

Zefs Guide to Deep Learning

Roy Keyes

This book is for sale at http://leanpub.com/zefsguide2dl

This version was published on 2022-12-02

This is a Leanpub book. Leanpub empowers authors and publishers with
the Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction
once you do.

© 2022 Roy Keyes

http://leanpub.com/zefsguide2dl
https://leanpub.com/
https://leanpub.com/manifesto

Also By Roy Keyes
Hiring Data Scientists and Machine Learning Engineers

Zefs Guide to Deep Learning Flashcards

https://leanpub.com/u/roykeyes
https://leanpub.com/dshiring
https://leanpub.com/zg2dlflashcards

Contents

Acknowledgments . i

1. Introduction . 1
Why deep learning? . 1
Why this book? . 2
What does this book cover and not cover? 3
How to use this book . 3

2. Machine Learning . 5
What is machine learning? . 5
Types of machine learning tasks and solutions 8

Regression . 8
Classification . 9
Supervised learning . 11
Unsupervised learning . 12
Self-supervised learning . 12
Reinforcement learning . 13

An example task . 13
Predicting real estate sales prices 13

Formulating machine learning problems 15
Data sets and features . 16
Measuring performance . 17

Performance baselines and success thresholds 18
Model selection . 18
Model training . 20

Supervised learning . 20

CONTENTS

Unsupervised learning . 22
Loss functions . 23
Parameter optimization . 25
Generalization and overfitting 27
Avoiding overfitting . 31
Hyperparameters . 34

Productionization . 35
Common issues . 36
Common machine learning models 38
From “traditional” ML to deep learning 39
References . 40

3. Neural Networks . 41
What is a neural network? . 41
What are some tasks that neural networks can accomplish? . . . 42
The building blocks of neural networks 43

Activation functions . 45
Neural network layers . 46
Connections, weights, and biases 47
Learning via gradient descent 48
Output layers . 56

What does a neural network do? 57
From basic neural networks to deep learning 59
Resources . 60

4. The rise of deep learning . 61
Moving to deep neural networks 61

What made deep neural networks possible? 62
Where are we now with deep learning? 65

5. Computer vision and convolutional neural networks 67
Computers and images . 67

Computer vision tasks . 68
Traditional computer vision 70

What’s hard about computer vision tasks? 71
Convolutional neural networks . 73

CONTENTS

Convolutions . 73
Filter size, strides, padding, and pooling 76
A basic CNN architecture . 79

Some important CNN model architectures for computer vision
tasks . 81

AlexNet . 81
ResNet . 82
U-Net for semantic segmentation 84
YOLO for object detection . 87
Image generation with GANs 91

Common CNN techniques . 93
Regularization . 94
Data augmentation . 96
Batch normalization . 97
Gradient descent algorithms 97
Transfer learning . 100

Summary and resources . 102

6. Natural language processing and sequential data techniques 104
Text, natural language, and sequential data 104

Types of sequential tasks . 106
Traditional approaches . 107

Making a neural network remember 109
The recurrent neural network 109

Creating context with embeddings 113
Embeddings . 114

Architectures for sequential tasks 121
Gated recurrent units . 122
Long short-term memory . 123
Attention . 124
Transformers . 127
Applications and Transformer based architectures 134

Summary and resources . 136

7. Advanced techniques and practical considerations 139

CONTENTS

Combining vision and language 139
Image captioning . 139
Joint embeddings . 141
Diffusion models . 142

Self-supervised learning . 146
Image-based techniques . 147
Contrastive learning . 148

Math topics related to deep learning 150
Linear algebra . 150
Statistics and probability . 151
Differential calculus . 152

Machine learning engineering . 152
Deep learning libraries . 153
Graphical processing units and specialized hardware 153
Machine learning systems . 153

Wrapping up . 155

Acknowledgments
Like all books, this one would not exist without the support, input, and
assistance of a number of people.

I would like to thank all the people who contributed to this book in any
number of ways: I.P., C.A., V.B., J.G., J.J., V.B., J.J., D.T.S., R.M., P.B., A.C.,
B.P., B.L., J.K., W.C., T.H., F.M., P.J., J.A., D.A., N.S., and some people that
I’ve surely forgotten (you know who you are).

I would like to specially thank early readers that offered constructive
feedback and a couple who have opted to have their names mentioned here:
Balamurugan Periyasamy and B.S.

This book definitely stands on the shoulders of giants who have made great
educational materials about machine learning and deep learning, often
freely available to all. Instead of listing all of those creators here, I invite
you to check out the links and references found throughout the book.

Big thanks go to all of the people who purchased the pre-release version of
this book (and the flash cards, available at zefsguides.com) and those who
have supported the Zefs Guides project on social media.

And finally and most importantly, I would like to thank you, the reader, for
purchasing this book. I hope you enjoy it and find it useful.

Thank you!

Roy Keyes

1. Introduction
This book is about deep learning, a set of machine learning methods that
have sparked a huge amount of interest in applying computational and
predictive models to everything from whimsical face filters to medical
imaging to generating computer code itself. Deep learning is at the core of
the current “AI revolution”. While based on techniques that can be traced
backmore than half a century, only in the past decade have these techniques
really come into their own and they now dominate the predictive modeling
space for an increasingly large number of use cases.

This book aims to help you get a better high-level, conceptual understanding
of how deep learning works, its central concepts, applications, limitations,
and possibilities.

Why deep learning?

Deep learning is a name applied to a class of neural networks with many
“layers”, allowing them to be trained to perform certain kinds of tasks that
traditional modeling techniques have not been able to do nearly as well.
In some cases these deep neural networks can even outperform humans on
these tasks, which has fueled the high level of excitement around this family
of methods.

Only in the last decade has the capability and potential of these models
been truly demonstrated, kicking off a frenzy of interest and subsequent
research, development, and usage across industry, academia, and govern-
ments. While deep learning has lead to many practical applications that
were not reasonably achievable with older techniques, many people also
see deep learning as a key component, if not the central technology, that
will lead to the development of artificial general intelligence (AGI). AGI

Introduction 2

has been a dream for generations of computer scientists and others going
back decades. Where we are on the road to the development of AGI is highly
debated, but the practical applications of deep learning are here today and
providing value via many real-world use cases.

Applications of deep learning

Why this book?

This book is not an academic textbook about deep learning. It will not
teach you to mathematically derive backpropagation, implement a GAN
from scratch, or how to deploy a vision model “on the edge”. This is an
intentionally short book aimed at helping you understand the core concepts
of deep learning as well as an understanding of where we are today.

If your goal is to prepare for job interviews, do better in your classes, refresh
your knowledge for your own work, or have a strong overview of how your

Introduction 3

team and organization can use deep learning, this book is for you. It is short
on purpose to help you get up to speed quickly. Most concepts are presented
with accompanying illustrations to better help you understand how things
fit together.

What does this book cover and not
cover?

This book covers the concepts behind neural networks and deep learning,
the key ideas you need to understand to build deep neural networks for
solving problems, the common network architectures, and the common use
cases that are solved with deep learning. It is, however, not exhaustive. Zefs
Guide to Deep Learning is the first in a series of books on Deep Learning
topics from Zefs Guides. The current plan for the series includes the titles
Zefs Guide to Computer Vision, Zefs Guide to Natural Language Processing,
and Zefs Guide to Transformers. Those books all build on the concepts
contained in this book.

This book does not cover everything you might want to know about deep
learning. It does not go into the detailed math, though I will use a few
equations. It does not go into the details of how to implement the training
algorithms or model architectures in computer code. Nor does it cover how
to use the various programming frameworks, such as PyTorch, Tensorflow,
or JAX. It also doesn’t go deep into how to solve specific problems, but rather
focuses on the more generic, common techniques and problem classes that
you can solve with deep learning. Despite these limitations, I think you
will find that this book provides you with a quick way to improve your
conceptual understanding of the core ideas and topics of deep learning.

How to use this book

This book is designed to help you build up a strong conceptual understand-
ing of deep neural networks, starting with the most basic building blocks of

Introduction 4

neural networks and moving to use case specific model architectures that
are in wide usage right now (2022). What that means is that the first half of
the book forms the basis for the rest and should be read through in order
to best understand the topics. Chapter 2 is about general machine learning
principles. If you’re already familiar with “traditional” machine learning
you can safely skip that chapter. The second half gets more into specific
topics, such as computer vision, natural language processing, and generative
models. If you are not interested in one or more of those topics, feel free to
skip them.

Available at zefsguides.com¹, but not includedwith this book, are flash cards
that cover the same topics. These flash cards can help you review and recall
the concepts in this book, especially when used with a spaced repetition²
method, such as that employed by the app Anki³.

If you are interested in going deeper into computer vision, natural language
processing, or better understanding transformers, I recommend that after
finishing the relevant sections of this book that you continue with one of
the other books in the Zefs Guides series on those topics.

I hope you find this book enjoyable and rewarding to read and wish you
the best in learning about these incredible technologies.

¹https://zefsguides.com
²https://en.wikipedia.org/wiki/Spaced_repetition
³https://apps.ankiweb.net/

https://zefsguides.com/
https://en.wikipedia.org/wiki/Spaced_repetition
https://apps.ankiweb.net/
https://zefsguides.com/
https://en.wikipedia.org/wiki/Spaced_repetition
https://apps.ankiweb.net/

2. Machine Learning
Deep learning is a family of techniques for building predictive models that
are at the center of the current boom in “artificial intelligence”. In the
past decade deep learning models have been able to surpass “traditional”
techniques in many domains and applications, sometimes even exceeding
human performance. But to understand deep learning, we need to put it
in the larger context of machine learning, as deep learning is itself one
type of machine learning. We will also look at shallow neural networks,
the ancestors of deep learning.

In this chapter and the next we’ll go over some of the core concepts of
machine learning and the basics of neural networks, setting us up to learn
about modern, deep neural networks.

What is machine learning?

Machine learning (ML) is an approach to solving problems, where data
is used directly to adjust the internal parameters of a computer program
to provide the best answers possible. Examples include predicting the
ultimate sale price of a house or detecting the presence of a tumor in a
medical scan. The difference between machine learning programs (usually
called “models”) and traditional computer programs is that instead of
having programmers explicitly write the logic of the program by hand, the
important decision logic is “learned” by the program by looking at example
data. This process is called training the model.

Machine learning is closely related to (and sometimes identical to) statistical
modeling. The main differences are in the historical development and the
emphasis on outcomes and explanatory power. Machine learning tends to

Machine Learning 6

focus on producing the most highly predictive models, even if they are effec-
tively “black boxes”¹ to the users. Statistical modeling has more emphasis
on creating models that have more explanatory power (e.g. creating a model
that mimics the underlying process that generates the data). Statistics has
also built out robust techniques to deal with small amounts of data, which
many practitioners of ML tend to avoid. That said, there are many concepts
from statistics that underlie ML and deep learning.

Hand-coded vs learned decision logic

As more data has become available in many areas of science, industry, and
government, machine learning has been increasingly adopted as a viable
solution to solve real-world problems. The abundance of data is however not
the only factor. More data plus cheaper storage and computing power has
lead to the development of more software (especially open source software)

¹A black box in this context is a process, model, or algorithm where the user is unable to examine the
internal logic and can only see the input and output.

Machine Learning 7

and the refinement of techniques to make the best use of that data. This has
been especially true of deep learning, as we will see in later chapters.

Artificial Intelligence
Artificial intelligence, or AI, is often discussed in relation to deep
learning. In fact, many people are actually referring to deep learning
these days when the say “AI”. Worse, some people even use “AI” to refer
to anything related to data. In this book I will try to avoid the term AI,
as it is currently used in a very broad and often vague sense, in part due
to the hype surrounding it.

AI has a very interesting history going back decades. It’s broadly defined
as enabling computers to do tasks that we typically think of as needing
some level of intelligence to achieve, whether that be playing chess or
holding a conversation. I will not go into the details of this history,
except to mention that the two main approaches to achieving this
have been so-called “knowledge-based” approaches, with hard-coded
logic rules, and “connectionist” or learning-based approaches, which
ultimately include the current deep learning techniques.

I am of the opinion that for most practitioners of deep learning, the
near-term task-oriented applications of deep learning are where they
will get their biggest returns on learning. That said there is a lot of
interesting research on how these current techniques might achieve
broader “artificial general intelligence” type systems.

For more on AI and AGI, a good place to start is Wikipedia’s article on
artificial intelligence.

https://en.wikipedia.org/wiki/Artificial_intelligence

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence

Machine Learning 8

Types of machine learning tasks and
solutions

Most problems that machine learning is used to solve can be thought of
as predictions problems. Some fit more into the casual usage of the term
“prediction”, as in predicting the ultimate sale price of a house, which will
only be known at some point in the future. Others are predictions in a
technical sense, such as predicting whether a certain image is of a dog or a
cat.

Classification vs Regression

Regression

Machine learning tasks can be broken down into a handful of categories. A
common way to categorize tasks is by the type of output that a machine

Machine Learning 9

learning model needs to produce. One of the most common types of task
is regression². Regression is the task of predicting a (continuous) numerical
value, such as the temperature in a weather forecast, the sales volume of a
product, or estimating time of arrival of a vehicle.

The most basic version of regression that many people are familiar with
is finding the slope and intercept of a “best fit line” that fits some data
points. This line can then be used to predict other values by using the basic
line equation to estimate new, unseen values. This is the manual version
of finding the best fit slope and intercept values (a.k.a. parameters). In
ML, as we’ll discuss in more detail, those slope and intercept parameters
are determined by the training process, where different values are tried
iteratively and the fit of the line is compared with the known data to see
how good the fit is. This is the core of machine learning: “learning” the best
parameter values of a model from the known, existing data.

Regression is one of the most common applications of machine learning
and typically falls under the category of supervised learning, which we will
discuss below.

Classification

Classification is the task of predicting the class, category, or label of an item.
This can be a task with many possible choices, such as facial recognition,
or a binary, yes/no scenario, such as predicting whether a customer will
purchase an advertized item. Other examples include predicting the species
of an animal present in an image, the sentiment of a product review, whether
a self-driving car needs to make an emergency stop, and how a support
request should be routed.

A simple classification algorithm is the flow chart, which is similar to
the decision tree. A medical doctor might create a flow chart to map out
how to make a certain medical diagnosis, based on symptoms, medical
history, and measured patient data. The doctor does this based on their

²In statistics, especially, “regression” is often used as short-hand to specifically refer to linear regression.
Here we are talking about it in the broader sense.

Machine Learning 10

knowledge and understanding of how they make decisions based on the
available data. The doctor creates a decision criteria for each piece of input
data, such as body temperature. The path of the flow chart, based on
each decision, leads to the medical diagnosis, or “classification”. A similar
model can be created with machine learning. Instead of the doctor manually
inputting the decision thresholds and the overall flow of the decisions,
the decision criteria are learned from the available data by trying out
many combinations of decision thresholds and structures and evaluating
the overall goodness of the predictions, until the best decision thresholds
and flow structure is found.

As with regression, classification tasks typically fall under the umbrella of
supervised learning. Sometimes you don’t know what the classes are for a
classification problem, so instead you try to discover clusters or grouping
in the data based on similarities. This is unsupervised learning, which we
will discuss below.

Machine Learning 11

Supervised classification vs Unsupervised classification

Supervised learning

Another way to organize machine learning tasks is by the method used to
solve the problem, rather than the type of predictive task. One of the most
common classes of methods used to build predictive models is “supervised
learning”. Supervised learning is when you have data to train a model that
includes “ground truth” answers. For example, if you were building a model
to predict how tall children would be as adults, you could use a supervised
learning approach if you had data on full-grown adults when they were
children and their final, adult heights. The inputs to the model would be
the earlier data, such as age, height, height of parents, etc, and the matching
outputs would be the known, final heights of those people.

Essentially supervised learning is when you train amodel by taking example
inputs and comparing the predictions of the model to the known, desired

Machine Learning 12

outputs. By altering the parameters of the model (think the slope and
intercept of your fit line), you can then check if the new parameters provide
an improvement in the overall predictive performance of the model. In
practice this is done by training algorithms, which automatically try many
possiblemodel parameter values to land on the bestmodel, given the current
data.

Unsupervised learning

In contrast to supervised learning is “unsupervised learning”, where you do
not have the “ground truth” answers for the task you are trying to address.
One of the most common tasks using unsupervised learning is “clustering”.
When clustering, you want to discover natural groupings of data, based
on similarities within the data set. For example, you might want to cluster
customers by purchasing behavior or demographic information to create
focused advertising campaigns. You may not know what these groupings
are beforehand or how many groups to expect. Only after investigating
the members of these clusters can you (potentially) give them labels that
make sense. This is in contrast to supervised learning, where you know
beforehand howmany classes you have and what they are. These additional
challenges can make unsupervised learning more difficult to perform, but
it may be worth it if collecting the “ground truth” is very costly or even
impossible.

Self-supervised learning

There are some approaches to solving problems that use “unlabeled” data,
but in a different way than the unsupervised approaches mentioned above.
Instead of searching for natural clusters or patterns within the data, you
can pose tasks where the answer is already contained in the data. Examples
include trainingmodels to predict the next word in a sentence, using the first
part of the sentence as the input and the following word(s) as the “ground
truth” output, effectively formulating the task as a supervised learning
problem. This reformulation from “unlabeled” data to a supervised learning

Machine Learning 13

problem is why the moniker “self-supervised” is used, as the data is its own
label.

The distinction between supervised, unsupervised, and semi-supervised
learning is not always clear-cut, but it is often a useful one³.

Reinforcement learning

Another category of machine learning is “reinforcement learning”. Rein-
forcement learning is an approach to solving tasks where a strategy for
decision making is learned, typically trying to maximize or minimize some
score or ultimate goal. Common examples of tasks that reinforcement
learning is applied to are games, where the player needs to make a series
of decisions, given the state of play. The reinforcement learning model
may learn from the score in the game, winning or losing, or all of those
combined. Reinforcement learning combined with deep learning has been
used successfully in many gaming tasks in recent years⁴. Reinforcement
learning will not be further covered in this book.

An example task

Before we look at the details of how machine learning problems are
formulated and solutions are built and tested, let’s consider an example
problem. This will give us even more context when we discuss the specifics
of how machine learning solutions are created.

Predicting real estate sales prices

Let’s imagine that you decide that you want to buy some real estate (e.g.
a house). You want to use your computing skills to give you the best
understanding possible of how much to pay for a house by building a

³There is another category termed “semi-supervised” learning that we will not cover in this book.
⁴https://en.wikipedia.org/wiki/MuZero

https://en.wikipedia.org/wiki/MuZero

Machine Learning 14

program that could predict how much a given house would ultimately sell
for. How would you do this?

As we have seen above, this is a regression problem. We want to know
a specific numerical estimate: the price in some currency. If you were a
physicist, cough, you might try to build a model from first principles. One
based on assumptions about how humans act and information about the
fundamental attributes of the house. This probably won’t work, as the
underlying mechanisms are far too complicated. The machine learning
approach would be to try to use data to adjust a mathematical model, such
that the model can effectively use the different characteristics of the house
to predict the sales price. By collecting data from recent sales of homes in
the region, you could use the known characteristics, or features, of these
homes as training inputs to an ML model and compare the predicted sales
prices to the known, actual sales prices.

Assuming you had selected a model and trained it using the data you had,
howwould you know if the model was good? A good model should produce
price predictions that are close to the actual sales prices of homes in the
area. While training, you would compare the outputs of your model to the
known values, adjust the internal parameters of themodel, check the overall
goodness of the predictions, and iterate this process until the model is no
longer improving or you are satisfied. This training process is done via a
training algorithm, which is usually specific to the type of machine learning
model you are training.

One immediate issue with this is that your model may be able to learn to
predict the sales prices of the examples you have by essentially memorizing
them, but, when faced with new data, not be able to make reasonable
predictions. You model has focused on memorizing the training data, rather
than on learning the more general patterns that are useful for predicting
sales prices of houses that it has not yet seen. The way to understand and
quantify the goodness of your model is to test it on house sales data that it
did not see during the training process. This will help estimate how it will
do with “real world” data.

The basic steps in this example are:

Machine Learning 15

1. Formulate the problem
2. Collect necessary data
3. Train the model
4. Evaluate the performance of the model
5. Iterate as necessary

There are a lot of details they I have glossed over in this example of a
supervised regression problem, but we have now set the stage to dive into
those details more deeply.

Formulating machine learning problems

Machine learning is not the solution to all problems⁵. Some problems are
well suited to a machine learning solution, but many are not. You must first
decide if ML is the right (or reasonable) approach to solving the problem at
hand. If a (simpler) non-ML solution makes sense, go with that. If MLmakes
sense, the next thing you need to do is formulate the problem in a way that
ML can be applied.

Formulating the problem for ML means identifying what kind of problem
it is and the general approaches that make sense. In the previous example,
we recognized that the problem of predicting the ultimate sales price of a
house could be posed as a supervised learning regression problem. If we
knew the characteristic “features” of houses in a statistically representative
set that had sold in the past, along with the sales prices, we could try to
train a regression model to predict sales prices of other houses. The key to
this is recognizing the problem and what data is needed.

Often times a problem cannot be approached directly or lacks the data
needed. If you want to predict the preferences of new visitors to your
website, but know nothing about them, you are unlikely to be able to predict
much beyond the general trends of your visitors as a whole. If you have an
extensive history of what a specific user likes, you are in a much better
position to make a specific prediction.

⁵This bears repeating: ML is not the answer to all problems!

Machine Learning 16

Another important aspect of formulating machine learning problems is
landing on exactly what you are trying to predict. If you are trying to
maximize the lifetime value of customers, for example, it’s very important
to make sure that you understand how a customer generates value for
your business. It might be something as obvious as the total amount of
money they spend on your products over time, but it might instead be
about how many times they interact with your content if your business
is centered on advertising. Ultimately this is driven by your business model
(or organizational goals and strategy), but when it comes toML, the problem
needs to be correctly distilled into an specific, actionable prediction task.

Data sets and features

Machine learning is truly “data-driven”. ML models learn via training data,
whether supervised or unsupervised. Without enough high-quality data for
your task and model, you will not get the results you need. ML practitioners
are often faced with the problem of not enough and/or poor quality data. If,
for example, you are trying to predict the life span of ships, but only have
data on cruise ships, you are unlikely to do well predicting the life span of
fishing vessels. If you have a ton of data, but it’s missing key fields, or data
about the same events cannot be tied together, your data may be too “dirty”
to allow you to achieve what you want.

The data fed into ML models contains so-called “features”. Features are
the characteristic aspects of the events or entities in the data. Examples of
features related to the real-estate example above would be the size, age,
location, style, and condition of the house for sale. Supervised ML models
try to use these features tomake predictions by finding correlations between
the features and the predicted quantity or label (often called a target
variable). Unsupervised ML models use these features to find similarities
between examples in the data.

Much of what the ML practitioner spends time on is gathering, cleaning,
and formatting data to make it useable for modeling. Additionally much
time and effort is spent on making sure that the most predictive features

Machine Learning 17

are present. Sometimes a raw feature, such as the size of a house, is highly
predictive, but other times features must be “engineered” for the most
predictive ability. If you were trying to predict disease risk of some disease,
height and weight might be less predictive that a composite quantity, or
feature, such as body mass index. There are many techniques to create these
more abstract features and ML practitioners commonly try many of them
to see if they will improve the predictive performance of their models.

Finally, it’s crucial that the data you are using is truly representative of
the “real world” data that your system is intended to work with. This
can be difficult to assess, as there are many ways that data can be non-
representative, such as biased sampling, snapshotting data from a changing
system, or even collecting data from the wrong sources.

Measuring performance

Probably the most important question about a machine learning model is
how good the model is. This question sounds straight-forward, but how you
measure the performance of a model is something that ML practitioners
often must spend a lot of effort on.

For regression tasks, common measures of performance are the mean abso-
lute error, MAE, and the root-mean-square error, RMSE. These quantify the
typical error of predictions made by the model. Both look at the difference
between a prediction and the “ground truth”, while treating an overestimate
the same as and underestimate, but RMSE effectively “focuses” on large
errors in a disproportionate way. This is often preferred, if large prediction
errors are especially costly. In contrast to this, you might have a task
where overestimation is fine, but underestimation is very costly, so using a
symmetric metric, such as MAE or RMSE would not be appropriate and a
“weighted” approach would be better suited.

Classification tasks have their own set of performance metrics and even
more explicit tradeoffs, depending on the issues related to incorrect pre-
dictions. Common classification metrics include accuracy, precision, recall,

Machine Learning 18

specificity, and F1 score. We will discuss some of these in more detail when
we talk about classification tasks for deep learning.

Regardless of the task, the most appropriate performance metric should be
chosen, taking into account the pros and cons as relates to the specific task.

Performance baselines and success thresholds

One of the difficulties in trying to solve problems with machine learning is
that large amounts of data and long training times are often needed before
good performance levels are achieved. The practical drawback of this is
that “starting small” and moving incrementally is often not feasible. That
means that it’s common to dive in with what seems like a good idea, only
to discover that the idea does not result in a good model after much effort.

One mitigation strategy is to establish performance baselines. By quantify-
ing the performance of the current solution, you can set a baseline for how
well the newmodel needs to perform. If there is no current solution, you can
create a baseline solution by starting with something as simple as possible,
such as using the mean price or a very simple linear model for predicting
real estate prices. If your model does worse than that simple baseline, you
know that you are on the wrong track⁶.

Along with performance baselines, it’s very important to establish success
thresholds for models. How far off can your real estate sales price predictor
be and still be considered good enough? $100, $1000, $10,000? This is even
more important when you are building models at the request of others who
will ultimately rely on those models.

Model selection

Once you have formulated the problem, you need to select a machine
learning model and train it. In practice, many ML practioners don’t simply

⁶Occasionally you’ll create a very simple model as a baseline and find that it is actually good enough
for what you want to do!

Machine Learning 19

select a model and run with it, but rather select a set of models and see
which ones perform best for the task at hand.

Generally there are sets of model that are suitable for different types of
tasks, which allows ML practitioners to narrow down their choices. The
type of problem and amount of data are key factors in choosing a model.
Practical considerations related to training resources needed, prediction
speed (a.k.a inference speed), explainability, simplicity, deployability, and
current infrastructure come into play when deciding on which models to
consider, as well.

Boosted trees are all you need?
While it is common to assess a number of different model types when
working on an ML problem, sometimes people will stick with what
they know best and that seems to work well across different problems.
Currently, outside of problems related to computer visions and language,
gradient boosted trees is one of the most popular models, especially for
tabular or structured data.

To quote a tweet from Kaggle Grandmaster Bojan Tunguz:

So here is an easy two-step process for guaranteed success:

1. Show up.
2. Use XGBoost.

ML competitions like those on Kaggle have helped demonstrate which
machine learning models are robust across different kinds of problems.
Implementations of gradient boosted trees, like XGBoost, have proven
very successful, though using them as first choice is not without debate.

https://twitter.com/tunguz/status/1455954397687685129

https://twitter.com/tunguz/status/1455954397687685129

Machine Learning 20

Model training

Training a model is how you go from a set of data and a raw model to
something useful. Models have internal parameters that need to be tuned to
provide the best predictions related to a task. “Learning” the best parameters
is achieved by using the (hopefully high quality) available data.

Supervised learning

For supervised learning problems you have feature data, which describes
the example (e.g. a house, picture, website interaction, patient symptoms,
etc), often denoted with the variable x, and the so-called target data, which
is the outcome, quantity, or label (e.g. sales price, content of the picture,
what someone clicked on, diagnosis, etc). The target is often denoted with
the variable y.

To train your model you will adjust the model’s parameters, such as the
slope and intercept terms of a simple linear model, provide the model with
example input features, and compare the model output, often labeled ŷ,
with the known “ground truth” target, y. Based on the agreement or error
between the predicted target value and the actual target value, you will then
adjust the parameters and once again pass in the input features and see how
good the predicted outcome values are. This iteration is carried out until the
predictions are “good enough” or have stopped improving.

Machine Learning 21

Training supervised learning models

Splitting data sets for training

For training supervised ML models you need a (high quality) labelled data
set, but you also need to use the data in a specific way. A supervised model
learns by taking in data, x, producing predictions, ŷ, and comparing those
predictions with the “ground truth”, y. But to understand how well the
model will perform on as-of-yet unseen, “real world” data, another data
set that the model has not yet seen is needed.

In order to make this possible, the original data set is first split randomly
into a training set and a “test” set, which is only used to estimate the
performance of the model once the training is complete. Typically a small
fraction between 5% - 25% is held out for the test set. It’s very important
that these sets are kept separate so that there is no “leakage” between them
that would let the model learn the specific examples that are in the test set.

Machine Learning 22

In practice a third set is also split out of the training set after the initial
split. This is called the validation set and is used to optimize so-called
“hyperparameters”. In contrast to model parameters, which are learned
directly by training the model, hyperparameters are model settings that are
set by hand. Examples of hyperparameters are the number of trees in a
random forest, the degree of the polynomial in polynomial regression, and
the number of layers in a neural network.

The validation set is used after a model has been trained on the training
set to do an initial estimate of the goodness of the model. After that, the
hyperparameters are varied and the training process is carried out again to
evaluate another set of hyperparameters⁷. Finally, the model with the best
hyperparameters is tested against the test set, producing the final model
performance estimate.

Unsupervised learning

In unsupervised learning, you have no target or outcome data (a.k.a. data
labels). Instead, the model is using input features as the basis for grouping or
clustering the data. This can be used to find natural groupings of customers,
such as “big spenders” or “browsers”, by finding behavioral similarities. This
can also be used for finding anomalous and fraudulent behavior that falls
outside of the main clusters.

Typical clustering algorithms iterate through the data, trying to place each
data example in a cluster that best fits it. Other clustering algorithms try
clusters with slightly different parameters until most data examples seem
to fit well within a cluster. Most clustering algorithms require that the
user set the number of expected clusters that should exist in the data. The
optimal number of clusters is not necessarily known beforehand, but there
are procedures andmetrics, such as the elbowmethod, the gap score, and the
silhouette score, that can help the modeler find the best number of clusters.

The clusters resulting from unsupervisedmethods do not always correspond
to obvious groupings and typically require human inspection to assign

⁷There are several common approaches to hyperparameter search, such as grid search, random search,
and various Bayesian methods.

Machine Learning 23

meaningful labels (if that’s important). For example, if you clustered a large
set of songs, you might find that the most important feature was the tempo
of the music, which might put otherwise disparate genres together.

Dimensionality reduction

Another type of unsupervised learning is dimensionality reduction. Dimen-
sionality reduction is a way to take many features and reduce them to
a smaller number of features, which can be important for working with
limited computing resources. This is done by finding new features within
the data that are more correlated with other aspects of the data (e.g. the
target variables, if those are available) and ranking those, such that the
highest ranked new features are the most predictive ones.

One of the most common dimensionality reduction techniques is principal
component analysis (PCA). PCA finds a set of new features called “principal
components”, which best explain the variance in the data. By keeping a
smaller number of these principal components than the original number
of features, you can reduce the resourced needed for training supervised
models and potentially remove some noise in the data.

As with groupings found in clustering methods, it may be difficult to
interpret exactly what the principal components represent in the data.

Loss functions

When performing supervised learning, you are comparing the predicted
values with the known, “ground truth” target values (i.e. ŷ vs y). To quantify
how well the model has predicted the target values, a loss function is used⁸.
A loss function quantifies the difference between ŷ and y across all examples
used in training.

⁸The term “loss function” and “cost function” are often used interchangeably, though sometimes they
are used to mean slightly different things. Here I will use “loss function” as the generic term for measuring
how far a model’s output is from the desired output.

Machine Learning 24

Loss functions: Mean squared error

For regression tasks, mean squared error (MSE) is a common loss function:

L(θ) =
1

n

n∑
i=1

[
y(xi)− ŷ(xi, θ)

]2
for some given parameters of the model, denoted by θ, and n training data
examples.

This has the advantage of treating overestimates and underestimates
equally, while having some other convenient mathematical properties⁹. It
also places more weight on larger errors than a simpler, (piecewise) linear
measure, such as mean absolute error (L(θ) = 1

n

∑n
i=1 |y(xi)− ŷ(xi, θ)|)

Classification tasks predict the class or label of the input and thus need
a different type of loss function. The loss function needs to compare
the label assigned by the model and the “ground truth” label. There are

⁹Specifically the the derivative with respect to the model’s parameters is a very simple form.

Machine Learning 25

several common loss functions used for evaluating the performance of a
classifier. For binary classification (i.e. only two possible classes) common
loss functions include binary cross-entropy (a.k.a. log loss), hinge loss, and
Huber loss. Common loss functions used for multi-class problems include
multi-class cross entropy and Kullback Leibler Divergence.

We will look at these more in depth in the sections on deep learning.

Parameter optimization

Finding the best parameters for a model is an optimization problem. We
want to know which values result in the best predictions. Machine learning
training algorithms iteratively search for the best parameters in various
ways. The loss function is the training algorithm’s guide to which values
to try and it’s generally chosen to make finding the best parameters as fast
and robust as possible.

Depending on the type of ML model, the optimization make take place
globally or locally, i.e. the training algorithm may look at the total error
or at some loss related to the specific step in the machine learning model
algorithm itself¹⁰. We will consider global optimization, which is used by
many traditional ML model types, but is especially relevant to neural
networks.

¹⁰Tree-based models, such as decision tress and random forests, optimize decision nodes locally.

Machine Learning 26

Training a regression model

ML model training can be thought of as searching for the parameters that
result in the lowest prediction error. This is often thought of in terms of
“parameter space”, which is a sort of abstract landscape, with hills and
valleys representing high error levels and low error levels, respectively.
Training is the process of searching through this parameter landscape for the
deepest valley, or global minimum, which represents the lowest prediction
error. It’s easy to get fooled by “local minima”, which look like the deepest
valley, but are actually not as deep. The more complex and “bumpy” the
parameter space, the more difficult it is to find the global minimum. The
smoother the landscape, the easier it is.

Gradient descent

The method most commonly used to for finding model parameters that
minimize the loss function is called gradient descent. Gradient descent is

Machine Learning 27

the process of moving “downwards” along the slope, or gradient, of the loss
function in the parameter space. The process is to adjust the parameters
in the direction of the (negative) gradient step by step, moving “down
hill” and re-calculating the gradient after each step. The size of the step
is determined by the steepness of the gradient and a step size multiplier, or
learning rate, set by the user. Eventually the steps should lead to a local or
global minimum, usually after taking smaller and smaller steps. Stopping is
determined by some criteria set by the user.

From a mathematical perspective, the gradient of the loss function is found
by estimating the derivative of the surface with respect to the parameters,
which is the same as the slope, but often on a surface that exists in a very
high dimensional space.

There are several different algorithms for performing gradient descent and
we will look at a few in more depth in the sections on deep learning.

Generalization and overfitting

The goal of learning from a data set is not for the model to simply memorize
the training data, but rather for the model to recognize the patterns in the
data, such that it can make good predictions about data from the same
distribution that it has not yet seen. In other words, we want out cat image
detector to work for all images of cats, not just the ones it’s already seen.
This process of going from training data to being able to make prediction
about as-of-yet unseen data is called “generalization”.

The opposite of generalization is called “overfitting”. Overfitting is when the
model has focused too much on the specific quirks or noise of the training
data and has not been able to learn the more general patterns within the
data. Overfitting is a common issue in training ML models and is one of the
things that practitioners worry about the most.

Machine Learning 28

Learning curves, generalization, and overfitting

In order to understand if a model has generalized well, the prediction error
can be determined for both the training set and the test set, which the
model has not yet seen. Typically as more data is used for training, the
performance of the model increases and the prediction error decreases. The
overall change in prediction error as the amount of training is varied creates
what’s called a learning curve. Plotting a learning curve can help you see
exactly where you are in the learning process. For example you may be in
a region where a lot of improvement is occurring and adding more training
data will be the best thing to do. Conversely the model may have plateaued
and stopped learning.

By plotting both the prediction error using the training set and the test set,
you can see if the model has begun overfitting. The figure above shows a
classic scenario of the model improving on both the training set and the
test set, but the two learning curves start diverging once the model begins
overfitting to the training data. Once it starts to fit too closely to the training

Machine Learning 29

set, instead of learning themore general patterns in the data, it will do worse
and worse on the test data¹¹. The best parameters for the model are the ones
from the “sweet spot”, where the test error is lowest.

Bias and variance

Two of the important ways to quantify how well a model behaves are bias
and variance. In general you can think of bias as how consistently off an
estimate is from the true value. More specific to ML, bias is how far off a
model trainedwith a given set of hyperparameters is from the the true target
value when being used to predict the target value from a test set. In other
contexts this is called systematic error, rather than random error or noise.
To characterize the bias, multiple estimates of a value need to be made. The
mean error of those estimates is the bias.

For ML models, the bias is the mean error from multiple models all with
the same hyperparameters, but trained on different samples of the training
data. This estimates how far off(and in what direction) a specific model will
be from the “ground truth”.

¹¹There is a related phenomenon called “double descent”, where the test error may go up and then back
down again, but we will not cover that here. See https://en.wikipedia.org/wiki/Double_descent.

https://en.wikipedia.org/wiki/Double_descent

Machine Learning 30

Bias and variance in estimates

Variance is a measure of how “spread out” a set of values are. ForMLmodels
this is the spread of predictions for a single point in the test set, as made by
several instances of the same model (i.e. same hyperparameters) trained on
different samples of the training data. A model that overfits will results in
several models that give widely varying predictions of the same input, as
eachmodel has learned the very specific patterns in the samples, rather than
the more general pattern common to all samples.

Machine Learning 31

Bias and variance in ML models

The ideal model has low bias and low variance. In practice there is typically
a trade off between having either a low bias or low variance model and the
best choice is a moderately low bias and moderately low variance model.

Avoiding overfitting

Overfitting is a problem with many kinds of machine learning models and
practitioners put a lot of effort into avoiding or mitigating it. There are
several strategies for this.

The simplest strategy to avoid overfitting is to use more training data. The
more data the model needs to fit well, the less chance there is for it to fit
to noise in the data. This is not always possible, as there are often costs to
either collecting and labelling more data or computing with more data.

Machine Learning 32

Regularization

Overfitting, high variance models are typically the result of too much
flexibility in a model. If a model has enough internal parameters to match
every quirk of the data, it’s less likely to settle on the “smoother” general
patterns in the data and more likely to try to match noise. One way to use a
flexible model while avoiding overfitting is by constraining the parameters
in the model. This approach is a form of so-called regularization.

Instead of allowing the parameters to take any values they want, regulariza-
tion of this type constrains the parameters in a way that limits how much
weight can be used in the model. If the model parameters are constrained
to some total magnitude, then the model is more likely to distribute the
parameter values to emphasize the more fundamental patterns in the data,
rather than noise or edge cases.

This type of constrained regularization is typically achieved by adding a
term to the loss function, which increases the loss function when the sum
of the parameter values is high. An example is L2 (or ridge) regularization:

L(θ) =
1

n

n∑
i=1

[
y(xi)− ŷ(xi, θ)

]2
+ λ

k∑
j=1

θ2j

where λ is a hyperparameter that allows you to change how much regu-
larization to use (i.e. larger values of λ require smaller values of the sum
of [squared] parameters, which usually results in the more fundamental
patterns being emphasized). A λ of zero would mean no regularization.

Machine Learning 33

Model regularization (example with Legendre polynomials)

If you are applying a model such as a set of Legendre polynomials, the
parameters are the multiplying coefficients on the different polynomial
degrees:

ŷ(x, θ) = θ0P0 + θ1P1(x) + θ2P2(x) + θ3P3(x) + θ4P4(x) + · · ·+ θkPk(x)

The higher order (i.e. higher index) terms in the Legendre polynomial model
are “wigglier”, which allows them to capture more small-scale change in
the data, which is often due to noise. By constraining the sum of the
(squared) parameter values, the lower degree terms are more likely to be
emphasized. Conversely, too much weight on the lowest order terms can
cause underfitting. A good fit will balance the terms and requires just the
right amount of regularization.

There are several other forms of regularization, some of which we will

Machine Learning 34

discuss in later chapters. All are designed to create models that are more
likely to model the general, underlying pattern of the data and less likely to
focus on the noise in the data.

Hyperparameters

Hyperparameters are aspects of a machine learning model that are not
directly learned by training on the training data, but are set by the person
training the model. Examples of hyperparameters include the number of
trees in a random forest, the number of layers in a neural network, and the
number of clusters in a clustering algorithm.

When trying to find the best performing model, hyperparameters are one of
the many things that can be changed and experimented with. The default
parameters for a given machine learning model (from an ML software
library) may not produce the best results, therefore machine learning
practitioners typically spend a fair amount of effort trying to find the best
(or at least “good enough”) hyperparameters.

As discussed in the section on data set splitting, hyperparameters are
typically evaluated against the validation set. A model’s hyperparameters
will be changed, then trained on the same training set, and then evaluated
on the validation set. While this type of iterative search for the best
hyperparameters can be done by hand, it’s typically done via a search
algorithm.

Common hyperparameter search techniques include:

• Grid search: a grid of values (e.g. 0.1, 1, 10, 100, etc) are tried for each
hyperparameter and combination of hyperparameters. Grid search
has the advantage of being parallelizable, but has the drawback of
potentially taking a very long time when there are many hyperpa-
rameters (and thus many, many combinations).

• Random search: combinations of hyperparameters are randomly
chosen from possible hyperparameter values. This has the advantage
of being able to evaluate combinations in a very large space of

Machine Learning 35

combinations, but still having a high probability of finding good
combinations in a reasonable amount of time.

• Bayesian search methods: an iterative technique using Bayesian
methods to update which parts of the hyperparameter space the best
combinations are likely to be found. This a more complicated set of
methods that are not very parallelizable, but can potentially find good
hyperparameter combinations more quickly.

Unlike the parameters of most ML models, hyperparameters cannot typi-
cally be optimized in the same way that model parameters can be optimized,
using techniques like gradient descent. This is because the hyperparameter
spaces are typically not smooth and differentiable, but at least partially
discreet and discontinuous. For that reason the above methods are applied.

Productionization

Finding the best model through the iterative training process is not usually
the end goal of an ML project. The end goal is to actually use that model in
some real-world capacity. The model needs to be put “into production” or
deployed for real-world use.

Deployment can look very different in different settings and contexts. E.g.
creating a model that is run manually once a month is very different from
a model that runs continuously on a mobile phone. The most common
scenario of deployment for most models is as an API as part of a larger,
server-based system, such as a product recommendation system.

While the different productionization scenarios have their own sets of tools,
common themes are deployment, monitoring, and maintaining models. It’s
often said that development of anMLmodel is never finished, because while
a model is usually static, the world is constantly changing. This means that
once it’s deployed, whether as a web API or on an edge device, the owner of
the model needs to keep track of its performance. Some scenarios, such as
predicting the weather lend themselves easily to performance monitoring,
as the “ground truth” is easily available. Other scenarios, such as detecting

Machine Learning 36

infrequent anomalies in long cycle systems, may take time and effort to
understand the model performance. Tools and procedures for these may
exist or may need to be developed by the engineers.

Maintenance of models is needed when the current model is no longer good
enough. That may be because the “world” has changed and the previous
predictions are no longer accurate¹², there are new requirements, or a better
version of the model has been developed. A key feature of a robust ML
deployment system is the ability to track versions of models and to easily
roll-back from a model that’s not working to one that is. This is where
the research and development aspects of machine learning really meet the
software engineering aspects of machine learning.

Common issues

Machine learning is a very powerful approach to solve certain kinds of
problems, but it’s also incredibly easy to get wrong¹³. There are a number
of common mistakes that practitioners make and anyone working on ML
models needs to be vigilant to avoid these.

Overfitting, described above, is a common problem. Without monitoring
training closely, most ML model types can overfit easily. Strategies to
mitigate and avoid overfitting include training on more data, regulariza-
tion, early stopping, and cross-validation (to better estimate performance),
among others.

Not having enough data can also lead to low performance. This can be
diagnosed by looking at the learning curve(s) while training. If the learning
curve is still showing improved performance (i.e. decreasing error), despite
having trained on all of the data, you are likely to get better performance
by training with even more data.

¹²You can imagine the impact that the CoViD-19 pandemic had on many models that were previously
running well.

¹³A very good talk about this was given by Ben Hamner from Kaggle in 2014 called Machine Learning
Gremlins, laying out many of the ways that ML can go wrong. https://www.youtube.com/watch?v=tleeC-
KlsKA

https://www.youtube.com/watch?v=tleeC-KlsKA
https://www.youtube.com/watch?v=tleeC-KlsKA
https://www.youtube.com/watch?v=tleeC-KlsKA
https://www.youtube.com/watch?v=tleeC-KlsKA

Machine Learning 37

MLmodels only knowwhat they’ve learned from their training data. Even if
they are correctly trained, if the underlying data is wrong in someway, your
model will have problems when being applied to the real-world problem.
This can be due to non-representative sampling, which can cause bias in
the model’s predictions or cause the model to learn non-essential context,
rather than the main “subject” itself. For example, if you are trying to
classify images as either cows or horses, but all of your images of cows are
in pastures and all of your pictures of horses are inside barns, your classifier
may learn how to distinguish fields from barns (i.e. the context) rather than
the difference between cows and horses (i.e. the subjects).

Having well sampled data is a basic requirement, but it can still have other
issues. If the data is “dirty” in some way, it may not be useable for actually
solving the problem at hand, because it cannot be cleanly processed or there
are features that cannot be cleanly tied to the associated events or entities.

Another common issue is when the training data contains information that
real-world input data would not have, but is highly correlated with the
prediction target. For example, if you were trying to build a model that
predicted whether students were going to graduate on time and the data
contained information on whether they had completed all requirements,
it’s very likely that your model will find the correlation between that and a
students eventual graduation. In the real world that information would not
yet be known and allows the model to “cheat”. This phenomenon is called
data leakage and it can take many forms.

While your training data may be strongly representative of the real world
data, it is effectively a snapshot in time of the data distribution. If the events
or the environment changes, your model, trained on a past snapshot of the
data, will begin to have performance issues. This is a form of data drift. To
avoid issues, the performance of the model must be regularly monitored.

Finally, coming back to the first step in the process of building a machine
learning model, formulating the problem, it’s easy to build a model that
solves the wrong problem. This sounds like something that’s trivial to avoid,
but the reality is that the process of building a model is often complicated
and time consuming and the basic problem statement is lost in the confusion

Machine Learning 38

of the details. Alternatively, ML modelers are often given a task that is
not well defined. In both cases, it’s important for the model builders to
regularly step back and make sure that the model is providing a solution
to the problem that they (and any stakeholders) have set out to solve.

Common machine learning models

There are many kinds of “traditional” machine learning models. Some of
the mostly commonly used these days include:

• Linear regression (regression)
• Logistic regression (classification)
• Random forests (regression, classification)
• Gradient boosted tress (regression, classification)
• k-means (clustering)

Machine Learning 39

Common machine learning models

All of these are made available in popular open sourceML software libraries,
such as scikit-learn for Python users and others for R users.

From “traditional” ML to deep learning

The remainder of this book is about neural networks and deep learning.
Neural networks are are specific type of ML model with a number of
interesting attributes, but share most of the basic principals of machine
learning found in this chapter. Because of that, I will refer back to many
of the concepts presented in this chapter in the subsequent chapters.

Machine Learning 40

References

For your reference, here are a number of resources for learning more about
machine learning basics and traditional ML models.

Courses:

• Andrew Ng’s introductory machine learning course¹⁴ on Coursera.
• Yaser Abu-Mostafa’s machine learning course¹⁵ from Caltech.
• Michael Littman and Charles Isbell’s introductory machine learning
course¹⁶ from Georgia Tech / Udacity.

• Trevor Hastie and Rob Tibshirani’s Statistical Learning MOOC¹⁷ from
Stanford.

Books:

• “An Introduction to Statistical Learning: With Applications in R”
by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani.
Available free as a PDF¹⁸. Springer Verlag.

• “Data Science from Scratch: First Principles with Python” by Joel Grus.
O’Reilly Media.

• “Machine Learning with PyTorch and Scikit-Learn: Develop ma-
chine learning and deep learning models with Python” by Sebastian
Raschka, Yuxi (Hayden) Liu, and Vahid Mirjalili. Packt Publishing.

¹⁴https://www.coursera.org/learn/machine-learning
¹⁵https://work.caltech.edu/telecourse.html
¹⁶https://www.udacity.com/course/machine-learning--ud262
¹⁷https://www.dataschool.io/15-hours-of-expert-machine-learning-videos/
¹⁸https://www.statlearning.com/

https://www.coursera.org/learn/machine-learning
https://work.caltech.edu/telecourse.html
https://www.udacity.com/course/machine-learning--ud262
https://www.udacity.com/course/machine-learning--ud262
https://www.dataschool.io/15-hours-of-expert-machine-learning-videos/
https://www.statlearning.com/
https://www.coursera.org/learn/machine-learning
https://work.caltech.edu/telecourse.html
https://www.udacity.com/course/machine-learning--ud262
https://www.dataschool.io/15-hours-of-expert-machine-learning-videos/
https://www.statlearning.com/

3. Neural Networks
This book is about “deep learning”, but deep learning is really just a name
for the modern use of (deep) neural networks. Before we get to deep
learning, we need to first look at traditional (shallow) neural networks and
understand the basic concepts and issues with them. In this chapter we will
cover those basics, preparing us to understand the more recent innovations
that fall into the category of deep learning.

What is a neural network?

Aneural network, ormore properly an artificial neural network¹, is a type of
machine learning model. Under the surface it’s a collection of mathematical
operations that take raw input data and, based on the internal structure and
parameters of the neural network, it produces an estimate or prediction of
some quantity as the output. Just as with other ML models, the parameters
of the neural network are learned from training data.

Unlike other machine learning models, neural networks are explicitly
inspired by the structure and, to some degree, the function of animal brains.
They are collections of neuron-like structures that are connected to each
other as a network, similar to real neural networks in real brains. The
neurons, or nodes, in artificial neural networks are much simpler than
real neurons and are designed to have convenient mathematical properties,
rather than to simulate or closely mimic themechanics of real neurons. That
said, the basis for exploring these types of models has been the flexibility
and power of real brains. For this reason, artificial neural networks became
one of the main approaches to the problem of artificial intelligence.

¹NB: I will use “neural network” and “NN” to refer to artificial neural networks everywhere else in this
book.

Neural Networks 42

As we will discuss in the rest of this book, neural networks are not one
single model, but due to the flexibility of how the components of neural
networks can be combined, they form a very large class of machine learning
models.Wewill first look at the simplest form of neural network and in later
chapters learn about many of the variations that are used for specific tasks.

A basic neural network

What are some tasks that neural
networks can accomplish?

Because of the variety of internal structures possible with neural networks,
they are able to be applied to many different kinds of tasks. In recent years
they have proven to be the best solution to several tasks, including most
computer vision and language related tasks.

Neural Networks 43

Some examples of tasks that neural networks perform well on:

• Identifying what is in a photograph
• Recognizing faces and fingerprints
• Transcribing speech
• Translating text from one language to another
• Generating images and text from scratch or from prompts
• Transforming raw images into other styles
• Playing games like Atari and go (typically in conjunction with other
algorithms)

• Web search
• Product recommendations
• Recognizing and transcribing handwritten or printed text
• Compressing data

Some of these tasks have only become tractable in the past decade due to
the development of (useable) deep neural networks. On some tasks neural
networks have even been able to match or surpass human performance.
Other tasks have been addressed with neural networks for decades. The
success and promise of neural networks across so many tasks is one of the
main reasons why they are of so much interest to researchers and engineers.
They are not one-trick ponies. They can be adapted to almost any machine
learning task.

The building blocks of neural networks

Simple neural networks are relatively straight-forward, brain-inspired
structures. In fact the simplest version of the neural network is just a
model of a single neuron: the perceptron. While not commonly used today,
perceptrons laid the groundwork for later neural network structures.

Neural Networks 44

The binary perceptron: a binary neuron model

The original perceptron was designed as a binary digital circuit. It has
multiple binary inputs, x1, x2, … , xn, which can take on values of 0 or 1.
These raw inputs are multiplied by corresponding weights, w1, w2, … , wn.
These weighted inputs are then summed up. If the summed value is greater
than some threshold, the perceptron outputs a 1, otherwise it outputs a zero.
The parameters in the perceptron model are the weights and the threshold.
By adjusting these parameters the desired output can be achieved (or at least
approached). These parameters can be learned via supervised training, just
as with the ML models we looked at in Chapter 2.

Neural Networks 45

Perceptron output =

{
0 if

∑
i xiwi ≤ threshold

1 if
∑

i xiwi > threshold

The perceptron output criterion equation can be rewritten, such that it’s
the weighted sum plus a “bias” term, equal to the negative value of the
threshold. If this total sum is greater than zero, the output is one, otherwise
it’s zero. This simplified formulation is inline with the notation used for
modern neural networks.

Perceptron output =

{
0 if x · w + b ≤ 0

1 if x · w + b > 0

Here x ·w =
∑

i xiwi and is the inner or “dot” product of the inputs and the
weights.

Activation functions

The summing and threshold process in the perceptron is called its activation
function, which is once again inspired by how real neurons work. In the
perceptron this activation function is a step function, taking only two values:
0 and 1. For binary classification we only need two values, but even so it
turns out that a step function is not the best activation function. A step
function has such a sudden change from 0 to 1, that a very small change
in inputs or weights can flip the output. In practice smoother functions are
more useful for several reasons. One is that relatively smooth² functions
that are not simply linear can enable the modeling of non-linear patterns.
The other reason is related to gradient descent optimization: some functions
have derivatives (i.e. slopes) that are more amenable to effective gradient
descent optimization.

²Here I’m using “relatively smooth” to mean functions that are at least piece-wise connected.

Neural Networks 46

Historical and common activation functions

Historically the most common activation functions were sigmoid functions,
which have an S-shaped curve, smoothly transitioning from 0 (or -1) to 1. In
more modern neural networks, activation functions such as the ReLU ³ are
used for reasons alluded to above and which we will discuss in more detail
later.

Neural network layers

While we have seen what a single artificial neuron, or node, might look
like. A true neural network is made up of many nodes connected together,
as seen in the first illustration in this chapter. The most common simple
neural networks are arranged in layers.

A simple “feed-forward” neural network or “multi-layered perceptron”
(MLP) consists of several input nodes, a few so-called “hidden layers” in the

³“Rectified Linear Unit”

Neural Networks 47

middle, and a layer of output nodes at the end. The number of input nodes
depends on the input data and how it is encoded. For example, if you had
seven numerical features about houses for sale, you could use seven input
nodes in the input layer. The number and size of the middle, hidden layers
is up to the user to define. And finally, the size of output layer depends on
the number of outputs needed. For a classification task with N classes, you
would use N output nodes, one corresponding to each class. For a standard
regression problem you would only need single output node to provide a
single numerical value.

Connections, weights, and biases

Data flows in only one direction in a feed-forward neural network – from
the input nodes, through the hidden layers, and to the output nodes. The
nodes in each layer are connected to all of the the nodes in the layer
immediately before and after it.

The connections represent where the data is flowing, but also the multipli-
cation of that data by weights. As with the perceptron, each connection has
its own weight value and each node has its own bias value. The sum of the
weight-multiplied data along with the bias term are fed into the activation
function. The output of the activation function at each node then becomes
the input for the the next layer. These weights and biases are the parameters
that the model learns during the training process.

Taken all together, the many weight multiplications, summations, and
activation function calls, perform the overall computation of the network,
producing the final prediction at the output(s). Data moving all the way
through the network once, from input to output, is called a forward pass,
and the reason this is called a feed-forward network architecture.

Looking back at the diagram of the simple fully-connected neural network,
you can quickly see that as the number of layers grows and the number of
nodes in each layer grows that the number of parameters in the network
grows extremely rapidly. This is a big part of what gives neural networks
their power, but also what can make them difficult to train, as a lot of

Neural Networks 48

parameters typically means you need a lot of training data and a lot of
computing resources.

Learning via gradient descent

Neural networks learn the best parameters by training on data. Like several
other types of machine learning models, they can learn in a supervised
manner via gradient descent: iteratively adjusting the model’s parameters
to decrease the overall prediction error, as measured by the loss function.

A note on math
This section contains some equations, but the important part is really
how the equations go together, rather than all of the details of each equa-
tion. You should be able to understand the gist without understanding
every single part.

As discussed in Chapter 2, gradient descent can be thought of as stepping
“downhill” on a “loss surface”, which has as many dimension as there are
model parameters. The best parameter value combination will produce
the lowest prediction error, which corresponds to the so-called “global
minimum” in the loss surface. Typically there are many valleys and dips
in the loss surface that are lower than the surroundings, but not quite as
low as the the global minimum. These are called “local minima”. It’s not
always possible to find the global minium, but there are several strategies
to do as well as possible.

To perform gradient descent, the training process needs to know three
things: the value of the loss function for a given set of parameters (i.e. at
that point on the loss surface), the slope, or gradient, of the loss surface at
that point, which indicates which direction to move in, and how big of a
step to take.

Neural Networks 49

Gradient descent

Evaluating the loss function at a given point is straight-forward: pass the
inputs through the network to produce a prediction and compare this with
the known “ground truth”. Each prediction requires a forward pass through
the network. The more data points that are used to make predictions (each
requiring its own forward pass), the better the estimate of the loss function,
since it is an average value, such as mean squared error (MSE) or mean
absolute error (MAE).

The direction of the next step taken is determined by the gradient⁴ of the
loss surface at that point. The size of the next step is determined by the
magnitude of the gradient (i.e. a steeper slope will have a higher magnitude)
and the learning rate, which is set by the user.

⁴Technically you’re stepping in the opposite direction of the gradient, as the gradient is a calculation
of the vector in the direction of the steepest increase of the loss surface.

Neural Networks 50

step = −α∇⃗θ

where α is the user-set learning rate and ∇⃗θ is the gradient vector at
point θ in the parameter space (i.e. for the current set of parameters being
evaluated). The learning rate, α, is set by the user and can be a simple
number or can be a more complicated rule, such as requiring a smaller
learning rate based on the gradient magnitude or on the number of training
cycles that have passed.

Backpropagation of the gradient

Determining the gradient is more difficult. The gradient is telling you what
would happen to the loss function value if you made a very small change to
the parameters in the direction the gradient is pointing in. Mathematically,
this is the derivative along each parameter dimension. The gradient is the
composite vector, whose components show how the loss function changes
when any single parameter is changed.

∇⃗θ =

[
∂L

∂θ1
,
∂L

∂θ2
, . . . ,

∂L

∂θi

]T
The tricky part about determining the gradient is that the loss function
depends on parameters throughout the network. A change of a weight in
the beginning of the network affects the ultimate prediction output by the
network. Fortunately there is a technique that makes the calculation of the
gradient relatively easy: backpropagation.

Real world neural networks tend to have many, many parameters, all of
which can affect the output. You can think of the output as the result of
many nested mathematical operations. The input to the network starting
at the innermost level of the nest and the final output coming from the
outermost level.

We are interested in the loss function, e.g. Lθ = 1
2 (y − ŷ)2, which is

dependent on the set of parameters, θ, indirectly through the prediction
produced by the network, ŷ. To understand how a change in the parameters
would affect the loss function, we can therefore look at how ŷ is affected by
the change in the parameters.

Neural Networks 51

Backpropagation in a simple neural network

Let’s consider the simplest neural network, a network with only one node
per layer. This will give us a simpler scenario, while still giving us the core
conceptual parts of backpropagation. To determine how a small change of
a parameter somewhere in the network would affect the output, we first
look at the derivative of the final activation function with respect to its
immediate parameters. The final output could be written like

ff (z) = ff (bf + wf × af−1)

where z is just a placeholder for the input to the function, bf is the bias term
of that layer, wf is the weight of that layer, and af−1 is the output of the
activation function of the preceding layer feeding into the final layer. We
can keep fleshing this out to see the nested operations and end up with a
really long, hard to read equation:

Neural Networks 52

ff (x) = ff (bf +wf × ff−1(bf−1 +wf−1 × ff−2(bf−2 +wf−2 × ff−3(. . .))))

where x is the initial input to the network and the index indicates which
layer the term is from, relative to the final layer. Fortunately, we can
understand the concept without having to work through every layer.

The derivative of the the final activation function with respect to its own
weight, for example, would be

∂ff
∂wf

=
∂ff (z)

∂z
× ∂z

∂wf
= f ′

f × af−1

where z is a placeholder for the input to ff , i.e. z = bf + wf × af−1.
The important thing this equation is telling us that we need to know the
derivative of the final activation function with respect to its input and we
need to know the derivative of the input with respect to wf . This works,
because the chain rule of calculus tells us that the derivative of a nested or
compound function is the product of its component derivatives.

Neural Networks 53

Backpropagation to build the gradient

To find the derivative of some parameter deeper in the network, say
∂ff/∂wf−5, we need to then find the derivative of each layers that comes
after it by working backwards from the final layer, finding the derivative of
each components as we go. This is the process of backpropagation. While
this example looked at a very simplified neural network, the procedure
works with more complicated networks as well.

It turns out that this process is much more computationally efficient than
alternatives, such as varying the parameter and estimating the change.
Instead we get all of the derivatives throughout the network as part of
the backpropagation process in single “backward pass”. This was one of
the most important early discoveries that made training neural networks
feasible.

Neural Networks 54

Why are the loss function and performance metric
often different?
A common question is why models are often not trained using the
performance metric, such as accuracy, but instead are trained on a loss
function such as cross-entropy.

The answer is that for many model types, such as neural networks, it’s
much easier to work with a loss function that is easily differentiable.
Many performance metrics are not differentiable (at least in ways that
could be efficiently used for training). You’ll instead use a loss function
that is easily differentiable, while also serving as a very good proxy for
the performance function.

The flip side of this question is: why not just use the loss function as
the performance metric? While this is possible, the loss function is often
hard to directly interpret and is thus less useful as the metric for many
tasks.

Vanishing gradients and parameter initialization

As we just saw, the gradient of a neural network is the product of many
terms. One of the problems that can arise from this is the effect of very small
or very large gradient values in the early layers, which area the products of
many, many terms. In particular, if the gradient has many very small terms,
the product will tend to zero, which means that the loss surface is very flat.
A flat loss surface means that the network will be very slow to learn, as even
big steps will make only small improvements in reducing the loss function
value.

Neural Networks 55

Activation functions and derivatives

Activation functions such as the sigmoid function are particularly suscepti-
ble to creating vanishing gradients, as their derivatives max out at 0.25. Any
time you multiply lots of positive values less than one, you will be driving
the product toward zero. This is one reason why alternative activation
functions like the rectified linear unit, or ReLU, have been adopted. The
ReLU function has a derivative of one for most values in practice.

Vanishing gradients pose a fundamental problem, as layers that are early in
the network will tend to learn much more slowly than layers later in the
network and they may not learn at a feasible rate at all.

Another key aspect to learning is initializing the parameters of the network.
Even with well behaved activation functions, if you initially set the pa-
rameters to extreme values, you can cause gradients to vanish (or explode,

Neural Networks 56

which is an equally bad problem, but this is easier to deal with⁵). Therefore,
there are many strategies to how one should initialize the parameters of
a network. While there are no perfect strategies, the general idea is to
set values randomly with a mean of zero and a variance that’s smaller as
the number of parameters increases, such as in Xavier initialization or He
initialization.

Output layers

The final layer of a network is usually different from the middle, hidden
layers, as the final layer needs to produce values that are interpretable as
solutions to the problem the network is designed to solve. For example, the
network maybe predicting the class or label of the object in an image (a
classification problem) or it may be predicting the remaining useful life
of a tool (a regression problem). For different use cases, different types of
activation functions (a.k.a. layers) are used for outputs.

For regression problems a linear output function is appropriate, as it can take
on awide range of values. The output layer would then have asmany output
nodes as were needed for the prediction, e.g. one node for predicting the
sales price of a house versus two nodes for predicting the size of a rectangle
that could frame an object in an image.

While it may seem that a step function would be appropriate for a (binary)
classification output, a step function does not allow gradient-based learning.
Additionally, most classification methods actually produce a value that is
more like a probability. So instead of just 0 or 1 in the case of binary
classification, a value such as 0.78 is produced and then used either directly
or with a threshold for classification. By adjusting the threshold, the user
also has the ability to choose how comfortable they are with different
amounts of misclassification.

For multi-class classification, such as labeling many different species in
images, a function such as softmax is commonly used.

⁵Gradients that are too large can be dealt with via gradient clipping: any gradient magnitude greater
than some threshold is set to the threshold value.

Neural Networks 57

Softmax(xi) =
exi∑n
j=1 e

xj

Softmax, or soft argmax, gives the probability of the answer being of class i.
The sum in the denominator makes the total of all output values for classes
1 through n sum to one, as is required for probabilities. For a multi-class
classification network, the final layer would then have as many nodes as
there were classes, e.g. 10 nodes for classifying images of single digits 0
through 9.

What does a neural network do?

Having looked at the mechanics of how neural networks work, it’s natural
to ask “what does a neural network actually do?” in a more abstract sense
and “how is a neural network different from other types ofmachine learning
models?”.

In most traditional machine learning models, much of the effort from
the person training the model is around feature engineering, i.e. creating,
iterating, and selecting the best features. The goal is to find the information
or ways to represent the information that best allows the model to cleanly
separate classes in the data or pick out the pattern needed to predict
numerical values (i.e. regression). While some of this can be automated
to a certain extent, it is one of the main focuses when training traditional
machine learning models.

Neural networks present a different set of capabilities and shift the focus
away from feature engineering. One way to think of this is that a neural
network is learning how to warp the existing feature “space” in a way
that makes the classes easily separable by the final layer of the network.
Similarly, when performing a regression task, the network is learning to
represent the features in a way that allows it to easily perform a simple
linear regression in the last layer. The flexibility within the network allows
it to combine the inputted raw features in different ways until it lands on
the best way to represent these features for the goal of the network.

Neural Networks 58

Neural networks transform feature space to make the problem easier to solve

This can be contrasted to traditional methods such as a support vector
machine classifier, where the person training the model needs to select a
transform kernel that will project the features into a space that allows for
easy separation of the classes. Done properly, a neural network will learn
the equivalent of this projection kernel on its own.

An important aspect of neural networks that makes this possible is the layer
structure of the network. This lends itself to a hierarchical representation of
data/features that is natural to many types of data. Thinking about image
data, we can imagine the hierarchy of “features”, going from individual
pixels, to basic lines, to curves, shapes, and complicated structures, such as
faces. A neural network tends to naturally learn these types of hierarchical
levels in data.

Generalization in a model is about finding the common patterns, while
ignoring the “noise” specific to individual examples. Oneway to do this is by

Neural Networks 59

learning “compressed” representations of data. Encoding data in a smaller
number of bits typically results in “loss”, meaning that it is not quite the
same as the original. If you can create a compressed encoding that can then
decompress in a way that has relatively high fidelity to the original (by
some measure), that typically means that non-essential aspects (i.e. noise)
have been removed. Neural networks are often able to create these kinds of
compressed representations of data internally, preserving the fundamental
patterns and helping them generalize.

As we will discuss later, a final very important aspect of neural networks
is their composibility. Because of their layered, hierarchical nature, neural
networks can learn to represent data for one task and then be repurposed
for other tasks by modifying the later layers in the network. This access to
intermediate feature representations from somewhere in the middle of the
model is unlike most other types of ML models, where typically only the
final result is of any value.

From basic neural networks to deep
learning

Traditional neural networks are very flexible and robust, but were not seen
as necessarily any more powerful than other traditional machine learning
models. The reason for this is probably two-fold:

• There were some difficulties in training larger, more powerful models
that had not yet been overcome.

• Large neural networks need a lot of data and computing resources to
really shine.

In the remaining chapters of this bookwewill look at some of the techniques
and applications that have led to and come out of the deep learning
revolution.

Neural Networks 60

Resources

Some further resources for learning the basics of neural networks and deep
learning:

Courses

• The NYU Deep Learning⁶ course (Theme 1) by Yann LeCun & Alfredo
Canziani.

• Fast.ai’s Practical Deep Learning for Coders⁷, with Sylvain Gugger
and Jeremy Howard.

• Andrew Ng’s Neural Networks and Deep Learning⁸ on Coursera.

Books

• “Neural Networks and Deep Learning⁹”, by Michael Nielsen
• “Machine Learning with PyTorch and Scikit-Learn: Develop ma-
chine learning and deep learning models with Python” by Sebastian
Raschka, Yuxi (Hayden) Liu, and Vahid Mirjalili. Packt Publishing.

Other online resources

• Neural Networks¹⁰ series by 1Blue3Brown (Grant Sanderson).
• How Neural Networks Work¹¹ by Brandon Rohrer.

⁶https://atcold.github.io/NYU-DLSP21/
⁷https://course.fast.ai/
⁸https://www.coursera.org/learn/neural-networks-deep-learning
⁹http://neuralnetworksanddeeplearning.com/
¹⁰https://www.3blue1brown.com/topics/neural-networks
¹¹https://e2eml.school/blog.html#193

https://atcold.github.io/NYU-DLSP21/
https://course.fast.ai/
https://www.coursera.org/learn/neural-networks-deep-learning
http://neuralnetworksanddeeplearning.com/
https://www.3blue1brown.com/topics/neural-networks
https://e2eml.school/blog.html#193
https://atcold.github.io/NYU-DLSP21/
https://course.fast.ai/
https://www.coursera.org/learn/neural-networks-deep-learning
http://neuralnetworksanddeeplearning.com/
https://www.3blue1brown.com/topics/neural-networks
https://e2eml.school/blog.html#193

4. The rise of deep learning
In the previous chapters we have looked at “traditional” machine learning
techniques, including neural networks. These methods have proven useful
for addressing many predictive problems, but there is a reason this book is
about deep learning: deep learning has proven extremely good for certain
types of problems that traditional techniques have not excelled at.

Compared to traditional ML models, deep neural networks have proven to
be good at a wide range of problems, but have turned out to be particularly
good at problems involving computer vision (i.e. image based problems)
and natural language processing. In this chapter we will discuss how and
why deep learning came to the forefront of machine learning, with a very
brief overview of the history of deep learning¹. In the following chapters we
will go into more detail about techniques specifically designed to address
computer vision and natural language problems, as well as some generic
and advanced deep learning techniques and practical considerations.

Moving to deep neural networks

The most basic definition of “deep learning” is a neural network with
more than one hidden layer (i.e. the middle layers of the network). By this
definition people have been doing deep learning for a long time, but the
deep neural networks achieving impressive results in the past decade have
tended to be much “deeper” with tens or even hundreds of layers.

Having more hidden layers has some theoretical advantages over only a
few, but primarily researchers have shown empirically that deeper networks
enable performance that has not been achievable with shallow networks.

¹As of 2022, the English Wikipedia page on deep learning has a reasonably good overview of the
historical events that led to the current deep learning boom. https://en.wikipedia.org/wiki/Deep_learning

https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Deep_learning

The rise of deep learning 62

From a theoretical point of view, it can be shown that networks with many
layers can represent certain mathematical functions² with exponentially
fewer nodes than would be needed to represent the function with a single
hidden layer. From a more empirical point of view, deeper networks seem
to have the ability to represent the data in a hierarchical way that fits
naturally to many types of data. Additionally with deeper networks, you
can create more problem specific network architectures, often combining
different layers in modular, purposeful ways, as we will see later.

Researchers came up with many of the key ideas for deep neural networks
decades ago, but they were not practical to train or use at that time. Several
of the key innovations, such as backpropagation and network architectures
well suited for solving computer vision and natural language problems,
were created in the 1980s and 1990s. Their potential was not fully realized,
however, due to the limited computing resources available at the time
(relative to modern computing hardware) and high cost of producing
enough training data.

What made deep neural networks possible?

While many of the core ideas for deep neural networks had been around for
a while, it was only within the last decade that they really took off. In many
ways, deep neural networks were “ahead of their time”, as the computing
technology of the day was simply too underpowered to demonstrate the
potential of neural networks.

The name “deep learning”
Deep learning is synonymous with deep neural networks, but “deep
learning” is the more popular term (and incidentally in the title of this
book). So why is it called deep learning?

According to Andrew Ng, one of the researchers who popularized
deep neural networks, the term deep learning has mostly served as a

²The XOR function being a famous example.

The rise of deep learning 63

convenient marketing term. It has allowed for a break from the “old”
neural network days, when neural networks often suffered from more
hype than they could deliver on, and signifying that we’ve entered a
new era.

Regardless, “deep learning” is the most common name for this set of
technologies.

The trends that computing resources have followed, such at Moore’s law for
transistor density, have been the exponential increase of processor speed,
the exponential decrease in the cost of data storage, and the exponential
increase in network bandwidth. These trends (and other closely related
technology trends) have also led to an exponential increase in the amount of
data produced and stored. These trends led to the era of “Big Data”, starting
in the 2000s, and ultimately enabled the emergence of deep learning as a
leading ML technique.

One specific development that helped deep neural networks emerge was
the evolution of GPUs³ from being aimed solely at processing graphics to
enabling more general workflows. Because neural networks can be formu-
lated mathematically primarily as matrix operations, researchers were able
to port neural network operations to GPUs, taking advantage of the highly
parallel nature of the GPUs. Today GPUs are the workhorse hardware for
most deep learning training, while other new processor architectures have
been designed specifically to handle neural network processing.

The effect of these trends became apparent to the wider ML and computing
communities in 2012, when a neural network won the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) competition by a large margin. Up
until 2012, ILSVRC and other similar competitions had been dominated
by traditional computer vision feature extraction techniques paired with
traditional ML models, such as support vector machines. In 2012 a deep
convolutional neural network named AlexNet won the flagship ILSVRC

³Graphics processing units

The rise of deep learning 64

challenge with an error rate more than 10% lower than the second place
finishers, a huge performance improvement over the rest of the field and
previous competitions.

AlexNet, designed by Alex Krizhevsky (namesake of the network), Ilya
Sutskever, and Geoffrey Hinton of the University of Toronto, mostly used
components and techniques that had existed previously, but was able to put
them together in a way that led to a huge performance increase. AlexNet
consisted of convolutional layers, ReLU activations, established dropout for
regularization, and was implemented in a way that allowed it to train on
multiple GPUs⁴. By combining these established ideas, some newer tricks,
and porting the code to run on the latest hardware, they were able to
train on a very large dataset and achieve a breakthrough in predictive
performance. The dataset itself, ImageNet, was much larger that previously
available datasets. The images were sourced from the internet and labeling
was performed by crowdsourcing, something previously not available⁵.

News of AlexNet’s win at ILSVRC in 2012 spread very quickly and by 2014
the challenge was dominated by competitors using deep neural networks.
More importantly, not only was the ML community taking notice, but the
wider tech world was paying attention and resources started being directed
towards further developing and using deep learning methods.

This new interest in neural networks led to many further, rapid develop-
ments, quickly improving the state-of-the-art performance on many tasks.
Important in this progress was the development of several open source
software projects, the open publishing of results (and often the models
themselves), and overall the new momentum of progress in the field, which
has seemingly grown consistently over the past ten years. Deep learning is
now used across a very wide range of academic and industry domains.

⁴We will cover the same components and techniques used in AlexNet in more detail in later chapters.
⁵https://image-net.org, Li Fei-Fei, et al.

https://image-net.org/

The rise of deep learning 65

Where are we now with deep learning?

Deep learning is now a very established field of both research and practical
applications. That said, we are still likely in the early days. There is much
that is not understood from a theoretical point of view regarding why
deep learning works and what its limits might be. In areas such as natural
language processing, researchers have been building ever larger models,
reaching the scale requiring supercomputer level infrastructure. It’s yet to be
seen if the approach of ever-larger models and ever-larger training datasets
will continue to yield reasonable improvements. On the other hand, much
research is also around how to make models (relatively) smaller and more
efficient in training and inference.

In several areas, such as computer vision and natural language processing,
deep learning provides not only the best predictive performance, but has
become established as “best practice”, with easy to use tools available.While
more fundamental research is ongoing, there is also huge effort now around
making deep learning solutions practical and scalable for a larger and larger
set of users in the real world. What might have previously been an R&D
effort requiring skilled researchers to experiment and develop has become
closer to simply importing a few robust open source libraries by typical
software engineers.

One of the big changes from the world of “traditional” ML models is that
deep learning moves the user away from feature engineering to “network
engineering”, i.e. finding the best network configuration for the problem
at hand. At this point the research and user communities have landed on
a relatively established set of network architectures to use many common
tasks. Importantly, for many common tasks there are available pre-trained
models that can be reused or adapted via transfer learning (more on this
later).

The last ten years have been a remarkable period of progress for neural
networks (and machine learning in general) on all fronts: there are far more
people working on it, far more resources, and far more real-world use cases
than ever before. No one (or neural network…) can predict the future, but

The rise of deep learning 66

it seems that we are still in the early days of this technology.

5. Computer vision and
convolutional neural
networks

Computer vision is one of the most important application areas of deep
learning. In fact, it was advances in computer vision that kickstarted the
current era of deep learning. Further advances and applications of deep
learning to computer vision tasks have dominated this first decade of deep
learning¹. Recent deep learning techniques have led both the cutting edge
and best practices for real-world applications in almost all areas of computer
vision.

In this chapter we will look at computer vision tasks and the network
architectures and techniques that apply to them.

Computers and images

Working with image data has been an important task of computers for
decades. The explosion of digital photography has made this area evenmore
important, as images are now overwhelming born in digital form and the
shear number of images has grown enormously in the past two decades.

Historically, computer vision has referred to techniques that required a
high-level understanding of the contents of an image. This was seen as
distinct (or perhaps a subset) from digital image processing and graphics
programming. The current application of neural networks to image-related
tasks has somewhat blurred these distinctions. In this book we will use

¹As we will see, techniques for other types of tasks, such as natural language processing, have more
recently made huge strides in performance and have gained considerable interest on par with computer
vision.

Computer vision and convolutional neural networks 68

“computer vision” to mean any image-related task that neural networks can
be applied to, from image classification to image generation and beyond.

Common computer vision tasks

Computer vision tasks

Before we discuss deep learning techniques for computer vision, we will
first look at several common categories of computer vision tasks. Under-
standing what these tasks are and how solutions are evaluated is important
for understanding how deep learning is applied to those tasks. First we
should note that digital images are simply arrays of numerical values, where
the numerical values represent the data from each pixel. For typical color
photographic images, an image will have multiple two dimensional arrays
of data, one for each of the colors in the format – usually red, green, and
blue layers.

Computer vision and convolutional neural networks 69

Image classification is the task of identifying what the main subject of
an image is. Some examples include labeling a photograph as containing
a dog versus a cat, detecting whether a medical image contains a tumor,
determining whether an image from a traffic camera shows congestion, or
determining the species of a plant in a photograph. These can all be for-
mulated as standard binary, multi-class, or multi-label classification tasks.
There are several metrics for assessing model performance on classification
tasks, such as accuracy, precision, recall, F1-score, Matthew’s correlation
coefficient, log loss, and Area under the ROC curve. Each has tradeoffs and
care should be taken in choosing the best one for the task at hand.

Object detection and localization is a task related to image classification.
Instead of merely predicting whether an object of some class is in the image,
object detection and localization involves finding where in the image an
object of one of the known classes is. Examples include a phone camera
detecting faces to adjust the focus, detecting vehicles, signs, and pedestrians
in images from a self-driving car, detecting tumor tissue in a biopsy slide
image, and tracking balls in video images from sports. The target for the
prediction is typically the bounding box² around the object and the class
label of that object. This means that the model needs to do two things at
once and thus needs to be evaluated for both goals simultaneously. Average
precision is one of the most common metrics to measure detection and
localization.

Image segmentation is the labeling of every pixel in an image with some
class. Examples include delineating what is and is not the road in a traffic
image, outlining the different organs in a medical image, classifying each
pixel as foreground or background in an image, or labeling different types of
ground cover in satellite images. Labeling each pixel as belonging to a class,
such as identifying which pixels are grass, trees, and sky, is called “semantic
segmentation”. Another type of segmentation is “instance segmentation”,
where the goal is to label each pixel as belonging to specific instances
of an object, such as counting the oranges on a tree. A special case of
segmentation is depth estimation, where instead of classifying each pixel

²Rectangular bounding boxes are the most common prediction target for localization tasks, but other
polygons or paths denoted by a list of points can also be the target.

Computer vision and convolutional neural networks 70

with a label, each pixel is given an estimate of distance from the camera,
making it a pixel-wise regression problem.

For semantic segmentation, the most common metrics are intersection over
union (IoU) and theDice coefficient for binary segmentation tasks andmean
IoU and mean Dice coefficient for multi-class tasks.

Image transformation is the task of changing an image in someway. This is
a broader category that has overlap with several other categories. Examples
include colorizing a black and white image, “super resolution”, where an
image’s resolution is increased by “intelligently” filling in new pixels, fixing
problems in images, such removing an object from an image, or filling in an
area of an image, changing an image from one “style” to another, and adding
elements to images, such as whimsical effects and filters to selfies. Tasks
such as colorization are very similar to segmentation, mentioned above, as
the task is to provide a label (i.e. color) or numerical value (i.e. pixel-wise
regression) for each pixel. Many image transformation tasks involve several
steps, such as detecting an object and then modifying the image in some
desired way, such as automatically blurring faces in images. Evaluation of
image transformations is very task specific.

Image generation is the creation of entirely new images or filling in regions
of images in some desired way. Examples include generating landscape
scenes, with or without input from the user, altering the pose or facial
expression of a person in an image, or generating models wearing clothing
products. Image generation and related tasks, such as image transformation,
require metrics that measure how similar the generated image is to being a
real image. We will look at some of these later when we look at generative
adversarial networks.

Traditional computer vision

Solutions to computer vision tasks have been researched and developed
for decades. Most traditional approaches rely on techniques developed for
digital image processing tasks, such as filter techniques to find edges in an
image. In general the most typical approaches prior to the deep learning era

Computer vision and convolutional neural networks 71

incorporated manually optimized feature extraction techniques combined
with traditional machine learning models, such as support vector machines.

Many of the traditional feature extraction methods, such as SIFT, are very
powerful and fast to run, but they are typically highly specific in application
and brittle, not handling different data gracefully. The big innovation in
neural network-based approaches was the ability of the model to learn how
to extract features on its own directly from the training data. Instead of the
user trying to extract specific features, the user typically only cares about
the final, overall performance on the task and lets the model figure out what
features to extract on its own.

What’s hard about computer vision
tasks?

Compared to humans, computers have historically been very bad at com-
puter vision tasks. It’s extremely difficult to hand-code the logic to tell
a computer how to do most of these tasks. Describing the difference in
appearance between a cat and a dog using words (or computer code) is
almost impossible, but of course our eyes and brains can easily do this, as
they evolved to carry out visual tasks very well.

The geometric, yet irregular nature of images make them difficult to deal
with. Most settings for real world images have relatively low constraints, i.e.
there can be great variation of how the same subject appears in an image
depending on numerous conditions, such as lighting, distance to the lens,
orientation of the subject, etc. This is why for tasks such as face recognition,
it’s advantageous to require the image setting to be as uniform as possible,
such as those required for ID photos.

Computer vision and convolutional neural networks 72

Robustness to image transformations

There are some more fundamental difficulties in computer vision tasks. For
example, you may be able to hard code a detector that finds triangles in an
image, but the logic may fail if the triangle is shifted, rotated, or skewed
somehow. As humans we know that the triangle is still a triangle despite
being moved to another part of the image, but capturing the essence of
“triangleness” may be very difficult in code. This is one reason for the desire
to create models that can learn how to determine “triangleness” on their
own by looking at lots of examples of triangles (or really objects that are
much more complicated than simple geometric shapes). If the fundamental
patterns of these objects and their common variations can be learned, a
much more robust model can be built.

Computer vision and convolutional neural networks 73

Convolutional neural networks

Multi-layered convolutional neural networks (CNNs) presented a solution
to handling these image-based tasks. As we’ll see, convolutional layers can
learn to extract features on their own, can detect these features regardless
of location in the image, and when stacked together can take advantage of
the hierarchical nature of most image data.

Hierarchical feature extraction in CNNs

Convolutions

Convolutions are (unsurprisingly) the core operation of convolutional neu-
ral networks. A convolution is a mathematical procedure to apply a single
operation over all parts of an array of numbers. As mentioned previously,
digital images are simply arrays of numerical data. The convolution process

Computer vision and convolutional neural networks 74

can be thought of as multiplying another (typically smaller) array of values,
known as a “filter” or “kernel”, with a part of the target array (for us an
image). This multiplication is done element by element. The product of this
multiplication is then saved and the filter is moved to another part of the
image, saving that result, and further repeating until the filter has been
applied to all regions of the image. The output array is also known as a
“feature map”.

A convolution in 1D

Mathematically, a convolution is relatively straight forward. For a one
dimensional filter applied to a one dimensional array, the convolution³ can
be represented as

³This formula is technically a cross-correlation, rather than a convolution, but it produces an equivalent
output and is the form used in practice most of the time.

Computer vision and convolutional neural networks 75

yi =
∑
j

wjxi+j

where wj is the filter weight for position j in the filter array, xi+j is the
(image) array value at i+ j, and yi is the value of the convolution operation
from position i of the (image) array. As i is increased, it’s as if the filter is
sliding along the (image) array and you get the result of applying the filter
to the entire array.

A convolution in 2D

A two dimensional filter applied to a two dimensional (image) array is
conceptually similar, but the filter is moved both across and down the
(image) array.

yij =
∑
kl

wklxi+k,j+l

The most important part to understand is that the same filter array of

Computer vision and convolutional neural networks 76

weights is being multiplied with each different window region of the
(image) array. The question then becomes “what are the best weight values
in the filter array?”.

Traditionally convolutional filters have been a workhorse of digital image
processing and were designed by hand to do things like edge detection or
blurring. The beauty of neural networks is that the weights in these filter
arrays can simply be learned from the training data. While traditional filter
arrays have been carefully designed to perform a specific task, we do not
ultimately care what an individual filter in our neural network does, only
that it helps the network output the best prediction. This hands-off approach
was a big break from traditional image processing.

Filter size, strides, padding, and pooling

There are several knobs that can be turned to tune convolutional filters in a
CNN. These are typically treated as hyperparameters of the network.

Filter size is the dimension of the filter array – how large the window is
that you’re sliding over the image. A smaller filter will focus on smaller
features, whereas a larger filter will focus on larger scale features.

A number of filters can be applied to an input array simultaneously in
parallel. This is somewhat analogous to the number of nodes in a standard,
fully-connected neural network layer. Each filter is applied independently,
learning its own weights, and producing its own feature map.

Computer vision and convolutional neural networks 77

Some hyperparameters of convolutions

Stride is how far the filter is moved each time you slide it along. A “vanilla”
filter would be moved one pixel over, having a stride length of one. A stride
length of three would move the filter over by three pixels each time. Since
the number of outputs from performing a convolution depends on how
many positions the filter is applied to, a larger stride will produce fewer
outputs, and thus reduce the resolution of the resulting array from the
convolution. Selecting stride length depends on the desired effect and/or
computing resource constraints or efficiency goals and can be treated as a
hyperparameter.

Network size, parameter sharing, and computation
One of the tricky parts about dealing with image data is that images
tend to be big, i.e. need a lot of memory and storage. Neural networks

Computer vision and convolutional neural networks 78

can have the same issue. The more parameters, the more computing
resources, especially memory, are needed to train and run the network.
One of the advantages of task specific networks, such as CNNs, is that
they can be designed to reduce the number of parameters in the network
in clever ways.

CNNs reuse the same filter weights across the entire image, rather than
learning separate weights for each part of the image. This is largely to
be able to detect specific features (a.k.a. motifs) that can be found in any
part of the image, but the side effect is to reduce the overall size of the
network.

Of course the general trend in deep neural networks is that bigger is
better: more layers allow you to find even more robust patterns. But,
you want those layers and the deep network to be as resource efficient
as possible.

Padding means adding extra data (pixels) to the edges of your image.
Unless your filter is of size 1x1 and stride 1, the result of the convolution
will be a matrix of smaller size (i.e. lower resolution) than the original
image. Additionally, the pixels at the edges of an image are seen less by
the convolution operation compared with pixels farther in. Padding can
alleviate these issues. The amount of padding depends on the goal, e.g.
maintaining the same resolution, which is termed “same padding”. Themost
common data value to use for padding is zero.

Pooling is the reduction of the size of the output array (a.k.a downsampling)
by performing an operation, such as taking themean or the max, on the data
values in subarrays of the output. The values are “pooled” together. This in
turn reduces the resolution of the feature map as well as the number of
weights needed downstream. Conceptually, pooling is a way to compress
the information contained in a feature map, maintaining the larger scale
features while discarding some of the “noise”. Pooling also adds some
robustness to where in an image specific features are found, i.e. an object
not in the center will be more like to be detected as the same object as if it

Computer vision and convolutional neural networks 79

were located in the center of the image. A pooling filter of 2x2 pixels with
a stride of 2 is a common size.

A basic CNN architecture

The convolution layer is the most important building block of convolutional
neural networks, but a single convolution layer isn’t able to do everything
on its own. A typical CNN consists of multiple convolution layers, plus
several helper layers. In this sectionwewill look at a basic CNN architecture
and what the different components do as well as the effect of combining
them all together.

A single convolution layer learns to detect (or extract) some important
features from an image. We don’t know at the outset what those features
will be, as the network tries to learn the most useful features to extract for
the task it’s given. Empirically, it’s been observed that stacks of CNN layers
tend to extract increasingly complex features, starting with basic shapes,
such as straight edges, and then simple shapes, and finally complex features,
such as faces or vehicles. Each subsequent layer builds on what features
have already been extracted.

A very basic classification CNN might have three convolutional “blocks”,
a basic unit of convolutional operations, and two fully connected layers at
the output to handle the classification.

Computer vision and convolutional neural networks 80

A basic convolutional neural network

Each convolutional block might have several convolutional layers, with an
activation function, such as a ReLU, in between the convolutions, and finally
a pooling layer. Typically the dimension of the feature maps decreases with
each convolution. By stacking several convolutional blocks together, the
network can learn more and more complex features to input into the fully
connected layers at the end of the network.

There are many architectural and hyperparameter choices that can be
made to modify this most basic architecture. Researchers and engineers
have empirically found architectures and hyperparameter choices that have
worked well for certain tasks. Some of these choices are better understood
than others from a theoretical point of view.

Computer vision and convolutional neural networks 81

Some important CNNmodel
architectures for computer vision tasks

Historically there have been several computer vision networks that have
demonstrated and popularized certain architectures for specific tasks. These
are important touch points for understand the evolution of computer vision
networks and how different architectures relate to each other.

AlexNet

In the “modern era” of deep neural networks, AlexNet⁴ was the one that
is considered the most important from a historical point of view. It is not a
network that is still used, but its win in the 2012 ILSVRC Top 5 classification
competition was the event that kicked off much of the current deep learning
era.

The AlexNet architecture

AlexNet is similar to the basic CNN described earlier, with six convolutional
blocks, using ReLU and max pooling, and two hidden fully connected
layers at the end, followed by a softmax layer for making multi-class
classifications.

⁴See the discussion of AlexNet in Chapter 4 for more historical context.

Computer vision and convolutional neural networks 82

ResNet

One of the next milestone CNN architectures was ResNet, a classification
CNN designed by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun
for the ILSVRC 2015, which it won.

ResNet and residual blocks

The ResNet architecture, an abbreviation of “Residual Network”, is based
on residual connections, which let some of the data bypass the convolution
layers, such that it can be used unaltered by downstream layers. Researchers
had noticed that after some number of layers, adding more layers actually
made error on the training data (and test data) worse. He, et al, proposed
that theoretically this should not happen, as any additional layers could just
learn to pass the data through unaltered (i.e. learn the identity function⁵). In

⁵The identity function is simply a function that returns the input unaltered. In matrix math, the identity
matrix is all zeros, except the diagonal elements, which are all ones. Learning this very specific matrix has
proven difficult for network layers.

Computer vision and convolutional neural networks 83

practice, though, this was not happening. He, et al, hypothesized that instead
of learning the identity function, it would be easier for the network to learn
the difference between the input data (for a layer) and the optimal output
data: the residual. To achieve this they added so-called “skip connections”,
allowing data to bypass some number of convolutional layers. That input
data is then summed with the output data of the convolutional layers.

While He, et al, didn’t invent skip connections, ResNet went on to win
the ILSVRC 2015 competition and popularized the idea of skip connections
and residual blocks. Architectures based on these ideas are still the most
commonly used CNNs, used for image classification and as the “backbone”
of networks designed for other vision-related tasks. Some of the successor
architectures to ResNet include DenseNet, ResNeXt, and ResNeSt.

The autoencoder

Computer vision and convolutional neural networks 84

Autoencoders
An autoencoder is a network designed to learn how to encode or com-
press an image (or other input). For images, it’s essentially two CNNs,
with the second flipped around. The first “encodes” the input image by
learning features and squeezing the resolution down to some smaller
size. The second part (a.k.a. the “decoder”) rebuilds the image back to
its original resolution and contents using an upsampling method. The
difficulty in doing this is that you’re trying to represent the full image
with a lower amount of data (i.e. compression).

An autoencoder can be trained with unlabeled data, where the input
and output are compared (an example of “self-supervised” learning). The
network attempts to reconstruct the input with the lowest error possible.

Historically this was a method to “pre-train” layers within CNNs on
unlabeled datasets, which were typically larger than the labeled dataset.
The convolutional layer from the encoder could then be re-used in
the CNN, where further supervised training would take place. Larger
labeled datasets, more powerful computing resources, and more effi-
cient CNN architectures made this approach less common, but similar
approaches have become very important in other areas, such as natural
language processing.

See the section on “transfer learning” later in the chapter.

See “transposed convolutions” below.

U-Net for semantic segmentation

Semantic segmentation is another task on which convolutional neural
networks have be able to greatly outperform their non-deep learning
predecessors. In a typical semantic segmentation task, every pixel in the
input image needs to be labeled as one class or another. One of the most
important architectures that has emerged for segmentation is the U-Net.
U-Net was introduced in 2015 by Olaf Ronneberger, Philipp Fischer, and

Computer vision and convolutional neural networks 85

Thomas Brox for use in biomedical image segmentation, but it has since
been adopted for segmentation tasks across many domains.

U-Net

The U-Net architecture has three main, important components:

1. The “downward” encoding arm
2. The “upward” decoding arm
3. Skip connections from the encoding arm to the decoding arm

Image data is fed through several convolutional layers in the encoding
arm, reducing the size of the image data. After the image / feature data
reaches the bottom of the encoding arm, it is sent through transposed
convolutions to increase the resolution at each set of layers in the decoding
arm. Information from earlier in the network is passed to the decoding layer
blocks from the encoding arm to provide more “guidance”, in a somewhat

Computer vision and convolutional neural networks 86

similar manner as the skip connections seen in the ResNet architecture.
The skip connection data is concatenated to the downstream data from the
decoding arm, rather than simply summed, in contrast with the ResNet
architecture. The diagramatic way that the encoding and decoding arms
are represented is where the name U-Net comes from, as the diagram looks
similar to a “U”.

While the original U-Net used vanilla convolution in the convolutional
blocks, the “backbone” of the network can be made of residual blocks or
other similar architectural elements. There are several variations of U-Net
which have been created to improve performance or work better for specific
segmentation or other tasks. Additionally, the U-Net architecture is used as
a component for several other networks.

Transposed Convolution

Computer vision and convolutional neural networks 87

Transposed convolutions
Unless specifically designed not to, most convolution operations result
in a feature map that is smaller (i.e. lower resolution) than the input
(image) data. Several tasks require the opposite result, i.e. increasing
the resolution. One way to increase the array size of the data is with
a “transposed convolution”.

A transposed convolution applies a filter to the input data in such a way
as to produce a larger output array. It has similarities to the convolution
process, but also differences. The filter array is applied to only a single
cell of the input array at a time, such that the output is the value of
the input cell multiplied by the value of each cell of the filter. These
values are then added to the output array in a specific position. The
filter array is then moved to the next cell of the input array and the
process is repeated, with these values added to the output array in the
corresponding position of the input cell. The values put into the output
array that overlap are simply summed.

Like a normal convolution the values of the filter array are learned in
the training process, such that they produce the best values to achieve
the overall task of the network. As with convolutions, there are a few
key hyperparameters that can be chosen to achieve your desired goal,
including filter array size, padding, and stride length.

YOLO for object detection

Object detection involves detecting whether an object from any class of
interest is in an image, predicting what class the object is, and estimating
the coordinates of its bounding box (or other shape). YOLO is an object
detection model that has proven to be one of the best performing object
detection models in recent years.

As with image classification, there has been a quick evolution of object
detection methods. The most basic approach is to consider many subregions

Computer vision and convolutional neural networks 88

of an image, for example by sliding a window over the image, and run a
classifier on each subregion to predict the presence of an object of the class
of interest. In principle this works, but it comes at a high computational
cost.

YOLO (You Only Look Once) is an efficient object detection algorithm that
uses several tricks to make it both accurate and light on resources. It was
introduced by Joseph Redmon, et al in 2015. YOLO breaks up the image
into a grid and uses convolutional blocks to detect objects everywhere in
the image in a single pass (hence, “you only look once”). Training data must
be labelled in a YOLO-specific way to reflect which grid cell it belongs to,
the presence or absence of an object, the object class, and the boundary box
coordinates. Grid cells without objects still need labelled data, though the
details of the class and bounding box don’t matter.

You Only Look Once (YOLO)

The model is set up to predict the center point of bounding boxes, as an

Computer vision and convolutional neural networks 89

objectmay extend intomultiple grid cells.When setting up the YOLOmodel,
the user can choose the number or cells and the number of object centers to
look for in each cell, as there could be more than one object centered in a
cell. This is a limitation and trade off of the model, but is largely dictated by
the type of data. Very busy images with a lot of objects close to one another
require more grid cells and / or more object centers per cell.

An object detection model, such as YOLO, may end up predicting several
bounding boxes for a single object. To decide which bounding box to choose,
a complimentary algorithm called non-maximum suppression, or NMS, is
used. NMS looks at both the confidence of the model’s prediction for a
certain class and the overlap of candidate bounding boxes, as measured by
intersection over union (IoU).

Non-maximum suppression

NMS consists of the following steps:

Computer vision and convolutional neural networks 90

1. Only objects predicted with a confidence about some threshold are
considered.

2. For each class, select the bounding box with the highest prediction
score.

3. Calculate the IoU⁶ of all other bounding boxes of that class against the
previously selected bounding box.

4. Discard all boxes above a user-defined IoU threshold (e.g. 0.5). The
boxes with a high IoU score likely bound the same object.

5. Of the remaining boxes for the current class, take the one with the
highest prediction score and repeat steps 2-4 to find other instances of
the same object class.

Intersection over Union (IoU)

⁶See aside about how IoU is calculated.

Computer vision and convolutional neural networks 91

Intersection over union (IoU)
IoU is a way to measure the amount of overlap of two regions. It comes
up in a few different contexts in computer vision and is important to
understand.

IoU measures the amount of overlap of two objects, divided by the total
area that the two objects take up together (i.e. the intersection of the
objects divided by the union of the objects). Perfectly aligned objects
will have an intersection that equals the union and thus an IoU of 1.
Objects that don’t overlap will have an intersection of zero and thus an
IoU of zero. Partially overlapping objects will have an IoU somewhere
in between.

YOLO is one of the most important object detection architectures. There are
multiple versions of YOLO (some not directly related to the first version) and
several other networks that descend from YOLO or incorporate its ideas.

Image generation with GANs

Image generation is the task of creating new images from scratch, modifying
existing images, or filling in areas (a.k.a. inpainting) of existing images. In
2014 Ian Goodfellow et al introduced the generative adversarial network
(GAN), which became the basis for a large family of neural network archi-
tectures that could generate images extremely well. GANs have primarily
been applied to images, but have also proven useful for generating some
other types of data, such as audio.

Computer vision and convolutional neural networks 92

Generative Adversarial Networks

GANs consist of two main parts: the “generator” and the “discriminator”.
Each is a separate neural network. The generator is a network which
produces an output image, while the discriminator is a network that tries
to classify images as either coming from the training set or having been
produced by the generator. Training the two networks becomes a game,
with the generator trying to learn how to produce images that can fool the
discriminator into thinking that its images are actually from the training
set, while the discriminator is trying to learn how to detect the false images.
This is the “adversarial” part of GANs. The game between the generator and
the discriminator is what makes them able to learn so well, but it can also
lead to instabilities in the training process.

Computer vision and convolutional neural networks 93

An image of a person generated by StyleGAN

Improvements to the basic GAN framework have yielded very high quality
images that are often difficult for humans to recognize as being synthetic. As
we will discuss in Chapter 7, GANs and other image generation models can
be designed to use user input to guide image generation toward a desired
output. Other notable image generation architectures include variational
autoencoders (VAEs), flow-based models, and diffusion models, that latter
getting a lot of attention so far in 2022.Wewill lookmore at diffusionmodels
in Chapter 7.

Transformers for computer vision
In the chapter on natural language processing (NLP) we will devote part
of it to discussing transformers. Transformers were developed to handle
NLP tasks, but have been adapted to also handle computer vision tasks,
and have been gaining traction, in part, because they allow you to use
a single architecture for a very broad range of tasks.

I won’t go into any detail about how those work right now, beyond
saying that most of the transformer based vision models treat images
as sequences of image chunks. Transformers for computer vision are
definitely worth paying attention to.

Common CNN techniques

We’ve discussed some of the most important and common network architec-
tures for computer vision. There are also several common techniques that

Computer vision and convolutional neural networks 94

models use that are worth being familiar with, because they pop up so often.
Here I will touch on some of the most important ones.

Regularization

The goal of all machine learning models is to learn the general patterns of
the real-world distribution of data from the (limited) sample of training data.
The opposite of that is overfitting. As discussed in Chapter 2, regularization
is one of the approaches for reducing the chances of overfitting to the
training data.

There are several flavors of regularization. Two of the most commonly
used for neural networks are dropout and adding constraints to parameters
within the loss function (e.g. L1 and L2 regularization).

Dropout

Dropout is a relatively simple approach to making a network more robust to
variations in the data. Nodes within the network are randomly set to zero
during training with a probability, p, a hyperparameter of the model. By
“turning off” these nodes randomly, the network must learn to perform its
task despite losing some of its connections. Since zeroing out nodes reduces
the overall weight in the network, non-zeroed values are multiplied by 1/p

to scale the parameters back up to the level that would exist without the
dropout.

Computer vision and convolutional neural networks 95

Dropout

Zeroing out nodes is effectively the same as creating several smaller,
independent neural networks, the outputs being combined in an ensemble,
which is a general technique for reducing variance.

L1 and L2 Regularization

As discussed in Chapter 2, L1 and L2 constraints are commonly used to
regularize certain types of models. They can also be used with neural
networks, often being referred to as weight decay. L1 and L2 regularization
both work by adding an additional term to the loss function, where the sum
of the model’s weights are multiplied by a hyperparameter, often denoted
by λ. For L1, the absolute value of the weights is used. For L2, the square of
the weights is used.

By placing a term incorporating the total magnitude of the weights in the
loss function, the network is forced to “budget” the weight values on only

Computer vision and convolutional neural networks 96

the most important nodes and connections. This means that it cannot as
easily fit noise within the training data, as it doesn’t have an unlimited
weight budget. See Chapter 2 for more detail and an illustration of how this
type of regularization affects overfitting and generalization.

Data augmentation

Models are typically able to better learn the general patterns and avoid
overfitting if they are trained on more data. More data is almost always
better. Since data can often be “expensive” to obtain, however, one approach
to increasing the size of the training set is by synthetically creating new,
labeled data. For images, this can be as easy as flipping the image right to
left. For most scenarios, that type of change would result in the same label
on the data.

Data Augmentation

Computer vision and convolutional neural networks 97

There are many ways in which image data can be augmented: moving,
rotating, stretching, scaling, cropping, blurring, or flipping the image,
adding noise, changing the colors, etc. The important part of augmenting the
training set with data transformations is that the new image is not changed
so much that its label is no longer appropriate.

By automating this process, a training data set may be increased many-fold.

Batch normalization

Training tends to work better in neural networks if the different input
features are on similar scales, such that similar step sizes mean the same
thing during gradient descent. This is accomplished by “normalizing” the
input features, assuring that the different features all have means around
zero and a variance around one.

It turns out that if you also normalize the data between each layer, it
helps to improve the robustness of the model and speed up training. In
2015 Sergey Ioffe and Christian Szegedy proposed a technique called “batch
normalization” to normalize the data before each new layer (or wherever
the batchnorm layers are placed in the network).

Batch normalization allows the network to learn the best “normalization”⁷
for the data inside the network. Each batch normalization layer learns the
best parameters for this normalization. Empirically it has proven useful,
though the exact mechanism of why it helps is debated. It’s often used with
convolutional layers and fully connected layers.

Gradient descent algorithms

Gradient descent is at the heart of supervised training of neural networks.
As discussed in Chapters 2 and 5, gradient descent allows neural networks to
find the best parameters for the network based on the training data by taking

⁷Batch normalization is not strictly a normalization, but rather a transformation of the data, starting
with a normalization and then followed by scaling and shifting using learned parameters that seem to give
the best transformation.

Computer vision and convolutional neural networks 98

steps “down hill” on the multi-dimensional loss function surface. The down
hill direction is found by calculating the gradient for each feature dimension
and the parameter values are updated via the process of backpropagation.

It turns out that “vanilla” gradient descent has some limitations in practice,
primarily the speed of the process and the amount of resources needed to
handle large data sets (and large data examples, like images). In order to
overcome some of these limitations, several variants of gradient descent
have been developed. Here we will look at a couple of the most important
ones.

Variations of Gradient Descent

Stochastic gradient descent

Stochastic gradient descent (SGD) is a form of gradient descent that uses a
single example from the training data to perform gradient descent. Instead
of calculating the value of the loss function by running the model on all

Computer vision and convolutional neural networks 99

examples in the training set, SGD instead calculates the value of the loss
function on a single example. Inherently, this means that the estimate of
the loss function is worse than averaging the loss value from all available
data, but it means that it can be performed very quickly. This “quick and
dirty” estimate of the loss function means that the subsequent update (or
step) in the parameter values will likely be sub-optimal – not necessarily
the best direction or step size. This is the “stochastic” part of SGD.

It turns out, that by taking many steps based on the single data example
estimate of the loss function and thus the gradient, the model’s parameters
will still end up moving in the right direction. It’s like a random walk, but
with the wind blowing the walker in the right direction. Training may need
more steps, but the overall training time can be greatly reduced. This has
proven to be a very useful approach in practice.

While SGD was formulated using one example at a time, it’s more com-
monly done with a small number of examples or “batch” of data, sampled
from the training data set.

Adam

SGD is not without its own limitations. The direction of the next step in SGD
is based purely on the gradient of the current mini batch. Due to the small
size of the batch, that can mean the next step is in a very different direction
than the previous step. While this will work out over time, researchers have
realized that if the direction of the next step is less abrupt, the training is
likely to converge to the best parameter values more quickly.

One mechanism for taking smoother steps is called “momentum”. With
momentum the process takes steps as if the gradient was more like a force
acting on a moving mass, which wants to maintain its current trajectory.
This is accomplished by essentially taking a moving average of the previous
steps along with the current gradient estimate. The magnitude of the
momentum is a hyperparameter.

Another issue that SGD has is related to learning rates. If the same learning
rate is used the entire time, SGD is prone to overshooting good minima.

Computer vision and convolutional neural networks 100

Intuitively, gradient descent is a bit like golf. In the beginning you (typically)
need to take long shots and then as you approach the hole, you take short
shots. This can be better achieved for SGD by dividing the learning rate
by a term related to the size of recent steps. If the most recent steps have
been large, the learning rate is scaled down. Techniques called AdaGrad⁸
and RMSProp⁹ both used this kind of scaling on a per parameter basis.

Adam is a popular gradient descent technique which incorporates both
momentum to smooth out the steps and per parameter learning rate
scaling to speed up optimization. Besides learning rate, Adam has two
hyperparameters related to these modifications to SGD (as well as batch
size).

Transfer learning

One of the most important techniques used in deep learning is so-called
“transfer learning”. Transfer learning is the process of re-purposing an
already trained model for a new task.

Imagine if you had a CNN that had been trained to tell the difference
between images of cats and dogs, but you wanted to distinguish images
of different breeds of cat from one another. If you had enough well labeled
data and computing resources, you could simply train another CNN on your
cat dataset, setting up the last layer to predict how many breeds of cat you
had. Alternatively, you could try to reuse the existing model by modifying
only the final layer and training that layers on a small sample of your data.

This process is called transfer learning. Because the existing model has
already learned to extract features and transform the input data in ways
that are useful for the original task, it’s likely that the features and transfor-
mations will be useful for related tasks. The closer the second task is to the
original, the more likely that transfer learning will be successful.

⁸Duchi, John; Hazan, Elad; Singer, Yoram (2011). “Adaptive subgradient methods for online learning
and stochastic optimization”. JMLR. 12: 2121–2159.

⁹Hinton, Geoffrey (circa 2011). “Lecture 6e rmsprop: Divide the gradient by a running average of its
recent magnitude”. p. 26.

Computer vision and convolutional neural networks 101

Transfer Learning

On a practical level, transfer learning has been very important because it has
allowed users with lower levels of resources to create models that meet their
needs. Many researchers and others who have built models requiring large
amounts of data and computing resources have made these trained models
available for free to the community. Many of the deep learning toolkits and
libraries now include pre-trained models out of the box.

Feature transfer

There are a fewways to “re-use” models trained for one task on another task.
Themost straightforwardmethod is called “feature transfer”. In this case the
majority of the network is reused as is, but the final layer is modified to fit
the new task (e.g. new output classes or moving from a classification task
to a regression task). This new final layer is then trained on a small(er) set
of data, utilizing the features produced by the rest of the network, which it

Computer vision and convolutional neural networks 102

had previously learned for its original task. In this scenario, the parameters
of the rest of the network are said to be “frozen” while the final layer is
trained.

Fine tuning

While feature transfer is relatively straightforward, it may not always
produce a model with the level of predictive performance needed. A second
approach is called “fine tuning”. With fine tuning the original model’s
parameter values act as a starting point for further training of the model.
This can be thought of as the pre-trained model giving the final model a big
head start in training. Instead of the parameters randomly starting some-
where very far away in the optimization space, they’re starting (hopefully)
somewhere very close to where they need to be.

For fine tuning a pre-trained model, lower learning rates are often used, as
you don’t want to overshoot the best parameters by starting with steps that
are too large. Like all training, it is as much an art as a science.

Summary and resources

Computer vision has arguably been the most successful application of deep
learning in the past decade. Success in computer vision due to advances in
convolutional neural networks kicked off the current deep learning wave
and the huge increase in research and development of these techniques has
led to similar advances in other areas of application of deep learning.

In this chapter we touched on some of the most important concepts,
techniques, and models related to computer vision and deep learning for
computer vision. There is of course much that was not covered and many
details were left out of the topics that were covered, but this chapter
should have given you a good jumping off point for further learning,
understanding, and applying these techniques.

Below are some resources to help you improve you understanding of
computer vision and deep learning techniques for computer vision even
more.

Computer vision and convolutional neural networks 103

Courses

• Fast.ai’s Practical Deep Learning for Coders¹⁰, with Sylvain Gugger
and Jeremy Howard.

• Andrew Ng’s course on Convolutional Neural Networks¹¹ on Cours-
era.

• The NYU Deep Learning¹² course by Yann LeCun & Alfredo Canziani.

Books

• “Zefs Guide to Computer Vision¹³”, by Roy Keyes. Coming 2023.
• “Neural Networks and Deep Learning¹⁴”, by Michael Nielsen
• “Machine Learning with PyTorch and Scikit-Learn: Develop ma-
chine learning and deep learning models with Python” by Sebastian
Raschka, Yuxi (Hayden) Liu, and Vahid Mirjalili. Packt Publishing.

Other Online Resources

• How Neural Networks Work¹⁵ by Brandon Rohrer.

¹⁰https://course.fast.ai/
¹¹https://www.coursera.org/learn/convolutional-neural-networks
¹²https://atcold.github.io/NYU-DLSP21/
¹³https://zefsguides.com
¹⁴http://neuralnetworksanddeeplearning.com/
¹⁵https://e2eml.school/blog.html#193

https://course.fast.ai/
https://www.coursera.org/learn/convolutional-neural-networks
https://atcold.github.io/NYU-DLSP21/
https://zefsguides.com/
http://neuralnetworksanddeeplearning.com/
https://e2eml.school/blog.html#193
https://course.fast.ai/
https://www.coursera.org/learn/convolutional-neural-networks
https://atcold.github.io/NYU-DLSP21/
https://zefsguides.com/
http://neuralnetworksanddeeplearning.com/
https://e2eml.school/blog.html#193

6. Natural language
processing and sequential
data techniques

Natural language processing (NLP) is another area where deep learning has
emerged as the state of the art approach in the past decade. In this chapter
we will look at some of the approaches to handling NLP tasks and other
sequential data tasks. Specifically, we will look at recurrent neural network
architectures (RNNs) as well as attention-based architectures (transform-
ers).

Text, natural language, and sequential
data

Language is one of the defining features of humans. Our ability to commu-
nicate not only basic, common things, but also complex and novel topics is
one of the characteristics that sets us apart from other intelligent species. As
such, the desire to harness computers for handling tasks related to language
has existed from the early days of computers, with specific tasks, such as
the famous Turning test¹ and language translation, being worked on in the
1950s.

There are many tasks related to language and computers that are considered
valuable or interesting. Among those tasks are:

¹The Turing test was a thought experiment devised by Alan Turing to test whether a computer system
had intelligence equivalent to a human. In the test, an external viewer is charged with observing a text
conversation between a computer and a human. If the observer cannot reliably distinguish which is the
computer and which is the human, then the computer is considered to have passed the test.

Natural language processing and sequential data techniques 105

• Spelling correction, where known spellings are offered up as alterna-
tives to unrecognized words.

• Grammar correction, where “correct” grammatical rewording is
offered to the person writing.

• Sentiment classification, such as trying to classify whether a product
review is positive or negative about the product.

• Style improvement, where alternative versions of a phrase or sen-
tence are offered to the person writing.

• “Named entity recognition”, where known people, places, events, or
other important nouns are detected in text.

• Part-of-speech tagging, where the words and phrases in a sentence
are classified by the grammatical role they play.

• Text and speech user interfaces, where a human can use natural
language to work with a computer, such as a chat bot.

• Language identification
• Language translation
• Text generation, such as summarizing an article or offering reply
suggestions to an email.

• Word suggestion, such as mobile phone text input systems.
• Speech transcription
• Speech synthesis
• Document classification, such as whether a message is spam.

Some of these are relatively simple tasks for computers, such as spelling
correction, while others, such as text generation and translation are harder
problems to solve, as they require much stronger understanding of the
patterns of language.

More general than natural language tasks are sequential data tasks. Sequen-
tial data is any data that has an order, where the order provides part of the
information contained in the data. Besides (most) language, this includes
things like:

• Audio signals
• Sensor data, such as from medical, vehicle, and equipment monitors.

Natural language processing and sequential data techniques 106

• Video
• Computer logs, such as website traffic.

Some of the tasks that people are interested in related to non-language
sequence data include:

• Mode change and anomaly detection, such as whether a patient’s
heart rate has changed in a significant way.

• Audio synthesis, such as generating music in a desired style.
• Object tracking and prediction, such as trying to predict where
another vehicle will go on the road.

All of the above have the commonality that the data and its order provide
important contextual information for the task. This could be granular, such
as the letters in a word, or larger scale, such as themes in an essay. All of
this provides important context for accomplishing the task of interest.

Types of sequential tasks

The above tasks can be described in very generic terms by looking at the
size and role of the sequence in the task.

Natural language processing and sequential data techniques 107

Types of sequential data tasks

You can break down these tasks into the following categories:

• Many-to-one, such as sentiment classification
• One-to-many, such as image captioning
• Many-to-many, such as translation

Depending on the category of sequence problem, different approaches are
needed.

Traditional approaches

Compared to many modeling tasks, natural language tends to be “messy”.
The inherent flexibility of natural language means that a single word can
have many variations, sometimes retaining the same meaning and other

Natural language processing and sequential data techniques 108

times modifying the meaning. For example, “dog” and “dogs” are simple
singular and plural variations of the same word, but “dog” can also be a
verb or used as an adjective, “dogged”, which are related, but distinct from
the canine animal noun sense of the word. You can easily imagine how
complicated things can get.

While languages generally follow grammatical rules, there are numerous
exceptions to those rules, making it extremely difficult to capture all of the
edge cases that exist in real world usage. These kinds of flexibility make
many natural language tasks very difficult for computers.

Traditionally, NLP and sequence-based tasks have relied on methods using
some combination of hand-coded logic and statistical understandings of
language data. Raw language and sequence data typically needs to have a
lot of preprocessing performed to make it usable by computers and to create
features that can be used for making predictions or decisions.

Preprocessing and explicit feature creation can be as basic as splitting text
into words based on spaces or as complex as calculating word frequencies
and distributions. Much of the work related to using traditional NLP meth-
ods is around creating these usable features and removing low information
words, such as very common words like “the” or pause words like “uh” in
speech.

Some commonly seen traditional techniques for text related tasks include
tokenization, stemming, lemmatization, identifying stop words, creating n-
grams, calculating term frequency inverse document frequency (TF-IDF),
edit distances, and bag of words andword count. Some of these are also used
with deep learning techniques and we will touch on those later. For other
types of sequence data, auto-regressive features are commonly created, such
as sliding means.

With hand-engineered features, traditional ML methods, such as support
vector machines and tree-based models, as well as non-ML models, such
as hidden Markov models and Bayesian techniques, can be applied to
NLP problems. Those same techniques can be applied to other sequential
data problems. Time series related tasks are often approached with so-
called “time series methods”, such as ARIMA, which typically do not have

Natural language processing and sequential data techniques 109

learnable parameters.

Making a neural network remember

Natural language and sequential data tasks have long been tackled with
non-deep learning techniques, but it turns out that there are deep learning
techniques that are even better suited to many NLP and sequence tasks.

The hard parts about natural language, in particular, and sequential tasks
are the very large number of possible sequences (as either inputs or outputs)
and the need to understand “context”. By context, we mean the important
parts of the data surrounding any specific piece of data under consideration.

If you read the phrase “I saw it”, it’s unknown what “it” refers to without
context. In this case the context is any preceding text that allows you to
understand what “it” is referring to. This means that a computer needs to
be able to understand and remember that context in order to perform any
task that would require taking “it” into account.

Neural networks, as we have seen them so far, are “stateless”. They don’t
retain any kind of memory of the inputs they’ve seen previously². So how
do we enable a neural network to remember the context it has already seen?

The recurrent neural network

A recurrent neural network, or RNN, is a type of network that is able to
process a sequence and capture the context to make its predictions. In order
to do this, the RNN needs to be able to step through the sequence while
retaining “memory” of the items in the sequence it has already seen.

One way you could achieve this is by making several copies of a neural
network and having each one process a different step in the sequence, while
also looking at the output of the network that processed the proceeding item
in the sequence.

²You could argue that ML models have some memory of data they have seen during training, but the
models we have seen so far have no way to retain memory of inference-time, non-training input data that
has previously been passed through them.

Natural language processing and sequential data techniques 110

The raw output of the network that has processed the previous item in the
sequence plays the role of memory and is typically referred to as the hidden
state of the network. This would allow this chain of networks to process
the sequence in order, extract features from the inputs, and maintain some
memory to establish context.

Why not use a standard feed-forward network?
Neural networks are very flexible and in theory can tackle almost
any modeling task you throw at them. As we’ve seen with computer
vision, though, task specific architectures tend to be more efficient and
ultimately higher performance than generic feed-forward networks.

There are a couple of issues with using standard networks for sequence
tasks:

• The length of the inputs and outputs are not always fixed for the
same task.

• A lot of parameters would be needed, so you lose out on pa-
rameter sharing that can take place in a specialized sequence
architecture like an RNN.

RNNs and other sequence architectures are designed to deal with these
issues efficiently.

While this might work for some sequence tasks, where the inputs and
outputs have fixed lengths, there is a much better way to do this with only
a small change to this “chain of networks” architecture: adding recurrence.

RNNs are essentially chains of networks, but instead of having several sub-
networks, they use the same network for each network in the chain, feeding
the raw output of the network back to itself in order to process the next
step in the sequence. This is the recurrence. This means that each step in
the sequence shares the same parameters and that the network can handle
sequences of variable length.

Natural language processing and sequential data techniques 111

Recurrence in neural networks

The mechanics of a generic RNN are thus: For a sequence of N items, such
as words, the network first looks at the first word, x0, and produces two
outputs, the first hidden state, h0, and the first output, ŷ0. The first output
may or may not be used, depending on the task. The hidden state is passed
back into the network for use with the second input, x1. This process then
repeats, until the entire sequence has been processed.

The hidden state captures information that can be passed through all steps
of the sequence, providing some context for the task. Note that the network
starts with no hidden state input, so an input of zero value is typically used.

More generally, the hidden state from step t can be represented as ht and
the output for step t represented as ŷt, with

ht = σ(WT
hhht−1 +WT

xhxt)

Natural language processing and sequential data techniques 112

ŷt = WT
htht

where theW’s are learned weight matrices representing the the connections
of a single layer³ and σ is the layer’s activation function. Each weight matrix
takes a specific input to produce a specific output, as designated by the
indices.

Backpropagation through time

As with other neural networks that we’ve seen, RNNs are trained via
(versions of) gradient descent and backpropagation. The recurrent nature of
the RNN requires backpropagation to effectively be performed not just once,
but back through each step of a sequence. This is termed “backpropagation
through time” or BPTT.

³We’re using the notation of a single layer network here for convenience. Real RNN’s would likely
have multiple hidden layers, but which would require more complicated notation to represent the iteration
over the hidden layers.

Natural language processing and sequential data techniques 113

Backpropagation through time

While the network’s weights are “reused”, each step in processing a se-
quence provides the network with additional information, so must be taken
into account. You can think of backpropagation as taking place over the
entire unfurled network. The loss function is a sum of the losses for each of
the sequence step outputs (if there are more than one).

Creating context with embeddings

For language related tasks, words and how they are put together form the
context needed to perform the task. The words (or usually word tokens⁴)
can be thought of as the basic features for many language tasks. How can
you use words as features though?

⁴A token is the smallest unit that a sequence is divided into for processing. For NLP, that might mean
that a word is shortened to its stem or root or broken down into its stem and ending.

Natural language processing and sequential data techniques 114

Computers need words to be represented numerically to make sense. The
most generic way to do this is to have a dictionary, where each word (token)
has a corresponding number associated with it. To input a word into a
model, you look up the number. To understand the output of the model,
you do a reverse lookup of the output number and find the corresponding
word in the dictionary.

Semantically (or meaning-wise) words don’t have an inherent ordering
to them. There’s no obvious reason why “cat” should have a higher or
lower numerical value than “cup”. Instead, the most basic way to encode
words is to use the process of one-hot-encoding. One-hot-encoding is when
you create a vector of the same length as the total vocabulary size under
consideration. If you have 1,000 words (or tokens) in your vocabulary, your
input vector is an array with 1,000 entries (i.e. a vector in a 1,000 dimension
space). For a given word, one (and only one) entry in its vector will have a
value of 1 and all other entries will be zeroes (and are thus all orthogonal
to one another).

One-hot-encoding is simple and useful, but it can be unwieldy for large
vocabularies and it doesn’t give us any sense of relationships betweenwords.
As language users, we know that words have inherent relationships. “Hot”
is the opposite of “cold”. A “boat” and a “ship” are closely related. In order to
better capture the relationships, similarities, and differences between words,
instead of one-hot-encodings, embeddings are used.

Embeddings

Embeddings are ways to represent data that are richer in information than
simple numerical encodings, such as one-hot-encodings. Though definitions
vary somewhat, I will use the definition that an embedding is a “learned, low
dimensional representation of data that increases the information contained
[for the task of interest], versus a simple enumeration”.

What does that mean? It means that we want to be able to use the data itself
to learn relationships and other information that is implicitly captured in
the data. In Chapter 3 we saw how neural networks learn transformations
to make the task of the network easier to perform. Embeddings are a version

Natural language processing and sequential data techniques 115

of this. The network learns how to transform the data in such a way that it
is more useful than the raw data.

Embeddings

What does “low dimensional” mean? Low dimensional means using fewer
dimensions (i.e. the length of the vector) to represent the data than you
would need for one-hot-encoding. If your vocabulary had 1,000 words,
instead of 1,000 dimension one-hot-encoded vectors, you might use an
embedding vector of size 40. The size of the embedding vector (dimension)
is a hyperparameter. Instead of a sparse, high dimensional encoding, the
data is now in a dense, lower dimensional space.

If the embedding is created via a process that needs to extract relationship
information from the words, it will necessarily create embedding vectors
that exhibit these relationships.

Natural language processing and sequential data techniques 116

Embeddings of day-of-week data

Embeddings work for many types of data
Embeddings aren’t just useful for NLP, but can be used with many types
of data and tasks.

Imagine that you were using day-of-week as a feature in your data for
some task, such as forecasting traffic. While day-of-week has a natural
ordering and you could capture that with a simple encoding of 1 through
7, thatmay not capture asmuch information as it could. Is Friday equally
(dis)similar to Saturday as it is (dis)similar to Thursday? Depending
on the task, Friday may be much more like Thursday or much more
like Saturday. For example, in the US, schools will be similarly busy on
Thursdays and Fridays, whereas movie theaters will be similarly busy
on Friday and Saturday evenings.

By creating an embedding of the day-of-week in, say, 3 dimensions, you

Natural language processing and sequential data techniques 117

may be able to better capture the relationships of the day-of-week for
your specific task.

Embeddings are very useful in several contexts. Because you can compute
the (dis)similarity of two embedding vectors with each other, you can use
embeddings for things like search and ranking (especially when embedding
things like images, websites, or products). One of the most common ways to
compare two embedding vectors is with cosine similarity. Cosine similarity
is simply the cosine of the angle between two vectors and ranges from -1
to +1. Vectors that have a smaller angle between them have a higher cosine
similarity.

Cosine similarity

It’s easy to think about embedding vectors for similar data being close to

Natural language processing and sequential data techniques 118

each other and thus having a small angle between them, but of course most
embeddings are in high enough dimensions, that you can not visualize what
this looks like.

The most straight forward way that embeddings are created is by creating
a “transformation matrix”⁵, which, when multiplied with the one-hot-
encoded vector, encodes (or projects) the one-hot-encoded vector into the
embedding space, i.e. you go from your 1,000 dimension one-hot-encoded
vector to the 40 dimensional embedding vector. In a typical neural network,
this is the equivalent of adding an additional layer to the network.

For word related tasks, there are a few historically important methods for
creating word embeddings, including word2vec and GloVe⁶. We will look
in more detail at word2vec.

Word2vec

Word2vec is a method for creating word embeddings. It was introduced by
Tomas Mikolov et al, in 2013⁷. It was notable, because the embeddings can
be easily reused as feature transfer and the relationships in the embeddings
often are inline with human intuition about word relationships.

⁵This matrix is known by many names, including “projection matrix”, “embedding lookup table”,
“feature embedding matrix”, and “input mapping matrix”.

⁶Jeffrey Pennington, Richard Socher, and Christopher D. Manning, “GloVe: Global Vectors for Word
Representation”, 2014. https://nlp.stanford.edu/projects/glove/

⁷Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, “Efficient Estimation of Word Represen-
tations in Vector Space”, 2013. https://arxiv.org/abs/1301.3781

https://nlp.stanford.edu/projects/glove/
https://arxiv.org/abs/1301.3781

Natural language processing and sequential data techniques 119

Word embeddings and semantics

Famously, the inventors showed that you could perform meaningful “em-
bedding math”, whereby basic math on the embedding vectors can produce
results such as “brother” - “man” + “woman” = “sister” (i.e. if you subtract
the “man” vector from the “brother” vector and then add the “woman”
vector to that, the closest embedding vector to this result is the vector
for “sister”). The conclusion being that word2vec (and similar) embeddings
are able to represent words in ways that capture semantic meaning inter-
pretable by humans.

Word2vec works by training a shallow neural network⁸ to solve a self-
supervised learning task. To do this, a large set of text data is used as
a training set and an appropriate task is chosen. There are a number of
training tasks that are used, but we will discuss building a model to solve
the task called “skipgrams with negative samples”.

⁸A “shallow” neural network is simply a network with only one hidden layer.

Natural language processing and sequential data techniques 120

Skipgrams are sequences of text where one word is the context word and
the words surrounding it are blanked out. The goal of the task is to guess the
words most likely found around the context word – sort of the opposite of
“fill in the blank”. The number of surrounding words is called the “window
size” and is set by the user. It’s essentially a multi-label classification
problem. For a given context word input, the network needs to predict
all of the correct labels, i.e. the surrounding words. By moving through
the training text and choosing each word as the context word and the
surrounding words as the target labels, you provide the model with a large
set of self-supervised training data.

Word2Vec training

This can work, but one of the main problems with this task formulation is
that the possible number of labels is essentially the size of the vocabulary,
which can be very large. The creators of word2vec realized that they could
simplify this task by turning it into a binary task instead. The new task

Natural language processing and sequential data techniques 121

is to simply classify whether two words, the context word and another
word, would be found in the same sequence window. The window itself
only provides positive samples for this task (i.e. words that are found in the
same window as the context word), so you also need to generate negative
sample words (i.e. words that would not be found in the same window). To
do this, you can randomly select words from the full vocabulary of the text.

With negative samples, the task then becomes to train the model to classify
pairs of words as coming from the window or not. For the model to perform
well on this task, the network needs to transform the input one-hot-encoded
words into a lower dimension space, such that words that would be found
together in windows would be also near each other in this embedding
space. Words not found together within the same window should not be
near each other in the embedding space. This “nearness” (or similarity) is
calculated within the network by performing an inner (or dot) product of
the embedding vectors, which is closely related to cosine similarity.

Architectures for sequential tasks

RNNs are a powerful concept, but the generic version described above is
not used much in practice. One of the main issues that they face is their
inability to retain long-term memory, which is needed for many tasks. This
stems from the fact that the longer an input sequence is, the more iterations
of the network are needed. A very deep network like that makes the chance
of the gradient vanishing greater, as there are even more terms in the
backpropagation product⁹. Remedies, such as better choices of activation
functions (e.g. ReLUs) and better parameter initialization, can help.

Researchers have developed modified RNN architectures to address the
issue of memory. We’ll take a look at two that have been important: LSTMs
and GRUs. While LSTMs were developed some 20 years before GRUs, we’ll
discuss GRUs first, as they are simpler.

⁹See Chp. 3 for a refresher on vanishing gradients and remedies. Gradient explosion can also occur, but
that can be dealt with via gradient clipping above a threshold value.

Natural language processing and sequential data techniques 122

Gated recurrent units

Gated recurrent units (GRUs) were introduced in 2014 by Kyunghyun Cho
et al. The main concepts they use beyond a basic RNN are the “candidate
hidden state”, noted as h̃, and a mechanism to update, mix, or forget the
previous hidden state, called “gates”.

There are two gate functions:

• The “reset gate” determines how much of the previous hidden state
should be used to create the new candidate hidden state.

• The “update gate” determines how much of the new candidate state it
should use and how much of the previous hidden state it should use
as the new hidden state.

Gated recurrent units

Natural language processing and sequential data techniques 123

Mathematically, the gate is a sigmoid function, producing a value between
0 and 1 (but most of the time very close to either 0 or 1). To “gate” another
value, the output of the sigmoid is simply multiplied by the other value, e.g.
the previous hidden state.

Like most other aspects of neural networks, the amount of gating is learned.
The inputs of the gate function are multiplied by weights. These weights
are learned along with the other parameters within the network. The gate is
essentially a small fully-connected network within the larger GRU network.

The GRU network is somewhat complicated, because it applies its gates
more than once within the gated unit. After the reset and update gate values
are calculated, the reset gate value is applied to the previous hidden state,
ht−1, which is then input, along with the step input, xt, to the activation
function that creates the candidate hidden state, h̃.

The update gate value is then applied to the candidate hidden state and its
compliment (1 - the update gate value) is applied to the previous hidden
state, i.e. a weighted average of the new candidate hidden state and the
previous hidden state. This potentially allows hidden states to pass through
the recurrent network with little to no change, if that “long-term” hidden
state is important for the task. Conversely, this allows networks to forget
hidden states that are not useful.

Because a hidden state can potentially pass a long way through the network
with little to no change, this reduces the risk of vanishing gradients, as the
gradient term from “early” in the network can effectively be the product of
many fewer (very small) values.

Long short-term memory

GRUs are actually a simplification of LSTMs, a modified RNN architecture
introduced by Sepp Hochrieter and Jürgen Schmidhuber in 1995. LSTMs
also allow RNNs to have selective longer-term memory and overcome
the vanishing gradient problem. Like GRUs, they use gates and candidate
hidden states.

Natural language processing and sequential data techniques 124

The main differences are that LSTMs use an additional “output gate”
and pass two separate hidden states between each recurrence, one is the
activation function output (used in RNNs and GRUs as the hidden state)
and the other is a gated version of the activation function output, i.e. the
same value, but multiplied by a factor between 0 and 1.

Similar to GRUs these gates and the resulting learned hidden state manage-
ment allow LSTMs to be more robust and better at predicting the solutions
to sequential data tasks. These differences make the LSTM generally more
powerful than GRUs, but also somewhat more complicated.

Given the success that LSTMs have had and their (relatively) long history,
the LSTM has been one fo the most influential deep learning architectures.

Attention

The modifications to generic RNNs introduced by LSTMs and GRUs allow
for much higher performance, but they are not without limitations or issues.
Due to the sequential nature of recurrence, RNNs cannot be parallelized
for training, making them poorly suited for very large scale training sets.
Additionally, for the same reason, they are limited to sequences of only tens
or hundreds of tokens.

“Attention” is an alternative method of considering context in sequential
tasks. It was introduced in 2014 by Dzmitry Bahdanau et al and has been a
highly influential technique. Instead of focusing on the hidden state passed
from the most recent recurrence, as in an RNN, attention determines how
much weight should be given to each previous step¹⁰. Attention is especially
relevant in sequence to sequence tasks, such as language translation or
document summarization.

For producing translations, summaries, or similar tasks, the higher level
architecture that is typically used is called an encoder-decoder architecture.
One RNN encodes the input sequence into a hidden state. Another RNN
decodes that hidden state into an output sequence.

¹⁰RNNs can run forward, backward, or in both directions. For tasks such as language translation,
bidirectional RNNs are advantageous, because the order of words varies in different languages and looking
ahead can be important.

Natural language processing and sequential data techniques 125

Limits of the encoder-decoder RNN architecture

An encoder-decoder architecture with RNNs, as described so far, means
that longer sequences have more issues, as it’s harder to maintain a rich
representation of a long sequence. Attention attempts to solve this by
allowing the decoder part of the model to focus on different parts of the
input sequence for different steps of the output sequence.

Sentences commonly have important information spread across them, re-
quiring a model to either memorize the entire sequence or selectively pay
attention to those important parts. For example

“The dog, that lived two houses away and liked to patrol the
neighborhood, started barking.”

“Der Hund, der zwei Häuser weiter wohnte und gerne in der
Nachbarschaft patrouillierte, fing an zu bellen.”

“El perro, que vivía a dos casas de distancia y le gustaba

Natural language processing and sequential data techniques 126

patrullar el vecindario, comenzó a ladrar.”

All have phrases between the subject and verb clauses. Only looking at the
words immediately preceding the verb phrase might cause the subject to be
lost.

Attention is a quantification of how much the current output sequence step
should consider different input sequence steps. It’s calculated by looking
at the hidden state of the previous output sequence step, which we’ll
denote as St−1, and the hidden states of the input sequence steps, e.g.
ht−3, ht−2, · · · , ht+3.

The attention mechanism

The attention value is calculated by learning the weights for a small neural
network that takes the previous state, St−1, and an input hidden state, e.g.
ht−2, and outputs an attention value, αt,t−2. This is calculated for each input
hidden state. The sum of attention values,Σiαt,ti is normalized to equal one.

Natural language processing and sequential data techniques 127

The attention values are then used to created a weighted sum of the input
sequence hidden states used to calculate the current sequence output, St.

Attention weights

With attention, models are able to better focus on what parts of the input
are important to the output. While attention was very useful in the context
it was developed, it went on to be even more important with the further
development of self-attention and transformers.

Transformers

In 2017, Vaswani et al published a groundbreaking paper titled “Attention
Is All You Need”¹¹, which introduced the Transformer architecture. The
Transformer is a novel network architecture that doesn’t use recurrence as
its mainmechanism, allowing for parallelization of training and longer term

¹¹Vaswani et al, “Attention Is All You Need”, 2017, https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1706.03762

Natural language processing and sequential data techniques 128

memory. Paralellization is important, because it means that it can be trained
on extremely large datasets by using many machines (i.e. GPUs or similar)
at the same time. It is not an RNN, CNN, or fully connected NN, but instead
uses only attention mechanisms as its main mechanism of computation.

The Transformer architecture kicked off a slew of development that pro-
duced an improvement in NLP and sequence task performance, not unlike
the spark that AlexNet lit for computer vision tasks. And like CNNs
and ImageNet, Transformers (along with a couple of other architectures¹²)
enabled much more powerful transfer learning for NLP and sequence tasks
than previous approaches.

Much higher performance transfer learning was achieved by using “contex-
tual embeddings”, rather than just word-level embeddings. The fundamen-
tal issue with word-level embedding is that a single word can have multiple,
often very different, meanings, but word embedding only allows for a single
meaning for a given word (without elaborate hacks).

Consider the word “kind” in the sentence

He was not the kind of person that people described as kind.

Having only one embedding for “kind” would either end up capturing only
one meaning of “kind” or ending up as some average of meanings, which
likely wouldn’t be very useful. We’ll see in a little bit how the Transformer
architecture enables the more useful contextual embedding.

The Transformer is a relatively complex architecture with several parts. We
will cover the most important parts and innovations, while leaving some
details out. Please see the resources section at the end of the chapter if you’d
like to dive deeper.

The high-level architecture the Transformer

The Transformer architecture consists of two main parts: an encoder and a
decoder. This makes it well suited for sequence to sequence tasks, such as

¹²Other important non-transformer models for NLP-related transfer learning included ELMo and
ULMFit.

Natural language processing and sequential data techniques 129

language translation and summarization.

The Transformer architecture

Both the encoder and decoder parts make use of two important innovations:
so-called “self-attention” and “multi-head attention”. Self-attention is a way
for the network to determine which parts of the sequence are important
in a way that is somewhat analogous to how a convolutional layer learns
to extract or filter parts of interest of an image. Multi-head attention is
essentially doing this in parallel, analogous to having multiple channels in a
convolutional block in a CNN. Like a channel in a convolutional block, each
attention head learns different features in the sequence appropriate for the
task at hand.

Self-attention

We previously discussed “attention” in the context of an encoder-decoder
RNN architecture. In that case the decoder is trying to determine which

Natural language processing and sequential data techniques 130

of the encoder hidden states to pay more attention to for a specific output
step. With self-attention, the network is trying to figure out which parts of
the input to pay more attention to for all output steps as a single process. In
this sense, the network is comparing the current input to itself to understand
which parts should get more emphasis. It can be used in an encoder-decoder
architecture or just an encoder or decoder.

Self-attention is accomplished by having the network “ask” itself aboutwhat
is important at each step in the network where self-attention is applied. This
is formulated as having the network create “queries” from the layer’s input
tokens. The network then compares each query to a set of “keys” generated
for the same inputs of the layer. Finally, there are “values” created from the
inputs that correspond to each key. If a query and the key are similar, than
the value for that key is given more weight (i.e. attention).

You can think of the “query”, “key”, and “value” arrays as learned embed-
dings. The query-key comparison is a search in the embedding space and
more weight is given to values that are better matches.

Natural language processing and sequential data techniques 131

The self-attention mechanism

Mathematically these are matrix operations, where the input array (or
tensor) for a given word in the input sequence is multiplied by the query
matrix,Q, the key matrix,K, and the value matrix, V , to produce the query,
key, and value arrays, respectively. The values in these matrices are model
parameters that are learned during training. The similarity of the resulting
key and value arrays are calculated by taking the inner product, producing
a single weight. Each query is compared with all keys, including the query’s
own key.

The weight values for each word in the input sequence are calculated this
way and then they are divided by a scaling factor and squished with a
softmax¹³ function. For each query array, all the value arrays are multiplied
by there corresponding weights. These scaled arrays are then summed,
producing the attentionweighted outputs for each input of the self-attention

¹³Refer back to Chapter 4 for details on the softmax function.

Natural language processing and sequential data techniques 132

layer (i.e. if there are four input tokens, there will be four outputs).

Self-attention weights

Although there is clear structure and intent to this design of queries, keys,
and values, you can also think of this as a blackbox feature extractor that the
network learns, similar to a convolutional block. Ultimately, self-attention
is trying to take n inputs and return n outputs that are the best weighted
sum of some embedded version of those inputs. The “best” weighted sum
being whatever will best help the network solve its task.

The encoder and decoder blocks

The encoder in the Transformer consists of a self-attention block, a feed-
forward network block, residual connections on both of them, and a few
helper functions. The self-attention blocks are actuallymulti-head attention
blocks: several self-attention layers in parallel, each with it’s own query, key,
and valuemechanism. This allows the block to focus on different parts of the

Natural language processing and sequential data techniques 133

input sequence and learn different ways to represent what’s in the sequence.
This is similar to multiple channels in a convolutional layer in a CNN –
each channel or attention head can perform its own feature extraction. The
outputs of the multiple heads are combined.

Also analogous to CNNs having multiple convolutional blocks, the Trans-
former has several encoder blocks in series. Each of them having a chance
to extract more useful features.

The input to the initial layer of the first block is different, in that an
embedding layer is applied and a special position encoding operation is
performed. The embedding layer puts the input sequence elements (i.e.
words) into the right dimension array. The positional encoding allows the
network to have a sense of where in the sequence each input is.

The Transformer architecture

The decoder is very similar to the encoder side, but with a few differences to
allow it to produce sequences as output. The input sequence to the decoder

Natural language processing and sequential data techniques 134

is actually from itself – it’s a recurrent network that feeds its own output
back in to build up a sequence. Because the decoder is producing the output
sequentially, it uses a mask to ignore the “future” items in the sequence
(even though they don’t yet exist). This helps to reduce errors. This “masked
attention” block comes before the (multi-head) self attention layer. The self-
attention layer and feed-forward layers are the same architecture as in the
encoder, except that the inputs are coming from two places: the masked
attention block and the output of the encoder block. The output of the
encoder is transformed into a new set of queries and keys for the decoder
block’s self-attention layer. This special mixing of inputs is called “cross-
attention”.

Applications and Transformer based
architectures

The transformer architecture has become the building block for several
other network architectures, which are the ones used in practice. These
models have proven very useful for almost all of the language tasks
mentioned in the first part of this chapter. While the original Transformer is
an encoder-decoder architecture aimed at sequence to sequence (i.e. many-
to-many) tasks, many of the models derived from the Transformer use only
either the encoder or decoder block.

In this sectionwewill look at some of the Transformer-derived architectures
and some of the tasks that they are being used for.

Transformers for NLP

One of the first transformer basedmodels to get wide usewas BERT, amodel
created in 2018 by researchers at Google AI¹⁴. It was able to set many records
on language related benchmarks. BERT stands for “Bidirectional Encoder
Representations from Transformers”. It only used the encoder section of the
Transformer architecture, because that’s all it needed for the tasks it was
designed to perform.

¹⁴Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding, 2018. https://arxiv.org/abs/1810.04805

https://arxiv.org/abs/1810.04805

Natural language processing and sequential data techniques 135

BERT uses a Transformer encoder based architecture to learn contextual
word embedding. Each word in an input sentence is embedded incorporat-
ing information from the sentence that it’s found in. To accomplish this,
BERT is trained on two self-supervised tasks: filling in the blanks in sen-
tences and classifying whether two input sentences are consecutive. These
pre-training tasks require that BERT implicitly learn language structure and
semantic meaning.

After being pre-trained on a large unlabeled data set, BERT can then be
used to produce contextual word embedding for other models or can be
fine-tuned on a labeled data set for many-to-one tasks, such as spam
classification, sentiment analysis, etc. Freely available pre-trained weights
mean that BERT can be used to power all sorts of new tasks, in a way similar
to many computer vision models.

Another notable model is GPT-3, published in 2020 by Open AI. GPT-3 is
a language generation model (or large language model, LLM) based on the
Transformer decoder. The pre-training task is next word prediction. Like
other Transformer based models and modern LLMs, GPT-3 was trained on
a huge set of training data for this self-supervised task. GPT-3 had about
100 times as many parameters as its immediate predecessor, GPT-2, and a
much stronger performance. GPT-3 was the first LLM to catch wide public
interest, as its generated text seemed to cross a threshold of human-level
language plausibility.

In addition to BERT and GPT-3, there have been many more Transfomer-
based models, such as RoBERTa, T-5, and OPT. They’ve grown in network
size (i.e. number of parameters), training data size, and performance level.
Relative to CNNs, most of these language-related models require much
more training data and hardware resources. With hundreds of billions, or
even trillions of parameters, training these large models from scratch has
become effectively impossible for individuals or small organizations¹⁵. This
has increased the importance of transfer learning for NLP.

¹⁵At least as of the time of writing this book.

Natural language processing and sequential data techniques 136

Transformers beyond NLP

Transformer-based architectures can be used for other sequence-based tasks
besides natural language. In fact, if a task can be formulated as a sequence-
based task, Transformers can be applied, including image and time-series
related tasks.

The Vision Transformer (ViT) is a BERT-like Transformer applied to com-
puter vision tasks. It was introduced in 2020 by Google Brain¹⁶. It works by
treating an image as a sequence of image patches. ViT works by learning
which parts of the input image to pay attention to. Instead of words, the
input tokens are the image patches embedded into an array of tokens.

ViT and many related models have become popular for computer vision
tasks, such as image classification, object detection, and segmentation. As
of 2022, they are not yet the standard for computer vision problems, but
they are competitive for many tasks.

Summary and resources

In the last chapter I claimed that computer vision is arguably the most
successful application of deep learning in the past decade. It’s very possible
that the era of Transformer-based models means that NLP related appli-
cations are nearly as well addressed by deep learning. Even further, there
is speculation that both computer vision and NLP tasks will soon all be
performed on the same architectures: Transformer-based architectures¹⁷.

While Transformers are currently the “new, hot thing” in NLP and sequen-
tial data tasks, understanding RNNs is still important, as they are still in use
for certain tasks and were a major step in the evolution of neural network-
based approaches to solving sequence-based tasks.

Below are some resources to help you improve you understanding of NLP,
sequential tasks, and deep learning techniques for them.

¹⁶Alexey Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale”, 2020, https://arxiv.org/abs/2010.11929

¹⁷AI researcher Andrej Karpathy argued that there is an ongoing consolidation across all task domains
towards Transformers in this Twitter thread: https://twitter.com/karpathy/status/1468370605229547522.

https://arxiv.org/abs/2010.11929
https://twitter.com/karpathy/status/1468370605229547522

Natural language processing and sequential data techniques 137

Courses

• Andrew Ng’s course on Sequence Models¹⁸ on Coursera.
• Fast.ai’s Practical Deep Learning for Coders¹⁹, with Sylvain Gugger
and Jeremy Howard.

• Stanford’s CS224n: Natural Language Processing with Deep Learn-
ing²⁰ by Chris Manning

• The NYU Deep Learning²¹ course by Yann LeCun & Alfredo Canziani.
• – MIT 6.S191 Introduction to Deep Learning²², with Alexander

Amini and Ava Soleimany.

Books

• “Zefs Guide to Natural Language Processing²³”, by RoyKeyes. Coming
2023.

• “Natural Language Processing with Transformers: Building Language
Applications with Hugging Face” by Lewis Tunstall, Leandro von
Werra, and Thomas Wolf. O’Reilly Publishing.

• “Machine Learning with PyTorch and Scikit-Learn: Develop ma-
chine learning and deep learning models with Python” by Sebastian
Raschka, Yuxi (Hayden) Liu, and Vahid Mirjalili. Packt Publishing.

Other Online Resources

• The Unreasonable Effectiveness of Recurrent Neural Networks²⁴ by
Andrej Karpathy.

• Visualizing A Neural Machine Translation Model (Mechanics of
Seq2seq Models With Attention)²⁵ by Jay Alammar.

¹⁸https://www.coursera.org/learn/nlp-sequence-models
¹⁹https://course.fast.ai/
²⁰https://web.stanford.edu/class/cs224n/
²¹https://atcold.github.io/NYU-DLSP21/
²²http://introtodeeplearning.com/
²³https://zefsguides.com
²⁴https://karpathy.github.io/2015/05/21/rnn-effectiveness/
²⁵https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-

with-attention/

https://www.coursera.org/learn/nlp-sequence-models
https://course.fast.ai/
https://web.stanford.edu/class/cs224n/
https://web.stanford.edu/class/cs224n/
https://atcold.github.io/NYU-DLSP21/
http://introtodeeplearning.com/
https://zefsguides.com/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://www.coursera.org/learn/nlp-sequence-models
https://course.fast.ai/
https://web.stanford.edu/class/cs224n/
https://atcold.github.io/NYU-DLSP21/
http://introtodeeplearning.com/
https://zefsguides.com/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Natural language processing and sequential data techniques 138

• The Illustrated Transformer²⁶ by Jay Alammar.
• Transformers from Scratch²⁷ by Brandon Rohrer.

²⁶https://jalammar.github.io/illustrated-transformer/
²⁷https://e2eml.school/transformers.html

https://jalammar.github.io/illustrated-transformer/
https://e2eml.school/transformers.html
https://jalammar.github.io/illustrated-transformer/
https://e2eml.school/transformers.html

7. Advanced techniques and
practical considerations

Beyond the task specific architectures introduced in the last two chapters,
there are many techniques and practical considerations important for
people working with deep learning to be familiar with. In this chapter we
will discuss some advanced architectures, common techniques, and some of
the problems and tasks that need to be solved in order to make deep learning
useful in the real world.

Because this chapter will be wide-ranging, I will include pointers to re-
sources in the sections that they are associated with, rather than at the end
of the chapter.

Combining vision and language

So far we have discussed image related tasks separately from NLP, text, and
sequential tasks. But as you may imagine, there are many tasks that require
or benefit from combining multiple types of data. These are referred to as
“multi-modal” tasks and models.

In this sectionwewill take a high-level look at a fewmulti-modal techniques
that combine both image and text data.

Image captioning

One of the tasks that was mentioned in the last chapter was that of image
captioning, which is simply adding a descriptive sentence or phrase to go
along with an image. While we have considered both image and text-based

Advanced techniques and practical considerations 140

tasks, how we could combine these may not be obvious. As is turns out, the
key is embeddings.

In Chapter 6we discussed how embeddings are away to take data and create
new richer, typically lower dimensional, representations of it by learning a
transformation (i.e. projecting the data into a lower dimensional space). We
can then use the embeddings as inputs to other systems or networks.

For image captioning, a commonway to achieve this is to use a (pre-trained)
CNN to produce embeddings as the initial hidden state input to an RNN or
Transformer decoder model – an example of feature transfer.

An image captioning model

The decoder is trained with a labeled dataset of images with accompanying
captions.

Advanced techniques and practical considerations 141

Joint embeddings

Embeddings are “abstract” representations of data as vectors. Unlike images,
sentences, or other human-interpretable types of data, they are just arrays
of numbers optimized to contain as much useful information as possible.
While that may seem intangible, it also presents us with the opportunity to
create relationships between different data types for solving tasks such as
search and recommendations.

Joint embeddings of multi-modal data

“Joint embeddings” are the outcome of training models to produce embed-
dings of different data types (e.g. images and text) such the embeddings
of similar concepts are similar across data types. In other words, an image
of an oak tree would have an embedding vector very close in embedding
space with the embedding of the words “oak tree”. To do this, the different
encoding networks must be trained to put these separate embeddings
together.

Advanced techniques and practical considerations 142

A well known example of joint embeddings is the CLIP¹ model (a.k.a.
Contrastive Language Image Pre-training). CLIP uses an image encoder,
such as a CNN or Vision Transformer, and a Transformer text encoder to
produce both image and text embeddings for image-caption pairs. CLIP has
the twin goals of embedding pairs having very high similarity scores, while
embeddings not from the same pair in the training dataset having as low
similarity as possible.

A joint embedding model such as CLIP can be used for either text-based
image search or image-based caption search. A new search term can be run
through the respective encoder and the images (or captions) in the dataset
with the most similar embeddings can be returned. This type of embedding
comparison is the basis for many kinds of search and recommendation
systems.

Diffusion models

Diffusion is an image generation technique that has taken the deep learning
world by storm in 2022². Similar to GANs discussed in Chapter 5, diffusion
learns to construct images from scratch. Unlike GANs, diffusion uses a
multi-step generation process that seems to be more robust during training
and ultimately seems to produce better results.

¹https://openai.com/blog/clip/
²I’m very curious to see how this innovation ages.

https://openai.com/blog/clip/
https://openai.com/blog/clip/

Advanced techniques and practical considerations 143

The diffusion process

The name “diffusion” refers to the cumulative addition of Gaussian noise to
images in a way that is mathematically identical to particles diffusing over
time. The technique is inspired by thermodynamics.

The diffusion process is actually about learning to remove noise from
images. The training process starts by generating training data by adding
noise to a “clean” input image over many steps until the image is pure noise.
Next the network is trained to try to remove noise step-by-step until the
original image is restored.

To remove noise, a U-net³ tries to estimate the noise in the image at each
step. For a given step, the noise estimate is then removed from the image
and the resulting clean image estimate is compared with the known clean
image for that step. This comparison is the basis for performing gradient
descent and optimizing the U-net parameters.

³See Chapter 5 to review U-nets.

Advanced techniques and practical considerations 144

Typically diffusion uses tens or even hundreds of steps, as it appears to be
easier to remove a small amount of noise at a time. Once a diffusion network
is trained, it can start with pure noise and iteratively remove noise until a
clear image is produced. A GAN works in essentially the same way, except
that it needs to make the jump from pure noise to a final image in a single
step, which has proven to be less robust than doing it many steps.

Stable Diffusion

While you can take an image of pure noise and run it through a diffusion
network to get an image, it turns out that you can both direct the image
generation process and produce a clearer image by using a “prompt” to guide
to the process.

A prompt is simply another piece of data, such as a text description or
another image, such as a sketch. Unsurprisingly, to input that prompt into
the network, you’re gonna need an embedding.

In 2022 several diffusion models with text and/or image-based prompts
where announced, including DALL-E 2⁴ from OpenAI, Imagen⁵ from
Google Research, and Stable Diffusion⁶ from Stability AI. These models
work by training a diffusion model to incorporate a prompt (embedding)
to “condition” the output of the model. The U-net in the diffusion model
learns to change its output based on the input prompt.

Arguably, Stable Diffusion has made the biggest impact of these models,
as its code was released publicly for all to use. Stable Diffusion works in
a slightly different way than the other models mentioned, as it performs
diffusion in the “latent space” (essentially the same as the embedding space)
rather than in “pixel space”. We will look at Stable Diffusion as an example,
but overall it is very similar to the other popular diffusion-based image
generation models.

⁴https://openai.com/dall-e-2/
⁵https://imagen.research.google/
⁶https://stability.ai/blog/stable-diffusion-announcement

https://openai.com/dall-e-2/
https://imagen.research.google/
https://stability.ai/blog/stable-diffusion-announcement
https://openai.com/dall-e-2/
https://imagen.research.google/
https://stability.ai/blog/stable-diffusion-announcement

Advanced techniques and practical considerations 145

Stable diffusion

The generic method that Stable Diffusion is based on is called a “latent
diffusion model” (LDM⁷). Instead of removing noise directly in pixel space,
latent diffusion learns to remove noise in the embedding (or latent) space.
The process is essentially the same, except that the input image used to
generate the training data is first embedded with a CNN or similar image
encoder. The U-net is trained on data in the embedding space as well. Only
once the de-noising of the image is complete, is the image transformed back
into pixel space. Latent diffusion is basically standard diffusion sandwiched
inside an image autoencoder.

The reason for working in embedding space is primarily because the
embeddings are much smaller than the raw images, making the process
computationally more efficient.

⁷High-Resolution Image Synthesis with Latent Diffusion Models, Robin Rombach et al, CVPR, 2022,
https://arxiv.org/abs/2112.10752

https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752

Advanced techniques and practical considerations 146

The prompts, whether text or image, are embedded with a CLIP-style model.
During inference⁸, the U-net is run with both the prompt as an input and
with a null prompt as an input (i.e. an array of zeros). The output of these
are compared, with the idea that the embedding space vector corresponding
to the difference between the prompted output and the prompt-less output
points in the direction of the best de-noising. The prompted output is then
moved in that direction (by some amount). This is essentially a trick and is
termed “classifier-free guidance”.

To enable the prompt to guide the de-noising, cross-attention is included
in the U-net to allow it to better incorporate the prompt embedding
information.

Taken all together, these steps have proven to be very powerful in creating
highly realistic and novel images when trained on large, high quality
datasets.

Self-supervised learning

Most of this book has been concerned with supervised learning, where a
model is trained on a dataset where the answers (i.e. the labels) are known.
We also touched on unsupervised training, where a model learns to look for
groupings of similar data within a dataset without the use of labels to guide
it.

A third paradigm for training models is self-supervised learning, which is in
someways a mix of supervised and unsupervised learning⁹. Acquiring unla-
beled data is often much easier and/or cheaper than acquiring or curating
labeled data. Self-supervised learning is a solution to this problem¹⁰.

In self-supervised learning, a supervised learning task is chosen, such that
the data labels can be deterministically derived from the data itself. This
often means “scrambling” the original data in some way, with the original

⁸In ML, “inference” just means making predictions with the model after it’s trained.
⁹Historically this was most often grouped with unsupervised learning before the term “self-supervised

learning” gained popularity.
¹⁰It can be argued that it is also more similar to much learning done by naturally intelligent systems.

Advanced techniques and practical considerations 147

state of the data serving as the label. Examples include reordering the letters
of a word, where the correct order is the label, learning to colorize a photo,
where the input to the process is the original image, but in grayscale, and
the target is the original, color image.

Once a model is trained on this self-supervised task, the model can be used
as the basis for transfer learning – either as feature transfer (e.g. using the
outputs as embeddings) or using a labeled dataset to finetune the model for
a related task.

In previous chapters we have seen several examples of self-supervised
learning already, including autoencoders and GANs (Chapter 5), word and
text embedding techniques, including word2vec and Transformers (Chapter
6), and diffusion techniques in this chapter.

Image-based techniques

Text tends to present relatively straight-forward self-supervised techniques,
such as fill-in-the-blanks or predicting whether two sentences are next to
each other. Image data can be used in similar ways.

Advanced techniques and practical considerations 148

Self-supervised learning for images

Common image-based self-supervised tasks include slicing images into tiles
and having the model predict the correct ordering, removing a section of
the image and having the model fill in the hole, flipping and/or rotating
the image and having the model predict the correct transformation, or any
techniques were reconstructing the input is the goal.

All of these tasks are designed such that achieving the explicit task would
require the model to implicitly learn a strong understanding of image
composition and how to consider context within the image.

Contrastive learning

Constrastive learning is a self-supervised approach, where the goal is to
train the model to learn to produce the “correct” output well and to be
bad at producing the “incorrect” output. That means that the model needs
to learn from both “positive” and “negative” labels. In typical supervised

Advanced techniques and practical considerations 149

learning this is inherent in the data, as the training set will (hopefully!)
have examples from other classes, so the model needs to be able to predict
all different classes.

We have seen examples of this style of self-supervised learning already:
word2vec skipgrams with negative sampling and CLIP. Both present the
scenario where you could just train on the “positive” examples, but instead
are greatly enhanced by also trying to predict against non-positive examples
as well. In word2vec the task boils down to whether two words are from the
same window of words. By also asking the model to compare against words
from outside the given window, the “contrastive” aspect is added. In CLIP
the model needs to force the paired image and caption embeddings to be
similar, but also the image embeddings should be dissimilar to the caption
embeddings of other images.

Contrastive learning

As with these examples, the “contrastive” or “negative” examples for

Advanced techniques and practical considerations 150

training are just randomly sampled from the larger dataset. Because this is
not human labeled, there’s no guarantee that every contrastive sample will
actually be contrastive (i.e. youmight randomly select aword that happened
to also be in the same window or a caption from an image that was similar).
The goal is that statistically there will be enough contrastive examples to
produce a strong model.

As with most topics in this book, we’ve only scratched the surface of con-
trastive learning, but the key idea is there: learning better representations of
the data to improve your ability to perform subsequent, related tasks (a.k.a.
the “downstream” task).

Some survey articles on self-supervised and contrastive learning techniques:

• Longlong Jing and Yingli Tian, “Self-supervised Visual Feature Learn-
ing with Deep Neural Networks: A Survey¹¹”, 2019

• Xiao Liu et al, “Self-supervised Learning: Generative or Contrastive¹²”,
2020

Math topics related to deep learning

Neural networks are implemented in computer code and to build them (from
scratch) you need to know how to program computers. But, to understand
how they work in detail, you also need to understand certain math topics. In
this section we will briefly discuss the most important mathematical topics
for deep learning.

Linear algebra

Most of the mechanics of neural networks are described in terms or
arrays (or tensors), matrices (also tensors), and mathematical operations
you can perform on them. You can often describe most aspects of neural

¹¹https://arxiv.org/abs/1902.06162
¹²https://arxiv.org/abs/2006.08218

https://arxiv.org/abs/1902.06162
https://arxiv.org/abs/1902.06162
https://arxiv.org/abs/2006.08218
https://arxiv.org/abs/1902.06162
https://arxiv.org/abs/2006.08218

Advanced techniques and practical considerations 151

architectures compactly as matrix multiplications. The weights and biases
learned during training are entries in arrays and matrices.

All of this is in the domain of linear algebra. Understanding linear algebra
gives you the tools to understand how neural networks function from a
different perspective and especially to understand technical descriptions
in academic papers, etc. Most of the core parts of neural networks are
some combination of operations between vectors and matrices in different
configurations.

Some resources for beginners in linear algebra:

• Khan Academy’s Intro to Linear Algebra¹³
• MIT’s Intro to Linear Algebra¹⁴ with Gilbert Strang
• Linear Algebra for Everyone¹⁵ by Gilbert Strang, Wellesley-
Cambridge Press, ISBN 978-1-7331466-3-0, September 2020

Statistics and probability

Statistics and probability are at the heart of all machine learning. Machine
learning is about recognizing and approximating the general pattern in the
data. Instead of memorizing the training data, a well-trained model will
produce good predictions, because it has learned the general patterns in the
data.

Understanding concepts of distributions, summary statistics, probability,
etc, are key to really understanding and working with machine learning.
Not only does statistics underlie how neural networks work, but also how
you evaluate the performance of ML models. Performance metrics are
statistical measures of how good a model’s predictions are. Additionally, to
compare twomodels, youmay want to employ statistical hypothesis testing.

Some resources for beginners in statistics and probability:

¹³https://www.khanacademy.org/math/linear-algebra
¹⁴https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
¹⁵https://math.mit.edu/~gs/everyone/

https://www.khanacademy.org/math/linear-algebra
https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
https://math.mit.edu/~gs/everyone/
https://www.khanacademy.org/math/linear-algebra
https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
https://math.mit.edu/~gs/everyone/

Advanced techniques and practical considerations 152

• Khan Academy’s Statistics and Probability¹⁶
• OpenIntro Statistics¹⁷
• Udacity’s (free) Intro to Statistics¹⁸

Differential calculus

The “learning” part of deep learning is finding the right parameter values
for the network to best perform at its task. As we saw in Chapter 3, gradient
descent is the key method used to optimize a network’s parameters. At the
heart of gradient descent is calculus.

While most deep learning practitioners are not solving many integrals
or calculating derivatives by hand, calculus is the mathematics of ML
parameter optimization. Understanding derivatives (in particular partial
derivatives) is important for understanding how and why much of the
optimization process works in ML and DL, in particular. It’s often said that
backpropagation is really “just the chain rule” for derivatives.

Some resources for beginners in calculus:

• Khan Academy’s Calculus 1¹⁹
• Khan Academy’s Multivariable Calculus²⁰

Machine learning engineering

So far we have mostly discussed the concepts behind deep learning in a
relatively abstract way. Real world usage of deep learning models involves
much more than just the ability to train a “good” model. Creating a
machine learning-based system that is running “in production” involves
many moving parts and design considerations. Building these systems falls
under “machine learning engineering”.

¹⁶https://www.khanacademy.org/math/statistics-probability
¹⁷https://www.openintro.org/book/os/
¹⁸https://www.udacity.com/course/intro-to-statistics--st101
¹⁹https://www.khanacademy.org/math/calculus-1
²⁰https://www.khanacademy.org/math/multivariable-calculus

https://www.khanacademy.org/math/statistics-probability
https://www.openintro.org/book/os/
https://www.udacity.com/course/intro-to-statistics--st101
https://www.khanacademy.org/math/calculus-1
https://www.khanacademy.org/math/multivariable-calculus
https://www.khanacademy.org/math/statistics-probability
https://www.openintro.org/book/os/
https://www.udacity.com/course/intro-to-statistics--st101
https://www.khanacademy.org/math/calculus-1
https://www.khanacademy.org/math/multivariable-calculus

Advanced techniques and practical considerations 153

Deep learning libraries

Rather than writing model code from scratch, deep learning practitioners
use libraries designed specifically for creating deep neural networks. Li-
braries such as PyTorch²¹ and TensorFlow²² center on optimized tensor
operations, but also have many built-in conveniences for creating neural
networks.

Graphical processing units and specialized
hardware

As mentioned in Chapter 4, graphical processing units (GPUs) have played
a critical role in the rise of deep learning. Most neural network operations
can be formulated as matrix operations, which GPUs where specifically
designed for.

GPUs are typically used in the training stage of neural networks and
sometimes in the inference stage, depending on the specific application. The
cost of purchasing or renting GPUs (in the cloud) can be the limiting factor
in the training of models.

Other specialized hardware, such as Google’s Tensor Processing Unit (TPU),
has been developed to support neural networks. Deep learning libraries,
such as PyTorch and TensorFlow typically come with support for (multiple)
GPUs and TPUs built-in.

Machine learning systems

Models are usually just a single, small part of real-world machine learning
systems. A typical ML system that runs “in production” will include:

• Tools and infrastructure for the sourcing, storing, labeling, managing,
and maintaining of training data.

²¹https://pytorch.org
²²https://www.tensorflow.org/

https://pytorch.org/
https://www.tensorflow.org/
https://pytorch.org/
https://www.tensorflow.org/

Advanced techniques and practical considerations 154

• Tools and infrastructure for training, experimenting, and managing
and tracking experiments.

• Tools and infrastructure for serving predictions andmanaging produc-
tion models.

• Tools and infrastructure for monitoring predictions and production
models.

A real-world ML system needs to be designed to not only make good
predictions, but also be maintainable and upgradable. The first version of
the model is almost never the last version. Even with a “perfect model”
running today, the goal of the system is likely to evolve and the data itself
is likely to shift over time.

Building and/or orchestrating all of these pieces fall under the umbrellas
of machine learning engineering (MLE) and machine learning operations
(MLOps).

Some other considerations for the design of ML systems include how and
where models will be deployed (and sometimes trained). If a model needs
to run in real time on a device, for example, the system will need to be
optimized to be small and fast, sometimes for specific “edge” hardware.
There is an array of techniques for making networks smaller and less
resource intensive, such as “pruning”, “quantization”, and “distillation”.

Further factors when designing models and ML systems involve considera-
tions such as privacy, regulatory compliance, fairness, and other constraints
or objectives.

Some resources on machine learning engineering, systems, and operations:

• D. Sculley et al, “Machine Learning: The High Interest Credit Card
of Technical Debt”, 2014, https://research.google/pubs/pub43146/²³

• Shreya Shankar et al, “Operationalizing Machine Learning: An Inter-
view Study”, 2022, https://arxiv.org/abs/2209.09125²⁴

²³https://research.google/pubs/pub43146/
²⁴https://arxiv.org/abs/2209.09125

https://research.google/pubs/pub43146/
https://arxiv.org/abs/2209.09125
https://research.google/pubs/pub43146/
https://arxiv.org/abs/2209.09125

Advanced techniques and practical considerations 155

Wrapping up

The history of neural networks is a long and filled with booms and busts. By
all indications, though, “this time is different”. The deep learning era kicked
off in the early 2010s has arguably brought more innovation and, crucially,
more value than any of the previous eras of neural networks or artificial
intelligence.

This book’s goal is to give the reader a conceptual overview of deep learning,
touching on the most import concepts and topics, as well as diving deeper
into some of the most important technical aspects. Hopefully the book
succeeded in helping you gain a more complete understanding of how
everything fits together and provided you with some good jumping off
points for further learning.

The breakneck pace of innovation in deep learning means that it’s more
difficult than ever to keep up with the latest techniques and technologies²⁵.
Hopefully this book has made it easier for you to at least understand the big
picture of deep learning and how the latest techniques fit in, if not actually
understand the technical aspects of those techniques.

I am sure that we are in for many more interesting developments. Please be
on the lookout for additional books in the Zefs Guides series!

²⁵During the writing of this book in the first half of 2022 I had only intended to include diffusion as a
bullet point in a list, but due to the sudden explosion interest in diffusion-based models in the second half
of 2022 I decided it warranted inclusion. Things move quickly!

	Table of Contents
	Acknowledgments
	Introduction
	Why deep learning?
	Why this book?
	What does this book cover and not cover?
	How to use this book

	Machine Learning
	What is machine learning?
	Types of machine learning tasks and solutions
	Regression
	Classification
	Supervised learning
	Unsupervised learning
	Self-supervised learning
	Reinforcement learning

	An example task
	Predicting real estate sales prices

	Formulating machine learning problems
	Data sets and features
	Measuring performance
	Performance baselines and success thresholds

	Model selection
	Model training
	Supervised learning
	Unsupervised learning
	Loss functions
	Parameter optimization
	Generalization and overfitting
	Avoiding overfitting
	Hyperparameters

	Productionization
	Common issues
	Common machine learning models
	From ``traditional'' ML to deep learning
	References

	Neural Networks
	What is a neural network?
	What are some tasks that neural networks can accomplish?
	The building blocks of neural networks
	Activation functions
	Neural network layers
	Connections, weights, and biases
	Learning via gradient descent
	Output layers

	What does a neural network do?
	From basic neural networks to deep learning
	Resources

	The rise of deep learning
	Moving to deep neural networks
	What made deep neural networks possible?

	Where are we now with deep learning?

	Computer vision and convolutional neural networks
	Computers and images
	Computer vision tasks
	Traditional computer vision

	What's hard about computer vision tasks?
	Convolutional neural networks
	Convolutions
	Filter size, strides, padding, and pooling
	A basic CNN architecture

	Some important CNN model architectures for computer vision tasks
	AlexNet
	ResNet
	U-Net for semantic segmentation
	YOLO for object detection
	Image generation with GANs

	Common CNN techniques
	Regularization
	Data augmentation
	Batch normalization
	Gradient descent algorithms
	Transfer learning

	Summary and resources

	Natural language processing and sequential data techniques
	Text, natural language, and sequential data
	Types of sequential tasks
	Traditional approaches

	Making a neural network remember
	The recurrent neural network

	Creating context with embeddings
	Embeddings

	Architectures for sequential tasks
	Gated recurrent units
	Long short-term memory
	Attention
	Transformers
	Applications and Transformer based architectures

	Summary and resources

	Advanced techniques and practical considerations
	Combining vision and language
	Image captioning
	Joint embeddings
	Diffusion models

	Self-supervised learning
	Image-based techniques
	Contrastive learning

	Math topics related to deep learning
	Linear algebra
	Statistics and probability
	Differential calculus

	Machine learning engineering
	Deep learning libraries
	Graphical processing units and specialized hardware
	Machine learning systems

	Wrapping up

