)
with local hexagonal order is apparent from the peaks showing spacial correlations in the
plane perpendicular to the director (βr = π/2). An MD study of a much larger sample of the
GB(3,5,1,3) model with N = 8000 particles [Allen and Warren, 1997], which investigated
the pretransitional behaviour, located the clearing transition at 3.45 < T ∗NI < 3.50. The
long-range decay of the orientational correlation in the isotropic phase was found to fit
an Ornstein–Zernike functional form, Eq. 10.7, giving a correlation length ξ2 which, at
the lowest isotropic temperature studied was ξ2 ≈ 16.1σs , comparable with half of the
simulation box length. Also, for the GB(3,5,1,3), as for the LL lattice model (Section 10.2)
the data fit ξ2 ∝ (T − T ∗)−1/2 quite well, as expected from Landau theory (Section 2.7),
with a divergence temperature T ∗NI��� = 3.47±0.02, thus very close to T ∗NI , even if a precise
location would require much larger samples.

The effect of changing the length to breadth ratio κ on the phase behaviour and on the
dynamics of the GB(κ ,5,2,1) model has been studied by Brown et al. [1998a], while the
effect of the potential well anisotropy κ ′ for fixed aspect ratio κ = 3 and μ = 2,ν = 1
has been investigated by de Miguel et al. [1996] (see Table 11.1). It was found that smectic
order is favoured at lower densities as κ ′ increases and that for κ ′ � 5 and at T ∗ = 0.70
the system goes directly from isotropic fluid to SB with the transition density shifting down
slightly as κ ′ increases. This is reasonable since increasing κ ′ enhances side-side aligned
pair interactions, which in turn favours layer formation. When κ ′ is instead lowered, the
nematic becomes more stable than the smectic phase, also at lower temperatures.

Nematic-vapour interface. A GB liquid-vapour coexistence has been found for different
values of κ ′ using MC simulations. de Miguel et al. [1990] and de Miguel et al. [1996]
have shown that the GB(3,κ ′,2,1) system with κ ′ = 1 and 1.25 exhibits a triple point,
where the G, I and N phases coexist, at T ∗GIN ≈ 0.63 for κ ′ = 1 and T ∗GIN ≈ 0.54 for
κ ′ = 1.25. From the theoretical point of view, the repulsive interactions should favour
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Table 11.1. A list of simulations performed for elongated uniaxial Gay–Berne models GB
(κ ,κ ′,μ,ν). Refs.: (a) [Adams et al., 1987], (b) [Luckhurst et al., 1990], (c) [Berardi et al.,
1993], (d) [Allen and Warren, 1997], (e) [Brown et al., 1998a], (f) [de Miguel et al., 1996],
(g) [Bates and Luckhurst, 1999a], (h) [Luckhurst and Satoh, 2003], (i) [Chalam et al., 1991],
(j) [de Miguel et al., 1991], (k) [de Miguel, 2002], (l) [Allen et al., 1996b], (m) [Joshi et al.,
2014], (n) [Caneda-Guzman et al., 2014], (o) [Emerson et al., 1997], (p) [Yildirim et al.,
2011] , (q) [Mills et al., 1998], (r) [Huang et al., 2014], (s) Huang et al. [2015], (t) [Martin
del Rio and de Miguel, 1997], (u) [Karjalainen et al., 2013]

GB parameters
(κ ,κ ′,μ,ν) Phases Method and comments Ref.

(2,5,1,2) I, N, SB MD, (N,P,T ) (n), (q)

(3,5,2,1) I, N, SB MD, MC (a), (i), (j), (k)
MD, N = 8000 (l), (m)

(3,5,1,2) I, N, Sm MC, N = 256 (b)
I, N, SA, SB MD, (N,P,T ) (n)

(3,5,1,3) I, N, SB MC, (N,V,T ), N = 1000 (c)
MD, N = 8000 (d), (l)
MD, (N,P,T ), N = 1024, (p)a

thermal conductivity

(3,1.25,2,1) I, N, G MC, (N,V,T ), N = 2000, N− V (f), (o), (t)

(κ,4,2,1) I, N, SA, SB Elongations: κ = 3.0,3.2,3.6,3.8 (e)

(3,κ ′,2,1) I, N, SA, SB κ ′ = 1,1.25,2.5,5,10,25, MD, (N,V,T ) (f)

(4.4,20.0,1,1) I, SA, SB P ∗ = 1,MC,(N,P,T ),N = 2000 (g)
I, N, SA, SB P ∗ = 2, MD, (N,P,T ),N = 16,000

MC, (N,P,T ), twist constant K2 (h)
MC, (N,P,T ), field induced SA

INSA triple point (r)
SA confined to nanoslits (s)
Confined to cylindrical nanopores (u)

a In the paper the GB parameters κ ,κ ′ are reported as χ , χ ′.

perpendicular orientation at a free nematic interface, while the attractive components
should enhance the tendency to be parallel to the free surface [Tjipto-Margo and Sullivan,
1988; de Miguel and Martin Del Rio, 1999]. For the GB(3,5,2,1) model, as we see from
the phase diagram in Fig. 11.9a, the lowest temperature at which the nematic phase occurs
is above the critical temperature, hence there is no nematic-vapour coexistence (unlike
most real liquid crystals). However, de Miguel et al. [1996] studied the effect of varying
the attraction anisotropy parameter κ ′ for the models GB(3,κ ′,2,1). For κ ′ = 1, 2.5, 5 they
found the critical temperatures to be T ∗c ≈ 0.84, 0.6, 0.47, respectively. Lowering κ ′ shifts
down the nematic and the GB(3,1.25,2,1) and GB(3,1,2,1) models have gaseous-isotropic,
liquid-nematic triple points at T ∗GIN ≈ 0.63 and 0.54 for κ ′ = 1 and 1.25, respectively.
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Gas-liquid

Gas-nematic

(a) (b)

Figure 11.11 (a) Liquid-vapour ρ∗ coexistence curves for the GB(3,1.25,2,1) fluid with
aspect ratio κ = 3 and attractive anisotropy κ ′ = 1.25. The vapour-liquid-nematic triple
point T ∗

GIN
≈ 0.54, corresponds to the horizontal dotted line. Open and filled symbols

correspond to the MC methodologies employed as detailed by the authors in [de Miguel
et al., 1996]. (b) Snapshot of the nematic-vapour interface for the GB(3,1.25,2,1) model
showing planar alignment of the mesogens [Emerson et al., 1997].

Thus, for temperatures below this triple point, the G phase coexists with the nematic, as
we see in Fig. 11.11a. The molecular organization at the nematic-vapour interface of the
GB(3,1.25,2,1) model has been investigated [Martin del Rio and de Miguel, 1997; Emerson
et al., 1997], finding the molecules to be preferentially aligned parallel to the free surface
(Fig. 11.11b). Experimentally various types of alignment are found at a free interface e.g.
planar for PAA and a few other LCs [Cognard, 1984] and tilted, with a dependence on
temperature, for MBBA and EBBA [Chiarelli et al., 1983]. Alignment perpendicular to
the free interface has been observed both in experiments and in atomistic simulations
[Tiberio et al., 2009; Palermo et al., 2015] for cyano-biphenyls (see Section 12.4).
A perpendicular alignment was also observed for a different GB system with shorter parti-
cles, the GB(2,5,1,2) [Mills et al., 1998]. Another extensive study for prolate and oblate GB
particles was performed by Rull and Romero-Enrique [2017]. For all the prolate GB studied,
i.e. GB(4,κ ′,2,1), κ ′ = 1,0.5.0.25,0.15 and GB(6,κ ′,2,1), κ ′ = 0.5,0.25, the alignment at
the N-G interface was always planar. For discotic particles they found instead both planar (P)
and homeotropic (H) alignment for the cases: GB(0.3,κ ′,2,1), κ ′ = 0.4(H), 0.3(H),0.2(P)
and GB(0.5,κ ′,2,1), with κ ′ = 1(H), 0.7(H),0.6(H), 0.5(H), 0.4(P), 0.3(P), 0.2(P). Freely
suspended nematic nanodroplets of GB(3,1.25,2,1) have been studied [Rull et al., 2012;
Vanzo et al., 2012]. In these systems with tangential alignment the shape of the droplet
can be of tactoid (spindle shape) depending on size. Moreover, a spontaneous chirality
(of random sense) emerges in a range of dimensions due to the interplay of tangential
anchoring and elastic energy [Vanzo et al., 2012].

Nematic-isotropic interface. Since the NI transition is of first order (Section 2.3), a coex-
istence of the two phases at TNI is expected. In a real nematic, suitably prepared, a flat
interface can exist between the two phases [Bechhoefer et al., 1989]. However, this is
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(a) (b) (c)

Figure 11.12 (a) Molecular organization at the NI interface for the GB(3,5,1,3) model.
(N,V,T ) MD results for N = 12,960 (periodic boundary conditions) with upper-half box
isotropic at T ∗ = 3.60 and lower-half box nematic at T ∗ = 3.45. (b) The second-rank order
parameters 〈P2(z∗)〉λ (���) and 〈Q∗zz(z∗)〉 (◦) across the sample (see text). (c) Density profile
ρ∗

(
z∗
)

and its hyperbolic tangent fit ( ), Eq. 11.10 [Bates and Zannoni, 1997].

hard to observe for simulated samples that typically fluctuate in time between ordered and
disordered, making it impossible to answer by standard simulations to simple questions like:
how do the molecules in the nematic align at the interface with the isotropic phase? The
molecular organization at the NI coexistence for a GB(3,5,1,3) model was studied [Bates
and Zannoni, 1997] with a slightly modified MD method, where the interface was prepared
and maintained by separately thermostating the two halves of the sample cell containing a
sufficiently large number of molecules (N = 12,960) at temperatures slightly above and
below the transition. The system is thus kept slightly off equilibrium, but the computational
device is similar to a simplified version of the temperature gradient hot stage, with the two
ends of a sample heated at two different temperatures used to characterize polymer materials
(see, e.g., [Kestenbach et al., 1999]). The molecules are free to cross the interface, but when
they do so their velocity is scaled to adjust the temperature (see Section 9.5). The two
thermostats ensure that the position of the interface does not move during the simulations.
Starting from an isotropic sample with PBC, a planar interface is created and molecules in
the nematic align parallel to the interface, as we can see not only glimpsing at the single
snapshot in Fig. 11.12a, but also from the negative value of 〈Qzz(z∗)〉 (see Eq. 3.48), the
order parameter calculated with respect to z, the normal to the interface. The density across
the sample is well fitted by a hyperbolic function

ρ∗
(
z∗
) = 1

2

(
ρ∗N + ρ∗I

)+ 1

2

(
ρ∗N − ρ∗I

)
tanh

(
z∗ − Z∗

2δ∗

)
, (11.10)

where ρ∗N and ρ∗I are the bulk densities of the coexisting nematic and isotropic phases, Z∗

is the position of the dividing surface and δ∗ is the interfacial thickness that a least squares
fit to the simulation data gives as δ∗ = 2.37. The same MD procedure also gave a planar
alignment for the GB(4.4,20.0,1,1) at the smectic-isotropic and smectic-nematic interfaces
[Bates, 1998].
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Experimentally a planar alignment has been reported for some liquid crystals like MBBA
[Langevin and Bouchiat, 1973], although different types of tilted alignment are found for
cyano-biphenyls and other nematics [Jérôme, 1991].

Elastic constants. Frank elastic constants are not easy to calculate, but various meth-
ods have been proposed. The most simple one to understand is probably that by Allen
et al. [1996b], based on the inverse proportionality between quadratic fluctuations of the
director and elastic constants [Group d’Etude des Cristaux Liquides, 1969; Forster, 1974].
Starting with a nematic aligned along the director d0, its ordering matrix (Section 3.5)
will be uniform through the sample, with 〈Qab(r)〉 = 〈Qab〉 = 〈P2〉

(
d0
ad

0
b − 1

3δa,b
)

and
a,b = x,y,z labelling the components in the lab coordinate frame. Upon application of
magnetic field H (r), the director will be distorted to d = d(r). In terms of continuum
theory, the total elastic free energy G totel is obtained integrating over the sample volume V
the local free energy density Gel (see Eq. 1.8) and the field coupling term

G totel =
1

2

∫
dr
[
K11 (∇ · d)2 +K22[d · (∇ × d)]2 +K33|d × (∇ × d)|2

]
− 1

2

∫
dr�χ (H · d)2, (11.11)

where �χ = χ‖ − χ⊥ is the diamagnetic susceptivity anisotropy (Section 3.4.1) and the
splay, twist, bend elastic constants: K11, K22, K33 [Frank, 1958] express the resistance
of the material to the three essential modes of deformation of the director: (∇ · d),
[d · (∇ × d)], |d × (∇ × d)|, as sketched in Fig. 1.9. If the field induces only a small
distortion of the director: d(r) = d0+ δd(r), then δd(r) has to be orthogonal to d0 in order
to preserve the norm: d · d = d0 · d0+ 2d0 · δd(r) = 1. Thus, δd has only two components
in a frame with z||d0: (δdx,δdy,0). The free energy of distortion is, to second order in δd(r),

δGel =
1

2

∑
a,b

∫
dr

∫
dr ′ δda(r)Kab

(
r − r ′

)
δdb

(
r ′
)
, a,b = x,y, (11.12)

where Kab
(
r − r ′

)
is the inverse of the susceptibility matrix χab

(
r − r ′

)
. In continuum

theory a local variableA(r) is considered to be a function of the positions r i and momenta pi
of only those particles in some small neighbourhood of the point r [Forster, 1974]. However,
in computer simulations this ‘neighbourhood’ has to be defined by some prescription and it
has to contain enough particles to ensure that a meaningful statistical error can be achieved.
Assuming a sufficiently large sample box, the ordering matrix (Eq. 3.47) at a point r can be
written as

QS(r) = 〈Q(r)〉S = 1

2N

N∑
j=1

[
3uj ⊗ uj − 1

]
δ(r − rj ), (11.13a)

= 1

2N

N∑
j=1

∫ ∞

−∞
dk
[
3uj ⊗ uj − 1

]
eik · (r−rj ) ≡ 1

V

∑
k

Q̃S(k) eik · r, (11.13b)

using the Fourier representation of the 3D delta function (Eq. D.23). We assume an orthog-
onal box of size Lx , Ly , Lz with volume V and use units scaled by these for the wave
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vector k with components in units of ka = 2πna/La . The sample ordering tensor in
reciprocal space is

Q̃S(k) = V

N

N∑
j=1

1

2

(
3uj ⊗ uj − 1

)
e−ik · rj . (11.14)

The order parameter 〈P2〉S is the highest eigenvalue of 〈Q〉S and the director d the corre-
sponding eigenvector (Section 3.5). In the director frame with d = (0,0,1), Q ≡ 〈Q〉S is
then diagonal and Qxx = Qyy = − 1

2 〈P2〉S , Qzz = 〈P2〉S provided the phase is genuinely
uniaxial (see Eq. 3.50). As ready mentioned, in this frame small fluctuations of the direc-
tor may be expressed as

(
δdx,δdy,0

)
and considering δ(d ⊗ d) = 2δd ⊗ d we see that

these are proportional to the elements Qxz and Qyz. Forster [1975] showed that the elastic
constants can be extrapolated from the Fourier-transformed order tensor fluctuations. Static
orientational fluctuations are described in terms of Q̃, expressed in the director coordinate
system. Taking the wave vectors to lie in the xz-plane, i.e. k = (kx,0,kz),〈

Q̃xz(k)Q̃xz(−k)
〉
≡
〈∣∣∣Q̃xz(k)

∣∣∣2〉 = 9〈P2〉2V kBT
4[K11k2

x +K33k2
z ]
, (11.15a)

〈
Q̃yz(k)Q̃yz(−k)

〉
≡
〈∣∣∣Q̃yz(k)

∣∣∣2〉 = 9〈P2〉2V kBT
4[K22k2

x +K33k2
z ]

. (11.15b)

The elastic constants are defined for long wavelength director fluctuations, and thus the
above equations are valid only in the limit of small k. To extract the elastic constants from
these expressions, one may employ the long-wavelength behaviour:

Wxz

(
k2
x,k

2
z

)
≡ 9〈P2〉2V kBT

4

〈∣∣∣Q̃xz(k)
∣∣∣2〉 → K11k

2
x +K33k

2
z as k→ 0, (11.16a)

Wyz

(
k2
y,k

2
3

)
≡ 9〈P2〉2V kBT

4

〈∣∣∣Q̃yz(k)
∣∣∣2〉 → K22k

2
x +K33k

2
z as k→ 0. (11.16b)

In practice, theKii are obtained by fitting Eqs. 11.16 for various k2
x and k2

z and extrapolating
to kx = kz = 0. The dimensionless Frank elastic constants for the GB(3,5,2,1) and
GB(3,5,1,3) models estimated in this way using MD by Allen et al. [1996b] are reported in
Table 11.2 together with other available results. In particular, Humpert and Allen [2015a,b]
have simulated very large systems with N = 512,000 particles, corresponding to sample
dimensions L > 100σ0, with results that we can probably consider as a reference. In this
spirit, we note that the results of Stelzer et al. [1995] obtained with a combination of approx-
imate statistical mechanics and simulations are at significant variance. Interestingly, Joshi
et al. [2014] performed calculations with a different, free energy perturbation method, using
MD with LAMMPS and the free energy plugin module PLUMED [Bonomi et al., 2009]
on very few (N = 338) particles and found the results in Table 11.2 in good agreement
with those of Humpert and Allen [2015a]. A similar calculation by Sidky et al. [2018]
has obtained elastic constants as a function of temperature for various GB models. It is
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Table 11.2. Elastic constants for GB(3,5,2,1) and GB(3,5,1,3) models at a certain state
point as obtained by various authors

GB(3,5,2,1), ρ∗ = 0.33, T ∗ = 1.0

〈P2〉 N K∗11 K∗22 K∗33 Reference

≈ 0.69 405 2.7 2.5 3.1 [Stelzer et al., 1995]
0.71 ≤8000 0.70 0.72 2.27−2.59 [Allen et al., 1996b]
0.66 512,000 0.91 1.01 2.62−2.74 [Humpert and Allen, 2015a]
0.67 8000 0.70 0.78 2.31−2.41 [Humpert and Allen, 2015a]
0.66 512,000 1.04 1.02 2.65 [Humpert and Allen, 2015b]

≈ 0.78 338 0.96 0.91 2.44 [Joshi et al., 2014]

GB(3,5,1,3), ρ∗ = 0.30, T ∗ = 3.4

0.55 8000 2.17 1.71 3.95−3.97 [Allen et al., 1996b]
0.63 8000 2.92 2.60 5.32−5.43 [Humpert and Allen, 2015a]
0.614 512,000 3.17 2.80 5.85−5.89 [Humpert and Allen, 2015a]
0.68 338 2.83 2.82 4.2 [Sidky and Whitmer, 2016]

a little puzzling that these methodologies dealing with only N = 338 mesogens appear to
be capable of obtaining very good elastic constants with apparently limited impact of finite
size scaling [Joshi et al., 2014; Sidky and Whitmer, 2016], even though the order parameters
and phase transition location are inevitably affected by the size.

11.5.2 Discotic Gay–Berne Systems

Discotic mesogens [Chandrasekhar, 1993; Kumar, 2004] can be modelled as squashed
GB ellipsoids with thickness (face-face c.o.m separation) σf and diameter (lateral c.o.m.
separation) σs (see Section 5.6.3). Emerson et al. [1994] first showed that a GB(0.345,
0.2,1,2) model based on the dimensions of a triphenylene core (cf. Table 1.6) gives an
isotropic, nematic and columnar phase with rectangular packing of the columns at a scaled
density ρ∗ = 3.0, while at lower density ρ∗ = 2.5, a hexagonal array is observed. The
difference in structure of the two columnar phases is shown to be due to the increased
interdigitation between the columns at the higher density by Emerson et al. [1994].
However, it is worth noting [Bates and Luckhurst, 1996] that for discotics the scaling
distance σ0 should be σf , instead of σs as used by Emerson et al. [1994] with large
attractive well widths leading to interdigitation [Bates and Luckhurst, 1996]. The formation
of very ordered columnar structures makes the constant volume simulations troublesome,
as indicated by the development of cavities inside the sample. It is convenient to use
constant pressure simulations (Section 8.3.1) where the sample volume and aspect ratio
can change so as to adjust the system to the equilibrium state achieving its natural density
avoiding the formation of spurious cavities in the sample [Bates and Luckhurst, 1996]. For
a triphenylene mesogen (C7OHBT with TNDI = 530K at 1atm) Bates and Luckhurst [1996]
took σ0 = σs ≈ 2.6 nm and, assuming their simulated value of T ∗NDI ≈ 2.7 at P ∗ = 25,
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Table 11.3. A summary of the phases observed for various discotic uniaxial Gay–Berne
models GB (κ ,κ ′,μ,ν) by: (a) [Emerson et al., 1994], (b) [Bacchiocchi and Zannoni, 1998],
(c) [Bates and Luckhurst, 1996],(d) [Stelzer et al., 1997] (e) [Sidky and Whitmer, 2016],
(f) [Caprion et al., 2003], (g) [Busselez et al., 2014], (h) [Orlandi et al., 2007], (i) [Lamarra
et al., 2012]

GB parameters
(κ ,κ ′,μ,ν) Phases Method and comments Ref.

GB(0.345,0.2,1,2) I, N, Dr MD, (N,V,E), ρ∗ = 3(Dr), ρ∗ = 2.5(Dh) (a)

I, N, Dr MD, Kii (d)

I, N, Dd
h DOS MC, (N,V,T ),N = 338, Kii (e)

I, N, Dh MC, (N,P,T ),N = 512, P ∗ = 25,50,75,100 (c)

N = 2000, P ∗ = 25, pair correlations

I, N, Dh,K MC, (N,P,T ), P ∗ = 50, crystal phase (f)

GB(0.2,κ ′,1,2) I, Dh,K MC, (N,P,T ), κ ′ = 0.1−0.8, crystal phase (f)

GB(0.2,0.1,1,2)a I, Dh,K MC, (N,P,T ), bulk and confined (g)

GB(0.345,0.2,1,3) I, Dh.K MC, (N,V,T ), energy transfer (b)

GB(0.195,0.15,1,0) I, N, Dh,K MC, (N,P,T ), charge transport (g), (h), (i)

a Due to a misprint the paper reports μ = 2, ν = 1.

estimated εo = kBTNDI /T ∗NDI ≈ 2.6 × 10−21 J. With these values P ∗ = 25, corresponds
to ≈ 55 atm. At the same time, they also found a hexagonal columnar to nematic transition
at T ∗DhND ≈ 2.5.

A list of some significant investigations of discotic GB systems is reported in Table 11.3.
In particular, Caprion et al. [2003] studied the GB(0.345,0.2,1,2) model at P ∗ = 50, finding
T ∗I−N = 3.30± 0.10 and T ∗N−Dh

= 2.90± 0.10 and, at low temperatures, an orthorhombic
crystalline phase. The slope of the transition line dP ∗/dT ∗ estimated according to Clapey-
ron’s law (see Eq. 2.11) dP ∗/dT ∗ = �H ∗/(T ∗�V ∗) is 35.0±4.5 and 60.5±7.6 for the IN
phase boundary and the nematic-columnar phase boundary, respectively, in good agreement
with Bates and Luckhurst’s [1996] values: 35.5± 2.0 and 52.2± 4.0, respectively.

The energy anisotropy κ ′ is important in determining the phases diagram for a given
shape anisotropy. In Fig. 11.13 we show the PT diagrams for discotics GB(0.2,κ ′,1,2) with
thickness to diameter κ = 0.2, We note that at high κ ′, low anisotropy, the GB system is
not able to build columns while at low κ ′, the system exhibits both orthorhombic crystal
as well as hexagonal columnar phase over a wide range of pressures and temperatures.
The domain of stability of the N phase is found to shift towards higher pressures as κ ′

decreases. The system GB(0.2,0.1,1,2) has also been studied in the bulk and confined to a
cylindrical nanopore by Busselez et al. [2014]. The hexatic order parameter ψ6 introduced
in Section 4.9.2 for smectics is used to characterize the arrangement of columnar phases
and calculated, with a small modification of Eq. 4.113 as
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Figure 11.13 Phase diagrams for the model discotics GB(0.2,κ ′,1,2) with κ ′ = 0.8,
κ ′ = 0.5, κ ′ = 0.2 κ ′ = 0.1 showing isotropic (I), discotic nematic (ND), hexagonal
columnar (Dh) and crystal (K) phases. The lines are guides for the eye [Caprion et al., 2003].

ψ6 =
∣∣∣∣∣∣ 1

N

∑
j

n
j
b

⎛⎝∑
〈kl〉
wkle

i6θkl

⎞⎠∣∣∣∣∣∣ , (11.17)

where njb is the number of pairs of nearest neighbours of the j th particle, the sum over kl
goes over all possible pairs of neighbours k and l and θkl is the angle between the unit vectors
along the projections of the intermolecular vectors between particles j and neighbours k
and l onto a plane perpendicular to the orientation vector of particle j . The pre-exponential
factor wkl is assumed to be unity if the separation vectors rjk and rj l lie within a cylinder
of radius 1.5σs and thickness 1.5σf centred on the j th particle and 0 otherwise. The usual
order parameter 〈P2〉 and the hexatic order parameter ψ6 for this discotic system are shown
in Fig. 11.14. While order parameters, radial distributions and thermodynamic quantities
have been calculated for GB discotics, very few other observables have been determined
up to now, although the elastic constants have first been obtained, combining simulations
and a statistical mechanics approach via a direct pair correlation functions route [Stelzer
et al., 1997]. An ordering K∗33 < K∗11 < K∗22, in agreement with experiment, has been
found. The statistical mechanical route is however rather complex and, as we have seen
in Table 11.2, at least for rod-like GB mesogens, it gives results at variance with other
more direct methods. A more recent calculation [Sidky and Whitmer, 2016] by a different
approach finds, at ρ∗ = 2.360, that K33 < K11 ≈ K22. The same parameterization, but
with a change to μ = 1, ν = 3 (Fig. 5.15b) has the effect of lowering the well depths of the
face-to-face and side-by-side configurations, gives a hexagonal columnar structure and has
been employed to estimate the anisotropy of energy transfer in the columnar phase with
respect to the isotropic [Bacchiocchi and Zannoni, 1998].

One of the most promising fields of application of columnar materials is in organic
electronics [Sergeyev et al., 2007] exploiting their strongly anisotropic, nearly 1D conduc-
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(a) (b)

Figure 11.14 (a) The orientational order parameter 〈P2〉 and (b) the hexatic columns order,
ψ6 as a function of dimensionless temperature T ∗ for the discotic Gay–Berne GB(0.2,2,1,2)
atP ∗ = 100. Bulk samples obtained heating from crystal (•) or cooling from isotropic phase
(◦◦◦). (N,P,T ) MD (N = 4096) used. Also shown are results for the same system confined
to a nanopore (���������), with N = 2529 [Busselez et al., 2014].

Figure 11.15 (a) Comparison of the centre of mass radial distribution g(r) vs r(Å) of
hexa-octyl-thio-triphenylene (8HTT) from atomistic MD at T = 400 K (isotropic, I) and
T = 300 K (columnar, Dh), at P = 3 atm ( ) and of Gay–Berne GB(0.1948,0.15,1,0)
from MC simulations ( ) at T ∗ = 0.4 (I) and T ∗ = 0.33 (Dh) at P ∗ = 1.0. (b)
Pressure-temperature phase diagram of the same GB model for heating ( ) and cooling
( ) sequences of MC simulations showing pressure and temperature both in reduced: P ∗,
T ∗ and absolute: P (MPa), T (K) units. The phases observed are: crystal, K; columnar, Dh;
nematic, N; isotropic, I; and gas, G. The lines are guides for the eye suggesting the phase
boundaries [Orlandi et al., 2007].

tivity along the columns. Determining at least approximately the phase diagram of relevant
discotic mesogens is thus important and can be the basis for charge transport calculations
[Lamarra et al., 2012; Thompson et al., 2018]. Building such a phase diagram requires
simulating a large number of state points, a nearly hopeless task at the atomistic resolutions
level that we shall examine in Chapter 12. However, a small number of such simulations
can be performed in order to parameterize a GB model tailored around a molecule or
class of molecules of interest. In Fig. 11.15 we see, as an example, the modelling of alky-
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thio-triphenylenes: a family of discotic mesogens with significant conductivity (see Fig.
1.44). In these aromatic systems the typical thickness is essentially that of the π electron
cloud (≈ 3.5 Å) while the effective diameter can be estimated from the radial distribution
obtained from the atomistic simulations (Fig. 11.15a). The sequence of cooling runs ( ) in
Fig. 11.15b shows a phase diagram similar to that obtained from the heating runs ( ) but
with the K-I and K-Dh curves shifted to higher T ∗ values in theP ∗ < 2.5 region and to lower
ones for P ∗ > 2.5. Moreover, the pressure stability range of the I-Dh coexistence region
in the cooling scan appears to be strongly reduced with respect to the heating sequence
and at low pressures the N → Dh transformation shows significant hysteresis. Relevant
hysteresis effects and even monotropic behavior have also been observed experimentally
(see Fig. 2.24) in this type of system [Maeda et al., 2001].

11.5.3 Modelling Devices

The most important application of LC materials is still certainly in LCDs [Semenza, 2007]
and a reasonable question is if we can use simulations to model a simple LCD starting at
molecular level. One possibility would be to use molecular computer simulations to obtain
the parameters, e.g. elastic constants, needed as input in continuum theory equations. As
we have seen, this is far from easy. The other possibility is to try to model directly the
display and its working, without making use of continuum theory. This possibility has been
explored [Ricci et al., 2010] to the most popular twisted nematic (TN) display (see Fig.
1.7) and here we briefly summarize methodology and results. The essential model is based
on the description, already seen in Section 1.2.1, of a thin nematic film confined between
two rigid parallel slabs whose surface is inducing homogeneous alignment of the LC along
a certain in-plane direction, but twisted 90◦ from one another. The conventional wisdom
is that the combined effect of the two surfaces induces a helical alignment which allows
light transmission through input and output polarizers parallel to the alignment directions,
and thus crossed. Correspondingly, the pixel has maximum transmittance in this OFF state.
A suitable field applied between the two surfaces aligns the nematic and should destroy the
helix, switching off transmission in the ON state. The process is in principle reversible and
upon switching off the field, the nematic should spontaneously recover the helical state.
A molecular simulation allows us to test if this is true or only compatible with experiment
and to clarify the functioning mechanism at microscopic level. To model the display, a
GB model is assumed for the nematic and also for the solid surfaces with the provision
that the molecules forming the slabs are frozen in and do not move during the simulation,
obviously differently from the fully mobile nematogens filling the cell. In Fig. 11.16 we
see a sketch of the display (in section) and a plot of the transmittance upon switching
off and on the field. In more detail, a geometrical scheme of the sample setup for the
TN cell simulation is given in Fig. 11.16a. The internal dimensions of the TN cell were
set to Lx = Ly = 167.7906σ0 and Lz = 93.8604σ0, which roughly correspond to a
0.100×0.100×0.067 (μm)3 volume, available to theNLC = 787320 GB(3,5,1,3) particles
modelling the nematic fluid. The π/2 TN cell has planar aligning surfaces with periodic
boundary conditions in the X and Y directions and confining surfaces along Z consisting
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(a)

(b)

(A) (B) (C) (D)

(D')

(E)

Figure 11.16 (a)Vertical (XY ) section of the simulated TN cell of dimensions LX , LY and
thickness LZ with a pre-tilt angle θ = 5◦. The entire cell (LC fluid + surfaces) is divided
in 4 × 4 × 8 voxels with sides dx = dy = 41.948σ0 and dz = 13.983σ0. The GB
potential cut-off radius rc = 4σ0 is also shown. (b) Evolution of the integrated transmittance
of linearly polarized light across the simulated TN cell (including crossed polarizers) for
the relaxation from uniformly aligned (•), and for the central pixel switching (�) (see
snapshot (D) and view from above (D′)). The transmittance of the external pixels during
the field-on experiment is also given (�). The vertical short-dashed line corresponds to a 5%
transmittance, while the long-dashed one at 1.76 × 106 MC sweeps marks the end of the
relaxation and the beginning of the switching experiment [Ricci et al., 2010].

of two slabs of thickness wz = 9σ0 cut from a lattice of parallel GB particles with a small
pre-tilt angle of θ = 5◦ to remove energetical degeneracy. The frozen surface particles
are also GB(3,5,1,3), implying the surface-fluid interactions to be of the same entity of
the fluid-fluid ones, but this could of course be changed at will. The optics of the display
(including crossed polarizers), is modelled using 4 × 4 Stokes matrices as described in
Appendix L and the transmittance is plotted as a function of MC evolution cycles (sweeps) in
Fig. 11.16b. On top of the transmittance plot, we also show small snapshots of the molecular
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organization, at various stages of the evolution from when the field is switched off and
the transmittance from essentially 0 starts to increase as the helix starts to develop. We
see, however, that the formation of the twisted structure is not immediate. The first stage,
corresponding to negligible transmission, is a progressive alignment propagating from the
two surfaces in perpendicular directions. Only when the two expanding domains come in
contact, or at close enough distance, a twisting occurs to simultaneously accommodate the
requirements of the two boundaries and transmittance increases up to its maximum with a
certain ‘MC time’ τOFF. The helix formation can be followed quantitatively by computing
order parameters giving the orientation of the local directors with respect to that of a per-
fectly helical organization (with a pitch equal to four times the π/2 cell thickness Lz). We
consider Ns virtual layers across the cell, with a reference orientation t̂ i corresponding to
the ideal helix, and a local director d i obtained from the diagonalization of the ith layer
ordering matrix (Section 3.5). The local helical order parameters 〈P2〉h can be defined as
〈P2〉h = 1

Ns

∑Ns
i=1 P2(d i · t̂ i) so that for a fully formed helix 〈P2〉h ≈ 1. The evolution

of 〈P2〉h from the starting uniform director distribution to twisted nematic starts with the
alignment of the LC closest to the surfaces, leaving the central portion of the 〈P2〉h profiles
essentially unaffected. The alignment along the two perpendicular surfaces then propagates
towards the centre of the cell and 〈P2〉h increases, as well as the transmittance, as seen in
Fig. 11.16b, even if the helix is never perfect. Application of the field to a central region
decreases the transmittance again in the region where the field is on, while the other remains
transparent. It is apparent from Fig. 11.16b that the time to recover the dark state, τON, is
shorter. It should be said that this is more a proof of concept than a routine application
because of high demand of computational time to perform the simulation, but this could
soon be mended by the continuous development of high performance computers, giving
full control of, e.g. surface details of the surfaces, which in this example we assumed to be
perfectly flat, but could easily include roughness or other imperfections.

11.5.4 Tapered Gay–Berne Models

The development of ferroelectric nematic phases, i.e. of fluid phases with an overall polar
order, is a goal of great fundamental and practical importance [Blinov, 1998; Guillon, 2000].
Currently known low-molar-mass ferroelectric LC phases, with possibly some recent excep-
tions [Chen et al., 2020], are in fact relatively complex tilted smectic phases from chiral or
from bow-shaped molecules [Vita et al., 2018], and these layered phases clearly lack the
high fluidity and self-healing characteristics that render nematics so useful in electro-optical
devices. From a theoretical point of view, the existence of simple uniaxial polar nematics
is not forbidden [Camacho-Lopez et al., 2004] but still very little is known on the shape
and the features that a molecule should be endowed with in order to be a good candidate
for exhibiting such a phase [Berardi et al., 2001]. A promising possibility is that of having
polyphilic molecules that, thanks to the presence of suitable functional groups, favour side-
side parallel rather than antiparallel ordering [Tournilhac et al., 1992; Guillon, 2000]. To
investigate molecular models that can yield a polar nematic, Np, phase we clearly have to
resort to non-centrosymmetric objects, and this goes once more beyond simple GB systems.
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Complex molecular structures could be simulated by a suitable combination of various
ellipsoidal and spherical particles, e.g. a simple combination of an LJ sphere and a GB ellip-
soid has been used to model pear-shaped molecules and to study the electrical polarization
induced by a strain gradient (flexoelectric effect) [Stelzer et al., 1999]. However, in order
to examine the role of molecular shape and of attractive forces in favouring or disfavouring
the formation of polar nematics it is interesting to develop a simple candidate structure
that is non-centrosymmetric both in its shape and attractive interactions using a one-site
model. Berardi et al. [2001] have demonstrated the possibility of forming a polar phase
with such a model developing an attractive-repulsive pair potential for tapered molecules
(Fig. 11.17). In practice, the uniaxial GB type potential, Eq. 5.57 is generalized by writing
σ (ui,uj,r̂ ij ), and ε(ui,uj,r̂ ij ) in terms of rotational invariants, S∗Li,Lj,L(ui,uj,r̂ ij ) ≡
S∗Li,Lj,L(�i,�j,�r ), [Stone, 1978; Zewdie, 1998], defined in Eq. 4.70 and tabulated in
Appendix G, to obtain GB-like one-site interactions for different shapes. To start, the soft-
contact distance, σ (ui,uj,r̂ ij ), where U = 0 and the potential changes from attractive to
repulsive, is instead taken to be the hard contact distance �(ui,uj,r̂ ij ) between the two
particles considered as rigid uniaxial objects. Thus, we use a slightly generalized GB (GGB)
pair potential, i.e.

UGGB(r ij,ui,uj )= 4ε0 ε
(μ,ν)(ui,uj,r̂ ij )

×
[( σc

rij − �(ui,uj,r̂ ij )+ σc

)12

−
(

σc

rij − �(ui,uj,r̂ ij )+ σc

)6]
,

(11.18)

where the symbols are the same as in Eq. 5.57, except for the replacement of σ (ui,uj,r̂ ij )
with �(ui,uj,r̂ ij ). For particles of arbitrary shape, an analytical expression for �(ui,uj,r̂ ij )
is not available, but � can be expanded, similarly to what was suggested by Zewdie [1998]
for cylindrical particles, as

�(ui,uj,r̂ ij ) ≈ σ (ui,uj,r̂ ij ) =
∑
LiLjL

σLiLjLS
∗
LiLjL

(ui,uj,r̂ ij ). (11.19)

The Stone invariants S∗LiLjL(ui,uj,r̂ ij ) form an orthogonal basis set in the space of the

orientations of the three unit vectors (ui,uj,r̂ ij ) (Eq. G.23), thus the expansion coeffi-
cients σLiLjL are just the normalized scalar products (Eq. A.35) between �(ui,uj,r̂ ij ) and
SLiLjL(ui,uj,r̂ ij ). This approach is fairly general and can be used for particles of various
shapes, when the hard contact distance �(ui,uj,r̂ ij ) can be determined numerically. Here
we describe in some detail the procedure for tapered particles (see Fig. 11.17 [Berardi
et al., 2001]) that can be easily adapted to other solids of rotation. The first step is to
define geometrically the particle, and this is done by modelling a tapered 2D profile by
joining Bézier curves, commonly used in computer graphics [Foley and Van Dam, 1982]
(see Fig. 11.17a). This 2D contour is then rotated around its axis to obtain the 3D solid
particle shape. The contact distance �(ui,uj,r̂ ij ) for a pair of these particles Mi,Mj is
obtained with the following algorithm (Fig. 11.17b): (i) Choose the centre of Mi as the
origin and place Mj at r ij , with rij = 2R, and R the radius of a sphere externally tangent
to Mi (here 2R = 3σ0). (ii) Define the surfaces of Mi and Mj at ui and uj using a set of
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(a) (b)

Figure 11.17 (a) Schematic section of a tapered particle with length to width ratio l/w = 3
and tip conic angle θ = 26◦. The tapered shape is drawn in 2D with Bézier curve [Foley and
Van Dam, 1982] with control points (+++). (b) Sketch of the contact distance � (shown here
as the darker bar) determination described in the text. The molecular (xyz) and laboratory
(XYZ) frames are also shown [Berardi et al., 2001].

NS evenly distributed sampling points. (iii) Rotate the two sets of points so that r ij ‖ Ẑ.
(iv) Divide the relevant area of the XY -plane in NB square bins (XY ) and assign the Z-

component of each surface point P (P)
b = (

X
(P)
b ,Y

(P)
b ,Z

(P)
b

)
to a bin: Z(P)

b → Z
(P)
XY, where

P = Mi , Mj and b = 1,2, . . . ,NS (for this example NS = 1452 and NB = 1296) . (v)

For all XY bins, subtract the distances Z(j )
XY − Z(i)

XY between the two surfaces from 2R.
The contact distance �(ui,uj,r̂ ij ) is the smallest of such differences � = minXY

[
2R −(

Z
(j )
XY − Z(i)

XY

)]
. (vi) Repeat steps (i)–(v) for all orientations of ui , uj and r̂ ij required to

compute the expansion coefficients of the contact distance with the required accuracy. The
attractive part of the potential can also be adapted to model the gradient of attraction that
we expect from a polyphilic molecule. This is useful to compensate the antiparallel packing
tendency stemming from the tapered shape and can be achieved replacing the standard
ε(ui,uj,r̂ ij ) of a Gay–Berne model with a suitable combination of Stone invariants so as
to favour: (i) parallel rather than antiparallel side-by-side molecular orientations and (ii) the
interaction of particles approaching bottom-on rather than tip-on, i.e. with the bottom part
closest to the centre of the other particle. In practice, this can be achieved using an ad hoc
combination of Stone invariants (see [Berardi et al., 2001]) giving a difference in the parallel
and antiparallel well depths. As an example, we can see the effect of combining shape and
interaction polarity by simulating two model systems with the same tapered particles and
with centrosymmetric (A) or non-centrosymmetric (B) models for the attractive terms. The
pair potential for these two models is shown in Fig. 11.18 for some relevant configurations.
(N,P,T ) MC simulations of N = 1024 of these tapered particles [Berardi et al., 2001]
show that nematic, polar nematic and smectic phases can be obtained for model (B), where
attractive forces, in addition to shape are head-tail discriminating but not for model (A)
with centrosymmetric attractions. In Fig. 11.18b we show a plot of the second-rank order
parameter 〈P2〉 and of the polar one 〈P1〉 = 〈u · d〉. We see that cooling from the isotropic
phase, the system presents a normal, apolar nematic phase N followed by a polar nematic NP

and a polar smectic SP. The polar nematic has proved stable even after the introduction of a
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(a)

model (A) model (A)

model (B) model (B)

(b)

–

–

–

–

–

–

Figure 11.18 (a) The pair potential for the tapered shape model (A) with centrosymmetric
(UTS
ij

) and (B) for non-centrosymmetric (UTA
ij

) attractions (in ε0 units) vs scaled separation

r∗ = rij /σ0. (b) The polar, 〈P1〉, and non-polar, 〈P2〉 , order parameters 〈PL〉 for models
(A) and (B) obtained from tapered molecules vs scaled temperature T ∗. Here I, N, Np, S,
Sp indicate isotropic, apolar nematic, polar nematic and polar smectic phases [Berardi et al.,
2001].

small axial dipole, thus yielding a ferroelectric nematic [Berardi et al., 2001]. This indicates
a mechanism where a non-centrosymmetric shape (a steric dipole) is not sufficient to create
a ferroelectric fluid and a weak dipole is not sufficient to destroy it, but rather has the
important consequence of causing the polar phase to become ferroelectric. A combination
of non-centrosymmetric shape and attractive forces could point the way to a successful
candidate for a ferroelectric nematic phase. This means that, at least in this model, the
objective of obtaining a ferroelectric phase is not achieved by increasing the molecular
dipole, but rather by suitably combining a steric dipole (tapered shape) and distributing
different attractive chemical moieties from the head to the tail of the molecular backbone.

11.5.5 Bowlic Gay–Berne Models

As already mentioned in Sections 1.10 and 11.5.2 flat shape (discotic) mesogens have
been employed to build columnar stacks for applications in organic electronics, exploiting
their strongly anisotropic transport properties [O’Neill and Kelly, 2003; Sergeyev et al.,
2007]. A very interesting feature of these systems is that the molecular columns are formed
spontaneously, just by changing temperature or by solvent evaporation, like in spin-coating
procedures. Unfortunately, columnar systems also present irregularities, in particular their
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Figure 11.19 (a) Modelling of two bowl-shaped particles with diameter 0.375 σ0, and height
0.3375 σ0 at orientation vectors ui , uj . (b) The dimensionless pair potential UBowls

ij
/ε0 vs

separation rij /σ0 for two bowl-shaped molecules with various parallel ( ) and antiparallel
( ) configurations. The well depths for parallel or antiparallel configurations are the same,
and the polarity in the potential stems only from the geometrical shape [Ricci et al., 2008].

stacking columns can be interrupted by defects, e.g. disc slipping from the columns or swal-
low tail doubling of the columns. When designing mesogens that can pile up, an important
problem is thus to control the size of the regular columnar domain. Using concave, bowlic
rather than flat-shaped mesogens is intuitively expected to improve stacking and this in
turn can be useful when trying to build achiral ferroelectric liquid crystal materials [Levelut
et al., 1986; Xu and Swager, 1993; Blinov, 1998; Atwood et al., 2001]. The expectation is
that if each bowlic molecule has an axial dipole, they should pile up head-to-tail yielding
a macroscopic column dipole. The formation of a hexagonal columnar phase, as often
found in columnar discotics, would ensure an overall ferroelectric order [Guillon, 2000;
Tschierske, 2002] since up and down oriented columns cannot pair in equal number in such
a structure. It is interesting to see if this qualitative argument is borne out by computer
simulations and a simple molecular model has been developed for bowl-shaped molecules
and their phase behaviour simulated with MC [Berardi et al., 2001]. To this effect, a hollow
conical particle (see Fig. 11.19) is represented as the solid obtained by axial rotation of
a 2D cross-section profile realized by joining four parametric Bézier curves [Foley and
Van Dam, 1982]. As before, we replace the GB soft contact distance with the corresponding
hard one (Eq. 11.18) and we now take σc = 0.158σ0, with σ0 the unit of distance. Since
we only focus on the effects of concave shape, we retain a centrosymmetric attraction
term ε(ui,uj,r̂ ij ) that does not add any energetic preference for tip-to-tip, tip-to-bottom
or bottom-to-bottom interactions. In practice, ε(ui,uj,r̂ ij ) in Eq. 11.18, is modelled by
using the centrosymmetric expression reported in Berardi et al. [2001], with coefficients
ε000 = 81.25, ε220 = −1.25, ε202 = 3.75, ε022 = 3.75, λ′220 = 0, λ220 = 1.5 and λ110 = 0,
ε101 = ε011 = 0, all given in units of energy ε0. (N,P,T ) MC PBC simulations of systems
of N = 1024,8192,32000 bowl-shaped mesogens at scaled pressure P ∗ = σ 3

0P/ε0 = 8,
have been performed in both cooling-down and heating-up sequences showing isotropic (I),
nematic (N) and columnar (D) phases. A triclinic sample box [Yashonath and Rao, 1985] has
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(a)

(c)

(b)

Figure 11.20 (a) Snapshot of a portion of anN = 8192 bowlic sample at T ∗ = 1.37 showing
two polar domains formed by columns pointing upwards (grey), and downwards (black).
Sketches of (b) lateral and (c) top views of the typical boundary region separating polar
columnar domains with a particle of orientation antiparallel to that of three neighbouring
columns [Ricci et al., 2008].

been used, allowing both sides and shape to evolve independently to avoid the formation of
artifacts (e.g. cavities) in the low temperature samples. It is worth remarking that systems
formed by bowlic molecules are experimentally known to give rise to glassy-like mate-
rials [Xu and Swager, 1993], and this behaviour considerably slows down equilibration.
Fortunately ‘large jump’ moves can be used, as long they do not introduce spurious bias
[Frenkel and Smit, 2002], in addition to the usual random translational and orientational
MC updates, to enhance MC sampling efficiency and reduce the chance of being trapped in
metastable states. Two types of extended moves are then introduced. The first move attempts
to exchange particle tip with bottom by performing a 180◦ rotation around the molecular
y-axis. Such flip moves are randomly attempted with ≈ 20% frequency with respect to the
standard rotation-translation MC ones. The second consists of attempts of collective roto-
translations and tip-bottom flip of particle clusters [Frenkel and Smit, 2002; Berardi et al.,
1999] (i.e. entire columns or stacks), tuned to attain an average acceptance ratio of ≈ 10%.
The simulations show formation of polar columnar stacks that however do not extend across
the whole sample (Fig. 11.20) and a net overall polarization is not observed. The interruption
of the coherent stacks is surprising, but can be explained by the convenient hosting effect of a
bowl of opposite polarity by a set of column ends, providing an effective way of terminating
columns. This defect stabilization in turn indicates that changing from discotic to bowlic
shapes may be insufficient to ensure the very long, coherent molecular stacks needed to
optimize charge transport in organic electronic devices.

11.6 Adding Electrostatic Contributions to Gay–Berne Models

Specific electrostatic interactions are obviously present and important in many real systems
and so a combination of empirical and dipole or higher electrostatic multipoles is certainly
relevant. Indeed, we have already briefly examined the effect of adding dipoles to hard
(Section 11.2.2) and soft (Section 11.2.3) spheres and hard spherocylinders (Section 11.4.3).
However, these models, although interesting on their own, miss the attractive interactions
needed to model real thermotropic mesogenic molecules, while GB models have at least
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the basic attractive as well as repulsive backbone of real molecules. If this is the case, one
of the simplest possibilities for trying to add some relevant molecular details to a generic
GB model is to include some electrostatic multipoles, corresponding to what a synthetic
chemist could do introducing chemical groups that endow the molecules with a charge or
one or more dipole moments. In principle, this is an ideal element of molecular design,
since position, strength and orientation of one or more dipoles can be ‘easily’ inserted in a
mesogen to change an LC phase to another or tune its properties. An understanding of their
effects on phase organization, while essential, is however definitely not obvious, given the
complex interplay between the different intermolecular contributions. Molecular models
and simulations are particularly apt to study these effects, compared to atomistic ones that
would require to input a specific chemical structure, while here the type of question could
be like: where should a charge or dipole be placed to get certain LC phases or properties?
The difficulty can be made clear by the examples that follow.

11.6.1 Ionic Liquid Crystals

One of simplest ways of modelling thermotropic ionic LCs (Section 1.13) is probably real-
ized by adding a charge to a GB mesogen, obviously in a mixture with opposite charge
particles, to ensure electroneutrality [Saielli et al., 2017; Margola et al., 2018]. Common
examples of counterions are halides, tetrafluoroborate and hexafluorophosphate that can be
reasonably represented with spherical LJs endowed with a charge opposite to the mesogen.
The chains typically found in real ionic LCs (cf. Fig. 1.55) lead to micro-segregation from
the ionic parts normally leading to the formation of layered smectic phases, while the
nematics that would be desirable for application, are remarkably rare. Simulations could
help in deciding how to choose systems more likely to produce the nematic. In the models of
Saielli and Satoh [2019], GB(3,5,1,3) particles [Berardi et al., 1993] with a central positive
charge were mixed with anionic LJ, in a certain stoichiometric ratio: [GB]n[ LJ]m and
MD simulations were run using LAMMPS [Plimpton, 1995]. The ionic nematic phase was
observed and found to have a range of stability depending on the stoichiometric compo-
sition and favoured by increasing the ratio of anisotropic GB particles. Highly anisotropic
GB(4.4,20.0,1,1) systems were also studied [Margola et al., 2018] and found to produce
ionic nematic and smectic phases in addition to the isotropic mixed phase and crystalline
phases with honeycomb structures.

11.6.2 Dipolar Gay–Berne Systems

We consider uniaxial GB particles of length σe and breadth σs with an embedded electric
dipole. The pair potential for these dipolar Gay–Berne molecules is thus UDGB

ij = UGBij +
UDD
ij , with the dipole-dipole interaction UDD

ij as in Eq. 5.86. Our intention here is not to
provide a review of the abundant literature [Berardi et al., 1996a; Satoh et al., 1996b,a;
Houssa et al., 1998b,a, 1999; Berardi et al., 2002; Varga et al., 2002; Satoh, 2008; Jozefowicz
and Longa, 2007; Bose and Saha, 2012], that has recently been surveyed [Allen, 2019]. We
want to give instead an idea of the difficulty of using common sense in predicting the phase
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(a) (b)

Figure 11.21 The molecular organization in the smectic phase of a system of dipolar GB
(3,5,1,3) particles endowed with an axial point dipole μ||u of strength μ∗ = 2 at (a) the
centre or (b) shifted of d = σ0 towards the tip. Dark and light grey molecules represent
dipoles pointing up and down, respectively. The shifted dipoles system forms a striped SÃ
phase. Results from (N,V,T )MC, PBC simulations of N = 1000 (a) or N = 8000 (b)
particles at T ∗ = 2.0, ρ∗ = 0.3 [Berardi et al., 1996a].

structure choosing a GB with an axial dipole either at the centre or shifted towards the end
of the molecule [Berardi et al., 1996a]. We recall that various types of structures have been
experimentally found in smectics formed by elongated polar molecules (see Section 1.7.2
and Fig. 1.28). The dipoles can be randomly distributed up and down inside each layer giving
a monolayer structure

(
SA1

)
or paired antiferroelectrically forming a uniform bilayer

(
SA2

)
or a local bilayer with modulation of domains having up and down dipoles in the antiphase
(SÃ) structures [Levelut et al., 1981]. The position of the dipole has a profound influence
on the structure of the smectic phases obtained. In particular, according to MC simulations,
a central axial dipole gives a smectic phase with dipoles randomly distributed up or down
inside each layer (Fig. 11.21a) which is quite reasonable, thinking of the favourable attrac-
tive energy of two antiparallel side-side dipoles (Section 5.7.1). However, just shifting the
dipole towards the end of the molecule, can yield, as we see in Fig. 11.21b, modulated
antiferroelectric bilayer stripe domains [Berardi et al., 1996a] similar to the experimentally
observed (SÃ) structures [Levelut et al., 1981]. This major metamorphoses in the molecular
organization following an apparently innocuous change in a molecular feature shows the
essential role of computer simulations in providing, if not detailed predictions, at least
non-trivial indications to the synthetic chemists making the model molecules real. It is
worth noting that not only the position but also the strength of the dipole [Berardi et al.,
2002; Houssa et al., 2009] and its orientations are important in determining the molecular
organization, particularly of smectics, as discussed in Section 1.7.2. Estimates of molecular
dipole can be obtained from quantum chemical calculations as seen in Section 5.7 and a few
examples were tabulated in Table 5.12.
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11.6.3 Quadrupolar Particles and Tilted Smectics

The next simple addition to a GB particle, particularly worth considering when modelling
apolar molecules, is that of a quadrupole leading to a pair potential

U
QGB
ij = UGBij + UQQ

ij , (11.20)

whereUQQ
ij has been given in Eq. 5.90 for the case of point quadrupoles, discussed in Section

5.7. The electric field generated by a quadrupole is rather different from a dipole and has
been invoked both as a source of tilted smectic organizations and, together with molecular
shape, of solute alignment in LC solvents [Burnell and de Lange, 1998].

Tilted smectics. The introduction of a quadrupole has been studied as a possible origin of tilt
in smectic C or other canted phases, and is interesting also because it gives an opportunity to
introduce the procedure for locating layers and their tilt from simulated configurations. The
possibility of inducing tilt is suggested by the form of the UQQ

ij pair potential. For instance,
for an axial quadrupole the side-side aligned configuration of two particles, occurring in an
orthogonal (SA, SB) smectic, is clearly unfavourable because of the repulsion between close
partial charges of the same sign of neighbouring molecules (see Fig. 5.21a). This suggests
that two neighbouring molecules should find it convenient to shift one with respect to the
other, giving in the case of smectics a tilted layered structure. Neal and Parker [1998] studied
systems of GB(4,5,2,1) particles with axial quadrupoles via (N,P,T ) MD, finding that
the quadrupole destabilizes the formation of the smectic phase, until it actually disappears
altogether with high-magnitude quadrupoles. However, for weak quadrupoles, SA, SB and
SC with a tilt up to 17.28◦ are observed. It was also found [Neal and Parker, 1999] that, for
the same GB model, a transverse quadrupole raises the smectic transition temperature, and
that a large quadrupole stabilizes the SA phase with respect to the GB reference fluid.

A quadrupolar term can also be modelled with two antiparallel dipoles (recall CO2 in
Section 5.7). In particular, a model based on a pair of dipoles pointing in opposite directions,
inclined with respect to the long axis of a mesogenic molecule, was suggested in a pioneer-
ing work by McMillan [1973] as the origin of tilt in SC and studied with MFT (Chapter 7).
It is instructive to investigate a model of this type by simulations and Berardi et al.
[2003b] have studied a GB(3,5,1,3) model with two embedded antiparallel point dipoles
μ1 = μ2 located at position (0,0,d∗) and (0,0,−d∗) , with d∗ = d/σs = 1.0 and oriented at
φ = 0,60,75 and 90o from the long molecular axis (Fig. 11.22a). A dimensionless moment

μ∗ ≡ (
μ2/εsσ

3
s

)1/2 = 1, corresponding to ≈ 1.3D if we take σs = 5 Å and an energy
scale εs/kB = 100 K, was used. A contour map of the pair potential energy obtained
with a molecule placed at the origin oriented along z and a second one parallel to the
first exploring the xz-plane, is shown in Fig. 11.22b for the case φ = 60◦ These systems
and an additional case, also with φ = 60◦ but at position d∗ = 1.2, were simulated
with (N,P,T )MC. In Fig. 11.22c,d we report the uniaxial, 〈P2〉, and biaxial,

〈
R2

22

〉
, order

parameters showing the transitions occurring and the emerging biaxiality caused only by
the introduction of the two dipoles (since the shape is uniaxial). The small insets also
indicate layered tilted phases. However, to study the formation of tilted smectic phases,
and the average tilt angle 〈θ〉, that is the angle between the phase director d and the
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Figure 11.22 (a) A sketch of the molecular model showing position and orientation of the
two dipoles within a GB(3,5,1,3) ellipsoidal particle. (b) Contour map of UQGB∗

ij
for two

molecules with d∗ = 1, φ = 60◦ and long axes u1||u2||z one at the origin and the other
exploring the xz plane with molecular dipoles lying in the xz-plane. (c) Uniaxial 〈P2〉 and
biaxial

〈
R2

22

〉
order parameters as a function of temperature T ∗, for a system with φ = 60◦

and d∗ = 1 and (d) the same when d∗ = 1.2. The insets in (c) and (d) show snapshots of
tilted smectic SJ phases. Results from (N,P,T )MC with N = 1000. Dimensionless units
used [Berardi et al., 2003b].

normal to the layers n in these and other (also atomistic) systems, it is first necessary to
identify the layers. An algorithm to this effect [Berardi et al., 2003b] consists in defining
first a molecular layer as the set of Nk particles for which the first-neighbours distance is
r � f σs (e.g. a typical factor f could be f = 1.3). The kth layer plane can be expressed
by the equation akx + bky + ckz = nk · r = dk , where the vector nk = (ak,bk,ck) is
orthogonal to the kth layer plane.1 All the Nl parallel planes of the sample in a certain
configuration J should share the same normal vector, apart from the modulus expressing
its length. We could then take two of the direction cosines to be shared by all Nl planes
and determine the ‘optimal’ direction cosines aJ,bJ and cJ of the normal for a certain
configuration J by minimizing χ2

J =
∑Nl
k=1

∑Nk
i=1

(
aJ xi + bJ yi + cj zi − dk

)2 . The vector

n̂J = (aJ,bJ,cJ )/
√

(a2
J + b2

J + c2
J ) is the best-fit unit vector normal to the layers for the

single MC configuration. The tilt angle is calculated as an average over all configurations,

1 If P and Q are vectors identifying points in the plane with equation � · (x,y,z) = d and with � = (a,b,c), then � ·P = d and
� ·Q = d. Then � · (Q− P ) = d − d = 0 and the coefficient vector � is orthogonal to any vector PQ between the arbitrary
points P and Q of the plane, i.e. � is orthogonal to the plane.
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(a) (b)

Figure 11.23 (a) Multiynes discotics (R = OC5H11,OC9H9,CH3,CN) with an electron
rich core and (b) 2,4,7-trinitrofluorenone, TNF with electron depleted core. Their mixture
form a chemically induced liquid crystal phase [Praefcke et al., 1991].

with the director dJ obtained (Section 3.5) as the eigenvector corresponding to the largest
eigenvalue of the ordering matrix QJ . The average tilt angle is 〈θ〉 ≡ 〈

cos−1(dJ · n̂J )
〉
J

.
For the present quadrupolar GB system, and φ = 60◦, the tilt angle is ≈ 8◦, independent of
temperature. It is interesting to note that the tilted phase obtained is not a SC with liquid like
positional disorder in the layer. Instead, it is characterized by hexatic bond order 〈ψ6〉 �= 0
inside the layers, e.g. 〈ψ6〉 = 0.8 for d∗ = 1.2 at T ∗ = 2.7. This hexatic order is long range
as shown by the space correlation inside a layer GH6 (r) (see Eq.4.115) not decaying to 0.
The phase is thus a tilted - crystal version of the SB obtained for the dipole-less GB(3,5,1,3)
[Berardi et al., 1993]. In particular, configurations show that the tilt is in the direction of a
vertex of the hexagon formed by the nearest neighbours. On this basis these phases can be
classified as a smectic-J.

Quadrupolar discotics. Chemically induced LC phases are formed in systems of non-
mesogenic disc-like molecules that yield columnar phases when mixed. An example is that
of mixtures of multiynes and 2,4,7-trinitrofluorenone (Fig. 11.23) [Praefcke et al., 1991].
Neither of these components is mesogenic, but their binary mixtures exhibit nematic and
columnar phases. Various mechanisms have been invoked to explain this behaviour, but
looking at the chemical formulas in Fig. 11.23 the two molecules have electron density
close to the centre (the multyine) and pulled towards the periphery by the strongly elec-
tronegative NO2 groups (TNF) and correspondingly have (nearly axial) quadrupoles of
opposite sign. We recall that the expression for the interaction energy between two axial
quadrupoles%i and%j (Eq. 5.90) has a multiplying factor%i%j that, for discotics, should
weaken the face-to-face attraction for like particles while strengthening it for particles with
quadrupoles of opposite sign, that are thus expected to easily form columnar phases. This
was verified to some extent by Bates and Luckhurst [1996] from (N,P,T ) MC simula-
tions of GB(0.345,0.2,1,2) discotic particles endowed with an axial quadrupole Θ , which

in reduced units is Θ∗ = Θ/ (4πε0ε0σ
5
0

)1/2 = 0.05 and Θ∗ = 0.10 (≈ 2.2 × 10−38cm2)
[Bates and Luckhurst, 1998]. In the absence of quadrupoles, this system yields I, N and Dh

columnar phases. The same authors studied the phase behaviour of the pure quadrupolar
systems and their binary mixtures with molar fraction x = 0.5,0.75. Columnar phases are
obtained directly from the isotropic phase at a temperature higher than the nematic-isotropic
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(a) (b)

Figure 11.24 The biaxial Gay–Berne potential UGBX ∗
ij

= UGBX
ij

/ε0 as a function of

separation r∗ = r/σ0 for face-to-face, side-by-side and end-to-end relative configurations
using biaxialities λσ = 0.216 and (a) λε = 0.042 or (b) λε = −0.042 [Berardi and Zannoni,
2000].

transition temperature of the pure system. In addition, there is a strong tendency for unlike
particles to be nearest neighbours, giving a structure in which the nature of the particles
alternates on average along the column. The 75:25 mixture has a different phase behaviour
in that it forms a nematic phase before undergoing a relatively weak transition to a colum-
nar one.

11.7 Biaxial Nematics

As introduced in Section 1.6 biaxial nematics are anisotropic fluids defined as having two
preferred directors, rather than a single one, as in uniaxial nematics [Luckhurst and Sluckin,
2015]. The existence of such LCs was predicted [Freiser, 1970], decades before the actual
synthesis of some thermotropic materials with biaxial nematic (NB) features took place and
is still without a universal consensus [Luckhurst, 2004; Luckhurst and Sluckin, 2015]. The
perspective of the availability of nematics that can be controlled in two directions rather
than just one, opens extremely interesting possibilities of a new generation of faster LC
displays [Ricci et al., 2015]. Unfortunately, current biaxial nematics are not really suitable
for actual devices because of, e.g. the unfavourable temperature range and high viscosity.
The synthesis of other more ‘application friendly’ materials has not been particularly suc-
cessful up to now, possibly because the very existence of a biaxial fluid is in competition
with the formation of smectics or crystalline biaxial phases missing the needed fluidity and
possibility of easy alignment. One possible strategy to facilitate the observation of biaxial
nematics can thus be that of disfavouring the formation of smectic or crystalline phases.
If different molecular interactions contribute significantly to the pair potential, then each
of them can have a different biaxiality parameter. For the attractive-repulsive biaxial GB
we can have: (i) shape biaxiality λσ (see Eq. 5.61) and (ii) attractive interaction biaxiality
λε (Eq. 5.62). It is important to note that these parameters are relatively independent and
can even have opposite signs. If we consider the interaction potential as two molecules
approach with a certain orientation (say with two axes parallel) the position of the energy
minimum is clearly linked to the closest approach distance and then on the dimensions σi
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(a) (b)

Figure 11.25 (a) Uniaxial and (b) biaxial order parameters for model mesogen particles
biaxial GB parameters 〈R 2

0,0〉 and 〈R 2
2,2〉 vs scaled temperature T ∗ = T/ε0 with shape

σx = 1.4, σy = 0.714, σz = 3 (in σ0 units) and εx = 1.7,εy = 1.2 and εz = 0.2 for the
interaction strengths ( in ε0 units). Thus, we have shape biaxiality λσ = 0.216, interaction
biaxiality λε = −0.06, model exponents μ = 1,ν = 3 and minimum contact distance
σc = σy = 0.714σ0 [Berardi and Zannoni, 2000].

and the chosen shape biaxiality. On the other hand, the interaction biaxiality λε defines
the relative importance of the strongest potential wells. In Fig. 11.24 we see an example
where we have chosen λσ = 0.216 and λε = ±0.042, respectively. We see that having
both anisotropy of the same positive sign, reinforces the face-face stacking configuration
that in turn favours smectic organization, while in the case of λε < 0, this is compensated
by the enhanced lateral edge-edge attraction. In this last case, a biaxial nematic phase is
more easily obtained, as we can see from the uniaxial and biaxial order parameters 〈R 2

0,0〉
and 〈R 2

2,2〉 (Fig. 11.25) and by the averages of the biaxial Stone invariants S2,0
2,2,0(r∗) and

S
2,2
2,2,0(r∗) which we already showed in Fig. 4.5, decaying to a non-zero plateau in the biaxial

phases at large separations.
It is worth noting that the addition of a dipole at various positions and orientations offers

another possibility for extending the chance of observing biaxial phases and central and
off-centre dipoles have been explored by Querciagrossa et al. [2013, 2018].

11.8 Rigid Multisite Gay–Berne

A simple way of representing a variety of rigid particles, even of rather complex shape,
is that of modelling them as a set of assembled GB particles (‘beads’) arranged with the
appropriate geometric structure. The pair potential between two such molecules i and j ,
respectively made up of ni and of nj GB ellipsoidal beads, will be

UBGB
ij ≡ UBGB (r ij,�i,�j ) = ni∑

a=1,a∈i

nj∑
a′=1,a′∈j

UGB(raa′,ua,ua′ ). (11.21)

Here raa′ ≡ r
(i,j )
aa′ = r

(j )
a′ −r

(i)
a stands for the vector joining the centre of bead a of molecule

i and the centre of bead a′ of molecule j and the sums are over all distinct pairs of beads.
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(a) (b)

(c)
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Figure 11.26 (a) Banana mesogen with two GB beads at a bent angleϕ = 140◦. (b) Snapshot
of the molecular organization in the twisted nematic phase, at T ∗ = 1.75, visualized with
a horizontal director d and grey-coded according to the azimuthal angle of the molecular
long axis z. (c) A plot of the pseudoscalar invariant defined in Eq. 4.90 at the same T ∗,
calculated along the helical axis Z from MC (shaded area) and of that for a perfect helical
phase: 〈P2〉h = 1 with a right-handed spiralling local director and tilt angle θ = 20◦ (−−−)
[Memmer, 2002].

GB beads belonging to the same molecules do not interact with each other. Electrostatic
charges or multipoles can of course be added as for the case of single-bead particles, if
needed. The interaction potential UGB(raa′,ua,ua′ ), between the beads of molecules i and
j is the uniaxial or biaxial GB potential. Note also that some (or all) of the beads can be
spherical, just a special case of GB, i.e. GB (1,1,0,0). We shall briefly discuss two rather
different examples of this type of modelling, for bent-shape molecules and nanoparticles.

11.8.1 Banana Gay–Berne Mesogens

We saw in Section 1.8.3, that bent-shaped molecules [Niori et al., 1996] can form a variety of
mesophases. Memmer [2002] modelled banana-shaped molecules by linking two identical
GB(3,5,1,2) particles at a bending angle ϕ between the unit vectors u1 and u2 along the
GB ellipsoids axes, to form an achiral biaxial particle, as shown in Fig. 11.26a. The pair
potential between two such molecules i and j with orientations �i and �j , and separation
vector r ij = [(ra′ + rb′ )− (ra + rb)]/2, is described by the sum of pair potentials between
the GB particles of the two molecules, as in Eq. 11.21, with ni = nj = 2. The system
forms isotropic, non-layered and layered phases. The non-layered nematic phase appears
to form right-handed and left-handed domains with twist-bend structure [Dozov, 2001]
(see Fig. 11.26b). In such a domain, the local director spirals around the helical axis with
constant tilt angle θ and the helical repeat distance P . The helicity of the superstructure
is confirmed by the pseudoscalar of odd total rank radial orientational correlation function
S221(r∗) defined in Eq. 4.90 and shown in Fig. 11.26c [Memmer, 2002]. Another banana
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(a)

(c)

(b)

(d)

Figure 11.27 Pair potential UNM/ε0 as a function of distance between a nanoparticle N
made of a cluster of LJ beads of (a) rod-like, (b) disc-like and (c) spherical shape, and a
GB mesogen M. (d) shows the order parameter 〈P2〉M vs dimensionless temperature T �

for the pure mesogen system and for two spherical-NP/LC dispersions, at mole fraction
xN = 0.2,0.5%, with snapshots of the xN = 0.5% one in the solid (T � = 1.0) and nematic
(T � = 1.4) phase [Orlandi et al., 2016].

system with ni = nj = 3 GB beads with a central transversal dipole was studied by Orlandi
et al. [2006], finding nematic and smectic phases but no evidence of a chiral phase.

11.8.2 Nanoparticles in Liquid Crystals

Nanoparticles (NPs) are often used as additives to LCs to modify their properties [Hegmann
et al., 2007; Qi and Hegmann, 2008; Urbanski and Lagerwall, 2017; Singh, 2019] and, as
seen in Section 5.5.3, a variety of NP shapes exist and new ones are continuously synthe-
sized. Approaching their modelling could follow two routes. The first is to approximate
each NP with a single shape, e.g. a polyhedral one [Damasceno et al., 2012]. The other is
to model nanoparticles of different (even non-polyhedral) shapes by assembling GB or LJ
particles [Orlandi et al., 2016]. We have seen in Section 5.8.3 that the overall dispersive
interaction between colloidal size assembly of spherical beads can be analytically calcu-
lated for some simple colloidal particle geometries leading to the Hamaker expressions
in Table 5.18. However, NPs are much smaller than colloidal particles and it is natural to
calculate NP-NP interactions by numerical summation. Moreover, on many occasions, NPs
are added to LCs in small concentrations as property modifiers and it is thus important to
have models for NP-mesogen interactions in order to be able to study mixtures. Recalling
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that the Lennard–Jones potential is just a special case (GB (1,1,0,0)), applicable to spherical
objects, of the GB potential between ellipsoids, the interaction between each pair of like or
unlike sites, i and j, can be written in any case in terms of the heterogenous GB potential
Eq. 5.63. In Fig. 11.27a, b, c we see, as an example, the modelling of nanoparticles of
approximate rod-like, plate-like and spherical shape, and the effect on the LC host order
parameter 〈P2〉M of the addition of various concentrations of spherical NPs, modelled with
a spherical cluster Fig. 11.27d. In this case, the effect is that of lowering the order and
the transition temperature of the pure LC, but the result can be different for other shapes
[Orlandi et al., 2016]. The GB mesogenic hosts have the GB(3,5,2,1) parameterization of
Chalam et al. [1991] for rod-like LC molecules, but clearly the method is general enough
to allow for discotics or other shaped mesogens.

11.9 Flexible Multisite Gay–Berne and Liquid Crystal Polymers

Although the multi-beads models examined in the Section 11.8 correspond to rigid particles
with a fixed geometry, they can be modified to represent the polymers and liquid crystal
polymers (LCPs) introduced in Section 1.3. Coarse-grained polymer models are often based
on chains of spherical beads connected with spring type bonds (see, e.g., [Binder, 1995]),
although a small number of systems based on ellipsoidal beads have also been proposed
[Lyulin et al., 1998; Hahn et al., 2001; Berardi et al., 2004c; Micheletti et al., 2005]. An
ellipsoidal beads-based approach seems more reasonable, if the individual monomers are
themselves mesogenic reactive monomers (RM) able to form LC phases. Here we describe
LCP modelling based on the approach of Berardi et al. [2004c] representing polymerizable
monomers with GB uniaxial particles decorated with reactive sites.

Polymerization process modelling. In studying polymeric and elastomeric LCs it is impor-
tant to note that, different to low-molar-mass systems, many of their properties depend on
the preparation history, e.g. if the polymerization is started in the isotropic or in the LC
phase, and if an alignment stage (e.g. by flow, or spinning or by mechanical stress) takes
place before completing polymerization. It is thus important to simulate the polymerization
process itself, rather than just the final product. To do this we require at least two different
molecular species: monomers and radical initiators (see Fig. 1.12), that can both be modelled
with modified GB particles. For simplicity here they are both obtained from the same GB
ellipsoids, decorating monomers with two or more reactive sites and initiators with only one.
In more detail, the active sites embedded in each GB monomer can exist in three different
states: non-bonded, reactive (propagating) and bonded. If the aim is that of simulating the
formation of main chain polymers, as we shall assume in the examples shown here, the sites
are placed in terminal position, like in Fig. 11.28, but they could be positioned otherwise
to represent other types of LCPs. For instance, one or more additional sites could be placed
transversally to model cross-linking in the case of elastomer formation [Skačej and Zannoni,
2011, 2012, 2014] (Section 1.16). As monomers link together and polymerization takes
place, the total energy of the system, ULCP, will consist of both non-bonded GB terms,
UGB, and bonded contributions, Ubond, and we can write

ULCP = UGB + Ubond. (11.22)
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(a) (b)

Figure 11.28 Cartoon of the (a) positional and (b) orientational criteria used to select
candidate bi-functional monomers 1, 2, 3 for the MC chain propagation reaction with the
initiator 0. Only monomer 2 satisfies both conditions, with the bond distance sp −�sm ≤
s02 ≤ sp + �sm and the bond angle θp − �θm ≤ θ02 ≤ θp + �θm that are within the
useful ranges for a bonding reaction [Berardi et al., 2004c].

The non-bonded term UGB is calculated over all the non-directly linked pairs of
monomers, as

UGB =
∑
i<j

(1− wij )UGB(ui,uj,r ij ), (11.23)

with wij a switch function: wij = 1 if i and j are bonded and 0 otherwise and where r ij

is the vector joining the centres of mass of the i and j GB monomers with orientations ui

and uj . The pair potential between the two GB particles is that in Eq. 5.57, and already
discussed in other applications in the current chapter. Upon bonding, the GB interaction
between adjacent pairs of linked monomers is replaced by a sum of stretching and bending
finitely extendable non-linear elastic (FENE) [Bird et al., 1971; Khare et al., 1996] spring-
like contributions, so that the ‘bond’ energy is

Ubond =
∑
i<j

wij
[
UFENE(sij )+ UFENE(θij )+ U0

]
, (11.24)

where sij and θij are bond lengths and bond angles. The FENE stretching, UFENE(sij ), and
bending,UFENE(θij ), energies between two reaction sites i, j can be written in general terms
for a coordinate ξ as

UFENE(ξ) = −1

2
Kξ (δξm)2 ln

[
1−

(
δξ

δξm

)2
]
, (11.25)

where δξ = ξ − ξeq is the deviation from the equilibrium value, with a maximum exten-
sion δξm and Kξ is the stiffness constant. Here ξ = sij for stretching, and ξ = θij for
bending, while ξeq is either the equilibrium bond length seq or angle θeq . When the bond
distance and the bond angle are equal to seq and θeq , respectively, the pair bonding energy
takes the U0 value. In this approximation the stretching energy does not depend on the
orientation of the bond vector sij , but only on its length sij . The algorithm for simulating
the polymerization process [Berardi et al., 2004c] generalizes the method proposed by
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Figure 11.29 Schematic drawing of a bonded monomer i with orientation ui endowed with

two reactive sites (1) and (2) with orientations z
(1)
i

= −z
(2)
i
, and positions (0,0,σe/2),

and (0,0, − σe/2). The site-site vector sij and the bending angle θij between the bonded
z

(1)
i

and z
(2)
j

sites are also shown. Bonded sites are represented as • and active propagating
sites, like z

(1)
j

, as ◦, while the grey particle on the left represents the remaining part of the
chain [Berardi et al., 2004c].

Kurdikar et al. [1995] to mimic chain-reaction polymerization (free radical mechanism).
Every reaction site can undergo polymerization along a preferential unit vector, z

(1)
i = ui

for site 1 and z
(2)
i = −ui for site 2. The polymerization starts with the random genera-

tion of a certain number Nr of radical initiators, modelled for simplicity as particles like
the monomers but carrying a single reacting site (see Fig. 11.28). The initiation step is
followed by a modified MC evolution where, besides the translational and orientational
moves (see Chapter 8), moves involving the reaction steps leading to chain growth, are
also attempted. After a successful polymerization event, the other, non-bonded, site of the
terminal monomeric unit becomes reactive. The iteration of these steps is continued for a
chosen number of MC cycles until the polymerization is quenched. The simulation then
continues with the reaction step switched off and the chains (Fig. 11.29) are left to evolve
and relax for a certain number of conventional MC cycles and a production run during
which averages of observable properties are computed. The approach described does not
involve a chain-transfer mechanism, thus the number of growing polymer chains Nc equals
that of initiators Nr and, in addition, the propagation reaction is irreversible. The details
of the chain-growth process are the following: given the ith radical with an active terminal
site, the monomer most likely to form a new chemical bond is determined by examining
its neighbour list [Allen and Tildesley, 2017]. Only the set of monomers {j } with site-site
distances sij and bond angles θij falling within acceptable ranges �sm and �θm from the
optimal bond distance sp and angle θp are considered (see Fig. 11.28). The monomer chosen

for reacting is the one presenting the smallest deviation function� =
( |θij−θp |

�θm
+ |sij−sp |

�sm

)
.

In Fig. 11.28 we show how only monomer 2 can react with the propagating radical 0 as
both reaction criteria are satisfied. If no monomer is found, the chain propagation does
not take place and the propagating radical remains reactive. The methodology has been
applied by Berardi et al. [2004c], using (N,V,T ) MC, to systems ofN = 4096 GB(3,5,1,3)
monomers at density ρ∗ = 0.30, in a cubic box with PBC (Section 8.2.1) and considering
various temperatures in the isotropic and nematic state and different mole fractions of radical
initiators. In all cases the monomeric sample can be equilibrated in the nematic or in the

https://doi.org/10.1017/9781108539630.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.012


478 Molecular Simulations

isotropic phase, before simulating the chain growth process, allowing a preparation protocol
similar to different experiments to be followed.

LC Polymer chain characterization. Once polymerization has taken place it is important
to try and describe, with some quantitative metric, the chains obtained. A few standard
observables used for polymers [Flory, 1953] are the instantaneous monomer conversion
Cmon = Npol /N and the number-average degree of polymerization x̄n = Npol/Nc, where
Npol =

∑
x xN(x) is the number of reacted monomers, and the length density N (x) counts

the number of chains formed by x monomeric units in the sample, so thatNc = �xN (x). For
all values ofNc studied the chains become on average longer (i.e. with larger x̄n) as tempera-
ture decreases and order increases. This is consistent with a higher probability of successful
MC reactive moves at temperatures where the orientational order is higher, favouring chain
growth, since aligned monomers are more likely to have an orientation appropriate for
reaction (Fig. 11.28b). Furthermore, the system with the lowest number of propagating
radicals exhibits the longest chains, due to the higher concentration of monomers in the
neighbourhood of the propagating sites during the polymerization process.

A classical descriptor for chains being extended or folded is the average end-to-end
distance 〈ree〉 =

∑M
m=1

∑Nc
k=1 r

(m,k)
ee /(MNc), where r (m,k)

ee is the distance between the tips
of the first and last monomeric units in the kth chain for the mth MC configuration.

A measure of polymer deformability can be obtained from the mean square deviation
from equilibrium values of bond lengths seq and bending angles θeq namely,
�s = 〈(sij − seq )2〉1/2, and�θ = 〈(θij − θeq )2〉1/2. The values obtained for our model sys-
tems show that bond length fluctuations�s slightly decrease with temperature, as one would
expect, depending on the value of the elastic constantKs . Concerning the description of the
anisotropic properties of the samples we can introduce a global second-rank orientational
order parameter 〈P (d)

2 〉 relative to all N bonded and non-bonded monomers and referred
to the phase director d(J ), computed in the standard fashion by diagonalization of the
Q(J ) = 〈3u

(J )
i ⊗ u

(J )
i − 1〉i/2 ordering matrix (Section 3.5)

〈P (d)
2 〉 = 1

MN

M∑
J=1

N∑
i=1

P2(u(J )
i · d(J )), (11.26)

with u
(J )
i the orientation of the ith monomer in the J th configuration,

An additional order parameter 〈P (e)
2 〉, describing the average alignment of each monomeric

unit u(J,k) with respect to the kth chain axis ê(J,k) in configuration J can be introduced as

〈P (e)
2 〉 = 1

MNc

M∑
J=1

Nc∑
k=1

1

xk

xk∑
l=1

P2
(
u

(J,k)
l · ê(J,k)), (11.27)

where each chain axis ê(J,k) is determined as the eigenvector of the chain inertia tensor (see
Eq. 4.24) corresponding to the lowest eigenvalue. For a well-ordered linear chain the two
order parameters are very similar.

The persistence length of orientation along the chain can be obtained from the decay
of the orientational pair correlations between monomers n units away along the polymeric
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(a) (b) (c) (d) (e) (f )

Figure 11.30 Sequences of snapshots of a growing polymeric chain at T ∗ = 2.8 (nematic:
a, b, c) and T ∗ = 3.8 (isotropic: d, e, f) for a system of N = 4096 monomers with
Nr = 30 initiators (and chains), after 20 (a, d), 60 (b, e) and 100 (c, f) MC kcycles
of the polymerization reaction. The terminal, reactive monomer is represented as a dark
grey ellipsoid. To help the visualization, chains have been unwound from the MC periodic
boundary conditions [Berardi et al., 2004c].

strand: 〈C2(n)〉 = 1
MNc

∑M
J=1

∑Nc
k=1

[
1

Nk−n
∑Nk−n
l=1 P2

(
u

(J,k)
l ·u(J,k)

l+n
)]

, where the quan-

tity in square brackets is relative to monomers n units apart in the kth chain from the J th
MC configuration. The correlation function profiles 〈C2(n)〉 at the various temperatures go
from 1 for n = 0 to an asymptotic value 〈P (d)

2 〉2 for n→∞ (long-range). 〈P (d)
2 〉 essentially

corresponds to the order parameter of the monomeric particles, and can be of use to judge
the influence of the phase anisotropy on polymeric chains ordering. The first portion of the
〈C2(n)〉 profiles gives instead information on the short-range orientational order around a
monomeric unit. Examples of these properties can be found in Berardi et al. [2004c] and
Micheletti et al. [2005].

Simulations show that the chain conformations are indeed influenced by the orientational
order: at the lowest nematic temperature (T ∗ = 2.8) chains are fairly elongated, then at
T ∗ = 3.4 they become less straight, while in the isotropic phase (T ∗ = 3.8) chains are
disordered but still not quite random coil. This is reasonable because the polymer is soluble
in the monomers solution and there is no evidence of segregation. These features can be
more easily seen if we unwind the MC periodic boundaries and show only one polymeric
strand. Fig. 11.30 shows a sequence of three snapshots of a single growing chain for the
T ∗ = 2.8, and T ∗ = 3.8 samples after 20, 60 and 100 MC kcycles where the differences
are quite evident. Consistent with experimental work [Lub et al., 1998], a polymerization
reaction performed in the LC monomer solution results in the formation of more ordered,
thus more birefringent, materials.

Although polymer chains generated from the nematic phase are generally straighter, it
is important to see if they can occasionally form sharp U-turns (Fig. 11.31), the so-called
hairpins [de Jeu and Ostrovskii, 2012]. These have been observed experimentally in some
main chain polyesters [Li et al., 1993] and polyethers [Hardouin et al., 1995]. To detect
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(a) (b)

Figure 11.31 (a) Sketch of a polymeric chain showing two hairpins involving four and five
monomer units, respectively. The particles at the start and end of the hairpins are shaded and
joined with a dotted line. (b) Snapshot of a 64 units chain showing a hairpin in the nematic
phase for a Nc = 30 system [Berardi et al., 2004c].

hairpins from simulated configurations, we need an operational definition. One such defini-
tion could be the following [Berardi et al., 2004c]: the shortest chain portion whose first
and last monomeric units i, j exhibit a value of (ui ·uj ) = cosβij ≤ cos θhp, where
θhp, the hairpin threshold angle, has been chosen as θhp = 160◦ (see Fig. 11.31a) and
two additional constraints can be enforced to avoid overlapping hairpins and considering
wide bends: neither i or j must be within another pin, and the maximal hairpin length
should be of six units, so that any U-turn involving more than six monomeric units is
considered as a wide turn, rather than a proper hairpin. At low temperatures inside the
nematic (T ∗ = 2.8, 〈P (d)

2 〉 = 0.81) only 5%–10% of chains have a hairpin (Fig. 11.31b),

but this becomes 20%–40% by increasing the temperature to T ∗ = 3.4 (〈P (d)
2 〉 = 0.67)

still in the nematic, since the lower orientational order allows larger bending fluctuations.
Finally, the number of hairpins slightly decreases in the isotropic phase, since the high chain
flexibility favours chains with larger curvature radii. Interestingly, this is similar to what
was observed experimentally [Hardouin et al., 1995] and it is understandable since hairpins
only determine a local perturbation in the system, without affecting the overall orientational
ordering of the system. In the simulations, the average length of such hairpins, Lhp, is of
four monomeric units.

11.10 Liquid Crystal Elastomers

Liquid crystal elastomers (LCEs) [Warner and Terentjev, 2003; White and Broer, 2015]
are weakly cross-linked polymeric networks containing LC units, either belonging to the
polymer backbone (main-chain LCEs) or attached to it (side-chain LCEs). Some of their
fascinating properties and applications have been briefly introduced in Section 1.16. LCE
networks, sketched in Fig. 1.60, are characterized by a pronounced coupling of strain and
mesogenic alignment [de Gennes, 1975]. They can respond to external stimuli such as
temperature changes, UV light or external (mechanical or electrical) fields by large (up
to several 100%) elastic (reversible) deformations. LCE properties depend critically on
their preparation strategy. The fabrication process of an LCE sample from single monomers

https://doi.org/10.1017/9781108539630.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.012


11.10 Liquid Crystal Elastomers 481

normally consists of two polymerization stages, the first generating the polymer strands with
only a weak cross link and the second cross-linking them to the desired extent (	10%). If
a suitable aligning field (mechanical or otherwise) is applied after the first polymerization
step, a monodomain transparent sample with a uniform director can be obtained [Küpfer
and Finkelmann, 1991]. The LCE obtained is stable and can also be heated from the N to
the I state and back. In a stress-free sample, a polydomain is instead obtained, with locally
aligned micron-sized regions with director dL, resulting in pronounced light scattering and
an opaque appearance [Küpfer and Finkelmann, 1991; Brommel et al., 2012]. Even though
most modelling work on these systems has been performed at continuum level [Warner and
Terentjev, 2003], off-lattice particle-based models [Lyulin et al., 1998; Skačej and Zannoni,
2011, 2012, 2014] have the great advantage of being suitable for the introduction of some
essential features of LCEs. In particular, molecular models take into account the shape and
interaction anisotropy of the monomers, allowing the study of smectic as well as nematic
LCEs, modelling main-chain or side-chain LCEs, varying the amount of cross-linking and,
importantly, including protocols for the fabrication. This last aspect, often neglected, allows
us to begin understanding, for example, the difference in properties between LCEs produced
by polymerization in the isotropic phase and then cooled down (the so-called isotropic
genesis) from those where polymerization takes place in an oriented liquid crystal state
to start with. Since the properties of LCEs depend on the preparation procedure, the sim-
ulation methodology introduced in the last section appears particularly suitable also for
the modelling of LCEs. A practical problem, however, is in equilibrating the systems and
avoiding jamming and in this case, it is essential to employ the GB soft-core version [Berardi
et al., 2009, 2011] which reduces the steepness of the repulsive part of the GB potential,
replacing the standard inverse 12 power dependence on particle separation with a linear
one (Section 5.6.5). The possibility of limited particle-particle ‘interpenetration’, that the
potential allows offers a simplified description of a flexible molecular system, where two
colliding particles can deform and yield to some extent rather than just harshly repelling
each other. In addition, it facilitates MC equilibration, without significantly affecting the
phase behaviour of the molecular system as a whole. The total potential energy for the LCE
model system of N particles is thus,

ULCE =
N∑
i=1

N∑
j=i+1

(
UGBS
ij + wij [UFENE(sij )+ UFENE(θij )]

)
, (11.28)

where UGBS
ij is the soft-core GB introduced in Eq. 5.69 and UFENE(sij ), UFENE(θij ) are

the stretching and bending contributions already described (Eq. 11.25). All monomers are
endowed with two reactive bonding sites at the particle ends that, upon polymerization,
provide the main-chain strands. Monomers are also decorated with an additional equatorial
reactive site, as necessary for cross linking. Here we introduce the methodology for
LCE modelling considering two examples of LCEs based on the soft-core GB(3,5,1,3)
pair potential, covering (i) the mechanical properties [Skačej and Zannoni, 2011] and
actuation by an electric field in monodomain LCEs [Skačej and Zannoni, 2012] and (ii) the
poly-to-monodomain transition and supersoft elasticity and elastic moduli [Skačej and
Zannoni, 2014].
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(a)

(b)

(c)

Figure 11.32 (a) Snapshot of a swollen monodomain LCE (swelling molecules not shown)
with d ‖ z. Change of (b) sample length λz and of (c) order parameter 〈P2〉 upon application
of a reduced stress �∗z along z (�∗z = 0.1 ≈ 1.1 MPa engineering stress) from MC runs
at T ∗ = 3.0 (+), 5.0 (×),7.0 (���) and 9.0 (◦). The dashed lines in (b) are the linear fits used
to estimate the LCE elastic moduli (770 MPa for T ∗ = 3.0 and 310 MPa for T ∗ = 5.0).
The FENE parameters are se = 0.15σs , δsm = 0.25σs , Ks = 1000ε0/σ

2
s ≈ 5.52 Nm−1,

θe = 0◦, δθm = 150◦ and Kθ = 7.6× 10−4ε0deg−2 ≈ 3.44× 10−21 Jrad−2 [Skačej and
Zannoni, 2011].

11.10.1 Liquid Crystal Elastomer Monodomains: Actuation Properties

We start, discussing the preparation of a main-chain monodomain LCE sample, inspired by
the Küpfer and Finkelmann [1991] cross linking procedure, where the polymer strands are
first prepared and aligned by mechanical stress, then weakly cross linked to a desired extent
(some 10%). To prepare this simulated uniformly aligned sample the monomers are first
assembled into a regular square array and linked linearly to their nearest neighbours forming
parallel polymer strands. Additional randomly placed monomers representing cross-links
are then added (see Fig. 11.32). Only up to one bond per monomer pair is possible, while the
average distance between cross-links along a polymer strand is≈ 7.5 monomers [Skačej and
Zannoni, 2011, 2012]. If a swollen LCE is required, as we assume for the present examples,
and as is often used in real experiments [Urayama et al., 2006; Wu et al., 2020], the sample
is also uniformly filled with additional GB monomers to a certain swollen/dry volume ratio
φSW. The sample is then compressed almost to the maximum packing density, yielding
the cubic reference sample used as a starting point for the simulated experiments, with
PBC applied to mimic a bulk-like sample. Upon applying this procedure, a well-defined
director is imprinted into the system, resulting in an oriented monodomain sample at low
temperatures. After this preparation stage, the sample shape is allowed to change as the
system evolves through isostress MC simulations (Section 8.3.2), first performed at zero
stress, as in the experiments of Urayama et al. [2005, 2006] and Fukunaga et al. [2009],
dealing with unconstrained samples. In more detail, the following attempted MC evolution
steps are performed: (i) purely translational and (ii) purely rotational moves of a single
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particle, (iii) bonded pair rotations, dealing only with doubly linked GB particles in the
polymer strands, excluding cross links. The selected particle pair is rotated by a random
angle about the end-to-end vector of the particle pair, and (iv) changing sample shape,
attempting a random variation of two sides of the sample box chosen at random, while the
third box side is determined by the constant-volume constraint (note that also real LCE
deformations maintain sample volume). This move allows the initially cubic sample to
be deformed as a whole and gradually turn into an orthogonal slab. The polymer strands
are deformed affinely, i.e. applying the macroscopic box deformation uniformly to the
microscopic level. The trial configurations violating the maximum-length or maximum-
angle constraints of the FENE potential are rejected. Note that all the above trial move
types are reversible and unbiased. As a result of this zero external stress simulations, the
shape of the sample changes as a result of the internal stress resulting from the fabrication
process and of the temperature from the reference cube of sides (λ(R)

x = λ(R)
y = λ(R)

z = λ(R))
to rather different ones. After this sample fabrication, virtual experiments can be performed
and we report two examples.

(i) Stress-strain virtual experiment [Skačej and Zannoni, 2011]. This aims to study the
monodomain LCE mechanical properties monitoring how the sample length along the direc-
tor d ‖ z, is varied by the application of a stretching/compression stress along the z-axis,
over the xy facet area of the reference sample (Fig. 11.32). The engineering stress �z
is expressed in reduced units: �∗z ≡ �zσ

3
s /ε0, with σs the GB monomer width (and

unit length, σ0 = σs). A constant volume resize move, deforming the sample box along z
by �λz = (λz)new − (λz)old is accepted with a probability min

{
1, exp

[−Nε0
(
�U∗ −

�∗�λz/ρ∗
)
/(kBT )

]}
(min{a,b} returns the lowest between a and b) [Raos and Allegra,

2000; Pasini et al., 2005a]. The same experiment can also provide a connection with
ordering showing how the stress increases the orientational order 〈P2〉 (Fig. 11.32c) as
experimentally found [Warner and Terentjev, 2003].

(ii) Actuation. Let us now consider the actuation (sample deformation) produced by a
transversal electric field. This is particularly appealing, even though not easy to implement
experimentally, since rather high field strengths are required to induce deformations and this
can, among other practical problems, lead to dielectric breakdown. However, electrome-
chanical actuation has been demonstrated, by Urayama and collaborators, in unconstrained
samples swollen by an excess of nematic solvent upon application of an external field
perpendicular to the director and using optical and infrared spectroscopy to detect changes
in orientational ordering [Urayama et al., 2005, 2006; Fukunaga et al., 2009]. These exper-
iments were accompanied by various analyses using continuum theory [Fukunaga et al.,
2008; Corbett and Warner, 2009]. An insight at molecular level into the actuation phenom-
ena in these LCEs can be obtained by a direct simulation of the switching experiments just
mentioned, extending and applying the GB modelling as proposed by Skačej and Zannoni
[2012]. Then an external electric field is applied along the x-axis, transversally with respect
to the director (Fig. 11.33). The coupling energy of an external electric field E with a
GB particle with long axis ui is modelled as we did in Section 10.8.2, adding to ULCE in
Eq. 11.28 the termUF

N = −εξ
∑N
i=1

(
ui · Ê

)2 where Ê = E/|E| and ξ is the dimensionless
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(a) (b) (c)

Figure 11.33 Actuation by application of a transversal electric field E ‖ x (arrows) to
a monodomain LCE with d ‖ z. MC snapshots with applied field strength parameter
ξ = (a) 0.2, (b) 0.4, (c) 0.6 of a swollen sample withN = 8000 particles and a swelling ratio
φSW ≈ 2.1. Particle orientation and type are grey-coded with dark and light areas corre-
sponding to clockwise and counterclockwise rotations of the polymer network, while all
swelling monomers are shown in white regardless of their orientation [Skačej and Zannoni,
2012].

field coupling strength ξ = ε0�εE
2V/(2ε), with ε0,ε dielectric constants of vacuum and

material, �ε the molecular dielectric constant anisotropy and V the effective volume occu-
pied by a mesogen. Using typical values for a nematic (e.g. 5CB at T ≈ 300 K), ξ = 0.1
approximately corresponds to 60 V/μm. The mechanical analogue of such an experiment
would be the stretching perpendicular to the director. Fig. 11.33 shows three represen-
tative snapshots for increasing values of ξ . In the snapshots, director rotation (accompa-
nied by macroscopic sample deformation) is seen above a switching threshold estimated as
ξ ≈ 0.35± 0.05 (or ≈ 110 MV/m) in Fig. 11.33b,c. To meet the periodic boundary con-
ditions assumed in simulation, domains of opposite director rotation and shear appear in
the sample. These domains are similar to the ‘stripe domains’ observed after applying an
external stress perpendicular to the nematic director [Verwey et al., 1996; Finkelmann et al.,
1997; Zubarev et al., 1999; Conti et al., 2002].

11.10.2 Liquid Crystal Elastomer Supersoft Elasticity

Nematic polydomain elastomers (NPD) cross-linked while in the isotropic phase (I-PDE)
exhibit a stress-strain curve (Fig. 1.61b) with a peculiar plateau corresponding to supersoft
elastic deformations that require vanishingly little work to stretch the sample, while samples
cross-linked in the aligned nematic phase (N-PDE) exhibit a Hooke-like response [Uchida,
2000; Biggins et al., 2009, 2012; Urayama et al., 2009; Takebe and Urayama, 2020]. Since
the exceptionally soft elasticity of LCEs is exhibited by materials prepared polymerized in
the isotropic state, it is useful to describe the simulated fabrication procedure leading to a

https://doi.org/10.1017/9781108539630.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.012


11.10 Liquid Crystal Elastomers 485

(a) (b)

Figure 11.34 (a) Snapshot of a simulated isotropic generation LCE (swelling solvent
monomers not shown). (b) Reduced stress-strain plot at T ∗ = 3.0, with low-stress behavior
also shown as the inset. Results from isostress MC, N = 216,000 particles [Skačej and
Zannoni, 2014].

polydomain LCE system in some detail. We recall that, as before, monomers are decorated
with two terminal reactive bonding sites that, upon polymerization, provide the main-chain
strands with an additional reactive site on the equator allowing for cross-linking. Different to
the previous case, we aim here to obtain an isotropic polydomain with only local order. In the
proposed polymerization protocol, the polymer chains are first grown at low density along a
randomly oriented straight line, each starting from random coordinates. In each growth step,
chains are terminated with a probability of 0.125, yielding polydisperse strands ≈ 8 ± 7.5
monomers long. Once this first polymerization stage is completed, reticulation is performed
by transversally connecting the active head/tail site of each terminal monomer to the nearest
available equatorial site belonging to another chain (Fig. 11.34a). The sample is then soaked
with swelling monomers (φSW ≈ 2.1) to mimic experimental systems [Urayama et al.,
2009] and isotropically compressed in an MC run, at a temperature inside the nematic phase,
up to a density ρ∗ = Nσ 3

s /V ≈ 0.287. This produces a highly interconnected and, as long
as the sample size is sufficiently large, almost isotropic polymer network. In any case, it is
worth discussing the issue of local and global order quantitatively.

LCE polydomain order parameters. Different to a monodomain system where d and
〈P2〉 are uniform across the sample, polydomain systems are characterized by a static or
quasi-static distribution of ordered local domains L of particles (here bonded and swelling
monomers) with a local director dL and order parameter 〈P2〉L =

[
3
〈
(ui · dL)2

〉
i∈L− 1

]
/2.

One can also consider the overall (‘global’) order parameter 〈P2〉G, calculated over the
whole sample, together with a global director dG. In the case of uniaxial ordering, one
has 〈P2〉G ≈ 〈P2〉L〈P2〉d (following from the spherical harmonics addition theorem, Eq.
F.15), where 〈P2〉d =

[
3
〈
(dL · dG)2

〉
d
− 1

]
/2 is an order parameter of the local director

dL with respect to the global one, dG, the average 〈. . .〉d being performed over domains.
Hence, 〈P2〉d measures the overall anisotropy of the local director distribution in space
and an isotropic polydomain sample, having 〈P2〉d ≈ 0 will exhibit global disorder, i.e.
〈P2〉G→ 0, even if the local order 〈P2〉L �= 0. On the contrary, in monodomain sys-
tems 〈P2〉d → 1, and there is only little difference between 〈P2〉G and 〈P2〉L [Skačej
and Zannoni, 2011]. Experimentally, 〈P2〉G could be measured, e.g. from the dielectric or
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magnetic susceptibility anisotropy of the sample, while 〈P2〉L is accessible, e.g. by magnetic
resonance (NMR or ESR [Zannoni et al., 1981]). 〈P2〉G can then be used as a test that the
preparation protocol is leading to an effectively globally isotropic sample. A N = 216,000
sample (Fig. 11.34a) appears an almost fully isotropic polydomain, with 〈P2〉G ≈ 0.15.
This ‘residual’ order coming from the preparation process (acting as a virtual field) is along
a director dG here along y.

Stress-Strain Behaviour. To explore the possibility of achieving super soft elastic defor-
mations, stress-strain virtual experiments with the N = 216,000 sample were carried out
in the nematic at T ∗ = 3.0. An external stress�∗z is applied by pulling along the z-axis (i.e.
perpendicular to the residual dG). The stress-strain curve obtained is shown in Fig. 11.34b.
Qualitatively, the curve is similar to the experimental ones for I-PDE nematics [Giamberini
et al., 2005; Tokita et al., 2006; Urayama et al., 2009; Higaki et al., 2012]: it shows an
initial region of small elongation when low stress is applied, then a very soft region where
a major elongation of more than 200% is obtained with a small increase in stress and a
third region where the LCE stiffens and higher stress is required for further elongation. In
the first low-stress region, the large sample deforms only slightly (≈ 20%), with Young’s
elastic modulus (estimated from the curve slope) around EY ≈ 200 kPa. Then after the
weak residual alignment has been overcome at λz ≈ 1.0 and�∗ ≈ 0.005 (corresponding to
≈ 55 kPa), the slope is significantly reduced and the curve exhibits a slightly tilted plateau
with EY ≈ 100 kPa (inset of Fig. 11.34b), until a deformation of ≈ 200% is reached.
Then the elastomer becomes significantly stiffer, and Young’s modulus reaches several MPa
towards the end of the simulated curve.

In essence, the polydomain-monodomain transition appears characterized by a simulta-
neous domain growth and rotation mechanism, assisted by the release of the elastic energy
stored during the fabrication in the isotropic phase, that leads to an isotropic distribution of
locally ordered domains with conflicting local directors when cooled down to the nematic
phase.
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Atomistic Simulations

Soft crystals exist undoubtedly, there may also be flowing crystals as far
as I am concerned, but liquid crystals? Never!

G. Tamman, Annual Meeting of the German Chemical Society, 1905

The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble.

P. A. M. Dirac, Proc. Roy. Soc. A, 1929

One of the continuing scandals in the physical sciences is that it remains in
general impossible to predict the structure of even the simplest crystalline
solids from a knowledge of their chemical composition. Solids such as
crystalline water (ice) are still thought to lie beyond mortals’ ken.

J. Maddox, 1988

12.1 Introduction

Atomistic simulations consist of methodologies to calculate material (in our case mainly
LC) properties starting from molecular structures with chemical (and thus atomic level)
detail. The task could be dealt with, in principle, using either of the MC or MD techniques
described in previous chapters. In practice, however, generating new equilibrium configu-
rations from an existing one in systems of atomistic complexity is much easier with MD
and this is essentially the only approach used for the purpose, and the one we shall discuss
here. Computer simulations at atomistic level are often called realistic as they offer, at least
in principle, the possibility of reproducing or even predicting in full the properties of LC
phases. Unfortunately, mesogenic molecules normally contain a number of atoms so large
as to make fully atomistic simulations very demanding. Correspondingly, the number of
LC systems that have been simulated providing proof of true realism, e.g. the reproduction
of transition temperatures within a few degrees, as well as of relevant observables, such as
order parameters and their temperature dependence in good agreement with experiment,
is still very limited. The source of the difficulty depends on at least three issues: force
fields (FFs), sample sizes and equilibration times. Atomistic molecular dynamics (AMD)
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simulations performed until 2000, say, [Wilson, 1999], have particularly suffered by all
these aspects: FFs were not particularly optimized, sample sizes were of at most of a few
hundred molecules and timescales were of the order of 1ns or less, well below the reori-
entation time of a molecule in LCs, thus inevitably leading to a memory of the (arbitrary)
initial configurations chosen. In particular, only in very few cases were ordered LC phases
generated by cooling down an initial isotropic configuration, as would be recommended
nowadays to confirm equilibration.

The most commonly available force fields, described in Chapter 5, were not developed to
reproduce LC properties, but rather simple liquids or biological systems like phospholipids
or proteins, where the typical chemical structures and the relevant observables are rather
different. Only relatively recently some recommendation on the most appropriate choice
among the many force fields available [Cheung et al., 2002; Boyd and Wilson, 2018] has
been made. Since 2000, samples with a number of molecules of the order N ≈ 103 [Cook
and Wilson, 2001b; Wang et al., 2001; Tiberio et al., 2009] or more [Palermo et al., 2015]
have been simulated and the results validated against experiment. An effort towards FF
optimization has also been made [Cacelli et al., 2005, 2007; Tiberio et al., 2009] and is
continuing [Boyd and Wilson, 2015, 2018].

Notwithstanding the many open issues, there is a class of problems and observations,
very important for the understanding of LCs, that completely depends on an atomistic
level description. The foremost example is probably the prediction of phase transition tem-
peratures, and particularly the nematic-isotropic one, TNI . This is a crucial element in
the design of viable materials for LC devices that have to exist and operate in a certain
temperature range. The task is now tackled empirically [Thiemann and Vill, 1997; Johnson
and Jurs, 1999] and is far from trivial, since even small changes of structure can dramatically
alter TNI (see Fig. 2.22). The other outstanding problem that can only be tackled with
atomistic resolution is the prediction of spectroscopic observables (e.g. from proton or
deuterium NMR).

Here we shall show a few examples of atomistic MD applications to LCs focussing, as in
previous chapters, on the specific methodological aspects relating to anisotropic fluids and
necessarily referring to original papers for the very specific details.

12.2 Quinquephenyl and the Rigid Rod Approximation

In total contrast with the complexity of real liquid crystal molecules, it is striking that a
vast number of theories (Chapter 7) and computer simulations of LCs resort to the drastic
simplification of representing mesogenic molecules as simple rigid objects like spherocylin-
ders or ellipsoids (Chapter 11). Indeed, these minimalist models are still the main tools
for our understanding of these complex materials and their generic behaviour. Atomistic
simulations can offer a way of testing, as far as possible, how well these approximate
treatments work, at least for molecules that are not too removed from the assumptions of
the theory, either because of their complexity or flexibility or for being chemically specific
(H bond or similar). To compare theory and experiment, an ideal, simple, rigid and sym-
metric molecule would be highly desirable. As vigorously pointed out by Dingemans et al.
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[2006], speaking of p-quinquephenyl (P5 or PPPPP), ‘If ever there were a calamitic mesogen
that corresponded to the approximations used to derive S, the rod-like thermotropic LC
PPPPP … is one among them.’ Studying such a molecule without the major approximations
introduced in simple statistical mechanics treatments, can help to clarify the importance of
flexible chains or polar groups, here absent, or of the aspect ratio in determining nematic
behaviour. Unfortunately, P5 is a difficult system to study experimentally, in view of its
high transition temperature (see Table 1.2) and of the possibility of chemical decompo-
sition [Sherrel and Crellin, 1979], and there is still a lack of general consensus even on
basic things like the sequence of phases observed when cooling from isotropic down to
crystal and the value of TNI [Irvine et al., 1984; Wunderlich, 1999; Dingemans et al.,
2001, 2006; Rodrigues et al., 2013]. A realistic computer simulation of P5 is also not trivial
[Cacelli et al., 2003; Olivier et al., 2014], in view of the number of atoms in the molecule,
the need to consider internal rotations of the rings and more generally of optimizing the
intramolecular and intermolecular contributions to the FF. It is worth mentioning, however,
that an additional reason for interest in an atomistic study is that p-quinquephenyl, and more
generally polyphenyl derivatives, are, and have been for a long time [Baker et al., 1993],
model organic semiconductor molecules for transistors [Hlawacek et al., 2011] and OLED
[Grimsdale et al., 2009] devices.

Let us now discuss an AMD simulation of p-quinquephenyl [Olivier et al., 2014], its
validation and the prediction of LC properties, as well as the assessment of its actual rigidity
in relation with classical liquid crystal theories.

Force field and simulations. We already discussed the basic elements of atomistic FFs
in Section 5.4. Quantum chemistry (QC) techniques (at MP2//cc-pVDZ level of theory
[Cramer, 2004]) have been employed for P5 to obtain partial atomic charges with the ESP
scheme [Besler et al., 1990], and inter-ring torsional potentials, used to tune the standard
general AMBER FFs (GAFFs) [Wang et al., 2004]. As for P5 rigidity, we can see in Fig. 5.10
that the various QC methods employed produce consistent qualitative results for the internal
torsions, with a tilt between the rings of ≈ 40 degrees and energy barriers of the order of
≈ 2 kcal/mol, suggesting the possibility of significant internal rotations at the high tempera-
tures required to melt the material. We also saw in Section 5.4.2 that relying only on QC cal-
culations in vacuum is not sufficient to predict fluid properties. Even for a molecule as chem-
ically simple as P5 (only C and H atoms and a conjugated aromatic structure) we need to
empirically adjust the LJ well depth for carbon so as to match (with the help of some test MD
runs) the experimental density at one temperature in the nematic (see Fig. 5.11). An optimal
value εC = 0.105 kcal/mol, together with the standard OPLS parameters rC = 1.908 Å for
carbon and εH = 0.015 kcal/mol, rH = 1.459 Å for hydrogen [Berendsen et al., 1984] were
used in the (N,P,T ) MD runs (P = 1 atm) carried out with the code NAMD 2.8 [Phillips
et al., 2005]. Periodic boundary conditions, Berendsen et al. [1984] barostat and thermostat
and a smooth particle mesh Ewald (PME) method for electrostatic interactions [Essmann
et al., 1995] were all employed. A sample of N = 1000 P5 molecules in an orthorhombic
box was studied, starting from the isotropic phase at T = 750 K, and gradually cooling
down to T = 600 K, with equilibration times of at least 50 ns and production times of 40
to 70 ns each for calculating properties.
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Figure 12.1 Typical MD snapshots inside the isotropic (T = 750 K), nematic (T = 690 K),
smectic A (T = 650 K), smectic AX (T = 630 K), different temperatures, taken from the
cooling-down temperature sequence studied for P5 [Olivier et al., 2014].

(a) (b)

Figure 12.2 (a) Simulated (�) and experimental (���) [Irvine et al., 1984] densities ρ for P5
at various temperatures T . (b) Second- and fourth-rank order parameters 〈P2〉 and 〈P4〉 vs
temperature for P5 as obtained from MD [Olivier et al., 2014].

Quinquephenyl phases. In Fig. 12.1 we show typical equilibrium snapshots of the molec-
ular organizations obtained in various phases, using a grey scale for the orientations. The
images show at once the disordered isotropic state (right), and on cooling down, the onset
of ordered phases that we shall now discuss.

Density. A first important validation of the simulations is obtained comparing the simulated
mass density and its temperature dependence with experiment. This is plotted in Fig. 12.2a,
as obtained using AMD when cooling down from the isotropic phase, together with exper-
imental data [Irvine et al., 1984]. Note that even if the carbon LJ well depth was optimized
against experimental density at a single temperature (see Fig. 5.11), we see good agreement
over the whole available range [Irvine et al., 1984]. Four phase transitions can be identified
at T ≈ 715,657,642,617 K from changes of slope of the curve.

Orientational order. The characterization of an LC phase inevitably deals with the
investigation of its orientational order parameters with respect to the director d. Here the
director d(tk), at successive time steps tk of the MD trajectory is determined as described
in Section 3.5, i.e. as the eigenvector corresponding to the largest eigenvalue of the ordering
matrix Q
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(a) (b)

DNMR (A)
WAXS (B)
BIREF (C)

P2 MS

P2 MD MD

MS

P4 MD
P4 MS

Figure 12.3 (a) P5 order parameters 〈P2〉 and 〈P4〉 for the inertia tensor axis of P5 ( � ) as
a function of T/TNI compared with experimental data from DNMR (A) [Dingemans et al.,
2006], WAXS (B) and birefringence BIREF (C) [Kuiper et al., 2011] and with Maier–Saupe
(MS) MFT predictions for 〈P2〉 ( ) and 〈P4〉 ( ). (b) 〈P4〉 vs 〈P2〉 from MD simulation
(�) and MS theory (line) [Olivier et al., 2014].

(Eq. 3.47) [Berardi et al., 2004a; Tiberio et al., 2009]. Given that molecules change their
conformation over time, the reference axis ui for molecule i can be taken along the
eigenvector of its inertia tensor Ii(tk) (Eq. 4.24) corresponding to the lowest eigenvalue:
Ii,min(tk). The instantaneous sample ordering matrix Q(tk) can then be obtained, using ui(tk)
and averaging over all molecules (Eq. 3.47). The scalar order parameter P2(tk) = −2λ0(tk)
at time tk is gathered from the middle of the three eigenvalues λmin(tk) < λ0(tk) <
λmax(tk) of Q(tk) [Eppenga and Frenkel, 1984] and averaged over a sufficiently long
equilibrium trajectory, yielding the order parameter: 〈P2〉 = 〈P2(tk)〉tk = −2〈λ0(tk)〉,
where the angular brackets indicating a time average over the trajectory. 〈P2〉 and higher-
order parameters can also be obtained employing the instantaneous director at time tk ,
d(tk), using the Legendre polynomial definitions (Eq. A.48), e.g.

〈P2〉 = 1

2NM

M∑
k=1

N∑
i=1

[
3 (d(tk) ·ui(tk))2 − 1

]
, (12.1a)

〈P4〉 = 1

8NM

M∑
k=1

N∑
i=1

[
35 (d(tk) ·ui(tk))4 − 30 (d(tk) ·ui(tk))2 + 3

]
, (12.1b)

where (d(t) ·ui(t)) = cosβi(t). These order parameters (Fig. 12.2b) allow a first assessment
of the phase transitions observed. We shall see later in this section that the phase contiguous
to the isotropic one has 〈P2〉 > 0 but is devoid of positional order, confirming its classifi-
cation as nematic. Estimating TNI from the simulations is not trivial, because of the finite
and relatively small sample size that gives a residual order (


√
N ) even in the isotropic

phase and the relative small number of temperatures simulated. Considering the highest
temperature at which 〈P2〉 > 0.15, we have 715 K ≤ TNI < 720 K. Some refinement can
be obtained examining not only the average value of the order, but also the moments of the
histogram of all the instantaneous values of 〈P2〉 observed during the simulation, as we did

https://doi.org/10.1017/9781108539630.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.013


492 Atomistic Simulations

for lattice models (Section 10.2.1). In particular, the change of sign of the third moment,
indicative of a first-order transition like the NI one (see Fig. 10.3) gives TNI = 715 K.
Comparing with experiment we see that this overestimates TNI by ≈ 17 K (	3%), even
if it should be said that the various experimental results differ from one another by up
to 7 K [Olivier et al., 2014]. In Fig. 12.3 we show 〈P2〉 and 〈P4〉 versus T/TNI and
compare them with available experimental data for 〈P2〉 while, as far as we are aware,
experimental results are not (yet) available for 〈P4〉. We note that the agreement between
simulation and experiment for 〈P2〉 is good, considering deuterium NMR [Dingemans et al.,
2006], birefringence [Kuiper et al., 2011] and diamagnetic susceptivity anisotropy data
[Sherrel and Crellin, 1979] (not shown here). The wide angle X-ray scattering (WAXS)
data [Kuiper et al., 2011] are more at variance with the simulations, but also with other
experimental results. Fitting the 〈P2〉 results into the nematic to the Haller [1975] empirical
equation (see Eqs. 3.32 and 11.9), gives a value of the pseudo-critical exponent βH = 0.18.
Regarding the temperature dependence of 〈P2〉 and 〈P4〉 we also note that, even though
〈P4〉 and 〈P2〉 in Fig. 12.3a do not follow the curves predicted by the Maier–Saupe (MS)
MFT very well (Section 7.2 and Fig. 7.3), the simulated results for 〈P4〉 versus 〈P2〉
are in excellent agreement with the MS prediction (Fig. 12.3b). However, this good
agreement only indicates that the orientational distribution has, at each temperature, a
second-rank exponential character (i.e. that P (cosβ) ∝ exp[a2P2(cosβ)]), even if the
effective field strength a2 is not simply proportional to 〈P2〉 as would be predicted by
MS theory (Chapter 7). We note that this should also apply to Onsager theories, since
it is well known that their more complex density functional expression for P (cosβ)
(Eq. 7.68) can also be well represented by expanding its exponent in a Legendre polynomial
series truncated at the second term (see Eq. 7.81) [Isihara, 1951; Lasher, 1970].

Smectic phases and positional order. Cooling down from the nematic, other orientation-
ally ordered phases appear. It is apparent from the snapshots in Fig. 12.1 that these have a
layered structure, with molecules essentially orthogonal to the layers, suggesting that they
could be smectics (thus, e.g. SA or SB) or crystalline. Various transitions have indeed been
observed experimentally, but the situation is rather confusing. The phases are characterized
by their positional order parameters τn (see Eq. 3.14)

τn =
∫ �z

0
dzP (z) cos(qnz) =

〈
cos

(2πnz

�z

)〉
, n ≥ 1, (12.2)

that represent the expansion coefficients in an orthogonal Fourier basis of the probability
P (z) of finding a molecule at a position z along the normal to the layers (see Eq. 3.11) of
thickness �z, assuming the origin of the director frame to be such that P (z) = P (−z).
In Fig. 4.11b we have already shown the first three positional order parameters of P5,
obtained from MD trajectories with a fit of the translationally invariant two-particle density
autocorrelation g(z12) (Eq. 4.108b), obtained from the number density of molecules at
distance z12 divided by the average density. The fit gives the simulated layer spacing as
�z ≈ 24 Å, similar to what was reported by Kuiper et al. [2011] and to the length of
P5, indicating a non-interdigitated organization. The positional order parameter τ1 grows
very quickly as T decreases below the nematic temperature range and into the smectic
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(Fig. 4.11b). The two low temperature phases are thus crystalline or smectic with high
orientational (〈P2〉 > 0.9) and positional order. We note also significant jumps in τ2, τ3

at the low temperature phase changes, showing a sharpening of the layers.

Spatial and space-orientational distributions. We now take a closer look at the local
structure of the phases. We have already shown in Fig. 4.2a the radial distribution,
g(r) = 〈δ(r − rij )〉ij /(4πr2ρ), of P5 at a few temperatures. In particular, we see that g(r)
is liquid-like for the I and N phases: no sharp peaks are present at medium-to-long range,
with a quick tailing to the asymptotic value of 1, as expected for a disordered phase.
A close up of g(r) at a temperature below and one above TNI (inset of Fig. 4.2a) shows
that they are very similar, reinforcing the concept that the immediate surroundings of a
molecule are very similar in both phases as suggested from the weak first-order character
of the NI transition [Luckhurst and Zannoni, 1977]. The radial distribution also confirms
the high structuring present in the two low temperature phases: the crystalline and the
lower temperature smectic, that we shall tentatively call SAX , as well as some difference
between the two.

For P5, or oligophenyls in general, the relative orientation of the phenyl rings is of great
importance as face-to-face orientation should favour the possibility of charge hopping from
one molecule to the other, thus hopefully improving its semiconducting properties. A phenyl
centre-phenyl centre radial distribution gPP(r) (Fig. 4.2b) shows that the first neighbour peak
is located at ≈ 5.5 Å, rather than at ≈ 3.5 Å, as would be typically expected for face-to-
face, π -π packing, corresponding to a somewhat skewed local organization. This closest
approach distance is similar to the value of 5.0 Å in the experimental crystal structure
at room temperature [Baker et al., 1993]. We also see that the crystal phase has a local
hexagonal structure, as shown by the splitting of the second peak [Berardi et al., 1993],
while this feature is missing in the two upright smectic phases, that we can then classify as
of type SA, rather than SB.

The space correlation between two molecules is expected to change as the angles βij
between their c.o.m. separation vector r ij and the director d varies. This can be expressed
by the anisotropic radial distribution g(r, cosβr ), introduced in Section 4.9.1 g(r, cosβr ) =〈
δ(r − rij ) δ(cosβr − r̂ ij ··· d)

〉
ij
/(4πr2ρ), where r̂ ij = r ij /rij , and the average is over

particle pairs i,j . In Fig. 12.4 we show contour maps of g(r, cosβr ) at three temperatures.
The SA phase at 650 K shows only a liquid-like correlation transversal to d, similar to
what we saw for GB(3,5,1,3) particles in Fig. 4.10. Cooling to 630 K shows differences: an
increase of these in-layer peaks but also the appearance at r ≈ 25 Å, of a peak parallel to
the director corresponding to the adjacent layer. Upon reaching the crystal, the structuring
increases as expected, with a sharpening of the peaks and disappearance of appreciable
correlations at intermediate angles βr .

Quinquephenyl dynamics. We still have to consider if the low temperature layered phases
are smectic or crystalline, and for this it is useful to examine their fluidity, monitoring the
translational diffusion coefficients along the director, D‖, and perpendicular to it,D⊥ from
the mean square displacements in the respective directions, using the classical Einstein
formula (see Eq. 6.51). We see from Fig. 12.5a that the three high temperature phases are
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(a) (b) (c)

Figure 12.4 Map of the angular-radial distribution function g(r, cosβr ) for P5 at temper-
atures (a) T = 610 K (crystal), (b) T = 630 K (SX

A) and (c) T = 635 K (SA), with βr
is the angle between the director and the interparticle vector r . The palette on the far right
indicates the value of g(r, cosβr ) with contour lines drawn at integer values [Olivier et al.,
2014].
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Figure 12.5 (a) Arrhenius plots for the simulated translational diffusion coefficients D‖,
D⊥ andDiso of a P5 molecule moving parallel and perpendicular to the director and (b) the
correlation times for rotation around the long axis τ‖ (spinning) and of the long axis itself
τ⊥(tumbling) as a function of inverse temperature 1000/T (K−1). The dotted vertical lines
indicate phase transitions [Olivier et al., 2014].

clearly fluid with translational diffusion coefficients of the order of 10−9 m2/s, comparable
with those of other nematics [Miyajima, 2001].

We also see that both in the N and the SA phase the diffusion along the director is faster
than the one perpendicular to it. This is similar to what was found for GB fluids (see Fig. 6.3)
but is surprising given the idealized picture of a smectic as a stack of 2D, somehow indepen-
dent fluids, as we have discussed in Section 6.7. For P5 this is unexpected since molecular
flexibility as enforced by flexible tails, here missing, is also believed to play an important
role in favouring interlayer diffusion [Mukherjee et al., 2013]. The translational diffusion
becomes easier within the layers than across them in the low temperature smectic phase SAX ,
a feature typical of smectic phases with high interlayer energy barriers, such as, e.g. tilted
ones [Cifelli et al., 2006, 2012]. In any case, the SAX phase retains some fluidity in both
directions, qualifying it as a highly ordered smectic phase, rather than a conformationally
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disordered crystal [Wunderlich, 1999]. In the crystalline phase the dynamics is slowed down
by three orders of magnitude compared to the nematic one and a very slow diffusion is
possible only inside a layer (the values of D|| ≈ 10−12 m2/s reported correspond to a MSD
of a few Ångstrom on the simulation timescale). It should anyway be stressed that the aim of
the P5 study was to reproduce its LC phases, not the room temperature crystal polymorphs,
notoriously nearly impossible to obtain by a cooling down process from the isotropic melt
[Oganov, 2010] also because of the MD timescales.

Switching to reorientation dynamics, this can be described with the single-molecule
correlation functions for the long axis φ‖(t) = 〈z(0) · z(t)〉 and for the short axis φ⊥(t) =
〈x(0) · x(t)〉 (see the molecular frame in Fig. 5.10). Fig. 12.5b shows, through their decay
times to 1/e of the initial value, i.e. the spinning and tumbling times, that rotations around the
long axis are fast (of the order of picoseconds) all the way from isotropic to smectic phases.
Long-axis reorientation times τ‖ start instead from being two orders of magnitude slower in
the isotropic phase with a further progressive increase of tumbling time that becomes longer
than 100 ns in the smectic.

Is quinquephenyl a rigid rod? The molecular shape anisotropy, expressed by the length
to breadth aspect ratio (L/B), is a most important parameter in understanding LC phase
behaviour, such as the onset of nematic and smectic phases, and the change in transition
temperatures induced by small chemical modifications. Many of these effects have been
extensively studied with the help of hard [Allen et al., 1993] and attractive-repulsive rigid
models [Zannoni, 2001b]. A deformable molecular model was also proposed [Muccioli
and Zannoni, 2006] to bridge between limiting descriptions that assume mesogens to be
either completely rigid or fully flexible. Among the shape effects on hard spherocylinders,
a progressive increase of the length to breadth ratio is known to induce the nematic phase,
widening it, and finally stabilizing a smectic phase [Bolhuis and Frenkel, 1997]. To be more
quantitative we consider, like in Berardi et al. [2004a] and Tiberio et al. [2009], the minimal
rectangular box containing the molecule rotated to its inertial frame and we take its side
lengths Lx,Ly,Lz as molecular size indicators. This molecule-in-a-box approach provides
an upper limit to the actual molecular dimensions, difficult to define unambiguously for a
non-rigid molecule and was used for other flexible mesogens [Berardi et al., 2004a; Tiberio
et al., 2009] and to sexithiophene [Pizzirusso et al., 2011]. The sources of the conformation
changes leading to shape polydispersity in P5 appear to be quite different and involve
mainly two mechanisms. One is the change in the effective width of the molecule due to
internal torsions around the phenyl-phenyl bonds defining the long molecular axis, while
the length remains constant. The other mechanism is the presence of some overall bending
of the molecule, as shown by the distribution of aspect ratios (Fig. 12.6a) and of bending
angles θ (Fig. 12.6b) at various temperatures. van der Schoot [1995] showed, generalizing
Onsager theory, that even a small flexibility stabilizes the nematic phase. Also, simulations
of mono- and polydisperse hard spherocylinders, have shown that intrinsic polydispersity
goes in the direction of widening the nematic phase of P5 (which should be absent for aspect
ratios lower than 4.7, as we see in Fig. 12.7) at the expense of the smectic [Bolhuis and
Frenkel, 1997]. Polydispersity is also indicated as an important factor for obtaining smectic
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(a) (b)
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Figure 12.6 (a) Distribution of observed length (L) to breadth (B) aspect ratios P (L/B)
of P5. (b) Observed distribution of bending angle represented as P (cos θ ) vs cos θ and θ (◦)
for P5. Various temperatures shown [Olivier et al., 2014].

Figure 12.7 Comparison of atomistic simulation results for crystal (K), smectic A (SA),
nematic (N) and isotropic (I) (symbols) with the MC phase diagram for hard spherocylinders
(HSCs) by Bolhuis and Frenkel [1997]. The aspect ratio is defined as length over breadth:
L/B, corresponding to (l + d)/d in the usual notation for HSCs (see Fig. 11.8), while ρ∗
is the reduced density expressed as fraction of the close-packed one ρcp . The density of the
experimental crystal cell at room temperature, ρcp = 1.292 g/cm3, is used for scaling the
atomistic data. The aspect ratio is 4.9 for the crystal, ρ∗ = 1 (•) [Olivier et al., 2014].

and nematic phases for colloidal systems with relatively low aspect ratio, with smectic
phases expected only if the polydispersity is below ≈ 18% [Kuijk et al., 2012]. The other
important factor is the presence of anisotropic attractive forces for P5, missing in the hard-
particle, that should make it easier for rod-like molecules to order, even for relatively small
aspect ratios.

It would seem that a combination of anisotropic dispersive and repulsive interactions
is essential to give an LC, rather than a crystal phase, for these relatively small aspect
ratios, and moreover, that polydispersity in the aspect ratio provided by internal torsions
and bending, even for an apparently rigid molecule like P5, is important to yield a nematic,
rather than a smectic phase.
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(a) (b)

Figure 12.8 The symmetrized and non-optimized MP2/STO–3G level torsional energies
(◦) for the conformational angles (a) φ1 (◦), and (b) φ2 (◦) of the cinnamate series
(see Fig. 2.22), and the Fourier series approximations ( ) using the first six even expansion
terms [Berardi et al., 2004a].

12.3 Odd-Even Effect in Cinnamates

Tackling the problem of understanding the large alternation in transition temperatures in
the series of cinnamates of Gray and Harrison [1971] (see Fig. 2.22) with atomistic MD
requires the reliable prediction of TNI for similar molecular structures, a task for a long
time judged not feasible [Yakovenko et al., 1998]. The phase transitons of the first three
homologues of the mesogenic series have been studied [Berardi et al., 2004a] with the MD
code ORAC [Procacci et al., 1997]. The stretching and bending force constants K

ti tj
r and

K
ti tj tk
θ were taken from the AMBER FF [Cornell et al., 1995] and LJ parameters from the

OPLS all atom FF [Jorgensen and Tirado-Rives, 1988]. The bond lengths and angles req and
θeq were derived from ab initio calculations at the MP2/3–21G∗ level performed with the
Gaussian 98 package [Frisch et al., 2002]. The partial charges ei on each atom were obtained
fitting the MP2 electrostatic potential with the CHELPG method [Breneman and Wiberg,
1990]. The torsional parameters for the N-phenyl, and O-phenyl bonds (cf. torsions φ1 and
φ2 of Fig. 2.22b) were obtained from quantum chemistry MP2/STO–3G energy profiles
and approximated with a six terms Fourier-cosine series (see Fig. 12.8). (N,P,T ) MD PBC
simulations were run for small samples ofN = 98 molecules of the n = 0,1,2 homologues
(4214, 4508 and 4802 atomic centres, respectively) with temperature and pressure con-
trolled using a velocity scaling thermostat [Fincham and Heyes, 1985] and an isotropic
barostat [Parrinello and Rahman, 1981]. Electrostatic interactions were calculated using a
variant of the Ewald technique (Section 5.4.4), the smooth particle mesh Ewald (SPME)
method [Darden et al., 1993]. Integration of the equations of motion used a multiple time
step scheme [Tuckerman et al., 1991a] (see Section 9.3.4) with equilibration lasting to 40 ns
for each homologue.

The order parameter 〈P2〉 (Eq. 12.1a), calculated for the molecular axis u attached to the
rigid part of each molecule (see Fig. 2.22) shows (Fig. 12.9) that all systems present ordered
and disordered phases in the temperature range studied, with 〈P2〉 going to 0 within statisti-
cal error, i.e. 〈P2〉 ≈ 1/

√
N , at the NI transition. Even if the transitions appear continuous,

given the small sample size, the large difference in TNI is apparent, with the odd, n = 1,
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Figure 12.9 The MD order parameter 〈P2〉 vs temperature and experimental TNI (dotted
lines) for the n = 0,1,2 mesogens of the cinnamate series [Berardi et al., 2004a].

(a) (b)

Figure 12.10 Distribution functions of the molecular dimensions (a) Lx (Å), and (b) Lz(Å)
for the three cinnamate homologues at three similar reduced temperatures T/TNI in the N
phase: n = 0 (T = 520 K, T /TNI = 0.96, 〈P2〉 = 0.36); n = 1 T = 420 K, T /TNI =
0.98, 〈P2〉 = 0.52), and n = 2 (T = 450 K, T /TNI = 0.97, 〈P2〉 = 0.54) [Berardi et al.,
2004a].

term definitely less stable compared to the two even ones. This good agreement validates
the FF adopted [Berardi et al., 2004a] and leads us to examine the origin of the odd-even
effect. The anisometry of each structure at a certain time t can be evaluated, as we did for
P5, from the dimensions Lx(t),Ly(t), Lz(t) of the smallest rectangular box containing each
molecule, evaluated from the end-to-end atomic distances along the axes of its inertia tensor
principal frame. From the peak positions of their histograms, shown in Fig. 12.10, we see
that the second CH2 group has the effect of increasing the average molecular length 〈Lz〉,
while the first one has rather the net effect of increasing 〈Lx〉 and 〈Ly〉, so that the n = 1
homologue is wider than the even homologues n = 0 and 2, and thus has lower anisotropy
〈�L〉. Very concisely, the odd-even effect seems due to the absence of a substantial increase
in the molecular length when passing from an even to an odd number of -CH2- groups see
Fig. 12.10). The importance of non-fully stretched conformations cannot be neglected, as
they are responsible for the decrease of the transition temperatures along the even and odd
homologues series.
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12.4 Cyano-biphenyls

Cyano-biphenyls are arguably the most important and well-studied family of liquid crystals,
both from the experimental and computational sides. Much work has also been invested on
specific force fields [Amovilli et al., 2002; Cacelli et al., 2005; De Gaetani et al., 2006;
Cacelli et al., 2007]. Here we discuss an nCB FF at united-atom (UA) resolution, which
has the advantage of reducing the number of centres and of allowing larger integration
time steps, thus increasing the affordable system size and the time window that the MD
simulation can span [Tiberio et al., 2009]. The FF tuning procedure and the optimized set
of LJ parameters, as well as other details, are reported in full in the supplementary material
of Tiberio et al. [2009].

Simulation conditions. Each of the simulated samples contained at least N = 250 UA
molecules in a cubic box (sides in the 4.5−5.0 nm range) with PBC, corresponding to 4500,
4750, 5000, 5250 and 5500 atomic centres for 4, 5, 6, 7 and 8CB [Tiberio et al., 2009]. Larger
samples of 750 and 3000 molecules have also been studied for 8CB [Palermo et al., 2013] to
investigate its smectic phase. Every sample was equilibrated with (N,P,T ) MD (P = 1 atm,
T = 275−330 K) and electrostatic interactions evaluated with the particle mesh Ewald
method [Essmann et al., 1995]. Trajectories were generated with the NAMD [Phillips et al.,
2005] code, using time steps of 2, 8 and 16 fs for bonded, short-range and long-range
non-bonded interactions, respectively, employing the Berendsen et al. [1984] barostat and
thermostat. For each nCB sample the starting configuration was an isotropic one at 340 K
which was then cooled, with equilibration lasting at least 20 ns and production runs of 20–
45 ns in the isotropic and of 40–95 ns in the nematic phase. We also mention that UA FFs
are known to speed up rotational dynamics [Budzien et al., 2002; Tiberio et al., 2009]. Even
though this cooling procedure is considerably more demanding than starting from a crystal
state and heating up the sample towards more disordered states, the spontaneous onset of
ordered configurations from disordered ones gives more confidence in the reliability of the
results [Peláez and Wilson, 2006, 2007]. We now briefly review the MD simulation results
for cyano-biphenyls [Tiberio et al., 2009; Palermo et al., 2013].

Density. As we already mentioned for quinquephenyl, a first important validation of the
simulated results comes from comparing mass densities with experimental ones. As we see
from Fig. 12.11 the density is in good agreement with experimental values [Würflinger and
Sandmann, 2001], with a deviation of less than ±3% in the temperature range.

Orientational order parameters. For a uniaxial LC phase with a director d and assuming
for now effective molecular uniaxiality, with a rod axis u, the orientational distribution
reduces to P (cosβ), with cosβ = u · d. To calculate P (cosβ) from the simulated trajecto-
ries, the necessary step is to determine the director at successive times t of the MD trajectory.
As we have seen in this chapter for P5, this can be done by setting up and diagonalizing an
ordering matrix at time t , Q(t), Eq. 3.47, and averaging its eigenvalues as already described.
An alternative way, also discussed for P5, proceeds determining the instantaneous direc-
tor d(t) from the eigenvectors of Q(t) and calculating the order parameters 〈P2(d ·ui)〉i
and 〈P4(d ·ui)〉i (as in Eqs. 12.1a and 12.1b). The NI transition can be located from the
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Figure 12.11 Comparison between simulated (symbols) and experimental (lines) mass
densities [Würflinger and Sandmann, 2001] for nCB homologues [Tiberio et al., 2009].

temperature variation of 〈P2〉. For the shorter homologue, 4CB, which experimentally does
not present a reversible LC behaviour, the simulations also do not indicate a nematic phase,
with 〈P2〉 that remains essentially isotropic across the temperature range. Referring to the
n = 5 − 8 homologues, we see instead from Fig. 12.12 that, on cooling, a jump from
isotropic values of the order parameters (〈P2〉 < 0.15) to those typical of a nematic phase
(〈P2〉 > 0.3) is apparent for all the homologues. Near TNI the order parameters switch
between the ordered and the disordered state; while for T < TNI the fluctuations become
much smaller and 〈P2〉 steadily increases with decreasing temperature. We note that observ-
ing the onset of crystallization cooling from isotropic is hardly possible from MD since nCB
mesophases are known to be easily supercooled. In Fig. 12.12 we compare the simulated
〈P2〉 and 〈P4〉 with several sets of experimental data, in particular birefringence [Horn,
1978; Dunmur et al., 2001; Chirtoc et al., 2004] and Raman data [Picken, 2001]. We see
that experimental results, even using the same technique, show differences, due also to the
method used to extract 〈P2〉 from raw data. Polarized Raman measurements are also of value
as the technique is among the very few accessing 〈P4〉. We note that the agreement between
simulation and experiment is good, particularly considering the spread between the various
experimental data sets. A precise determination of the transition temperature from simulated
data is a non-trivial task, as we have seen even for lattice models (Section 10.2.1), due to the
limited number of state points available, the first-order transition coexistence effects causing
large fluctuations of the order parameters and also to the small but non-zero-value of the
order in the isotropic phase (cf. Fig. 12.12). TNI can be assigned for these nCB by inspection
of the histogram of P2(t) values at each temperature, like that for 8CB [Palermo et al., 2013]
shown as an example in Fig. 12.13. We note the non-Gaussian shape of the distribution
when approaching the transition from both the isotropic and from the nematic side. This
is reflected in the large standard deviations of 〈P2〉 (see Fig. 12.12) and is in agreement
with the predictions of Landau theory (Section 2.7.2) for a weakly first-order transition as
already observed for the LL model in Section 10.2.1 [Fabbri and Zannoni, 1986] and for
Gay–Berne models [Berardi et al., 1993]. The simulated and experimental values of TNI
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Figure 12.12 Simulated order parameters 〈P2〉 (�) and 〈P4〉 (�) for the inertia tensor axis
of 5CB, 6CB, 7CB, 8CB as a function of temperature T [Tiberio et al., 2009]. Experimental
values from various techniques are also shown: refractive index anisotropy: (a, ���) [Chirtoc
et al., 2004], (b, ◦) [Dunmur et al., 2001] and (c, �) [Horn, 1978]; Raman data from
(d) Picken [2001] for 〈P2〉 ( ) and 〈P4〉 (���) and (f) from Sanchez-Castillo et al. [2010]
for 〈P4〉 (�); NMR 〈P2〉 values for 5CB aromatic rings [Fung et al., 1986] (e, ×××).

Figure 12.13 Histograms of P (P2), the frequency of occurrence of instantaneous P2 values
for 8CB at a series of temperatures T (K). The location of TNI is apparent from the
discontinuity in peak positions and the change of skewness [Palermo et al., 2013].
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(a) (b)

Figure 12.14 (a) Experimental [Hird, 2001] (���������) and simulated with N = 250 (•) [Tiberio
et al., 2009] or N = 750 (�) molecules [Palermo et al., 2013] nematic-isotropic transition
temperatures for the nCB series. Note that T odd

NI
> T even

NI
. (b) Numerical values of TNI in

tabular from.

shown in Fig. 12.14 are in excellent agreement (the worst-case difference is less than 4 K),
and the small odd-even effect in the nCB series is well reproduced, demonstrating the level
of realism that can be reached with atomistic simulations (see also [Cacelli et al., 2007;
Zhang et al., 2011]). The temperature dependence of 〈P2〉 in the nematic is in fair agreement
with experiments, as we can see from the plots in Fig. 12.12. These results also allow a fair
comparison of simulated 〈P4〉 values with experiments. Fitting the nematic order parameter
to the empirical Haller [1975] equation (Eq. 11.9) in the range −10 < T − TNI < 1 gives
a value of the pseudo-critical exponent βH = 0.226 ± 0.04 for 5CB, 0.241 ± 0.05 for
6CB, 0.191 ± 0.02 for 7CB and 0.231 ± 0.04 for 8CB. The experimental values are fairly
scattered, with βH ranging from 0.172 [Wu and Cox, 1988] to 0.19 for 5CB [Horn, 1978].
Yet at variance, according to Chirtoc et al. [2004] all their birefringence data for 5, 6, 7
and 8CB could be fitted with a unique exponent βH = 0.25 . In the case of diamagnetic
anisotropy, where the relation between macroscopic and microscopic data is more straight-
forward still different results, i.e. βH = 0.141 for 5CB and 7CB, are obtained [Stannarius,
1998a]. We see once more that simulated data are quite comparable with the best sets of
experimental data available.

NMR observables and conformations. The terminal alkyl chains of the cyano-biphenyls
provide conformational changes and molecular flexibility. They have been studied by vari-
ous NMR techniques (see Appendix I), e.g. deuterium quadrupolar couplings, and nucleus-
nucleus dipolar couplings [Emsley, 1985; Beckmann et al., 1986]. It is thus important to
see how these can be predicted from the simulations. The dipolar term in the nuclear spin
Hamiltonian in the presence of the strong magnetic field of the NMR spectrometer, stems
from the orientational average of the nuclear magnetic dipole interaction: Ia ·Dab · Ib with a,
b two spin-endowed nuclei on the same molecule (see Section 4.10.5 and Appendix I). This
average vanishes in an isotropic phase, while in a uniaxial solvent it gives rise to measurable
splittings, expressed in terms of the residual dipolar couplings (RDCs).
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Residual dipolar couplings. Dab:

Dab = −�μ0

8π2 γaγb

〈
3 (r̂ab · Ĥ )2 − 1

2r3
ab

〉
, (12.3)

where γa and γb are the magnetogyric ratios of nuclei a and b. The RDC represents the
component along the field of the average dipolar tensor, (see Eq. C.10) which may be
expressed as a function of the internuclear distance rab and of the orientation of the unit
vector r̂ab with respect to the magnetic field H . For cyano-biphenyls H aligns the nematic
director d parallel to it and we can write:

Dab = −�μ0

8π2 γaγb

〈
P2(r̂ab · d)

r3
ab

〉
, (12.4)

where (r̂ab · d) = cosβab and βab is the angle between the phase director and the internu-
clear vector. If the two nuclei belong to a rigid fragment, rab can be considered constant,
except for small vibrational corrections, and the latter equation can be employed to derive
the order parameter of the internuclear vector and of the fragment. For flexible molecules
like nCB, the rab distances and the angles βab may vary due to conformational changes
if the nuclei a, b reside on different mobile fragments connected by internal rotation axes
[Zannoni, 1985]. The average observable dipolar couplings thus contain indirect informa-
tion on the conformational distribution and in this case various methods have been proposed
to extract it. One is the use of approximate models for the internal potential [Emsley et al.,
1993], another the maximum entropy inversion of the data [Berardi et al., 1998b]. However,
the best way of testing the validity of the conformational information obtained from the
simulations is probably to compare calculated and measured NMR RDC, rather than order
parameters. In fact, RDC are the raw (and unbiased) output of an NMR experiment in an
ordered solvent, while any elaboration of them leading to order parameters and molecular
conformations contains some additional assumptions and approximations. In the literature
a number of experimental measurements of 13C-13C, 13C-1H and 1H-1H dipolar couplings
have been reported [Emsley, 1985; Beckmann et al., 1986; Fung et al., 1986; Emsley et al.,
1987]. While the former are directly accessible also in a UA molecular description, to
compute couplings involving 1H we have to assign the hydrogen positions from the position
of the UA centres. This is easily accomplished assuming a perfect planar trigonal and
tetrahedral geometry for sp2 and sp3 carbons, and a fixed C-H bond distance of 1.08 and
1.09 Å, respectively. Table 12.1 compares simulated and experimental RDCs for the hydro-
genated aromatic carbons as measured by Fung et al. [1986]. We see that the results are in
semi-quantitative agreement with experimental figures. The systematically higher values of
the simulated RDCs can be ascribed to the different temperature (T = T simNI − 5K in the
simulation and T = TNI −4K in the experiment), which implies a higher nematic ordering
and consequently higher absolute values of the simulated RDCs. In Fig. 12.15 we present
instead the RDC for the vicinal carbon-hydrogen contacts along the alkyl chaini. We note
that the sign of the couplings, that could not be determined experimentally, was assigned
following geometrical considerations [Fung et al., 1986] or calculated with the assumption
of a potential of mean torque [Emsley et al., 1987], while it can be directly obtained from
the simulations (see Eq. 12.4, with β is the angle between the C-H vector and the director).
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Table 12.1. C-H dipolar couplings between aromatic carbons and directly bonded
hydrogens for nCB (kHz). Experimental values were recorded at T = TNI − 4 K [Fung
et al., 1986; Emsley et al., 1987] while simulated values [Tiberio et al., 2009] at
T = TNI − 4 K for 8CB (313 K) and T = T simNI − 5K for 5–7CB (305, 295, 315 K),
using Eq. 12.4

5CB 6CB 7CB 8CB

Carbon Expt Sim Expt Sim Expt Sim Expt Sim

3′ 0.81 0.98 0.84 1.07 0.91 1.26 – 0.97

2′ 1.08 1.08 1.02 1.17 1.16 1.39 – 1.07

2 1.02 1.13 1.03 1.26 1.21 1.44 – 1.16

3 1.03 1.09 1.06 1.21 1.15 1.39 – 1.12

(a)

(b)

Figure 12.15 (a) Molecular geometry of the UA 8CB model with the atom numbering
and labels used for the classification of NMR couplings for 4-8CB. (b) Simulated order
parameter −SCH = 〈P2(βCH)〉 of alkyl chain C-H bonds for nCB (���������), compared with
experimental ones (•) derived from NMR RDC measurements at T = TNI − 4 K [Emsley
et al., 1987]. MD values were calculated at T = TNI − 4 (K) for 8CB (313 K) and at
T = T sim

NI
− 5 (K) for 5–7CB (305, 295, 315 K), using Eq. 12.4 [Tiberio et al., 2009].

For this particular observable the approximation of a rigid inter-nuclear vector is accept-
able and the calculation of the order parameters SCH is straightforward. On the whole the
behaviour along the chain is well reproduced, particularly for 8CB, where the simulated
and experimental T − TNI coincide. In summary, even if hydrogens are not explicitly

https://doi.org/10.1017/9781108539630.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.013


12.4 Cyano-biphenyls 505

(a) (b)

Figure 12.16 (a) Aspect ratio L/B of molecular dimensions and (b) shape biaxiality
λL = √

3/2
(
Ly − Lx

)
/
(
2Lz − Lx − Ly

)
as a function of temperature T (K), and its

probability at the first simulated temperature below the TNI : 4CB ( ), 5CB (���), 6CB (◦),
7CB (�), 8CB (�) [Tiberio et al., 2009].

considered in the UA FF, the MD simulations are in good agreement with the available NMR
data, without the introduction of any fitting parameter. Moreover, simulations have a clear
potential as a complement to NMR techniques with oriented solvents towards resolving
spectral assignment issues, as shown in some specific examples [Weber et al., 2012, 2015].

Molecular shape. As we saw in Section 12.3 the molecular shape descriptors, expressed in
terms of the relative ratios, the anisotropy and the biaxiality of the molecular dimensions,
are important parameters in understanding LC phase behaviour and the change in TNI
induced by small chemical modifications. To estimate the effective shape of the nCBs,
we consider, as in Section 12.3, the edges Lx , Ly , Lz of the minimal rectangular boxes
containing each molecule in its inertial frame. This represents an approximation to the
actual, time-dependent, molecular dimensions that are difficult to define unambiguously
for a flexible molecule. In Fig. 12.16 we show the temperature dependence of the ratio
between average molecular length L = 〈Lz〉 and molecular breadth B = 〈Lx + Ly〉/2,
respectively. We note that the aspect ratio L/B, always below 3 for 4CB, does not grow
linearly with n, as we might have expected, but it increases only when n goes from even
to odd (e.g. from 4 to 5 and from 6 to 7), as demonstrated by the similar aspect ratios for
the couples 5CB, 6CB and 7CB, 8CB in Fig. 12.16a. With the additional help of the shape
biaxiality λL =

√
3/2(〈Ly〉 − 〈Lx〉)/(2〈Lz〉 − 〈Lx〉 − 〈Ly〉) (Fig. 12.16b), we can see that

the n = 5,6 and 7,8 terms have approximately the same aspect ratio, but that n = 5 and 7
are considerably more biaxial (Ly > Lx). This increase in λL tends to counteract the effect
of the increase in molecular length, leading to the even-odd profile of TNI (Fig. 12.14).

Spatial and space-orientational distributions. We now take a closer look at the molecular
organization of this series of compounds. To do this, the ‘default’ observable is the radial
distribution function g(r) = 〈δ(r − rij )〉ij /(4πr2ρ), shown in Fig. 12.17, where r ij is
the vector connecting the chosen reference centres on molecules i and j and ρ is number
density. In the N phase of nCB, g(r) is liquid-like, in the sense that no sharp peaks are
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Figure 12.17 Temperature dependence of c.o.m. g(r) for 5CB [Tiberio et al., 2009].

(a) (b)

Figure 12.18 (a) The angular-radial distribution function gvv
1 (r, cosβr ) for 5CB at

T = 295 K. Here r ≡ rCN−CN is the vector connecting the CN point dipole v on a molecule
to the same on another, while βr is the angle between r and the director (Eq. 12.5). The range
of cosβr goes from 0 (r ⊥ d ) to 1 (r ‖ d). (b) Snapshot of few near neighbours with an
indication of relevant distances: a, b, c, d [Tiberio et al., 2009].

present at medium-long range and that it quickly goes to the asymptotic value of 1, as
expected for a fluid [Tiberio et al., 2009]. It is also useful to introduce more specific site-
site anisotropic correlations of rank L, e.g. L = 1 between a chosen vector v belonging to
two different molecules: gvv

1 (r, cosβr ), or L = 2 between some second-rank tensor, e.g.
electric quadrupoles �: g��

2 (r, cosβr ). In particular for cyano-biphenyls, it is interesting to
consider the correlation between the strongly polar CN groups on two different molecules:

gvvvvvv1 (r, cosβr ) =
〈
δ(r − rij )δ(cosβr − cosβrij ) (vvvi · vvvj )

〉
ij

(12.5)

where vi , vj are unit vectors along the CN bond on molecules i and j , while r is the
separation vector between the CN point dipoles of the two molecules and cosβr = (r̂ · d).
This almost coincides with choosing the para axis of the biphenyl, since the ab initio electro-
static charges are concentrated on this portion of the molecule. In Fig. 12.18a we show this
correlation for 5CB in the N phase, together with the configuration of neighbours, indicating
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(a) (b)

Figure 12.19 (a) MD results for layer interdigitation in the smectic A phase of 8CB. (b)
Simulated layer spacing �z at various temperatures [Palermo et al., 2013].

the formation of antiparallel dimer-like pairs. We note that the formation of antiparallel 5CB
dimers is favoured mainly for side-side and head-tail pairs (a in Fig. 12.18b), while parallel
dimers arise only when aligned also with the director (b, d). The g1 gives information of the
local polar ordering and shows that a pronounced short-range polar structuring is present.
The sign of g1 of the neighbour is distance-dependent and is determined by an alternation of
prevalently antiparallel (g1 < 0) and parallel (g1 > 0) orientations. The dipole correlation
between two molecules is anisotropic and varies when r is at different angles βr with respect
to the director (Fig. 12.18).

8CB Smectic phase. 8CB is the first in the homologous cyano-biphenyl series to show a
smectic phase and is arguably the most studied smectic system ever, both theoretically and
experimentally. It is then particularly interesting to investigate to what extent the FF can reli-
ably predict its smectic as well as nematic features. Samples with N = 750 and N = 3000
molecules of 8CB (16,500 UA centres) in a deformable sample box of size≈ 90 Å with PBC
were simulated [Palermo et al., 2013] withN,P,T (P = 1 atm) using NAMD. An isotropic
Parrinello–Rahman–Nosé barostat (Section 9.6) and a simple velocity scaling thermostat
have been used to control pressure and temperature and PME employed for electrostatics.
The smectic was obtained by gradual cooling from an isotropic (T = 360 K) disordered
configuration, with post-equilibration production runs of up to 400 ns. We have already
seen the excellent agreement of TNI (Fig. 12.13) and the agreement is found to be good
(307 ± 2 K compared to 306.8 K experimental) also for the TSAN transition temperature.
The layer thickness obtained from MD is �z = 32.4 ± 0.2 Å, while X-ray experiments
give �z = 31.6 Å [Leadbetter et al., 1979], �z = 31.432 Å [Krentsel et al., 1997] or
�z = 31 Å [Urban et al., 2005]. As we see in Fig. 12.19a this layer spacing is sensibly
lower than twice the molecular length of 8CB and corresponds to a strongly interdigitated
structure (much more so than what we saw for 5CB in the nematic, in Fig. 12.18). The layer
spacing is also found to be essentially constant with temperature, (Fig. 12.19b) in accord
with the experimental results of Urban et al. [2005], confirming the validity of the UA FF
described in [Tiberio et al., 2009] for the family of n-alkyl cyano-biphenyls. In a sense the
FF optimization corresponds to devising a computational chemistry synthesis of in silico

https://doi.org/10.1017/9781108539630.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.013


508 Atomistic Simulations

– – –

Figure 12.20 Temperature dependence of splay, twist and bend bulk elastic constants
K11 (◦), K22 (⊕), K33 (•) for 5CB evaluated with AMD and a free energy perturbation
technique [Sidky et al., 2018] compared to experimental data from Madhusudana and
Pratibha [1982] (squares) and Chen et al. [1989] (triangles).

nCB mesogens, that can then be used to study other properties and model devices. We shall
see in Section 12.5, applications to the investigation of surface anchoring in thin films. For
other bulk properties it is important to mention at least:

Elastic constants. The Frank elastic constants (Section 1.2.3) for cyano-biphenyls and
some of their mixtures have been determined by Sidky et al. [2018], Shi et al. [2020] using
the FF by Tiberio et al. [2009] just described and the free energy perturbation method already
mentioned for rod-like (Section 11.5.1) and disc-like (Section 11.5.2) Gay–Berne systems.
Fig. 12.20 shows a good agreement with experiment, particularly for the splay and twist
constants. Note that no information on elastic constants was used when setting up the FF.

12.5 Surface Anchoring

The alignment of organic molecules at an interface (anchoring) [Allara, 2005] is a key
issue for LC physics and display technology [De Luca et al., 2008; Ricci et al., 2010],
as well as for applications to organic transistors and photovoltaic cells where it is known to
strongly affect charge transport [Vilan et al., 2010; Beljonne et al., 2011]. The description
of anchoring is, however, essentially empirical, and methods for predicting the molecular
structuring and orientation at a support surface have been surprisingly scarce. Indeed, the
commonly employed approaches [Yokoyama, 1988; Jérôme, 1991] typically amount to a
continuum description of the surface free energy per unit area when the LC director is at
an angle β from the surface normal, while its equilibrium value (easy axis) corresponds
to an angle βA, as in the celebrated Rapini and Papoular [1969] expression:

W (β) = wA
0 −

1

2
wA

2 sin2 (β − βA), (12.6)
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where wA
2 is called the anchoring strength and, for planar anchoring, βA = π

2 . More gen-
eral formulations including higher-rank angular terms [Teixeira and Sluckin, 1992], or an
in-plane azimuthal angle φ [Fukuda et al., 2007] have been proposed, but the problem of
determining the anchoring strength coefficients from realistic microscopic interactions still
remains, even if various approximate approaches, based on specific assumptions on the type
of interaction model, exist. For instance, dispersive, electrostatic or excluded volume mech-
anisms [de Gennes, 1974; Jérôme, 1991; Evangelista and Ponti, 1995; Andrienko and Allen,
2002] have been proposed to date, albeit with limited success. To further complicate the
problem, the alignment induced by the surface not only depends on the chemical nature of
the LC-substrate interactions, but also on the corrugation of the surface itself and its rough-
ness and defects that may cause elastic distortions of the director [Berreman, 1972; Fukuda
et al., 2007]. In real experiments the chemical and morphological aspects are entangled and
it is extremely difficult to assess their relative importance. On the positive side, important
progress has been made in characterizing experimentally the surface-induced order and
structuring of LCs close to a surface [Carbone and Rosenblatt, 2005; De Luca et al., 2008;
Carbone et al., 2009; Lee et al., 2009; Nazarenko et al., 2010; Voitchovsky et al., 2010], mak-
ing the need for a theoretical description even more pressing. Atomistic MD simulations can
provide a viable bottom-up approach and here we briefly examine examples for a nematic on
different hard and soft surfaces, emphasizing the methodologies that can be applied to other
systems as well. In particular, the alignment orientation, the order and molecular organiza-
tion of nano-thick nematic and isotropic films of 5CB at the interface with (i) atomically flat,
H-terminated (001) crystalline silicon surfaces [Pizzirusso et al., 2012a], (ii) crystalline and
glassy silica of different roughness [Roscioni et al., 2013], (iii) some lapped and disordered
polymers [Palermo et al., 2017] and (iv) self-assembled monolayers [Roscioni et al., 2017]
will be examined.

12.5.1 5CB on Crystalline Silicon

The atomistic simulations of 5CB on a crystalline silicon slab [Pizzirusso et al., 2012a]
was arguably the first realistic one for a nematic thin film deposited on a solid slab,
showing that a quantitative description of anchoring can be obtained from molecular and
surface properties. The deposited film is in contact with air (vacuum strictly) on the free
surface. When choosing silicon as a substrate, e.g. cleaving a slice from a bulk crystal,
the first choice to make is on how to terminate the unavoidable dangling bonds. For many
practical applications this is done by exposing the slab to oxygen at an appropriate pressure
and temperature to yield a so-called SiOx . Unfortunately, x is not in a stoichiometric
ratio, also because of surface restructuring reactions, and is often only approximately
known. This ill-defined composition is not really suitable for an atomistic simulation and
a better alternative for choosing a chemically well-defined and atomically flat silicon
surface is an hydrogen-terminated one [Irene, 2008; Bellec et al., 2009; Vilan et al., 2010].
This is also of importance as a micro- and nano-fabrication platform, in particular for
opto-electronic applications such as non-linear optics, thin-film displays, lithography and
molecular electronics.
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(a)

(b)

Figure 12.21 (a) The simulated sample cell replicated with PBC showing the 5CB film and
the vacuum above. (b) The ‘laboratory’ axes frame with a snapshot of the hydrogenated
silicon (001) surface showing the (1, 1) nanogrooves [Pizzirusso et al., 2012a].

Simulation details. In the study of Pizzirusso et al. [2012a] two 5CB films with N = 1000
or 2000 molecules, corresponding to a thickness of ≈ 12 nm and ≈ 24 nm, respectively,
were prepared over the hydrogenated Si(001):H flat surface of a silicon slab of dimensions
59.73 Å × 59.73 Å and thickness 18 Å. The support slab was obtained cleaving a silicon
crystal along the (001) crystal direction, and saturating completely the dangling bonds with
hydrogens (see Fig. 12.21b). The Si surface was modelled at atomistic level, with force
constants for the Si-Si and Si-H covalent bonds taken from the COSMIC force field for a
polyalkylsilanes [Szabó et al., 1999] whereas the equilibrium bond distances and valence
angles have been assumed to be those typical for a silicon diamond-like lattice [Ashcroft and
Mermin, 1976]. The atomic electrostatic point charges were calculated by QC techniques
as described by Pizzirusso et al. [2012a] and further symmetrized for H and Si atoms with
equivalent local environment. Thus, all H atoms were assigned the same average charge
(−0.138e), and four types of Si atoms were defined, i.e. those only bound to other Si
atoms, with zero atomic charge and those bonded to one (+0.138e), two (+0.276e) or three
(+0.414e) hydrogens. After equilibration, the solid slab was ‘frozen’ during the anchoring
simulation. (N,V,T ) MD simulations were run with the NAMD code [Phillips et al., 2005].
A general problem arising with thin film relates to the use of the very efficient variants
of Ewald summations for electrostatic calculations, since these require an infinite periodic
crystal and thus periodic boundary conditions (PBCs) in all directions. To do this the sample,
i.e. the elementary cell, is extended to ≈ 300 Å (more than ten times the film thickness) in
the z-direction (i.e. across the film) to accommodate ample empty space above the whole
surface (Fig. 12.21a). The typical MD production runs were≈ 70 ns for the smaller system
and ≈ 40 ns for the larger one.
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Figure 12.22 Local order parameter 〈P2〉 of 5 CB vs distance z (Å) from the silicon
Si(001):H support surface for the thin sample with N = 1000: T = 300 K (•) and
T = 315 K (�), and the thicker one with N = 2000 5CB molecules: 300 K (◦◦◦) and 315 K)
(���������) [Pizzirusso et al., 2012a].

Order across the film. A fundamental question about the effect of surfaces on the molecular
organization, is whether they increase or disrupt the orientational order [Jérôme, 1991].
In Fig. 12.22 we see the variation of the local orientational order parameter 〈P2〉 as a
function of the distance z from the Si(001):H surface. We see that at T = 315 K where
5CB in the bulk is isotropic, the surface still induces a high nematic order (≈ 0.7) in the
LC overlayer, as predicted by theoretical models [Sheng, 1982]. The order is lost in a
few nanometres and almost vanishes (within numerical error) in the centre of the film,
then increases again approaching the vacuum interface (〈P2〉 ≈ 0.5) . Thus, both interfaces
induce a local increase of the order parameter. In the nematic, at T = 300 K, we observe
a quite different behaviour, depending on film thickness. In the case of the 24 nm film,
we see again that the nematic order close to the silicon surface is higher (〈P2〉 ≈ 0.8)
than the equilibrium bulk phase value (〈P2〉 ≈ 0.5) [Tiberio et al., 2009] while the cor-
responding value in the middle of the film is considerably lower for the thinner sample
(0.3) and higher for the thicker one (0.6). We note that the order at the solid interface is
essentially the same at the two temperatures and in the two phases (nematic and isotropic),
both for the thin and thick films, indicating that their ordering is dominated by surface
effects. This finding is consistent with theoretical arguments on the so-called ‘subsurface
deformation’ at flat planar surfaces [Rajteri et al., 1996; Barbero et al., 1998] induced by
dispersive interactions.

Director across the film. The way the director and the order change across the sample for
a hybrid geometry, with planar alignment on a surface and perpendicular (homeotropic)
anchoring at the other one, has been in itself the object of many theoretical [Barbero
and Barberi, 1983; Palffy-Muhoray et al., 1994; Chiccoli et al., 2003] and experimental
[Carbone et al., 2009; Chiccoli et al., 2019] investigations. In particular, three possibilities
have been outlined: (i) a uniform director orientation across the sample, imposed by the
surface with strongest anchoring, (ii) a biaxial structure with director exchange, where each
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(a)

(b)

(c) (d)

(e) (f )

Figure 12.23 Snapshots of the molecular organization of a 5CB film on a Si(001):H surface
at T = 300 K, viewed from the x-axis, for the N = 1000 (a) and N = 2000 (b) samples
of different thickness studied. We also show the director components dk(k = x,y,z) across
the film as a function of the distance z from the surface for the thin (c) and thick (d) film
[Pizzirusso et al., 2012a]. The organization is compared with a sketch of those predicted by
continuum theory for the case of a very thin film with abrupt changes between the planar
and homeotropic director orientations (e) or a continuous bend deformation (f) [Barbero and
Barberi, 1983; Palffy-Muhoray et al., 1994; Chiccoli et al., 2003].

surface imposes its local orientation with a discontinuous transition from one region to the
other with order disruption at their boundary (Fig. 12.23e), and (iii) a bent structure where
the director changes regularly between the two perpendicular orientations (Fig. 12.23f).
Barbero and Barberi [1983] showed, within the one-constant approximation K11 = K22 =
K33 = K , that in a hybrid film with anchoring strengths wA

2 and wB
2 and wB

2 < wA
2 , the

bent-director configuration is only favoured if the film is thicker than a critical length,
dc = K

(
1/wB

2 − 1/wA
2

)
. In Fig. 12.23c, d we show the 5CB director components across

both films. For the thinner film (Fig. 12.23a), we note that dx and dy at T = 300 K decrease
with z, but remain very similar, suggesting that the change from planar to homeotropic does
not involve an azimuthal reorientation of the director. Instead, the director switches from
planar to homeotropic alignment between 4 and 7 nm, from the silicon surface, i.e. on a very
short interval, comparable to a few molecular lengths. Thus, for the thin film the director
variation resembles a discontinuous, rather than a continuous, director reorientation,
and we see some evidence of order disruption in the middle of the 5CB slab, with the
decrease of 〈P2〉 noticed earlier on, as expected for a perfectly discontinuous rearrangement
[Palffy-Muhoray et al., 1994] (see Fig. 12.23e). For the thicker film (Fig. 12.23f) we see
instead that the director changes continuously from planar homogeneous along the (110)
direction d ≈ ( 1√

2
, 1√

2
,0), to homeotropic d ≈ (0,0,1) at the vacuum interface, in two

stages: first a twist in the xy-plane from dx = dy , dz = 0 to dx ≈ 0, dy ≈ 1), followed
by a bend up to d ≈ (0,0,1) Thus, the 5CB molecules adjacent to the Si(001):H surface
align along the hydrogen rows or the grooves, then twist continuously towards the direction
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perpendicular to the grooves in the middle of the nematic slab, and finally bend upwards
until reaching a homeotropic arrangement close to the vacuum (see also Figs. 12.23a,b).

Anchoring on Si(001):H. Atomistic simulations offer a unique opportunity of trying to
understand the surface alignment mechanism. In Fig. 12.24a we show a contour plot of
P (z, cosβ), i.e. the probability of finding a molecule at a given angle and distance from the
silicon surface, calculated for the ≈ 24 nm samples at T = 300 K, with a sub-nanometre
resolution. The distribution shows a sharp peak (in black) at ≈ 3 Å from the surface and
at cosβ = 0, corresponding to the planar anchoring of the 5CB molecules. We see that,
after the first layer, the distribution becomes asymmetric, showing that 5CB molecules
arrange with a slightly tilted orientation (≈15◦) from the surface, corresponding to the
CN-group preferentially pointing towards the silicon (cosβ < 0). The distribution changes
completely at the vacuum interface, where we see (Fig. 12.24a) two peaks at cosβ ≈ ±1,
both corresponding to a perpendicular alignment, but shifted along z with respect to each
other. The outermost one is for CN directed inside the film and thus with methylene chains
outside. The other, at cosβ = +1, corresponds to molecules with CN pointing outwards in
the position suitable for dimerization with the interfacial ones.

The anchoring coefficients in the Rapini–Papoular expression (Fig. 12.24b) are obtained
by deriving first an effective work function from the positional orientational distribution
P (zi, cosβ) obtained as a histogram from the simulated configurations (see Fig. 12.24a)
by a Boltzmann inversion, scaled by the number of molecules N (z) per unit surface
area A as

W (zi, cosβ) = −kBT lnP (zi, cosβ)N (zi) /A+W0, (12.7)

and then fitting the parameters in the Rapini–Papoular expression at the surface A by min-
imizing the mean square deviation

χ2
RP =

z=z2∑
z=z1

cosβ=+1∑
cosβ=−1

P (z, cosβ)

{
W (z, cosβ)−

[
wA

0 −
1

2
wA

2 sin2
(
β − βdA(z)

)]}2

.

(12.8)

We see from Fig. 12.24b that the anchoring coefficient wA
2 varies strongly with distance

from the solid surface, different to the simple Rapini–Papoular expression Eq. 12.6, indi-
cating that the definition of anchoring energy requires attention at the nanoscale, in compar-
ison with traditional experimental techniques probing much larger distances. In particular,
consideration should be given to the fact that the first layer of molecules can be strongly
adherent to the surface itself [Voitchovsky et al., 2010], thus in a way renormalizing its
properties. Different experiments can explore a solid-nematic interface at different depths
more or less close to the surface and this, added to the difficulty of obtaining surfaces with
exactly the same physical and chemical properties after a series of chemical treatments
or mechanical rubbing, might explain the huge spread in anchoring energies found in the
literature. The value at the overlayer is quite strong compared to published experimental
results, even though on different substrates [Blinov et al., 1989].
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(a) (b)

Figure 12.24 (a) The orientational distribution P (z, cosβ) for 5CB at 300K and (b) the
Rapini-like anchoring coefficient wA

2 of 5CB at various distances z from the silicon plane.
Part (b) shows the results for the thin (filled symbols) and thick samples (empty symbols),
at T = 300 K (circles) and T = 315 K (squares) [Pizzirusso et al., 2012a].

In summary, the 5CB films adopt a hybrid configuration, with a change of the director
orientation from planar uniform at the silicon to perpendicular at the free surface, as shown
by the snapshots (a , b) in Fig. 12.23. This variation is nearly discontinuous for the≈ 12 nm
thick film, and continuous with twist and bend for the thicker (≈ 24 nm) one. These findings
usefully complement experimental results at nanometric resolution [De Luca et al., 2008;
Carbone et al., 2009; Lee et al., 2009; Voitchovsky et al., 2010] and possibly open the way
to new ones, ideally on the same substrate.

12.5.2 5CB on Quartz or Glass: Morphology Effects

One very interesting question related to anchoring is to what extent, for a given type of
mesogen, are the chemical nature of the substrate and/or its morphology (crystalline versus
glassy, for instance) determining the anchoring orientation and its strength. In many ways
silica (SiO2) is an ideal substrate to investigate this, since both its crystalline form (quartz,
or actually a certain type of quartz, since there are various morphologies) and its disordered
solid (glass) are easily available and have been investigated. In this case study we shall
briefly describe the work of Roscioni et al. [2013] that addressed this issue looking at 5CB
where, as we have just discussed, a reliable FF is available, on cristobalite quartz and on
glass with a controlled roughness.

Quartz. The (cubic) cristobalite crystal structure was optimized at the molecular mechanics
level with the General Utility Lattice Program (GULP) [Gale and Rohl, 2003]. The pair
potential was assumed to be a sum of Coulomb and Buckingham (Section 5.3) terms:
Uij = eiej /r + Aij exp

(−Bij r)− Cij /r6, with the silica parametrization of Du and
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Cormack [2005]. A 63.5 Å × 63.5 Å slab, approximately 60 Å thick and exposing the
(001) surface was obtained from the optimized bulk.

Bulk amorphous silica. Amorphous silica glass was prepared following the procedure
of Della Valle and Andersen [1992]. (N,V,T ) MD simulations were performed with
LAMMPS starting from a cristobalite sample of 4608 SiO2 units (13824 atoms) with a den-
sity corresponding to the experimental one of vitreous silica

(
2.2 g/cm3

)
. The sample was

heated to 4000 K, melting it, then cooled, at a rate of 10 K/ps, to 300 K, yielding an amor-
phous glass. A silica slab

(
58.7 Å× 58.7 Å× 60 Å

)
was obtained eliminating PBC in the z-

direction
(cf. Fig. 12.21a) and SiO2 units were then randomly removed on the exposed surface
obtaining a controlled roughness of the otherwise atomically flat surfaces. A further
annealing and energy minimization followed the final slab organization. The solvent-
accessible surface (SAS) roughness can be defined as the root mean square (RMS) deviation
from the mean of the SAS along the normal to the surface, which in turn can be computed
choosing as the virtual solvent a rigid sphere of a certain diameter, e.g. using the 3V
rolling-sphere algorithm by Voss and Gerstein [2010]. A spherical probe with a diameter of
1.6 Å was used in the calculations, while Si and O atoms were represented as hard spheres
with radii of 2.10 Å and 1.52 Å respectively (Blue Obelisk – Open Babel library [Guha
et al., 2006]). Two silica surfaces were prepared: a ‘smooth’ one (surface 1) with an RMS
of 1.5 Å, and a ‘rough’ (surface 2) with an RMS of 3.2 Å. The morphology and surface
topography of the final system is shown in Fig. 12.25. Silicon and oxygen atoms belonging
to the silica slab were kept frozen in their initial positions during the simulation.

LC film. The LC sample consisted in all cases of 2000 5CB molecules (≈ 22 nm thick
film) deposited on top of one of the anhydrous silica slabs. 5CB is described as before by
the united-atom FF developed by Tiberio et al. [2009].

LC-silica interaction. The 5CB-SiO2 interaction was described by a long-range Coulomb
plus a shorter range LJ potential term [Cruz-Chu et al., 2006]. MD simulations were per-
formed with NAMD under (N,V,T ) conditions: at T = 300 K and T = 320 K for the nematic
and isotropic phases of 5CB, respectively.

Results for 5CB on silica. The effects of surface roughness on the orientational order across
the film show clearly (Fig. 12.26) that anchoring also depends on slab morphology and
that each interface influences the orientational ordering across the 5CB films. As in the
previous case of 5CB on silicon, the interface with the vacuum induces the formation of
a highly oriented molecular double layer with 〈P2〉 higher than in the central ‘bulk-like’
region of the film. Similarly, the interface with cristobalite induces a strong ordering in
the 5CB overlayer and an increase of 〈P2〉 with respect to that in the middle of the film.
This surface order seems to be only weakly dependent on temperature, being similar both
for the nematic and the isotropic temperatures studied. Notwithstanding the same chemical
composition, the amorphous silica surfaces have opposite effects on the 5CB order, with
〈P2〉 decreasing rather than increasing, at the silica interface in agreement with expectations
[Jérôme, 1991]. The effect seems to be due to the disordered and to some extent irregular
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(a)

(b)

(c)

Cristobalite ‘Smooth silica’ ‘Rough silica’

Figure 12.25 Silica support surfaces. (a) Top view of cristobalite: 001 crystal facet (rms
roughness σR = 0.7 Å, a, left), smooth amorphous surface

(
σR = 1.5 Å, a, center panel)

and rough amorphous surface
(
σR = 3.2 Å, a, right panel). The corresponding surface

topographies are shown as the (b) solvent-accessible surfaces (SAS) and (c) the grey-coded
electrostatic potential maps computed on the SAS [Roscioni et al., 2013].
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Figure 12.26 (a) Scalar order parameter of 5CB thin films at T = 300 K (◦◦◦) and T = 320 K
(•) on crystalline cristobalite and ‘smooth’ and ‘rough’ glassy silica computed at distance

z from the surface. (b) In-plane and out-of-plane director components dxy =
√

[n2
x + n2

y ]
(�) and dz (���������������������������) across the film on the same three surfaces and at T = 300 K [Roscioni et al.,
2013].

https://doi.org/10.1017/9781108539630.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.013


12.5 Surface Anchoring 517

nature of these surfaces, which favours different local orientations of 5CB molecules with a
disruptive effect on the nematic order for the first few nanometres above the support surface.
After this region a bulk-like value of 〈P2〉, similar to that measured for the cristobalite
sample, is recovered. The decrease of order observed with increasing roughness agrees with
experimental observations on SiO [Monkade et al., 1997].

In summary, both silicon and silica crystalline surfaces enhance local orientational order
at the interface while amorphous silica reduces it, as found experimentally, but enhances
the long-range director alignment.

12.5.3 5CB on Aligned and Disordered Polymers

In very many practical applications the alignment of LC thin films at a polymer support
surface is achieved by a mechanical process of rubbing [Chatelain, 1943; Stöhr and Samant,
1999] or buffing [Geary et al., 1987; Hayashi and Matsumoto, 1994; Brown et al., 1998b].
During the production process of these aligning layers, the polymer-coated surfaces are
softly rubbed in one direction by a rotating cylinder covered with a suitable cloth, to achieve
a uniform orientation of the director. In typical cases the LCs at the surface of the rubbed
polymer film layer are aligned parallel to the rubbing direction. In these systems, the sug-
gested explanation is that sub-micrometric grooves are generated on the film surface along
the rubbing producing alignment. Another hypothesis proposed is that ‘the oriented state of
the polymer chains, and not scratching or grooving of the surface, is necessary to produce
alignment’ [Geary et al., 1987]. However, LC alignment along the rubbing direction is
not universal. For instance, this is the case for polymethyl methacrylate (PMMA), while
polystyrene (PS) surprisingly induces a planar alignment, but perpendicular to the rubbing
direction. To try to verify if this is reproduced by simulations and clarify the origin of the
aligning mechanism, a thin film of 5CB, sandwiched between two PMMA and PS slabs
was studied [Palermo et al., 2017]. We briefly describe the simulation, as usual focussing
on the approach.

Polymer modelling. Each polymer was built by linking 50 monomers in the reacted form
(Fig. 12.27, top), obtaining isotactic polymer chains. The relatively short chain length was
chosen for practical reasons of feasibility. The macromolecules were modelled with full
atomistic detail using a customized AMBER-OPLS molecular mechanics FF [Cornell et al.,
1995; Jorgensen et al., 1996] previously employed in the study of the electrostatic interac-
tion between pentacene and PS or PMMA [Martinelli et al., 2009]. Charges were calculated
with QC (Hartree-Fock AM1 using Gaussian 03 and ESP at the DFT level). The validation
of the polymer FF, relied on in the extensive investigations by Soldera and Metatla [2005,
2006] and Soldera [2012], who showed that experimental densities and bulk moduli for PS
and PMMA are well reproduced with these OPLS FF parameters.

Polymer surfaces. Four disordered or oriented confining polymer slabs (≈ 5 nm thick) were
prepared as follows.
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(a)

(b)

(c)

(d)

(a')

(b')

(c')

Figure 12.27 Chemical structure of the PMMA and PS polymer substrates making the top
and bottom slabs trapping the 5CB film. The director d orientation of 5CB at the top ( )
and bottom ( ) interfaces with PMMA (a,b) and PS(a′,b′) are shown for disordered (a,a′)
or rubbed (b,b′) slabs. The rubbed surfaces align uniformly d along or perpendicularly to
the rubbing direction as also shown by the MD snapshots (c) and (c′). The close up in (d)
shows the alignment of 5CB molecules along PS nanochannels [Palermo et al., 2017].

(i) Amorphous PS consisting of 60 chains (of 50 monomers) arranged in a disordered
fashion (PS-d) with surface area ≈ 10 nm× 10 nm.

(ii) Ordered PS, consisting of 60 elongated chains arranged in a parallel fashion (PS-o),
with surface area ≈ 10.3 nm× 10.3 nm.

(iii) Amorphous PMMA surface consisting of 72 chains arranged in a disordered fashion
(PMMA-d), with surface area ≈ 10 nm× 10 nm.

(iv) Ordered PMMA surface, consisting of 72 elongated chains arranged parallel to each
other (PMMA-o), with surface area of≈ 11.1 nm× 9.9 nm. The amorphous polymers
were prepared in the melt, at 700 K, a temperature well above the experimental glass
transition temperature, first applying a sufficiently high pressure (P = 1000 atm) to
achieve a density similar to the experimental one, equilibrating at P = 1 atm, still at
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700 K, then at 300 K. Ordered slabs were built, at first, replicating regularly in space
a single elongated polymeric chain. The elongation of the chains was achieved by
applying two equal stretching forces (1 kcal mol−1Å−1

)
, in opposite directions, to the

terminal carbon atoms of each chain, during the packing process performed as for the
amorphous samples. After compression, all samples were equilibrated for about 50 ns
at 300 K until they reached a constant equilibrium thickness. The vertical pressure
was set to 1 atm, keeping the horizontal section of the simulation cell fixed, with the
Langevin piston method [Feller et al., 1995], similar to the extended Lagrangian for-
mulation by Andersen (Section 9.6), but where the deterministic equations of motion
for the piston degree of freedom are replaced by a Langevin equation.

Liquid crystal film. The LC was 5CB, modelled with the Tiberio et al. [2009] FF as used
in previous examples. The LC samples consisted of 1000 or 3000 5CB molecules, the last
corresponding to a film thickness of≈ 12 nm with ample space left along z (see Fig. 12.21)
so as to be able to implement PBC.

Simulations. Atomistic (N,P,T ) MD simulations were run with the NAMD package
[Phillips et al., 2005] at T = 300 K, P = 1 atm. Equilibration times were over 50 ns and
production times over 100 ns.

5CB surface alignment. It can be seen from Fig. 12.27 that for both the PMMA-d and
PS-d cells, the director at the bottom and top surfaces are unrelated, consistent with fact
that no easy surface axis is present. More interestingly, if we compare the effects of the two
ordered surfaces, we see that the director is oriented along the chain alignment direction at
the two interfaces for PMMA-o, while it is pointing perpendicular to it for PS-o. The surface
alignment of 5CB at the interfaces, might be ascribed to the π -π interaction between the
5CB aromatic moieties and the phenyl PS side groups. In practice, the 5CB alignes along
nanogrooves created by the PS phenyls that essentially stick out of the surface. Experimental
confirmation of the alignment can be found in various works [Ishihara et al., 1989; Oh-e
et al., 2002; Lee et al., 2003].

We can also look at the order across the film for the various cells, like we did for the
silicon and silica surfaces, recalling that, in that case, one of the two surfaces was free,
while here the film is between two solid slabs. The plots for 〈P2〉 across the film are shown
in Fig. 12.28. It can be seen that the PMMA-o cell is the only one featuring order parameter
similar to those found for the bulk nematic phase (see Fig. 12.12-top left), while all other
systems are more disordered. Here all samples present slightly lower values of 〈P2〉 close
to the surfaces, consistently with the fact that even the ordered polymer surfaces PS-o and
PMMA-o are not really endowed with the regularity of a crystal. An additional disrupting
effect is probably due to the observed diffusion of 5CB within the polymer film. We also see
that the 〈P2〉 profiles are not symmetric, particularly for PS-d and PS-o. This is reasonable,
since for these systems the two polymeric surfaces are not identical and lower values are
found in proximity of the roughest surface [Palermo et al., 2017].

In conclusion, the results show that, at least for the studied polymers, both chains stretch-
ing and the chemical nature of the polymer contribute to the orientational order of the LC
phase, and that surface microgrooves created by rubbing are not necessary to reproduce the
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Figure 12.28 Orientational order parameter 〈P2〉 of 5CB across the simulation box for
samples composed of NM = 3000 5CB molecules at T = 300 K between two ordered
and disordered PMMA (filled symbols) and PS (empty symbols) [Palermo et al., 2017].

experimental results for the alignment of 5CB on PS and PMMA surfaces. This essentially
supports the suggestion by Geary et al. [1987] that chains ordering, rather than scratching
or grooving, is the key element for alignment at a polymer surface.

12.5.4 Self-assembled Monolayers on Silica

The various hard solid surfaces we have discussed up to now essentially yield in-plane
orientation of a nematic (5CB). Inducing perpendicular, homeotropic alignment is also
very important and has traditionally been obtained by coating glass solid support surfaces
with lecithins or some self-assembled monolayers (SAMs). The approach is to a large
extent empirical, but atomistic MD can now be used to study at least some of these orient-
ing soft surfaces. Here we describe the MD simulation of two prototypical SAM-forming
silanes: octadecyltrichlorosilane (OTS) and 1H, 1H, 2H, 2H- perfluorodecyl-trichlorosilane
(FDTS), chemisorbed on glass (an atomically flat amorphous SiO2) [Roscioni et al., 2016].
An outline of the procedure is as follows. A slab of amorphous silica (90 Å× 75 Å with a
thickness of 67 Å, corresponding to ≈ 30,000 atoms) is initially fabricated as discussed
in Section 12.5.2 [Roscioni et al., 2013]. The resulting top surface is hydrated capping
unsaturated oxygen and silicon atoms on the surface with H or OH groups, respectively.
The hydrated surface is then equilibrated at 300 K in (N,V,T ) conditions (≈ 20 ns). After
this step the surface presents an irregular distribution of silanol SiOH groups, similar to that
of real amorphous silica surfaces, with the surface roughness and inhomogeneities that rep-
resent important features in governing alignment. The next stage in order to construct OTS
and FDTS SAMs is performed grafting silane molecules to the silanol (SiOH) groups on the
surface. The method is somehow inspired by the experimental formation of monodentate,
non-cross-linked SAMs [Wang et al., 2005] from the reaction between a trichlorosilane
derivative and the hydroxylated surface of amorphous silica, followed by hydroxylation of
the remaining chlorine atoms [Tripp and Hair, 1995]. As a result, the alkylsilane groups
are fully hydroxylated and bonded to the silica surface by single Sisurf -OSi(OH)2R bonds,
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(a)

(b)

Figure 12.29 (a) MD snapshots showing the tilt angle of OTS alkylsilane (left) and of the
perfluoroalkyl silane FDTS (right) on silica glass. (b) Distribution of tilt angles P (cos θ ) vs
θ at different surface coverages, showing the different arrangement of the two SAMs. The
insets show the variation of tilt angle with coverage [Mityashin et al., 2014; Roscioni et al.,
2016].

with R being the alkyl or fluoroalkyl chain. The computational approach does not reproduce
these steps but only the final product. In practice, the SAM is composed of molecular
ions, each with the formal charge of the replaced -OH group (−0.525e in the CLAYFF
force field [Cygan et al., 2004]), distributed evenly over the three oxygens, so as to main-
tain the charge neutrality of the slab. Even if the surface Si atom and the oxygen of the
OSi(OH)2R SAM residue are not covalently bound, the electrostatic and LJ interactions
are sufficiently strong to keep the molecules adsorbed, while allowing enough mobility
for the self-organization during the MD simulations as a function of surface coverage.
The calculated morphologies, tilt angle, film thickness and lattice parameters agree with
experiments, demonstrating the accuracy of the methodology. In particular, it is found that
OTS molecules show a coverage-dependent tilt, while FDTS molecules are always vertically
oriented, regardless of the coverage (Fig. 12.29). It is worth noting that these MD simula-
tions also provide the detailed atomistic configurations needed for the quantum chemical
calculation of electronic and semiconductor properties of the two SAM-coated surfaces
[Mityashin et al., 2014].

12.5.5 5CB on Self-assembled Monolayers and Homeotropic Alignment

Having prepared a SAM-coated silica surface similar to the ones experimentally used to
induce alignment perpendicular to the surface we can try to examine if this type of surface
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Figure 12.30 Lateral view of nematic 5CB films on various SiO2/SAM surfaces at
T = 300 K. 5CB molecules are grey coded according to their orientation with respect
to the surface: from black, perpendicular, to white, parallel, to the support surface. The
composition of the SAMs and coverage densities (molecules/nm2) of samples 1–4 are also
shown [Roscioni et al., 2017].

actually produces ‘homeotropic alignment’ of an LC deposited on it. The family of SAMs
typically used experimentally to induce perpendicular alignment is of the alkyl type like
OTS, perhaps surprisingly, given the tilted alignment of the overlayer as seen in Fig. 12.29.
To understand this Roscioni et al. [2017] studied a film of 4100 5CB molecules (≈ 20 nm
thick) over four SAMs systems. Each of these monolayers consists of 300 molecules of
mixed ‘long’ and ‘short’ alkylsilanes: TS and hexyltrichlorosilane (HTS) in various propor-
tions, coating an amorphous silica slab with surface 9.0 nm× 7.5 nm. All MD calculations
were carried out with NAMD in (N,V,T ) conditions at 300 and 320 K, corresponding to
5CB being in the N or I phase, respectively. Other technical details are given in Roscioni
et al. [2017]. Snapshots of the films showing the molecular alignment of the 5CB and the
SAM are reported in Fig. 12.30. In all cases, the 5CB is aligned perpendicular to the vacuum
interface as usual. More specifically the different SAM coatings are:

(i) OTS with density of 4.5 molecs/nm2 (essentially full packing). In this case, the 5CB
alignment over the SAM is planar, not homeotropic.

(ii) Again, pure OTS but with a density of 4.2 molecs/nm2, thus with vacancies that allow
some 5CB insertion. In this case, a few 5CB molecules can infiltrate in the vacancies,
assuming a strict homeotropic alignment. A predominantly planar alignment is instead
found above the SAM interface and maintained up to the middle of the sample. It is
very interesting to compare the tilt of OTS molecules in the two cases: we see from
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(a)

(b)

Figure 12.31 (a) Snapshots and (b) plots of tilt-angle distributions of a SAM of OTS in
vacuum (Fig. 12.29) and in the presence of the 5CB film for the full coverage sample 1 (left)
and for the less dense sample 2 (right) described in Fig. 12.30 [Roscioni et al., 2017].

Fig. 12.31 that, for the tightly packed SAM in sample 1, the tilt of OTS molecules
(≈23◦) is very similar to that of the SAM exposed to a vacuum in Fig. 12.29a [Roscioni
et al., 2016]. In sample 2 the OTS molecules in the vacuum-exposed film are again
tilted in the same way, although with a wide distribution due to the increased free space
available to the OTS chains. However, when the 5CB film is present, the penetration
of 5CB molecules in the SAM has the effect of aligning the OTS molecules vertically.
This configuration is also evident in Fig. 12.30. The remaining two soft surfaces are:

(iii) A mixed long- and short-chains SAM with 60% OTS and 40% of HTS and total density
4.5 molecs /nm2.

(iv) A SAM with inverted proportions of short and long chains: 40 % OTS and 60% of HTS,
total density 4.5 molecs/nm2. For samples 3 and 4, we observe at last an essentially
uniform homeotropic alignment of 5CB across the film, which seems to be of better
quality for the sample with the higher concentration of short HTS chains (sample
4 in Fig. 12.30). The rationale is that the 5CB molecules stacking out of the SAM,
particularly in the HTS region, provide the template for homeotropic alignment across
the film.

In summary, MD simulations clarify that not all the SAMs induce homeotropic alignment
and provide an indication of the conditions required to produce this alignment effect.

12.6 Discotics and Columnar Phases

Atomistic simulations of discotic systems are not very abundant, partly because of the
considerable complexity (number of constituent atoms in particular) of these mesogens
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Table 12.2. A small list of atomistic MD simulations of discotic mesogens: (a)
hexakis(pentyloxy) triphenylene (HAT5) [Cinacchi et al., 2004]; (b) metal - porphyrazine
complex (ZnP4) [Cristinziano and Lelj, 2007]; (c) various hexa substituted
hexabenzocoronens HBC-(R)6 with R (i) linear alkyl chains, Cn, with n = 10,12,14,16 (cf.
Table 1.6), (ii) branched side chains, C10−6, and (iii) dodecylphenyl-substituted side
chains, PhC12 [Kirkpatrick et al., 2007, 2008]; (d) tetra C12-C8 alkoxy-substituted metal
free phthalocyanine (PHT) [Olivier et al., 2009]; (e) triangular and semitriangular
polyaromatics (TSP) [Feng et al., 2009]; (f) carbazole macrocycle (CM) [Vehoff et al.,
2010]; (g) a substitute perylene electron donor (PE) and benzoperylene diimido diester
electron acceptor (BP) columnar-columnar interface [Idé et al., 2014].

System Phases Simulation details and comments Ref.

HAT5 Dh MD, (N,P,T ), N = 80, P = 0.1 MPa, T = 375 K,3 ns
Start: 6 columns, UA, AMBER-OPLS (a)

ZnP4 I,Dt
h UA, GROMACS, N = 64, 40 ns, start: I

Tilt wrt column axis = 28.5◦ (b)
HBC−(R)6 Dr N = 160, T = 300 K, P = 0.1 MPa, 100 ns

Start:16 columns of 10 HBC-(R)6
Charge mobility (c)

PHT Dr, Dh MD, (N,P,T ), N = 80, P = 1 atm, NAMD, time = 65 ns
T = 300 K (Dr), T = 425 K (Dh)
Charge transport (d)

TSP Dh
h Start:16 columns of 60 TSPs with

helical structure.
Charge mobility (e)

CM D PBC, GROMACS OPLS
Start: 16 columns of 48 CMs (f)

PE+ BP Dh A stack of 5× 5PE and 4× 4BP columns of 30 PE or BP
on SiO2 modelling a planar interface organic solar cell
MD (N,P,T ), NAMD, UA. AMBER, time > 50 ns (g)

(see Section 1.10) and possibly because of the more limited technological applications, as of
now. It is also worth recalling that very few discotic mesogens have a nematic phase and that
it is difficult to obtain a well-ordered columnar organization in a cooling down sequence.
Indeed, most of the simulations to date have started from a set of columns and used the MD
runs to test their stability and adjust the organization of the molecules inside the columns.
There are however a number of interesting simulations and in Table 12.2 we list a few
representative ones with an indication of their main features. We have omitted some of the
older, even if pioneering, ones when lasting less than a few nanoseconds, i.e. times shorter
that what is, with hindsight, considered necessary for equilibration. Even if the intent here is
not to provide a review it is important to point out that various of the most recent simulations
are devoted to obtaining detailed molecular configurations to be used as input for quantum-
type calculations of properties of interest for organic electronic applications such as organic
field-effect transistors, organic light-emitting diodes and organic photovoltaics [Brédas and
Marder, 2016; Da Como et al., 2016].
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12.7 Lyotropics

The examples of atomistic simulations shown up to now concern thermotropic LCs, but
essentially the same MD methods can be used, at least in principle, for the lyotropic phases
shown in Chapter 1, even if these mixtures of at least two (and very often more) components
including amphiphilic molecules and solvents are extremely demanding in computational
resources. To help in this direction, united-atom FFs that, like we saw for thermotropic LCs,
combine each carbon with its bonded hydrogen atoms, are very often used [Kukol, 2009].
By reducing the number of sites representing a molecule (e.g. for DPPC from 130 atoms to
50 UAs) and allowing longer integration time steps, UAs usually speed up the simulations
3–5 fold compared with the all-atoms counterpart, while maintaining essential atomistic
details. In any case, there is ample scope for simulations of lyotropics, since many of the
phases described in Sections 1.11 and 2.14 are still unexplored with realistic AMD. One
exception is that of micelles and bilayer membranes, and indeed, some of the pioneering
work was performed on lyotropics [Egberts and Berendsen, 1988], even if much of the
research has concerned biophysical or biomedical aspects [Marrink et al., 2019] rather than
LC properties. Chromonics systems (Section 1.12) are another exception and have also been
studied in some detail [Chami and Wilson, 2010; Thind et al., 2018]. Here we focus on a
few examples dealing with micelles and lipid bilayers formed by surfactants and water,
discussing some of the methodologies of general applicability.

12.7.1 Micellar Phases: SDS

We have already introduced the self-organization of surfactants in water and the various
types of aggregates it yields, in Section 1.11.1. Some of these systems have now been
simulated at atomistic level. In particular, sodium dodecyl sulphate (SDS) is one of the
most studied anionic amphiphiles, both experimentally and with computer simulations.
We recall that at concentrations, low but above the critical micellar concentration (CMC)
of ≈ 8 mM [Wennerström and Lindman, 1979], SDS forms in water spherical micelles
of ≈ 5 nm in diameter that, increasing the SDS concentrations, become much larger until
they transform into cylindrical aggregates with lengths of the order of∼100–1000 nm. The
transition is significantly affected by the presence of salts in the solution [Zana and Kaler,
2007]. The properties of SDS solutions have been studied extensively by MD simulations
with atomistic [Sammalkorpi et al., 2007], coarse-grained [Marrink et al., 2019] and hybrid
particle-field/MD [Schafer et al., 2020] techniques. Two main approaches can be pursued
for this and other surfactants.

(i) Single micelle structure. A first type of problem concerns the shape of the SDS
aggregates in water and the amount of water penetration inside the aggregate [Palazzesi
et al., 2011; Chun et al., 2015; Prior and Oganesyan, 2017]. In this type of work surfactant
molecules are initially prearranged in space in a form similar to that of the target aggregate,
whose stability is tested running the MD simulations. For instance, MacKerrel et al. [1995];
Bruce et al. [2002], Palazzesi et al. [2011], Chun et al. [2015] and Prior and Oganesyan
[2017] have employed 60 SDS molecules (N60SDS), radially disposed to model the initial
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configuration of spherical micelles. Taking as an example the work of Palazzesi et al. [2011]
a molecular mechanics energy minimization is first used to relax undesired contacts. Ad
hoc programs, like the PACKMOL software [Martinez et al., 2009] or similar ones can also
be used for this preliminary stage. Having prepared the initial configuration, equilibration
and production runs can follow, employing a certain FF. Various FFs for lipids are available
and the development and performance of the most important ones, such as the CHARMM,
AMBER, GROMOS, OPLS, and coarse-grained MARTINI [Marrink et al., 2019] families
have been compared [Leonard et al., 2019]. Palazzesi et al. [2011] adopted the general
AMBER FF for SDS. Sodium ions are added in order to neutralize the system and the
micelle is solvated with explicit water molecules interacting with the TIP3P potential (see
Section 5.11.1). Examining the results, we note (Fig. 12.32) that many of the alkyl chains
in the SDS micelle are at least partially water exposed. This is rather different from the
classical picture where the hydrophobic chains are essentially dry (see Fig. 1.11.1). The
radii, defined as the distance from the micelle centre of mass to the sulphur atom of the
N60SDS micelle is calculated to be 1.97 ± 0.04 nm [Palazzesi et al., 2011] or (≈1.94 nm
[Tang et al., 2014]). The shape of the micelles is not exactly spherical, and its instanta-
neous fluctuations can be quantified by the eccentricity parameter of its inertia tensor I
(cf. Eq. 4.24): e(t) = 1 − (Imin(t)/I (t)), where Imin is the smallest eigenvalue and
I = TrI/3, which reduces to e = 0 for a perfect sphere [Salaniwal et al., 2001]. The time
averaged eccentricity of the N60SDS micelle is 〈e(t)〉 ≈ 0.12 (Fig. 12.32a). Prior and
Oganesyan [2017] also reported MD simulations of N60SDS micelles as well as of cationic
micelles of dodecyltrimethylammonium chloride (DTAC), with the inclusion of a nitroxide
spin probe to directly simulate EPR spectra from the MD trajectories. We shall not go into
the EPR spin probe part of the work, but only on the micelle organization. In particular, we
report the segmental order along the SDS chain

SCH(n) =
〈
P2

(
rCH(n) · dm

)〉
, (12.9)

where rCH(n) is the C-H internuclear vector at position n along the chain (see Fig. 12.32b)
and dm is the local director, taken as the normal to the micelle surface. The simulation results
obtained for the CH bonds along the chain are compared in Fig. 12.32c with 13C [Ellena
et al., 1987] and 2H spin-lattice and spin-spin relaxation NMR data [Söderman et al., 1988].
We report the modulus of the order since the NMR experiments yield the square of SCH(n).
The MD values along the SDS alkyl chain appear only in qualitative agreement with the
NMR ones. This might in principle be due to some approximations about the model required
in the experimental relaxation data analysis or it could suggest that the GAFF force field
employed produces overly ordered alkyl chains, as was also found in lipid bilayers [Dickson
et al., 2012].

(ii) Surfactants self-organization. A second type of problem deals with the actual process
of aggregation of SDS (or other) amphiphiles in water and can be particularly demanding
in computational resources. In this case, the simulations are started from a random solution
of surfactant molecules in water, observing the formation of surfactant aggregates brought

https://doi.org/10.1017/9781108539630.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.013


12.7 Lyotropics 527

Figure 12.32 (a) Structure of a N60SDS micelle after a 20 ns MD equilibration run
[Palazzesi et al., 2011]. (b) Ball and stick representation of dodecyl sulphate. (c) Order
parameters |SCH(n)| of the CH bond at position n in a N60SDS micelle at 310 K. Comparison
between MD [Prior and Oganesyan, 2017] (•) and experimental [Ellena et al., 1987] (�) and
[Söderman et al., 1988] (���) NMR results.

Figure 12.33 MD snapshots of SDS self-organized structures: a crystalline aggregate
(T = 273 K) and quasi-spherical micelles at T = 293 K and a larger one at T = 323 K.
Here the spheres represent sodium atoms, while the surrounding micelles and the explicit
water molecules have been omitted to facilitate visualization of the aggregate. The snapshots
correspond to the largest aggregate in the system [Sammalkorpi et al., 2007].

about by a change in temperature or concentration. Simulations of SDS micelles in water
have been studied using four popular empirical force fields, namely, CHARMM, OPLS,
AMBER and GROMOS united atoms, and some additional specialized force fields with
both (N,V,T ) and (N,P,T ) ensembles. In particular, Sammalkorpi et al. [2007] examined
the formation of SDS aggregates in explicit SPC water (Section 5.11.1) with extensive MD
simulations using an ad hoc tuned parametrization of SDS within the UA GROMACS 3.3
[van der Spoel et al., 2005] and long runs of 200 ns (see Fig. 12.33). Specifically at low
temperatures, the surfactants form crystalline aggregates, whereas at elevated temperatures,
they form micelles. The dependence of aggregation on surfactant concentration (200 mM,
800 mM and 1 M) is also examined. The concentration limit (1 M) was investigated by
simulating the dynamics of 200 SDS molecules at a temperature T = 253 K (well below
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the critical micellization temperature TCMT) and 323 K (well above TCMT) over 200 ns.
The largest micelle in the 1 M system is slightly deformed towards an elliptical form,
whereas the micelles with size between 40 and 80 SDS molecules are approximately spher-
ical. The aggregates in the 200 mM system appear significantly less spherical.

It is worth noticing that as simulations become more realistic, also moving to the self-
assembly of larger aggregates like cylindrical micelles, new challenges and discrepancies
between results obtained with current models may emerge, leading in turn to the develop-
ment of new more accurate FFs or parameterizations of existing ones [Taddese et al., 2020].

12.7.2 Lipid Bilayers: DPPC

Lipid bilayers are, as we briefly mentioned in Section 1.11.2, a fundamental component of
a cell membrane, separating its interior and exterior environments and providing a barrier
to the free migration of ions, proteins, etc. in or out of the cell [van Meer et al., 2008].
Simulations of lipid bilayer membranes formed by phospholipids have been abundant since
the nineties [Venable et al., 1993], even though those pioneering simulations did unavoid-
ably deal with sub-nanosecond times and relatively small particle numbers. Nowadays time
windows of the order of 100–1000 ns or more are easily accessible using high perfor-
mance computing (HPC), in particular using clusters of processors with graphic processing
units (GPUs) and the GPU accelerated version of MD codes, like NAMD [Phillips et al.,
2020] and GROMACS [Pall et al., 2020]. Various specific FFs for lipids have been pro-
duced, updated, validated and compared [Poger et al., 2016; Leonard et al., 2019; Yu and
Klauda, 2020].

Dickson et al. [2012] tuned the General AMBER force field (GAFF) to allow the accu-
rate tensionless simulation of a number of different lipid types using AMBER. Specifi-
cally tested systems include DLPC, DMPC, DPPC, DOPC, POPC and POPE phospholipid
bilayers.

Pluhackova et al. [2016] also simulated various phospholipid bilayers (DMPC, POPC
and POPE) comparing four atomistic lipid FFs, namely, the united-atoms GROMOS54a7
and the all-atoms ones CHARMM36, Slipids [Jämbeck and Lyubartsev, 2012] and Lipid14,
the AMBER lipid FF [Dickson et al., 2014]. In particular, the membrane melting transition
temperature for the investigated FFs was studied from heating simulations, starting from a
membrane in its gel phase of a DPPC bilayer.

The additional possibility of combining AA and UA models is available in various FFs,
e.g. the C36U lipid FF employs CHARMM36 AA parameters for headgroups and OPLS-
UA Lennard–Jones (LJ) parameters for the acyl tails FF [Klauda et al., 2010; Lee et al.,
2014]. Yu and Klauda [2020] presented an updated version of this FF (C36UAr), tuned
using bulk liquid properties (density, heat of vapourization, isothermal compressibility and
diffusion coefficient) of hydrocarbons model compounds for the LJ parameters, and dihe-
drals fitted to either quantum chemical (QC) or potential of mean force calculations.

The quantity of literature on the topic of both model and biological membranes as well
as FFs is huge, and we certainly do not aim to provide a full review [Marrink et al., 2019]
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that would anyway be out of place here. Rather, we mainly focus on a well-studied case,
that of DPPC, that we take as an example for the methodologies that can be used for many
other membrane systems.

Lipid bilayer structures. Phosphatidylcholine (PC) aggregates in water show a rich phase
behaviour [Koynova and Caffrey, 1998; Mouritsen and Bagatolli, 2016]. In Fig. 1.50 we
showed a sketch of the main lipid bilayer phases including Lβ , Lβ ′ , Pβ ′ , Lα . The various
phases have different molecular organization and fluidity, with the gel phases (the ones with
a subscript β) having a lateral translational diffusion coefficient in the membrane plane of
the order of 10−9 cm2 s−1, i.e. some two orders of magnitude less than that of the fluid
phase. Chains can be on average straight or tilted (indicated by a primed subscript). In the
Lβ ′ gel phase the lipid tails are stretched (mainly all trans), tilted with respect to the bilayer
normal and ordered in a hexagonal array. Bilayers are embedded in water and stabilized by
the interactions between the water molecules and the amphiphilic phospholipids, particu-
larly their zwitterionic polar heads and, possibly because of these strong interactions, it is
found that water molecules located at the membrane interface region (the hydration layer)
have quite different properties from the water in the bulk [Marrink et al., 1993; Gurtovenko
et al., 2004]. The Lα is fluid-like and is also called the liquid crystal phase, since an Lα mul-
tilayer strongly resembles a smectic A type structure. Under physiological conditions the
membrane lipids are in this Lα phase, an important prerequisite for their proper functioning.
The set of structures observed is, however, not the same for all lipid systems. For instance,
the ripple Pβ ′ phase1 occurs for saturated phosphatidyl cholines but appears to be missing for
the unsaturated ones. Moreover, unsaturated lipids have significantly lower melting temper-
ature and thus behave more fluid-like around room temperature. DPPC and DMPC bilayers
in water do form the rippled bilayer phase Pβ ′ between the gel phase Lβ ′ and the fluid liquid
crystalline phase in the temperature range between the so-called pretransitional temperature
TP and the main transition temperature TM (see the calorimetry plot in Fig. 2.31).

Atomistic simulations allow us to examine the molecular organization beyond the over-
simplified sketches (Fig. 1.50) and various of the phase organizations and phase transitions
(Section 2.14.3) have actually been simulated at UA [Lindahl and Edholm, 2000; Scott,
2002] or AA (Fig. 12.34) level. Let us now discuss in some more detail the simulations of
the Lα and the Pβ ′ phases.

Liquid crystal Lα phase. A system of N = 256 fully hydrated DPPC molecules in the
Lα phase was simulated by Lindahl and Edholm [2000] at a temperature T = 323 K, sepa-
rately maintained for lipids and water by using a Berendsen thermostat (cf. Section 9.5.1).
The starting configuration was a bilayer structure and, after equilibration, 5 ns trajectories
were studied. The (x,y) coordinates of this structure were scaled to produce five systems
with fixed areas per lipid Alip of 0.605, 0.620,0.635,0.650 and 0.665nm2. The bilayers
were hydrated with 23 SPC waters per lipid, bringing the systems to 30,464 atoms each.
The normal pressure of the system was kept to 1 atm by scaling the box z-coordinate

1 Note that the notation is often confusing, e.g. the Lβ′ and Pβ′ are called Lβ and Pβ in Losada-Perez et al. [2014] and
Khakbaz and Klauda [2018].
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Figure 12.34 Snapshots of lipid bilayers obtained by cooling from the Lα to the Pβ ′ then to
Lβ ′ phase using AA MD, with NAMD and CHARM36 FF, N = 72 lipids, t = 300 ns for
each of 27 replicates. Note the interdigitation in the minor arm region [Khakbaz and Klauda,
2018].

with a time constant of 1 ps. All simulations were carried out using the UA GROMOS
FF, charges from QC calculations and dihedrals by Ryckaert and Bellemans [1975, 1978]
were used to describe the hydrocarbon chains. We recall that in the Ryckaert–Bellemans’
(RB) model each hydrogenated carbon of the chain is represented by a UA, all C-C bonds
are rigid and of length lC−C = 1.53 Å, while the angles between adjacent bonds are
fixed at 109◦28′ (the tetrahedral sp3 geometry). The potential energy associated with the
relative rotation of the two parts of a chain adjacent to a C-C bond is a function of the
dihedral angle φ: URB(φ)/kB = [1.116 + 1.462 cosφ − 1.578 cos2 φ − 0.368 cos3 φ +
3.156 cos4 φ − 3.788 cos5 φ]103 K, with the special values (in kcal/mol), URB(0) = 0
(trans), URB(±π/3) = 2.95, URB(±2π/3) = 0.70 and URB(±π ) = 10.7. The LJ param-
eters for two acyl CH2 (or CH3) belonging to two different molecules or separated by at
least three centres are εCC/kB = 72 K, σCC = 3.923 Å. Lindahl and Edholm [2000]
proposed various methods to calculate bilayer properties. In particular, they discussed how
to obtain the energetic and entropic contributions to the total surface tension obtained from
the virial expression (see Eq. 4.152). From the average surface tension γ obtained at various
fixed area A they obtained the bilayer area compressibility from the slope: κA = A∂γ /∂A,
finding κA ≈ 0.3 N/m.

As we have seen for thermotropics, the most appropriate way of ensuring proper con-
vergence to equilibrium of an ordered structure would be to obtain the same organization
starting from a more ordered or from a disordered configuration. Simulation of the spon-
taneous aggregation of phospholipids into bilayers is of course difficult, and most studies
have started from pre-assembled bilayers. However, simulations from a random mixture of
lipids and water are not impossible and can provide a revealing view of the self-assembly
mechanism and of the times involved. In pioneering work Marrink et al. [2001] studied
systems containing 64 DPPC lipids and 3000 water molecules with PBC, using GROMACS
and the GROMOS UA FF at T = 323 K, well above the main phase transition at 315 K and
P = 1 atm in vertical and lateral directions, corresponding to a stress-free bilayer. The total
simulation time exceeded 500 ns. Starting from a random water-lipid mixture, they found
a rapid separation into lipid and aqueous domains on a timescale tsep ≈ 200 ps. This was
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Figure 12.35 (a) Snapshot of the DPPC ripple structure and (b) WAXS intensity calculated
from the positions of the atoms. The intensity is plotted as contours on a grey scale, using
logarithmic procession of the levels. In the snapshot, water appears black and the lines show
the projection of the unit cell on the x-z-plane while the white arrow indicates the z-axis
[de Vries et al., 2005].

followed, on a timescale tbil ≈ 5 ns, by the formation of a bilayer-like phase still containing
defects like water pores, which eventually yields a defect-free bilayer. The last step takes a
much longer time of ≈15 ns, which is determined by the energy of the transition state. It is
interesting that a bilayer with a matching number of lipids in the two sheets was obtained.
Atomistic MD simulations have also been used to study the spontaneous aggregation of a
concentrated solution of DPPC molecules in water to follow the spontaneous formation of
small vesicles [de Vries et al., 2004]. Starting from a random solution of DPPC modelled
with a UA FF in SPC water, an oblong-shaped vesicle with a long axis of 15 nm and short
axes of 10 nm was formed spontaneously in less than 90 ns at 323 K.

The ripple Pβ ′ phase. The ripple phase can be experimentally obtained either from heating
up the Lβ ′ phase with tilted chains or cooling down the Lα phase [Tenchov et al., 1989].
For the Pβ ′ phase, which is the more structurally complex one, X-ray studies ([Sengupta
et al., 2003] and references therein) show it consists of two domains of different lengths and
orientation (the minor and major arms), connected by a kink region, with the organization
of the lipids in the longer domain being a splayed gel and in the minor arm a gel-like and
fully interdigitated one.

de Vries et al. [2005] simulated the formation of the Pβ ′ phase (Fig. 12.35a) by sudden
cooling down from a Lα bilayer. They generated simulated wide angle X-ray scattering
(WAXS) data by calculating the real part of the intensity, I (q), from the positions of all lipid
atoms of a representative configuration of the system by using the formula (see Appendix J
and Eq. 3.98b):

I (q) ∝
∑
i

∑
j

ZiZj cos
(−2π

[
q · (rj − r i

)])
, (12.10)
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Figure 12.36 The main (Lα-Pβ ′ ) phase transition temperature of the DPPC bilayers, located
at TM ≈ 318 K from the change in slope of the temperature-specific volume curve obtained
from MD data [Youssefian et al., 2017].

where q is the scattering vector in the 3D reciprocal space,
(
rj − r i

)
is the separation

vector between the positions of atoms i and j , and Zi and Zj are the number of electrons
associated with atoms i and j , respectively. The z-axis in real space was chosen to be the
ripple stacking direction, with the transform from real space to reciprocal space performed
on the fly on a grid spaced 0.1 nm−1 in x,y,z-directions. The data were mapped from the 3D
representation on a 2D grid by projecting the I (q) on qz and on the plane perpendicular to

qz,qr =
(
q2

x + q2
v

)1/2
as shown in Fig. 12.35b. The ripple phase of DPPC and DMPC was

also been studied more recently at AA level by Khakbaz and Klauda [2018]. They found
that Pβ ′ major arm has a structure similar to that of the Lβ ′ (Fig. 12.34), while the thinner
minor arm has interdigitated chains and the transition region between these two domains has
large-chain splay and disorder. In the concave part of the kink region between the domains
the lipids are disordered. At lower temperatures, their MD simulations predict the formation
of the Lβ ′ phase with tilted fatty acid chains (Fig. 12.34a).

Main (Pβ ′ -Lα) transition temperature. In simulations, the melting transition from gel to
fluid for membrane bilayers has typically been located monitoring the change of specific
volume or area per lipid or thermal conductivity [Youssefian et al., 2017]. The simula-
tion of a system of 72 DPPC and 2560 water molecules using the consistent force field
(CFF91) [Sun, 1995] was carried out after an initial equilibration leading to a bilayer with
Alip = 62.5 Å2. The phase transformations were studied by heating the system to 400 K,
then cooling it down all the way to 200 K at 0.2 K/ps, controlling the temperature and
pressure by a Nosé thermostat and Berendsen barostat. The phase transition temperature was
obtained from the temperature where the slope of the specific volume versus temperature
curve changes (Fig. 12.36). This gives an estimate for the main transition temperature of
DPPC at about 318 K which is in excellent agreement with the experimental result of 315 K
[Biltonen and Lichtenberg, 1993; Pennington et al., 2016]. The paper also studies in detail
the thermal conductivity of the bilayer as a function of temperature.
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Yu and Klauda [2020] performed (N,P,T ) MD simulations of bilayers ofN = 72 DPPC
molecules using NAMD and the already mentioned C36UAr FF, with a modified TIP3P
water model [Jorgensen et al., 1983]. Up to 200 ns simulations were produced to get static
equilibrium properties. Other longer simulations were run with the OpenMM platform2 to
calculate trasport properties. The pressure was set to be 1 bar allowing the square section cell
(Lx constrained to be equal toLy) to vary independently with respect toLz. The observable
area per lipid (Alip) for such a simulation can be simply calculated as the area of the sample
cell in the x-y-plane divided by the number of lipids per sheet: Alip = (2LxLy)/nlip. It is
found that Alip reproduces the experimental values for various lipid heads. For DPPC at
T = 323.15 K, Alip = 63.3 Å2 for (C36Ar) and 63.0 Å2 from experiment [Kucerka et al.,
2008]. The variation in surface area per lipid with temperature can be used to locate the
transition from the L to the P′ and then to the L′ phase. A sharp decrease in the surface
area per lipid occurred at 308.15 K suggesting a transition from the Lα to the Pβ ′ or the Lβ ′
phase, while the DPPC bilayer is still in the L phase at 313.15 K, with some discrepancy
from experiment. Another important property, the area compressibility κA, can be evaluated
from the mean square deviation

〈
δA2

〉
in the total surface area 〈A〉: κA = (kBT 〈A〉)/

〈
δA2

〉
.

For DPPC it is found that the simulated κA = 170± 20 dyn/cm (C36Ar) and 230 dyn/cm
from experiment. It is worth noting that κA is much higher in the more rigid ripple than in
the LC phase [Khakbaz and Klauda, 2018].

Dickson et al. [2012] calculated the volume per lipid, Vlip, from that of the simulation
box Vbox according to: Vlip = (Vbox − nWVW)/nlip , where nW is the number of water
molecules of volume VW ≈ 30.53 A3 for TIP3P water molecules [Rosso and Gould, 2008].
The Vlip converges fast [Anezo et al., 2003] and shows lower fluctuation than Alip, and
as such, could provide a better metric for validating simulation results by comparing with
experimental structural parameter [Costigan et al., 2000; Nagle and Tristram-Nagle, 2000].
The Vlip values obtained with the GAFF lipid FF show agreement within 2% from experi-
mental ones.

Order parameters along the acyl chain. Deuterium order parameters have been measured
by NMR for a variety of different lipids and lipid mixtures for 30 years. A very direct method
is to use deuterium quadrupole coupling, even if this requires the synthesis of deuterated
analogues. From the residual quadrupole splitting �ν, the order parameter SCD of the C-D
bond can be calculated (see Sections 3.10.6 and 10.8.2 and Appendix I) according to

�ν = 3

4

(
e2qQ/h

)
SCD. (12.11)

The deuteron quadrupole splitting constant
(
e2qQ/h

)
was found to be 170 KHz for paraffin

chains [Burnett and Muller, 1971]. The average orientation of the CD bond is essentially
perpendicular to the bilayer normal; hence it is reasonable to assume that SCD is negative.

The order parameter at different positions of the DPPC alkyl chains was calculated by
MD [Hofsäss et al., 2003] and compared with those measured by deuterium NMR (of
course after deuteration) [Seelig and Seelig, 1974, 1975; Douliez et al., 1996]. Such an

2 http://docs.openmm.org/latest/userguide/application.html
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(a) (b)

|SCH|

n

Figure 12.37 (a) The chemical formula and a ball and stick representation of DPPC with
the definition of the two acyl chains sn-1 and sn-2 and of the carbon atom numbering.
(b) Modulus of order parameter, |SCH| of the n lipid chain C-H bond for a MD simulation of
a N = 72 DPPC bilayer system using NAMD averaged over ≈ 200 ns and comparison
with experiment (� sn-1), (• sn-2) at T = 323.15 K both for the simulation [Yu and
Klauda, 2020] and experiments: from DNMR quadrupolar splitting of selectively deuterated
positions in the chains [Seelig and Seelig, 1974, 1975; Klauda et al., 2008].

order parameter may be defined for every CH2 group in the chains as we did in Eq. 12.9,
where the local director dm is now taken as the normal to the membrane bilayer. When
using UA models in the simulations the CH bond has to be located from the positions
of three successive CH2 groups assuming tetrahedral geometry of the CH2 groups. The
brackets in Eq. 12.9 indicate averaging over the two bonds in each CH2 group, all the lipids
and time. The two chains of a phospholipid (see Fig. 12.37) are not equivalent, and the
sn-2 chain, being attached to the middle carbon of the glycerol backbone, is expected to
be positioned slightly closer to the membrane surface than the sn-1 chain. Thus, the order
parameters, especially in the upper part of the chain, are slightly larger (more negative) in
the sn-2 chain compared to sn-1 chain in fair agreement with experiment. For large systems,
undulations complicate things a bit as shown by a slight difference between simulated order
parameters in a 64-lipid and a 1024-lipid DPPC system. A typical feature for the order
parameter profiles of pure phospholipid bilayers is that there is a plateau region in the upper
and middle part of the chains in which the order parameters vary only slightly. Then there
is a drop towards 0 at the end of the chain.

In summary, also for these lyotropic liquid crystal systems atomistic simulations are now
approaching the quality of real experimental data for the major force fields, even if some
differences exist.

12.8 Some Comments and an Outlook

In many ways simulations, particularly atomistic ones, represent a theoretician’s dream of
what an experiment should be. A certain potential is chosen to describe the interaction
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between the particles (atoms, molecules, …) of a system of interest and comparison is
made between the essentially exact results produced by the simulations and those produced
by approximate theories or experiments, as appropriate. We have the possibility of pre-
dicting properties not readily accessible, or perhaps not available at all, from experiment,
controlling at will external conditions such as temperature and pressure. As we have seen
we can calculate not only thermodynamic observables such as energy, heat capacity, etc. but
also positional and orientational distributions and multiparticle correlation functions that
allow us to predict the outcome of experiments yet to be performed. In many cases we can
also evaluate separately the contributions provided by different terms in the intermolecular
potential, e.g. switching on and off some terms (charges or whatever) in the FF. A major
problem is that only a limited number of particles can be studied. For atomistic simulations
this currently goes from a few hundred to a few tens of thousands of molecules, depending
on their complexity and on the computer resources available. With the predictable rise in
computer power the sample sizes are certainly due for an increase, although it is difficult
to foresee many order-of-magnitude increments in the number of particles. The situation
is more complicated for systems near a phase change, since close to a transition finite size
effects might be particularly important and, as in real experiments, a long time may be
required to reach equilibrium. These considerations can be important for liquid crystals,
where very often we are not far from a phase transition.

In general terms, the predictive capability of atomistic simulations has been demon-
strated. Even though this approach is very demanding in terms of resources, it provides
a test bench for microscopic and phenomenological theories of nematics based on a certain
FF. More importantly, atomistic MD opens exciting possibilities for the molecular design
of novel mesogens with the prediction of their properties, even in advance of their chemical
synthesis.

Computer simulations do not cover, as yet, all the many liquid crystal systems introduced
in Chapter 1 at the atomistic or even molecular resolution level, but the number has dras-
tically increased and should increase further. For instance, systems like active LCs, until
now treated at a mesoscopic level with the tools of hydrodynamics equations (see, e.g.,
[Marchetti et al., 2013; Turiv et al., 2020]) should become amenable to investigation at
molecular (see, e.g., [de Souza et al., 2022]) or atomistic level.

On closing, a few points perhaps worth considering are:

(i) Computer power. The increasing success of realistic atomistic simulations shows that
the outlook for predictive modelling has to be clearly optimistic if computer perfor-
mance, that has already increased by a factor of the order of 104 in the last 20 years
[Strohmaier et al., 2015], will continue to evolve from current petascale to hexascale
and beyond.

(ii) Force fields. An increase in computer performance, while important, is not sufficient in
itself. FF development, if not an art, is still the result of previous theoretical knowledge,
quantum chemistry and experience combined with a variety of experimental data. It
should thus benefit greatly from developments in machine learning and some applica-
tions have already started to appear [Jackson et al., 2019; Bedolla et al., 2021].
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(iii) Improvements in algorithms. Improved methods are much in demand, in particular,
better techniques for time integration of Newton’s equation of motion, that would allow
increasing the elementary time step [Leimkuhler and Matthews, 2015] and thus the
overall time window for observation of a system.

(iv) Multiscale integration. We have discussed models at different scales as separate, inde-
pendent approaches but a coarse-graining procedure that allows going in a systematic
way from the atomistic to a molecular level where molecules are represented, e.g. by
suitably connected sets of GB beads, would be highly desirable in perspective and starts
to be feasible at least for certain classes of organic functional materials employed in
organic electronics [Roscioni and Zannoni, 2016; Ricci et al., 2019].

(v) Modelling experiments and devices. While we have been concerned with performing
simulations of equilibrium phases, guided by a free energy minimization principle,
many practical fabrication techniques involve non-equilibrium processes, e.g. evapora-
tion, vapour deposition, casting, and so on. A huge amount of work remains to be done
in this area, both from the methodological and predictive point of views. Hopefully
this book will be a helpful companion also for these new developments.
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Appendix A

A Modicum of Linear Algebra

A.1 Vectors and All That

Here we wish to provide a brief reminder of basic linear algebra as required for the develop-
ments described in the main text. Detailed and much more general descriptions can be found
in many specialized books, e.g. Shapira [2019]. One of our aims is to see how a function
can be expanded in terms of a suitable set of linearly independent functions (a basis set).
This is quite similar to expanding a vector in a basis set of orthogonal vectors, so we shall
start from this example. A familiar way of explicitly writing down an ordinary 3D vector
a is by listing its components (real numbers for a vector in R3 space or complex numbers
in C3 space) along three chosen orthogonal directions x, y, z (or e1, e2, e3, also often
called i, j , k). Thus, we write, e.g.

a = a1e1 + a2e2 + a3e3 =
3∑
i=1

ai ei (A.1)

and write the components of a as the column vector

| a〉 ≡ a =
⎛⎝ a1

a2

a3

⎞⎠ (A.2)

or as its transpose complex conjugate, the row vector

〈a |≡ a† ≡ aT ∗ = (a∗1,a
∗
2,a

∗
3 ). (A.3)

The quantities 〈a |, | a〉 are called, using Dirac [1958] terminology, a bra and a ket, respec-
tively, elements of dual spaces. We have considered for generality the case of a vector with
complex elements by taking the adjoint, i.e. the complex conjugate (indicated by ∗) of the
transpose (superscript T ) when going from a ket to a bra and vice versa. The notation can
be extended to vectors in n dimensions considering components ai , i = 1, . . . ,n. We shall
assume that what we say holds for this more general n-dimensional space from now on,
even though we shall continue to use mainly 3D vectors (n = 3) as explicit examples.

Scalar product. The scalar or dot or inner product of two vectors a, b can be written as

a · b ≡
n∑
i=1

a∗i bi ≡ 〈a | b〉. (A.4)

537
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The result of combining a bra and a ket in this way (with paired angular brackets) gives a
quantity invariant by rotation (a scalar). The modulus or ‘length’ or norm of a vector is the
quantity a = ||a|| = √〈a | a〉. A vector is said to be normalized if it has unit length and
in that case is often called a versor. When it is necessary to stress that a vector is of unit
length, we use a cap (or hat) and write, e.g. a = aâ. However, to keep notation simpler, we
avoid writing the hat systematically if the vector has been explicitly defined of unit length
(e.g. we write d and not d̂ for the director). The scalar product has the following defining
properties [Birkhoff and Mac Lane, 1997; Knowles, 1998]:

〈a | a〉 ≥ 0, (A.5a)

〈a | b〉 = 〈b | a〉∗, (A.5b)

〈a | kb〉 = k〈a | b〉, (A.5c)

〈a | k1b + k2c〉 = k1〈a | b〉 + k2〈a | c〉, (A.5d)

with k,k1,k2 real or complex numbers, |a〉,|b〉,|c〉 vectors and with the scalar product in
Eq. A.4 and with Eq. A.5a being 0 only if |a〉 = 0, i.e. has all its components equal to 0. An
n-dimensional vector space endowed with this scalar product is called a Euclidean space
En. The orthonormality of the unit vectors e1, e2, . . . ,en (e.g. the Cartesian axis x, y, z in
three dimensions) can be written concisely as ei · ej ≡ 〈ei | ej 〉 = δi,j , where δi,j is the
Kronecker delta symbol, defined as

δi,j ≡ δ(i − j ) =
{

1, if i = j , with i,j integers
0, otherwise

(A.6)

corresponding to the elements of the identity matrix 1. The notation δ(i−j ) is less frequent,
but convenient at times. The set of orthonormal vectors {ei} is called a basis set and Eq. A.1
is called the expansion of the vector a in that basis set. Taking a scalar product with |ei〉 on
both sides, we can find ai = 〈a|ei〉, i.e.

∑n
j=1 δi,j aj = ai .

Vector product. The inner product generates a scalar starting from two vectors, but we can
also combine two vectors to obtain another vector. For example, in three dimensions we can
introduce the vector (or wedge or cross) product

c = a × b = −b × a =
∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ , (A.7)

where the last equation is written as a determinant. The components of the vector product
of a, b can also be conveniently written as

cα =
∑
i,j

εαij aibj ≡ εαβγ aβbγ , (A.8)

introducing the Levi-Civita permutation symbol (or alternator) εαβγ :

εαβγ =
⎧⎨⎩
+1, if (αβγ ) = (123), (231), (312)
−1, if (αβγ ) = (132), (213), (321)

0, otherwise.
(A.9)

https://doi.org/10.1017/9781108539630.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.014


A.1 Vectors and All That 539

In particular, if any two of its indices are equal, εαβγ is 0. We use here, and unless otherwise
specified in the rest of the book, the convention of implying a summation over repeated
Greek subscripts. Another way of writing the antisymmetric Levi-Civita symbol is as a
determinant:

εαβγ =
∣∣∣∣∣∣
δα,1 δα,2 δα,3

δβ,1 δβ,2 δβ,3

δγ,1 δγ,2 δγ,3

∣∣∣∣∣∣ (A.10)

or as pseudoscalar product εαβγ = eα · (eβ×eγ ). Note that changing the sign of all vectors,
i.e. performing an inversion operation, changes the sign of a pseudoscalar product. A term
of this type is often used in introducing molecular chirality (e.g. Section 5.10). Some useful
identities for vector products are

a · (b × c) = b · (c × a) = c · (a × b), (A.11a)

a × (b × c) = b(a · c)− c(a · b), (A.11b)

(a × b) · (c × d) = (a · c)(b · d)− (a · d)(b · c). (A.11c)

Note that the volume of a parallelepiped with edges given by the three non-coplanar real
vectors a, b, c is the absolute value of the pseudoscalar product

V = |a · (b × c)| = |εαβγ aαbβcγ | =
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ . (A.12)

A few useful properties of the Levi-Civita symbol are (again the sum over repeated Greek
subscripts is implied)

εijk δi,j = 0, (A.13a)

εαβmεαβn = 2 δm,n, (A.13b)

εαβγ εαβγ = 6, (A.13c)

εαij εαlm = δi,lδj,m − δi,mδj,l, (A.13d)

εijkεlmn =
∣∣∣∣∣∣
δi,l δi,m δi,n

δj,l δj,m δj,n

δk,l δk,m δk,n

∣∣∣∣∣∣ = δi,l (δj,mδk,n − δj,nδk,m)− δi,m (δj,lδk,n − δj,nδk,l)
+ δi,n

(
δj,lδk,m − δj,mδk,l

)
. (A.13e)

Direct product. We can also combine two vectors to obtain a matrix, as the direct product or
outer product or dyadic product or tensor product of their elements, indicated with various
notations as:

a ⊗ b ≡ ab ≡ |a〉〈b|, (A.14)

with elements (a ⊗ b)ij = aib∗j in complex numbers space, so we have in general a ⊗ b �=
b ⊗ a. In three dimensions
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a ⊗ b =
⎛⎝ a1b

∗
1 a1b

∗
2 a1b

∗
3

a2b
∗
1 a2b

∗
2 a2b

∗
3

a3b
∗
1 a3b

∗
2 a3b

∗
3

⎞⎠ . (A.15)

Resolution of the identity. The identity matrix 1 can be written (or ‘resolved’) as a sum of
n direct products of the unit vectors along the orthogonal axis (each | ei〉〈ei | is also called
a projector). In n dimensions:

1 =
n∑
i=1

| ei〉〈ei | , (A.16)

is particularly useful. For instance, we can use the identity in Eq. A.16 to express a vector
property, e.g. a dipole moment μ, as: |μ〉 = 1|μ〉 = ∑n

i=1 | ei〉〈ei |μ〉, giving the vector
components along the frame axes as μi = μ · ei = 〈μ|ei〉 = 〈ei |μ〉. Thus, the expansion
coefficients of a vector in an orthonormal basis are just the projections (scalar products) of
the vector on the basis vectors, generalizing the result of Eq. A.1 to n dimensions.

Gradient. We can introduce the gradient (nabla) operator 〈∇| as a vector whose components
are the partial derivatives along the three Cartesian directions. Writing in different common
notations, we have for the gradient of a scalar differentiable function f = f (x,y,z)

〈∇|f ≡ ∇∇∇f ≡ gradf ≡ 〈x|∂f
∂x
+ 〈y|∂f

∂y
+ 〈z|∂f

∂z
=
∑
i

ei∇if , (A.17)

where 〈x|,〈y|,〈z| and ei are orthogonal unit vectors. Some useful relations for the combi-
nation of the gradient operator with a vector:

Divergence of a vector is the dot product of the gradient with that vector

∇∇∇ · a ≡ diva =
∑
i

∇iai = ∇αaα = ∂ax

∂x
+ ∂ay
∂y

+ ∂az
∂z

. (A.18)

Curl of a vector is the vector product of the gradient and a vector

∇∇∇ × a ≡ curl a ≡ rot a = eαεαβγ∇βaγ (A.19a)

= i
(∂az
∂y

− ∂ay
∂z

)
+ j

(∂ax
∂z

− ∂az
∂x

)
+ k

(∂ay
∂x

− ∂ax
∂y

)
. (A.19b)

and also

a · ∇∇∇ × a = ∂ay

∂x
− ∂ax
∂y
, (A.20)

|a ×∇∇∇ × a|2 = ∂2ax

∂z2
+ ∂

2ay

∂z2
. (A.21)

Note that when the vector a is the director d, Eqs. A.20 and A.21 appear in the Frank elastic
energy expression (Eq. 1.8) as the splay and bend terms. The gradient of a vector is a matrix:
(∇∇∇a)ij = ∇iaj or ∇∇∇a = ∇αaβeα ⊗ eβ and its norm or scalar contraction (see Section B.5)

||∇∇∇a|| ≡ ∇∇∇a : ∇∇∇a =
∑
ij

∇iaj∇iaj =
∂aβ

∂eα

∂aβ

∂eα
. (A.22)
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Using the gradient vector ∇∇∇ with components ∇i = ∂/∂ei we have

[curl v]i = [∇∇∇ × v]i = εiβγ∇βvγ , (A.23)

implying again summation over repeated Greek subscripts, and

[∇∇∇ × (∇∇∇ × a)]i = εiβγ∇βεγβ ′γ ′∇β ′aγ ′ = εγ iβεγβ ′γ ′∇β∇β ′aγ ′, (A.24a)

= [δi,β ′δβ,γ ′ − δi,γ ′δβ,β ′ ]∇β∇β ′aγ ′ = ∇β∇iaβ −∇β∇βai, (A.24b)

= ∇i∇βaβ −∇β∇βai =
[∇∇∇(∇∇∇ · a)− ∇2a

]
i
, (A.24c)

where ∇2 = ∇∇∇ ·∇∇∇ = div grad = (∂2/∂x2, ∂2/∂y2, ∂2/∂z2) is the Laplacian. Other useful
identities are

(∇∇∇ × d)2 = (d · ∇∇∇ × d)2 + (d ×∇∇∇ × d)2, (A.25)

∇∇∇ · [(a · ∇∇∇) a − (∇∇∇ · a) a] = ∇αaβ∇βaα −∇α∇βaβaα, (A.26a)

= ([∇ ⊗ a]αα)2 − (∇αaα)2 = Tr(∇∇∇aaa)2 − (∇∇∇ · a)2. (A.26b)

An identity [Stewart, 2004] for the scalar contraction (Eq. A.22):

‖∇∇∇a‖2 = (∇∇∇ · a)2 + (∇∇∇ × a)2 + ∇∇∇ · [(a · ∇∇∇)a − (∇∇∇ · a)a] (A.27)

can be used to conveniently rewrite the Frank elastic energy in the one-constant approxima-
tion. Considering a unit vector, e.g. the director of a uniform monodomain liquid crystal:
d = (0,0,1), d · d = 1 and some small deformations,

∇∇∇(d · d) = 2eαdβ∇αdβ = 0. (A.28)

A.2 Orthogonal Functions and Basis Sets

The relations we have just recalled apply to an n-dimensional space defined by n orthogonal
unit vectors {ei}. What is even more useful is that quite similar relations can be written for
the expansion or decomposition of functions, by defining a suitable space of basis functions,
orthogonal to each according to a certain scalar product. For example, given a function of a
real variable x, we have the analogue of Eq. A.1

f (x) =
nf∑
i=1

fi φi(x), (A.29)

where fi , φi(x) can have real or complex values and with the functions φ(x) playing the
role of unit vectors, with nf that is normally nf = ∞. A condition to be able to write
Eq. A.29 is that we can define the orthogonality of the basis functions and thus, what we
have to do first is to define a generalization of the scalar product for two functions, e.g.

〈f (x) | g(x)〉 ≡
∫ b

a

dx μ(x)f (x)∗g(x), (A.30)
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where dx μ(x) is the volume element or measure in the space of the variable x, with
a ≤ x ≤ b. Thus, we define the scalar product of two functions as their overlap integral,
i.e. the integral of the product of one function by the complex conjugate of the other.
Note that as long as the integral on the right-hand side (RHS) exists and is finite, this
definition satisfies the basic properties of a scalar product, Eqs. A.5a–A.5d. The space of
all these quadratically integrable functions is called a Hilbert space. In particular, we call
two functions φm(x), φn(x) of a certain set orthogonal if their scalar product is 0:

〈φm|φn〉 = 1

kn

∫ b

a

dx μ(x)φ∗m(x)φn(x) = δm,n, (A.31)

where kn is a normalization constant (kn= 1 for orthonormal functions). If the set is com-
plete, then these scalar products are just the matrix elements of the identity, that we can
resolve, like in Eq. A.16 as

1̂ =
∑
k

|φk〉〈φk|. (A.32)

It is also convenient to consider [Dennery and Krzywicki, 1969] the set of values of a
function f (x) as the components of an abstract vector |f 〉 with respect to a basis of vectors
|x〉, with a continuous ‘index’ x labelling these vectors (a ≤ x ≤ b). In this sense we can
write f (x) ≡ 〈x|f 〉 and rewrite Eq. A.31 as

1

kn

∫ b

a

dx μ(x) 〈φm|x〉〈x|φn〉= δm,n. (A.33)

Thus, the identity operator can also be written as

1̂ = 1

kn

∫ b

a

dx μ(x) |x〉〈x|. (A.34)

Using these generalized definitions, we can have basis sets for functions as we have for
vectors. The coefficients fi in Eq. A.29 are found to be

fn = 〈f (x) | φn(x)〉
〈φn(x) | φn(x)〉 =

1

kn

∫ b

a

dx μ(x)f (x)∗φn(x). (A.35)

It is clear that listing all the infinite number of coefficients completely defines the function
f (x). Once we have specified the basis set in a certain space defined for a variable x we
could represent any function f (x) by a string of coefficients fn. In a number of conditions
this digital representation will be quite a useful way of storing information about a function.
This is particularly true if the use of a limited number of coefficients allows a satisfactory
representation of the function itself. For instance, we could represent a sound signal by
expanding it in harmonics and obtain in this way a useful digital representation. In a more
general situation, we shall have a function of many variables and the integral in Eq. A.35
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will really be a multiple integral. A typical example is that of a function of the polar angles
α,β where we have a two-fold integral and dxμ(x) becomes dαdβ sinβ.

A.2.1 Orthogonalization

Gram–Schmidt orthogonalization. Let us start from m non-orthogonal functions gi(x)
which we take to be linearly independent, in the sense that no linear combination of these
functions is equal to 0:

m∑
i=1

cigi(x) �= 0, (A.36)

for any set of (not all 0) real coefficients c1,c2, . . . ,cm and proceed by building our orthogo-
nal combinations one after the other. If we arbitrarily start from φ1(x) = g1(x) then, clearly,
the function

φ2(x) = g2(x)− 〈g2(x)|φ1(x)〉
〈φ1(x)|φ1(x)〉φ1(x), (A.37)

where we have removed the ‘projection’ of g2 on φ1, is orthogonal to φ1:

〈φ1|φ2〉 = 〈φ1|g2〉 − 〈g2|φ1〉
〈φ1|φ1〉 〈φ1|φ1〉 = 0. (A.38)

We can then use φ1 and φ2 to obtain φ3 and so on, writing:

φk+1(x) = gk(x)−
k∑
i=1

〈gk(x)|φi(x)〉
〈φi(x)|φi(x)〉φi(x). (A.39)

Let us consider, as an example, the set of powers {gi(x)} = {x0,x1,x2, . . . ,xn}, with x real
and −1 ≤ x ≤ 1. Then, using∫ 1

−1
dx xmxn =

{
0 if n+m is odd

2/(m+ n+ 1) if n+m is even,
(A.40)

we find the orthogonal set

φ0(x) = 1, (A.41a)

φ1(x) = x, (A.41b)

φ2(x) = x2 − 1

3
, (A.41c)

φ2k(x) = x2k −
2k−2∑
j=0,2.

(2j + 1)

(2k + j + 1)
φj (x), (A.41d)

φ2k+1(x) = x2k+1 −
2k−1∑
j=1,3.

(2j + 1)

(2k + j + 2)
φj (x). (A.41e)
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We can still choose the normalization of these orthogonalized functions. If the choice is to
normalize φn to 2/(2n+1), these correspond to the Legendre polynomials that we have used
in Chapter 3 and elsewhere to write down expressions for the orientational order parameters.
Note that the Gram–Schmidt procedure allows the generation of an infinite set of orthogonal
functions.

Löwdin orthogonalization. There are various other procedures to generate a set of
orthonormal functions φi(x) from m linearly independent non-orthogonal functions gi(x).
The scalar products Sij = 〈gi(x)|gj (x)〉 = S∗j i , can be used to form an overlap matrix S

that has a non-zero determinant. S is Hermitian or self-adjoint (i.e. S = ST ∗) and can be
diagonalized with a unitary eigenvector matrix U to the diagonal eigenvalues matrix s with
principal values si

SU = Us. (A.42)

Each column of U, e.g. u(i) ≡ (U1i,U2i, . . . ,Uni), corresponds to one eigenvector, e.g.
S u(i) = si u(i). The linear combinations φi(x) =∑m

j=1 Uji gj (x) are orthogonal:

〈φi(x)|φj (x)〉 =
m∑

k,l=1

Uki 〈gk(x)|gl(x)〉Ulj =
m∑

k,l=1

Uki SklUlj = sj δi,j (A.43)

and the linear combinations ψi(x) = 1√
si

∑m
j=1 Uji gj (x), are orthonormal. The Löwdin

method has the advantage of treating all starting functions in an unbiased, symmetric way
and thus of defining orthogonal functions that are as similar as possible to the original ones.
This is particularly convenient in quantum chemistry where it is used, e.g. on atomic orbitals.
Note, however, that only a finite basis set can be treated in this way.

We now list a few useful examples of basis sets.

Harmonics. The harmonic functions {cos(nx)}, for 0 ≤ x ≤ 2π and integer n form a basis
set with the orthogonality relation∫ 2π

0
dx cos(mx) cos(nx) = π (δm,0δn,0 + δm,n) (A.44)

and similarly, the set: {sin(nx)}, for 0 ≤ x ≤ 2π and integer n:∫ 2π

0
dx sin(mx) sin(nx) = π (δm,0δn,0 + δm,n) (A.45)

and in complex exponential form:∫ 2π

0
dx e−imx einx = 2π δm,n. (A.46)

Legendre polynomials. A Legendre polynomial of rankL,PL(x), is a polynomial of degree
L of x which contains only odd or even powers of x when L is, respectively, odd or even
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and with L 0s in the range −1 ≤ x ≤ 1. The PL(x) can be generated with the Rodrigues
formula:

PL(x) = 1

2LL!

dL

dxL
(x2 − 1)L = 1

2L

L∑
k=0

(−1)k
(2L− 2k)!

k! (L− k)! (L− 2k)!
xL−2k . (A.47)

The explicit form of the first few Legendre polynomials is:

P0(x) = 1, (A.48a)

P1(x) = x, (A.48b)

P2(x) = (3x2 − 1)/2, (A.48c)

P3(x) = (5x3 − 3x)/2, (A.48d)

P4(x) = (35x4 − 30x2 + 3)/8, (A.48e)

P5(x) = (63x5 − 70x3 + 15x)/8, (A.48f)

P6(x) = (231x6 − 315x4 + 105x2 − 5)/16, (A.48g)

where x ≡ cosβ. At x =1 (i.e. β = 0), P2L(1) = 1. At x = 0 (i.e. β = π/2) we have
[Tricomi, 1948], P2L(0) = [(−1)L(2L)! ]/[22L(L! )2]. It is also useful to write the inverse
relations

1 = P0(x), (A.49a)

x = P1(x), (A.49b)

x2 = 1

3
[P0(x)+ 2P2(x)], (A.49c)

x3 = 1

5
[3P1(x)+ 2P3(x)], (A.49d)

x4 = 1

35
[7P0(x)+ 20P2(x)+ 8P4(x)], (A.49e)

x5 = 1

63
[27P1(x)+ 28P3(x)+ 8P5(x)], (A.49f)

x6 = 1

231
[33P0(x)+ 110P2(x)+ 72P4(x)+ 16P6(x)]. (A.49g)

The Legendre polynomials {PL(x)}, for x = cosβ,−1 ≤ x ≤ 1 and L integers with L ≥ 0
form a complete orthogonal basis set:∫ 1

−1
dxPL(x)PL′ (x) =

∫ π

0
dβ sinβPL(cosβ)PL′ (cosβ) = 2

(2L+ 1)
δL,L′ . (A.50)

They satisfy the recurrence relation

LPL(x) = (2L− 1)xPL−1(x)− (L− 1)PL−2(x) (A.51)

and their derivative can be written as

d

dx
PL(x) = (2L− 1)PL−1(x)+ (2L− 5)PL−3(x)+ · · ·

{+1 (L odd)
+3P1(x) (L even)

. (A.52)

https://doi.org/10.1017/9781108539630.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.014


546 A Modicum of Linear Algebra

Spherical harmonics. Spherical harmonics are familiar in quantum mechanics and chem-
ical physics since they represent the angular part of the atomic orbital of a hydrogenoid
atom (see, e.g., [Atkins, 1983]). The rank L = 0,1,2, . . . of a spherical harmonic YL,m cor-
responds to the angular momentum for s,p,d, . . . orbitals, andm to the angular momentum
projection quantum number. Explicit expressions can be derived from the definition

YL,m(α,β) = (−)m
(

(2L+ 1)(L−m)!

4π (L+m)!

) 1
2

eimα(1− cos2 β)m/2
dmPL(cosβ)

d(cosβ)m
, (A.53)

with L = 0,1,2, . . ., m = −L, − L+ 1, . . . ,L− 1,L. The first few YL,m(α,β) are:

Y0,0(α,β) =
√

1/(4π ), (A.54a)

Y1,0(α,β) =
√

3/(4π ) cosβ, (A.54b)

Y1,±1(α,β) = ∓
√

3/(8π ) sinβ e±iα, (A.54c)

Y2,0(α,β) =
√

5/(4π )
(3

2
cos2 β − 1

2

)
, (A.54d)

Y2,±1(α,β) = ∓
√

15/(8π ) sinβ cosβ e±iα, (A.54e)

Y2,±2(α,β) =
√

15/(32π ) sin2 β e±i2α . (A.54f)

The functions {YL,m(α,β)}, with 0 ≤ β ≤ π and 0 ≤ α ≤ 2π form a basis set, with the
orthogonality relation∫ 2π

0
dα

∫ π

0
dβ sinβ YL,m(α,β)Y ∗L′,m′ (α,β) = δL,L′ δm,m′ . (A.55)

A generalization of spherical harmonics to the space of Euler angles (α,β,γ ) leads to
Wigner rotation matrices DL

m,n(α,β,γ ) that are particularly important for discussing ori-
entational distributions and order parameters and will be treated in detail in Appendix F.
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Appendix B

Tensors and Rotations

B.1 Scalars and Vectors

Physical properties often need to be classified according to their number of independent
components and their behaviour under rotations. We are familiar with some of these, e.g.
scalars and vectors, but here we shall try to give a more systematic classification in terms
of tensors. To do this we briefly review the behaviour under rotation of scalars and vectors
and then introduce tensors of rank n as quantities that transform under rotation as the nth
power of a vector.

Scalars. These are one-component quantities that are invariant under rotation. Some exam-
ples are the number density ρ, i.e. the number of particles per unit volume of a given sample,
or the mass m and the volume V of an object.

Vectors. The most familiar examples are those of vectors in two and three dimensions.
In general, using the Dirac notation introduced in Appendix A, the rotated vector will
be obtained starting from the identity |v〉 = |v〉, where we insert on the right-hand side
the identity matrix written in terms of the unit vectors |ej 〉 along the axis of the chosen
coordinate system (cf. Eq. A.16)

|v〉 =
3∑
j=1

|ej 〉〈ej |v〉. (B.1)

The components of the vector along the ith direction of the new, rotated frame (that we
indicate with a prime), are obtained multiplying on the left by 〈e′i |

〈e′i |v〉 =
3∑
j=1

〈e′i |ej 〉〈ej |v〉. (B.2)

If we write this using the more familiar subscript notation for the components of a vector
we have

v′i =
3∑
j=1

Rij vj, (B.3)
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Figure B.1 A vector v at an angle θ − φ with respect to coordinate frame (x′,y′) rotated by
an angle φ around z = z′ with respect to frame (x,y).

where we have introduced the Cartesian rotation matrix R whose elements Rij = 〈e′i |ej 〉 =
�i,j are the direction cosines �i,j of the new frame axis with respect to the old ones.

Cartesian rotation matrix. We can now write the rotation matrix elements in terms of

angles of rotation for a vector v = (vp cos θ,vp sin θ,vz), vp =
√
v2 − v2

z . We rotate the
coordinate frame of an angle φ around the z-axis (Fig. B.1) and find the components of the
vector in the new (primed) frame, v′ = (vx′,vy′,vz) as

vx′ = vp cos(θ − φ) = vp[cosφ cos θ + sinφ sin θ ], (B.4a)

vy′ = vp sin(θ − φ) = vp[− sinφ cos θ + cosφ sin θ ], (B.4b)

vz′ = vz. (B.4c)

We then find, substituting vx = vp cos θ , vy = vp sin θ , that v′x = +vx cosφ + vy sinφ:
v′y = −vx sinφ + vy cosφ and v′z = vz. Thus, we write the 3D Cartesian matrix Rz(φ) for
a frame rotation of φ around the z-axis as

Rz(φ) =
⎛⎝ cosφ sinφ 0
− sinφ cosφ 0

0 0 1

⎞⎠ . (B.5)

Similarly, we get the matrices for a rotation of the frame around the x- or y-axis

Rx(φ) =
⎛⎝ 1 0 0

0 cosφ sinφ
0 − sinφ cosφ

⎞⎠ Ry(φ) =
⎛⎝ cosφ 0 sinφ

0 1 0
− sinφ 0 cosφ

⎞⎠ . (B.6)

More complex rotations can be obtained by performing rotations about the three axes in
a suitable sequence. The matrix for the composite rotation is the product of the individual
rotation matrices taken in the proper order. Indeed, rotations in three dimensions do not
commute, different to rotations in a plane, i.e. in two dimensions. The most general rotation
needed to transform from a right-handed laboratory frame to an arbitrarily rotated coordi-
nate system (e.g. from a laboratory to a molecular fixed system) can be written as a product
of three rotations. In the Rose [1957] and Brink and Satchler [1968] convention, these are:
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(i) a rotation of α around the z laboratory axis, (ii) a rotation of β around the new y-axis,
and (iii) a rotation of γ around the new z-axis.1 Thus,

R(α,β,γ ) = Rz′′ (γ )Ry′(β)Rz(α), (B.7)

where xyz indicate a laboratory frame and x′y′z′, x′′y′′z′′ the axis frame after the first, or
respectively, the second transformation. The three angles α,β,γ are called Euler angles.
The explicit result is

R(α,β,γ ) =
⎛⎝ cα cβ cγ − sα sγ sα cβ cγ + cα sγ − sβ cγ
−cα cβ sγ − sα cγ − sα cβ sγ + cα cγ sβ sγ

cα sβ sα sβ cβ

⎞⎠ , (B.8)

where we have used the shorthand sα, cα for sinα, cosα, etc. R is an orthogonal matrix,
in the sense that its inverse is the transpose of R. This is a consequence of the fact that
rotations do not change the length of a vector. Thus, 〈v′|v′〉 = 〈v|RTR|v〉 = 〈v|v〉, so
that: RTR = RRT = 1, expressing the fact that for a rotation matrix R−1 = RT , i.e. R is
orthogonal (its inverse is just its transpose).

B.2 Tensors of Rank 2

The direct or outer or tensor product of two vectors u,w can be represented by a matrix A
with elements Aij ≡ (vw)ij = viwj , often indicated with different notations:
A = v ⊗ w = |v〉〈w| = vw. Using Eq. B.3 the matrix elements will transform under
rotation as (v′)i(w′)k =

∑
j l RijRklvjwl or, if we write the rotation for the matrix A,

A′ik =
∑
j l

RijAjlR
T
lk, (B.9)

i.e. in matrix form, A′ = R A RT . This expression for the rotation of a matrix is valid for
any matrix, not only the direct product ones. Thus, a matrix transforms as the second direct
power of a vector and in this sense it is a tensor of rank 2. The coordinate frame where a
matrix is diagonal, if it exists, is called its principal frame and the non-vanishing elements
are the principal values or eigenvalues. The operation bringing a matrix to its diagonal form
is called diagonalization

A U = U a = U diag (a1,a2,a3), (B.10)

where the notation diag (a1,a2, . . . ,an) indicates the diagonal matrix whose entries are ak .
Here a1, . . . ,an are the eigenvalues of A:

∑
j AijUjk =

∑
j ′ Uij ′aj ′kδj ′,k = akUik or, more

compactly, A u(k) = aku(k), where the eigenvector u(k) corresponding to the kth eigenvalue,

1 Another popular convention is that of Goldstein [1980], also used by Evans [1977] and Allen and Tildesley [2017] where the
second rotation is around the x- instead of the y-axis. The angles in the Goldstein (G) and Rose (R) conventions are related by
αG = αR + π/2, βG = βR , γG = γR − π/2.
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550 Tensors and Rotations

ak is the kth column of the eigenvector matrix U. The eigenvalues are the root of the secular
equation, or characteristic polynomial:

det(λI− A) = λ3 − I1λ2 + I2λ− I3 = 0, (B.11)

where I1,I2,I3 are the three scalar invariants of the 3× 3 matrix A

I1 = A11 + A22 + A33 = a1 + a2 + a3 = TrA, (B.12a)

I2 = A11A22 + A11A33 + A22A33 − A2
12 − A2

13 − A2
23

= a1a2 + a1a3 + a2a3 = 1

2

[
Tr(A)2 − Tr

(
A2)], (B.12b)

I3 = 2A12A13A23 + A11A22A33 − A2
13A22 − A2

23A11 − A2
12A33

= a1a2a3 = det(A) = 1

3

[
Tr(A3)− 3

2
Tr(A) Tr(A2)+ 1

2
Tr(A)3

]
. (B.12c)

Note that the invariants, often used to describe the shape of a tensor, can be evaluated from
the eigenvalues, but also directly from the matrix elements. For a traceless matrix, like the
ordering matrix Q defined in Eq. 3.50, the invariants are just

I1 = 0,I2 = −1

2
Tr
(
Q2),I3 = 1

3
Tr(Q3). (B.13)

B.3 Tensors of Rank n

The direct product is the device that allows us to construct higher-rank tensors from lower-
rank ones. We can generalize, calling tensor of rank n a quantity that transforms as the nth
direct power of a vector. We have

[v′1v
′
2 · · · v′n]i1i2...in =

∑
j1,...,jn

Ri1j1Ri2j2 · · ·Rinjn [v1v2 · · · vn]j1j2···jn . (B.14)

In particular, just as the direct product of two vectors is a tensor of rank 2, the direct
product of four vectors is a tensor of rank 4. The invariants of a fourth-rank tensor T, with
components Tijkl can be written as [Betten, 1987]

I1 = −S1, I2 =
(
S2

1 − S2

)
/2! , (B.15a)

I3 = −
(
S3

1 − 3S1S2 + 2S3

)
/3! , (B.15b)

I4 =
(
S4

1 + 8S1S3 − 6S2S
2
1 + 3S2

2 − 6S4

)
/4! , (B.15c)

I5 = −
(
S1 − 30S1S4 + 15S1S

2
2 − 20S2S3 − 10S2S

3
1 + 20S3S

2
1 + 24S5)/5!

)
, (B.15d)

I6 =
(
S6

1 + 144S1S5 − 120S1S2S3 − 15S2S
4
1 + 90S2S4

+ 405S3S
3
1 − 15S3

2 − 90S4S
2
1 + 40S2

3 + 45S2
2S

2
1 − 120S6

)
/6! , (B.15e)

where the traces are Sm ≡ TrTm = Tα1β1α2β2Tα2β2α3β3 . . . Tαmβmα1β1.
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B.4 Spherical Tensors

We can think of the transformation Eq. B.9, as a single-matrix transformation from the nine
components of A to the nine components of A′:

A′ij =
∑
ijkl

TijklAkl, (B.16)

where comparing with Eq. B.9, Tijkl ≡ RikRjl . The 9× 9 transformation matrix mixes in
general all the nine components; however, it can be brought to block diagonal form if we
take suitable combinations of the Cartesian elements. The 3n-dimensional representation
of the rotation group realized in this way can be decomposed into irreducible spherical
tensors, so that the spherical components of rankL,AL,m, transform only among themselves
under rotation. The combinations of Cartesian tensor components of a physical property A
transforming according to the representation D(L) are called spherical tensor components
of rank L and are denoted by AL,m,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A′0,0

A′1,−1

A′1,0

A′1,1

A′2,−2

A′2,−1

A′2,0

A′2,1

A′2,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 D1

−1,−1 D1
−1,0 D1

−1,1 0 0 0 0 0

0 D1
0,−1 D1

00 D1
0,1 0 0 0 0 0

0 D1
1,−1 D1

1,0 D1
1,1 0 0 0 0 0

0 0 0 0 D2
−2,−2 D2

−2,−1 D2
−2,0 D2

−2,1 D2
−2,2

0 0 0 0 D2
−1,−2 D2

−1,−1 D2
−1,0 D2

−1,1 D2
−1,2

0 0 0 0 D2
0,−2 D2

0,−1 D2
0,0 D2

0,1 D2
0,2

0 0 0 0 D2
1,−2 D2

1,−1 D2
1,0 D2

1,1 D2
1,2

0 0 0 0 D2
2,−2 D2

2,−1 D2
2,0 D2

2,1 D2
2,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0,0

A1,−1

A1,0

A1,1

A2,−2

A2,−1

A2,0

A2,1

A2,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.17)

The matrix elements DL
mn(�) will be functions of the rotation � = α,β,γ connecting the

initial to the final coordinate frame. They are called Wigner rotation matrix (elements) and
will be discussed in detail in Appendix F . Spherical tensors are particularly convenient in
order to write the components of a tensor property in one frame in terms of the compo-
nents of the same property in another. For instance, the components of A measured in the
laboratory frame can be related to those in the molecular frame

A
L,m
LAB =

L∑
n=−L

DL∗
m,n(α,β,γ )AL,nMOL, (B.18)
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and vice versa

A
L,m
MOL =

L∑
n=−L

DL
n,m(α,β,γ )AL,nLAB. (B.19)

These equations illustrate the main reason for the usefulness of irreducible tensors in prob-
lems involving rotations, i.e. that their transformation properties are very simple. The set of
(2L+1) components, A(L), corresponds to an irreducible tensor of rankL. If we consider in
particular a tensor A = u⊗ w, i.e. the direct product of two possibly different vectors, the
explicit irreducible components of A in terms of the Cartesian components of the vectors v,
w or of their polar analogues, e.g. u± = ∓(ux ± iuy), are

A0,0 = − 1√
3

(uxwx + uywy + uzwz) = − 1√
3

[
uzwz + 1

2
(u+w− + u−w+)

]
, (B.20a)

A1,0 = −i 1√
2

(uywx − uxwy) = −1

2
− 1√

2
[u+w− − u−w+], (B.20b)

A1,±1 = 1

2
[uzwx − uxwz ± i(uzwy − uywz)] = −1

2

[
u±wz − uzw±

]
, (B.20c)

A2,0 =
√

2

3

[
uzwz − 1

2
(uxwx + uywy)

]
=
√

2

3

[
uzwz − 1

4

(
u+w− + u−w+

)]
, (B.20d)

A2,±1 = ∓1

2
[uxwz + uzwx ± i(uywz + uzwy)] = ∓1

2
(u±wz + uzw±) , (B.20e)

A2,±2 = 1

2
[uxwx − uywy ± i(uxwy + uywx)] = 1

2
u±w±. (B.20f)

More generally, a 3× 3 matrix A can be decomposed as

A0,0 = − 1√
3

TrA, (B.21a)

A1,0 = −i 1√
2

(Ayx − Axy), (B.21b)

A1,±1 = 1

2
[Azx − Axz ± i(Azy − Ayz)], (B.21c)

A2,0 =
√

2

3

[
Azz − 1

2
(Axx + Ayy)

]
, (B.21d)

A2,±1 = ∓1

2
[Axz + Azx ± i(Ayz + Azy)], (B.21e)

A2,±2 = 1

2
[Axx − Ayy ± i(Axy + Ayx)]. (B.21f)

A generic second-rank Cartesian tensor can be written in terms of spherical tensors of rank
0,1,2.
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Axx = − 1√
3
A0,0 − 1√

6
A2,0 + 1

2
(A2,2 + A2,−2), (B.22a)

Axy = −i
2

(A2,2 − A2,−2)− i√
2
A1,0, (B.22b)

Axz = 1

2
(A2,−1 − A2,1)− 1

2
(A1,−1 + A1,1), (B.22c)

Ayx = −i
2

(A2,2 − A2,−2)+ i√
2
A1,0, (B.22d)

Ayy = − 1√
3
A0,0 − 1√

6
A2,0 − 1

2
(A2,2 + A2,−2), (B.22e)

Ayz = i

2
(A2,1 + A2,−1)+ i

2
(A1,1 − A1,−1), (B.22f)

Azx = 1

2
(A2,−1 − A2,1)+ 1

2
(A1,−1 + A1,1), (B.22g)

Azy = i

2
(A2,1 + A2,−1)− i

2
(A1,1 − A1,−1), (B.22h)

Azz = − 1√
3
A0,0 +

√
2

3
A2,0. (B.22i)

The first-rank terms vanish if the Cartesian tensor is symmetric, as is the case for many
physical properties, and in this limit the explicit relations become:

Axx = − 1√
3
A0,0 − 1√

6
A2,0 + 1

2
(A2,2 + A2,−2), (B.23a)

Axy = −i
2

(A2,2 − A2,−2), (B.23b)

Axz = 1

2
(A2,−1 − A2,1), (B.23c)

Ayy = − 1√
3
A0,0 − 1√

6
A2,0 − 1

2
(A2,2 + A2,−2), (B.23d)

Ayz = i

2
(A2,1 + A2,−1), (B.23e)

Azz = − 1√
3
A0,0 +

√
2

3
A2,0. (B.23f)

As mentioned previously a vector is a Cartesian tensor of rank 1. Its Cartesian components
can be written as the components of a rank 1 spherical tensor:

v1,0 = vz, (B.24a)

v1,±1 = ∓ 1√
2

(vx ± ivy). (B.24b)

The quantities DL
m,n, combinations of Cartesian rotation matrix elements, are the Wigner

rotation matrices of rank L to be discussed in Appendix F.
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B.5 Tensor Contraction

The direct product operation allows the generation of tensors of higher rank. On the contrary,
the contraction or inner product operation generates a tensor of lower rank or even a scalar
from two tensors by summing over the product of tensor components with the same index.
For rank 1 tensors (vectors) this is the familiar scalar product (cf. Appendix A). Thus, if v,
w are tensors of rank 1, V, W are tensors of rank 2 and VVV, WWW tensors of rank 3 we can write
the effect of the contraction as

v ·w =
∑
i

viw
∗
i , (B.25a)

V:W =
∑
ij

VijW
∗
ij = Tr(VWT ∗), (B.25b)

VVV
...WWW =

∑
ijk

VijkW ∗
ijk, (B.25c)

while partial contractions could be

V · v ≡ Vv =
∑
j

Vij vj, (B.26a)

VVV :W =
∑
ij

VijkW ∗
jk . (B.26b)

For vectors and matrices self-contractions are also written as

||v|| = v2 = |v|2 = v · v =
∑
i

viv
∗
i , (B.27a)

||V|| = V:V =
∑
ij

VijV
∗
ij = Tr(VVT ∗). (B.27b)

For the dyadic product of two vectors whose components commute

||ab|| = |ab|2 =
∑
ij

aibj a
∗
i b
∗
j = |a|2|b|2 = Tr([a ⊗ b][a ⊗ b]T ∗). (B.28)

More generally we could use the symbol' for the total contraction operation of two tensors
of any rank n:

V'W =
∑
i1...in

Vi1...inW
∗
i1...in

. (B.29)

The Cartesian contraction operation in Eq. B.29 can be written in terms of spherical
tensors as

V'W =
∑
L,m

V L,mWL,m∗ =
∑
L,m

(−1)L+mV L,mWL,−m, L integer. (B.30)
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Appendix C

Taylor Series

For a scalar function f (x) of a single real variable x which is continuous and differentiable
n times in a point x0, the value of f at a point x + hx near x can be written as a Taylor
series:

f (x + hx) = f (x)+
(

df

dx

)
x

hx + 1

2!

(
d2f

dx2

)
x

h2
x + · · · +

1

n!

(
dnf

dxn

)
x

hnx + O (hn+1
x ),

(C.1)

where the derivatives are evaluated at the original point x and O (hn+1
x ) indicates the order

of magnitude of the error in truncating the series at the nth power of the small increment hx .
The aim here is to find a similar expansion for a scalar function f (r) depending on a vector
r ≡ (x,y,z), in order to find an approximate value of the function when the vector changes
slightly, say from r to r + h. Taylor expanding each Cartesian component in turn, we have

f (r + h) = f (x + hx,y + hy,z+ hz)

= f (x,y,z)+
(
∂f

∂x

)
r

hx +
(
∂f

∂y

)
r

hy +
(
∂f

∂z

)
r

hz + · · · , (C.2)

where terms like
(
∂f
∂x

)
r

are partial derivatives evaluated at the starting point. Using the

gradient ∇∇∇ and introducing the displacement vector |h〉 = |x〉hx + |y〉hy + |z〉hz, we can
rewrite Eq. C.2 as

f (r + h) = f (r)+ 〈∇f (r)|h〉 . (C.3)

The second-order term in the expansion can be written in a compact way with the help of
the matrix of second derivatives (Hessian matrix) constructed from the direct product of the
gradient vector:

|∇〉〈∇|f ≡ ∇∇∇∇∇∇f =

⎛⎜⎜⎜⎝
∂2f

∂x2
∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f

∂y2
∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f

∂z2

⎞⎟⎟⎟⎠. (C.4)
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Thus, we can write the Taylor expansion for the function f (r) taken at a position r + h

differing from r by a small increment vector h as

f (r + h) = f (r)+ 〈∇f (r)|h〉 + 1

2
〈h|∇〉〈∇f (r)|h〉 + · · · , (C.5a)

= f (r)+ ∇∇∇f (r) ·h+ 1

2
h · ∇∇∇∇∇∇f (r) ·h+ · · · , (C.5b)

= f (r)+ ∇∇∇f (r) ·h+ 1

2
∇∇∇∇∇∇f (r) : hh+ · · · , (C.5c)

where we have introduced the second-rank tensor hh (see Appendix B) and used the con-
traction operation indicated by the double dot (:). The last equation is useful because it hints
that the terms of order (n) in the general expansion of the scalar f (r + h) can be generated
by contracting the n-rank tensor constructed from the n direct power of the increment vector
h with the n-rank tensor constructed from the direct product of the derivatives evaluated at
the original point. Thus,

f (r + h) = f (r)+ ∇∇∇f (r) ···h+ 1

2!
∇∇∇∇∇∇f (r) : hh+ 1

3!
∇∇∇∇∇∇∇∇∇f (r)

...

...

...hhh+ · · · . (C.6)

An important example of application of these formulas is the expansion of the function
f (r + h) = 1/|r + h| appearing in the Coulomb interactions:

1

|r + h| =
1

r
+∇∇∇ 1

r
·h+ 1

2!
∇∇∇∇∇∇ 1

r
: hh+ 1

3!
∇∇∇∇∇∇∇∇∇ 1

r

...

...

...hhh+ · · · + 1

n!
T(n)(r)' h⊗n + · · · ,

(C.7)

where r ≡ |r| =
√
x2 + y2 + z2 and we have indicated with ' the general contraction

operation, consisting of generating a scalar by summing over all components in n dimen-
sions. We have also used the direct power notation h⊗n for the direct product of n vectors h.
With this notation we can write

1

|r + h| =
∑
n

1

n!
T(n)(r)' h⊗n. (C.8)

As we see, the calculation relies on the evaluation, that can be done once and for all, of the
tensors T(n)(r) = ∇∇∇⊗(n)(1/r). The first few are

T(0) = 1

r
, (C.9a)

T(1)(r) = ∇∇∇ 1

r
= − r

r3 , (C.9b)

T(2)(r) = ∇∇∇∇∇∇ 1

r
= 3(rr − r21)

r5 , (C.9c)

T(3)(r) ≡ ∇∇∇∇∇∇∇∇∇ 1

r
= 3

r7 [5rrr − (r2r1+ rr21+ r1r2)], (C.9d)
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with a dependence on distance r going as (1/r)n+1. The second-rank tensor T(2)(r), also
called the dipolar tensor, is particularly important and it is convenient to write it down
explicitly in matrix form:

T(2)(r) = − 1

r5

⎛⎝3x2 − r2 3xy 3xz
3xy 3y2 − r2 3yz
3xz 3yz 3z2 − r2

⎞⎠ , (C.10)

with components T
(2)
ab (r) = ∇a∇b (1/r). Note that the dipolar tensor is traceless:

Tr
(
T(2)(r)

) = 0. Thus, when we take the trace of the product of the tensor T(2)(r) with
another tensor A, we can add an arbitrary constant to the diagonal of that tensor without
changing the result:

Tr
(
T(2)(r) (A+ λ1)

) = Tr
(
T(2)(r) A

)
. (C.11)

For example, the constant λ could be minus the trace of the matrix A itself to make the
matrix a traceless one. We also give the explicit Cartesian components of T(3)(r):

T
(3)
abc(r) = 3

r7

[
5rarbrc − r2(raδb,c + rbδa,c + rcδa,b)

]
. (C.12)
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Appendix D

The Dirac Delta Function

Definition. A one-dimensional delta ‘function’ [Hoskins, 2009] can be defined as a general-
ized function or distribution [Strichartz, 1994] that is 0 everywhere except in an infinitesimal
domain around 0, where it goes to infinity:

δ(x) =
{

0 for x �= 0
∞ for x = 0,

(D.1)

in such a way that it has a finite area underneath:
∫∞
−∞ dx δ(x) = 1. For every well-behaved

function f (x) (also called test function) and x0 real we have∫ ∞

−∞
dx δ(x − x0)f (x) = f (x0), (D.2)

and as a special case,
∫∞
−∞ dx δ(x)f (x) = f (0). Clearly, the range of integration does not

need to be from −∞ to ∞ but has just to include the singular point x0, i.e. the location of
the delta peak. The Dirac delta function can be written in terms of a sequence of functions
δn(x − x0) with x0 a real number [Lighthill, 1958]:

lim
n→∞

∫ ∞

−∞
dx δn(x − x0)f (x) = f (x0). (D.3)

Such a sequence, of which we can have very many examples, is called a delta sequence and
we write, symbolically,

lim
n→∞ δn(x − x0) = δ(x − x0), x ∈ R. (D.4)

For instance, some useful delta sequences are:

δn(x) =
⎧⎨⎩

0, x < − 1
2n

n, − 1
2n < x <

1
2n

0, x > 1
2n

, (D.5a)

δn(x) = n√
π

exp(−n2x2), (D.5b)

δn(x − x0) = 1

2π

n∑
k=−n

eik(x−x0) =
sin

[
(n+ 1

2 )(x − x0)
]

2π sin
[

1
2 (x − x0)

] . (D.5c)
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The Dirac Delta Function 559

General properties.

δ(−x) = δ(x), (D.6a)

δ(ax) = 1

|a|δ(x), (D.6b)

x δ(x) = 0, (D.6c)

δ(x2 − x2
0 ) = 1

2|x0| [δ(x − x0)+ δ(x + x0)], (D.6d)

δ(x1 − x2) =
∫ ∞

−∞
dx δ(x − x1) δ(x − x2). (D.6e)

For a continuous differentiable function f (x) with n real roots at xi, where f (xi) = 0, and
|f ′(xi)| �= 0 for all xi , we have, Taylor expanding around each root that f (x) = f (xi) +
f ′(xi)(x − xi)+ · · · . Thus, using Eq. D.6b we have

δ (f (x)) =
n∑
i=1

δ(x − xi)
|f ′(xi)| . (D.7)

The first derivative of a delta function can be introduced, integrating by parts, as:∫ ∞

−∞
dxf (x)δ′(x) = −f ′(0), (D.8)

and generalizing to the nth derivative of the delta:
∫∞
−∞ dxf (x)δ(n)(x) = (−1)nf (n)(0).

Delta function in more than one dimension. The definition of a delta function can be
readily generalized to more than one dimension:

• In 2D, for Cartesian coordinates:

δ(r − r0) = δ(x − x0) δ(y − y0), (D.9)

and using polar coordinates, δ(r − r0) = 1
r
δ(r − r0))δ(φ − φ0).

• In 3D we have, similarly, δ(r − r0) = δ(x − x0) δ(y − y0) δ(z− z0), and∫
V

dxdydzf (r) δ(r − r0) =
{
f (r0), if r0 is inside V
0, if r0 is outside V,

(D.10)

with
∫
V

dxdydz δ(r) = 1. Using polar coordinates,

δ(r − r0) = 1

r2
δ (r − r0) δ (cos θ − cos θ0) δ (φ − φ0) (D.11a)

= 1

r2 sin θ
δ(r − r0)δ(θ − θ0)δ(φ − φ0). (D.11b)

Analytic representations as limits. A few useful representations are:

• Delta function as the limit of certain oscillating functions, e.g.

δ(x − x0) = lim
t→∞

sin[t(x − x0)]

π (x − x0)
, (D.12)
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560 The Dirac Delta Function

and

δ(x − x0) = lim
t→∞

sin2(t(x − x0))

πt(x − x0)2
. (D.13)

• Delta function as a Gaussian of vanishing width σ in 1D or 3D

δ(x − x0) = lim
σ→0+

1

σ
√

2π
e−(x−x0)2/(2σ 2), (D.14)

δ(r − r0) = lim
σ→0+

(
1

2πσ 2

) 3
2

e−|r−r0|2/(2σ 2). (D.15)

• Delta function as a Lorentzian of vanishing width σ

δ(x) = 1

π
lim
σ→0+

σ

x2 + σ 2 . (D.16)

• Defining a rectangular box or pulse function with base d and height h:

!d,h(x) =
{
h, for − d2 < x < + d2
0, for + d2 < x < − d2

, (D.17)

and taking h = 1/d, so that the area under the function is 1, we can write

δ(x) = lim
d→0

!
d, 1
d
(x) dx. (D.18)

Delta function as a derivative of the step or sign functions.

δ(x − x0) = d

dx
H (x − x0), (D.19)

where the step or Heaviside function H (x) (also called theta function %(x)), which is 0
when x < 0, x = 1/2 when x = 0 and 1 when x > 0 [Abramowitz and Stegun, 1965], or

H (x) = 1

2

[
1+ x

|x|
]

. (D.20)

H (x) is then the primitive of a delta function. A useful step-like function is the sign function
sgn(x) = −1 for x < 0, 0 for x = 0, 1 for x > 0, or sgn(x) = H (x)−H (−x). In terms of
this,

δ(x) = 1

2

d

dx
sgn(x). (D.21)

Integral representations. The Fourier form is particularly useful

δ(x − x0) = 1

2π

∫ ∞

−∞
dq eiq(x−x0). (D.22)

δ(r − r0) = 1

(2π )3

∫ ∞

−∞
dq eiq · (r−r0). (D.23)

Orthogonal expansions. Given the complete orthonormal basis set of functions {ψi(x)}
over the variable x in the interval a ≤ x ≤ b, we have

δm,n =
∫ b

a

dx ψ∗m(x)ψn(x) = 〈m|n〉, (D.24)
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The Dirac Delta Function 561

which can be considered an expansion of the Kronecker delta δm,n, with m, n discrete,
integer numbers. We can write 〈x|ψn〉 = ψn(x) as an integral mapping from the continuous
variable x to the discrete one n [Dennery and Krzywicki, 1969] using Eq. A.34 . Then
using an alternative, more suggestive, notation for the Kronecker delta and inserting the
representation of the identity in Eq. A.32, we have

δ(m− n) ≡ δm,n = 〈ψm|ψn〉 =
∫ b

a

dx〈ψm|x〉〈x|ψn〉. (D.25)

Similarly, inserting the representation of the identity Eq. A.34

δ(x − x′) = 〈x|x′〉 =
∑
n

〈x|ψn〉〈ψn|x′〉 =
∑
n

ψ∗n (x)ψn(x′). (D.26)

For instance, referring to the respective spaces where the functions are orthogonal
(cf. Appendix A) we can express the delta function in terms of:

• Fourier complex exponentials (see Eq. A.46)

δ
(
x − x′) = 1

2π

∞∑
n=−∞

ein(x−x′). (D.27)

• Fourier cosines (see Eq. A.44)

δ(x) = 1

2π
+ 1

π

∞∑
n=1

cos nx, − π ≤ x ≤ π . (D.28)

• Legendre polynomials (see Eq. A.50)

δ
(
x − x′) = ∞∑

L=0

2L+ 1

2
PL(x) PL

(
x′
)

. (D.29)

• Spherical harmonics (see Eq. A.55)

δ (cos θ1 − cos θ2) δ (φ1 − φ2) =
∞∑
L=0

L∑
m=−L

YL,m (θ1,φ1) Y
∗
L,m(θ2,φ2). (D.30)

• A generic orthogonal basis set. A representation of the delta function in a generic complete
orthogonal basis set ψλ(�) for the variables � = (φ1,φ2, . . . ,φn) labelled by a set of
parameters λ = (λ1,λ2, . . . ,λm),

δ(�−�′) =
∑
λ

1

kλ
ψλ(�)ψ∗λ (�′), (D.31)

and ∫
V

d�ψλ(�)ψ∗
λ′ (�) = kλδ(λ′ − λ). (D.32)
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Appendix E

Fourier Series and Transforms

E.1 Fourier Series

We give here some of the basic equations and properties of Fourier series and Fourier
transforms [Arfken and Weber, 1995; Bracewell, 2000], focussing on those most used in
the main text. Let us consider a function f (x) defined for real arguments x, x ∈ R1,
which is either periodic or defined over a finite interval −d/2 ≤ x ≤ d/2 endowed with
periodic boundary conditions, so that f (x + d) = f (x) and d becomes the period. Let
us also assume that f (x) is piecewise regular: i.e. single-valued and continuous, except
possibly at a finite number of jump discontinuities, and that it has only a finite number of
maxima and minima. Then f (x) can be represented by a complex Fourier series:

f (x) =
∞∑

n=−∞
fn einqx, (E.1)

where n is an integer and qx is dimensionless. In our example, two common occurring cases
are that x is a length and q ≡ 2π/d, or that x is a time t and q = 2π/τ = ω an angular
frequency, and d = τ is now the time period. Multiplying both sides for exp(−inqx),
integrating over x and using the orthogonality integral:∫ c+d

c

dx e−imx einx = d δm,n, (E.2)

where, e.g. we can have d = 2π , we find the expansion coefficients as

fn = 1

d

∫ c+d

c

dxf (x) e−inqx, (E.3)

where c is a real constant (common choices are c = −d/2 or c = 0). The series can also be
written in real form, using the Euler identity eix = cos x + i sin x. Then

f (x) = a0 +
∞∑
n=1

an cos(nqx)+
∞∑
n=1

bn sin(nqx), (E.4)

where a0 = 1
d

∫ c+d
c

dxf (x), an = 2
d

∫ c+d
c

dxf (x) cos(nqx) and bn = 1
d

∫ c+d
c

dxf (x)
sin(nqx). The equivalence between the complex and real form is established by f0 = a0,
fn = 1

2 (an− ibn) and f−n = 1
2 (an+ ibn). As an explicit application, we have used Fourier
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E.1 Fourier Series 563

series in Chapter 3 to expand P (z), the distribution of molecular positions in a smectic

with layer spacing �z using the basis set
{

cos n2πz
�z

}
, for 0 ≤ z ≤ �z and integer n. The

orthogonality relation in Eq. A.44 becomes with a change of variable∫ d

0
dx cos (m2πz/�z) cos (n2πz/�z) = �z(δm,0δn,0 + δm,n)/2. (E.5)

We can now examine a few useful Fourier expansions.

• Rectangular wave of width w, height h with period d (box wave function) [Menzel,
1960]

f (x) =
⎧⎨⎩
h, for c < x < c ≤ c + w,
0, for c + w < x < c + d,
f (x + d)

(E.6a)

= hw

d
+ 2h

π

∞∑
n=1

1

n
sin
nπw

d
cos

2nπ

d

(
x − c − w

2

)
. (E.6b)

• Triangular wave of height h, defined in the interval −d ≤ x ≤ d:

f (x) =
{
h+ hx/d, for −d ≤ x < 0,
h− hx/d, for 0 ≤ x ≤ d, (E.7a)

= h

2
+ h

N∑
n=−∞
n�=0

1− cos(nπ )

n2π2 einπ/d . (E.7b)

• Gaussian function (non-normalized) g(x),

g(x) = e−x
2/σ 2

(E.8)

truncated to−d ≤ x ≤ d . The coefficients of its Fourier series can be written in terms of
the erf function [Abramowitz and Stegun, 1965]∫ d

2

− d2
dx e−x

2/σ 2
cos

(
n2πx

d

)
=
√
πσ

2
e−

(
π2n2σ 2

)
/d2

(
erf

(
d

2σ
− iπnσ

d

)
+ erf

(
d

2σ
+ iπnσ

d

))
. (E.9)

A much simpler expression is obtained assuming d is large enough:∫ ∞

−∞
dx e−x

2/σ 2
cos

(
n2πx

d

)
= √πσe−[nπσ/d]2

, (E.10)

which gives the Fourier series expansion as:

g(x) =
√
πσ

d

∞∑
n=−∞

e−[nπσ/d]2
cos

(
n2πx

d

)
. (E.11)
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564 Fourier Series and Transforms

Table E.1. Some relevant real Fourier transforms

f (t) f̃ (ω) =
√

2
π

∫∞
0 dt cos(ωt)f (t) ω > 0{

1, for 0 < t ≤ a
0, otherwise

√
2
π

sin(aω)
ω

1
a2+t2

√
π
2

e−aω
a Re(a) > 0

e−at
√

2
π

a
a2+ω2 Re(a) > 0

e−at2
√

1
2a e−ω2/(4a) Re(a) > 0

E.2 Fourier Transforms

We can introduce the exponential Fourier transform [Abramowitz and Stegun, 1965; NIST,
2016]1

f̃ (q) = F[f (x)] = 1√
2π

∫ ∞

−∞
dx exp(+iqx)f (x). (E.12)

As before, the exponent qx has to be dimensionless, so if q and x represent physical quanti-
ties, their units must be inverse to each other. For instance, we could have time and frequency
as conjugated spaces, with q = ω = 2πν, ω the angular frequency and ν the frequency.
Another common example is with x a linear coordinate and q = 2π/λ a wavevector
modulus. The Fourier transform operator F[. . .] can be inverted:

f (x) = F−1[f̃ (q)] = 1√
2π

∫ ∞

−∞
dq exp(−iqx)f̃ (q) (E.13)

or, more generally, in n dimensions:

f̃ (q) = F[f (r)] = 1

(2π )n/2

∫ ∞

−∞
dr exp(+iq · r)f (r), (E.14)

f (r) = F−1[f̃ (q)] = 1

(2π )n/2

∫ ∞

−∞
dr exp(−iq · r)f̃ (q). (E.15)

Clearly it is assumed that the integrals exist, and this is true for rapidly decreasing functions,
i.e. functions belonging to the so-called Schwartz space, consisting of smooth functions
whose derivatives (including the function itself) decay at infinity faster than any power
[Reed and Simon, 1975]. It is often convenient to introduce also the Fourier cosine transform

f̃ (ω) =
√

2
π

∫∞
0 dt cos(ωt)f (t), of which a few examples are shown in Table E.1.

1 Note that, different to the common mathematical convention, we have chosen the plus sign in the phase factor to comply with
the crystallographic convention [Morelhao, 2016].
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E.2 Fourier Transforms 565

E.2.1 Convolution Theorem

Given the correlation function (also called convolution integral or faltung) between the
functions f (t) and g(t), i.e.

Cfg(t) =
∫ ∞

−∞
dt ′f (t ′)g∗(t − t ′) = Cgf (t) ≡ f (t) ∗ g(t), (E.16)

where we have introduced the ‘star’ convolution operator. The convolution, as defined, is
linear and commutative, but also associative and distributive: f ∗ (g ∗ h) = (f ∗ g) ∗ h and
f ∗ (g + h) = f ∗ g+ f ∗ h. The Fourier transform of Cfg , i.e. the spectral density jfg , is
the product of the Fourier transforms of f (t) and g(t):

jfg(ω) = C̃fg =
∫ ∞

−∞
dt [f (t) ∗ g(t)] exp(+iωt) = f̃ (ω)g̃∗(ω). (E.17)

In fact, ∫ ∞

−∞
dt e+ωt

∫ ∞

−∞
dt ′f (t ′)g∗(t − t ′)

=
{ ∫ ∞

−∞
dt ′f (t ′) e+iωt

′}{ ∫ ∞

−∞
dt e+iω(t−t ′)g∗(t − t ′)

}
= f̃ (ω)̃g∗(ω), (E.18)

and in the case of autocorrelations

jff (ω) = f̃ (ω)f̃ ∗(ω) =
∫ ∞

−∞
dt e+iωt

∫ ∞

−∞
dt ′f (t ′)f ∗(t − t ′). (E.19)

We can also write Cfg(t) = ∫∞
−∞ dω e+iωt f̃ (ω)̃g∗(ω) = F−1[f̃ (ω)̃g∗(ω)]. For a Gaussian

the convolution can be performed analytically. The calculation of Fourier transforms can
be very fast using so-called Fast Fourier transform (FFT). This method was proposed and
used to calculate time correlations from the trajectories in time obtained in MD simulations
[Futrelle and McGinty, 1971; Kestemont and VanCraen, 1976]. An important result is the
Parseval formula ∫ ∞

−∞
dω|f̃ (ω)|2 =

∫ ∞

−∞
dt |f (t)|2. (E.20)

E.2.2 Laplace Transform

We also introduce the definition of a Laplace transform:

L (f (t);s) =
∫ ∞

0
dt e−st f (t), (E.21)

where s can have a real and imaginary part. The special case with s = iω, i.e. purely
imaginary:

L (f (t);iω) =
∫ ∞

0
dt e−iωtf (t), (E.22)

is called a Fourier–Laplace transform, and is often useful in applications (see, e.g.,
Section 6.9).
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Appendix F

Wigner Rotation Matrices and Angular Momentum

F.1 Wigner Matrices

The operator D̂(�) ≡ D̂(α,β,γ ) that performs a rotation of Euler angles � = (α,β,γ ) of
a coordinate frame can be written, using the convention of Rose [1957], as a sequence of
three rotations: the first of an angle α around the laboratoryZ-axis, the second of an angle β
around the new y′-axis and the third of an angle γ around the resulting, body-fixed, z′′-axis:

D̂(α,β,γ ) = e−iγ Ĵz′′ e−iβĴy′ e−iαĴZ, (F.1)

where ĴZ , Ĵy′ , Ĵz′′ are angular momentum operators. Using the commutation properties:[
Ĵa,Ĵb

] = i�
∑
c εabcĴc, where εabc is the Levi-Civita permutation symbol (Eq. A.9), it

is possible to rewrite this product of operators in a common laboratory frame, with axis
X,Y,Z as:

D̂(α,β,γ ) = e−iαĴZ e−iβĴY e−iγ ĴZ . (F.2)

The matrix elements DL
m,n(α,β,γ ) of the rotation operator in a basis |Lm〉, where the

angular momentum Ĵ2 and its projection, ĴZ , are diagonal, are

DL
m,n(α,β,γ ) = 〈Lm | e−iαĴZ e−iβĴY e−iγ ĴZ | Ln〉 (F.3)

and are called Wigner rotation matrices [Wigner, 1959] or Wigner functions or generalized
spherical harmonics of rank L. The Euler angles (α,β,γ ) determine the rotations which
carry the original (‘laboratory’) coordinate system into the rotated (‘molecular’) one. From
Eq. F.3 we can express DL

m,n(α,β,γ ) as

DL
m,n(α,β,γ ) = e−imαdLm,n(β) e−inγ , (F.4)

where the real quantities,

dLm,n(β) ≡ 〈Lm | e−iβĴY | Ln〉, (F.5)

are called reduced or small Wigner matrices and will be discussed and tabulated at the end
of this appendix. The functions DL

m,n(α,β,γ ) constitute a complete orthogonal set spanning
the space of the Euler angles α,β,γ . Some properties of Wigner matrices are:

566
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F.1 Wigner Matrices 567

(i) Complex conjugation.

DL∗
m,n(α,β,γ ) = (−1)m−nDL

−m,−n(α,β,γ ). (F.6)

(ii) Inverse and unitarity. The Wigner rotation matrices are unitary, i.e. their inverse
corresponds to the complex conjugate of their transpose matrix. Thus, D−1 = DT ∗

and for the matrix elements, i.e. the individual functions,

DL∗
m,n(α,β,γ ) = (−1)m−nDL

−m,−n(α,β,γ ) = DL
n,m(−γ, − β, − α). (F.7)

Taking matrix elements of the operator relations D̂(�) D̂
−1

(�) = D̂
−1

(�) D̂(�) = 1̂
in the angular momentum basis, we have:

L∑
n=−L

DL
m,n(�) DL∗

m′,n(�) = δm,m′ . (F.8)

(iii) Orthogonality.∫
dαdβ sinβdγ DL∗

m,n(α,β,γ ) DL′
m′,n′ (α,β,γ ) = 8π2

(2L+ 1)
δm,m′δn,n′δL,L′ . (F.9)

(iv) Completeness and delta function representation. Wigner rotation matrices con-
stitute a complete basis set in the space of Euler angles, and they can be used (see
Eq. D.31) to write the angular delta function in that space as

δ(�−�′) =
∞∑
L=0

L∑
m=−L

L∑
n=−L

(2L+ 1)

8π2 DL
m,n(�) DL∗

m,n(�′), (F.10)

with � = (α,β,γ ), 0 ≤ α ≤ 2π , 0 ≤ β ≤ π , 0 ≤ γ ≤ 2π and d� = dαdβ sinβdγ .
(v) Special cases Wigner matrices reduce to spherical harmonics YL,m or to Legendre

polynomials PL when one or two of their subscripts are 0,

DL
m,0(α,β,γ ) =

(
4π

2L+ 1

)1/2

Y ∗L,m(β,α) ≡ C∗Lm(β,α), (F.11)

DL
0,0(α,β,γ ) = dL0,0(β) = PL(cosβ), (F.12)

where we have also introduced the definition of the modified spherical harmonics
used, e.g. by Brink and Satchler [1968], Stone [1996] and Luckhurst [2015]. Thus,
the properties of spherical harmonics and Legendre polynomials can be obtained as
particular cases of the ones for Wigner matrices.

(vi) Closure. Rotation matrices form a group, so that a product of two rotation matrices
is another rotation matrix (closure). Alternatively, a rotation matrix of a set of Euler
angles (�CA) ≡ (α,β,γ ) from frame A to C, i.e. D(�CA), can always be written as
a rotation of (�BA) ≡ (α1,β1,γ1) from A to an intermediate frame B followed by a
rotation of (�CB) ≡ (α2,β2,γ2) from this frame to C. Thus,

D(�CA) = D(�BA)D(�CB). (F.13)
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568 Wigner Rotation Matrices and Angular Momentum

Note that rotations are applied in reverse order (i.e. the first on the left) and that the order in
which they are taken is important since rotations in three dimensions, in contrast to rotations
in a plane, do not commute. Taking matrix elements of Eq. F.13 we have that the product of
two successive rotations of Euler angles (α1,β1,γ1) and (α2,β2,γ2) to give (α,β,γ ) is

DL
m,n(α,β,γ ) =

L∑
q=−L

DL
m,q (α1,β1,γ1) DL

q,n(α2,β2,γ2). (F.14)

We can use this closure property to obtain the very useful spherical harmonics addition
theorem. Quite often we need to rewrite a Legendre polynomial depending on the relative
orientation between two axes, 1 and 2: PL(cosβ12) in terms of orientations of 1 and 2 with
respect to a certain coordinate frame (e.g. a laboratory frame L). If we consider two vectors
u1, u2 as the z-axis of two frames 1 and 2, then we have

PL(u1 ·u2) = PL(cosβ21) ≡ DL
0,0(�21) =

L∑
q=−L

DL∗
q,0(�1L)DL

q,0(�2L), (F.15)

where we have employed the unitarity of the Wigner rotation matrices introduced earlier.
Two important special cases are the decomposition of a first- and second-rank Legendre
polynomial in terms of trigonometric functions as

P1(cosβ21) = cosβ21 = cosβ1 cosβ2 + sinβ1 sinβ2 cos(α2 − α1) (F.16a)

P2(cosβ21) = P2(cosβ1)P2(cosβ2)+ 3 sinβ1 cosβ1 sinβ2 cosβ2 cos(α1 − α2),

+ 3

4
sin2 β1 sin2 β2 cos(2α1 − 2α2), (F.16b)

which can be used, e.g. to write functions of the relative orientation between the axis of two
molecules 1 and 2 in terms of the orientations of each of the two molecules with respect to
a common laboratory frame.

F.1.1 Clebsch–Gordan Coefficients and Wigner Matrices Coupling

The product of two Wigner matrices of the same argument can be written as

DL′
m′,n′D

L′′
m′′,n′′ =

L′+L′′∑
L=|L′′−L′|

C(L′,L′′,L;m′,m′′)C(L′,L′′,L;n′,n′′)DL
m′+m′′,n′+n′′, (F.17)

whereC(a,b,c;d,e) are Clebsch–Gordan coefficients [Rose, 1957]. These coefficients, that
play an essential role in a variety of problems involving addition of angular momenta and
tensor manipulation, can be defined as the coupling coefficients arising when we combine
two states with angular momentum L′ and L′′ to yield a state |Lm〉. Writing the state |Lm〉
in the basis set |L′m′〉|L′′m′′〉 by inserting the identity resolved in the same product basis
(cf. Appendix A)
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|Lm〉 =
∑
m′,m′′

[|L′m′〉|L′′m′′〉〈L′m′|〈L′′m′′|] |Lm〉, (F.18a)

≡
∑
m′,m′′

C(L′,L′′,L;m′,m′′,m) |L′m′〉|L′′m′′〉. (F.18b)

The matrix element C(L′,L′′,L;m′,m′′,m) ≡ [〈L′m′|〈L′′m′′|)]|Lm〉 is a Clebsch–Gordan
coefficient and L′,L′′,L can take non-negative integer or semi-integer values. Since
m = m′ + m′′, the notation C(L′,L′′,L;m′,m′′) ≡ C(L′,L′′,L;m′,m′′,m) is normally
used for conciseness. The angular momenta L′, L′′,L have to form a triangle �(L′L′′L),
in the sense that allowed values obey

�
(
L′,L′′,L

)
:

⎧⎨⎩
L′ + L′′ − L � 0
L′ − L′′ + L � 0

−L′ + L′′ + L � 0,
(F.19)

where (L′ + L′′ + L) is an integer. Coefficients formed with combinations of angular
momenta not satisfying this triangular relation equal 0. The Clebsch–Gordan coefficients
can be calculated explicitly from closed expressions due to Wigner and Racah [Rose, 1957].
A tabulation, together with symmetry relations and a comparison of the many different nota-
tions available, is given in Pasini and Zannoni [1984b]. Routines for their calculations are
now available in the major computer algebra languages (e.g. Maple© and Mathematica©).
Recalling that DL

0,0(0β0) = PL(cosβ) we immediately find from Eq. F.17 the coupling
relation for Legendre polynomials of the same argument:

PL′ (cosβ)PL′′ (cosβ) =
L′+L′′∑

L=|L′−L′′|
C(L′,L′′,L;0,0)2PL(cosβ). (F.20)

Note that the coupling of even rank polynomials only yields even rankPL since the Clebsch–
Gordan coefficient C(L′,L′′,L;0,0) is 0 unless (L′ + L′′ + L) is even. An equivalent
expression can be obtained in terms of the so-called Wigner 3-j symbol [Brink and Satchler,
1968] (

L′ L′′ L

m′ m′′ −m
)
≡ (−1)L

′−L′′+m
√

2L+ 1
C(L′,L′′,L;m′,m′′) δ−m,m1+m2 . (F.21)

The 3-j is invariant under cyclic permutations of the columns, and is multiplied by a phase
factor (−1)L

′+L′′+L under non-cyclic ones:(
L′ L′′ L

m′ m′′ m

)
=
(
L′′ L L′
m′′ m m′

)
=
(
L L′ L′′
m m′ m′′

)
,

= (−1)L
′+L′′+L

(
L′ L L′′
m′ m m′′

)
= (−1)L

′+L′′+L
(
L′ L′′ L

−m′ −m′′ −m
)

.

(F.22)

It is also convenient to introduce the Racah coefficient that appears when coupling three
angular momenta or, for our purposes, in the simplification of sums of products of
Clebsch–Gordan coefficients
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W (L1,L2,L3,L4;L5,L6) = [(2L5 + 1)(2L6 + 1)]−1/2

×
∑
m1,m2

C(L1,L2,L5;m1,m2)C(L5,L4,L3;m1 +m2,0)

×C(L2,L4,L6;m2,0)C(L1,L6,L3;m1,m2). (F.23)

We list some useful Clebsch–Gordan coefficients relations.

Orthogonality.∑
m′
C(L′,L′′,L;m′,m′′)C(L′,L′′,L;m′,m′′) = δL,L′, (F.24)

∑
L

C(L′,L′′,L;m′,m′′)C(L′,L′′,L;n′,n′′) = δm′,n′ δm′′,n′′ . (F.25)

Symmetries.

C(L′,L′′,L;m′,m′′) = (−1)L
′+L′′−LC(L′,L′′,L; −m′, −m′′), (F.26a)

= (−1)L
′+L′′−LC(L′′,L′,L;m′′,m′), (F.26b)

= (−1)L
′−m′

√
2L+ 1

2L′′ + 1
C(L′,L,L′′;m′, −m′ −m′′), (F.26c)

= (−1)L
′′+m′′

√
2L+ 1

2L′ + 1
C(L,L′′,L′; −m′ −m′′,m′′). (F.26d)

Explicit expressions for some special Clebsch–Gordan coefficients.

C(L,L
′,0;m, −m) = (−1)L−mδL,L′/

√
2L+ 1, (F.27)

C(1,1,2;m, −m) = (1/2)|m|
√

(2/3), (F.28)

C(2,2,2;m, −m) = (−1)mC(2,2,2;0,m) = (−1)m(m2 − 2)/
√

14, (F.29)

C(2,2,L;0,0) = (−12)
L
2
√

(2L+ 1)(4− L)! (δL,0 + δL,2 + δL,4) /
√

(5+ L)!. (F.30)

Clebsch–Gordan coefficients are also enter in other useful expressions:

Wigner matrices decomposition. A Wigner rotation matrix can be written as a linear
combination of products of Wigner functions of lower rank.

DL
m,n =

∑
C(L′,L′′,L;m′,m′′)C(L′,L′′,L;n′,n′′) DL′

m′,n′ D
L′′
m′′,n′′δm′+m′′,mδn′+n′′,n,

=
∑

C(L′,L′′,L;m′,m−m′)C(L′,L′′,L;n′,n− n′) DL′
m′,n′ D

L′′
m−m′,n−n′, (F.31)

where the sum extends to all indices not appearing on the left-hand side.

Integral of three Wigner rotation matrices. The integral, often called Gaunt formula, can
be expressed in terms of Clebsch–Gordan coefficients:∫

dαdβ sinβdγ DL
′′∗
m′′,n′′ (α,β,γ )DL′

m′,n′ (α,β,γ )DL
m,n(α,β,γ )

= 8π2δm+m′,m′′δn+n′,n′′
(2L′′ + 1)

C(L,L′,L′′;m,m′)C(L,L′,L′′;n,n′). (F.32)
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F.2 Effect of Angular Momentum Operators on the Wigner Matrices

We recall the classical definition of angular momentum for a particle at position r and
moving with a velocity v arising uniquely from its rotation [Goldstein, 1980]:

J = mr × v = m[r × .
�× r] = m[

.
� r2 − r

.
�αrα] = r × p (F.33)

and the classical quantum correspondence p = i∇∇∇, in units of � = 1,

Ĵ = −i(r ×∇∇∇) =
∣∣∣∣∣∣

e1 e2 e3

x y z

px py pz

∣∣∣∣∣∣ . (F.34)

The Wigner matrices are eigenfunctions of the Ĵ2angular momentum operator:

Ĵ2DL
m,n = L(L+ 1) DL

m,n, (F.35)

as well as of the body-fixed angular momentum projection operator

ĴzDL
m,n = −nDL

m,n, (F.36)

and of the laboratory-fixed angular momentum projection operator

ĴZDL
m,n = −mDL

m,n. (F.37)

The Ĵ2 angular momentum operator is explicitly, in terms of Euler angles,

Ĵ2 = − ∂2

∂2β
− cotβ

∂

∂β
− 1

sin2 β

(
∂2

∂2α
+ ∂2

∂2γ
− 2 cosβ

∂2

∂α∂γ

)
, (F.38)

while the laboratory-fixed angular momentum component operators are

ĴX = −i
(
− cosα cotβ

∂

∂α
− sinα

∂

∂β
+ cosα

sinβ

∂

∂γ

)
, (F.39a)

ĴY = −i
(
− sinα cotβ

∂

∂α
+ cosα

∂

∂β
+ sinα

sinβ

∂

∂γ

)
, (F.39b)

ĴZ = −i ∂
∂α

. (F.39c)

We can also define step up and down (or ladder) operators Ĵ+, Ĵ− whose action on the
Wigner rotation matrices is

Ĵ+DL∗
m,n = (Ĵx + iĴy)DL∗

m,n =
√

(L− n)(L+ n+ 1) DL∗
m,n+1, (F.40)

Ĵ−DL∗
m,n = (Ĵx − iĴy)DL∗

m,n =
√

(L+ n)(L− n+ 1) DL∗
m,n−1. (F.41)

We now wish to give explicit expressions for the Wigner rotation matrices of rank
L = 0,1,2,4 and thus implicitly for the most often used order parameters, which correspond
to their orientational averages (see Chapter 3). From Eq. F.3 we see that what we really
need are expressions for the small matrices dLm,n(β). Some tabulations can be found in
the literature [Brink and Satchler, 1968; Zannoni, 1979]. In general, the dLm,n are real and
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explicit expressions that can be obtained from available formulas due to Wigner and Racah
[Rose, 1957]. We also have a few useful relations:

dLm,n(−β) = (−1)m−ndLn,m(β) = dL−m,−n(β), (F.42a)

dLm,n(β) = dL−n,−m(β) = (−1)m−ndL−m,−n(β), (F.42b)

dLm,n(β) = (−1)L+mdLm,−n(π − β). (F.42c)

Using dLm,n(0) = δm,n (obvious from Eq. F.5) and Eq. F.42c we find

dLm,n(π ) = (−1)L+mδm,−n, (F.43a)

dLm,n(2π ) = (−1)2Lδm,n. (F.43b)

Another useful relation is [St. Pierre and Steele, 1975]

dLm,0

(π
2

)
= cos[(L−m)(π/2)][(L−m)! (L+m)! ]1/2

2L[(L+m)/2]! [(L−m)/2]!
. (F.44)

In particular, dL0,0
(
π
2

) = PL(cos π2 ) = PL(0) = [cos(πL/2)(L)! ]/[2L((L/2)! )2]. We now

report explicit expressions for the small Wigner matrices dLm,n(β) of rank L = 0,1,2,4,

using the shorthand c ≡ cos
(
β
2

)
and s ≡ sin

(
β
2

)
,

L = 0

d0
0,0 = 1. (F.45)

L = 1

d1
1,1 = d1

−1,−1 = c2, (F.46a)

d1
1,0 = −d1

−1,0 = −d1
0,1 = d1

0,−1 = −
√

2sc, (F.46b)

d1
1,−1 = d1

−1,1 = s2, (F.46c)

d1
0,0 = −1+ 2c2. (F.46d)

L = 2

d2
2,2 = d2

−2,−2 = c4, (F.47a)

d2
2,1 = −d2

−2,−1 = −d2
1,2 = d2

−1,−2 = −2c3s, (F.47b)

d2
2,0 = d2

−2,0 = d2
0,2 = d2

0,−2 =
√

6c2 −
√

6c4, (F.47c)

d2
2,−1 = −d2

−2,1 = −d2
−1,2 = d2

1,−2 = −2s3c, (F.47d)

d2
2,−2 = d2

−2,2 = s4, (F.47e)

d2
1,1 = d2

−1,−1 = −3c2 + 4c4, (F.47f)

d2
1,0 = −d2

−1,0 = −d2
0,1 = d2

0,−1 =
√

6cs − 2
√

6c3s, (F.47g)

d2
1,−1 = d2

−1,1 = 3s2 − 4s4, (F.47h)

d2
0,0 = 1− 6c2 + 6c4. (F.47i)
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L = 4

d4
4,4 = d4

−4,−4 = c8, (F.48a)

d4
4,3 = −d4

−4,−3 = −d4
3,4 = d4

−3,−4 = −2
√

2c7s, (F.48b)

d4
4,2 = d4

−4,−2 = d4
2,4 = d4

−2,−4 = 2
√

7c6s2, (F.48c)

d4
4,1 = −d4

−4,−1 = −d4
1,4 = d4

−1,−4 = −2
√

14c5s3, (F.48d)

d4
4,0 = d4

−4,0 = d4
0,4 = d4

0,−4 =
√

70c4s4, (F.48e)

d4
4,−1 = −d4

−4,1 = −d4
−1,4 = d4

1,−4 = −2
√

14c3s5, (F.48f)

d4
4,−2 = d4

−4,2 = d4
−2,4 = d4

2,−4 = 2
√

7c2s6, (F.48g)

d4
4,−3 = −d4

−4,3 = d4
3,−4 = −d4

−3,4 = −2
√

2cs7, (F.48h)

d4
4,−4 = d4

−4,4 = s8, (F.48i)

d4
3,3 = d4

−3,−3 = c6(c2 − 7s2), (F.48j)

d4
3,2 = −d4

−3,−2 = −d4
2,3 = d4

−2,−3 = −
√

14c5s(c2 − 3s2), (F.48k)

d4
3,1 = d4

−3,−1 = d4
1,3 = d4

−1,−3 =
√

7c4s2(3c2 − 5s2), (F.48l)

d4
3,0 = −d4

−3,0 = −d4
0,3 = d4

0,−3 = −2
√

35c3s3(c2 − s2), (F.48m)

d4
3,−1 = d4

−3,1 = d4
−1,3 = d4

1,−3 =
√

7c2s4(5c2 − 3s2), (F.48n)

d4
3,−2 = −d4

−3,2 = −d4
−2,3 = d4

2,−3 = −
√

14cs5(3c2 − s2), (F.48o)

d4
3,−3 = d4

−3,3 = s6(7c2 − s2), (F.48p)

d4
2,2 = d4

−2,−2 = c4(c4 − 12c2s2 + 15s4), (F.48q)

d4
2,1 = −d4

−2,−1 = −d4
1,2 = d4

−1,−2 = −
√

2c3s(3c4 − 15c2s2 + 10s4), (F.48r)

d4
2,0 = d4

−2,0 = d4
0,2 = d4

0,−2 =
√

10c2s2(3c4 − 8c2s2 + 3s4), (F.48s)

d4
2,−1 = −d4

−2,1 = −d4
−1,2 = d4

1,−2 = −
√

2cs3(10c4 − 15c2s2 + 3s4), (F.48t)

d4
2,−2 = d4

−2,2 = s4(15c4 − 12c2s2 + s4), (F.48u)

d4
1,1 = d4

−1,−1 = c2(c6 − 15c4s2 + 30c2s4 − 10s6), (F.48v)

d4
1,0 = −d4

−1,0 = −d4
0,1 = d4

0,−1 = −2
√

5cs(c6 − 6c4s2 + 6c2s4 − s6), (F.48w)

d4
1,−1 = d4

−1,1 = s2(10c6 − 30c4s2 + 15c2s4 − s6), (F.48x)

d4
0,0 = c8 − 16c6s2 + 36c4s4 − 16c2s6 + s8. (F.48y)
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Appendix G

Molecular and Mesophase Symmetry

G.1 Symmetry and Order Parameters

Here we wish to provide some tools for simplification of single and pair distributions
and, in particular, for the identification of the relevant order parameters in the presence
of some symmetry of the mesophase and its constituent molecules [Zannoni, 1979c].
There are cases, like that of cylindrical symmetry, where this is quite intuitive. However,
a more formal procedure is required for determining the independent order parameters.
We shall define the symmetry group of a phase as the group of transformations of the
laboratory system that leaves the single-particle distribution as well as the higher ones
invariant. Similarly, we can define an effective symmetry for the molecule in terms of the
group of molecular transformations leaving the single-particle distribution (see Chapter 3)
unchanged. The same considerations hold, of course, for the purely orientational distribution
P (�ML) ≡ P (�) which is of primary concern to us. In the language of group theory, we
would say that P (�ML) belongs to the totally symmetric representation of the group of the
molecule and of the mesophase. Therefore, one way of applying symmetry is to project
the distribution onto the totally symmetric representation of these groups [Lax, 1974]. In
practice, this symmetrization can be performed applying a projection operator P̂ that sums
over all possible transformed functions generated by the action of the various symmetry
operations Ô s [Zannoni, 1979c]. For a generic function f and a group of ns discrete
transformations

P̂ [f ] = 1

ns

ns∑
s=1

Ô sf . (G.1)

For a continuous group like the rotation group in three dimensions, SO(3), the projection
operator is

P̂ [f ] = 1∫
d�

∫
d� Ô [�]f [�]. (G.2)

A convenient way for the symmetry simplification of order parameters starts from their
definition (cf. Chapter 3):

〈DL
m,n〉 =

∫
d�ML P (�ML) DL

m,n(�ML), (G.3)

574
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where �ML = (α, β, γ ) is the rotation angle from the laboratory to the molecular frame
and P (�ML) is the single-particle distribution studied in Chapter 3 . A symmetry trans-
formation Ô does not alter

∫
d�ML and also leaves P (�ML) invariant. Thus, the effect

of the operator Ô on the order parameters can be obtained from its action on the Wigner
matrices. Since these are a representation of the rotation operator DL(�ML) in an angular
momentum basis set | Ln〉, i.e. DL

m,n(�ML) = 〈Lm | D̂(�ML) | Ln〉 (Appendix F), to

investigate the effect of a molecular symmetry operation ÔM we need to determine the
matrix elements 〈Lm | D̂(�ML) ÔM | Ln〉. Note that successive rotations D̂ are applied
in reverse order, that is from left to right (cf. Eq. F.13). Similarly, the application of a
laboratory frame transformation, such as a symmetry operation of the mesophase ÔL, yields
〈Lm | ÔLD̂(�ML) | Ln〉. Every symmetry operation for molecule or phase adds a relation
that order parameters have to satisfy, i.e. indicating explicitly the orientational averages:
〈DL

m,n〉�MM′ =
〈 〈Lm | D̂(�ML) ÔM | Ln〉 〉

�MM′
for the molecule and 〈DL

m,n〉�LL′ =〈 〈Lm | ÔLD̂(�ML) | Ln〉 〉
�LL′

for the phase symmetries. Any point group operation can
be written as a certain combination of rotation and inversion operations. Let us consider
each of these in turn. Thus, supposing that the symmetry operation of the mesophase ÔL

is a rotation, then it will transform the original laboratory frame L into another frame L′

and give

〈Lm | ÔLD̂(�ML) | Ln〉 = 〈Lm | D̂(�L′L) D̂(�ML′ ) | Ln〉, (G.4a)

=
L∑

q=−L
DL
m,q (�L′L) DL

q,n(�ML′ ). (G.4b)

Quite analogously, if the molecule has a rotation ÔM among its symmetry operations,
we find

〈Lm | D̂(�ML) ÔM | Ln〉 = 〈Lm | D̂(�ML) D̂(�M′M) | Ln〉, (G.5a)

=
L∑

q=−L
DL
m,q (�ML) DL

q,n(�M′M). (G.5b)

A particularly interesting case is that of a Ĉk symmetry axis operation, corresponding to a
rotation of 2π/k around the molecular z-axis:

〈Lm | D̂(�ML)Ĉk(z)M | Ln〉 = 〈Lm | D̂(�ML) D̂(0,0,2π/k) | Ln〉, (G.6a)

=
L∑

q=−L
DL
m,q (�ML) dq,n(0) e−in2π/k, (G.6b)

= DL
m,n(�ML) e−in2π/k, (G.6c)

where we have used dLq,n(0) = δq,n. Thus, if we consider order parameters of rank L = 2,
as is most often the case in experiments (see Chapter 3), then−2 ≤ n ≤ 2 and the presence
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of a Ck-axis, for k ≥ 3, requires n = 0 and is, in this respect, equivalent to that of a true
cylindrical symmetry axis C∞, yielding for the order parameter

〈D2
m,n〉 = δn,0〈D2

m,0〉 . (G.7)

Similarly, when looking at rankL properties, aCk-axis, k ≥ L+1 would be enough to yield
effective uniaxial symmetry. It is worth noting that analogous considerations do not allow us
to say, if we measure only second-rank tensor properties, that the director of a monodomain
liquid crystal is truly an axis of cylindrical symmetry or just a Ck-axis, with k ≥ 3, a fact
already pointed out by Landau [1965]. If a symmetry operation Ô contains the inversion
(or parity) operation, Î, which corresponds to a transformation (x,y,z)→(−x, − y, − z)
or, in polar coordinates (r,β,α) −→ (r,π − β,π + α), it is clear that to investigate its
effect we also need the matrix elements 〈Lm | Î | Ln〉. These are obtained recalling that
Î | Lm〉 = (−1)L | Lm〉, thus 〈Lm | Î | Ln〉 = (−1)Lδm,n and

〈Lm | ÎD̂(�ML) | Ln〉 = 〈Lm | D̂(�ML)Î | Ln〉 = (−1)LDL
m,n(�ML). (G.8)

The inversion and rotation operations commute, then the inversion has the same effect
in either a laboratory or a molecular frame, even if in a composite operation including
inversion other operations have to be taken in the proper order. As a simple example, let
us suppose that the mesophase has a plane of symmetry perpendicular to the z-axis, that is
ÔL = σ̂ h = σ̂ (xy)L. Since we can write σ̂ (xy)L = ÎD̂(π00) we find

〈Lm | σ̂ (xy)LD̂(�ML) | Ln〉

=
L∑

q,p=−L
〈Lm | Î | Lq〉〈Lq | D̂(π00) | Lp〉〈Lp | D̂(�ML) | Ln〉, (G.9a)

= (−1)Lδm,q exp(−iqπ )δq,pD
L
p,n(�ML) = (−1)L+mDL

m,n(�ML). (G.9b)

A symmetry plane σ̂ (xy) in the molecule would give instead

〈Lm | D̂(�ML)σ̂ (xy)M | Ln〉 = (−1)L+nDL
m,n(�ML), (G.10)

since the inversion operation commutes with rotations, but the rotation in the molecular and
lab frame do not commute. Proceeding in a similar way we obtain the results reported in
Table G.1 for the effect of various molecular symmetry operations on the Wigner func-
tions. The effect of mesophase (laboratory frame) symmetries can also be easily obtained
from the table remembering that the order of operations is modified so that, for exam-
ple, the first subscript, m, in DL

m,n is affected instead of n. Knowing the effect of sym-
metry transformations on the Wigner matrices a substitution in Eq. G.3 gives the corre-
sponding symmetry relations for the order parameters. Thus, in the example we have just
seen, a σ̂ (xy) plane in the laboratory frame gives 〈DL

m,n〉 = (−1)L+m〈DL
m,n′ 〉, while a

σ̂ (xy) operation in the molecule yields 〈DL
m,n〉 = (−1)L+n〈DL

m,n′ 〉. We also have, from the

reality of P (�ML) and Eq. F.6 for the Wigner functions, 〈DL∗
m,n〉 = (−1)m−n〈DL−m,−n〉.

https://doi.org/10.1017/9781108539630.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.020
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Table G.1. Effect of various molecular point group symmetry operations
[Cotton, 1990] ÔM on the Wigner matrices [Zannoni, 1979c]

Operator ÔM 〈Lm|ÔMD̂|Ln〉 Symmetry operation description

Î = Ŝ2 (−1)LDL
m,n Inversion

σ̂ (xy)M (−1)L+nDL
m,n Plane perpendicular to z

σ̂ (xz)M (−1)nDL
m,−n Plane perpendicular to y

σ̂ (yz)M DL
m,−n Plane perpendicular to x

σ̂ (φ)M (−1)n exp(−i2nφ)DL
m,−n Plane making an angle φ with (zx)

Ĉ2(z)M (−1)nDL
m,n Rotation of π about z-axis

Ĉk(z)M DL
m,n exp(−i2nπ/k) Rotation of 2π/k about z-axis

Ĉγ (z)M DL
m,n exp(−inγ ) Rotation of γ around z-axis

Ĉ2(x)M (−1)LDL
m,−n Rotation of π about x-axis

Ĉk(x)M (−1)L−nDL
m,−n exp(−in2π/k) Rotation of 2π/k about x-axis

Ĉγ (x)M (−1)L−nDL
m,−n exp(−inγ ) Rotation of γ around x-axis

Ĉ2(y)M (−1)L−nDL
m,−n Rotation of π about y-axis

Ĉβ (y)M
∑
q DL

m,qd
L
q,n(β) Rotation of β around y-axis

Ĉ2(φ)M (−1)LDL
m,n exp(−i2nφ) Rotation of π about an axis

perpendicular to z and at φ from x

[Ŝ k]M (−1)L+nDL
m,n exp(−in2π/k) A k-fold roto-reflection axis.

From all these relations we can find the relevant order parameters for various molecular and
phase symmetries (see Table 3.1).

G.2 Rotationally Invariant Pairwise Functions

In a number of situations, we have to consider pairwise rather than single particle prop-
erties, functions of the positions r1, r2 and orientations �1L = �1, �2L = �2 of two
rigid particles, f (X1,X2) = f (r1�1L,r2�2L), that have to be invariant for an arbitrary
translation and rotation of the coordinate system. Examples are the angular-radial pair
correlationG(r1�1L,r2�2L) of a macroscopically isotropic fluid (Section 4.6) and the pair
potential U (r1�1L,r2�2L) between two rigid molecules (Chapter 5).

We first impose that the function should be translationally invariant by an arbitrary shift
R: f (r1�1L,r2�2L) = f (R + r1,�1L, R + r2,�2L). In general, such an invariant func-
tion will be f (r,�1L,�2L) = f (r,�rL,�1L,�2L), where r ≡ r2−r1 is the inter-centre vec-
tor with orientation�rL. General rotationally invariant combinations of f (r,�rL,�1L,�2L)
can be constructed following Blum and Torruella [1972], Stone [1978, 1979] and Zannoni
[1979c]. Starting from an arbitrary laboratory frame L′ we can then expand our pair func-
tion as
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f (r,�1L′,�2L′,�rL′ ) =
∑
λ

f
m1m2m;n1n2
L1L2.L (r) DL1∗

m1,n1
(�1L′ ) DL2∗

m2,n2
(�2L′D

L
m,0(�rL′ ),

(G.11)

where the sum extends to the set λ of all the integer angular momenta L1,L2,L and their
componentsm1,m2,m,n1,n2 appearing on the RHS and not on the LHS. Note that, accord-
ing to the convention of Rose [1957] for the Euler angles that we have adopted, the coeffi-
cientsm1,m2,m refer to rotations around the laboratory z-axis while n1,n2 refer to rotations
around the molecular z-axis. Thus, the last subscript is 0 because only the two angles
αr,βr are needed to specify the intermolecular vector orientation �rL. We now perform
an arbitrary rotation of the lab frame from L′ to L. Using the closure relation of Wigner
matrices (cf. Eqs. F.13 and F.14) the rotations from the arbitrary auxiliary frame L′ can be
rewritten, for each term, starting from the lab frame L. For instance

DL1∗
m1,n1

(�1L′) =
∑
q1

DL1∗
m1,q1

(�LL′ ) DL1∗
q1,n1

(�1L) =
∑
q1

DL1
q1,m1

(�L′L) DL1∗
q1,n1

(�1L).

(G.12)
Substituting the three expressions on the RHS of Eq. G.11 gives

DL
m,0(�rL′ )D

L2∗
m2,n2

(�2L′ ) DL1∗
m1,n1

(�1L′)

=
∑
q1,q2,q

DL∗
q,m(�L′L)DL2

q2,m2
(�L′L)DL1

q1,m1
(�L′L)DL1∗

q1,n1
(�1L)DL2∗

q2,n2
(�2L)DL

q,0(�rL).

(G.13)

We then integrate on all possible orientations (�L′L) (equivalent to P̂O(3)) using the Gaunt
formula, Eq. F.32, and obtain the rotationally invariant combinations∫

d�L′LDL∗
m,0(�rL′ )D

L2∗
m2,n2 (�2L′ )D

L1
m1,n1 (�1L′ )

=
∑
q1,q2,q

DL
q,0(�rL)DL2∗

q2,n2 (�2L)DL1∗
q1,n1 (�1L)

∫
d�L′LDL∗

q,m(�L′L)DL2
q2,m2 (�L′L)DL1

q1,m1 (�L′L),

= 8π2

(2L+ 1)
C(L1,L2,L;m1,m2)∑

q1,q2

C(L1,L2,L;q1,q2) DL1∗
q1,n1 (�1L)DL2∗

q2,n2 (�2L)DL
q1+q2,0

(�rL). (G.14)

Thus, a scalar pair function can be written as an expansion like

f (r,�1L,�2L,�rL)

=
∑

L1,L2,L,
n1,n2

{ ∑
m1,m2

8π2

(2L+ 1)
f
m1m2m;n1n2
L1L2.L (r)C(L1,L2,L;m1,m2)

}

×
∑
q1,q2

C(L1,L2,L;q1,q2) DL1∗
q1,n1

(�1L)DL2∗
q2,n2

(�2L)DL
q1+q2,0(�rL),

=
∑

L1,L2,L
n1,n2

f
n1n2
L1,L2,L

(r)�n1,n2
L1,L2L

(�1L,�2L,�rL), (G.15)
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where L1,L2,L are not arbitrary any more, but have to satisfy the triangular condition
(Eq. F.19) enforced by the Clebsch–Gordan coefficients and we have introduced the rota-
tionally invariant combinations

�
n1,n2
L1,L2L

(�1L,�2L,�rL)

≡
∑
q1,q2

C(L1,L2,L;q1,q2)DL1∗
q1,n1

(�1L)DL2∗
q2,n2

(�2L′ )D
L
q1+q2,0(�rL), (G.16)

equivalent to those of Blum [1972].1 Since the expansion is valid in an arbitrary frame, we
can in particular adopt the intermolecular (IM) frame, with z-axis along the inter-centre axis
and �rL = (000). In the IM frame, DL

q1+q2,0
(�rL) = DL

q1+q2,0
(000) = δq1,−q2 and

fIM(r,�1L,�2L)
=

∑
L1,L2,L
q1;n1,n2

f
q1,−q1;n1n2
L1,L2,L

(r)C(L1,L2,L;q1, − q1)DL1∗
q1,n1

(�1L)DL2∗−q1,n2
(�2L′),

≡
∑

L1,L2,L
q1;n1,n2

[fIM]q1;n1,n2
L1,L2

(r) DL1∗
m1,n1

(�1L)DL2∗−m1,n2
(�2L). (G.17)

Thus, we can switch from a space-fixed to a molecule-fixed expansion writing the expansion
coefficients of one representation in terms of those of the other:

[fIM]q1;n1,n2
L1,L2

(r) =
∑
L

C(L1,L2,L;q1, − q1)f n1,n2,m1
L1,L2,L

(r). (G.18)

The rotational invariant combinations �n1,n2
L1,L2L

(�1L,�2L,�rL) defined in Eq. G.16 corre-
spond, apart from a constant, to the rotational invariants of Stone [1978], where a phase
factor is introduced so as to make S00

L1,L2,L
always real:

S
n1,n2
L1,L2,L

(�1L,�2L,�rL)

= (i)L1−L2+L
√

2L+ 1

∑
q1,q2

C(L1,L2,L;q1,q2) DL1∗
q1,n1

(�1L) DL2∗
q2,n2

(�2L) DL
q1+q2,0(�rL),

(G.19)

= (i)L1−L2−L ∑
q1,q2

(
L1 L2 L

q1 q2 −q1 − q2

)
DL1∗
q1,n1

(�1L) DL2∗
q2,n2

(�2L)DL∗
−q1−q2,0(�rL),

(G.20)

where the last expression is written in terms of 3-j coefficients, as in Stone [1978]. The
definition of Blum and Torruella [1972] is written using Edmonds, [1960] convention for
rotations instead of the one of Rose [1957] that we follow. The conversion between the two
is [Brink and Satchler, 1968]

DL
m,n(α,β,γ )

Rose

⇐⇒ DL
m,n(−α, − β, − γ ) = (−1)m−nDL∗

m,n(αβγ )

Edmonds
. (G.21)

1 Note, however, that Blum [1972] adopts the convention of Edmonds [1960] for the Euler angles which describes rotations
from MOL to LAB instead, as we do, from LAB to MOL. Brink and Satchler [1968].
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Thus, expression G.19 gives

S
n1,n2
L1,L2,L

(�1L,�2L,�rL)

Stone

⇐⇒ (i)L1−L2−L(−1)n1+n2�
L1L2L
n1n2 (�1L,�2L,�rL)

Blum and Torruella
, (G.22)

which can be useful when comparing with literature data using either convention. The
rotational invariants form an orthogonal basis set of functions in the angular space
{�1L,�2L,�rL}:∫

d�1Ld�2Ld�rLS
n1,n2∗
L1,L2,L

(�1L,�2L,�rL) S
n′1,n

′
2

L′1,L
′
2,L

′ (�1L,�2L,�rL)

= 256π5

(2L1 + 1)(2L2 + 1)(2L+ 1)
δL1L

′
1
δL2,L

′
2
δL,L′δn1,n

′
1
δn2,n

′
2
. (G.23)

We shall generally adopt in this book the Stone definition, since it is more popular and well-
described in the literature, and briefly review some properties. Using this definition and the
symmetry properties of Clebsch–Gordan coefficients (cf. Eq. F.26b), the complex conjugate
of the rotational invariant is

S
n1,n2
L1,L2,L

(�1L,�2L,�rL)∗ = (−1)n1+n2S
n1,n2
L1,L2,L

(�1L,�2L,�rL). (G.24)

For uniaxial molecules we only need the subset

SL1,L2,L(�1L,�2L,�rL) ≡ S0,0
L1,L2,L

(�1L,�2L,�rL),

= iL2−L1+L
√

2L+ 1

∑
q1,q2

C(L1,L2,L;q1,q2)DL1 ∗
q1,0

(�1L) DL2 ∗
q2,0

(�2L) DL
q1+q2,0(�rL), (G.25)

which are real functions. Recalling the effect of the inversion operation on the Wigner matri-
ces (Table G.1) we also have ÎS

n1,n2

L1,L2,L
= (−1)L1+L2+LSn1,n2

L1,L2,L
. Thus, we see that in the

description of a centrosymmetric phase like a nematic or non-chiral isotropic, only S func-
tions with L1 + L2 + L even parity need to be considered. On the contrary chiral phases,
e.g. cholesterics, will also need combinations with odd L1 + L2 + L. Explicit expressions
of the first few rotational invariants for uniaxial molecules in Cartesian coordinates, and
using the unit vectors ẑ1, ẑ2, r̂ along the z-axis of the two molecules and of the separation
vector r ≡ r2 − r1 can be written, extending the list reported by Stone [1978, 1996], as
follows:

S0,0,0 = 1, (G.26)

S1,1,0 = − (ẑ1 · ẑ2)
√

3, (G.27)

S1,0,1 = − (ẑ1 · r̂)/
√

3, (G.28)

S0,1,1 = (ẑ2 · r̂)/
√

3, (G.29)

S1,1,2 =
[
(ẑ1 · ẑ2)− 3 (ẑ1 · r̂) (ẑ2 · r̂)

]
/
√

30, (G.30)

S1,2,1 =
[
(ẑ1 · r̂)− 3 (ẑ1 · ẑ2) (ẑ2 · r̂)

]
/
√

30, (G.31)

S2,1,1 = −
[
(ẑ2 · r̂)− 3 (ẑ1 · ẑ2) (ẑ1 · r̂)

]
/
√

30, (G.32)

S2,2,0 =
[− 1+ 3 (ẑ1 · ẑ2)2] /√20, (G.33)

S2,0,2 =
[− 1+ 3 (ẑ1 · r̂)2] /√20, (G.34)
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S0,2,2 =
[− 1+ 3 (ẑ2 · r̂)2] /√20, (G.35)

S2,2,2 =
[
2− 3 (ẑ1 · ẑ2)2 − 3 (ẑ1 · r̂)2 − 3 (ẑ2 · r̂)2 + 9 (ẑ1 · ẑ2) (ẑ1 · r̂) (ẑ2 · r̂)

]√
70, (G.36)

S1,2,3 =
√

3
[
(ẑ1 · r̂)+ 2 (ẑ1 · ẑ2)(ẑ2 · r̂)− 5 (ẑ1 · r̂)(ẑ2 · r̂)2]/√140, (G.37)

S2,3,1 = −
√

3
[
(ẑ2 · r̂)+ 2 (ẑ1 · r̂)(ẑ1 · ẑ2)− 5 (ẑ1 · ẑ2)2(ẑ2 · r̂)

]
/
√

140, (G.38)

S2,1,3 = −
√

3
[
(ẑ2 · r̂)+ 2 (ẑ1 · ẑ2)(ẑ1 · r̂)− 5 (ẑ1 · r̂)2(ẑ2 · r̂)

]
/
√

140, (G.39)

S1,3,2 =
√

3
[
(ẑ1 · ẑ2)+ 2 (ẑ1 · r̂)(ẑ2 · r̂)− 5 (ẑ1 · ẑ2)(ẑ2 · r̂)2] /√140, (G.40)

S3,1,2 =
√

3
[
(ẑ1 · ẑ2)+ 2 (ẑ1 · r̂)(ẑ2 · r̂)− 5 (ẑ1 · ẑ2)(ẑ1 · r̂)2] /√140, (G.41)

S3,2,1 =
√

3
[
(ẑ1 · r̂)+ 2 (ẑ1 · ẑ2)(ẑ2 · r̂)− 5 (ẑ1 · ẑ2)2(ẑ1 · r̂)

]
/
√

140, (G.42)

S1,3,4 =
1

12
√

7

[− 3 (ẑ1 · ẑ2)+ 15 (ẑ1 · r̂)(ẑ2 · r̂)+ 15 (ẑ1 · ẑ2)(ẑ2 · r̂)2

−35 (ẑ1 · r̂)(ẑ2 · r̂)3], (G.43)

S3,1,4 =
1

12
√

7

[− 3 (ẑ1 · ẑ2)+ 15 (ẑ1 · ẑ2)(ẑ1 · r̂)2 + 15 (ẑ1 · r̂)(ẑ2 · r̂)

−35 (ẑ1 · r̂)3(ẑ2 · r̂)
]
, (G.44)

S2,2,4 =
1

4
√

70

[
1+ 2 (ẑ1 · ẑ2)2 − 5 (ẑ1 · r̂)2 − 5 (ẑ2 · r̂)2 − 20 (ẑ1 · ẑ2) (ẑ1 · r̂) (ẑ2 · r̂)

+35 (ẑ1 · r̂)2 (ẑ2 · r̂)2], (G.45)

S4,2,2 =
1

4
√

70

[
1− 5 (ẑ1 · ẑ2)2 − 5 (ẑ1 · r̂)2 + 2 (ẑ2 · r̂)2 − 20 (ẑ1 · ẑ2) (ẑ1 · r̂) (ẑ2 · r̂)

+35 (ẑ1 · ẑ2)2 (ẑ1 · r̂)2], (G.46)

S2,4,2 =
1

4
√

70

[
1− 5 (ẑ1 · ẑ2)2 + 2 (ẑ1 · r̂)2 − 5 (ẑ2 · r̂)2 − 20 (ẑ1 · ẑ2) (ẑ1 · r̂) (ẑ2 · r̂)

+35 (ẑ1 · ẑ2)2 (ẑ2 · r̂)2], (G.47)

S3,3,0 =
1

2
√

7

[
3 (ẑ1 · ẑ2)− 5 (ẑ1 · ẑ2)3], (G.48)

S3,0,3 =
1

2
√

7

[
3 (ẑ1 · r̂)− 5 (ẑ1 · r̂)3], (G.49)

S0,3,3 = −
1

2
√

7

[
3 (ẑ2 · r̂)− 5 (ẑ2 · r̂)3], (G.50)

S3,3,2 = +
1

4
√

105

[− 21 (ẑ1 · ẑ2)+ 30 (ẑ1 · ẑ2)(ẑ1 · r̂)2 + 30 (ẑ1 · ẑ2)(ẑ2 · r̂)2)

+25 (ẑ1 · ẑ2)3 + 3 (ẑ1 · r̂)(ẑ2 · r̂)− 75 (ẑ1 · ẑ2)2(ẑ1 · r̂)(ẑ2 · r̂)
]
, (G.51)

S3,2,3 =
1

4
√

105

[− 21 (ẑ1 · r̂)+ 25 (ẑ1 · r̂)3 + 30 (ẑ1 · ẑ2)2(ẑ1 · r̂)+ 3 (ẑ1 · ẑ2)(ẑ2 · r̂)

−75 (ẑ1 · ẑ2)(ẑ1 · r̂)2(ẑ2 · r̂)+ 30 (ẑ1 · r̂)(ẑ2 · r̂)2], (G.52)

S2,3,3 = +
1

4
√

105

[− 3 (ẑ1 · ẑ2)(ẑ1 · r̂)+ 21 (ẑ2 · r̂)− 30 (ẑ1 · r̂)2(ẑ2 · r̂)

−30 (ẑ1 · ẑ2)2(ẑ2 · r̂)+ 75 (ẑ1 · ẑ2)(ẑ1 · r̂)(ẑ2 · r̂)2 − 25 (ẑ2 · r̂)3], (G.53)
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S4,4,0 =
1

24

[
3− 30 (ẑ1 · ẑ2)2 + 35 (ẑ1 · ẑ2)4], (G.54)

S4,0,4 =
1

24

[
3− 30 (ẑ1 · r̂)2 + 35 (ẑ1 · r̂)4], (G.55)

S0,4,4 =
1

24

[
3− 30 (ẑ2 · r̂)2 + 35 (ẑ2 · r̂)4], (G.56)

S4,4,2 =
√

5

12
√

77

[− 6+ 51 (ẑ1 · ẑ2)2 + 9 (ẑ1 · r̂)2 + 9 (ẑ2 · r̂)2

−27 (ẑ1 · ẑ2) (ẑ1 · r̂) (ẑ2 · r̂)− 63 (ẑ1 · ẑ2)2 (ẑ1 · r̂)2 − 63 (ẑ1 · ẑ2)2 (ẑ2 · r̂)2

+147 (ẑ1 · ẑ2)3 (ẑ1 · r̂) (ẑ2 · r̂)− 49 (ẑ1 · ẑ2)4], (G.57)

S4,2,4 =
√

5

12
√

77

[− 6+ 9 (ẑ1 · ẑ2)2 + 51 (ẑ1 · r̂)2 + 9 (ẑ2 · r̂)2

−27 (ẑ1 · ẑ2) (ẑ1 · r̂) (ẑ2 · r̂)− 63 (ẑ1 · ẑ2)2 (ẑ1 · r̂)2

−63 (ẑ1 · r̂)2 (ẑ2 · r̂)2 + 147 (ẑ1 · ẑ2) (ẑ1 · r̂)3 (ẑ2 · r̂)− 49 (ẑ1 · r̂)4], (G.58)

S2,4,4 =
√

5

12
√

77

[− 6+ 9 (ẑ1 · ẑ2)2 + 9 (ẑ1 · r̂)2 + 51 (ẑ2 · r̂)2

−27 (ẑ1 · ẑ2) (ẑ1 · r̂) (ẑ2 · r̂)− 63 (ẑ1 · ẑ2)2 (ẑ2 · r̂)2

−63 (ẑ1 · r̂)2 (ẑ2 · r̂)2 + 147 (ẑ1 · ẑ2) (ẑ1 · r̂) (ẑ2 · r̂)3 − 49 (ẑ2 · r̂)4], (G.59)

S4,4,4 =
1

24
√

2002

[
109− 545 (ẑ1 · ẑ2)2 − 545 (ẑ1 · r̂)2 − 545 (ẑ2 · r̂)2

+3700 (ẑ1 · ẑ2) (ẑ1 · r̂) (ẑ2 · r̂)+ 490 (ẑ1 · ẑ2)4 + 490 (ẑ1 · r̂)4

+490 (ẑ2 · r̂)4 + 875 (ẑ1 · ẑ2)2 (ẑ1 · r̂)2 + 875 (ẑ1 · ẑ2)2 (ẑ2 · r̂)2

+875 (ẑ1 · r̂)2 (ẑ2 · r̂)2 − 4900 (ẑ1 · ẑ2) (ẑ1 · r̂) (ẑ2 · r̂)3

−4900 (ẑ1 · ẑ2) (ẑ1 · r̂)3 (ẑ2 · r̂)− 4900 (ẑ1 · ẑ2)3 (ẑ1 · r̂) (ẑ2 · r̂)

+8575 (ẑ1 · ẑ2)2 (ẑ1 · r̂)2 (ẑ2 · r̂)2]. (G.60)

Higher invariants can be generated, e.g. using the coupling formula of two rotational invari-
ants, obtained from the coupling formulae for Wigner rotation matrices [Price et al., 1984].

We also report a small tabulation for chiral systems (L1 + L2 + L odd)

S1,1,1 = 1√
6

[ẑ1 · ẑ2 × r̂], (G.61)

S1,2,2 =
√

3√
10

[ẑ1 · ẑ2 × r̂](ẑ2 · r̂), (G.62)

S2,1,2 = −
√

3√
10

[ẑ1 · ẑ2 × r̂](ẑ1 · r̂), (G.63)

S2,2,1 = −
√

3√
10

[ẑ1 · ẑ2 × r̂](ẑ1 · ẑ2), (G.64)

S2,2,3 = 3√
280

[ẑ1 · ẑ2 × r̂][(ẑ1 · ẑ2)− 5(ẑ1 · r̂)(ẑ2 · r̂)], (G.65)
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S2,3,2 = 3√
280

[ẑ1 · ẑ2 × r̂][(ẑ1 · r̂)− 5(ẑ1 · ẑ2)(ẑ2 · r̂)], (G.66)

S3,2,2 = − 3√
280

[ẑ1 · ẑ2 × r̂][(ẑ2 · r̂)− 5(ẑ1 · ẑ2)(ẑ1 · r̂)], (G.67)

S2,4,3 =
√

5√
112

[ẑ1 · ẑ2 × r̂][(ẑ1 · ẑ2)+ 2(ẑ1 · r̂)(ẑ2 · r̂)− 7(ẑ1 · ẑ2)(ẑ2 · r̂)2], (G.68)

S2,3,4 =
√

5√
112

[ẑ1 · ẑ2 × r̂][(ẑ1 · r̂)+ 2(ẑ1 · ẑ2)(ẑ2 · r̂)− 7(ẑ1 · r̂)(ẑ2 · r̂)2], (G.69)

S3,2,4 = −
√

5√
112

[ẑ1 · ẑ2 × r̂][(ẑ2 · r̂)+ 2(ẑ1 · ẑ2)(ẑ1 · r̂)− 7(ẑ1 · r̂)2(ẑ2 · r̂)], (G.70)

S3,4,2 = −
√

5√
112

[ẑ1 · ẑ2 × r̂][(ẑ2 · r̂)+ 2(ẑ1 · ẑ2)(ẑ1 · r̂)− 7(ẑ1 · ẑ2)2(ẑ2 · r̂)], (G.71)

S4,2,3 =
√

5√
112

[ẑ1 · ẑ2 × r̂][(ẑ1 · ẑ2)+ 2(ẑ1 · r̂)(ẑ2 · r̂)− 7(ẑ1 · r̂)2(ẑ1 · ẑ2)], (G.72)

S4,3,2 =
√

5√
112

[ẑ1 · ẑ2 × r̂][(ẑ1 · r̂)+ 2(ẑ1 · ẑ2)(ẑ2 · r̂)− 7(ẑ1 · r̂)(ẑ1 · ẑ2)2], (G.73)

S1,3,3 = −
√

3√
112

[ẑ1 · ẑ2 × r̂][1− 5(ẑ2 · r̂)2], (G.74)

S3,1,3 = −
√

3√
112

[ẑ1 · ẑ2 × r̂][1− 5(ẑ1 · r̂)2], (G.75)

S3,3,1 = −
√

3√
112

[ẑ1 · ẑ2 × r̂][1− 5(ẑ1 · ẑ2)2], (G.76)

S3,3,3 = 1√
168

[ẑ1 · ẑ2 × r̂][2− 5(ẑ1 · r̂)2 − 5(ẑ1 · ẑ2)2 − 5(ẑ2 · r̂)2

+25(ẑ1 · r̂)(ẑ1 · ẑ2)(ẑ2 · r̂))], (G.77)

S1,4,4 = 1√
80

[ẑ1 · ẑ2 × r̂](ẑ2 · r̂)(2+ 35(ẑ2 · r̂)3], (G.78)

S4,1,4 = − 1√
80

[ẑ1 · ẑ2 × r̂](ẑ1 · r̂)[2+ 35(ẑ1 · r̂)3], (G.79)

S4,4,1 = − 1√
80

[ẑ1 · ẑ2 × r̂](ẑ1 · ẑ2)[2+ 35(ẑ1 · ẑ2)3], (G.80)

S4,4,3 = − 1√
997920

[ẑ1 · ẑ2 × r̂][759(ẑ1 · ẑ2)− 225(ẑ1 · r̂)(ẑ2 · r̂)

−1050(ẑ1 · ẑ2)(ẑ1 · r̂)2 − 1050(ẑ1 · ẑ2)(ẑ2 · r̂)2 − 1225(ẑ1 · ẑ2)3

+1470(ẑ1 · ẑ2)4 + 3675(ẑ1 · ẑ2)2(ẑ1 · r̂)(ẑ2 · r̂)], (G.81)

S4,3,4 = − 1√
997920

[ẑ1 · ẑ2 × r̂][ 759(ẑ1 · r̂)− 225(ẑ1 · ẑ2)(ẑ2 · r̂)

−1050(ẑ1 · ẑ2)2(ẑ1 · r̂)− 1050(ẑ1 · r̂)(ẑ2 · r̂)2 − 1225(ẑ1 · r̂)3

+1470(ẑ1 · r̂)4 + 3675(ẑ1 · ẑ2)(ẑ1 · r̂)2(ẑ2 · r̂)], (G.82)
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S3,4,4 = 1√
997920

[ẑ1 · ẑ2 × r̂][759(ẑ2 · r̂)− 225(ẑ1 · ẑ2)(ẑ1 · r̂)

−1050(ẑ1 · r̂)2(ẑ2 · r̂)− 1050(ẑ1 · ẑ2)2(ẑ2 · r̂)− 1225(ẑ2 · r̂)3

+1470(ẑ2 · r̂)4 + 3675(ẑ1 · ẑ2)(ẑ1 · r̂)(ẑ2 · r̂)2]. (G.83)

All the invariants reported are for uniaxial particles. In what follows we also list a small
selection of explicit expressions for biaxial particles [Berardi and Zannoni, 2000]. In this
case, the molecular frame requires to specify the three axes for the two molecules: x̂1,ŷ1,ẑ1

and x̂2,ŷ2,ẑ2.

First-rank biaxial rotational invariants.

S
1,0
1,0,1 =

1√
6

[+(x̂1 · r̂)− i (ŷ1 · r̂)], (G.84)

S
0,1
0,1,1 =

1√
6

[−(x̂2 · r̂)+ i (ŷ2 · r̂)], (G.85)

S
1,0
1,1,0 =

1√
6

[+(x̂1 · ẑ2)− i (ŷ1 · ẑ2)], (G.86)

S
0,1
1,1,0 =

1√
6

[+(ẑ1 · x̂2)− i (ẑ1 · ŷ2)], (G.87)

S
−1,0
1,0,1 =

1√
6

[−(x̂1 · r̂)− i (ŷ1 · r̂)], (G.88)

S
0,−1
0,1,1 =

1√
6

[+(x̂2 · r̂)+ i (ŷ2 · r̂)], (G.89)

S
−1,0
1,1,0 =

1√
6

[−(x̂1 · ẑ2)− i (ŷ1 · ẑ2)], (G.90)

S
0,−1
1,1,0 =

1√
6

[−(ẑ1 · x̂2)− i (ẑ1 · ŷ2)], (G.91)

S
1,±1
1,1,0 =

1

2
√

3

{∓ (x̂1 · x̂2)+ (ŷ1 · ŷ2)+ i [(x̂1 · ŷ2)+ (ŷ1 · x̂2)]
}
, (G.92)

S
−1,±1
1,1,0 = 1

2
√

3

{± (x̂1 · x̂2)+ (ŷ1 · ŷ2)− i [(x̂1 · ŷ2)− (ŷ1 · x̂2)]
}
. (G.93)

Second-Rank biaxial rotational invariants.

S
0,∓2
0,2,2 = −

√
3√
40

[∓i (x̂2 · r̂)+ (ŷ2 · r̂)]2, (G.94)

S
0,∓1
0,2,2 =

√
3√
10

[± (x̂2 · r̂)+ i (ŷ2 · r̂)] (ẑ2 · r̂), (G.95)

S
∓2,0
2,0,2 = −

√
3√
40

[∓i (x̂1 · r̂)+ (ŷ1 · r̂)]2, (G.96)

S
∓1,0
2,0,2 =

√
3√
10

[±(x̂1 · r̂)+ i (ŷ1 · r̂)] (ẑ1 · r̂), (G.97)
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S
−2,∓2
2,2,0 = 1

4
√

5

{∓ (x̂1 · x̂2)+ (ŷ1 · ŷ2)− i [(x̂1 · ŷ2)+ (ŷ1 · x̂2)]
}2
, (G.98)

S
−2,∓1
2,2,0 = 1

2
√

5

{− (x̂1 · ŷ2)∓ (ŷ1 · x̂2)± i [(x̂1 · x̂2)∓ (ŷ1 · ŷ2)]
}

[−i (x̂1 · ẑ2)+ (ŷ1 · ẑ2)], (G.99)

S
−2,0
2,2,0 =

√
3√
40

{− (x̂1 · x̂2)2 − (x̂1 · ŷ2)2 + (ŷ1 · x̂2)2 + (ŷ1 · ŷ2)2

−2i [(x̂1 · x̂2)(ŷ1 · x̂2)+ (x̂1 · ŷ2)(ŷ1 · ŷ2)]
}
, (G.100)

S
−1,−2
2,2,0 = 1

2
√

5

{−(x̂1 · ŷ2)− (ŷ1 · x̂2)+ i [(x̂1 · x̂2)− (ŷ1 · ŷ2)]
}

[−i (ẑ1 · x̂2)+ (ẑ1 · ŷ2)], (G.101)

S
−1,−1
2,2,0 = 1

2
√

5

{
(x̂1 · x̂2)− (ŷ1 · ŷ2)+ i [(x̂1 · ŷ2)+ (ŷ1 · x̂2)]

}
[1+ 2(ẑ1 · ẑ2)], (G.102)

S
−1,0
2,2,0 =

√
3√
10

{
(x̂1 · ẑ2)− (ẑ1 · x̂2)[(x̂1 · x̂2)− (ŷ1 · ŷ2)]− (ẑ1 · ŷ2)[(x̂1 · ŷ2)+ (ŷ1 · x̂2)]

+i [(ŷ1 · ẑ2)− (ẑ1 · x̂2)[(x̂1 · ŷ2)+ (ŷ1 · x̂2)]

+(ẑ1 · ŷ2)[(x̂1 · x̂2)− (ŷ1 · ŷ2)]
}
, (G.103)

S
−1,1
2,2,0 = −

1

2
√

5

{
(x̂1 · x̂2)+ (ŷ1 · ŷ2)+ 2(x̂1 · ẑ2)(ẑ1 · x̂2)+ 2(ŷ1 · ẑ2)(ẑ1 · ŷ2)

−i [+(x̂1 · ŷ2)− (ŷ1 · x̂2)− 2(ŷ1 · ẑ2)(ẑ1 · x̂2)+ 2(x̂1 · ẑ2)(ẑ1 · ŷ2)]
}
, (G.104)

S
−1,2
2,2,0 =

1

2
√

5

{
(x̂1 · x̂2)+ (ŷ1 · ŷ2)− i ((x̂1 · ŷ2)− (ŷ1 · x̂2)))((ẑ1 · x̂2)− i (ẑ1 · ŷ2)

}
, (G.105)

S
0,∓2
2,2,0 =

√
3√
40

{
−(x̂1 · x̂2)2 + (x̂1 · ŷ2)2 − (ŷ1 · x̂2)2 + (ŷ1 · ŷ2)2

∓2i [(x̂1 · x̂2)(x̂1 · ŷ2)+ (ŷ1 · x̂2)(ŷ1 · ŷ2)]
}
, (G.106)

S
0,∓1
2,2,0 =

√
3√
10

{
∓ (ẑ1 · x̂2)∓ (x̂1 · x̂2)(x̂1 · ẑ2)∓ (x̂1 · ẑ2)(ŷ1 · ŷ2)

±(x̂1 · ŷ2)(ŷ1 · ẑ2)∓ (ŷ1 · x̂2)(ŷ1 · ẑ2)− i [(ẑ1 · ŷ2)+ (x̂1 · ŷ2)(x̂1 · ẑ2)

+(x̂1 · x̂2)(ŷ1 · ẑ2)− (x̂1 · ẑ2)(ŷ1 · x̂2)+ (ŷ1 · ŷ2)(ŷ1 · ẑ2)]
}
, (G.107)

S
1,−2
2,2,0 =

1

2
√

5

{
(x̂1 · ŷ2)− (ŷ1 · x̂2)− i [(x̂1 · x̂2)+ (ŷ1 · ŷ2)]

}
[−i (ẑ1 · x̂2)+ (ẑ1 · ŷ2)], (G.108)

S
1,−1
2,2,0 =

1

2
√

5

{
(x̂1 · x̂2)+ (ŷ1 · ŷ2)+ i ((x̂1 · ŷ2)− (ŷ1 · x̂2))

}
[1− 2(ẑ1 · ẑ2)], (G.109)

S
1,0
2,2,0 =

√
3√
10

{− (x̂1 · ẑ2)− (ŷ1 · ŷ2)(ẑ1 · x̂2)+ (x̂1 · x̂2)(ẑ1 · x̂2)+ (x̂1 · ŷ2)(ẑ1 · ŷ2)

+(ŷ1 · x̂2)(ẑ1 · ŷ2)+ i [+(ŷ1 · ẑ2)+ (x̂1 · x̂2)(ẑ1 · ŷ2)− (x̂1 · ŷ2)(ẑ1 · x̂2)

−(ŷ1 · x̂2)(ẑ1 · x̂2)− (ŷ1 · ŷ2)(ẑ1 · ŷ2)]
}
, (G.110)

S
1,1
2,2,0 =

1

2
√

5

{
(x̂1 · x̂2)− (ŷ1 · ŷ2)− i [(x̂1 · ŷ2)+ (ŷ1 · x̂2)]

}
[1+ 2(ẑ1 · ẑ2)], (G.111)

S
1,2
2,2,0 =

1

2
√

5

{
(x̂1 · ŷ2)+ (ŷ1 · x̂2)+ i ((x̂1 · x̂2)− (ŷ1 · ŷ2)))(i (ẑ1 · x̂2)+ (ẑ1 · ŷ2)), (G.112)
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S
2,∓2
2,2,0 =

1

4
√

5

{± (x̂1 · x̂2)+ (ŷ1 · ŷ2)+ i ((x̂1 · ŷ2)∓ (ŷ1 · x̂2))
}2
, (G.113)

S
2,−1
2,2,0 =

1

2
√

5

{
(x̂1 · x̂2)+ (ŷ1 · ŷ2)+ i ((x̂1 · ŷ2)− (ŷ1 · x̂2)))((x̂1 · ẑ2)− i (ŷ1 · ẑ2)), (G.114)

S
2,0
2,2,0 =

√
3

401/2

{− (x̂1 · x̂2)2 − (x̂1 · ŷ2)2 + (ŷ1 · x̂2)2 + (ŷ1 · ŷ2)2

+2i [(x̂1 · x̂2)(ŷ1 · x̂2)+ (x̂1 · ŷ2)(ŷ1 · ŷ2)]
}
, (G.115)

S
2,1
2,2,0 =

1

2
√

5

{
(x̂1 · ŷ2)+ (ŷ1 · x̂2)+ i [(x̂1 · x̂2)− (ŷ1 · ŷ2)]

}
[i (x̂1 · ẑ2)+ (ŷ1 · ẑ2)]. (G.116)

The invariants can be used, e.g., to expand intermolecular potentials or pair correlation
functions. In general, the rotationally invariant expansion of an arbitrary pairwise function
will be

f (r,�1L,�2L,�rL) =
∑

L1,L2,L
k1,k2

f
k1,k2
L1,L2,L

(r)Sk1,k2
L1,L2,L

(�1L,�2L,�rL). (G.117)

Having dealt with rotational invariance, other symmetries of the pairwise function f can
be implemented, when present. We have already seen in Section G.1 how to implement
point group symmetries for particles and for phases. In addition, for identical particles,
the permutation symmetry Sn1,n2

L1,L2,L
(�1L,�2L,�rL) = S

n2,n1
L2,L1,L

(�2L,�1L,�Lr ). A pair
function for non-chiral molecules should also be invariant under inversion.
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Appendix H

Quaternions and Rotations

Introducing quaternions. A vector in two-dimensions can be represented by a two com-
ponents complex number, z = (a,b) = a+ i b, with i2 = −1. In turn, a complex number u
with unit modulus: uu∗ = u∗u = 1, can be seen as a rotation operator for 2D vectors. This
is more transparent using the Euler exponential representation

u(θ ) = eiθ = (cos θ + i sin θ ). (H.1)

This can be considered as an operator acting on an arbitrary 2D vector v written as a complex
number v = (v1 + iv2). In fact,

v′ = u(θ )v = (cos θ + i sin θ )(v1 + iv2) = (v1 cos θ − v2 sin θ )+ i(v1 sin θ + v2 cos θ ),
(H.2)

which corresponds to a counterclockwise rotation of θ of the vector. Thus, a unitary complex
number could also be written as an orthogonal rotation matrix

u(θ ) = R(θ ) =
(

cos θ − sin θ
sin θ cos θ

)
. (H.3)

To extend a similar formalism to 3D vectors, one can introduce a generalization of complex
numbers, the quaternions q, first introduced by Hamilton. They can be defined as an ordered
set of four real numbers q0, q1, q2, q3 representing the components in a certain (quaternion)
basis set {1, e1, e2, e3}:

q = q0 + q1e1 + q2e2 + q3e3 = q0 + q · e, (H.4)

where q0 is called the scalar part and q ≡ (q1,q2,q3) is a 3D vector, called the vector part
of q.1 The basis set components e1, e2, e3 obey the combination rule

eiej = −δi,j + εijkek, (H.5)

where δi,j is a Kronecker delta and εijk a Levi–Civita symbol (see Eq. A.9). The quaternion
has a complex conjugate q∗ and a norm (or ‘length’) q̄:

3∑
i=0

qiq
∗
i = q̄2. (H.6)

1 Note that we use bold roman, e.g. a, for quaternions and bold italic, e.g. a, for vectors.
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A convenient representation of quaternions can be realized in terms of the Pauli spin angular
momentum matrices σ 1,σ 2,σ 3. Indeed, defining the basis set components ei as

e1 = −iσ 1, e2 = −iσ 2, e3 = −iσ 3, (H.7)

we see that the combination law Eq. H.5 is obeyed. It is easily verified using Eqs. H.4
and H.5 or directly from the Pauli matrices, that the product of two quaternions q (Eq. H.4)
and q′, i.e.

q′ = q ′0 + q ′1e1 + q ′2e2 + q ′3e3, (H.8)

is also a quaternion, that can be written as

qq′ = (q0q
′
0 − q · q ′)+ [q0q

′ + q ′0q + (q × q ′)] · e, (H.9)

and in particular, qq∗ = q̄2, while

q′q = (q ′0q0 − q ′ · q)+ [q ′0q + q0q
′ + (q ′ × q)] · e. (H.10)

The product is non-commutative, i.e. qq′ �= q′q, unless the vector product in Eqs. H.9 and
H.10 is 0. The inverse of a unitary quaternion is q−1 = (q0, − q1, − q2, − q3):

qq−1 = q2
0 + q2

1 + q2
2 + q2

3 = 1. (H.11)

Quaternions form a group and constitute a non-commutative algebra which, according to
Frobenius theorem [Bahturin, 1993], is the only one, besides real and complex numbers,
where every non-null element has an inverse, which is q−1 = q∗/qq∗. Just as a complex
number can be written as a 2 × 2 matrix, a quaternion can also be written as a 4 × 4
matrix. Indeed, since a quaternion is a four-component column matrix and the product of
two quaternions is also a quaternion, we can write the product in 4 × 4 matrix and vector
form as

q′′ = qq′ =

⎛⎜⎜⎝
+q0 −q1 −q2 −q3

+q1 +q0 −q3 +q2

+q2 +q3 +q0 −q1

+q3 −q2 +q1 +q0

⎞⎟⎟⎠
⎛⎜⎜⎝
q ′0
q ′1
q ′2
q ′3

⎞⎟⎟⎠ . (H.12)

Quaternions and rotations. We now wish to discuss quaternions as a means of repre-
senting the orientation of a rigid particle and their relation to Euler angles [Rose, 1957].
The three-dimensional rotation group SO(3) is the group of transformations which leave
the quantity v2

x + v2
y + v2

z , i.e. the length of a vector v, invariant. Any such transformation
can be expressed in a quaternion form as [Girard, 1984] v′ = u v u∗, where u is a unitary
quaternion. In particular, to rotate the vector v of an angle θ around an axis n, we can write
u = un(θ ) = R̂n(θ ). To obtain an explicit expression for the unitary quaternion, which acts
as rotation operator, we recall that the operator for a right-handed rotation of an angle θ
around an axis n is R̂n(θ ) = exp

(−iθ n · Ĵ), where Ĵ is the angular momentum operator.

Choosing an angular momentum (1/2), Ĵ = σ̂/2, (also called spinor) representation and
using the Pauli basis set, Eq. H.7, the rotation operator can be rewritten in the quaternion
basis {e} as
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R̂n(θ ) = exp

(
θ

2
n · e

)
. (H.13)

Using the generalized Euler formula exp(λn · e) = cos λ+(n · e) sin λ, which can be demon-
strated by a Taylor series expansion of both sides, we can also write u = cos θ2 +n · e sin θ

2 .
Thus, the unitary quaternion, u, with components

u0 = cos
θ

2
, u1 = sin

θ

2
nX, u2 = sin

θ

2
nY, u3 = sin

θ

2
nZ (H.14)

performs a rotation of an angle θ around the axis n = (nx,ny,nz). Note that any 3D vector
a = (ax,ay,az) can be considered as an ‘axial’ quaternion a = (0,ax,ay,az), but only if
a · a = 1 does the quaternion a corresponds to a rotation operator. To obtain an alternative
explicit representation of quaternions in terms of Euler angles (instead of a rotation around
a certain vector), we can consider the rotation operator, written in terms of laboratory-fixed
angular momentum operators: D̂(α,β,γ ) = exp (−iαĴZ) exp (−iβĴY ) exp (−iγ ĴZ) (see
Appendix F). In the J = σ̂/2 representation

D̂(α,β,γ ) = e−i
α
2 σ̂Z e−i

β
2 σ̂Y e−i

γ
2 σ̂Z = e

α
2 eZ e

β
2 eY e

γ
2 eZ . (H.15)

Repeated use of the generalized Euler formula gives D(α,β,γ ) = u0 + u · e, with

u0 = cos
β

2
cos

γ + α
2

, (H.16a)

u1 = sin
β

2
sin
γ − α

2
, (H.16b)

u2 = sin
β

2
cos

γ − α
2

, (H.16c)

u3 = cos
β

2
sin
γ + α

2
. (H.16d)

The rank 1
2 Wigner rotation matrix has components

D
1
2
1
2 ,

1
2
= u0 + iu3, D

1
2
1
2 ,− 1

2
= −u2 − iu1,

D
1
2

− 1
2 ,

1
2
= u2 − iu1, D

1
2

− 1
2 ,− 1

2
= u0 − iu3. (H.17)

These rank 1
2 functions can now be coupled, using Eq. F.31, to build Wigner rotation matri-

ces of rank 1 [Rose, 1957; Zannoni and Guerra, 1981]2

D1
m,n =

∑
q,p

C

(
1

2
,

1

2
,1;q,m− q

)
C

(
1

2
,

1

2
,1;p,m− p

)
D

1
2
q,pD

1
2
m−q,n−p. (H.18)

2 Notice that the matrices D
1
2
m,n and D1

m,n listed here correspond to D
1
2 ∗−n,−m and D1 ∗−n,−m in the appendix of [Zannoni and

Guerra, 1981].
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The components of the rank 1 Wigner rotation matrix are

D1
−1,−1 = u2

0 − u2
3 + 2iu0u3 (H.19a)

D1
−1,0 =

√
2(u0u2 − u1u3 + iu2u3 + iu0u1) (H.19b)

D1
−1,1 = u2

2 − u2
1 + 2iu1u2 (H.19c)

D1
0,−1 = −

√
2(u0u2 + u1u3 + iu2u3 − iu0u1) (H.19d)

D1
0,0 = u2

0 + u2
3 − u2

2 − u2
1 (H.19e)

D1
0,1 =

√
2(u0u2 + u1u3 − iu2u3 + iu0u1) (H.19f)

D1
1,−1 = u2

2 − u2
1 − 2iu1u2 (H.19g)

D1
1,0 =

√
2(u0u2 + u1u3 − iu2u3 + iu0u1) (H.19h)

D1
1,1 = u2

0 − u2
3 − 2iu0u3 (H.19i)

Higher-rank matrices of integer rank can be obtained from these by systematic application
of the decomposition scheme (Eq. F.31)

DL
m,n =

∑
q,p

C(L− 1,1,L;q,m− q)C(L− 1,1,L;p,n− p) DL−1
q,p D1

m−q,n−p. (H.20)

In particular, for the second-rank Wigner matrix components, we find

D2
−2,−2 = (u0 + iu3)4 (H.21a)

D2
−2,−1 = 2(u2 + iu1)(u0 + iu3)3 (H.21b)

D2
−2,0 =

√
6(u0 + iu3)2(u2 + iu1)2 (H.21c)

D2
−2,1 = 2(u0 + iu3)(u2 + iu1)3 (H.21d)

D2
−2,2 = (u2 + iu1)4 (H.21e)

D2
−1,−2 = −2(u2 − iu1)(u0 + iu3)3 (H.21f)

D2
−1,−1 = (u2

0 − 3u2
1 + u2

3 − 3u2
2)(u0 + iu3)2 (H.21g)

D2
−2,−2 = (u0 + iu3)4 (H.21h)

D2
−2,−1 = 2(u2 + iu1)(u0 + iu3)3 (H.21i)

D2
−2,0 =

√
6(u0 + iu3)2(u2 + iu1)2 (H.21j)

D2
−2,1 = 2(u0 + iu3)(u2 + iu1)3 (H.21k)

D2
−2,2 = (u2 + iu1)4 (H.21l)

D2
−1,−2 = −2(u2 − iu1)(u0 + iu3)3 (H.21m)

D2
−1,−1 = (u2

0 − 3u2
1 + u2

3 − 3u2
2)(u0 + iu3)2 (H.21n)

D2
−1,0 =

√
6(u2

0 − u2
1 − u2

2 + u2
3)(u0 + iu3)(u2 + iu1) (H.21o)

D2
−1,1 = (3u2

3 − u2
2 − u2

1 + 3u2
0)(u2 + iu1)2 (H.21p)

D2
−1,2 = 2(−iu3 + u0)(u2 + iu1)3 (H.21q)

D2
0,−2 =

√
6(u0 + iu3)2(u2 − iu1)2 (H.21r)
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D2
0,−1 = −

√
6(u2

0 − u2
1 − u2

2 + u2
3)(u0 + iu3)(u2 − iu1) (H.21s)

D2
0,0 = u4

0 + u4
3 − 4u2

0u
2
1 − 4u2

0u
2
2 + 2u2

0u
2
3 − 4u2

3u
2
1 − 4u2

3

u2
2 + 2u2

1u
2
2 + u4

1 + u4
2 (H.21t)

D2
0,1 =

√
6(u2

0 − u2
1 − u2

2 + u2
3)(−iu3 + u0)(u2 + iu1) (H.21u)

D2
0,2 =

√
6(−iu3 + u0)2(u2 + iu1)2 (H.21v)

with the rest of 25 functions obtainable simply from Eq.F.7.
Let us now express the Cartesian rotation matrix R connecting a vector v in the rotated

(primed) and original frames, i.e. v′ = Rv. Inverting Eqs. H.16

cosβ = u2
0 + u2

3 − u2
1 − u2

2, (H.22a)

sinβ = 2
√

(u2
0 + u2

3)(u2
1 + u2

2), (H.22b)

sinα = (u0u1 + u2u3)/
√

(u2
0 + u2

3)(u2
1 + u2

2), (H.22c)

cosα = (u0u2 − u1u3)/
√

(u2
0 + u2

3)(u2
1 + u2

2), (H.22d)

sin γ = (u2u3 − u1u0)/
√

(u2
0 + u2

3)(u2
1 + u2

2), (H.22e)

cos γ = (u0u2 + u1u3)/
√

(u2
0 + u2

3)(u2
1 + u2

2), (H.22f)

and we could substitute these in the expression for the Cartesian rotation matrix R(α,β,γ ),
Eq. B.8. However, more elegantly, we can also obtain R from D1 recalling that D1 is the
transpose of R when this is written in spherical coordinates, so that R = UT

∗
(D1)TU,

where U is the matrix converting Cartesian to spherical vectors:

U =
√

1

2

⎛⎝−1 −i 0
0 0

√
2

1 −i 0

⎞⎠ . (H.23)

The Cartesian rotation matrix R in terms of quaternions, is R = R(u),

R =
⎛⎝ u2

0 − u2
3 + u2

1 − u2
2 2(u0u3 + u1u2) −2(u0u2 − u1u3)

2(u1u2 − u0u3) u2
o − u2

3 + u2
2 − u2

1 2(u0u1 + u2u3)
2(u0u2 + u1u3) −2(u0u1 − u2u3) u2

o + u2
3 − u2

1 − u2
2

⎞⎠ . (H.24)

Note that writing R in this quaternion form avoids evaluating trigonometric functions.
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Appendix I

Nuclear Magnetic Resonance

Even if we do not have the intention nor the space required to discuss the details and sub-
tleties of Nuclear Magnetic Resonance (NMR) [Abragam, 1961] or its recent developments
[Levitt, 2001; Bakhmutov, 2015], we wish to recall at least the essentials as far as liquid
crystals studies are concerned. Doing this is important, as NMR, when applicable, is one
of the techniques where the interpretation of the experimental data in terms of molecular
parameters is relatively more straightforward and reliable. Moreover, NMR observables can
be successfully obtained from atomistic MD simulations, as shown by Tiberio et al., [2009]
and Pizzirusso et al. [2012b, 2014]. To start with, we recall that in an NMR experiment
molecules are studied through those of their atomic nuclei that are endowed with a nuclear
spin Ii (e.g. 1H, 13C, 15N, 19F, 31P, which have I = 1/2, or deuterium (D) 2H and 14N which
have I = 1). The sample to be studied is exposed to a strong static external magnetic field
H 0. H 0 = (0,0,HZ) that interacts with the nuclear spins, in particular, lifting the degener-
acy between spin up and down energy levels. For instance, the two spin levels of a proton 1H
with spin I = 1/2 will have a�E = E+1/2−E−1/2 corresponding to a resonance frequency
ν0 ≈ 600 MHz in a magnetic field of ≈14.1 Tesla.

More generally, the positions and intensities of the absorption lines in an NMR spec-
trum can be obtained by solving the Schrödinger equation for an effective Hamiltonian
(the spin Hamiltonian) containing interactions between nuclear magnetic moments and
external fields, dipolar and indirect interactions between nuclear magnetic moments
and possibly electrostatic interactions involving nuclear spins. The spin Hamiltonian Ĥ

representing this is

Ĥ = Ĥ Z + Ĥ J + Ĥ Q + Ĥ D. (I.1)

The first, Zeeman, term Ĥ Z represents the interaction between the nuclear magnetic dipole
moments, γihIi , and the magnetic field at the ith nucleus, H i . Here γi = giμN/� is the
so-called nuclear gyromagnetic ratio expressed in radians, gi the nuclear g factor of
nucleus i, and the nuclear magneton μN = 5.051× 10−27 JT−1. H i differs from the value
of H 0, the applied field, according to the shielding effect of the surrounding electrons. The
shielding depends on the electronic distribution around each nucleus which is different in
the different direction and is described by a second-rank chemical shift tensor σ , so that
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Ĥ Z = −γ hHZ
∑
i

Îi,Z (1− [σi]ZZ) , (I.2a)

= −γ hHZ
∑
i

Îi,Z + γ hHZ
∑
i

Îi,Z [σi]ZZ, (I.2b)

where Îz =
∑
i Îi,Z and Îi,Z is the nuclear spin projection operator, quantized along the

magnetic field HZ of the spectrometer, that is assumed to define the Z-axis. In brief, the
various contributions are: the ‘indirect’ spin-spin coupling

Ĥ J =
∑
i≤j

Îi [Jij ] Îj (I.3)

and the quadrupolar nuclear term

ĤQ =
∑
i

eQi

2Ii(2Ii − 1)�
Îi Vi Îi, (I.4)

whereQi and Vi are the quadrupole moment and the electric field gradient tensor at the site
of nucleus i and e the proton charge. They are different from 0 for nuclei that have I > 1/2
since these have a non-spherical nuclear charge distribution.

Ĥ D corresponds to the effective spin Hamiltonian for the direct interaction between the
two magnetic dipole moments of nuclei with spin Îi and Îj , that can be written as

Ĥ D =
∑
i≤j

Îi[Tij ] Îj, (I.5)

where we have enclosed in square brackets the tensors [Tij ] and [Jij ] in Eq. I.3 involving
a pair of nuclei to avoid interpreting ij as tensor components. [Tij ] is the dipolar coupling
tensor between a pair of nuclei i and j with gyromagnetic ratios γi and γj, and can be
written explicitly as

[Tij ] = − h γi γj
8π2 r5

ij

(
3r ij ⊗ r ij − r2

ij 1
)
, (I.6)

where 1 is the 3× 3 identity matrix, and r ij = rj − r i is the vector of length rij joining the
two nuclei i and j , with r i,rj the position of nuclei with respect to the laboratory reference
frame. [Tij ] has the same mathematical form (see Eq. C.10) as the electrostatic dipole-dipole
interactions tensor discussed in Chapter 5. The spin Hamiltonian can be given a matrix
representation in a basis set of nuclear spin angular momentum eigenfunctions |Ij,mj 〉.
The matrix elements of the various spin Hamiltonians can be obtained recalling their action
on the basis functions, analogous to that of angular momentum operators

Î2
j |Ij,mj 〉 = Ij (Ij + 1) |Ij,mj 〉, (I.7a)

Îj,Z|Ij,mj 〉 = mj |Ij,mj 〉. (I.7b)

Note that in NMR the spin interactions with the external magnetic field applied (Zeeman
interactions) are normally much greater than internal NMR interactions, that can accord-
ingly be treated as perturbations (the usual high-field approximation) [Emsley and Lindon,
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1975] and only the terms of the Hamiltonian commuting with Îj,Z (called secular) are
retained. The energy levels of a system of N coupled equal spins in a high magnetic field
are characterized by the total magnetic Zeeman quantum numberM:

Ĥ Z|I,M〉 = M|I,M〉, (I.8)

with M = ∑
j mj . The transition between the eigenstates of the spin Hamiltonian can

be performed with the step up (or raising) and step down (or lowering) ladder operators
Îj,+ ≡ Îj,X + i Îj,Y and Îj,− ≡ Îj,X − i Îj,Y that applied to a state |I,m〉 effect the transi-
tion to the next higher or lower spin level:

Îj,+ |Ij,mj 〉 =
√

(Ij −mj )(Ij +mj + 1) |Ij,mj + 1〉, (I.9a)

Îj,− |Ij,mj 〉 =
√

(Ij +mj )(Ij −mj + 1) |Ij,mj − 1〉. (I.9b)

For a spectrometer operating at a modest field (proton resonance frequency of 100 MHz), the
Zeeman energy is≈ 108 Hz, three orders of magnitude larger than the dipolar and quadrupo-
lar contributions. while the indirect spin-spin couplings are no bigger than 102 Hz [Dong,
2016]. Thus, the off-diagonal matrix elements of the spin Hamiltonian can be neglected to
a good approximation and

Ĥ = −H0

2π

∑
j

γj
(
1− [σj ]ZZ

)
Îj,Z +

∑
i<j

J iso
ij Îi · Îj

+
∑
i<j

(
2[Tij ]ZZ + [Jij ]ZZ − 1

3
Tr [Jij ]

)[
Ii,ZIj,Z − 1

4

{
Îi,+Îj,− + Îi,−Îj,+

}]
+
∑
j

[qj ]ZZ
4Ij

(
2Ij − 1

) (3Î
2
j,Z − Ij (Ij + 1)

)
. (I.10)

In practice, one-quantum transitions can be performed by a weak magnetic field H 1(ω)
oscillating in a direction perpendicular to H 0

Ĥ 1 = −γ h
∑
j

Îj,X(1− σj,XX)H1X cosωt, (I.11)

with an angular frequency ω = 2πv in the radio frequency range to effect transitions
between the spin levels. Note that ÎjX = 1

2

(
Îj+ + Îj−

)
. This in turn means that these

are the quantities that we can extract from the spectra, i.e. our observables. The transition
probability between eigenstates |I,m〉 of the spin Hamiltonian with energy EM , EM ′ is
given, using quantum perturbation theory [Schatz and Ratner, 1993], by

WM,M ′ ≈ −γ 2h2H 2
1 |〈M|ÎX|M ′〉|2δ(ωMM ′ − ω), (I.12a)

= −γ 2h2H 2
1 |〈M|ÎX|M ′〉|2

∫ ∞

−∞
dt e−i(ωMM′−ω)t, (I.12b)

where ωMM ′ ≡ (EM −EM ′ )/�, and we have used the Fourier integral representation of the
delta function. The dipolar couplings can involve nuclei on the same molecule (intramolec-
ular) or on different ones.
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In low viscosity liquids and liquid crystals (although not in solids or gels) intermolecular
contributions are largely averaged out by rapid intermolecular motions and only intramolec-
ular contributions will be relevant. The effect of molecular reorientations occurring on a
frequency scale faster than the spectral width �ω will yield an orientationally averaged
spectrum, rather than a superposition of individual spectra coming from each orientation,
as the experimental observable. The splittings in each group are due to chemical shifts and
couplings between the spins.

Allowed one-quantum transitions correspond to (�M = ±1). Multiple quantum transi-
tions are possible in different, specially designed, experiments using suitable sequences
of pulses and Fourier transform techniques [Pines, 1988]. A problem is the number of
transitions and the number of lines in the NMR spectrum of a system of coupled nuclei (e.g.

protons). The number of energy levels with magnetic quantum number M is

(
N

N/2+M
)

,

and if one is restricted to transitions between neighbouring Ms is

(
2N
N + 1

)
which is an upper

bound to the number of one-quantum transitions. For N = 4 this number is 56, for N = 8
it is 11,440, and for N = 12 it is 2,496,144 [Pines, 1988]. This increase in the number
of lines is practically forbidding the HNMR investigations of pure liquid crystals, unless
some of the protons are eliminated by isotopic substitution with deuterium. However, it has
been demonstrated since the pioneering work of Saupe [Saupe and Englert, 1963] that small
molecules dissolved in liquid crystals can be studied and completely resolved NMR spectra
of the partly oriented solute molecules can be obtained. The signal of the nematic solvent
will normally just provide a broad background (see, for example, Fig. 3.19b). The number
of interacting nuclei of the solute must, of course, be kept low so that comparatively few
but strong lines result. It then becomes possible to investigate average orientation of the
molecule and/or obtain structural information.
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Appendix J

X-ray Diffraction

The Bragg derivation is simple but is convincing only because it
reproduces the correct result

C. Kittel, Introduction to Solid State Physics, 2005

X-ray diffraction basics. X-ray diffraction [Guinier, 1994; Fiori and Spinozzi, 2010;
Als-Nielsen and McMorrow, 2011; Morelhao, 2016] offers an important structural tool for
hard and soft materials in the determination of:

(i) the type of molecular organization (crystalline, amorphous, fibrous),
(ii) the relevant morphology details (e.g. if the material is a liquid crystal, what type of

liquid crystals) and
(iii) the relevant intermolecular or interatomic distances, that can typically be of the order

of Angstroms. The use of electromagnetic radiation of wavelength similar to the size of
desired structural details (see Table J.1) allows us to exploit interference as a tool to obtain
information about the very small distances of interest. Let us consider the amplitude of the
electric field of a radiation at a certain point in space r at time t :

E(r,t) = êEin eik · r−iωt, (J.1)

where k is the wavevector along the propagation direction, with modulus k = 2π/λ, λ
the wavelength, ω the angular frequency of the wave and ê the polarization. In the case
of X-rays, the polarization will depend on the source (unpolarized for the common X-ray
tube, linearly polarized from synchrotron sources) but we shall not consider it here. Like any
other radiation, X-rays can be absorbed or scattered when impinging on a material. However,
hard X-rays, with λ of a few Ångstrom (say λ <8 Å or �ω >1500 eV) are far away from
the typical atomic absorption edge for carbon (which is at λ ≈ 280 eV) and they can go
through an organic material basically without changing their direction (the refractive index
at these wavelengths is≈1). They interact with all the electrons of each atom as if they were
free and make them oscillate, thus behaving as a dipolar antenna that irradiates a scattered
spherical wave with the same wavelength as the incident wave (elastic scattering). The
property measured in an ordinary scattering experiment is, however, not the electric field but
rather an intensity, I ∝ EE∗, thus the unchanged frequency phase factor will simplify and,
from now on, we can avoid carrying it on. The waves scattered from the various electrons
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Table J.1. Some important regions of the electromagnetic spectrum in terms of indicative
wavelength (λ), wavenumbers (ν̃), energy (E).

Soft Hard
Units IR VIS UV X-ray X-ray X-ray

λ Å 104 5× 103 103 10 1 10−1

λ nm 103 500 102 1 0.1 10−2

ν̃ cm−1 104 2× 104 105 107 108 109

E eV 1.24 2.48 12.4 1.24× 103 12.4× 103 124× 103

E kcal/mol 28.59 57.19 285.94 28.59× 103 28.59× 104 28.59× 105

k

r

k'
2

r·k'

r·k

k

k'

k

k'
q

(a) (b)

Figure J.1 (a) Phase delay r · (k′ − k) between two X photons scattered by a pair of centres
separated by a distance vector r . (b) The scattering vector q.

are coherent and thus can interfere. This physical phenomenon is the fundamental principle
of many X-ray experiments, and we shall assume experimental conditions to be such that
this coherent scattering is the only relevant one, while the incoherent inelastic contributions
(Compton scattering), where the wavelength changes are instead negligible. Another key
assumption made in discussing the scattering of X-rays from a molecular system is the Born
or single-scattering approximation. This assumes that the amplitude of the scattered wave
is very small compared to the incident wave so that when it encounters another electron it is
not scattered a second time. If this is the case, only the primary incident wave generates
scattering from the electrons. The electric field of radiation scattered from the various
centres of electronic density travels through the sample and arrives at the detector. Since the
X-rays interact with the electrons, we can also assume as a first approximation the scattering
factor, b, of a certain centre to be proportional to the number of electrons (if the scattering
centre is an atom, its atomic number), or more properly, to the local electron density ρ(r)

E(r) ∝ Ein eik · r

r
ρ(r) = Ein(r)ρ(r). (J.2)

It is convenient to determine the travelled path difference between two scatterers considering
one, arbitrary, centre at the origin and another at a vector distance r (see Fig. J.1). If the
scattering is coherent and there is no phase change on scattering, the phase difference
between the two waves scattered from a centre at the origin and one at r and arriving at the
same detection point will depend only on the difference in travelled path length between the
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two rays: r · k′ − r · k = r · q, where the vector q = k′ − k is called the scattering vector.
In more detail, the total field from the two scattering centres will be

Etot (r) = E1(r)+ E2(r) = Ein eik · r

r
[1+ eiq · r ]. (J.3)

Since the process is elastic, k = k′ and from Fig. J.2 and simple trigonometry we have
q2/4 = k2 − k2 cos2 θ , thus

q = 2k sin θ = 4π

λ
sin θ . (J.4)

The amplitude of the total electric field arriving at the same detection point will be the sum
over all N scatterers contributions,

Etot (q) = Ein eik · r

r

N∑
m=1

bm(q)eiq · rm, (J.5)

and at each detection point (or at each q) it could be enhanced (constructive interference),
reduced or cancelled (destructive interference) when summing up, because of the phase dif-
ference. If we consider the scattering centres to be atoms, bat is called the atomic scattering
factor. It is clear that it is higher for atoms (or ions) with a higher number of electrons
and that only atoms with a sufficient number of electrons will be visible (protons being
the less visible!). However, the factor bat decreases with q, contributing to the difficulty of
observing higher reflections [Guinier, 1994]. The corresponding scattered intensity is

I(q) ∝ 〈|Etot (q)|2〉 = E2
in

r2

N∑
m=1

N∑
m′=1

bat,m(q) bat,m′ (q)〈eiq ··· rmm′ 〉, (J.6a)

≈ E2
in

r2

N∑
m�=m′=1

bat,m(q) bat,m′ (q)
∑
L

iL(2L+ 1)
〈
jL(qrmm′ ) DL

00(q̂ · r̂mm′ )
〉
, (J.6b)

where to get the last equation we have used the Rayleigh plane-wave expansion

eiq · r =
∑
L

iL(2L+ 1)jL(qr)DL
00(q̂ · r̂), (J.7)

with jL(qr) a spherical Bessel function [Abramowitz and Stegun, 1965]. In many cases it
is convenient to consider not a discrete sum like in Eq. J.6b, but a continuous distribution
of electronic density in space. Considering the contribution from all electronic centres, the
total scattered electric field can be written as

Etot (q) ∝
∫

drρ(r) eiq · r ∝ F[ρ(r)], (J.8)

which is a 3D space Fourier transform of the electronic density ρ(r) (see Appendix E).
Taking an average over the distribution of electrons and its fluctuations in time caused by
any atomic or molecular motion:

I (q) ∝
〈
|Etot (q)|2

〉
. (J.9)
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Figure J.2 Macroscopic geometry of scattering experiment. The X-ray beam k impinges on
the sample and the scattered beam k′ is detected at the angle 2θ . Note that from a formal point
of view the scattering is equivalent to a reflection from the virtual Bragg plane R orthogonal
to the scattering vector q, even if no actual physical reflection is involved.

We can now consider a few simple examples.

1D lattice. For a 1D regular lattice of N identical atoms placed along a line with a spacing
a between them, we have the electron density ρ(r) =∑

m ρ(r − rm) ≈ ρel
∑
m δ(r − rm),

where the electron density ρel is to a first approximation the atomic number Z and where
rm is the position of the mth centre. We assume (Fig. J.3) rm = (0,0,(m− 1)a), finding
the field scattered from the mth atom as

Em = Ein

r
bat (q) eik · r+imq · a (J.10)

and the total scattered field from the row of N centres

Etot (r,q) = Ein

r
bat (q) eik · r

N−1∑
m=0

( eiq · a)m = Ein

r
bat (q) eik · r

( eiNq · a − 1)

( eiq · a − 1)
, (J.11)

which has been written in closed form using:
∑m2
m=m1

rm = (rm1 − rm2+1)/(1− r), the
geometric sum expression, where |r| �= 1 and m, m1, m2 are integers. The intensity scat-
tered by a row of centres is then

Itot (q) = |Ein|2
r2 b2

at

sin2(N (q · a)/2)

sin2(q · a/2)
, (J.12)

with q = (4π/λ) sin θ (cf. Eq. J.4). As we see from Fig. J.4, as N increases, i.e. as the
size of periodic linear cluster increases, the position of the peaks remains the same, at
q · a = qa = n2π , n integer, but the peaks become rapidly sharper. Note that the peaks
occur at the Bragg pseudo-reflection condition 2a sin θ = nλ or, in other words, when q

matches a vector of the reciprocal lattice. For this 1D lattice the reciprocal lattice can only
be along the same direction, with a unit vector of length 2π/a.

3D lattice. Let us now consider a regular 3D lattice, built from a repeated unit cell
defined by the primitive vectors a1, a2, a3. Any site of the lattice can be written as
v = (m1a1 +m2a2 +m3a3) , with integer mi . We can always associate to the real space
lattice a reciprocal one (see, e.g., [Lax, 1974; Kittel, 2005]. More explicitly, any point in
the reciprocal lattice will be ξhkl = 2π (hb1 + kb2 + lb3), with h,k,l integers and the
reciprocal vectors bi , with bi = aj × ak/v0, and the orthonormality relation ai · bj = δi,j ,
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Figure J.3 Scattering from a row of atoms with electron density ρ(r).

Figure J.4 Intensity scattered from 2, 5, 10 identical centres regularly spaced on a line. Note
that the scattered peaks all have the same intensities, since a constant scattering factor has
been assumed. In a real case the peaks will decrease with q.

with i,j,k an even permutation of 1,2,3, while v0 = a1 · a2 × a3 is the volume of
the primitive cell in the real lattice. In general, the three lattice vectors a1,a2,a3 will
not be perpendicular to each other (e.g. for lattices tilted in one (monoclinic) or more
(triclinic) directions), and in this case also the different reciprocal lattice vectors will also
be non-orthogonal between themselves. However, the real and reciprocal lattice vectors
are always perpendicular to each other. In the special case of an orthorhombic lattice,
where a1 ⊥ a2 ⊥ a3 can be taken along x,y,z, the wavevector can be expressed as

k = 2π
[
nx
�x

x + ny
�y

y + nz
�z

z
]
, where �i are the lattice spacings in the three directions and

ni are integers. The scattering from a 3D lattice with N atoms along each of the three
directions will be

Etot (r,q) = Ein ρel eik · r

r

N−1∑
m1,m2,m3=0

eiq · (m1a1+m2a2+m3a3), (J.13a)

= Ein ρel eik · r

r

( eiNq · a1 − 1)

( eiq · a1 − 1)

( eiNq · a2 − 1)

( eiq · a2 − 1)

( eiNq · a3 − 1)

( eiq · a3 − 1)
, (J.13b)

which has been summed explicitly using the geometric sum. Diffraction occurs when the
Laue condition q = ξ, where ξ is a reciprocal lattice vector, is satisfied, since this leads to
exp (iq · ξ ) = 1. The results can be visualized in terms of reflections from a plane. Indeed,
any vector of reciprocal lattice is perpendicular to a plane in real space. If this plane in real
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Figure J.5 The geometry of an X-ray experiment showing the main types of scanning
experiments used to explore the structure of a liquid crystal with director d [Kumar, 2001].
In the θ−2θ scans the incident and scattered beams direction k, k′ are varied so that the
magnitude q of the scattering vector q is changed while keeping the same 2θ . Thus, I2θ (q)
is recorded. In a θ scan instead the detector position is changed to receive the intensity at
various angles and obtain I (2θ ).

space goes through three points m1a1, m2a2, m3a3 it can be labelled by the Miller indices
(h,k,l) with, apart from an integer factor, h = 1/m1, k = 1/m2, l = 1/m3. These are the
components of the reciprocal vector and

|ξhkl | = 2π/�hkl, (J.14)

with �hkl the distance between the Miller planes (h,k,l). At the diffraction condition q = ξ ,
e.g. if we have an ordered LC with the director along the z laboratory axis and we look in
the meridian direction, at q = q(001) a smectic A with layers perpendicular to z, will give a
reflection at q = 2π/�z (and possibly multiples of that). Using Eq. J.4 we also have, more
generally, 2�hkl sin θ = λ.

In Fig. J.5 we show the geometry of the various experiments typically performed on
liquid crystals [Kumar, 2001].
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Appendix K

Stochastic Processes

The Russian mathematician Andrey Markov introduced the stochastic processes now named
after him when studying the alternation of vowels and consonants in the poem ‘Onegin’ by
Pushkin [Hayes, 2013]. This seems a problem rather far from practical applications, but we
could just think that instead of vowels and consonants we have ‘sun’ or ‘rain’ in a sequence
of daily weather forecasts. Let us thus imagine a sequence of such readings and that the
probabilities of having a sunny or, respectively, a rainy day are ps and pr . If we assume
no other weather condition (fog or whatever), this is a ‘two states’ process, so necessarily
ps + pr = 1. The probability ps can be approximated with the observed frequency of
occurrence of a sunny day over a sufficiently long time (its ‘equilibrium probability’) and
will change from place to place etc. We can now ask what is the probability that a sunny
day will be followed by another sunny one or rather by rain. Strictly, the fact that the next
day will be sunny depends not only on the present condition, but also on the sequence
of previous ones. Moreover, in different places we can expect different treble or quartet
sequences being more common. The simplest and roughest assumption we could make
would be that the weather of each day is independent on the previous one, so there would be
the same probability of having sun or rain, irrespective of the type of the previous one. This
is rather extreme, and the proposal of Markov is instead to assume that the new observation
depends just on the last one (what we now call a Markov process): Thus, in matrix form:(

p
(1)
s

p
(1)
r

)
=
(
p

(0)
s

p
(0)
r

)(
Πss Πsr

Πrs Πrr

)
, (K.1)

or p(1) = p(0)�, where we have added a superscript to indicate the position in the chain
of events. The matrix � is called a transition matrix and, generalizing to a system that can
be found in m distinct states, rather than just two, this will be m × m. It is easy to see
that its elements are all non-negative (Πij ≥ 0), since Πij represents the probability of
jumping form a state i to another state j , which cannot be negative. Clearly, the probability
of hopping from the given state to another one should be 1:

m∑
j=1

Πij = 1. (K.2)
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A square matrix with these properties is called a right stochastic matrix and has some special
mathematical properties:

(i) If � is stochastic, then �n is also stochastic.
(ii) One of its eigenvectors is always formed of all 1s.

(iii) For any eigenvalue λi of � , |λi | ≤ 1.
(iv) Since � is real, its eigenvalues are either real or they are complex conjugate in pairs

so to give a real trace.

The probability vector after two jumps will be p(2) = p(1)� = p(0)�2 and in general, after
n jumps,

p(n) = p(n−1)� = p(n−2)� � = · · · = p(0)�n−1� = p(0)�n. (K.3)

Thus, the transition matrix �(n) for proceeding n steps is just the nth power of � and the
transition probability for going from site i to site j after n steps will be in the form of a
recurrence relation

(Πn)ij =
∑
k

(Πn−1)ikΠkj, (K.4)

often called the Chapman–Kolmogorov equation. A property of Markov processes that is
crucial for its application in the Monte Carlo method (Chapter 8) is the asymptotic behaviour
of the transition matrix after a very large number of steps. Indeed, if every state can be
reached from any other state with a certain sequence of steps (the configuration space is
connected and the system is ergodic), then the limit

lim
n→∞(Πn)ij = wj (K.5)

exists for every pair i,j and is independent of the starting state i. The asymptotic frequency
factorswj represent the occupation probability (the weight) of the j th state. The asymptotic
weights have to be positive: wj > 0, and obey the normalization condition:

∑m
j=1wj = 1.

Taking the limit for n going to infinity on both sides of Eq. K.4 we have,

w � = w, (K.6)

showing that the equilibrium distribution is an eigenvector of the transition matrix, corre-
sponding to the eigenvalue 1. This ensures that the transition matrix does not modify the
distribution when equilibrium is reached.
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Appendix L

Simulating Polarized Optical Microscopy Textures

A propagating beam of light can be represented by a vector or a matrix. Two particularly
useful vector representations are the Jones (or Fresnel–Maxwell) [Jones, 1948] and the
Stokes [Azzam, 1978] ones, in terms of 2d and 4D vectors, respectively. The electric (or
similarly the magnetic) field of a monochromatic radiation with frequency ν = 2πω,
propagating in vacuum or in an isotropic medium in a direction that we take as the z-axis,
can be represented by a 2D vector field of the form

E(z,t) = eE0 exp

{
i[ωt − n

2πλ0
z]

}
, (L.1)

where λ0 is the radiation wavelength in vacuum, n the refractive index of the medium, E0

the field amplitude and the Jones vector, e = (e1, e2), represents the direction of polariza-
tion of the radiation in the xy-plane. Any optical element in the path of the radiation will
modulate some features of the incoming beam Ein(z, t), giving another vector Eout (z, t).
Thus, the optical element introduced can be represented by a 2× 2 matrix. While the Jones
formalism is attractively simple, many experiments measure intensities, rather than electric
field components and the Stokes representation that employs only measurable intensities
is often more convenient. The Stokes vector s = (s0, s1, s2, s3) of a radiation has four
components: s0, the total intensity, that can be taken as 1, s1 = I45 − I135, s2 = I+ − I−
and s3 = I0 − I90. Here I0, I90, I45, I135, I+ and I− are the output intensities when the
light is passed through perfect linear polarizers set at x, y, 45◦,135◦ and through right and
left circular polarizers, respectively. It is important to note that the Stokes vector includes
the description of partially or completely depolarized light, different to Jones vectors and
that s2

0 ≥ s2
1 + s2

2 + s2
3 , with the equality holding only for totally polarized light. In this last

case, the components of the Stokes vector, si , can be calculated from the Jones vector

(
e1

e2

)
and its conjugate transpose row vector (e∗1, e

∗
2) , as follows: si = 1

2 (e∗1, e
∗
2) σ i

(
e1

e2

)
, where

σ 0 is the unit matrix, while σ i , i = 1, 2 or 3 correspond to the 2 × 2 Pauli spin matrices
[Rose, 1957]:

σ 0 =
(

1 0
0 1

)
, σ 1 =

(
0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
. (L.2)
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Clearly, if the incoming beam of light can be represented by a vector and the outgoing
beam of light by another vector, any optical device operating on the incoming beam to
produce the output one in a linear regime will be phenomenologically represented by a 4×4
matrix, called the Müller matrix, which converts the Stokes vector of the incoming radiation
to that of the transmitted radiation. The images of polarized optical microscopy (POM)
experiments can be obtained from the sample configurations generated from a molecular or
atomistic simulation assuming that each elementary volume element (voxel) is described
by a Müller matrix. In simulations of lattice systems, where a single spin represents a
tightly packed cluster of real molecules, a voxel is usually taken to correspond to a spin
[Berggren et al., 1994a]. The light beam crossing a sequence of sites across the sample
is then retarded according to the matrix resulting from the product of the Müller matrices
M(j ) for each voxel encountered along the light path. The effect of a uniaxial LC element
on the light corresponds to a simple linear retarder, and the Müller matrix M(j ) introduced
to represent the effect of the j th voxel along the light path can be written explicitly as
[Schellman, 1998]

M(j ) =

⎛⎜⎜⎝
1 0 0 0

0 sin2 2αj + cos2 2αj cos δj − cos 2αj sin δj sin 2αj cos 2αj (1− cos δj )
0 cos 2αj sin δj cos δj − sin 2αj sin δj
0 sin 2αj cos 2αj (1− cos δj ) sin 2αj sin δj cos2 2αj + sin2 2αj cos δj

⎞⎟⎟⎠ ,
(L.3)

where αj is the angle between the projection of the j th voxel director on the plane per-
pendicular to the beam direction (z, say) of the light and the x-axis and δj is the phase

difference for voxel j [Xu et al., 1992] δj = 2πhno
λ

(
ne
ne,j

− 1
)
, where h is the thickness of

each layer, no, ne are the ordinary and extraordinary refractive indices of the liquid crystal.

The effective refractive index, ne,j is obtained as ne,j =
√
n2
o + (n2

e − n2
o) cos2 βj and βj

is the angle between the director of the j th voxel and the light propagation direction. The
resulting Stokes vector of the polarized and retarded light beam is given by [Xu et al., 1992;
Berggren et al., 1994a; Schellman, 1998]

sout = Pout
∏
j

M(j ) Pinsin. (L.4)

The input unpolarized light is represented by the vector sin = (1,0,0,0)T and the Müller
matrices, Pin and Pout , correspond to the polarizer and the analyzer, respectively set at
angles in, out (degrees). Commonly used linear polarizers and analyzers are [Schellman,
1998]

P(0,90) = 1

2

⎛⎜⎜⎝
1 0 0 ±1
0 0 0 0
0 0 0 0
±1 0 0 1

⎞⎟⎟⎠ , P(45,135) = 1

2

⎛⎜⎜⎝
1 ±1 0 0
±1 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , (L.5)
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while left or right circular polarizers can be represented by the matrix

P(±1) = 1

2

⎛⎜⎜⎝
1 0 ±1 0
0 0 0 0
±1 0 1 0
0 0 0 0

⎞⎟⎟⎠ . (L.6)

To obtain a more accurate image of the polarized light from the simulated configurations
an average is performed over Nc equilibrated configurations, and the intensity is then cal-
culated as a projection in the plane perpendicular to the light propagation

sout = Pout
1

Nc

Nc∑
k=1

⎛⎝∏
j

M(j,k)

⎞⎠
k

Pinsin. (L.7)

The output intensity is proportional to the first element in the obtained Stokes vector sout ,
i.e. I out ∝ [sout ]0. An image comparable to those experimentally observed by POM is
rendered coding different intensities in a greyscale from black (no light), to white (full
intensity). Typical values of the parameters used in the calculations in Chapter 10 are:
layer thickness: � = 5.3 μm, wavelength: λ = 545 nm and refractive indices n0 = 1.50,
ne = 1.66.
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Appendix M

Units and Conversion Factors

Table M.1. Some useful conversion factors between units of measurement. Here au
stands for atomic unit (often used in quantum chemistry) and esu for the electrostatic
unit of charge, me and e are the electron mass and proton charge, respectively.

Quantity Units

Length 1 au = 1 Bohr = a0 = 5.291772× 10−11 m

Mass 1 au = me = 9.1095× 10−31 kg

Time 1 au = �E−1
h = 2.4189× 10−17 s

Force 1 N = 1 J/m

Energy 1 au = 1 Hartee = 1Eh = 627.509 kcal mol−1

= 27.2135 eV = 4.3597× 10−18 J

1 eV = 23.0621 kcalmol−1

1 J = 1 kg m2/s2 = 107 erg

1 zJ = 10−21 J ≈ 0.15 kcal/mol

1 kBT293.15 K ≈ 0.6073 kcal/mol

Pressure 1 Pa = 1 N/m2 = 10−5 bar = (1/101325) atm

Charge 1 au = 1 e = 1.6022× 10−19 C = 4.8032× 10−10 esu

1 esu = 1 (erg cm)1/2 = 3.33564× 10−10 C

Electric dipole 1 au = 2.5418× 10−18 esu cm = 2.5418 D

1 D ≡ 1 Debye = 1.0× 10−18esucm = 3.336× 10−30Cm

Electric quadrupole 1au = 1 ea2
0 = 4.4866× 10−40 C m2

= 1.34504× 10−26 esu cm2 = 1.34504 B

1 B ≡ 1 Buckingham = 1 DÅ = 1× 10−26 esu cm2

Electric potential 1 au = 9.076814× 10−2 esu/cm = 271139 V

Electric field 1 au = 1.71527× 107 esu/cm2 = 5.14221× 1011 V/m

Electric field gradient 1 au = 3.241390× 1015 esu/cm3 = 9.717362× 1021 Vm2

Polarizability 1 au = 1a3
0 = 0.14818× 10−24 cm3

= 0.16488× 10−40 C2m2J−1
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Appendix N

Acronyms and Symbols

N.1 Abbreviations and Acronyms

1D One dimension/one-dimensional
2D Two dimensions/two-dimensional
3D Three dimensions/three-dimensional
5CB 4-n-pentyl-4′-cyano-biphenyl
8CB 4-n-octyl-4′-cyano-biphenyl
aka Also known as
a.u. Arbitrary unit
au Atomic unit
AA All atoms
AC Alternating current
AF Antiferromagnetic
AFM Atomic force microscopy
AMBER Assisted model building and energy refinement (a force field)
AMD Atomistic molecular dynamics
AO Atomic orbital
APAPA Anisylidene-p aminophenylacetate
Bn Banana phase of type n (n = 1, 2, . . . ,7)
BC Boundary condition
BBC Bipolar boundary condition
BCC Body-centred cubic
BI Boltzmann Inversion (method)
BP Blue phase
nCBmCBn n-cyano-biphenyl dimer with an m-alkyl spacer
CD Circular dichroism
CG Coarse-grained
CF Correlation function
CFF Consistent force field
CHARMM Chemistry at Harvard molecular mechanics
CHELPG Charges from electrostatic potentials using a grid-based method
CMC Critical micellar concentration
CMC Cluster Monte Carlo
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N.1 Abbreviations and Acronyms 609

CNT Carbon nanotube
c.o.m. Centre of mass
COMPASS Condensed phase optimized molecular

potentials for atomistic simulation studies
CPU Central processing unit
CTAB Cetyltrimethylammonium bromide
CUDA Compute unified device architecture
Dd

h Hexagonal columnar phase with inside column disorder
Do

h Hexagonal columnar phase with order inside columns
Dh

h Hexagonal columnar phase with helicoidally ordered columns
Dd

r Rectangular columnar phase with disorder in columns
Do

r Rectangular columnar phase with order in columns
Dt, Dto, Dtd Tilted columnar phase
DC Direct current, a static field at zero frequency
DCM 4-(dicyanomethylene)-2-methyl-6-(4-dimethyl-amino styryl)-4-H-pyran
DFT Density Functional Theory
DHPC Dihexanol phosphatidylcoline
DHS Dipolar hard sphere
DMANS p-dimethylamino-p-nitro-stilbene
DMPC Dimyristoil-phosphatidyl choline
DNA Deoxyribonucleic acid
DNMR Deuterium Nuclear Magnetic Resonance
DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine
DPD Dissipative particle dynamics
DPH 1,6, diphenyl-hexatriene
DPL Dipalmitoyl lecithin (or DPPC)
DPO 1,6, diphenyl-octatetraene
DPPC Dipalmitoyl-phosphatidyl choline (DPL)

or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
DSC Differential scanning calorimetry
DSS Dipolar soft spheres
DTBC Disordered tangential boundary condition
DTH 2,2′-bithienyl
E7 A nematic mixture
E63 A nematic mixture
EBBA 4-ethoxybenzylidene-4′-n-butylaniline
Eq. Equation
EFG Electric field gradient
EPR Electron paramagnetic resonance (also called ESR)
ESP Electrostatic potential
ESR Electron spin resonance (also called EPR)
F A generic fluid phase
FCC Face-centred cubic
FD Fluorescence depolarization
FDTS 1H, 1H, 2H, 2H-perfluorodecyl-trichlorosilane
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FENE Finitely extendable non-linear elastic (potential)
Fig. Figure
FF Force field
FFT Fast Fourier transform
FSC Four site cluster
GA Genetic algorithm
GAFF General AMBER force field
GB Gay–Berne
GHRL Gruhn–Hess–Romano–Luckhurst
GPU Graphics processing unit
GROMACS Groningen machine for chemical simulation
GROMOS Groningen molecular simulation force field and simulation package
GULP General utility lattice program
H Hexagonal phase
HAB 4,4′-diheptyl-azobenzene
HBA5PE 4-n-hexyloxy-benzoic acid-[4′-n-pentyl-phenylester]
HAN Hybrid aligned nematic
HAT5 Hexakis (pentyloxy) triphenylene
HBC Hexabenzocoronene
HCP Hexagonal close packed
HF Hartree–Fock
HGO Hard Gaussian overlap model
HHTT 2,3,6,7,10,11-hexahexylthio triphenylene
HJL Humphries–James–Luckhurst Mean Field Theory
HNMR Proton nuclear magnetic resonance
HE Hard ellipsoid
HPP Hard polyhedra particle
HS Hard sphere
HTP Helical twisting power
HTS Hexyltrichlorosilane
IF Isotropic-ferroelectric
IN Isotropic-nematic
IM Intermolecular
IR Infrared spectroscopy
I52 4-ethyl-2-fluoro-4′-[2-(trans-4-n-pentylcyclohexyl)-ethyl]-

biphenyl n-propyl-cyclohexyl-ethyl-6-fluoro n-butyl-biphenyl
ITO Indium-tin oxide
K A solid crystal
KL Potassium laurate
KMC Kinetic Monte Carlo (method)
L A liquid phase
L Generic lamellar phase
Lα Lamellar ‘liquid crystal’ phase with fluid like chains
Lα′ Fluid lamellar phase with tilted mesogen chains
Lβ Gel lamellar phase with homeotropic mesogen chains
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Lβ ′ Gel lamellar phase with tilted mesogen chains
LAB Laboratory frame
LC Liquid crystal
LCD Liquid crystal display
LCE Liquid crystal elastomer
LCP Liquid crystal polymer
LD Linear dichroism
LED Light-emitting diode
LG Liquid-gas
LHS Left-hand side
LJ Lennard Jones (potential)
LL Lebwohl–Lasher
LSC Light scattering
LZNS Luckhurst–Zannoni–Nordio–Segre
mol Mole
molecs Molecules
M ‘Middle’ (hexagonal) chromonic phase
MBA5PE 4-methoxy-benzoic acid [4′-n-pentyl-phenylester]
MBBA 4-methoxybenzylidine-4′′-n-butylaniline
MBBAHPE 4-n-butyl-benzoic acid- [4′-n-hexyloxy-phenylester]
MBCA 4-methoxybenzylidene-4′-cyanoaniline
MC Monte Carlo (method)
MD Molecular Dynamics (method)
ME Maximum entropy
MEH-PPV poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene]
MESP Molecular electrostatic potential
MF Mean force
MFT Mean Field (or Molecular Field) Theory
MIC Minimum image convention
MM Molecular mechanics
MOG 1-mono palmitoleoyl-rac-glycerol
MOL Molecular (or particle) fixed frame
MO Molecular orbital
MP2 Møller–Plesset perturbation treatment in quantum chemistry
MRI Magnetic resonance imaging
MS Maier–Saupe (Molecular Field Theory)
MSD Mean square displacement
MTS Multiple timescale
nCB 4-cyano-4′-n-alkyl-biphenyl (when n is an integer, it corresponds to the chain length)
N Nematic
N∗ Chiral nematic (cholesteric)
NB Biaxial nematic
NC Uniaxial lyotropic nematic formed by cylindrical micelles
ND Discotic nematic, e.g. formed by discotic micelles
NTB Twist-bend or heliconical phase
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N(r) Reentrant nematic
NEXAFS Near-edge X-ray absorption fine structure
NMR Nuclear magnetic resonance
NPD Nematic polydomain elastomer
NI Nematic-isotropic
N,P,T Constant number of particles (N ), pressure (P ), temperature (T )
NSC Neutron scattering
N,V,E Constant number of particles (N ), volume (V ), energy (E)
N,V,T Constant number of particles (N ), volume (V ), temperature (T )
ODF Orientational distribution function
OH-MBBA o-hydroxy-p-methoxybenzylidene-p′-butylaniline
OLED Organic light-emitting diode
OPLS Optimized potential for liquid simulation
OPV Organic photovoltaic
OSC Organic semiconductor
OTS Octadecyltrichlorosilane
Pβ ′ Ripple lamellar phase
P3HT Poly(3-hexylthiophene-2,5-diyl)
P5 p-quinquephenyl
PAA 4,4′-dimethoxy azoxybenzene
PBC Periodic boundary condition
PBLG poly(γ -benzyl-α, L-glutamate)
PBTTT Poly[2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene]
PCBM [6,6]-phenyl C61 butyric acid methyl ester
PCH5 4′-n-pentyl-4-cyano phenyl cyclohexyl
PCH7 4′-n-heptyl-4-cyano phenyl cyclohexyl
PDLC Polymer dispersed liquid crystal
PES Potential energy surface
PK Plastic crystal
PL Parsons–Lee
PLPC Palmitoyl lysophosphatidyl choline
PME Particle mesh Ewald (method for calculating electrostatic interactions)
PNLC Polymer network liquid crystal
POE Polyoxyethylene
POM Polarizing optical microscopy
PPV Poly[phenylene vinylene]
PR-TRMC Pulse radiolysis (technique to determine charge mobility)
PSLC Polymer stabilized liquid crystal
QC Quantum chemistry
QD Quantum dot
QM Quantum mechanics
RBC Radial boundary condition
RDC Residual dipolar coupling
RDF Radial distribution function
RESPA Reference system propagator algorithm
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RHS Right-hand side
RIS Rotational isomeric state model
RM Reactive monomer
RMS Root mean square
RT Random tiling
S Solid of generic morphology (amorphous or crystal)
SAS Solvent accessible surface
SDS Sodium dodecyl sulphate
Sm Generic smectic phase
SA Smectic A
SA1 Monolayer smectic A
SA2 Smectic A with bilayer structure
SAd Smectic A with interdigitated partial bilayer structure
SÃ Smectic A with polar stripe structure (antiphase)
SB Smectic B
SBK Crystal smectic B
SBH Hexatic smectic B
SC Smectic C
SCSPF Sinclinic ferroelectric smectic C
SCSPA Sinclinic antiferroelectric smectic C
SCAPF Anticlinic ferroelectric smectic C
SCAPA Anticlinic antiferroelectric smectic C
SC
∗ Chiral smectic C

SE Smectic E
SO(3) Three-dimensional rotation group
SPC Simple point charge
SPME Smooth particle mesh Ewald
STO Slater-type orbital
StME Staggered mesh Ewald
SWNT Single-wall carbon nanotube
T6 α-sexithiophene
TBBA Terephtalydene-bis-(4-n-butylaniline)
TBC Toroidal boundary condition
TCP Landau tricritical point
TCP Topologically close packed
TEM Transmission electron microscopy
TEOS Tetraethyl orthosilicate
TGB Twist grain boundary phase
TIP3P Transferable intermolecular potential with 3 points
TMV Tobacco mosaic virus
TN Twisted nematic (display)
TOF Time of flight (technique to determine charge mobility)
TSC Two-site cluster
UA United atoms (force field)
UFF Universal force field
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UV Ultraviolet
vdW van der Waals
VMD Visual Molecular Dynamics
WAXD Wide angle X-ray diffraction
WRT With respect to
wt Weight
w/w Weight per weight concentration
XRD X-ray diffraction
ZLI-1167 A nematic mixture

N.2 Symbols for Mathematical and Physical Quantities

When, occasionally, the same symbol is used for different quantities each is indicated on a
separate line.

〈..〉X Average over variable X (X omitted if it is the only
variable)

{H,...} Classical Poisson brackets
[Â,B̂] Commutator, ÂB̂ − B̂Â
α, β, γ Euler angles
α, α′ Heat capacity critical exponents
a ⊗ b Direct or tensor product of two vectors a, b

a × b Vector product of two vectors a, b

α Molecular polarizability tensor
A Surface area
Å Ångstrom (10−10 m)
AL, m Spherical components of a rank L tensor
A Helmoltz (constant volume) free energy
β,β ′ Order parameter critical exponents
βn n-th cluster integral
βH Haller order parameter pseudo critical exponents
βT Inverse temperature βT ≡ (1/kBT )
β Hyperpolarizability tensor
B2 Second virial coefficient
Bn nth virial coefficients
C Concentration
C∗ Chiral dopant concentration
C2 Symmetry axis for a rotation of π
c(r12,�1,�2) Direct correlation function for two rigid molecules
CAB (t) Time correlation function between properties

A and B
CAB (t) Normalized correlation function
CP Heat capacity at constant pressure
CV Heat capacity at constant volume
C(J1,J2,J3;m1,m2) Clebsch–Gordan angular momentum coupling

coefficient
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χ (e) ≡ χPP Dielectric susceptibility tensor
χ (m) Magnetic susceptivity tensor
δi,j or δ(i − j ) Kronecker delta
d Director
da , a = x,y,z Direction cosines or director components
D Diffusion coefficient
D(x) Dawson function
D2h Point symmetry group for a parallelepiped
D Rotational diffusion tensor
DT Translational diffusion tensor
DL
m,n(�) Component m, n of a Wigner matrix of rank L

ε Dielectric permittivity tensor
ε, ε0 Energy terms in a Lennard–Jones

and Gay–Berne potential
εijk Levi-Civita antisymmetric symbol
.
ε Shear rate
ei Electric charge on a particle or atom i

e Polarization direction of an electromagnetic
radiation

ei One of the unit vectors of an orthogonal basis set
EY Young’s (tensile) modulus
E Electric field vector
Em mth energy level of a quantum system
erf(x) Error function
erfc(x) Complementary error function (1− erf(x))
η Dielectric coupling strength between mesogen and

electric field
η Shear viscosity
η Generic order parameter
φ Volume fraction
φμμ(t) Dipole-dipole single molecule time correlation

function
φLL

′
mn;m′n′ (t) Wigner rotation matrix time correlation function
φLLmn (t) Wigner rotation matrix time correlation for

uniaxial molecules in a uniaxial medium

ϕLL
′

mn;m′n′(t) Real part of φL,L
′

mn;m′n′ (t)
� ≡ (φ1, . . . ,φN−1) The set of internal torsional angles
�ij or �(xi .xj ) Mayer function.
f (t) Time derivative of a time dependent function
f (q) Scattering factor
f Force vector
F (t) Probability for a fluorescent molecule of being

still excited at a time t after excitation event
F [f (x)] Functional of f (x)
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F Generic electric or magnetic field
f̃ Fourier transform of a function f
F[f ] Fourier transform operator acting on a function f
γ Shape factor for convex bodies
γ Surface tension
γ1 Director rotational viscosity
γAB Surface tension between two surfaces A,B
γi Magnetogyric (or gyromagnetic) ratio
�̂ Time evolution operator (propagator)
G Gibbs (constant pressure) free energy
GE Free energy contribution of an applied electric field
GB Free energy contribution of an applied magnetic

field
Gel Frank elastic energy
Gi(�i,r) Gaussian function
G2(r) Second-rank angular-radial correlation
GH6 (r) Hexatic order radial correlation function
G(r12,�1,�2) Positional-orientational pair distribution
g(r,�1,�2) ≡ g(r,�1,�2,�r ) Reduced radial-orientational distribution
g(r,�r ) Radial-angular distribution for centres of mass
gAB(r,�r ) Radial-angular distribution for sites A, B
g(r) or g0(r12) Radial distribution for centres of mass
gAB(r) or gAB

0 (r12) Radial distribution for sites A, B
g2 Second-rank Kirkwood coefficient
h Planck constant
ha,i Position vector of atom a in the molecule i frame
h(r12,�1,�2) Total pair correlation for rigid molecules
H Magnetic field
H Enthalpy
H Classical Hamiltonian (H ≡ U +K),

i.e. potential plus kinetic energy
Ĥ Hamiltonian operator
Ĥ D Dipolar spin Hamiltonian
Ĥ Z Zeeman spin Hamiltonian
Ĥ J Indirect spin Hamiltonian
I Inertia tensor
Iab Cartesian components of inertia tensor
I(ω) Absorption intensity at frequency ω (aka spectrum)
IF (t) Time dependent fluorescence intensity
IFab(t) Time dependent fluorescence intensity

for incident and output polarizers along a and b

Ii Nuclear spin of a certain isotope i
Î Inversion operator
1 Identity matrix
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jL(x) Spherical Bessel function of rank L
Ĵ Angular momentum operator
J Classical angular momentum vector
JQ Heat current
κ Aspect ratio of a uniaxial ellipsoid
κ ′ Potential well anisotropy of a uniaxial GB ellipsoid
kB Boltzmann constant
κG Gaussian curvature
kn n-th cumulant of a distribution
κT Isothermal compressibility
K Orientation factors matrix
K Kerr constant
K Kinetic energy
K(p̃) Global kinetic energy
KR Rotational kinetic energy
KT Translational kinetic energy
Ka Elastic constant
K11 Splay elastic constant
K22 Twist elastic constant
K33 Bend elastic constant
λ Thermal conductivity tensor
λ Molecular biaxiality
λ Electromagnetic radiation wavelength
λn Nominal or engineering strain:

dimensionless deformation per unit length
� De Broglie thermal wavelength
�m Typical molecular length
�z Layer spacing in smectics
L [f ] Laplace transform of a function f
L̂ Liouville operator
μ0 Vacuum permeability
μ Charge carrier mobility
μ(a) Absorption transition moment
μ(e) Emission transition moment
μ Molecular dipole moment
μM Magnetic dipole moment vector
μ Electric dipole moment vector
mi Mass of particle i
mn nth moment of a distribution
M(a,b,x) Kummer hypergeometric confluent function
M Magnetization (total magnetic dipole moment)
M 4× 4 Müller matrix in optics
ν Frequency (sec−1)
n Refractive index tensor
nd Spacial dimensionality, nd = 1,2,3
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no Spin dimensionality, no = 1,2,3
n⊥ = no Ordinary refractive index of a uniaxial material
n|| = ne Extraordinary refractive index of a uniaxial material
N Number of particles in a sample
N Torque (moment of the force) vector
ω Angular frequency (rad sec−1)
� Orientation, e.g. Euler angles � = (α,β,γ )
�BA Rotation from coordinate frame A to B
�i ≡ �iL ≡ (MiL) Orientation of ith particle frame with respect to

the lab.
� Angular velocity
Ô s Symmetry operator
ψ6(r) Hexatic bond order parameter
� Markov transition matrix
Πij Transition probability from state i to j in a Markov

chain
Π Osmotic pressure
p Pitch or repeat distance of a helical structure

(e.g. cholesteric or NTB)
p Linear momentum
pT Total linear momentum of a system
〈P2〉 Second-rank orientational order parameter
〈P4〉 Fourth-rank orientational order parameter
Pabs(0) Probability of absorption of a photon
Pem(t) Emission probability from a fluorescent molecule
P Pressure
PC Pressure at critical point
PT ≡ PGIS Pressure at gas-isotropic liquid-solid triple point
P ∗ Pressure in dimensionless units
P Overall electric dipole moment
PE Electric polarization (overall dipole moment per

volume)
P̂ Projection operator
P Shorthand for P (�0|�t)
P (�0|�t) Orientational conditional probability
P (X0|X, t) Conditional probability
P (X0;X, t) Joint probability
P̂ (�0|�t) Symmetrized orientational conditional probability
PmL (x) Associated Legendre functions
PL(x) Legendre polynomial of rank L
q̄ Quaternion modulus
qT Total charge of a molecule (ion)
q Quaternion
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qk Nuclear quadrupole tensor at a nucleus k
in NMR

Q Ordering matrix
Q(N,V,T ) Full canonical partition function
Q(N,V,T ) Configurational canonical partition function
ρ Density
ρ∗ Dimensionless density
�(r,p) Probability density in phase space (spherical

particles)
�(r,�,p,

.
�) Probability density in phase space (rigid anisotropic

particles)
r(t) Fluorescence polarization anisotropy ratio
ra,i Position vector of atom a of molecule i in the

laboratory
Rn Real n-dimensional space
R Gas constant
R Curvature of a body
R Cartesian rotation matrix in 3D
R• Radical: chemical species R with an unpaired

electron
RL
m1, m2

(α,β) Wigner matrices adapted for biaxial D2h symmetry
σ Shear stress
σ Lennard–Jones spherical particle ‘diameter’
σh Hard spherical particle diameter
σs Attractive range in square well potentials
σλ Ratio of attractive to repulsive range diameter

for a square well potential
σ (ω) Frequency dependent electrical conductivity
σ Stress tensor
σ i 2× 2 Pauli matrix
s Topological charge of a structure (e.g. of a defect)
�n Nominal or engineering stress:

applied force per initial unit cross section
S Entropy
S Surface of a body
S Tsvetkov orientational order parameter, or 〈P2〉
S Saupe ordering matrix for biaxial molecules

in a uniaxial phase
Si Electron spin of an atom i

S
k1,k2
L1,L2,L

≡ Sk1,k2
L1,L2,L

(�1L,�2L,�rL) Stone rotational invariant

SL1,L2,L(�1L,�2L,�rL) Stone rotational invariant for uniaxial particles

S
k1,k2
L1,L2,L

(r) Stone invariant angular-radial pair correlation

S(q) Structure factor
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τ First positional order parameter in smectics
τF Fluorescence lifetime
T ∗ Dimensionless temperature, e.g. T ∗ = kBT /ε,

where ε is an energy scale parameter
Tαβ Transition temperature between α and β phases
TAI Smectic A-isotropic transition temperature
TAN Smectic A-nematic transition temperature
TB Boiling point temperature
TB Boyle temperature
TC Critical point temperature
TGIN Gas-isotropic-nematic triple point
Tg Glass transition temperature
TKN Solid crystal-nematic transition temperature
TM Main (gel-fluid) transition temperature in lipid

bilayers
TNI Nematic-isotropic transition temperature
TNSm Nematic-generic smectic transition temperature
TNI∗ Pretransitional effects divergence temperature
TT ≡ TGIS Gas-isotropic liquid-solid triple point temperature
TSN Solid-nematic transition temperature
TGNSm Gas-nematic-smectic triple point temperature
Tr ≡ (T − TC)/TC Reduced temperature in terms of a critical

temperature TC
TYI Lyotropic-gel phase transition temperature
[Tij ] Dipolar coupling tensor between two nuclei i and j
U Average internal energy
U Dimensionless internal energy, U ≡ U/kBT
U Potential energy
U e
ij Electrostatic pair potential

UHE
ij Hard ellipsoids pair potential

UHP
ij Hard particles pair potential

UHPH
ij Hard polyhedra pair potential

UHSC
ij Hard spherocylinders pair potential

U
μμ
ij Dipole-dipole pair potential

Uααij Dispersive pair potential

U%%ij Quadrupole-quadrupole pair potential

ULJ
ij Lennard–Jones pair potential

v Linear velocity
V Volume of a particle or a molecule
V Volume
V Voltage
V e Electrostatic potential
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VC Volume at a critical point
VT = VGIS Gas-liquid-solid triple point volume
V ∗ Volume in dimensionless units, e.g. V ∗ = V/Vc
W (Ja,Jb,Jc;Jd,Je) Racah angular momentum coupling coefficient
x Molar fraction
X̃ Set of generalized coordinates (X1,X2, . . . ,XN )

for N particles
Xi Generalized coordinates for the ith particle
 Grand canonical partition function
X̃XX ≡ (̃qqq,p̃pp) Phase space point
dX̃ A shorthand for (dX1,dX2, . . . ,dXN )
ξ Asphericity factor for a convex particle
ξ Generic field susceptibility
ξ Typical size of an aligned domain or correlation

length
ξ2 Ornstein-Zernike correlation length
ξI Typical size of ordered domains in the isotropic

phase
YLm(α,β) mth component of a spherical harmonic of rank L
z Compressibility factor
ZN,V,T Phase integral
Z Configurational partition funtion
ZN,V,T Canonical configurational integral

https://doi.org/10.1017/9781108539630.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.027


References

Abascal, J. L. F. and Lago, S. 1985. A unified treatment of the equation of state of hard linear bodies. J. Mol. Liq.,
30, 133–137.

Abascal, J. L. F. and Vega, C. 2005. A general purpose model for the condensed phases of water: TIP4P/2005.
J. Chem. Phys., 123, 234505.

Abragam, A. 1961. The Principles of Nuclear Magnetism. Oxford: Oxford University Press.
Abraham, F. F. 1986. Computational statistical mechanics methodology, applications and supercomputing. Adv.

Phys., 35, 1–111.
Abraham, M., Hess, B., van der Spoel, D., Lindahl, E. and development team, GROMACS. 2014. GROMACS User

Manual Version 5. 0. 4.
Abramowitz, M. and Stegun, I. A. (eds.). 1965. Handbook of Mathematical Functions. New York: Dover.
Acharya, B. R., Primak, A. and Kumar, S. 2004. Biaxial nematic phase in bent-core thermotropic mesogens. Phys.

Rev. Lett., 92, 145506.
Adam, C. J., Clark, S. J., Ackland, G. J. and Crain, J. 1997. Conformation-dependent dipoles of liquid crystal

molecules and fragments from first principles. Phys. Rev. E, 55, 5641–5649.
Adams, D. J., Luckhurst, G. R. and Phippen, R. W. 1987. Computer simulation studies of anisotropic systems.

XVII. The Gay-Berne model nematogen. Mol. Phys., 61, 1575–1580.
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Carbon nanotubes, 55, 56, 58, 104, 422, 423
Carnahan–Starling equation, 225, 356
CdSe nanoparticles, 10, 54, 106
Cell membrane, 49
Central moments, 404
Centre of mass, 179
CFF91 Force Field, 532
Chapman–Kolmogorov equation, 603
Charge

CHELPG, 240, 497
density matrix, 239
partial, 239

Charge carrier mobility, 43
CHARMM, 399
CHARMM Force Field, 231, 232, 235, 238,

527, 528
Chiral

Gay–Berne models, 283
hard particles, 282
interactions, 282
invariant, 283

Chiral nematics, 18
Cholesteric

Blue Phase, 23
dye laser, 22
optical rotation, 20
pitch, 19, 20
pitch divergence, 31
reflection from, 21
textures, 23
thermometry, 23

Cholesterics, 18
Cholesteryl

nonanoate, 24
oleate, 23

Chromonics, 51, 103, 267, 525
Cromolyn, 103
DSCG, 103
hexagonal phase, 52

Cinnamate series
odd-even effect, 92
simulations, 497, 498

Clausius–Clapeyron equation, 74
Clausius-Clapeyron equation, 74
Clearing

point, 5, 6
temperature, TNI , 8, 14, 30, 77, 91

Clebsch-Gordan coefficients, 223, 274, 295, 338,
568, 580

properties, 570
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Cluster integrals, 179
CMC, 45
CO2, 63, 266
Coagels, 48
Cole–Cole plot, 312
Colloidal suspensions, 2, 53

nematic-isotropic transition, 54
phase diagrams, 103

Columnar, 3, 38, 40
atomistic simulations, 524
chromonics, 52
discotic, 40
donor-acceptor, 41
ferroelectric phases, 464
Gay–Berne phases, 445, 455, 456
H-bonded, 284
ionics, 53
nematic, 40
nematics, 38, 41, 157
organic electronics, 456, 524
phase diagrams, 93
phase stability, 282
phases, 173, 267
properties, 42
pyramidic, 43, 465
semiconductors, 42
triphenylenes, 42, 93, 282, 457

Compressibility
factor, 209
hard spheres, 225
isothermal, 78, 209

Conformational distribution, 168
Connodal, 63
Contact angle, 211
Convolution, 307

theorem, 247, 308, 565
COOB re-entrant behaviour, 74
Correlation functions, 290

dipolar, 311
from simulations, 305
limiting values, 295
total , 185

Correlation times, 296
Corresponding states, 76
COSMIC Force Field, 510
COSMOS Force Field, 232
Cotton–Mouton effect, 8, 212
Critical

exponents, 77, 401
opalescence, 73
temperature, 62, 437, 446, 449
volume, 62

Critical point, 62, 64, 65, 71, 73, 77, 79, 83, 84, 86,
92, 98, 104, 210, 446

Cromolyn, 51
Cubic phase, 46
Cumulants, 404
Curie

temperature, 71, 76, 78
transition , 88

CVFF, 232
Cyano-biphenyls

atomistic simulations, 499
calorimetry, 96
dimers, 26
elastic constants, 508

Cybotactic clusters, 159

Dawson function, 411
DB7NO2, 31
DCM laser dye, 22
De Broglie wavelength, 178
De Vries smectics, 35
Debye

exponential relaxation, 311
screening length, 268

Defects
winding number, 10, 324, 416, 421, 432

Delta
Kronecker, 538, 561
sequence, 558

Delta function, 558
expansion in Wigner matrices, 567
Fourier expansion, 164, 452, 560
properties, 559

Desmond, 399
Detailed balance, 324, 361, 397
detection, 417
Di-n-alkyl azoxybenzene

order, 95
Diagonalization, 125, 126, 150, 158, 499, 549
Diamagnetic

anisotropy, 118, 119, 151
susceptivity, 7, 118, 119, 213, 312, 452, 492

Diamond phases, 47
Dielectric

anisotropy, 6, 18, 23, 213, 320, 417
constant, 240, 268, 309
susceptivity, 6, 309, 311, 312

Dielectric properties
Linear Response, 309

Dielectric relaxation, 321
Diffusion

rotational, 321, 430
translational, 301, 304, 429, 430

Diffusion coefficients
atomistic simulations, 493
Einstein formula, 301
Gay–Berne, 303
Green–Kubo relation, 302

Dimensionality effects, 409
Dipole moment

definition, 261
electric, 309
molecular, 36, 115, 310, 311
nuclear magnetic, 592, 593
table, 260
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time correlation, 311
Direct Blue, 51
Direct product, 539
Direction cosines, 548
Director, 4, 111, 115, 126, 128

frame, 125, 127
Disclinations, 10, 89, 416, 422, 423, 428
Discotics, 38

atomistic simulations, 524
bilayers, 50
chiral, 194
columnar, 173
columnar bond order, 204
ellipsoids, 180
fluorescent probes, 330
nematics, 54
phases, 156
positional order, 114
quadrupolar, 470
thermal conductivity, 317
triphenylene, 38

Dispersive forces, 153
Dispersive interactions, 230, 270, 273, 274, 276, 283,

332, 336, 339, 511
biaxial, 344, 346, 412, 419

DLPOLY, 399
DMANS, 124
DMPC, 101, 529

atomistic simulations, 528, 532
bilayers, 50
calorimetry, 102
vesicles, 139

DNA, 55, 232, 267, 284, 355, 432
DNMR, 152, 170, 294, 343, 492, 502, 533

droplets, 428
DOBAMBC, 36
DOBOB, 44
DOPC, 48
DPH, 122, 139
DPPC, 101, 529

acyl chains, 533
atomistic simulations, 528, 532
bilayers, 50, 528
calorimetry, 102
CFF91, 532
ripple phase, 531
simulations, 531
united atoms, 525

DREIDING Force Field, 232, 235

E63 mixture composition, 13
E7 mixture composition, 13
Easy axis, 9, 508
EBBA, 153, 155, 450
Edicol , 51
Eigenvalues, 549
Elastic constants, 11, 128, 422, 452, 454, 456

and POM textures, 422, 423
anisotropy, 12, 422

biaxial nematics, 28
chromonics, 52
features, 12
from atomistic simulations, 508
from simulations, 452–454
Gay–Berne, 453
smectics, 29
twist-bend phase, 26

Elastomers, 57, 475, 480–486
Electric

charge, 259
dipole, 259
quadrupole, 261

Electromagnetic spectrum, 597
Ellipsoids

aspect ratio, 244, 353, 357
biaxial Gay–Berne, 251
Gaussian overlap model, 247
Gay–Berne, 249, 284
hard, 243, 441
hard biaxial, 277, 278
inertia tensor, 180
oblate, 180, 251
prolate, 180
silica nanoparticles, 246

Enantiomers, 18
End-to-end distance, 478
Entropy, 74

Boltzmann–Shannon, 132
maximum, 131
statistical mechanics, 205

Ergodic systems, 402, 603
Escape into third dimension, 420
ESPResSO, 399
Eukaryote, 49
Euler

angles, 109, 163, 167, 189, 190, 253, 254, 288, 299,
379, 388, 546, 549, 566–568, 578, 579, 588,
589

equation, 300, 388–390
identity, 562, 587, 589
method, 382

Evolution operator, 324
Ewald sums, 240, 437, 489, 497, 510

Fast Fourier transform, 565
FDTS fluorinated alkysilane, 520
FENE potential, 476, 481–483
Ferroelectric nematics, 115, 192, 434, 437–438, 460
Ferromagnet, 76
Ferromagnetic coupling, 86
Fingerprint cholesteric texture, 23
First-order phase transitions, 82
First-rank reorientational correlations

initial values, 294
Flory

chimney, 104
Rotational isomeric state, 163

Fluctuation probability, 84
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Fluorescence depolarization, 321
Fluorescence depolarization , 121, 122
Fluorescent probes

DCM, 22
DMANS, 122–124
DPH, 122, 139, 330–331
perylene, 330–331

Focal conic texture, 23
cholesteric, 23
smectic, 29–30

Force Fields, 231–238, 241–242, 398, 488, 489, 499,
510, 521, 526, 528, 532

Fourier
law, 316
transform, 290, 307, 311, 321, 564

Fourier series, 112, 236, 242, 562
complex, 562
Gaussian, 563
rectangular wave, 563
triangular wave, 563

Fourier–Laplace transform, 311, 565
Fourth-rank order parameter

experimental determination, 121
Frank elastic energy, 128, 416, 432, 452, 540

cholesteric, 20
nematics, 11–12
smectics, 29

GAFF, 232, 489, 528
Gaunt formula, 216, 570, 578
Gaussian curvature, 421
Gay–Berne

aspect ratio, 445
banana mesogens, 473
biaxial, 471
bowlic, 463
dipolar, 466
elastic constants, 452, 454
elastomers, 480
order parameters, 472
phase diagrams, 446, 456
polymers, 475
quadrupolar, 468
simulated discotic models, 455
simulated rod-like models, 449
soft core, 481
tapered, 460

GHRL model, 422
Giroid phases, 47
Glass transition temperature, 98
Gradient, 540
Grandjean cholesteric texture, 23
Green–Kubo formula, 302

dielectric response, 310
ionic conductivity, 315
thermal conductivity, 316, 317
viscosity, 319

GROMACS, 399, 524, 527, 530
GROMOS, 530

GROMOS Force Field, 232, 526–528

HAB, 34
order parameter, 337
smectic C, 35
transitions, 30

Hairpins, 479, 480
Haller equation, 119, 502

Gay–Berne, 447
Hamaker constants, 277, 474

table, 280
Hamilton equations of motion, 288, 381
HAN (hybrid aligned nematic), 415, 419
Hard ellipsoids, 243, 244, 441

Onsager theory, 353, 357
packing, 443
phase diagram, 442

Hard spheres, 223
dipolar, 436
linear chains, 439

Hard spherocylinders, 245, 304, 495
dipolar, 444
Onsager theory, 353, 356, 357, 439, 495
phase diagram, 444, 496
simulations, 443

Havriliak–Negami equation, 312
Hedgehog configuration, 426, 427, 431
Heisenberg

evolution equation, 289
Heisenberg model, 88, 377

droplet, 428
universality class , 88

Helical twisting power, 20
Heliconical phase, 26
Helium superfluid, 72, 89, 96
Helmholtz

free energy, 68, 177, 340, 350
Hessian, 555
Heterophase fluctuations, 73
Hexagonal

close packing, 202
columnar, 93
order, 33, 156, 199
phase, 46, 48

Hexatic
bond order, 202, 455, 470
order, 202, 204

Hexon potential , 230
HHTT, 43, 94
Hilbert space, 542
HOBACPC

chiral smectic C, 36
Homeotropic alignment, 18, 23, 24, 41, 419, 423, 450,

511, 512, 520–523
HOOMD, 399
HTS alkysilane, 522
Hydrogen bonds, 57, 280, 283–287

modelling, 284
Hyperpolarizabilities, 270
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I52, 15
Ideal gas, 62
Identity resolution, 540
Imidazolium, 52
Inequalities

correlation functions, 296
elastic constants, 13
order parameters, 137, 154

Inertia tensor, 179, 180, 300
Inorganic nanorods, 54
Interface

nematic-isotropic, 450
nematic-vapour, 448, 511

Intermediate phase, 46
Internal-external order parameter, 166
Ionic conductivity, 315
Ionic liquid crystals, 52

simulations, 466
Ising model, 86, 373

3D, 86, 373
Isostress simulations, 370

LCE, 482–485
Isothermal compressibility, 78, 209, 395, 528, 530,

533
ITO, 9

Janus particles, 59
Joint distributions, 291, 292, 306
Jones vector, 604

Kernel, 307
Kerr effect, 8, 212
Kevlar, 56, 57
Kirkwood coefficient

second rank , 214
Kolrausch–Williams–Watts

stretched exponential decay, 312
Kraft point , 48
Kronecker delta, 538, 561, 587

orthogonal expansion, 560

Lagrange multipliers, 132, 133, 177
Lambda transition, 73, 89
Lamellar (L) phases, 47
LAMMPS, 228, 231, 387, 390, 398, 399, 445, 453,

466, 515
Landau point, 83, 413
Landau theory, 79–85, 87, 128, 212, 408, 448, 500

first-order transitions, 81, 404
second-order transitions, 81
smectics , 94

Laplacian operator, 325, 541
Latent heat, 69
Lattice gas model, 86
Lattice models, 85, 401
Laue diffraction condition, 600
LCD

MC simulation, 458
twisted nematic (TN), 9

LCE (Liquid Crystal Elastomers), 57, 480
actuation, 482
isotropic genesys, 481
supersoft, 58, 481, 484

LCP (liquid crystal polymers), 16, 38, 98, 475
Leapfrog integrator, 384
Lebwohl–Lasher model, 89, 115, 127, 195, 197, 212,

333, 335, 336, 374, 377, 435
Monte Carlo, 402–408
one-dimensional, 409
orientational time correlations, 306
planar, 409

Legendre polynomials, 4, 88, 116–117, 136, 354, 492,
545

plot, 116
Lennard–Jones, 233

anisotropic, 435
cut and shifted, 228
linear chains, 440
OPLS, 237
parameters, 228
phase diagram, 229
potential, 227
quinquephenyl, 238

Levi-Civita symbol, 388, 538, 566, 587
Linear Dichroism (LD), 120, 146
Linear Response, 308, 309
Liouville

equation, 289, 308
operator, 289, 386

Lipid bilayers, 101
atomistic simulations, 528–534
chain melting, 102–103
main transition, 101
phase transitions, 101
pretransitions, 101

Lipid phases, 529
Luzzati classification, 48

Lipid14 Force Field, 528
Liposomes, 48, 101
Liquid crystal

elastomers, see LCE
Lorentz–Berthelot mixing rule, 228
Lorentzian function, 311
Loss tangent, 310
Lyotropics, 2, 44

atomistic simulations, 525
cubic phases, 46, 47
lamellar, 47
phase transitions, 99, 101
polymers, 56

Magic angle, 129
Magnetic susceptibility, 118, 431

anisotropy, 213
Magnetization, 76, 77

transition, 81
Main transition, 103, 529

https://doi.org/10.1017/9781108539630.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781108539630.029


Index 681

Markov processes, 321, 360, 429, 602
MARTINI, 526
Maximum entropy, 131, 134, 168, 176, 322

biaxial molecules, 152, 154, 156, 323
uniaxial molecules, 132, 137, 139

Maxwell construction, 63
Maxwell distribution, 178, 300, 391
Mayer

expansion, 179
function, 209, 245, 352

MBBA, 14
diamagnetic anisotropy, 119
heat capacity, 91
Landau expansion, 84
NI transition, 91
order parameter, 119, 337
polarizability, 272
quadrupole tensor, 261
surface alignment, 450
transitions, 72
viscosities, 319

MBCA
order parameter, 119

MCM41, 366
McMillan Mean Field Theory, 94, 95
Mean Field Theory, 95, 134, 154, 223, 322, 332, 412,

436, 491
biaxial nematics, 346, 413
biaxial solutes, 343–345
Humphries–James–Luckhurst, 340, 341
Maier–Saupe, 333, 334, 337, 492
smectics, 348

Membrane bilayers, 101
atomistic simulations, 528–534

Membranes, 47, 50
bicelles, 50
bilayers, 101
fluid mosaic model, 50
fusion, 46
liposomes, 48
vesicles, 49

Mesogens polarizability
table, 272

MESP, 239
Metallomesogens, 15
Metastable state, 71
Methylene chains, 26, 73, 91, 233, 234, 503, 513

order, 170, 504
Micelles, 44, 99

biaxial, 101
discoidal, 50
elongated, 46
reverse, 46
spherical, 45

Middle phase, 46
Miesowicz viscosities, 5, 319
Miller indices, 601
Mineral liquid crystals, 53

MMn Force Field, 232, 233, 234
Modelling

All Atoms, 234, 529
United Atoms, 234, 529

Molecular biaxiality
smectics, 171

Monoclinic lattice, 600
Monte Carlo method
N,P,T ensemble, 369
acceptance ratio, 363
boundary conditions, 364
Cluster, 376
critical slowing down, 363
cycle, 368
errors, 371
free energy, 373
hard particles, 441
heat capacity, 372
initial configuration, 367
isostress, 370, 482
Metropolis algorithm, 361
observables, 370
pair distribution, 375
reweighting techniques, 378
theory, 359

Mulliken charges, 239
Multipolar expansion, 258
Multirotor molecules, 162
Müller matrix, 415, 605

NAMD, 387, 399, 489, 499, 524, 533
Nanoparticles

modelling, 474
Nanoporous materials, 47
Nanorods, 422
Neat phase, 48
Nematic

polymers, 16
properties table, 13
re-entrant, 31, 74, 96, 304

Nematic-isotropic transition, 6, 13, 71, 74, 82, 84, 90,
117, 127, 238, 285, 403, 436, 447, 471, 490,
492, 493, 497, 499, 502

Nematics, 4
alignment, 6
biaxial, 26, 157
columnar, 41
optical properties, 6
re-entrant, 31
temperature range, 14
transition temperatures, 13
turbidity, 5

Nematogens, 13
NMR

dipolar couplings, 503
high-field approximation, 593
quadrupolar splittings, 151
rotational diffusion, 324
stick spectrum, 429
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682 Index

Noyeaux, 10
Nuclear

gyromagnetic ratio, 592
shielding tensor, 592

Number density, 111

OAB, 34
smectic C, 35

OCTA, 399
Odd-even effect, 91, 92
Odd-even effects, 497
OHMBBA, 119
OLED, 43
Onsager theory, 245, 350–356, 495

generalized, 356–358
hard cylinders, 352
hard ellipsoids, 353
hard spherocylinders, 353

OOBA, 34
OpenMM, 399
Operator

Laplacian, 325, 541
Operators

ladder, 325, 594
OPLS

Force Field, 231
OPLS Force Field, 232, 237, 497, 526–528
Optic axis, 7
Optical

retarder, 605
rotation, 20

ORAC, 387, 497
Order

hexagonal, 33
pretransitional, 84

Order parameter
5CB, 119
APAPA, 119
configurational, 426
critical exponents, 75
gas-liquid, 77
hexatic, 202
MBBA, 119
MBCA, 119
methylene chains, 170
nitrobenzene, 152
pyridine, 155
temperature dependence, 119
triclinic, 162
Tsvetkov, 4

Order parameters
biaxial phases, 157
columnar phases, 173
empirical, 75
flexible molecules, 162
from NMR, 149–152, 155, 428, 491, 501–504,

526–527, 533
from simulations, 124–127, 158, 378, 406,

412–413, 438, 440, 446, 447, 457, 463, 469,

472, 474, 482, 490, 491, 498, 501, 511, 516,
520, 527, 534

from X-ray diffraction, 140
non-cylindrical molecules, 143
notations, 157
positional, 1D, 111
positional, 2D, 114
positional-orientational, 216
smectic A, 170

Ordering matrix, 125, 323
Cartesian, 144
experimental determination, 146
from NMR dipolar couplings, 149
from simulations, 124, 437
NMR quadrupolar splittings, 151

Organic solar cell, 43
Orientation factors, 148
Orientational correlation functions, 292

initial values, 295
long time limits, 296

Orientational correlations, 291
Orientational distribution

maximum entropy, 131, 132, 152
orthogonal expansion, 114, 131

Orientational order parameter < P2 >

from diamagnetic anisotropy, 118
from dichroism, 120
from simulations, 124

Orientational order parameter < P4 >

approximate expression, 136
from fluorescence depolarization, 121
from simulations, 127

Orientational order parameters
biaxial molecules, 145
Cartesian description, 144
determination, 117
molecular symmetry, 144
significance, 129
uniaxial, 114

Orientational pair correlation, 212
Orientational-conformational distributions, 168
Orthogonality

functions, 541
harmonics, 544
Legendre polynomials, 546
spherical harmonics, 546
Stone invariants, 580
Wigner matrices, 567

Orthogonalization
Gram–Schmidt, 543
Löwdin, 239, 544

Orthorhombic lattice, 600
OTS alkysilane, 520, 522
Overlap integral, 542

PAA, 15, 29
dielectric relaxation, 314
dipole moment, 259
order parameters, 337
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polarizability, 272
quadrupole tensor, 261
surface alignment, 450
transitions, 71, 72
viscosities, 319

Packing fraction, 224
ellipsoids, 357
hard spheres, 224, 225
polyhedra, 245

Pair
correlation function, 185
correlations and XRD, 214
potential, 220

Pair distribution
invariant expansion, 189
orthogonal expansion, 188

Parseval formula, 565
Parsons–Lee theory, 356–357, 443
Pauli spin matrices, 588, 604
PBLG, 105
PCH5, 15
PCH7, 15
Perturbation theory, 269
Perylene, 145, 330, 331, 524
Phase 5, 13
Phase 5 mixture composition, 13
Phase changes

enantiotropic, 2
Phase diagram
P,T , 64, 67, 73, 75, 93, 456, 457
P,V , 63
T, ρ, 65–67, 226, 229, 442, 447, 451

Phase diagrams, 62
Phase transitions, 414
λ, 72
Ehrenfest classification, 69
field effects, 84
first-order, 71
free energy, 71
Landau theory, 79
lines, 64
lipid bilayers, 101
location, 403
monotropic, 2
nematic-isotropic, 90
order, 70
second-order, 70, 73
smectic A-nematic, 94

Photonic materials, 22
Pixel, 9
Plastic crystals, 2, 442, 443
PLPC, 46
PME (Particle Mesh Ewald), 241, 489, 499, 507
Poisson brackets, 289, 385
Polar smectics, 30
Polarizability, 16, 41, 270, 271

table, 272
tensor, 270

Polarization tensor, 120
Polymer chains

characterization, 478
Polymeric liquid crystals, 16, 475

main chain, 17
side chain, 17
smectic side chain, 38

Polymerization
degree, 478
modelling, 475

Polymorphism, 68
POM (Polarized Optical Microscopy), 417, 422, 606

from simulations, 415, 417
HAN films, 421
schlieren, 419, 420

Positional order
columns, 40, 114
crystals, 114
smectics, 28, 34, 111–113, 201, 215, 216, 492
XRD, 215

Potts model, 87
Pressure

statistical mechanics, 206
tensor, 207
virial, 365, 371, 395

Pretransitional effects, 73, 212
6CB, 212
divergence, 84
Gay–Berne, 448
Lebwohl–Lasher , 407

Principal coordinate frame, 550
Propagator, 386

diffusional, 324
multi timescale, 386

ProtoMol, 399
Pseudoscalar product, 539
Pyramidic liquid crystals, 43

Q phase, 45
Quadrupolar splittings, 151
Quadrupole coupling tensor, 151
Quadrupole tensor

definition, 261
table, 261

Quantum dots, 10, 54
Quaternions, 253, 387, 401, 587

equation of motion, 389, 391
Quinquephenyl, 15, 488

polarizability, 272
quadrupole tensor, 261
radial distribution, 188
torsional potential, 236
transitions , 495

Racah coefficients, 274, 569
Radial distribution, 186, 200, 339, 375

8HTT, 457
anisotropic, 200, 494, 506
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hard spheres, 225
Hexxon model, 230
LJ particles, 229
quinquephenyl, 188
site-site, 187, 188

Rapini–Papoular
anchoring energy, 508, 513–514

Re-entrant nematic, 74, 96
6OCB-8OCB, 304

Reactive mesogens, 16, 424
Reactive monomers, 475
Refractive index, 1, 5, 15, 415

effective, 21
Reinitzer, 18
Relaxation time, 297
Reorientational

correlation functions, 292
correlation times

atomistic simulations, 495
ring disclination, 428
Ripple phase, 47, 48, 103

simulations, 531
RIS model, 170
Rodrigues formula, 545
Rotameric molecules, 167
Rotation matrix

Cartesian, 549
Rotational diffusion, 321

asymmetric rotors, 323
equation, 322, 324
tensor, 322, 324
uniaxial, 323

Rotational isomeric state, 163, 169
Rotational motion

spinning , 324
tumbling , 324

Rubbers, 57

SAM
simulations, 520, 521

Saupe ordering matrix, 145, 147
determination, 147

Scalar product, 538
functions, 541
vectors, 537

Scattering vector, 598
Schlieren texture, 10, 416, 419, 420, 423
Schwarz inequality, 137
SDS, 45, 525

atomistic simulations, 525
Second-order phase transitions

free energy, 81
universality, 78

Second-rank reorientational correlations
initial values, 295

Sexithienyl, 236
Shear, 318
Shear stress, 208
Short-range order, 196

Sign function, 560
Sinclinic, 37
Single particle

distributions, 107
dynamics, 290

Slipids Force Field, 528
Smectic

diffusion, 304
free standing films, 211
positional order, 94, 113
transitions, 94

Smectic C∗
ferroelectric DOBAMBC, 36
W314, 36

Smectic C∗ ferroelectric
HOBACPC, 36

Smectic A, 28
SA1 , 31
SA2 , 31
SAd , 31
SQA

, 31
order parameters, 170
schematic structure, 28

Smectic A-nematic transition, 94
Smectic B, 32

4O.8, 33
crystal, 33, 204
hexatic, 33

Smectic C, 34, 156, 160
HAB, 35
OAB, 35
OOBA, 35
order parameters, 160
Saupe ordering matrix, 160
symmetry, 35
tilt angle, 34, 160

Smectic C∗, 35
Smectic E, 33
Smectic F, 34
Smectic H, 34
Smectic I, 34
Smectic J, 34, 470
Smectic L, 34
Smectic transitions

critical exponents, 96
Smectics

De Vries, 35
polar, 30
tricritical point, 95

Soaps, 48
Soft spheres

dipolar, 438
linear chains, 440

Sonication, 48
Space inversion, 221
Specific heat, 71
Spectral densities, 290, 298
Spherical harmonics, 143, 546

addition theorem, 568
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Spherical micelles, 45
Spherical particles, 177
Spherical tensors, 551
Spherocylinders, 243, 245, 304, 353, 356, 439, 443,

444
phase diagram, 444

Spin Hamiltonian, 592
Spinodal curve, 63
SPME (smooth particle mesh Ewald), 241, 497
Sprang–Trotter formula, 386
Square well potential, 225

Boyle temperature, 226
critical exponents, 226
parameters, 226

Stationary process, 290
Stirling approximation, 178
Stochastic matrix, 603
Stockmayer potential, 438
Stokes

representation, 604
vector, 415, 459, 604

Stone invariants, 189, 222, 248, 338, 339, 427, 461,
579

biaxial particles, 472, 584
chiral, 194, 582
space correlations, 190
tabulation, 580
uniaxial particles, 580

Stress
shear, 208
tensile, 208

Stress-strain
plot, 58, 482, 485
simulations, 370, 483

Stretched exponential decay, 312
Strong collision, 298
Structure factor, 141
Sunset Yellow, 51
Supercritical fluids, 62
Surface

alignment, 9, 508
interaction strength tensor, 345
roughness, 515
tension, 210, 211

Surfactants, 44
Susceptibility, 214, 308
Symmetry

broken, 83
cylidrical, 84
inversion, 576
spherical, 84

Tamman phase diagram, 74
Tapered particles, 460, 463
Taylor series, 555
TBBA, 34, 96

transitions, 35
TBCN, 43

Templating, 47
Tensile

strain, 56
strength, 57
stress, 56, 208

Tensor product, 539
TEOS, 47
Terphenyl

second-order transition, 72
TGB smectics, 31
Thermal actuation, 57
Thermal conductivity

simulations, 316, 532
Thermodynamic observables, 204
Thermotropics, 2
Thin film characterization, 196
Tie line, 63
Tilt angle, 160, 470
Time correlations

from MD, 305
Time reversal symmetry, 293, 385, 386
Tinfoil

boundary conditions, 241
Tinker, 399
Tobacco mosaic virus, 55, 56, 105, 422
Topological defects, 10

charge, 416–418, 421, 431, 432
strength, 10

Torque, 300, 389, 390
Total correlation function, 185
Transition dipole

DPH , 331
Transition matrix , 602
Transition moment, 330, 331

absorption, 52, 120, 121, 125
emission, 122

Transition probability, 360
Translational diffusion coefficients

atomistic simulations, 494, 497
from membranes simulations, 529

Triclinic
lattice, 600
simulation box, 464

Tricritical point, 85, 95, 98
Trifluorenone

2,4,7-trifluorenone, 41
Triphenylene, 38
Triphenylenes, 457
Triple point, 62, 64, 104
Trotter factorization, 386
Twist-bend nematic, 12, 26, 473
Twisted nematic display, 9, 319

UFF, 232
Uniaxial symmetry, 4
United atoms, 380, 534
Universality

classes, 78, 85
hypothesis, 78
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van der Waals
dispersion, 276
equation of state, 63
volume, 227

Vapour, 219, 225, 226
Vectors, 537

identities, 539
pseudoscalar product, 539

Vesicles, 48, 101, 139, 142, 531
Virial

coefficients, 179, 210
equation, 207
expansion, 209
hard spheres coefficients, 223
series, 179

Viruses, 55, 355, 422
Viscosities, 318

Green–Kubo formula, 319
Miesowicz, 319

Volume fraction, 104
Voronoi cell, 202
VOTCA, 399
Voxel, 605

Water dielectric constant, 268
Water models

H bonds, 285

SPC, 285, 531
square well, 226
TIP3P, 285, 286, 526,

533
TIP4P, 285–287

WAXS, 492, 531
Westin metric, 417, 432
Wigner matrices, 323

closure, 567
definition, 566
tabulation, 571

Wigner–Fourier basis, 168

X-ray diffraction, 140, 214,
596

XY model, 88, 97, 98

Young’s equation, 211
Young’s modulus, 29, 56, 370

Zeeman splitting, 593
Zeolite

artificial, 47, 366
MCM41, 366

ZLI-1167, 153, 155,
156

Zwitterions, 44
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