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Preface 

The subject of this book is the structure of space-t ime on length
scales from 10-13 cm, the radiu s  of an elementary part icle , up to 
1028 cm,  the radius of the universe . For reason s explained in 
chapters 1 and 3, we base our treat ment on Einstein's General 
Theory of Relativity. This theory leads to two remarkable pre
dictions about the universe : fi rst, that the final fate of massive 
st ars is to collapse behind an event horizon to form a ' black hole ' 
which will contain a singularity ; and secondly, that there is a 
singularity in our past which constitut es, in some sense , a begin
ning to the universe . Ou r discussion is principally aimed at developing 
these two results . They depend primarily on t wo areas of study : fi rst, 
the theory of the behaviour of families of timelik e  and null curves in 
space- time, and secondl y, the study of the nature of t he vario us 
causa l  relations in any space-time . We consider these subjects in 
detail . In addition we develop t he theory of the time-development 
of solutions of Einst ein's eq uat ions from given initial data. The dis
cussion is supplement ed by an examination of global properties of 
a variet y  of exact solutions of Einstein' s  fi eld equations, many of 
which show some rather unexpected behaviour. 

This book is based in part on an Adams Prize Essay by one of us 
(S .  W. H.). Many of the ideas presented here are due t o  R. Penrose 
and R. P. Geroch, and we thank them for their help . We would refer 
our readers t o  their review a rt icles in the Battelle Rencontres (Penrose 
( 1 968 ) ) ,  Midwest Relat iv ity Conference Report (Geroch ( 1 970c ) ) ,  
Varenna Summer School Proceedings ( Gero ch ( 1 97 1 ) ), and Pit tsburgh 
Conference Report (Penrose ( 1 972b ) ) .  We have benefit ed from dis
cussions and suggestions from many of our collea gues, pa rticularly 
B. Ca rter and D. W. Sciama. Our thanks are due to them als o . 

Cambridge 

January 1 973 
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S. W. Hawking 
G. F. R. E llis 





1 
The role of gravity 

The view of physics that is most generally accepted at the moment is 
that one can divide the discussion of the universe into two parts . First, 
there is the question of the local laws satisfied by the various physical 
fields. These are usually expressed in the form of differential equations . 
Secondly, there is the problem of the boundary conditions for these 
equations, and the global nature of their solutions. This involves 
thinking about the edge of space- time in some sense . These two parts 
may not be independent. Indeed it has been held that the local laws 
are determined by the large scale structure of the universe . This view 
is generally connected with the name of Mach, and has more recently 
been developed by Dirac ( 1 938) ,  Sciama ( 1 953) ,  Dicke ( 1 964) , Hoyle 
and Narlikar ( 1 964) ,  and others . We shall adopt a less ambitious 
approach : we shall take the local physical laws that have been experi
mentally determined, and shall see what these laws imply about the 
large scale structure of the universe . 

There is of course a large extrapolation in the assumption that the 
physical laws one determines in the laborator y  should apply at other 
points of space-time where conditions may be very different . If they 
failed to hold we should take the view that there was some other 
physical field which entered into the local physical laws but whose 
existence had not yet been detected in our experiments, because it 
varies very little over a region such as the solar system. In fact most of 
our results will be independent of the detailed nature of the physical 
laws, but will merely involve certain general properties such as the 
description of space-time b y  a pseudo-Riemannian geometry and the 
positive definiteness of enu gy dens ity. 

The fundamental interactions at present known to physics can be 
divided into four classes : the strong and weak nuclear interactions, 
electromagnetism, and gravity. Of these, gravity is by far the weakest 
(the ratio Gm2/e2 of the gravitational to electric force between two 
electrons is about 1 0-40) .  Nevertheless it plays the dominant role in 
shaping the large scale structure of the universe . This is because the 
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strong and weak interactions have a very short range (- 10-13 cm or 
less ) ,  and although electromagnetism is a long range interaction , the 
repulsion of like charges is very nearly balanced, for bodies of macro
scopic dimensions, by the attraction of opposite charges. Gravity on 
the other hand appears to be always attractive. Thus the gravitational 
fields of all the particles in a body add up to produce a field which, for 
sufficiently large bodies, dominates over all other forces . 

Not only is gravity the dominant force on a large scale, but it is a 
force which affects every particle in the same way. This universality 
was first recognized by Galileo, who found that any two bodies fell 
with the same velocity. This has been verified to very high precision 
in more recent experiments by Eotvos, and by Dicke and his collabo
rators (Dicke ( 1 964) ) .  It has also been observed that light is deflected 
by gravitational fields. Since it is thought that no signals can travel 
faster than light, this means that gravity determines the causal 
structure of the universe, i .e .  it determines which events of space-time 
can be causally related to each other. 

These properties of gravity lead to severe problems, for if a suffi
ciently large amount of matter were concentrated in some region, it 
could deflect light going out from the region so much that it was in fact 
dragged back inwards. This was recognized in 1 798 by Laplace, who 
pointed out that a body of about the same density as the sun but 
2 50 times its radius would exert such a strong gravitational field that 
no light could escape from its surface . That this should have been 
predicted so early is so striking that we give a translation of La place 's 
essay in an appendix. 

One can express the dragging back of light by a massive body more 
precisely using Penrose's idea of a closed trapped surface . Consider 
a sphere ff surrounding the body. At some instant let :T emit a flash 
of light. At some later time t, the ingoing and outgoing wave fronts 
from ff will form spheres s;_ and 9; respectively. In a normal situa
tion, the area of s;_ will be less than that of ff (because it represents 
ingoing light) and the area of 9; will be greater than that of ff 
(because it represents outgoing light ; see figure 1 ) .  However if a suffi
ciently large amount of matter is enclosed within ff, the areas of s;_ 
and 9; will both be less than that of ff. The surface ff is then said to 
be a closed trapped surface. As t increases, the area of 9; will get 
smaller and smaller provided that gravity remains attractive, i . e .  pro
vided that the energy density of the matter does not become negative . 
S ince the matter inside ff cannot travel faster than light, it will be 
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trapped within a region whose boundary decreases to zero within a 
finite time. This suggests that something goes badly wrong. We shall 
in fact show that in such a situation a space-time singularity must 
occur, if certain reasonable conditions hold. 

One can think of a singularity as a place where our present laws of 
phy sics break down. Al ternatively, one can think of it as representing 
part of the edge of space- time, but a part w hich is at a finite distance 
instead of at infinity. On this v iew, singularities are not so bad, but one 
still has the problem of the boundary conditions . In other words, one 
does not know what will come out of the singularity. 

FIGURE 1. At some instant, the sphere ff emits a flash of light. At a later time, 
the light from a point p forms a sphere!/' aronnd p, and the envelopes ff 1 and 
ff1 form the ingoing and outgoing wavefronts respectively. If the areas of both 
ff1 and ff1 are less than the area of ff, then ff is a closed trapped surface. 

There are two situations in which we expect there to be a sufficient 
concentration of matter to cause a closed trapped surface. The first is 
in the gravitational collapse of stars of more than twice the mass of 
the sun, which is predicted to occur when they have exhausted their 
nuclear fuel . In this situation, we expect the star to collapse to a singu
larity which is not v isible to outside observers. The second situation is 
that of the whole universe itself. Recent observations of the microwave 
b ackground indicate that the universe contains enough matter to 
cause a time-reversed closed trapped surface . This implies the exist
ence of a singularity in the past, at the beginning of the present epoch 
of expansion of the u niv erse. This singularity is in principle visible to 
us. It mig ht be interpreted as the b eginning of the universe . 
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In  this book WP. shall study the large scale structure of space-time 
on the basis of Einstein' s  General Theory of Relativity. The predic
tions of this theory are in agreement with all the experiments so far 
perform ed. However our treatment will be suffici ently gener al to cover 
modificat ions of Eins tein's theory such as the Brans-Dicke theory. 

While we expect that most of our readers will have some acquain
tance with General Relativity, we have endeavoured to write this 
book so that it is self-contained apart from requiring a knowledge of 
simple calculus, algebra and point set topology. We have therefore 
devoted chapter 2 to differential geometry. Our treatment is reason
ably modern i n  that we have formulated our definitions in a manifestly 
coordinate independent manner. However for computational con
venience we do use indices at times, and we have for the most part 
avoided the use of fibre bundles. The reader with some knowledge of 
differential geometry may wish to skip this chapter. 

In chapter 3 a formulation of the General Theory of Relativity is 
given i n  terms of three postulates about a mathematical model for 
space-time. This model is a manif old JI with a metric g of Lorentz 
signature. The physical significance of the metric is given by the first 
two postulates : those of local causality and of local conservation of 
energy-momentum. These postulates are common to both the General 
and the Special Theori es of Relativity, and so are supported by the 
experimental evidence for the latter theory. The third postulate, the 
field equations for the metric g, is less well experimentally established. 
However most of our results will depend only on the property of the 
field equations that gravity is attractive for positive matter densities . 
This property is common to General Relativity and some modifications 
such as the Brans-Dicke theory. 

In chapter 4, we di scuss the significance of curvature by consideri ng 
its effec ts on fami lies of timelike and null geodesics . These represent 
the paths of small particles and of light rays respecti vely. The curva
ture can be interpreted as a differential or tidal force which induces 
relative accelerations between neighbouring geodesics. If the energy
momentum tensor satisfies certain positive definite conditions, this 
differential force always has a net c onverging effect on non-rotating 
families of geode sics. One can show by use ofRaychaudhuri 's  equ ation 
(4 .26)  that this then leads to focal or conjugate points where neigh
bouring geodesics intersect. 

To see the significance of these focal points, consider a one-dimen
sional surface .9 in two-dimensional Euclidean space (figure 2 ) .  Let p 
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be a point not on9'. Then there will be some curve from9' to p which 
is shorter than, or as short as, any other curve from 9' to p. Clearly 
this curve will be a geodesic, i .e .  a straight line, and will intersect 9' 
orthogonally. In the situation shown in figure 2 ,  there are in fact three 
geodesics orthogonal to9' which pass through p. The geodesic through 
the point r is clearly not the shortest curve from 9' to p.  One way of 
recognizing this (Milnor ( 1 963) )  is to notice that the neighbouring 

x y 

u 
r 

FIGURE 2. The line pr cannot be the shortest line from p to 9', because there is 
a focal point q between p and r. In fact either px or py will be the shortest line 
fromp to .9'. 

geodesics orthogonal to 9' through u and v intersect the geodesic 
through r at a focal point q between9' and p. Then joining the segment 
uq to the segment qp, one could obtain a curve from9' to p which had 
the same length as a straight line rp. However as uqp is not a straight 
line, one could round off the corner at q to obtain a curve from9' to p 
which was shorter than rp. This shows that rp is not the shortest curve 
from 9' to p.  In fact the shortest curve will be either xp or y p. 

One can carry these ideas over to the four-dimensional space-time 
manifold JI with the Lorentz metric g. Instead of straight lines, one 
considers geodesics, and instead of considering the shortest curve one 
considers the longest timelike curve between a point p and a spacelike 
surface 9' (because of the Lorentz signature of the metric, there will 
be no shortest timelike curve but there may be a longest such curve) .  
This longest curve must be  a geodesic which intersects9' orthogonally, 
and there can be no focal point of geodesics orthogonal to 9' between 
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9' a nd p .  Simila r  results ca n be  proved for null geodesics. These results 
a re used in cha pter 8 to esta blish the existence of singula rities u nder 
certa in conditions. 

In cha pter 5 we describe a number of exa ct solutions of Einstein's 
equa tions. These solutions a re not rea listic in tha t  they a ll possess 
exa ct symmetries. However they provide useful exa mples for the suc
ceeding cha pters a nd illustra te va rious possible beha viours. In 
pa rticula r, the highly s ymmetrica l  cosmologica l  models nea rly a ll 
possess spa ce-time singula rities . For a long time it wa s thought tha t  
these singula rities might be simply a result of the high degree of 
symmetry, a nd would not be present in more rea listic models. It will 
be one of our ma in objects to show tha t  this is not the ca se . 

In cha pter 6 we study the ca usa l  structure of spa ce-time. In Specia l  
Rela tivity, the events tha t  a given event ca n be ca usa lly a ffected by, 
or can ca usa lly a ffect, a re the interiors of the pa st a nd future light 
cones respectively (see figure 3 ) .  H owever in Genera l  Rela tivity the 
metric g which determines the light cones will in genera l  va ry from 
point to point, a nd the topology of the spa ce-time ma nifold .,It need 
not be tha t  of Euclidea n  spa ce R4• This a llows ma ny more possibilities. 
F or insta nce one ca n identify corresponding points on the surfa ces 
9' 1 a nd 9' 2 in figure 3,  to produce a spa ce-time with topology R3 x 81• 
This would conta in closed ti melike curves. The existence of such a 
curve would lea d to ca usa lity brea kdowns in tha t  one could tra vel into 
one's pa st. We sha ll mostly consider only spa ce-times which do not 
permit such ca usa lity viola tions. In such a spa ce-time, given a ny 
spa celike surfa ce 9', there is a ma ximal region of spa ce-time (ca lled 
the Ca uchy development of 9') whi ch ca n be predicted from knowledge 
of da ta on 9'. A Ca uchy development ha s a property ( ' Globa l  hyper
bolicity ' )  which implies tha t  if two points in it ca n be joined by a time
like curve, then there exists a longest su ch curve between the points . 
This curve will be a geodesic. 

The ca usa l  structure of spa ce-time ca n be used to define a bounda ry 
or edge to spa ce-time. This bounda ry represents both infin ity a nd the 
pa rt of the edge of spa ce-time which is a t  a finite dista nce, i .e .  the 
singula r  points . 

In cha pter 7 we discuss the Ca uchy problem for Genera l  Rela tivity. 
We show tha t  initia l  da ta on a spa celike surfa ce determines a unique 
solution on the Ca uchy development of the surface, a nd tha t  in a 
certa in sense this solution depends continuously on the initia l  da ta . 
This cha pter is included for completeness and beca use it uses a number 
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Future light cone 

Time 

J--.�00 
Space 

Past light cone 

FIGURE 3. In Special Relativity, the light cone of an event p is the set of all 
light rays through p. The past of p is the interior of the past light cone, and the 
future of p is the interior of the future light cone. 

of results of the previous cha pter. H owever it is not necessa ry to rea d 
it in order to understa nd the following cha pters. 

In cha pter 8 we discuss the definition of spa ce-time singula rities . 
This presents certa in difficulties beca use one ca nnot rega rd the singula r  
points a s  being pa rt of the spa ce-time ma nifold ...It. 

We then prove fou r theorems which esta blish the occurrence of 
spa ce-time singula rities under certa in conditions .  These conditions 
fa ll into three ca tegor ies. First, there is the requirement tha t gra vity 
sha ll be a ttra ctive . This ca n be expressed a s  a n  inequa lity on the 
energy-momentum tensor. Secondly, there is the requirement tha t  
there is enough ma tter present in some region to prevent a nything 
esca ping from tha t  region. This will occu r  if there is a closed tra pped 



8 T H E  R O L E  O F  G R A V I TY 

surface, or if the whole universe is itself spatially closed . The third 
requirement is that there should be no causality violations .  However 
this requirement is not necessary in one of the theorems. The basic 
idea of the proofs is to use the results of chapter 6 to prove there must 
be longest timelike curves between certain pairs of points . One then 
shows that if there were no singularities, there would be focal points 
which would imply that there were no longest curves between the pairs 
of points . 

We next describe a procedure suggested by Schmidt for constructing 
a boundary to space-time which represents the singular points of 
space-time. This boundary may be different from that part of the 
causal boundary (defined in chapter 6) which represents singularities. 

In chapter 9,  we show that the second condition of theorem 2 of 
chapter 8 should be satisfied near stars of more than 1! times the solar 
mass in the final stages of their evolution. The singularities which occur 
are probably hidden behind an event horizon, and so are not visible 
from outside . To an external observer, there appears to be a 'black 
hole ' where the star once was. We discuss the properties of such black 
holes ,  and show that they probably settle down finally to one of the 
Kerr family of solutions . Assuming this to be the case, one can place 
certain upper bounds on the amount of energy which can be extracted 
from black holes . In chapter 1 0  we show that the second conditions of 
theorems 2 and 3 of chapter 8 should be satisfied, in a time-reversed 
sense , in the whole universe . In this case, the singularities are in our 
past and constitute a beginning for all or part of the observed universe. 

The essential part of the introductory material is that in § 3 . 1 ,  § 3 . 2  
and § 3 .4 .  A reader wishing to  understand the theorems predicting the 
existence of singularities in the universe need read further only chap
ter 4, § 6 . 2-§ 6 . 7 ,  and § 8 . 1 and § 8 . 2 .  The application of these theorems 
to collapsing stars follows in § 9 . 1 (which uses the results of appen
dix B ) ;  the application to the universe as a whole is given in § 1 0 . 1 ,  and 
relies on an understanding of the Robertson-Walker universe models 
( §  5 . 3 ) .  Our discussion of the nature of the singularities is contained 
in § 8 . 1 ,  § 8 . 3-§ 8 .5 ,  and § 10 . 2 ;  the example of Taub-NUT space ( §  5 . 8 )  
plays an important part in  this discussion, and the Bianchi I universe 
model ( §  5 .4 )  is also of some interest . 

A reader wishing to follow our discussion of black holes need read 
only chapter 4, § 6.2-§ 6 .6 ,  § 6 . 9, and § 9 . 1 ,  § 9 . 2  and § 9 .3 .  This discus
sion relies on an understanding of the Schwarzschild solution ( § 5 . 5 )  
and of  the Kerr solution ( § 5 . 6 ) .  
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Fina lly a rea der whose ma in interest is in the time evolution 
properties of Einstein's equa tions need rea d only § 6 . 2-§ 6 .6  a nd 
cha pter 7 .  He will find interesting exa mples given in § 5 . 1 ,  § 5 . 2  a nd 
§ 5.5 .  

We ha ve endea voured to ma ke the index a useful guide to a ll the 
definitions introduced, a nd the rela tions between them. 



2 
Differential geometry 

The spa ce-time structure discussed in the next cha pter, a nd a ssumed 
through the rest of this book, is tha t of a ma nifold with a Lorentz 
metric a nd a ssocia ted a ffine connection. 

In this cha pter, we introduce in § 2 . 1 the concept of a ma nifold a nd 
in § 2 . 2  vectors a nd tensors, which a re the na tura l  geometric objects 
defined on the ma nifold. A discussion of ma ps of ma nifolds in § 2 . 3  
lea ds to  the definitions of  the induced ma ps of  tensors, a nd of sub
ma nifolds . The deriva tive of the induced ma ps defined by a vector 
field gives the Lie deriva tive defined in § 2 . 4 ;  a nother differentia l 
opera tion which depends only on the ma nifold structure is exterior 
differentia tion, a lso defined in tha t  section . This opera tion occurs in 
the genera lized form of Stokes' theorem. 

An extra structure, the connection, is introduced in § 2 . 5 ;  this 
defines the cova ria nt deriva tive a nd the curva ture tensor. The connec
tion is rela ted to the metric on the ma nifold in § 2 . 6 ;  the curva ture 
tensor is decomposed into the Weyl tensor a nd Ricci tensor, which a re 
rela ted to ea ch other by the Bia nchi identities . 

In the rest of the cha pter, a number of other topics in differentia l 
geometry a re discussed . The induced metric a nd connection on a 
hypersurface a re discussed in § 2 .  7 ,  a nd the Ga uss-Coda cci rela tions 
a re derived. The volume element defined by the metric is introduced 
in § 2 .8 ,  a nd used to prove Ga uss' theorem. Fina lly, we give a brief 
discussion in § 2. 9 of fibre bundles , with pa rticula r  empha sis on the 
ta ngent bundle a nd the bundles of linea r  a nd orthonorma l fra mes. 
These ena ble ma ny of the concepts introduced ea rlier to be reformu
la ted in a n  elega nt geometrica l  wa y. § 2 .  7 a nd § 2 .  9 a re used only a t  
one or two points la ter, a nd a re not essentia l  to the ma in body of the 
book. 

[ 10] 
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2.1 Manifolds 

A ma nifold is essentia lly a spa ce which is loca lly simila r  to Euclidea n  
spa ce in tha t it ca n be covered by coordina te pa tches. This structure 
permits differentia tion to be defined, but does not distinguish intrin
sica lly between different coordina te systems. Thus the only concepts 
defined by the ma nifold structure a re those which a re independe nt of 
the choice of a coordina te system. We will give a precise formu la tion 
of the concept of a ma nifold, a fter some prelimina ry definitions. 

Let Rn denote the Euclidean space of n dimensions, tha t  is, the set 
of a ll n-tuples (x1, x2, ... , xn) ( - oo < xi < oo) with the usua l  topology 
(open a nd closed sets a re defined in the usua l  wa y) ,  a nd let !Rn denote 
the ' lower ha lf ' of Rn, i .e .  the region of Rn for which x1 :;;; 0. A ma p</> of 
a n  open set <Pc Rn ( respectively !Rn) to a n  open set <P' c Rm (respec
tively !Rm) is sa id to be of cla ss Gr if the coordina tes (x'1, x'2, ... , x'm) of 
the ima ge point <f>(p) in <P' a re r-times continuously differentia ble 
functions (the rth deriva tives exist a nd a re continuous) of the co
ordina tes (x1, x2, ... , xn) of p in <P. If a ma p is Gr for a ll r ;;J!: 0, then it is 
sa id to be 000• By a 0° ma p, we mea n  a continuous ma p.  

A function / on a n  open set <P of Rn is sa id to be loca lly Lipschitz if 
for ea ch open set O/t c <P with compa ct closure, there is some consta nt 
K such tha t  for ea ch pa ir of points p, q E O/t, lf(p)-/(q)I:;;; K Ip-qi, 
where by IPJ we mea n  

{(xl(p) )2+ (x2(p) )2+ ... + (xn(p))2}l. 

A ma p</> will be sa id to be loca lly Lipschitz , denoted by 01-, if the 
coordina tes of </>(p) a re loca lly Lipschitz functions of the coordina tes 
of p. Simila rly, we sha ll sa y tha t  a ma p </> is er- if it is cr-1 a nd if the 
(r - 1 )th deriva tives of the coordina tes of <f>(p) a re loca lly Lipschitz 
functions of the coordina tes of p. In the following we sha ll usua lly only 
mention er, but simila r  definitions a nd results hold for er-. 

If f!lJ is a n  a rbitra ry set in Rn (respectively !Rn) , a ma p</> from f!lJ to 
a set f!/J' c Rm (respectively !Rm) is sa id to be a Gr ma p if</> is the 
restriction to f!lJ a nd f!/J' of a Gr ma p from a n  open set <P conta ining f!/J 
to a n  open set <P' conta ining f!/J'. 

A Gr n-dimensional manifold .A is a set .A together with a Or atlas 
{O//a: ,  </> a:} ,  that is to sa y a collection of cha rts (O//a: ,  </> a: ) where the O//a: a re 
subsets of .A a nd the </> a:  a re one-one ma ps of the corresponding O//a: to 
open sets in Rn such tha t  

( 1 )  the O//a: cover .A, i .e  . .A = U O//a: ,  
GI 
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(2 )  if%'"' n 'Wp is non-empty, then the ma p 

<Pee 0 </Jp-1: </Jp(%'"' n 'Wp) �<face(%'"' n 'Wp) 
is a Or ma p of a n  open s ubset of Rn to a n  open s ubset of Rn (see figure 4) .  

Ea ch%'"' i s  a local coordinate neignbourhood with the loca l  coordina tes 
x4 (a = 1 to n) defined by the ma p <Pee ( i .e .  ifp E'W"', then the coordina tes 
of p a re the coordina tes of <Pee (p) in Rn) .  Condition ( 2)  is the requirement 
tha t  in the overla p  of two loca l  coordina te neighbourhoods, the 
coordina tes in one neighbourhood a re Or functions of the coordina tes 
in the other neighbourhood, a nd vice versa . 

FIGURE 4. In the overlap of coordinate neighbourhoods%'"' and o/I P• coordinates 
are related by a c• map rf>ccorf>p-1• 

Another a tla s  is sa id to be compatible with a given er a tla s  if their 
union is a Or a tla s for a ll JI. The a tla s consisting of a ll a tla ses com
pa tible with the given a tla s is ca lled the complete atlas of the ma nifold ; 
the complete a tla s is therefore the set of a ll possible coordina te 
s ystems covering JI. 

The topology of JI is defined by sta ting tha t  the open sets of JI 
cons ist of unions of sets of the form %'"' belonging to the complete a tla s . 
This topology ma kes ea ch ma p <Pee into a homeomorphism. 

A er differentia ble ma nifold with bounda ry is defined a s  a bov e,  on 
repla cing 'Rn ' by ' !Rn ' .  Then the boundary of JI, denoted by oJI, is 
defined to be the set ofa ll points of JI whose ima ge under a ma p <Pee lies 
on the bou nda ry of !Rn in Rn . oJI is a n  ( n - 1 )-dimens iona l  Or ma nifold 
withou t bounda ry. 
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These definitions ma y seem more complica ted tha n necessa ry. How
ever simple exa mples show tha t  one will in genera l  need more tha n  one 
coordina te neighbourhood to describe a spa ce .  The two-dimensional 
Euclidean plane R2 is clea rly a ma nifol d. Recta ngula r  coordina tes 
(x, y; -00 < x < 00, -00 < y < oo) cov er the whole pla ne in one 
coordina te neighbourhood, where <P is the identity. Pola r  coordina tes 
(r, O )  cover the coordina te neighbourhood (r > 0, 0 < 0 < 211 ) ;  one 
needs a t  lea st two such coordina te neighbourhoods to cover R2• The 
two-dimensional cylinder C2 is the ma nifold obta ined from R2 by identi
fying the points (x, y) a nd (x + 211 , y) .  Then (x, y) a re coordina tes in 
a neighbourhood (0  < x < 211 , - oo  < y < oo) a nd one needs two 
such coordina te neighbourhoods to cover C2• The Mobius strip is the 
ma nifold obta ined in a simila r  wa y on identifying the points (x, y) a nd 
(x + 211 , - y) . The unit two-sphere S2 ca n be cha ra cterized a s  the surfa ce 
in R3 defined by the equa tion (x1)2 + (x2)2 + (x3)2 = 1 .  Then 

(x2, x3; - 1  < x2 < 1 ,  - 1  < x3 < 1 )  

a re coordina tes in ea ch of the regions x1 > 0, x1 < 0, a nd one needs six 
such coordina te neighbourhoods to cover the surfa ce.  In fa ct, it is not 
possible to cover 82 by a single coordina te neighbourhood. The 
n-sphere sn ca n be simila rly defined a s  the se t of points 

(xl )2 + (x2)2 + . . .  + (xn+l )2 = 1 
in Rn+l. 

A ma nifold is sa id to be orientable if there is a n  a tla s {� ... <fa .. } in th e 
complete a tla s such tha t  in every non-empty intersection� .. n �P• the 
Ja cobia n  l oxifox'il is positive, where (x1 , . . .  , xn) a nd (x'1 , . . .  , x'n) a re 
coordina tes in� .. a nd �P respectively. The Mobius strip is a n  example 
of a non-orienta ble ma nifold. 

The definition of a ma nifold given so fa r  is very general . F or most 
purposes one will impose two further conditions, tha t  .,It is Ha usdorff 
a nd tha t  .,It is pa ra compa ct, which will ensure rea sona ble loca l  
beha viour. 

A topologica l  spa ce .,It is sa id to be a Hausdor ff space if it sa tisfies 
the Ha usdorff sepa ra tion a xiom: whenever p, q a re two distinct points 
in Jt, there exist disjoint open sets � ,  "//' in .,It such tha t  p E � ,  q E "//'. 
O ne might think tha t  a ma nifold is necessa rily Ha usdorff, but this is 
not so. Consider, for exa mple, the situa tion in figure 5 .  We identify the 
points b, b' on the two lines if a nd only if xb = Yb· < 0. Then ea ch point 
is conta ined in a (coordina te)  neighbourhood homeomorphic to a n  
open su bset of R1• However there a re no disjoint open neighbourhoods 
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b (/ 

b' a' 

FIGURE 5. An example of a non-Hausdorff manifold. The two lines above are 
identical for x = y < 0. However the two points a (x = 0) and a' (y = 0) are 
not identified. 

0//, "Y sa tisfying the conditions a E 0//, a' E "Y, where a is the point x = 0 
a nd a' is the point y = 0 .  

An a tlas {O//a, <Pa} is said to be locally finite if every point p E JI ha s 
a n  open neighbourhood which intersects only a finite number of the 
sets O/la. JI is sa id to be paracompact if for every a tla s {O//a, <Pa} there 
exists a loca lly finite a tla s {'ip, ifr p} with ea ch '1p conta ined in some O/la. 
A connected Ha usdorff ma nifold is pa ra compact if and only if it ha s 
a counta ble ba sis, i .e .  there is a counta ble collection of open sets such 
tha t  a ny open set ca n be expressed a s  the union of members of this 
collection (Koba ya shi a nd Nomizu ( 1 963) ,  p. 27 1 ) . 

Unless otherwise sta ted, all manifolds considered will be paracompact , 
connected 000 H ausdor ff manifolds without boundary. It will turn out 
later tha t  when we ha ve imposed some a dditional structure on JI (the 
existence of a n  a ffine connection, see § 2 .4 )  the requirement of para
compa ctness will be a utoma tica lly sa tisfied because of the other 
restrictions. 

Afunctionf on a Qk ma nifold JI is a ma p from Jl to R1• It is said to 
be of class Qr (r � k) a t  a point p of JI, if the expression / o <Pa-1 off on 
a ny local coordina te neighbourhood 0// a is a Qr function of the loca l  
coordina tes a t  p ;  a nd f is sa id to be a Qr function on a set "Y of JI if 
f is a Qr function a t  ea ch point p E "Y .  

A property of pa ra compa ct ma nifolds we will use later, is the fol
lowing : gi"v en a ny locally finite a tla s  {O//a, <Pa} on a para compact Qk 
ma nifold, one can a lwa ys (see e.g.  Koba yashi and Nomizu ( 1 963) ,  
p .  272)  find a set of Qk functions Ya such tha t  

( 1 )  0 �Ya � 1 on JI, for ea ch a; 
(2) the support of Ya• i.e. the closure of the set {p E JI: Ya(P) =!= O}, is 

contained in the corresponding O/la; 
(3 )  � y"(p) = 1 ,  for a ll p E ..A'. a 
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Such a set of functions will b e  ca lled a partition of unity. The result 
is in pa rticula r  true for C00 functions, but is clea rly not true for a na lytic 
functions (a n a na lytic function ca n be expressed a s  a convergent 
power series in some neighbourhood of ea ch point p E JI, a nd so is zero 
everywhere if it is zero on a ny open neighbourhood) .  

Fina lly, the Cartesian product d x f1i of  ma nifolds d,  f1i i s  a ma ni
fold with a na tura l  structure defined by the ma nifold structures of 
d, f!i: for a rbitra ry points pEd, qEffi , there exist coordina te neigh
bourhoods 0//, "I'" conta iningp, q respectively, so the point (p, q) Ed xffi 
is conta ined in the coordina te neighbourhood O/t x "I'" in d x f1i which 
a ssigns to it the coordina tes (xi, y;} ,  where xi a re the coordina tes of p 
in O/t a nd yi a re the coordina tes of q in "I'". 

2.2 Vectors and tensors 

Tensor fields a re the set of geometric objects on a ma nifold defined in 
a na tura l wa y by the ma nifold structure . A tensor field is equiva lent 
to a tensor defined a t  ea ch point of the ma nifold, so we first define 
tensors a t  a point of the ma nifold, sta rting from the ba sic concept of 
a vector a t  a point. 

A Ck curve i\(t) in JI is a Ck ma p of a n  interva l  of the rea l  line R1 into 
JI. The vector (contra va ria nt vector) (o/oth.110 ta ngent to the C1 curve 
i\(t) a t  the point i\(t0) is the opera tor which ma ps ea ch C1 function fa t 
i\(t0} into the n umber (of/oth.I 10; tha t  is, (of/oth. is the deriva tive off in 
the direction of i\(t) with respect to the pa ra meter t .  Explicitly, 

(°!) I = lim �{f(i\(t + s) ) -/(i\(t ) )} . 
Uh A.I s-+08 

The curve pa ra meter t clea rly obeys the rela tion (o/oth_t = 1 . 
If (x1, . . •  , xn) a re local coordina tes in a n eighbourhood of p, 

(�) I = � dx;(i\(t ) ) I of I = 
dx; of I ot ,\ lo i=l dt l=lo. OX; A.(lol dt OX; A.(lo). 

(2 . 1 )  

(Here a nd throughout this book, w e  a dopt the summation convention 
whereby a repea ted index implies summa tion over a ll va lues of tha t  
index. )  Thus every ta ngent vector a t  a point p ca n be expressed a s  
a linea r  combina tion of the coordina te deriva tives 

(o/ox1) lp •  . . •  , (o/oxn) IP . 
Conversely, given a linea r  combina tion Vi( of ox;) Ip of these opera tors, 
w here the y; a re a ny nu mbers, consider the curve i\(t) defined by 
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xi(.A(t)) = xi(p) +tVi, for t in  some interva l  [ - e, e] ; the tangent vector 
to this curve a t  p is Vi(Ofoxi)IP. Thus the ta ngent vectors at p form 
a vector spa ce over R1 spa nned by the coordina te derivatives (o/oxi)IP, 
where the vector spa ce structure is defined by the rela tion 

(aX + fJY )f = a(Xf)+fl( Yf) 

which is to hold for a ll vectors X ,  Y ,  numbers a, fJ a nd functions f. 
The vectors (o/oxi)p a re independent (for if they were not, there 
would ex ist numbers Vi such tha t  Vi(o/oxi)lp = 0 with a t  least one Vi 
non-zero ; a pplying this relation to ea ch coordina te xk shows 

Vioxk/oxi = Vk = o, 

a contra diction) ,  so the spa ce of a ll ta ngent vectors to ....It at p, denoted 
by Tp(....lt) or simply TP, is a n  n-dimensiona l  vector space . This spa ce ,  
representing the set of a ll directions a t  p, i s  ca lled the tangent vector 
space to ....It at p. O ne ma y think of a vector VE TP a s  a n  a rrow a t  p, 
pointing in the direction of a curve .A(t ) with ta ngent vector V a t p, 
the ' length ' of V being determined by the curve pa ra meter t through 
the rela tion V(t) = 1 .  (As V is a n  opera tor, we print it in bold type ; 
its components Vi, a nd the number V(f) obta ined by V a cting on a 
function/, a re numbers, a nd so a re printed in ita lics. ) 

If {Ea} (a = 1 to n) a re a ny set of n vectors a t  p which a re linearly 
independent, then a ny vector v E Tp ca n be written v = vaEa where 
the numbers {Va} a re the components of V with respect to the ba sis 
{Ea} of vectors a t  p. In pa rticula r  one ca n choose the Ea a s  the coordi
na te ba sis (o/oxi)lp; then the components Vi= V(xi) = (dxi/dt) lp a re 
the deriva tives of the coordina te functions xi in the direction V. 

A one jorm (cova ria nt vector) w a t  p is a real va lued linea r  fu nction 
on the spa ce TP of vectors a t  p. If X is a vector a t  p, the number into 
which w ma ps X will be written (w, X); then the linea rity implies that 

(w,aX+flY) = a(w,X)+fl(w, Y) 

holds for a ll a,/JER1 a nd X, Y ETP. The subs pa ce of TP defined by 
(w, X) = (consta nt) for a given one-form w, is linea r. O ne ma y there
fore think of a one-form a t  p as a pair of planes in TP such tha t  if 
(w, X) = 0 the a rrow X lies in the first pla ne ,  a nd if (w, X) = 1 it 
touches the second pla ne .  

Given a ba sis {Ea} of vectors a t  p, one ca n define a unique set of 
n one-forms {Ea} by the condition: Ei ma ps a ny vector X to the 
number Xi (the ith component of X with respect to the ba sis {Ea}). 
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Then i n  pa rticula r, (Ea, Eb) = oab· Defining linea r  combina tions of 
one-forms by the rules 

(aw+/i-11,X) = a(w,X)+/l(YJ,X) 

for a ny one-forms w, YJ a nd a ny a ,  p
°
E R1, X E TP, one ca n rega rd {Ea} 

a s  a ba sis of one-forms since a ny one-form w a t  p can be expressed a s  
w = wi Ei where the numbers wi a re defined by wi = ( w, Ei). Thus the 
set of a ll one forms a t  p forms a n  n- dimensiona l  vector space a t  p, the 
dual s pace T* P of the ta ngent spa ce TP. The basis {Ea} of one-forms is 
the dual basis to the ba sis {Ea} of vectors . For a ny w ET* P' X E TP one 
ca n express the number (w, X) in terms of the components wi, Xi of 
w, X with respect to dua l  ba ses {Ea}, {Ea} by the rela tions 

(w,X) = (wiEi,XiE;) = wiXi. 

Ea ch function f on .,II defines a one-form d/ a t  p by the rule : for 
ea ch vector X, (d/,X) = Xf. 

df is ca lled the di fferential of f. If (x1, ... , xn) a re loca l  coordina tes, the 
set of differentia ls (dx1, dx2, • • •  , dxn) a t  p form the ba sis of one-forms 
dua l  to the ba sis (o/ox1, o/ox2, • . •  , o/oxn) of vectors a t  p, since 

(dxi, o/oxi) = oxi/oxi = oi
j· 

In terms of this ba sis , the differentia l df of a n  a rbitra ry fu nction f is 
given by df = (of/oxi) dxi. 

If d/ is non-zero, the surfa ces {! = consta nt} a re (n - 1 ) -dimensiona l  
ma nifolds. The subspa ce of TP consisting of a ll vectors X such tha t  
( d/, X) = 0 consists of a ll vectors ta ngent to curves lying in the 
surfa ce {! = consta nt} through p. Thus one ma y think of df as a 
norma l to the surfa ce { f  = consta nt} a t  p. If a=!= 0, a df will a lso be 
a norma l  to this surfa ce.  

F rom the spa ce TP of vectors a t  p a nd the spa ce T* P of one-forms 
at p, we ca n form the Ca rtesia n product 

TI� = T*P x T*P x ... x T*P x TP x TP x ... x TP, 

r fa ctors s fa ctors 

i .e .  the ordered set of vectors a nd one-forms (YJ1, ... , YJr, Y 1, • • •  , Y8 )  
where the Ys a nd YJS a re a rbitra ry vectors a nd one-forms respectively. 

A tensor of ty pe (r, s ) at p is a function on TI� which is linea r  in ea ch 
a rgument. If T isa tensor of type (r, s ) a t  p, we write the number into 
which T ma ps the element (YJ1, ... , YJr, Y v . . . , Y8 )  of TI� a s  

T(111. ... ,Jjr, Y1, . . . , Ys )· 
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Then the linearity implies that, for example, 

T(Y)1, ... , Y)r, IXX + /JY, Y2, ... , Ys) = IX. T(Y)1, ... ' Y)r, x, y 2• ... , Ys) 

+/l. T(Y)1, ... ,Y)r, Y, Y2, ... , Ys) 
holds for all IX, fJ E R1 and X, Y E TP. 

The space of all such tensors is called the tensor product 

T�(p) = TP@ ... @TP ® T*p@ ... @T*p· ....___..., 
r factors 8 factors 

In particular, TA(p ) = TP and T�(p ) = T*p· 
Addition of tensors of type (r, s) is defined by the rule : (T + T') is the 

tensor of type (r, s) at p such that for all YieTP, Y)i E T*p• 

(T + T') (Y)1, ... , Y)r, Y1, ... , Ys) = T(Y)1, ... , Y)r, Y1, ... , Ys) 

+T'(111. ... ,Y)r, Y1, ... , Ys)· 

Similarly, multiplication of a tensor by a scalar IXER1 is defined by the 
rule : (1XT) is the tensor such that for all Yi E TP, Y)i ET* P' 

(1XT) (Y)l, ... ' Y)r, Y l• ... ' Ys) = IX. T(Y)1, ... ' Y)r, Y l> ••• , Ys)· 

With these rules of addition and scalar multiplication, the tensor 
product T�(p) is a vector space of dimension nr+s over R1• 

Let Xi E TP ( i = 1 to r) and wi E T * P (j = 1 to s ) . Then we shall 
denote by X1 ® ... ® Xr ® w1 ® ... ® ws that element of T�(p ) which 
maps the element (111, ... ,Y)r, Y1, ... , Y8) of TI� into 

(Y)l, X1) (1)2, X2) ... (Y)r, �) (wl, Y1) ... (ws, Ys)· 

Similarly, if RE T:(p) and SE T�(p ), we shall denote by R @ S that 
element of T�t�(p) which maps the element (1)1, ... ,Y)r+ P, Yv ... , Ys+q) 
of n�+i into the number 

R(Y)1, ... ,Y)s, Yv ... , Yr)
S(Y)s+l, ... ,Y)s+q, Yr+l• ... , Yr+p). 

With the product @, the tensor spaces at p form an algebra 
over R. 

If {Ea}, {Ea} are dual bases of TP, T* P respectively, then 

{Ea1 ® .. . ®Ear® Eb1 ® ... ® Eb•} ,  (ai, b 1  run from 1 to n ), 

will be a basis for T�(p) .  An arbitrary tensor T E  T�(p) can be expressed 
in terms of this basis as 
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where {Ta1 ... a, b1 ... b.} are the components of T with respect to the dual 
bases {Ea}, {Ea} and are given by 

Relations in the tensor algebra at p can be expressed in terms of the 
components of tensors . Thus 

Because of its convenience, we shall usually represent tensor relations 
in this way. 

If {Ea·} and {Ea'} are another pair of dual bases for Tj, and T * 
P' they 

can be represented in terms of {Ea} and {Ea} by 

Ea' = <I> a,a Ea 
where ct>a,a is an n x n non-singular matrix . Similarly 

Ea' = ct>a' a Ea 

( 2 . 2 )  

( 2 . 3 )  

where ct>a'a i s  another n x n non-singular matrix. Since {Ea·} ,  {Ea'} are 
dual bases, 

�b' _ (Eb' E ) _ (mb' Eb .m. a E ) _ .m. a mb' � b _ .m. a "'b' 
u a' - ' a' - ""' b '"'a' a - ""'a' "" b 0a - "'a' "" a' 

i .e .  ct>a,a, ct>a'a are inverse matrices, and oab = ct>ab' ct>
b'b· 

The components Ta'1 ···a',b,1 ... b's of a tensor T with respect to the 
dual bases {Ea•}, {Ea'} are given by 

Ta'1 ···a',b' b' = T(Ea1' , • • •  , Ea',, Eb' , ... , Eb' ). l··· 8 1 s 
They are related to the components Ta1 ···tzrb1 ... b, of T with respect to 
the bases {Ea}, {Ea} by 

Ta'1 ... a',b' b' = Ta1 ... a,b b ct>a'1 ... ct>a'r <I>b' bi ... <I>b' bs. ( 2 . 4 }  I··· s I··· ' a1 ar 1 s 
The contraction of a tensor T of type (r, s ) ,  with components 

Tab ... def . . .  o with respect to bases {Ea} ,  {Ea}, on the first contravariant 
and first covariant indices is defined to be the tensor O}(T) of type 
(r - 1 , s - 1 )  whose components with respect to the same basis are 
Tab ... daf ... o> i .e .  
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If {Ea·}, {Ea'} are another pair of dual bases, the contraction CHT) 
defined by them is 

C'HT) = pa'b' ... d'a'/' ... g
' Eb' ® ... ®Ed'® El'® ... ® Eu' 

= <Pa'a <1>ah' T h'b'. .. d'a'/' .. . g
' <Pb,b ... <Pa.d <PI'/ ... <Pu'0 

. Eb ® ... ® Ea ® Et ... ® Eu 

= pab ... daf ... gEb ® ... ®Ea® El® ... ® EU= Cl(T), 

so the contraction Cl of a tensor is independent of the basis used in its 
definition . Similarly, one could contract T over any pair of contra
variant and covariant indices. (If we were to contract over two contra
variant or covariant indices, the resultant tensor would depend on the 
basis used . )  

The symmetric part of a tensor T of type ( 2 ,  0) is the tensor S(T) 
defined by 

for all Ylv Y)2 ET* p· We shall denote the components S(T)ab of S(T) by 
T<abl; then 

Similarly, the components of the skew-symmetric part of T will be 
denoted by 

In general, the components of the symmetric or antisymmetric part of 
a tensor on a given set of covariant or contravariant indices will be 
denoted by placing round or square brackets around the indices . Thus 

T. b . • •  / <a,. .. a,! 

= h {sum over all permutations of the indices a1 to a,(Ta1 • • • a,b ... f)} 

and 

= � {alternating sum over all permutations of the indices r .  a to  a (T b • . . f)}. l r a1 • • • a, 
For example, 

Ka[bcd] = i{Kabcd+ Kaabc+ Kacdb-Kabdc-Kachrl-Kadcb}· 
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A tensor i s  symmetric i n  a given set of contravariant or covariant 
indices if it is equal to its symmetrized part on these indices, and i s  
antisymmetric i f  i t  i s  equal to  its antisymmetrized part. Thus, for 
example, a tensor T of type (0, 2 )  is symmetric if Tab = !(Tab + Tba), 
(which we can also express in the form : Tcabl = 0) .  

A particularly important subset of tensors is the set of tensors of 
type (0, q) which are antisymmetric on all q positions (so q � n) ; such 
a tensor is called a q-form. If A and B are p- and q-forms respectively, 
one can define a (p + q) -form A/\ B from them, where/\ is the skew
symmetrized tensor product ® ;  that is, A /\ B is the tensor of type 
(0, p + q) with components determined by 

(A/\ B)a ... bc ... f = Aia ... bBc .. .f]• 

This rule implies (A/\ B) = ( - )Pq (B /\A) .  With this product, the 
space of forms (i .e .  the space of all p-forms for all p, including one
forms and defining scalars as zero-forms) constitutes the Grassmann 
algebra of forms. If {Ea} is a basis of one-forms, then the forms 
Ea1 /\ . . .  /\ Eav (ai run from 1 to n) are a basis of p-forms, as any p-form 
A can be written A = Aa ... b Ea/\ . . .  /\ Eb, where Aa ... b = Aia ... bl· 

So far, we have considered the set of tensors defined at a point on 
the manifold. A set of local coordinates {xi} on an open set 0// in JI 
defines a basis {(o/oxi)lp} of vectors and a basis {(dxi)ip} of one-forms 
at each point p of 0//, and so defines a basis of tensors of type (r, s) at 
each point of O// . Such a basis of tensors will be called a coordinate 
basis . A Ck tensor field T of type ( r, s) on a set "f'" c JI is an assignment 
of an element of T�(p) to each point p e"f'" such that the components 
of T with respect to any coordinate basis defined on an open subset 
of "f'" are Qk functions. 

In general one need not use a coordinate basis of tensors, i .e .  given 
any basis of vectors {Ea} and dual basis of forms {Ea} on "f'", there will 
not necessarily exist any open set in "f'" on which there are local 
coordinates {xa} such that Ea= o/oxa and Ea = dxa. However if one 
does use a coordinate basis , certain specializations will result ; in parti
cular for any function/, the relations Ea(Ebf) = Eb(EJ) are satisfied, 
being equivalent to the relations o2f/oxaoxb = o2f/oxboxa. If one 
changes from a coordinate basis Ea= o/oxa to a coordinate basis 
Ea. = o/oxa', applying ( 2 . 2 ) ,  ( 2 . 3 )  to xa, xa' shows that 

!> a' cI>a' = � 
a oxa. 

Clearly a general basis {Ea} can be obtained from a coordinate basis 
2 HLS 
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{o/oxi} by giving the fu nctions Eai which a re the components of the Ea 
with resp ect to the ba sis {8 /8xi } ;  then (2 . 2 ) ta kes the form Ea = Eaio/oxi 
a nd (2. 3 )  takes the form Ea = Eai dx' , wher e  the ma tri x  Ea, is dual to 
t he matrix Eai· 

l.3 Maps of manifolds 

In this section we define, via the genera l  concept of a Qk ma nifold ma p, 
the concepts of ' im bedding' ,  ' immersion ' ,  a nd of a ssocia ted tensor 
map s, the first two being usefu l la ter in the study of subma nifolds, a nd 
the last playing an important role in studying the beha viour of 
families of curves a s  well a s  in studying symmetry properties of 
ma nifolds . 

A map</> from a Qk n-dimensiona l  ma nifold.A' to a Qk' n' -dimensiona l  
manifold ,,I(' is said to be a Qr map (r � k, r � k') if, for a ny local 
coordinate systems in .A' a nd .A' ' , the coordina tes of the ima ge point 
<f>(p) in .A'' are or fu nctions of the coordina tes of p in .A' .  As the ma p 
will in general be ma ny-one ra ther tha n  one-one (e .g .  it ca nnot be 
one-one if n > n' ) ,  it will in genera l not ha ve a n  inverse ; a nd if a or 
map does ha ve an inverse, this inverse will in genera l  not be er (e .g. 
if</> is the map R1-+R1 given by x-+x3, then <1>-1 is not differentia ble a t  
the point x = 0) .  

If/ is  a fu nction on .A' ' , the ma pping</> defines the fu nction</> *! on .A' 
as the fu nction whose va lue a t  the point p of .A' is the va lue off a t  

</> (p ) , i .e .  </> *f(p) = f(</> (p) ) .  ( 2 . 5) 

Thus when</> maps points from .A' to .A' ' , </> * maps fu nctions linea rly 
from .A' '  to .A' .  

If ,\(t) is a curve through the point p E.A' , then the ima ge curve 
<f>(,\(t ) )  in .A' '  pa sses through the point <f>(p ) .  If r � 1 ,  the ta ngent 
vector to this curve a t  </> (p) will be denote d  by </>*(o/oth.lq,<p>; one ca n 
rega rd it a s  the ima ge, under the ma p</> ,  of the vector (o/oth.lp· Clea rly 

</> * is a linea r  ma p of Tp (.A' ) into T,µp>(.A' ') .  From (2 .5 )  a nd the defini
tion (2 . 1 )  of a vector a s  a directiona l  deriva tive, the vector ma p</> * 
ca n be cha ra cterized by the rela tion: for ea ch Qr (r � 1 )  fu nction / a t  
<f>(p) and vector X a t  p,  

X (</> *f}jp = </>*X(f}iq,<p>- ( 2 . 6 )  

Using the vector ma pping </> * from .A' to  JI', we ca n if  r � 1 define 
a linear one-form mapp ing </> * from T * q,<p>(.A'') to T * p (.A' ) by the 
condition : vector-one-form contra ctions a re to be preserved under the 
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maps. Then the one-form A E T* {>Cpl is mapped into the one-form 
<P *A E T* P where, for arbitrary vectors X E TP, 

(<fa*A, X) lp = (A, <fa* X) l q,<p> · 
A consequence of this is that 

<P * (df) = d (<P *f) . (2 . 7 )  

The maps <P* and <P * can be  extended to  maps of  contravariant 
tensors from ..,{{ to ..,{{' and covariant tensors from ..,{{' to ..,{{ respec
tively, by the rules <fa* : TET0(p) -,)- <P* TET 0(<fa(p)) where for any 

. T * YJ'E rp(ph T (A. * 1 A. * r)I A. T (  1 r ) I 'f' YJ ' • • •  , 'f' YJ p = 'f'* YJ ' • • •  , YJ rp(p) 

and <fa * : TE T �(<fa(p))-,)- <P *T E�(p), 

where for any XiETP, 

<fa *T (X1, • • • , X8) 1 p = T (<fa* Xv . . .  , <fa* Xs)l q,<pl ·  

When r � 1 ,  the Qr map <P from ..,{{ to ..,{{' is said to be of rank s at p 
if the dimension of <P*(Tp(.,{{)) is s. It is said to be injective at p if s = n 
(and so n � n' ) at p ;  then no vector in TP is mapped to zero by <fa*. It 
is said to be surjective if s = n' (so n � n' ) . 

A er map <:/> (r � 0) is said to be an immersion if it and its  inverse 

are er maps, i . e .  if for each point p E j( t here is a neighbourhood 
:J/i of p in ..,{{ such t hat the inverse 9-1 restricted to <j) ( o// )  is also 

a Gr map. This implies n � n'. By the implicit function theorem 
(Spivak ( 1 965) ,  p. 4 1  ) , when r � 1 ,  <P will be an immersion if and only if 
it is injective at every point p E.,{{ ; then <P* is an isomorphism of TP 
into the image rp*(Tp) c Tq,Cpl · The image rp(.,{{) is then said to be an 
n-dimensional immersed submanifold in ..,{{' .  This submanifold may 
intersect itself, i .e .  <P may not be a one-one map from ..,{{ to rp(.,{{) 
although it is one-one when restricted to a sufficiently small neighbour
hood of ..,{{_ An immersion is said to be an imbedding if it is a homeo
morphism onto its image in the induced topology. Thus an imbedding 
is a one-one immersion ; however not all one-one immersions are 
imbeddings, cf. figure 6. A map <P is said to be a proper map if the 
inverse image rjJ-1($") of any compact set ff c ..,{{' is compact. It can 
be shown that a proper one-one immersion is an imbedding. The 
image r/J(.,{{) of..,{{ under an imbedding <P is said to be an n-dimensional 
imbedded submanifold of ..,{{' . 

The map rp from ..,{{ to ..,{{' is said to be a Qr dijf eomorphism if it is 
a one-one er map and the inverse q,-1 is a or map from ..,{{' to ..,{{. In 

2 · 2  
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this case, n = n' , and </> is both injective and surjective if r � 1 ;  con
versely, the implicit function theorem shows that if</>* is both injective 
and surjective at p, then there is an open neighbourhood "II of p such 
that <P :  "II -+ </J("lt) is a diffeomorphism. Thus </> is a local diffeomorphism 
near p if </>* is an isomorphism from TP to T<f>l.pl -

y 

FIGURE 6. A one-one immersion of R1 in R2 which is not an imbedding, obtained 
by joining smoothly part of the curve y = sin ( 1 /x) to the curve 

{(y, O) ; - oo  < y < 1}. 

When the map <jJ is a er (r � 1 )  diffeomorphism, </>* maps Tp(..L) to 
T9cp>(..L' ) and (r/>-1) * maps T *  p (..L) to T* tf>Cp>(..L' ) .  Thus we can define 
a map </>* of T�(p) to T�(r/>(p) )  for any r, s, by 

T(YJ1, . . .  , YJs, xv . . .  , �) Ip 

= r/>. T( (rf>-l) *YJl ,  . . .  , (rf>-l) *YJs, r/>* Xl , . . .  , 9.�) J 9cp> 

for any Xi E TP , YJi E T *p ·  This map of tensors of type (r, s) on ..L to 
tensors of type (r, s) on ..L' preserves symmetries and relations in the 
tensor algebra ; e .g .  the contraction of </>* T is equal to </>* (the con
traction of T). 

2.4 Exterior differentiation and the Lie derivative 

We shall study three differential operators on manifolds, the first two 
being defined purely by the manifold structure while the third is 
defined (see § 2 .5 )  by placing extra structure on the manifold. 
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The exterior differentiation operator d maps r-form fields linearly to 
(r + 1 )-form fields . Acting on a zero-form field (i .e .  a function) /, it 
gives the one-form field d/ defined by (cf. § 2 .2 )  

(d/, X) = Xf for all vector fields X ( 2 . 8) 

and acting on the r-form field 

A = Aab ... it <ix" A dxb A • • •  A dxd 
it gives the (r + 1 )-form field dA defined by 

dA = dAab . . . it A dxa A dxb A • • •  A dxd . (2 .9 )  

To show that this ( r  + 1 ) -form field is  independent of the coordinates 
{xa} used in its definition, consider another set of coordinates {xa'}. 
Then A A d . �_,,, d-"-' = a'b' ... d' xa /\ u;c- /\ • • • /\ ;{;- , 

where the components Aa'b' ... d' are given by 

axa axb axtt Aa'b' ... d' = axa· axb' . . .  axtt·Aab ... it · 

Thus the (r + 1 )-form dA defined by these coordinates is 

dA = dAa'b' ... d' dxa' /\ dxb' /\ . . .  /\ dxd' 

d 
(axa axb axtt A ) d . dxb' d d' = axa· axb" . .  axtt· ab · · · it " xa " " . .  · " x 

axa axb axtt dA � -n.• d_,,. d d' = axa' axb" . .  axd' ab ... d /\ u;c- /\ ;{;- /\ • • •  /\ x 

a2xa axb axtt A d . dx . d b' dxd' + axa· axe· axb' . . .  axtt· ab ... d xe /\ a /\ x /\ . . .  /\ + . . .  + . . .  

= dAab ... d /\ <ix" /\ dxb /\ . . .  /\ dxd 

as a2xa/axa· axe· is symmetric in a' and e', but dxe' /\ dxa' is skew. Note 
that this definition only works for forms ;  it would not be independent 
of the coordinates used if the /\ product were replaced by a tensor 
product. Using the relation d(/g) = g df + f dg, which holds for arbi
trary functions /, g, it follows that for any r-form A and form B, 
d(A /\ B) = dA /\ B + ( - )r A /\  dB. Since ( 2 . 8) implies that the local 
coordinate expression for d/ is d/ = ( af/axi) dxi, it follows that 
d(df) = ( O'lj/axi axi) dxi /\ dxi = 0, as the first term is symmetric and 
the second skew-symmetric .  Similarly it follows from ( 2 . 9) that 

d(dA) = 0 
holds for any r-form field A.  
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The operator d commutes with manifold maps, in the sense : if 
</> : vii -+ vii' is a Or (r � 2 )  map and A is a Ok (k � 2)  form field on vii' ,  
then (by ( 2 . 7 ) )  

d(<f> *A) = </> * (dA)  

(which is  equivalent to  the chain rule for partial derivatives) .  
T_he operator d occurs naturally in the general form of Stokes' 

theorem on a manifold. We first define integration of n-forms : let vii 
be a compact, orientable n-dimensional manifold with boundary ovll 
and let {f 11} be a partition of unity for a finite oriented atlas { O/t "' </> • .} 
Then if A is an n-form field on vii, the integral of A over vii is defined as 

I A = LI /aA12 . . .  n dx1 dx2 • • •  dxn, 
JI " </>a.('flml 

( 2 . 10 )  

where A12 . . . n are the components of A with respect to the local co
ordinates in the coordinate neighbourhood O/t " ' and the integrals on 
the right-hand side are ordinary multiple integrals over open sets 
</>"(O/t") of Rn. Thus integration of forms on vii is defined by mapping 
the form, by local coordinates, into Rn and performing standard 
multiple integrals there, the existence of the partition of unity 
ensuring the global validity of this operation. 

The integral ( 2 . 1 0) is well-defined, since if one chose another atlas 
{'ip, l/l'p} and partition of unity {gp} for this atlas, one would obtain 
the integral 

LI gpAn: . . .  n' dxl' dx2' • • •  dxn', 
p iftfJ{'"l"fJ) 

where xi' are the corresponding local coordinates. Comparing these 
two quantities in the overlap (O/t" n "Ip) of coordinate neighbourhoods 
belonging to two atlases, the first expression can be written 

and the second can be written 

Comparing the transformation laws for the form A and the multiple 

integrals in Rn, these expressions are equal at each point, so f 
..H

A is 

independent of the atlas and partition of unity chosen. 
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Similarly, one can show that this integral is invariant under 
diffeomorphisms : f </>. A = f A 

Jt' Jt 

if </> is a or diffeomorphism (r � 1 )  from .,/( to .L'. 
Using the operator d, the generalized Stokes' theorem can now be 

written in the form : if B is an (n - 1 ) -form field on .L, then 

J B = nf dB, 
iJ.,11 JI 

which can be verified (see e .g .  Spivak ( 1 965) )  from the definitions 
above ; it is essentially a general form of the fundamental theorem of 
calculus . To perform the integral on the left, one has to define an 
orientation on the boundary o.L of .L. This is done as follows : if <ft,., is 
a coordinate neighbourhood from the oriented atlas of .L such that 
<ft,., intersects o.L, then from the definition of o.L, </>,.,(<ft,., n o.L) lies in 
the plane x1 = 0 in Rn and </>,.,(<ft,., n .L) lies in the lower half x1 � 0. 
The coordinates (x2, x3, • • •  , xn) are then oriented coordinates in the 
neighbourhood <ft,., n o.L of o.L. It may be verified that this gives an 
oriented atlas on o.L. 

The other type of differentiation defined naturally by the manifold 
structure is liie differentiation. Consider any Or (r � 1 )  vector field X 
on .L. By the fundamental theorem for systems of ordinary differential 
equations (Bur kill ( 1 956) )  there is a unique maximal curve A.(t) through 
each point p of .L such that A.(O) = p and whose tangent vector at the 
point A.(t) is the vector XIArn· If {xi} are local coordinates, so that the 
curve A.(t) has coordinates xi(t) and the vector X has components Xi, 
then this curve is locally a solution of the set of differential equations 

dxi/dt = Xi(x1(t ) ,  . . .  , xn (t ) ) . 
This curve is called the integral curve of X with initial point p. For each 
point q of .L, there is an open neighbourhood <ft of q and an e > 0 such 
that X defines a family of diffeomorphisms rp 1 :  <fl -+ .L  whenever 
i t l  < e, obtained by taking each point p in <ft a parameter distance t 
along the integral curves of X (in fact, the </>1 form a one-parameter 
local group of diffeomorphisms, as <f>t+s = </>1 o rp8 = rp8 o </>1 for 
i t l , l s l , i t + s l < e, so rp_, = (</>1)-1 and </>0 is the identity) .  This 
diffeomorphism maps each tensor field T at p of type (r, s) into 
</>1* Tl �t<P>· 

The Lie derivative Lx T of a tensor field T with respect to X is 
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defined to be minus the derivative with respect to t of this family of 
tensor fields, evaluated at t = 0, i .e .  

From the properties of </>. ,  it follows that 
( 1 )  Lx preserves tensor type, i .e .  if T is a  tensor field of type (r, s ) ,  

then Lg_T is  also a tensor field of type (r, s) ; 
( 2 )  Lx maps tensors linearly and preserves contractions .  
As in ordinary calculus, one can prove Leibniz ' rule : 
( 3 )  For arbitrary tensors S ,  T, Lg_(S ® T) = LxS ® T + S ® Lg_ T. 
Direct from the definitions : 
(4)  Lxf = Xf, where / is any function . 
Under the map <f>1, the point q = <f>_ 1(p) is mapped into p. Therefore 

<f>1* is a map from Tq to TP. Thus, by (2 . 6 ) ,  

(</> ,* Y)f lp = Y(<f>,*f)l q · 
If {xi} are local coordinates in a neighbourhood of p, the coordinate 
components of </>1* Y at p are 

Now 

therefore 

so 

( </> ,* Y)ilp = </>1* Y IP xi = Yi l q ox:(q) (xi(p)) 
= oxi(�,(q)) Yi l . ox' (q) q 
dxi(<f> ,(q)) -Xii dt - .p,(q» 

One can rewrite this in the form 

(Lg_ Y)f = X( Yf)- Y(Xf) 

( 2 . 1 1 )  

for all 02 functions f. We shall sometimes denote Lx Y by [X, Y] , i .e .  

Lx Y = -LyX = [X, Y] = - [Y, X] . 

If the Lie derivative of two vector fields X, Y vanishes, the vector 
fields are said to commute . In this case, if one starts at a point p, goes 
a parameter distance t along the integral curves of X and then a 
parameter distance s along the integral curves of Y, one arrives at the 
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same point as if one first went a distance s along the integral curves 
of Y and then a parameter distance t along the integral curves of X 
(see figure 7 ) .  Thus the set of all points which can be reached along 
integral curves of X and Y from a given point p will then form an 
immersed two-dimensional submanifold through p. 

p,v(p) 

r/J,v(</i1x(p ) )  
= p1x(p.v(p ) )  

FIGURE 7 .  The transformations generated b y  commuting vector fields X, Y 
move a point p to points </J1x(p) ,  rp,y(p) respectively. By successive applications 
of these transformations, p is moved to the points of a two-surface . 

The components of the Lie derivative of a one-form w may be found 
by contracting the relation 

Lg_(w ® Y) = Lxw ® Y + w ® Lx Y 

(Lie derivative property ( 3 ) )  to obtain 

Lg_( w, Y) = (Lg_w, Y) + ( w, Lg_ Y) 

(by property (2 )  of Lie derivatives) ,  where X, Y are arbitrary 01 
vector fields, and then choosing Y as a basis vector E,. One finds the 
coordinate components (on choosing Ei = o/oxi) to be 

(Lg_w)i = (ow,/oxi) Xi + w1(oXi/oxi ) 

because ( 2 . 1 1 ) implies 
(Lz.(o/oxi ) )i = - oXi/oxi . 

Similarly, one can find the components of the Lie derivative of any 
Gr (r � 1 ) tensor field T of type (r, s ) by using Leibniz' rule on 

Lg_(T®Ea® . . .  ®Ed ®Ee® . . .  ®E11), 
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and then contracting on  all positions. One finds the coordinate com
ponents to bi;' 

( T. ·T )ab . . . d = (oTab . . . d /oxi)Xi -T ib . . . d axa;axi .L.1J1: e/ . • . fl ef . • • fl ef . . .  fl 

- (all upper indices) + pab . . . dif . . . a oXi/oxe + (all lower indices) . 
( 2 . 1 2 ) 

Because of (2 .  7 ) ,  any Lie derivative commutes with d, i .e .  for any 
p-form field w, d(Lxw) = £x(dw) .  

From these formulae, as well as from the geometrical interpretation, 
it follows that the Lie derivative Lx TIP of a tensor field T of type 
(r, s ) depends not only on the direction of the vector field X at the 
point p, but also on the direction of X at neighbouring points. Thus 
the two differential operators defined by the manifold structure are 
too limited to serve as the generalization of the concept of a partial 
derivative one needs in order to set up field equations for physical 
quantities on the manifold ; d operates only on forms, while the 
ordinary partial derivative is a directional derivative depending only 
on a direction at the point in question, unlike the Lie derivative . One 
obtains such a generalized derivative, the covariant derivative, by 
introducing extra structure on the manifold. We do this in the next 
section. 

2.5 Covariant differentiation and the curvature tensor 

The extra structure we introduce is a (affine) connection on ...It. 
A connection V at a point p of ...It is a rule which assigns to each vector 
field X at p a differential operator Vx which maps an arbitrary 
Qr (r ;;i.: 1 ) vector field Y into a vector field Vx Y, where : 

( 1 ) Vx Y is a tensor in the argument X, i .e .  for any functions f, g, 
and 01 vector fields X, Y, Z, 

V/X+uYZ = /VxZ + gVyZ ;  

(this is equivalent to the requirement that the derivative Vx at p 
depends only on the direction of X at p ) ;  

( 2 ) Vx Y is linear in Y ,  i .e .  for any 01 vector fields Y ,  Z and a ,  /l E  R1, 

Vx(aY + /JZ) = aVxY + /JVxZ ;  

( 3 )  for any 01  function / and 01 vector field Y ,  

Vx(/Y) = X(f) Y  +/VxY. 
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Then Vx Y is the covariant derivative (with respect to V)  of Y in the 
direction X at p. By ( 1 ) , we can define VY, the covariant derivative of Y, 
as that tensor field of type ( 1 ,  1 )  which, when contracted with X, 
produces the vector Vx Y.  Then we have 

(3 ) <? V(/Y) = d/®Y +/VY. 

A er connection V on a ek manifold .,It (k � r + 2 ) is a rule which 
assigns a connection V to each point such that if Y is a er+1 vector field 
on .,It, then VY is a er tensor field. 

Given any er+1 vector basis {Ea} and dual one-form basis {Ea} on 
a neighbourhood 0//, we shall write the components of VY as ya; b > so 

VY = ya; bE
b ®Ea. 

The connection is determined on O/t by n3 er functions rabc defined by 

rabc = (Ea, VEbEC) <? VEC = rabcEb ®Ea. 

For any e1 vector field Y, 

VY = V( ycEc) = d yc®Ec + ycrabcEb ®Ea. 

Thus the components of VY with respect to coordinate bases { o/oxa}, 
{dxb} are ya; b = 0 yafoxb+rabc yc. 

The transformation properties of the functions rabc are determined by 
connection properties ( 1 ) , (2) , (3 ) ; for 

ra'b'c' = (Ea' , VEb'Ec,) = (<l>a'aEa, v4>b'bEb(<l>c,cEc) ) 

= <f>a'a <l>b,b(Eb(<l>c'a) + <l>c,c rabc) 

if E", = <I>,/' E" , Ea' = <I>"',, E" . One can rewrite this as 

ra'b'c' = <f>a'a(Eb,(<l>c,a) + <l>b,b <f>c'
c rabc)· 

In particular, if the bases are coordinate bases defined by coordinates 
{x"}, {xa'}, the transformation law is 

, oxa' ( o2xa oxb oXC ) 
ra b'c' = oxa oxb' oxc' + oxb' oxc' rabc . 

Because of the term Eb.(<l>c,a) , the rabc do not transform as the compo-"' 
nents of a tensor. However if VY and VY are covariant derivatives 
obtained from two different connections, then 

"' "' 
VY - VY = (rabc - rabc) ycEb®Ea 

will be a tensor. Thus the difference terms (rabc _ f'abc) will be the 
components of a tensor. 
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The definition of a covariant derivative can be extended to any 
er tensor field if r � 1 by the rules ( cf. the Lie derivative rules) : 

( 1 ) if T is a er tensor field of type ( q, s ) ,  then VT is a er-1 tensor field 
of type (q, s +  1 ) ; 

( 2 ) V is linear and commutes with contractions ; 
(3) for arbitrary tensor fields S,  T, Liebniz' rule holds, i .e .  

V(S ®T) = VS ®T + S ®VT; 
(4 ) VJ = d/ for any function /. 
We write the components of VT as (V T)a . . . d = Ta . . . d . •  As Eh e . . .  o e . . . g ,h 

a consequence of ( 2 ) and (3) , 
VEb Ee = - rcba Ea, 

where {Ea} is the dual basis to {Ea}, and methods similar to those used 
in deriving ( 2 . 1 2 ) show that the coordinate components of VT are 

Tab . . .  d = oTab . . .  d foxh + ra Tib . . .  d ef . . .  o ;h ef . . .  o hj ef . . .  o 
+ (all upper indices) - r1heTab . . .  dJf . . . 0

- (all lower indices) .  ( 2 . 1 3 ) 
As a particular example, the unit tensor Ea ®Ea, which has compo
nents 8ab, has vanishing covariant derivative, and so the generalized 
unit tensors with components 8<a1b1 8a2b2 . . .  8a,>b,• 8la1b1 8a•b1 • • • 8aplbp 
(p � n) also have vanishing covariant derivatives . 

If T is a  er (r � 1 ) tensor field defined along a Qr curve .:\.(t) ,  one can 
define DT/ot, the covariant derivative of T along .:\.(t ) ,  as Vatat T where T 
is any er tensor field extending T onto an open neighbourhood of .:\. .  
DT/ot i s  a Qr-l tensor field defined along .:\.( t ) ,  and is  independent of 
the extension f. In terms of components, if X is the tangent vector 
to .:\.(t) then DTa . . .  d jot= Ta . . .  d . Xh. In particular one can choose ' e . . .  o e . . . g , h 
local coordinates so that .:\.(t) has the coordinates xa (t ) , xa = dxa/dt ,  
and then for a vector field Y 

D Ya/ot = o Ya/ot + rabc yc dxbfdt . (2 . 1 4) 
The tensor T is said to be parallelly transported along .:\. if DT/ot = 0 .  

Given a curve .:\.( t )  with endpoints p, q, the theory of solutions of 
ordinary differential equations shows that if the connection V is at 
least e1- one obtains a unique tensor at q by parallelly transferring 
any given tensor from p along .:\.. Thus parallel transfer along ,:\. is a 
linear map from T�(p) to T�(q) which preserves all tensor products and 
tensor contractions, so in particular if one parallelly transfers a basis 
of vectors along a given curve from p to q, this determines an iso
morphism of TP to Pq. (If there are self-intersections in the curve, 
p and q could be the same point. )  
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A particular case is obtained by considering the covariant deriva
tive of the tangent vector itself along .i\. The curve J\(t) is said to be 
a geodesic curve if D ( a ) VxX = - -at at ,\ 
is parallel to (a/ath_, i .e .  if there is a function/ (perhaps zero) such that 
xa; bXb = fXa. For such a curve, one can find a new parameter v(t) 
along the curve such that 

� (:vt = O ; 

such a parameter is called an affine parameter. The associated tangent 
vector V = (a/avh is parallel to X but has its scale determined by 
V(v) = 1 ;  it obeys the equations 

(2 . 15 )  

the second expression being the local coordinate expression obtainable 
from (2 . 14 )  applied to the vector V. The affine parameter of a geodesic 
curve is determined up to an additive and a multiplicative constant, 
i .e .  up to transformations v' = av + b  where a, b are constants ; the 
freedom of choice of b corresponds to the freedom to choose a new 
initial point J\(O) ,  the freedom of choice in a corresponding to the 
freedom to renormalize the vector V by a constant scale factor, 
V' = ( 1 /a) V. The curve parametrized by any of these affine parameters 
is said to be a geodesic. 

Given a er (r � 0) connection, the standard existence theorems for 
ordinary differential equations applied to (2 . 15 )  show that for any 
point p of JI and any vector XP at p, there exists a maximal geodesic 
"-x(v) in JI with starting point p and initial direction XP, i .e .  such that 
A:z:(O) = p and (a/avh l v=o = XP. If r � 1 - ,  this geodesic is unique and 
depends continuously on p and XP . If r � 1 ,  it depends differentiably 
on p and XP . This means that if r � 1 ,  one can define a er map exp : 
TP -+ JI, where for each X E TP, exp (X) is the point in JI a unit para
meter distance along the geodesic "-x from p. This map may not be 
defined for all X E TP, since the geodesic A:z:(v ) may not be defined for 
all v. If v does take all values, the geodesic J\(v) will be said to be a 
complete geodesic .  The manifold JI is said to be geodesically complete 
if all geodesics on JI are complete, that is if exp is defined on all TP for 
every point p of JI. 

Whether JI is complete or not, the map expP is ofrank n at p. There
fore by the implicit function theorem (Spivak ( 1 965) )  there exists an 
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open neighbourhood .A-;; of the origin in TP and an open neighbourhood 
Ai, of p in .,/( such that the map exp is a er diffeomorphism of .,V 0 

onto Ai,. Such a neighbourhood Ai, is called a normal neighbourhood 
of p. Further, one can choose Ai, to be convex, i .e .  to be such that any 
point q of Ai, can be joined to any other point r in Ai, by a unique 
geodesic starting at q and totally contained in Ai,. Within a convex 
normal neighbourhood % one can define coordinates (x1, . . .  , xn) by 
choosing any point q e%, choosing a basis {Ea} of Tq, and defining the 
coordinates of the point r in % by the relation r = exp (xaEa) ( i .e .  one 
assigns to r the coordinates, with respect to the basis {Ea}, of the point 
exp-1 (r) in Tq. )  Then (o/oxi) l q  = Ei and (by (2 . 15 ) )  r\;k> l q  = 0. Such 
coordinates will be called normal coordinates based on q. The existence 
of normal neighbourhoods has been used by Geroch ( 1 968c)  to prove 
that a connected ea Hausdorff manifold .,/( with a e1 connection has 
a countable basis. Thus one may infer the property ofparacompactness 
of a ea manifold from the existence of a e1 connection on the manifold . 
The ' normal ' local behaviour of geodesics in these neighbourhoods is 
in contrast to the behaviour of geodesics in the large in a general space, 
where on the one hand two arbitrary points cannot in general be 
joined by any geodesic, and on the other hand some of the geodesics 
through one point may converge to ' focus ' at some other point. We 
shall later encounter examples of both types of behaviour. 

Given a er connection V, one can define a er-1 tensor field T of 
type ( 1 ,  2) by the relation 

T(X, Y) = Vx Y - VyX - [X, Y] , 

where X, Y are arbitrary er vector fields . This tensor is called the 
torsion tensor. Using a coordinate basis , its components are 

Ti;k = ri;k - rikj · 

We shall deal only with torsion-free connections, i .e .  we shall assume 
T = 0. In this case, the coordinate components of the connection obey 
rijk = rikj• so such a connection is often called a symmetric connec
tion. A connection is torsion-free if and only if f; ii = f; ;i for all func
tions /. From the geodesic equation (2 . 1 5) it follows that a torsion-free 
connection is completely determined by a knowledge of the geodesics 
on J. 

When the torsion vanishes, the covariant derivatives of arbitrary e1 
vector fields X, Y are related to their Lie derivative by 
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and for any 01 tensor field T of type ( r ,  s )  one finds 

( T·-T)ab . . .  d = Tab . . .  d Xh - Tjb . . .  d xa . . � ef . . .  g ef . . .  g ; h ef . . .  g . 1  
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- (all upper indices) + Tab . . .  aif . . .  gXi ; e + (all lower indices) .  (2 . 1 7 )  

One can also easily verify that the exterior derivative i s  related to the 
covariant derivative by 

dA = Aa . . .  c ; d dxd /\ dxa /\ · · · /\ dxC <=> ( dA )a . . .  cd = ( - )P Aca . . .  c ; dl • 

where A is any p-form. Thus equations involving the exterior deriva
tive or Lie derivative can always be expressed in terms of the co
variant derivative. However, because of their definitions, the Lie 
derivative and exterior derivative are independent of the connection. 

If one starts from a given point p and parallelly transfers a vector 
XP along a curve y that ends at p again, one will obtain a vector X' P 
which is in general different from xp ; if one chooses a different curve 
y' , the new vector one obtains at p will in general be different from 
XP and X'p · This non-integrability of parallel transfer corresponds to 
the fact that the covariant derivatives do not generally commute. The 
Riemann (curvature) tensor gives a measure of this non-commutation. 
Given Qr+i vector fields X, Y, Z, a or-1 vector field R(X, Y) Z is defined 
by a or connection V' by 

(2 . 1 8 )  

Then R(X, Y) Z i s  linear in  X, Y,  Z and i t  may be  verified that the 
value of R(X, Y) Z at p depends only on the values of X, Y, Z at p, i .e . 
it is a Or-1 tensor field of type (3 ,  1 ) .  To write (2 . 1 8 )  in component 
form, we define the second covariant derivative V'V'Z of the vector Z 
as the covariant derivative V'(V'Z) of V'Z; it has components 

za ; bc = (Za ; b) ; c · 
Then (2 . 1 8 )  can be written 

Rabcdxc ydzb = (Za ; a y
a) ; cxc - (za ; aXd) ; c ye 

_ za ; a( Yd ; cXc - Xd ; c ye) 

where the Riemann tensor components Rabca with respect to dual 
bases {Ea}, {Ea} are defined by Rabell = (Ea, R(Ec, Ed) Eb). As X, Y are 
arbitrary vectors, za; dc _ za ; ca = Rabcd zb ( 2 . 1 9) 

expresses the non-commutation of second covariant derivatives of Z 
in terms of the Riemann tensor. 
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Since 

Vx('l ®Vy Z) = Vx'l ®Vy Z +'l ®VxVy Z  
=> ('I , VxVy Z) = X( ('l , Vy Z)) - (Vx'l • Vy Z) 

holds for any 02 one-form field 'I and vector fields X, Y, Z, ( 2 . 1 8 ) 
implies 

(Ea , R(Ec , Ea ) Eb) = Ec( (Ea, VEa Eb))-E4( (Ea, VEc Eb)) 
- (VEc Ea, VEa Eb) + (V1:aEa, VEc Eb) - (Ea, vlEc,Eal Eb). 

Choosing the bases as coordinate bases, one finds the expression 
Rabca = araabfoxc - aracbfox4 + racfr14b _ ra41rtcb ( 2 . 20) 

for the coordinate components of the Riemann tensor, in terms of the 
coordinate components of the connection. 

It can be verified from these definitions that in addition to the 
symmetry ( 2 . 2 1 a) 

the curvature tensor has the symmetry 
Ralbcdl = O <::> Rabca + Raabc + Racdb = 0. ( 2 . 2 1 b )  

Similarly the first covariant derivatives of  the Riemann tensor satisfy 
Biancki 's identities 

Rab[cd ; el = O <::> Rabcd ; e + Rabec; a + Rabde ; c = 0. (2 .22 )  
It now turns out that parallel transfer of an arbitrary vector along 

an arbitrary closed curve is locally integrable (i .e .  X' P is necessarily the 
same as X P for each p E .A') only if Rabca = 0 at all points of .A' ; in this 
case we say that the connection is flat . 

By contracting the curvature tensor, one can define the Ricci tensor 
as the tensor of type (0 , 2) with components 

Rbd = Rabad· 

2.6 The metric 

A metric tensor g at a point p E...A' is a symmetric tensor of type (0 , 2 )  
at p, so a Or metric on .A' i s  a Or symmetric tensor field g .  The metric g 

at p assigns a ' magnitude ' ( i g(X, X) j )l to each vector X E TP and 
defines the ' cos angle ' g(X ,Y) 

( i g(X, X) . g(Y, Y) j )l 

between any vectors X, Y E  TP such that g(X, X) . g(Y, Y) =I= O ; vectors 
X, Y will be said to be orthogonal if g(X, Y) = 0. 
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The components of g with respect to a basis {Ea} are 

gab = g(Ea, Eb) = g(Eb, Ea) ,  

i . e .  the components are simply the scalar products of  the basis vectors 
Ea. If a coordinate basis {o/oxa} is used, then 

g = gab axa@dxb . ( 2 . 23) 

Tangent space magnitudes defined by the metric are related to 
magnitudes on the manifold by the definition : the path length between 
points p = y(a) and q = y(b) along a 0°, piecewise 01 curve y(t) with 
tangent vector o/ot such that g(o/ot, o/ot) has the same sign at all points 
along y(t) , is the quantity 

L = J: ( l g(o/at, a/at ) j )l dt . ( 2 . 24) 

We may symbolically express the relations ( 2 . 23) , ( 2 . 24) in the form 

ds2 = gi1 dxi dxi 

used in classical textbooks to represent the length of the ' infinitesimal ' 
arc determined by the coordinate displacement xi � xi + dxi . 

The metric is said to be non-degenerate at p if there is no non-zero 
vector X E TP such that g(X , Y) = 0 for all vectors Y E  TP . In terms of 
components, the metric is non-degenerate if the matrix (gab ) of com
ponents of g is non-singular. We shall from now on always assume the 
metric tensor is non-degenerate . Then we can define a unique sym
metric tensor of type (2 ,  0) with components gab with respect to the 
basis {Ea} dual to the basis {Ea}, by the relations 

gabgbC = aa C> 

i .e .  the matrix (gab) of components is the inverse of the matrix (gab ) ·  
It follows that the matrix (gab) i s  also non-singular, so  the tensors 
gab, gab can be used to give an isomorphism between any covariant 
tensor argument and any contra variant argument, or to ' raise and 
lower indices ' .  Thus, if xa are the components of a contra variant 
vector, then Xa are the components of a uniquely associated covariant 
vector, where Xa = gabXb, xa = gabXb ; similarly, to a tensor Tab of 
type (0 , 2) we can associate unique tensors Tab = gac1'cb, Tab = gbcTac, 
pab = gacgbd1'ca· We shall in general regard such associated covariant 
and contravariant tensors as representations of the same geometric 
object (so in particular, gab• 8ab and gab may be thought of as representa
tions (with respect to dual bases) of the same geometric object g) ,  
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although in some cases where we have more than one metric we shall 
have to distinguish carefully which metric is used to raise or lower 
indices. 

The signature of g at p is the number of positive eigenvalues of the 
matrix (!lab ) at p, minus the number of negative ones. If g is non
degenerate and continuous, the signature will be constant on JI; by 
suitable choice of the basis {Ea}, the metric components can at any 
point p be brought to the form 

Yab = diag ( + 1 ,  + 1 ,  . . .  , + 1 ,  - 1 , . . .  , - 1 ) , 
....____..., 

i(n + s) terms -f(n - s) terms 
where s is the signature of g and n is the dimension of JI. In this case 
the basis vectors {Ea} form an orthonormal set at p, i .e .  each is a unit 
vector orthogonal to every other basis vector. 

A metric whose signature is n is called a positive definite metric ; for 
such a metric, g(X, X) = 0 ::::> X = 0, and the canonical form is 

Yab = diag ( + 1 ,  . . . , + 1 ) .  

n terms 
A positive definite metric is a ' metric ' on the space, in the topological 
sense of the word. 

A metric whose signature is (n - 2)  is called a Lorentz metric ; the 
canonical form is 

Yab = diag ( + 1 ,  . . .  , + 1 ,  - 1 ) .  
(n - 1 ) terms 

With a Lorentz metric on JI, the non-zero vectors at p can be divided 
into three classes : a vector X E TP being said to be timelike, null, or 
spacelike according to whether g(X, X) is negative, zero, or positive, 
respectively. The null vectors form a double cone in TP which separates 
the timelike from the spacelike vectors (see figure 8 ) .  If X, Y are any 
two non-spacelike (i .e .  timelike or null) vectors in the same half of the 
light cone at p, then g(X, Y) � 0, and equality can only hold if X and 
Y are parallel null vectors (i .e .  if X = aY, g(X, X) = 0) .  

Any paracompact Qr manifold admits a Qr-1 positive definite metric 
(that is, one defined on the whole of JI). To see this , let {fa} be a parti
tion of unity for a locally finite atlas {O//a , <Pa}· Then one can define g by 

g(X, Y) = �!a((</Ja)* X, (</Ja) * Y), 
a 

where ( ) is the natural scalar product in Euclidean space Rn ;  
thus one uses the atlas to  determine the metric by  mapping the 
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FIGURE 8 .  The null cones defined by a. Lorentz metric. 

Euclidean metric into ...It. This is clearly not invariant under change of 
atlas, so there are many such positive definite metrics on ...It. 

In contrast to this, a Or paracompact manifold admits a Or-1 
Lorentz metric if and only if it admits a non-vanishing or-1 line 
element field ; by a line element field is meant an assignment of a pair 
of equal and opposite vectors (X, - X) at each point p of ...It, i .e .  a line 
element field is like a vector field but with undetermined sign. To see 
this , let g be a or-l positive definite metric defined on the manifold. 
Then one can define a Lorentz metric g by 

g(y Z) = 1l(Y Z) - 2 g(X, Y) g(X, Z) 
' 11 ' g(X, X) 

at each point p, where X is one of the pair (X, - X) at p. (Note that as 
X appears an even number of times, it does not matter whether X or 
- X  is chosen. )  Then g(X, X) = - g(X, X) ,  and if Y, Z are orthogonal 
to X with respect to g, they are also orthogonal to X with respect to 
g and g(Y, Z) = g(Y, Z) .  Thus an orthonormal basis for g is also an 
orthonormal basis for g. As g is not unique, there are in fact many 
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Lorentz metrics on Jt if there is one . Conversely, if g is a given 
Lorentz metric, consider the equation YabXb = ?t.{)abXb where g is any 
positive definite metric. This will have one negative and (n - 1 ) 
positive eigenvalues . Thus the eigenvector field X corresponding to 
the negative eigenvalue will locally be a vector field determined up to 
a sign and a normalizing factor ; one can normalize it by gabXaXb = - 1 ,  
so defining a line element field on Jt. 

In fact, any non-compact manifold admits a line element field, 
while a compact manifold does so if and only if its Euler invariant is 
zero (e.g. the torus T2 does, but the sphere S2 does not, admit a line 
element field) .  It will later turn out that a manifold can be a reasonable 
model of space-time only if it is non-compact, so there will exist many 
Lorentz metrics on Jt. 

So far, the metric tensor and connection have been introduced as 
separate structures on Jt. However given a metric g on Jt, there is 
a unique torsion-free connection on Jt defined by the condition : the 
covariant derivative of g is zero, i .e .  

Yab ; c  = 0. ( 2 . 25) 
\Vith this connection, parallel transfer of vectors preserves scalar 
products defined by g, so in particular magnitudes of vectors are 
invariant. For example if o/ot is the tangent vector to a geodesic, then 
g(o/ot , o/ot) is constant along the geodesic. 

From ( 2 . 25) it follows that 
X(g(Y, Z) ) = Vx(g(Y, Z) ) = Vxg(Y, Z) + g(VxY, Z) 

+ g(Y, Vx Z) = g(Vx Y, Z) + g(Y, Vx Z) 
holds for arbitrary 01 vector fields X, Y, Z. Adding the similar expres
sion for Y(g(Z, X) )  and subtracting that for Z(g(X, Y) )  shows 

g(Z, Vx Y) = !{ - Z(g(X, Y) ) + Y(g(Z, X) ) + X(g(Y, Z) )  
+ g(Z, [X, Y] ) + g(Y, [Z, X] ) - g(X, [Y, Z] )} . 

Choosing X, Y, Z as basis vectors, one obtains the connection 
components r = g(E V E ) = g rd abc a • Eb c ad be 
in terms of the derivatives of the metric components Yab = g(Ea, Eb ) , 
and the Lie derivatives of the basis vectors. In particular, on using 
a coordinate basis these Lie derivatives vanish, so one obtains the 
usual Christoffel relations 

r abc = !{ogah/ox" + ogacf oxb - ogbc/oxa} 
for the coordinate components of the connection . 

(2 .26) 
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From now on we will assume that the connection on JI i s  the unique 
or-1 torsion-free connection determined by the Or metric g. Using this 
connection, one can define normal coordinates ( § 2 . 5 ) in a neighbour
hood of a point q using an orthonormal basis of vectors at q. In these 
coordinates the components Uab of g at q will be ± 8ab and the compo
nents ra00 of the connection will vanish at q. By ' normal coordinates ' ,  
we  shall in future mean normal coordinates defined using an ortho
normal basis . 

The Riemann tensor of the connection defined by the metric is a 
or-2 tensor with the symmetry 

R(ab) cd = 0 <=> Rabcd = - Rbacd ( 2 . 27a )  

in  addition to  the symmetries ( 2 . 2 1 ) ;  as  a consequence of  ( 2 . 2 1 )  and 
( 2 . 27 a) ,  the Riemann tensor is also symmetric in the pairs of indices 
{ab} , {cd}, i .e .  

Rabcd = Rcdab · ( 2 . 27b )  

This implies that the Ricci tensor i s  symmetric : 

Rab = Rba· ( 2 . 27 c) 

The curvature scalar R is the contraction of the Ricci tensor : 

R = Raa = Rabad gbd. 

With these symmetries, there are fz-n2(n2 - 1 )  algebraically inde
pendent components of Rabcd' where n is the dimension of M; !n( n + 1 )  
of them can be represented by the components of the Ricci tensor. If 
n = 1 , Rabcd = O ; if n = 2 there is one independent component of 
Rabcd' which is essentially the function R. If n = 3, the Ricci tensor 
completely determines the curvature tensor ; if n > 3, the remaining 
components of the curvature tensor can be represented by the W eyl 
tensor Oabcd' defined by 

2 2 Oaood = Rabcd + n - 2 {Uacd Rc1 b + Ubcc Rd1 a} + (n - l ) (n - 2) RgaccUdl b ·  

As the last two terms on the right-hand side have the curvature tensor 
symmetries ( 2 . 2 1 ) ,  ( 2 . 27 ) ,  it follows that oabcd also has these sym
metries. One can easily verify that in addition, 

i .e .  one can think of the Weyl tensor as that part of the curvature 
tensor such that all contractions vanish. 
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An alternative characterization of the Weyl tensor is given by the 
fact that it is a conformal invariant. The metrics � and g are said to 
be conformal if g = n� ( 2 .28)  

for some non-zero suitably differentiable function n. Then for any 
vectors X, Y, V, W at a point p, 

g(X, Y) 
g(V, W) 

D(X, Y) 
D(V, W) ' 

so angles and ratios of magnitudes are preserved under conformal 
transformations ; in particular, the null cone structure in TP is pre
served by conformal transformations, since 

g(X, X) > o, = o, < o => D(X, X) > o, = o, < o, 

respectively. As the metric components are related by 

Dab = n2Yab • Dab = n-2g00, 

the coordinate components of the connections defined by the metrics 
(2 . 28) are related by 

" ( an an an ) 
rabe = rabc + n-1 aab axe + 8a c axb - Ybcgad 

axd . 

Calculating the Riemann tensor of g, one finds 
flab = A-2 Rab + �ca1 Ab) 1 cd :i .. o1 cd u c :Ol. d • 

where 

(2 . 29) 

the covariant derivatives in this equation are those determined by the 
metric �·  Then (assuming n > 2)  

flb d = n-2Rbd + (n - 2) n-1(n-1) ; dcgbc - (n - 2)-l n-n(nn-2) ; acgac 8bd 
and Aa - ea (..i bed - bed• 
the last equation expressing the fact that the Weyl tensor is con-
formally invariant. These relations imply 

' 

fl = n-2R - 2(n - 1 )  n-sn ; cdifd - (n - 1 ) (n - 4) n : cn ; difd. (2 . 30) 

Having split the Riemann tensor into a part represented by the 
Ricci tensor and a part represented by the Weyl tensor, one can use 
the Bianchi identities (2 .22)  to obtain differential relations between 
the Ricci tensor and the Weyl tensor : contracting (2 . 22) one obtains 

(2 .3 1 )  
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and contracting again one obtains 

Rac ; a = !R; c· 
From the definition of the Weyl tensor, one can (if n > 3 )  rewrite 
( 2 . 3 1 )  in the form 

n - 3 ( 1 ) cabcd ; a = 2n _ 2 Rb[d ; c1 - 2(n - l ) gbldR; c1) · ( 2 .32) 

If n � 4, ( 2 . 3 1 )  contain all the information in the Bianchi identities 
( 2 . 22 ) ,  so if n = 4, ( 2 . 32) are equivalent to these identities . 

A diffeomorphism <jJ : .A-+ .A will be said to be an isometry if it 
carries the metric into itself, that is, if the mapped metric <P* g is equal 
to g at every point. Then the map <P* : TP -+ T.p<p> preserves scalar 
products, as 

g(X, Y) i p  = <P. g( <P. X, <P. Y) I rp(p) = g( <P. X, <P. Y) i rp(p) • 

If the local one-parameter group of diffeomorphisms <Pt generated 
by a vector field K is a group of isometries (i .e .  for each t, the trans
formation <Pt is an isometry) we call the vector field K a  Killing vector 
field. The Lie derivative of the metric with respect to K is 

since g = <Pt * g forl each t. But from ( 2 . 1 7 ) ,  4r_gab = 2Kca ; bh so a 
Killing vector field K satisfies Killing's equation 

( 2 .33 )  

Conversely, if  K is  a vector field which satisfies Killing's equation, 
then 4r_g = 0, so f t d  

<jJ, . g lP = g lp +  
o dt'

(</J t· • g) !P dt' 

= g lp -J: <jJ, • •  (4r_g l 9_ ,·(p)) dt' = g lp · 

Thus K is a Killing vector field if and only if it satisfies Killing's equa
tion. Then one can locally choose coordinates x'2 = (x", t ) ( v  = 1 to n - 1 )  
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such that Ka = oxa/ot = &a., ;  in these coordinates Killing's equation 
takes the form 

A general space will not have any symmetries, and so will not admit 
any Killing vector fields. However a special space may admit r 
linearly independent Killing vector fields Ka (a = 1 ,  . . . , r ) .  It can be 
shown that the set of all Killing vector fields on such a space forms a 
Lie algebra of dimension r over R, with the algebra product given by 
the Lie bracket [ , ] (see ( 2 . 1 6 ) ) ,  where 0 :s:;; r :s:;; !n(n + 1 ) .  (The 
upper limit may be lessened if the metric is degenerate . )  The local 
group of diffeomorphisms generated by these vector fields is an 
r-dimensional Lie group of isometries of the manifold .,II. The full 
group of isometries of .,II may include some discrete isometries (such 
as reflections in a plane) which are not generated by Killing vector 
fields ; the symmetry properties of the space are completely charac
terized by this full group of isometries. 

2.7 Hypersurfaces 

If f/ is an ( n - 1 ) -dimensional manifold and () :  f/-+ .,II is an im bedding, 
the image 0( f/) of f/ is  said to be a hyper surface in .,II. If p E f/, the 
image of TP in To<v> under the map ()* will be a ( n - 1 )-dimensional plane 
through the origin . Thus there will be some non-zero form n e T *o<p> 
such that for any vector X E TP, (n, ()* X) = 0. The form n is unique 
up to a sign and a normalizing factor, and if O(f/) is given locally by 
the equation f = 0 where d/ =+= 0 then n may be taken locally as df. 
If O(f/) is two-sided in .,11, one can choose n to be a nowhere zero 
one-form field on O(f/) .  This will be the situation if f/ and .,II are both 
orientable manifolds . In this case, the choice of a direction of n will 
relate the orientations of O(tl') and of .,II : if {xi} are local coordinates 
from the oriented atlas of .,II such that locally O(f/) has the equation 
xl = 0 and n = a dx1 where a >  0, then (x2, . . .  , x") are oriented local 
coordinates for O(f/) .  

If g is  a metric on .,11, the imbedding will induce a metric O*g on f/, 
where if  X, Y e TP, O*g(X, Y) !P = g(O* X, O* Y) ! o<p> ·  This metric is 
sometimes called the first fundamental form of f/. If g is positive 
definite the metric O*g will be positive definite, while if g is Lorentz , 
O*g will be 

(a) Lorentz if gabnanb > 0 (in this case , O(f/) will be said to be a 
timelike hypersurface) ,  



2.7] H Y P E R S U R F A C E S  45 

(b) degenerate if g°'bnanb = 0 (in this case, O(f/') will be said to be a 

null hypersurface} ,  
( c )  positive definite if  gabnanb < 0 (in this case, O(f/') will be  said to 

be a spacelike hypersurface) .  
To see this, consider the vector Nb = nafl°'b. This will be orthogonal 

to all the vectors tangent to O(f/'} ,  i .e .  to all vectors in the subspace 
H = O* (Tp )  in T{l(p> ·  Suppose first that N does not itself lie in this 
subspace. Then if (E2, • • •  , En) are a basis for TP , (N, O.(E2) ,  • • •  , o.(En) )  
will be linearly independent and so will be a basis for T{l(p>· The compo
nents of g with respect to this basis will be (g(N, N) o ) (g(N, N) o ) gab = O g(O.(Ei) ,  O.(E; ) )  = 0 O*g(Ei, E;) . 

As the metric g is assumed to be non-degenerate , this shows that 
g(N, N) =F 0. If g is positive definite, g(N, N) must be positive and so 
the induced metric O*g must also be positive definite. If g is Lorentz 
and g(N, N) = gabnanb < 0, then O*g must be positive definite since 
the matrix of the components of g has only one negative eigenvalue. 
Similarly if g(N, N) = gabnanb > 0, then O*g will be a Lorentz metric. 
Now suppose that N is tangent to O(f/') .  Then there is some non-zero 
vector X E TP such that o.(X) = N. But g(N, O.Y) = O for all Y E TP, 
which implies O* g(X, Y) = 0. Thus O*g is degenerate . Also, taking 
Y to be X, g(N, N) = g°'bnanb = 0. 

If gabnanb =F 0, one can normalize the normal form n to have unit 
magnitude, i .e .  gabnanb = ± 1 .  In this case the map O * :  T *{l(p) -+ T *P 
will be one-one on the (n - 1 )-dimensional subspace H*8<p> of T *{l(p) 
consisting of all forms w at O(p) such that gabnawb = 0, because 
O *n = 0 and n does not lie in H* . Therefore the inverse (0* )-1 will be 
a map B* of T*P onto H *{l(ph and so into T*{l(p)· 

This map can be extended in the usual way to a map of covariant 
tensors on f/' to covariant tensors on O(f/') in JI; as there already is 
a map (}* of contravariant tensors on f/' to O(f/'), one can extend (}* to 
a map B* ofarbitrary tensors on f/' to O(f/') . This map has the property 
that B. T has zero contraction with n on all indices, i .e .  

(B T)a . . .  b n = 0 and (0 T)a . . . b ,,cen = 0 * c . . .  d a * c . . . d il  e 

for any tensor T E  T�(f/') . 
The tensor h on O(f/') is defined by h = B.(O*g) .  In terms of the 

normalized form n (remember g°'bnanb = ± 1 ) ,  
hab = gab + nanb 

since this implies O*h = O *g and habgbcnc = 0. 
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The tensor h,ab = gach,cb is a projection operator, i .e .  h,abh,bc = h,ac · It 
projects a vector X E ToCpl into its part lying in the subspace H = O*(Tp )  
of  To<pl tangent to  O(f/'), 

xa = h,abXb ± nanbXb, 

where the second term represents the part of X orthogonal to O(f/') .  
Also h,ab projects a form w E T*o<pl into its part lying in  the subspace 
H*o<pl :  b b 

Wa = k a wb ± nan wb . 

Similarly one can project any tensor T E T�(O(p) )  into its part in 

H�(O(p) )  = Ho<p>® . . . ®Ho<p> ®lf!cp>® · . .  ®H�ey» 
r factors s factors 

i .e .  its part which is orthogonal to n on all indices. 
The map 0 * is one-one from TP to Ho<pl - Therefore one can define 

a map O* from To<pl to TP by first projecting with h,ab into Ho<pl and then 
using the inverse (0)*-1 • As one already has a map O * of forms on O(f/') 
to forms on f/', one can extend the definition of O* to a map O* of 
tensors of any type on O(f/') to tensors on f/'. This map has the property 
that 0*(0* T) = T for any tensor T E T�(p)  and O*(O*T) = T for any 
tensor T EH�(O(p) ) .  We shall identify tensors on f/' with tensors in 
H� on O(f/') if they correspond under the maps O* , O* . In particular, 
h can then be regarded as the induced metric on O(f/' ) .  

If ii i s  any extension of the unit normal n onto an open neighbour
hood of O(f/') then the tensor x defined on O(f/') by 

Xab = h,ca h,db nc ; d 
is called the second fundamental form of f/'. It is independent of the 
extension, since the projections by h,ab restrict the covariant deriva
tives to directions tangent to O(f/') .  Locally the field ii can be expressed 
in the form ii = a df where f and a are functions on JI and f = 0 on 
O(f/') .  Therefore Xab must be symmetric ,  sincef:ab = /;ba andf; akab = 0. 

The induced metric h = O*g on f/' defines a connection on f/'. We 
shall denote covariant differentiation with respect to this connection 
by a double stroke, I I · For any tensor T E  H�, 

Ta . . . b _ p-i. . .i h,a h,b h,k h,I h,m c . . .  dne - k . . . l ; m  i . . .  i c · . .  d e •  
where T is any extension of T to a neighbourhood of O(f/') . This 
definition is independent of the extension, as the ks restrict the 
covariant differentiation to directions tangential to O(f/') .  To see this 
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is the correct formula, one has only to show that the covariant deriva
tive of the induced metric is zero and that the torsion vanishes. This 
follows because 

and 

habuc = (Uet "f n/n1) ; gheahfbhUc = 0, 

fuab = he
ahUJ;eg = he

ahUJ;ue = Juba· 

The curvature tensor R'abcd of the induced metric h can be related 
to the curvature tensor Rabcd on 0(.9') and the second fundamental 
form x as follows. If Y e  H is a vector field on 0(.9') ,  then 

Now 

yanrlc = ( Yaud) uc = ( fe ;fhUehfi) ; khaghidhkc 

= ye; /khaehldhkc + ye; /ne nu ; khfdhauhkc + ye ; lnlni ; khaehidhkc 

and ye ; ,nehfd = ( Yene) : 1h'd - yer;,e ; thfd = - yer;,e : thfd, 

since yer;,e = 0 on 0(.9'), therefore 

R'abcd Yb = (Rebklhaeh\hld ± XbdX"'c + XocX"' d) Yb. 

Since this holds for all Y E H, 

This is known as Gauss' equation. 

(2 . 34) 

Contracting this equation on a and c and multiplying by hbrl, one 
obtains the curvature scalar R' of the induced metric : 

(2 .35) 

One can derive another relation between the second fundamental 
form and the curvature tensor Rabcd on 0(.9') by subtracting the 
expressions 

and 

finding 

(X"'a)ub = (na ; dhd
a) ; eheb 

(X"'b) ua = (n
c ; dhachd

e) ; /hfaheb• 

X"'bua - X"' anb = Re/nfheb · 

This is known as Codacci's equation. 

2.8 The volume element and Gauss' theorem 

If {Ea} is a basis of one-forms, one can form from it the n-form 

€ = n !E1 A E2 A  . . .  A En. 

(2 . 36)  
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If {Ea'}, related to  {Ea} by Ea' = <lla'a Ea, i s  another basis, the n-form 
£1 defined by this basis will be related to E by 

£1 = det (<lla'a) E, 
so this form is not unique. However, one can use the existence of the 
metric to define (in a given basis) the form 

YJ = lg l i E 
where g = det (gab) . This form has components 

1Jab . . . d = n ! l u l l o11a o2b . . . ond1 · 
The transformation law for g will just cancel the determinant, 
det (<lla'a) , provided that det (<Ila' a) > 0. Therefore if JI is orientable 
the n-forms YJ defined by coordinate bases of an oriented atlas will be 
identical, i .e .  given an orientation of JI, one can define a unique 
n-form field YJ, the canonical n-form, on JI. 

The contravariant antisymmetric tensor 
'tlab . . .  d _ ,.aegbf ...d.h'tl 
·1 - 'd • • • !/ ·1ef • • •  h 

has components 
'1/ab . . .  d = ( - )l<n-s>n! lu l l olal ob2 . . .  odln • 

where s is the signature of g (so !(n - s ) is the number of negative 
eigenvalues of the matrix of metric components (gab ) ) .  Therefore these 
tensors satisfy the relations 

'1/ab . • •  d'1/et . . .  h = ( - )l<n-s>n ! oace obt • • •  odhl · ( 2 . 37 )  

The Christoffel relations imply that the covariant derivatives of 
1Jab . . .  d and '1/ab . . .  d with respect to the connection defined by the metric 
vanish, i .e .  '1/ab . . .  d ; e  = 0 = 1Jab . . .  d ; e •  

Using the canonical n-form, one can define the volume (with respect 

to the metric g) of an n-dimensional submanifold Ol/ of JI as f"' YJ · 
Thus YJ can be regarded as a positive definite volume measure on JI. 
We shall often use it in this sense, and shall denote it by dv. Note that 
d is not meant to represent the exterior differential operator here ; dv 
is simply a measure on JI. If f is a function on JI, one can define its 
integral over Ol/ with respect to this volume measure as 
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With respect to local oriented coordinates {rz}, this can be expressed 
as the multiple integral 

J"/ I g J t dxl dx2 . . . dxn, 

which is invariant under a change of coordinates. 
If X is a vector field on JI, its contraction with YI will be an ( n - 1 )

form field X .  YI • where 
(X . Yl )b . . .  d = xa1Jab . . .  d · 

This (n - 1 ) -form may be integrated over any (n - 1 )-dimensional 
compact orientable submanifold "Y. We write this integral as 

where the canonical form YI is regarded as defining a measure-valued 
form dua on the submanifold "Y. If the orientation of "Y is given by 
the direction of the normal form na, then du a can be expressed as 
na du where du is a positive definite volume measure on the sub
manifold "Y. The volume measure du is not unique unless the normal 
na is normalized. If na is normalized to unit magnitude in a metric g 

on JI, i .e .  na nbgab = ± 1 ,  then du is equal to the volume measure on "Y 
defined by the induced metric on "Y (to see this, simply choose an 
orthonormal basis with nagab as one of the basis vectors) .  

Using the canonical form, one can derive Gauss' formula from 
Stokes' theorem : for any compact n-dimensional submanifold o/I of JI, 

But 
(d(X · Y1) )a . . .  de = ( - )n-l (XU1/g[a . . .  d ) ; e] 

= ( - )n-l 88ca • · · itt d 8"el 1/us . . .  t xu;  u 

= ( - )<n-ll-l<n-s)..!.. 11s . . . tu 11 11 Xu . n !  ., ·1a . . .  de ·1gs . . .  t · "  

= 1/a . . .  de88Cs • • • ittt 8"u1 Xu ; u 
= n-11/a . . .  de xu ; u • 

on using relation (2 .37 )  twice . Therefore 

f xa dua = f xu.g dv 
iJ'll t.fl 

• 
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holds for any vector field X ;  this is Gauss' theorem. Note that the 
orientation on l:p/ for which this theorem is valid is that given by the 
normal form YI such that (n, X) is positive ifX is a vector which points 
out of l:p/, If the metric g is such that gabnanb is negative, the vector 
gabnb will point into l:p/, 

l. 9 Fibre bundles 

Some of the geometrical properties of a manifold JI can be most 
easily examined by constructing a manifold called a fibre bundle, 
which is locally a direct product of JI and a suitable space . In this 
section we shall give the definition of a fibre bundle and shall consider 
four examples that will be used later : the tangent bundle T(JI), the 
tensor bundle T�(JI) , the bundle of linear frames or bases L(JI), and 
the bundle of orthonormal frames O(JI) . 

A Ok bundle over a 08 (s � k) manifold JI is a Ok manifold ,ff and 
a Ok surjective map 7T :  ,ff -->; JI. The manifold tff is called the total space, 
JI is called the base space and 1T the projection. Where no confusion 
can arise, we will denote the bundle simply by tff . In general , the 
inverse image 7T-1(p) of a point p E JI  need not be homeomorphic to 
7T-1(q) for another point q E JI. The simplest example of a bundle is 
a product bundle (JI x d, JI, 7r) where d is some manifold and the 
projection 1T is defined by 7r(p, v)  = p for all p E JI, v E d. For example, 
if one chooses JI as the circle 81 and d as the real line R1, one con
structs the cylinder 02 as a product bundle over 81 • 

A bundle which is locally a product bundle is called a fibre bundle. 
Thus a bundle is a fibre bundle with fibre !F if there exists a neighbour
hood l:p/ of each point q of JI such that 7T-1(1:p/) is isomorphic with l:p/ x :F, 
in the sense that for each point p E l:p/ there is a diffeomorphism <PP of 
7T-1(p) onto !F such that the map ifr defined by l/f(u) = (7r(u), <Pmu>) is 
a diffeomorphism l/f :  7T-1(1:p/) -->; l:p/ x !F. Since JI is paracompact, we 
can choose a locally finite covering of JI by such open sets l:p/ .. . If 
l:p/ .. and l:p/ p are two members of such a covering, the map 

is a diffeomorphism of !F onto itself for each p E (l:p/ .. n l:p/p) ·  The inverse 
images 7T-1(p) of points p E JI  are therefore necessarily all diffeo
morphic to !F (and so to each other) .  For example, the Mobius strip 
is a fibre bundle over 81 with fibre R1 ; we need two open sets l:p/1, l:p/2 
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to give a covering by sets of the form "Iii x R1. This example shows that 
if a manifold is locally the direct product of two other manifolds, it is 
nevertheless not, in general, a product manifold ; it is for this reason 
that the concept of a fibre bundle is so useful. 

The tangent bundle T(.A) is the fibre bundle over a Ck manifold .A 
obtained by giving the set tf = U TP its natural manifold structure peJf 
and its natural projection into .A. Thus the projection 77 maps each 
point of TP into p. The manifold structure in tf is defined by local 
coordinates {zA} in the following way. Let {xi} be local coordinates in 
an open set "It of .A. Then any vector V E TP (for any p E "ll) can be 
expressed as V = Vi o/oxi l p ·  The coordinates {zA} are defined in 
77-l("lt) by {zA} = {xi, va} .  On choosing a covering of .A by coordinate 
neighbourhoods "It a• the corresponding charts define a Ck-l atlas on tf 
which turn it into a Ck-l manifold (of dimension n2) ;  to check this, one 
needs only note that in any overlap ("It a n "It p) the coordinates {xicz} of 
a point are Ck functions of the coordinates {xip} of the point, and the 
components { Vaa} of a vector field are Ck-l functions of the compo
nents { Yap} of the vector field. Thus in 77-1("l/cz n "lip) ,  the coordinates 
{zAcz} are Ck-l functions of the coordinates {zAp} · 

The fibre 77-1 (p) is TP, and so is a vector space of dimension n. This 
vector space structure is preserved by the map </>a, p :  Tp --'>- Rn, which 
is given by <Pa., p (u) = Va(u) , i .e .  </>a, p maps a vector at p into its com
ponents with respect to the coordinates {xacz}· If {xap} are another set 
of local coordinates then the map (</>a, p ) o (</>p, p-1) is a linear map of 
Rn onto itself. Thus it is an element of the general linear group 
GL(n, R) (the group of all non-singular n x n matrices) .  

The bundle of tensors of type (r, s) over .A, denoted by T�(.A), is 
defined in a very similar way. One forms the set tf = U T�(p) ,  defines peJ( 
the projection 77 as mapping each point in T�(p) into p, and, for any 
coordinate neighbourhood "It in .A, assigns local coordinates {zA} to 
77-l("lt) by {zA} = {xi , pa . . .  bc . . .  d} where {xi} are the coordinates of the 
point p and {Ta . . .  bc . . .  d} are the coordinate components of T (that is, 
T = pa . • . bc . . . d o/oxa@ . . .  @dxd lp ) · This turns tf into a Ck-1 manifold of 
dimension nr+s+l ; any point u in T�(.A) corresponds to a unique 
tensor T of type (r, s) at 77(u) .  

The bundle of linear frames (or bases) L(.A) is a Ck-l fibre bundle 
defined as follows : the total space tf consists of all bases at all points 
of .A, that is all sets of non-zero linearly independent n-tuples of 
vectors {Ea},  Ea E TP, for eachp E.A (a runs from 1 to n) . The projection 
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1T is the natural one which maps a basis at a point p to the point p. If 
{xi} are local coordinates in an open set Oii c vii, then 

{zA} = {xa, E/, E2k, . • • , Enm} 
are local coordinates in 7T-1(0lt), where Eai is thejth components of the 
vector Ea with respect to the coordinate bases o/oxi . The general 
linear group GL(n, R) acts on L(vll) in the following way : if {Ea} is 
a basis at p evll, then A e GL(n, R) maps u = {p, Ea} to 

A (u) = {p, Aab Eb}· 
When there is a metric g of signature s on vii, one can define a sub

bundle of L(vll) ,  the bundle of orthonormal frames O(vll) ,  which con
sists of orthonormal bases (with respect to g) at all points of vii. 
O(vll) is acted on by the subgroup O(i(n + s) ,  i(n - s) )  of GL(n, R) .  
This consists of  the non-singular real matrices Aab such that 

AabGbcAdc = Gad• 
where Gbc is the matrix 

diag ( + 1 ,  + 1 ,  . . .  , + 1 ,  - 1 ,  - 1 ,  . . .  , - 1 ) .  
i(n + s) terms i(n - s) terms 

It maps (p, Ea) E O(vll) to (p, Aab Eb) E O(vll) .  In the case of a Lorentz 
metric (i .e . s = n - 2) ,  the group O(n - 1 ,  1 )  is called the n-dimensional 
Lorentz group. 

A er cross-section of a bundle is a er map et> :  vii� tC such that 1T o et> 
is the identity map on vii; thus a cross-section is a er assignment to 
each point p of vii of an element ct>(p) of the fibre 7T-1(p) .  A cross
section of the tangent bundle T(vll) is a vector field on vii ; a cross
section of T�( vii) is a tensor field of type ( r, s) on vii; a cross-section of 
L(vll) is a set of n non-zero vector fields {Ea} which are linearly inde
pendent at each point, and a cross-section of O(vll) is a set of ortho
normal vector fields on vii. 

Since the zero vectors and tensors define cross-sections in T(vll) and 
T�(vll) ,  these fibre bundles will always admit cross-sections . If vii is 
orientable and non-compact, or is compact with vanishing Euler 
number, there will exist nowhere zero vector fields, and hence cross
sections of T(vll) which are nowhere zero. The bundles L(vll) and 
O(vll) may or may not admit cross-sections ; for example L(S2 ) does 
not, but L(Rn) does. If L(vll) admits a cross-section, vii is said to be 
parallelizable . R. P. Geroch has shown ( 1 968 c)  that a non-compact 
four-dimensional Lorentz manifold vii admits a spinor structure if 
and only if it i s  parallelizable . 
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One can describe a connection on JI in an elegant geometrical way 
in terms of the fibre bundle L(JI). A connection on JI may be regarded 
as a rule for parallelly transporting vectors along any curve y(t) in JI. 
Thus if {Ea} is a basis at a point p = y(t0), i .e .  {p, Ea} is a point u in 
L(JI), one can obtain a unique basis at any other point y(t), i .e .  a 
unique point y(t) in the fibre rr-1(y(t)), by parallelly transporting {Ea} 
along y(t). Therefore there is a unique curve y(t) in L(JI), called the 
lift of y(t) , such that : 

( 1 )  y(t0) = u, 
(2) rr(y(t ) )  = y(t ) ,  
( 3 )  the basis represented by the point y(t) i s  parallelly transported 

along the curve y(t) in JI. 
In terms of the local coordinates {zA}, the curve y(t) is given by 

{xa(y(t)), Emi(t)}, where 

dEmi(t )  E i fi . dxa(y(t )) = 0 
dt + m a] dt ' 

Consider the tangent space Tu(L(JI)) to the fibre bundle L(JI) at 
the point u. This has a coordinate basis {8/ozAlu} · The n-dimensional 
subspace spanned by the tangent vectors {(8/8t ):y<t>I u} to the lifts of all 
curves y(t) through p is called the horizontal subspace Hu of T,,(L(�R')). 
In terms of local coordinates, (�) 

= 
dxa(y(t)) 8 dEmi _o_. 

ot - dt oxa + 
dt oE • . Y m 

so a coordinate basis of Hu is {Ofoxa - Emi fiai o/oEmi} .  Thus the con
nection in JI determines the horizontal subspaces in the tangent spaces 
at each point of L(JI). Conversely, a connection in JI may be defined 
by giving an n-dimensional subspace of Tu(L(JI)) for each u E L(JI) 
with the properties : 

( 1 )  If A E GL(n, R1 ) ,  then the map A* : Tu(L(.A)) -+TA<u>(L(JI)) 
maps the horizontal subspace H,,, into HA<u> ; 

(2 )  Hu contains no non-zero vector belonging to the vertical sub
space V,.. 

Here, the vertical subspace V,. is defined as the n2-dimensional 
subspace of Tu(L(JI)) spanned by the vectors tangent to curves in the 
fibre rr-1 (7T(u ) ) ; in terms of local coordinates,  V,. is spanned by the 

3 H L S  
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vectors {o/oEmi} . Property (2 )  implies that Tu is the direct sum of Hu 
and V,, . 

The projection map 11 :  L(Jl) � JI  induces a surjective linear map 
"* : Tu(L(JI) ) � T,,eu>(JI),  such that 11* (V,, ) = 0 and 11* restricted to Hu 
is 1-1 onto T,,cu> · Thus the inverse 11* -1 is a linear map of T..<u>(JI) 
onto Hu. Therefore for any vector X E Tp(JI) and point u E 11-1(p) ,  there 
is a unique vector X e Hu, called the Jwrizontal lift of X, such that 
11* CX ) = X. Given a curve y(t) in JI, and an initial point u in 11-1(y(t0 ) ) ,  
one can construct a unique curve y(t) in L(JI) , where y(t )  i s  the curve 
through u whose tangent vector is the horizontal lift of the tangent 
vector of y(t) in JI. Thus knowin.g the horizontal subspaces at each 
point in L(JI), one can define parallel propagation of bases along any 
curve y(t ) in JI. One can then define the covariant derivative along 
y(t) of any tensor field T by taking the ordinary derivatives with 
respect to t, of the components of T with respect to a parallelly 
propagated basis . 

If there is a metric � on JI whose covariant derivative is zero, then 
orthonormal frames are parallelly propagated into orthonormal 
frames. Thus the horizontal subspaces are tangent to O(JI) in L(JI), 
and define a connection in O(JI) . 

Similarly a connection on JI defines n-dimensional horizontal sub
spaces in the tangent spaces to the bundles T(JI) and T�(JI), by 
parallel propagation of vectors and tensors. These horizontal sub
spaces have coordinate bases 

and 

{0� - ( Tf . . . bc . . .  a raet + (all upper indices) 

- Ta . . .  bt . . . d ff ec - (all lower indices)) aTa -�b } 
c . . .  d 

respectively. As with L(JI), 11* maps these horizontal subspaces 
one-one onto T,,cu>(JI) ; thus again 11* can be inverted to give a unique 
horizontal lift X E Tu of any vector X E T,,cu> · In the particular case of 
T(JI), u itself corresponds to a unique vector W E T.rtu>(JI), and so 
there is an intrinsic horizontal vector field W defined on T(JI) by the 
connection . In terms of local coordinates {x<L, Vb}, 

w = ya - - verf -- ( 0 0 ) oxa ae o VI  . 
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This vector field may be interpreted as follows : the integral curve of W 
through u = (p, X) E T(vll) is the horizontal lift of the geodesic in vii 
with tangent vector X at p.  Thus the vector field W represents all 
geodesics on vii. In particular, the family of all geodesics through 
p e vll is the family of integral curves of W through the fibre 
r1(p) c T(vll) ;  the curves in vii have self intersections at least at p, 
but the curves in T(vll) are non-intersecting everywhere. 

3 -2 



3 
General Relativity 

In order to discuss the occurrence of singularities and the possible 
breakdown of General Relativity, it is important to have a precise 
statement of the theory and to indicate to what extent it is unique. 
We shall therefore present the theory as a number of postulates about 
a mathematical model for space-time. 

In § 3 . 1 we introduce the mathematical model and in § 3.2 the first 
two postulates, local causality and local energy conservation. These 
postulates are common to both Special and General Relativity, and 
thus may be regarded as tested by the many experiments that have 
been performed to check the former. In § 3 . 3  we derive the equations 
of the matter fields and obtain the energy-momentum tensor from a 
Lagrangian . 

The third postulate, the field equations, is given in § 3 .4 .  This is not 
so well established experimentally as the first two postulates, but we 
shall see that any alternative equations would seem to have one or 
more undesirable properties , or else require the existence of extra 
fields which have not yet been detected experimentally. 

3.1  The space-time manifold 

The mathematical model we shall use for space-time, i . e .  the collection 
of all events, is a pair (JI, g) where JI is a connected four-dimensional 
Hausdorff 000 manifold and g is a Lorentz metric ( i .e .  a metric of 
signature + 2)  on JI. 

Two models {Jl, g)  and (Jl' , g ' )  will be taken to be equivalent if 
they are isometric , that is if there is a diffeomorphism () : JI -+ JI' 
which carries the metric g into the metric g ' ,  i . e .  ()* g = g' .  Strictly 
speaking then, the model for space-time is not just one pair (JI, g)  
but a whole equivalence class of  all pairs (JI' , g' )  which are equivalent 
to (JI, g) . We shall normally work with just one representative mem
ber (.L, g) of the equivalence class , but the fact that this pair is defined 
only up to equivalence is important in some situations, in particular 
in the discussion of the Cauchy problem in chapter 7 .  

[ 56 l 
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The manifold vii is taken to be connected since we would have no 
knowledge of any disconnected component. It is taken to be Hausdorff 
since this seems to accord with normal experience . However in 
chapter 5 we shall consider an example in which one might dispense 
with this condition. Together with the existence of a Lorentz metric, 
the Hausdorff condition implies that vii is paracompact (Geroch 
( 1 968c ) ) .  

A manifold corresponds naturally to our intuitive ideas of the con
tinuity of space and time. So far this continuity has been established 
for distances down to about 10-15 cm by experiments on pion scat
tering (Foley et al. ( 1 967 ) ) .  It may be difficult to extend this to much 
smaller lengths as to do so would require a particle of such high energy 
that several other particles might be created and confuse the experi
ment. Thus it may be that a manifold model for space-time is inap
propriate for distances less than 10-15 cm and that we should use 
theories in which space-time has some other structure on this scale . 
However such breakdowns of the manifold picture would not be 
expected to affect General Relativity until the typical gravitational 
length scale became of that order. This would happen when the density 
became about 1058 gm cm-3, which is a condition so extreme as to be 
completely beyond our present knowledge. Nevertheless, by adopting 
a manifold model for space-time, and making certain other reasonable 
assumptions, we shall show in chapters 8-10  that some breakdowns 
of General Relativity must occur. It may be the field equations that 
go wrong, or it may be that quantization of the metric is needed, or it 
may be a breakdown of the manifold structure itself that occurs. 

The metric g enables the non-zero vectors at a point p Evll to be 
divided into three classes : a non-zero vector X E TP being said to be 
timelike, spacelike or null according to whether g(X, X) is negative, 
positive or zero respectively (cf. figure 5 ) .  

The order of  differentiability, r, of the metric ought to be  sufficient 
for the field equations to be defined. They can be defined in a distribu
tional sense if the metric coordinate components Yab and gab are con
tinuous and have locally square integrable generalized first derivatives 
with respect to the local coordinates .  (A set of functions/; a on Rn are 
said to be the generalized derivatives of a function f on Rn if, for any 
000 function ijF on Rn with compact support, 
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However this condition is too weak, since it guarantees neither the 
existence nor the uniqueness of geodesics, for which a 02- metric is 
required. (A 02- metric is one for which the first coordinate derivatives 
of the metric coordinate components satisfy a local Lipschitz condi
tion, see § 2 . 1 . )  We shall in fact assume for most of the book that the 
metric is at least 02• This allows the field equations (which involve the 
second derivatives of the metric) to be defined at every point . In § 8 .4  
we shall weaken the condition on the metric to  02- and show that this 
does not affect the results on the occurrence of singularities .  

In chapter 7 ,  we use a different kind of differentiability condition 
in order to show that the time development of the field equations is 
determined by suitable initial conditions .  We require there that the 
metric components and their generalized first derivatives up to order 
m(m � 4) are locally square integrable. This would certainly be true if 
the metric were 04• 

In fact, the order of differentiability of the metric is probably not 
physically significant. Since one can never measure the metric exactly, 
but only with some margin of error, one could never determine that 
there was an actual discontinuity in its derivatives of any order. Thus 
one can always represent one's measurements by a 000 metric. 

If the metric is assumed to be 0", the atlas of the manifold must be 
Qr+l . However, one can always find an analytic subatlas in any 08 atlas 
(s � 1 )  (Whitney ( 1 936 ) , cf. Munkres ( 1 954) ) .  Thus it is no restriction 
to assume from the start that the atlas is analytic, even though one 
could physically determine only a Qr+l atlas if the metric were or. 

We have to impose some condition on our model (.L, g) to ensure 
that it includes all the non-singular points of space-time.  We shall say 
that the Qr pair (.L' , g' )  is a 0"-extension of (.L, g)  if there is an iso
metric Qr imbedding µ :  .L -+ .L' . If there were such an extension 
(.L' , g' )  we should have to regard points of .L' as also being points of 
space-time. We therefore require that the model (.L, g) i,s 0"
inextendible, that is there is no or extension (.L' , g ' )  of (.L, g) where 
µ(.L) does not equal .L'. 

As an example of a pair (.L v g1) which is not inextendible, consider 
two-dimensional Euclidean space with the x-axis removed between 
x1 = - 1  and x1 = + 1 . The obvious way to extend this would simply 
be to replace the missing points, but one could also extend it by taking 
another copy (.L 2, g2) of the space, and identifying the bottom side 
of the x1 -axis for I x1 I < 1 with the top side of the x2-axis for I x2 I < 1 ,  
and also identifying the top side of the x1-axis for l x1 1 < 1 with the 
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bottom side of the x2-axis for l x2 1 < 1. The resultant space (.L3, g3) is 
inextendible but not complete as we have left out the points x1 = ± 1 ,  
y1 = 0 .  We cannot put these points back in because we were perverse 
enough to extend the top and bottom sides of the x-axis on different 
sheets . If however one takes the subset 0// of .L 3 defined by 1 < x1 < 2,  
- 1  < y1 < 1 ,  then one could extend the pair (O//, g3 1"' )  and put back 
the point x1 = 1 ,  y1 = 0. This motivates a rather stronger definition of 
inextendibility : a pair (.L, g) is said to be 0"-locally inextendible if 
there is no open set 0// c .L with non-compact closure in .L, such that 
the pair (0//, g l"' )  has an extension (O//' ,  g' )  in which the closure of the 
image of 0// is compact. 

3.2 The matter fields 

There will be various fields on .L, such as the electromagnetic field, the 
neutrino field, etc . ,  which describe the matter content of space-time .  
These fields will obey equations which can be expressed as  relations 
between tensors on .L in which all derivatives with respect to position 
are covariant derivatives with respect to the symmetric connection 
defined by the metric g. This is so because the only relations defined 
by a manifold structure are tensor relations, and the only connec
tion defined so far is that given by the metric. If there were another 
connection on .L, the difference between the two connections would 
be a tensor and could be regarded as another physical field. Similarly 
another metric on .L could be regarded as a further physical field . 
(The equations of the matter fields are sometimes expressed as 
relations between spinors on .L. We do not deal with such relations 
in this book, as they are not needed for the problems we wish to 
consider. In fact, all spinor equations can be replaced by rather more 
complicated tensor equations ; see e.g. Ruse ( 1 937 ) . )  

The theory one obtains depends on what matter fields one incorpo
rates in it . One should of course include all such fields which have been 
experimentally observed, but one might postulate the existence of as 
yet undetected fields. Thus for example Brans and Dicke (Dicke 
( 1 964) , appendix 7) postulate the existence of a long range scalar field 
which is weakly coupled to the trace of the energy-momentum tensor. 
In the form given in Dicke ( 1 964) appendix 2, the Brans-Dicke theory 
can be regarded simply as General Relativity with an extra scalar 
field. Whether this scalar field has been experimentally detected or 
not is at present under dispute. 
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We shall denote the matter fields included in the theory by 
'Ywa . . .  bc . . . d •  where the subscript (i) numbers the fields considered. The 
following two postulates on the nature of the equations obeyed by the 
'Ywa . . . bc . . . d are common to both the Special and the General Theories 
of Relativity. 

Postulate (a) : Local causality 
The equations governing the matter fields must be such that if '=PI is 
a convex normal neighbourhood and p and q are points in '=PI then a 
signal can be sent in '=PI between p and q if and only if p and q can be 
joined by a 01 curve lying entirely in '=PI, whose tangent vector is every
where non-zero and is either timelike or null ; we shall call such a curve, 
non-spacelike . (Our formulation of relativity excludes the possibility 
of particles such as tachyons, which move on spacelike curves . )  
Whether the signal i s  sent from p to q or from q to p will depend on the 
direction of time in '=Pl. The problem of whether a consistent direction 
of time can be assigned at all points of space-time will be considered 
in § 6 .2 .  

A more precise statement of  this postulate can be given in terms of 
the Cauchy problem of the matter fields. Let p E '=PI be such that every 
non-spacelike curve through p intersects the spacelike surface x4 = 0 
within '=PI. Let :F be the set of points in the surface x4 = 0 which can be 
reached by non-spacelike curves in '=PI from p .  Then we require that the 
values of the matter fields at p must be uniquely determined by the 
values of the fields and their derivatives up to some finite order on .'F, 
and that they are not uniquely determined by the values on any 
proper subset of Y:- to which it can be continuously retra cted. (For 
a fuller discussion of the Cauchy problem , see chapter 7 . ) 

It is this postulate which sets the metric g apart from the other 
fields on JI and gives it its distinctive geometrical character. If { xa} are 
normal coordinates in '=PI about p, it is intuitively fairly obvious (and 
is proved in chapter 4) that the points which can be reached from p by 
non-spacelike curves in '=PI are those whose coordinates satisfy 

(xl )2 + (x2 )2 + (x3 )2 _ (x4 )2 � o .  

The boundary of these points is  formed by the image of the null cone 
of p under the exponential map, that is the set of all null geodesics 
through p. Thus by observing which points can communicate with p,  
one can determine the null cone NP in TP . Once NP i s  known, the metric 
at p may be determined up to a conformal factor. This may be seen as 
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follows : let X, YE TP be  respectively timelike and spacelike vectors . 
The equation 

g(X + A.Y, X + A.Y) = g(X, X) + 2A.g(X, Y) + A.2g(Y, Y) 

= 0 

will have two real roots A.1 and A.2 as g(X, X) < 0 and g(Y, Y) > 0. If 
NP is known, A.1 and A.2 may be determined. But 

A.1 A.2 = g(X, X)/g(Y, Y) .  

Thus the ratio of  the magnitudes of  a timelike vector and a spacelike 
vector may be found from the null cone . Then if W and Z are any two 
non-null vectors at p, 

g(W, Z) = i (g(W, W) + g(Z, Z) - g(W + z, W + Z) ) .  

Each of the magnitudes on the right-hand side may be compared with 
the magnitude of either X or Y, and so g(W, Z)/g(X, X) may be found. 
(If W + Z is null, the corresponding expression involving W + 2Z 
could be used. )  Thus observation of local causality enables one to 
measure the metric up to a conformal factor. In practice this measure
ment is performed most conveniently using the experimental fact that 
no signal has been observed to travel faster than electromagnetic 
radiation. This means that light must travel on null geodesics . This 
however is a consequence of the particular equations the electro
magnetic field obeys, not of the theory of relativity itself. Causality 
will be considered further in chapter 6. Among other results, it will be 
shown that causal relations may be used to determine the topological 
structure of JI. The conformal factor in the metric may be determined 
using postulate (b) below ; thus all the elements of the theory will be 
physically observable. 

Postulate (b) : Local conservation of energy and momentum 
The equations governing the matter fields are such that there exists 
a symmetric tensor Tab, called the energy-momentum tensor, which 
depends on the fields, their covariant derivatives, and the metric, and 
which has the properties : 

(i) Tab vanishes on an open set Olt if and only if all the matter fields 
vanish on Olt, 

(ii) Tab obeys the equation 

Tab ; b = O. (3 . 1 )  
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Condition (i) expresses the principle that all fields have energy. One 
might possibly object to the ' only if' on the grounds that there might 
be two non-zero fields, one of whose energy-momentum tensor exactly 
cancelled that of the other. This possibility is related to that of the 
existence of negative energy which will be discussed in § 3 . 3 . 

If the metric admits a Killing vector field K, equations (3 . 1 )  can be 
integrated to give a conservation law. To see this, define pa to be the 
vector whose components are pa = pabK1r Then, 

pa ; a  = pab ; aKb + TabKb ; a· 

The first term is zero by the conservation equations, and the second 
vanishes as pab is symmetric and 2Kca ; b> = Lggab = 0, since K is a 
Killing vector. Thus if £l) is a compact orientable region with boundary 
a�, Gauss' theorem ( § 2 . 7 )  shows 

f Pb dub = f Pb. b dv = 0.  
a� � • 

(3 . 2)  

This may be interpreted as saying that the total flux over a closed 
surface of the K-component of energy-momentum is zero. 

When the metric is flat, as it is in the Special Theory of Relativity, 
one may choose coordinates {xa} in which the components of the metric 
are gab = ea 8ab (no summation) where 8ab is the Kronecker delta and 
ea is - 1  if a = 4 and is + 1 if a =  1 ,  2, 3 . Then the following are 
Killing vectors : L = o/oxa. (a = 1 ,  2, 3, 4) 

a. 

(these generate four translations) and 

a a 
M = ea.xa. -P - epxP - (no summation ; a, fl = 1 ,  2, 3 , 4) 
ap ox axa. 

(these generate six ' rotations ' in space-time ) .  These isometries form 
the ten-parameter Lie group of isometries of flat space-time known as 
the inhomogeneous Lorentz group. One may use them to define ten 
vectors pa and pa which will obey (3 .2 ) .  We may think of P as repre-

a ap 4 
senting the flow of energy and P, P, P as the flow of the three compo-

1 2 3 
nents of linear momentum. The P can be interpreted as the flow of 

ap 
angular momentum. 

If the metric is not flat there will not, in general, be any Killing 
vectors and so the above integral conservation laws will not hold . How
ever, in a suitable neighbourhood of a point q one may introduce 
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normal coordinates {xa} . Then at q the components g00 of the metric are 
ea 8ab (no summation) ,  and the components rabc of the connection are 
zero . One may take a neighbourhood � of q in which the Yab and ra00 
differ from their values at q by an arbitrarily small amount ; then the 
Lca · b> and Mca · b> will not exactly vanish in !!.d, but will in this neigh-
"' • a.P , 
bourhood differ from zero by an arbitrarily small amount. Thus 

f Pb dub and f Pb dub 
iJgp "' age a.P 

will still be zero in the first approximation ; that is to say, one still has 
approximate conservation of energy, momentum and angular 
momentum in a small region of space-time .  Using this it can be shown 
that a small isolated body moves approximately on a timelike geodesic 
curve independent of its internal constitution provided that the energy 
density of matter in it is non-negative (for an account of the motion of 
a small body in relativity, see Dixon ( 1 970) ) .  This may be thought of 
as Galileo's principle that all bodies fall equally fast. In Newtonian 
terms one would say that the inertial mass (the m in F = ma) and the 
passive gravitational mass (the mass acted on by a gravitational field) 
are equal for all bodies. This has been verified to a high order of 
accuracy in experiments by Eotvos and by Dicke ( 1 964) . 

Postulate (a) enables one to measure the metric up to a conformal 
factor at each point. Using postulate (b) one may relate these factors 
at different points, for the conservation equations pab ; b = 0 would not 
in general hold for a connection derived from a metric g = Q2g. One 
way of doing this would be to observe the paths of small ' test ' particles 
and so to determine the timelike geodesic curves. Then if y(t) is such a 
curve with tangent vector K = (a/at)r one has from (2 .29)  

D Ka = D Ka + 2n-1n Kb Ka _ Q-l(Kb Kcf!i ) f!iadQ at at ; b llbc v ; d ·  

Since y(t) is a geodesic with respect to the space-time metric g ,  
KCb(Df at) Kai = 0.  Thus 

KCb�Kal = - (KcKdgcd ) J(Cbgal e (log il ) ; e · ( 3 .3 )  

Knowing the conformal structure, one can choose a metric g which 
represents the conformal equivalence class of metrics and can evaluate 
the left-hand side of (3 .3 )  for any test particle . Then the right-hand side 
of (3 .3 )  determines (log il) ;  b up to the addition of a multiple of Kagab · 
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By considering another curve y'(t) whose tangent vector K'a i s  not 
parallel to Ka, one can find (log Q) ;  b and so can determine Q every
where up to a constant multiplying factor. This constant factor 
specifies one's units of measurement, and so can be chosen arbitrarily. 

This is, of course, not the way one measures the conformal factor in 
practice ; one makes use of the fact that there exist a large number of 
similar systems (such as the electronic states of atoms) whose internal 
motions define a number of events along the timelike curve which 
represents their position in space-time. The intervals between these 
events seem to be independent of their past history in the sense that 
the intervals measured by two nearby systems correspond. If one can 
effectively isolate them against external matter fields (so they must 
move on geodesic curves)  and if one assumes their internal motion is 
independent of the curvature of space-time, then the only thing it can 
depend on is the metric .  Thus the arc-length between two successive 
events on a curve must be the same for each pair of successive events 
on any such curve . If one takes this arc-length as one's unit of measure
ment, one can determine the conformal factor at any point of space
time. 

In fact it may not be possible to isolate a system from external 
matter fields. Thus for example in the Brans-Dicke theory there is 
a scalar field which is non-zero everywhere. However the conformal 
factor can still be determined by the requirement that the conserva
tion equation Tab ; b = 0 should hold. Thus knowledge of the energy
momentum tensor Tab determines the conformal factor. 

3.3 Lagrangian formulation 

The conditions (i) and (ii )  of postulate (b) do not tell one how to con
struct the energy-momentum tensor for a given set of fields, or whether 
it is unique . In practice one relies heavily on one's intuitive knowledge 
of what energy and momentum are. However, there is a definite and 
unique formula for the energy-momentum tensor in the case that the 
equations of the fields can be derived from a Lagrangian. 

Let L be the Lagrangian which is some scalar function of the fields 
'Y<i>a . . . b

c . . .  d •  their first covariant derivatives, and the metric. One 
obtains the equations of the fields by requiring that the action 
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be stationary under variations of the fields in the interior of a compact 
four-dimensional region !?).  By a variation of the fields 'Y(i)a · · · be . . .  d in !?)  
we mean a one-parameter family of fields 'l'(i) (u, r )  where u E ( - e, e )  

and r E JI, such that 
( i )  'l'(i) (O, r) = 'l'(i) (r) , 
(ii) 'l'(i)(u, r) = 'l'(i)(r) when r E JI - !?} .  

We denote 

Then 

ol \ J ( oL - = L a . . .  b �'Ywa . . . bc • • .  d OU U=O (i) EiJ o'Yw c . . .  d 
oL ) + 

o'Y . a . . . b �('Y(i)a . . . bc • • •  d ; e ) dv , 
(i) c . . . d ;  e 

where 'YCila . . . bc . • •  d ; e are the components of the covariant derivatives 
of 'l'Cil . But �('Ywa . . .  bc . • •  d ; e) = (�'Ywa . . .  bc . • •  d) ; e ' thus the second term 
can be expressed as 

�J [ (o'Y .a�.�  �'Y(i)a . . . bc . • .  d) (i) EiJ (i) c . . . d ; e ; e  

- (o'Y . a
�� ) �'YCila . . . bc • . .  d] dv . 

(i) c . . . d ; e ; e 
The first term in this expression can be written as 

where Q is a vector whose components are 

Qe = L 
oL 

�'Y(i)a . . . bc • • •  d · (i) o'Y(i)a . . .  bc . . . d ; e 
This integral is zero as condition (ii) is the statement that � 'l'w vanish 
at the boundary of?) . Thus in order that 01/ou l u=o should vanish for 
all variations on all volumes � ,  it is necessary and sufficient that the 
Euler-Lagrange equations, 

oL 
- ( oL ) _ 0 

o':Y 
. a . . . b o'Y . a . . .  b - , 

(i) c . . . d (i) c . . . d ; e ; e  

hold for all i .  These are the equations of the fields. 

(3 .4)  

We obtain the energy-momentum tensor from the Lagrangian by 
considering the change in the action induced by a change in the metric .  
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Suppose a variation gab (u , r ) leaves the fields 'Ywa . . .  bc . . .  d unchanged 
but alters the components gab of the metric. Then 

!�I =f ( � o'Y . a�� Ll('Ywa . . .  bc . . . d : e ) +:L Llgab) dv 
u=O !JI (•) (i) c . . . d ; e gab f o(dv ) + L -o- Llgab · 

� gab 
( 3 .5 )  

The last term arises because the volume measure dv depends on the 
metric ,  and so will vary when the metric is varied. To evaluate this 
term, recall that dv is in fact the canonical four-form Y) whose compo
nents are 'YJabcd = ( - g)l4 ! ora1 ob2 oc3 8d14, where g = det (gab) .  Therefore 

Thus 

O'YJabcd = _ .l( - g)-! � 4 1 &  1 8 2 8 s o 4 
og 2 og · [a b e d] ef ef 

= - !( - g)-l get g4 !  ora1 ob2 8c3 8a14 

= !gel 'Y/abcd · 

o(dv) - .l ab d 0 - 2g v. 
gab 

The first term in (3 .5 )  arises because Ll('Y(i)a . . . bc . . .  d ; e ) will not neces
sarily be zero even though Ll'Y(i)a . . .  bc . . . d is, since the variation in the 
metric will induce a variation in the components rabc of the connection. 
As the difference between two connections transforms like a tensor, 
flrabc may be regarded as the components of a tensor. They are related 
to the variation in the components of the metric by 

flrabc = !gad{(Llgdb ) ; c + (Llgdc) ; b - (Llgbc) ; d} · 

(The easiest way to derive this formula is to note that since it is a tensor 
relation, it must be valid in any coordinate system. In particular, one 
could choose normal coordinates about a point p. For these coordinates 
the components rabc and the coordinate derivatives of the components 

gab vanish at p. The formula given can then be verified to hold at p. )  
Using this relation, Ll'Y(i)a . . . bc . . . d ; e may be expressed in terms of 
(Llgbc) ; d and the usual integration by parts employed to give an inte
grand involving Llgab only. Thus we may write ol/ou as 

f � (Tabflgab) dv, 

where Tab are the components of a symmetric tensor which is taken 
to be the energy-momentum tensor of the fields. (See Rosenfeld ( 1 940) 
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for the relation between this tensor and the so-called canonical energy
momentum tensor. )  

This energy-momentum tensor satisfies the conservation equations 
as a consequence of the field equations obeyed by the '¥ciia . . .  bc . . .  a · For 
suppose one has a diffeomorphism <f> :  Jl -+ JI  which is the identity 
everywhere except in the interior of � .  Then, by the invariance of 
integrals under a differential map, 

I = f L dv = f LYJ = f LYJ = f </>*(LYJ ) .  
!ilJ !ilJ r/iC9J) 9J 

Thus f 9 (LYJ - </>*(LYJ) )  = 0.  

If the diffeomorphism </> is generated by a vector field X (non-zero only 
in the interior of �)  it follows that f !!IJ Lx(LYJ ) = o. 
But f Lx(LYJ ) = �J (a'¥ - ��b - (0'¥ . a�� ) ) 9J (•) !ilJ (i) c . . . d (i) c . . .  d ; e ; e  

x T. '¥c ·>a . . .  b dv +f Tab T. g dv. -'-'X • c . . . d -'-'X ab !ilJ 
The first term vanishes as a consequence of the field equations. In the 
second term, Lxgab = 2Xca ; bl · Thus 

f (Tab.£xgab) dv = 2f ( (TabXa) · b - Tab . b Xa) dv. 
!ilJ !ilJ • • 

The first contribution may be transformed into an integral over the 
boundary of � which vanishes as X is zero there . Since the second 
term must therefore be zero for arbitrary X, it follows that Tab ; b = 0 .  

We shall now give as  examples Lagrangians for some fields which 
will be of interest later. 

Example 1 : A scalar field ifr 
This can represent, for example, the 1fl-meson. The Lagrangian is 

m2 
L = - 1/f; a ifr; b gab - r,,2 ifr2 

where m, n are constants. The Euler-Lagrange equations (3 .4 )  are 
m2 

, fr gab _ _  , fr - O 'f' ; ab fi,2 'f' - • 
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The energy-momentum tensor is 

Tab = ifr; a ifr; b - !gab (ifr; c ifr; a: ffd + �: ifr2) . ( 3 . 6 )  

Example 2 :  The electromagnetic field 
This is described by a one-form A, called the potential , which is defined 
up to the addition of a gradient of a scalar function. The Lagrangian is 

1 
L = - -F F gacgbd 877 ab cd ' 

where the electromagnetic field tensor F is defined as 2 dA, i .e .  
Fab = 2Acb ; al ·  Varying Aa, the Euler-Lagrange equations (3 .4) are 

Fab ; c gbc = 0.  

This and Frab ; cl = 0 (which is the equation dF = d(dA) = 0) are the 
Maxwell equations for the source-free electromagnetic field. The 
energy-momentum tensor is 

Tab = 4� (Fac Fbdifd - !gab Jij F,.·z gikgil) . ( 3 .  7 )  

Example 3 :  A charged scalar field 
This is really a combination of two real scalar fields ifr 1 and ifr 2 • These 
are combined into a complex scalar field ifr = ifr1 + iifr2, which could 
represent, for example, 17+ and 17- mesons . The total Lagrangian of the 
scalar field and electromagnetic field is 

_ _ m2 - 1 
L = - (ifr; a + ieAa ifr)gab(ifr; b - ieAb ifr) - r,,2 ifrifr - 877 Fabfi'cdgacgbd, 

where e is a constant and 1f is the complex conjugate of ifr. Varying 

ifr, 1f and Aa independently, one obtains 

m2 
ifr; ab gab _ 

r,,2 ifr + ieAa gab(2ifr; b + ieAb ifr) + ieAa ; b gabifr = 0, 

and its complex conjugate, and 

4
l 

Fab · c gbc _ ieifr(lf. a - ieAa 1/i") + ielf(ifr. a + ieAa ifr) = 0.  
1T ' • ' 

The energy-momentum tensor is 

Tab = ·i(ifr; a 1/i"; b + 1/i"; a !fr; b ) + i( - ifr; a ieAb lf + 1/i"; b ieAa ifr 

+ V;  a ieAb ifr - ifr; b ieAa 1/i") + 4�FacF,,dgca + e2AaAb ifrlf + !Lgab· 
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Example 4: An isentropic perfect fluid 
The technique here is rather different. The fluid is described by a 
function p, called the density, and a congruence of timelike curves, 
called the flow lines . By a congruence of curves, is meant a family of 
curves, one through each point of ..A. If � is a sufficiently small com
pact region, one can represent a congruence by a diffeomorphism 
y :  [a, b] x .Al� � where [a, b] is some closed interval of R1 and .Al is 
some three-dimensional manifold with boundary. The curves are said 
to be timelike if their tangent vector W = (o/ot)y , t E [a, b] , is timelike 
everywhere . The tangent vector V is defined by V = ( - g(W, W) )-l W, 
so g(V, V) = - 1 ,  and the fluid current vector is defined by j = p V. It 
is required that this is conserved, i .e .  ja ; a = 0. The behaviour of the 
fluid is determined by prescribing the elastic potential (or internal 
energy) e as a function of p. The Lagrangian is taken to be 

L = - 2p( 1 + e) 
and the action I is required to be stationary when the flow lines are 
varied and p is adjusted to keep ja conserved. A variation of the flow 
l ines is a different iable map y :  ( - o, o) x [a, b] x .,y··� � such that 

y(O, [a, b] , .AI") = y( [a, b] , .AI") 

and y(u, [a, b] , .Af) = y( [a, b] , .AI") on ..A - � ,  (u E ( - o, o ) ) . 

Then it follows that /:J.W = Lg W where the vector K is K = (o/ou)y . 
This vector may be thought of as representing the displacement, under 
the variation, of a point of the flow line . It follows that 

!:J. Va = ya ; b Kb - Ka ; b Vb - ya vb Kb ; c vc. 
Using the fact that /:J.(ja ; a) = 0 = (l:J.ja) ; a• one has 

(/:J.p) ; a Va + !:J.p ya ; a + P; a !:J. va + p(!:J. Va) ; a = 0. 

Substituting for /:J. ya and integrating along the flow lines, one finds 

!:J.p = (pKb) ; b + PKb ; c Vb Vc. 
Therefore the variation of the action integral is 

;�1u=o = - 2 f !j { ( (pKb) ; b + pKb; c Vb Vc) ( 1 + dt;))} dv. 

Integrating by parts, of \ = 2f { (p ( t +  d(ep)) va + p (d(ep)) (yea + yc ya)) K}j dv, OU 1t=O !!J dp dp ; c 
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where J1a = va . b Vb. If this is zero for all K,  it follows that 

(µ +p) ya = -P; b(gba + Vb Va) ,  

where µ = p( l + e) i s  the energy density and p = p2(de/dp) is the 
pressure . Thus J1a, the acceleration of the flow lines, is given by the 
pressure gradient orthogonal to the flow lines . 

To obtain the energy-momentum tensor one varies the metric. The 
calculations may be simplified by noting that the conservation of the 
current may be expressed as 

Given the flow lines, the conservation equations determine ja uniquely 
at each point on a flow line in terms of its initial value at some given 
point on the same flow line . Therefore (,J - g)ja is unchanged when the 
metric is varied. But 

so 

and thus 

p2 = g-l ( (,J - g)ja (..j - g)jb) gab• 

2p!J.p = (jajb -fjcgab) !J.gab , 

Tab = {p( l + e) +p2 de
· } va vb +p2 de gab 

dp dp 

= (µ +p) va vb +pgab. ( 3 . 8 )  

We shall call any matter whose energy-momentum tensor is  of  the 
above form (whether or not it is derived from a Lagrangian) a perfect 
fluid. From the energy and momentum conservation equations (3 . 1 )  
applied to (3 . 8 )  one finds 

µ ; a va + (µ +p) ya ; a = 0, 

(µ +p) J1a + (gab + ya yb )P ; b  = o. 

( 3 .9 )  

( 3 . 10 )  

These are the same as the equations derived from the Lagrangian. We 
shall call a perfect fluid isentropic if the pressure p is a function of the 
energy density µ only. In this case one can introduce a conserved 
density p and an internal energy e and derive the equations and the 
energy-momentum tensor from a Lagrangian. 

One may also give the fluid a conserved electric charge e ( i .e .  
Ja ; a = 0 where J = e V is the electric current) .  The Lagrangian for 
the charged fluid and the electromagnetic field is 

1 L = --FabJ;;dgacgbd _ 2p( 1  + e) - JaAa. 877 
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The last term gives the interaction between the fluid and the field . 
Then varying A, the flow lines and the metric respectively, one finds 

pab ; b = 47TJa, 
(µ +p) ya = -P ; b(gab + va Vb) + Fab Jb, 

Tab = (µ +p) va Vb +pgab + 4
� (Facpbc _ igabl'cd Fcd) .  

3.4 The field equations 

So far, the metric � has not been specified. In the Special Theory of 
Relativity, which does not include gravitational effects, it is taken to 
be flat. One might think that one could include gravitation by keeping 
the metric flat and by introducing an extra field on space-time . How
ever, experiments have shown that light rays travelling near the sun 
are deflected. Since light rays are null geodesics, this shows that the 
space-time metric cannot be flat or even conformal to a flat metric. 
One therefore has to give some prescription for the curvature of 
space-time. It turns out that this prescription can be chosen so as to 
reproduce the results of Newtonian gravitation theory in the limit of 
small slowly varying curvature . It is therefore not necessary to intro
duce an extra field to describe gravitation . This is not to say that there 
could not be an additional field that produced part of the gravitational 
effects. Such a scalar field has been suggested by Jordan ( 1 955) ,  and 
Brans and Dicke (see Dicke ( 1 964) ) .  However, as mentioned before, 
such an additional field could be regarded as simply another matter 
field and included in the total energy-momentum tensor. We therefore 
adopt the view that the gravitational field is represented by the 
space-time metric itself. The problem then becomes one of finding 
field equations to relate the metric to the distribution of matter. 

These equations should be tensor equations involving the matter 
only through its energy-momentum tensor, i .e .  should not distinguish 
between two different matter fields which have the same distribution 
of energy and momentum. This can be regarded as a generalization of 
the Newtonian principle that the active gravitational mass of a body 
(the mass producing a gravitational field) is equal to the passive gravi
tational mass (the mass acted on by the gravitational field) .  This has 
been verified experimentally by Kreuzer ( 1 968) .  

To determine what the field equations should be ,  we shall consider 
the Newtonian limit . Since the Newtonian gravitational field equation 
does not involve time, the correspondence with Newtonian theory 
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should be made in a metric which is static .  By a static metric is meant 
a metric which admits a timelike Killing vector field K which is 
orthogonal to a family of spacelike surfaces . These surfaces may be 
regarded as surfaces of constant time and may be labelled by the 
parameter t. We define the unit timelike vector V as J-1K, where 

f2 = - Ka Ka . Then va ; b = - J'a Vi,, where J'a = va ; b Vb = J-1f; bgab 
represents the departure from geodesity of the integral curves of V 
(which are of course also integral curves of K) .  Note that J'a fa = 0.  

These integral curves define the static frame of reference, that is to 
say, the space-time metric seems to be independent of time to a 
particle whose history is one of these curves. A particle released from 
rest and following a geodesic would appear to have an initial accelera
tion of - V with respect to the static frame. If f differs only slightly 
from unity the initial acceleration of a freely moving particle released 
from rest is approximately minus the gradient off. This suggests that 
one should regard f- 1 as the quantity analogous to the Newtonian 
gravitational potential . 

One can derive an equation for this potential by considering the 
divergence of J'a : 

ya ; a = ( Va ; b Vb) ; a = vu ; b ; a Vb + va ; b Vb ; a 
= Rab va vb + ( Va ; a ) ; b Vb + (Vi, J'b)2 = Rab va vb . 

But J'a ; a = (j-lf; b gab ) ; a = -J-2/; af; b gab +J-lf; ba Yab 

and l ab va vb = -/; a va ; b Vb = -f-1/; af; b gab , 
so one finds f; ab (gab + va Vb) = f Rab va Vb. 

The term on the left is the Laplacian off with respect to the induced 
metric in the three-surface {t = constant} . If the metric is almost flat, 
this will correspond to the Newtonian Laplacian of the potential . 
One would therefore obtain agreement with Newtonian theory in the 
limit of a weak field ( i .e .  when f � 1 )  if the term on the right is equal 
to 47TG times the matter density plus terms which are small in the weak 
field limit . 

This will be the case if there is a relation of the form 

(3 . 1 1 )  

where Kab is a tensorial function of the energy-momentum tensor and 
the metric, which is such that (4TTG)-1Kab va Vb is equal to the matter 
density plus terms which are small in the Newtonian limit . We shall 
for the moment assume a relation of this form. 
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Since Rab satisfies the contracted Bianchi identities R.b ; b  = !R: a• 
(3 . 1 1 )  implies (3 . 1 2 )  

This shows that the apparently natural equation Kab = 4TTGTab cannot 
be correct, since (3 . 12 )  and the conservation equations T0b ; b = 0 
would imply T: a = 0. For a perfect fluid, for example, this would mean 
that µ - 3p was constant throughout space-time, which is clearly not 
satisfied by a general fluid. 

In fact in general, the only first order identities satisfied by the 
energy-momentum tensor are the conservation equations . From this 
it follows that the only tensorial function Kab of the energy-momentum 
tensor and the metric which obeys the identities (3 . 1 2 )  for all energy
momentum tensors, is 

( 3 . 1 3 )  

where K and A are constants . The values o f  these constants can be 

determined from the Newtonian limit. Consider a perfect fluid with 
energy density µ and pressure p whose flow lines are the integral curves 
of the Killing vector (i .e .  the fluid is at rest in the static frame) .  The 
energy-momentum tensor is given by (3 . 8 ) .  Putting this in ( 3 . 1 3 )  and 
(3 . 1 1 ) , one finds 

( 3 . 1 4 )  

In  the Newtonian limit the pressure p i s  normally very small compared 
to the energy density µ. (We are using units in which the speed of 
light is unity. In units in which the speed of light is c, the expression 
µ + 3p should be replaced by µ + 3p/c2. )  One would therefore obtain 
approximate agreement with Newtonian theory if K = 87TG and if I A I 
is very small . We shall use units of mass in which G = 1 .  In these units, 
a mass of 1028 gm corresponds to a length of 1 cm. Sandage's ( 1 96 1 ,  
1 968) observations of  distant galaxies place limits on IA I of  the order 
of 10-56 cm-2 ; we shall normally take A to be zero, but shall bear in 
mind the possibility of other values . 

One may then integrate (3 . 14 )  over a compact region§' of the three
surface {t = constant} and transform the left-hand side into an integral 
of the gradient off over the bounding two-surface 8§': 

f J( 47T(/t + 3p) )  du = f f. ab(gab + ya Vb) du 
.F F ' 
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where du is the volume element of the three-surface {t = constant} in 
the induced metric, and drb is the surface element of the two-surface 
o:F in the three-surface. This gives the analogue of the Newtonian 
formula for the total mass contained within a two-surface. There are 
however two important differences from the Newtonian case : 

(i) a factor f appears in the integral on the right-hand side . This 
means that matter placed in a region where/ is considerably less than 
one (a large negative Newtonian potential) makes a smaller contribu
tion to the total mass than does the same matter in a region where/ is 
almost one (small negative Newtonian potential) ;  

(ii) the pressure contributes to the total mass. This means that in 
some circumstances it can actually assist rather than prevent gravita
tional collapse . 

The equations R 8 (T. l T ) A ab = 1T ab - 2 Yab + Yab 
are called the Einstein equations and are often written in the equivalent 
form (Rab - !Rgab) + Agab = 87TTab . (3 . 1 5) 

Since both sides are symmetric, these form a set of ten coupled non
linear partial differential equations in the metric and its first and 
second derivatives. However the covariant divergence of each side 
vanishes identically, that is, 

(Rab - !Rgab + Agab) ; b = 0 

and Tab ; b = 0 

hold independent of the field equations. Thus the field equations really 
provide only six independent differential equations for the metric .  
This is in fact the correct number of equations to determine the space
time, since four of the ten components of the metric can be given 
arbitrary values by use of the four degrees of freedom to make co
ordinate transformations. Another way of looking at this is that two 
metrics g1 and g2 on a manifold JI define the same space-time if there 
is a diffeomorphism () which takes g1 into g2• Therefore the field equa
tions should define the metric only up to an equivalence class under 
diffeomorphisms, and there are four degrees of freedom to make 
diffeomorphisms. 

We shall consider the Cauchy problem for the Einstein equations 
in chapter 7, and shall show that, together with the equations for the 
matter fields, they are sufficient to determine the evolution of space
time given suitable initial conditions, and that they satisfy the 
causality postulate (a) . 
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The Einstein equations can be derived by requiring that the action 

I =  f � (A (R - 2A) + L) dv ( 3 . 1 6 ) 

be stationary under variations of gab , where L is the matter Lagrangian 
and A a suitable constant. For 

A( (R - 2A) dv) = ( (R - 2A) !gabAgab + Rab Agab + gabARab) dv. 

The last term can be written 

gabARab dv = gab( (Arcab) ; c - (Arcac) ; b ) dv 
= (Arcabgab _ Ardad gac) ; c dv. 

Thus it may be transformed into an integral over the boundary fjp) , 
which vanishes as Arabc vanishes on the boundary. Therefore 

ol l = f {A ( (!R - A) gab - Rab) + Tab} Agab dv, OU U=O � 
( 3 . 1 7 )  

and so  if ol /ou vanishes for all Agab • one obtains the Einstein equations 
on setting A = (81T)-1 . 

One might ask whether varying an action derived from some other 
scalar combination of the metric and curvature tensors might not give 
a reasonable alternative set of equations. However the curvature scalar 
is the only such scalar linear in second derivatives of the metric tensor ; 
so only in this case can one transform away a surface integral and be 
left with an equation involving only second derivatives of the metric. 
If one tried any other scalar such as RabRab or RabcdRabcd one would 
obtain an equation involving fourth derivatives of the metric tensor. 
This would seem objectionable, as all other equations of physics are 
first or second order. If the field equations were fourth order, it would 
be necessary to specify not only the initial values of the metric and its 
first derivatives, but also the second and third derivatives, in order to 
determine the evolution of the metric. 

We shall assume the field equations do not involve derivatives of 
the metric higher than the second. If these field equations are derived 
from a Lagrangian, then the action must have the form ( 3 . 1 6) .  One 
could however obtain a system of equations other than the Einstein 
equations, if one restricted the form of the variations Agab for which 
the action was required to be stationary. 

For example, one could restrict the metric to be conformal to a flat 
metric, i .e .  assume 

Yab = D.'LrJab• 
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where 1/ab is a flat metric as in Special Relativity. Then 

/::i.gab = 2.Q-l/::i,..Qgab 
and the action will be stationary if 

{ (A (!R - A) gab - Rab) + Tab}!::i..Qgab = 0 

for all l::i..Q, that is if 

From ( 2 . 30 ) , 

R + A-1T = 4A. 

R = - 6.Q-3.Qlbc1/bc = - 6.Q-1.Q ; bc gbc + 12.Q-2.Q ; c .Q ; difd, 

[3 .4 

where I denotes covariant differentiation with respect to the flat 
metric 1/ab · If the metric is static, n will be constant along the integral 
curves of the Killing vector K (it will be independent of the time t ) .  
The magnitude of  K will be  proportional to  .Q. Therefore 

lab(gab + va vb)f-1 = .Q; ab(gab + vavb) .Q-1 

= - lR + 2.Q-2.Q ;a .Q ; bgab _ .Q-l.Q ;aVa ; b Vb 

= - tR +J-2/;J; bgab. 

Thus the Laplacian off will be equal to - lR plus a term proportional 
to the square of the gradient of f. This last term may be neglected in 
a weak field. From the field equations, - lR will be equal to 
lA-1T - fA. For a perfect fluid, T = - µ + 3p . One will therefore get 
agreement with Newtonian theory if A is small or zero and A-1 = - 2477. 

This theory in which the metric is restricted to be conformally flat 
is known as the Nordstrom theory. It can be reformulated as a theory 
in which the metric is the flat metric 'I and in which the gravitational 
interaction is represented by an additional scalar field <f>. As men
tioned before, this sort of theory would be inconsistent with the 
observed deflection of light by massive objects, and it would not 
account for the measured advance of the perihelion of Mercury. 

One could in fact obtain the observed deflection of light and the 
advance of the perihelion of Mercury if the metric was restricted to be 
of the form 

Yab = .02(1/ab + JYa W,,) ,  
where JYa is  an arbitrary one-form field. This would give the Newtonian 
limit in a static metric in which JYa was parallel to the timelike Killing 
vector. There could however also be other static metrics where JYa was 
not parallel to the Killing vector and these would not give the 
Newtonian limit. Further this restriction on the form of the metric 
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seems rather artificial . It  appears more natural not to  restrict the 
metric, apart from requiring that it be Lorentzian. 

We therefore adopt as our third postulate, 

Postulate (c) : Field equations 
Einstein's field equations (3 . 15 )  hold on JI. 

The predictions of these field equations agree, within the experimen
tal errors, with the observations that have been made so far on the 
deflection of light and the advance of the perihelion of Mercury, 
though the question of whether there exists a long range scalar field 
which ought to be included in the energy-momentum tensor remains 
open at the present time. 



4 
The physical significance of curvature 

In this chapter we consider the effect of space-time curvature on 
families of timelike and null curves. These could represent flow lines 
of fluids or the histories of photons. In § 4 . 1 and § 4 .2  we derive the 
formulae for the rate of change of vorticity, shear and expansion of 
such families of curves ; the equation for the rate of change of expan
sion (Raychaudhuri's equation) plays a central role in the proofs of 
the singularity theorems of chapter 8. In § 4 .3  we discuss the general 
inequalities on the energy-momentum tensor which imply that the 
gravitational effect of matter is always to tend to cause convergence of 
timelike and of null curves. A consequence of these energy conditions 
is, as is seen in § 4 .4,  that conjugate or focal points will occur in families 
of non-rotating timelike or null geodesics in general space-times . In 
§ 4.5 it is shown that the existence of conjugate points implies the 
existence of variations of curves between two points which take a null 
geodesic into a timelike curve, or a timelike geodesic into a longer 
timelike curve . 

4.1 Timelike curves 

In chapter 3 we saw that if the metric was static there was a relation 
between the magnitude of the timelike Killing vector and the 
Newtonian potential . One was able to tell whether a body was in a 
gravitational field by whether, ifreleased from rest, it would accelerate 
with respect to the static frame defined by the Killing vector. However, 
in general, space-time will not have any Killing vectors. Thus one will 
not have any special frame against which to measure acceleration ; the 
best one can do is to take two bodies close together and measure their 
relative acceleration. This will enable one to measure the gradient of 
the gravitational field. If one thinks of the metric as being analogous 
to the Newtonian potential, the gradient of the Newtonian field would 
correspond to the second derivatives of the metric. These are described 
by the Riemann tensor. Thus one would expect that the relative 

[ 78 ]  
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acceleration of two neighbouring bodies would b e  related to some 
components of the Riemann tensor. 

In order to investigate this relation more precisely we shall examine 
the behaviour of a congruence of timelike curves with timelike unit 
tangent vector V (g(V, V) = - 1 ) .  These curves could represent the 
histories of small test particles, in which case they would be geodesics, 
or they might represent the flow lines of a fluid. If this were a perfect 
fluid, then by (3 . 10 )  (µ +p) ya = -P ; b hab, (4. 1 )  

where ya = ya ; b Vb is the acceleration of the flow lines and 
hab = 3ab + vav,, is the tensor which projects a vector x E Tq into its 
component in the subspace Hq of Tq orthogonal to V. One may also 
think of h00 as the metric in Hq (cf. § 2 . 7 ) .  

Suppose A.(t) i s  a curve with tangent vector Z = (o/oth_ .  Then one 
may construct a family A.(t, s) of curves by moving each point of the 
curve A.(t) a distance s along the integral curves ofV. If one now defines 
Z as (8/8th.ct, sl it follows from the definition of the Lie derivative (see 
§ 2 .4) that LvZ = 0 or in other words that 

D _ za = ya Zb 
08 ; b • (4 .2)  

One may interpret Z as representing the separation of points equal 
distances from some arbitrary initial points along two neighbouring 
curves. If one adds a multiple of V to Z then this vector will represent 
the separation of points on the same two curves but at different 
distances along the curves. It is really only the separation of neigh
bouring curves that one is interested in, not the separation of particu
lar points on these curves. One is thus concerned only with Z modulo 
a component parallel to V, i .e .  only with the projection of Z at each 
point q into the space Qq consisting of equivalence classes of vectors 
which differ only by addition of a multiple of V. This space can be 
represented as the subspace Hq of Tq consisting of vectors orthogonal 
to V. The projection of Z into Hq will be denoted by .Lza = hab v. In 
the case of a fluid one can regard .L Z as the distance between two 
neighbouring particles of the fluid as measured in their rest frame. 

From ( 4 .2 )  it follows that 

D 
.L

os 
(.LZa) = ya ; b .LZb. (4 . 3 )  

This gives the rate of change of the separation of two infinitesimally 
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neighbouring curves as measured in Hq. Operating again with D/os 
and projecting into Hq, one finds 

hab � ( hbC� _l_ zc) = hab( Vb ; cd _l_zc vd + Vb ; c yc ; d �ze vd 

+ Vb ; c yc ye ; dZe Vd + Vb ; chceze ; d Vd) .  

Changing the order of  the derivatives in the first term and using (4 .2 ) ,  
this reduces to 

This equation, known as the deviation or Jacobi equation, gives the 
relative acceleration, i .e .  the second time derivative of the separation, 
of two infinitesimally neighbouring curves as measured in Hq. We 
see that this depends only on the Riemann tensor if the curves are 
geodesics. 

In Newtonian theory, the acceleration of each particle is given by 
the gradient of the potential <I> and therefore the relative acceleration 
of two particles with separation za is <I>; abZb. Thus the Riemann 
tensor term Rabcd Vb Vd is analogous to the Newtonian <I>; ac ·  The effect 
of this ' tidal force ' term can be seen, for example, by considering a 
sphere of particles freely falling towards the earth . Each particle 
moves on a straight line through the centre of the earth but those 
nearer the earth fall faster than those further away . This means that 
the sphere does not remain a sphere but is distorted into an ellipsoid 

with the same volume. 

In order to investigate the deviation equation further we shall 
introduce dual orthonormal bases E1, E2 , Ea, E4 and E1 , E2, E3, E4 of 
Tq and T* q at some point q on an integral curve y( s) of V, with E4 

= V. 
One would like to propagate them along y(s) to obtain similar such 
bases at each point of y(s ) .  However, if one parallelly propagates them 
along y(s) (i .e .  so that D/os of each vector is zero) E4 will not remain 
equal to V, and E1, E2, Ea will not remain orthogonal to V, unless 
y(s) is a geodesic .  We therefore introduce a new derivative along 
y(s) called the Fermi derivative DF/os . This is defined for a vector 
field X along y(s) by : 



4. 1 ]  T I M E L I K E  C U R V E S  

I t  has the properties :  

(i) �: = � if y(8) is a geodesic ; 

(ii) DF v = o · 
08 ' 

(iii ) if X and Y are vector fields along y(8) such that 

DFX = 0 = DFY 
08 08 ' 

then g(X, Y) is constant along y(8) ; 
(iv) if X is a vector field along y(8) orthogonal to V then 

DFX _ (DX) 
88 - J_ Ts · 

8 1  

(This last property shows that the Fermi derivative i s  a natural 
generalization of the derivative D/08 . )  

Thus, i f  one propagates an orthonormal basis of Tq along y(8) so that 
the Fermi derivative of each basis vector is zero, one obtains an 
orthonormal basis at each point of y(8 ) ,  with E4 = V. The vectors 
E1, E2, E3 may be interpreted as giving a non-rotating set of axes 
along y(8) . These could be realized physically by small gyroscopes 
pointing in the direction of each vector. 

The definition of the Fermi derivative along y(8) can be extended 
from vector fields to arbitrary tensor fields by the usual rules : 

(i) DF/08 is a linear mapping of tensor fields of type (r, 8) along y(8) 
to tensor fields of type (r, 8 ) ,  which commutes with contractions ; 

( ii )  DF (K®L) = DFK
®L + K® DFL . 

08 08 08 ' 

(iii ) DFf = 
d/ where / is a function. 08 d8 ' 

From these rules it follows that the dual basis E1, E2, E3, E4 of T* q is 
also Fermi-propagated along y(8 ) .  Using Fermi derivatives, (4 .3 )  and 
(4 .4) may be written as : 

D • F za - ya Zb (4 5 )  & J_  - ; b J. '  . 

�;: J_za = - Ra/Jcd j_zc VbVd + hab f'b ; c J.zc + f'a "Vi, J_V. (4 .6)  

One may express these equations in terms of the Fermi-propagated 
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dual bases. As ..L Z  is orthogonal to V it will have components with 
respect to E1, E2, E3 only. Thus it may be expressed as za.Ea. where we 
adopt the convention that Greek indices take the values 1 ,  2, 3 only. 
Then (4 .5 )  and (4 .6 )  can be written in terms of ordinary derivatives :  

d 
ds za. = va.; pZP, (4 . 7 )  

d2 
ds2 za. = ( - Ra.4p4 + Jl'a. ; p + Jl'a. Vp) ZP (4 .8 )  

where ya. ; p are the components of ya; b for which a =  a and b = fl. As 
the components za. obey the first order linear ordinary differential 
equation (4 . 7 ) ,  they can be expressed in terms of their values at some 
point q by : 

(4 .9 )  

where Aa.p(s) is  a 3 x 3 matrix which is the unit matrix at q and satisfies 

d 
ds Aa.p(s ) = �; y Ayp(s) . (4 . 10 )  

In the case of a fluid the matrix Aa.p can be regarded as representing the 
shape and orientation of a small element of fluid which is spherical at q.  
This matrix can be written as 

(4. 1 1 ) 

where Oa.p is an orthogonal matrix with positive determinant and Sa.p 
is a symmetric matrix. These will both be chosen to be the unit matrix 
atq. The matrix Oa.p may be thought of as representing the rotation that 
neighbouring curves have undergone with respect to the Fermi
propagated basis while Sa.p represents the separation of these curves 
from y(s) . The determinant of Sa.P• which equals the determinant of 
Aa.P• may be thought of as representing the three-volume of the 
element of the surface orthogonal to y (s ) marked out by the neigh
bouring curves. 

At q where Aa.p is the unit matrix, dOa.p/ds is antisymmetric and 
dSa.p/ds is symmetric. Thus the rate ofrotation of neighbouring curves 
at q is given by the antisymmetric part of � ;  p while the rate of change 
of their separation from y(s) is given by the symmetric part of � ; P 
and the rate of change of volume is given by the trace of �; p· We 
therefore define the vorticity tensor as 

(4 . 1 2 )  
the expansion tensor as 

(4 . 1 3 )  
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and the volume expansion as 

() = ()abhab = Ya ; b hab = ya ; a · 

We further define the shear tensor as the trace free part of () ab • 

<Tab = ()ab - ihab(), 
and the vorticity vector as 

wa = l?Jabcdv,; wcd = t?Jabcdv,; �; d · 
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(4 . 1 4) 

(4 . 1 5 ) 

(4 . 1 6)  

The covariant derivative of the vector V may be expressed in terms of 
these quantities ;  V.: = l()h _ T'T TT (4 . 1 7 )  a ; b Wab + <Tab + 3 ab "a rb . 
This decomposition of the gradient of the fluid velocity vector is 
directly analogous to that in Newtonian hydrodynamics. 

In the Fermi-propagated orthonormal basis the vorticity and 
expansion can be expressed in terms of the matrix A .. p and its inverse 
A-1 • .. p ·  

() - A-1 d A "'P - '>'c"' ds P> 'Y' 

() = (det A)-1 : /det A) .  

From the deviation equation (4.8 )  i t  follows that 

d2 
ds2 A"'p = ( - R  .. 4')'4 + -� q + � �) A'>'p· 

( 4. 1 8 )  

(4 . 1 9) 

( 4 . 20) 

( 4 .2 1 ) 

This equation enables one to calculate the propagation of the vorticity, 
shear and expansion along the integral curves of V if one knows the 
Riemann tensor. 

Multiplying by A -1 h and taking the antisymmetric part, one 
obtains 

(4 .22)  

Thus the propagation of vorticity depends on the antisymmetric 
gradient of the acceleration but not the ' tidal force ' .  Another form of 
the above equation is 

(4 .23)  
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Therefore Ar .. wr8A8p is a constant matrix if the curves are geodesics ; 
in particular," if the curves are geodesics and the vorticity vanishes at 
one point on a curve, it will vanish at all points on the curve . If the 
curves are the flow lines of a perfect fluid it follows from ( 4. 1 )  that 

V,[ I = _ _  
1
_ W p

dp 
<Z ; fi µ +p IX ds "  

If the fluid is isentropic, this implies the conservation law : 

where 

W Ar .. wr11A8p = constant, 

J dp log W = -- .  µ +p 

(4 . 24) 

This conservation law is the relativistic form of the Newtonian 
vorticity conservation law. In the geodesic or pressure-free case, this 
takes the usual form that the magnitude of the vorticity vector is 
inversely proportional to the area of a cross-section orthogonal to the 
vorticity vector of an element of the fluid. When the pressure is non
zero, there is an extra relativistic effect arising from the fact that 
compression of the fluid does work on the fluid and therefore increases 
the mass and so the inertia of an element of the fluid (cf. ( 3 .9 ) ) .  This 
means that the vorticity of a fluid increases less under compression 
than would otherwise be expected. 

Multiplying (4 . 2 1 )  by A-1py and taking the symmetric part, one 
finds 

(4 .25)  

(This equation and (4 .23 )  can be expressed in terms of a general, non
orthonormal, non-Fermi-propagated basis by replacing the ordinary 
derivatives with Fermi derivatives and projecting everything into the 
subspace orthogonal to V . )  

The trace of  ( 4. 25) is 

where 

�O = - R  va vb + 2w2 - 2u2 - 102 + va . ds ab a , a• 

2w2 = wab wab � 0, 

2u2 = <Tab uab � 0. 

(4. 26) 

This equation, which was discovered by Landau and independently by 
Raychaudhuri, will be of great importance later. From it one sees that 
vorticity induces expansion as might be expected by analogy with 
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centrifugal force while shear induces contraction . By the field equa
tions, the term Rab ya Vb 

= 411(µ + 3p) for a perfect fluid whose flow 
lines have tangent vectors va. Thus one would expect this term also 
to induce contraction . We shall give a general discussion of the sign 
of this term in § 4 . 3 .  

The trace-free part of  (4 . 25) is 

D a: u ab = - Cacbd ye yd + !hae hb d Red - wacweb - u acaeb 

- jOuab + hae hbd VCe ; dl - !hab( 2w2 - 2u2 + ya ; a + !Red hed) ,  (4 . 27 )  

where Cabed i s  the Weyl tensor. Since this tensor i s  trace-free i t  does not 
enter directly in the expansion equation (4 .26 ) .  However since the 
term - 2u2 occurs on the right of the expansion equation, the Weyl 
tensor produces convergence indirectly by inducing shear. The 
Riemann tensor can be expressed in terms of the W eyl tensor and the 
Ricci tensor : 

Rabed = Cabed - YardRcl b - gb(�dl a - !RYarcYcNr 
The Ricci tensor is given by the Einstein equations : 

Rab - !gab R + Agab = 811Tab · 
Thus the Weyl tensor is that part of the curvature which is not deter
mined locally by the matter distribution. However it cannot be 
entirely arbitrary as the Riemann tensor must satisfy the Bianchi 
identities : 

Rabrcd ; ei = 0 

These can be rewritten as 
(4 .28) 

where Jabc = Rc[a ; bl + l;g<-ibR ; aJ . (4 . 29)  
These equations are rather similar to Maxwell 's equations in electro
dynamics : 

where Fab is the electromagnetic field tensor and Ja is the source 
current. Thus in a sense one could regard the Bianchi identities (4 .28) 
as field equations for the Weyl tensor giving that part of the curvature 
at a point that depends on the matter distribution at other points . 
(This approach has been used to analyse the behaviour of grayitational 
radiation in papers by Newman and Penrose ( 1 962) ,  Newman and 
Unti ( 1 962) and Hawking ( 1 966a) . )  

4 H LS 
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4.2 Null curves 

The Riemann tensor will affect the rate of change of separation of null 
curves as well as that of timelike curves. For simplicity, we shall con
.sider only null geodesics . These could represent the histories of 
photons ; the effect of the Riemann tensor will be to distort or focus 
small bundles of light rays. 

To investigate this, we consider the deviation equation for a congru
ence of null geodesics with tangent vector K (g(K, K) = 0) .  There are 
two important differences between this case and that of the timelike 
curves considered in the previous section. First, one could normalize 
the tangent vector V to the timelike curves by requiring g(V, V) = - 1 .  
In effect this means that one parametrized the curves by the arc
length s . However this is clearly impossible with null curves as they 
have zero arc-lengths. The best one can do is to choose an affine 
parameter v; then the tangent vector K will obey 

D - Ka = Ka . bKb = 0. dv · 

However one could multiply v by a function f which was constant 
along each curve. Then /v would be another affine parameter and the 
corresponding tangent vector would be/-1K. Thus, given the curves as 
point sets in the manifold, the tangent vector is only really unique up 
to a constant factor along each curve. The second difference is that 
Qq, the quotient of Tq by K, is not now isomorphic to Hq; the subspace of 
T q orthogonal to K, since Hq includes the vector K itself as g(K, K) = 0.  

In fact as will be shown below, one is not really interested in the whole 
of Qq but only in the subspace sq consisting of equivalence classes of 
vectors in Hq which differ only by a multiple of K. In the case of light 
rays, one can regard an element of Sq as representing the separation 
between two neighbouring light rays which were emitted at the same 
time by a source . 

As before we introduce dual bases E1 , E2, Ea, E4, and E1, E2, Ea, E4 

of Pq and T; at some point q on a curve y(v) .  However we will not 
choose them to be orthonormal . We take E4 equal to K, Ea to be some 
other null vector L having unit negative scalar product with E4 
(g(Ea, Ea , ) = 0, g(Ea, E4) = - 1 )  and E1 and E2 to be unit spacelike 
vectors, orthogonal to each other and to Ea and E4 
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Note that because of the non-orthonormal character of the basis, the 
form E3 is in fact equal to the form - Kagab and E4 is - Lagab . It can 
be seen that Ev E2 and E4 constitute a basis for Hq while the projec
tions into Qq of E1, E2 and E3 form a basis of Qq, and the projections of 
E1 and E2 form a basis of Sq. We shall normally not distinguish between 
a vector Z and its projection into Qq or Sq. We shall call a basis having 
the properties of E1 , E2, E3, E4, above, pseudo-orthonormal. By 
parallelly transporting them along the geodesic y(v) one obtains a 
pseudo-orthonormal basis at each point of y(v) .  

We use this basis to analyse the deviation equation for null geo
desics. If Z is the vector representing the separation of corresponding 
points on neighbouring curves, one has, as before : 

so 

and 

LgZ = o, 
D _ za = Ka. Zb 
dv , b  (4 .30) 

(4 . 3 1 )  

In the pseudo-orthonormal basis Ka; 4 will be zero as K i s  geodesic .  
Therefore one can express the 1 ,  2 and 3 components of (4 .30) as a 
system of ordinary differential equations : 

d _ za = Ka ZP dv ; p  ' 
where as before Greek indices take the values 1 ,  2 ,  3. This shows that 
the projection of Z into the space Qq obeys a propagation equation 
which involves only this projection, and not the component of Z 
parallel to K. Further K3; c  = 0 since (KagabKb) ; c  = 0. This implies 
that Z3 = _ zaKa is constant along the geodesic y(v ) .  This can be 
interpreted as saying that light rays emitted from the same source at 
different times maintain a constant separation in time. As this is the 
case, one is more interested in the behaviour of neighbouring null 
geodesics which have purely spatial separations, i .e .  one is interested 
in vectors Z for which Z3 = 0. The projections of such vectors will 
then lie in the subspace sq and will obey the equation 

i_ zm = Km zn 
dv ; n ' 

where m, n take the values 1 ,  2 only. This is similar to (4 .7 ) for the 
timelike case, except that now one is dealing only with a two
dimensional space of connecting vectors Z. 
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As in  the previous section, one can express zm in  terms of  their 
values at some point q :  ,.. 

zm(v) = Amn(v) zn 1 11, 

where Amn(v) is a 2 x 2 matrix which satisfies 

d ,.. ,.. 
dv Amn(v) = Km ;  P Apn(v) , 

d2 ,.. ,.. 
dv2 Amn(v) = - Rm4p4 Apn(v) . 

(4 . 32 )  

(4 .33)  

As before we call the antisymmetric part of Km; n the vorticity 6)mn• 
the symmetric part the rate of separation IJmn and the trace the 
expansion IJ. We also define the shear u mn as the trace-free part of IJmn· 
They obey similar equations to the analogous quantities in the 
previous section : 

d A lt A  ( ) dv wmn = - uwmn> 4 . 34 

i_ e = - R b K«Kb + 2w2 - 2fT2 - J.{)2 
dv a � ' 

d A c {}" 
dv O'mn = - m4n4 - O'mn· 

(4 . 35) 

(4 . 36 ) 

Equation (4 . 35)  is the analogue of the Raychaudhuri equation for 
timelike geodesics. One sees again that vorticity causes expansion 
while shear causes contraction. We shall show in the next section that 
the Ricci tensor term - Rab K«Kb will normally be negative, and so 
cause focussing. As before the Weyl tensor does not affect the expan
sion directly but causes distortion which in turn causes contraction 
(cf. Penrose ( 1 966) ) .  

4.3 Energy conditions 

In t.he actual universe the energy-momentum tensor will be made up 
of contributions from a large number of different matter fields. It 
would therefore be impossibly complicated to describe the exact 
energy-momentum tensor even if one knew the precise form of the 
contribution of each field and the equations of motion governing it. 
In fact, one has little idea of the behaviour of matter under extreme 
conditions of density and pressure . Thus it might seem that one has 
little hope of predicting the occurrence of singularities in the universe 
from the Einstein equations as one does not know the right-hand side 
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of the equations . However there are certain inequalities which it is 
physically reasonable to assume for the energy-momentum tensor. 
These will be discussed in this section . It turns out that in many 
circumstances these are sufficient to prove the occurrence of singu
larities, independent of the exact form of the energy-momentum 
tensor. 

The first of these inequalities is : 

The weak energy condition 
The energy-momentum tensor at each p E ...It obeys the inequality 
Tab wa Wb ;;?; 0 for any timelike vector W E  TP . By continuity this will 
then also be true for any null vector W E  TP. 

To an observer whose world-line at p has unit tangent vector V, the 
local energy density appears to be Tab va vb. Thus this assumption is 
equivalent to saying that the energy density as measured by any 
observer is non-negative . This would seem very reasonable physically. 
To investigate further the significance of this assumption we use the 
fact that one may express the components Tab of the energy
momentum tensor at p with respect to an orthonormal basis Ev E2, 
Ea, E4, (E4 timelike) in one of four canonical forms. 
Type I. P1 

Tab = P2 

0 

0 

Pa 

µ 
This is the general case in which the energy-momentum tensor has a 
timelike eigenvector E4 . This eigenvector is unique unless µ = -Pa. 
(a = 1 ,  2, 3 ) .  The eigenvalue I" represents the energy-density as 
measured by an observer whose world-line at p has unit tangent 
vector E4 and the eigenvalues Pa. (a = 1 ,  2, 3) represent the principal 
pressures in the three spacelike directions Ea. . This is the form of the 
energy-momentum for all observed fields with non-zero rest mass and 
also for all zero rest mass fields except in special cases when it is type II. 
Type II. p1 0 

0 
V - K  

0 

v 
v = ± 1 .  
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This is the special case in which the energy-momentum tensor has 
a double null eigenvector (Es + E4) .  The only observed occurrence of 
this form is for zero rest-mass fields when they represent radiation all 
of which is travelling in the direction Es + E4• In this case p1, p2 and IC 
are zero. 

Type III. 

T•' 

� (1 0 0 D - v  1 
1 - v  
1 0 

This is the special case in which the energy-momentum tensor has 
a triple null eigenvector (Es + E4) .  There are no observed fields which 
have energy-momentum tensors of this form. 

Type I V. 
Pi 0 

0 

pab = 0 P2 IC2 < 4v2 . - IC  v ' 
0 

v 0 

This is the general case in which the energy-momentum tensor has no 
timelike or null eigenvector. There are no observed fields which have 
energy-momentum tensors of this form. 

For type I, the weak energy condition will hold ifµ � 0, µ +Pa. � 0 

(a = 1 ,  2, 3 ) .  For type II it will hold if p1 � 0, p2 � 0, IC �  0, v = + 1 .  
These inequalities are very reasonable requirements and are satisfied 
by all experimentally detected fields. The condition will not hold for 
the physically unrealized types III and IV. 

The condition will also hold for the scalar field </> postulated by Brans 
and Dicke and by Dicke (see Dicke ( 1 964 ) ) .  This field is required to be 
positive everywhere. It has an energy-momentum tensor of the form 
(3 .6 )  where now m = 0. The energy-tensor of the other fields is </> times 
what it would have been had the scalar field not existed. 

The condition will not hold for the 'C '-field proposed by Hoyle and 
Narlikar ( 1 963) .  This again is a scalar field with m zero, only this time 
the energy-momentum tensor has the opposite sign and so the energy 
density is negative . This allows the simultaneous creation of quanta of 
positive energy fields and of the negative energy C-field . This process 
occurs in the steady-state model of the universe suggested by Hoyle 
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and Narlikar in which, as particles move apart due to the general 
expansion of the universe, new matter is continually being created to 
keep the average density constant. There is, however, a quantum 
mechanical difficulty associated with such a process . For even if the 
cross-section for the process were very small, the infinite phase space 
available to the positive and negative energy quanta would seem to 
result in an infinite number of such pairs being produced in a finite 
region of space-time. 

Such a catastrophe could not occur if the weak energy condition 
held. If a slightly stronger condition holds then creation is impossible 
in the sense that space-time must remain empty if it is empty at one 
time and no matter comes in from infinity. Conversely, matter present 
at one time cannot disappear and so must be present at another time. 
The condition is 

The dominant energy condition 

For every timelike Wa, TabWa � ;;i: 0, and TabWa is a non-spacelike 
vector. 

This may be interpreted as saying that to any observer the local 
energy density appears non-negative and the local energy flow vector 
is non-spacelike . An equivalent statement is that in any orthonormal 
basis the energy dominates the other components of Tab• i .e .  

TOO ;;i: I Tab l for each a, b .  

This holds for type I if  µ ;;i: 0,  - µ  � Pa. � µ (ex = 1 ,  2 ,  3 )  and for 
type II if v = + 1 ,  K ;;i: 0, 0 � Pi � K (i = 1 ,  2 ) .  In other words, the 
dominant energy condition is the weak energy condition with the 
additional requirement that the pressure should not exceed the energy 
density. This holds for all known forms of matter and there is in fact 
good reason for believing that this should be the case in all situations. 
For the speed of sound waves travelling in the Ea. direction is dpa./dµ 
(adiabatic) times the speed of light. Thus dpa./dµ must be less than or 
equal to one, as by postulate (a) in § 3 . 2  no signal can propagate faster 
than light. It follows that Pa. � µ, since, for every known form of 
matter, the pressures are small when the density is small . (Bludman 
and Ruderman ( 1 968, 1 970) have shown that there might be fields for 
which mass renormalization could lead to pressure being greater than 
the density. We feel, however, that this probably indicates a failure of 
renormalization theory rather than that such a situation would occur. ) 
Now consider the situation depicted in figure 9 in which there is a 02 
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Surfaces {t = constant } 

/;I t t incre.'.'.:s 

t = t '  

FIGURE 9.  A compact region o/t of space-time with past and future non-timelike 
boundaries (oo//) i ,  (oo//) 2  and timelike boundary ( oo//)a .  The part of o/t lying to 
the past of the surface £'(t') (defined by t = t') is o//(t' ) .  

function t whose gradient is  everywhere timelike . (It will be shown in 
§ 6 .4  that such a function will exist provided space-time is not on the 
verge of violating causality. )  The boundary 00/I of the compact region 
i1/I consists of a part (oO/l)v whose normal form n is non-spacelike and 
such that nat ; bgab is positive, a part (oi1//)2 whose normal form n is non
spacelike and such that nat ; 6gab is negative, and a remaining part 
(oO/l)a (which may be empty) .  The sign of the normal form n is given by 
the requirement that (n, X) be positive for all vectors X which point 
out of i1/I (cf. § 2 . 8 ) ,  .n"(t' ) denotes the surface t = t' and O/t(t' ) denotes 
the region of i1/I for which t < t' . For later use in § 7 .4 we shall establish 
an inequality which holds not only for the energy-momentum tensor 
pab but also for any symmetric tensor Sab which satisfies the dominant 
energy condition . Applied to the energy-momentum tensor this 
inequality will show that pab vanishes everywhere on i1/I if it vanishes 
on ( 00/l)a and on the initial surface ( 00/l)i. 

Lemma 4 .3 . 1 
There is some positive constant P such that for any tensor Sab which 
satisfies the dominant energy condition and vanishes on (oO/l)a, I sabt ; a dub � -I sabt ; a dub .K(I) n <11 (Ml! .  

+Pf1 (f Sabt ; a dub) dt' +f' (f Sab ; a dub) dt' .  
Jf'(I')  n 'PI .Jt"(t') n <11 
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Consider the volume integral 

By Gauss' theorem this can be transformed into an integral over the 
boundary of O&'(t) : 

l(t) = f sabt ;  a dub. 
iJ'W(t )  

The boundary of O&'(t) will consist of O&'(t) n oil&' and ii&' n £(t) .  Since 
sab is zero on ( 011&')3, 

l(t) =f +f +f . 
'W(t) n (iJ'W)i 'i'(t) n (iJ'W), 'ft n £(1) 

By the dominant energy condition, sabt :a is a non-spacelike vector 
such that Sabt : a t : b � 0. As the normal form to (oi/&')2 is non-spacelike 
and such that na t ; ilrb < 0, the second term on the right will be non
negative . Thus 

I sabt ; a dub � -f sabt ; a dub 
'W n ,)f'(tl 'W(I) n (8'i')1 

+f (Sabt · ab + Sab . b t . a ) dv. 
'lf(t) 

• • • 

Since ii&' is compact there will be some upper bound to the components 
of t ; ab in any orthonormal basis whose timelike vector is in the direc
tion of t ; a · Thus there will be some P > 0 such that on ii&', 

sabt ; ab � psabt ; at ; b  

for any Sab which obeys the dominant energy condition . The volume 
integral over O&'(t) can be decomposed into a surface integral over 
£(t' ) n ii&' followed by an integral with respect to t' : 

f (PSabt ; a t ; b + Sab ; b t ; a) dv = f1 {f (PSabt ; b + Sab ; b) dua} dt' , 
'W(t) .1t'(t') n 'W 

where dua is the surface element of £(t' ) .  Thus 

f Sabt ; a dCTb � -f Sabt ; a dCTb £(1) n 'If 'fl(t) n (iJ'W)i 

As an immediate consequence of this result one has : 
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The conservation theorem 
If the energy-momentum tensor obeys the dominant energy condition 
and is zero on (otW)3 and on the initial surface (otW)i, then it is zero 
everywhere on tW. 

Let x(t ) = f Tabt ; a t ; b dv <lf(t} 
= ft (J Tabt . a dub) dt' � 0 . 

.1f'{t') n <lf • 

Then the above lemma gives dx/dt � Px. But for sufficiently early 
values of t , £-'(t) will not intersect tW and so x will vanish. Thus x will 
vanish for all t which implies that Tab is zero on tW. D 
From the conservation theorem it follows that if the energy
momentum tensor vanishes on a set !7, then it also vanishes on the 

9' 
FmuRE 10. The future Cauchy development D+(f/) of a spacelike set f/. 

future Cauchy development D+(f/), which is defined as the set of all 
points through which every past-directed non-spacelike curve inter
sects !7 (figure 10 )  (cf. § 6 .5 ) .  For if q is any point of D+(/7), the region 
of D+(f/) to the past of q is compact (proposition 6 .6 .6 )  and may be 
taken as tW. This result may be interpreted as saying that the 
dominant energy condition implies that matter cannot travel faster 
than light. 

For our consideration of singularities, the importance of the weak 
energy condition is that it implies that matter always has a converging 
(or more strictly nondiverging) effect on congruences of null geodesics. 
If the vorticity vanishes, the expansion 8 obeys the equation : 

i.e = - RabKaKb - 2&2 - 102. 
dv 
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Thus in this case (} will monotonically decrease along the null geodesic 
if Rab wawb � o for any null vector W. We shall call this the null 
convergence condition. From the Einstein equations, 

Rab - !gabR + Agab = 811Tab , 

it follows that this condition is implied by the weak energy condition, 
independent of the value of A. 

From ( 4 .26 )  it can be seen that the expansion (} of a timelike geodesic 
congruence with zero vorticity will monotonically decrease along a 
geodesic if Rab wawb � o for any timelike vector W. We shall call this 
the timelike convergence condition. By the Einstein equation, this condi
tion will be satisfied if the energy-momentum tensor obeys the 
inequality, 

Tab wawb � waw..(!T - 8�A) . 

This will hold for type I if 

µ +pa. � 0, 

and for type II if 

V = + 1 ,  K � 0, 

We shall say that the energy-momentum tensor satisfies the strong 
energy condition if it obeys the above inequality for A =  0. This is a 
stricter requirement than the weak energy condition but it is still 
physically reasonable for the total energy-momentum tensor. For the 
general case, type I, it would be violated only by a negative energy 
density or a large negative pressure (e.g. for a perfect fluid with density 
1 gm cm-3 it can only be violated if p < - 1015 atmospheres) .  It holds 
for the electromagnetic field and for the scalar field with m zero (in 
particular, it holds for the scalar field of Brans and Dicke) .  For 
m non-zero, the energy-momentum tensor of a scalar field has the 
form (§ 3 .3 ) : 

Thus if wa is a unit timelike vector 

T. b wa Wb _ i W.: waT = (A. wa)2 _ ! m2 
A.2 a 2 a 't' ; a  2 li,2 't' (4 .37)  

which may be negative. However by the equation of the scalar field 

1 m2 
_ _  ,/..2 = l ,/..,/.. gab 2 li,2 't' 7I't''t' ; ab . 
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Inserting this in (4 .37)  and integrating over a region %', one obtains 

The first term will be non-negative since gab + 2 wawb is a positive 
definite metric and the second term will be small compared to the first 
if the region %' is large compared to the wavelength h/m. For 1T mesons, 
which may be described classically by a scalar field with 
m = 6 x 1 0-20 gm, this wavelength is 3 x 1 0-13 cm. Thus although the 
energy-momentum tensor of 1T mesons may not satisfy the strong 
energy condition at every point, this should not affect the convergence 
of timelike geodesics over distances greater than 1 0-12 cm. This might 
possibly lead to a breakdown of the singularity theorems in chapter 8 
when the radius of curvature of space-time becomes less than 1 0-12 cm 
but such a curvature would be so extreme that it might well count as 
a singularity (§ 1 0 . 2 ) . 

4.4 Conjugate points 

In § 4. 1 we saw that the components of the vector which represented 
the separation between a curve y(s) and a neighbouring curve in a 
congruence of timelike geodesics, satisfied the Jacobi equation : 

(4 .38)  

A solution of this equation will be called a Jacobi field along y(s) . Since 
a solution may be specified by giving the values of ZI% and dZIZ/ds at 
some point on y(s) there will be six independent Jacobi fields along 
y(s) . There will be three independent Jacobi fields which vanish at 
some point q of y(s) . They may be expressed as : 

d ZIZ(s) = Al%p(s) ds ZP J a, 

where d2 
ds2 Al%p(s) = - Rl%4'Y4Ayp(s) , (4 .39) 

and Al%p(s) is a 3 x 3 matrix which vanishes at q. These Jacobi fields 
may be thought of as representing the separation of neighbouring 
geodesics through q. As before one may define the vorticity, shear and 
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expansion of the Jacobi fields along y(s) which vanish at q :  

A-1 d 
A Wa.p = y[p ds a.l y• 

(} = (det A)-1 :s (det A) . 

97 

( 4.40) 

(4 .41 ) 

(4 .42) 

These will obey the equations derived in § 4. 1 ,  with Va. = 0. In particular 

1 ( d d ) Aya.wy6A8p = 2 Aya. ds Ayp - Ayp ds Aya. 

will be constant along y(s) .  But it vanishes at q where Aa.p is zero. 
Thus wa.p will be zero wherever Aa.p is non-singular. 

We shall say that a point p on y(s) is conjugate to q along y(s) if there 
is a Jacobi field along y(s}, not identically zero, which vanishes at 
q and p . One may think of p as a point where infinitesimally neigh
bouring geodesics through q intersect. (Note, however, that it may be 
only infinitesimally neighbouring geodesics which intersect at p ;  there 
need not be two distinct geodesics from q passing through p . )  The 
Jacobi fields along y(s) which vanish at q are described by the matrix 
Aa.p· Thus a pointp is conjugate to q along y(s) ifand only if A:ip is singu
lar at p. The expansion (} is defined as (det A)-1 d (det A)/ds. Since Aa.p 
obeys (4 .39)  where Ra.4y4is finite, d (det A)ids will be finite . Thus a point 
p will be conjugate to q along y(s) if (} becomes infinite there . The con
verse will also be true since (} = d log ( det A)/ds and Aa.p can be singular 
only at isolated points or else it would be singular everywhere. 

Proposition 4.4 . 1 
If at some point y(s1) (s1 > 0) ,  the expansion (} has a negative value 
01 < 0 and if Rab va Vb ;;::: 0 everywhere then there will be a point 
conjugate to q along y(s) between y(s1) and y(s1 + (3/ - 01) ) ,  provided 
that y(s)  can be extended to this parameter value . (This may not be 
possible if space-time is geodesically incomplete. In chapter 8 we 
shall interpret such incompleteness as evidence of the existence of a 
singularity. )  

The expansion 0 of the matrix Aa.p obeys the Raychaudhuri equation 
(4 .26) : d 

- 0 = - Rab va Vb - 2u2 - 1()2 
ds 3 
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where we have used the fact that the vorticity is zero . All the terms on 
the right-hand side are negative. Thus for 8 > 81 

3 o �  I o . 8 - (81 + (3 - 1) )  

So  (} will become infinite and there will be  a point conjugate to q for 
some value of 8 between 81 and 81 + ( 3/ - 01) .  D 
In other words, if the timelike convergence condition holds and if the 
neighbouring geodesics from q start converging on y(8), then some 
infinitesimally neighbouring geodesic will intersect y(8) providing that 
y(8) can be extended to large enough values of the parameter 8 .  

Proposition 4.4. 2  
IfRab y

a yb � O and ifat some pointp = ')'(81 ) the tidal force Rabcd Vb Vd 
is non zero, there will be values 80 and 82 such that q = y(80) and 
r = ')'(82) will be conjugate along y(8) , providing that y(8) can be 
extended to these values. 

A solution of (4 .39)  along y(8) is uniquely determined by the values of 
Aa:p and dAa:pf d8 at p .  Consider the set P consisting of all such solutions 
for which Aa:P IP = oa:P• (dAa:pfd8 ) 1 p  is symmetric with trace O l p  � 0. 
For each solution in P there will be some 83 > 81 for which Aa;p(83) is 
singular, since either Olp < 0, in which case this follows from the 
previous result, or O lp = 0, in which case (dua:pfd8) 1P is non-zero which 
will then cause u2 to be positive and so cause 0 to become negative for 
8 > 81 . The members of the set P are in one-one correspondence with 
the space S of all symmetric 3 x 3 matrices with non-positive trace 
(i .e .  with the values of dAa:pfd8) i p ) .  There is thus a map 'T/ from S 
to y(8) which assigns to each initial value (dAa:pfd8) 1 P the point on y(8) 
where Aa:p first becomes singular. The map 'T/ is continuous. Further if 
any component of (dAa:pfds) IP is very large, the corresponding point 
on y(8) will lie nearp, since in the limit the term Ra:4y4 in (4 .39)  becomes 
irrelevant and the solution resembles the flat space case . Thus there is 
some C > O and some 84 > 81 such that ifany component of (dAap/d8) 1 p  
i s  greater than C ,  the corresponding point on  y(8) will be  before y(84 ) .  
However the subspace of S consisting of all matrices all of  whose com
ponents are less than or equal to C, is compact. This shows that there 
is some 85 > 81 such that 7J{S) is contained in the segment from ')'(81) to 
')'(85 ) .  Consider now a point r = y(82) where 82 > 85 • If there is no point 
conjugate to r between r and p, the Jacobi fields which are zero at r 
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must have an expansion (} which is positive at p (otherwise they would 
be in the set P which represents all families of Jacobi fields with zero 
vorticity which have non-positive expansion at p) .  It follows from the 
previous result that there is then a point q = y(s0) (s0 < s1) which is 
conjugate to r along y(s ) .  0 

In a physically realistic solution (though not necessarily in an exact 
one with a high degree of symmetry) ,  one would expect every timelike 
geodesic to encounter some matter or some gravitational radiation and 
so to contain some point where Rabcd Vb Vd was non-zero. Thus it would 
be reasonable to assume that in such a solution every timelike geodesic 
would contain pairs of conjugate points, provided that it could be 
extended sufficiently far in both directions. 

We shall also consider the congruence of timelike geodesics normal 
to a spacelike three-surface, £. By a spacelike three-surface, YI', we 
mean an imbedded three-dimensional submanifold defined locally by 
f = 0 where/ is a 02 function and gabf: af: b < 0 when/ = 0. We define 
N, the unit normal vector to YI', by Na = ( - gbcf; bf; c)-lgadf; d and the 
second fundamental tensor X of YI' by Xab = hac hbd �; d• where 
hab = Yab + Na N,, is called the first fundamental tensor (or induced 
metric tensor) of YI' (cf. § 2 . 7 ) . It follows from the definition that x is 
symmetric .  The congruence of timelike geodesics orthogonal to YI' will 
consist of the timelike geodesics whose unit tangent vector V equals 
the unit normal N at YI'. Then one has : 

Ya; b = Xab at YI'. ( 4 .43) 

The vector Z which represents the separation of a neighbouring 
geodesic normal to YI' from a geodesic y(s) normal to £, will obey the 
Jacobi equation (4 .38 ) .  At a point q on y(s) at YI' it will satisfy the 
initial condition : d - Z"' = X ZP 

ds exp • ( 4 .44)  

We shall express the Jacobi fields along y(s) which satisfy the above 
condition as 

where 

Z"'(s) = A"'p(s) ZP l q• 

d2 
ds2 A"'p = - R<X4y4ArP 

and at q, A"'p is the unit matrix and 

d 
ds A,.9 = XarArP· 

(4 .45 )  

(4.46) 
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We shall say that a point p on y(s) is conjugate to £' along y(s ) if there 
is a Jacobi field along y(s ) not identically zero, which satisfies the 
initial conditions (4 .44) at q and vanishes at p .  In other words, p is 
conjugate to £' along y(s) if and only if Acxp is singular at p. One may 
think of p as being a point where neighbouring geodesics normal to £' 
intersect. As before Aap will be singular where and only where the 
expansion () becomes infinite. At q, the initial value of A.Y"w'Y6A6p will 
be zero, therefore wcxp will be zero on y(s ) .  The initial value of () will 
be Xabgab . 

Proposition 4.4 .3 
If Rob ya Vb � 0 and XabY"b < 0, there will be a point conjugate to £' 
along y(s) within a distance 3/( - Xabgab) from £', provided that y(s) 
can be extended that far. 

This may be proved using the Raychaudhuri equation (4.26 ) as in 
proposition 4 .4 . 1 .  D 

We shall call a solution of the equation : 

d2 Zm - - R zn 
dv2 - m4n4 (m, n = 1 , 2)  

along a null geodesic y(v) ,  a Jacobi field along y(v) .  The components 
zm could be thought of as the components, with respect to the basis E1 
and E2, of a vector in the space Sq at each point q. We shall say that 
p is conjugate to q along the null geodesic y(v) if there is a Jacobi field 
along y(v), not identically zero, which vanishes at q and p. If Z is 
a vector connecting neighbouring null geodesics which pass through q, 
the component za will be zero everywhere. Thus p can be thought of 
as a point where infinitesimally neighbouring geodesics through q 
intersect. Representing the Jacobi fields along y(v) which vanish at q 
by the 2 x 2 matrix Amn• 

A d zm(v) = Amn dv zn l q· 

One has as before : A1m w1k Akn = 0, so the vorticity of the Jacobi fields 
which are zero at p vanishes. Also p will be conjugate to q along y(v) 
if and only if 

becomes infinite at p. Analogous to proposition 4 .4 . 1 ,  we have : 
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Proposition 4 .4 .4  
If Rab KaKb � 0 everywhere and if  at  some point y(v1 ) the expansion O 
has the negative value 01 < 0, then there will be a point conjugate 
to q along y(v)  between y(v1 ) and y(v1 + ( 2/ - 01) )  provided that y(v) 
can be extended that far. 

The expansion 0 of the matrix Amn obeys (4 .35) : 

i. o  = - R b KaKb - 20-2 _ 192 
dv a � ' 

and so the proof proceeds as before . D 

Proposition 4. 4 .5  
If Rab KaKb � 0 everywhere and if  at  p = y(v1) , KcKdKra Rbl cd[eKJI is 
non-zero , there will be v0 and v2 such that q = y{v0) and r = y(v2) will 
be conjugate along y(v) provided y(v) can be extended to these values. 

If KcKdKra Rbl cd[eK11 is non zero then so is Rm4n4• The proof is then 
similar to that of proposition 4 .4 .2 .  D 

As in the timelike case, this condition will be satisfied for a null 
geodesic which passes through some matter provided that the matter 
is not pure radiation (energy-momentum tensor type II of § 4. 3 )  and 
moving in the direction of the geodesic tangent vector K. It will be 
satisfied in empty space if the null geodesic contains some point where 
the Weyl tensor is non-zero and where K does not lie in one of the 
directions (there are at most four such directions) at that point for 
which KcKdKraCbl cd[e K11 = 0. It therefore seems reasonable to assume 
that in a physically realistic solution every timelike or null geodesic 
will contain a point at which KaKbKrcRalab [eK11 is not zero. We shall 
say that a space-time satisfying this condition satisfies the generic 
condition. 

Similarly we may also consider the null geodesics orthogonal to 
a spacelike two-surface .9. By a spacelike two-surface .9, we mean an 
imbedded two-dimensional submanifold defined locally by f1 = 0, 
f2 = 0 where f1 and f2 are 02 functions such that when f1 = 0, f2 = 0 
then f1 ; a and f2 ; a are non-vanishing and not parallel and 

(f1 ; a + µf2 ; a) <f1 ; b  + µf2 ; b ) gab = 0 

for t wo distinct real values µ1 and µ2 ofµ .  Then any vector lying in the 

two-surface is necessarily spacelike . We shall define N1a and N2a, the 
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two null vectors normal to !/, as proportional to gab(jl ; b + Jti f2 : b ) and 
gab(jl : b + µd2 : b ) respectively , and normalize them so that 

One can complete the pseudo-orthonormal basis by introducing two 
spacelike unit vectors Y1a and Y2a orthogonal to each other and to Ni_a 

and N2a. We define the two null second fundamental tensors of!/ as : 

where n takes the values 1 ,  2 .  The tensors iXab and 2Xab are symmetric .  
There will be two families of null geodesics normal to !/ corre

sponding to the two null normals N1a and N2a . Consider the family 
whose tangent vector K equals N2 at !/. We may fix our pseudo
orthogonal basis Ev E2, E3, E4 by taking E1 = Yv E2 = Y2, E3 = N1, 
E4 = N2 at !/ and parallelly propagating along the null geodesics . 
The projection into the space Sq of the vector Z representing the 
separation of neighbouring null geodesics from the null geodesic y(v) 
will satisfy (4 . 30) and the initial conditions 

d _ zm = _v zn 
dv O!l\mn (4 .47 )  

at q on y(v) at !/. As before the vorticity of these fields will be zero . 
The initial value of the expansion (} will be M'abgab . Analogous to 
proposition 4 .4 .3  we have : 

Proposition 4 .4 .6  
If  RabKaKb � 0 everywhere and 2Xabgab is negative there will be a 
point conjugate to !/ along y(v) within an affine distance 2/( - 2Xabgab) 
from !/. D 

From their definition, the existence of conjugate points implies the 
existence of self-intersections or caustics in families of geodesics. A 
further significance of conjugate points will be discussed in the next 
section . 

4.5 Variation of arc-len�th 

In this section we consider timelike and non-spacelike curves which 
are piecewise 03 but which may have points at which their tangent 
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vector is discontinuous . We shall require that at such points the two 
tangent vectors 

�L and �L satisfy g (�L ,  �IJ = - 1 , 

that is, they point into the same half of the null cone . 

Proposition 4 .5 . 1 
Let au be a convex normal coordinate neighbourhood about q. Then the 
points which can be reached from q by timelike (respectively non
spacelike) curves in au are those of the form expq (X), X E Tq where 
g(X, X ) < 0 (respectively � 0) .  (Here, and for the rest of this section, 
we consider the map exp to be restricted to the neighbourhood of the 
origin in Tq which is diffeomorphic to au under expq. )  

In other words, the null geodesics from q form the boundary o f  the 
region in au which can be reached from q by timelike or non-spacelike 
curves in au. This is fairly obvious intuitively but because it is funda
mental to the concept of causality we shall prove it rigorously. We 
first establish the following lemma : 

Lemma 4 .5 .2  
In au the timelike geodesics through q are orthogonal to the three
surfaces of constant u (u < 0) where the value of u at p E au is defined 
to be g(expq-1p , expq-

lp) .  

The proof i s  based on the fact that the vector representing the separa
tion of points equal distances along neighbouring geodesics remains 
orthogonal to the geodesics if it is so initially. More precisely, let X(t) 
denote a curve in Tq, where g(X(t) ,  X(t ) )  = - 1 . One must show that 
the corresponding curves -".(t )  = expq(s0X(t) ) (s0 constant) in au, where 
defined, are orthogonal to the timelike geodesics y(s) = expq(sX(t0 ) )  
( t 0  constant) .  Thus in terms of the two-surface a defined by 
x(s, t) = expq(sX(t ) ) ,  one must prove that 

(see figure 1 1 ) .  Now 

8 ( 8 8 ) (D 8 8 ) ( 8 D 8 ) 
8s g 8s ' 8i = g cs 88 '  et + g os ' os 8i ' 
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Xull 
cone 

Geodesic 

expq (sX(t ) )  

Surface u = constant 
(u = -s2)  

Xull  cone 

FIGURE 1 1 .  In a normal neighbourhood, surfaces at constant distance from q 
are orthogonal to the geodesics through q. 

The first term on the right is zero as o/os is the unit tangent vector to 
the timelike geodesics from q. In the second term one has from the 
definition of the Lie derivative that 

Thus 

D a  D a  as 8t = at  as ·  a ( a a )  ( a D a )  1 a ( a a )  
os g os ' 8t = g os ' Ft OS = 2 mg os ' OS 

= o. 

Therefore g(o/os, o/ot) is independent of s. But at s = o, (o/ot)� = o. 
Thus g(o/os, o/ot ) is identically zero . D 

Proof of proposition 4 .5 . 1 .  Let Cq denote the set of all timelike vectors 
at q. These constitute the interior of a solid cone in Tq with vertex at 
the origin . Let y(t) be a timelike curve in Olt from q to p and let y(t) be 
the piecewise 02 curve in Tq defined by y(t) = expq -

1 (y(t ) ) .  Then 
identifying the tangent space to Tq with Tq itself, one has 
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Therefore at q, (o/ot):y will be timelike . This shows that the curve y(t) 
will enter the region Cq. But expq (Oq) is  the region of 'PI on which u is 
negative and in which by the previous lemma the surfaces of constant 
u are spacelike. Thus O' must monotonically decrease along y(t) since 
(o/ot)y being timelike can never be tangent to the surfaces of constant u 
and since at any non-differentiable point of y(t) the two tangent 
vectors point into the same half of the null cone . Therefore p E expq(Oq) 
which completes the proof for timelike curves. To prove that a non
spacelike curve y(t) remains in expq (Cq) ,  one performs a small varia
tion of y(t) which makes it into a timelike curve . Let Y be a vector 
field on � such that in 'PI the induced vector field expq* (Y) is every
where timelike and such that g(Y, (o/ot)y l q) < 0. For each e � 0 let 
p(r, e) be the curve Tq starting at the origin such that the tangent 
vector (o/or)p equals (o/ot);y l t=r + eY l,a<r. e> · Then fi(r, e) depends differ
entiably on r and e. For each e > 0, expq (fi(r, e ) )  is a timelike curve 
in 'PI and so is contained in expq (Oq) · Thus the non-spacelike curve 
expq (fi(r, 0) )  = y(r) is contained in expq (Oq) = expq (Cq) · 0 

Corollary 
If p E 'PI can be reached from q by a non-spacelike curve but not by a 
timelike curve, then p lies on a null geodesic from q. 0 

The length of a non-spacelike curve y(t) from q to p is 

L(y, q, p) = f:[ - g (� . �) y dt, 
where the integral is taken over the differentiable sections of the curve . 

In a positive definite metric one may seek the shortest curve between 
two points but in a Lorentz metric there will not be any shortest curve 
as any curve can be deformed into a null curve which has zero length. 
However, in certain cases there will be a longest non-spacelike curve 
between two points or between a point and a spacelike three-surface . 
We deal first with the situation when the two points are close together. 
We shall then derive necessary conditions in the general case when the 
two points are not close . The sufficient condition in this case will be 
dealt with in § 6 . 7 .  

Proposition 4 . 5 . 3  
Let q and p lie in  a convex normal neighbourhood 'Pl .  Then, i f  q and p 
can be joined by a non-spacelike curve in 'Pt, the longest such curve 
is the unique non-spacelike geodesic curve in 'PI from q to p.  Moreover, 
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defining p(q, p) as the length of this curve if it exists, and as zero 
otherwise, p(q, p) is a continuous function on au x au. 

By the definition of convex normal neighbourhoods (§ 2 .5 ) ,  there is 
a unique geodesic y(t) in au with y(O) = q, y( 1 )  = p. Since this geodesic 
depends differentiably on its endpoints, the function 

will be differentiable on au x au. (This function u is the same as that 
in lemma 4 .5 . 2 . )  Thus p(q, p) will be continuous on au x au since it 
equals [ - u(q, p)]l if u < 0 and is zero otherwise. It now remains to 
show that if q and p can be joined by a timelike curve in au then the 
timelike geodesic y between them is the longest such curve. Let a(s, t )  
be expq (sX(t)) as before where g(X(t ) ,  X(t) ) = - 1 . If .;\.(t) is a time
like curve in au from q to p, it can be represented as .;\.(t) = a(f(t) , t ) .  
Then 

Since the two vectors on the right are mutually orthogonal by lemma 
4 .5 .2 .  and since g((o/os)a., (o/os)a.) = - 1 ,  this gives 

the equality holding if and only if (o/ot)a. = 0 and hence if and only if 
.;\. is a geodesic curve. Thus 

L(.;\., q ,p )  :::;; J: f' (t) dt = p(q, p ) ,  

the equality holding if  and only if .;\. i s  the unique geodesic curve in  au 
from q to p. 0 

We shall now consider the case where q and p are not necessarily 
contained in a convex normal neighbourhood au. By considering small 
variations we shall derive necessary conditions for a timelike curve 
y(t) from q top to be the longest such curve from q to p .  A variation a 
of y(t) is a 01- map a :  ( - e, e) x [0, tp] -+ vl  such that 

( 1 )  a(O, t) = y(t) ; 
( 2 )  there is a subdivision 0 = t1 < t2 • • •  < tn = tP of [O, tp] such that 

a is 03 on each ( - e, e) x [ti , ti+1] ;  
(3 )  a(u, 0 )  = q, a(u, tp ) = p ;  
(4)  for each constant u ,  a(u, t) is a timelike curve . 
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The vector (o/ou).x l u=o will be called the variation vector Z. Con
versely, given a continuous, piecewise C2 vector field Z along y(t) 
vanishing at q and p, we may define a variation a for which Z will 
be the variation vector by : 

a(u, t) = expr (uZ l r) ,  
where u E ( - e, e) for some e > 0 and r = y(t ) .  

Lemma 4.5 .4 
The variation of the length from q to p under a is  

- = � g - 1-1 _ _ _ 1-2 - - dt + � g  - 1-1 _ 
oL I n - 15ti + •  ( o { D o (of) o }) n - 1  ( 0 [ 0 ] ) 
OU u = O  i = l  ti �u ' ot ot ot ot i = 2 ou ' ot ' 
where f2 = g(Ofot, o/ot) is the magnitude of the tangent vector and 
[J-1 o/ot] is the discontinuity at one of the singular points of y(t ) .  
We have : 

oL I o J( ( o o )) i OU U = O 
= � OU - g  at '  Ft dt 

= - �  f g (� :e . :e)J-l dt 

= - �Jg (D � �)J-l dt ot ou ' ot 

Integrating the first term by parts one has the required formula. D 

One may simplify the formula by choosing the parameter t to be the 
arc-length s. Then g(o/ot, o/ot) = - 1 . We shall denote by V the unit 
tangent vector o/os. One has : 

oL I n - lft; + .  . n - 1  

ou u = O 
= 

i
�

l t1 
g(Z, V) ds + i�2 g(Z, [VJ ) 

where V = DV/os is the acceleration. From this one sees again that a 
necessary condition for y(t) to be the longest curve from q to p is that 
it should be an unbroken geodesic curve as otherwise one could choose 
a variation which would yield a longer curve . 

One may also consider a timelike curve y(t) from a spacelike three
surface .711 to a point p. A variation a of this curve is defined as before 
except that condition (3 )  is replaced by : 

(3 )  a(u, 0) lies on £, a(u, tp ) = p.  
Thus at .711 the variation vector Z = o/ou lies in £. 
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Lemma 4 .5 .5 
aL I n- l f t' + i  . n- 1  
OU u= O = i�l t; 

g(V, Z) ds + i�2g(Z, [V] ) + g(Z, V) l s= o· 

The proof is as for lemma 4.5 .4 .  D 
From this one sees that a necessary condition for y(t) to be the longest 
curve from YE to p is that it is an unbroken geodesic curve orthogonal 
to YE. 

We have seen that, under a variation a, the first derivative of the 
length of a timelike geodesic curve is zero . To proceed further we shall 
calculate the second derivative . We define a two-parameter variation 
a of a geodesic curve y(t) from q to p as a 01 map : 

a : ( - e1, e1 ) x ( - e2, e2) x [O, tp] -+ .L 
such that 

( 1 )  a(O, 0, t ) = y(t) ; 
( 2 )  there is a subdivision 0 = t1 < t2 < . . .  < tn = tP of [O, tp] such 

that a is 03 on each 
( - €v €1 ) x ( - €2, €2) x [ti , tH1J ; 

(3 )  a(u1, u2, 0) = q, a(uv u2, tp )  = p ;  
(4 ) for all constant u1 , u2, a(uv u2, t) is a timelike curve . 
We define 

Z1 = ( "'u
o ) lu,= o , u 1 a: u. = 0  

Z2 = ( "'uo ) lu,-o , u 2 a: u. = 0  

as  the two variation vectors. Conversely given two continuous, piece
wise 02 vector fields Z1 and Z2 along y(t) one may define a variation 
for which they will be the variation vectors, by : 

a(u1, u2, t) = expr (u1 Z1 + u2 Z2) , 
r = y(t ) .  

Lemma 4 .5 .6  
Under the two-parameter variation of  the geodesic curve y(t) , the 
second derivative of the length will be : 

"' 0
2� lu, = o = �i;_1 f1' + •  g (zv {�: (Z2 + g(V, Z2) V) - R(V, Z2) v}) ds uU2 uU1 u. = O i= l J t; uS 

+ :�> ( Z1, [� (Z2 + g(V, Z2) V)]) . 
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By lemma 4.5.4, one has : 

:�b:3 = � f g (o!1 • {f-1 � :e-f-2 (Z) :e})dt + �g (0!1 • [f-1:e]) · 

Therefore 

o::!'uJ�:g = � J g (o�2 0!1 • {f-1� :e-f-2 (�) :e}) dt 
- � J g (o!1 • {f-2 (o�J � :e-f-1 0�2 � :e 

2+--a ( of ) (of) o f-2 ( o2f ) o f-2 (of) D o }) d - 'J ou2 ae ae + ou2 ot ae+ ae ou2ae t 
+ �g (o�2 0!1 • [f-1:e] ) + �g (0!1 • 0�2 [f-1 :e]) · 

The first and third terms vanish as y(t) is an unbroken geodesic curve . 
In the second term one can write : 

D [i-1 o] - [f_1 D o f-a (D o o) o] OU2 Ft - 8t OU2 + g 8t OU2 ' 8t Ft . 
Then taking t to be the arc-length s, one obtains the required result . D 
Although it is not immediately obvious from the appearance of the 
expression, one knows from its definition that it is symmetric in the 
two variation vector fields Z1 and Z2• One sees that it only depends on 
the projections of Z1 and Z2 into the space orthogonal to V. Thus we 
can confine our attention to variations a whose variation vectors are 
orthogonal to V. We shall define TY to be the (infinite-dimensional) 
vector space consisting of all continuous, piecewise 02 vector fields 
along y(t) orthogonal to V and vanishing at q and p. Then o2L/8u2ou1 
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will be a symmetric map of TY x Ty to R1. One may think of it as 
a symmetric tensor on TY and write it as : 

One may also calculate the second derivative of the length from £ 
to p of a geodesic curve y(t) normal to £. One proceeds as before 
except that one endpoint of y(t) is allowed to vary over £ instead of 
being fixed. 

Lemma 4.5 .7 
The second derivative of the length of y(t) from £ to p is : 

!:\ 
02£0 lu, = o =�i:.1J ti + .  g (z1, {�: z2 - R(V, Z2) v}) ds uU2 U1 u,= 0 � = 1  

t
1 u8 

+:�> (z1, [�z2]) + g (zl> �z2) \K - x(z1, Z2) IK · 
where Z1 and Z2 have been taken orthogonal to V and x(ZI> Z2) is the 
second fundamental tensor of £. 

The first two terms are as for lemma 4 .5 .6 .  The extra terms are : 

D ( a 1_1 a ) I _ 1_1 ( D a a) I ou2 g ou1 ' at .1f' - g ou2 ou1 ' at .1f' 

+ 1-sg (a�2 �. :e) g (a!1 · �) l.;f' + 1-lg (a�1 ' � a!J IJf' · 
The second term vanishes as o/ou1 is orthogonal to o/ot . If one takes t to be the arc-length s, then Ofot will be equal to the unit normal N 
at £. Since the endpoint of y(t) is restricted to varying over £, o/ou1 
will always be orthogonal to N. Thus 

Y (a�2 a!1 , N) = a!2 Y (a!1 , N) - g (a!1 · a�2N) = -x (a!1 · a!J · 0 

We shall say that a timelike geodesic curve y(t) from q tu p is maximal 
if L(ZI> Z2) is negative semi-definite. In other words, if y(t) is not 
maximal there is a small variation a which yields a longer curve from 
p to q. Similarly we shall say that a timelike geodesic curve from £ 
to p normal to £ is maximal if L(Z1, Z2) is negative semi-definite, 
so if y(t) is not maximal there is a small variation which yields a longer 
curve from £ to p .  
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Proposition 4.5. 8 
A timelike geodesic curve y (t) from q to p is maximal if and only if 
there is no point conjugate to q along y (t ) in (q, p) .  

Suppose there i s  no conjugate point in (q, p ) .  Then introduce a Fermi
propagated orthonormal basis along y (t) . The Jacobi fields along y(t )  
which vanish at q will be represented by a matrix A"'p(t) which will be 
non-singular in (q, p ) ,  but which will be singular at q and possibly at p.  
Since conjugate points are isolated, d( log det A )/d8 will be  infinite 
where A"'p is singular. Thus a C0, piecewise C2 vector field. Z E T1 
can be expressed in [q, p] as 

Z"' = A  WP otP • 

where WP is C0, piecewise C1 on [q, p] .  Then, 

L(Z, Z) = � J:p A"'p WP {!22 (A""' W8) +Rcz414A16 W8} d8 
+ �A"'p WP [ :8 (A°"' W8)] 

- 1i �JspA WP { �A � W8 A � W8} d - m ... otP 2 d °"'d + °"'d 2 8 
• .-o + • 8 8 8 
+ �A"'p WPA°"' [:8 W8] 

J� { d d 8 ( d  = - � A p- WPA 8- W + WP -A pA • 
0 "' d8 "' d8 d8 "' "'" 

-A"'p:8A"'8) :8 W8 } d8. 
(We take the limit because the second derivative of W8 may not be 
defined at q.) But 

(:8A"'p Aot6 -A"'p:8A°"') = - 2A"'pw"'1A18 = 0. 

Therefore L(Z, Z) :s:; 0. 
Conversely, suppose there is a point r E (q, p)  conjugate to q along 

y (t) . Let W be the Jacobi field along y which vanishes at q and r. 
Let K E T1 be such that 

D K"'g b- Wb = - 1  at r. a 08 
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Extend W to p by putting it zero in [r , p] .  Let Z be eK + e-1W, where 
e is some constant. Then 

L(Z, Z) = e2L(K, K) + 2L(K, W) + 2c2L(W, W) = e2L(K, K) + 2 . 
Thus by taking e small enough, L(Z, Z) may be made positive . 0 

One may obtain similar results for the case of a timelike geodesic 
curve y(t) orthogonal to .71', from .71' to p.  

Proposition 4 .5 .9  
A timelike geodesic curve y(t )  from .71' to p is maximal if and only if 
there is no point in (.71', q) conjugate to .71' along y. 0 

We shall also consider variations of a non-spacelike curve y(t) from q 
to p. We shall be interested in the circumstances under which it is 
possible to find a variation a of y(t) which makes g(o/ot, Of ot) negative 
everywhere, or in other words, yields a timelike curve from q to p .  
Under a variation a :  

:u (g (� . �)) = 2Y G�� · �) = 2g (� o� · �) 
= 2� (g (:u . :e)) - 2g (:u ' � �) . (4 .48)  

In order to obtain a timelike curve from q to p,  one requires this to be 
less than or equal to zero everywhere on y(t ) .  

Proposition 4 .5 . 1 0  
If  p and q are joined by  a non-spacelike curve y(t) which i s  not a null 
geodesic they can also be joined by a timelike curve. 

If y(t) is not a null geodesic curve from p to q, there must be some point 
at which the tangent vector is discontinuous, or there must be some 
open interval on which the acceleration vector (D/ot) (o/ot) is non-zero 
and not parallel to o/ot. Consider first the case where there are no 
discontinuities. One has 

(D o o ) 1 o ( ( fJ fJ )) g ot ae · 8t = 2 ae  g ae· ae = 0· 

This shows that (D/ot) (o/ot) is a spacelike vector where it is non-zero 
and not parallel to o/ot. Let W be a 02 timelike vector field along y(t) 
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such that g(W, o/ot) < 0. Then one will obtain a timelike curve from 
p to q under the variation whose variation vector is 

with 

where 

D o  Z = xW + y ot Ft 
x = c-1 ebt ft e-bt( 1 - !ya2) dt , t, 

2 (D o  D o ) a = g at at'  at Ft ' 
c = - g (w !.) ' at • 

b = max ( - c-1g (w. �:e)) on [p , q] , 

and y is a 02 non-negative function on [p , q] such that yP = yq = 0 and 

ft,. e-bt ( 1 - !Jla2) dt = 0. t, 
Suppose now there is some subdivision tq < t1 < t2 < . . .  < tP such that 
the tangent vector o/ot is continuous on each segment [ti, ti+l] . If 
a segment [ti , ti+l] is not a null geodesic curve, it can be varied to give 
a timelike curve between its endpoints. Thus one has only to show 
that one can obtain a timelike curve from a non-spacelike curve y(t) 
made up of null geodesic segments whose tangent vectors are not 
parallel at points of discontinuity y(ti ) ·  The parameter t can be taken 
to be an affine parameter on each segment [ti, ti+l] . The discontinuity 
[o/otl l t, will be a spacelike vector, as it is the difference between two 
non-parallel null vectors in the same half of the null cone. Thus one 
can find a 02 vector field W along [ti-l • ti+1] such that g(W, o/ot) < 0 on 
[ti_1 , ti] and g(W, o/ot ) > 0 on [ti , ti+ il Then a timelike curve between 
y(ti_1 ) and y(ti+1 ) will be obtained from the variation with variation 
vector field Z = xW, where x = c-1(ti+1 - ti) (t - ti_1) for ti-l � t � t, , 
and x = c-1 (ti - ti_1) (ti+1 - t) for ti � t � ti+l• where c = - g(W, o/ot ) .  0 
Thus if y(t) is not a geodesic curve, it can be varied to give a timelike 
curve. If it is a geodesic curve, the parameter t may be taken to be an 
affine parameter. One then sees that a necessary, but not sufficient, 
condition for a variation to yield a timelike curve is that the variation 
vector o/ou should be orthogonal to the tangent vector o/ot everywhere 
on y(t) , since otherwise (o/ot) g(o/ou, o/ot) would be positive somewhere 
on y(t) . For such a variation the first derivative (o/ou) g(o/ot, o/ot) will 
be zero and so one will have to examine the second derivative . 
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We shall therefore consider a two-parameter variation a of a null 
geodesic y(t) from q to p .  The variation a will be defined as before 
except that, for the reason given above, we shall restrict ourselves to 
variations whose variation vectors 

;-1u,= O and ;-1u,=O uU1 u.= O uU2 u.= O 
are orthogonal to the tangent vector o/ot on y(t ) .  

It is not convenient to study the behaviour of L under such a varia
tion since ( 

- g(o/ot, o/ot))! is not differentiable when g(o/ot, o/ot) = o. 
Instead we shall consider the variation in : 

A =  -n�1J"+• g (�. �) dt. i= l 1, at at 

Clearly a necessary but not sufficient condition that a variation a of 
y(t) should yield a timelike curve from q to p is that A should become 
positive. 

One has 
1 a2 ( ( a a ) ) a2 ( ( a a ) ) a ( ( a D a )) 
2 au2 au1 g at '  at = ou2 ot g ou1 ' at  - au2 

g ou1 ' at at 

a2 ( ( a a )) ( a {n2 a 
= OUz ot g OU1 ' at - g OU1 ' ot2 OU2 

and so 

! a2A I - o = �Ju (� {n2 � - R (� �) � }) de 
2 OU2 OU1 �:= o OU1 ' ot2 OUz at ' OU2 ot 

+ �u
(
a�1 ' [� a!J ) . (4 .49) 

This formula is very similar to that for the variation of the length of 
a timelike curve. It can be seen that the variation of A is zero for a 
variation vector proportional to the tangent vector o/ot since o/Ot is 
null and R(o/ot, o/ot) (o/ot) = o as the Riemann tensor is anti
symmetric . Such a variation would be equivalent to simply repara
metrizing y(t) .  Thus if one wants a variation which will give a timelike 
curve one need consider only the projection of the variation vector into 
the space Sq at each point q of y(t) . In other words, introducing a 
pseudo-orthonormal basis E1, E2, E3, E4 along y(t) with E4 = o/ot, the 
variation of A will depend only on the components zm of the variation 
vector (m = 1 ,  2 ) .  
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Proposition 4.5 . 1 1  
If there is no point in [q, p] conjugate to q along y(t) then d2A/du2 l u=o  
will be negative for any variation a of y( t )  whose variation vector 
a I ou l u=O is orthogonal to the tangent vector a I at on y(t) and is not every
where zero or proportional to o/ot. In other words, if there is no point 
in [q, p] conjugate to q then there is no small variation of y(t) which 
gives a timelike curve from q to p .  

The proof i s  similar to  that for proposition 4 .5 . 8 ,  using instead the 
2 x 2 matrix Amn of § 4. 2 . 0 

Proposition 4 .5 . 1 2  
If there is a point r in (q, p )  conjugate to q along y(t) then there will be 
a variation of y(t) which will give a timelike curve from q to p. 

The proof is a bit finicky since one has to show that the tangent vector 
becomes timelike everywhere . Let wm be the components in the space 
S (see § 4.2 )  of the Jacobi field which vanishes at q and r. It obeys 

d2 
dt2 wm = -Rm4n4 wn, 

where for convenience t has been taken to be an affine parameter. 
Since wm will be at least 03 and since d Wm/dt is not zero at q and r, 

A A A 

one can write wm = Jwm where wm is a unit vector and f and ware 02• 
Then d2 

dt2f+ hf = 0, 

where 

Let x E  [r, p] be such that Wm is not zero in [r, x] . Let h1 be the minimum 
value of h in [r, x] . Let a >  0 be such that a2 + h1 > 0 and let 
b = { -/(eat _ 1 )-1} lz· Then the field 

" zm = {b(eat _ 1 )  + /} wm 
will vanish at q and x and will satisfy 

zm (:;2zm+Rm4n4zn ) > o m (q, x) .  

We shall choose a variation a(u,  t) of y(t )  from q to x such that the 
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components in  8 of  its Variation vector o/ou lu=O equals zm and SUCh 
that ( D a a ) I g - - -ou ou ' ot u= O 
satisfies { - et for 0 � t � ltx, 

g (� a: ' �) 'u= O + g (:u ' � a:) IU= O = e(t - itx) for ltx � t � !tx, 
e(tx - t) for itx � t � tx, 

where tx is the value of t at x, and e > 0 but less than the least value of 
zm (d2Zm/dt2 + Rm4n4 zn) in the range ltx � t � !tx. Then by (4 .49)  
(o2/ou2) g(o/ot, o/ot) will be negative everywhere in [q, x] and so for 
sufficiently small u, a will give a timelike curve from q to x. If one joins 
this curve to the section of y from x to p, one will obtain a non-spacelike 
curve from q to p which is not a null geodesic curve . Thus there will 
be a variation of this curve which gives a timelike curve from q to p.  D 

By similar methods one can prove : 

Proposition 4 .5 . 1 3  
I f  y(t) i s  a null geodesic curve orthogonal to a spacelike two-surface !/ 
from !/ to p and if there is no point in [ !/, p] conjugate to !/ along y, 
then no small variation of y can give a timelike curve from !/ to p . D 

Proposition 4 .5 . 1 4  
I f  there is a point in  (!/, p) conjugate to !/ along p, then there i s  a 
variation of y which gives a timelike curve from !/ to p .  D 

These results on variations of timelike and non-spacelike curves will 
be used in chapter 8 to show the non-existence of longest geodesics . 



5 
Exact solutions 

Any space-time metric can in a sense be regarded as satisfying 
Einstein's field equations 

(5 . 1 )  

(where we use the units of chapter 3 ) ,  because , having determined the 
left-hand side of (5 . 1 )  from the metric tensor of the space-time 
(..A", g) ,  one can define Tab as the right-hand side of (5 . 1 ) .  The matter 
tensor so defined will in general have unreasonable physical properties ; 
the solution will be reasonable only if the matter content is reasonable . 

"\Ve shall mean by an exact solution of Einstein 's equations , a space
time (.A', g) in which the field equations are satisfied with Tab the 
energy-momentum tensor of some specified form of matter which 
obeys postulate (a) ( ' local causality ' )  of chapter 3, and one of the 
energy conditions of § 4 . 3 .  In particular, one may look for exact 
solutions for empty space (Tab = 0) ,  for an electromagnetic field (Tab 
has the form (3 . 7 ) ) ,  for a perfect fluid (Tab has the form (3 . 8 ) ) ,  or for 
a space containing an electromagnetic field and a perfect fluid. 
Because of the complexity of the field equations, one cannot find 
exact solutions except in spaces of rather high symmetry. Exact 
solutions are also idealized in that any region of space-time is likely to 
contain many forms of matter, while one can obtain exact solutions 
only for rather simple matter content . Nevertheless , exact solutions 
give an idea of the qualitative features that can arise in General 
Relativity, and so of possible properties ofrealistic solutions of the field 
equations. The examples we give will show many types of behaviour 
which will be of interest in later chapters . "\Ve shall discuss solutions 
with particular reference to their global properties . Many of these 
global properties have only recently been discovered, although the 
solutions have been known in a local form for some time .  

In § 5 . 1 and § 5 . 2  we consider the simplest Lorentz metrics : those of 
constant curvature . The spatially isotropic and homogeneous cosmo
logical models are described in § 5 . 3 ,  and their simplest anisotropic 
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generalizations are discussed in § 5 .4 .  It is shown that all such simple 
models will have a singular origin provided that A does not take large 
positive values. The spherically symmetric metrics which describe 
the field outside a massive charged or neutral body are examined in 
§ 5 .5 ,  and the axially symmetric metrics describing the field outside 
a special class of massive rotating bodies are described in § 5 .6 .  It is 
shown that some of the apparent singularities are simply due to a bad 
choice of coordinates. In § 5. 7 we describe the Godel universe and in 
§ 5 . 8  the Taub-NUT solutions . These probably do not represent the 
actual universe but they are of interest because of their pathological 
global properties .  Finally some other exact solutions of interest are 
mentioned in § 5 .9 .  

5.1  Minkowski space-time 

Minkowski space-time (.A, Y) ) is the simplest empty space-time in 
General Relativity, and is in fact the space-time of Special Relativity. 
Mathematically, it is the manifold R4 with a flat Lorentz metric YI ·  
In  terms of the natural coordinates (x1 , x2, x3, x4) on  R4, the metric Y) 
can be expressed in the form 

(5 . 2 )  

If  one uses spherical polar coordinates (t, r , 8, <f> )  where x4  = t ,  
x3  = r cos (), x2 = r sin () cos <f>,  x1 = r sin () sin <f> ,  the metric takes the 
form (5 .3 )  

This metric i s  apparently singular for r = 0 and sin () = O ;  however 
this is because the coordinates used are not admissible coordinates at 
these points . To obtain regular coordinate neighbourhoods one has to 
restrict the coordinates, e .g .  to the ranges 0 < r < oo ,  0 < () < 1T, 

0 < </> < 2rr. One needs two such coordinate neighbourhoods to cover 
the whole of Minkowski space . 

An alternative coordinate system is given by choosing advanced 
and retarded null coordinates v, w defined by v = t + r, w = t - r  
( � v � w) .  The metric becomes 

ds2 = - dv dw + !(v - w)2 (d82 + sin2 8 d<f>2) ,  (5 .4 )  

where - oo < v < oo, - oo < w < oo. The absence in the metric of 
terms in dv2, dw2 corresponds to the fact that the surfaces {w = con
stant}, {v = constant} are null ( i .e .  w;aW: bfl°'b = 0 = V ;av ; bgab) ;  see 
figure 1 2 . 
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r = O  w = constant 

r v = constant 

v = constant 

8 

( i )  ( ii )  

FIGURE 12.  Minkowski space. The null coordinate v(w) may be thought of as 
incoming (outgoing) spherical waves travelling at the speed of light ; they are 
advanced (retarded) time coordinates. The intersection of a surface 
{v = constant} with a surface {w = constant} is a two-sphere. 

( i )  The v, w coordinate surfaces (one coordinate is suppressed) .  
(ii) The ( t ,  r)  plane ; each point represents a two-sphere of  radius r .  

In a coordinate system in which the metric takes the form (5 .2 ) ,  the 
geodesics have the form xa(v) = bav + ea where ba and ea are constants . 
Thus the exponential map expP : TP -+ ..,I( is given by 

xa (expP X) = xa + xa(p) , 
where xa are the components of X with respect to the coordinate basis 
{o/oxa} of TP . Since exp is one-one and onto, it is a diffeomorphism 
between TP and ..,/(. Thus any two points of ..,/( can be joined by a 
unique geodesic curve . As exp is defined everywhere on TP for all p, 
(JI, YJ) is geodesically complete . 

For a spacelike three-surface !/', the future (past) Cauchy develop
ment D+(f/') (D-(!7))  is defined as the set of all points q E JI such that 
each past-directed (future-directed) inextendible non-spacelike curve 
through q intersects !/', cf. § 6 .5 .  If D+(f/') U D-(Y) = ..,/(, i .e .  if every 
inextendible non-spacelike curve in JI intersects !/', then !/" is said 
to be a Cauchy surface.  In Minkowski space-time, the surfaces 
{x4 = constant} are a family of Cauchy surfaces which cover the whole 
of JI. One can however find inextendible spacelike surfaces which are 
not Cauchy surfaces ; for example the surfaces 

� :  { - (x4) 2 + (x1)2 + (x2)2 + (x3)2 = u = constant} , 
5 · 2 
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where u < 0 ,  x4 < 0 ,  are spacelike surfaces which lie entirely inside the 
past null cone of the origin 0, and so are not Cauchy surfaces (see 
figure 1 3 ) .  In fact the future Cauchy development of � is the region 
bounded by � and the past light cone of the origin . By lemma 4 .5 . 2 ,  
the timelike geodesics through the origin 0 are orthogonal to  the 
surfaces �- If r E D+(�) u D-(�) then the timelike geodesic 
through r and 0 is the longest timelike curve between r and //-' ,,.. If 

Futurl' nul l  

Past null 
cone of 0 

Cniformly 
accelerating 
timelike 
curve 

Surface 
{x' = constant) 

FIGURE 13 .  A Cauchy surface {x4 = constant} in Minkowski space-time, and 
spacelike surfaces 9',,., 9',,.. which are not Cauchy surfaces. The normal geodesics 
to the surfaces 9',,., 9',,.. all intersect at 0 .  

however r does not lie in D+(�) U D-(�) there is  no longest timelike 
curve between r and �:  either r lies in the region u � 0, in which case 
there is no timelike geodesic through r orthogonal to �' or r lies in 
the region u < 0,  x4 � 0 ,  in which case there is a timelike geodesic 
through r orthogonal to � but :this geodesic is not the longest curve 
between r and � as it contains a conjugate point to � at 0 ( cf. 
figure 1 3 ) .  

To  study the structure of  infinity in  Minkowski space-time, we  shall 
use the interesting representation of this space-time given by Penrose . 
From the null coordinates v, w, we define new null coordinates in 
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which the infinities of v ,  w have been transformed to finite values ; 
thus we define p ,  q by tan p = v , tan q = 1c where - !77 < p < !7T, 
- !77 < q < !77 (and p ;;i: q) .  Then the metric of (vii, l) )  takes the form 

ds2 = sec2 p sec2 q(  - dp dq + ! sin2 (p - q) (d02 + sin2 0 dcp2) ) .  

The physical metric l) i s  therefore conformal to  the metric g given by 

ds2 = - 4dp dq + sin2 (p - q) (d02 + sin2 0 dcp2) . (5 .5 )  

This metric can be reduced to a more usual form by defining 

where 

(5 .5 )  is then 

t' = p + q, r' = p - q, 

- 7T < t' + r' < 1T, - 1T < t' - r' < 1T, r' ;;i: 0 ;  (5 .6 )  

Thus the whole ofMinkowski space-time is  given by the region (5 .6 )  of 
the metric ds2 = ! sec2 (! (t ' + r' ) ) sec2 (! (t' - r' ) ) ds2 

where ds2 is determined by ( 5 . 7 ) ;  the coordinates t, r of (5 .3 )  are 
related to t ' ,  r' by 

2t = tan ( !(t' + r' ) )  + tan (!(t' - r' ) ) ,  

2r = tan (!(t' + r' ) ) - tan (! (t' - r' ) ) .  

Now the metric ( 5 .  7 )  i s  locally identical to  that of  the Einstein static 
universe (see § 5 .3 ) ,  which is a completely homogeneous space-time . 
One can analytically extend (5 .  7 )  to the whole of the Einstein static 
universe, that is one can extend the coordinates to cover the manifold 
R1 x 83 where - oo  < t ' < oo and r' , 0, cp are regarded as coordinates 
on 83 (with coordinate singularities at r' = 0, r' = 1T and 0 = o, 0 = 1T 

similar to the coordinate singularities in (5 .3 ) ; these singularities can 
be removed by transforming to other local coordinates in a neighbour
hood of points where ( 5. 7) is singular) . On suppressing two dimensions , 
one can represent the Einstein static universe as the cylinder 
x2 + y2 = 1 imbedded in a three-dimensional Minkowski space with 
metric ds2 = - dt2 + dx2 + dy2 (the full Einstein static universe can be 
imbedded as the cylinder x2 + y2 + z2 + w2 = 1 in a five-dimensional 
Euclidean space with metric ds2 = - dt2 + dx2 + dy2 + dz2 + dw2, cf. 
Robertson ( 1 933) ) .  

One therefore has the situation : the whole of Minkowski space-time 
is conformal to the region (5 .6 )  of the Einstein static universe, that is, 
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to the shaded area in figure 1 4 .  The boundary of this region may there
fore be thought of as representing the conformal structure of infinity 
of Minkowski space-time. It consists of the null surfaces p = t1T 
(labelled .Jf +) and q = - !17' (labelled J-) together with points p = !17', 
q = t1T (labelled i+) ,  p = !17', q = - !17' (labelled i0) and p = - !17', 
q = - !17' (labelled i-) . Any future-directed timelike geodesic in 

t '  = 11 

t' = 0 

f -

t ' = - 11  

r' = 11 
r' = 0 

FIGURE 14 .  The Einstein static universe represented by an imbedded cylinder ; 
the coordinates 8, </> have been suppressed. Each point represents one half 
of a two-sphere of area 47T sin2r' .  The shaded region is conformal to the whole of 
Minkowski space-time ; its boundary (part of the null cones of i+,  i0 and i-) may 
be regarded as the conformal infinity of Minkowski space-time. 

Minkowski space approaches i+ (i-) for indefinitely large positive 
(negative) values of its affine parameter, so one can regard any time
like geodesic as originating at i- and finishing at i+ (cf. figure 1 5 (i ) ) .  
Similarly one can regard null geodesics as originating at J- and ending 
at .Jf+, while spacelike geodesics both originate and end at i0 . Thus one 
may regard i+ and i- as representing future and past timelike infinity, 
.Jf+ and J- as representing future and past null infinity, and i0 as 
representing spacelike infinity. (However non-geodesic curves do not 
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obey these rules ; e .g .  non-geodesic timelike curves may start on J
and end on J+. )  Since any Cauchy surface intersects all timelike and 
null geodesics, it is clear that it will appear as a cross-section of the 
space everywhere reaching the boundary at i0• 

8pacelike 
geodesic 

Time like 

geodesic 

( i )  

i O  (regard as  
one point) 

Surface 
{p = constant} 

FIGURE 1 5  

r = O  

J +(r = oo,  
t = +oo )  

J-(r = oo ,  
t = -oo )  

( i )  The shaded region o f  figure 1 4, with only one coordinate suppressed, 
representing Minkowski space-time and its conformal infinity. 

(ii) The Penrose diagram of Minkowski space-time ; each point represents 
a two-sphere, except for i+, i0 and i-,  each of which is a single point, and points 
on the line r = 0 (where the polar coordinates are singular) .  

One can also represent the conformal structure of infinity by 
drawing a diagram of the (t' , r' ) plane, see figure 1 5  (ii ) .  As in figure 
1 2  (ii ) ,  each point of this diagram represents a sphere 82, and radial 
null geodesics are represented by straight lines at ± 45° . In fact, the 
structure of infinity in any spherically symmetric space-time can be 
represented by a diagram of this sort, which we shall call a Penrose 
diagram. On such diagrams we shall represent infinity by single lines, 
the origin of polar coordinates by dotted lines, and irremovable singu
larities of the metric by double lines. 

The conformal structure of Minkowski space we have described is 
what one would regard as the ' normal ' behaviour of a space-time at 
infinity ; we shall encounter different types of behaviour in later 
sections . 

Finally, we mention that one can obtain spaces locally identical to 
(1, Y)) but with different (large scale) topological properties by identi-
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fying points in .,II which are equivalent under a discrete isometry 
without a fixed point (e.g. identifying the point (x1, x2, x3, x4) with the 
point (x1, x2, x3, x4 + c) ,  where c is a constant, changes the topological 
structure from R4 to R3 x S1 ' and introduces closed timelike lines into 
the space-time) .  Clearly, (JI, Y) ) is the universal covering space for 
all such derived spaces, which have been studied in detail by Auslander 
and Markus ( 1 958) .  

5.2  De Sitter and anti-de Sitter space-times 

The space-time metrics of constant curvature are locally characterized 
by the condition Rabcd = l2R(YacYbd - YadYbc) .  This equation is equiva
lent to Oabcd = 0 = Rab - !Rgab ; thus the Riemann tensor is determined 
by the Ricci scalar R alone . It follows at once from the contracted 
Bianchi identities that R is constant throughout space-time ; in fact 
these space-times are homogeneous . The Einstein tensor is 

Rab - lRYab = - !Rgab· 

One can therefore regard these spaces as solutions of the field 
equations for an empty space with A = }R, or for a perfect fluid with 
a constant density R/327T and a constant pressure - R/327T. However 
the latter choice does not seem reasonable, as in this case one cannot 
have both the density and the pressure positive ; in addition , the 
equation of motion ( 3 . 1 0 ) is indeterminate for such a fluid . 

The space of constant curvature with R = 0 is Minkowski space
time . The space for R > 0 is de Sitter space-time, which has the 
topology R1 x S3 (see Schrodinger ( 1 956) for an interesting account of 
this space) .  It is easiest visualized as the hyperboloid 

- v2 + w2 + x2 + y2 + z2 = a2 

in flat five-dimensional space R5 with metric 

- dv2 + dw2 + dx2 + dy2 + dz2 = ds2 

(see figure 16 ) .  One can introduce coordinates (t , x, 0, </> ) on the hyper
boloid by the relations 

a sinh (a-It) = v ,  a cosh (a-It) cos x = w, 

a COSh (a-It) sin X COS fJ = X, a COSh (a-1t) sin X sin {) COS </> = y, 

a cosh (a-1t) sin x sin 0 sin </> = z . 
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does not cross surfaces 
{I = constant} 

(i i )  

FIGURE 16. De Sitter space-time represented by a hyperboloid imbedded in 
a five-dimensional flat space (two dimensions are suppressed in the figure) .  

( i )  Coordinates ( t ,  x. 8,  </>) cover the whole hyperboloid ; the sections { t  = con
stant} are surfaces of curvature k = + 1 .  

(ii) Coordinates (t, � .  y, �) cover half the hyperboloid ; the surfaces 
{t = constant} are flat three-spaces, their geodesic normals diverging from a 
point in the infinite past. 

In these coordinates, the metric has the form 

ds2 = - dt2 + a2 . cosh2 (a-It ) . {dx2 + sin2 x(d(;l2 + sin2 O d�2)} . 

The singularities in the metric at x = 0, x = 1T and at 0 = 0, 0 = 1T, 
are simply those that occur with polar coordinates. Apart from these 
trivial singularities, the coordinates cover the whole space for 
- oo < t < oo, 0 � x � 1T, 0 � 0 � 1T, 0 � � � 27T. The spatial sections 
of constant t are spheres 83 of constant positive curvature and are 
Cauchy surfaces. Their geodesic normals are lines which contract 
monotonically to a minimum spatial separation and then re-expand 
to infinity (see figure 1 6  (i ) ) .  

One can also introduce coordinates 

.. w + v t = a log -- , a 
x = 

ax 
w + v ' 

ay fj = 
w + v ' 

,._ az Z = -
w + v 

on the hyperboloid. In these coordinates, the metric takes the form 

ds2 = - dt2 + exp ( 2a-1t) ( dx2 + dfj2 + dz2) .  
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However these coordinates cover only half the hyperboloid as t is not 
defined for w + v � 0 ( see figure 16 (ii ) ) .  

The region of  de Sitter space for which v + w > 0 forms the space
time for the steady state model of the universe proposed by Bondi and 
Gold ( 1 948) and Hoyle ( 1 948) .  In this model, the matter is supposed 
to move along the geodesic normals to the surfaces {t = constant}. As 
the matter moves further apart, it is assumed that more matter is 
continuously created to maintain the density at a constant value . 
Bondi and Gold did not seek to provide field equations for this model, 
but Pirani ( 1 955) , and Hoyle and Narlikar ( 1 964) have pointed out 
that the metric can be considered as a solution of the Einstein equa
tions (with A = 0) if in addition to the ordinary matter one introduces 
a scalar field of negative energy density. This ' C '-field would also be 
responsible for the continual creation of matter. 

The steady state theory has the advantage of making simple and 
definite predictions. However from our point of view there are two 
unsatisfactory features. The first is the existence of negative energy, 
which was discussed in § 4 .3 .  The other is the fact that the space-time 
is extendible, being only half of de Sitter space. Despite these aesthetic 
objections, the real test of the steady state theory is whether its pre
dictions agree with observations or not. At the moment it seems that 
they do not, though the observations are not yet quite conclusive. 

de Sitter space is geodesically complete ; however, there are points 
in the space which cannot be joined to each other by any geodesic. 
This is in contrast to spaces with a positive definite metric, when 
geodesic completeness guarantees that any two points of a space can 
be joined by at least one geodesic. The half of de Sitter space which 
represents the steady state universe is not complete in the past (there 
are geodesics which are complete in the full space, and cross the 
boundary of the steady state region ; they are therefore incomplete in 
that region) .  

To  study infinity in de  Sitter space-time, we define a time coordinate 
t' by t' = 2 arc tan (exp cx-1 t) - !1T, 
where 

Then 

- !11' < t ' < 111. 
ds2 = cx2 cosh2 (cx-1t' ) .  ds2, 

( 5 . 8 )  

where d&2 is given by (5 . 7 )  on identifying r' = X· Thus the de  Sitter 
space is conformal to that part of the Einstein static universe defined 
by (5 .8 )  (see figure 1 7  (i) ) .  The Penrose diagram of de Sitter space is 
accordingly as in figure 1 7  (ii ) .  One half of this figure gives the Penrose 
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FIGURE 17  

( i )  De Sitter space-time is conformal to the region - !1T < t '  < !1T of the 
Einstein static universe. The steady state nniverse is conformal to the shaded 
region. 

(ii) The Penrose diagram of de Sitter space-time. 
( iii) The Penrose diagram of the steady state nniverse. 
In (ii) , ( iii) each point represents a two-sphere of area 21T sin2 x; null lines are 

at 45°. x = 0 and X = 1T are identified. 

diagram of the half of de Sitter space-time which constitutes the 
steady state universe (figure 1 7  (iii ) ) .  

One sees that de  Sitter space has, in  contrast to  Minkowski space, 
a spacelike infinity for timelike and null lines, both in the future and 
the past. This difference corresponds to the existence in de Sitter 
space-time of both particle and event horizons for geodesic families 
of observers. 

In de Sitter space, consider a family of particles whose histories are 
timelike geodesics ; these must originate at the spacelike infinity J
and end at the spacelike infinity J +. Let p be some event on the world-
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( i )  The particle horizon defined b y  a congruence o f  geodesic curves when 
past null infinity J- is spacelike . 

(ii) Lack of such a horizon if J - is null. 

l ine of a particle 0 in this family, i .e .  some time in its history (proper 
time measured along O's world-line) .  The past null cone ofp is the set 
of events in space-time which can be observed by 0 at that time . The 
world-lines of some other particles may intersect this null cone ; these 
particles are visible to 0. However, there can exist particles whose 
world-lines do not intersect this null cone, and so are not yet visible 
to 0. At a later time 0 can observe more particles,  but there still exist 
particles not visible to 0 at that time. We say that the division of 
particles into those seen by 0 at p and those not seen by 0 at p, is the 
particle horizon for the observer 0 at the event p ;  it represents the 
history of those particles lying at the limits of O's vision. Note that it 
is determined only when the world-lines of all the particles in the 
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family are known. If  some particlP lies on the horizon, then the event p 
is the event at which the particle 's creation light cone intersects O's 
world-line. In Minkowski space, on the other hand, all the other 
particles are visible at any event p on O's world-line if they move on 
timelike geodesics. As long as one considers only families of geodesic 
observers, one may think of the existence of the particle horizon as a 
consequence of past null infinity being spacelike (see figure 18 ) .  

All events outside the past null cone of  p are events which are not, 
and never have been, observable by 0 up to the time represented by 
the event p. There is a limit to O's world-line on J+. In de Sitter space
time, the past null cone of this point (obtained by a limiting process 
in the actual space-time, or directly from the conformal space-time) 
is a boundary between events which will at some time be observable 
by 0, and those that will never be observable by 0. We call this surface 
the future event horizon of the world-line . It is the boundary of the past 
of the world-line . In Minkowski space-time, on the other hand, the 
limiting null cone of any geodesic observer includes the whole of 
space-time, so there are no events which a geodesic observer will never 
be able to see . However if an observer moves with uniform acceleration 
his world-line may have a future event horizon. One may think of the 
existence of a future event horizon for a geodesic observer as being 
a consequence of J+ being spacelike (see figure 19 ) .  

Consider the event horizon for the observer 0 in  de Sitter space-time 
and suppose that at some proper time (event p) on his world-line, his 
light cone intersects the world-line of the particle Q. Then Q is always 
visible to 0 at times after p. However there is on Q's world-line an 
event r which lies on O's future event horizon ; 0 can never see later 
events on Q's world-line than r. Moreover an infinite proper time 
elapses on O's world-line from any given point till he observes r, but 
a finite proper time elapses along Q's world-line from any given event 
to r, which is a perfectly ordinary event on his world-line . Thus 0 sees 
a finite part of Q's history in an infinite time ; expressed more physi
cally, as 0 observes Q he sees a redshift which approaches infinity as 

0 observes points on Q's world-line which approach r .  Correspondingly, 
Q never sees beyond some point on O's world-line , and sees nearby 
points on O's world-line only with a very large redshift. 

At any point on O's world-line, the future null cone is the boundary 
of the set of events in space-time which 0 can influence at and after 
that time. To obtain the maximal set of events in space-time that 0 
could at any time influence, we take the future light cone of the limit 
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( i )  The future event horizon for a particle 0 which exists when futuro infinity 
J + is spacelike ; also the past event horizon which exists when past infinity .F
is spacelike. 

( ii )  If future infinity consists of a null J+ and i0, there is no future event 
horizon for a geodesic observer 0. However an accelerating observer R may 
have a future event horizon. 

point of O's world-line on past infinity f-; that is, we take the 
boundary of the future of the world-line (which can be regarded as 
O's creation light cone) .  This has a non-trivial existence for a geodesic 
observer only if the past infinity J- is spacelike (and is in fact then 
O's past event horizon) .  It is clear from the above discussion that 
in the steady state universe, which has a null past infinity for timelike 
and null geodesics and a spacelike future infinity, any fundamental 
observer has a future event horizon but no past particle horizon . 

One can obtain other spaces which are locally equivalent to the de 
Sitter space , by identifying points in de Sitter space. The simplest such 
identification is to identify antipodal points p, p' (see figure 1 6) on the 
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hyperboloid. The resulting space is not time orientable ; if time increases 
in the direction of the arrow at p, the antipodal identification implies 
it must increase in the direction of the arrow at p' ,  but one cannot 
continuously extend this identification of future and past half null 
cones over the whole hyperboloid. Calabi and Markus ( 1 962) have 
studied in detail the spaces resulting from such identifications ; they 
show in particular that an arbitrary point in the resulting space can 
be joined to any other point by a geodesic if and only if it is not time 
orientable . 

The space of constant curvature with R < 0 is called anti-de Sitter 
space .  It has the topology 81 x R3, and can be represented as the 
hyperboloid - u2 - v2 + x2 + y2 + z2 = 1 

in the flat five-dimensional space R5 with metric 

There are closed timelike lines in this space ; however it is not simply 
connected, and if one unwraps the circle 81 (to obtain its covering 
space R1) one obtains the universal covering space of anti-de Sitter 
space which does not contain any closed timelike lines. This has the 
topology of R4• We shall in future mean by ' anti-de Sitter space ' , this 
universal covering space . 

It can be represented by the metric 

ds2 = - dt2 + cos2 t {dx2 + sinh2 x(d02 + sin2 0 d<fa2)}. ( 5 . 9) 

This coordinate system covers only part of the space, and has apparent 
singularities at t = ± !11. The whole space can be covered by coordi
nates {t' ,  r, 0, <fa} for which the metric has the static form 

ds2 = - cosh 2 r dt'2 + dr2 + sinh 2 r( d02 + sin 2 0 d92) .  

In  this form, the space i s  covered by  the surfaces {t' = constant} which 
have non-geodesic normals. 

To study the structure at infinity, define the coordinate r' by 

r' = 2 arctan (exp r) - !11, 0 � r' < !11. 

Then one finds ds2 = cosh2 r ds2, where ds2 is given by (5 . 7 ) ; that is, 
the whole of anti-de Sitter space is conformal to the region 0 � · 

r' < !11 
of the Einstein static cylinder. The Penrose diagram is shown in 
figure 20; null and spacelike infinity can be thought of as a timelike 
surface in this case . This surface has the topology R1 x 82• 
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( i )  Universal anti-de Sitter space i s  conformal t o  one half o f  the Einstein 
static universe. While coordinates (t', r, 8, </> ) cover the whole space, coordinates 
(t, x, 0, </>) cover only one diamond-shaped region as shown . .  The geodesics 
orthogonal to the surfaces {t = constant} all converge at p and q, and then 
diverge out into similar diamond-shaped regions. 

(ii) The Penrose diagram of universal anti-de Sitter space. Infinity consists of 
the timelike surface J and the disjoint  points i+, i- . The projection of some 
timelike and null geodesics is shown. 



5 . 2] A N T I-D E S I T T E R  S P A C E-T I M E  1 33 

One cannot find a conformal transformation which makes timelike 
infinity finite without pinching off the Einstein static universe to a 
point (if a conformal transformation makes the time coordinate finite 
it also scales the space sections by an infinite factor) ,  so we represent 
timelike infinity by the disjoint points i+, i- .  

The lines {x ,  () , </> constant} are the geodesics orthogonal to the 
surfaces {t = constant} ; they all converge to points q (respectively, p) 
in the future (respectively, past) of the surface, and this convergence 
is the reason for the apparent (coordinate ) singularities in the original 
metric form. The region covered by these coordinates is the region 
between the surface t = 0 and the null surfaces on which these normals 
become degenerate . 

The space has two further interesting properties . First, as a con
sequence of the timelike infinity, there exists no Cauchy surface 
whatever in the space . While one can find families of spacelike 
surfaces (such as the surfaces {t' = constant}) which cover the space 
completely, each surface being a complete cross-section of the space-
time, one can find null geodesics which never intersect any given 
surface in the family. Given initial data on any such surface, one 
cannot predict beyond the Cauchy development of the surface ; thus 
from the surface {t = O}, one can predict only in the region covered by 
the coordinates t, x. () , <f>. Any attempt to predict beyond this region is 
prevented by fresh information coming in from the timelike infinity. 

Secondly, corresponding to the fact that the geodesic normals from 
t = 0 all converge at p and q, all the past timelike geodesics from p 
expand out (normal to the surfaces {t = constant}) and reconverge 
at q. In fact, all the timelike geodesics from any point in this space 
(to either the past or future) reconverge to an image point, diverging 
again from this image point to refocus at a second image point, and 
so on . The future timelike geodesics from p therefore never reach ..F, in 
contrast to the future null geodesics which go to ..F from p and form the 
boundary of the future of p. This separation of timelike and null 
geodesics results in the existence ofregions in the future of p ( i .e .  which 
can be reached from p by a future-directed timelike line) which cannot 
be reached from p by any geodesic. The set of points which can be 
reached by future-directed timelike lines from p is the set of points 
lying beyond the future null cone of p ;  the set of points which can be 
reached from p by future-directed timelike geodesics is the interior of 
the infinite chain of diamond-shaped regions similar to that covered 
by coordinates ( t ,  x. 0, </> ) .  One notes that all points in the Cauchy 
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development of  the surface t = 0 can be  reached from this surface by 
a unique geodesic normal to this surface, but that a general point 
outside this Cauchy development cannot be reached by any geodesic 
normal to the surface . 

5.3 Robertson-Walker spaces 

So far, we have not considered the relation of exact solutions to the 
physical universe . Following Einstein, we can ask : can one find space-
times which are exact solutions for some suitable form of matter and 
which give a good representation of the large scale properties of the 
observable universe ? If so, we can claim to have a reasonable ' cosmo
logical model ' or model of the physical universe . 

However we are not able to make cosmological models without some 
admixture of ideology. In the earliest cosmologies, man placed himself 
in a commanding position at the centre of the universe . Since the time 
of Copernicus we have been steadily demoted to a medium sized planet 
going round a medium sized star on the outer edge of a fairly average 
galaxy, which is itself simply one of a local group of galaxies . Indeed 
we are now so democratic that we would not claim that our position in 
space is specially distinguished in any way. We shall, following Bondi 
( 1 960) ,  call this assumption the Copernican principle .  

A reasonable interpretation of this somewhat vague principle is to 
understand it as implying that, when viewed on a suitable scale, the 
universe is approximately spatially homogeneous. 

By spatially homogeneous, we mean there is a group of isometries 
which acts freely on JI, and whose surfaces of transitivity are space
like three-surfaces ; in other words , any point on one of these surfaces 
is equivalent to any other point on the same surface . Of course, the 
universe is not exactly spatially homogeneous ; there are local irregu
larities, such as stars and galaxies. Nevertheless it might seem reason
able to suppose that the universe is spatially homogeneous on a large 
enough scale . 

While one can build mathematical models fulfilling this requirement 
of homogeneity (see next section) ,  it is difficult to test homogeneity 
directly by observation, as there is no simple way of measuring the 
separation between us and distant objects. This difficulty is eased by 
the fact that we can, in principle, fairly easily observe isotropies in 
extragalactic observations (i .e .  we can see if these observations are the 
same in different directions, or not) ,  and isotropies are closely con-
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nected with homogeneity. Those observational investigations of iso
tropy which have been carried out so far support the conclusion that 
the universe is approximately spherically symmetric about us. 

In particular, it has been shown that extragalactic radio sources are 
distributed approximately isotropically, and that the recently ob
served microwave background radiation, where it has been examined, 
is very highly isotropic (see chapter 10 for further discussion) .  

I t  i s  possible to write down and examine the metrics o f  all space
times which are spherically symmetric ; particular examples are the 
Schwarzschild and Reissner-Nordstrom solutions (see § 5 .5 ) ; however 
these are asymptotically flat spaces. In general , there can exist at most 
two points in a spherically symmetric space from which the space looks 
spherically symmetric .  While these may serve as models of space-time 
near a massive body, they can only be models of the universe consistent 
with the isotropy of our observations if we are located near a very 
special position . The exceptional cases are those in which the universe 
is isotropic about every point in space time ; so we shall interpret the 
Copernican principle as stating that the universe is approximately 
spherically symmetric about every point (since it is approximately 
spherically symmetric about us) .  

As  has been shown by Walker ( 1 944) ,  exact spherical symmetry 
about every point would imply that the universe is spatially homo
geneous and admits a six-parameter group ofisometries whose surfaces 
of transitivity are spacelike three-surfaces of constant curvature . Such 
a space is called a Robertson-Walker (or Friedmann) space (Minkowski 
space , de Sitter space and anti-de Sitter space are all special cases of 
the general Robertson-Walker spaces) .  Our conclusion, then, is that 
these spaces are a good approximation to the large scale geometry of 
space-time in the region that we can observe. 

In the Robertson-Walker spaces, one can choose coordinates so that 
the metric has the form 

ds2 = - dt2 + S2(t ) do-2, 

where do-2 is the metric of a three-space of constant curvature and is 
independent of time . The geometry of these three-spaces is qualita
tively different according to whether they are three-spaces of constant 
positive , negative or zero curvature ; by rescaling the function S, one 
can normalize this curvature K to be + 1 or - 1 in the first two cases . 
Then the metric do-2 can be written 
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where 

E X A C T  S O L U T I O N S  {sin x if K = + 1 ,  

f(X) = X if K = 0, 

sinh x if K = - 1 .  

[5 .3  

The coordinate x runs from 0 to  oo i f  K = 0 or - 1 ,  but runs from 0 to 
2TT if K = + 1 .  When K = 0 or - 1 ,  the three-spaces are diffeomorphic 
to R3 and so are ' infinite ' , but when K = + 1 they are diffeomorphic 
to a three-sphere 83 and so are compact ( '  closed ' or ' finite ' ) .  One could 
identify suitable points in these three-spaces to obtain other global 
topologies ; it is even possible to do this , in the case of negative or zero 
curvature , in such a way that the resulting three-space is compact 
(Lobell ( 1 93 1 ) ) .  However such a compact surface of constant negative 
curvature would have no continuous groups of isometries (Yano and 
Bochner ( 1 953 ) ) - although Killing vectors exist at each point, they 
would not determine any global Killing vector fields and the local 
groups of isometries they generate would not link up to form global 
groups . In the case of zero curvature, a compact space could only have 
a three-parameter group of isometries .  In neither case would the 
resulting space-time be isotropic . We shall not make such identifica
tions, as our original reason for considering these spaces was that they 
were isotropic (and so had a six-parameter group of isometries ) .  In 
fact the only identifications which would not result in an anisotropic 
space would be to identify antipodal points on 83 in the case of constant 
positive curvature . 

The symmetry of the Robertson-Walker solutions requires that the 
energy-momentum tensor has the form of a perfect fluid whose 
density µ and pressure p are functions of the time coordinate t only, 
and whose flow lines are the curves (x, 0, </J) constant (so the coordinates 
are comoving coordinates) .  This fluid can be thought of as a smoothed 
out approximation to the matter in the universe ; then the function 
8(t) represents the separation of neighbouring flow lines, that is , of 
' nearby ' galaxies . 

The equation of conservation of energy (3 .9 )  in these spaces takes 
the form 

ft = - 3(µ +p) 8 '/8. 

The Raychaudhuri equation (4 .26 )  takes the form 

4TT(µ + 3p) - A  = - 38"/8. 

(5 . 1 0 )  

(5 . 1 1 )  

The remaining field equation (which is essentially (2 .35 ) )  can be written 

38 ' 2 = 8TT(µS3)/8 + A82 - 3K. (5 . 1 2 )  
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Whenever s·  =!= 0, (5 . 1 2) can in fact be derived, with an arbitrary value 
of the constant K, as a first integral of (5 . 10 ) ,  ( 5 . 1 1 ) ;  so the real effect 
of this field equation is to identify the integration constant as the 
curvature of the metric dcr2 of the three-spaces {t = constant} . 

It is reasonable to assume (cf. the energy conditions, § 4 .3 )  that µ is 
positive and p is non-negative . (In fact, present estimates are 
10-29 gm cm-a � µ0 � 1 0-31 gm cm-3, µ0 � p0 ;:?; 0 ) .  Then, if A is zero, 
(5 . 1 1 ) shows that S cannot be constant ; in other words the field equa
tions then imply the universe is either expanding or contracting. 
Observations of other galaxies show, as first found by Slipher and 
Hubble, that they are moving away from us, and so indicate that the 
matter in the universe is expanding at the present time . Current 
observations give the value of S"/S at the present time as 

believed correct to within a factor 2. From this, (5 . 1 1 )  shows that if 
A is zero , S must have been zero a finite time t0 ago (that is, a time t0 
measured along the world-line of our galaxy) where 

t0 < H-1 � 1010 years. 

From (5 . 10 )  it follows that the density decreases as the universe 
expands, and conversely that the density was higher in the past, 
increasing without bound as S -+  0. This is therefore not merely a 
coordinate singularity (as for example , in anti-de Sitter universe 
expressed in coordinates ( 5. 9 ) )  ; the fact that the density is infinite there 
shows that some scalar defined by the curvature tensor is also infinite . 
It is this that makes the singularity so much worse than in the corre
sponding Newtonian situation ; in both cases the world-lines of all the 
particles intersect in a point and the density becomes infinite, but here 
space-time itself becomes singular at the point S = 0. We must there
fore exclude this point from the space-time manifold, as no known 
physical laws could be valid there . 

This singularity is the most striking feature of the Robertson
Walker solutions. It occurs in all models in which µ + 3p is positive 
and A is negative, zero, or with not too large a positive value . It would 
imply that the universe (or at least that part of which we can have any 
physical knowledge) had a beginning a finite time ago . However this 
result has here been deduced from the assumptions of exact spatial 
homogeneity and spherical symmetry. While these may be reasonable 
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approximations on a large enough scale at the present time, they 
certainly do not hold locally . One might think that, as one traced the 
evolution of the universe back in time, the local irregularities would 
grow and could prevent the occurrence of a singularity, causing the 
universe to ' bounce ' instead. Whether this could happen, and whether 
physically realistic solutions with inhomogeneities would contain 
singularities, is a central question of cosmology and constitutes the 
principal problem dealt with in this book ; it will turn out that there is 
good evidence to believe that the physical universe does in fact become 
singular in the past . 

If some suitable relation between p and µ is specified, (5 . 10 )  can be 
integrated to give µ as a function of S. In fact the pressure is very 
small at the present epoch. If one takes it and A to be zero, one finds 
from (5 . 1 0) 

where M is a constant, and (5 . 1 2) becomes 

3S' 2 - 6M/S = - 3K = E/M. (5 . 1 3 )  

The first equation expresses the conservation of mass when the pres
sure is zero, while the second (the Friedmann equation) is an energy 
conservation equation for a comoving volume of matter ; the constant 
E represents the sum of the kinetic and potential energies. If E is 
negative (i .e .  K is positive) ,  S will increase to some maximum value 
and then decrease to zero ; if E is positive or zero ( i .e .  K is negative or 
zero) ,  S will increase indefinitely. 

The explicit solutions of (5 . 1 3 )  have a simple form if given in terms 
of a rescaled time parameter r(t ) ,  defined by 

dr/dt = s-i (t ) ;  (5 . 14 )  
they take the form 

S = (E/3) (cosh r - 1 ) ,  t = (E  /3) (sinh T - T) , if K = - 1 ; 

s = T2, t = ira, if K = O ; 

S = ( - E/3) ( 1 - cos r) ,  t = ( - E/3) (r - sin r) ,  if K = 1 .  

(The case K = 0 is the Einstein-de Sitter universe ; clearly S oc ti . )  

If p i s  non-zero but positive, the qualitative behaviour is the same . 
In particular if p = (y - 1 )  µ where y is a constant, 1 � y � 2 ,  one finds 
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!11µ = M/S3r, and the solution of (5 . 1 2 )  near the singularity takes the 
form 

s oc t213Y . 

If A is negative, the solution expands from an initial singularity, 
reaches a maximum and then recollapses to a second singularity. If 
A is positive, then for K = 0 or - 1 the solution expands forever and 
asymptotically approaches the steady state model . For K = + 1 there 
are several possibilities . If A is greater than some value Acri& 
(Acrit = ( - E/3M)3/ (3M)2 if p = 0) the solution will start from an 
initial singularity and will expand forever asymptotically approaching 
the steady state model . If A = Acrit there is a static solution, the 
Einstein static universe . (The metric form (5 .  7 )  is that of the particular 
Einstein static solution for which µ +p = (411)-1 , A =  1 + 811p. ) There 
is also a, solution which starts from an initial singularity and asympto
tically approaches the Einstein universe, and one which starts from the 
Einstein universe in the infinite past and expands forever. If A < Acrlt 
there are two solutions - one expands from an initial singularity and 
then recollapses to a second singularity ; the other contracts from an 
infinite radius in the infinite past, reaches a minimum radius, and then 
re-expands. This and the universe asymptotic to the static universe 
in the infinite past are the only solutions which could represent the 
observed universe and which do not have a singularity. In these 
models , s· · is always positive, and this seems to be in conflict with 
observations of redshifts of distant galaxies (Sandage ( 1 96 1 ,  1 968 ) ) .  
Also, the maximum density in  these models would not have been very 
much larger than the present density. This would make it difficult to 
understand phenomena such as the microwave background radiation 
and the cosmic abundance of helium, which seem to point to a very 
hot dense phase in the history of the universe . 

Just as in the previous cases we have studied, one can find conformal 
mappings of the Robertson-Walker spaces into the Einstein static 
space. We use the coordinate T defined by (5 . 14) as a time coordinate ; 
then the metric takes the form 

(5 . 15 )  

In the case K = + 1 ,  this i s  already conformal to the Einstein static 
space (put r = t ' ,  x = r' to agree with the notation of (5 . 7 ) ) .  Thus these 
spaces are mapped into precisely that part of the Einstein static space 
determined by the values taken by T. When p = A = 0, r lies in the 
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range 0 < T < 'TT, so  the whole space i s  mapped into this region in  the 
Einstein static universe while its boundary is mapped into the three
spheres T = 0, T = 'TT . (If p > 0, it is mapped into a region for which 
T takes values 0 < T < a < 'TT , for some number a. ) In the case K = 0, 
the same coordinates represent the space as conformal to flat space 
(see ( 5 . 1 5 ) ) ,  so on using the conformal transformations of § 5 . 1 ,  one 
obtains these spaces mapped into some part of the diamond repre
senting Minkowski space-time in the Einstein static universe (see 
figure 14) ; the actual region is again determined by the values taken 
by T. When A =  0, 0 < T < oo, so this space (which is the Einstein
de Sitter space when p = 0) is conformal to the half t' > 0 of the 
diamond which represents Minkowski space-time . In the case K = - 1 ,  
one obtains the metric conformal to part of the region of the Einstein 
static space for which !'TT � t' + r' � - !'TT, !'TT � t' - r' � - !'TT, on 
defining 

t' = arc tan (tanh !(r + x) ) + arc ta,n (tanh !(r - x) ) ,  

r' 
= arc tan (tanh !(r + x) ) - arc tan (tanh !(r - x) ) .  

The part of this diamond-shaped region covered depends on the range 
of r; when A = 0, the space is mapped into the upper half. 

One thus obtain3 these spaces and their boundaries conformal to 
some (generally finite) region of the Einstein static space, see figure 
2 1  (i ) .  However there is an important difference from the previous 
cases : part of the boundary is not ' infinity ' in the sense it was previ
ously, but represents the singularity when S = 0 .  (The conformal 
factor can be thought of as making infinity finite by giving an infinite 
compression, but making the singular point S = 0 finite by an infinite 
expansion . )  In fact this makes little difference to the conformal dia
grams ; one can give the Penrose diagrams as before (see figures 21 (ii ) 
and 2 1  (iii ) ) .  In each case when p � 0 the singularity at t = 0 is repre
sented by a spacelike surface ; this corresponds to the existence of 
particle horizons (defined precisely as in § 5 . 2 )  in these spaces . Also 
when K = + 1 the future boundary is spacelike, implying the existence 
of event horizons for the fundamental observers ; when K = 0 or - 1  
and A = 0, future infinity is null and there are no future event horizons 
for the fundamental observers in these spaces . 

At this stage , one should examine the following question : anti
de Sitter space could be expressed in the Robertson-Walker form (5 .9 )  
and then expressed conformally as  part of the Einstein static universe .  
When one did so ,  one found that the Robertson-Walker coordinates 
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( i )  The Robertson-Walker spaces (p = A = 0) are conformal to the regions 
of the Einstein static universe shown, in the three cases K = + 1 ,  0 and - 1 . 

(ii )  Penrose diagram of a Robertson-Walker space with K = + 1 and 
p = A =  0 .  

( iii) Penrose diagram of  a Robertson-Walker space with K = 0 or  - 1  and 
p = A =  0.  

covered only a small part of the full space-time. That is to say, the 
space-time described by the Robertson-Walker coordinates could be 
extended. One should therefore show that the Robertson-Walker 
universes in which there is matter are in fact inextendible . This 
follows because one can show that ifµ > 0, p � 0 and X is any vector 
at any point q, the geodesic y(v) through q = y(O) in the direction of X 
is such that either 
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( i) y(v) can b e  extended to arbitrary positive values of v ,  or 
(ii) there is some v0 > 0 such that the scalar invariant 

(Ri1 - !Rgi1 ) (Rii - !Rgii ) = (µ + A)2 + 3(p - A)2 

is unbounded on y( [O, v0) ) . 

[5 . 3  

It  i s  now clear that the surfaces {t = constant} are Cauchy surfaces 
in these spaces. Further one sees that the singularity is universal in the 
following sense : all timelike and null geodesics through any point in 
the space approach it for some finite value of their affine parameter. 

5.4 Spatially homogeneous cosmological models 

We have seen that there are singularities in any Robertson-Walker 
space-time in which µ > 0, p � 0 and A is not too large . However one 
could not conclude from this that there would be singularities in 
more realistic world models which allow for the fact that the universe 
is not homogeneous and isotropic. In fact, one does not expect to find 
that the universe can be very accurately described by any attainable 
exact solution . However one can find exact solutions, less restricted 
than the Robertson-Walker solutions, which may be reasonable 
models of the universe, and see if singularities occur in them or not ; 
the fact that singularities do occur in such models gives an indication 
that the existence of singularities may be a general property of all 
space-times which can be regarded as reasonable models of the 
universe . 

A simple class of such solutions are those in which the requirement 
of isotropy is dropped but the requirement of spatial homogeneity (the 
strict Copernican principle) is retained (although the universe seems 
approximately isotropic at the present time, there might have been 
large anisotropies at an earlier epoch) .  Thus in these models one 
assumes there exists a group of isometries Gr whose orbits in some part 
of the model are spacelike hypersurfaces. (The orbit of a point p under 
the group Gr is the set of points into which p is moved by the action of 
all elements of the group. )  These models may be constructed locally by 
well-known methods ; see Heckmann and Schticking ( 1 962) for the 
case r = 3, and Kantowski and Sachs ( 1 967)  for the case r = 4 (if 
r > 4, the space-time is necessarily a Robertson-Walker space) .  

The simplest spatially homogeneous space-times are those in  which 
the group of isometries is Abelian ; the group is then of type I in the 
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classification given by Bianchi ( 1 9 1 8) ,  so we call these Bianchi I spaces . 
We discuss Bianchi I spaces in some detail , and then give a theorem 
showing singularities will occur in all non-empty spatially homogene
ous models in which the timelike convergence condition ( §  4 .3 )  is 
satisfied. 

Suppose the spatially homogeneous space-time has an Abelian 
isometry group ; for simplicity we assume A = 0 and that the matter 
content is a pressure-free perfect fluid ( ' dust ' ) .  Then there exist 
comoving coordinates (t, x, y, z ) such that the metric takes the form 

(5 . 1 6 )  
Defining the function S(t) by 83 = X YZ, the conservation equations 
show that the density of matter is given by !1Tµ = M/83, where M is 
a suitably chosen constant. The general solution of the field equations 
can be written 

x = S(ti/S)2 sln. a., y = S(ti/S)2 sln (a.+i11>, 

z = S(ti/S)2 sm <a.+t11>, 
where S is given by 83 = JMt(t + � ) ; 

� ( > 0) is a constant determining the magnitude of the anisotropy (we 
exclude the isotropic case (� = 0) ,  which is the Einstein-de Sitter 
universe ( § 5 .3 ) ) ,  and a( - l7T < a �  !7T) is a constant determining the 
direction in which the most rapid expansion takes place . The average 
rate of expansion is given by 

s· 2 t + �/2 . s = 3t t + � , 

the expansion in the x-direction is 

x· 2 t + �( 1 + 2 sin a)/2 
x = 3t t + �  

and the expansions Y"/ Y, Z"/Z in the y, z directions are given by 
similar expressions in which a is replaced by a +  .f1T, a +  !7T respectively. 

The solution expands from a highly anisotropic singular state at 
t = 0, reaching a nearly isotropic phase for large t when it is nearly the 
same as the Einstein-de Sitter universe . The average length S increases 
monotonically as t increases, its initial high rate of change (S oc t! for 
small t) decreasing steadily (S oc ti for large t ) .  Thus the universe 
evolves more rapidly, at early times, than its isotropic equivalent. 

Suppose one considers the time-reverse of the model, and follows 



1 44 E X A C T  S O L U T I O N S  [5.4 

this forward in time towards the singularity . The initially almost 
isotropic contraction will become very anisotropic at l ate times . For 
general values of a, i .e .  a =!= i-11', the term 1 + 2  sin (a + !11') will be nega
tive . Thus the collapse in the z-direction would halt, and, for suffi
ciently early times, be replaced by an expansion, the rate of expansion 
becoming indefinitely large for early enough times. In the x- and 
y-directions, on the other hand, the collapse would continue mono
tonically towards the singularity. Thus if one considers the forward 
direction of time in the original model, one has a ' cigar ' singularity : 
matter collapses in along the z-axis from infinity, halts, and then 
starts re-expanding, while in the x- and y-directions the matter 
expands monotonically at all times. If one could receive signals from 
early enough times in such a model, one would see a maximum red
shift in the z-direction, at earlier times matter in this direction being 
observed with progressively smaller redshifts and then with in
definitely increasing blue-shifts . 

The behaviour in the exceptional case a =  i-11' is rather different. In 
this case, the terms 1 + 2 sin (a + f7T) and 1 + 2 sin (a + !7T) both vanish. 
Thus the expansions in the axis directions are 

x· 2 t +  3"2:./2 r z·  
x 3 t  t + "2:.  , y z 

If one follows the time-reversed model, the rate of collapse in the 
y- and z-directions slows asymptotically down to zero, while the rate 
of collapse in the x-direction increases indefinitely . In the original 
model , one has a '  pancake ' singularity : matter expands monotonically 
in all directions, starting from an indefinitely high expansion rate in 
the x-direction but from zero expansion rates in the y- and z-directions . 
Indefinitely high redshifts would be seen in the x-direction, but there 
would be limiting redshifts in the y- and z-directions . 

Further examination shows that in the general ( ' cigar ' ) case, there 
is a particle horizon in every direction despite the anisotropic expan
sion. However in the exceptional ( ' pancake ' ) case, no horizon occurs 
in the x-direction ; in fact the particles that can be seen by an observer 
at the origin at time t0 are characterized by coordinate values (x, y, z )  
lying within the infinite cylinder 

x2 + y2 < µ2 

where 
2 { (9M )t (9M )t} p = 3M 2 (to + �)  

- 2 �  · 
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While we have here considered these models for vanishing pressure 
and A term only, properties of these spaces with more realistic matter 
contents can easily be obtained ; for example if one has either a perfect 
fluid with p = (y - 1 ) µ , y a constant ( 1  < y < 2) ,  or a mixture of 
a photon gas and matter with pressure p � !µ, the behaviour near the 
singularity is the same as in the dust case . 

An interesting consequence of the non-existence of a particle 
horizon in the x-direction in the exceptional ( ' pancake ' )  case, is that 
one can extend the solution continuously across the singularity . We 
shall show this explicitly in the case of the dust solution. 

The metric takes the form (5 . 1 6 )  where now 

X(t) = t(JMt(t + :E} }-t, Y(t) = Z(t) = (JMt(t + :E) )i . (5 . 1 7 )  

We now choose new coordinates 7 ,  71 which satisfy the equations 

tanh ( 2x/9M:E) = 71/7, exp ( 
9
� f � ;(t)) = 72 - 712• 

One then finds that the space with metric (5 . 1 6 ) ,  (5 . 1 7 )  is given in the 
new coordinates by 

ds2 = A 2(t) ( - d72 + d1J2} + B2(t) ( dy2 + dz2) (5 . 1 8 )  
where 

A (t)  = exp ( - t�:E) . (JM(t + :E} }-t, B(t) = (JM(t + :E) )i , (5 . 1 9 ) 

the whole space (for t > 0) being mapped into the region "//" defined by 
7 > 0, 72 - 1]2 > 0. The function t(7, 1J } is now defined implicitly as the 
solution of the equation 

2(t + :E) 
72 - 1]2 = JMt2 exp � (5 . 20) 

for which t > 0.  The (7, 1/)  plane is given in conformally fiat coordinates . 
The region "//" in this plane, bounded by the surface t = 0, is shown in 
figure 22 .  In this diagram, the world-lines of the particles are straight 
lines diverging from the origin. 

The functions A (t} , B(t) are continuous as t -+  0 from above. One can 
therefore extend the solution continuously to the whole (7, 71 )  plane 
by specifying that (5 . 1 9 ) holds everywhere, (5 .20) holds inside "//" , and 
that 

t(7, 71 ) = 0  

holds outside "//" . Then (5 . 18 )  is a 0° metric which is a solution of the 
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FIGURE 22. Dust-filled Bianchi I space with a pancake singularity. 
( i )  The (7, 1/) plane ; null lines are at ± 45°. 

[5.4 

(ii )  A half-section of the space in (7 ,  1J,  y)  coordinates (the z-coordinate is 
suppressed) ,  showing the past light cone of the point p = (70 , 0, 0 ) .  There is a 
particle horizon in the y-direction but not in the x- ( i .e .  7J) direction. 

field equations equivalent to (5 . 1 6) ,  (5 . 1 7 )  inside "Y, and is a flat 
space-time outside "Y. However the solution is not 01 across the 
boundary of "Y, and in fact the density of matter becomes infinite on 
this boundary (as S -+ 0 there) .  Since the first derivatives are not 
square integrable, the Einstein field equations cannot be interpreted 
on the boundary even in a distributional sense (see § 8 .4 ) .  While the 
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extension onto the boundary is unique, it is in no way unique beyond 
the boundary. We have carried out the extension in the case of dust ; 
a similar extension could be carried out if one had a mixture of matter 
and radiation. 

Let us now return to considering general non-empty spatially homo
geneous models. The existence of a singularity in these models will 
follow directly from Raychaudhuri's equation if the motion of the 
matter is geodesic and without rotation (as must be the case, for 
example, if the world-lines are orthogonal to the surfaces of homo
geneity) and the timelike convergence condition is satisfied ; however 
there exist such spaces in which the matter accelerates and rotates, 
and either of these factors could possibly prevent the existence of a 
singularity. The following result, which is an improved version of a 
theorem of Hawking and Ellis ( 1 965) ,  shows that in fact neither 
acceleration nor rotation can prevent the existence of singularities in 
these models . 

Theorem 

(1, g) cannot be timelike geodesically complete if: 
( 1 )  RabKaKb > 0 for all timelike and null vectors K (this is true 

if the energy-momentum tensor is type I ( § 4 .3 )  and µ +pi > 0, 
µ +  � Pi - 41TA > O) ; 

i 
( 2 )  there exist equations of motion for the matter fields such that 

the Cauchy problem has a unique solution (see chapter 7 ) ;  
( 3 )  the Cauchy data on some spacelike three-surface JI' i s  invariant 

under a group of diffeomorphisms of JI' which is transitive on JI'. 

Since the intrinsic geometry of JI' is invariant under a transitive 
group of diffeomorphisms, these are isometries and JI' is complete, 
i . e .  cannot have any boundary. It can be shown (see § 6 .5 )  that if there 
is a non-spacelike curve which intersects JI' more than once, then there 
exists a covering manifold .,/; of 1 in which each connected component 
of the image of JI' will not intersect any non-spacelike curve more than 
once. We shall assume that .,/; is timelike geodesically complete, and 
show that this is inconsistent with conditions ( 1 ) , ( 2 )  and (3 ) .  

Let Ji' be a connected component of the image of JI' in  JI. By (3) ,  
the Cauchy data on :ft is homogeneous . Therefore by condition (2 ) ,  
the Cauchy development of any region of  Ji' i s  isometric to  the Cauchy 
development of any other similar region of £ . This implies that the 
surfaces {s = constant} are homogeneous if they lie within the Cauchy 

, 
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development of .ft, where s is the distance from .ft measured along 
the geodesic ·normals to .ff. These surfaces must lie either entirely 
within or entirely outside the Cauchy development of it, as otherwise 
there would be equivalent regions in .ft which had inequivalent 
Cauchy evolutions . The surfaces {s = constant} will lie in the Cauchy 
development of it as long as they remain spacelike , because the 
boundary of the Cauchy development of it (if it exists) must be null 
( § 6 .5 ) .  

The geodesics orthogonal to .ft will be orthogonal to the surfaces 
{s = constant} , as a vector representing the separation of points equal 
distances along neighbouring geodesics will remain orthogonal to the 
geodesics if it is so initially. As in § 4 . 1 ,  one can represent the spatial 
separation of neighbouring geodesics orthogonal to it by a matrix A 

A 

which is the unit matrix on .Yt. By homogeneity, it will be constant on 
the surfaces {s = constant} while these lie in the Cauchy development 

A A 

of .Yt. While A is non-degenerate, the map from ;ff to a surface 
{s = constant} defined by the normal geodesics will be of rank three 
and so the surfaces will be spacelike three-surfaces contained within 
the Cauchy development of it. The expansion 

() = (det A)-1 d (det A)/ds 

of these geodesics obeys Raychaudhuri 's equation (4 .26)  with the 
vorticity and acceleration zero . By condition ( 1  ) , Rab va Vb is positive 
for all timelike vectors va. Thus () will become infinite and A will be 
degenerate for some finite positive or negative value s0 of s. The map 
from .ft to the surface s =  s0 can have at most rank two ; there will 
therefore be at least one vector field Z on it such that AZ = 0. The 
integral curves of this vector field are curves in it which are mapped by 
the geodesic normals to one point in the surface s = s0 . Thus this 
surface will be at most two-dimensional . As the geodesics lie in the 
Cauchy development of it for l s l < l s0 I , the surface s = s0 will lie in 
the Cauchy development or on the boundary of the Cauchy develop
ment of :if. By condition ( 1 ) , the energy-momentum tensor has a 
unique timelike eigenvector at each point. These eigenvectors will 
form a 01 timelike vector field whose integral curves may be thought 
of as representing the flow lines of the matter. As the surface s = s0 lies 
in the Cauchy development of :if or on its boundary, all the flow lines 
that pass through it must intersect it. But then as it is homogeneous, 
all the flow lines that pass through .ft must pass through s = s0 . Thus 
the flow lines define a diffeomorphism between it and the surface 
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s = 80. This i s  impossible , as .ft is three-dimensional and 8 = 8 0  is 
two-dimensional . D 

In fact, if all the flow lines were to pass through a two-dimensional 
surface, one would expect the matter density to become infinite . We 
have now seen that a large scale rotation or acceleration cannot, by 
itself, prevent the occurrence of singularities in a universe model 
obeying the strict Copernican principle . In later theorems we shall see 
that irregularities are in general also unable to prevent the occurrence 
of singularities in world models . 

5.5 The Schwarzschild and Reissner-Nordstrom solutions 

While the spatially homogeneous solutions may be good models for the 
large scale distribution of matter in the universe , they are inadequate 
for describing, for example , the local geometry of space-time in the 
solar system. One can describe this geometry to a good approximation 
by the Schwarzschild solution , which represents the spherically sym
metric empty space-time outside a spherically symmetric massive 
body.  In fact, all the experiments which have so far been carried out 
to test the difference between the General Theory of Relativity and 
Newtonian theory are based on predictions by this solution . 

The metric can be given in the form 

d82 = - ( 1 -
2�) dt2 + ( 1 -

2�r1 
dr2 + r2(d02 + sin2 o d92) ,  (5 . 2 1 )  

where r > 2m . It can b e  seen that this space-time is static, i . e .  8/ot is 
a timelike Killing vector which is a gradient, and is spherically sym
metric, i . e .  is invariant under the group of isometrics S0(3 )  operating 
on the spacelike two-spheres {t, r constant} (cf. appendix B ) .  The 
coordinate r in this metric form is intrinsically defined by the require
ment that 4rrr2 is the area of these surfaces of transitivity . The solution 
is asymptotically flat as the metric has the form gab = 1/ab + 0( 1 /r) for 
large r.  Comparison with Newtonian theory (cf. § 3 .4 )  shows that m 
should be regarded as the gravitational mass, as measured from 
infinity, of the body producing the field . It should be emphasized that 
this solution is unique : if any solution of the vacuum field equations 
is spherically symmetric ,  it is locally isometric to the Schwarzschild 
solution (although it may of course look totally different if it is given 
in some other coordinate system ; see appendix B and Bergmann , 
Cahen and Komar ( 1 965) ) .  

6 II L S  
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Normally one would regard the Schwarzschild metric for r greater 
than some value r0 > 2m as being the solution outside some spherical 
body, the metric inside the body (r < r0) having a different form 
determined by the energy-momentum tensor of the matter in the 
body. However it is interesting to see what happens when the metric 
is regarded as an empty space solution for all values of r. 

The metric is then singular when r = 0 and when r = 2m (there are 
also the trivial singularities of polar coordinates when () = 0 and 
() = 7T) .  One must therefore cut r = 0 and r = 2m out of the manifold 
defined by the coordinates (t, r, 0, </J) , since in § 3 . 1 we took space-time 
to be represented by a manifold with a Lorentz metric. Cutting out the 
surface r = 2m divides the manifold into two disconnected components 
for which 0 < r < 2m and 2m < r < oo. Since we took the space-time 
manifold to be connected, we must consider only one of these com
ponents and the obvious one to choose is the one for r > 2m, which 
represents the external field . One must then ask whether this manifold 
JI with the Schwarzschild metric g is extendible, i . e .  whether there 
is a larger manifold .L' into which .,({ can be imbedded and a suitably 
differentiable Lorentz metric g' on .L' which coincides with g on the 
image of .L. The obvious place where .,({ might be extended is where 
r tends to 2m. A calculation shows that although the metric is singular 
at r = 2m in the Schwarzschild coordinates (t, r, 0, <fa ) ,  no scalar poly
nomials of the curvature tensor and the metric diverge as r-+  2m. This 
suggests that the singularity at r = 2m is not a real physical singularity, 
but rather one which is a result of a bad choice of coordinates. 

To confirm this, and to show that (.L, g) can be extended, define f dr r* = 1 _ 2m/r = r + 2m log (r - 2m) .  

Then v = t + r* 

is an advanced null coordinate, and 

w = t - r* 

is a retarded null coordinate . Using coordinates (v, r, (), <fa )  the metric 
takes the Eddington-Finkelstein form g' given by 

ds2 = - (  1 - 2;n) dv2 + 2dv dr + r2(d02 + sin2 0 d<fi2) .  (5 .22 )  

The manifold .,({ is the region 2m < r < oo, but the metric (5 .22 )  i s  
non-singular and indeed analytic on the larger manifold .L' for which 
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0 < r < oo .  The region of (vlt' , g ' )  for which 0 < r < 2m i s  in fact 
isometric to the region of the Schwarzschild metric for which 
0 < r < 2m. Thus by using different coordinates, i . e .  by taking a 
different manifold, we have extended the Schwarzschild metric so that 
it is no longer singular at r = 2m. In the manifold .,I(' the surface 
r = 2m is a null surface, as can be seen from the Finkelstein diagram 
(figure 23 ) .  This is a section (fJ, <P constant) of the space-time ; each 
point represents a two-sphere of area 47Tr2• Some null cones and radial 
null geodesics are indicated on this diagram . Surfaces {t = constant} 
are indicated ; one sees that t becomes infinite on the surface r = 2m. 

This representation of the Schwarzschild solution has the odd 
feature that it is not time symmetric .  One might expect this from the 
cross term (dv dr) in (5 . 22 ) ; it is qualitatively clear from the Finkelstein 
diagram . The most obvious asymmetry is that the surface r = �m acts 
as a one-way membrane, letting future-directed timelike and null 
curves cross only from the outside (r > 2m) to the inside (r < 2m ) .  Any 
past-directed timelike or null curve in the outside region cannot cross 
into the inside region . No past-directed timelike or null curve within 
r = 2m can approach r = 0. However any future-directed timelike or 
null curve which crosses the surface r = 2m approaches r = 0 within 
a finite affine distance . As r -+  0, the scalar Rabcd Rabcd diverges as m2/r6 • 
Therefore r = 0 is a real singularity ; the pair (.,/(' , g' )  cannot be 
extended in a 02 manner or in fact even in a 0° manner across r = 0 .  

I f  one uses the coordinate w instead o f  v,  the metric takes the form 
g" given by 

ds2 = - ( 1 - 2�) dw2 - 2 dw dr + r2(dfJ2 + sin2 fJ dcp2) .  

This is analytic on the manifold .,I(" defined by the coordinates 
(w, r, fJ, </J) for 0 < r < oo. Again the manifold ..,/( is the region 
2m < r < oo and the new region 0 < r < 2m is isometric to the region 
0 < r < 2m of the Schwarzschild metric,  but the isometry reverses 
the direction of time. In the manifold .,I(" , the surface r = 2m is again 
a null surface which acts as a one-way membrane . However this time 
it acts in the other direction of time, letting only past-directed time
like or null curves cross from the outside (r > 2m) to the inside 
(r < 2m) .  

One can in fact make both extensions (vlt' , g' )  and (vlt" , g" )  simul
taneously ; that is to say, there is a still larger manifold vlt* with 
metric g* into which both (vlt' , g' )  and (vlt" , g")  can be isometrically 
imbedded, so that they coincide on the region r > 2m which is 

6-2 
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FIGURE 23 .  Section (8 ,  </J) constant of the Schwarzschild solution . 
( i )  Apparent singularity at r = 2m when coordinates (t ,  r) are used. 
( ii) Finkelstein diagram obtained by using coordinates (v ,  r) ( lines at 45° are 

lines of constant v) .  Surface r = 2m is a null surface on which t = oo .  
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isometric to (1, g) .  A construction of this larger manifold has been 
given by Kruskal ( 1 960) .  To obtain it, consider (1, g) in the coordi
nates (v, w, 0, </> ) ; then the metric takes the form 

ds2 = - ( 1 - 2�) dv dw + r2(d02 + sin2 0 d<f>2) ,  

where r is  determined by 
! (v - w) = r +  2m log (r - 2m) .  

This presents the two-space (0, </> constant) i n  null conformally flat 
coordinates, as the space with metric ds2 = - dv dw is flat. The most 
general coordinate transformation which leaves this two-space 
expressed in such conformally flat double null coordinates is v' = v' (v) ,  
w' = w'(w) where v' and w' are arbitrary 01 functions . The resulting 
metric is 

ds2 = - ( 1 - 2m) dv dw dv' dw' + r2(d02 + sin2 0 d"'2) . r dv' dw' 'I' 

To reduce this to a form corresponding to that obtained earlier for 
Minkowski space-time, define 

x' = i(v' - w' ) ,  t '  = !(v' + w' ) .  
The metric takes the final form 

ds2 = F2(t' , x' ) ( - dt'2 + dx'2)  + r2(t ' ,  x' ) (d02 + sin2 0 d</>2 ) .  ( 5 .23 )  
The choice of  the functions v' ,  w' determines the precise form of  the 

metric .  Kruskal's choice was v' = exp (v/4m) ,  w' = - exp ( - w/4m ) .  
Then r i s  determined implicitly b y  the equation 

(t ' ) 2 - (x' )2 = - (r - 2m) exp (r/2m) (5 . 24) 
and F is given by 

F2 = exp ( - r/2m) . 1 6m2/r. ( 5 . 25 )  
On the manifold 1* defined by the coordinates ( t ' ,  x' ,  0, </> )  for 

(t' ) 2 - (x' )2 < 2m, the functions r and F (defined by (5 .24) ,  (5 .25 ) )  are 
positive and analytic .  Defining the metric g* by (5 .23 ) ,  the region I of 
(1*, g* )  defined by x' > i t ' I is isometric to (1, g) ,  the region of the 
Schwarzschild solution for which r > 2m. The region defined by 
x' > - t' (regions I and II in figure 24) is isometric to the advanced 
Finkelstein extension (1' , g ' ) .  Similarly the region defined by x' > t' 
(regions I and II' in figure 24) is isometric to the retarded Finkelstein 
extension (1", g" ) .  There is also a region I ' ,  defined by x' < - i t' I , 
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FIGURE 24.  The maximal analytic Schwarzschild extension. The 0, </> coordinates 
are suppressed ; null lines are at ± 45° . Surfaces {r = constant} are homogeneous. 

( i )  The Kruskal diagram, showing asymptotically flat regions I and I' and 
regions II, 11' for which r < 2m. 

( ii )  Penrose diagram, showing conformal infinity as well as the two 
singularities. 

which turns out to be again isometric with the exterior Schwarzschild 
solution (vii, g) .  This can be regarded as another asymptotically flat 
universe on the other side of the Schwarzschild ' throat ' .  (Consider the 
section t = 0. The two-spheres {r = constant} behave as in Euclidean 
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space, for large r ;  however for small r ,  they have an area which 
decreases to t he minimum value 1 67Tm 2 and then increases again , as the 
two spheres expand into the other asymptotically flat three-space . )  
The regions I '  and II are isometric with the advanced Finkelstein 
extension of region I ' ,  and similarly I' and II' are isometric with the 
retarded Finkelstein extension of I ' ,  as can be seen from figure 24. 
There are no timelike or null curves which go from region I to region I ' .  
All future-directed timelike or  null curves which cross the part of  the 
surface r = 2m represented here by t' = lx' I approach the singularity 
at t' = ( 2m + (x' )2 )l ,  where r = 0. Similarly past-directed timelike or 
null curves which cross t' = - lx' I approach another singularity at 
t' = - (2m + (x' )2 )l ,  where again r = 0 .  

The Kruskal extension ( . .  It*, g*)  i s  the unique analytic and locally 
inextendible extension of the Schwarzschild solution. One can con
struct the Penrose diagram of the Kruskal extension by defining new 
advanced and retarded null coordinates 

v" = arc tan (v' ( 2m)-! ) ,  w" = arc tan (w' ( 2m)-l )  
fo r  - 71'  < v" + w" < 1T and - !71' < v" < !71', - i1T < w "  < i1T 
(see figure 24 (ii ) ) .  This may be compared with the Penrose diagram 
for Minkowski space (figure 1 5  ( ii ) ) .  One now has future , past and null 
infinities for each of the asymptotically flat regions I and I ' .  Unlike 
Minkowski space, the conformal metric is continuous but not differ
entiable at the points i0• 

If we consider the future light cone of any point outside r = 2m, 
the radial outwards geodesic reaches infinity but the inwards one 
reaches the future singularity ; if the point lies inside r = 2m, both these 
geodesics hit the singularity, and the entire future of the point is ended 
by the singularity. Thus the singularity may be avoided by any 
particle outside r = 2m (so it is not ' universal ' as it is in the Robertson
Walker spaces) ,  but once a particle has fallen inside r = 2m (in region 
II) it cannot evade the singularity. This fact will turn out to be closely 
related to the following property : each point inside region II represents 
a two-sphere that is a closed trapped surface . This means the following : 
consider any two-sphere p (represented by a point in figure 24)  and 
two two-spheres q, s formed by photons emitted radially outwards, 
inwards at one instant from p. The area of q (which is given by 47Tr2) 
will be greater than the area of p, but the area of s will be less than the 
area of p, if all three lie in a region r > 2m. However if they all lie in 
the region II where r < 2m, then the areas of both q and s will be less 
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than the area of p ( in the figure , r decreases as one moves from the 
bottom to the top of region II ) .  In that case, we say that p is a closed 
trapped surface. Each point inside region II' represents a time
reversed closed trapped surface (the existence of trapped surfaces is 
a necessary consequence of the fact that the surfaces r = constant are 
spacelike) ,  and correspondingly all particles in region II' must have 
come from the singularity in the past . We shall see in chapter 8 that 
the existence of the singularities is closely related to the existence of 
the closed trapped surfaces. 

The Reissner-Nordstrom solution represents the space-time outside 
a spherically symmetric charged body carrying an electric charge (but 
with no spin or magnetic dipole , so this is not a good representation of 
the field outside an electron) .  The energy-momentum tensor is there
fore that of the electromagnetic field in the space-time which results 

· from the charge on the body. It is the unique spherically symmetric 
asymptotically flat solution of the Einstein-Maxwell equations and is 
locally rather similar to the Schwarzschild solution ; there exist 
coordinates in which the metric has the form ( 2m e2) ( 2m e2)-1 ds2 = - 1 - - + - dt2 + 1 - - + - dr2 + r2(dfJ2 + sin2 0 d1j)2 ) ,  r r2 r r2 

( 5 . 26 ) 

where m represents the gravitational mass and e the electric charge of 
the body. This asymptotically flat solution would normally be 
regarded as the solution outside the body only, the interior being 
filled in with some other suitable metric ; but it is again interesting to 
see what happens if we regard it as a solution for all r. 

If e2 > m2 the metric is non-singular everywhere except for the 
irremovable singularity at r = O ;  this may be thought of as the point 
charge which produces the field . If e2 � m2, the metric also has singu
larities at r+ and r_, where r± = m ± (m2 - e2)! ; it is regular in the 
regions defined by oo > r > r + • r + > r > r _ and r _ > r > 0 (if e2 = m2, 
only the first and third regions exist ) .  As in the Schwarzschild case , 
these singularities may be removed by introducing suitable coordinates 
and extending the manifold to obtain a maximal analytic extension 
(Graves and Brill ( 1 960), Carter ( 1 966) ) .  The major differences that 
arise are due to the existence of two zeros in the factor in front of dt2, 
rather than one as in the Schwarzschild case . In particular this implies 
that the first and third regions are both static ,  whereas the second 
region (when it exists) is spatially homogeneous but is not static. 



5 .5] T H E  R E I S S N E R-N O R D S T R O M S O L U T I O N  1 57 

To obtain the maximally extended manifold, we proceed in steps 
analogous to those in the Schwarzschild case . Defining the coordinate 
r* by 

then for r > r+ , 
r 2 r 2 r* = r +  ( 
+ 

) log (r - r+) - ( - ) log (r - r_) r+ - r- r+ - r-
if e2 < m2, 

2 r* = r + m log ( (r - m)2) --- if e2 = m2, r - m 
2 ( r - m ) r* = r + m log (r2 - 2mr + e2)  + -2--2 arc tan -2--2 if e2 > m2• e - m  e - m  

Defining advanced and retarded coordinates v,  w by 
v = t + r* ,  w = t - r* 

the metric (5 .26 )  takes the double null form 

In the case e2 < m2, define new coordinates v" ,  w" by 

(5 .27 )  

v" = arc tan (exp ( r �� :- v) ) , w" = arc tan ( - exp ( -:�; r - w) ) . 
Then the metric (5 .27) takes the form 

ds2 = 1 - - + - 64 + cosec 2v" cosec 2w" dv" dw" ( 2m e2) r 4 

r r2 (r+ - r_)2 
+ r2 (d02 + sin2 0 d1f>2) ,  ( 5 . 28 )  

where r i s  defined implicitly by 

tan v" tan w" = - exp ( (r��:-) r) (r - r+)l (r - r_)-"!2 

and a = (r + )-2 (r _)2 . The maximal extension is obtained by taking 
( 5 . 28 )  as the metric g* ,  and .,.II* as the maximal manifold on which 
this metric is 02. 

The Penrose diagram of the maximal extension is shown in figure 25. 
There are an infinite number of asymptotically flat regions, where 
r > r + ;  these are denoted by I. These are connected by intermediate 
regions II and III where r + > r > r _ and r _ > r > 0 respectively. 
There is still an irremovable singularity at r = 0 in each region III, 
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FIGURE 25.  Penrose diagram for the maximally extended Reissner-Nordstrom 
solution (e2 < m2). An infinite chain of asymptotically flat regions I 
(oo  > r > r+) are connected by regions II (r+ > r > r_) and III (r_ > r > O) ; 
each region III is bounded by a timelike singularity at r = 0. 

but unlike in the Schwarzschild solution, it is timelike and so can be 
avoided by a future-directed timelike curve from a region I which 
crosses r = r +· Such a curve can pass through regions II, III and II 
and re-emerge into another asymptotically flat region I. This raises 
the intriguing possibility that one might be able to travel to other 
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universes by passing through the ' wormholes ' made by charges. 
Unfortunately it seems that one would not be able to get back again 
to our universe to report what one had seen on the other side . 

The metric (5 .28 )  is analytic everywhere except at r = r _ where it is 
at least C2•  One can define different coordinates v111 and w'" by 

v"' = arc tan (exp ( �+ :r:; v) ) , 
w"' = arc tan ( - exp (-;:r�:-w)) , 

where n is an integer � 2 (r + ) 2  (r _)-2 •  In these coordinates, the metric 
is analytic everywhere except at r = r + where it is at least C2• The 
coordinates v111 and w'" are analytic functions of v" and w" for r =I= r + 
or r _. Thus the manifold Jt* can be covered by an analytic atlas, con
sisting of local coordinate neighbourhoods defined by coordinates v" 
and w" for r =I= r _ and by local coordinate neighbourhoods defined by 
v'" and w111 for r =I= r + · The metric is analytic in this atlas . 

The case e2 = m2 can be extended similarly ; the case e2 > m2 is 
already inextendible in the original coordinates. The Penrose diagrams 
of these two cases are given in figure 26 .  

In all these cases, the singularity is  timelike. This means that, unlike 
in the Schwarzschild solution, timelike and null curves can always 
avoid hitting the singularities . In fact the singularities appear to be 
repulsive : no timelike geodesic hits them, though non-geodesic time
like curves and radial null geodesics can. The spaces are thus timelike 
(though not null ) geodesically complete . The timelike character of the 
singularity also means that there are no Cauchy surfaces in these 
spaces : given any spacelike surface, one can find timelike or null curves 
which run into the singularity and do not cross the surface. For 
example in the case e2 < m2, one can find a spacelike surface [/' which 
crosses two asymptotically flat regions I (figure 25) .  This is a Cauchy 
surface for the two regions I and the two neighbouring regions II .  
However in the neighbouring regions III to the future there are past
directed inextendible timelike and null curves which approach the 
singularity and do not cross the surface r = r _. This surface is there
fore said to be the future Cauchy horizon for !/'. The continuation of 
the solution beyond r = r _ is not determined by the Cauchy data on [/'. 
The continuation we have given is the only locally inextendible 
analytic one, but there will be other non-analytic C"' continuations 
which satisfy the Einstein-Maxwell equations . 
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FIGURE 26.  Penrose diagrams for the maximally extended Reissner-N ordstrom 
solutions : 

(i )  e2 = m2, (ii) e2 > m2• 

In the first case there is an infinite chain or regions I ( oo > r > m) connected by 
regions III (m > r > 0) .  The pointsp are not part of the singularity at r = 0, but 
are really exceptional points at infinity. 
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A particle P crossing the surface r = r + would appear to have 
infinite redshift to an observer 0 whose world-line remains outside 
r = r + and approaches the future infinity i+ (figure 25 ) . In the region II 
between r = r + and r = r _ , the surfaces of constant r are spacelike and 
so each point of the figure represents a two-sphere which is a closed 
trapped surface. An observer P crossing the surface r = r _ would see 
the whole of the history of one of the asymptotically flat regions I in 
a finite time. Objects in this region would therefore appear to be 
infinitely blue-shifted as they approached i+. This suggests that the 
surface r = r _ would be unstable against small perturbations in the 
initial data on the spacelike surface !/, and that such perturbations 
would in general lead to singularities on r = r _ . 

5.6 The Kerr solution 

In general, astronomical bodies are rotating and so one would not 
expect the solution outside them to be exactly spherically symmetric .  
The Kerr solutions are the only known family of exact solutions which 
could represent the stationary axisymmetric asymptotically flat field 
outside a rotating massive object. They will be the exterior solutions 
only for massive rotating bodies with a particular combination of 
multipole moments ; bodies with different combinations of moments 
will have other exterior solutions . The Kerr solutions do however 
appear to be the only possible exterior solutions for black holes (see 
§ 9 . 2  and § 9 .3 ) .  

The solutions can be  given in  Boyer and Lindquist coordinates 
(r, e, </>, t) in which the metric takes the form 

ds2 = p2 (�2 + d(}2) + (r2 + a2) sin2 (} d<j>2 - dt2 + 2;r (a sin2 (} d<f> - dt)2, 
(5 .29 )  

where p2(r, {}) = r2 + a2 cos2 (} and �(r) = r2 - 2mr + a2• 
m and a are constants, m representing the mass and ma the angular 
momentum as measured from infinity (Boyer and Price ( 1 965) ) ;  when 
a = 0 the solution reduces to the Schwarzschild solution. This metric 
form is clearly invariant under simultaneous inversion of t and </>,  
i .e .  under the transformation t-+ - t, </>-+ - <J> ,  although it  is not 
invariant under inversion of t alone (except when a = 0) . This is what 
one would expect, since time inversion of a rotating object produces 
an object rotating in the opposite direction . 
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When a2 > m2, d > 0 and the above metric is singular only when 

r = 0. The singularity at r = 0 is not in fact a point but a ring, as can 
be seen by transforming to Kerr-Schild coordinates (x, y, z, t) ,  where 

x + iy = (r + ia) sin O exp i f (d</> + ad-1 dr) ,  

z = r cos O, t = f (dt + (r2 + a2) d-I dr) - r. 

In these coordinates, the metric takes the form 
ds2 = dx2 + dy2 + dz2 - dt2 

+ + - + t , 2mr3 (r(x dx + y dy) - a(x dy- y dx) z dz d-) 2 
r4 + a2z2 r2 + a2 r ( 5 . 30) 

where r is determined implicitly, up to a sign, in terms of x, y, z by 
r4 - (x2 + y2 + z2 - a2) r2 - a2z2 = 0. 

For r 9= 0, the surfaces {r = constant} are confocal ellipsoids in the 
(x, y, z) plane, which degenerate for r = 0 to the disc z2 + y2 � a2, z = 0.  
The ring x2 + y2 = a2, z = 0 which is  the boundary of this disc, is a real 
curvature singularity as the scalar polynomial RabcdRabcd diverges 
there . However no scalar polynomial diverges on the disc except at 
the boundary ring . The function r can in fact be analytically con
tinued from positive to negative values through the interior of the disc 
x2 + y2 < a2, z = 0,  to obtain a maximal analytic extension of the 
solution. 

To do this, one attaches another plane defined by coordinates 
(x' , y' , z' )  where a point on the top side of the disc x2 + y2 < a2, z = 0 
in the (x, y, z) plane is identified with a point with the same x and y 
coordinates on the bottom side of the corresponding disc in the 
(x' , y' , z' ) plane . Similarly a point on the bottom side of the disc in the 
(x, y, z) plane is identified with a point on the top side of the disc in the 
(x' , y' , z' ) plane (see figure 27 ) .  The metric ( 5 . 30) extends in the obvious 
way to this larger manifold .  The metric on the (x' , y' , z' ) region is again 
of the form (5 .29 ) ,  but with negative rather than positive values of r .  
At large negative values of  r, the space i s  again asymptotically flat 
but this time w,ith negative mass. For small negative values of r near 
the ring singularity, the vector o/o<f> is timelike, so the circles 
(t = constant, r = constant, 0 = constant) are closed timelike curves . 
These closed timelike curves can be deformed to pass through any 
point of the extended space (Carter ( 1 968a) ) .  This solution is geodesic-
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ally incomplete at the ring singularity. However the only timelike and 
null geodesics which reach this singularity are those in the equatorial 
plane on the positive r side (Carter ( 1 968a) ) .  

Symmetry 
axis 8 = constant 
8 = 0  

Symmetry 
axis 
8 = 0  

FIGURE 2 7 .  The maximal extension of the Kerr solution for a2 > m2 is obtained 
by identifying the top of the disc x2 + y2 < a2, z = 0 in the {x, y, z) plane with the 
bottom of the corresponding disc in the (x', y', z') plane, and vice versa. The 
figure shows the sections y = 0, y' = 0 of these planes. On circling twice round 
the singularity at x2 + y2 = a2, z = 0 one passes from the (x, y, z) plane to the 
(x', y', z') plane {where r is negative) and back to the {x, y, z) plane {where r is 
positive) .  

The extension i n  the case a 2  < m2 i s  rather more complicated, 
because of the existence of the two values r + = m + ( m 2 - a2)t and 
r_ = m - (m2 - a2)t of r at which �lr) vanishes . These surfaces are 
similar to the surfaces r = r +• r = r _ in the Reissner-Nordstrom 
solution. To extend the metric across these surfaces, one transforms 
to the Kerr coordinates (r, (), </J+, u+) ,  where 

du+ = dt + (r2 + a2) �-1 dr, d</J+ = d</J + a�-1 dr. 
The metric then takes the form 

ds2 = p2 d()2 _ 2a sin2 () dr d</J+ + 2 dr du+ 
+ p-2[ ( r2 + a2)2 - �a2 sin 2 0] sin 2 () d</J + 2 
- 4ap-2mr sin2 0 d</J+ du+ - ( 1 - 2mrp-2) du+ 2 (5 . 3 1 )  

6-2 
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on the manifold defined by these coordinates, and is analytic at 
r = r + and r = r _. One again has a singularity at r = 0, which has the 
same ring form and geodesic structure as that described above . The 
metric can also be extended on the manifold defined by the coordinates 
(r, 0, <f>_, u_) where 

du_ = dt - (r2 + a2) il-1 dr, d<f>_ = d<f> - ail-1 dr ; 

the metric again takes the form (5 . 3 1 ) ,  with <f>+, U+ replaced by - <f>_, 
- u_. The maximal analytic extension can be built up by a combination 
of these extensions, as in the Reissner-Nordstrom case (Boyer and 
Lindquist ( 1 967 ) ,  Carter ( 1 968a) ) .  The global structure is very similar 
to that of the Reissner-Nordstrom solution except that one can now 
continue through the ring to negative values of r. Figure 28 ( i )  shows 
the conformal structure of the solution along the symmetry axis . The 
regions I represent the asymptotically flat regions in which r > r + · 
The regions II (r _ < r < r +)  contain closed trapped surfaces . The 
regions III ( - oo < r < r _) contain the ring singularity ; there are 
closed timelike curves through every point in a region III, but no 
causality violation occurs in the other two regions .  

In the case a2  = m2, r + and r _ coincide and there is  no region II .  The 
maximal extension is similar to that of the Reissner-Nordstrom solu
tion when e2 = m2• The conformal structure along the symmetry axis 
in this case is shown in figure 28 ( ii ) .  

The Kerr solutions, being stationary and axisymmetric,  have a 
two-parameter group of isometries .  This group is necessarily Abelian 
(Carter ( 1 970) ) .  There are thus two independent Killing vector fields 
which commute . There is a unique linear combination Ka of these 
Killing vector fields which is timelike at arbitrarily large positive and 
negative values of r .  There is another unique linear combination K_a 
of the Killing vector fields which is zero on the axis of symmetry. The 
orbits of the Killing vector Ka define the stationary frame, that is, an 
object moving along one of these orbits appears to be stationary with 
respect to infinity. The orbits of the Killing vector Ka are closed curves, 
and correspond to the rotational symmetry of the solution. 

In the Schwarzschild and Reissner-Nordstrom solutions, the 
Killing vector Ka which is timelike at large values of r is timelike 
everywhere in the region I, becoming null on the surfaces r = 2m and 
r = r + respectively. These surfaces are null . This means that a particle 
which crosses one of these surfaces in the future direction cannot 
return again to the same region. They are the boundary of the region 
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r = r+ r = 1·+ 

( i )  ( i i )  

FIGURE 28 .  The conformal structure of the Kerr solutions along the axis of 
symmetry, ( i )  in the case 0 < a2 < m2 , ( ii )  in the case a2 = m2 • The dotted lines 
are lines of constant r; the regions I, II and III in case ( i )  are divided by r = r + 
and r = r _, and the regions I and III in case ( ii )  by r = m. In both cases, the 
structure of the space near the ring singularity is as in figure 27 .  

of the solution from which particles can escape to the infinity f+ of 
a particular region I, and are called the event horizons of that f +. (They 
are in fact the event horizon in the sense of § 5 .2  for an observer moving 
on any of the orbits of the Killing vector Ka in the region I . )  

I n  the Kerr solution o n  the other hand, the Killing vector Ka is 
spacelike in a region outside r = r +• called the ergosphere (figure 29) .  
The outer boundary of this region is  the surface r = m + (m2 - a2 cos2 O)l 
on which Ka is null . This is called the stationary limit surface since it is 
the boundary of the region in which particles travelling on a timelike 
curve can travel on an orbit of the Killing vector Ka, and so remain at 
rest with respect to infinity. The stationary limit surface is a timelike 
surface except at the two points on the axis, where it is null (at these 
points it coincides with the surface r = r + ) · Where it is timelike it can 
be crossed by particles in either the ingoing or the outgoing direction. 
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FIGURE 29 .  In the Kerr solution with 0 < a2 < m2, the ergosphere lies between 
the stationary limit surface and the horizon at r = r +· Particles can escape to 
infinity from region I (outside the event horizon r = r +l but not from region II 
(between r = r + and r = r _ ) and region III (r  < r _; this region contains the 
ring singularity) .  
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Stationary 
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FIGURE 30. The equatorial plane of a Kerr solution with m2 > a2• The circles 
represent the position a short time later of flashes of light emitted by the points 
represented by heavy dots. 
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It is therefore not the event horizon for J+. In fact the event horizon 
is the surface r = r+ = m + (m2 - a2)l. Figure 30 shows why this is. It 
shows the equatorial plane () = i1T ; each point in this figure represents 
an orbit of the Killing vector Ka, i .e .  it is stationary with respect 
to .f +. The small circles represent the position a short time later of 
flashes of light emitted from the points represented by the heavy 
black dots. Outside the stationary limit the Killing vector Ka is time
like and so lies within the light cone . This means that the point in 
figure 30 representing the orbit of emission lies within the wavefront 
of the light. 

On the stationary limit surface, Ka is null and so the point repre
senting the orbit of emission lies on the wavefront. However the wave
front lies partly within and partly outside the stationary limit surface ; 
it is therefore possible for a particle travelling along a timelike curve 
to escape to infinity from this surface . In the ergosphere between the 
stationary limit surface and r = r +> the Killing vector Ka is spacelike 
and so the point representing the orbit of emission lies outside the 
wavefront . In this region it is impossible for a particle moving on a 
timelike or null curve to travel along an orbit of the Killing vector and 
so to remain at rest with respect to infinity. However the positions of 
the wavefronts are such that the particles can still escape across the 
stationary limit surface and so out to infinity. On the surface r = r + •  

the Killing vector Ka is still spacelike . However the wavefront corre
sponding to a point on this surface lies entirely within the surface. 
This means that a particle travelling on a timelike curve from a point 
on or inside the surface cannot get outside the surface and so cannot 
get out to infinity. The surface r = r + is therefore the event horizon 
for .f + and is a null surface. 

Although the Killing vector Ka is spacelike in the ergosphere, the 
magnitude Ka Kb KraKb1 of the Killing bivector K1a/{b1 is negative every
where outside r = r +> except on the axis /{a = 0 where it vanishes . 
Therefore Ka and /{a span a timelike two-surface and so at each point 
outside r = r + off the axis there is a linear combination of Ka and /{a 
which is timelike . In a sense, therefore, the solution in the ergosphere 
is locally stationary, although it is not stationary with respect to 
infinity . In fact there is no one linear combination of Ka and /{a which 
is timelike everywhere outside r = r + · The magnitude of the Killing 
bivector vanishes on r = r +• and is positive just inside this surface . 
On r = r +• both Ka and /{a are spacelike but there is a linear combina
tion which is null everywhere on r = r+ (Carter ( 1 969 ) ) .  
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The behaviour of the ergosphere and the horizon we have discussed 
will play an important part in our discussion of black holes in § 9 . 2  
and § 9 . 3. 

Just as the Reissner-Nordstrom solution can be thought of as 
a charged version of the Schwarzschild solution, so there is a family of 
charged Kerr solutions (Carter ( 1 968a ) ) .  Their global properties are 
very similar to those of the uncharged Kerr solutions .  

5.7 Godel's universe 

In 1 949, Kurt Godel published a paper (Godel ( 1 949) )  which provided 
a considerable stimulus to investigation of exact solutions more com
plex than those examined so far. He gave an exact solution of 
Einstein 's field equations in which the matter takes the form of a 
pressure-free perfect fluid (Tab = pua ub where p is the matter density 
and ua the normalized four-velocity vector) .  The manifold is R4 and 
the metric can be given in the form 

ds2 = - dt2 + dx2 - ! exp (2 (.,/2)  wx) dy2 + dz2 - 2 exp ( (.,/2) wx) dt dy, 
where w > 0 is a constant ; the field equations are satisfied if u = o/ox0 

( i .e .  ua = �a
0) and 47Tp = w2 = - A. 

The constant w is in fact the magnitude of the vorticity of the flow 
vector ua . 

This space-time has a five-dimensional group of isometries which 
is transitive, i .e .  it is a completely homogeneous space-time. (An 
action of a group is transitive on .,II if it can map any point of .,II into 
any other point of j( . )  The metric is the direct sum of the metric g1 given by 

ds12 = - dt2 + dx2 - l exp (2 (.,/2)  wx) dy2 - 2 exp ( (.,/2)  wx) dt dy 
on the manifold .,/11 = R3 defined by the coordinates (t ,  x, y) ,  and the 
metric g2 given by ds22 = dz2 
on the manifold .,/12 = R1 defined by the coordinate z .  In order to 
describe the properties of the solution it is sufficient to consider only 
(.A'1 ,  g1 ) . 

Defining new coordinates (t' , r, <fa )  on .,/11 by 
exp ( (.,/2)  wx) = cosh 2r + cos <fa sinh 2r, 

wy exp ( (.j2) wx) = sin <fa sinh 2r, 
tan !(<fa + wt - (.,/2) t ' )  = exp ( - 2r) tan !<fa, 
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the metric �1 takes the form 
ds12 = 2w-2( - dt'2 + dr2 - (sinh4 r - sinh2 r) d1fa2 + 2(.J2) sinh2 r d<fa dt) ,  

where - oo < t < oo, 0 :::;; r < oo, and 0 :::;; <fa :::;; 21T, <fa = 0 being identified 
with <fa =  21T ; the flow vector in these coordinates is u = (w/ (.J2) )  o/ot ' .  
This form exhibits the rotational symmetry of the solution about the 
axis r = 0. By a different choice of coordinates the axis could be chosen 
to lie on any flow line of the matter. 

_Matter world-line 
(r, � constant )  

r = O  
(coord inate axis) 

Null cone 
Null cone 

r < log ( 1 + �'2 ) 
(closed spacelike 
curve) 

t' = 0 

Caustic on p's 
future null cone 

FIGURE 3 1 .  Godel's universe with the irrelevant coordinate z suppressed. The 
space is rotationally symmetric about any point ; the diagram represents cor
rectly the rotational symmetry about the axis r = 0, and the time invariance. 
The light eone opens out and tips over as r increases ( see line L) resulting in 
closed timelike curves . The diagram does not correctly represent the fact that 
all points are in fact equivalent. 

The behaviour of (..41, �1) is illustrated in figure 3 1 .  The light cones 
on the axis r = 0 contain the direction o/ot' (the vertical direction on 
the diagram) but not the horizontal directions o/or and o/o<fa. As one 
moves away from the axis, the light cones open out and tilt in the 
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ef>-direction so that at a radius r = log ( 1  + ,J2) ,  o/oif> is a null vector 
and the circle of this radius about the origin is a closed null curve . 
At greater values of r, o/oif> is a timelike vector and circles of constant 
r, t' are closed timelike curves. As (.Lv g1) has a four-dimensional 
group of isometries which is transitive, there are closed timelike curves 
through every point of (.A'v g1) ,  and hence through every point of the 
Godel solution (.A, g) .  

This suggests that the solution i s  not very physical . The existence 
of closed timelike curves in this solution implies that there are no 
imbedded three-dimensional surfaces without boundary in .A which 
are spacelike everywhere . For a closed timelike curve which crossed 
such a surface would cross it an odd number of times . This would mean 
that the curve could not be continuously deformed to zero, since a 
continuous deformation can change the number of crossings only by 
an even number. This would contradict the fact that .A is simply 
connected, being homeomorphic to R4• The existence of closed time
like lines also shows that there can be no cosmic time coordinate t in .A 
which increases along every future-directed timelike or null curve . 

The Godel solution is geodesically complete . The behaviour of the 
geodesics can be described in terms of the decomposition into (.Av g1) 
and (.L2, g2) .  Since the metric g2 of .L2 is flat, the component of the 
geodesic tangent vector in .L2 is constant, i .e .  the z-coordinate varies 
linearly with the affine parameter on the geodesic .  It is sufficient there
fore to describe the behaviour of geodesics in (.L1, g1) .  The null 
geodesics from a point p on the axis of coordinates (figure 3 1 )  diverge 
from the axis initially, reach a caustic at r = log ( 1  + (,J2 ) ) , and then 
reconverge to a point p' on the axis. The behaviour of timelike geo
desics is similar : they reach some maximum value of r less than 
log ( 1 + (,J2 ) )  and then reconverge to p' .  A point q at a radius r greater 
than log ( 1  + (,J2) )  can be joined to p by a timelike curve but not by 
a timelike or null geodesic .  

Further details of Godel 's solution can be found in Godel ( 1 949) ,  
Kundt ( 1 956) . 

5·8 Taub-NUT space 

In 1 95 1 ,  Taub discovered a spatially homogeneous empty space solu
tion of Einstein's equations with topology R x  83 and metric given by 

ds2 = - U-1 dt2 + ( 2l)2 U(d� + cos 0 def>)2 
+ (t2 + l2) (d02 + sin2 0 def>2) ,  (5 . 32 )  
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Here 0 ,  </J,  ifr are Euler coordinates on 83, so 0 � ifr � 477, 0 � () � 'TT, 

0 � <P � 277. This metric is singular at t = t± = m ± (m2 + l2)!, where 
U = 0. It can in fact be extended across these surfaces to give a space 
found by Newman, Tamburino and Unti ( 1 963) ,  but before discussing 
the extension we shall consider a simple two-dimensional example 
given by Misner ( 1 967)  which has many similar properties. 

This space has the topology 81 x R1 and the metric g given by 
ds2 = - t-1 dt2 + t difr2 

where 0 � ifr � 277. This metric is singular when t = 0.  However if one 
takes the manifold vii defined by ifr and by 0 < t < oo, (JI, g) can 
be extended by defining ifr' = ifr - log t .  The metric then takes the 
form g' given by 

This is analytic on the manifold vii' with topology 81 x R1 defined by 
ifr' and by - oo  < t < oo. The region t > 0 of (Jt' , g' )  is isometric with 
(vii, g) .  The behaviour of (vii' ,  g' )  is shown in figure 32 .  There are 
closed timelike lines in the region t < 0, but there are none when 
t > 0. One family of null geodesics is represented by the vertical lines 
in figure 32 ;  these cross the surface t = 0. The other family spiral 
round and round as they approach t = 0, but never actually cross this 
surface, and these geodesics have only finite affine length . Thus the 
extension (vii' ,  g' ) is not symmetric between the two families of null 
geodesics, although the original space (vii, g) was. However one can 
define another extension (vii" ,  g")  in which the behaviour of the two 
families of null geodesics is interchanged.  To do so define ifr" by 
ifr" = ifr + log t. The metric takes the form g" given by 

ds2 = - 2 difr" dt + t(difr")2• 

This is analytic on the manifold vii" with topology 81 x R1 defined 
by ifr" and - oo  < t < oo. The region t > 0 of (vii" ,  g") is isometric 
with (vii, g) . In a sense , what we have done by defining ifr" is to untwist 
the second family of null geodesics so that they become vertical lines, 
and can be continued beyond t = 0. However this twisting winds up 
the first family of null geodesics so that they spiral around and cannot 
be continued beyond t = 0. One has therefore two inequivalent locally 
inextendible analytic extensions of (vii, g} ,  both of which are geodesic-



1 72 E X A C T  S O L U T I O N S  [5. 8 

( i ) 

Surfaces u = constant 

1 

( i i )  

FIGURE 32.  Misner's two.dimensional example. 

Points in a surface 
{rr = constant} 
which are 
equivalent 
under G 

( i )  Extension of region I across the boundary t = 0 into II.  The vertical null 
geodesics are complete, but the twisted null geodesics are incomplete. 

(ii)  The universal covering space is two-dimensional Minkowski space. Under 
the discrete subgroup G of the Lorentz group, points s are equivalent ; similarly 
points r, q and t are equivalent . ( i )  is obtained by identifying equivalent points 
in regions I and II. 
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ally incomplete . The relation between these two extensions can be 
seen clearly by going to the covering space of (vii, g) .  

This i s  in  fact the region I of  two-dimensional Minkowski space 
(Ji, ij )  contained within the future null cone of a point p (figure 32 (ii ) ) .  
The isometries o f  (Ji, ij )  which leave p fixed form a one-dimensional 
group (the Lorentz group of ij )  whose orbits are the hyperbolae 
{u = constant} where O' = l2 - x2 and l, x are the usual Minkowski 
coordinates. The space (JI, g) is the quotient of (I, ij )  by the discrete 
subgroup G of the Lorentz group consisting of An (n integer) where 
A maps (l, x) to 

(l cosh 1T + x sinh 7T ,  x cosh 1T + l sinh TT) ,  

i .e .  one identifies the points 
(l cosh n1T + x sinh n1T, x cosh n1T + l sinh n1T ) 

for all integer values of n, and these correspond to the point 
t = !(l2 - x2) ,  ijf" = 2 arc tanh (x/l) in JI. 

The action of the isometry group G in the region I is properly dis
continuous. The action of a group H on a manifold JV is said to be 
properly discontinuous if: 

( 1 )  each point q EJV" has a neighbourhood O// such that A (O//) n oU = 0 
for each A E H  which is not the identity element, and 

( 2 )  if q, r E JV  are such that there is no A E H with Aq = r, then there 
are neighbourhoods 0// and O//' of q and r respectively such that there 
is no B E  H with B( 0//) n O//' =!= 0 . 

Condition ( 1 )  implies that the quotient JV/H is a manifold, and 
condition (2 )  implies that it is Hausdorff. Thus the quotient (I ,  ij )/G is 
the Hausdorff space (vii, g) .  The action of G is also properly discon
tinuous in the regions I + II (l > - x) .  Thus (I + II, ij )/G is also a 
Hausdorff space ; in fact it is (JI' , g' ) .  Similarly (I + III, ij )/G is the 
Hausdorff space (vii" ,  g") where I + III is the region l > x. From this 
it can be seen how it is that one family of null geodesics can be com
pleted in the extension (vii' , g') while the other family can be com
pleted in the extension ( . ...It" ,  g") .  This suggests that one might perform 
both extensions at the same time. However the action of the group on 
the region (I + II + III) (i .e .  l > - I x ! ) satisfies condition ( 1 )  but condi
tion ( 2 )  is not satisfied for points q on the boundary between I and II 
and points r on the boundary between I and III. Therefore the quotient 
(I + II + III, ij )/G is not Hausdorff although it is still a manifold. 
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This kind of non-Hausdorff behaviour is different from that in the 
example given in § 2 . 1 .  In that example , one could have continuous 
curves which bifurcate, one branch going into one region and another 
branch going into another region . Such behaviour of an observer's 
world-line would be very uncomfortable . However the manifold 
(I + II + III)/G does not have any such bifurcating curves ; curves in I 
can be extended into II or III but not into both simultaneously . Thus 
one might be prepared to relax the Hausdorff requirement on a space
time model to allow this sort of situation but not the sort in which one 
gets bifurcating curves.  Further work on non-Hausdorff space-times 
can be found in the papers of Hajicek ( 1 97 1 ) .  

Condition ( 1 )  is in fact satisfied by the action of G on .,Ii - {p} .  Thus 
the space (1 - {p}, Tj )/G is in some sense the maximal non-Hausdorff 
extension of (JI, g) .  However it is still not geodesically complete 
because there are geodesics which pass through the point p which has 
been left out. If p is included the action of the group does not satisfy 
condition ( 1 ) ,  and so the quotient .,Ii /G is not even a non-Hausdorff 
manifold. However consider the bundle of linear frames L(1 ), i . e .  the 
collection of all pairs (X, Y),  X, Y E Tq, of linearly independent vectors 
at all points q E1 . The action of an element A of the isometry group 
G on .,Ii induces an action A *  on L(1 ) which takes the frame (X, Y) 
at q to the frame (A * X, A *  Y) at A (q) . This action satisfies condi
tion ( 1 )  because even for (X, Y) E TP, A *  X =t= X and A *  Y =t= Y unless 
A = identity, and satisfies condition (2 )  even if X and Y lie on the null 
cone of p. Thus the quotient L(1 )/G is a Hausdorff manifold. It is 
a fibre bundle over the non-Hausdorff non-manifold .,Ii /G. One could 
in a sense regard it as the bundle of linear frames for this space . The 
fact that the bundle of frames can be well behaved even though the 
space is not, suggests that it is useful to look at singularities by using 
the bundle of linear frames. A general procedure for doing this will 
be given in § 8 . 3 .  

We shall now return to  the four-dimensional Taub space (JI, g) 
where JI is R1 x 83 and g is given by (5 .32) .  As JI is simply connected, 
one cannot take a covering space as we did in the two-dimensional 
example . However one can achieve a similar result by considering JI 
as a fibre bundle over 82 with fibre R1 x 81 ; the bundle projection 
'TT : .Jt � s2 is defined by (t , 1/f, O, <f>) � (O, <f> ) .  This is in fact the pro
duct with the t-axis of the Hopf fibering 83 � 82 (Steenrod ( 1 95 1 ) )  
which has fibre 81 • The space (JI, g) admits a four-dimensional group 
of isometries whose surfaces of transitivity are the three-spheres 
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{t = constant} . This group of isometries maps fibres of the bundle 
7T :  vlt � s2 into fibres, and so the pairs (§, g) are all isometric, where 
§ is a fibre (§ � RI x SI) and g is the metric induced on the fibre 
by the four-dimensional metric g on vlt. The fibre § can be regarded 
as the (t, l/f) plane, and the metric g on § is obtained from (5 .32)  by 
dropping the terms in dO and def> ; thus g is given by 

(5 .33)  

The tangent space Tq at the point q E vlt  can be decomposed into 
a vertical subspace Yq which is tangent to the fibre and is spanned by 
the vectors o/ot and o/oifr, and a horizontal subspace Hq which is 
spanned by the vectors o/oO and o/oef> - cos O o/oifr. Any vector X E �  
can be split into a part Xv lying in Yq and a part Xn lying in Hq. The 
metric g on Tq can then be expressed as 

(5 . 34) 

where gy = g and gH is the standard metric on the two-sphere given 
by ds2 = d02 + sin 2 0 def>2• Thus although the metric g is not the direct 
sum of gv and (t2 + l2) gy (because RI x S3 is not the direct product of 
RI x SI with S2) it can nevertheless be regarded as such a sum locally. 

The interesting part of the metric g is contained in gv and we shall 
therefore consider analytic extensions of the pair (§, gy) .  When com
bined with the metric gH of the two-sphere as in (5 . 34) ,  these give 
analytic extensions of (vlt, g) .  

The metric gy, given by (5 .33 ) ,  has singularities at  t = t± where 
U = 0. However if one takes the manifold §0 defined by ifr and by 
t_ < t < t+ , (§0, gv) can be extended by defining 

,frl ,fr 1 f dt 
'I' = 'I' + 

2l U(t) " 

The metric then takes the form gv' given by 

ds2 = 4l difr' (l U(t) difr' - dt ) .  

This is  analytic on the manifold §' with topology SI x R defined by 
ifr' and by - oo < t < oo. The region t_ < t < t+ of (§' , gv' )  is isometric 
with (§0, gy} .  There are no closed timelike curves in the region 
t_ < t < t+ but there are for t < t_ and for t > t+ . The behaviour is very 
much as for the space (vlt' , g ' )  we considered before, except that there 
are now two horizons (at t = t_ and t = t+ ) instead of the one horizon 
(at t = 0 ) .  One family of null geodesics crosses both horizons t = t_ and 
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t = t+ but the other family spirals round near these surfaces and is 
incomplete. 

As before, one can make another extension by defining the 
coordinate 

The metric then takes the form gv" given by 

ds2 = 4l dijf"(lU(t) dijf" + dt) 

which is analytic on the manifold .'F" defined by ifr" and by 
- co < t < co, and is again isometric to (.'F0, gv) on t_ < t < t+ . 

Once again one can show the relation between the different exten
sions by going to the covering space . The covering space of .'F0 is the 
manifold # 0 defined by the coordinates - co < ifr < co and by 
t_ < t < t+ . On # 0 the metric gv can be written in the double null form 

ds2 = 4l2 U(t) difr' difr", (5 . 35)  

where - co < ifr' < co, - co < ifr" < co. One can extend this in a manner 
similar to that used in the Reissner-Nordstrom solution . Define new 
coordinates (u+, V+) and (u_, v_) on .'F0 by 

u± = arc tan (exp ifr'/a± ) ,  v± = arc tan ( - (exp - ifr"/a± ) ) ,  

where 
t+ - t- t - t  

a+ = 
4l(mt + l2) 

and a_ = 
4nl(mt ; l2)

; 

n is some integer greater than (mt+ + l2)/ (mt_ + l2) . Then the metric gv 
obtained by applying this transformation to (5 . 35)  is analytic on the 
manifold # shown in figure 33, where the coordinates (u+, v+) are 
analytic coordinates except at t = t_ where they are at least C3, and the 
coordinates (u_, v_) are analytic coordinates except at t = t+ where 
they are at least 03• This is rather similar to the extension of the (t, r) 
plane of the Reissner-Nordstrom solution. 

The space (F, gv) has a one-dimensional group of isometries, the 
orbits of which are shown in figure 33 .  Near the points P+• p_ the 
action of this group is similar to that of the Lorentz group in two
dimensional Minkowski space (figure 32 (ii ) ) .  Let G be the discrete 
subgroup of the isometry group generated by a non-trivial element A 
of the isometry group. The space (�, gv) is the quotient of one of 
the regions (II+ , gv) by G. The space (.'F' , gv' )  is the quotient 
(I_ + II+ + III_, gv)/G, and (.'F", gv" )  is the quotient 

(I+ + II+ + III+, gv)/G. 
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t = -00 

IIL 

Homogeneous surfaces 
{t = constantJ ( timelike 
group orbits) 

· 

Homogeneous surfaces 
{t = constant} (spacelike 
group orbits) 

FIGURE 33.  Penrose diagram of the maximally extended covering space of a 
two-dimensional section of Taub--NUT space, showing orbits of the isometry 
group. Taub-NUT space and its extensions are obtained from part of this space 
by identification of points under a discrete subgroup of the isometry group. 

One would also obtain a Hausdorff manifold by taking the quotient of 
(I+ + II+ + L) : this corresponds to extending like (�' , gv' )  at the 
surface t = t+ but extending like (�", gv" )  at the surface t = t_ . By 
taking the quotient of the whole space .# minus the points P+ and p_ 
one obtains a non-Hausdorff manifold ; and taking the quotient of .# 

one obtains a non-Hausdorff non-manifold in a way analogous to that 
in the example above . As in that example, one can take the quotient 
of the bundle of linear frames over � and obtain a Hausdorff manifold. 

By combining these extensions of the (t, ifr) plane with the coordi
nates (0, </>) one can obtain corresponding extensions of the four
dimensional space (.,/{, g ) . In particular, the two extensions (�' , gv' )  
and (�", gv" )  give rise t<;> two different locally inextendible analytic 
extensions of (.,/{, g ) ,  and both are geodesically incomplete . 

Consider one of these extensions, say (.,/{', g ' ) .  The three-spheres 
which are the surfaces of transitivity of the isometry group are space-
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like surfaces in  the region t_  < t < t+ and are timelike for t > t+ and 
t < t_. The two surfaces of transitivity t = t_ and t = t+ are null 
surfaces and they form the Cauchy horizon of any spacelike surface 
contained in the region t_ < t < t+, because there are timelike curves 
in the regions t < t_ and t > t+ which do not cross t = t_ and t = t+ 
respectively (for example, closed timelike curves exist in the regions 
t < t_ and t > t+) · The region of space-time t_ � t � t+ is compact yet 
there are timelike and null geodesics which remain within it and are 
incomplete . This kind of behaviour will be considered further in 
chapter 8 .  

Further details of  Taub-NUT space may be found in Misner and 
Taub ( 1 969) ,  Misner ( 1 963) .  

5. 9 Further exact solutions 

We have examined in this chapter a number of exact solutions and 
used them to give examples of the various global properties which we 
shall wish to discuss more generally later. Although a large number of 
exact solutions are known locally, relatively few have been examined 
globally. To complete this chapter, we shall mention briefly two other 
interesting families of exact solutions whose global properties are 
known. 

The first of these are the plane wave solutions of the empty space 
field equations. These are homeomorphic to R4, and global coordinates 
(y ,  z, u, v ) ,  which range from - oo  to + oo, can be chosen so that the 
metric takes the form 

ds2 = 2 du dv + dy2 +dz2 + H (y , z , u ) du2, 

where H = (y2 - z2)/(u) - 2yzg(u) ; 

f(u) and g(u) are arbitrary 02 functions determining the amplitude 
and polarization of the wave. These spaces are invariant under a five
parameter group of isometries multiply transitive on the null surfaces 
{u = constant} ; a special subclass, in which/(u) = cos 2u, g(u) = sin 2u, 
admit an extra Killing vector field, and are homogeneous space-times 
invariant under a six-parameter group of isometries. These spaces 
do not contain any closed timelike or null curves ; however they 
admit no Cauchy surfaces (Penrose ( 1 965a) ) .  Local properties 
of these spaces have been studied in detail by Bondi, Pirani and 
Robinson ( 1 959) ,  and global properties by Penrose ( 1 965a) ; Oszvath 
and Schiicking ( 1 962) have studied global properties of the higher 
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symmetry space . The way in  which two impulsive plane waves scatter 
each other and give rise to a singularity has been studied by Khan and 
Penrose ( 1 97 1 ) .  

The other is the five-parameter family o f  exact solutions of the 
source-free Einstein-Maxwell equations found by Carter ( 1968b )  (see 
also Demianski and Newman ( 1 966) ) .  These include the Schwarzschild, 
Reissner-Nordstrom, Kerr, charged Kerr, Taub-NUT, de Sitter and 
anti-de Sitter solutions as special cases . A description of some of their 
global properties is given in Carter ( 1 96 7 ) .  Some cases cl osely related 
to this family have been examined by Ehlers and Kundt ( 1 962 )  and 
Kinnersley and Wal ker ( 1 97 0) .  



6 
Causal structure 

By postulate (a) of § 3 . 2 ,  a signal can be sent between two points of JI 
only if they can be joined by a non-spacelike curve. In this chapter we 
shall investigate further the properties of such causal relationships, 
establishing a number of results which will be used in chapter 8 to 
prove the existence of singularities . 

By § 3 . 2 , the study of causal relationships is equivalent to that of the 
conformal geometry of ,,II, i . e .  of the set of all metrics g conformal to 
the physical metric g (g = n2g, where n is a non-zero, Qr function ) .  
Under such a conformal transformation of the metric a geodesic curve 
will not, in general , remain a geodesic curve unless it is null , and even 
in this case an affine parameter along the curve will not remain an 
affine parameter. Thus in most cases geodesic completeness ( i .e .  
whether all geodesics can be extended to arbitrary values of their 
affine parameters ) will depend on the particular conformal factor and 
so will not (except in certain special cases described in § 6 .4 )  be a 
property of the conformal geometry . In fact Clarke ( 1 97 1 )  and Siefert 
( 1 968)  have shown that, provided a physically reasonable causal ity 
condition holds, any Lorentz metric is conformal to one in which all 
null geodesics and all future-directed timelike geodesics are complete . 
Geodesic completeness will be discussed further in chapter 8 where it 
forms the basis of a definition of a singularity. 

§ 6 . 1 deals with the question of the orientability of timelike and 
spacelike bases . In § 6 . 2 basic causal relations are defined and the 
definition of a non-spacelike curve is extended from piecewise dif
ferentiable to continuous . The properties of the boundary of the future 
of a set are derived in § 6 . 3 .  In § 6 .4  a number of conditions which rule 
out violations or near violations of causality are discussed. The closely 
related concepts of Cauchy developments and global hyperbolicity 
are introduced in § 6 .5  and § 6 .6 ,  and are used in § 6. 7 to prove the 
existence of non-spacelike geodesics of maximum length between 
certain pairs of points . 

In § 6 . 8  we describe the construction of Geroch, Kronheimer and 
[ 1 80] 
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Penrose for attaching a causal boundary to space-time . A particular 
example of such a boundary is provided by a class of asymptotically 
flat space-times which are studied in § 6 .9 .  

6 . 1  Orientability 

In our neighbourhood of space-time there is a well-defined arrow of 
time given by the direction of increase of entropy in quasi-isolated 
thermodynamic systems .  It is not quite clear what the relationship 
is between this arrow and the other arrows defined by the expansion 
of the universe and by the direction of electrodynamic radiation ; the 
reader who is interested will find further discussion in Gold ( 1 967) ,  
Hogarth ( 1 962 ) ,  Hoyle and Narlikar ( 1 963) and Ellis and Sciama 
( 1 972 ) .  Physically it would seem reasonable to suppose that there is 
a local thermodynamic arrow of time defined continuously at every 
point of space-time , but we shall only require that it should be possibie 
to define continuously a division of non-spacelike vectors into two 
classes, which we arbitrarily label future- and past-directed . If this is 
the case , we shall say that space-time is time-orientable . In some 
space-times it is not possible to define such a time-orientation . An 
example is the space-time obtained from de Sitter space ( §  5 . 2 )  in 
wh ich poin t s a re  ident ified by reflect ion t hrough the origin of t he five
d imensional  i m bedd ing  space . l n  t h i s  space th ere are c losed curvc>s , 
non-homotopic to zero , on going round which the orientation of time 
is reversed .  However this difficulty could clearly be resolved by simply 
unidentifying the points again, and in fact this is always the case : if 
a space-time (Jt, g) is not time-orientable , then it has a double 
covering space (Jl, g) which is. Jl may be defined as the set of al l  
pairs (p, a) where p E Jt and a is one of the two orientations of time 
at p.  Then with the natural structure and the projection 1T :  (p , a) -7-p,  
Jl is a double covering of  Jt. If  Ji consists of  two disconnected com
ponents then (Jt, g) is time-orientable . If Jl is connected, then (Jt, g )  
i s  not time-orientable but (Ji, g) is .  In the following sections we shall 
assume that either (Jt, g) is time-orientable or we are dealing with the 
t ime-orientable covering space . If one can prove the existence of 
singularities in this space-time then there must also be singularities 
in (�It, g ) .  

One may also ask whether space-time i s  space-orientable , that is 
whether it is possible to divide bases of three spacelike axes into right 
handed and left handed bases in a continuous manner. Geroch ( 1 967 a) 

7 H LS 
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has pointed out that there is an interesting connection between this 
and time-orientability which follows because some experiments 
on elementary particles are not invariant under charge or parity 
reversals, either singly or together. On the other hand there are theo
retical reasons for believing that all interactions are invariant under 
the combination of charge, parity and time reversals (CPT theorem ; 
see Streater and Wightman ( 1 964) ) .  If one believes that the non
invariance of weak interactions under charge and parity reversals is 
not merely a local effect but exists at all points of space-time, then it 
follows that going round any closed curve either the sign of a charge, 
the orientation of a basis of spacelike axes, and the orientation of time 
must all reverse, or none of them does. (The ordinary Maxwell theory, 
in which the electromagnetic field has a definite sign at every point, 
does not allow the sign of a charge to change on going around a closed 
curve non-homotopic to zero unless the orientation of time changes. 
However one could have a theory in which the field was double-valued 
and changed sign on going round such a curve. This theory would agree 
with all existing experimental evidence . )  In particular if one assumes 
that space-time is time-orientable then it must also be space
orientable . (This in fact follows on using the experimental evidence 
alone without appealing to the CPT theorem . )  

Geroch ( 1 968c)  has also shown that if it is possible to define two
component spinor fields at every point then space-time must be 
parallelizable , that is it must be possible to introduce a continuous 
system of bases of the tangent space at every point . (Further conse 
quences of the existence of spinor structures are obtained in Geroch 
( 1 97 0 a ) . ) 

6.2 Causal curves 

Taking space-time to be time-orientable as explained in the previous 
section, one can divide the non-spacelike vectors at each point into 
future- and past-directed. For sets [/ and Oii, the chronological future 
J+(f/, Oii) off/ relative to Oii can then be defined as the set of all points 
in Oii which can be reached from [/ by a future-directed timelike curve 
in Oii . (By a curve we mean always one of non-zero extent, not just a 
single point . Thus J+ (.Y,  o//) may not contain Y'. ) /+(Y', Jt) will be 
denoted by J+(.Y) ,  and is an open set , since if p E JI  can be reached by 
a future-directed ti melike curve from .</' then there is a small neigh
bourhood of p which can be so reached . 
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This definition has a dual in which ' future ' is replaced by ' past ' ,  
and the + by a - ; to  avoid repetition, we  shall regard dual definitions 
and results as self-evident. 

The causal future of [17 relative to O/t is denoted by J+([/7, 0//) ;  it is 
defined as the union of [17 n O/t with the set of all points in O/t which can 
be reached from [17 by a future-directed non-spacelike curve in 0//. We 
saw in § 4 .5  that a non-spacelike curve between two points which was 
not a null geodesic curve could be deformed into a timelike curve 
between the two points . Thus if O/t is an open set and p, q, r E 0//, then 

either q E J+(p, o/t) ,  r E J+(q, o/t)} 
or q E J+(p, o/t) ,  r EJ+(q, o/t) 

imply r E I+(p, o/t) .  

From this i t  follows that J+(p, o/t) = J+(p, o/t) and j+(p, o/t) = j+(p, o/t) 
where for any set %, f denotes the closure of f and 

.Yi= f n (.L - f) 
denotes the boundary of f. 

Chronological 
future J+(.9') 

Null geodesics 
through 9' generating 
past of j+(.9' ) 

Null geodesic in j+(Y') 
which does not intersect 
J+(.9') and has no past 
endpoint in .A 

Point removed 
from .A 

FIGURE 34. When a point has been removed from Minkowski space, the causal 
future J+(f/') of a closed set [/' is not necessarily closed. Further parts of the 
boundary of the future of [/' may be generated by null geodesic segments 
which have no past endpoints in .,/I. 

As before, J+([/7, .L) will be written simply as J+(Y) .  It is the region 
of space-time which can be causally affected by events in Y. It is not 
necessarily a closed set even when [17 is a single point, as figure 34 
shows. This example , incidentally, illustrates a useful technique for 
constructing space-times with given causal properties : one starts 
with some simple space-time (unless otherwise indicated this will be 
Minkowski space) ,  cuts out any closed set and, if desired,  pastes it 
together in an appropriate way (i .e . one makes identifications of points 

7- 2  
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of  1) .  The result i s  still a manifold with a Lorentz metric and there
fore still a space-time even though it may look rather incomplete 
where points have been cut out. As mentioned above, however, this 
incompleteness can be cured by an appropriate conformal trans
formation which sends the cut out points to infinity. 

The future horismos of !/ relative to O/t, denoted by E+(!/, 0//) ,  is 
defined as J+(!/, 0//) - J+(!/, O/t) ; we write E+(!/) for E+(!/, 1) .  (In 
some papers the relations p Ef+(q) , p E J+(q) and p E E+(q) are denoted 
by q � p, q < p and q --+ p  respectively. )  If O/t is an open set, points of 
E+(!/, 0//) must lie on future-directed null geodesics from !/ by 
proposition 4 .5 . 1 0 , and if O/t is a convex normal neighbourhood about p 
then it follows from proposition 4 .5 . 1 that E+(p, 0//) consists of the 
future-directed null geodesics in O/t from p, and forms the boundary in 
O/t of both J+(p, 0//) and J+ (p , 0//) .  Thus in Minkowski space , the null 
cone of p forms the boundary of the causal and chronological futures 
of p. However in more complicated space-times this is not necessarily 
the case (e .g. see figure 34) .  

For the purposes of what follows it will be convenient to extend the 
definition of timelike and non-spacelike curves from piecewise dif
ferentiable to continuous curves. Although such a curve may not have 
a tangent vector we can still say that it is non-spacelike if locally 
every two points of the curve can be joined by a piecewise differenti
able non-spacelike curve . More precisely, we shall say that a con
tinuous curve y: F --+ 1, where F is a connected interval of R1, is 
future-directed and non-spacelike if for every t E F there is a neighbour
hood G of t in F and a convex normal neighbourhood O/t of y(t) in 1 
such that for any t1 E G, y(t1 ) E J-(y(t } , O/t) - y(t) if t1 < t, and 
y(t1 ) E J+(y(t ) ,  0// ) - y(t) if t < t1 • We shall say that y is future-directed 
and timelike if the same conditions hold with J replaced by I. Unless 
otherwise specified, we will in future mean by a timelike or non
spacelike curve such a continuous curve, and shall regard two curves 
as equivalent if one is a reparametrization of the other. With this 
generalization we can establish a result that will be used repeatedly 
in the rest of this chapter. We first give a few more definitions. 

A point p will be said to be a future endpoint of a future-directed 
non-spacelike curve y: F --+  1 if for every neighbourhood "Y of p there 
is a t E F such that y(t1 ) E "Y for every t1 E F with t1 � t. A non-spacelike 
curye is future-inextendible (respectively, future-inextendible in a set!/) 
if it has no future endpoint (respectively, no future endpoint in !/) .  
A point p will be  said to  be  a limit point of an infinite sequence of  non-
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spacelike curves "-n if every neighbourhood of p intersects an infinite 
number of the "- n ·  A non-spacelike curve A will be said to be a limit 
curve of the sequence "-n if there is a subsequence A' n of the "-n such that 
for every p E A, ,.\' n converges to p. 

Lemma 6 .2 . 1 
Let 9' be an open set and let "-n be an infinite sequence ofnon-spacelike 
curves in 9' which are future-inextendible in 9'. Ifp E9' is a limit point 
of "-n• then through p there is a non-spacelike curve A which is future
inextendible in 9' and which is a limit curve of the "-n· 

It is sufficient to consider the case 9' = .,II since 9' can be regarded as 
a manifold with a Lorentz metric .  Let Ol/ i be a convex normal co
ordinate neighbourhood about p and let f!fi(q, a) be the open ball of 
coordinate radius a about q. Let b > 0 be such that f!fi(p, b) is defined 
and let A( 1 ,  O)n be a subsequence of "-n n Olli which converges to p.  
Since fi4(p, b )  is  compact it  will contain limit points of the A ( 1 , O)n .  
Any such limit point y must lie either in J-(p, Olli )  or J+(p, Olli )  since 
otherwise there would be neighbourhoods fi of y and � of p between 
which there would be no non-spacelike curve in Olli .  Choose 

x11 E J+(p, Olli )  n i&(p, b )  

to  be  one of  these limit points (figure 35) ,  and choose A( 1 ,  1 )n to be 
a subsequence of ,.\( 1 ,  O)n which converges to x11 • The point x11 will be 
a point of our limit curve ,.\ .  Continue inductively, defining 

xii E J+(p, Olt i) n i&(p, i-ijb) 

as a limit point of the subsequence A(i - 1 , i - 1 )n for j = 0, A(i,j - l )n 
for i � j � 1 ,  and defining A(i ,j)n as a subsequence of the above 
subsequence which converges to xii ·  In other words we are dividing 
the interval [O, b] into smaller and smaller sections and getting points 
on our limit curve on the corresponding spheres about p. As any two 
of the xii will have non-spacelike separation, the closure of the union 
of all the xii (j � i) will give a non-spacelike curve A from p = xio to 
x11 = xii .  It now remains to construct a subsequence A' n of the An such 
that for each q E A, A'n converges to q. We do this by choosing A1m to be 
a member of the subsequence A(m, m)n which intersects each of the 
balls f!fi(x111i, m-ib )  for 0 ::;; j ::;; m. Thus A will be a limit curve of the 
An from p to x11 . Now let Ol/ 2 be a convex normal neighbourhood about 
x11 and repeat the construction using this time the sequence A' n · 
Continuing in this fashion , one can extend A indefinitely. D 
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Xull geodesics 
through p --�1--1-+---r-< 

FIGURE 35. The non-spacelike limit curve ,\ through p of a family of non
spacelike curves An for which p is a limit point. 

6.3 Achronal boundaries 

From proposition 4 .5 . 1 it follows that in a convex normal neighbour
hood 611, the boundary of J+(p, 61/) or J+(p, 61/) is formed by the future
directed null geodesics from p.  To derive the properties of more general 
boundaries we introduce the concepts of achronal and future sets . 

A set Y' is said to be achronal (sometimes referred to as ' semi
spacelike ' in the literature) if /+(!/') n Y' is empty, in other words if 
there are no two points of Y' with timelike separation . Y' is said to be 
a future set if Y' :::> /+(!/') . Note that if Y' is a future set, ..,,/( -Y' is a past 
set . Examples of future sets include J+(JV) and J+(JV) ,  where JV is 
any set. Examples of achronal sets are given by the following 
fundamental result. 
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Proposition 6 .3 . 1  
If .9" is a future set then 9', the boundary of .9" ,  is a closed, imbedded, 
achronal three-dimensional 01- submanifold. 

If q EY , any neighbourhood of q intersects .9" and JI -.9". If p E J+(q) , 
then there is a neighbourhood of q in J-(p) . Thus J+(q) c .9". Similarly 
J-(q) c (Jl - .9").  If r E J+(q) , there is a neighbourhood "/'" of r such 
that "/'" c J+(q) c .9". Thus r cannot belong to 9'. One can introduce 
normal coordinates (x1, x2, x3, x4) in a neighbourhood o//"' about q with 
o/ox4 timelike and such that the curves {xi = constant (i = 1 ,  2, 3 )} 
intersect both J+(q, o// .. ) and J-(q, o// .. ) .  Then each of these curves must 
contain precisely one point of 9'. The x4-coordinate of these points 
must be a Lipschitz function of the xi (i = 1 , 2, 3) since no two points 
of 9' have timelike separation. Therefore the one-one map 
</J .. : .9" n o//a. -+ R3 defined by </Ja.(P) = xi(p ) (i = 1 ,  2, 3) for p E.9" n o//a. 
is a homeomorphism. Thus (9' n o//a. , </Ja.) is a 01- atlas for 9'. D 

We shall call a set with the properties of 9' listed in proposition 6 .3 . 1 ,  
an achronal boundary. Such a set can b e  divided into four disjoint 
subsets .9;., 9:. 9'_, � as follows : for a point q E Y there may or 
may not exist points p, r E.9' with p E E-(q) - q, r E E+(q) - q. The 
different possibilities define the subsets of 9' according to the scheme : 

If q E YJv , then r E E+(p) since r E J+(p) and by proposition 6 .3 . 1 , 
r if: I +(p) . This means that there is a null geodesic segment in 9' through 
q. If q E Y+ (respectively 9'_) then q is the future (respectively, past) 
endpoint of a null geodesic in 9'. The subset � is spacelike (more 
strictly, acausal ) .  These divisions are illustrated in figure 36 .  

A useful condition for a point to lie in .9;., 9'+ or 9'_ is  given in the 
following lemma due to Penrose (Penrose ( 1 968) ) : 

Lemma 6 .3 .2  
Let if'" be a neighbourhood of q EY where .9" is  a future set. Then 

(i) J+(q) c /+(.9" - "11'") implies q E .9;. u 9: , 
(ii ) J-(q) c J-(Jt - .9" - if'") implies q E .9;.  U 9'_. 
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FIGURE 3 6 .  An achronal boundary .:/' can b e  divided into four sets : 9'0 i s  space
like , YN is null, and Y+ (respectively, .:/'_ )  is the future (respectively, past) 
endpoint of a null geodesic in Y. 

It is sufficient to prove (i )  since .9' can also be regarded as the boundary 
of the past set (JI -9") .  Let {xn} be an infinite sequence of points in 
J+(q) n "#"" which converge on q. If J+(q) c: J+(9" - ir) ,  there will be 
a past-directed timelike curve An to 9" - "#"" from each xn . By lemma 

6 .2 . 1 there will be a past-directed limit curve ,\ from q to (9" - "#"") .  As 
J-(q) is open and contained in JI -9", J-(q) n 9" is empty . Thus ,\ must 
be a null geodesic and must lie in 9". D 

As an example of the above results , consider j+(f) = j+(f) , the 
boundary of the future of a closed set %. By proposition 6 .3 . 1 it is an 
achronal manifold and by the above lemma, every point of j(f) - % 
belongs to [j+(f)]N or [j+(f)]+ · This means that j(f) - % is 
generated by null geodesic segments which may have future end
points in j+(f) - % but which, if they do have past endpoints, can 
have them only on % itself. As figure 34 shows, there may be null 
geodesic generating segments which do not have past endpoints at all 
but which go out to infinity. This example is admittedly rather 
artificial but Penrose ( 1 965a) has shown that similar behaviour 
occurs in something as simple as the plane wave solutions ; the anti
de Sitter ( §  5 .2 )  and Reissner-Nordstrom ( §  5 .5 )  solutions provide 
other examples . We shall see in § 6 . 6  that this behaviour is connected 
with the absence of a Cauchy surface for these solutions. 

We shall say that an open set Oii is causally simple if for every 
compact set $' c: 0//, 

j+(%) n Oii = E+(f) n Oii and j-(%) n Oii = E-(f) n 0// . 

This is equivalent to saying that J+(f) and J-($') are closed in 0//. 
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6.4 Causality conditions 

Postulate (a) of § 3 .2  required only that causality should hold locally ; 
the global question was left open. Thus we did not rule out the possi
bility that on a large scale there might be closed timelike curves ( i .e .  
timelike S1 's ) .  However the existence of such curves would seem to 
lead to the possibility of logical paradoxes : for, one could imagine 
that with a suitable rocketship one could travel round such a curve 
and, arriving back before one's departure, one could prevent oneself 
from setting out in the first place . Of course there is a contradiction 
only if one assumes a simple notion of free will ; but this is not some
thing which can be dropped lightly since the whole of our philosophy 
of science is based on the assumption that one is free to perform any 
experiment. It might be possible to form a theory in which there were 
closed timelike curves and in which the concept of free will was modi
fied (see, for example, Schmidt ( 1 966) )  but one would be much more 
ready to believe that space-time satisfies what we shall call the 
chronology condition : namely, that there are no closed timelike curves . 
One must however bear in mind the possibility that there might be 
points (maybe where the density or curvature was very high) of 
space-time at which this condition does not hold . The set of all such 
points will be called the chronology violating set of ...It and has the 
following character : 

Proposition 6 .4 . 1 (Garter) 
The chronology violating set of ...It is the disjoint union of sets of the 
form J+(q) n J-(q) , q E....11 . 

If q is in the chronology violating set of ...It, there must be a future
directed timelike curve i\. with past and future endpoints at q. If 
r E J-(q) n J+(q) ,  there will be past- and future-directed timelike curves 
µ1 and µ2 from q to r . Then (µ1)-1 o i\. o µ2 will be a future-directed time
like curve with past and future endpoints at r.  Moreover if 

then 

r E  [J-(q) n J+(q)J n [J-(p) n J+(p )J 
p E J-(q) n J+(q) = J- (p) n J+(p ) . 

To complete the proof, note that every point r at which chronology is 
violated is in the set J-(r) n J+ (r) . D 

Proposition 6 .4 .2  
If vlt i s  compact, the chronology violating set of  ...It i s  non-empty. 
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.,/I can be covered by open sets of the form J+(q) ,  q E J. lf the chrono
logy condition holds at q, then q <} J+(q) . Thus if the chronology 
condition held at every point, .,/I could not be covered by a finite 
number of sets of the form J+(q) .  D 
From this result it would seem reasonable to assume that space-time 
is non-compact. Another argument against compactness is that any 
compact, four-dimensional manifold on which there is a Lorentz 
metric cannot be simply connected. (The existence of a Lorentz metric 
implies that the Euler number x(J) is zero (Steenrod ( 1 95 1 ) , p. 207 ) .  

4 
Now X = l:: ( - 1 )nBn where Bn ;;?; 0 is the nth Betti number of .,/I. By 

n=O 
duality (Spanier ( 1 966) ,  p.  297)  Bn = B4_n· Since B0 = B4 = 1 ,  this 
implies that B1 =I= 0 which in turn implies 111(.,/1) =I= 0 (Spanier ( 1 966) ,  
p.  398) . )  Thus a compact space-time is really a non-compact manifold 
in which points have been identified. It would seem physically reason
able not to identify points but to regard the covering manifold as 
representing space-time.  

We shall say that the causality condition holds if there are no closed 
non-spacelike curves. Similar to proposition 6.4 . 1 ,  one has : 

Proposition 6 .4 .3  

The set of points at which the causality condition does not hold is  the 
disjoint union of sets of the form J-(q) n J+(q) ,  q E J. D 
In particular, if the causality condition is violated at q E J  but the 
chronology condition holds, there must be a closed null geodesic 
curve y through q. Let v be an affine parameter on y (regarded as a map 
of an open interval of R1 to .,/I) and let . . .  , v _1, v0, Vv v2, • • •  be successive 
values of v at q. Then we may compare at q the tangent vector o/ov J v=vo 
and the tangent vector o/ov J v=vi • obtained by parallelly transporting 
o/ov J "=va round y. Since they both point in the same direction, they 
must 1be proportional : o/ov J v-1 = a o/ov J v-a· The factor a has the 
following significance : the affine distance covered in the nth circuit of 
y, (vn+l - vn) ,  is equal to a-n(v1 - v0) .  Thus if a > 1 ,  v never attains the 
value (v1 - v0 ) ( 1 - a-1)-1 and so y is geodesically incomplete in the 
future direction even though one can go round an infinite number of 
times. Similarly if a <  1 ,  y is incomplete in the past direction, while if 
a =  1 ,  it is complete in both directions. In the two-dimensional model 
of Taub-NUT space described in § 5. 7, there is a closed null geodesic 
which is an example with a >  1 .  Since the factor a is a conformal in-
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variant, this incompleteness i s  independent o f  the conformal factor. 
This kind of behaviour, however, can happen only ifthere is a violation 
of causality in some sense ; if the strong causality condition (see below) 
holds, a suitable conformal transformation of the metric will make all 
null geodesics complete (Clarke ( 1 97 1 ) ) .  

The factor a has a further significance from the following result . 

Proposition 6 .4 .4 

If y is a closed null geodesic curve which is incomplete in the future 
direction then there is a variation of y which moves each point of y 
towards the future and which yields a closed timelike curve . 

By § 2 .6 ,  one can find on JI a timelike line-element field (V, - V) 
normalized so that g(V, V) = - 1 . As we are assuming that JI is time
orientable, one can consistently choose one direction of (V, - V) and 
so obtain a future-directed timelike unit vector field V. One can then 
define a positive definite metric �' by 

g' (X, Y) = g(X, Y) + 2g(X, V) g(Y, V) .  

Let t be a (non-affine) parameter on y which is zero at some point 
q E y and which is such that g(V, 8/8t) = - 2-l. Then t measures proper 
distance along y in the metric �' and has the range -oo < t < oo. Con
sider a variation of y with variation vector Of 8u equal to xV, where x is 
a function x(t ) .  By § 4 .5 ,  

1 8 ( 8 8 ) d ( 8 8 ) ( 8 D 8 ) 
2 8u g 8t ' 8t = dt g 8u' 8t  - g 8u' 8t 8t 

= - 2-i (�;- xt) , 
where f 8/8t = (D/8t) (8/8t ) .  Now suppose v were an affine parameter 
on y. Then 8/8v would be proportional to 8/8t : 8/8v = h 8/8t, where 
h-1 dh/dt = -f. On going round one circuit of y, 8/8v increases by 
a factor a > 1 .  Thill" f fdt = - log a � 0. 

Therefore if we take x(t) to be 

exp (J >(t' ) dt' + b-1t log a) , 

where b = f dt, this will give a variation of y to the future and gives 
a closed time!ike curve. D 
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Proposition 6 .4 .5  

If (a )  Rab KaKb ;:;: 0 for every null vector K; 
(b ) the generic condition holds, i .e .  every null geodesic contains a 

point at which K1aRb"lcdleK11KcKd is non-zero, where K is the tangent 
vector ; 

(c) the chronology condition holds on Jt, 
then the causality condition holds on Jt. 

If there were closed null geodesic curves which were incomplete, then 
by the previous result they could be varied to give closed timelike 
curves. If they were complete, then by proposition 4 .4 .5  they would 
contain conjugate points and so by proposition 4 .5 . 1 2  they could 
again be varied to give closed timelike curves. D 

This shows that in physically realistic solutions, the causality and 
chronology conditions are equivalent. 

As well as ruling out closed non-spacelike curves, it would seem 
reasonable to exclude situations in which there were non-spacelike 
curves which returned arbitrarily close to their point of origin or 
which passed arbitrarily close to other non-spacelike curves which then 
passed arbitrarily close to the origin of the first curve - and so on. In 
fact Carter ( 1 9 7 1  a) has pointed out that there is a more than countably 
infinite hierarchy of such higher degree causality conditions depending 
on the number and order of the limiting processes involved. We shall 
describe the first three of these conditions and shall then give the 
ultimate in causality conditions . 

The future (respectively, past) distinguishing condition (Kronheimer 
and Penrose ( 1 967 ) )  is said to hold at p E �A' if every neighbourhood of p 
contains a neighbourhood of p which no future (respectively, past) 
directed non-spacelike curve from p intersects more than once . An 
equivalent statement is that J+(q) = J+(p) (respectively, J-(q) = 1-(p) )  
implies that q = p. Figure 37  shows an example in  which the causality 
and past distinguishing conditions hold everywhere but the future 
distinguishing condition does not hold at p .  

The strong causality condition i s  said to hold at p if  every neighbour
hood of p contains a neighbourhood of p which no non-spacelike curve 
intersects more than once . Figure 38 shows an example of violation of 
this condition . 
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Null geodesic 

p 

FIGURE 3 7 .  A space in which the causality and past distinguishing conditions 
hold everywhere, but the future distinguishing condition does not hold at p or q 
( in fact, J+(p) = J+(q) ) .  The light cones on the cylinder tip over until one null 
direction is horizontal, and then tip back up ; a strip has been removed, thus 
breaking the closed null geodesic that would otherwise occur. 

<:: ' 
( Remove 

� '-.:5( <Null geodesic 

��������-..��� ....... ' 

Remove ) 

Identify 

FIGURE 38 .  A space-time satisfying the causality, future and past distinguish
ing conditions, but not satisfying the strong causality condition at p. Two 
strips have been removed from a cylinder ; light cones are at ± 45° . 
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Proposition 6 .4 .6 
If conditions (a )  to ( c )  of proposition 6 .4 .5 hold and if  in addition , 
(d) .,/( is null geodesically complete, then the strong causality condi
tion holds on .,/(. 

Suppose the strong causality condition did not hold at p E Jt. Let OIJ 
be a convex normal neighbourhood of p and let Y.i c OIJ be an infinite 
sequence of neighbourhoods of p such that any neighbourhood of p 
contains all the � for n large enough. For each Y.i there would be a 
future-directed non-spacelike curve "-n which left OIJ and then returned 
to ¥.i. By lemma 6 .2 . 1 , there would be an inextendible non-spacelike 
curve ,.\ through p which was a limit curve of the "-n· No two points of ,.\ 
could have timelike separation as otherwise one could join up some "-n 

to give a closed non-spacelike curve . Thus ,.\ must be a null geodesic .  
But by (a) , (b) and (d) ,.\ would contain conjugate points and therefore 
points with timelike separation. D 

Corollary 
The past and future distinguishing conditions would also hold on .,/( 
since they are implied by strong causality. 

Closely related to these three higher degree causality conditions is 
the phenomenon of imprisonment. 

A non-spacelike curve y that is future-inextendible can do one of 
three things as one follows it to the future : it can 

(i) enter and remain within a compact set .9, 
(ii) not remain within any compact set but continually re-enter 

a compact set .9, 
(iii) not remain within any compact set .9 and not re-enter any 

such set more than a finite number of times . 
In the third case y can be thought of as going off to the edge of 

space-time, that is either to infinity or a singularity. In the first and 
second cases we shall say that y is totally and partially future imprisoned 
in .9, respectively. One might think that imprisonment could occur 
only if the causality condition was violated, but the example due to 
Carter which is illustrated in figure 39 shows that this is not the case . 
Nevertheless one does have the following result : 
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FIGURE 39. A space with imprisoned non-spacelike lines but no closed non
spacelike curves . The manifold is R1 x 81 x 81 described by coordinates {t ,  y, z) 
where (t ,  y, z )  and {t,  y, z +  1) are identified, and {t,  y, z)  and (y, y +  1, z + a) are 
identified, where a is an irrational number. The Lorentz metric is given by 

ds2 = (cosh t - 1 ) 2 (dt2 - dy2) + dt dy - dz2• 

( i )  A section {z = constant} showing the orientation of the null cones. 
( ii )  The section t = 0 showing part of a null geodesic . 

Proposition 6 .4 .  7 
If the strong causality condition holds on a compact set f/, there can 
be no future-inextendible non-spacelike curve totally or partially 
future imprisoned in f/. 

f/ can be covered by a finite number of convex normal coordinate 
neighbourhoods Olli with compact closure , such that no non-spacelike 
curve intersects any Olli more than once . (We shall call such neighbour
hoods, local causality neighbourhoods. )  Any future-inextendible non
spacelike curve which intersects one of these neighbourhoods must 
leave it again and not re-enter it. D 

Proposition 6 .4 . 8 
If the future or past distinguishing condition holds on a compact 
set f/, there can be no future-inextendible non-spacelike curve 
totally future imprisoned in f/. (This result is included for its interest 
but is not needed for what follows. )  

Let {,::}, (a = 1 ,  2 , 3 ,  . . .  ) , b e  a countable basis o f  open sets for JI 
( i .e .  any open set in JI can be represented as a union of the ,:: ) . As 
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the future or past distinguishing condition holds on !/, any point 
p EY' will have a convex normal coordinate neighbourhood O/t such 
that no future (respectively, past) directed non-spacelike curve from p 
intersects O/t more than once . We define j(p) to be equal to the least 
value of a such that � contains p and is contained in some such 
neighbourhood 0// . 

Suppose there were a future-inextendible non-spacelike curve A 
which was totally future imprisoned in !/. Let q E A  be such that 
A' = A n J+(q) is contained in !/. Define d0 to be the closed, non
empty set consisting of all points of!/ which are limit points of A. Let 
Po E d0 be such that f(p0) is equal to the smallest value of f(p) on d0• 
Through Po there would be an inextendible non-spacelike curve Yo 
every point of which was a limit point of ,\' . No two points of Yo could 
have timelike separation since otherwise some segment of A' could be 
deformed to give a closed non-spacelike curve . Thus y0 would be an 
inextendible null geodesic which was totally imprisoned in !/ in both 
the past and future directions . Let d1 be the closed set consisting of 
all limit points ofy0 n J+(p0) (or, in the case that the past distinguishing 
condition holds on !/, Yo n J-(p0) ) .  As every such point would also be 
a limit point of ;\' ,  d1 c d0. Since "ff<po> could contain no limit point 
of Yo n J+(p0) (respectively, Yo n J-(p0) ) ,  d'1 would be strictly smaller 
than d0• We would thus obtain an infinite sequence of closed sets 
d0 � d1 � d2 � • • •  � dp � . . . .  Each dp would be non-empty, 
being the set of all limit points of the totally future (respectively, past) 
imprisoned null geodesic yp_1 n J+(pp_1) (respectively, Yp-1 n J-(Pp-1) ) .  
Let :f = n .satp. As !/ i s  compact, :f would b e  non-empty since the p 
intersection of any finite number of the dp would be non-empty 
(Hocking and Young ( 1 961 ) , p. 1 9) . Suppose r E:f. Then f(r) = f(Pp) 
for some fJ. But "ffcp13> n dp+l would be empty so r could not be in 
dp+l and so could not be in :f. This shows that there can be no future
inextendible non-spacelike curve totally future imprisoned in !/. D 

The causal relations on (.A, g) may be used to put a topology on .,I 
called the Alexandrov topology This is the topology in which a set is 
defined to be open if and only if it is the union of one or more sets of the 
form J+(p) n J-(q), p, q E .L. As J+(p)  n J-(q) is open in the manifold 
topology, any set which is open in the Alexandrov topology will be 
open in the manifold topology, though the converse is not necessarily 
true . 

Suppose however that the strong causality condition holds on .L. 
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Then about any point r E Jt  one can find a local causality neighbour
hood 0//. The Alexandrov topology of (O//, g llfl )  regarded as a space
time in its own right, is clearly the same as the manifold topology of 0//. 
Thus the Alexandrov topology of Jt is the same as the manifold 
topology since Jt can be covered by local causality neighbourhoods . 
This means that if the strong causality condition holds, one can 
determine the topological structure of space-time by observation of 
causal relationships. 

Cut out 
' 

_
__ C_u_t -ou_t _

__ -;-_,_
�j" l l ,.oo.,;., 

/ 

Cut out 

Identify 
FIGURE 40. A space satisfying the strong causality condition, but in which 
the slightest variation of the metric would permit there to be closed timelike 
lines through p. Three strips have been removed from a cylinder ; light cones 
are at ± 45° . 

Even imposition of the strong casuality condition does not rule out 
all causal pathologies, as figure 40 shows one can still have a space
time which is on the verge of violating the chronology condition in that 
the slightest variation of the metric can lead to closed timelike curves .  
Such a situation would not seem to be physically realistic since 
General Relativity is presumably the classical limit of some, as yet 
unknown, quantum theory of space-time and in such a theory the 
Uncertainty Principle would prevent the metric from having an exact 
value at every point. Thus in order to be physically significant, a 
property of space-time ought to have some form of stability, that is 
to say, it should also be a property of ' nearby ' space-times. In order 



1 98 C A U S A L  S T R U C T U R E  [6 .4 

to give a precise meaning to ' nearby ' one has to define a topology on the 
set of all space-times, that is, all non-compact four-dimensional mani
folds and all Lorentz metrics on them. We shall leave the problem of 
uniting in one connected topological space manifolds of different 
topologies (this can be done) ; and shall just consider putting a topology 
on the set of all Qr Lorentz metrics ( r ;;<; 1 )  on a given manifold. There 
are various ways in which this can be done, depending on whether one 
requires a ' nearby ' metric to be nearby in just its values (C0 topology) 
or also in its derivatives up to the lcth order (Ck topology) and whether 
one requires it to be nearby everywhere (open topology) or only on 
compact sets (compact open topology) .  

For our purposes here, we shall b e  interested i n  the C0 open topology. 
This may be defined as follows : the symmetric tensor spaces T8g(p) of 
type (0 , 2 )  at every point p E .,/{  form a manifold (with the natural 
structure) T8g(.,lf), the bundle of symmetric tensors of type (0, 2) over 
.,If, A Lorentz metric g on .,If is an assignment of an element of T8g(.,lf) 
at each point p E .,If and so can be regarded as a map or cross-section 
D : .,lf  � T8g(.,lf) such that 1ToD  = 1 where 77is the projection T8g(.,lf) � .,If 
which sends x E T8g(p) to p.  Let au be an open set in T8g(.,lf) and let 
O(au) be the set of all C0 Lorentz metrics g such that D(.,lf) is contained 
in au (figure 4 1 ) .  Then the open sets in the C0 open topology of the Gr 
Lorentz metrics on .,If are defined to be the union of one or more sets 
of the form O(au) . 

We say that the stable causality condition holds on .,If if the space
time metric g has an open neighbourhood in the C0 open topology 
such that there are no closed timelike curves in any metric belonging 
to the neighbourhood . (It would not make any difference if one used 
the Ck topology here, but one could not use a compact open topology 
since in that topology each neighbourhood of any metric contains 
closed timelike curves . )  In other words , what this condition means is 
that one can expand the light cones slightly at every point without 
introducing closed timelike curves . 

Proposition 6 .4 . 9  
The stable causality condition holds everywhere on .,If i f  and only if 
there is a function/ on .,If whose gradient is everywhere timelike . 

Remark. The function/ can be thought of as a sort of cosmic time in 
the sense that it increases along every future-directed non-spacelike 
curve . 
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Proof. The existence of a function f with an everywhere timelike 
gradient implies the stable causality condition since there can be no 
closed timelike curves in any metric h which is sufficiently close to g 
that for every point p E .L, the null cone of p in the metric h intersects 
the surface {f = constant} through p only at p. To show that the con
verse is true we introduce a volume measure µ (unrelated to the volume 
measure defined by the metric g) on .L such that the total volume of 

Ts�(p) 

x 

p 
FmuRE 4 1 .  An open set %' in the C0 open topology on the space T8;(.A') of 

symmetric tensors of type (0,  2) on �It . 

.L is one . One way of doing this is as follows : choose a countable atlas 
(1Pt "' ' 9a ) for j( such that <faa(1Pt "' ) is compact in R4• Let µ0 be the natural 
Euclidean measure on R4 and let fa be a partition of unity for the atlas 
(1Pt "'' 9a ) .  Then µ may be defined as L.fa 2-"'[µ0(1Pt "' )]-1 <Pa* µ0 • 

IZ 
Now if the stable causality condition holds one can find a family of 

er Lorentz metrics h(a) ,  a E [O, 3] ,  such that : 
( 1 )  h(O) is the space-time metric g ;  
( 2 )  there are n o  closed timelike curves in the metric h(a) for each 

a E [0, 3] ; 
( 3 )  if av a2 E [O, 3) with a1 < a2, then every non-spacelike vector in 

the metric h(a1 ) is timelike in the metric h(a2 ) .  
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For p E 1, let O(p, a) be the volume of J-(p, .L, h(a) )  in the measure 
µ where we use J-(!7, Oii, h) to denote the past of !/ relative to Oii in 
the metric h. For a given value of a E  (0, 3 ) ,  O(p, a) will be a bounded 
function which increases along every non-spacelike curve . It may not, 
however, be continuous : as figure 42 shows, it may be possible that 
a slight alteration of position may allow one to see past an obstruction 
and so greatly increase the volume of the past. One thus needs some 
way of smearing out O(p, a) so as to obtain a continuous function which 

I 

I 
I 

I 

'\ 
'\ 

'· 
' 

'\ 
' 

FIGURE 42.  A small displacement of a point from p to q results in a large change 
in the volume of the past of the point. Light cones are at ± 45° and a strip has 
been removed as shown. 

increases along every curve which is future-directed and non-spacelike 
in the metric h(O) .  One can do this by averaging over a range of a :  let 

O(p) = f: O(p, a) da. 

We shall show that O(p) is continuous on .A. 
First to show that it is upper semi-continuous : given e > 0, let BI be 

a ball about p such that the volume of BI in the measure µ is less than 
te. By property ( 3 ) ,  for a1 , a2 E [0, 3] with a1 < a2 one can find a 
neighbourhood �(av a2) of p in BI such that 

[J-(�(a1 , a2 ) ,  ffl, h(a1) )  n �] c [l-(p, §I, h(a2 ) )  n �] . 

Let n be a positive integer greater than 2e-1 . Then we define the set � 
to be � = n �( 1 + tin-1, 1 + !(i + 1 ) n-1) ,  i = 0, 1 ,  . .  . ,  2n. � will be 

i 



6.4] C AU S AL I T Y  C O N D IT I O N S  201 

a neighbourhood of p and will be contained in $"(a, a + n-1) for any 
a E [ 1 ,  2] . Therefore J-(q, JI, h (a) ) - ffJ will be contained in 

J- (p, ..A', h (a + n-1 ) ) - aJ for q E <§ and a E [1 , 2] .  

Thus O(q, a) ::s;:; O(p, a + ie) + !e 
and so O(q) ::s;:; O(p ) + e , showing that 7) is upper semi-continuous. The 
proof that it is lower semi-continuous is similar. To obtain a differenti
able function one can average 7) over a neighbourhood of each point 
with a suitable smoothing function. By taking the neighbourhood 
small enough one can obtain a function/ which has everywhere a time
like gradient in the metric g. Details of this smoothing procedure are 
given in Seifert ( 1 968) .  D 

The spacelike surfaces {f = constant} may be thought of as surfaces 
of simultaneity in space-time, though of course they are not unique . 
If they are all compact they are all diffeomorphic to each other, but 
this is not necessarily true if some of them are non-compact. 

6.5 Cauchy developments 

In Newtonian theory there is instantaneous action-at-a-distance and 
so in order to predict events at future points in space-time one has to 
know the state of the entire universe at the present time and also to 
assume some boundary conditions at infinity, such as that the 
potential goes to zero. In relativity theory, on the other hand, it 
follows from postulate (a) of § 3 . 2  that events at different points of 
space-time can be causally related only if they can be joined by a 
non-spacelike curve . Thus a knowledge of the appropriate data on 
a closed set !7 (if one knew data on an open set, that on its closure 
would follow by continuity) would determine events in a region D+(/7) 
to the future of !7 called the future Cauchy development or domain of 
dependence of //, and defined as the set of all points p E..A' such that 
every past-inextendible non-spacelike curve through p intersects !7 
(N.B. D+(/7) ::;, //). 

Penrose ( 1 966, 1 968) defines the Cauchy development of// slightly 
differently, as the set of all points p E .A' such that every past
inextendible timelike curve through p intersects //. We shall denote 
this set by fJ+(/7) .  One has the following result : 
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Proposition 6. 5 . 1  
fJ+(!/') = D+(!/').  

C A U S A L  S T R U C T U R E  [6 .5 

Clearly fJ+(//') :::> D+(!/') . If q E vlt  - D+(!/') there is a neighbourhood o/l 
of q which does not intersect !/'. From q there is a past-inextendible 
curve A which does not intersect !/'. If r E A n J-(q, 0//) then J+(r, 0//) is 
an open neighbourhood of q in Jt - D+(9') .  Thus Jt - D+(!/') is open 
and the set fJ+(9') is closed. Suppose there were a point p E fJ+(//') 
which had a neighbourhood "I" which did not intersect D+(!/') .  Choose 
a point x E I-(p, "/") . From x there would be a past-inextendible non
spacelike curve y which did not intersect !/'.  Let Yn be a sequence of 
points on y which did not converge to any point and which were such 
that Yn+i was to the past of Yn - Let if'� be convex normal neighbour
hoods of the corresponding points Yn such that if'�+i did not intersect 
if/� . Let zn be a sequence of points such that 

There would be an inextendible timelike curve from p which passed 
through each point zn and which did not intersect !/'. This would con
tradict p E fJ+(//') . Thus fJ+(!/' ) is contained in the closure of D+(//'} ,  

and so fJ+ (//') = D+ (!/' ) . D 

The future boundary of D+(9'), that is D+(!/') - J-(D+(!/')) ,  marks the 
limit of the region that can be predicted from knowledge of data on 9'. 
We call this closed achronal set the future Cauchy horizon of !/' and 
denote it by H+(!/') .  As figure 43 shows, it will intersect !/' if!/' is null 
or if !/' has an ' edge ' .  To make this precise we define edge (9') for an 
achronal set !/' as the set of all points q E  !/ such that in every neigh
bourhood 0// of q there are points p E l-(q, 0//) and r E I+(q, 0//) which 
can be j oined by a timelike curve in 0// which does not intersect !/'. By 
an argument similar to that in proposition 6 .3 . 1 it follows that if 
edge (!/') is empty for a non-empty achronal set 9', then 9' is a three
dimensional imbedded 01- submanifold. 

Proposition 6 .5 . 2  
For a closed achronal set !/', 

edge (H+(9'))  = edge (!/') .  

Let O/tn b e  a sequence o f  neighbourhoods o f  a point q E edge (H+(!/'))  
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such that any neighbourhood of q encloses all the 'fin for n sufficiently 
large . In each 'fin there will be points Pn e J-(q, 'fin) and r n e J+(q, 'fin) 
which can be joined by a timelike curve "-n which does not intersect 

H+(f/') .  This means that "-n cannot intersect D+(f/') .  By proposition 
6 .5 . 1 ,  q e D+(f/') and so J-(q) c J-(D+(f/'))  c J-(!/') U D+(f/') .  Thus Pn 
must lie in J-(!/') .  Also every timelike curve from q which is inextend
ible in the past direction must intersect !/'. Therefore for each n, there 

Edge (9') and 
edge IJ+(.51') 

FIGURE 43 . The future Cauchy development D+(.9') and future Cauchy horizon 
H+(fl') of a closed set .9' which is partly null and partly spacelike. Note that 
H+(.9') is not necessarily connected. Null lines are· at ± 45° and a strip has been 
removed. 

must be a point of!/' on every timelike curve in 'fin between q and Pn 
and so q must lie in !/. As the curves "-n do not intersect !/', q lies in 
edge (!/) .  The proof the other way round is similar. D 

Proposition 6 .5 . 3  
Let !/' be  a closed achronal set. Then H+(f/') i s  generated by null 
geodesic segments which either have no past endpoints or have past 
endpoints at edge (!/') . 

The set .f7 = D+(f/') U J-(!/') is a past set. Thus by proposition 6 .3 . 1 
!F is an achronal 01- manifold. H+(f/') is a closed subset of ffe. Let q be 
a point of H+(f/') - edge (!/') .  If q is not in !/' then q e J+(f/') since 
q e D+(!/') . As !/' is achronal one can find a convex normal neighbour-
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hood "fr of q which does not intersect J-(f/) .  Alternatively if q is in f/, 
let "fr be a convex normal neighbourhood of q such that no point of 
J+ (q , ii'") can be joined to any point in J- (q , "fr) by a timelike curve 
in "fr which does not intersect f/. 
In either case , if p is any point in 
J+(q) there must be a past-directed time
like curve from p to some point of 
Jt - .f7" - "fr since otherwise p would be 
in D+(f/). Therefore by condition (i) of 
lemma 6 .3 . 2 ,  applied to the future set 
.../( - .?7", q EffeN u #+. D 

Corollary 
If edge (f/) vanishes, then H+(f/), if non-
empty, is an achronal three-dimensional 
imbedded c1- manifold which is gener
ated by null geodesic segments which 
have no past endpoint. 

We shall call an acausal set [/ with no 
edge, a partial Cauchy surface . That is, a 
partial Cauchy surface is a spacelike 
hypersurface which no non-spacelike 

71-l(.9" ) t- - - - - - - -

11 

t- - - - - - t- -

curve intersects more than once . Suppose 
there were a connected spacelike hyper- '' /\ 

I 
I 

surface [/ (with no edge) which some non- , 
.9" ' 

spacelike curve A intersected at points p1 \ 
and p2. Then one could join p1 and p2 by \"'.J.'------.1---�' 
a curveµ in!/ andµ u A would be a closed 
curve which crossed [/ once only. This 
curve could not be continuously deformed 
to zero since such a deformation could 
change the number of times it crossed !/ 
by an even number only. Thus JI could 
not be simply connected. This means we 
could ' unwrap ' JI by going to the simply 

FIGURE 44. !I' is a connected 
space like hypersurface without 
edge in JI. It is not a partial 
Cauchy surface ;  however each 
image 11-1(!1') of !I' in the uni-
versal covering manifold .,i of 
JI, is a partial Cauchy surface 
in .ii. 

connected universal covering manifold .A in which each connected 
component of the image of [/ is a spacelike hypersurface (with no 
edge) and is therefore a partial Cauchy surface in .A (figure 44) . How
ever going to the universal covering manifold may unwrap JI more 
than is required to obtain a partial Cauchy surface and may result in 
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the partial Cauchy surface being non-compact even though Y was 
compact. For the purposes of the following chapters we would like 
a covering manifold which unwrapped .A  sufficiently so that each con
nected component of the image of Y was a partial Cauchy surface but 
so that each such component remained homeomorphic to Y. Such a 
covering manifold may be obtained in at least two different ways . 

Recall that the universal covering manifold may be defined as the 
set of all pairs of the form (p, [,:\.] ) where p E .A  and where [A.] is an 
equivalence class of curves in .A from some fixed point q E .A  to p, 
which are homotopic modulo q and p. The covering manifold .AH is 
defined as the set of all pairs (p, [A.] ) where now [,:\.] is an equivalence 
class of curves from Y to p homotopic modulo Y and p (i .e .  the end 
points on Y can be slid around) . .AH may be characterized as the 
largest covering manifold such that each connected component of the 
image of Y is homeomorphic to Y. The covering manifold .40 
(Geroch ( 1 967b ) )  is defined as the set of all pairs (p, [,:\.] ) where this 
time [,:\.] is an equivalence class of curves from a fixed point q to p 
which cross Y the same number of times, crossings in the future direc
tion being counted positive and those in the past direction, negative . 
.40 may be characterized as the smallest covering manifold in which 
each connected component of the image of Y divides the manifold into 
two parts . In each case the topological and differential structure of the 
covering manifold is fixed by requiring that the projection which maps 
(p, [A.] ) to p is locally a diffeomorphism. 

Define D(Y) = D+(Y) U D-(Y) .  A partial Cauchy surface Y is said 
to be a global Cauchy surface (or simply, a Cauchy surface) if D(Y) 
equals .A. That is, a Cauchy surface is a spacelike hypersurface which 
every non-spacelike curve intersects exactly once . The surfaces 
{x4 = constant} are examples of Cauchy surfaces in Minkowski space, 
but the hyperboloids 

{(x4)2 - (x3)2 - (x2)2 - (xl) 2  = constant} 

are only partial Cauchy surfaces since the past or future null cones of 
the origin are Cauchy horizons for these surfaces (see § 5 . 1  and 
figure 1 3 ) .  Being a Cauchy surface is a property not only of the su�face 
itself but also of the whole space-time in which it is imbedded. For 
example, if one cuts a single point out of Minkowski space , the 
resultant space-time admits no Cauchy surface at all . 

If there were a Cauchy surface for .A, one could predict the state of 
the universe at any time in the past or future if one knew the relevant 
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data on the surface. However one could not know the data unless one 
was to the future of every point in the surface, which would be impos
sible in most cases. There does not seem to be any physically com
pelling reason for believing that the universe admits a Cauchy surface ; 
in fact there are a number of known exact solutions of the Einstein 
field equations which do not, among them the anti-de Sitter space, 
plane waves, Taub-NUT space and Reissner-Nordstrom solution, all 
described in chapter 5 .  The Reissner-Nordstrom solution (figure 25) 
is a specially interesting case : the surface f/ shown is adequate for 
predicting events in the exterior regions I where r > r + and in the 
neighbouring region II where r _ < r < r +• but then there is a Cauchy 
horizon at r = r _ . Points in the neighbouring region III are not in 
D+(f/) since there are non-spacelike curves which are inextendible in 
the past direction and which do not cross r = r _ but approach the 
points i+ (which may be considered to be at infinity) or the singularity 
at r = 0 (which cannot be considered to be in the space-time ; see § 8 . 1 ) .  
There could be extra information coming in from infinity or from the 
singularity which would upset any predictions made simply on the 
basis of data on f/. Thus in General Relativity one's ability to predict 
the future is limited both by the difficulty of knowing data on the 
whole of a spacelike surface and by the possibility that even if one did 
it would still be insufficient. Nevertheless despite these limitations 
one can still predict the occurrence of singularities under certain 
conditions. 

6.6 Global hyperbolicity 

Closely related to Cauchy developments is the property of global 
hyperbolicity (Leray ( 1 952 ) ) .  A set % is said to be globally hyperbolic 
if the strong causality assumption holds on .ff and if for any two points 
p, q E .%, J+(p) n J-(q) is compact and contained in .%. In a sense this 
can be thought of as saying that J+(p) n J-(q) does not contain any 
points on the edge of space-time, i .e .  at infinity or at a singularity. 
The reason for the name ' global hyperbolicity ' is that on .%, the wave 
equation for a a-function source at p E .% has a unique solution which 
vanishes outside .ff - J+(p, .ff) (see chapter 7 ) .  

Recall that .ff i s  said to  be  causally simple if for every compact set 
:ff contained in .%, J+(:ff) n .ff and J-(%) n .ff are closed in .%. 
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Proposition 6 .6 . 1 
An open globally hyperbolic set .A' is causally simple . 

Let p be any point of %. Suppose there were a point 

q E  (J+(p) - J+(p) )  n .A'. 
As .A' is open, there would be a point r E (J+(q) n .A'). But then 

q E J+(p )  n J-(r) ,  which is impossible as J+(p) n J-(r) would be compact 
and therefore closed. Thus J+(p) n .A' and J-(p) n .A' are closed in %. 

Now suppose there exists a point q E  (J+(%) - J+(%))  n %. Let qn 
be an infinite sequence of points in J+(q) n .A' converging to q, with 
qn+l E l-(qn ) .  For each n, J-(qn) n % would be a compact non-empty 
set. Therefore n {J-(qn) n %} would be a non-empty set . Let p be a 

n 
point of this set. Then J+(p) would contain qn for all n. But J+(p) is 
closed. Therefore J+(p) contains q. D 

Corollary 
If � and � are compact sets in .A', J+(�) n J-(�) is compact . 

One can find a finite number of points Pi E .A' such that 

{U J+(pi)} => �· 
i 

Similarly, there will be a finite num her of points qi with � contained in 

Then J+(�) n J-(�) will be contained in 

U {J+(pi) n J-(qj )} i, j 
and will be closed. D 

Leray ( 1 952 )  did not, in fact, give the above definition of global 
hyperbolicity but an equivalent one which we shall present : for points 
p, q E JI  such that strong causality holds on J+(p) n J-(q) , we define 
C(p, q) to be the space of all (continuous) non-space-like curves from 
p to q, regarding two curves y(t) and A(u) as representing the same 
point of C(p, q) if one is a reparametrization of the other, i .e .  if there is 
a continuous monotonic function f(u) such that y(f(u) ) = A(u) . 
(C(p, q) can be defined even when the strong causality condition does 
not hold on J+(p) n J-(q) , but we shall only be interested in the case in 
which its does hold . )  The topology of C(p, q) is defined by saying that 
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a neighbourhood of y in C(p, q) consists of all the curves in C(p, q) 
whose points in .A lie in a neighbourhood if/ of the points of y in .A 
(figure 45) .  Leray's definition is that an open set .At is globally hyper
bolic if C(p, q) is compact for all p, q E .Af. These definitions are equi
valent, as is shown by the following result. 

_,.... 
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/ / 

./�_...... I y 

I Yr 
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I I 
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/ I 
I 
' 

\ 
..._ -

FIGURE 45. A neighbourhood if" of the points of y in ..,/(. A neighbourhood of y 
in C(p, q) consists of all non -spacelike curves from p to q whose points l ie in "fr .  

Proposition 6 .6 .2 (Seifert ( 1 967 ) ,  Gerock ( 1 970b ) ) . 
Let strong causality hold on an open set .At such that 

.At = J-(.At) n J+(.Af) .  

Then .At i s  globally hyperbolic if  and only if  C(p, q )  is compact for all 
p, q E.Af. 

Suppose first that C(p, q) is compact. Let r n be an infinite sequence of 
points in J+(p) n J-(q) and let An be a sequence ofnon-spacelike curves 
from p to q through the corresponding r n· As C(p, q) is compact, there 
will be a curve A to which some subsequence A' n converges in the 
topology on C(p, q ) .  Let Oii be a neighbourhood of A in.A such that O/i is 
compact. Then Oii will contain all A' n and hence all r' n for n sufficiently 
large, and so there will be a point r E Oii which is a limit point of the r' n · 

Clearly r lies on A. Thus every infinite sequence in J+(p) n J-(q) has a 
limit point in J+(p) n J-(q) . Hence J+(p) n J-(q) is compact. 

Conversely, suppose J+(p) n J-(q) is compact. Let An be an infinite 
sequence ofnon-spacelike curves fromp to q. By lemma 6 .2 . 1 applied 
to the open set .A - q, there will be a future-directed non-spacelike 
curve A from p which is inextendible in .A - q, and is such that there is 
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a subsequence ,\' n which converges to r for every r E A. The curve ,\ 
must have a future endpoint at q since by proposition 6 .4 .  7 it cannot be 
totally future imprisoned in the compact set J+(p)  n J-(q ) ,  and it 
cannot leave the set except at q. 

Let Oii be any neighbourhood of ,\ in vii and let ri ( 1 :;:; i :;:; k) be a 
finite set of points on ,\ such that r1 = p, rk = q and each ri has a 
neighbourhood � with J+(�) n J-(�H) contained in Oii. Then for 
sufficiently large n, ,\'n will be contained in Oii. Thus ,\'n converge to ,\ 
in the topology on C(p, q) and so C(p, q) is compact. 0 

The relation between global hyperbolicity and Cauchy developments 
is given by the following results . 

Proposition 6 .6 .3  
If  f/ is a closed achronal set, then int (D(f/) ) = D(f/) - D(f/) , i f  non
empty, is globally hyperbolic .  

We first establish a number of lemmas. 

Lemma 6 .6 .4  
If  p E D+(f/) - H+(f/) , then every past-inextendible non-spacelike 
curve through p intersects J-(9') . 

Let p be in D+(f/) - H+(f/) and let y be a past-inextendible non
spacelike curve through p. Then one can find a point q E D+(f/) n I +(p) 
and a past-inextendible non-spacelike curve ,\ through q such that for 
each point x E A  there is a point y E y  with y E J-(x) . As ,\ will intersect 
f/ at some point x1 there will be a y1 E y n  J-(9') . 0 

Corollary 
If p E int (D(f/) ) then every inextendible non-spacelike curve through 
p intersects J-(9') and J+(f/) .  

int (D(f/) ) = D(f/) - {H+(f/) U H-(9')}. I f  p E f+(f/) or J-(9') the 
result follows immediately. If p E D+(f/) - I +(f/) then p Ef/ c D-(9') 
and the result again follows. 0 

Lemma 6 .6 .5  
The strong causality condition holds on int D(f/) . 

Suppose there were a closed non-spacelike curve ,\ through 
p E int (D(f/) ) .  By the previous result there would be points 
q E A n J-(9') and r E A n J+(f/) . As r E J-(q) ,  it would also be in J-(9') 
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which would contradict the fact that [/' is achronal . Thus the causality 
condition holds on int (D(Y') ) .  Now suppose that the strong causality 
condition did not hold at p. Then as in lemma 6 .4 .6  there would be an 
infinite sequence of future-directed non-spacelike curves An which 
converged to an inextendible null geodesic y through p. There would 
be points q E y n  J-(Y) and r E y n  J+(Y) and so there would be some 
An which intersected J+(Y') and then J-(Y) , which would contradict 
the fact that [/' was achronal . D 

Proof of proposition 6 .6 . 3 .  We wish to show that C(p, q) is compact 
for p, q E int (D(Y') ) .  Consider first the case that p, q E J-(Y) and sup
pose p E J-(q) . Let An be an infinite sequence of non-spacelike curves 
from q to p.  By lemma 6 . 2 . 1 there will be a future-directed non
spacelike limit curve from p which is inextendible in Jt - q. This must 
have a future endpoint at q since otherwise it would intersect [/' which 
would be impossible as q E J-(Y') . Consider now the case that 
p E J-(Y') , q E J+(Y) n J+(p ) .  If the limit curve A has an endpoint at q, 
it is the desired limit point in C(p, q ) .  If it does not have an endpoint 
at q, it would contain a point y EJ+(Y') since it is inextendible in 
Jt - q. Let A' n be a subsequence which converges to r for every point r 
on A between p and y. Let A be a past-directed limit curve from q of 
the A' n · If A has a past endpoint at p, it would be the desired limit point 
in C(p, q) . IfA passed through y, it could be joined up with A to provide 
a non-spacelike curve from p to q which would be the desired limit 
point in C(p, q ) .  Suppose A does not have endpoint at p and does not 
pass through y. Then it would contain some point z E J-(Y') .  Let A''n be 
a subsequence of the A' n which converges to r for every point r on A 
between q and z. Let "/"" be an open neighbourhood of A which does not 
contain y. Then for sufficiently large n, all A" n n J+(Y) would be con
tained in "/"". This would be impossible as y is a limit point of the A"n · 
Thus there will be a non-spacelike curve from p to q which is a limit 
point of the An in C(p, q ) .  

The cases p, q E J-(Y') and p EJ-(Y') , q E J+(Y) together with their 
duals cover all possible combinations . Thus in all cases we get a non
spacelike curve from p to q which is a limit point of the An in the 
topology on C(p , q ) .  D 

By a similar procedure one can prove : 

Proposition 6 .6 . 6  
If  q E int (D(Y')) ,  then J+(Y) n J-(q) i s  compact or  empty. D 
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To show that the whole of D(.9) and not merely its interior i s  globally 
hyperbolic, one has to impose some extra conditions . 

Proposition 6 .6 .  7 
If .9 is a closed achronal set such that J+(.9) n J-(.9) is both strongly 
causal and either 

( 1 )  acausal (this is the case if and only if .9 is acausal) ,  or 
( 2 )  compact, 

then D(.9) is globally hyperbolic .  

Suppose that strong causality did not hold at some point q E D(.9) . 
Then by an argument similar to lemma 6 .6 .5 ,  there would be an 
inextendible null geodesic through q at each point of which strong 
causality did not hold . This is impossible, since it would intersect .9. 
Therefore strong causality holds on D(.9) .  

Ifp, q E I-(.9),  the argument of  proposition 6 .6 .3  holds . Ifp E J-(.9), 
q E J+(.9) one can as in proposition 6 .6 .3  construct a future-directed 
limit curve A from p and a past-directed limit curve A from q, and 
choose a subsequence .,\" n which converges to r for every point r on 
A or A. In case ( 1 ) ,  .,\ would intersect .9 in a single point x. Any neigh
bourhood of x would contain points of .,\" n for n sufficiently large, and 
so would contain x" n> defined as .,\" n n .9, since .9 is achronal . Therefore 
x" n would converge to x. Similarly x"n would converge to :C = A n .9. 
Thus :C = x and so one could join .,\ and A to give a non-spacelike limit 
curve in G(p, q ) .  

In case ( 2 ) ,  suppose that A did not have a future endpoint at  q .  
Then A would leave J-(.9) since i t  would intersect .9 and by proposi
tion 6 .4 .  7 it would have to leave the compact set J+(.9) n J-(.9) . Thus 
one could find a point x on A which was not in J-(.9) .  For each n, 
choose a point x" n E.9 n A\. Since .9 is compact, there will be some 
point y E.9 and a subsequence A'" n such that the corresponding points 
x"'n converge to y.  Suppose that y does not lie on A. Then for suffi
ciently large n each x"' n would lie to the future of any neighbourhood 

Oii of x. This would imply x E J-(.9) . This is impossible as x is in J+(f/) 
but is not in the compact set J+(.9) n J-(.9) .  Therefore A would pass 
through y. Similarly A would pass through y.  One could then join them 
to obtain a limit curve. D 

Proposition 6 .6 .3  shows that the existence of a Cauchy surface for an 
open set .% implies global hyperbolicity of .%. The following result 
shows that the converse is also true : 
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Proposition 6 .6 . 8  (Gerock ( 1 970b ) )  

If  an open set % is  globally hyperbolic, then .Al, regarded as  a mani
fold, is homeomorphic to R1 x Y' where Y' is a three-dimensional 
manifold, and for each a E R1 ,  {a} x Y'  is a Cauchy surface for %. 

As in proposition 6 .4 .9, put a measure µ on JV such that the total 
volume of JV in this measure is one . For p E ..!V define f+(p) to be the 
volume of J+(p, JV) in the measure µ. Clearly J+(p) is a boundecl 
function on JV which decreases along every future-directed non
spacelike curve . We shall show that global hyperbolicity implies that 
J+(p) is continuous on JV so that we do not need to ' average ' the 
volume of the future as in proposition 6 .4 . 9 .  To do this it will be suffi
cient to show that J+(p) is continuous on any non-spacelike curve A .  

Let r EA and let xn be an infinite sequence of  points on  A strictly to 
the past of r. Let ff be n J +(xn, %) . Suppose that f +(p) was not upper n 
semi-continuous on A at r. There would be a point q Eff - J+(r, JV) .  
Then r f/= J-(q, JV) ; but each xn E J-(q, JV) and so  r E J-(q, JV) ,  which 
is impossible as J-(q, %) is closed in JV by proposition 6 .6 . 1 .  The 
proof that it is lower semi-continuous is similar 

As p is moved to the future along an inextendible non-spacelike 
curve A in JV the value off +(p) must tend to zero . For suppose there 
were some point q which lay to the future of every point of A. Then the 
future-directed curve A would enter and remain within the compact 
set J+(r) n J-(q) for any r E A  which would be impossible by proposition 
6 .4 . 7  as the strong causality condition holds on %. 

Now consider the function f(p) defined on JV by f(p) = J-(p)/J+(p) .  
Any surface of constant f will b e  an acausal set and, by proposition 
6 . 3 . 1 ,  will be a three-dimensional 01- manifold imbedded in %. It will 
also be a Cauchy surface for JV since along any non-spacelike curve, 
J- will tend to zero in the past and f + will tend to zero in the future . 
One can put a timelike vector field V on JV and define a continuous 
map fJ which takes points of JV along the integral curves of V to where 
they intersect the surface Y' (f = 1 ) .  Then (logf(p) , /J(p ) )  is a homeo
morphism of JV onto R x  Y'. If one smoothed ! as in proposition 6 .4 .9 ,  
one could improve this to  a diffeomorphism . D 
Thus if the whole of space-time were globally hyperbolic ,  i . e .  if there 
were a global Cauchy surface, its topology would be very dull . 



6 .7] T H E  E X I S T E N C E  O F  G E O D E S I C S  

6.7 The existence of geodesics 

2 1 3  

The importance of global hyperbolicity for chapter 8 lies i n  the 
following result : 

Proposition 6 . 7 . 1 

Let p and q lie in a globally hyperbolic set .A' with q E J+(p ) .  Then there 
is a non-spacelike geodesic from p to q whose length is greater than or 
equal to that of any other non-spacelike curve from p to q. 

Almost broken almost null 
curve from p to q in '11 

FIGURE 46. o/I is an open neighbourhood of the timelike curve A from p to q. 
There exist in o/I timelike curves from p to q which approximate broken null 
curves and are of arbitrarily small length. 

We shall present two proofs of this result : the first, due to Avez ( 1 963) 
and Seifert ( 1 967 ) ,  is an argument from the compactness of O(p, q ) ,  and 
the second (applicable only when ff is open) is a procedure whereby 
the actual geodesic is constructed. 

The space O(p, q) contains a dense subset O' (p,  q) consisting of all 
the timelike 01 curves from p to q. The length of one of these curves A is 
defined (cf. § 4 .5 )  as 

L[AJ = J: ( - g(o/ot, Ofot) )i dt, 

where t is a 01 parameter on A.  The function L is not continuous on 
O'(p, q) since any neighbourhood of A contains a zig-zag piecewise 
almost null curve of arbitrarily small length (figure 46 ) .  This lack of 
continuity arises because we have used the 0° topology which says that 
two curves are close if their points in JI, but not necessarily their 

8 II L S  
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tangent vectors, are close . We could put a C1 topology on C'(p, q) and 
so make L continuous but we do not do this because C'(p, q) is not 
compact ; one gets a compact space only when one includes all the 
continuous non-spacelike curves . Instead, we use the C0 topology and 
extend the definition of L to C(p, q ) .  

Because of the signature of the metric, putting wiggles in a timelike 
curve reduces its length . Thus L is not lower semi-continuous . However 
one has : 

Lemma 6 . 7 . 2  

L is upper semi-continuous in  the C0 topology on  C' (p, q) . 

Consider a C1 timelike curve A.(t) from p to q, where the parameter t is 
chosen to be the arc-length from p. In a sufficiently small neighbour
hood Olt of A, one can find a function f which is equal to t on A and is 
such that the surfaces {f = constant} are spacelike and orthogonal to 
o/ot ( i .e .  gabf; b l A. = (Ofot)a) .  One way to define such an f would be to 
construct the spacelike geodesics orthogonal to ,\. For a sufficiently 
small neighbourhood Olt of A, they will give a unique mapping of Olt to A., 
and the value of/ at a point in Olt can be defined as the value of t at the 
point on A into which it is mapped. Any curve µ in Olt can be para
metrized by f. The tangent vector (o/of)µ to µ can be expressed as 

where k is a spacelike vector lying in the surface {f = constant}, i .e .  
kaf; a = 0. Then 

g ( (:J)µ ' (�)J = gabf: af: b + gab kakb 

� gabf: al b ·  
However on A., gabf: al b = - 1 . Thus given any e > 0 ,  one can choose 
Olt' c Olt sufficiently small that on Olt', gabf; a/; b > - 1  + e . Therefore for 
any curve µ in Olt', 

L[µ] ::::; ( l + e)! L[A.] .  D 

We now define the length of a continuous non-spacelike curve A from 
p to q as follows : let Olt be a neighbourhood of A in ult and let l(Olt) be 
the least upper bound of the lengths of timelike curves in Olt from p 
to q. Then we define L[A.] as the greatest lower bound of l(Olt) for all 
neighbourhoods Olt of ,\ in Jt. This definition of length will work for al l 
curves ,\ from p to q which have a C1 timelike curve in every neighbour-
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hood, i . e .  it will work for all points in C(p, q )  which lie in the closure of 
C'(p, q ) .  By § 4 .5 ,  a non-spacelike curve from p to q which is not an 
unbroken null geodesic curve can be varied to give a piecewise 01 

timelike curve from p to q, and the corners of this curve can be 
rounded off to give a 01 timelike curve from p to q .  Thus points in 

C(p, q) - C'(p,  q) are unbroken null geodesics (containing no conjugate 
points) ,  and we define their length to be zero . 

This definition of L makes it an upper semi-continuous function on 

the compact space C'(p,  q) . (Actually, as a continuous non-spacelike 
curve satisfies a local Lipschitz condition, it is differentiable almost 
everywhere . Thus the length could still be defined as 

J ( - g(o/ot , o/ot ) )l dt, 

and this would agree with the definition above . )  If C'(p, q) is empty 
but C(p,  q) is non-empty, p and q are joined by an unbroken null 
geodesic and there are no non-spacelike curves from p to q which are 

not unbroken null geodesics. If C'(p, q) is non-empty, it will contain 
some point at which L attains its maximum value, i . e .  there will be 
a non-spacelike curve y from p to q whose length is greater than or 
equal to that of any other such curve . By proposition 4 .5 . 3 ,  y must be 
a geodesic curve as otherwise one could find points x, y E y which lay 
in a convex normal coordinate neighbourhood and which could be 
joined by a geodesic segment of greater length than the portion of y 

between x and y. 0 
For the other, constructive, proof, we first define d(p, q) for p, q E�ll 
to  be  zero i f  q rf- J+(p) and otherwise to  be the least upper bound of  the 
lengths of future-directed piecewise non-spacelike curves from p to q .  
(Note that d(p, q) may be infinite . )  For sets .9 and o//, we define 
d(.9, o//) to be the least upper bound of d(p, q ) ,  p E.9, q E o//. 

Suppose q E /+(p) and that d(p, q) is finite . Then for any 8 > 0 one 
can find a timelike curve A of length d(p, q) - !8 from p to q and a 
neighbourhood o/I of q such that A can be deformed to give a timelike 
curve of length d(p, q) - 8 from p to any point r E o// . Thus d(p, q) , where 
finite, is lower semi-continuous . In general d(p, q) is not upper semi
continuous but : 

Lemma 6 . 7 . 3  

d(p, q )  i s  finite and continuous in p and q when p and q are contained 
in a globally hyperbolic set .A'. 

8 -2  
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We shall first prove d(p, q) is  finite . Since strong causality holds on the 
compact set J+(p) n J-(q} , one can cover it with a finite number of 
local causality sets such that each set contains no non-spacelike curve 
longer than some bound £. Since any non-spacelike curve from p to q 
can enter each neighbourhood at most once, it must have finite length . 

Now suppose that for p, q EAI, there is a 8 > 0 such that every 
neighbourhood of q contains a point r EAI such that 

d(p, r) > d(p, q) + 8. 
Let xn be an infinite sequence of points in Al converging to q such that 
d(p, xn) > d(p, q) + 8. Then from each xn one can find a non-spacelike 
curve "-n to p of length > d(p, q) + 8. By lemma 6 . 2 . 1 there will be 
a past-directed non-spacelike curve A through q which is a limit curve 
of the "-n · Let 011 be a local causality neighbourhood of q. Then A cannot 
intersect J-(q) n O/t since if it did one of the "-n could be deformed to 
give a non-spacelike curve from p to q of length > d(p, q) . Thus A n  O/t 
must be a null geodesic from q and at each point x ofA n O/t, d(p, x) will 
have a discontinuity greater than o. This argument can be repeated 
to show that A is a null geodesic and at each point x E A, d(p, x) has 
a discontinuity greater than o. This shows that A cannot have an end
point at p, since by proposition 4 .5 . 3 ,  d(p, x) is continuous on a local 
causality neighbourhood of p. On the other hand, A would be inextend
ible in JI - p and so if it did not have an endpoint at p, it would have 
to leave the compact set J+(p) n J-(q) by proposition 6 .4 .  7. This shows 
that d(p , q) is upper semi-continuous on %. D 

In the case that Al is open, one can easily construct the geodesic of 
maximum length from p to q by using the distance function. Let 
O/t c Al be a local causality neighbourhood of p which does not contain 
q and let x E J+(p) n J-(q) be such that d(p, r) + d(r, q) ,  r E cJti, is maxi
mized for r = x. Construct the future-directed geodesic y from p 
through x. The relation d(p, r) + d(r, q) = d(p, q) will hold for all points 
r on y between p and x. Suppose there were a point y E J-(q) - q which 
was the last point on y at which this relation held . Let "Y c Al be 
a local causality neighbourhood of y which does not contain q and 
let z E J+(y) n J-(q) n -f" be such that d(y, r) + d(r, q} ,  r E-f' ,  attains its 
maximum value d(y, q) for r = z . If z did not lie on y, then 

d(p, z) > d(p, y) + d(y, z) and d(p, z) + d(z , q) > d(p ,  q) 

which is impossible . This shows that the relation 

d(p, r) + d(r, q) = d(p, q) 
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must hold for all r E'y n  J-(q) . As J+(p) n J-(q) i s  compact, y must 
leave J-(q) at some point y .  Suppose y 9= q; then y would lie on a 
past-directed null geodesic .:\. from q. Joining y to .:\. would give a non
spacelike curve from p to q which could be varied to give a curve 
longer than d(p, q ) ,  which is impossible . Thus y is a geodesic curve 
from p to q of length d(p, q) . 0 

Corollary 
If Y is a 02 partial Cauchy surface, then to each point q E D+(Y) 
there is a future-directed timelike geodesic curve orthogonal to Y of 
length d(Y, q ) ,  which does not contain any point conjugate to Y 
between Y and q .  

By proposition 6 .5 .2 ,  H+(Y) and H-(Y) do not intersect Y and so are 
not in D(Y) . Thus D (Y ) = int D(Y) is globally hyperbolic by proposi
tion 6 .6 . 3 .  By proposition 6 .6 .6 ,  Y n J-(q) is compact and so d(p, q ) ,  
p EY, will attain its maximum value of d(Y, q) at some point r EY. 
There will be a geodesic curve y from r to q of length d(Y, q) which by 
lemma 4 .5 .5  and proposition 4 .5 . 9  must be orthogonal to Y and not 
contain a point conjugate to Y between Y and q .  0 

6.8 The causal boundary of space-time 

In this section we shall give a brief outline of the method of Geroch, 
Kronheimer and Penrose ( 1 972 )  for attaching a boundary to space
time . The construction depends only on the causal structure of (JI, g) .  

This means that i t  does not distinguish between boundary points at  a 
finite distance (singular points) and boundary points at infinity. In 
§ 8 . 3  we shall describe a different construction which attaches a bound
ary which represents only singular points . Unfortunately there does 
not seem to be any obvious relation between the two constructions. 

We shall assume that (1, g) satisfies the strong causality condition . 
Then any point p in (1, g) is uniquely determined by its chronological 
past J-(p) or its future J+(p} ,  i . e .  

J-(p) = J-(q) � J+(p) = J+(q) �p = q.  

The chronological past ii' = J-(p) of any point p E1 has the 
properties : 

( 1 )  ii' is open ; 
(2 )  ii' is a past set, i .e .  J-(11') c ii'; 
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(3 )  "/// cannot be expressed as the union of two proper subsets 
which have properties ( 1 )  and (2 ) .  

We shall call a set with properties ( 1 ) , ( 2 )  and (3 )  an indecomposable 
past set, abbreviated as IP. (The definition given by Geroch, Kron
heimer and Penrose does not include property ( 1 ) .  However it is 
equivalent to the definition given here, since by ' a  past set ' they mean 
a set which equals its chronological past, rather than merely con
taining it . )  One can define an IF, or indecomposable future set, similarly. 

One can divide IPs into two classes : proper IPs (PIPs ) which are 
the pasts of points in di, and terminal IPs (TIPs) which are not the 
past of any point in di. The idea is to regard these TIPs and the 
similarly defined TIFs as representing points of the causal boundary 
(c-boundary) of (di, g) .  For instance, in Minkowski space one would 
regard the shaded region in figure 47 ( i )  as representing the point p 
on .f+.  Note that in this example, the whole of di is itself a TIP and 
also a TIF. These can be thought of as representing the points i+ and i
respectively. In fact all the points of the conformal boundary of 
Minkowski space, except i0, can be represented as TIPs or TIFs . In 
some cases, such as anti-de Sitter space, where the conformal boundary 
is timelike, points of the boundary will be represented by both a TIP 
and a TIF (see figure 47 (ii ) ) .  

One can also characterize TIPs as  the pasts of future-inextendible 
timelike curves. This means that one can regard the past J-(y) of 
a future-inextendible curve y as representing the future endpoint of y 
on the c-boundary. Another curve y' has the same endpoint if and 
only if J-(y) = J-(y' ) .  

Proposition 6 .8 . 1 (Gerock, Kronheimer and Penrose) 
A set if/ is a TIP if and only if there is a future-inextendible timelike 
curve y such that J-(y) = if/. 

Suppose first that there is a curve y such that J-(y) = if/ . Let 
if/ = o/,/ U "Y where o/,/ and "Y are open past sets . One wants to show 
that either o/,/ is contained in "Y, or "Y contained in o/,/. Suppose that ,  
on the contrary, o/,/ i s  not contained in  "Y and "Y not contained in  o/,/. 
Then one could find a point q in o/,/ - "Y and a point r in "Y - o/,/. Now 
q, r E J-(y) ,  so there would be points q' , r' E y  such that q E J-(q' ) and 
r E J-(r' ) .  But whichever of o/,/ or "Y contained the futuremost of q' , r' 
would also contain both q and r, which contradicts the original defini
tions of q and r. 
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( i )  

( i i )  

T I P representing point p 

T H' representing 
point p 

- T I P  representing 
point p 

2 1 9  

FIGURE 4 7 .  Penrose diagrams of Minkowski space and anti-de Sitter space (cf. 
figures 15  and 20) ,  showing ( i )  the TIP representing a point p on J + in Minkowski 
space, and (ii)  the TIP and the TIF representing a point p on J in anti-de Sitter 
space.  

Conversely, suppose if'" is a TIP. Then one must construct a time
like curve y such that if'" = J-(y) .  Now if p is any point of if'", then 
if'" =  /-(if'" n J+(p) )  u /-(if'" - J+(p) ) .  However if'" is indecomposable, 
so either if'" = /-(if'" n J+(p) )  or if'" = /-(if'" - J+(p) ) .  The point p is 
not contained in /-(if'" - J+(p) ) ,  so the second possibility is eliminated . 
The conclusion may be restated in the following form : given any pair 
of points of if'", then if'" contains a point to the future of both of them . 
Now choose a countable dense family Pn of points of if'". Choose a point 
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q0 in ii" to the future of p0 • Since q0 and p1 are in ii'", one can choose 
a point q1 in ii'" to the future of both of them . Since q1 and p2 are in ii'", 
one can choose q2 in ii'" to the future of both of them, and so on . Since 
each point qn obtained in this way lies in the past of its successor, one 
can find a timelike curve y in ii'" through all the points of the sequence . 
Now for each point p E ii'", the set ii'" n J+(p)  is open and non-empty, 
and so it must contain at least one of the p,., since these are dense . 
But for each k, Pk lies in the past of qk, whence p itself lies in the past 
of y. This shows that every point of ii'" lies to the past of y, and so 
since y is contained in the open past set ii'", one must have 
ii'" = J-(y). D 

A A 
We shall denote by .A' the set of all IPs of the space (.A', g) . Then .A' 

represents the points of .A' plus a future c-boundary ; similarly, Jl, the 
set of all IFs of (.A', g) ,  represents .A' plus a past c-boundary. One can 
extend the causal relations I, J and E to Ji and vii in the following 
way. For each 0//, "Y c Ji, we shall say 

0// E J-("Y, A) if 0// c "Y, 

0// E J-(f, A) if 0// c J-(q) for some point q E "Y, 

O// E E-("Y, .fi) if O// E J-("Y, .fi) but not O// E I-("Y, vil) .  

With these relations, the IP-space Ji is a causal space (Kronheimer 
and Penrose ( 1 967 ) ) .  There is a natural injective map J- : .A' --?  Ji 
which sends the point p E .A'  into J-(p) E Ji. This map is an iso
morphism of the causality relation J- as p E J-(q) if and only if 
J-(p) E J-(J-(q) , Ji) . The causality relation is preserved by J- but not 
by its inverse, i . e .  p E I-(q) => J-(p) E J-(1-(q) , .A') .  One can define 
causal relations on .ii similarly. 

The idea now is to write Ji and .ii in some way to form a space .A'* 
which has the form .A' U � where � will be called the c-boundary of 
(.A', g) . To do so, one needs a method of identifying appropriate IPs 
and IFs . One starts by forming the space ,A'# which is the union of 
Ji and JI, with each PIF identified with the corresponding PIP. In 
other words, ,A'# corresponds to the points of .A' together with the 
TIPs and TIFs . However as the example of anti-de Sitter space shows, 
one also wants to identify some TIPs with some TIFs . One way of 
doing this is to define a topology on ,A'#, and then to identify some 
points of ,A'# to make this topology Hausdorff. 

As was mentioned in § 6 .4, a basis for the topology of the topological 
space .A' is provided by sets of the form J+(p) n J-(q) . Unfortunately 
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one cannot use a similar method to define a basis for the topology of 
JI# as there may be some points of JI# which are not in the chrono
logical past of any points of JI#. However one can also obtain a 
topology of vii from a sub-basis consisting of sets of the form J+(p) , 
J-(p) ,  vii - J+(p) and vlt - J-(p ) .  Following this analogy, Geroch, 
Kromheimer and Penrose have shown how one can define a topology 
on JI#. For an IF d E .L, one defines the sets 

dint = {r : r E ..Ii and r n d =!= 0 } , 
A 

and d0xt = {r : r E vll and r = J-(''fr) -:::;,. J+( 'fr) q: d}. 
For an IP PA E  ../i, the sets f,jint and f,jext are defined similarly. The 
open sets of JI# are then defined to be the unions and finite inter
sections of sets of the form dint, dext, f,jint and f,jext. The sets dint and 
fAint are the analogues in JI# of the sets J+(p) and J-( q) . If in particular 
d = J+(p) and r = J-(q) then j"' E dint if and only if q E  J+(p ) .  
However the definitions enable one also to  incorporate TIPS into 
dint. The sets d0xt and f,jext are the analogues of vii - J+(p)  and 
vlt - J-(q) . 

Finally one obtains vii* by identifying the smallest number of points 
in the space JI# necessary to make it a Hausdorff space . More precisely 
vii* is the quotient space Jt#/Rh where Rh is the intersection of all 
equivalence relations R c JI# x JI# for which Jt#/R is Hausdorff. 
The space vii* has a topology induced from JI# which agrees with the 
topology of vii on the subset vii of vii* .  In general one cannot extend 
the differentiable structure of vii to �. though one can on part of � in 
a special case which will be described in the next section. 

6.9 Asymptotically simple spaces 

In order to study bounded physical systems such as stars, one wants 
to investigate spaces which are asymptotically flat, i . e .  whose metrics 
approach that of Minkowski space at large distances from the system. 
The Schwarzschild, Reissner-Nordstrom and Kerr solutions are 
examples of spaces which have asymptotically flat regions .  As we saw 
in chapter 5, the conformal structure of null infinity in these spaces is 
similar to that of Minkowski space . This led Penrose ( 1 964, 1 965 b ,  
1 968) to adopt this as  a definition of a kind of asymptotic flatness . We 
shall only consider strongly causal spaces . Penrose does not make the 
requirement of strong causality. However it simplifies matters and im
plies no loss of generality in the kind of situation we wish to consider. 
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A t ime- and space-orientable space (Jt, g)  i s  said to be asymptotically 
simple if there exists a strongly causal space (Ji, g) and an imbedding 
8 :  Jt -+ Ji which imbeds .,II as a manifold with smooth boundary o.,11 
in Ji, such that : 

( 1 )  there is a smooth (say ea at least) function n on Ji such that on 
8(.,/1), n is positive and Q2g = {}*(g)  (i . e .  g is conformal to g on 8(.,/1) ) ;  

(2 )  on o.,11, Q = 0 and d Q  =!= O ;  
(3 )  every null geodesic in  .,II has two endpoints on  o.,11. 
We shall write .,II u a.,11 = Ji. 
In fact this definition is rather more general than one wants since 

it includes cosmological mod�ls, such as de Sitter space . In order to 
restrict it to spaces which are asymptotically flat spaces, we will say 
that a space (Jt, g) is asymptotically empty and simple if it satisfies 
conditions ( 1 ) ,  (2 ) ,  and (3 ) ,  and 

( 4) Rob = 0 on an open neighbourhood of oJt in Ji. (This condition 
can be modified to allow the existence of electromagnetic radiation 
near o.,/I) . 

The boundary o.,11 can be thought of as being at infinity, in the 
sense that any affine parameter in the metric g on a null geodesic in .,II 
attains unboundedly large values near o.,11. This is because an affine 
parameter v in the metric g is related to an affine parameter v in the 
metric g by dv/dv = n-2. Since Q = O at a.,11, f dv diverges .  

From conditions (2 )  and (4) i t  follows that the boundary o.,11 i s  a 
null hypersurface . This is because the Ricci tensor flab of the metric 

Yob is related to the Ricci tensor Rab of Yab by 

flab = n-2Rab - 2Q-l( Q) 1ac!lbc + { - n-1n1cd + 3g-2n1c il1d}gcd8ab 

where I denotes covariant differentiation with respect to !lab · Thus 

fl = n-2 R - 6n-1n1cdgcd + 3g-2n1c n,dgcd. 
Since the metric !lab is ea, fl is e1 at a.,11 where n = o. This implies 
that Q1c Q1dgcd = 0. However by condition ( 2 ) ,  Q1c =!= 0. Thus Q1cgcd is 
a null vector, and the surface o.,11 (Q  = 0) is a null hypersurface. 

In the case of Minkowski space, o.,11 consists of the two null surfaces 
J+ and J-, each of which has the topology R1 x 82. (Note that it does 
not include the points i0, i+ and i- since the conformal boundary is not 
a smooth manifold at these points . )  We shall show that in fact o.,11 has 
this structure for any asymptotically simple and empty space. 

Since o.,11 is a null surface, .,II lies locally to the past or future of it . 
This shows that o.,11 must consist of two disconnected components : 
J+ on which null geodesics in Jt have their future endpoints, and J-
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on which they have their past endpoints. There cannot be more than 
two components of oJI, since there would then be some point p EJI 
for which some future-directed null geodesics would go to one com
ponent and others to another component . The set of null directions 
at p going to each component would be open, which is impossible, 
since the set of future null directions at p is connected. 

\Ve next establish an important property. 

Lemma 6 .9 . 1 

An asymptotically simple and empty space (JI, g) is causally simple . 

Let ii' be a compact set of JI. One wants to show that every null 
geodesic generator of j+(il') has past endpoint at ii'". Suppose there 
were a generator that did not have endpoint there . Then it could not 
have any endpoint in JI, so it would intersect f-, which is im
possible . D 

Proposition 6 .9 . 2 
An asymptotically simple and empty space (JI, g) is globally 
hyperbolic. 

The proof is similar to that of proposition 6 . 6 . 7 .  One puts a volume 
element on JI such that the total volume of JI in this measure is unity. 
Since (JI, g)  is causally simple, the functions J+(p) ,  J-(p)  which are 
the volumes of J+(p) ,  J-(p) are continuous on JI. Since strong causality 
holds on JI, J+(p) will decrease along every future-directed non
spacelike curve . Let ,\ be a future-inextendible timelike curve . Sup
pose thatff = n J+(p) was non-empty. Then ff would be a future set 

p eA 
and the null generators of the boundary of ff in JI would have no past 
endpoint in JI. Thus they would intersect f-, which again leads to 
a contradiction. This shows that j+(p) goes to zero as p tends to the 
future on A. From this it follows that every inextendible non-spacelike 
curve intersects the surface .'¥!' = {p :  J+(p) = J-(p)}, which is therefore 
a Cauchy surface for JI. D 

Lemma 6 .9 . 3  
Let ii' be  a compact set of  an asymptotically empty and simple space 
(JI, g) . Then every null geodesic generator of f+ intersects j+(if', A) 
once, where · indicates the boundary in ..ii. 
Let p E ,\, where ,\ is a null geodesic generator of .F +. Then the past set 
(in JI) J-(p, A) n JI must be closed in JI, since every null geodesic 
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generator of  its boundary must have future endpoint on J+ at p.  
Since strong causality holds on  vii, JI - J-(p, A) will be  non-empty. 
Now suppose that A were contained in J+(if/, A) . Then the past set 
n (J-(p, A) n JI) would be non-empty. This would be impossible, 

pe.:I. 
since the null generators of the boundary of the set would intersect J + . 
Suppose on the other hand that A did not intersect J+(if/ , A) . Then 
JI - U (J-(p, A) n JI) would be non-empty. This would again lead 

pe .:I. 
to a contradiction, as the generators of the boundary of the past set 

U (J-(p, A) n JI) would intersect J+. D 
pe.:I. 

Corollary 
J+ is topologically R1 x (j+(if/, A) n a.JI) . 

We shall now show that J + (and J-) and JI are the same topologically 
as they are for Minkowski space . 

Proposition 6 .9 .4 (Gerock ( 1 9 7 1 ) )  
In  an asymptotically simple and empty space (JI, g ) ,  J+ and J- are 
topologically R1 x 82, and JI is R4• 
Consider the set N of all null geodesics in JI. Since these all intersect 
the Cauchy surface JI', one can define local coordinates on N by the 
local coordinates and directions of their intersections with JI'. This 
makes N into a fibre bundle of directions over JI' with fibre 82• How
ever every null geodesic also intersects J+. Thus N is also a fibre 
bundle over J+. In this case, the fibre is 82 minus one point which 
corresponds to the null geodesic generator of J+ which does not enter 
JI. In other words, the fibre is R2• Therefore N is topologically 
J+ x R2. However J+ is R1 x (j+(if/, A) n a.JI) .  This is consistent 
with N >::i JI'::, 82 only if JI' >::i R3 and J+ >::i R1 x 82• D 

Penrose ( 1 965 b) has shown that this result implies that the Weyl 
tensor of the metric g vanishes on J + and J-. This can be interpreted 
as saying that the various components of the Weyl tensor of the 
metric g ' peel off' ,  that is, they go as different powers of the affine 
parameter on a null geodesic near J+ or J-. Further Penrose ( 1 963) , 
Newman and Penrose ( 1 968) have given conservation laws for the 
energy-momentum as measured from J+, in terms of integrals on J+. 

The null surfaces J+ and J- form nearly all the c-boundary � of 
(JI, g) defined in the previous section . To see this, note first that any 
point p EJ+ defines a TIP J-(p, A) n JI. Suppose A is a future-
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inextendible curve in JI. If .,\ has a future endpoint at p E J+, then the 
TIP J-(.,\) is the same as the TIP defined by p. If A does not have a 
future endpoint on J+, then JI - J-(.,\) must be empty, since if it were 
not, the null geodesic generators of 1-(.,\) would intersect J+ which is 
impossible as .,\ does not intersect J+. The TIPs therefore consist of 
one for each point of J+, and one extra TIP, denoted by i+, which is 
JI itself. Similarly, the TIFs consist of one for each point of J-, and 
one, denoted by i-, which again is JI itself. 

One now wants to verify that one does not have to identify any 
TIPs or TIFs, i . e .  that vii!/ is Hausdorff. It is clear that no two TIPs 
or TIFs corresponding to J+ or J- are non-Hausdorff separated. If 
p E J+ then one can find q E JI  such that p fj= J+(q, Ji) . Then 

(J+(q, Ji))ext is a neighbourhood in JI# of the TIP J-(p , Ji) n JI, and 
(J+(q, Ji) )int is a disjoint neighbourhood of the TIP i+. Thus i+ is 
Hausdorff separated from every point of J +. Similarly it is Hausdorff 
separated from every point of J-. Thus the c-boundary of any 
asymptotically simple and empty space (JI, g) is the same as that of 
Minkowski space-time, consisting of J+, J- and the two points i+, i-. 

Asymptotically simple and empty spaces include Minkowski space 
and the asymptotically flat spaces containing bounded objects such as 
stars which do not undergo gravitational collapse . However they do 
not include the Schwarzschild, Reissner-Nordstrom or Kerr solutions, 
because in these spaces there are null geodesics which do not have 
endpoints on J+ or J-. Nevertheless these spaces do have asympto
tically flat regions which are similar to those of asymptotically empty 
and simple spaces . This suggests that one should define a space (JI, g)  

to be weakly asymptotically simple and empty if  there is  an asymp
totically simple and empty space (JI', g')  and a neighbourhood o/,/' of 
ovlt' in JI' such that o/,/' n JI' is isometric to an open set o/,/ of JI. This 
definition covers all the spaces mentioned above . In the Reissner
Nordstrom and Kerr solutions there is an infinite sequence of asymp
totically flat regions o/,/ which are isometric to neighbourhoods o/,/' of 
asymptotically simple spaces. There is thus an infinite sequence of 
null infinities J+ and J-. However we shall consider only one asymp
totically flat region in these spaces . One can then regard (JI, g) as 
being conformally imbedded in a space (Ji, g) such that a neighbour
hood o/,/ of ovlt in Ji is isometric to o/,/'. The boundary ovlt consists of 
a single pair of null surfaces J + and J-. 

We shall discuss weakly asymptotically simple and empty spaces 
in § 9 . 2  and § 9 . 3 .  



7 
The Cauchy problem in General Relativity 

In this chapter we shall give an outline of the Cauchy problem in 
General Relativity .  We shall show that, given certain data on a space
like three-surface !/', there is a unique maximal future Cauchy 
development D+(f/') and that the metric on a subset Oil of D+(f/') 
depends only on the initial data on J-(Olt) n !/'. We shall also show 
that this dependence is continuous if Oil has a compact closure in D+(f/') . 
This discussion is included here because of its intrinsic interest, 
because it uses some of the results of the previous chapter, and because 
it demonstrates that the Einstein field equations do indeed satisfy 
postulate (a) of § 3 .2  that signals can only be sent between points that 
can be joined by a non-spacelike curve . However it is not really needed 
for the remaining three chapters, and so could be skipped by the 
reader more interested in singularities . 

In § 7 . 1 ,  we discuss the various difficulties and give a precise formu
lation of the problem. In § 7 . 2  we introduce a global background 
metric g to generalize the relation which holds between the Ricci 
tensor and the metric in each coordinate patch to a single relation 
which holds over the whole manifold. We impose four gauge conditions 
on the covariant derivatives of the physical metric g with respect to 
the background metric g. These remove the four degrees of freedom 
to make diffeomorphisms of a solution of Einstein's equations, and 
lead to the second order hyperbolic reduced Einstein equations for g 
in the background metric g. Because of the conservation equations, 
these gauge conditions hold at all times if they and their first deriva
tives hold initially. 

In § 7 . 3  we show that the essential part of the initial data for g on 
the three-dimensional manifold !/' can be expressed as two three
dimensional tensor fields hab, xab on !/'. The three-dimensional mani
fold !/' is then imbedded in a four-dimensional manifold vii and a 
metric g is defined on !/' such that hab and xab become respectively the 
first and second fundamental forms of!/' in g. This can be done in such 
a way that the gauge conditions hold on !/'. In § 7 .4 we establish some 

[ 226 ] 
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basic inequalities for second order hyperbolic equations. These relate 
integrals of squared derivatives of solutions of such equations to their 
initial values. These inequalities are used to prove the existence and 
uniqueness of solutions of second order hyperbolic equations. In § 7 . 5  
the existence and uniqueness of  solutions of  the reduced empty space 
Einstein equations is proved for small perturbations of an empty space 
solution. The local existence and uniqueness of empty space solutions 
for arbitrary initial data is then proved by dividing the initial surface 
up into small regions which are nearly flat, and then joining the 
resulting so lutions together. In § 7 .6 we show there is a unique maximal 
empty space solution for given initial data and that in a certain sense 
this solution depends continuously on the initial data. Finally in §7 .  7 we 
indicate how these results may be extended to solutions with matter. 

7.1  The nature of the problem 

The Cauchy problem for the gravitational field differs in several 
important respects from that for other physical fields. 

( 1 )  The Einstein equations are non-linear. Actually in this respect 
they are not so different from other fields, for while the electromagnetic 
field, the scalar field , etc . ,  by themselves obey linear equations in a given 
space-time, they form a non-linear system when their mutual inter
actions are taken into account. The distinctive feature of the gravita
tional field is that it is self-interacting : it is non-linear even in the 
absence of other fields . This is because it defines the space-time over 
which it propagates. To obtain a solution of the non-linear equations 
one employs an iterative method on approximate linear equations 
whose solutions are shown to converge in a certain neighbourhood of 
the initial surface. 

( 2 )  Two metrics g1 and g2 on a manifold JI are physically equivalent 
if there is a diffeomorphism <f> :  JI ...+ JI which takes g1 into g2 
( </> * g1 = g2) ,  and clearly g1 satisfies the field equations if and only if g2 
does. Thus the solutions of the field equations can be unique only up to 
a diffeomorphism. In order to obtain a definite member of the equiva
lence class of metrics which represents a space-time, one introduces 
a fixed ' background ' metric and imposes four ' gauge conditions ' ·  on 
the covariant derivatives of the physical metric with respect to the 
background metric .  These conditions remove the four degrees of 
freedom to make diffeomorphisms and lead to a unique solution for 
the metric components . They are analogous to the Lorentz condition 
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which is imposed to remove the gauge freedom for the electromagnetic 
field. 

(3)  Since the metric defines the space-time structure, one does not 
know in advance what the domain of dependence of the initial surface 
is and hence what the region is on which the solution is to be deter
mined. One is simply given a three-dimensional manifold .9 with 
certain initial data w on it, and is required to find a four-dimensional 
manifold .,II, an imbedding 0: .9 � .,II and a metric g on .,II which 
satisfies the Einstein equations, agrees with the initial values on 0(.9) 
and is such that 0(.9) is a Cauchy surface for .,II. We shall say that 
(.,II, 0, g) ,  or simply .,II, is a development of (.9, w) .  Another develop
ment (.,II' ,  O' ,  g') of (.9, w)  will be called an extension of .,II if there is 
a diffeomorphism et of .,II into .,II' which leaves the image of .9 point
wise fixed and takes g' into g ( i .e .  0-1et-10' = id on .9, and et * g' = g) .  
We shall show that provided the initial data w satisfies certain 
constraint equations on .9, there will exist developments of (.9, w) and 
further, there will be a development which is maximal in the sense 
that it is an extension of any development of (.9, w ) .  Note that by 
formulating the Cauchy problem in these terms we have included the 
freedom to make diffeomorphisms, since any development is an 
extension of any diffeomorphism of itself which leaves the image of .9 
pointwise fixed. 

7·2 The reduced Einstein equations 

In chapter 2, the Ricci tensor was obtained in terms of coordinate 
partial derivatives of the components of the metric tensor. For the 
purposes of this chapter it will be convenient to obtain an expression 
that applies to the whole manifold .,II and not just to each coordinate 
neighbourhood separately. To this end we introduce a background 
metric g as well as the physical metric g. With two metrics one has to 
be careful to maintain the distinction between covariant and contra
variant indices. (To avoid confusion, we shall suspend the usual con
ventions for raising and lowering indices . )  The covariant and contra
variant forms of g and g are related by 

gabg _ �a _ 11ab11 
be - u c - 'II 'llbc · ( 7 . 1 )  

It will b e  convenient to take the contra variant form gab of the metric 
to be more fundamental and the covariant form gab as derived from it 
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by ( 7 . 1 ) . Using the alternating tensor fj abcd defined by the background 
metric ,  this relation can be expressed explicitly as 

- 1 d I ii (d ) A .Cl gab - 3 ! g" g" g et g '1/acei 'lbdfi '  ( 7 . 2 )  

where (det g)-1 = � gabgcdg"fgiifjaceifjbdfi 4 .  

i s  the determinant of the components of gab in a basis which is ortho
normal with respect to the metric g .  

The difference between the connection r defined b y  g and the con-" 
nection r defined by g is a tensor, and can be expressed in terms of the " 
covariant derivative of g with respect to r (cf § 3 .3 ) : 

orabc = rabc - f'abc 

= !gii1k (gbi gcigak _ gbi okc oa; - gci okb oa;) ,  ( 7 . 3 )  

where we have used a stroke to  denote covariant differentiation with " 
respect to r and the symbol 0 to denote the difference between 
quantities defined from g and g. Then from ( 2 . 20) , 

Thus 
oRab = ordab,d - ordadlb + ordab ore

de _ ord
ae ore

bd· ( 7 .4 ) 

o(Rab - !gab R) = gaigbioRij + 2ogi<agbli Rij - ogaiogbi Rij 
- !ogab R - !gab( ogii Ri1 + gii oRi1) 

= !giiogabl ii - gi<aifrb>1 i + !gab(ifr\ - gcdgiiog"dlii) 

+ {terms in og"dli and og"I ) ,  ( 7  . 5 )  

ifrb = gbclc - !gbcgdegdelc = (det g )-l ( (det g) gbc) lc = (det g )-l�bclc ( 7 . 6 )  

and �be = (det g ) og00• 
The plan is now as follows. We choose some suitable background 

metric g and express the Einstein equations in the form 

Rab _ !Rgab = o(Rab _ !Rgab) + Rab _ l�abR = 8TTTab. ( 7 . 7 )  

One regards this as  a second order non-linear set of  differential equa
tions to determine g in terms of the values of it and its first derivatives 
on some initial surface . Of course to complete the system one has to 
specify the equations governing the physical fields which make up the 
energy-momentum tensor pab. However even when this is done one 
does not have a system of equations which uniquely determines the 
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time development in terms of the initial values and first derivatives. 
The reason for this is, as was mentioned above, that a solution of the 
Einstein equations can be unique only up to a diffeomorphism. In 
order to obtain a definite solution one removes this freedom to make 
diffeomorphisms by imposing four gauge conditions on the covariant 
derivatives of g with respect to the background metric g. We shall use 
the so-called ' harmonic ' conditions 

ijib = cpbclc = 0 

which are analogous to the Lorentz gauge conditions Ai ; i = 0 in 
electrodynamics. With this condition one obtains the reduced Einstein 
equations 

giicpablii + (terms in cpcdle and cpab) = 1 67TTab - 2R,ab + gab R. ( 7  . 8 )  

We shall denote the left-hand side of  ( 7 . 8) by Eabcd(cpcd) ,  where Eabcd is 
the Einstein operator . For suitable forms of the energy-momentum 
tensor Tab these are second order hyperbolic equations for which we 
shall demonstrate the existence and uniqueness of solutions in § 7 . 5 .  
We still have to  check that the harmonic conditions are consistent 
with the Einstein equations. That is to say : we derived ( 7 . 8) from the 
Einstein equations by assuming that cpbclc was zero . We now have to 
verify that the solution that ( 7 . 8 )  gives rise to does indeed have this 
property. To do this, differentiate ( 7 . 8) and contract. This gives an 
equation of the form 

( 7 . 9) 

where a semi-colon denotes differentiation with respect to g, and the 
tensors Bcbi and Ccb depend on gab, R,abcd• gab and gable ·  Equations ( 7 . 9 )  
may be  regarded as  second order linear hyperbolic equations for ifib. 
Since the right-hand side vanishes, one can use the uniqueness 
theorem for such equations (proposition 7 . 4 .5)  to show that ifib will 
vanish everywhere if it and its first derivatives are zero on the initial 
surface. We shall see in the next section that this can be arranged by 
a suitable diffeomorphism. 

We still have to show that the unique solution obtained by imposing 
the harmonic gauge condition is related by a diffeomorphism to any 
other solution of the Einstein equations with the same initial data . 
This will be done in § 7 .  4 by making a special choice of the background 
metric. 
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7 .3  The initial data 

As ( 7 . 8) is a second order hyperbolic system it seems that to determine 
the solution one should prescribe the values of gab and u®ic uc on the 
initial surface 0(.9) , where uc is some vector field which is not tangent 
to 0(.9) .  However not all these twenty components are significant or 
independent : some can be given arbitrary initial values without 
changing the solution by more than a diffeomorphism, and others have 
to obey certain consistency conditions. 

Consider a diffeomorphism µ : JI  -+ JI  which leaves 0(.9) pointwise 
fixed. This will induce a map µ* which takes gab at p E 0(.9) into a new 
tensor µ . gab at p .  If na E T* p is orthogonal to 0(.9) (i .e .  na va = 0 for 
any va e TP tangent to 0(.9) ) and normalized so that naOabnb = - 1  
then, by suitable choice ofµ, naµ * gab can be made equal to any vector 
at p which is not tangent to 0(.9) . Thus the components nagab are not 
significant. On the other hand as µ leaves 0(.9) pointwise fixed, the 
induced metric hab = ()*gab on .9 will remain unchanged . It is therefore 
only this part of g which lies in 0(.9) which need be given to determine 
the solution . The other components nagab can be prescribed arbitrarily 
without changing the solution by more than a diffeomorphism. 
Another way of seeing this is to recall that we formulated the Cauchy 
problem in terms of certain data on a disembodied three-manifold .9 
and then looked for an imbedding into some four-manifold JI. Now 
on .9 itself one cannot define a four-dimensional tensor field like g but 
only a three-dimensional metric h, which �e shall take to be positive 
definite . The contravariant and covariant forms of h are related by 

( 7 . 1 0) 

where now 8a c is a three-dimensional tensor in [/. The imbedding () will 
carry hab into a contravariant tensor field ()*

hab on 0(.9) which has 
the property ( 7 . 1 1 )  

As nagab is arbitrary, one may now define g on 0(.9) by 

gab = o. hab _ uaub, ( 7 . 1 2 )  
where ua i s  any vector field on 0(.9) which i s  nowhere zero or  tangent 
to 0(.9) . Defining gab by ( 7 . 1 ) , one has : 

hab = ()*gab • na gab = - na uaub, gab ua ub 
= - 1 . ( 7  . 1 3 )  

Thus hab i s  the metric induced on .9 by g and ua is the unit vector 
orthogonal to 0(.9) in the metric g.  
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The situation with the first derivatives gab1cue is similar : nagab1eue 

can be given any value by suitable diffeomorphisms .  However there is 
now an additional complication in that gable depends not only on g but 
also on the background metric g on JI. In order to give a description 
of the significant part of the first derivative of g in terms only of tensor 
fields defined on !/', we proceed as follows. We prescribe a symmetric 
contravariant tensor field xab on !/'. Under the imbedding xab is 
mapped into a tensor field o. xab on 0(9') . We require that this is 
equal to the second fundamental form (see § 2. 7) of the submanifold 
0(9') in the metric g. This gives 

o. xab = o. haeo. hbd(uegec) ; d 
= 0 * hacO * hbd( (uegec) ld - of1ed uegef ) . 

Using ( 7 . 3 ) ,  one has 

o. xab = 10 . hacO* hbd( - gei gdj giilkuk + gbi ui1e + gci ui1b ) .  

This may be  inverted to  give gable ue i n  terms of  0 * Xab : 

}gable u
e = - 0 * Xab + 0 * hac 0 * hbdgiceui1d> + u<a Wb>, 

( 7  . 14) 

(7 . 1 5) 

( 7 . 1 6 )  

where Wb i s  some vector field on  0(9') . It  can be  given any required 
value by a suitable diffeomorphism µ. 

The tensor fields hab and Xab cannot be prescribed completely 
independently on !/'. For multiplying the Einstein equations ( 7 . 7 )  by 
na, one obtains four equations which do not contain gabledueud, the 
second derivatives of g out of !/'. Thus there must be four relations 
between gab, gab1eue and na Tab . Using (2 . 36 )  and (2 . 35 ) ,  they can be 
expressed as equations in the three-manifold !/' :  

XCd1 1d hce - XCd1 1ehcd = 8110* (Tde ud) ,  

!(R' + (Xdchdc )2 - xabXCdhac hba) = 8110*(Tde udue ) , 

( 7  . 1 7 )  

( 7  . 1 8)  

where a double stroke I I  denotes covariant differentiation in !/' with 
respect to the metric h, and R' is the curvature scalar of h. 

The data w on !/'  that is required to determine the solution therefore 
consists of the initial data for the matter fields (in the case of a scalar 
field <fa for example, this would consist of two functions on !/' repre
senting the value of <fa and its normal derivative) and two tensor fields 
hab and Xab on !/' which obey the constraint equations (7 . 1 7- 1 8 ) .  These 
contraint equations are elliptic equations on the surface !/' which 
impose four constraints on the twelve independent components of 
(hab, xab) .  In such situations, one can show one can prescribe eight of 
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these components independently and then solve the constraint equa
tions to find the other four, see e .g .  Bruhat ( 1 962) . We shall call a pair 
(9', w) satisfying these conditions, an initial data set . We then imbed .9' 
in some suitable four-manifold ...It with metric g and define gab on 
8(9') by ( 7 . 1 2 )  for some suitable choice of ua . We shall take ua to be 
gabnb . Thus it will be the unit vector orthogonal to 8(9') in both the 
metric g and g. We shall also exploit our freedom of choice of wa in 
the definition of gabicuc by (7 . 1 6) to make ifrb zero on 8(9') . This requires 

Wb = - gbcl d gee(} * hed + !gcdifd1e(} * heb 

+ ub(gcd (} * x:d - gic uild (} * hcd) .  ( 7 . 1 9 ) 

(Note that all the derivatives in ( 7 . 1 9) are tangent to 8(9') as is required 
by the fact that the fields involved have been defined only on 8(9') . )  To 
ensure that ifrb vanishes everywhere one also needs ifrb1c ii,c to be zero 
on 8(9') . However this now follows from the constraint equations 
providing the reduced Einstein equations ( 7 . 8 )  hold on 8(9') . One 
may therefore proceed to solve ( 7 . 8 )  as a second order non-linear 
hyperbolic system on the manifold ...It with metric g.  

(Note that there are 10 such equations for the <f>'s ;  in proving the 
existence of solutions of these 10 equations we do not split them into 
a set of constraint equations and a set of evolution equations, and so 
the question as to whether the constraint equations are conserved does 
not arise . )  

7.4 Second order hyperbolic equations 

In this section we shall reproduce some results on second order 
hyperbolic equations given in Dionne ( 1 962) . They will be generalized 
to apply to a whole manifold, not just one coordinate neighbourhood. 
These results will be used in the following sections to prove the exist
ence and uniqueness of developments for an initial data set (9', w). 

"\Ve first introduce a number of definitions. We use Latin letters to 
denote multiple contravariant or covariant indices ; thus a tensor of 
type (r, s) will be written as KI J , and we denote by I l l = r the number 
of indices that the multiple index I represents . We introduce a positive 
definite metric eab on ...It and define 

eIJ = eab ecd . . .  epq • eIJ = eabecd . • . ePQ, .._____...... 
r times r times 
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where I I I  = I J I  = r. We then define the magnitude I KIJ I  (or simply, 
I K I )  as (KIJ KLM eIL eJM)l where repeated multiple indices imply 
contraction over all the indices they represent. We define I DmKIJ I 
(or simply, I DmK I ) to be IKIJIL I  where IL i  = m and as before, I indi
cates covariant differentiation with respect to g. 

Let .% be an imbedded submanifold of .,{( with compact closure 
in Jt. Then II KI J• .Atllm is defined to be 

L�o f % 
( I DPKIJ l )2 du}1 , 

where du is the volume element on .% induced by e .  We also define 
l l K, .Atl lm to be the same expression where the derivatives are taken 
only in directions tangent to .%. Clearly, l l K , .% 1 1 ,\' ;;i: l l K, .Atllm· 

The Sobolev spaces Wm(r, s, .%) (or simply Wm(JV ) )  are then defined 
to be the vector spaces of tensor fields KIJ of type (r, s) whose values 
and derivatives (in the sense of distributions) are defined almost every
where on .% (i .e .  except, possibly, on a set of measure zero ; for the 
rest of this section ' almost everywhere ' is to be understood almost 
everywhere) and for which l l KIJ , .Atllm is finite . With the norms 

, .Atl lm the Sobolev spaces are Banach spaces in which the cm tensor 
fields of type (r, s) form dense subsets . If e' is another continuous posi
tive definite metric on Jt then there will be positive constants C1 and 
C2 such that 

C1 I KIJ I � I KIJ I ' � C2 I KIJ I on .%, 

and C1 l l KIJ , .%Tim � l l KIJ, .AITim
' � C2 l l KIJ, .%�n· 

Thus I I , .Atllm' will be an equivalent norm. Similarly another Cm 
background metric g' will give an equivalent norm. In fact it follows 
from two lemmas given below that if g" E Wm(JV ) and 2m is greater 
than the dimension of.%, then the norm obtained using the covariant 
derivatives defined by g" is again equivalent . 

We now quote three fundamental results on Sobolev spaces. The 
proofs can be derived from results given in Sobolev ( 1 963) .  They 
require a mild restriction on the shape of.%. A sufficient condition will 
be that for each point p of the boundary o.% it should be possible to 
imbed an n-dimensional half cone in Y with vertex at p, where n is 
the dimension of .% . In particular this condition will be satisfied if 
the boundary o.% is smooth. 
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Lemma 7 .4 . 1 
There is a positive constant P1 (depending on .%, e and g) such that 
for any field KIJ E Wm(.Af ) with 2m > n, where n is the dimension of.%, 

!K l ::::;; P1 l l K, .% l lm on .%. 

From this and the fact that the vector space of all continuous fields 
KIJ on .% is a Banach space with norm sup ! K l , it follows that if 

.,.,. 
KIJ E Wm(.Af ) where 2m > n, then KIJ is continuous on .%. Similarly 
if KIJ E wm+P(.Af ), then KIJ is GP on .%. 

Lemma 7 .4 .2  
There is  a positive constant P2 (depending on .%, e and g) such that 
for any fields KI J> LP Q E wm(.Af) with 4m � n, 

From this and the previous lemma it follows that if n ::::;; 4 and 2m > n, 
then for any two fields KIJ, LP Q E Wm(.Af ) ,  the product KIJ LP Q is 
also in wm(.Af ) .  

Lemma 7 .4 .3  
If.%' is  an (n - 1 ) -dimensional sub manifold smoothly imbedded in .%, 
there is a positive constant P3 (depending on .%, .%',  e and g) such 
that for any field KI J E wm+l(.Af ) ,  

We shall prove the existence and uniqueness of  developments for 
(9', w) when hab E W4+a(9') and xab E W3+a(9') where a is any non
negative integer. (If 9' is non-compact, we mean by hab E Wm(9') that 
hab E Wm(.Af ) for any open subset .% of 9' with compact closure . )  
A sufficient condition for this i s  that hab be Q4+a and Xab be ca+a on 9'; 
by lemma 7 .4 . 1 ,  a necessary condition i s  that hab be  c2+a and xab be 
QI+a. The solution obtained for gab will belong to W4+a(Jf') for each 
smooth spacelike surface Jt' and so the (2 + a )th derivatives will be 
bounded, i .e .  gab will be c<2+a)- on 1. 

These differentiability conditions can be weakened to cases such as 
shock waves where the solution departs from W4 behaviour on well
behaved hypersurfaces ; see Choquet--Bruhat ( 1 968) ,  Papapetrou and 
Hamoui ( 1 967) , Israel ( 1 966) ,  and Penrose ( 1 97 2a) .  However no proof 
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is known for cases in which such departures occur generally. The W4 
condition for the existence and uniqueness of developments is an 
improvement on previous work (Choquet-Bruhat ( 1 968) )  but it is 
somewhat stronger than one would like since the Einstein equations 
can be defined in a distributional sense if the metric is continuous and 
its generalized derivatives are locally square integrable ( i .e .  if g is C0 

and W1) .  On the other hand any WP conditions for p less than 4 would 

Jff (t ' ) 

'ft 
FIGURE 48. O/I is an open set with compact closure in the manifold ,,/(= £ x R1• 
O/I+ is the region of O/t for which t � 0 and O/l(t') is the region of O/t between t = 0 
and t = t' > 0. 

not guarantee the uniqueness of geodesics, or, for p less than 3, their 
existence . Our own view is that these differences of differentiability 
conditions are not important since as explained in § 3 . 1 ,  the model for 
space-time may as well be taken to be C00• 

In order to prove the existence and uniqueness of developments we 
now establish some fundamental inequalities (lemmas 7 .4 .4  and 7 .4 .6 )  
for second order hyperbolic equations, in a manner similar to that of 
the conservation theorem in § 4 .3 .  

Consider a manifold ..Ji of the form .Yt' x R1 where .Yt' is a three
dimensional manifold. Let O/I be an open set of .Awith compact closure 
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which has boundary oo/I and which intersects £(0) ,  where Jif'(t) 
denotes the surface .;if' x {t}, t E R1. Let o//+ and o/l(t' ) denote the parts 
of o/I for which t ;;:;: 0 and t' ;;:;: t ;;:;: 0 respectively (figure 48) .  On o/I + let 
g be a 02- background metric and let e be a 01- positive definite 
metric .  We shall consider tensor fields KI J which obey second order 
hyperbolic equations of the form 

L(K) =: AabKIJiob + BaPIQJ KQ
Pla + OPIQJKQp = FIJ, ( 7 . 20) 

where A is a Lorentz metric on o//+ (i .e . a symmetric tensor field of 
signature + 2 ) ,  B, C and F are tensor fields of type indicated by their 
indices, and I denotes covariant differentiation with respect to the 
metric g.  

Lemma 7 .4 .4  

If  ( 1 )  oo/I n Oii + is achronal with respect to  A, 

( 2 )  there exists some Q1 > 0 such that on O'ii
+ 

and 

Aabtla tlb � - Ql 

Aab� m ;;:;: Q1 eob� m  

for any form W which satisfies Aabt1am = 0, 
( 3 )  there exists some Q2 such that on O'ii

+ 

then there exists some positive constant P4 (depending on o//, e, g, 
Q1 and Q2) such that for all solutions KI J of (7 . 20) ,  

l l K, £(t) n o//+ 1 1 1 � P4{ l l K, £(0) n o//+ 1 1 1 + l l F, o//(t) \ i o} · 

One forms the ' energy tensor ' sab for the field KI J in analogy to the 
energy-momentum tensor of a scalar field of unit mass (§ 3 .2 ) : 

Sab = {(AacAbd - !AabAcd) KIJlcKPQld - !AobKIJ KPQ} eJQeIP. ( 7 . 2 1 )  

The tensor Sab obeys the dominant energy condition ( § 4 . 3 )  with 
respect to the metric A ( i . e .  if W a is timelike with respect to A then 
Sab� m ;;:;:  O and Sab� is non-spacelike with respect to A) . Moreover 
by conditions (2 )  and (3 )  there will be positive constants Q3 and Q4 
such that 

( 7 . 22 )  

We now apply lemma 4 .3 . 1 to sab, taking o/I + as the compact region � 
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and using the volume element dv and covariant differentiation defined 
by the metric g :  

I _ sabt,a dub � f _ sabt,a dub 
Jf'(t) n <W + Jf'(O) n <W + 

+ ft {f _ (PSabt1a + Sabia) dub} dt' ( 7 .23 )  
0 Jf'(t') n <W + 

where P is a  positive constant independent of Sab. (The sign has been 
changed in the first term on the right-hand side since the surface 
element dub of the surface £(t) is taken to have the same orientation 
as t1b , i .e .  dub = t 1b du where du is a positive definite measure on £(t) . ) 
Since e and g are continuous there will be positive constants Q5 and Q6 
such that on <:W + ( 7 . 24) 

where dcr is the area element on £(t) induced by e .  Thus by ( 7 . 22)  
and ( 7  .23)  there is some Q7 such that 

l l K, £(t) n oU+ l l 12 � Q7 { l l K, £(0) n oU+ll 12 

+I� l l K, £(t' ) n oU + 11 12 dt' +I� (Sablb tia dcr) dt' } . ( 7  . 25)  

By ( 7 . 20) ,  
sablb = Aa.cKIJlc FP Q eJQezp + (terms quadratic in KIJ and 

KP Q lc with coefficients involving Acd, Acd1e, 
flcdef, BcPIQJ and QPIQJ) · ( 7 . 26) 

Since the coefficients are all bounded on oU +• there is some Q8 such that 

sablb tla � Qs{ I F l 2 +  IK l 2 + IDK l 2}. 
Thus there is some Q9 such that, from (7 .25)  and ( 7 . 27 ) ,  

l l K, £(t) n oU+l l 12 � Qe{ l l K, £(0) n oU+ l l 12 

+ J� l l K, £(t' ) n  oU+ l l 12 dt ' + l l F, oU(t) l l o2} . 
This is of the form dx/dt � Q9{x + y}, 

where x(t) = J� l l K, £(t' ) n oU+ l l 12 dt' . 

Therefore x � eQ•t f; e-Q.t'y(t' ) dt' . 

( 7  . 27 )  

( 7  . 28)  

(7 . 29) 
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Since y is a monotonically increasing function of t and since t is 
bounded on qt+• there is some Q10 such that 

x ::::; Q10Y· 
Thus J J K, .Yl'(t) n oU+ l l i ::::; P4{ J J K, .Yl'(O) n oU+ ll i + I J F, oU(t) J J 0} , where 

P4 = (Qs + Q10)l . 0 
With this inequality one can immediately prove the uniqueness of 
solutions of second order hyperbolic equations which are linear, i .e .  
for which A, B,  C and F do not depend on K. For suppose KlI J and 
K2IJ were solutions of the equation L(K) = F which had the same 
initial values and first derivatives on .Yl'(O) n oU. Then one can apply 
the above result to the equation L(K1 - K2) = 0 and obtain 

J J K1 - K2, .Yl'(t) n oU+ ll i  = 0. 
Therefore K1 = K2 on qt+· One has thus 

Proposition 7 .4 .5  
Let A be a 01- Lorentz metric on Ji and let B,  C,  and F be locally 
bounded. Let £' c JI be a three-surface which is spacelike and acausal 
with respect to A. Then if1"' is a set in D+(.Yf','.A) ,  the solution on 1"' of 
the linear equation ( 7 . 20) is uniquely determined by its values and 
the values of its first derivatives on £' n J-(1"', A) . 

By proposition 6 . 6 . 7 ,  D+(.Yf', A) is of the form £' x R1• If q E 1"°, then 
by proposition 6 . 6 .6 ,  J-(q) n J+(.Yf') is compact and so may be taken 
for qt+· 0 

Thus a physical field obeying a linear equation of the form ( 7 . 20) will 
satisfy the causality postulate (a) of § 3 . 2  provided the null cone of A 
coincides with or lies within the null cone of the space-time metric g.  

In order to prove the existence of solutions of the equations ( 7  .20 )  
we shall need inequalities for higher order derivatives of K. We shall 
now take the background metric g to be at least cs+a where a is a non
negative integer and we shall take oU to be such that .Yl'(O) n qt has 
a smooth boundary and such that there is a diffeomorphism 

A. :  (.Yl'(O) n  qt) x [0, t1] � qt+ 
which has the property that for each t E [O, t1] , 

A.{(.Yl'(O) n qt) , t} = .Yl'(t) n qt+ · 
We do this so that there shall be upper bounds P1 , P2 and P3 to the 
constants P1 , P2 and P3in lemmas 7 .4 . 1-7 .4 . 3  for the surface .Yl'(t) n oU + · 



240 T H E  C A U C H Y  P R O B L E M  [7 .4 

Lemma 7 .4 .6  
If conditions ( 1 )  and (2 )  of lemma 7 .4 .4  hold and if 

(4) there is some Q3 such that 

l l A, Olt+ l l Ha < Qa, l l B , O//+ l l a+a < Qa, l l C , Olt+ ll a+a < Qa 
(by lemma 7 .4. 1 ,  this implies condition (3 ) ) ,  then there exist positive 
constants P6, a (depending on 0//, e, g, a, Q1 and Q3) such that 

l l K, £(t) n Olt+ ll 4+a � P5, a{ l l K, £(O) n Olt+l l 4+a + l l F, O//(t) l l a+a} ·  ( 7 . 30) 

From lemma 7 .4 .4 one has an inequality for l l K, £(t) n O//+ l ! i - To obtain 
an inequality for l l K, £(t) n 0//+ 1 1 2 one forms the ' energy ' tensor Sab 
for the first derivatives KI J/c and proceeds as before . The divergence 
sablb can now be evaluated by differentiating equations ( 7 .20) : 

sablb = AadKIJ/cd FP Q /e eeceJQeIP + (terms quadratic in KIJ, 
KIJ/c and KIJ/cd with coefficients involving Acd, 
Acd Ac Ac BcPI BcPI QPI le• .lt de/• .tt def/u• QJ• QJ/d• QJ 

and QPIQJ/d) · ( 7 . 3 1 )  

With the possible exceptions of BcPI QJ/d and QPI QJ,d• these coefficients 
are all bounded on o/i + in the case a = 0. When integrated over the 
surface £(t' ) n O/t +• the term in (7 . 3 1 )  involving BcPI QJld is -f AabKIJ/cbBdPRQS/eKBR/d eceeQJepi dua. ( 7 .32 ) 

.1t'(l') n 'lf  + 

There is some Q4 such that for all t' , ( 7  . 32 )  is less than or equal to 

Q4f I DB I  jDK I  j D2K I du 
.1t'(l') n <If +  

By lemma 7 . 4 . 2 ,  
� !Q4J ( j D2K j 2 + j DB l 2 I DKj 2) dcr. ( 7 .33 )  

.11'(1') n 'If +  

f I DB l 2 I DK l 2 dcr � P22 l l B, £(t' )  n O//+ l l 22 l l K, £(t' ) n 0//+ 1 1 22 • .1t'(I') n 'If + 

where, by condition (4) and lemma 7 .4 .3 ,  l l B , £(t' )  n 0//+ 1 1 2 < l\Q3• 
The term involving QPIQJ/d can be bounded similarly. Thus by lemma 
4 .3 . 1 there is some constant Q6 such that f ( j D2K j + j DK j 2) dcr � Q5 {J ( I D2K l 2 + j DK j 2) dcr 

Jf"(I) n 'If + .11'\0) n ft + 

+f 1 

l l K, £(t' ) n O//+ l l 22 dt' +J I DF j 2 dcr} . ( 7 . 34) 
0 'W(I) 
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By lemma 7 .4 .4 ,  

f I K l 2 du :::;; l lK, .n"(t) n oU+l l 12 .1t'(t) n 'II + 
:::;; 2Pl{l l K, .n"(O) n O// l l 12 + l l F, O//(t) l l o2} . ( 7 . 35) 

Adding this to ( 7 . 34 ) ,  one obtains 

I J K, .n"(t) n O/t + l l  22 :::;; Q6 { l l K, .n"(O) n oUJ l  22 

+ J� l l K, .n"(t' )  n O//+ l l 22 dt' + l l F, O//(t) l l 12} . ( 7 . 36) 

where Q6 = Q5 + 2P4• By a similar argument to that in lemma 7 .4 .4 ,  
there is some constant Q7 such that 

From lemma 7 .4 . 1 it now follows that on O/t +• 

I K I :::;; f>1 Q7{ I J K, .n"(O) n  oUl l 2 + J I F, O//(t) l l o} · ( 7 . 38) 

Using this one may proceed in a similar way to establish an inequality 
for l l K, .n"(t) n oU+ l l a · The divergence of the ' energy ' tensor now gives 
a term of the form 

Q8f ( I D3K J 2 + I D2B l 2 I DK l 2) du . ( 7 . 39) Jf"(t') n tff+ 
By lemma 7 .4 .2  the second term above is bounded by 

Qs f>22 l l B ,  .n"(t' )  n O//+ l l s2 l l K, .n"(t' ) n oU+ l l 22, 

where by condition (4 ) ,  I J B , .n"(t) n O//+ l l s is defined for almost all 
values of t ' and is square integrable with respect to t ' . Thus one can 
obtain an inequality for l l K, .n"(t) n oU+ l l s in the same manner as for 
J I K, .n"(t) n 0//+ 1 1 2 . The procedure for higher order derivatives is 
similar. 

Corollary 
There exist constants P6, a and P7, a such that 

I J K, .n"(t) n O//+ l l Ha :::;; Pa, a{ l l K, .n"(O) n oUITHa 
- -

+ IJ KIJla ua, £(0) n O// l l s+a + II F, oU+ l l a+a} , 
and J I K, Oll+ J l 4+a :::;; P., a{ditto}, 

D 

where ua is some Q3+a vector field on £(0) which is nowhere tangent 
to £(0) . 
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By (7 .20) ,  the second and higher derivatives of K out of the surface 
£'(0) may be expressed in terms of F and its derivatives out of £'(0) ,  
KI Jla ua and derivatives of K in the surface £'(0) . By lemma 7 .4 . 3 ,  

l l A, £'(0) n Oltll a+a < Pa Qa, 

l l B, £'(0) n oUll 2+a < P3 Q3, 

l l C, £'(0) n oUll 2+a < Pa Qa, 

l l F, £'(0) n oUll 2+a < Pa l l F, Olt+ l l a+a · 
Thus there will be some constant Q4 such that 

- -

( 7 .40) 

+ l l KI Jla ua, £'(0) n Oltl l a+a + l l F, Olt+l l a+a} · ( 7 . 4 1 )  

The second result follows immediately, since t is bounded on Olt + · D 

We can now proceed to prove the existence of solutions of linear 
equations of the form (7 . 20) . We first suppose that the components of 
A, B, C, F, u and g are analytic functions of the local coordinates 
x1 , x2, x3 and x4 (x4 = t ) on a coordinate neighbourhood "f/' and take the 
initial data KI J = 0KIJ and KI J la ua = 1KI J to be analytic functions 
of the coordinates x1, x2 and x3 on £'(0) n "f/'. Then from ( 7 . 20) one can 
calculate the partial derivatives o2(KI J)/ot2, o3(KI J)/ot2 oxi, ()3(KI J)/ot3, 
etc. of the components of K out of the surface £'(0) in terms of 
derivatives of 0K and 1K in £'(0) . One can then express KIJ as a formal 
power series in x1, x2, x3 and t about the origin of coordinates p. By the 
Cauchy-Kowaleski theorem (Courant and Hilbert ( 1 962) ,  p. 39) this 
series will converge in some ball "f/'(r) of coordinate radius r to give a 
solution of ( 7 . 20) with the given initial conditions. One now selects 
an analytic atlas from the 000 atlas of JI, covers £'(0) n O/i with co
ordinate neighbourhoods of the form "f/'(r) from this atlas, and in each 
coordinate neighbourhood constructs a solution as above . One thus 
obtains a solution on a region Olt(t2) for some t2 > 0. One then repeats 
the process using £'(t2) . By the Cauchy-Kowaleski theorem, the ratio 
of successive intervals of t for which the power series converges is 
independent of the initial data and so the solution can be extended to 
the whole of Olt + in a finite number of steps .  This proves the existence 
of solutions of linear equations of the form (7 . 20) when the coefficients, 
the source term and the initial data are all analytic. We shall now 
remove the requirement of analyticity. 
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Proposition 7 .4. 7 
If conditions ( 1 ) ,  (2 )  and (4) hold and if 

(5 )  F E  W3+a(''ll+) , 
( 6 )  oK E  W4+a(.Jf' (O) n qt), 1K E wa+apt"(O) n qt), 

then there exists a unique solution K E  W4+a(Cilt +) of the linear equation 
( 7 . 20) such that on Jf'(O) , KIJ = 0KIJ and KIJlaua = 1KIJ ·  

We prove this result by approximating the coefficients and initial data 
by analytic fields and showing that the analytic solutions obtained 
converge to a field which is a solution of the given equations with the 
given initial conditions. Let An (n = 1 ,  2, 3, . . .  ) be a sequence of 
analytic fields on qt+ which converge strongly to A in W4+a(Cilt +) · (An is 
said to converge strongly to A in Wm if I I An - A l lm converges to zero . )  
Let Bn, en  and F n be analytic fields on qt+ which converge strongly 
to B, e and F respectively in wa+a(Cilt+) , and let 0Kn and 1Kn be analytic 
fields on Jf'(O) n qt which converge strongly to 0K and 1K in 
W4+a(Jf'(O) n Cil/) and W3+a(Jf'(O) n Cil/) respectively. For each value 
of n there will be an analytic solution Kn to ( 7 . 20) with the initial 
values Kn I J = oKnI J • Kn I Jla ua = 1KnI J · By the corollary to lemma 
7 .4 .6 ,  I I Kn, Cilt+ l l Ha will be bounded as n --'>- 00. Therefore by a theorem 
of Riesz ( 1 955) there will be a field K E  W4+a(Cilt+) and a subsequence 
Kn' of the Kn such that for each b , 0 � b � 4 + a, DbKn' converges 
weakly to DbK. (A sequence of fields Jn I J on .Al is said to converge 
weakly to JI J if for each 0"' field JI J • 

f .,,v 1/J JJr dCT --'>-f 
.,,v

]IJ JJr du.) 
Since An, Bn and en converge strongly to A, B and e in W3(Cilt+) , 

sup l A - An l , sup l B - Bn l and sup l e - en l will converge to zero . 
Thus Ln.(Kn') will converge weakly to L(K) . But Ln.(Kn') is equal to F n' 
which converges strongly to F. Therefore L(K) = F. On Jf'(O) n qt 
Kn,IJ and KnlJ1aua will converge weakly to KIJ and KIJlaua which 
must therefore be equal to 0KIJ and 1KIJ respectively. Thus K is a 
solution of the given equation with the given initial conditions. By 
proposition 7 .4 .5  it is unique . Since each Kn satisfies the inequality in 
lemma 7 .4 . 6, K will satisfy it also. D 
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7.5 The existence and uniqueness of developments for the 

empty space Einstein equations 

We shall now apply the results of the previous section to the Cauchy 
problem in General Relativity. We shall first deal with the Einstein 
equations for empty space (Tab = 0) ,  and shall discuss the effect of 
matter in § 7 . 7 .  

The reduced Einstein equations 

Eabcd(<jJcd) = g17pab _  (Jlab _  lflDab) ( 7 .42)  

are quasi-linear second order hyperbolic equations. That is ,  they have 
the form ( 7 . 20) where the coefficients A, B and C are functions of 
K and DK (actually, in this case Aab = gab is a function of <jJab and 
not of <jJab1c) · To prove the existence of solutions of these equations we 
proceed as follows . We take some suitable trial field <jJ'ab and use this 
to determine the values of the coefficients A, B and C in the operator E. 
Using these values we then solve ( 7 .42) as a linear equation with the 
prescribed initial data and obtain a new field <jJ"ab . We thus have a 
map a which takes r/J' into r/J", and we show that under suitable condi
tions this map has a fixed point (i .e .  there is some <P such that 
a(r/J) = r/J) . This fixed point will be the desired solution of the quasi
linear equation. 

We shall take the background metric g to be a solution of the empty 
space Einstein equations and choose the surfaces dF(t) n o/i + and 
00/I n o/i+ to be spacelike in g. Then by lemma 7 .4 . 1 there will be some 
positive constants <Ja such that if for some value of a ;;:i: 0 

( 7 .43) 

then the coefficients A' ,  B'  and C' determined by </J' satisfy conditions 
( 1 ) ,  (2 )  and (4) of lemma 7 .4 .6  for given values of Q1 and Q3• From 
( 7 . 4 1 )  one then has 

l l r/J", °"+ll 4+a � �. a{ l l or/J, £'(o) n diiW4+a + l l 1r/J, £'(o) n diiWa+a}· 
Thus the map a :  W4+a(oU+) -+ WHa(oU+) will take the closed ball W(r) 
of radius r (r < Qa) in WHa(oU+) into itself provided that 

l i orfo, £'(0) n diiIT4+a � !r P1, a -l 

and l l 1r/J, £'(0) n o/iil a+a � !rP1, a-1 • ( 7 . 44) 

We shall show that a has a fixed point if ( 7 .44) holds and if r is 
sufficiently small . 
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Suppose cp1' and cp2' are in W(r) . The fields cp1" = a(cp1' ) and 
cp2" = a(cp2' ) satisfy Ei' (c/Ji" ) = 0, E2' (c/Jn = 0 where Ei' is the 
Einstein operator with coefficients Ai' , Bi' and Ci' determined by c/Ji' . 
Thus (7 .45 )  

Since the coefficients Ai' , Bi' and Ci' depend differentiably on <Pi' and 
De/Ji' for cp1' in W(r) ,  there will be some constant Q4 such that on qt+ 

IA'i - A'2 I  � Q;1 lc/J'i - 4''2 I , } 
I B' i - B' 2 1  � Q;1( 14'' i - cp' 2 1  + I Dc/J' i - Dcp' 2 1 ) ,  
I C'i - C'2 I  � Q;1( l c/J'i - 4''2 I + IDc/J'i - Dc/J'2D ·  

Therefore by lemmas 7 .4 . 1 and 7 .4 .6, 

( 7 .46) 

I (E' i - E' 2) (</>" 2) 1 � 3rQ4Pi Pi� P&, a( l c/J' i - cp' 2 1  + !Dr/>' i - Dcp' 2D ·  
We now apply lemma 7 . 4 . 4  to  (7 .45) to  obtain the result 

where Q5 is some constant independent of r. Thus for sufficiently 
small r, the map a will be contracting in the I I I i i norm (i .e .  
I I a( c/Ji) - a( cp2) I I  i < 1 1 4'1 - c/J2l l i) and the sequence an( cp' i) will converge 
strongly in wi(O//+) to some field cp. But by the theorem of Riesz some 
subsequence of the an(cp' i) will converge weakly to some field 
cf, E W(r) . Thus cp must equal cf, and so be in W(r) . Therefore a(cp) will 
be defined. Now 

As n -+ oo, the right-hand side tends to zero. This implies that 
l l a(cp) - cp, O//+ l l i = 0 and so that a(cp) = cp. Since the map a is con
tracting the fixed point is unique in W(r) . We have therefore proved : 

Proposition 7 . 5 . 1 
If g is a solution of the empty space Einstein equations, the reduced 
empty space Einstein equations have a solution cp E  WHa(O/J+) if 
l l 0c/J, .n"(O) n qjlfHa and l l ic/J, .n"(O) n q/lis+a are sufficiently small. 
l l c/J, .n"(O) n q/+ l l Ha will be bounded and so cp will be at least C<2+a>-. D 

This solution will be locally unique even among solutions which are 
not in W4(0//+) · 

9 H L S  
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Proposition 7 .5 . 2  
Let tf, be a 01- solution of  the reduced empty space Einstein equations 
with the same initial data on an open set 'f" c £"(0) n tW. Then tf, = </> 
on a neighbourhood of 'f" in tW+. 

Since tf, is continuous one can find a neighbourhood tW' of 'f" in tW such 
that the conditions of lemma 7 .4 .4  hold for A, B and C. As before one 
has 

E(t/, - </>) = - (E - E) (</>) .  ( 7 .48) 

Similarly there will be some Q6 such that 

l i (E - E) (cf>) , .?f"(t ) n tW� ll o � Qsl l 4' - <f>, £"(t) n 1W� l l 1 · 

Applying lemma 7 .4 .4  to (7 .48) one obtains an inequality of the form 

dx/dt � Q7 x, 

where X = f� 1 1 4' - <f>, £"(t' ) n q/� l l 1 dt' . 

Therefore tf, = </> on <:ft� • D 

Proposition 7 . 5 . 1 shows that if one makes a sufficiently small 
perturbation in the initial data of an empty space solution of the 
Einstein equations one obtains a solution in a region tW + · What one 
wants however is to prove the existence of developments for any initial 
data hab and xab which satisfy the constraint equations on a three
manifold !/'. To do this we proceed as follows . We take JI to be R4, 
e to be the Euclidean metric and g to be the flat, Minkowski metric 
(this is a solution of the empty space Einstein equations) .  In the usual 
Minkowski coordinates x1, x2, x3 and x4 (x4 = t) we take tW to be such 
that otW n <:ft+ is spacelike and £"(0) n <:ft consists of the points for 
which (xl ) 2 + (x2)2 + (x3)2 � 1 ,  x4 = 0. The idea now is that any metric 
appears nearly flat if looked at on a fine enough scale . Therefore if one 
maps a sufficiently small region of !/' onto £"(0) n <:ft, one can use 
proposition 7 .5 . 1 and obtain a solution on tW+· We then repeat this for 
other portions of !/' and join up the resulting solutions to form a 
manifold JI with metric � which is a development of (!/', w) . 

Let � be a coordinate neighbourhood in !/' with coordinates y1 , y2 
and y3 such that at p, the origin of the coordinates, the coordinate 
components of hab equal oab. Let � (/1 ) be the open ball of coordinate 
radius /1 about p .  Define an imbedding 01 : "Yi.(f1 ) -+  tW by xi = f1 -lyi 
(i = 1 ,  2, 3 ) ,  x4 = 0. By the usual law of transformation of a basis, the 
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components of (}* hab and O* xab with respect to the coordinates {x} are 
/1 -2 times the components of hab and xab with respect to the co
ordinates {y} . We define new fields h'ab and x'ab on � by h'ab = /12 hab 
and x'ab = /13 Xab . Then since h is continuous (in fact 02+a) on Y' one 
can make g'ab _ fjab and g'ab1eue arbitrarily small on ..n"'(O) n o/,! by 
taking /1 sufficiently small, where g'ab and g'able ue are defined from 
h'ab and x'ab in the manner of § 7 . 3 . The derivatives of g'ab and g'able uc 
in the surface £(0) will also become smaller as /1 is made smaller . 
Thus l l o</>' ,  £(0) n .:W]4+a and 1 1 1</> ' , £(0) n .:W�a+a can be made small 
enough that proposition 7 .5 . 1  can be applied and a solution for </>' 
obtained on o/,! + · Then g'f = /1 -2 g'ab will be a solution of the reduced 
Einstein equations with the initial data determined by hab and xab . 
Similarly one can obtain a solution on o/,! _, the part of o/,! on which t � 0. 

One can now cover Y' by coordinate neighbourhoods �(Ja.) of the 
form �(/1 ) , map them by imbeddings ea. to neighbourhoods o/,!a. of the 
form o/,! and obtain solutions ga.ab on o/,!a.· The problem now is to 
identify suitable points in the overlaps to make the collection of the 
o/,! a. into a manifold with a metric g. To do this we make use of the 
harmonic gauge condition 

,/,be _ gbc lgbeg gdc - O 't' l e - le - 2 de le - • ( 7 . 49)  
By the definition ( 7 . 3 ) of 8rabc •  this is equivalent to gde 8rbde = 0. 
Therefore for any function z, 

( 7 . 50) 

If the background metric is the Minkowski metric and z is one of the 
Minkowski coordinates x1 , x2, x3 and x4, the right-hand side of ( 7 . 50) 
will vanish. Suppose now one has an arbitrary W4+a Lorentz metric g 
on a manifold JI. In some neighbourhood 1!!I c Jt one can find four 
solutions z1 , z2 , z3 and z4 of the linear equation 

( 7 . 5 1 )  
which are such that their gradients are linearly independent at each 
point of 1!!1 . We may then define a diffeomorphism µ :  1!!1 --+ .Ji  by 
xa = za (a = 1 , 2, 3, 4) .  This diffeomorphism will have the property 
that the metric µ* gab on .Ji will satisfy the harmonic gauge condition 
with respect to the Minkowski metric g on J/. Thus if the metric g is 
a solution of the Einstein equations on Jt, the metric µ* g will be 
a solution of the reduced Einstein equations on viwith the background 
metric g. 

9-2 
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The procedure to identify points in the overlap between two neigh

bourhoods O//"' and O/lp is therefore to solve ( 7 . 5 1 )  on O/I"' for the coordi
nates x/, xp2 , x/ and x/ using the initial values for Xpa and x/1bub 
determined by the overlap of the coordinate neighbourhoods 'f';. and 
"l'p on Y'. In fact x/1aua = 0 (i = 1 ,  2 , 3) and x/1aua = 1 where 
ua = of ox"' a is the unit vector in 0//"' orthogonal to £'(0) in the metric g.  
Thus x/ = x"' 4 though x/ will not in general be  equal to xai · By proposi 
tion 7 . 4 . 7 .  the coordinates Xpa will be Q<2+a)- functions on O/I"'. (In 
proposition 7 .4. 7 the background metric with respect to which the 
covariant derivatives are taken has to be Q<s+a>-. Thus it cannot be 
applied directly to ( 7 . 5 1 ) ,  since the covariant derivatives are taken 
with respect to g, which is only W4+a. However one can introduce 
a os+a background metric g and express ( 7 . 5 1 )  in the form 

Z! l abg"'
b + Z1 1aBa = 0, 

where I I indicates covariant differentiation with respect to g .  Proposi
tion 7 . 4 . 7  can then be applied to this equation . )  

Since the gradients o f  Xpa are linearly independent on£'(0) n O//"', 
they will be linearly independent on some neighbourhood O//""' of 
£'(0) in O//"' .  The metric µ* g�b will be at least 01- on µ(O/l"a) in 
0// p· Since it will obey the reduced empty space Einstein equations 
on 0// p in the background metric g and since it has the same initial data 
on (} p('f';. n "l'p), it must coincide with gp on some neighbourhood 0// p' of 
Op('f';. n "l'p) in O/lp. This shows that one may join together O//""' and O/l'p 
to obtain a development of the region 'f';. U "l'p of Y'. Taking the 
covering {'f';.} of Y' to be locally finite, one may proceed in a similar 
fashion to join together the subsets of the other neighbourhoods {O//a} 
to obtain a development of Y', i .e .  a manifold JI with a metric g and 
an imbedding 0 :  Y' -+ JI  such that g satisfies the empty space Einstein 
equations and agrees with the prescribed initial data w on O(Y') , which 
is a Cauchy surface for JI. If (JI' , �') is another development of (Y', w) 
one can by a similar procedure establish a diffeomorphism µ between 
some neighbourhood of (}' (Y'' )  in JI' and some neighbourhood of O(Y') 
in JI such that µ* g'ab = gab . We have therefore proved : 

The local Cauchy development theorem 
If hab E WHa (Y') and xab E wa+a(Y') satisfy the empty space constraint 
equations there exist developments (JI, g) for the empty space 
Einstein equations such that � E  W4+a(JI) and � E  W4+a (£7) for any 
smooth spacelike surface £'. These developments are locally unique 
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in that if (vii' ,  g') is another W4+a development of (9", w) then (vii, g) 
and (1', g') are both extensions of some common development of 
(9", w) . 

That g E  W4+a(.n") follows from lemma 7 . 4 . 6  since the surfaces of 
constant t can be chosen arbitrarily . D 

7.6 The maximal development and stability 

We have shown that if the initial data satisfied the empty space 
constraint equations one can find a development, i . e .  one can construct 
a solution some distance into the future and past of the initial surface . 
In general, this development can be extended further into the future 
and past to give a larger development of (9", w). However we shall 
show by an argument similar to that of Choquet-Bruhat and Geroch 
( 1 969) that there is a unique (up to a diffeomorphism) development 
(1, g) of (9", w) which is an extension of any other development 
of (9", w) . 

Recall that (11, g1)  is an extension of (12, g2) if there is an imbed
ding µ :  vll2 -+ 11 such that µ* g2 = g1, and such that 01-1µ02 is the 
identity map on 9". Given a point q E9", and a distance s one can 
uniquely determine points p1 E 11 and p2 E 12 by going a distance s 

along the geodesics orthogonal to 01 (9") and 02(9") through 01(q) and 
02(q) respectively. Since µ(p2) must equal pv the imbedding µ must be 
unique . One can therefore partially order the set of all developments 
of (9', w), writing (12, g2) ::::; (11, g1) if (1v g1) is an extension of 
(12, g2) .  If now {(1,.,  g,.)} is a totally ordered set (a set d is said to be 
totally ordered if for every pair a, b of distinct elements of d, either 
a ::::; b or b ::::; a) of developments of (9', w) , one can form the manifold 
1' as the union of all the 1,. where for (1,.,  g,,) ::::; (1p, gp) each 
Pa E 1,. is identified with µ,.p(P,.) E 1p, where µ,.p : J(,_ -+  1p is the 
imbedding. The manifold 1' will have an induced metric g' equal to 
µ,.* g,. on each µ,.(1,.) where µ,. : 1,. -+ 1' is the natural imbedding. 
Clearly (1', g' )  will also be a development of (9', w) ; therefore every 
totally ordered set has an upper bound, and so by Zorn's lemma (see , 
for example , Kelley ( 1 965) ,  p .  33) there is a maximal development 
(vii, g) of (9', w) whose only extension is itself. 

We shall now show that (vii, g) is an extension of every development 
of (9', w) . Suppose (1' ,  g' )  is another development of (9', w) . By the 
local Cauchy theorem, there exist developments of (9', w) of which 
(vii, g) and (1' ,  g ' )  are both extensions. The set of all such common 
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developments i s  likewise partially ordered and so again by Zorn's 
lemma there will be a maximal development (..,/t", g" ) with the imbed
dings fi :  ..,/(" -+ vii and µ' : ..,/(" -+ ..,/(', etc. Let ..,/(+ be the union of 
vii, .,I(' and ..,/(", where each p" E ..,/(" is identified with fi (p") E vii and 
µ' (p" )  E ..,/(' .  If one can show that the manifold ..,/(+ is Hausdorff, the 
pair (..,/t+, g+) will be a development of (.9', w). It will be an extension 
of both (vii, g) and (..,/t', g ' ) .  However the only extension of (vii, g) is 
(vlt, g) itself, and so (vii, g) must equal (..,/t+, g+) and be an extension 
of (..,/t', g ' ) .  

Suppose that ..,/(+ were not Hausdorff. Then there exist points 
p E (fi(..,/t") )  · c vii and p' E (µ' (..,/t") )  · c ..,/(' such that every neighbour
hood iJlf of p has the property that µ'(P,-1(01.t) ) contains p' .  Now since 
(..,/t", g") is a development, it will be globally hyperbolic as will its 
image fi(..,/t") in vii. Therefore the boundary of fi.(..,/t") in vii must be 
achronal . Let y be a timelike curve in vii with f�ture endpoint at p. 
Then p' must be a limit point in ..,/(' of the curve µ'P,-1(y) . In fact it 
must be a future endpoint, since strong causality holds in (..,/t', g' ) .  
Thus the point p' i s  unique, given p. Further, by continuity vectors 
at p' can be uniquely associated with vectors at p. Thus one can find 
normal coordinate neighbourhoods tfi of p in Ji and Ulf' of p' in ..,/(' such 
that under the map µ' µ-1 points of iii n fi(..,/t") are mapped into points 
of Ulf' n µ'(..,/t") with the same coordinate values. This shows that the 
set §" of all ' non-Hausdorff' points of (fi(..,/t") ) "  is open in (ji(..,/t") ) " .  
\Ve shall suppose that§" is non-empty, and so obtain a contradiction . 

If X is a past-directed null geodesic in Ji through p e ffe, then since 
one can associate directions atp with directions atp' , one can construct 
a past-directed null geodesic ,\' through p' in ..,/(' in the corresponding 
direction . To each point of A n (fi(..,/t") ) "  there will correspond a point 
of ,\' n (µ' (..,/t") )  · and so every point of X n (fi(..,/t") ) · will be inffe. Since 
0(.9') is a Cauchy surface for .Ji, X must leave (ji(..,/t") )  · at some point ij. 
There will be some point r E ff in a neighbourhood of ij such that there 
is a spacelike surface :ii through r which has the property that 
(.ft - r) c fi(..,/t") .  There will be a corresponding spacelike surface 
£' = (µ'µ-1 (.if - r) )  u r' in ..,/(' through the corresponding point r' . 
The surfaces £ and £' may be regarded as images of a three
dimensional manifold £ under imbeddings f: £-+.]t and 
ifr' : £ -+ ..,/(' such that f-1jiµ'-1ifr' is the identity map on £ - f-1(p ) .  
The induced metrics f *(g)  and ifr' * (g' )  on £ will agree since .it - p 
and £' - p' are isometric .  By the local Cauchy theorem, they will be 
in W4+a(£) .  Similarly the second fundamental forms will agree and 
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be in wa+a(£') .  Neighbourhoods of :it in .,'i and £' in .,II' would be 
W4+a developments of £. By the local Cauchy theorem they must be 
extensions of the same common development (.,II*,  g* ) .  Joining 
(.,II* ,  g*)  to (.,II", g") one would obtain a larger development of (9', w ) , 

of which (.,,'i , g)  and (.,II' ,  g ' )  would be extensions . This is impossible, 
since (.,II", g") was the largest such common development . This shows 
that .,II+ must be Hausdorff, and so that (.,,'i, g) must be an extension 
of (.,II' ,  g ' ) .  

We have therefore proved : 

The global Cauchy development theorem 
If hab E W4+a(9') and xab E wa+a(.9') satisfy the empty space constraint 
equations, there exists a maximal development (..,/1, g) of the empty 
space Einstein equations with g E  W4+a(..,tt) and g E  W4+a(Je) for any 
smooth spacelike surface £. This development is an extension of any 
other such development. 

We have so far only proved that this development is maximal among 
W4+a developments . If a is greater than zero, there will also be 
W4+a-1, W4+a-2, . . .  , W4 developments which are extensions of the 
W4+a development . However, Choquet-Bruhat ( 1 9 7 1 )  has pointed out 
that these developments must all coincide with the W4 development . 
This is because one can differentiate the reduced Einstein equations 
and then regard them as linear equations on the W4 development, for 
the first derivatives of gab . Then using proposition 7 .4 .  7 one can show 
that gab is W5 on the W4 development, if the initial data is W5. By 
continuing in this way, one can show that if the initial data is C00, there 
will be a C00 development which will in fact coincide with the W4 
development . 

We have proved the existence and uniqueness of maximal develop
ments only for W4 or higher metrics . In fact, it is possible to prove the 
existence of developments for W3 initial data, but we have not been 
able to prove the uniqueness in this case . It may be possible to extend 
the W4 maximal development either so that the metric does not remain 
in W4, or so that 0(9') does not remain a Cauchy surface . In the latter 
case, a Cauchy horizon occurs ; examples of this were given in 
chapter 6 .  On the other hand it may be that some sort of singularity 
occurs, in which case the development cannot be extended with a 
metric which is sufficiently differentiable to be interpreted physically . 
In fact, theorem 4 of the next chapter will show that if 9' is compact 
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and x®hab is negative everywhere on !/, then the development cannot 
be extended to be geodesically complete with a c2- metric, i .e .  with 
locally bounded curvature . 

We have shown there is a map from the space of pairs of tensors 
(hab, xab) on !/ which satisfy the constraint equations to the space of 
equivalence classes of metrics g on a manifold vii, which, by proposi
tion 6 .6 .8 ,  is diffeomorphic to !/ x R1• If two pairs (hab, xab) and 
(h'ab, x'ab) are equivalent under a diffeomorphism ,\ :  !/ -+!/ ( i .e .  
"* hab = h'ab and "* xab = x'ab) they will produce equivalent metrics g. 
We thus have a map from equivalence classes of pairs (hab, Xab) to 
equivalence classes of metrics g. NOW hab and xab together have twelve 
independent components . The constraint equations impose four rela
tions between these, and the equivalence under diffeomorphisms may 
be regarded as removing a further three arbitrary functions, leaving 
five independent functions . One of these functions may be regarded as 
specifying the position of O(!/) within the development (vii, g) . There
fore maximal developments of the empty space Einstein equations 
are specified by four functions of three variables. 

One would like to show that the map from equivalence classes of 
(hab, xab) to equivalence classes of g is continuous in some sense . The 
appropriate topology on the equivalence classes for this is the 
wr compact-open topology (cf. § 6 .4) .  Let g be a Cr Lorentz metric on vii 
and '=PI be an open set with compact closure . Let V be an open set in 
Wr(t=Pt) and let O(t=P/, V) be the set of all Lorentz metrics on vii whose 
restrictions to '=PI lie in V. The open sets of the wr compact open 
topology on the space .fl;,(vll) of all wr Lorentz metrics on vii are 
defined to be the unions and finite intersections of sets of the form 
O( U, V) . The topology of the space .fl;,*(vll) of equivalence classes of 
wr metrics on vii is then that induced by the projection 

'TT : .!l;,(vll) -+ �*(vii) 

which assigns a metric to its equivalence class ( i .e .  the open sets of 
.fl;,*(vll) are of the form 1T(Q) where Q is open in .fl;,(vll) ) .  Similarly the 
wr compact open topology on the space Qr(!/) of all pairs (hab, xab) 
which satisfy the constraint equations is defined by sets of the form 
O(t=P/, V, V' )  consisting of the pairs for which hab E V and xab E V' where 
V and V' are open sets in Wr(!/) and wr-1(!/) respectively . The C00 
metrics on vii form a subspace .:t'00 (vll) of the space .:t' (vii) of all 
Lorentz metrics on vii. Since a C00 metric is wr for any r, one has the 
wr topology on .:t'00(vll) .  One can then define the C00 or W00 topology 
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on .!l'00(.A') as that given by all the open sets in the wr topologies on 
.!l'00(.A') for every r. The C00 topology on .It' 00 * (.A') and on Q00(9") are 
defined similarly. 

One would like to show that the map !J.r from the space Qr * (9') of 
equivalence classes of pairs (hab, Xab) to the space �*(.A') of equiva
lence classes of metrics is continuous with the wr compact open 
topology on both spaces. In other words, suppose one has initial data 
hab E Wr(,9') and xab E wr-1(9') which gives rise to a solution g E Wr(_,K) 
on .A'. Then if-1'" is a region of .A' with compact closure, and e > 0, one 
would like to show there was some region t!Y of 9' with compact closure 
and some 8 > 0 such that j j g' - g, '1'"ll r < e for all initial data (h'ab, x'ab) 

- -

such that II h' - h, t!Yllr < !8 and II x' - x, t!Yllr-l < !8. This result may 
be true, but we have been unable to prove it. What we can prove is 
that this result holds if the metric is c<r+i>-. This follows immediately 
from proposition 7 . 5 . 1 ,  taking g to be the background metric and � 
to be some suitable neighbourhood of J-(-1'") n J+(0(.9') ) .  In fact if one 
examines lemma 7 .4 .6 ,  one sees that the condition on the background 
metric can be weakened from o<r+l)- to w<r+i>, but not to wr, since the 
(r - 1 )th derivatives of the Riemann tensor of the background metric 
appear. (By the background metric being wr+i we mean that it is 
Wr+1 with respect to a further Or+1 background metric. ) Thus the map 
!J.r : Qr * (9') -+ �*(.A') from the equivalence classes of initial data to 
the equivalence classes of metrics will be continuous in the wr compact 
open topology at every Wr+1 metric .  Although the Wr+i metrics form 
a dense set in the lP metrics, there is a possibility that the map might 
not be continuous at a wr metric which was not also a wr+i metric .  
However oo + 1 = oo and so the map !100 : Q* 00 (9') -+.!l'* 00 (.A') will be 
continuous in the C00 topology on both spaces . 

One can express this result as : 

The Cauchy stability theorem 
Let (.A', g) be the ws+a (0 � a � oo) maximal development of initial 
data h E W5+a(.9') and X E W4+a(.9'), and let -1'" be a region of J+(0(.9') ) 
with compact closure . Let Z be a neighbourhood of g in .!l' s+a(-1'") and 
� be an open neighbourhood in 0(9') of J-(-1'") n 0(9') with compact 
closure . Then there is some neighbourhood Y of (h, x) in Q5+a(�) such 
that for all initial data (h' , x') E Y satisfying the constraint equations, 
there is a diffeomorphism µ : .A'' -+ 1  with the properties 

( 1 )  0-1µ0' is the identity on 0-1(�) ,  
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(2 )  µ* g' e Z, 
where (vii' '  g' )  is the maximal development of (h' '  x') .  D 
Roughly speaking what this theorem says is that if the perturbation 
of initial data on the Cauchy surface O(Y) is small on J-("Y) n O(Y), 
then one gets a new solution which is near the old solution in "Y. In 
fact the perturbation of the initial data has to be small on a slightly 
larger region of the Cauchy surface than J-("Y) n O(Y) , since the null 
cones will be slightly different in the new solution and so "Y may not 
lie in the Cauchy development of J-("Y) n O(Y) . 

7.7 The Einstein equations with matter 

For simplicity we have so far considered the Einstein equations only 
for empty space . However similar results hold when matter is present 
providing that the equations governing the matter fields 'Y<J J obey 
certain physically reasonable conditions . The idea is to solve the 
matter equations with the prescribed initial conditions in a given 
space-time metric g' .  One then solves the reduced Einstein equations 
( 7 .42) as linear equations with the coefficients determined by g' and 
with the source term T'ab determined by g' and by the solution for the 
matter fields. One thus obtains a new metric g" and repeats the 
procedure with g" in place of g' .  To show that this converges to a 
solution of the combined Einstein and matter equations one has to 
impose certain conditions on the matter equations. We shall require : 

(a) if {o'l'(i)} e  WHa(Jt") and {1'1'(i)} e  W3+a(Jt") are the initial data on 
an achronal spacelike surface Jt" in a W4+a metric g, there exists a 
unique solution of the matter equations in a neighbourhood of Jt" in 
D+(Jt") with {'l'(i)} e  WHa(Jt"') for any smooth spacelike surface Jt"', 
and 'l'w = o'l'(i) , 'Y<JJ1aua = 1'Y<JJ on Jlt"; 

(b) i f  {'l'(i)} i s  a ws+a solution in  the ws+a metric g on the set Oii +• 
then there exist positive constants Q1 and Q2 such that 

� jj'l''(i) - 'l'(i) , Oll+ l l 4+a :::::; c'J2{ 1 i g' - g, O//+ i 1 4+a ro - -
+ � ll o'l''w - o'l'(i) , Jt"(O) n Oll l lHa + � i1 1'l''w - 1'l'w, Jt"(O) n Oll l l a+a} (i) (i) 

for any WHa solution {'l''(i)} in the metric g' such that 

l l g' - g, O//+ l l Ha < QI 
and 

� {I i 0 'l''w - 0 'l'w, Jt"(O) n O/lff 4+a + I I 1 'l''w - 1 'l'(i) , Jt"(O) n Oliff a+a} < QI ;  
\i) 
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(c) the energy-momentum tensor Tab is polynomial in 

'YcJJ, 'Yc/J ; a  and gab . 
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Condition (a) is the local Cauchy theorem for the matter field in 
a given space-time metric .  Condition (b) is the Cauchy stability 
theorem for the matter field under a variation of the initial conditions 
and under a variation of the space-time metric g. If the matter 
equations are quasi-linear second order hyperbolic equations, these 
conditions may be established in a similar manner to that for the 
reduced Einstein equations, providing that the null cones of the 
matter equations coincide with or lie within the null cone of the space
time metric g. In the case of the scalar field or the electromagnetic 
potential which obey linear equations, these conditions follow from 
proposition 7 . 4 . 7 .  One can also deal with a scalar field coupled to the 
electromagnetic potential ; one fixes the metric and the electro
magnetic potential, solves the scalar field as a linear equation in that 
metric and potential, and then solves the electromagnetic field in the 
given metric with the scalar field as the source . Iterating this procedure 
one can show that one converges on a set of the form %'+ to a solution 
of the coupled scalar and electromagnetic equations in the given 
metric, providing that the initial data are sufficiently small . One then 
shows, by rescaling the metric and the fields, that for %' + sufficiently 
small (as measured by the space-time metric g) one can obtain a solution 
for any suitable initial data. The same procedure will workforanyfinite 
number of coupled quasi-linear second order hyperbolic equations, 
where the coupling does not involve derivatives higher than the first . 

The equations of a perfect fluid are not second order hyperbolic, but 
form a quasi-linear first order system. (For the definition of a first order 
hyperbolic system, see Courant and Hilbert ( 1 962) ,  p. 577 . )  Similar 
results can be obtained for such systems providing that the ray cone 
coincides with or lies within the :null cone of the space-time with 
metric g. The requirement that the matter equations should be second 
order hyperbolic equations or first order hyperbolic systems with their 
cones coinciding with or lying within that of the space-time metric g, 
may be thought of as a more rigorous form of the local causality 
postulate of chapter 3 .  

With the conditions (a) ,  ( b )  and (c) one can establish propositions 
7 . 5 . 1 and 7 . 5 . 2  for the combined reduced Einstein's equations and the 
matter equations ; from these, the local and global Cauchy develop
ment theorems and the Cauchy stability theorem follow. 



8 
Space-time singularities 

In this chapter, we use the results of chapters 4 and 6 to establish some 
basic results about space-time singularities .  The astrophysical and 
cosmological implications of these results are considered in the next 
chapters. 

In § 8 . 1 ,  we discuss the problem of defining singularities in space
time. We adopt b-incompleteness, a generalization of the idea of 
geodesic incompleteness, as an indication that singular points have 
been cut out of space-time, and characterize two possible ways in 
which b-incompleteness can be associated with some form of curvature 
singularity. In § 8. 2, four theorems are given which prove the existence 
of incompleteness under a wide variety of situations. In § 8 . 3  we give 
Schmidt's construction of the b-boundary which represents the 
singular points of space-time. In § 8 .4  we prove that the singularities 
predicted by at least one of the the theorems cannot be just a dis
continuity in the curvature tensor. We also show that there is not only 
one incomplete geodesic, but a three-parameter family of them. In 
§ 8 .5  we discuss the situation in which the incomplete curves are totally 
or partially imprisoned in a compact region of space-time . This is 
shown to be related to non-Hausdorff behaviour of the b-boundary. 
We show that in a generic space-time, an observer travelling on one of 
these incomplete curves would experience infinite curvature forces. 
We also show that the kind of behaviour which occurs in Taub-NUT 
space cannot happen if there is some matter present . 

8· 1 The definition of singularities 

By analogy with electrodynamics one might think it reasonable to 
define a space-time singularity as a point where the metric tensor was 
undefined or was not suitably differentiable . However the trouble with 
this is that one could simply cut out such points and say that the 
remaining manifold represented the whole of space-time, which would 
then be non-singular according to this definition . Indeed, it would seem 

[ 256 ] 
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inappropriate to regard such singular points as being part of space
time, for the normal equations of physics would not hold at them and 
it would be impossible to make any measurements . We therefore 
defined space-time in § 3 . 1  as a pair (..,{{, g) where the metric g is 
Lorentzian and suitably differentiable and we ensured that no regular 
points were omitted from the manifold ..,(( along with the singular 
points by requiring that (..,{{, g) could not be extended with the 
required differentiability. 

The problem of defining whether space-time has a singularity now 
becomes one of determining whether any singular points have been 
cut out. One would hope to recognize this by the fact that space-time 
was incomplete in some sense . 

In the case of a manifold ..,(( with a positive definite metric g, one 
can define a distance function p(x, y) which is the greatest lower bound 
of the length of curves from x to y. The distance function p(x, y) is 
a metric in the topological sense ; that is, a basis for the open sets of..,(( 
is provided by the sets &l(x, r) consisting of all points y E .,(( such that 
p(x, y) < r. The pair (..,{{, g) is said to be metrically complete (m-complete) 
if every Cauchy sequence with respect to the distance function p 
converges to a point in ..,((, (A Cauchy sequence is an infinite sequence 
of points xn such that for any e > 0 there is a number N such that 
p(xn, xn. ) < e whenever n and m are greater than N. )  An alternative 
formulation is that (..,{{, g) is m-complete if every 01 curve of finite 
length has an endpoint in the sense of § 6 . 2  (note that the curve need 
not be 01 at the endpoint) .  It therefore follows that m-completeness 
implies geodesic completeness (g-completeness) ,  that is every geodesic 
can be extended to arbitrary values of its affine parameter. In fact it 
can be shown (see Kobayashi and Nomizu ( 1 963) )  that g-completeness 
and m-completeness are equivalent for a positive definite metric. 

A Lorentz metric, on the other hand, does not define a topological 
metric and so one is left only with g-completeness. One can distinguish 
three kinds of g-incompleteness : that of timelike, null and spacelike 
geodesics . If one cuts a regular point out of space-time, the resulting 
manifold is incomplete in all three ways and so one might hope that 
a space-time which was complete in one of the above senses would also 
be complete in the other two . Unfortunately this is not necessarily so 
(Kundt ( 1 963) ), as is shown by the following example given by Geroch 
( 1 968b ) .  Consider two-dimensional Minkowski space with coordinates 
x and t and metric gab . Define a new metric Oab = 0.2gab where the 
positive function 0. has the properties : 



258 S P A C E-T I M E  S I N G U L A R I T I E S  [ 8 . 1  

( 1 )  Q = 1 outside the region between the vertical lines x = - 1 and 
x = + 1 ; 

( 2 )  n is symmetric about the t-axis, that is, Q(t, x) = Q(t, - x) ; 
( 3 )  on the t-axis, t2Q -+ 0  as t -+ oo. 

By (2 )  the t-axis is a timelike geodesic which by ( 3 )  is incomplete as 
t -+ oo. However every null and spacelike geodesic must leave and not 
re-enter the region between x = - 1 and x = + 1 .  Therefore by ( 1 )  the 
space is null and spacelike complete . In fact one can construct 
examples which are incomplete in any of the three possible ways and 
complete in the 1:'emaining two . 

Timelike geodesic incompleteness has an immediate physical signifi
cance in that it presents the possibility that there could be freely 
moving observers or particles whose histories did not exist after (or 
before) a finite interval of proper time. This would appear to be an 
even more objectionable feature than infinite curvature and so it 
seems appropriate to regard such a space as singular. Although the 
affine parameter on a null geodesic does not have quite the same 
physical significance as proper time does on timelike geodesics, one 
should probably also regard a null geodesically incomplete space-time 
as singular both because null geodesics are the histories of zero rest
mass particles and because there are some examples (such as the 
Reissner-Nordstrom solution, § 5 .5 )  which one would think of as 
singular but which are timelike but not null geodesically complete . 
As nothing moves on spacelike curves, the significance of spacelike 
geodesic incompleteness is not so clear . We shall therefore adopt the 
view that timelike and null geodesic completeness are minimum condi
tions for space-time to be considered singularity-free . Therefore if a 
space-time is timelike or null geodesically incomplete, we shall say 
that it has a singularity. 

The advantage of taking timelike and/or null incompleteness as 
being indicative of the presence of a singularity is that on this basis 
one can establish a number of theorems about their occurrence . How
ever, the class of timelike and/or null incomplete space-times does not 
include all those one might wish to consider as singular in some sense . 
For example Geroch ( 1 968b )  has constructed a space-time which is 
geodesically complete but which contains an inextendible timelike 
curve of bounded acceleration and finite length. An observer with 
a suitable rocketship and a finite amount of fuel could traverse this 
curve . After a finite interval of time he would no longer be represented 
by a point of the space-time manifold. If one is going to say that there 
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is a singularity in a space-time in which a freely falling observer comes 
to an untimely . end, one should presumably do the same for an 
observer in a rocketship . What one needs is some generalization of the 
concept of an affine parameter to all 01 curves, geodesic or non
geodesic .  One could then define a notion of completeness by requiring 
that every 01 curve of finite length as measured by such a parameter 
had an endpoint . The idea we are going to use seems to have been first 
suggested by Ehresman ( 1 957 ) ,  and has been reformulated in an 
elegant manner by Schmidt ( 1 97 1 ) .  

Let A.(t) be a 01 curve through p E ....11 and let {Ei} ( i  = 1 ,  2 ,  3 ,  4 )  be 
a basis for TP" One can parallelly propagate {Ei} along A.(t) to obtain 
a basis for T;..ctl for each value of t . Then the tangent vector 
V = (o/oth<tl can be expressed in terms of the basis as V = Vi(t) Ei , and 
one can define a generalized affine parameter u on A. by 

u = I (� Vi Vi )l dt . 
p i 

The parameter u depends on the point p and the basis {Ei} at p. If {Ed 
is another basis at p, then there is some non-singular matrix Aii such 
that Ei = L A/Er. 

j '  
As {Ei.} and {Ei} are parallelly transported along A.(t) ,  this relation is 
maintained with constant A/. Thus 

Vi'(t) = L A/ Vi(t) . 
j 

Since A/ is a non-singular matrix, there is some constant C > 0 such 
that C L Vi Vi � L Vi' Vi' � 0-1 L Vi Vi . 

i i' i 
Thus the length of a curve A. is finite in the parameter u if and only if 
it is finite in the parameter u' . If A is a geodesic curve then u is an affine 
parameter on A., but the beauty of the definition is that u can be defined 
on any 01 curve . We shall say that (...It, �) is b-complete (short for 
bundle complete, see § 8 . 3 )  if there is an endpoint for every 01 curve 
of finite length as measured by a generalized affine parameter. If the 
length is finite in one such parameter it will be finite in all such 
parameters, so one loses nothing by restricting the bases to be ortho
normal bases . If the metric g is positive definite, the generalized affine 
parameter defined by an orthonormal basis is arc-length and so 
b-completeness coincides with·m-completeness . However b-complete
ness can be defined even if the metric is not positive definite ; in fact it 
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can be defined providing there is a connection on JI. Clearly 
b-completeness implies g-completeness, but the example quoted 
shows that the converse is not true . 

We shall therefore define a space-time to be singularity-free if it is 
b-complete . This definition conforms with the requirement made 
above, that timelike and null geodesic completeness are minimum 
conditions for a space-time to be considered singularity-free. One 
might possibly wish to weaken this condition slightly, to say that 
space-time is singularity-free it it is only non-spacelike b-complete, 
i .e .  if there is an endpoint for all non-spacelike 01 curves with finite 
length as measured by a generalized affine parameter. However this 
definition would appear rather awkward in the bundle formulation of 
b-completeness which we shall give in § 8 . 3 .  In fact each of the theorems 
we give in § 8 .2  implies that (1, g) is timelike or null g-incomplete and 
hence has a singularity by both the above definitions. 

One feels intuitively that a singularity ought to involve the curva
ture becoming unboundedly large near a singular point . However 
since we have excluded singular points from our definition of space
time, difficulty arises in defining both ' near ' and ' unboundedly large ' . 
One can say that points on a b-incomplete curve are near the singu
larity if they correspond to values of a generalized affine parameter 
which is near the upper bound of that parameter. ' Unboundedly 
large ' is more difficult, since the size of components of the curvature 
tensor depend on the basis in which it is measured. One possibility is 
to look at scalar polynomials in gab • 'l'Jabcd • and Rabcd · We shall say that 
a b-incomplete curve corresponds to a scalar polynomial curvature 
singularity (s.p . curvature singularity) if any of these scalar poly
nomials is unbounded on the incomplete curve . However, with a 
Lorentz metric these polynomials do not fully characterize the 
Riemann tensor since, as Penrose has pointed out, in plane-wave 
solutions the scalar polynomials are all zero but the Riemann tensor 
does not vanish. (This is similar to the fact that a non-zero vector may 
have zero length. )  Thus the curvature might become very large in 
some sense even though the scalar polynomials remained small . 
Alternatively one might measure the components of the curvature 
tensor in a basis that was parallelly propagated along a curve . We shall 
say that a b -incomplete curve corresponds to a curvature singularity 
with respect to a parallelly propagated basis (a p.p .  curvature singu
larity) if any of these components is unbounded on the curve . Clearly 
an s .p .  curvature singularity implies a p .p .  curvature singularity . 
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One might expect that in any physically realistic solution, a 
b-incomplete curve would correspond both to an s .p. and a p .p .  
curvature singularity. However an example of a solution where this 
does not seem to be true is provided by Taub-NUT space ( §5 . 8 ) .  Here 
the incomplete geodesics are totally imprisoned in a compact neigh
bourhood of the horizon . As the metric is perfectly regular on this 
compact neighbourhood, the scalar polynomials in the curvature 
remain finite . Because of the special nature of this solution, the com
ponents of the curvature in a parallelly propagated basis along the 
imprisoned geodesics remains bounded. Since the imprisoned geo
desics are contained in a compact set, one could not extend the 
manifold JI to a larger four-dimensional Hausdorff paracompact 
manifold ..A', in which the incomplete geodesics could be continued. 
Thus there is no possibility of the incompleteness having arisen from 
the cutting out of singular points . Nevertheless it would be unpleasant 
to be moving on one of the incomplete timelike geodesics for although 
one's world-line never comes to an end and would continue to wind 
round and round inside the compact set, one would never get beyond 
a certain time in one 's life. It would, therefore, seem reasonable to say 
that such a space-time was singular even though there is no p.p .  or s .p .  
curvature singularity. By lemma 6.4 .8 ,  such totally imprisoned in
completeness can only occur if strong causality is violated . In § 8 .5  we 
shall show that in a generic space-time, a partially or totally im
prisoned b-incomplete curve will correspond to a p .p .  curvature 
singularity. We shall also show that the Taub-NUT kind of totally 
imprisoned incompleteness cannot occur if there is some matter 
present. 

8.2 Singularity theorems 

In § 5 . 4  it was shown that there would be singularities in spatially 
homogeneous solutions under certain reasonable conditions. Similar 
theorems can be obtained for a number of other types of exact sym
metry. Such results , although suggestive, do not necessarily have any 
physical significance because they depend on the symmetry being 
exact and clearly in any physical situation this will not be the case . It 
was therefore suggested by a number of authors that singularities 
were simply the result of symmetries and that they would not occur in 
general solutions .  This view was supported by Lifshitz , Khalatnikov 
and co-workers who showed that certain classes of solutions with space-
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like singularities did not have the full number of arbitrary functions 
expected in a general solution of the field equations (see Lifshitz and 
Khalatnikov ( 1 963) for an account of this work) .  This presumably 
indicates that the Cauchy data which gave rise to such singularities 
is of measure zero in the set of all possible Cauchy data and so should 
not occur in the real universe . However more recently Belinskii, 
Khalatnikov and Lifshitz ( 1 970) have found other classes of solutions 
which seem to have the full number of arbitrary functions and to 
contain singularities .  They have therefore withdrawn the claim that 
singularities do not occur in general solutions . Their methods are 
interesting for the light they shed on the possible structure of singu
larities but it is not clear whether the power series which are used will 
converge. Neither does one obtain general conditions which imply that 
a singularity is inevitable . Nevertheless we may take their results as 
supporting our view that the singularities implied by the theorems of 
this section involve infinite curvature in general . 

The first theorem about singularities which did not involve any 
assumption of symmetry was given by Penrose ( 1 965 c ) .  It was 
designed to prove the occurrence of a singularity in a star which 
collapsed inside its Schwarzschild radius. If the collapse were exactly 
spherical , the solution could be integrated explicitly and a singularity 
would always occur. However it is not obvious that this would be the 
case if there were irregularities or a small amount of angular 
momentum.  Indeed in Newtonian theory the smallest amount of 
angular momentum could prevent the occurrence of infinite density 
and cause the star to re-expand . However Penrose showed that the 
situation was very different in General Relativity : once the star had 
passed inside the Schwarzschild surface (the surface r = 2m) it could 
not come out again . In fact the Schwarzschild surface is defined only 
for an exactly spherically symmetric solution but the more general 
criterion used by Penrose is equivalent for such a solution and is 
applicable also to solutions without exact symmetry. It is that there 
should exist a closed trapped surface .'T. By this is meant a 02 closed 
(i .e .  compact, without boundary) spacelike two-surface (normally, 82) 
such that the two families of null geodesics orthogonal to .'T are con
verging at .'T (i .e .  1gabgab and �abgab are negative, where iX.a.b and �ab 
are the two null second fundamental forms of .'T. In the following 
chapters we shall discuss the circumstances under which such a surface 
would arise . )  One may think of .'T as being in such a strong gravita
tional field that even the ' outgoing ' light rays are dragged back and 
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are, in fact, converging. Since nothing can travel faster than light, the 
matter within ff is trapped inside a succession of two-surfaces of 
smaller and smaller area and so it seems that something must go 
wrong. That this is so is shown rigorously by Penrose 's theorem : 

Theorem 1 
Space-time (.A, g) cannot be null geodesically complete if: 

( 1 )  Rab Ka Kb � 0 for all null vectors Ka (cf. § 4. 3) ; 
(2 )  there is a non-compact Cauchy surface :Yt' in .A; 
( 3 )  there is  a closed trapped surface ff in .A. 

Note : the method of proof is to show that the boundary of the future 
of ff would be compact if Jt were null geodesically complete . This is 
then shown to be incompatible with :YI' being non-compact. 
Proof. The existence of a Cauchy surface implies that Jt is globally 
hyperbolic (proposition 6 .6 .3 )  and therefore causally simple (proposi
tion 6 .6 . 1 ) .  This means that the boundary of J+(ff) will be E+ (ff) and 
will be generated by null geodesic segments which have past endpoints 
on ff and which are orthogonal to ff. Suppose Jt were null geo
desically complete . Then by conditions ( 1 )  and (3 )  and proposition 
4 .4 .6  there would be a point conjugate to ff along every future
directed null geodesic orthogonal to ff within an affine distance 2c-1 
where c is the value of nXabgab at the point where the null geodesic 
intersects ff. By proposition 4 .5 . 14 ,  points on such a null geodesic 
beyond the point conjugate to ff would lie in /+ (ff) . Thus each 
generating segment of j+ (ff) would have a future endpoint at or 
before the point conjugate to ff. At ff one could assign, in a con
tinuous manner, an affine parameter on each null geodesic orthogonal 
to ff. Consider the continuous map ,8 :  ff x (0, b] x Q -+�K (Q is the 
discrete set 1 ,  2) defined by taking a point p E ff  an affine distance 
v E (0, b] along one or other of the two future-directed null geodesics 
through p orthogonal to .'T. Since .'T is compact, there will be some 
minimum value c0 of ( - 1xabgab) and ( - �abgab) .  Then if b0 = 2c0-1, 
,8(ff x (0, b0] x Q) would contain j+(.'T) .  Thus j+(.'T) would be 
compact being a closed subset of a compact set . This would be possible 
if the Cauchy surface .Yf' were compact because then j+ (ff) could 
meet up round the back and form a compact Cauchy surface homeo
morphic to .YE (figure 49) . However there is clearly going to be trouble 
if one demands that .?/I' is non-compact. To show this rigorously one 
can use the fact (see § 2 .6 )  that Jt admits a past-directed 01 timelike 
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FIGURE 49 .  A two-dimensional section of  a geodesically complete space with 
a compact Cauchy surface JI'. The two-sphere ff has a compact boundary 
JT(ff) to its future J+(ff ) ,  as the outgoing null geodesics from ff meet up 
round the back of the cylinder. 

vector field . Each integral curve of this field will intersect .Yr (as it is 
a Cauchy surface) and will intersect j+(ff) at most once . Thus they 
will define a continuous one-to-one n,iap a :  j+(ff) -+ £. If j+(ff) were 
compact, its image a(j+(ff)) would also be compact and would be 
homeomorphic to j+(ff) . However as .Yr is non-compact, a(j+(!f")) 
could not contain the whole of � and would therefore have to have 
a boundary in �- This would be impossible since by proposition 6 . 3 . 1 ,  
j+(ff ) ,  and therefore a(j+(ff} } ,  would be a three-dimensional mani
fold (without boundary) . This shows that the assumption that .,.(( is 
null geodesically complete (which we made in order to prove j+(!f") 
compact) is incorrect . D 

Condition ( 1 )  of this theorem (that Rab KaKb ;;:;:: O for any null vector K) 
was discussed in § 4 . 3 .  It will hold no matter what value the value of 
the constant A, provided that the energy density is positive for every 
observer . It will be shown in chapter 9 that condition ( 3 )  (that there is 
a closed trapped surface) should be satisfied in at least some region 
of space-time. This leaves condition (2 )  (that there is a non-compact 
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spacelike surface .:/t' which is a Cauchy surface) to be discussed . By 
proposition 6 .4 .9, the existence of spacelike surfaces is guaranteed 
provided one assumes stable causality . That the spacelike surface :Yt' 
be non-compact is not too serious a restriction since the only place it 
was used was to show that a(j+(Y)) could not be the whole of .:/t'. 
This could also be shown if, instead of taking .:/t' to be non-compact, 
one required that there exist a future-directed inextendible curve 
from .:/t' which did not intersect j+(Y) . In other words , the theorem 
would still hold even if .:/t' were compact, provided there was some 
observer who could avoid falling into the collapsing star. This might 
not be possible if the whole universe were collapsing also, but in such 
a case one would expect singularities anyway as will be shown 
presently. The real weakness of the theorem is the requirement that 
.:/t' be a Cauchy surface . This was used in two places : first, to show that 
JI was causally simple which implied that the generators of j+(Y) 
had past endpoints on .r, and second, to ensure that under the map a 
every point of j+(Y) was mapped into a point of .:/t'. That the Cauchy 
surface condition is necessary is shown by an example due to Bardeen . 
This has the same global structure as the Reissner-Nordstr6m solution 
except that the real singularities at r = 0 have been smoothed out so 
that they are just the origins of polar coordinates. The space-time 
obeys the condition Rab KaKb � 0 for any null but not timelike vector 
K, and contains closed trapped surfaces. The only way in which it fails 
to satisfy the conditions of the theorem is that it does not have 
a Cauchy surface . 

It therefore seems that what the theorem tells us is that in a col
lapsing star there will occur either a singularity or a Cauchy horizon . 
This is a very important result since in either case our ability to pre
dict the future breaks down. However it does not answer the question 
of whether singularities occur in physically realistic solutions. To 
decide this we need a theorem which does not assume the existence of 
Cauchy surfaces . One of the conditions of such a theorem must be that 
RabKaKb � 0 for all timelike as well as null vectors, since failure to 
obey this condition is the only way in which Bardeen's example is 
unreasonable . The theorem we shall give below requires this condition 
and also the chronology condition that there be no closed timelike 
curves. On the other hand it is applicable to a wider class of situations 
since the existence of a closed trapped surface is now only one of three 
possible conditions. One of these alternative conditions is that there 
should be a compact partial Cauchy surface, and the other is that there 
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FIGURE 50. A point p whose past light cone starts reconverging. 

should be a point whose past (or future) light cone starts converging 
again (figure 50) . The first of these other conditions is satisfied in 
a spatially closed solution while the second is closely related to the 
existence of a closed trapped surface but is in a form which is more 
convenient for some purposes ; for in the case in which the light cone 
is our own past light cone, one can directly determine whether this 
condition is satisfied. In the last chapter it will be shown that recent 
observations of the microwave background indicate that it is.  

The precise statement is : 

Theorem 2 (Hawking and Penrose ( 1 970)) 
Space-time (.L, g)  is not timelike and null geodesically complete if: 

( 1 )  RabKaKb � 0 for every non-spacelike vector K ( cf. § 4 . 3 ) .  
(2 )  The generic condition i s  satisfied (§ 4 .4) ,  i . e .  every non-spacelike 

geodesic contains a point at which KcaRblcd[eK11KcKd =I= 0, where K is 
the tangent vector to the geodesic .  

(3 )  The chronology condition holds on .L (i .e .  there are no closed 
timelike curves) .  

( 4 )  There exists at least one of the following : 
(i ) a compact achronal set without edge, 
(ii ) a closed trapped surface, 
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(iii ) a point p such that on every past (or every future) null geodesic 
from p the divergence (} of the null geodesics from p becomes negative 
( i .e .  the null geodesics from p are focussed by the matter or curvature 
and start to reconverge) .  

Remark. An alternative version of the theorem i s  that the following 
three conditions cannot all hold : 

(a) every inextendible non-spacelike geodesic contains a pair of 
conjugate points ; 

(b) the chronology condition holds on JI; 
(c ) there i s  an  achronal set 9' such that E+(9') or  E-(9') i s  compact. 

(We shall say that such a set is, respectively, future trapped or past 
trapped) . 

In fact it is this form of the theorem that we shall prove . The other 
version will then follow since if JI were timelike and null geodesically 
complete, ( 1 )  and ( 2 )  would imply (a) by propositions 4 .4 .2 and 4.4 .5 ,  
( 3 )  is  the same as (b ) ,  and ( 1 )  and (4) would imply (c ) , since in case ( i )  
9' would be the compact achronal set without edge and 

E+(9') = E-(9') = 9'; 

in  cases (ii) and (iii ) 9' would be  the closed trapped surface and the 
point p respectively, and by propositions 4 .4 .4, 4 .4 .6 ,  4 .5 . 1 2  and 
4 .5 . 1 4  E+(9') and E-(9') would be compact respectively, being the 
intersections of the closed sets j+(9') and j-(9') with compact sets 
consisting of all the null geodesics of some finite length from 9'. 

Proof. As the proof is rather long, we shall break it up by first estab
lishing a lemma and corollary . We note that by an argument similar 
to that of proposition 6 .4 . 6 ,  (a) and (b) imply that strong causal ity 
holds on JI. 

Lemma 8 . 2 . 1 
If 9' is a closed set and if the strong causality condition holds on 
J+(9') then H+(E+(9') ) is non-compact or empty (figure 5 1 ) .  

By lemma 6 . 3 . 2, through every point q E j+(9') -9' there is a past
directed null geodesic segment lying in j+(9') which has a past end
point if and only if q E E+(9') . (Note that as we no longer assume the 
existence of a Cauchy surface, JI may not be causally simple and so 
j+(9') - E+(9') may be non-empty . )  Therefore if q EJ +(9') - E+(9'), 
there is a past-inextendible null geodesic through q which lies in j+(9') 
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FIGURE 5 1 .  A future trapped set [/' ;  null lines are at ± 45°, three lines have been 
identified and the points q are at infinity. The achronal sets E+(f/') ,  j+(f/') and 
H+(E+(f/'))  are shown. A future-inextendible timelike curve y e D+(E+(f/'))  is 
shown. 

and so does not intersect J-(j+(.9') ) .  From lemma 6 .6 .4  it then follows 
that q is not in D+(j+(.9') ) - H+(j+(.9') ) .  Hence 

D+(E+(.9') ) - H+(E+(.9')) = D+(j+(.9') ) - H+(J +(.9') ) 

and 

Now suppose that H+(E+(.9')) was non-empty and compact . Then 
it could be covered by a finite number of local causality neighbour
hoods O//i . Let p1 be a point of J+(.9') n [0//1 - D+(j+(.9') ) ] .  Then from 
p1 there would be a past-inextendible non-spacelike curve A1 which did 
not intersect either j+(.9') or D+(E+(.9') ) .  Since the O/li have compact 
closure, A1 would leave 0//1 .  Let q1 be a point on A1 not in 0//1 .  Then since 
q1 E J+(.9') there would be a non-spacelike curve µ1 from q1 to .9'. This 
curve would intersect D+(E+(.9') )  and hence would intersect some O/li 
other than 0//1 (say, 0//2) .  Then let p2 be a point of µ1 n [0//2 - D+(j+(.9'))]  
and continue as before . 

This leads to a contradiction since there were only a finite number 
of the local causality neighbourhoods O//i ,  and one could not return to 
an earlier oU; because no non-spacelike curve can intersect a O//i more 
than once . Thus H+(E+(.9')) must be non-compact or empty . D 

Corollary 
If .9' is a future trapped set, there is a future-inextendible timelike 
curve y contained in D+(E+(.9') ) .  
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Put a timelike vector field on 1. If every integral curve of this field 
which intersected E+(.<f') also intersected H+(E+(.<f') ) they would 
define a continuous one-one mapping of E+(.<f') onto H+(E+(.<f') ) and 
hence H+(E+(.<f') ) would be compact. The intersection of J+(.<f') with 
a curve which does not intersect H+(E+(.<f'))  gives the desired curve y 
(figure 5 1  indicates one possible situation) .  0 

Now consider the compact set :IF defined as E+(.9) n J-(y) .  Since 
y was contained in int J+(E+(.<f') ) ,  E-(:JF) would consist of :IF and 
a portion of j-(y) . Since y was future inextendible, the null geodesic 
segments generating J-(y) could have no future endpoints . But by (a) 
every inextendible non-spacelike geodesic contains a pair of conjugate 
points . Thus by proposition 4 .5 . 1 2 ,  the past-inextendible extension v' 

of each generating segment v of J-(y) would enter J-(y) . There would 
be a past endpoint for v at or before the first point p of v' n J-(y) .  
As J-(y) would be an open set, a neighbourhood of p would contain 
points in J-(y) on neighbouring null geodesics . Thus the affine distance 
of the points p from :IF would be upper semi-continuous, and E-(.'!F) 
would be compact being the intersection of the closed set j-(y) with 
a compact set generated by null geodesic segments from :IF of some 
bounded affine length. It would then follow from the lemma that 
there would be a past-inextendible timelike curve A. contained in 
int D-(E-(.'!F) )  (figure 52) . Let an be an infinite sequence of points on A. 
such that : 

(I )  an+l E l-(an) ,  
(II ) no compact segment of .i\. contains more than a finite number 

of the an . 
Let bn be a similar sequence on y but with J+ instead of J- in (I) and 
with b1 E J+(a1 ) .  

As y and A. were contained in  the globally hyperbolic set 
int D(E-(.'!F))  (proposition 6 .6 .3 ) ,  there would be a non-spacelike geo
desic µn of maximum length between each an and the corresponding 
bn (proposition 6 . 7 . 1 ) .  Each would intersect the compact set E+(.<f') . 
Thus there would be a q E E+(.<f') which was a limit point of the 
µn n E+(.<f') and a non-spacelike direction at q which is a limit of the 
directions of the µn. (The point q and the direction at q define a point 
of the bundle of directions over 1. Such a limit point exists because 
the portion of the bundle over E+(.<f') is compact. )  Let µ'n be a 
subsequence of the µn such that µ' n n E+(.9) converges to q and such 
that the directions of the µ' n at E+(.<f') converge to the limit direction . 
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FIGURE 52. As figure 5 1 ,  but with three further lines identified. � is the set 
E+(�) n J-(y) ; the points p are past endpoints of null geodesic generating 
segments of E-(�) .  The curve A is a past-inextendible timelike curve contained 
in int D-(E-(�)) .  

(More precisely, the points defined by theµ' n in  the bundle of  directions 
over E+(.9') converge to the limit point . )  Let µ be the inextendible 
geodesic through q in the limit direction. By (a) there would be 
conjugate points x and y on µ  with y E l+(x) . Let x' and y'  be on µ to 
the past and future of x and y respectively . By proposition 4 .5 .8 ,  there 
is some e > 0 and some timelike curve a from x' to y' whose length 
is e plus the length of µ from x' to y ' .  Let Olt and "I'" be convex normal 
coordinate neighbourhoods of x' and y' respectively, each of which 
contains no curve of length !e. Let x" and y" be � n a and -f"n a 
respectively. Let x'n and y'n be points on µ'n converging to x' and y' 
respectively. For n sufficiently large, the length µ' n from x' n to y' n will 
be less than le plus the length ofµ from x' to y ' .  Also for n sufficiently 
large, x'n and y'n would be in J-(x", Ol/) and J+(y", "I'") respectively. 
Then going from x'n to x", along a to y" ,  and from y" to y'n would 
give a longer non-spacelike curve than µ'n from x'n to y'� . But by 
property (II ) ,  a' n would lie to the past of x' n on µ' n and b' n would lie 
to the future of y' n on µ' n• for n large enough. Therefore µ' n ought to 
be the longest non-spacelike curve from x' n to y '  n · This establishes the 
desired contradiction. D 
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While this theorem establishes the existence of  singularities under 
very general conditions, it has the disadvantage of not showing 
whether the singularity is in the future or the past. In case (ii) of 
condition (4) , when there is a compact spacelike surface, one has no 
reason to believe that it should be in the future rather than in the past, 
but in case ( i )  when there is a closed trapped surface, one would expect 
the singularity to be in the future, and in case (iii) when the past null 
cone starts reconverging, one would expect the singularity to be in the 
past. One can show that there is a singularity in the past if condition 
(iii ) is strengthened somewhat to say that all past-directed timelike 
as well as null geodesics from p start to reconverge within a compact 
region in J-(p ) .  

Theorem 3 (Hawking ( 1 967 ) )  
If ( 1 )  RabKaKb ;;::: 0 for every non-spacelike vector K (cf. § 4 .3 ) ; 

( 2 )  the strong causality condition holds on (Jt, g) ; 
(3 )  there is some past-directed unit timelike vector W at a point p 

and a positive constant b such that if V is the unit tangent vector to 
the past-directed timelike geodesics through p, then on each such 
geodesic the expansion 0 = ya; a of these geodesics becomes less than 

- 3c/b within a distance b/c from p, where c = - wav,., 
then there is a past incomplete non-spacelike geodesic through p .  

Let Ka be the parallelly propagated tangent vector to the past
directed non-spacelike geodesics throughp, normalized by xaw,. = - 1 .  
Then for the timelike geodesics through p, Ka = c-1 ya and so 
Ka: a = c-1 ya; a · Since Ka: a is continuous on the non-spacelike geo
desics, it will become less than - 3/b on the null geodesics through p 
within an affine distance b .  If Yv Y2, Ya and Y4 are a pseudo-ortho
normal tetrad on these null geodesics with Y 1 and Y 2 spacelike unit 
vectors and Ya and Y4 null with Yaa y4a = - 1  and Y4 = K, the expan
sion fJ of the null geodesics through p is defined as 

{J = Ka; b(Y1a Y1b + Y2a Y2b) 
= Ka: a + Ka; b(Yaa Yl + Y"a yab) . 

The second term is zero because Ka is parallelly propagated. The third 
term can be expressed as !(KaKa) ; b Yab, which is less than zero as 
Ka Ka is zero on the null geodesics and negative for timelike geodesics . 
This shows that fJ will become less than - 3/b within an affine distance b 
along each null geodesic from p. Thus if all past-directed null geodesics 
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from p were complete, E-(p) would be compact. Any point 
q E J-(E-(p) ) - E-(p) would be in J-(p) . Thus it could not be in 
J+(E-(p) )  since E-(p) is achronal . Therefore 

J+(E-(p) )  n J-(E-(p))  = E-(p) 
and so would be compact. Then by proposition 6 .6 .  7 ,  D-(E-(p))  would 
be globally hyperbolic .  By proposition 6 . 7 . 1 ,  each point r E D-(E-(p) )  
would be joined top by a non-spacelike geodesic which did not contain 
any point conjugate to p between r and p.  Thus by proposition 4 .4 . 1 ,  
D-(E-(p) )  would be contained in expP (F) where F is the compact 
region of TP consisting of all past-directed non-spacelike vectors Ka 
such that KaJ-Ya � - 2b . If all past non-spacelike geodesics from p were 
complete, expP (Ka) would be defined for every Ka E F, and so expP (F) 
would be compact being the image of a compact set under a continuous 
map. However by the corollary to lemma 8 .2 . 1 ,  D-(E-(p))  contains 
a past-inextendible timelike curve . By proposition 6 .4 .  7 this could not 
be totally imprisoned in the compact set expP (F) ,  therefore the 
assumption that all past-directed non-spacelike geodesics from p are 
complete must be false . D 
Theorems 2 and 3 are the most useful theorems on singularities since 
it can be shown that their conditions are satisfied in a number of 
physical situations (see next chapter) .  However it might be that what 
occurred was not a singularity but a closed timelike curve, violating 
the causality conditions. This would be much worse than the mere 
breakdown of prediction which was the alternative after theorem 1 ,  
and it is our personal opinion that it would be physically more objec
tionable than a singularity. Nevertheless one would like to know 
whether such causality violations would prevent the occurrence of 
singularities . The following theorem shows that they cannot in certain 
situations . This means that we have to take singularities seriously and 
it gives us confidence that, in general, causality breakdowns are not 
the way out. 

Theorem 4 (Hawking ( 1 967 ) )  
Space-time is  not timelike geodesically complete if: 

( 1 )  Rab KaKb � 0 for every non-spacelike vector K (cf. § 4 . 3 ) ; 
(2 )  there exists a compact spacelike three-surface Y' (without 

edge) ; 
( 3 )  the unit normals to Y' are everywhere converging (or every

where diverging) on Y'. 
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Remarks. Condition (2 )  may be interpreted as saying that t.he universe 
is spatially closed and condition (3 )  as saying that it is contracting 
(or expanding) .  As explained in § 6 .5  one may take a covering manifold ..... 
JI in which each connected component of the image of Y' is diffeo-
morphic to Y' and is a partial Cauchy surface in ..Ji. We shall work in ..Ji 
and shall denote by sP one connected component of the image of .!/'. 
Considering the Cauchy evolution problem in Ji one sees that the 
occurrence of singularities (though not necessarily their nature) is a 
stable property of the Cauchy data on sP since a sufficiently small 
variation of the data on .</ will not violate condition (3 ) .  This is a 
counterexample to the conjecture by Lifshitz and Khalatnikov that 
singularities occur only for a set of Cauchy data of measure zero , 
though it must be remembered that the definition of a singularity 
adopted here is not that used by Lifshitz and Khalatnikov 

Proof. By conditions (2 )  and (3 )  the contraction xa a of the second 
fundamental form of sP has a negative upper bound on .!/'. Thus if JI 
(and hence .fi) was timelike geodesically complete there would be 
a point conjugate to sP on every future-directed geodesic orthogonal 
to sP within a finite upper bound b of distance from sP (proposition 
4 .4 .3 ) .  But by the corollary to proposition 6 . 7 . 1 ,  to every point 
q E D+(Y) there is a future-directed geodesic orthogonal to sP which 
does not contain any point conjugate to sP between sP and q. Let 
fJ: sP x (0, b] � ..Jibe the differentiable map which takes a point p EY 
a distance s E (0, b] up the future-directed geodesic through p ortho
gonal to .!/'. Then fJ(sP x (0, b] ) would be compact and would contain 
D+(sP) .  Thus J5+(sP) and hence H+(sP) would be compact . If one 
assumed the strong causality condition the desired contradiction 
would follow from lemma 8 . 2 . 1 .  However even without strong 
causality one can obtain a contradiction. Consider a point q E H+(sP) .  
Since every past-directed non-spacelike curve from q to sP would 
consist of a (possibly zero ) null geodesic segment in H+(Y) and then 
a non-spacelike curve in D+(sP) ,  it follows that d(sP, q) would be less 
than or equal to b. Thus, as d is lower semi-continuous, one could find 
an infinite sequence of points r n E D+(Y) converging to q such that 
d(sP, rn) converged to d(sP, q) .  To each rn there would correspond at 
least one element p-1(r n ) of sP x [O, b] . Since .? x (0, b] is compact there 
would be an element (p, s) which was a limit point of the p-1(r n ) . Bv 

continuity s = d(sP, q) and fJ(p, s) = q. Thus to every point q E H+(Y) 
there would be a timelike geodesic of length d(sP, q) from .?. Now let 
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q1 E H+(//) lie to the past of q on the same null geodesic generator ..\ of 
H+(!/) .  Joining the geodesic of length d(!/, q1) from !/ to q1 to the 
segment of..\ between q1 and q, one would obtain a non-spacelike curve 
of length d(!/, q1) from !/ to q which could be varied to give a longer 
curve between these endpoints (proposition 4 .5 . 10 ) .  Thus d(!/, q) , 
q E H+(//) ,  would strictly decrease along every past-directed generator 
of H+(!/) .  But by proposition 6 .5 .2 ,  such generators could have no 
past endpoints . This leads to a contradiction since as d(!/, q) is lower 
semi-continuous in q, it would have a minimum on the compact 
set H+(!/) .  D 

Condition (2 )  that Sf' is compact is necessary, since in Minkowski space 
(.A', YJ) the non-compact surface Sf': (xl)2 + (x2)2 + (x3)2 - (x4)2 = - 1 , 
x4 < 0, is a partial Cauchy surface with X°' a = - 3 at all points . If one 
took the region of Minkowski space defined by 

x4 < o, (xl)2 + (x2)2 + (x3)2 - (x4)2 < o, 

one could identify points under a discrete group of isometries G such 
that .9'/G was compact (Lobell ( 1 93 1 ) ) .  As required by theorem 4, the 
space (.A' /G, YJ) would be timelike geodesically incomplete because one 
could not extend the identification under G to the whole of .A' (neither 
conditions ( 1 )  nor (2 )  of § 5 .8  would hold at the origin) .  In this case the 
incompleteness singularity arises from bad global properties and is not 
accompanied by a curvature singularity. This example was suggested 
by Penrose . 

Conditions (2 )  and (3 )  can be replaced by : 

(2 ' )  !/ is a Cauchy surface for Ji; 
( 3 ' )  xa 

a is bounded away from zero on Sf'; 
since in  this case there cannot be  a Cauchy horizon, yet all the future
directed timelike curves from !/ must have lengths less than some 
finite upper bound. 

Geroch ( 1 966) has shown that if condition (2 )  holds, and if conditions 
( 1 )  and ( 3) are replaced by : 

( 1 " ) Rab KaKb � 0 for every non-spacelike vector, equality holding 
only if Rab = O ; 

(3 " )  there is a point p E!fJ such that any inextendible non-spacelike 
curve which intersects !/ also intersects both J+(p) and J-(p) ; 

then either the Cauchy development of !/ is flat, or .,/{ is timelike 
geodesically incomplete . 
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Condition ( 3 " )  requires that an observer at p can see, and be seen by, 
every particle that intersects !J. The method of proof is to consider all 
spacelike surfaces without edge which contain p. One can form a 
topological space S(p)  out of all these surfaces, in a manner analogous 
to that in which one forms a topological space out of all the non
spacelike curves between two points . Conditions (2 )  and ( 3 " )  then 
imply that S(p) is compact. One can show that the area of the surfaces 
is an upper semi-continuous function on S(p) and so there will be some 
surface .'/'' through p which has an area greater than or equal to that 
of any other surface . By a variation argument similar to that used for 
non-spacelike curves, one can show that xa a vanishes everywhere on 
.'/'' except possibly at p, where the surface may not be differentiable . 

Consider a one-parameter family of spacelike surfaces Y' (u) where 
.'7(0) = .'7'. The variation vector W = o/ou can be expressed as Jn 

where n is the unit normal to the surfaces and/ is some function. One 
can apply the Raychaudhuri equation to the congruence of integral 
curves of W to show 

where 

and 

0 = Xa a' u ab = Xab - !Ohab> hab = gab + na nb, 
u2 = -l (1' ab uab . 

If there is some point q EY'' at which Rab nanb =I= 0 or Xab =I= 0 one can 
find an / such that oO/ou is negative everywhere on S' .  If Rab nanb and 
Xab were zero everywhere on .'7' ,  but there was some point q on .'/'' at 
which Cabcdnbnd was not equal to zero, then ou/ou =I= O and one could 
find an / such that oO/ou = 0 and o20/ou2 < O everywhere on .'/'' . In 
either case, one would obtain a surface .'/'" on which xa a < 0 every
where, and so Ji would be timelike geodesically incomplete by 
theorem 4. If Rab' Xab and Cabcdnbnd were zero everywhere on .'7', then 
the Ricci identities for na show that Cabcd = O on .'/'' . Hence space-time 
is flat in D(!J) .  An example in which conditions ( 1  " ) ,  (2 )  and (3" )  hold 
and in which D(.'7) is flat is Minkowski space with {x1 , x2, x3, x4} 
identified with {x1 + 1 x2 xa x4} {xl x2 + 1 xa x4} and {xl x2 xa + 1 x4} ' ' ' ' ' ' ' ' ' ' ' . 
This is geodesically complete . However the example given previously 
also satisfies these conditions and shows that D(.'7) can be both 
geodesically incomplete and flat . 



276 S P A C E-T I M E  S I N G U L A R I T I E S  [ 8 . 3  

8.3 The description of  singularities 

The preceding theorems prove the occurrence of singularities in a large 
class of solutions but give little information as to their nature . To 
investigate this in more detail , one would need to define what one 
meant by the size, shape, location and so on of a singularity. This would 
be fairly easy if the singular points were included in the space-time 
manifold. However it would be impossible to determine the manifold 
structure at such points by physical measurements . In fact there 
would be many manifold structures which agreed for the non-singular 
regions but which differed for the singular points . For example, the 
manifold at the t = 0 singularity in the Robertson-Walker solutions 
could be that described by the coordinates 

{t , r cos 0, r sin 0 cos �' r sin 0 sin �} 
or that described by 

{t , Sr cos 0, Sr sin 0 cos �' Sr sin 0 sin �} . 
In the first case the singularity would be a three-surface, in the second 
case a single point . 

What is needed is a prescription for attaching some sort of boundary 
o to .,(( which is uniquely determined by measurements at non
singular points, i .e .  by the structure of (vlt, g) .  One would then like to 
define at least a topology, and possibly a differentiable structure and 
metric, on the space .,((+ = vlt u o. One possibility would be to use the 
method of indecomposable infinity sets described in § 6 . 8 .  However 
since this depends only on the conformal metric ,  it does not distinguish 
between infinity and singular points at a finite distance . To make this 
distinction it would seem one should base one's construction for .,((+ 
on the criterion that has been adopted for the existence of a singularity : 
namely b-incompleteness . An elegant way of doing this has been 
developed by Schmidt . This supersedes earlier constructions by 
Hawking ( 1 966b )  and Geroch ( 1 968 a) which defined the singular 
points as equivalence classes of incomplete geodesics . These construc
tions did not necessarily provide endpoints for all b-incomplete curves, 
such as incomplete timelike curves of bounded acceleration . There was 
also a certain ambiguity in their definition of equivalence classes. 
Schmidt's construction does not suffer from these weaknesses . 

Schmidt's procedure is to define a positive definite metric e on the 
bundle of orthonormal frames 7T :  O(vlt) ---'> vlt. Here O(vlt) is the set of 
all orthonormal four-tuples of vectors {Ea}, Ea E TP for each p E vlt 
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(a ranges from 1 to 4 ) ,  and 1T is the projection which maps a basis at 
a point p to the point p.  It turns out that 0(1) is m-incomplete in 
the metric e if and only if .,II is b-incomplete . If 0(1) is m-incomplete, 

one can form the metric space completion 0(1) of 0(1) by Cauchy 

sequences . The projection 1T can be extended to 0(1) , and the 

quotient of 0(1) by 1T is defined to be .,II+ which is the union of .,II with 
a set of additional points o. The set o consists of the singular points 
of .,II in the sense that it is the set of endpoints for every b-incomplete 
curve in 1. 

To perform this construction , we recall ( § 2. 9 ) that the connection on 
.,II given by the metric � defines a four-dimensional horizontal subspace 
Hu of the ten-dimensional tangent space Tu at the point u E 0(1) . 
Then T,, is the direct sum of Hu and the vertical subspace V,:. consisting 
of all the vectors in T,, which are tangent to the fibre 7T-1(77(u) ) .  We now 
construct a basis {GA} = {Ea, Fd for Tu where A runs from 1 to 10, 
a runs from 1 to 4 and i runs from 1 to 6 ; {Ea} is a basis for Hu, and 
{Fi} is a basis for V,:.. 

Given any vector X E T,,(u) (..,11) there is a unique vector X E Hu(O(..,/I) ) 
such that 1T * X = X. Thus on 0(1) there are four uniquely defined 
horizontal vector fields Ea which are the horizontal lifts of the ortho
normal basis vectors Ea for each point u E 0(1) . The integral curves of 
the field Ea in 0(1) represent parallel propagation of the basis {Ea} 
along the geodesic in .,II in the direction of the vector Ea. 

The group 0(3 ,  1 ) ,  the multiplicative group of all non-singular 4 x 4 
real Lorentz matrices Aab' acts in the fibres of 0(1) sending a point 
u = {p , Ea} E O (vlt ) to the point A (u) = {p, Aab Eb} E 0(1) .  One can 
regard 0( 3, 1 )  as a six-dimensional manifold and represent the tangent 
space T1(0(3 ,  1 ) )  to 0(3 ,  1 )  at the unit matrix I by the vector space of 
all 4 x 4 matrices a such that aab Gbc = - acb Gba · Then if a E T1(0(3 , 1 ) ) ,  
one can define a curve in 0(3, 1 )  by At = exp (ta) where 

oo bn 
exp (b ) = � 1 .  n=o n. 

Thus if u E 0(1) one can define a curve through u in 7T-1 (77(u) )  by 

,\au(t ) = At(u) . As the curve Aau(t ) lies in the fibre , its tangent vector 
( o/othau is vertical . For each a E Tb one can therefore define a vertical 
vector field F(a) by F(a) J u = (o/otha,, 1 ,, for each u E 0(1) . If {ai} 
(i = 1 ,  2, . . . , 6) are a basis for Tb then Fi :::=:: F(aJ will be six vertical 
vector fields on 0(1) which will provide a basis for V,:. at each point 
U E 0(..,/I) . 

1 0  H L S  
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A matrix B E 0 (3 ,  1 )  defines a mapping O(J() -+ O(J() by u -+ B(u) . 
Under the induced map B* : Tu -+ Tncuh the vertical and horizontal 
vector fields transform as follows : 

B* (Ea) = B;l Eb, 

B* (Fi )  = O/ F;, 

where 0/ = Babai bc B-\d aida and {ai} are the basis for T*1 dual to the 
basis {ai} for T1(thus aiab aicib = o'j , ai,,b a;cc1 = !o,,c oba ) ·  The property 
of these induced maps which will be important for what follows is not 
their actual form but the fact that they are constant over O(J() . 

One now has a basis {GA} = {Ea, Fi} (A = 1 ,  . . .  , 1 0) for Tu at each 
point u E O(J() . One can thus define a positive definite metric e on 
O(J() by e(X, Y) = L XA Y.A where X, Y E T(u) and XA, YA are the 

.4 
components of X, Y respectively in the basis {G .A} · 

Using the metric e ,  one can define a distance function p(u, v) ,  
u, v E O(J() , as the greatest lower bound of lengths (measured by e)  

of curves from u to v .  One can then ask whether O(J() is m-complete 
with the distance function p. 

Proposition 8 .3 . 1 
(O(J() ,  e) is m-complete if and only if (..,/{, �) is b-complete . 

Suppose y(t) is a curve in ..,/(. Then given a point U E 11'-1 (p ) where p E y  
one can construct a horizontal curve y(t) through u such that 
11'(y ( t ) )  = y(t) . From the definition of the positive definite metric e, it 
follows that the arc-length of y(t) as measured in this metric is equal 
to the generalized affine parameter of y(t) , defined by the basis at p 

represented by the point u. If therefore y(t) has no endpoint but has 
finite length as measured by the generalized affine parameter, then 
y(t) will also have no endpoint but will have finite length in the 
metric e. Thus m-completeness in O(J() implies b-completeness in ..,/(. 

To prove the converse, one needs to show that if ,\(t) is a 01 curve in 
O(J() of finite length without endpoint, then 11'(,\(t) ) is a 01 curve in ..,/( 
with 

( 1 )  finite affine length, 
(2 )  no endpoint in ..,/(. 

To prove ( 1 ) , one proceeds as follows . Let U E A(t) . Then one can 
construct a horizontal curve X(t) through u such that 11'(A(t ) )  = 11'(,\(t) ) .  
For each value of t , ,\(t) and X(t) will lie i n  the same fibre, so there will 
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be a unique curve B(t) in  0(3 , 1 )  such that A.. (t ) = B(t ) X(t ) . This 
implies 

where B' = dB/dt . Therefore 

where {Ea} is the basis of H* u dual to the basis {Ea} ( i .e .  (Ea, Eb) = oab ) 
and aiab is the basis of T1* dual to the basis a; ab ( i .e .  ai ab ai ab = o/) .  

The matrix Bab satisfies Bab Gbc Bdc = Gad · Therefore 

Bab Gac Bcd = Gbd 

as Gab = G-1ab . Differentiating with respect to t, one has 

Thus B'ab B-1bc E T1(0(3 ,  1 ) ) .  Since the aiab are a basis for T*I> there is 
some constant C such that 

L (B 'ab B-lbc aica}2 � C(B 0ab B-lbc B 0ad B-ldc} · 
i 

Any matrix B E 0(3 ,  1 )  can be expressed in the form B = Q6.Q, 
where ( i )  n and Q are orthogonal matrices of the form 

( _Q_l-1 ) and ( _9_.1-1 ) 
where 0 and 0 are 3 x 3 orthogonal matrices , and the basis {Ea} has 
been numbered so that E4 is the timelike vector ; these matrices 
represent rotations ; and (ii) 6. is the matrix (cosh £ 0 0 sinh £) 

0 1 0 0 
0 0 1 0 

sinh £ 0 0 cosh £ 

which represents a change of velocity in the 1 -direction . With this 
decomposition, 

For any vector X E Tu, 

L ( (Ea, X) Qab)2 = L ( (Ea, X))2 . b a 
I0-2 
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Thus 

Therefore 

and so 
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t (<Ea , (�)x)B-1abr � � (<Ea, (�)1) r e-21€ 1 

= e ( (�)x ' (�)J e-21s 1 . 

e ( (�) / (�) J � e ( (�)x , (�)x) e-21€ 1 + 20(6 ' ) 2, 

[ e ( ( � t ,  ( �) J r � � [ e ( ( �) x , ( �) x) t e-1€ 1 + 01 I fi . 

Let £0 � oo be the least upper bound for 1 £ 1  on A.(t ) . Then 

L(A.) � iL(X) e-€0 + Ol£0, 

[8 .3  

where L(A.) is the length of the curve A in the metric e .  Since this is  
finite , so and L(X) must be finite . Thus the affine length of the curve 
7T(A(t ) ) in vii, which is equal to L(X) , will be finite. 

To complete the proof of proposition 8 . 3 . 1 ,  we have to show that the 
curve 7T(A(t ) ) in vii has no endpoint, that is, we have to show that there 
is no point p Evll such that 7T(A.(t ) ) enters and remains within every 
neighbourhood Ol/ of p. Because of the existence of normal neighbour
hoods Ol/ of p, this is a consequence of the following result : 

Proposition 8 . 3 . 2  (Schmidt ( 1 972 ) )  
LeLV be  a compact subset of  vii. Suppose there i s  a curve A.(t ) i n  O(vll) 
without endpoint and of finite length, which enters and remains 
within 7T-1 (.¥) . Then there is an inextendible null geodesic y contained 
in .Al. 

Let X(t) be the horizontal curve through some point U E A(t ) such 
that 7T(A(t ) ) = 7T(A(t ) ) .  The curve A.(t ) has no endpoint . Suppose 
there were a point v E O(vll) which was an endpoint of the hori
zontal curve X(t ) .  Then there would be an open neighbourhood ii" of v 
with compact closure such that X(t ) entered and remained within ii". 
Let if/' be the set {x E O(vll) :  Bx E ii" for all matrices B with 1 £ 1 � £0} .  
Since ii" was compact and so is finite, ii"' would be compact. The 
curve A.(t ) would enter and remain within ii"'.  But any compact set 
is m-complete with respect to the positive definite metric e . Thus 
A.(t ) , having finite length , would have an endpoint in ii"'. This shows 
that X(t ) has no endpoint . 
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Let {xn} be a sequence of points on X(t) without any limit point. 
Since A' is llompact, there will be a point x EA' which is a limit point 
of 1T(xn ) ·  Let IP/ be a normal neighbourhood of x with compact closure , 
and let <r :  IP/ --* O(.A) be a cross-section of O(.A) over IP/, i .e .  <r(p) ,  p E lfl, 
is an orthonormal basis at p .  Let A (t )  = <r(77(.A(t ) ) )  for .A(t) E 1T-1 (1P/) . 
Then as in the previous proposition, there will be a unique family of 
matrices A (t) E 0(3 ,  1 )  such that X(t)  = A (t ) A (t ) ,  and one can express 
the matrix A in the form A = QLiQ. Suppose that I Wn· )  I had a finite 
upper bound s1 , where xn' = X(tn• ) is a subsequence of the xn which 
converges to x. Then the points xn' would be contained in the set 
IP/' = {v E O(.A) : A -1v c <r(IP/) for some A E 0(3 ,  1 )  with l s l  < s1} · 
However IP/' would be compact and so would contain a limit point of 
the {xn•} ,  which is contrary to our choice of the {xn} · Thus I Wn· ) I has 
no finite upper bound . Since the orthogonal group is compact, one can 
choose a subsequence {xn·} such that nn. converges to some Q' ,  Qn. 
converges to some Q' ,  Sn· --* oo, and 

( 8 . 1 )  

for some constant a (here Qn. = Q(tn• ) ,  etc . ) .  
Let A' (t) = (Q ' )-1 X(t) , and let An· ( t )  = Lin.-1(Q ' )-1 X(t) . Then An.( tn· ) 

tends to x = Q '<r(x ) . Since the length of the curve X(t) is finite , the 
curve .A' ( t )  also has finite length . This means that 

tends to zero, where 

and 

Thus 

XA = (EA, (o/ot)it') ,  A = u, v,  2, 3 ,  

:Eu = ..!._ ('£4 + El) Ev = ..!._ (R4 - El) �2 ' �2 . 

ft,.•+ • I X.A l dt t,.• 
tends to zero, for each A .  The components Yn.A of the tangent vector 
of the horizontal curve An·(t )  are 

Thus ( 8 . 2 ) 
tend to zero . 
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Letµ be the integral curve of the horizontal vector field :Ev through x.  
Then 'TT(µ) will be a null geodesic in JI. Suppose that 1T(µ) left .Al in 
both the past and future directions .  Then there would be some 
neighbourhood "//' of x with compact closure and with the property 
that in each direction µ left and did not re-enter the set "//'' ,  where 
"//'' = {v E O(J/) : there is a � with �v contained in "//'} . One could 
choose "//' sufficiently small that it had this property for any integral 
curve of Ev which intersected "//' and so that any such curve would 
leave 7T-1 (%) in both directions. Let if!! be the tube consisting of all 
points on integral curves of "Ev which intersect i7". Then if!I n 7T-1 {.A/) 
would be compact . For sufficiently large n" , An· (tn. ) would be con
tained in "//' . By (8 . 2 )  the components of the tangent vector to An· 
transverse to the direction "Ev are so small that for large n" and 
t > tn. , the curve An·(t) could not leave the tube <TY n 7T-1 {.A/) except at 
its ends where if!! left 7T-1 (%) .  However An· (t) cannot leave 7T-1 {.A/) ,  as 
A.(t) does not leave 7T-1(.A/) .  Thus An·(t) would be contained in 
if!! n 7T-1 (%) for t ;;::: tn· · This leads to a contradiction as follows : 
An·+i(tn•+i )  is contained in "//' . However by (8 . 1 ) ,  "//' can be chosen 
sufficiently small that 

An·(tn•+l) = �n"+l �n· -l An•+l(tn•+l ) 

is not contained in "//', though it is contained in "f/'' . This shows that 
our assumption that the null geodesic 'TT (µ) left .Al in both directions 
is false . Thus there will be some point p E.AI which is a limit point of 
11(µ ) . By lemma 6 . 2 . 1 there will be an inextendible null geodesic 
y through p which is contained in A · and which is a limit curve of 
11(µ) .  D 

If O(J/) is m-incomplete, one can form the metric space completion 
O(J/).  This is defined to be the set of equivalence classes of Cauchy 
sequences of points in O(J/) . If x = {xn} and y = {y,,,} are Cauchy 
sequences in O(J/) , the distance p(x, y) between x and y is defined to 
be lim p(xn , Yn) where p is the distance function on O(JI) defined by 

the positive definite metric e; x and y are said to be equivalent if 
p(x, y) = 0. One can decompose O(JI) into a part homeomorphic to 
O(JI) and a set of boundary points 8 ( i .e .  O(JI) = O{J/) u 8). The 
distance function p defines a topology on O(JI) . From (8 . 1 ) ,  it follows 
that the topology on O(J/) is independent of the choice of basis 
{ai} of T1. 
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One can extend the action of 0(3 , 1) to O(J() . For under the a ction 
of A E 0(3, 1 ) , the transformation of the basis {G _,,.} is independent of 
position in O(J() . Thus there are positive constants C1 and C2 
(depending only on A) such that C1p(u, v) ..; p(A (u), A (v) ) ..; C2p(u, v) .  
This means that under the action of A, Cauchy sequences will map to 
Cauchy sequences and equivalence classes of Cauchy sequences are 
mapped to equivalence classes of Cauchy sequences . Therefore the 
action of 0(3 , 1 )  extends to O(J() in a unique way. One can then define 
.,((+ to be the quotient of O(J() by the action of 0(3 , 1 ) .  Since the 
quotient of O(J() by 0(3, 1 )  is .,/(, and since 0(3 , 1 )  maps incomplete 
Cauchy sequences to incomplete Cauchy sequences, one can express 
.,((+ as the union of.,(( and a set 8 of points called the b-boundary of.,/(, 
One can regard points of 8 as representing the endpoint of equivalence 
classes of b-incomplete curves in J(, 

The projection 7i:  O(J() -+ .,((+, which assigns a point in O(J() to its 
equivalence class under 0(3 , 1 ) ,  induces a topology on .,((+ from the 
topology on O(J() . However 7i does not induce a distance function 
on .,((+ because p is not invariant under 0(3 , 1 ) .  Thus although the 
topology of O(J() is a metric topology, and so Hausdorff, that of .,((+ 
need not be Hausdorff. This means that there may be a point p E .,(( 
and a point q E 8 such that every neighbourhood of p in .,((+ intersects 
every neighbourhood of q. This happens when the point q corresponds 
to an incomplete curve which is totally or partially imprisoned in .,/(, 
We shall discuss imprisoned incompleteness further in § 8 .5 .  

If  g i s  a positive definite metric on J(, then 1+ is  homeomorphic 
to the completion of (J(, g) by Cauchy sequences. Schmidt's construc
tion also has the desirable property that if one cuts a closed set d out 
of a space, then one gets at least one point of the b-boundary for every 
point of d '  that is the endpoint of a curve in J{ - d. An example 
where one gets more than one b-boundary point for a point of d' is 
provided by two-dimensional Minkowski space in which the set d is 
taken to be the t-axis between - 1 and + 1 .  Then there will be two 
b-boundary points for each point (0 ,  t) where - 1  < t < 1 .  An example 
where a point in d' cannot be reached by a curve in .,(( - d is given 
by the set 

d = { t = sin � ' t =!= o} U { - 1  ..; t ..; 1 ,  x = O} .  

There is no curve in .,(( - d which has an endpoint at the origin , and 
hence this point will not be in (J{ - d)+, although it is in d' . 



284 S P A C E-T I M E  S I N G U L A R I T I E S  [8 .3 

Although Schmidt's construction has an elegant formulation, it is 
unfortunately very difficult to apply in practice . The only solutions 
for which .,,It+ has been found, apart from spaces of constant curvature, 
are the two-dimensional Robertson-Walker solutions with normal 
matter. In these o turns out to be a spacelike one-surface as might be 
expected from the conformal picture . In this case, one can define a 
natural differential structure on o and make .,,It+ into a manifold with 
boundary. However there does not seem to be any general way of 
defining a manifold structure on o. Indeed one might expect that in 
generic situations o would be highly irregular and could not be given 
a smooth structure . 

8.4 The character of the singularities 

In this and the following section we shall discuss the character of the 
singularities predicted by theorem 4. We consider this theorem rather 
than the others because more information about the singularity can 
be obtained . We expect however that the singularities predicted by 
the other theorems will have similar properties .  

First there is the question of how bad the breakdown of differenti
ability of the metric must be.  The theorems of the previous section 
showed that space-time must be geodesically incomplete if the metric 
was 02 • The 02 condition was necessary in order that the conjugate 
points and variation of arc-length should be well-defined ; in other 
words, in order that solutions of the geodesic equation should depend 
differentiably on their initial position and direction . However one can 
talk about geodesic incompleteness provided that solutions of the 
geodesic equation are defined. They will exist if the metric is 01 and 
will be unique and depend continuously on initial position and direction 
if the metric is 02- ( i .e .  if the connection is locally Lipschitz ) .  In fact 
one can discuss b-incompleteness provided merely that the positive 
definite metric e on the bundle of frames 0(1) is defined almost every 
where and is locally bounded . This will be the case if the components 
rabc of the connection are defined almost everywhere and are locally 
bounded, i . e .  if the metric is 01- .  

It thus might appear that what the theorems indicate is not that 
the curvature becomes unboundedly large but merely that it has a 
discontinuity ( i . e .  the metric is 02- rather than 02) .  We shall show that 
this is not the case : under the conditions of theorem 4 space-time must 
be timelike geodesically incomplete (and hence b-incomplete) even if 
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the metric is only required to be C2-. The method of proof is to 
approximate the c2- metric by a C2 metric and to perform variation 
of arc-length in this metric .  

Suppose that space-time is defined to be inextendible with a c2-

metric and that the conditions of theorem 4 are satisfied. The timelike 
convergence condition, Rab KaKb � 0, is now required to hold ' almost 
everywhere ' with the Ricci tensor defined by generalized derivatives . 
The only part of the proof of theorem 4 that does not hold in a C2-
metric is where variation of arc-length is used to show that there can 
be no point p E D+(Y) such that d(Y, p) > - 3/00, where 00 is the 
maximum value of Xaa on !/. Thus if .,It were timelike geodesically 
complete there would be some such point p and a geodesic orthogonal 
to !? of length d(Y, p) from !? to p.  Let au be an open set with compact 
closure which contains J-(p) n J+(Y) and let e and g be C00 positive 
definite and Lorentz metrics respectively. For any e > 0 one could 
find a C00 Lorentz metric Yeab such that on i/i 

( 1 ) ! Yeab _ gab i < e, 
(2 ) ! Ye able - gab1 e l  < e, 
(3) ! Yeabled l < C, where C is a constant depending on au, e, g and g, 
(4)  ReabKaKb > - e ! Ka l 2 for any vector K such that Ywb KaKb � 0 . 

(The geab may be constructed by covering i/i by a finite number of 
local coordinate neighbourhoods (�, </Ja.) , integrating the coordinate 
components of gab with a suitable smoothing function Pe(x) and 
summing with a partition of unity {ifr a.} , i .e .  

Yeab(q) = � ifr a.(q) f gab(x) Pe (x - </Ja.(q) )  d4x, 
a. r/>a('"l"a) 

where f Pe(x) d4x = 1 . )  
Property ( 1 )  implies that for sufficiently small values of e ,  p would 

be in D+(!J, ge) and J-(p, ge) n J+(!J, ge) would be contained in au. 
There would therefore be a geodesic 'Ye in the metric g, from !J to p of 
length d,(Y, p ) .  Also ! d.(Y, p) - d(Y,p) I would tend to zero as e -+ 0. 

By properties ( 1 } , ( 2) and ( 3 ) ,  and the standard theorems on ordinary 
differential equations, as e -+ 0 the tangent vector to a geodesic 
in the metric g, would tend to that of the geodesic in the metric 
g with the same initial position and direction . There would be 
some upper bound to I va 1 on ijj n /J(Y x [O, 2d(Y, p)] ) ,  where va is the 
unit tangent vector to the geodesic orthogonal to !J in the metric g. 
Thus for any 8 > 0 there would be an e1 > 0 such that for any e < e1 , 

R<ab v.;a V.b > - 8. We can now establish a contradiction by showing that 
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a sufficiently small variation of the energy condition will not prevent 
the occurrence of conjugate points in the metric g. within a distance 
less than d.(Y,p) .  For the expansion o. of the geodesics in the metric 
g. obeys the Raychaudhuri equation : 

dO.fds = - !0.2 - 2u.2 - Reab v,;a v,;b . 

Thus d(0.-1 )/ds � l + R.ab va vbo.-2 . Therefore if the initial value o •• 
were negative and 3a0 •• -2 were less than one, 0 • -1 would become zero 
within a distance 3/00( 1 - 3000 -2) from .9. But 0.0 -+ 00 as e -+  0. This 
shows that for sufficiently small values of e there would be a conjugate 
point on every geodesic in the metric g. orthogonal to Y within a 
distance less than d.(Y,p) .  Therefore ....It must be timelike geodesically 
incomplete even if the metric is required only to be 02-. 

This result implies that if space-time is extended to try to continue 
the incomplete geodesics, the metric must fail to be Lorentzian or the 
curvature must be locally unbounded, i . e .  there would be a curvature 
singularity. However even though the curvature were locally un
bounded, the metric might still be able to be interpreted as a distribu
tional solution of the Einstein equations provided that the volume 
integrals of the components of the curvature tensor over any compact 
region were finite . This would be the case if the metric were Lorentz , 
continuous and had square integrable first derivatives. In particular 
this would be true if the metric were Lorentz and 01- ( i .e .  locally 
Lipschitz ) .  Examples of such 01- solutions include gravitational shock 
waves (where the curvature has a a-function behaviour on a null three
surface, see, for example, Choquet-Bruhat ( 1 968) and Penrose 
( 1 972a) ) ;  thin mass shells (where the curvature has a a-function 
behaviour on a timelike three-surface, see, for example , Israel ( 1 966) ) ;  
and solutions containing pressure-free matter where the geodesic flow 
lines have two- or three-dimensional caustics (see Papapetrou and 
Hamoui ( 1 967) ,  Grischuk ( 1 967) ) .  Because of the non-linear depend
ence of the curvature on the metric one cannot necessarily approxi
mate a 01- distributional solution by a 02 metric which obeys the 
convergence condition at every point, or at least does not violate it 
by more than a small amount as in the case above (proper�y (4) ) .  
However in  all the examples given above one can. Indeed this i s  their 
physical justification : they are regarded as mathematical idealizations 
of 02 or 000 solutions which obey the convergence condition and in 
which the curvature is very large in a small region . One could apply 
the theorems of § 8 . 2  to these 02 solutions and prove the existence of 
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incomplete geodesics in them. This shows that the singularities pre
dicted cannot be just gravitational impulse waves or caustics of flow 
lines but must be more serious breakdowns of the metric .  (Ordinary 
hydrodynamic shock waves involve only discontinuities of density 
and pressure and so can exist with a 02- metric . ) Although we are not 
quite able to prove it we believe that the singularities must be such 
that the metric cannot be extended to be even a distributional solution 
of the Einstein equations, i . e .  as well as the components of the curva
ture being unbounded at a singular point, their volume integral over 
any neighbourhood of such a point must also be unbounded. This is so 
in all known examples of singularities other than the exceptional case 
of the Taub-NUT solution, which will be dealt with in the next section . 
If this conjecture is correct for ' generic ' singularities ( i .e .  except for 
those arising from a set of initial conditions of measure zero ) ,  then one 
can regard a singularity as a point where the Einstein equations (and 
presumably the other presently known laws of physics) break down. 

Another question one would like to answer is : how many incomplete 
geodesics are there ? If there were only one, one might be tempted to 
feel that the singularity could be ignored . From the proof of theorem 4 
one can see that if there is no Cauchy horizon, i . e .  if !J is a Cauchy 
surface, then no timelike curve from !J (geodesic or not) can be 
extended to a length greater than - 3/00 where 00 is the maximum 
value of xa 

a on 9'. In fact this result is true even if 9' is non-compact 
provided that xa 

a still has a negative upper bound . However this does 
not necessarily indicate that what happens is that every timelike curve 
hits the singularity. Rather it suggests that a singularity will be 
accompanied by a Cauchy horizon and so our ability to predict the 
future will break down. An example of this is shown in figure 53 .  Here 
the metric is singular at the point p and so this point has been removed 
from the space-time manifold. Spreading out from this hole there is 
a Cauchy horizon. This example shows that the most one can hope to 
prove is that there is a three-dimensional family of geodesics which 
are incomplete and which remain within the Cauchy development of 
!J (in the example these are the geodesics which would pass through p ) .  
There may b e  other geodesics which leave the Cauchy development 
of!J and which are incomplete but one cannot predict their behaviour 
from knowledge of conditions on !J. 

It is clear that there must be more than one incomplete geodesic in 
D+(Y) .  For from theorem 4 it follows that there must be a geodesic y, 

orthogonal to !J, which remains in D+(Y) but which is incomplete . 
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p 

FIGURE 53 .  The point p has been removed from space-time because a singularity 
occurs there. Consequently there is a Cauchy horizon H +( #) for the surface §>. 
Let p be the point where y intersects !J. Then one can make a small 
variation of !J in a neighbourhood of p to obtain a new surface .9' for 
which Xaa is still negative, but which is not orthogonal to y.  Then by 
theorem 4 there must be some other timelike geodesic y' orthogonal 
to !J' which is incomplete and which does not cross H+(!J' ) ,  which is 
the same as H+(!J) .  

One can in  fact prove that there is at least a three-dimensional 
family of timelike geodesics (one through each point of some achronal 
surface) which remain within D+(!J) and which are incomplete . These 
geodesics all correspond to the same boundary point in the sense of the 
indecomposable past sets of § 6 .8 ,  that is, they all have the same past . 
They may not, however, all correspond to the same points as defined 
by the construction of the previous section . An outline of the proof is 
as follows : in theorem 4 it was shown that there must be a future
directed timelike geodesic orthogonal to .!/ which cannot be extended 
to length 3/00 . One can say more than this : there must be such a 
geodesic y which remains within D+(!J) and is at each point a curve 
of maximum length from !J, i . e .  for each q E y, the length of y from !J 
to q equals d(!J, q) . The idea is now to consider the function d(r, y) for 
r E J-(y) . Clearly this is bounded on J+(!J) n J-(y) . From the fact that 
y is a curve of maximum length from !J, it follows that in a neighbour-
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hood of y, d(r , y) is continuous and the surfaces of constant d(r, y) are 
spacelike surfaces which intersect y orthogonally. The timelike geo
desics orthogonal to these surfaces will then remain within J-(y) and 
so will be incomplete . 

8.5 Imprisoned incompleteness 

In § 8 . 1 we proposed b-incompleteness as a definition of a singularity . 
The idea was that a b-incomplete curve corresponded to a singular 
point which had been left out of space-time . However suppose that 
there is a b-incomplete curve A which has a limit point p E JI, i . e .  A is 
partially or totally imprisoned in a compact neighbourhood of p.  Then 
one cannot imbed JI in a larger four-dimensional Hausdorff para
compact manifold JI' such that A can be continued in JI'. For if q were 
the point where A intersected the boundary of vii in vii' ,  then any 
neighbourhood of q would intersect any neighbourhood of p, which 
would be impossible as vii' is Hausdorff and q =I= p. In fact, one can 
characterize imprisoned incompleteness of JI by non-Hausdorff 
behaviour of the Schmidt completion JI+. 

Proposition 8 .5 . 1 
A point p E JI is not Hausdorff separated in JI+ from a point r E o if 
there is an incomplete curve A in JI which has p as a limit point and 
which has r as an endpoint in JI+. 

Suppose that p E JI is a limit point of a b-incomplete curve A.  One can 
construct a horizontal lift X of A in the bundle of orthonormal frames 
O(vlt) .  This will have an endpoint at some point 

x E 11-1(r) c 8 = O(vlt) - O(JI) .  

I f1'/  i s  a neighbourhood of r i n  JI+ then 11-1(f ) i s  an open neighbour

hood of x in O(JI) . Thus it contains all points on X beyond some pointy. 
Therefore all points on A beyond 11(y) will l ie in f and hence fwill 
intersect any neighbourhood of p since p is a limit point of A.  D 

Taub-NUT space ( § 5 . 8 )  is an example where there are incomplete 
geodesics which are all totally imprisoned in compact neighbourhoods 
of the past and future horizons U(t) = 0. As the metric is perfectly 
regular on these compact neighbourhoods, the incomplete geodesis . 
do not correspond to s .p .  (scalar polynomial) curvature singularities . 
Consider a future incomplete closed null geodesic A(v) in the future 
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horizon U(t ) = 0 .  Let p = A.(O) and let v1 be the first positive value of v 
for which A. (v ) = p.  Then as in § 6 .4 ,  the parallelly propagated tangent 
vector to A will satisfy 

(o/ov) l v=vi = a(o/ov) l v=o' 
where a > 1 .  For each n, the point A(vn) = p, where 

and 

n 1 - a-n 
Vn = V1 � al-r = V1 -1 -1 ' 

r= l  - a 

Thus if one takes a pseudo-orthonormal parallelly propagated basis 
{Ea} on A.(v} , where E4 = o/ov, then the other null basis vector Ea obeys 
Ea l-vn = a-nEa l v=o· Each time one goes round the closed null geo
desic A, the vector E4 gets bigger and the vector Ea gets smaller. The 
vectors E1 and E2 remain the same. If therefore there were some non
zero component of the Riemann tensor which involved E4 and 
possibly E1 and E2, it would appear bigger and bigger each time one 
went round A and so there would be a p .p .  (parallelly propagated) 
curvature singularity. However in Taub-NUT space it turns out that 
the vector Ea can be chosen so that there is only one independent non
zero component of the Riemann tensor, which is R(Ea, E4, Ea, E4 ) .  
This involves Ea and E4 equally, and so has the same value each time 
round . Since a similar argument will probably hold for any imprisoned 
curve, it seems there is no p .p .  curvature singularity in Taub-NUT 
space, although this space is singular by our definition . One would like 
to know whether this kind of behaviour would occur in physically 
realistic solutions containing matter, or whether Taub-NUT space is 
an isolated pathological example. This question is important because, 
as we shall argue in the next chapter, we interpret the preceding 
theorems as indicating not that geodesic incompleteness necessarily 
occurs, but that General Relativity breaks down in very strong gravita
tional fields . Such fields do not occur in the Taub-NUT kind of situation . 
This conclusion is a result of the very special nature of the Riemann 
tensor in Taub-NUT space . In general, one would expect some other 
components of the Riemann tensor to be non-zero on the imprisoned 
curve , and so there would be a p .p .  curvature singularity even though 
there might be no s .p.  curvature singularity. In fact one can prove : 

Proposition 8 .5 . 2 

If p E ....11 is a limit point of a b-incomplete curve A and if at p, 
Rab KaKb =I= 0 for all non-spacelike vectors K, then A corresponds to 
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a p .p .  curvature singularity . (This condition can be replaced by the 
condition that there do not exist any null directions Ka such that 
xaxccabcldKe1 = 0. ) 
Let oU be a convex normal coordinate neighbourhood of p with com
pact closure, and let {Yi}, {Yi} be a field of dual orthonormal bases 
on lllt. Let {Ea}, {Ea} be a parallelly propagated dual orthonormal basis 
on the curve A.(t) . Let l be a parameter on A. such that in lllt, 

dl/dt = (�  XiXi)l, 
i 

where Xi are the components of the tangent vector o/ot in the basis 
{Yi} · Then l measures arc-length in the positive definite metric on oU 
in which the bases {Yi} ,  {Yi} are orthonormal . 

Since Rab KaKb 9= o at p for any non-spacelike vector Ka, there is 
a neighbourhood "Y c oU such that Rab = CZaZb + R'ab• where C 9= o 
is a constant, Za is a unit timelike vector, and R'ab is such that 
CR'ab KaKb > o for any non-spacelike vector Ka. Suppose that after 
some value 10 of l the curve A. intersects "Y. Since A has no endpoint 
and since p is a limit point of A., the part of A. in "Y will have infinite 
length as measured by l. However, the generalized affine parameter is 
given by 

du/dl = {� (Eai Xi)2}t, 
a 

where Xi are the components of the tangent vector (o/olh_ ,  so 
� JtiXi = 1 ,  and Eai are the components of the basis {Ea} in the basis 
i 
{Yi} . Since u is finite on the curve, the modulus of the column vector 
Eai X

i must go to zero, and so the Lorentz transformation represented 
by the components Eai must become unboundedly large . Since Z is 
a unit timelike vector, the components of Z in the basis {Ea} will 
therefore become unboundedly large and hence some component of 
the Ricci tensor in the basis {Ea} will become unboundedly large . D 

This result shows that an observer whose history was a b-incomplete 
imprisoned non-spacelike curve in a generic space-time would be torn 
apart by unboundedly large curvature forces in a finite time. However 
another observer could travel through the same region without experi 
encing any such effects . An interesting example in this connection is 
provided by Taub-NUT space in which the metric has been altered 
by a conformal factor Q which differs from one only in a small neigh
bourhood of a point p on the horizon. This conformal transformation 
would not alter the causal structure of the space and would not affect 
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the incompleteness of the closed null curve through the point p.  How
ever in general RabKaKb 9= 0 where Ka is the tangent vector to the 
closed null geodesic .  After each cycle, Rab Ka Kb increases by a factor a2 
and so there is a p .p .  curvature singularity. Yet the metric is perfectly 
regular on a compact neighbourhood of the horizon and so there is 
no s .p .  curvature singularity associated with the incompleteness . 

One would like to rule out this kind of situation in which the 
incomplete curves are totally imprisoned in a compact region . This 
kind of behaviour might occur in a countably infinite number of 
different regions of space-time . Thus one cannot describe it by saying 
that all the incomplete curves are totally imprisoned in one compact 
set . Instead one wants to describe it by saying that a set of incomplete 
curves which are compact in some sense are totally imprisoned in a 
compact region of ...It. To make this concept precise, we define 
b-boundedness as follows . 

We define the space B(....11) to be the set of all pairs (,\, u) ,  where u is 
a point in the bundle of linear frames L(....11 ) and ,\ is a 01 curve in ...It 
which has only one endpoint, which is at 1T(u) . Let Oii be an open set 
in ...It and "I-"' be an open set in L(....11) .  We define the open set O(Olt, "/-"') 
to be the set of all elements of B(....11) such that ,\ intersects Oii and u E "I-"'. 
The sets of the form O(Olt, "I-"') for all Oii, "I-"' form a sub-basis for the 
topology of B(....11) .  Recall that the map exp : T(....11) --+ ....lt is defined by 
taking a vector X at a point p and proceeding along the geodesic 
from p in the direction of X a unit distance as measured in the 
affine parameter defined by X. Similarly we may define a map 
Exp : B(....11) --+ ....11 by proceeding from 1T(u) along the curve ,\ a unit 
distance as measured in the generalized affine parameter on ,\ defined 
by u. The map Exp is continuous and will be defined for all of B(....11 ) 
if ...It is b-complete . We shall say that (...It, g) is b-bounded if for every 
compact set W c B(....11) ,  Exp ( W) has a compact closure in ...It . Since 
Exp is continuous, (...It, g) is b-bounded if it is b-complete . However, 
Taub-NUT space is an example which is b-bounded but not b-com
plete . We shall show that this can be possible only because Taub-NUT 
space is completely empty. The presence of any matter on the surface 
[/' in theorem 4 will mean that the space is both b-incomplete and 
b-unbounded. 

Theorem 5 

Space-time is not b -bounded if conditions ( 1 )-(3 )  of theorem 4 hold, and 
(4) the energy-momentum tensor is non-zero somewhere on Y, 
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(5) the energy-momentum tensor obeys a slightly stronger form of 
the dominant energy condition ( § 4 . 3 ) : if Ka is a non-spacelike vector, 
then Tab Ka is zero or non-spacelike and Tab Ka Kb ;:,: 0, equality holding 
only if Tab Kb = 0. 

Remark . Condition (4 )  could be replaced by the generic condition 
(see Theorem 2 ) .  

Proof. Consider the covering space ..,1(0 ( § 6 .5 )  defined as the set of  all 
pairs (p, i [A.] ) ,  where A is a curve from q to p, p, q E M, and i[A.] is the 
number of times A cuts !/ in the future direction minus the number of 
times it cuts it in the past direction . For each integer a, 

� = {(p, i [A.] ) : p E!7, i [A.] = a} 
is diffeomorphic to !/ and is a partial Cauchy surface in ..,1(0. In 
general ..,/(0 need not be b-bounded if .,I( is , but in the situation under 
consideration we have the following result : 

Lemma 8 . 5 . 3  

Let conditions ( 1 )-( 3 )  hold and let D+(�) not have compact closure 
in ..,/(0 ; then if ifr is the covering projection ifr :  j(0 -+ ..,/(, ifr(D+(9i;) )  
will not have compact closure in ..,/( . 

.,I( is either diffeomorphic to ..,/(0 or to .,/(a, the portion of ..,1(0 between 
� and �+i with � and �+1 identified . If for any a ;:,: 0, .,/(,, n D+(9i;) 
does not have compact closure in ..,/(0, then ifr(D+(9i;) )  will not have 
compact closure in ..,/(. If however .,/(a n D+(�) had compact closure 
for all a ;:,:  0 it would also have to be non-empty for all a ;:,:  0 since 
D+(�) is non-compact . But for p E �, the proper volume of 
J-(p) n ..,l(a-l has some lower bound c . Thus for every a ;:,: 0 the proper 
volume of JI,, n D+(9i;) could not be less than c . But this is impossible 
since by conditions ( 1 )-( 3 )  and proposition 6. 7 . 1 ,  the proper volume of 
D+(�) is less than 3/( - 00) x (area of !/) ,  where 00 is the negative 
upper bound of x00 on !/. D 

Using this result, one can prove : 

Lemma 8 . 5 . 4  

If  D+(9i;) does not have compact closure , Jt i s  not b-bounded. 

Let "fl/" be the subset of B(..,1{0) consisting of all pairs (A., u) where A is 
any future-inextendible timelike geodesic curve in ..,/(0 orthogonal to 
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9'(; with endpoint r E 9'(;, and u E 77-1 (r) is any basis at r, one of whose 
vectors is tangent to ;\ and of length - 3/00, the remaining vectors 
being an orthonormal basis in �-

Let {&'"} be a collection of open sets which cover if/". Each &'" will 
be the union of finite intersections of sets of the form 0(,;pf, "Y) . It is 
sufficient to consider the case when the &' can be represented as 

&'" = n O(cp/"/J' �), 
p 

where for each a the cp/ap are a finite number of open sets in .L0, and 
"I';, is an open set in L(v/(0) .  Let (µ, v) E if/". Then there is some a such 
that (µ, v) E Y'".  This means that the geodesic µ intersects the open set 
cp/a/J for each value of fJ and that V E �. Since geodesics depend con
tinuously on their initial conditions there will be some neighbourhood 
Cf!I" of 77(v) such that every future-inextendible geodesic through Cf!I" 
orthogonal to � will intersect cp/ afJ for each value of /J. Let .Y'" be an 
open set contained in � such that 77(.Y' ") c <PI". Then 

(µ, v) E 0(77("f/'' ") , "/"" 'a ) 
is contained in &'" . Thus the sets {0(77(.Y' " ) , "Y' ")} form a refinement of 
the covering &'" . 

Consider the subset !l, of L(Jt0) consisting of all bases over 9'(; 
where one of the basis vectors is orthogonal to � and of length 
- 3/00, and the remaining vectors are an orthonormal basis of 9'(;. 
Since !l, is compact, it  can be covered by a finite number of the sets 
"/"" ' a ·  Thus ii' is compact since it can be covered by a finite number of 
the sets 0(77(.Y' " ) ,  "Y' " ) . 

By proposition 6 . 7 . 1  each point of D+(9(;) lies within a proper 
distance - 3/00 along the future-directed geodesic orthogonal to 9'(;. 
This means that Exp (ii') contains D+(9(;) . Let ifr* : B(.L0) -+ B(Jt) 
be the map which takes (;\, u) E B(Jt0) to (ifr(J\) ,  ifr*u) E B(Jt) . Then 
ifr *ii' will be a compact subset of B(Jt) such that 

Exp (ifr* W) � ifr(D+(9(;) ) .  

Thus if D+(9(;) i s  not compact, ?f(D+(9'(;))  i s  not compact, so (Jt, g )  
is not b-bounded . D 

This shows that it is sufficient to prove D+(9(;) non-compact. Suppose 
it were compact . Then H+(�) would also be compact . We show below 
that this would imply that the divergence of the null geodesic 
generators would have to be zero everywhere on H+(9(;) . This would 
be impossible ifthe matter density were non zero somewhere onH+(9(;) . 
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Lemma 8 . 5 . 5  

If  H+(f2_) i s  compact for  a partial Cauchy surface it,,  then the null 
geodesic generating segments of H+(!t,) are geodesically complete in 
the past direction . 

From proposition 6 . 5 . 2  it follows that the generating segments have 
no past endpoints . They must therefore form ' almost closed ' curves 
in the compact set H+(!t,) .  If they formed actual closed curves, one 
could use proposition 6 .4 . 4  to show that if they were incomplete in the 
past direction, they could be varied towards the past to give closed 
timelike curves. This however would be impossible since such curves 
would lie in D+(!t, ) .  The proof in the case when the null geodesic 
generators of H+(!t,) are only ' almost closed ' is similar though a little 
more delicate. 

Introduce a future-directed timelike unit vector field V which is 
geodesic  in a neighbourhood tJlf of H+(!t,) with compact closure . Define 
the positive definite metric g' as in proposition 6 .4 .4  by 

g' (X, Y) = g(X, Y) + 2g(X, V) g(Y, V) 

and let t be a parameter which measures proper distance in the metric 
g' along a null geodesic generating segment y of H+(f2_) ,  and which is 
zero at some point q E y. Then g(V, o/ot ) = - 2-l. As y has no past 
endpoint , t will have no lower bound . Let f and h be given by 

where v is an affine parameter. Suppose y were geodesically incomplete 
in the past, then the affine parameter 

v = f� h-1 dt' 
would have a lower bound v0 as t � - oo. Now consider a variation 
a of y whose variation vector o/ou is equal to - xV. Then 

8�g (� , �) lu=o = 2-i (!; + xh-1!�) · ( 8 . 3 )  

Since h � oo a s  t � - oo, one could find a bounded function x(t) such 
that ( 8 . 3 )  was negative for all t � 0. However this would not be suffi
cient to ensure that the variation gave an everywhere timelike curve 
since it could be that the range of u for which (8 . 3 )  remained negative 
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tended to zero as t ---+ - oo. To deal with this we shall consider the 
second derivative under the variation : 

02 ( o o ) o ( ( o D o ) ) ou2 g at '  at = O U  g Ft '  ot OU (D o D o ) ( o D D o ) ( o ( o o ) o ) = g ot ou ' ot ou + g at '  ot ou ou 
+ g at '  R ou ' at ou · 

Choosing ox/ou to be zero and using the fact that V is a geodesic in 
a neighbourhood iJ/I of H+(.2) this reduces to 

(dx) 2 •2 [ (DV DV) ( o ( o ) )] - dt + x g 8t ' 8t + g at ' R V , at V 

for 0 � u � e. In any basis orthonormal with respect to the metric g' ,  

the components of the Riemann tensor and of the covariant derivative 
of V (with respect to g) will be bounded on IJ/I. Thus there is some 
C > 0 such that 

Now 

so 

Therefore 

02 ( 0 0 ) 02 2 I ( 0 0 ) 
ou2 g Ft '  at � x g at '  Ft · 

g V - = - 2-l - u -( o ) dx 
' ot at · 

g '(� , �) = g (� , �) + 1 - (2�2)  u �� + 2u2 (��r 
� g (� , �) + d  

for 0 � u � e, where d = ( 2�2)  e01 + 2e2012 + 1 ,  and 01 is an upper 
bound to l dx/dt J . Thus we have 

and 

o2y 
ou2 � c2x2(y + d) 

�Y I = 2-lh-l 
d
d (hx) ,  Y l u=O = 0, uU U=O t 

where y = g(o/ot, o/ot ) .  Therefore 

y � d (cosh Cxu - l ) + a sinh Cxu 

� sinh Cxu( d tanh fCxu + a) ,  

where a = 2-!0-1 d (log hx)/dt. 
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x = h-1 [ -J>-1 dt' + K  r1 , 
K = 2 f � 00 h-1 dt ' ;  
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then a =  - 2-!0-1hx. Sincef = - h-1(dh/dt) is bounded on the compact 
set H+(fl,) and since J>-l dt' = - v  

was assumed to converge as t � - oo, there would be upper bounds for 
x and l dx/dt l and a positive lower bound 02 for h when - oo  < t ::::;; 0 . 
Then for 0 < u < min (€, 20-2 d-102) ,  y would be negative when 
- 00  < t ::::;; 0 . 

In other words, the variation a would give a past-inextendible time
like curve which lay in int D+(fl, ) and which was totally imprisoned in 
the compact set c:W. But this is impossible, since by lemma 6 .6 .5  the 
strong causality condition holds on int D+(f2 ) .  Thus y must be geo
desically complete in the past direction . D 

Consider the expansion fJ of the tangent vectors o/ot to the null 
geodesic generators of H+(Y'o) .  Suppose that fJ > 0 at some point q on 
a generator y and let ff be a spacelike two-surface through q in a 
neighbourhood of q in H+(f/(,) . The generators of H+(f/(,) will be 
orthogonal to ff and would be converging into the past . Then by 
condition ( 1 )  and the above lemma there would be a point r E y conju
gate to ff along y (proposition 4 .4 .6 ) . Points on y beyond r could be 
joined to ff by timelike curves (proposition 4 .5 . 1 4 ) .  But this would 
be impossible since H+(f/(,) is an achronal set . Therefore fJ ::::;; 0 on 
H+(f/(,) .  

Now consider the family of  differentiable maps f32 : H+([fo) � H+([fo) 
defined by taking a point q E H+(f/0) a distance z (measured in the 
metric g') to the past along the null geodesic generator through q. 
Let dA be the area measured in the metric g' of a small element of 
H+([fo) . Under the map /32 , 

Thus 

d 
dz 

dA = - fJ dA . 

- dA = - fJ dA . 
d f f dz p,ur (9'oll  p,(II + (.9',) ) 

( 8 . 4) 

But flz maps H+(Y'o) into H+(Y'o) (and onto if the generating segments 
have no future endpoints) .  Thus (8 .4 )  must be less than or equal to 
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zero . Together with the previous result this would imply (} = 0 on 
H+(.9o) .  By the propagation equation (4 .35)  this is possible only if 
Rab KaKb = 0 everywhere on H+(.9o) ,  where K is the tangent vector to 
the null geodesic generator . However by the conservation theorem 
of § 4 .3  condition (5 )  implies that TabKaKb is non-zero somewhere 
on H+(f/-') and by the Einstein equations (with or without A) ,  T0b Ka Kb 
equals Rab KaKb. (Strictly, the form of the conservation theorem 
required is slightly different from that in § 4 .3 .  Since there are no 
suitable spacelike surfaces which intersect H+(.9o) ,  one uses instead 
a family of surfaces one of which is H+(.9o) ,  the others being spacelike . 
These surfaces can be defined by taking the value of the function t at 

the point p E D+(.9o) to be minus the proper volume of J+(p) n D+(.9o) .  
Since t ; a becomes null on  H+(.9o) , i t  i s  no  longer necessarily true that 

there is a constant C > 0 such that on D+(9i;) ,  

pabt ; ab :::;; cpabt ; a t ; b · 

However if va is a timelike vector field on D+(.9o) ,  there is a constant O 
such that 

and 

Tabt ; ab :::;; CTab(t ; a t ; b + t; a Vi,) 

pabJ;, ; b :::;; QTab(t ; a t ; b + t ; a Yi,) .  
One can then proceed as in § 4 . 3  using Tab(t ; ab + Ya ; b) in  place of 
pabt ; ab • and proving that Tab(t ; a t ; b + t ; a Vi,) cannot be zero on H+(-9n) 
if it is non-zero on 9i;. The result then follows from (5) . )  D 



9 
Gravitational collapse and black holes 

In this chapter, we shall show that stars of more than about 1! times 
the solar mass should collapse when they have exhausted their 
nuclear fuel. If the initial conditions are not too asymmetric, the 
conditions of theorem 2 should be satisfied and so there should be 
a singularity. This singularity is however probably hidden from the 
view of an external observer who sees only a ' black hole ' where the 
star once was . We derive a number of properties of such black holes , 
and show that they probably settle down finally to a Kerr solution . 

In § 9 . 1 we discuss stellar collapse, showing how one would expect 
a closed trapped surface to form around any sufficiently large spherical 
star at a late stage in its evolution . In § 9 . 2  we discuss the event 
horizon which seems likely to form around such a collapsing body. 
In § 9 . 3  we consider the final stationary state to which the solution 
outside the horizon settles down . This seems to be likely to be one of 
the Kerr family of solutions. Assuming that this is the case, one can 
place certain limits on the amount of energy which can be extracted 
from such solutions. 

For further reading on black holes,  see the 1 972 Les Houches 
summer school proceedings , edited by B. S. de Witt , to be published 
by Gordon and Breach. 

9.1  Stellar collapse 

Outside a static spherically symmetric body such as a star, the solution 
of Einstein's equations is necessarily that part of one of the asymp
totically flat regions of the Schwarzschild solution for which r is 
greater than some value r0 corresponding to the surface of the star . 
This will be joined, for r < r0, onto a solution which depends in detail 
on the radial distribution of density and pressure in the star. In fact 
even if the star is not static, providing it remains spherically symmetric 
the solution outside will still be part of the Schwarzschild solution cut 
off by the surface of the star. (This is Birkhoff's theorem, proof of 
which is given in appendix B . )  If the star is static then r0 must be 

[ 299 ] 
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Singularity � 
r < 2m r = 2m r > 2m 

Schwarzschild empty 
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(i) 

r = 0 (singularity) 

( i i )  ( i i i )  

FIGURE 54. Collapse of a spherical star. 

Singularity 

[9 . 1 

( i )  Finkelstein diagram ( (r, t) plane) of a collapsing spherically symmetric 
fluid ball .  Each point represents a two-sphere. 

( i i )  Penrose> diagram of the> collapsing fluid ball . 
( i i i )  Diagram of t he collaps!' w i t h  only one spat ial  dimension suppressed . 

greater than 2m (the ' Schwarzschild radius ' ) .  This follows because 
the surface of a static star must correspond to the orbit of a timelike 
Killing vector, and in the Schwarzschild solution there is a timelike 
Killing vector only where r > 2m. If r0 were less than 2m, the surface 
of the star would be expanding or contracting. To get an idea of the 
magnitude of the Schwarzschild radius, we note that the Schwarz
schild radius of the earth is 1 .0 cm and that of the sun is 3 .0 Km ; 
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the ratios of the Schwarzschild radius to the radius of the earth and 
the sun are 7 x 1 0-10 and 2 x 1 0-6 respectively. Thus normal stars 
are a long way from their Schwarzschild radii .  

The life of a typical star will consist of a long ( ,.., 1 09 years) quasi
static phase in which it is burning nuclear fuel and supporting itself 
against gravity by thermal and radiation pressure. However when the 
nuclear fuel is exhausted, the star will cool, the pressure will be 
reduced, and so it will contract . Now suppose that this contraction 
cannot be halted by the pressure before the radius becomes less than 
the Schwarzschild radius (we shall see below that this seems likely for 
stars of greater than a certain mass ) .  Then since the solution outside 
the star is the Schwarzschild solution, there will be a closed trapped 
surface .r around the star (see figure 54) ,  and so, by theorem 2, a 
singularity will occur provided that causality is not violated and the 
appropriate energy condition holds . Of course in this case, because the 
exterior solution is the Schwarzschild solution, it is obvious (see 
figure 54) that there must be a singularity. However the point is that 
even if the star is not exactly spherically symmetric, a closed trapped 
surface will still occur providing the departures from spherical sym
metry are not too great. This follows from the stability of the Cauchy 
development proved in § 7 . 5 ;  for one can regard the solution as 
developing from a partial Cauchy surface .YI' (figure 55) . Now if one 
changes the initial data by a sufficiently small amount on the compact 
region J-(ff) n £, the new development of .YI' will still be sufficiently 
near the old in the compact region J+( .Yf') n J-(ff) that there will still 
be a closed trapped surface around the star in the perturbed solution . 
Thus we have shown that there is a non-zero measure set of initial 
conditions which lead to a closed trapped surface and hence to a singu
larity by theorem 2 .  

The two principal reasons why a star may depart from spherical 
symmetry are that it may be rotating or may have a magnetic field. 
One may get some idea of how large the rotation may be without 
preventing the occurrence of a trapped surface by considering the Kerr 
solution. This solution can be thought of as representing the exterior 
solution for a body with mass m and angular momentum L = am. 
If a is less than m there are closed trapped surfaces, but if a is greater 
than m they do not occur. Thus one might expect that if the angular 
momentum of the star were greater than the square of its mass, it 
would be able to halt the contraction of the star before a closed trapped 
surface developed. Another way of seeing this is that if L = m2 and 
angular momentum is conserved during the collapse, then the velocity 
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- 8ingularity 

.J-(.T) n .J+( Jf ) 

FIGURE 55. Collapse of a spherical star as in figure 54 (iii) showing a partial 
Cauchy surface .7/t'. It is the initial data on the compact region J-(!Y) n .7/t' 
of .7/t' which leads to the occurrence of the closed trapped surface !Y in the 
compact region J-(!Y) n J+(.Jt") . 

of the surface of the star would be about the velocity of light when the 
star was at its Schwarzschild radius. Now many stars have an angular 
momentum greater than the square of their mass (for the sun, L "' m2 ) . 
However it seems reasonable to expect some loss of angular momentum 
during the collapse because of braking by magnetic fields and because 
of gravitational radiation. The situation is therefore that in some stars, 
and probably most, angular momentum would not prevent occurrence 
of closed trapped surfaces, and hence a singularity. 

In a nearly spherical collapse a magnetic field B which is frozen into 
a star will increase as the matter density p to the i power. Thus the 
magnetic pressure is proportional to pt . This rate of increase is so slow 
that if the magnetic pressure is not important initially in supporting 
the star, then it will never be strong enough to have a significant effect 
on the collapse . 

To see why a burnt-out star of more than a certain mass cannot 
support itself against gravity, we shall give a qualitative discussion 
(based on unpublished work by Carter) of the zero temperature 
equation of state for matter. 
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In hot matter there is pressure produced by the thermal motions 
of the atoms and by the radiation present . However in cold matter at 
densities lower than that of nuclear matter ( ,..., 1 014 gm cm-3) ,  the only 
significant pressure will arise from the quantum mechanical exclusion 
principle . To estimate this, consider a number density n of fermions 
of mass m. By the exclusion principle, each fermion will effectively 
occupy a volume of n-1 . Thus by the uncertainty principle, it will have 
a spatial component of momentum of order /in! . If the fermions are 
non-relativistic, i .e .  if /in! is less than m, the velocity of the fermions 
will be of order /in! /m, while if the fermions are relativistic (i .e .  /in! is 
greater than m) then the velocity will be practically one (the speed of 
light) . The pressure will be of order (momentum) x (velocity) x (num
ber density) ,  and so will be ,..., /i2nim-1 if /in! < m, and will be ,..., lint if 
linl > m. When the matter is non-relativistic, the principal contribu
tion to the degeneracy pressure comes from the electrons, since m-1 

for them is bigger than it is for baryons. However at high densities, 
when the particles become relativistic ,  the pressure is independent of 
the mass of the particles producing it and depends simply on their 
number density. 

For small cold bodies, self-gravity can be neglected and the 
degeneracy pressure will be balanced by attractive electrostatic forces 
between nearest neighbour particles arranged in some sort of lattice . 
(We assume that there are equal numbers of positive and negative 
charges and approximately equal numbers of electrons and baryons. ) 
These forces will produce a negative pressure of order e2ni . Thus the 
mass density of a small cold body will be of order 

(9 . 1 )  

where me is the electron rest-mass and mn is the nucleon rest-mass . 
For larger bodies self-gravity will be important, and will compress 

the matter against the degeneracy pressure. To obtain an exact solu
tion would involve a detailed integration of Einstein's equations. 
However the important qualitative features can be seen more easily 
from a simple Newtonian order of magnitude argument. In a star of 
mass M and radius r0, the gravitational force on a typical unit volume 
is of the order (M/r02) nmn, where nmn :::::'. M/r03 is the mass density. 
The gravitational force will be balanced by a pressure gradient of 
order P/r0, where P is the average pressure in the star. Thus 

P = M2/r04 :::::'. Mintmn* · 
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If the density is sufficiently low that the main contribution to the 
pressure is from the degeneracy of non-relativistic electrons, 

P = 1i,2nfme-1 = Mintmnt, 

so 

This will be the correct formula for bodies for which it yields a value of 
n greater than (9 . 1 ) and less than me3 h-3, i .e . for e3mn-2 < M < himn-2 . 
Such stars are known as white dwarfs .  

If the density is so high that the electr�ns are relativistic, i . e .  
n > me 3 h-3, then the pressure will be given by the relativistic formula ; 
so P = nnt = Mintmnt · Now n cancels out of this equation . Thus 
apparently one obtains a star of mass 

ML = nlmn-2 � 1 . 5 M® ,  

which can have any density greater than me3 mnh-3, i .e .  any radius 
less than himn -1 me -1

. Stars of mass greater than ML simply cannot 
be supported by the degeneracy pressure of electrons. 

In fact, when the electrons become relativistic they tend to induce 
inverse beta decay with the protons, producing neutrons : 

e- + p -+ ve + n. 

This denudes the electrons and hence reduces their degeneracy 
pressure, thereby causing the star to contract and making the 
electrons more relativistic. This is an unstable situation, and the 
process will continue until nearly all the electrons and protons have 
been converted into neutrons. At this stage, equilibrium is again 
possible with the star supported by the degeneracy pressure of the 
neutrons. Such a body is called a neutron star. If the neutrons are 
non-relativistic, one finds 

n = M2mn7 1i,-6.  

If the neutrons are relativistic, the star must again have a mass ML 
and a radius less than or equal to him0 -2 . However MLf nlm0 -2 = 1 
and so such a star is near the General Relativity limit MLf R � 2 .  

The conclusion i s  that a cold star of  mass greater than ML cannot 
be supported by either electron or neutron degeneracy pressure . To 
show this rigorously, consider the Newtonian equation of support : 

where 

dp/dr = - pM(r) r-2, 

M(r) = 411 f>r2 dr 

( 9 . 2 )  
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is the mass within radius r .  Multiply both sides of ( 9 .2 )  by r4 and 
integrate by parts from 0 to r0 . This gives 

4f :• pr3dr = ( _,lJ(r0 ) )2/811, 

since p = 0 at r = r0• On the other hand, 

d (fr )! 3 (fr )-1-
dr o pr'3 dr' = 4 o pr'3 dr' pr3 

3 ( 1 fr dp ) -1- 3,.)2 
= · - !pr4 - - - r'4 dr' pr3 < --pir2 4 4 0 dr' 4 ' 

since dp/dr is never positive . As p is never greater than nn!, this shows 
that 

Therefore M (r0 ) must be less than ( 8h}i (411)-! mn -2, i . e .  

M (r0) < 8nlmn -2 . 

We summarize these results in figure 56 . In this diagram we plot the 
average nucleon density n against the total mass M of the body. The 
solid line shows the approximate equilibrium configuration of a cold 
body. In a hot body there will be thermal and radiation pressure in 
addition to degeneracy pressure and so such bodies may be in equi
librium above the solid line . The heavy dashed line on the right indi
cates where M/r0 (which is Mtnlmpl) is equal to two. The region to the 
right of this line contains no equilibrium states, and corresponds to 
a star being within its Schwarzschild radius . Far away from this line 
to the left, the difference between Newtonian theory and General 
Relativity may be neglected. Near this line, one has to take into 
account General Relativistic effects . For a static spherically symmetric 
body composed of a perfect fluid , the Einstein field equations can be 
reduced to (see appendix B)  

dp (µ +p) (M(r) + 4m3p) 
dr = -

r(r - 2M(r) ) 
(9 .3 )  

where the radial coordinate is  such that the area of the two-surface 
{r = constant, t = constant} is 4m2. M(r) is now defined as f: 411r2µ dr, 



306 

'E "' 
"' "" ::i 
., � 

G R A V I T A T I O N A L  C O L L A P S E  

Earth 

Stars burning 
nuclear fuel 

� e6m� +--------..-->---...e. :! 

m� 

Equilibrium of 
a cold body 

I 
I 

- +- - - -

' 
I 
I 
I 
I 
I 

- - - - - - - - - - -i - -
1 

e3rn,; 3 Jf L 
Total mass 111 

[9. 1 

FIGURE 56.  Nucleon number density n plotted against total mass of a static 
body M. The heavy line shows the equilibrium of cold bodies ; hot bodies at 
suitable temperatures can be in equilibrium above this line. General Relativity 
forbids any bodies in the shaded region from being static . 

where µ = p( 1 + e) is the total energy density, p is nmn ,  and e is the 
relativistic increase of mass associated with the momentum of the 
fermions. M(r0) is equal to the Schwarzschild mass M of the exterior 
Schwarzschild solution for r > r0• For a bound star this will be less 
than the conserved mass fr, 411pr2 dr M = 0 ( 1 - 2M/r)t = Nmn, 
where N is the total number of nucleons in the star, because the differ
ence (M - M) represents the amount of energy radiated to infinity 
since the formation of the star from dispersed matter initially at rest . 
In practice this difference is never more than a few percent and in no 
case can it exceed 2M, since Bondi ( 1 964) has shown that ( 1 - 2M /r )! 
cannot be less than ! providedµ and p are positive and thatµ decreases 
outwards, and cannot be less than i if p is less than or equal to µ .  
Therefore M < M < 3M. 

Comparing ( 9 . 3 )  with ( 9 . 2 ) ,  with µ in place of p and M in place of M, 
one sees that the extra terms on the right-hand side of ( 9 . 3 )  are all 
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negative provided e � 0 and p � 0.  Thus since in Newtonian theory 
a cold star of mass M > ML cannot support itself, neither can a cold 
star of Schwarzschild mass M > ML in General Relativity. This means 
that a cold star which contains more than 3MLfmn nucleons cannot 
support itself. In practice, the extra terms in (9 .3 )  mean that the 
limiting nucleon number is less than MLfmn. 

In our discussion of neutron stars, we ignored the effects of nuclear 
forces . These will somewhat modify the position of the equilibrium line 
in figure 56 for such stars . For details, see Harrison, Thorne, Wakano 
and Wheeler ( 1 965) ,  Thorne ( 1 966) ,  Cameron ( 1 970) ,  and Tsuruta 
( 1 97 1 ) .  However they will not affect the important point that a star 
containing slightly more than MLfmn nucleons will not have any zero 
temperature equilibrium. This is because the point at which neutrons 
become relativistic in a star of mass ML almost coincides with the 
General Relativity limit M/R � 2. Thus a star containing somewhat 
more than MLfmn nucleons will not reach nuclear densities until it is 
already inside its Schwarzschild radius. 

The life history of a star will lie in a vertical line on figure 56, unless 
it manages to lose a significant amount of material by some process . 
The star will condense out of a cloud of gas . As it contracts, the 
temperature will rise due to the compression of the gas. If the mass is 
less than about 1 0-2ML, the temperature will never rise sufficiently 
high to start nuclear reactions and the star will eventually radiate 
away its heat and settle down to a state in which gravity is balanced 
by degeneracy pressure of non-relativistic electrons . If the mass is 
greater than about 1 0-2ML, the temperature will rise high enough to 
start the nuclear reaction which converts hydrogen to helium . The 
energy produced by this reaction will balance the energy lost by 
radiation and the star will spend a long period ( ,.., 1 010(MLfM)2 years) 
in quasi-static equilibrium. When the hydrogen in the core is 
exhausted, the core will contract and the temperature will rise . 
Further nuclear reactions may now take place , converting helium in 
the core into heavier elements . However the energy available from this 
conversion is not very great, and so the core cannot remain in this 
phase very long. If the mass is less than ML, the star can settle down 
eventually to a white dwarf state in which it is supported by 
degeneracy pressure of non-relativistic electrons, or possibly to a 
neutron star state in which it is supported by neutron degeneracy 
pressure . However if the mass is more than slightly greater than ML, 
there is no low temperature equilibrium state . Therefore the star must 
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either pass within its Schwarzschild radius, or manage to eject suffi
cient matter that its mass is reduced to less than ML -

Ejection of matter has been observed in supernovae and planetary 
nebulae, but the theory is not yet very well understood. What calcula
tions there have been suggest that stars up to 20ML may possibly be 
able to throw off most of their mass and leave a white dwarf or neutron 
star of mass less than ML (see Weymann ( 1 963) ,  Colgate and White 
( 1 966) ,  Arnett ( 1 966) ,  Le Blanc and Wilson ( 1 970) , and Zel'dovich and 
Novikov ( 1 97 1 ) ) .  However it is not really credible that a star of more 
than 20ML could manage to lose more than 95 % of its matter, and so 
one would expect that the inner part of the star at any rate would 
collapse within its Schwarzschild radius . (Present calculations in fact 
indicate that stars of mass M > 5ML would not be able to eject 
sufficient mass to avoid a relativistic collapse . )  

Going to larger masses, consider a body of about 1 08 ML - If this 
collapsed to its Schwarzschild radius, the density would only be of the 
order of 1 0-4 gm cm-3 (less than the density of air) . If the matter were 
fairly cold initially, the temperature would not have risen sufficiently 
either to support the body or to ignite the nuclear fuel ; thus there 
would be no possibility of mass loss, or uncertainty about the equation 
of state . This example also shows that the conditions when a body 
passes through its Schwarzschild radius need not be in any way 
extreme . 

To summarize, it seems that certainly some, and probably most, 
bodies of mass > ML will eventually collapse within their Schwarz
schild radius, and so give rise to a closed trapped surface . There are at 
least 109 stars more massive than ML in our galaxy. Thus there are 
a large number of situations in which theorem 2 predicts the existence 
of singularities . We discuss the observable consequences of stellar 
collapse in the next sections. 

9.2 Black holes 

What would a collapsing body look like to an observer 0 who remained 
at a large distance from it ? One can answer this if the collapse is 
exactly spherically symmetric, since then the solution outside the 
body will be the Schwarzschild solution . In this case, an observer O' 
on the surface of the star would pass within r = 2m at some time, say 
1 o 'clock, as measured by his watch. He would not notice anything 
special at that time. However after he passes r = 2m he will not be 
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FIGURE 57 .  An observer 0 who never falls inside the collapsing fluid sphere never 
sees beyond a certain time (say, 1 o'clock) in the history of an observer 0' on 
the surface of the collapsing fluid sphere. 

( i )  Finkelstein diagram; (ii)  Penrose diagram. 

visible to the observer 0 who remains outside r = 2m (figure 57 ) .  
However long the observer 0 waits, he  will never see O' at a time later 
than 1 o 'clock as measured by O"s watch. Instead he will see O"s 
watch apparently slow down and asymptotically approach 1 o 'clock . 
This means that the light he receives from O' will have a greater and 
greater shift of frequency to the red and as a consequence a greater 
and greater decrease of intensity. Thus although the surface of the star 
never actually disappears from O's sight, it soon becomes so faint as 
to be invisible in practice . In fact 0 would first see the centre of the 
disc of the star become faint, and then this faint region would spread 
outwards to the limb (Ames and Thorne ( 1 968) ) .  The time scale for 
this diminution of intensity is of the order for light to travel a 
distance 2m. 

One would be left with an object which, for all practical purposes, is 
invisible . However it would still have the same Schwarzschild mass, 
and would still produce the same gravitational field, as it did before 
it collapsed. One might be able to detect its presence by its gravita
tional effects, for instance its effects on the orbits of nearby objects , or 
by the deflection of light passing near it . It is also possible that gas 

I I  H L S  
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falling into such an object would set up a shock wave which might be 
a source of X-rays or radio waves. 

The most striking feature of spherically symmetric collapse is that 
the singularity occurs within the region r < 2m, from which no light 
can escape to infinity. Thus if one remained outside r = 2m one would 
never see the singularity predicted by theorem 2. Further the break
down of physical theory which occurs at the singularity cannot affect 
one 's ability to predict the future in the asymptotically flat region of 
space-time. 

One can ask whether this is the case if the collapse is not exactly 
spherically symmetric .  In the previous section we used the Cauchy 
stability theorem to show that small departures from spherical sym -
metry would not prevent the occurrence of closed trapped surfaces . 
However the Cauchy stability theorem in its present form says only 
that a sufficiently small perturbation in the initial data will produce 
a perturbation in the solution which is small on a compact region . One 
cannot argue from this that a perturbation of the solution will remain 
small at arbitrarily large times . 

We expect that in general the occurrence of singularities will lead 
to Cauchy horizons (as in the Reissner-Nordstrom and Kerr solutions) 
and hence to a breakdown of one's ability to predict the future . 
However if the singularities are not visible from outside, one would 
still be able to predict in the exterior asymptotically flat region . 

To make this precise , we shall suppose that (.A, g) has a region 
which is asymptotically flat in the sense of being weakly asympto
tically simple and empty ( §  6 .9 ) .  There is then a space (Jt, g) into 
which (.A, g) is conformally imbedded as a manifold with boundary 
.ii = .A U  8.A, where the boundary o.A of .A in Ji consists of two 
null surfaces J+ and J- which represent future and past null infinity 
respectively. Let 9" be a partial Cauchy surface in .A. We shall say that 
the space (.A, g) is (future) asymptotically predictable from 9" if J+ is 
contained in the closure of D+(9") in the conformal manifold A. 
Examples of spaces which are future asymptotically predictable from 
some surface 9" include Minkowski space, the Schwarzschild solution 
for m �  0, the Kerr solution for m �  0, J a l :;;;; m, and the Reissner
Nordstrom solution for m � 0, l e l  :;;;; m. The Kerr solution with 
J a l > m and the Reissner-Nordstrom solution with J e l > m are not 
future asymptotically predictable, since for any partial Cauchy surface 
9", there are past-inextendible non-spacelike curves from J+ which do 
not intersect 9" but approach a singularity. One can regard future 
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asymptotic predictability as the condition that there should be no 
singularities to the future of !/ which are ' naked ' , i . e .  which are 
visible from f +. 

In a spherical collapse, one gets a space which is future asymp
totically predictable . The question is whether this would still be the 
case for non-spherical collapse . We cannot answer this completely, 
Perturbation calculations by Doroshkevich , Zel 'dovich and Novikov 
( 1 966) and Price ( 1 97 1 )  seem to indicate that small perturbations from 
spherical symmetry do not give rise to naked singularities . In addition , 
Gibbons and Penrose ( 1 972 )  have tried, and failed, to obtain contra
dictions which would show that in some situations the development 
of a future asymptotically predictable space was inconsistent . Their 
failure does not of course prove that asymptotic predictability will 
hold, but it does make it more plausible . If it does not hold, one cannot 
say anything definite about the evolution of any region of a space 
containing a collapsing star, as new information could come out of the 
singularity. We shall therefore proceed on the assumption that future 
asymptotic predictability holds at least for sufficiently small depar
tures from spherical symmetry. 

One would expect a particle on a closed trapped surface to be 
unable to escape to f+. However if one allowed arbitrary singularities 
one could always make suitable cuts and identifications to form an 
escape route for the particle . The following result shows that this is 
not possible in a future asymptotically predictable space . 

Proposition 9 . 2 . 1 
If 

(a) (Jt, g) is future asymptotically predictable from a partial 
Cauchy surface .9; 

(b)  RabKaKb � 0 for all null vectors Ka, 
then a closed trapped surface ff in D+ (!/) cannot intersect J-(f+, Ji),  
i . e .  cannot be  seen from .f + .  
For suppose ff n J-(f+, Ji) i s  non-empty . Then there would be a 
point p E f+ in J+(ff, Ji) . Let O/I be the neighbourhood of Jt which is 
isometric to the neighbourhood O//' of oJt' in the conformal manifold 
Ji '  of an asymptotically simple and empty space (1' , g' ) .  Let !/' be 
a Cauchy surface in 1', which coincides with !/ on O/I' n 1'. Then 
!/' - O/I' is compact and so by lemma 6 . 9 . 3 ,  every generator of J+ 
leaves J+(!/' - 0/I ' ,  .,If' ) .  This shows that if if" is any compact set of-9", 

I I - 2 
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every generator of f+ leaves J+("fr, .ii) .  From this it  follows that 
every generator of f+ would leave J+(ff, .ii) ,  since this is contained 
in J+(J-(ff) n !/, .ii) .  Therefore a null geodesic generator µ of 
J+(ff, .ii) would intersect .f+. The generator µ must have past end
point at .r, since otherwise it would intersect /-(!/).  Since µ meets f+ 
it would have infinite affine length . However by the condition (b) every 
null geodesic orthogonal to .r would contain a point conjugate to .r 
within a finite affine length . Thus it could not remain in J+(ff, .ii) all 
the way out to .f+. This shows that .r cannot intersect J-(f+, .ii) .  D 

From the above it follows that a closed trapped surface in D+(!/) in 
a future asymptotically predictable space must be contained in 
.,lt - J-(f+, .ii) . Therefore there must be a non-trivial (future) event 
horizon J-(J+, .ii) .  This is the boundary of the region from which 
particles or photons can escape to infinity in the future direction . By 
§ 6 .3  the event horizon is an achronal boundary which is generated by 
null geodesic segments which may have past endpoints but which can 
have no future endpoints . 

Lemma 9 .2 . 2  
If  conditions (a) , ( b )  of  proposition 9 . 2 . 1 are satisfied and if  there is 
a non-empty event horizon J-(J+, .ii) ,  then the expansion (} of the 
null geodesic generators of J-(J+, .ii) is non-negative in 

J-(J+, .ii) n D+(f/) . 

Suppose there was an open set 0// such that (} < 0 in 0// n J-(f+ , .ii) .  
Letffbe a spacelike two-surface in O// n J-(f+, .ii) .  Then (} = x2aa < 0 .  
Let 1"" b e  an open subset of 0// which intersects .r and has compact 
closure contained in 0//. One can vary .r by a small amount in 1"" so 
that x2a a is still negative but such that in 0//, ff intersects J-(f+ , .ii) .  
As before, this leads t o  a contradiction since any generator of 
J+(ff, .ii) in J-(f+, .ii) would have past endpoint at .r in 1"", where 
it would be orthogonal to ff. However as x2°a < 0 in 1"", every out
going null geodesic orthogonal to .r in 1"" would contain a point 
conjugate to .r within a finite affine distance , and so could not remain 
in J+(ff, .ii) all the way out to f+. D 

In a future asymptotically predictable space, J+(!/) n J-(f+, .ii) is 
contained in D+(!/) . If there were a point p on the event horizon in 
J+(!/) which was not in D+(!/) ,  the smallest perturbation could lead 
to p being in J-(f+, .ii) ,  i .e .  being visible from infinity, which would 
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mean that the space was n o  longer asymptotically predictable . It 
therefore seems reasonable to slightly extend the definition of future 
asymptotically predictable, to say that space-time is strongly future 
asymptotically predictable from a partial Cauchy surface !/ if J+ is 
contained in the closure of D+(!/) in A, and J+(!/) n J-(J+, A) is 
contained in D+(!/) . In other words, one can also predict a neighbour
hood of the event horizon from !/. 

Proposition 9 . 2 . 3  

If  (JI, g) i s  strongly future asymptotically predictable from a partial 
Cauchy surface !/, there is a homeomorphism 

a :  (0, oo) x !/ � D+(!/) - !/  
such that for each T E  (0 ,  oo),  !/(r) = ({r} x !/ )  is a partial Cauchy 
surface such that : 

(a) for r2 > Tv !/(72) c J+(!/(71 ) ) ;  
(b) for each r ,  the edge of !/(7) in the conformal manifold .fi is a 

spacelike two-sphere !2 (7) in J+ such that for 72 > Tv !2(72) is strictly 
to the future of f2(r1 ) ,  

(c ) for each 7 ,  !/(7) U {J+ n J-(f2(r) , A)} i s  a Cauchy surface in .,ii 
for D(!/) . 

In other words , !/(7) is a family of spacelike surfaces homeomorphic 
to !/ which cover D+(!/) - !/  and intersect J+ (see figure 58) . One 
could regard them as surfaces of constant time in the asymptotically 
predictable region . We choose them to intersect J+ so that the mass 
measured on them at infinity will decrease when the emission of 
gravitational or other forms of radiation takes place . 

The construction for !/(r) is rather similar to that of proposition 
6 .4 . 9 .  Choose a continuous family !2(7) (oo > 7 > 0) of spacelike two
spheres which cover J+, such that for 72 > 7v j?(72) is strictly to the 
future of j? (71 ) .  Put a volume measure on JI such that the total 
volume of JI in this measure is finite . We first prove : 

Lemma 9 .2 .4  

k(7) ,  the volume of  the set J-(j?(7) , A) n D+(!/) i s  a continuous func
tion of r. 

Let "f" be any open set with compact closure contained in 
J-(!2(7) ,  A) n D+(!/) . 

Then there are timelike curves from every point of "f" to j?(7) ,  which 
can be deformed to give timelike curves to !2(7 - o) for some o > 0. 
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FIGURE 58.  A space ( . . It, �) which i s  strongly future asymptotically predictable 
from a partial Cauchy surface .9', showing a family !l'(r) of spacelike surfaces 
which cover D+(.9') - .9'  and intersect .f+ in a family of two-spheres 2(r) .  

Given any e > 0, one can find a "f/" whose volume is > k(r) - e .  Thus 
there is a o  > O such that k(r - o) > k(r) - e. On the other hand, suppose 
there were an open set if/ which did not intersect J-(..@ (r) ,  Ji) n D+(Y') 
but which was contained in J-(fl,(r' ) , .fi) n D+(Y') for any r' > r. 
Then if p E ii', there would be past-directed timelike curves ;\,T, from 
each 2(r' ) to p .  As the region of J+ between fl,(r) and fl,(r1 ) is compact 
for any r1 > r, there would be a past-directed non-spacelike curve ,'\, 
from fl,(r) which was the limit curve of the {;\,T} Since the {;\,T,} did not 
intersect J-(fl,(r) ,  Ji),  ,'\, would not either, and so it would be a null 
geodesic and would lie in j-(fl,(r) , Ji).  It would enter Jt and so it 
would either have a past endpoint at p,  or would intersect Y'. The 
former is impossible as it would imply that if/intersected J-(fl,(r) ,  Ji),  
and the latter i s  impossible as  p E J+(Y') .  This shows that there i s  no 
open set which is in J-(fl,(r' ) ,  Ji) for every r' > r, but which is not in 
J-(fl,(r) , At) n D+(Y') . Thus given e, there is a o such that 

k(r + o) < k(r) + e. 
Therefore k(r) is continuous .  D 
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Proof of proposition 9 . 2 . 3 .  Define functionsf(p) and h(p, r ) ,  p E D+(!/), 
which are volumes of J+(p) and J-(p) - J-(.!i(r) , Ji).  As in proposition 
6 .4 .9 , the functionf(p) is continuous on the globally hyperbolic region 
D+(!/) - 9', and goes to zero on every future-inextendible non
spacelike curve . Since J-(.!i(r) , Ji) n ..,/( is a past set, 

D+(!/) - J-(.fi (r), Ji) - 9'  

is globally hyperbolic. Thus for each T ,  h(p, r )  is continuous on 
D+(!/) - 9'. This means that given any e > 0, one can find a neighbour
hood <:ft of p such that j h(q, r) - h(p, r) I < !e for any q E <:ft. By lemma 
9 .2 .4 ,  one can find a 8 > 0 such that l k(r' ) - k(r) j < !e for jr' - r l < 8. 
Then l h(q, r' ) - h(p, r) j < e, which shows that h(p, r) is continuous on 
(D+(!/) - 9') x (0 ,  oo) .  The surfaces 9'( r) can then be defined as the set 
of points p E D+(!/) - 9'  such that h(p, r) = rf(p) .  Clearly these are 
spacelike surfaces which cover D+(!/) - 9'  and satisfy properties 
(a)-(c) . 

To define the homeomorphism a, one needs a timelike vector field 
on D+(!/) - 9'  which intersects each surface !/(r) . We construct such 
a vector field as follows . Let "f/" be a neighbourhood of .f+ in the 
conformal manifold .]t, let X1 be a non -spacelike vector field on "f/" 
which is tangent to the generators of .f+ on .f+, and let x1 � 0 be a 02 
function which vanishes outside "f/" and is non-zero on .f+. Let X2 be 
a timelike vector field on ..,/(, and let x2 � 0 be a 02 function on ..,'i 
which is non-zero on ..,/( and is zero on .f+. Then the vector field 
X = x1X1 + x2X2 has the required property. "  The homeomorphism 
a :  D+(!/) - 9' -+  (0, oo) x 9' then maps a point p E D+(!/) -9' to (r, q) 
where T is such that p EY(r) , and the integral curve of X through p 
intersects 9' at q. D 

If there is an event horizon J-(.f +, Jt) in the region D+(!/) of a future 
asymptotically predictable space, then it follows from property (b ) of 
proposition 9 .2 . 3  that for sufficiently large r, the surfaces !/(r) will 
intersect it. We define a black hole on the surface !/(r) to be a connected 
component of the set &l(r) = !/(r) - J-(.f+, Ji) . In other words, it is 
a region of !/(r) from which particles or photons cannot escape to J+. 

As T increases, black holes can merge together, and new black holes 
can form as the result of further bodies collapsing. However, the 
following result shows that black holes can never bifurcate . 
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Proposition 9 .2 .5  
Let 86'1(T1 ) be  a black hole on .9'(T1) .  Let 86'2(T2) and 86'3(T2) be  black 
holes on a later surface .9'(T2) . If 86'2(T2) and 86'3(T2) both intersect 
J+(86'1( T1 ) ) ,  then 86'2(T2) = 86'3(T2) · 

By property (c) of proposition 9 .2 . 3 ,  every future-directed inexten
dible timelike curve from 86'1(T1) will intersect .9'(T2 ) .  Thus 

J+(86'1(T1) )  n .9'(T2) 

is connected, and will be contained in a connected component of 
86'(T2 ) · [] 

For physical applications, one is interested primarily in black holes 
which form as the result of gravitational collapse from an initially 
non-singular state . To make this notion precise , we shall say that the 
partial Cauchy surface .9' has an asymptotically simple past if J-(.9') 
is isometric to the region J-(.9'' ) of some asymptotically simple and 
empty space-time (vlt' , g' ) ,  where .9'' is a Cauchy surface for (.,/I' ,  g' ) .  
By proposition 6 .9 .4 ,  the surface .9'' has the topology R3 and so .9' also 
has this topology. Proposition 9 . 2 . 3  therefore shows that if (vlt, g) is 
strongly future asymptotically predictable from a surface .9' with an 
asymptotically simple past, then each surface .9'(T) has the topology 
R3, and the union of .9'(T) with the boundary two-sphere .&?(T) on .f+ is 
homeomorphic to the unit cube /3. 

Although one is primarily interested in ·spaces which have asymp
totically simple pasts it will in the next section be convenient to con
sider future asymptotically predictable spaces which do not have this 
property, but which at large times may closely approximate to spaces 
which do . An example of this is the spherically symmetric collapse we 
considered at the beginning of this section. Once the surface of the star 
has passed inside the event horizon, the metric of the exterior region 
is that of the Schwarzschild solution, and is unaffected by the fate of 
the star. When studying the asymptotic behaviour it is therefore 
convenient simply to forget about the star, and consider the empty 
Schwarzschild solution as a space which is strongly future asymp
totically predictable from a surface .9' such as that shown in figure 24 
on p .  1 54 .  This surface does not have an asymptotically simple past, 
and its topology is 82 x R1 instead of R3. However the portion of .9' 
outside the event horizon in region I has the same topology as the region 
outside the event horizon of the surface .9'(T) in figure 57 .  We want to 
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consider spaces which are strongly future asymptotically predictable 
from a surface .!/', and are such that the portion of.!/' outside the event 
horizon has the same topology as some surface .!/'(r) in a space with an 
asymptotically simple past . Of course in more complicated cases there 
may be several components of g/j(r) ,  corresponding to the collapse of 
several bodies. We shall therefore consider spaces which are strongly 
future asymptotically predictable from a surface .!/', and with the 
property : 

(a) .!/' n J- ( J +, Ji) is homeomorphic to R3 - (an open set with 
compact closure) .  
(Note that this open set may not b e  connected. )  I t  will also b e  con
venient to demand the property : 

(/l) .!/' is simply connected. 

Proposition 9 .2 . 6  

Let (.A, g) be a space which i s  strongly future asymptotically predict
able from a partial Cauchy surface .!/' which satisfies (a) , (/J) .  Then : 

( 1 )  the surfaces .!/'(r) also satisfy (a} , (/J) ; 
(2 )  for each T, i:Jg/}1(r) , the boundary in .!/'(r) of a black hole a3'1(r) ,  is 

compact and connected. 

Since the surfaces .!/'(r) are homeomorphic to .!/', they satisfy property 
(/J) . One can define an injective map 

y: .Y'(r) n J-(J+, Ji) -+.!/' n J-(J+, Ji) 

by mapping each point of .!/'(r) down the integral curves of the vector 
field of X proposition 9 .2 . 3 . Since (.A, g) is weakly asymptotically 
simple, one can find a two-sphere f!lJ near J+ in .!/'(r) n J-(J+, Ji) .  
The portion of .!/'(r) outside f!lJ will map into the region of .!/' outside 
the two-sphere y(f!IJ ) .  This shows that the region of .!/' n J-(J+, Ji) 

which is not in y(.!/'(r) n J-(J+, Ji) )  must have compact closure. 
Therefore y(.!/'(r) n J-(J+, Ji) )  will be homeomorphic to R3 - (an open 
set with compact closure) .  Since .!/'(r) is homeomorphic to R3 - '"Y  
where '"Y is an open subset of R3 with compact closure, i:Jg/j(r) will be 
homeomorphic to 81' and so will be compact. i:Jg/}1(r) being a closed 
subset of i:Jg/j(r) will be compact. 

Suppose that i:Jg/}1(r) consisted of two disconnected components 
i:Jg/}11 (r) and i:Jg/}12(r) . One could find curves A.1 and A2 in .!/'(r) - g/j(r) 
from j?(r) to i:Jg/}11 (r) and i:Jg/}12(r) respectively. One could also find a 

curve µ in int g/}1(r) from i:Jg/ji1(r) to i:Jg/}12(r) . Joining these together one 
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would obtain a closed curve in 9'(7) which crossed 08611(7) only once . 
This cannot be deformed to zero in 9'(7) ,  contradicting the fact that 
9'(7) is simply connected.  D 

We are only interested in black holes that one can actually fall into, 
i .e .  ones in which the boundary 086(7) is contained in J+(J-, Ji) .  We 
shall therefore add to properties (i:x) ,  (/3) the requirement : 

(y) for sufficiently large 7, 9'(7) n J-(J+, Ji) is contained in 
J+(J-, Ji) .  

We shall say that (JI, g )  i s  a regular predictable space if it i s  strongly 
future asymptotically predictable from a partial Cauchy surface 9' 
and if properties (i:x) , (/3) ,  (y) are satisfied. All the spaces mentioned at 
the beginning of this section as being future asymptotically predict
able are in fact also regular predictable spaces. Proposition 9 . 2 . 6  
shows that when one i s  dealing with regular predictable spaces de
veloping from a partial Cauchy surface 9', there is a one-one corres
pondence between black holes 86i(7) and their boundaries o86A7) in 
9'(7) . One could therefore in such a situation give an equivalent defini
tion of a black hole as a connected component of 9'(7) n J-(J+, Ji) .  

The next result gives a property o f  the boundaries of black holes 
which will be important in the next section . 

Proposition 9 .2 .  7 

Let (JI, g) be a regular predictable space developing from a partial 
Cauchy surface 9', in which Rab KaKb ;;;: 0 for every null vector Ka. 
Let 861(7) be a black hole on the surface 9'(7), and let {86i (7')} 
(i = 1 to N) be the black holes on an earlier surface 9'(7' ) which are 
such that J+(86i (7' ) )  n 861(7) =F 0 .  Then the area A1(7) of 0861(7) is 
greater than or equal to the sum of the areas Ai(7')  of o86i(7') ; the 
equality can hold only if N = 1 .  

In other words, the area of the boundary of a black hole cannot 
decrease with time, and if two or more black holes merge to form a 
single black hole, the area of its boundary will be greater than the areas 
of the boundaries of the original black holes. 

Since the event horizon is the boundary of the past of J+, its null 
geodesic generators would have future endpoints only if they inter
sected J+. However this is impossible, as the null geodesic generators 
of J+ have no future endpoints . Thus the null generators of the event 
horizon have no future endpoints . By lemma 9 .2 . 2 ,  their expansion {) 
is non-negative . Thus the area of a two-dimensional cross-section of 
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the generators cannot decrease with 7 .  By property (c) of proposition 
9 . 2 . 3, and by proposition 9 .2 . 5 ,  all the null geodesic generators of 
j-(f +, A) which intersect .9'(7' )  in any of the o3'i(7') must intersect 
.9'(7) in o3'1(7) . Thus the area of o3'1(7) is greater than or equal to the 
sum of the areas of the {3'i (7' )} .  When N > 1 ,  o3'1(7) will contain 
N disjoint closed subsets which correspond to the generators of 
j-(f +, A) which intersect each o3'i(7' ) .  Since o3'1(7) is connected, it 
must contain an open set of generators which do not intersect any 
o3'i(7' ) ,  but have past endpoints between.9'(7) and.9'(7' ) .  D 

It has been convenient to define black holes in terms of the event 
horizon j- (J+, A), because this is a null hypersurface with a number 
of nice properties . However this definition depends on the whole future 
behaviour of the solution ; given the partial Cauchy surface .9'(7) ,  one 
cannot find where the event horizon is without solving the Cauchy 
problem for the whole future development of the surface . It is there
fore useful to define a different sort of horizon which depends only on 
the properties of space-time on the surface .9'(7) . 

One knows from proposition 9 . 2 . 1 that any closed trapped surface 
on .9'(7) in a regular predictable space developing from a partial 
Cauchy surface.9' must be in 3'(7) . This result depends only on the fact 
that the outgoing null geodesics orthogonal to the two-surface are 
converging . It does not matter whether the ingoing null geodesics are 
converging or not . We shall therefore say that an orientable compact 
spacelike two-surface in D+(.9') is an outer trapped surface if the 
expansion e of the outgoing null geodesics orthogonal to it is non
positive . (vVe include the case 8 = o for convenience . )  In order to 
define which is the outgoing family of null geodesics we make use of 
property {/J) of the partial Cauchy surfaces .9'(7) . Let X be the timelike 
vector field of proposition 9 . 2 . 3 .  Then any compact orientable space
like two-surface f?JJ in D+(.9') can be mapped by the integral curves ofX 
into a compact orientable two-surface f?/J' in .9'(7) ,  for any given value 
ofT.  Let A. be a curve in .9'(7) U jl(7) from jl(7) to f?JJ' which intersects f?/J' 
only at its endpoint . Then one can define the outgoing direction on 
f?JJ' in .9'(7) as the direction for which A. approaches f?/J' .  As .9'(7) is 
simply connected, this definition is unique . The outgoing family of 
null geodesics orthogonal to f?JJ is then that family which is mapped 
by X onto curves in .9'(7) which are outgoing for f?/J'. 

Knowing the solution on the surface .9'(7), one can find all the outer 
trapped surfaces f?JJ which lie in .9'(7) . We shall define the trapped 
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region .r(7) in the surface .9'(7) as the set of all points q E.9'(7) such 
that there is an outer trapped surface f7J lying in .9'(7), through q. As 
is shown by the following result, the existence of the trapped region 
.9"'(7) implies the existence of a black hole 86(7), and in fact .9"'(7) lies 
in 86(7) for each value of 7. 

Proposition 9 . 2 . 8  

Let (.A, �) be a regular predictable space developing from a partial 
Cauchy surface .9', in which Rab KaKb ;:;:,: 0 for any null vector Ka. 
Then an outer trapped surface f7J in D+(.9') does not intersect 
J-(f+, vii) .  

The proof is similar to that of proposition 9 .2 . 1 .  Suppose f7J intersects 
J-(f+, vii) .  Then J+(f7J, vii) would intersect f+. To each point of 
f+ n J+(f7J, vii) there would be a past-directed null geodesic generator 
of J+(f7J, vii) which had past endpoint on f7J, and which contained no 
point conjugate to f7J. By (4 . 35) the expansion 8 of these generators 
would be non-positive, as it is non-positive at f7J and as Rab KaKb � 0. 
Thus the area of a two-dimensional cross-section of the generators 
would always be less than or equal to the area of f7J. This establishes 
a contradiction, as the area of f+ n J+(f7J, vii) is infinite, as it is at 
infinity. D 

We shall call the outer boundary o.9;_(7) of a connected component 
9;_(7) of the trapped region .9"'(7) , an apparent horizon. By the previous 
result, the existence of an apparent horizon o.9;_(7) implies the existence 
of a component 0861(7) of the event horizon outside it, or coinciding 
with it. However the converse is not necessarily true : there may not 
be outer trapped surfaces within an event horizon. 

On the other hand, there may be more than one connected com
ponent of .9"'(7) within one component 0861(7) of the event horizon. 
These possibilities are illustrated in figure 59. A similar situation arises 
when one considers the collision and merger of two black holes. On an 
initial surface .9'(71) ,  one would have two separate trapped regions 
9;.(71) and �{71) contained in black holes 861{7h and 862(71) respec
tively. As they approached each other, the two components 0861(7) and 
0862(7) of the event horizon would amalgamate to form a single black 
hole 863(72) on a later surface .9'(72) .  The apparent horizons o.9;_(7) and 
o�(7) would however not join up immediately. Instead what would 
happen is that a third trapped region.9";(7) would develop surrounding 
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FIGURE 59 .  The spherical collapse of  a star of  mass m ,  followed by the 
spherical collapse of a shell of matter of mass om ; the exterior solution will be 
a Schwarzschild solution of mass m after the collapse of the star, and a 
Schwarzschild solution of mass m + om after the collapse of the shell. At time 
T1 there is an event horizon but no apparent event horizon ; at time r2 there are 
two apparent horizons within the event horizon. 

them both (figure 60) . At some later time, �. � and ff3 might merge 
together. 

We shall only outline the proofs of the principal properties of the 
apparent horizon. First of all one has : 

Proposition 9 . 2 . 9 

Each component of off(r) is a two-surface such that the outgoing 
orthogonal null geodesics have zero convergence 8 on off(r) . (We shall 
call such a surface, a marginally outer trapped surface . ) 

If 8 were positive in a neighbourhood in off(r) of a point p E off(r) , 
then there would be a neighbourhood oU of p such that any outer 
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FIGURE 60 .  The collision and merging of two black holes . At time T1 ,  there are 
apparent horizons 85"1 , 85"2 inside the event horizons 8[J(J1, 8[J(J2 respectively. 
By time r2, the event horizons have merged to form a single event horizon ; 
a third apparent horizon has now formed surrounding both the previous 
apparent horizons . 

trapped surface in 9'(7) which intersected ell/ would also intersect 
off(7) . Thus (} :::;;; o on off(7) . 

If (} were negative in a neighbourhood in off(7) of a point p E off(7) , 
one could deform off(7) outwards in 9'(7) to obtain an outer trapped 
surface outside off(7) .  D 

The null geodesics orthogonal to the apparent horizon off(7) on a 
surface 9'(7) will therefore start out with zero convergence. However 
if they encounter any matter or any Weyl tensor satisfying the 
generality condition ( § 4 .4 ) ,  they will start converging, and so their 
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intersection with a later surface !l'(r' ) will lie inside the apparent 
horizon oY(r' ) .  In other words, the apparent horizon moves outwards 
at least as fast as light ; and moves out faster than light if any matter 
or radiation falls through it. As the example above shows, the apparent 
horizon can also jump outwards discontinuously. This makes it 
harder to work with than the event horizon, which always moves in 
a continuous manner. We shall show in the next section that the event 
and apparent horizons coincide when the solution is stationary. One 
would therefore expect them to be very close together if the solution 
is nearly stationary for a long time. In particular, one would expect 
their areas to be almost the same under such circumstances. If one has 
a solution which passes from an initial nearly stationary state through 
some non-stationary period to a final nearly stationary state, one can 
employ proposition 9 .2 .  7 to relate the areas of the initial and final 
horizons. 

9.3 The final state of black holes 

In the last section, we assumed that one could predict the future far 
away from a collapsing star. We showed that this implied that the star 
passed inside an event horizon which hid the singularities from an 
outside observer. Matter and energy which crossed the event horizon 
would be lost for ever from the outside world. One would therefore 
expect that there would be a limited amount of energy available to 
be radiated to infinity in the form of gravitational waves. Once most 
of this energy had been emitted, one would expect the solution outside 
the horizon to approach a stationary state. In this section we shall 
therefore study black hole solutions which are exactly stationary, in 
the expectation that the exterior regions will closely represent the 
final states of solutions outside collapsed objects. 

More precisely, we shall consider spaces (.L, g) which satisfy the 
following conditions : 

( 1 )  (.L, g) is a regular predictable space developing from a partial 
Cauchy surface !/'. 

(2) There exists an isometry group Ot : vK -+ .L  whose Killing vector 
K is timelike near J+ and J-. 

(3 )  (.L, g) is empty or contains fields like the electromagnetic field 
or scalar field which obey well-behaved hyperbolic equations, and 
satisfy the dominant energy condition : Tab Na£b ;;.: 0 for future
directed timelike vectors N, L. 
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We shall call a space satisfying these conditions, a stationary regular 
predictable "Space . We expect that for large values of r, the region 
J-(J+, .il) n J+(Y'(r) )  of a regular predictable space containing 
collapsing stars will be almost isometric to a similar region of a 
stationary regular predictable space. 

The justification for condition (3 )  is that one would expect any 
non-zero rest-mass matter eventually to fall through the horizon. Only 
long range fields like the electromagnetic field would be left. Conditions 
(2 )  and (3 )  imply that (1, g) is analytic in the region near infinity 
where the Killing vector field K is timelike (Muller zum Hagen ( 1 970) ) .  
We shall take the solution elsewhere to b e  the analytic continuation 
of this outer region. The stationary solutions we are considering here 
will not have asymptotically simple pasts, as they represent only the 
final state of the system and not the earlier dynamical stage. However 
we shall be concerned only with the future properties of these solutions ,  
and not their past properties. These might not be the same, as there 
is no a priori reason why they should be time reversible, though in fact 
it will be a consequence of the results we shall prove that they are time 
reversible. 

In a stationary regular predictable space, the area of a two-section 
of the horizon will be time independent. This gives the following 
fundamental result : 

Proposition 9 .3 . 1 
Let (1, g) be a stationary, regular predictable space-time. Then the 
generators of the future event horizon J-(J+, .ii) have no past end
points in J+(J-, .ii) .  Let Y1a be the future-directed tangent vectors 
to these generators ; then in J+(J-, .il) , Y1a has zero shear u and 
expansion 0, and satisfies 

Rabyla Y1b = 0 = Yi.rPalbc[d¥;.fJY1b :r;_c. 

In order not to break up the discussion we shall defer the proof of this 
and other results to the end of this section. This proposition shows that 
in a stationary space-time, the apparent horizon coincides with the 
event horizon. 

We shall now present some results which indicate that the Kerr 
family of solutions ( § 5 .6 )  are probably the only empty stationary 
regular predictable space:--times. We shall not give the proofs of the 
theorems of Israel and Carter here, but shall refer to the literature. 
The other results will be proved at the end of this section. Because of 
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these results, we expect that the solution outside an uncharged 
collapsed object will settle down to a Kerr solution. If the collapsed 
body had a net electric charge, we would expect the solution to 
approach one of the charged Kerr solutions. 

Proposition 9 . 3 . 2  

Each connected component in  J+(.f-, vii) of  the horizon fJ.11(T) in  a 
stationary regular predictable space is homeomorphic to a two-sphere. 

It is possible that there could be several connected components of 
fJ.11 (T) representing several black holes at constant distances from each 
other. This situation can occur in the limiting case where the black 
holes have charge e equal to their mass m, and are non-rotating (Hartle 
and Hawking ( 1 972a) ) .  It seems probable that this is the only case in 
which one can get a sufficiently strong repulsive force to balance the 
gravitational attraction between the black holes . We shall therefore 
consider solutions where fJ.11 (7) has only one connected component. 

Proposition 9 . 3 . 3  

Let (JI, g) be  a stationary regular predictable space. Then the Killing 

vector Ka is non-zero in J+ (J- , Ji) n J-(J+ , .il), which is simply con

nected. Let T0 be such that .9"(70) n J-(J+ , Ji) is contained in 
J+ ( .f- , ..ii) .  If fJ/J1J(T0) has only one connected component, then 

J+(J-, Ji) n J-(J+, A) n JI is homeomorphic to [O, 1 )  x 82 x Rl. 
The discussion now takes one of two possible courses, depending on 
whether or not the Killing vector Ka has zero curl , Ka; b Kc 1Jabcd, every
where . If the curl is zero , the solution is said to be a static regular 
predictable space-time. Roughly speaking, one would expect the 
solution to be static if the black hole is not rotating in some sense. 

Proposition 9 . 3 . 4  

In  a static regular predictable space-time, the Killing vector K is 
timelike in the exterior region J+(.f-, Ji) n J-(J+, .ii) and is non-zero 
and directed along the null generators of J-(J+, Ji) on 

J- (.f+ , Ji) n J+(J-, Ji). 
Since the curl of K vanishes, it is hypersurface orthogonal , i .e .  there is 
a function � such that Ka is proportional to � ; a ·  One can then decom

pose the metric in the exterior region in the form gab = J-1KaKb + hab 
where .f = KaKa and hab is the induced metric in the surfaces 
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g = constant} and represents the separation of the integral curves 
of Ka. The exterior region therefore admits an isometry which sends 
a point on a surface g to the point on the surface - g on the same 
integral curve of K. This isometry reverses the direction of time, and 
a space admitting such an isometry will be said to be time symmetric . 
Thus if the analytic extension of the exterior region contains a future 
event horizon j-(.f+, Ji), it will also contain a past event horizon 
j+(.f-, Ji) . These event horizons may or may not intersect ; the 
Schwarzschild solution and the Reissner-Nordstrom solution with 
e2 < m2 are examples where they do intersect, and the Reissner
Nordstrom solution with e2 = m2 is an example where they do not. 
The gradient of/ is zero on the horizon in the latter case , but not in the 
former cases. The significance of this comes from the fact that on the 
future horizon j-(.f+, Ji) n J+(.f-, Ji) , Ka; b Kb = !f; a = flKa, where 
fJ � 0 is constant along the null geodesic generators of j-(.f+, Ji) . 
Let v be a future-directed affine parameter along such a generator. 
Then K = a Of ov where a is a function along the generator which obeys 
da/dv = fl. If fJ + 0 and the generator is geodesically complete in the 
past direction, a and the Killing vector K will be zero at some point . 
This point cannot lie in J+(.f-, Ji) , and so will be a point of inter
section of the future event horizon j-(.f+, Ji) and the past event 
horizon j+(.f-, Ji) (Boyer ( 1 969) ) .  If fJ = O,K will always be non-zero 
and there will be no such point where the horizon bifurcates. 

Israel ( 1 967)  has shown that a static regular predictable space-time 
must be a Schwarzschild solution if: 

(a) Tab = O ;  
( b )  the magnitude f = Ka Ka of  the Killing vector has non-zero 

gradient everywhere in J+(.f-, Ji)  n J-(.f+, Ji) ; 
(c) the past event horizon J+(.f-, Ji) intersects the future event 

horizon J- (.f+, Ji) in a compact two-surface F. 
(It follows from (c ) and proposition 9 .3 . 2  that F is connected and has 
the topology of a two-sphere . Israel did not give the conditions in this 
precise form, but these are equivalent. )  Israel ( 1 968)  has further shown 
that the solution must be a Reissner-Nordstrom solution if the empty 
space condition (a) is replaced by the requirement that the energy
momentum tensor is that of an electromagnetic field. Muller zum 
Hagen, Robinson and Seifert ( 1 973 )  have removed condition (b) in 
the vacuum case. 

From these results we expect that if the final state of the solution 
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outside the event horizon is static ,  then the metric in the exterior 
region will be that of a Schwarzschild solution. 

We shall now consider the case where the final state of the exterior 
solution is stationary but not static. We would expect this to be the 
case when the object that collapsed was rotating initially. 

Proposition 9. 3 . 5  
In  an empty stationary regular predictable space which i s  not static ,  
the Killing vector Ka is spacelike in part of the exterior region 
J+(J-, Ji) n  J-(J+, Ji) .  

The region of J+(J-, A )  n J-(J+, A )  on which Ka i s  spacelike, is 
called the ergosphere . From proposition 9 .3 .4  it follows that there is no 
ergosphere if the solution is static. The significance of the ergosphere 
is that in it, it is impossible for a particle to move on an integral curve 
of the Killing vector Ka, i .e .  to remain at rest as viewed from infinity. 
Since the ergosphere is outside the horizon it is still possible for such 
a particle to escape to infinity. An example of a stationary non-static 
regular predictable space with an ergosphere is the Kerr solution for 
a2 :::::; m2 ( § 5 . 6 ) .  

Penrose ( 1 969) ,  Penrose and Floyd ( 1 97 1 )  have pointed out that one 
can extract a certain amount of energy from a black hole with an 
ergosphere, by throwing a particle from infinity into the ergosphere . 
Since the particle moves on a geodesic, E0 = - p0a Ka > 0 is constant 
along its trajectory 

( (PoaKa) ; bPob = (Poa ; bPob) Ka +PoaKa ; bPob = 0, 

as p0a is a geodesic vector and Ka is a Killing vector) ,  where p0a = mv0a 
is the momentum vector of the particle , m is its rest-mass and v0 is the 
unit tangent to the particle world-line . The particle is then supposed 
to split into two particles with momentum vectors p1a and p2a, where 
p0a = p1a +p2a . Since Ka is spacelike, it is possible to choose p1a to be 
a future pointing timelike vector such that E1 = - p1 a Ka < 0.  Then 
E2 = - p2a Ka will be greater than E0• This means that the second 
particle can escape to infinity where it will have more energy than the 
original particle that was thrown in . One has thus extracted a certain 
amount of energy from the black hole . 

The particle with negative energy cannot escape to infinity, but 
must remain in the region where Ka is spacelike . Suppose that the 
ergosphere did not intersect the event horizon J-(J+, Ji) . Then the 
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particle would have to remain in the exterior region . By repeating the 
process, one could continue to extract energy from the solution . As 
one did this, one would expect the solution to change gradually. How
ever the ergosphere cannot shrink to zero, as there has to be somewhere 
for these negative energy particles to exist . It therefore appears that 
either one could extract an infinite amount of energy (which seems 
improbable) ,  or that the ergosphere would eventually have to intersect 
the horizon . We shall show that in the latter case the solution would 
spontaneously become either axisymmetric or static without any 
further extraction of energy by the Penrose process . Either the possi
bility of the extraction of an infinite amount of energy or the occur
rence of a spontaneous change would seem to indicate that the original 
state of the black hole was unstable . It therefore seems reasonable to 
assume that in any realistic black hole situation the ergosphere 
intersects the horizon . 

Hajicek ( 1 973 )  has shown that the stationary limit surface, which is 
the outer boundary of the ergosphere, will contain at least two 
integral null geodesic curves of Ka. If the gradient of/ is non-zero on 
these curves, and if they are geodesically complete in the past, they 
will contain points where Ka is zero. However there can be no such 
points in the exterior region (see proposition 9 . 3 . 3 ) ,  so the ergosphere 
must intersect the horizon in this case . However although it might be 
reasonable to assume that the integral curves of Ka were complete in 
the future, it does not seem reasonable to assume that they are com
plete in the past, since that would be to assume something about the 
past region of the solution which, as �e said before, is not physically 
significant . In the static case one could show that the solution was 
time symmetric, but there is no a priori reason why a stationary non
static solution should be time symmetric .  For this reason we shall rely 
on the energy extraction argument above rather than on Hajicek's 
results , to justify our assumption that the ergosphere intersects the 
horizon. 

One can explain the significance of the ergosphere touching the 
horizon as follows. Let 21 be one connected component of 

and let �1 be the quotient of 21 by its generators . By propositions 
9 . 3 . 1 and 9 . 3 . 2 ,  this will be homeomorphic to a two-sphere . By proposi
tion 9 . 3 . 1 ,  the spatial separation of two neighbouring generators is 
constant along the generators, and so can be represented by an induced 
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metric h on "§1 . The isometry Ot moves generators into generators, and 
so acts as an isometry group of ("§1, h ) . If the ergosphere intersects the 
horizon, Ka will be spacelike somewhere on the horizon and the action 
of Ot on ("§1 , h) is non-trivial . Therefore it must correspond to a rota
tion of the sphere "§1 around an axis, and the orbits of the group in "§1 
will be two points, corresponding to the poles, and a family of circles. 
A particle moving along one of the generators of the horizon would 
therefore appear to be moving relative to the frame defined by xa 
which is stationary at infinity. One could therefore say that the 
horizon was rotating with respect to infinity. 

The next result shows that a rotating black hole must be 
axisymmetric. 

Proposition 9 . 3 . 6  

Let (Jt, g)  be  a stationary non-static regular predictable space, in 
which the ergosphere intersects j-(.f+, Ji) n J+(.f-, Ji).  Then there 
is a one-parameter cyclic isometry group iJ9 (0 ::::;; <jJ ::::;; 211) of (Jt, g) 
which commutes with Ot, and whose orbits are spacelike near .f+ 
and J-. 

The method of proof of proposition 9 . 3 . 6  is to use the analyticity of 
the metric g to show that there is an isometry iJ9 in a neighbourhood 
of the horizon. One then extends the isometry by analytic continua
tion . The method would therefore work even if the metric were not 
analytic in isolated regions away from the horizon, for example if there 
were a ring of matter or a frame of rods around the black hole . This 
leads to an apparent paradox. Consider a rotating star surrounded by 
a stationary square frame of rods . Suppose that the star collapsed to 
form a rotating black hole . If the black hole approached a stationary 
state, it would follow from proposition 9 .3 . 6  that the metric g was 
axisymmetric except where it was non-analytic at the rods . However 
the gravitational effect of the rods would prevent the metric being 
axisymmetric. The resolution of the paradox seems to be that the 
black hole would not be in a stationary state while it was rotating. 
What would happen is that the gravitational effect of the rods would 
distort the black hole slightly. The back reaction on the frame would 
cause it to start rotating and so to radiate angular momentum. 
Eventually the rotation of both the black hole and the frame would be 
damped out and the solution would approach a static state. A static 
black hole need not be axisymmetric if the space outside it is not 
empty, i .e .  if condition (a) of Israel's theorem is not satisfied. 
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The above discussion indicates that a realistic black hole will never 
be exactly stationary while it is rotating, as the universe will not be 
exactly axisymmetric about it. However in most circumstances, the 
rate of slowing down of the rotation of the black hole is extremely slow 
(Press ( 1 972) ,  Hartle and Hawking ( 1 972b ) ) .  Thus it is a good approxi
mation to neglect the small asymmetries produced by matter at a 
distance from the black hole , and to regard the rotating black hole as 
being in a stationary state. We shall therefore now consider the 
properties of a rotating axisymmetric black hole . 

The following result of Pa;papetrou ( 1 966) ,  generalized by Carter 
( 1 969) , shows that the Killing vectors Ka corresponding to the time 
translation (Jt and j{a corresponding to the angular rotation Oq, are 
both orthogonal to families of two-surfaces. 

Proposition 9 .3 .  7 
Let (vii, g) be a space-time which admits a two-parameter abelian 
isometry group with Killing vectors ;1 and ;2 . Let "/" be a connected 
open set of vii, and let wab = gl[a g2 bl · If 

(a) Wab Rbc'Y/cdefwef = 0 on "/", 
(b) wab = 0 at some point of "/", 

then w[ab ; cwdle = 0 on "/". 

Condition (b) is satisfied in a stationary axisymmetric space-time on 
the axis of axisymmetry, i .e .  the set of points where j{a = 0 .  Condition 
(a) is satisfied in empty space , and when the energy-momentum tensor 
is that of a source-free electromagnetic field (Carter ( 1 969) ) .  By 
Frobenius' theorem (Schouten ( 1 954) ) ,  the vanishing of w[ab ; c wdle is, 
when wab =!= 0, the condition that there should exist locally a family of 
two-surfaces which are orthogonal to wab' i . e .  to any linear combina
tion of ;1 and ;2 • In the case of a stationary axisymmetric space-time, 
this means that one can locally introduce coordinates (t ,  </J, x1, x2) such 
that K = o/ot, K = Ofo<jJ, and Kaxm: a = 0 = Kaxm: a for m =  1 ,  2. The 
metric then locally admits the isometry (t, <jJ, xl, x2) --J>  ( - t,  - <jJ, xl , x2) ,  
which reverses the direction of  time, i .e .  i t  i s  time-symmetric .  Thus if 
the analytic extension of metric near infinity of an empty stationary 
regular predictable space-time contains a future event horizon, it will 
also contain a past event horizon . 

In analogy with proposition 9 .3 .4 ,  one has 
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Proposition 9 . 3 . 8  (cf. Carter ( 1 97 1 b ) )  

Let (..L, g) be a stationary axisymmetric regular predictable space
time in which w[ab ; cwdle = 0, where wab = Kra fibl · Then at any point 
in the exterior region J+(J-, Ji) n J-(J+, Ji) off the axis R = 0, 
h = wab wab is negative. On the horizons J-(J+, Ji) n J+(J-, Ji) and 
J+(J-, Ji) n J-(J+, Ji) ,  h is zero but wab =I= 0 except on the axis . 

This shows that at each point off the axis in the exterior region, there 
is some linear combination of the Killing vectors Ka and fia which is 
timelike . Outside the ergosphere, Ka itself is timelike, but between the 
stationary limit surface and the horizon one has to add a multiple of 
fia to obtain a timelike Killing vector. On the horizon there is no linear 
combination which is timelike, but there is a linear combination which 
is null , and is directed along the null generators of the horizon. Off the 
axis K = 0, one can locally characterize the horizon as the set of points 
on which h = wab wab = 0. 

We now come to the theorem of Carter ( 1 97 1  b )  which indicates that 
the Kerr solutions are probably the only empty stationary black holes . 
He considered stationary regular predictable spaces which satisfy :  

(a) Tab = 0, 
(b) they are axisymmetric, 
(c ) the past event horizon J+(J-, Ji) intersects the future event 

horizon J-(J+, Ji) in a compact connected two-surface .'F1. 
(By proposition 9 . 3 . 2 ,  this will be a two-sphere . )  He showed that such 
solutions fall into disjoint families, each of which depends only on two 
parameters . The two parameters can be taken to be the mass m and 
angular momentum L as measured from infinity. One such family is 
known, namely the Kerr solutions for m � 0, a2 ::::; m2, where a = L/m. 
(The Kerr solutions with a2 > m2 contain naked singularities and so 
are not regular predictable spaces. )  It seems unlikely that there are 
any other disjoint families. It has been conjectured, therefore, that the 
solution outside an uncharged collapsed object will settle down to a 

Kerr solution with a2 ::::; m2 • This conjecture is supported by analyses 
of linear perturbations from a spherical collapse by Regge and Wheeler 
( 1 957) ,  Doroshkevich, Zel'dovich and Novikov ( 1 966) ,  Vishveshwara 
( 1 970) ,  and Price ( 1 972 ) .  

Assuming the validity o f  this Carter-Israel conjecture, one would 
expect the area of the two-surface oPfi(r) in the event horizon to 
approach the area of a two-surface in the event horizon r = r + of a 
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Kerr solution with the same mass and angular momentum, as 
measured at .E?(r) on J+. This area is 87Tm(m + (m2 - a2)l) , where m is 
the mass of the Kerr solution and ma is the angular momentum. (If 
the collapsing body has a net electrical charge e one would expect the 
solution to settle down to a charged Kerr solution. The area of a two
surface in the event horizon of such a solution is 

47T(2m2 - e2 + 2m(m2 - a2 - e2)l) . 

Using this expression one can generalize our results to charged black 
holes . )  Consider a collapse situation which by a surface Y'(r1 ) has 
settled down to a Kerr solution with mass m1 and angular momentum 
m1 a1 . Suppose one now lets the black hole interact with particles or 
radiation for a finite time . The solution will eventually settle down, by 
a surface Y'(r2) , to a different Kerr solution with parameters m2, a2 • 
From the discussion of § 9 . 2 ,  the area of oPA(r2) must be greater than 
or equal to the area of oPA(r1 ) . In fact it must be strictly greater than , 
since (J can be zero only if no matter or radiation crosses the horizon . 
This then implies that 

m2(m2 + (m22 - a22)l) > m1(m1 + (m12 - a12)i ) . ( 9 . 4) 
If a1 =I= 0, then the inequality ( 9 .4) allows m2 to be less than m1 .  Since 
there is a conservation law for total energy and momentum in an 
asymptotically flat space-time (Penrose ( 1 963) ) ,  this would mean that 
one had extracted a certain amount of energy from the black hole . 
One way of doing this would be to construct a square frame of rods 
about the black hole and employ the torque exerted by the rotating 
black hole on the frame to do work . Alternatively, one could use 
Penrose 's process of throwing a particle into the ergosphere, where it 
divides into two particles, one of which escapes to infinity with greater 
energy than the original particle . The other particle will fall through 
the event horizon and reduce the angular momentum of the solution . 
One can thus regard the process as extracting rotational energy from 
the black hole . Christodoulou ( 1 970) has shown that one can achieve 
a result arbitrarily near the limit set by the inequality (9 .4 ) .  In fact the 
maximum energy extraction occurs when a2 = O ; then the available 
energy (m1 - m2) is less than 

Consider now a situation in which two stars a long way apart collapse 
to produce black holes. There is thus some r' such that 8PA(r' ) consists 
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of two separate two-spheres 8�1(r' ) and 8�2('r' ) .  Since these are a long 
way apart, one can neglect their interaction and assume that the solu
tions near each are close to Kerr solutions with parameters m1, a1 and 
m2, a2 respectively. Thus the areas of 8�1(r' )  and 8�2(r' ) will be 
approximately 811m1(m1 + (m12 - a12)t) and 811m2(m2 + (m22 - a22)t) 
respectively. Now suppose that these black holes fall towards each 
other, collide and coalesce . In such a collision a certain amount of 
gravitational radiation will be emitted . The system will eventually 
settle down by a surface 9'(r")  to resemble a single Kerr solution with 
parameters m3, a3 • By the same argument as previously, the area of 
o�(r")  must be greater than the total area of o�(r ' ) ,  which is the sum 
of the areas fJ�1(r' ) and fJ�2(r' ) . Thus 

ma( ma + (ma
2 - aa

2)t) > m1(m1 + (m12 - a12)t) + m2(m2 +  (m22 - a22)t) .  

B y  the conservation law for asymptotically flat spaces, the amount of 
energy carried away to infinity by gravitational radiation is 

This is limited by the above inequality. The efficiency 

e = (m1 + m2 - m3} (m1 + m2)-1 

of conversion of mass to gravitational radiation is always less than -f .  
If  a1  = a2 = 0, then e < 1 - 1/..)2 .  It  should be stressed that these are 
upper limits ; the actual efficiency might be much less, although the 
mere existence of a limit might suggest that one could attain an 
appreciable fraction of it . 

We have shown that the fraction of mass which can be converted 
to gravitational radiation in the coalescence of one pair of black holes 
is limited. However if there were initially a large number of black 
holes, these could combine in pairs and then the resulting holes could 
combine, and so on. On dimensional grounds one would expect the 
efficiency to be the same at each stage . Thus one would eventually 
convert a very large fraction of the original mass to gravitational 
radiation . (This argument was suggested by C. W. Misner and M. J. 
Rees . )  At each stage, the energy emitted in gravitational radiation 
would be larger. This might be able to explain Weber's recent observa
tions of short bursts of gravitational radiation . 

We now give the proofs of the propositions we have stated in this 
section . For convenience, we repeat the statements of the propositions . 
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Proposition 9 .3 . 1 
Let (..A', �) be a stationary, regular predictable space-time. Then the 
generators of the future event horizon J-(J+, Ji) have no past end
points in J+(J-, Ji) . Let Y1a be the future-directed tangent vector to 
these generators ; then in J+(J-, Ji) , Y1a has zero shear u and expan
sion fJ, and satisfies 

RabYlaYi_b = 0 = Yi.ceOalbcld ylf]Y1bY1c· 
Let <'(/ be a spacelike two-sphere on J-. Then one can cover J- by a 
family of two-spheres f'(/(t) obtained by moving re up and down the 
generators of J- under the action of Ot, i .e .  <'C (t) = Ot(<'C) .  We now 
define the function x at the point p E J+(J-, Ji) to be the greatest 
value of t such that p E J+(<'C(t) , Ji) .  Let O/t be a neighbourhood of J+ 
and J- which is isometric to a corresponding neighbourhood of an 
asymptotically simple space-time. Then x will be continuous and have 
some lower bound x' on f/ n 0// . From this it follows that x will be con
tinuous in the region of J-(J+, Ji) where it is greater than x' . Let 
p E J+(J-, Ji) n J-(J+, Ji ) . Then under the isometry Ot, p will be 
moved into the region of J-(J+, Jl) , where x > x' .  However 

x J oe<P> = x JP + t . 
Therefore x will be continuous at p.  

Let T0 > 0 be  such that f/(T0) n J-(J+, Ji) i s  contained in 
J+(J-, Ji) . Let A be a generator of J-(J+, Ji) which intersects f/(T0) .  
Suppose there were some finite upper bound x0 to x on A .  Since the 
space is weakly asymptotically simple, x � oo  as one approaches � (T0) 
on f/(T0) .  Thus there will be some lower bound x1 of x on 

f/(To) n J-(J+, Ji) . 
Under the action of the group Ot, A is moved into another generator 
Ot(A) . As the generators of J-(J+, Ji) have no future endpoints, the 
past extension of Ot(A) will still intersectf/(T0) n J-(J+, Ji) . This leads 
to a contradiction, since the upper bound of x on Ot(A) would be less 
than x1 if t < x1 - x0• 

Let x2 be the upper bound of x on f/(T0) n J-(J+, Ji) . Then every 
generator A of J-(J+, Ji) which intersects Y'(T0) will intersect 
.?F(t) = J+(f'(/(t ) ,  Ji) n J-(J+, Ji) for t � x2 • Every generator of 
J-(J+, Ji) which intersects .fF(t') will intersect Ot(Y'(T0) )  for t � t' - x1 • 
But Ot(f/(T0) )  n J-(J+, Ji) = Ot(f/(T0) n J-(J+, Ji)) is compact. Thus 
.?F(t) is compact. 
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Now consider how the area of ff(t) varies as t increases . Since () � 0 
the area cannot decrease . If () were > 0 on an open set, the area would 
increase . Also if the generators of the horizon had past endpoints on 
ff(t) the area would increase . However as ff(t) is moving under the 
isometry (}t, the area must remain the same. Therefore () = 0, and 
there are no past endpoints on the region of J-(J+, .A) for which 
x � x2• However since each point of J-(J+, .A) n J+(J-, vH) can be 
moved by the isometry (}t to where x > x2, this result applies to the 
whole of J-(J+, .A) n J+(J-, vH) . From the propagation equations 
(4 . 35) and (4 .36)  one then finds umn = 0, RabY1aY1b = 0 and 
YiceOalbc Cd Y111Y1bY1c = 0, where Y1a is the future-directed tangent 
vector to the null geodesic generators of the horizon. D 

Proposition 9 .3 . 2  
Each connected component in  J+(J-, vH) of  the horizon 8Pl/(r) in  a 
stationary, regular predicta hie space is homeomorphic to a two-sphere . 

Consider how the expansion of the outgoing null geodesics orthogonal 
to 8Pl/(r) behaves if one deforms 8Pl/(r) slightly outwards into 
J-(J+, vH) . Let Y2a be the other future-directed null vector orthogonal 
to oPll(r) ,  normalized so that Yi_a Y2a = - 1 .  This leaves the freedom 
Y1 -+ Y1' = eYYv Y2 -+ Y2' = e-11 Y2 • The induced metric on the space
like two-surface 8Pl/(r) is hab = Yab + Y1aY2b + Y2aYib · Define a family of 
surfacesff (r, w) by moving each point of oPll(r) a parameter distance w 
along the null geodesic curve with tangent vector Y2a. The vectors Y1° 
will be orthogonal to ff(r, w) if they propagate according to 

habY1b ; c y2c = - ha
b Y2c ; b y1c and Yi_a Y2a = - 1 . 

Then 

(Y1a ; b h,ac h,ba) ; gy2u h,csh,at = h,saPa; b hbt +P8Pt 

_ Ji,sayla ; g h,uey2e ; b hbt + Raceb y2eylchashbt, (9 .5 )  

where pa = - hbay2c; b Y{. Contracting with h/, one obtains 

d() - a Ab c -d - (Y1 · b h a) - cY2 w . • 

= Pb · d hbd _ RacY1ay2c + Radcbylay2cy2aylb +PaPa 
- V a hA C y; a hAb 1 1 ; c d 2 ; b a · 

On the horizon, Y1a ; c 1i,cafi,b
a is zero, as the shear and divergence of the 

horizon are zero . Under a rescaling transformation Yi
' = ell Y 1 , 
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Y 2' = e-11 Y2, the vector pa changes to p'a = pa + kaby ; b • and so 
d0/dwl w=o changes to 

dd0 '
, j = Pb ; d h,M + Y : M kbd - RacY1ay2c 

W w=O 
+ RadcbYldy2cy2aylb + p'ap' a · ( 9 . 6 ) 

The term y . bd kbd is the Laplacian of y in the two-surface 88'(7) . By 
a theorem of Hodge ( 1 952) ,  one can choose y so that the sum of the 
first four terms on the right of ( 9 . 6 )  is a constant on 88'(7) . The sign of 
this constant will be determined by that of the integral of 

( - Racylay{ + RadcbYldy2cy2ay1b) 

over 88'(7) (Pb ; d kbd, being a divergence, has zero integral) .  This 
integral can be evaluated using the Gauss-Codacci equations for the 
scalar curvature R of the two-surface with metric h :  

R = Rijkl h,ik hil = R - 2RijklY1i Y2iY1kYz1 + 4RijY1i Y2i , 

since 0 = & = 0 on 88'(7) .  By the Gauss-Bonnet theorem (Kobayashi 
and Nomizu ( 1 969) )  f R dS = 2rrx, 

i)IJJ(T) 

where dS is the surface area element of 88'(7) and x is the Euler 
number of 88'(7) . Thus 

f ( - Rab ylaYl + Radcb Yldy2cy2aylb) dS 
otil(T) 

= - 1Tx +f (!R + RabY1aY2b) dS . ( 9 . 7 )  
i)til(T) 

By the Einstein equations, 

!R + Rab yla Y2b = 87TTabyla Y2b, 

which is � 0 by the dominant energy condition . The Euler number x 
is + 2 for the sphere, zero for the torus, and negative for any other 
compact orientable two-surface (88'(7) has to be orientable as it is 
a boundary) . Hence the right-hand side of ( 9 . 7 )  can be negative only 
if 88'(7) is a sphere . 

Suppose that the right-hand side of ( 9 .  7 )  was positive . Then one 
could choose y so that d0'/dw' lw= o was positive everywhere on 88'(7 ) .  
For small negative values of w' one would obtain a two-surface in 
J-(J+, .il) such that the outgoing null geodesics orthogonal to the 
surface were converging. This would contradict proposition 9 . 2 . 8 .  
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Suppose now that X was zero and that Tab y1aY2b was zero on oi16'(T) . 
Then one could choose y so that the sum of the first four terms on the 
right of ( 9 . 6) was zero on oi16'(T) . Then 

p'a ; b f;,b
a + Rabcdy1aYlY1cY2d = 0 

on oi16'(T) .  If Rabcdylay2bY{Y2d was non-zero somewhere on oi16'(T) ,  then 
the term p'ap'a in (9 .6 )  would be non-zero somewhere and one could 
change y slightly so as to make d8' i dw' lw= o positive everywhere . This 
would again lead to a contradiction . 

Now suppose that Rabcd:y;_ay2bY1cY2d and p'a were zero everywhere 
on oi16'(T ) .  One could move the two-surface oi16'(T) back along Y2a, 
choosing the rescaling parameter y at each stage so that 

p'a ; b f;,b 
a + Rabcdylay2bY1cY2d 

- !R - 2Rab ylay2b = p'a ; b f;,b
a - !R = 0. 

If Taby1aY2b or p'a were non-zero for w' < 0 then one could adjust y to 
obtain a two-surface in J-(J+, Ji) with 8 < 0. This would contradict 
proposition 9 . 2 . 8 .  On the other hand if Taby1aY2b and p'a were zero 
everywhere for w ' < 0, one would obtain a two-surface in J-(J+, Ji) 
with 8 = 0 which again contradicts proposition 9 . 2 . 8 .  

One avoids a contradiction only i f  x = 2 ,  i . e .  i f  oi16'(T) i s  a two-
sphere . D 

Proposition 9 . 3 . 3  
Let (JI, �) be  a stationary regular predictable space-time . Then the 
Killing vector Ka is non-zero in J+(J-, Ji) n J-(J+, Ji) , which is 
simply connected. Let To be such that .51'(70) n J-(J+, Ji) is contained 
in J+(J-, Ji) . If oi16'(T0) has only one connected component, then 
J+(J-, Ji) n J-(J+, Ji) n JI is homeomorphic to (0, 1 )  x S2 x R1• 

The function x defined in proposition 9 . 3 . 1 is continuous on 
J+(J-, Ji) n J-(J+, Ji) , and has the property that x l o,<p> = x l p + t . 
This shows that K cannot be zero in J+(J-, Ji) n J-(J+, Ji) . The 
integral curves of K establish a homeomorphism between two of the 
surfaces 

J+(f'C(t ) , Ji) n J-(J+, Ji) n JI ( - oo < t < oo) . 

The region J+(J-, Ji) n J-(J+, Ji) n JI is covered by these sur
faces, and so is homeomorphic to R1 x J+(f'C(t' ) ,  Ji) n J-(J+, Ji) n JI 
for any t ' .  Choose t to be large enough that J+(f'C(t) ,  Ji) intersects 
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9"(r0) in the neighbourhood Oii of J +  which i s  isometric to a similar 
neighbourhood in an asymptotically simple space . The integral curves 
of K establish a homeomorphi<!m between 

J+(<'C(t) ,  A) n J-(J+, A) n .,I( and 9"(r0) n J-(J+, A).  
By property (a) and proposition 9 . 3 . 2, this i s  simply connected. If 
further oPfi(r) has only one connected component, then 

9'(r0) n J-(J+, A) 

has the topology [O, 1 )  x 82 . Thus J+(J-, A) n J-(J+,A) n J( has the 
topology [O, 1 )  x S2 x R1• D 

Proposition 9 .3 . 4 
In a static regular predictable space-time, the Killing vector K is 
timelike in the exterior region J+(J-, Ji) n J-(J+, A) and is non-zero 
and directed along the null generators of J-(J+, Ji) on 

J-(J+, vit) n J+(J-, A) . 

The event horizon J-(J+, A) is mapped into itself by the isometry Ot . 
Thus on J-(J+, Ji) n J+(J-, Ji) , K must be null or spacelike . Let r0 
be such that 9'(r0) n J-(J+, A) is contained in J+(J-, Ji) . Then 
f = Ka Ka must be zero on some closed set ..¥ in 

J+(9'(r0) )  n J-(J+, Ji). 

From the fact that Ka is a Killing vector and curl K = 0, it follows that 

( 9 . 8 )  

By proposition 9 .3 . 3 ,  Ka i s  non-zero on the simply connected set 
J+(f-, A) n J-(f+, Ji) . By Frobenius' theorem, it follows from the 
condition curl K = 0, that there is a function s on this region such that 
Ka = - as ; a •  where a is some positive function. 

Let p be a point of..¥ and let A.(v) be a curve through p lying in the 
surface of constant s through p. Then by (9 .8 ) , 

d D 
-!Ka 

dv logf = ov Ka. 

If A(v) left ..¥, the left-hand side of this equation would be unbounded. 
However the right-hand side is continuous ; therefore A(v) must lie 
in ..¥, so ..¥ must contain the surface s = s ip · Howeverf cannot be zero 
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on an open neighbourhood of p, since it would then be zero every
where . Thus the connected component of % through p is the three
surface g = g JP . Suppose p E J+(J-, .ii) n  J-(J+, .il) . Then there 
would be a future-directed timelike curve y(u) from J- through p 
to J+. On g = g 1P ' xa would be future-directed. Thus (o/ou)y g > 0 
when g = g J P . This leads to a contradiction as g = g JP cannot intersect 
J+ or J- since Ka is timelike near infinity. Thus near J+ and J-, 
either g is greater than g J P  or less than gJP . D 

Proposition 9 .3 .5  
In an empty regular predictable space-time which i s  not static, the 
Killing vector xa is spacelike in part of the exterior region 

J+(J-, .ii) n J-(J+, .ii) .  
The function x introduced in  proposition 9 .3 . 1 i s  continuous on 
J+(J-, .ii) n J-(J+, .ii) ,  and is such that along each integral curve 
of xa, ox/ot = 1 .  One can approximate the surface x = o in 
J+(J-, .ii) n J-(J+, .ii) by a smooth surface % which is nowhere 
tangent to Ka. One can then define a smooth function x on 
J+(J-, .ii) n J-(J+, .ii) by specifying that x = O on .Ytand x . a Ka = 1 .  
One can express the gradient of the Killing vector as 

/Ka ; b  = 7JabcdKcwd + K[J; bl> 
where f = Ka Ka is the magnitude of the Killing vector, and 

wa = f'f/abcdKb Kc , d · 
The second derivatives of K satisfy 

2Ka ; [bcl = RdabcKd. 
However Ka; be = Kca ; bJc· Therefore 

Ka; be = Rdcba Kd 

which implies (9 .9 )  

The vector qa = J-1Ka - x; a is orthogonal to Ka. Multiplying (9 .9 )  by 
qa and integrating over the region .ft? of J-(J+, .il )  bounded by the 
surfaces � and A'; defined by x = x2 + 1 and x = x2 + 2 , where x2 is 
as in proposition 9 .3 . 1 ,  one finds 

f Rab Kaqb dv = -f (Ka ; bqa) . b dv +f Ka · b q a ; b dv 
.:e .:e ' .:e 

' 

= -f Ka ; bqa dub - 2f 1-2wawa dv. (9 . 1 0) 
iJ.Z .:e 
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The boundary o.!l' of .!l' consists of the surfaces o.!l'1 = �n J-(J+, Ji), 
o.!l'2 = � n J-(J+, Ji), the portion c3.!l'3 of J-(J+, Ji) between � and 
..,.y;, and the portion o.!l'4 of J- between � and ..,.y;. The surface integral 
over o.!l'1 is minus that over o.!l'2, since these surfaces are carried into 
each other by the isometry 01 . 

Near J-, f = - 1  + ( 2m/r) + O(r-2) and wawa = O(r-6 ) ,  where r is 
some suitable radial coordinate . Thus the surface integral over o.!l'4 at 
J- vanishes. Suppose now that Ka were timelike everywhere in .!l', 
becoming null on the horizon. Then wa, being orthogonal to K, would 
be spacelike everywhere in .!l'. Therefore if w is non-zero, i .e .  the 
solution is non-static ,  the last term on the right of (9 . 10 )  will be 
negative . This leads to a contradiction if the space is empty and if the 
integral over o.!l' 3 is zero . 

To evaluate this integral, one has to apply a limiting procedure . 
Let z be a function on the surface � which is zero on the horizon but 
such that the gradient of z in � is not zero on the horizon . The function 
z can be defined on.P by the condition Z ; aKa = 0. One can express the 
gradient of z as 

where Ra is a vector field tangent to the surfaces {x = constant} and 
normalized so that RaKa = - 1 . One now takes Jxa ; bqa dub over the 
surface {z = constant} between � and ..,.y;. Then dub = duz ; b • where 
du is some continuous measure . Thus 

f Ka ; bqa dub = f (ix ; a(j) ; a _ x ; aKa; b Rbj + tf; bRb) x ; b z; b du. 

Since the horizon was the surface j = o and since Ka was directed 
along the null generators of the horizon, l: a is proportional to xa on 
the horizon. Therefore 

This gives a contradiction which shows that Ka must be spacelike 
somewhere in .P if the space is empty. D 

Proposition 9 . 3 . 6  
Let (Jt, g)  be a stationary non-static regular predictable space-time 
in which the ergosphere intersects J-(J+, Ji) n J+(J-, Ji) . Then 
there is a one-parameter cyclic isometry group ()t/> (0 ::::;; <fa � 27T) of 
(Jt, g)  which commutes with Ot, and whose orbits are spacelike near 
J+ and J-. 
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Let !21 be one connected component of J-(J+, Ji) n J+(J-, Ji) , and 
let f§1 be the quotient of !21 by its generators . Then the orbits of the 
isometry et in the horizon !21 will be spirals which repeatedly intersect 
the same generators . Let t1 > 0 be such that et1 is one rotation of f§1 . 
Then if p E .!21 , et,(P) will lie on the same generator of !21 . It will lie to 
the future of p, since 

One can now choose the future-directed null vector Y 1 to be directed 
along the generators, and scaled so that 

(i )  Y1a ; b Y1b = 2eY1a , where e ; ayla = 0, 
( ii) if v is a parameter along the generators such that Y 1 = Ofov, then 

v l o1 1<p> = v l P + t1 . 

The vector field Y 1 defined in this way is invariant under the isometry 
e1 , i . e .  Lg Y1 = 0. One can now define a spacelike vector field Y3 in !21 
by Y3 = K - Y1 ; then Lx Y3 = 0 and Ly1 Y3 = 0 (note that Y3 is not 
a. unit vector, and in fact it will vanish on the generators y1 and y2 
corresponding to the poles of � 1 ) .  The integral curves of Y 3 in !21 will 
be circles which degenerate to points on y1 and y2 . 

Let µ be a curve in !21 from y1 to y2 orthogonal to Y1 and Y3, and 
such that the orbits of Y 3 which intersect µ form a smooth spacelike 
two-surface f!JJ in !21 . Let f!JJ( v) be the family of spacelike two-surfaces 
in !21 obtained by moving each point of f!JJ a parameter distance v up 
the generators of !21 .  f!JJ(v) is also equal to ev(!!JJ ) .  Let Y2 be the other 
null vector orthogonal to f!JJ(v ) ,  normalized so that Y1a Y2a = - 1  (see 
figure 6 1 ) ; then Lg Y2 = 0 .  

Let Y 4 be a spacelike vector on µ, tangent to µ .  Then one can define 
Y4 on !21 by dragging it along by K and Y1, i . e .  Lg Y4 = 0 = Ly1 Y4 .  
(These are compatible because Lg Y1 = 0 . )  Y4 will be orthogonal to Y1 
on !21 because LK(Y4a gab Y1b) = 0, and 

(Y4ay1al ; b Ylb = yla ; b Yl Yi.a + Y1a ; b y4a Y1b · 
The first term is zero because Y 1 is null and the second term equals 
2eY1a Y4a . Thus Y1ay4a, being zero initially, remains zero . Y4 will be 
orthogonal to Y2 on !21 because it lies in the surface f!JJ(v) ,  and Y2 is 
normal to the surface . It will also be orthogonal to Y3 on !21 because 
Lg(Y3a gab Y4b ) = 0, and 

(Y3a y4a ) ; b Y1b = yla ; b Yl�a + Y1a ; b Yl Ysa = 0 

since Y1a ; b h,achbd = 0.  
1 2  H L S  
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FIGURE 6 1 .  The isometry 01,  moves the point p and the surface .c?"(v) into the 
point 01 , (p)  and the surface .c?"(v + t1 )  in the horizon !l. 1 •  Y1 is tangent to a null 
geodesic generator of .21 ,  Y2 is a null vector orthogonal to .c?"(v) ,  and Y3 lies in 
Y'( v ) .  K is the Killing vector field on !l.1 which generates the isometry group 0 1 •  

In a neighbourhood of 2 1 , there will be a unique null geodesic A 
orthogonal to a surface .9"(v) through a given point r. One can then 
define coordinates (v, w, 0, </J) for the point r, where w is the affine 
distance (as measured by Y 2) along µ,  and (v, 0, <P) have their values 
at µ n 21 ,  where 0 and 9 are spherical polar coordinates for the 
generators of 21 such that y3a O , a  = 0, y4a <P . a = 0. (In other words, 
we choose Y3 = ( 2rr/t 1 )  o/o<P and Y4 = o/80 on 21 . )  We shall take the 
basis {Y 1 , Y 2 ,  Y 3 ,  Y 4} to be parallelly propagated along the null geo
desics with tangent vector Y2. Then Y2 = o/ow. We define the vector 
K to be o/ov . This means that the Lie derivative of K by Y2 is zero . 
\Ve define the vector za to be 

1 { y3u . y4a } 
za = .j2 (YabYab)� + 1 (Yl�b)i . 

Then Z" Zu = 0,  zazu = 1 ,  Z"Zu = 0, 
where - denotes the complex conjugate . 
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One can define on 2-1 a family b�n} of tensor fields, where 

g0 = g and gn = Ly, (Ly, ( · · · (Ly, g) · · . ) ) . 
n terms 

343 

In the coordinates given above, gn ab = on (gab )/own . Since the solution 
is analytic, it is completely determined by the family gn on 2-1 . We 
shall show that on 2-1 , the Lie derivatives with respect to K of all the 
gn vanish . Then the Lie derivative of the gn with respect to K = K - K 
will also vanish . This shows that the solution will admit a one
parameter group 119 generated by K. For simplicity we shall consider 
only the empty space case, but similar arguments hold in the presence 
of matter fields, like the electromagnetic or scalar fields, which obey 
well-behaved hyperbolic equations . 

By our choice of coordinates, the components of Li g are the partial 
derivatives with respect to v of the coordinate components gab · These 
are all constant on 2-1 , so LK: g l..2 1 = 0. We shall show below Li g1 l .:t , = 0, 
and then proceed by a method of induction . Suppose that 

£i gn l-21 = 0, n ;::: 1 . 

It then follows from the construction of the basis that Li of the nth 
covariant derivatives of all the basis vectors Y1 , Y2 , Z , Z are zero . 
Now 

gn+l ab = gn ab-; cy2c + gn cb y2c ; a + g,, ac y2c ; b · 
The Lie derivative with respect to K of the second and third terms 
on the right are zero . The first term involves covariant derivatives of 
Y 2 of order (n + 1 )  and lower orders . The Lie derivative with respect to 
K of all the lower order terms are zero . The terms involving (n + 1 )  
covariant derivatives are 

(Y2 a ; bef . . .  ghc + � b ;  aef . . .  ghc) Y{Y21 · . .  Y2h Y{ 
= (Y2 a ; bey2e + Y2 b;aey2e) ; f  . . .  ohcY/ . . . Y2c + lower order terms 
= ( (Y2 a ;  e y2e ) ; b + RpabeY2P Y2e + (Y2 b ;  e y2e ) ; a  + Rpbae Y2P Y{) ; f  . . . gh 

x Y/ . . . Y2c + lower order terms. 

The Lie derivatives with respect to K of this expression will be zero, 
if the Lie derivative with respect to K of the Riemann tensor and its 
covariant derivatives to order (n - 1 )  vanish . Then Li gn+i l -2, will be 
zero . 

To show that the Lie derivatives with respect to K of g1 and of the 
covariant derivatives of the Riemann tensor are zero, it is convenient 
to use some notation introduced by Newman and Penrose ( 1 962) . 

1 2 -2 
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This involves using a pseudo-orthonormal basis with the two spacelike 
vectors Y3 and Y4 combined to give a single complex null vector Z, 
giving eaeh component of the connection and the curvature tensor 
a separate symbol ,  and writing out all the Bianchi identities and the 
defining equations for the curvature tensor explicitly without summa
tion . These relations are combined in pairs to form half the number 
of complex equations . The symbols for the connection components are : 

K = Y1 a ; b zay1b , 7T = - Y2 a · b zay1b , 

P = Y1 a ; b zazb. i\ = - 1� a ; b zazb, 

(j = Y1 a ; b zazb, µ = - Y2 a ; b zazb, 

T = rl a ; b zay2b , v = - Y2 a ; b zay2b• 

- l (}' y a }' b _ z z-a}" b) l (}" }' a z-b z z-az-b) € - 2  l a ; b 2 1 a ; b 1 ' a = 2 l a ; b 2 - a ; b ' 

/3 = � ( J; a ;  b l�" V - Za ; b zaV) , y = ! (Yi a ; b Y2" Y2b - Za ; b Z"Y2b) . 

The symbols for the \Veyl tensor are : 

'l'o = - Cabca Yi." ZbY2c Zd, 

'F1 = - Cabcd y1a y2b y1czd, 

'1'2 = - iCabca (Y1" Y2bY1cY2d _ yla y2b Zczd) ,  

'¥3 = Cabca Y1" Y2b Y{Zd 

'F4 = - Cabcd y2a zby2cza. 

\Ve are considering empty space , so the Ricci tensor is zero ( i .e .  

<I> A B = 0 = A in the Newman-Penrose formalism) .  Since the basis is  
parallelly propagated along Y 2, v = y = T = 0 .  As Y 2 is the gradient 
of the coordinate v, 7T = 1J + a and µ = µ. Furthermore on !21 , 
K = p = (j = 0, £ = €, Y1 (c) = 0 and 'F0 = 0 .  

The equations we shall need are : 

( 9 . 1 1  a) 

Y1(J3) - Z(c) = (a + TT) (j + (p - e) jJ - µK - (a - 1i) e + 'Yv (9 . 1 1 b ) 

Yi (i\) - Z(TT) = pi\ + O'µ + 7T2 
+ (a - Jl) TT - ( 3e - €) i\,  ( 9 . 1 1  c)  

Y1 (µ ) - Z(TT) = pµ + (ji\ + TT1i - (e + e) µ - TT(a - /J) + '¥2, ( 9 . 1 1  d) 

Z(p) - Z((j) = p(a + /J) - u( 3a - Jl) - '1:'1 ( 9 . 1 1  e )  
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(these are obtained from the Newman-Penrose equations ( 4 . 2) ) ,  and : 

Y1{'Y1) - Z{'Y0) = - 3K'Y2 + ( 2e +  4p) 'Y1 - ( - 7T  + 4a) 'F0, ( 9 . 1 2 a) 
¥;.('Y 2 ) - Z('F1 ) = - 2K'Y3 + 3p'Y 2 - ( - 277 + 2a) 'Y1 - ,\'Y 0, ( 9 . 1 2 b) 
Y1('Ya) - Z('Y 2) = - K'Y4 - (2e - 2p) 'Ya + 37T'Y2 - 2,\'Yl> 
Y1('Y4) - Z('Ya) = - (4e - p) 'Y4 + (477 + 2a) 'Ya - 3A'Y2, 
Y2('Y 0) - Z('Y 1 ) = - µ'Y 0 - 2/J'Y 1 + 3u'Y2 

( 9 . 1 2 c )  
( 9 . 1 2d)  
( 9 . 1 2 e )  

(these are obtained from the Newman-Penrose equations ( 4 .5 ) ) . 
From ( 9 . 1 1 e ) , 'Y1 = 0 on 21 •  Then from ( 9 . 1 2 b ) ,  Y1 {'Y 2) = K ('Y2 ) = 0 

on 21 .  Adding ( 9 . 1 1 a) to the complex conjugate of ( 9 . 1 1 b ) ,  one 
obtains 

Y1 {7T) = Y1{a + ,B) = Z(e) + Z(e) + 21Tp + 2nu - 1T(e - e) - K.A - K',U + '¥1 • 
On 21,  this becomes ¥;_(77) = Z(e) + Z{€ ) .  
Therefore Y1{¥;_(7T) )  = Y1 {Z(e) + Z(€) )  on 21 . But on 21, Ly1 Z = 0 and 
Y1(€) = 0. Thus Y1{Y1 {7T) )  = 0 on 21 . This shows that 1T = A  + Bv on 21 , 
where A and B are constant along a generator of 21 . However 
1T IP = 1T J 011<P> ;  therefore 1T is a constant along the generators of Ji2,1 .  
Subtracting the complex conjugate of ( 9 . 1 1 b ) from ( 9 . 1 1 a) , one finds 
that (a - ,B) is constant along the generators . 

One now applies similar arguments to ( 9 . 1 1 c ) and ( 9 . 1 1 d) to show 
that µ and ,\ are constant along the generators of 21 . Since 1T, µ and ,\ 
determine the covariant derivative of Y2, it follows that L.g ,Y2a ; b = 0  
on 21 and hence that LK. �1 = 0 on 21 • 

One can also apply the above kind of argument to ( 9 . 1 2 c )  and 
( 9 . 1 2 d) to show that Y1('Y3) = Y1('Y4) = 0 on 21.  Thus Lx. Rabcd = 0 on 
21 and so the Lie derivative with respect to K of the second derivatives 
of the basis vectors are zero . In particular Y 1 Y 2 acting on any of the 
components of the connection gives zero. 

From ( 9 . 1 2 e ) ,  K(Y2('Y0) )  = Y1 Y2 {'Y0 ) = 0 on 21 . One now operates 
with Y1 Y2 on ( 9 . 1 2 a ) .  The commutator Y1 Y2 - Y2 Y1 involves only 
the first covariant derivatives of the basis vectors . Thus 

Lx.{Y1 Y2 - Y2 Y1) = 0 on 21 .  
From this it  follows by an argument like that given above that 

K{Y2('Y1 ) )  = ¥;_{Y2{'Y1 ) )  = 0 on Ji2,1 . 
One now repeats the argument for ( 9 . 1 0 b ) ,  ( 9 . 1 0c )  and ( 9 . 1 0d)  to show 
that K(Y2('Y2) )  = K(Y2('Y3 ) )  = K(Y2('Y4 ) )  = 0 on Ji2,1 . This shows that 
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the Lie derivatives with respect to  K of  the first covariant derivatives 
of the Riemann tensor vanish . One then repeats the process, showing 
that K(Y2(Y2('Y0) ) )  = 0 on !l.i, and so on. D 

Proposition 9 .3 .  7 
Let (1, g) be a space-time which admits a two-parameter abelian 
isometry group with Killing vectors ;i and ;2• Let "Y be a connected 
open set of 1, and let wab = Si[aS2bl · If 

(a) Wab Rbc 'f/cdefwef = 0 on "Y, 
(b) wab = 0 at some point of "Y, 

then W[ab ; cwdle = 0 on "Y. 

Let <i>X = Sia ; b Wcd'f/abcd, and <2>X = S2a ; b Wcd'f/abcd. Then 
'f/abcd<i>X = - 4 ! si[a ; bSic S2dl 

I 

= 3 !  Sid S2[asib ; cl _ 3 ! S2d Si[a Sib ; c] _ 2 x 3 !  Si[aS2b Sic] ;  d. 
Therefore 

(3 ! )-i'f/abcd<i>X ; d = Sid ; d S2[aSib ; c] + Sid S2[a ; d Sib ; cl 
+ t: d t: [at: b ; c] t: d t: [at: b ; cl t: d t: [a t: b ; c] !:>i !:>2 !:>i ; d - !:>2 ; d !:>i !:>i - s2 !:>i ; d!:>i 

- s2d si[asib : ci : d - 2si[a : d s2b sici: d 

- 2si[as2b ; dS{1 ; d _ 2si [as2b sicJ; d ; d · (9 . 1 3) 
The first and fourth terms vanish because ;i and ;2 are Killing vectors ; 
the second and fifth terms cancel each other because ;i and ;2 com
mute . Because ;i is a Killing vector, �Jia; b = 0. This implies that 
the third term vanishes. Similarly �1 Sia ; b = 0 because ;2 is a Killing 
vector which commutes with ;i. This implies that the sixth and eighth 
terms cancel. The seventh term vanishes because Si a ; d s{ ; d is sym -
metric ;  and because of the relation Sa ; bc = Rdcba Sd satisfied by any 
Killing vector, sa ; dd = - Rab Sb · Equation (9 . 13 )  is therefore 

11abcd( >X - 2 3 1 t: [at: b Rcl t: d ., i ; d - . . !:>i !:>2 d !:>i • 

By condition (a) ,  the right-hand side of this equation vanishes on "Y. 
Thus wX is a constant on "Y; in fact it will be zero on "Y since it must 
vanish when wab does . Similarly <2>X will be zero on "Y. However the 
vanishing of <i>X and <2lX is the necessary and sufficient condition that 

D 

Proposition 9 .3 . 8  
Let (1, g) be  a stationary axisymmetric regular predictable space
time in which wlab ; cwdle = 0, where wab = Kca Ebl · Then at any point 
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in the exterior region J+(J-, .H) n J-(J+, .H) off the axis K = 0, 
h = wabwab is negative . On the horizons J-(J+, vii) n  J+(J-, vii) and 
J+(.f-, vii) n J-(J+, vii) ,  h is zero but wab =!= 0 except on the axis . 

By proposition 9 .3 . 3 ,  Ka is non-zero in J+(J-, vii) n J-(J+, vii) .  Let 
A be an 81 which is a non-zero integral curve of the vector field K. in 
J+(.F-, vii) n J-(J+, vii) .  Under the isometry Ot, A can be moved into 
D+(f/') . As there are no closed non-spacelike curves in D+(Y) ,  A must 
be a spacelike curve, and hence K.a must be spacelike in 

J+(J-, vii) n J-(J+, vii) 

except on the axis where it is zero . Suppose there were some point p at 
which K_a and Ka were both non-zero and in the same direction . As 
K_a and Ka commute, the integral curves of K_a through p would 
coincide with those of Ka. However the former is closed while the 
latter is not. Thus K_a and Ka are linearly independent where they are 
non-zero . Thus wab is non-zero in J+(J-, vii) n J-(J+, vii) except on 
the axis . 

The axis will be a two-dimensional surface. Let t!Y be the set 
J+(J-, vii) n J-(J+, vii) - (the axis ) ,  and let � be the quotient of t!Y 
by B9 . As the integral curves of Ka are closed and spacelike in l!Y, the 
quotient � will be a Hausdorff manifold. On �' there will be a 
Lorentz metric hab = gab - (KcKc) -1KaKb . One can project the Killing 
vector Ka by hab to obtain a non-zero vector field habKb in � which is 
a Killing vector field for the metric hab · The condition W[ab ; cWaJe = 0 in 
.H implies that in �, (Kbhbrc) i a  heiiK' = 0, where I denotes the co
variant derivative with respect to h. This is just the condition that 
there should exist a function s on � such that Kbhba = - asia · The 
argument is then similar to that in proposition 9 .3 .4 .  One shows that 
if KaKb }i,ab = 0 at a point p E �, then the surface s = s ip is a null 
surface in � with respect to the metric h. The function s on � induces 
a function s on t!Y, with the property : S ; aKa = o. Thus s = s i p  will be 
a null surface in ..,/( with respect to the metric �-

Suppose p corresponded to  an integral curve A of K_a which did not 
lie on j-(J+, vii) .  Let q E .H  be a point of A. Then there would be 
a future-directed timelike curve y(v) from J- through q to J+. If this 
curve intersected the axis , it could be deformed slightly to avoid it. 
One would then obtain a contradiction similar to that in proposition 
9 .3 .4 .  D 



1 0  
The initial singularity in the universe 

The expansion of the universe is in many ways similar to the collapse 
of a star, except that the sense of time is reversed.  We shall show in 
this chapter that the conditions of theorems 2 and 3 seem to be satis
fied, indicating that there was a singularity at the beginning of the 
present expansion phase of the universe, and we discuss the implica
tions of space-time singularities. 

In § 10 . 1 we show that past-directed closed trapped surfaces exist 
if the microwave background radiation in the universe has been 
partially thermalized by scattering, or alternatively if the Copernican 
assumption holds, i .e .  we do not occupy a special position in the 
universe . In § 1 0. 2  we discuss the possible nature of the singularity 
and the breakdown of physical theory which occurs there . 

10 . 1  The expansion of the universe 

In § 9 . 1  we showed that many stars would eventually collapse and 
produce closed trapped surfaces. If one goes to a larger scale , one can 
view the expansion of the universe as the time reverse of a collapse . 
Thus one might expect that the conditions of theorem 2 would be 
satisfied in the reverse direction of time on a cosmological scale, pro
viding that the universe is in some sense sufficiently symmetrical, and 
contains a sufficient amount of matter to give rise to closed trapped 
surfaces . We shall give two arguments to show that this indeed seems 
to be the case. Both arguments are based on the observations of the 
microwave background, but the assumptions made are rather 
different . 

Observations of radio frequencies between 20 cm and 1 mm indicate 
that there is a background whose spectrum (shown in figure 62 (i ) )  
seems to be  very close to that of a black body at 2 .  7 °K  (see, for 
example, Field ( 1 969) ) .  This background appears to be isotropic to 
within 0.2 % (figure 62 (ii ) ; see, for example, Sciama ( 1 97 1 )  and 
references given there for further discussion ) .  The high degree of 
isotropy indicates that it cannot come from within our own galaxy (we 
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( i )  The spectrum of the microwave background radiation. The plotted 
points show the observed values of the ' excess ' background radiation . The 
solid line is a Planck spectrum corresponding to a temperature of 2. 7 °K. 

(ii)  The isotropy of the microwave background radiation. The temperature 
distribution along the celestial equator is shown ; more than two years of data 
have been averaged to obtain these points. 

From D. \V. Sciama, Modern Cosmology, Cambridge University Press, 1 97 1 .  
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are not symmetrically placed in the plane of the galaxy) but must be of 
extragalactic origin . At these frequencies we can see discrete sources 
some of whose distances are known from other evidence to be of the 
order of 1027 cm, so we know that the universe is transparent to this 
distance at these wavelengths .  Thus radiation which is produced by 
sources at distances greater than 1 027 cm must have propagated freely 
towards us for at least that distance . 

Possible explanations of the origin of the radiation are : 

( 1 )  the radiation is black body radiation left over from a hot early 
stage of the universe ; 

(2 )  the radiation is the result of superposition of a very large number 
of very distant unresolved discrete sources ; 

(3 )  the radiation comes from intergalactic grains which thermalize 
other forms of radiation (perhaps infra-red) . 

Of these explanations, ( 1 )  seems the most plausible . (2 )  seems im 
probable, as there do not appear to be sufficient sources with the right 
sort of spectrum to produce an appreciable fraction of the observed 
radiation in this frequency range. Further, the small scale isotropy of 
the radiation implies that the number of discrete sources would have 
to be very large (of the order of the number of galaxies) and most 
galaxies do not seem to radiate appreciably in this region of the 
spectrum. (3 )  also seems unlikely, since the density of interstellar 
grains which would be needed is very large indeed . Although ( 1 )  seems 
the most probable, we will not base our arguments on it, since to do so 
would be to presuppose that the universe had a hot early stage . 

The first argument involves the assumption of the Copernican 
principle, that we do not occupy a privileged position in space-time . 
We interpret this as implying that the microwave background radia
tion would appear equally isotropic to any observer whose velocity 
relative to nearby galaxies is small . In other words, we suppose there 
is an expanding timelike geodesic congruence (expanding because the 
galaxies are receding from each other, geodesic because they move 
under gravity alone with unit tangent vector va, say) ,  representing 
the average motion of the galaxies, relative to which the microwave 
radiation appears almost isotropic. From the Copernican principle it 
also follows that most of the microwave background has propagated 
freely towards us from a very long distance ( ""  3 x 1 027 cm) .  This is 
because the contribution to the background arising from a spherical 
shell of thickness dr and radius r about us will be approximately 
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independent of r, since the amount produced in the shell will be pro
portional to r2 and the reduction of intensity due to distance will be 
inversely proportional to r2 • This will be the case until the redshift of 
the sources becomes appreciable, source evolution takes place, or 
curvature effects become significant. These effects will however only 
come in at a distance of the order of the Hubble radius, ,.., 1 028 cm . 
Thus the bulk of the radiation will have travelled freely towards us 
from a distance > 1 027 cm. From the fact that it remains isotropic 
travelling over such a long distance, we can conclude that on a large 
scale the metric of the universe is close to one of the Robertson
Walker metrics (§ 5 . 3 ) .  This follows from a result of Ehlers, Geren and 
Sachs ( 1 968) ,  which we will now describe . 

The microwave radiation can be described by a distribution func
tionf(u, p) (u E 1, p E Tu) defined on the null vectors in T(1) , which 
can be regarded as the phase space of the photons. If the distribution 
function f(u, p) is exactly isotropic for an observer moving with four
velocity va, it will have the form f(u, E) where E = - yaPa· Since the 
radiation is freely propagating, f must obey the Liouville equation in 
T(1) . This states that f is constant along integral curves of the 
horizontal vector field X, i .e .  along any curve (u(v) , p(v) )  where u(v) is 
a null geodesic in .,II and p = o/ov. 

Because f(u, E) is non-negative and must tend to zero as E -+  oo 
(since otherwise the energy density of radiation would be infinite) ,  
there must be  an open interval of  E for which of/oE i s  non-zero . In 
this interval, one can express E as a function off: E = g (u,f ) .  Then 
Liouville 's equation implies that 

dE/dv = Y ; aPa ( 1 0 . 1 )  
on each null geodesic, where one regards g as a function on .,II with 
f fixed. Also, dE /dv = _ d( yaPa)/dv = _ Ya : bPaPb. ( 10 .2 )  
One can decompose pa into a part along va and a part orthogonal 
to Va : pa = E( Va + Wa) ,  where wa� = 1 ,  WaYa = o. Then from 
( 1 0 . 1 )  and ( 10 .2 ) ,  

dg/dt + iOg + (g� + Y; a) wa + guab WaWb = 0 

holds for all unit vectors wa orthogonal to va, where dg/dt is the rate 
of change of g along the integral curves of V. Separating out spherical 
harmonics, uab = o, ( 1 0. 3 a) 

� + (Iog g) ; a = aYa, ( 1 0 . 3 h) 
!0 = - d (Iog g)/dt . ( 1 0 . 3 c) 
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Since we assumed that Ya was zero, ( 1 0 . 3b )  shows that V,. is orthogonal 
to the surfaces {g = constant} , and this implies that the vorticity wab 
is zero . As va = o, Vra, bl = 0. Thus one can write V,. as the gradient of 
a function t :  V,. = - t , a . 

The energy-momentum tensor of the radiation will have the form 

Tab = fµr J� Vi, + !µrgab, 

where µr = J JE3 dE. Since the motion of the galaxies relative to the 
integral curves of ya is small, their contribution to the energy
momentum tensor can be approximated by a smooth fluid with 
density µ0, four-velocity V,. and negligible pressure . It now follows 
that the geometry of the space-time is the same as that of a Robertson
W alker model . To see this, note that 

( Va ; b ) ; a = !(0(8ab + va Vi,) ) ; a 
= ( Va ; a) ; b + Rcaba "fc = O ; b + Rba va. 

Multiplying this equation by hbc = gbc + VbJ;;, one finds 

hbc Rea ya = - jhbcO; c · 

The left-hand side vanishes by the field equations. Thus 0 is constant 
on the surfaces of constant t (which are also the surfaces of constant g) . 
One can define a function S(t) from 0 by S"  /S = !0 ; then the 
Raychaudhuri equation ( 4 .26) takes the form 

3S " "/S + 4TTµ - A  = 0, 

which implies that µ = µ0 + 2µR is also constant on the surfaces 
{t = constant} . From the definition of µR we see that the terms µ0 and 
µR are separately constant on these surfaces . 

The trace-free part of (4 .27 )  shows that Oabcd V
b Vd = o. The Gauss

Codacci equations (§ 2. 7 )  now give for the Ricci tensor of the three
spaces {t = constant} the formula 

Raab = hachbdRcd + Racbd yc vd + OOab + Oac ocb 
= 2hab( - !02 + 8TTµ + A) .  

However for a three-dimensional manifold, the Riemann tensor is 
completely determined by the Ricci tensor, as 

R3 abcd = 1/abe(  - R3e1 + -!R3he1) rJ'cd· 
This shows that each three-space {t = constant} is a three-space of 
constant curvature K(t) = !(8TTµ + A - !02) . Integrating the Ray
chaudhuri equation shows that 

K(t) = !(8TTµ + A - 38" 2/82) = k/82, ( 1 0 .4)  
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where k is a constant. By normalizing S, one can set k = + 1, 0 or - 1 .  
The four-dimensional space-time manifold is the orthogonal product 
of these three-spaces and the t-line . Thus the metric can be written in 
comoving coordinates as 

ds2 = - dt2 + s2 ( t ) dy2, 

where dy2 is the metric of a three-space of constant curvature k. But 
this is just the metric of a Robertson-Walker space (see § 5 .3 ) . 

\Ve shall now show that in any Robertson-,Valker space containing 
matter with positive energy density and A = 0 there is a closed trapped 
surface lying in any surface {t = constant} . To see this, we express dy2 

in the form 

where f(X) = sin x, x or sinh x if k = + 1 ,  0 or - 1 respectively . Con
sider a two-sphere :T of radius Xo lying in the surface t = t0• The two 
families of past-directed null geodesics orthogonal to :T will intersect 
the surfaces {t = constant} in two two-spheres of radius 

X = Xo ± ( t  dt/S(t) . J '· 
( 1 0 .5 )  

The surface area of a two-sphere of radius x i s  47TS2 ( t )J2Cy ) . Thus both 
families of null geodesics will be converging into the past if, at t = t0, 

holds for both values of x given by ( 1 0 .5 ) .  This will be the case if 

S ' (to ) > + f' (Xo) . 
S(to) - S(to)f(Xo) 

But by ( 1 0 .4 ) , this holds if 

(i7Tµ(to) S2 (to) - k)l > ± f ' (Xo) /f(Xo ) · 
This will be the case if S(t0) Xo is taken to be greater than ,J(3/87Tµ0) for 
k = 0 or - 1 ,  and to be greater than min (,J(3/87Tµ0) ,  !7T) if k = + 1 .  

An intuitive way of viewing this result is that at time t0 a sphere of 
coordinate radius Xo will contain a mass of the order of !7Tp0S3(t0 ) X03, 
and so will be within its Schwarzschild radius if S(t0 ) Xo is less than 
i7Tµ0S(t0)3X03, i . e .  if S(t0) Xo is greater than the order of .j(3/87Tµ0 ) . 
We shall call .j(3/87Tµ0) the Schwarzschild length of matter density µ0.  

So far, we have assumed the microwave radiation is exactly iso
tropic .  This is of course not the case ; and this corresponds to the fact 
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that the universe is not exactly a Robertson-Walker space . However, 
the large scale structure of the universe should be close to that of 
a Robertson-Walker model, at least back to the time when the radia
tion was emitted or last scattered. (One can in fact use the deviations 
of the microwave radiation from exact isotropy to estimate how large 
the departures from a Robertson-Walker universe are . )  For a suffi
ciently large sphere, the existence of local irregularities should not 
significantly affect the amount of matter in the sphere, and hence 
should not affect the existence of a closed trapped surface round us at 
the present time. 

The above argument did not depend on the spectrum of the micro
wave radiation, but it did involve the assumption of the Copernican 
principle . The argument we shall now give does not involve the 
Copernican principle, but does to a certain extent depend on the shape 
of the spectrum. We shall assume that the approximately black body 
nature of the spectrum and the high degree of small scale isotropy of 
the radiation indicate that it has been at least partially thermalized 
by repeated scattering . In other words, there must be enough matter 
on each past-directed null geodesic from us to cause the opacity to be 
high in that direction . We shall now show that this matter will be 
sufficient to make our past light cone reconverge . 

Consider a point p representing us at the present time, and let wa 
be a past-directed unit vector parallel to our four-velocity .  

The affine parameter v on the past-directed null geodesics through p 
may be normalized by Katt;, = - 1 , where K = Ofov is the tangent 
vector to the null geodesics . The expansion 0 of these null geodesics 
will obey (4 .35)  with w = 0. Thus, providing Rab KaKb � 0, 0 will be 
less than 2/v . It follows that at v = v1 > v0, 

f v. Rub Ka Kb dv - 2/v0 > 0, 
v, 

so 0 will become negative if there is some v0 such that 

s:· Rab KaKb dv > 2/v0• 

Using the field equations with A = 0, this becomes 

}vofv. 811Tab KaKb dv > 1 .  
Vo 

( 1 0 .6 )  

At centimetre wavelengths, the largest ratio of  opacity to density for 
matter at reasonable densities is that given by Thomson scattering off 
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free electrons in ionized hydrogen . Thus the optical depth to a distance 
v will be less than 

where K is the Thomson scattering opacity per unit mass, p is the 
density of the matter, and Ya is the local velocity of the gas . The 
redshift z of the matter is given by z = Kat;, - 1 .  Since no matter has 
been seen with significant blue-shifts, we shall assume Kat;, is always 
greater than one on our past light cone, out to an optical depth unity. 
As galaxies are observed at these wavelengths with redshifts of 0 .3 ,  
most of the scattering must occur at redshifts greater than this. (In 
fact if quasars really are cosmological, the scattering must occur at 
redshifts greater than two . )  With a Hubble constant of 1 00 Km/sec/ 
::\lpc ( ,...., 1 010 years-1 ) ,  a redshift of 0 .3  corresponds to a distance of 
about 3 x 1027 cm . Taking this value for v0, the contribution to the 
integral (9 .9 )  of the matter causing the scattering is 

3. 7 x 1 028 r�: p(Ka Va)2 dv, 

while the optical depth of the matter between v0 and v1 is less than 

6 .6  x 1 027Jv, p (KaYa) dv. 
v, 

Since KaYa � 1 ,  it can be seen that the inequality ( 10 . 6 )  will be satisfied 
at an optical depth of less than 0 .2 .  If the optical depth of the universe 
was less than 1 ,  one would not expect either an almost black body 
spectrum or such a high degree of small scale isotropy, unless there was 
a very large number of discrete sources which covered only a small 
fraction of the sky and each of which had a spectrum roughly the same 
as a 3 °K black body but with much higher intensity. This seems rather 
unlikely. Thus we believe that the condition ( 4) (iii) of theorem 2 is 
satisfied, and so there should be a singularity somewhere in the 
universe provided the other conditions hold . 

Because of its generality, theorem 2 does not tell us whether the 
singularity will be in our past or in the future of our past. Although it 
might seem obvious that the singularity should be in our past, one can 
construct an example in which it is in the future : consider a Robertson- . 
\Valker universe with k = + 1 which collapses to a singularity at some 
time t = t0, and which asymptotically approaches an Einstein static 
universe for t � - oo. This satisfies · the energy assumption, and con
tains points whose past light cones start reconverging (because they 
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meet up around the back) . However the singularity is in the future . 
Of course this is a rather unreasonable example but it shows that one 
has to be careful. 'Ve shall therefore give an argument based on 
theorem 3 which indicates that the universe contains a singularity in 
our past, providing that the Copernican principle holds . Theorem 3 
is similar to theorem 2 ,  but requires that all the past-directed timelike 
geodesics from a point shall start to reconverge, instead of all the null 
geodesics. This condition is not satisfied in the example given above , 
though it is there satisfied by the future-directed geodesics from any 
point . 

By an argument similar to that given above for the null geodesics, 
the convergence O(s) of the past-directed timelike geodesics from a 
point p will be less than 

- - Rab va Vb ds, 
3 JS So s, 

where s is proper distance along the geodesics , V = 8/8s and s > s0• 
Let W be a past-directed timelike unit vector atp, and let c = - VaJYa \ P 
(so c ):  1 ) .  Then 0 will become less than - c  within a distance R1/c 
along any geodesic if there is some R0, R1 > R0 > 0, such that fR,/c 

Rab va Vb ds > c(3/R0 + e) 
R,/c 

( 1 0 .  7 )  

along that geodesic .  Condition (3)  of theorem 3 will then be satisfied 
with b = max (R1, ( 3e)-1 ) .  

To make ( 1 0 . 7 )  appear more similar to  ( 1 0 .6 ) ,  we  shall introduce an 
affine parameter v = s/c along the timelike geodesics ; then ( 1 0 . 7 )  
becomes fR, !R0 Rab KaKb dv > 1 + lR0e, ( 1 0 .8 )  R, 
where K = 8/8v and KaWa \ p  = - 1 .  We cannot verify this condition 
directly by observation as in the case of ( 1 0.6 )  because it refers to 
timelike geodesics . \Ve therefore have to appeal to the arguments 
given in the first part of this section to show that the universe is close 
to a Robertson-,Valker universe model at least back to the time the 
microwave background radiation was last scattered. 

In a Robertson-Walker model, let W be the vector - 8f8t . Along 
a past-directed timelike geodesic through p, 

d 
d-

(Wa Ka) = Wa · b KaKb 
v . 

= - � � { ( WaKa)2 - 1/c2} . 
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Therefore , providing that dS/dt > 0 ,  WaKa � - 1 .  However 

WaK = dt/dv · a ' 

357 

thus for some e > 0, ( 1 0 . 8 )  will be satisfied for every geodesic provided 
that there are times t2, t3 with t2 < t3 < t1, such that 

� R Ka Kb( - lv.: Kc)-1 dt > 1 
t - t  ft. 

3 ab c · 

'· 

By the field equations with A = 0, 

Rab KaKb = 811{ (µ + p) (Wa Ka) 2 - � (µ - p) c-
2
} . 

Therefore, providing p � 0, 

Rab KaKb � 41Tµ(Wa Ka)2 . 

Thus ( 1 0 .9 )  will be satisfied if 

t - t ft, 
.L--3 

3 411µ dt > 1 .  
'· 

( 1 0 . 9) 

( 1 0 . 1 0) 

Assuming that the microwave radiation has a black body spectrum 
at 2 . 7  °K,  its energy density is about 1 0-34 gm cm-3 at the present time . 
If this radiation is primaeval, its energy density will be proportional 
to S-4• Since s-1 = O(t-�) as t tends to zero , one can see that ( 10 . 1 0) can 
be satisfied by taking t3 to be ! tJJ and t2 to be sufficiently small . How 
small t2 has to be depends on the detailed behaviour of S, which in turn 
depends on the density of matter in the universe . This is somewhat 
uncertain, but seems to lie between 1 0-31 gm cm-3 and 5 x 1 0-

2
9 gm 

cm-3• In the former case, t2 will have to be such that S(tp )/S(t2) � 30, 
and in the latter case , S(tp )/S(t2) � 300. Since the microwave radiation 
seems to be all pervasive, any past-directed timelike geodesic must 
pass through it . Thus an estimate based on the Robertson-\Valker 
models should be a good approximation for its contribution to ( 1 0 . 1 0) ,  
provided that the radiation 'vas not emitted more recently than t2 , 
and provided that a Robertson-vValker model is a good approximation 
back that far. From the arguments at the beginning of this section , the 
latter should be the case provided that the radiation has propagated 
freely towards us since t2 •  However there may be ionized intergalactic 
gas present with a density as high as 5 x 1 0-29 gm cm-3, in which case 
the radiation could be last scattered at a time t such that S(tp )/S(t )  ,..., 5 .  
The optical depth back t o  a time t is 

ftp Kµgas dt , 
• I 

( 10 . 1 1 )  

where K is at most 0 .5  if µ is measured in gm cm-3 and t in cm. 
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As before, there can be no significant opacity back to t = tP - 1 017 sec, 
since we see objects at distances of at least 3 x 1 027 cm. Taking t3 to 
have this value, we see that the gas density will cause ( 1 0 . 1 1 )  to be 
satisfied for a value of t2 corresponding to an optical depth of at most 
0 .5 .  

Thus the position is as  follows . \Ve assume the Copernican principle , 
an<l that the microwave radiation has been emitted either before a 
time t2 such that S(tp )/S(t2) � 300, or before the time corresponding to 
the optical depth of the universe being unity, if this is less than t2 . In 
the former case, condition (2 )  of theorem 3 will be satisfied by the 
radiation density, and in the latter case by the gas density. Thus if the 
usual energy conditions and causality conditions hold, we can con
clude that there should be a singularity in our past ( i .e .  there should be 
a past-directed non-spacelike geodesic from us which is incomplete) .  

Suppose one takes a spacelike surface which intersects our past 
light cone and takes a number of points on that surface ; can one say 
that there is a singularity in each of their pasts ? This will be the case 
if the universe is sufficiently homogeneous and isotropic in the past to 
converge all the past-directed timelike geodesics from these points . 
In view of the close connection between the convergence of timelike 
geodesics and closed trapped surfaces, we would expect this to be the 
case if the universe is homogeneous and isotropic at that time on the 
scale of the Schwarzschild length ( 3/87Tµ)l. 

We have direct evidence of the homogeneity of the universe in our 
past from the measurements of Penzias, Schram! and "Wilson ( 1 969) ,  
who found that the intensity of the microwave background is isotropic 
to within 4 % for a beam width of 1 .4 x 1 0-3 square degrees . Assuming 
that the microwave radiation has not been emitted since a surface in 
our past corresponding to optical depth unity, the observed intensity 
will be proportional to T4/( 1 + z)4 where T is the effective temperature 
of the observed point on the surface and z is its redshift .  Variations in 
the observed intensity can arise in four ways : 

( 1 )  by a Doppler shift caused by our own motion relative to the 
black body radiation (Sciama ( 1 967 ) ,  Stewart and Sciama ( 1 967 ) ) ; 

( 2 ) by variations in the gravitational redshift caused by inhomo
geneities in the distribution of matter between us and the surface 
(Sachs and Wolfe ( 1 967 ) ,  Rees and Sciama ( 1 968) ) ;  

( 3 )  by Doppler shifts caused b y  local velocity disturbances o f  the 
matter at the surface ; and 

(4) by variations of the effective temperature of the surface . 
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(In fact the division between ( 1 ) , (2 )  and ( 3 )  depends on the standard 
of reference and has heuristic value only . )  Thus the observations indi
cate that irregularities in the temperature with an angular size of 3' of 
arc have relative amplitudes of less than 1 %, and that there are no 
local fluctuations of the velocity of the matter, on the same scale, of 
greater than 1 % of the velocity of light . A region on the surface which 
had an angular diameter 3' of arc would correspond to a region which 
had a diameter now of about 1 07 light years . If the surface of optical 
depth unity is at a redshift of about 1 000 (this is the most it could be) ,  
the Schwarzschild length at that time would correspond to a region 
whose present diameter was about 3 x 1 08 light years . Thus it would 
seem that every point on the surface of optical depth unity should 
have a singularity in its past . 

More indirect evidence on the degree of homogeneity of the universe 
in the early stages comes from the fact that observations oft. he helium 
content of a number of objects agree with calculations of helium pro
duction by Peebles ( 1 966) ,  and Wagoner, Fowler and Hoyle ( 1 968 ) ,  
who assumed the universe was homogeneous and isotropic at  least 
back to a temperature of about 109 °K. On the other hand calculations 
of anisotropic models have shown that in these models very different 
amounts of helium are produced . Thus if one accepts that there is a 
fairly uniform density of helium in the universe (there are some doubts 
about this ) ,  and that this helium was produced in the early stages of 
the universe, one can conclude that the universe was effectively 
isotropic and hence homogeneous when the temperature was 1 09 °K . 
One would therefore expect a singularity to occur in the past of each 
point at this time .  

Misner ( 1 968)  has shown that i f  the temperature reaches 2 x 1 010 °K 
a large viscosity arises from coll isions between electrons and neutrinos . 
This viscosity would damp out inhomogeneities whose lengths corre
spond to present values of 1 00 light years , and reduce anisotropy 
to a comparatively small value . Thus if one accepts this as the explana
tion for the present isotropy of the universe (and it is a very attractive 
one ) ,  one would conclude that there should be a singularity in the past 
of every point when the temperature was about 1010 °K. 

10.2 The nature and implications of singularities 

One might hope to learn something about the nature of the singu
larities that are likely to occur by studying exact solutions with 
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singularities . However although we have shown that the occurrence 
of a singularity is not prevented by small perturbations of the initial 
conditions, it is not clear that the nature of the singularity which 
occurs will be similarly stable . Although we have shown in § 7 . 5  that 
the Cauchy problem is stable under small perturbations of the initial 
conditions, this stability applies only to compact regions of the 
Cauchy development, and a region containing a singularity is non
compact unless the singularity corresponds to imprisoned incom
pleteness . In fact we can give an example where the nature of the 
singularity is not stable . Consider a uniform spherically symmetric 
cloud of dust collapsing to a singularity . The metric inside the dust will 
be similar to that of part of a Robertson-Walker universe, while that 
outside will be the Schwarzschild metric .  Both inside and outside the 
dust, the singularity will be spacelike (figure 63 ( i ) ) .  Suppose now 
one adds a small electric charge density to the dust . The metri c outside 
the dust now becomes part of the Reissner-Nordstrom solution for 
c2 < m2 (figure 63 (i i ) ) . There wil l  be a singularity inside the dust , as 
a sufficiently small charge density will not prevent the occurrence of 
infinite density . The nature of the singularity inside the dust \vill 
presumably depend on the charge distribution . However the im
portant point is that once the surface of the dust has passed a point 
p inside r = r+ , whatever happens inside the dust cannot affect the 
portion sq of the timelike singularity . 

If one now increases the charge density so that it becomes greater 
than the matter density, it is possible for the cloud to pass through the 
two horizons at r = r + and r = r_ and to re-expand into another 
universe without any singularity occurring inside the dust, although 
there is a timelike singularity outside the dust (J. :M:. Bardeen , un
published) ,  as indeed there ought to be by theorem 2 (see figure 
63 ( i i i ) ) .  

This example i s  very important as it shows that there can be  time
like singularities , that the matter can avoid hitting the singularities, 
and that it can pass through a ' wormhole ' into another region of 
space-time or i nto another part of the same space-time region . Of 
course one would not expect to have such a charge density on a col 
lapsing star, but since the Kerr solution is so similar to the Reissner
Xordstrom solution one might expect that angular momentum could 
produce a similar wormhole . One might speculate therefore that prior 
to the present expansion phase of the universe there was a contraction 
phase in which local inhomogeneities grew large and isolated singn-
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( i )  

Charged 
dust cloud 

(iii) 

FIGURE 63 
(i) Collapse of a spherical dust cloud. 

r = r+ 

( i i )  

36 1 

Part of 
Reissner
Nordstrom 
solution 

(ii) Collapse of a charged dust cloud, where the charge is too small to prevent 
the occurrence of a singularity in the dust. 

( iii) Collapse of a charged dust cloud, where the charge is large enough to 
prevent the occurrence of a singularity in the dust cloud ; the singularity occurs 
outside the dust, which bounces and re-expands into a second asymptotically 
flat space. 

1 3  H L S 
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larities occurred, most of the matter avoiding the singularities and 
re-expanding to give the present observed universe . 

The fact that singularities must occur within the past of every point 
at an early time when the density was high, places limits on the 
separation of the singularities . It might be that the set of geodesics 
which hit these singularities ( i .e .  which are incomplete) was a set of 
measure zero. Then one might argue that the singularities would be 
physically insignificant. However this would not be the case because 
the existence of such singularities would produce a Cauchy horizon 
and hence a breakdown of one's ability to predict the future . In fact 
this could provide a way of overcoming the entropy problem in an 
oscillating world model since at each cycle the singularity could inject 
negative entropy. 

So far, we have been exploring the mathematical consequences of 
taking a Lorentz manifold as the model for space-t'ime, and requiring 
that the Einstein field equations (with A =  0) hold. We have shown 
that according to this theory, there should be singularities in our past 
associated with the collapse of the universe, and singularities in the 
future associated with the collapse of stars . If A is negative, the above 
conclusions would be unaffected. If A is positive, observations of the 
rate of change of expansion of the universe (Sandage, ( 1 96 1 ,  1 968 ) )  
indicate that A cannot be greater than 3 x 1 0-60 cm-2 • This i s  equiva
lent to a negative energy density of 3 x 1 0-27 gm cm-3• Such a value of A 
could have an effect on the expansion of the whole universe, but it 
would be completely swamped by the positive matter density in a 
collapsing star. Thus it does not seem that a A term can enable us to 
avoid facing the problem of singularities. 

It may be that General Relativity does not provide a correct 
description of the universe . So far it has only been tested in situations 
in which departures from flat space are very small (radii of curvature 
of the order of 1 012 cm) .  Thus it is a tremendous extrapolation to apply 
it to situations like collapsing stars where the radius of curvature 
becomes less than 1 06 cm. On the other hand the theorems on singu
larities did not depend on the full Einstein equations but only on the 
property that Rab KaKb was non-negative for any non-spacelike 
vector Ka ; thus they would apply also to any modification of General 
Relativity (such as the Brans-Dicke theory) in which gravity is always 
attractive . 

It seems to be a good principle that the prediction of a singularity 
by a physical theory indicates that the theory has broken down, i .e .  it 
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no longer provides a correct description of observations. The question 
is : when does General Relativity break down 1 One would expect it to 
break down anyway when quantum gravitational effects become im
portant ; from dimensional arguments it seems that this should not 
happen until the radius of curvature becomes of the order of 1 0-33 cm. 
This would correspond to a density of 1 094 gm cm-3• However one 
might question whether a Lorentz manifold is an appropriate model for 
space-time on length scales of this order. So far experiments have 
shown that assuming a manifold structure for lengths greater than 
1 0-15 cm gives predictions in agreement with observations (Foley et al. 
( 1 967 ) ) ,  but it may be that a breakdown occurs for lengths between 
1 0-15 and 10-33 cm. A radius of 1 0-15 cm corresponds to a density of 
1058 gm cm-3 which for all practical purposes could be regarded as 
a singularity. Thus maybe one should construct a surface by Schmidt's 
procedure (§ 8 . 3 )  around regions where the radius of curvature is less 
than, say, 1 0-15 cm. On our side of this surface a manifold picture of 
space-time would be appropriate, but on the other side an as yet 
unknown quantum description would be necessary. Matter crossing 
the surface could be thought of as entering or leaving the universe, and 
there would be no reason why that entering should balance that 
leaving. 

In any case, the singularity theorems indicate that the General 
Theory of Relativity predicts that gravitational fields should become 
extremely large. That this happened in the past is supported by the 
existence and black body character of the microwave background 
radiation, since this suggests that the universe had a very hot dense 
early phase. 

The theorems on the existence of singularities could possibly be 
refined somewhat, but on our view they are already adequate . How
ever they tell us very little about the nature of the singularities .  One 
would like to know what kind of singularities could occur in generic 
situations in General Relativity. A possible way of approaching this 
would be to refine the power series expansion technique of Lifshitz 
and Khalatnikov, and to clarify its validity. It may also be that there 
is some connection between the singularities studied in General 
Relativity and those studied in other branches of physics ( cf. for 
instance, Thom's theory of elementary catastrophes ( 1 969) ) .  Alterna
tively one might try to proceed by brute force, integrating the 
Einstein equations numerically on a computer. However this will 
probably have to wait for a new generation of computers . One would 

1 3 -2 
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like to know also whether the singularities produced by collapse from 
a non-singular asymptotically flat situation would be naked, i .e .  
visible from infinity, or whether they would be hidden behind an 
event horizon. 

The other main problem is to formulate a quantum theory of 
space-time which will be applicable to strong fields. Such a theory 
might be based on a manifold, or might allow changes of topology. 
Some preliminary attempts in t.his line have been made by de Witt 
( 1 967) ,  Misner ( 1 969, 1 97 1 ) ,  Penrose (see Penrose and MacCallum 
( 1 972) ) ,  Wheeler ( 1 968) ,  and others. However the interpretation of 
a quantum theory of space-- time, and its relation to singularities , are 
still very obscure . 

Speculation and discussion on the subject of this book is not new. 
Laplace essentially predicted the existence of black holes : ' Other 
stars have suddenly appeared and then disappeared after having 
shone for several months with the most brilliant splendour . . .  All these 
stars . . .  do not change their place during their appearance . Therefore 
there exists, in the immensity of space, opaque bodies as considerable 
in magnitude, and perhaps equally as numerous as the stars . ' (M. Le 
Marquis de Laplace : ' The system of the world ' .  Translated by Rev. H .  
Harte. Dublin, 1 830, Vol . 2 ,  p .  335 . )  As  we  have seen, our present 
understanding of the situation is remarkably similar. 

The creation of the Universe out of nothing has been argued, 
indecisively, from early times ; see for example Kant's first Antinomy 
of Pure Reason and comments on it (Smart ( 1 964) ,  pp . 1 1 7-23 and 
145-59 ;  North ( 1 965) ,  pp. 389-406) . The results we have obtained 
support the idea that the universe began a finite time ago. However 
the actual point of creation , the singularity, is outside the scope of 
presently known laws of physics. 



Appendix A 

Translation of an essay by 
Peter Simon Laplace t 

Proof of {he theorem, that the attractive force of a heavenly body could be 
so large, that light could not flow out of it . t  

( 1 )  If  v i s  the velocity, t the time and s space which is_ uniformly 
moving during this time, then, as is well known, v = s/t. 

( 2 )  If the motion is not uniform, to obtain the value of v at any instant 
one has to divide the elapsed space ds and this time interval dt into 
each other, namely v = ds/dt , since the velocity over an infinitely small 
interval is constant and thus the motion can be taken as uniform. 

( 3 )  A continuously working force will strive to change the velocity. 
This change of the velocity, namely dv, is therefore the most natural 
measure of the force . But as any force will produce double the effect 
in double the time, so we must divide the change in velocity dv by the 
time dt in which it is brought about by the force P, and one thus 
obtains a general expression for the force P, namely 

Now if dt is constant, 

accordingly 

ds 
dv 

d . dt 
P =  dt

= dt . 

d ds = d . ds = dds . 
' dt dt dt ' 

dds 
p = dt2 • 

t Allgemeine geographische Ephemeriden, verfasset von Einer Gesellsche.ft Gelehrten. 
Svo Weimer, rv, Bd r St. 1 799. Ed. F. X. von Zach. We should like to thank D. W. 
Dewhirst for providing us with this reference. 

t This theorem, that e. luminous body in the universe of the same density as the earth, 
whose die.meter is 250 times larger than that of the sun, ce.n by its attractive power 
prevent its light rays from reaching us, e.nd that consequently the largest bodies in 
the universe could remain invisible to us, he.s been stated by Le.place in his 
Exposition of the System of the World, Pa.rt n, p. 305, without proof. Here is the 
proof. Cf. A . G.E. Me.y 1 798, p. 603. v. Z .  
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( 4) Let the attractive force of a body = M; a second body, for example 
a particle of light, finds itself at distance r ;  the action of the force M on 
this light particle will be - M /rr ; the negative sign occurs because the 
action of M is opposite to the motion of the light. 

(5 ) Now according to (3 )  this force also equals ddr/dt2, hence 

M ddr - - = - = -Mr-2 
Multiplying by dr, 

integrating, 

rr dt2 • 

dr ddr 
_ - M  d _2 _ dt2 - rr ' 

1 dr2 

2 dt2 = O + Mr-1 

where 0 is a constant quantity, or 

(:;) 2 = 20 + 2Mr-1. 

Now by (2 )  dr/dt is the velocity v, accordingly 

v2 = 20 + 2Mr-1 

holds, where v is the velocity of the light particle at the distance r.  

(6) To now determine the constant 0, let R be the radius of the 
attracting body, and a the velocity of the light at the distance R, hence 
on the surface of the attracting body ; then one obtains from (5 )  
a2 = 20 + 2M/R, therefore 20 = a2- 2M/R . Substituting this in the 
previous equation gives 

2M 2M v2 = a2 -- + - . R r 

( 7 )  Let R' be the radius of another attracting body, its attractive 
power be iM, and the velocity of the light at a distance r be v' ,  then 
according to the equation in (6 )  

,2 2 2iM 2iM v = a --yr +-r- . 
( 8 )  If one makes r infinitely large, the last term in the previous 
equation vanishes and one obtains 

,2 2 2iM v = a  - -yr · 
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The distance of the fixed stars is so large, that this assumption is 
justified. 

(9) Let the attractive power of the second body be so large that light 
cannot escape from it ; this can be expressed analytically in the 
following way : the velocity v' of the light is equal to zero . Putting this 
value of v' in the equation ( 8 )  for v' , gives an equation from which the 
mass iM for which this occurs can be derived.  One has therefore 

2iM 0 = a2 - -
r' 2 _ 2iM 

or a - R' . 

( 1 0) To determine a, let the first attracting body be the sun ; then a is 
the velocity of the sun's light on the surface of the sun. The attractive 
power of the sun is however so small in comparison with the velocity 
of light, that one can take this velocity as uniform. From the pheno
mena of aberration it appears that the earth travels 20"! in its path 
while the light travels from the sun to the earth, accordingly : let V be 
the average velocity of the earth in its orbit, then one has a :  V = radius 
(expressed in seconds) : 20"! = 1 : tang. 20"!. 

( 1 1 )  My assumption made in Expos. du Syst. du Monde, Part rr, p .  305, 
is R' = 250R. Now the mass changes as the volume of the attracting 
body multiplied by its density ; the volume, as the cube of the radius ; 
accordingly the mass as the cube of the radius multiplied by the 
density. Let the density of the sun = 1 ;  that of the second body = p ; 
then 

or 

or 

M: iM = 1R3 : pR'3 = 1R3 : p25os Rs 

1 : i  = 1 : p( 250)3 

i = ( 250)3p .  

( 1 2) One substitutes the values of i and R' m the equation 
a2 = 2iM/R', and thus obtains 

or 

2 = 2 (250)3pM 
= 2(2 0)2 M a 250R 5 'P R 

p = 2 (250)2M " 

( 1 3) To obtain p, one must still determine M. The force M of the sun 
is equal at a distance D to M/D2• Let D be the average distance of the 
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earth, V the average velocity of the earth ; then this force is also equal 
to V2/D (see Lande's Astronomy, m, § 3539) . Hence M/D2 = V2/D or 
M = V2D. Substituting this in the equation ( 1 2)  for p gives 

P = 2(25�2
)�V2D = ( 10�0)2 (vr (�) . 

a vel . of light 1 
V = vel. of earth tang. 20" l according to ( 1 O)' 

R absolute radius of 0 . 
D = di ta f 0 = tan average apparent radms of 0 .  average s nee o · 

Hence 
tang. 16 '  2" 

P = 8 ( 1 000 tang. 20"!)2 

from which p is approximately 4, or as large as the density of the earth. 



Appendix B 

Spherically symmetric solutions and 
Birkhoff' s theorem 

We wish to consider Einste�n's equations in the case of a spherically 
symmetric space-time. One might regard the essential feature of a 
spherically symmetric space-time as the existence of a world-line .ft' 
such that the space-time is spherically symmetric about .ft'. Then all 
points on each spacelike two-sphere � centred on any point p of .ft', 
defined by going a constant distance d along all geodesics through p 
orthogonal to .ft', are equivalent. If one permutes directions at p by 
use of the orthogonal group 80(3 )  leaving .ft' invariant, the space-time 
is, by definition, unchanged, and the corresponding points of 9d are 
mapped into themselves ; so the space-time admits the group 80(3 )  
as  a group of isometries, with the orbits of the group the spheres �
(There could be particular values of d such that the surface � was 
just a point p' ; then p' would be another centre of symmetry. There 
can be at most two points (p' and p itself) related in this way. )  

However, there might not exist a world-line like .ft' in  some of the 
space-times one would wish to regard as spherically symmetric .  In the 
Schwarzschild and Reissner-Nordstrom solutions, for example, space
time is singular at the points for which r = 0, which might otherwise 
have been centres of symmetry. We shall therefore take the existence 
of the group 80(3 )  of isometries acting on two-surfaces like � as the 
characteristic feature of a spherically symmetric space-time. Thus we 
shall say that space-time is spherically symmetric if it admits the 
group 80(3 )  as a group of isometries, with the group orbits spacelike 
two-surfaces. These orbits are then necessarily two-surfaces of con
stant positive curvature . 

For each point q in any orbit 9'(q) , there is a one-dimensional sub
group Iq of isometries which leaves q invariant (when there is a central 
axis .ft', this is the group of rotations about p which leaves the geodesic 
pq invariant) .  The set CC(q) of all geodesics orthogonal to 9'(q) at q 
locally form a two-surface left invariant by Iq (since lq, which permutes 
directions in 9'(q) about q, leaves invariant directions perpendicular 
to 9'(q) ) .  At any other point r of CC(q) , Iq again permutes directions 
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orthogonal to 'i&'(q) , as it leaves 'i&'(q) invariant ; since Iq must operate 
in the group orbit .9'(r) through r, this orbit is orthogonal to 'i&'(q) . 
Thus (Schmidt ( 1 967 ) )  the group orbits .9' are orthogonal to the 
surfaces 'i&'. Further these surfaces define locally a one-one map 
between the group orbits, where the image /(q) of q in .9'(r) is the 
intersection of 'i&'(q) and .9'(r) . Since this map is invariant under Iq ,  
vectors of equal magnitude in .9'(q) at  q are mapped into vectors of 
equal magnitude in .9'(r) at /(q) ; and since all the points of .9'(q) are 
equivalent, the same magnitude multiplication factor occurs for the 
maps of vectors from any point in .9'(q) to its image in .9'(r) . Thus 
(Schmidt ( 1 967 ) )  the orthogonal surfaces 'i&' map the trajectories .9' 
conformally onto each other. 

If one chooses coordinates {t, r, 0, �} so that the group orbits .9' are 
the surfaces {t, r = constant} and the orthogonal surfaces 'i&' are the 
surfaces {O, � = constant}, it now follows that the metric takes the 
form ds2 = dr2(t, r) + Y2(t, r) dQ2(0, � }, where dr2 is an indefinite two
surface and dQ2 is a surface of positive constant curvature. If one 
further chooses the functions t, r so that the curves {t = constant}, 
{r = constant} are orthogonal in the two-surfaces 'i&' (cf. Bergmann, 
Cahen and Komar ( 1 965) ) ,  one can write the metric in the form 

- dt2 
ds2 = F2(t, r) + X2(t, r) dr2 + Y2(t, r) (d()2 + sin2 () d�2) .  (A 1 )  

(Note that this still leaves the freedom to choose arbitrarily either 
r or t in these surfaces . )  

Let an observer moving along the t-lines measure an energy density 
µ, an isotropic pressure p, an energy flux q, and no anisotropic pres
sures. Then the field equations for the metric (A 1 )  may be written 
in the form 

_ 2X ( Y" '  x · Y' Y "F') - S1Tq - y -y - X Y  + YF ' 

1 ( y-) · ( y -) 2 2 Y'F' ( Y' ) 2 
- 87Tp = Y2 + 2F F-y + 3  y F2 + x2 YF - X Y  ' 

1 ( F' ) ' ( x ·) · ( r) · (x ·) 2 
47T(µ + 3p) = X - FX - F  F y - 2F F -y - F2 

X 

_ 2 ( y -) 2 _!_ (F') 2 -� Y'F' 2F 
y 

+ X2 F X2 YF ' 
where ' denotes of or and . denotes o/ot. 

(A 2 )  

(A 4) 

(A 5)  
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We first consider the empty space field equations Rab = 0 ;  this means 
that in (A 2)-(A 5) · we must set µ = p = q = 0. The local solution 
depends on the nature of the surfaces { Y = constant} ; these surfaces 
may be timelike, spacelike or null, or they may not be defined (if Y is 
constant) . In the exceptional case when y; ay; a = 0 on some open set cp/ 
(this includes the case when Y is constant) ,  

Y' 
= FY'  (A 6)  

x 

holds in cp/, However when (A 6) holds, the value of Y' '  determined 
by (A 2) is inconsistent with (A 3 ) .  Thus we may consider some point 
p where y : ay; a < 0 or y; ay; a > O ;  the same inequality must hold in 
some open neighbourhood cp/ of p.  

Consider first the situation when y;  aY; a < 0. Then the surfaces 
{ Y = constant} are timelike in cp/, and one can choose Y to be the 
coordinate r. (Then r is an area coordinate, as the area of the two
surfaces {r, t = constant} is 47Tr2 . ) Thus Y' = 0, Y' = 1 and (A 2)  shows 
that x · = 0. Further (A 4) shows that (F'/F) ' = 0, so one can choose 
a new time coordinate t ' (t) in such a way as to set F = F(r) . Then one 
has F = F(r) , X = X(r) , Y = r ;  the solution is necessarily static . 
Equation (A 3 )  now shows d (r/X2)/dr = 1 ,  so solutions are of the form 
x2 = ( 1 - 2m/r)-1 where 2m is a constant of integration. Equation 
(A 4) can be integrated, with a suitable choice of a constant of integra
tion, to give F2 = X2, and then (A 5) is identically satisfied. With 
these forms of F and X the metric (A 1 )  becomes 

ds' � - ( I -
2�) dt' + ( 1 �r�) + r'(dll' + sin' O di\') ; (A 7) 

this is the Schwarzschild metric for r > 2m. 
Now suppose y; ay; a > 0 .  Then the surfaces { Y  = constant} are 

spacelike in cp/, and one can choose Y to be the coordinate t. Then 
Y' = 1 ,  Y' = 0 and (A 2) shows F' = 0. One can choose the r-coordinate 
so that X = X(t) ; then F = F(t) ,  X = X(t) ,  Y = t and the solution is 
spatially homogeneous. Now (A 4) and (A 5)  can be integrated to find 
the solution 

ds' � - (�: 
1) + (2� - I) dr' + t'(dll' + sin' 0 di\') . (A 8) 

This is part of the Schwarzschild solution inside the Schwarzschild 
radius, for the transformation t � r' ,  r � t' transforms this metric into 
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the form (A 7 )  with r' < 2m. Finally, if the surfaces { Y = constant} are 
spacelike in some part of an open set "I" and timelike in another part, 
one can obtain solutions (A 8 )  and (A 7 )  in these parts , and then join 
them together across the surfaces where y; aY; a = 0 as in § 5 . 5, 
obtaining a part of the maximal Schwarzschild solution which lies 
in "I". Thus we have proved Birkhoff's theorem : any 02 solution of 
Einstein's empty space equations which is spherically symmetric in 
an open set "I", is locally equivalent to part of the maximally extended 
Schwarzschild solution in "I". (This is true even if the space is 0°, 
piecewise 01 ; see Bergmann, Cahen and Komar ( 1 965) . )  

We now consider spherically symmetric static perfect fluid solutions. 
Then one can find coordinates {t, r, 8, <ft} such that the metric has the 
form (A 1 ) ,  the fluid moves along the t-lines (so q = 0) ,  and F = F(r) , 
X = X(r) , Y = Y(r) . The field equations (A 3 ) ,  (A 4) now show that 
if Y' = 0, then µ + p = O; we exclude this as being unreasonable for 
a physical fluid, so we assume Y' =I= 0. One may therefore again choose 
Y as the coordinate r ;  the metric then has the form 

dt2 ds2 = --- + X2(r) dr2 + r2(d82 + sin2 8 d<ft2) (A 9) F2(r) 
. 

The contracted Bianchi identities pab ; b = 0 now shows 
p' - (µ +p) F'/F = O ;  (A  1 0) 

(A 5) is identically satisfied if (A 3 ) ,  (A 4) and (A 1 0) are satisfied. 
Equation (A 3 )  can be directly integrated to show 

where 

x2 = ( 1 -
2�)-1

, 

M(r) = 41T J:µr2 dr, 

(A 1 1 ) 

and the boundary condition X(O)  = 1 has been used ( i .e .  the fluid 
sphere has a regular centre) .  With (A 1 0) ,  (A 1 1  ), equation (A 4) takes 
the form dp (µ + p) ( JI + 41Tpr3) 

dr = -
r(r - 2M) 

(A 1 2 ) 

which determines p as a function of r, if the equation of state is known. 
Finally (A 1 0) shows that fp(r) dp F(r) = O exp -- , 

p(OJ µ +p (A 1 3 ) 

where 0 is a constant . Equations (A 1 1 )-(A 1 3 )  determine the metric 
inside the fluid sphere, i .e .  up to the value r0 of r representing the 
surface of the fluid . 
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Notation 

Numbers refer to pages where definitions are given 

definition ::::-- implies 
3 there exists l:: summation sign 

D end of a proof 

Sets 

U A U B, union of A and B 
n A n  B, intersection of A and B 
:::::i A c B, B :::::i A ,  A is contained in B 

A - B, B subtracted from A 
E x E A ,  is a member of A 
0 the empty set 

Maps 

<P :  0//-+ � <P maps p E Oii to <jJ(p)  E it" 
<jJ(O//) image of Oii under <P 
<jJ-I inverse map to <P 
f o g composition, g followed by f 
<fJ.,  <P* mappings of tensors induced by map <jJ, 22-4 

Topology 

A closure of A 
A "  boundary of  A ,  1 83 
int A interior of A ,  209 

Differentiability 

co, Qr, Qr-, 000 differentiability conditions, 1 1  

Manifolds 

Jt n-dimensional manifold, 1 1  
(Oii .. , </> .. ) local chart determining local coordinates XL, 1 2  
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oJI boundary of JI, 1 2  
Rn Euclidean n-dimensional space, 1 1  
!Rn lower half x1 .,;;; 0 of Rn, 1 1  
sn n-sphere, 1 3  
x Cartesian product, 1 5  

Tensors 

(o/oth_ , X vectors, 1 5  
w ,  df one-forms, 16 ,  1 7  
( w ,  X) scalar product of vector and one-form, 1 6  

{Ea}, {Ea} dual bases of vectors and one-forms, 1 6, 1 7  
Tacarb1 • • •  b, • components of tensor T of type (r, s ) , 1 7- 19  
® tensor product, 1 8  
/\ skew product, 2 1  

o symmetrization (e .g. Tcab> ) , 20 

[ J  skew symmetrization (e.g. Tcab1 ) ,  20  
oab Kronecker delta ( + 1 i f  a = b ,  o i f  a =!= b )  
TP, T* P tangent space at  p and dual space at  p, 1 6  
T�(p) space of  tensors of  type (r, s )  at  p, 1 8  
T�(JI) bundle of tensors of type (r, s ) on JI, 5 1  
T(JI) tangent bundle to JI, 5 1  
L(JI) bundle of linear frames on JI, 51  

Derivatives and connection 

o/oxi partial derivatives with respect to coordinate xi 
(Of oth_ derivative along curve t\(t) ,  1 5  
d exterior derivative, 1 7 ,  25 
Lx Y, [X, Y] Lie derivative of Y with respect to X, 27-8 

V, Vx, Tab ; c covariant derivative, 30-2 
D/ot covariant derivative along curve, 32 
rijk connection components, 3 1  
exp exponential map, 33 

Riemannian spaces 

(JI, g) manifold Jlwith metric g and Christoffel connection 
'I volume element, 48 
Rabcd Riemann tensor, 35 
Ro)) Ricci tensor, 36 



R curvature scalar, 41  
oabcd "\Veyl tensor, 4 1  
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O(p, q )  orthogonal group leaving metric Gab invariant, 52 
Gab diagonal metric diag ( + 1 ,  + 1 ,  . . .  , + 1 ,  - 1 , . . .  , - 1 ) 

O(.L) 
p terms 

bundle of orthonormal frames, 52 

Space-time 

.....____... 
q terms 
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Space-time is a 4-dimensional Riemannian space (.L, g) with 
metric normal form diag ( + 1 ,  + 1 ,  + 1 ,  - 1 ) . Local coordinates a.re 
chosen to be (x1, x2, x3, x4 ) . 
Tab energy momentum tensor of matter, 6 1  
'Y(i)

a . . .  bc . . .  d matter fields,  60 
L Lagrangian, 64 
Einstein's field equations take the form 

Rab - !Rgab + Agab = 81TTab, 
where A is the cosmological constant. 
(� w) is an initial data set, 233 

Timelike curves 

.L perpendicular projection, 79 
DFfos Fermi derivative, 80-1 
() expansion, 83 
wa, wab ,  w vorticity, 82-4 
<Tab• <T shear, 83-4 

Null geodesics 

fJ expansion, 88 
Wab• CJ vorticity, 88 
uab , u shear, 88 

Causal structure 

]+, J- chronological future, past, 182  
J+, J- causal future , past, 1 83 
E+, E- future, past horismos, 1 84 
D+, D- future, past Cauchy developments, 201 
H+, H- future, past Cauchy horizons, 202 
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Boundary of space-time 

.A* = .A U  A where A is the c-boundary, 220 
J+, J-, i+, i- c-boundary of asymptotically simple and empty 

spaces, 1 22, 225 
Ji =  ..A u o..A when .A is weakly asymptotically simple ; the 

boundary fJ..A of .A consists of J+ and J-, 22 1 ,  225 
..,,/(+ = .Au a where a is the b-boundary, 283 



Index 

Referencu in italica are main referencu or definition.a. 
acausal set, 2 1 1 

partial Cauchy surface, 204 
acceleration vector, 70, 72, 79, 84, 107 

relative acceleration of world lines, 
78-80 

achronal boundary, 187,  3 1 2  
achronal set, 186, 1 87,  202, 203, 209, 2 1 1 ,  

266, 267 : edge, 202 
affine parameter, 33, 86 

generalized, 259, 278, 291  
Alexandrov topology, 1 9 6  
anti-de Sitter space, 131-4, 1 88, 206, 218  
apparent horizon, 320, 32 1-3, 324 
area law for black holes, 3 1 8, 332, 333 
asymptotic flatness, 22 1-5 

asymptotically simple spaces, 222 : 
empty and simple spaces, 222 

weakly asymptotically simple and 
empty spaces, 225, 3 1 0 :  asymptoti
cally predictable spaces, 310, 3 1 1 ,  
3 1 2  

strongly future asymptotically pre
dictable, 313, 3 1 5, 3 1 7 : regular 
predictable space, 318, 3 1 9, 320 ; 
static, 325, 326 ; stationary, 324, 
325, 327-31,  334-47 

asymptotically simple past, 316 
atlas, 11, 12, 14  
axisymmetric stationary space-times, 

1 6 1-70 
black holes, 329, 331 ,  34 1-7 

b-boundary, 283, 289 
b-bounded, 292, 293 
b-completeness, 259, 277, 278 
bases of vectors, one-forms, tensors, 

1 6-18, 5 1  
change o f  basis, 19, 2 1  
coordinate be.sis, 21 
orthonormal be.sis, 38, 52 
pseudo-orthonormal be.sis, 86 

beginning of universe, 3, 8, 358-9, 363 
in Robertson-Walker models, 137-42 
in spatially homogeneous models, 144-9 

Bianchi's identities, 36, 42, 43, 85 
bifurcation 

of black holes, 3 1 5-16 
of event horizons, 326 

Birkhoff's theorem, 372 
black-body radiation in universe, 348-

50, 354-5, 357, 363 
black holes, 308-23, 315 

final state of, 323-4 7 
rotating black hole, 329 

boundary 
of manifold, 1 2  
o f  future set, 187  
o f  space-time : c-boundary, 21 7-21, 

222-5 ; b-bounde.ry, 276-84, 289-91 
Brans-Dicke see.Jar field, 59, 64, 7 1 ,  77 ,  

362 
energy inequalities, 90, 95 

bundle, 50, 174 
of linear frames, 51, 53,  54 ,  1 74, 

292-4 
of orthonormal frames, 52, 54, 276-83, 

289 : metric on, 278 
of tensors, 51,  54, 198 
tangent bundle, 51,  54 

c-bounde.ry, 21 7-21, 224-5 
canonical form, 48 
Carter's theorem, 331  
Cartesian product, 1 5  
Cauchy date., 147 ,  231-3, 254 
Cauchy development, 6, 94, 1 19, 147, 

201-6, 209-1 1 ,  217,  228 
local existence, 248, 255 
global existence, 251, 255 
stability, 253, 255, 301 ,  3 1 0  

Cauchy horizon, 202-4, 265, 287, 362 
examples, 120, 1 33, 159, 1 78, 203, 205, 

287 
Cauchy problem, 60, 226-55 
Cauchy sequences, 257, 282 
Cauchy surface, 205, 2 1 1 ,  212 ,  263, 265, 

274, 287, 3 1 3  
examples, 1 19, 125, 1 4 2, 1 54 

[ 385 ] 
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Cauchy surface (cont.)  
lack of, 1 33, 159, 1 78, 205, 206 
partial Cauchy surface, 204, 2 1 7, 

301-2, 3 10--20, 323 
causal boundary of space-time, 21 7-21, 

22 1-5 ; Bee alao conformal structure 
causal future (past),  J+(J-), 183 

causal structure, 6, 127-30, 1 80-225 
causally simple set, 188, 206, 207, 223 
local causality neighbourhood, 195 

causality conditions 
local causality, 60 
chronology condition, i89 
causality condition, 190 
future, past distinguishing conditions, 

192 
strong causality condition, 192 
stable causality condition, 198 

causality violations, 6, 162, 1 64, 1 70, 1 75, 
1 89, 492, 197 

and singularity theorems, 272 
caustics, 120, 1 32-3, 1 70 ;  Bee alao 

conjugate points 
charged scalar field, 68 
chart, 1 1  
Christoffel relations, 40 
chronological future (past) ,  J+(J-) ,  182, 

2 1 7  
chronology condition, 189, 1 92, 1 94, 266 

violating set, 189 
cigar singularity, 144 
closed trapped surface, 2, 262, 263, 266 

examples, 1 55, 1 6 1  
i n  asymptotically flat spaces, 3 1 1 ,  3 19  
outer trapped surface, 319 ; marginally 

outer trapped surface, 321 
outside collapsing star, 301 ,  308 
in expanding universe, 353-8 

Codacci's equation, 4 7 ,  232, 352 
collapse of star, 3, 8, 300-23, 360 
compact space-time, 40, 189 
compact space sections, 272-5 
completeness conditions 

inextendibility, 58 
metric completeness, 257 
geodesic completeness, 2 5 7  
b-completeness, 2 5 9 ,  278-283 

completion by Cauchy sequences, 282, 
283 

components of connection, 31 
components of tensor, 1 9  

of p-form, 21 
conformal curvature tensor, 41,  85 ; Bee 

Weyl tensor 
conformal metrics, 42, 60, 63, 1 80, 222 
conformal structure of infinity and 

singularities 
c-boundary, 2 1 7-21 

examples, 122, 127, 1 32, 14 1 ,  145, 1 54, 
158, 1 60, 1 65, 1 77  

i n  asymptotically flat spaces, 222-4 
horizons, 128-30 

conformally flat theory, 75-6 
congruence of curves, 69 
conjugate points, 4, 5, 267 

on timelike geodesics, 97, 98, 1 1 1 , 100, 
1 12, 2 1 7  

o n  null geodesics, 100, 1 0 1 ,  1 15, 102, 
1 16 

connection, 30, 31, 34, 40, 4 1 ,  59, 63 
and bundles over .A, 53-5, 277 
on hypersurface, 46 

conservation 
of energy and momentum, 6 1 ,  62, 67, 73 
of matter, theorem, 9 4 ,  298 
of vorticity, 83-4 

constraint equations, 232 
continuity conditions 

for map, 1 1  
of space-time, 57, 284 

contraction of tensor, 19 
contracted Bianchi identities, 43 
convergence of curves, Bee expansion 
convergence of fields 

weak, 243 
strong, 243 

convex normal neighbourhood, 34, 60, 
103, 1 05, 1 84 

local causality neighbourhood, 195 
coordinates, 1 2  

normal coordinates, 3 4 ,  41  
coordinate singularities, 1 1 8, 1 33, 1 50, 

1 56, 1 63, 1 7 1 ,  
Copernican principle, 1 34, 1 35, 142, 

350, 356, 358 
cosmological constant, 73, 95, 124, 1 37, 

1 39, 1 68, 362 
cosmological models 

isotropic, 134-42 
spatially homogeneous, 142-9 

covariant derivatives, 31-5, 40, 59 
covering spaces, 1 8 1 ,  204-5, 273, 293 
cross-section of a bundle, 52 
curvature tensor, 35, 36, 41 

identities, 36, 42, 43 
of hypersurface, 4 7 
physical significance, 78- 1 1 6  

curve, 1 5  
geodesic, 33, 63, 103-16, 2 1 3-17  
non-spacelike, 105, 1 12, 1 84, 1 85, 207, 

2 1 3  
null, 86-8 
timelike, 78-86, 1 03, 1 82, 184, 213-17  

d e  Sitter space-time, 1 24-31 
density of matter in universe, 1 37,  357 
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development, 228, 248,  251 ,  253 
existence, 246-9 

deviation equation 
timelike curves, 80 
null geodesics, 87 

diffeomorphism, 22, 56, 74, 227 
differentiability conditions, 1 1 ,  12 

and singularities, 284-7 
of initial data, 251  
of space-time, 57-8 

differential of function, 1 7  
distance from point, 103-5 
distance function, 2 1 5  
distributional solution of field equations, 

286 
domain of dependence, see Cauchy 

development, 201 
dominant energy condition, 91, 92,  94, 

237' 293, 323 

edge of achronal set, 202 
Einstein's field equations, 74, 75, 77,  95, 

227-55 
constraint equations, 232 
distributional solutions, 286 
exact solutions, 1 1 7-79 
existence and uniqueness of solutions, 

248, 251 ,  255 
initial data, 23 1-3 
reduced equations, 230 
stability of solutions, 253, 255 

Einstein static universe, 139 
spaces conformal to  part of, 121 ,  126, 

1 3 1 ,  139 
Einstein-de Sitter universe, 138 
electromagnetic field, 68 
energy conditions 

weak energy condition, 89 
dominant energy condition, 91 
null convergence condition, 95 
timelike convergence condition, 95 
strong energy condition, 95 

energy extraction from black holes, 
327-8, 332-3 

energy-momentum tensor of matter 
fields, 6 1 ,  66-7 1 ,  88-96, 255 

equation of state of cold matter, 
303-7 

ergosphere, 327-31 
Euler-Lagrange equations, 65 
event horizon, 129, 140, 1 65 

in asymptotically flat spaces, 312, 
3 1 5--20, 324-47 

existence of solutions 
Einstein equations with matter, 255 
empty space Einstein equations, 248, 

251  
second order linear equations, 243 

exp, exponential map, 33, 1 03, 1 1 9 
generalized, 292 

expansion 
of null geodesics, 88, 10 1 ,  3 1 2, 3 1 9, 32 1 ,  

324, 354 
of timelike curves, 82-4, 97, 27 1 ,  356 
of universe, 137, 273, 348-59 

extension 
of development, 228, 249 
of manifold, 58 : locally inextendible, 59 
of space-time, 145, 150-5, 156-9, 

1 63-4, 1 7 1 ,  1 75 :  inextendible, 58, 
14 1 ; inequivalent extensions, 1 7 1-2 

exterior derivative, 25, 35 

Fermi derivative, 80-1 
fibre bundles, see bundles 
field equations 

for matter fields, 65 
for metric tensor, 7 1-7 
for Weyl tensor, 85 

fluid, 69 ; see also perfect fluid 
focal points, see conjugate points 
forms 

one-forms, 16, 44-5 
q-forms, 21, 47-9 

Friedmann equation, 138  
Friedmann space-times, 135  
function, 1 4  
fundamental forms of surfaces 

first, 44, 99, 231  
second, 4 6 ,  99 ,  100, 102, 1 10, 232, 262, 

273, 274 
future 

causal, J+, 183 
chronological, J+, 182 

future asymptotically predictable, 310 
future Cauchy development, D+, 201 

horizon, H+, 202 
future directed non-spacelike curve, 184 

inextendible, 184, 1 94, 268 
future distinguishing condition, 192, 

195  
future event horizon, 129, 312 
future horismos, E+, 184 
future set, 1 86, 187  
future trapped set, 267, 268 

g-completeness, 257, 258 
gauge conditions, 230, 24 7 
Gauss' equation, 47, 336, 352 
Gauss' theorem, 49-50 
General Relativity, 56-77, 363 

postulates, (a), 60, (b), 61, (c) ,  77 
breakdown of, 362-3 

generalized affine parameter, 259, 278, 
291 

generic condition, 101,  1 92, 1 94, 266 
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geodesics, 33, 55, 63, 2 1 7, 284-5 
as extremum, ' 107, 108, 2 1 3  
aee alao null geodesics and timelike 

geodesics 
geodesically complete, 33, 257 

examples, 1 19, 126, 1 33, 1 70 
geodesically incomplete, 258, 287-9 

examples, 1 41-2, 1 55, 1 59, 163, 1 76, 
1 90 

aee alao singularities 
globally hyperbolic, 206-12, 2 1 3, 2 1 5, 

223 
Godel's universe, 1 68-70 
gravitational radiation from black holes, 

3 1 3, 329, 333 

harmonic gauge condition, 230, 24 7 
Hausdorff spaces, 13, 56, 22 1 ,  283 

non-Hausdorff b-boundary, 283, 289-
92 

non-Hausdorff spaces, 13 ,  1 73, 1 7 7  
homogeneity 

homogeneous space-time, 168 
spatial homogeneity, 134, 142-9, 3 7 1  

horismos, E + ,  184 
horizons 

apparent horizon, 320-3, 324 
event horizon, 1 29, 312, 3 1 5, 3 19, 

324-33 
particle horizon, 128 

horizontal subspace ( in bundle) ,  53-5, 
277-82 

lift, 54, 277 
Hoyle and Narlikar's 0-field, 90, 126 
Hubble constant, 137,  355 
Hubble radius, 351 

IF, indecomposable future set, 2 1 8  
imbedding, 2 3 ,  44,  228 

induced maps of tensors, 45 
immersion, 23 
imprisoned curves, 1 94-6, 261 ,  289-

98 
inequalities for energy-momentum ten

sor, 89-96 
and second order differential equations, 

237, 240, 241 
inextendible curve, 1 84, 2 1 8, 280 
inextendible manifold, 5 8 ,  59,  14 1-2 
infinity, aee conformal structure of 

infinity 
initial data, 233, 252, 254 
injective map, 23 
int, interior of set, 209 
integral curves of vector field, 27 
integration of forms, 26, 49 
intersection of geodesics, aee conjugate 

points 

IP, indecomposible past set, 218 
isometry, 43, 56, 135-6, 142, 1 64, 1 68, 

1 74, 323, 326, 329, 330, 334, 340-6, 
369-70 

isotropy of observations, 134-5, 349, 358 
and universe, 35 1 ,  354 

Israel's theorem, 326 

Jacobi equation, 80, 96 
Jacobi field, 96, 97, 99, 100 

Kerr solution, 1 61-8, 225, 301 ,  3 1 0, 327, 
332 

as final state of black hole, 325-33 
global uniqueness, 331  

Killing vector field, 4 3 ,  62,  1 64, 1 67, 300, 
323, 325, 327. 330, 339 

bivector, 1 67, 330, 331  
Kruskal extension o f  Schwarzschild 

solution, 153-5 

Lagrangian, 64-7 
for matter fields, 67-70 
for Einstein's equations, 75 

Laplace, 2, 364, 365-8 
length of curve, 37 

generalized, 259, 280 
non-spacelike curve, 105, 2 1 3, 214, 2 1 5 : 

longest curve, 5, 105, 107-8, 120, 2 1 3  
Lie derivative, 2 7-30, 34-5, 43, 7 9 ,  87,  

341-6 
light cone, aee null cone 
limit of non-spacelike curves, 1 84-5 
limiting mass of star, 304-7 
Lipschitz condition, 11 
local Cauchy development theorem, 248 
local causality assumption, 60 
local causality neighbourhoods, 195 
local conservation of energy and momen-

tum, 6 1  
local coordinate neighbourhood, 1 2  
locally inextendible manifold, 59 
Lorentz metric, 38, 39, 44, 56, 1 90, 

252 
Lorentz group, 52, 62, 1 73, 277-80 
Lorentz transformation, 279, 290-1 

m-completeness, 257, 278 
manifold, 1 1 ,  14  

as space-time model, 56, 57 ,  363 
map of manifold, 22, 23 

induced tensor maps, 22-4 
marginally outer trapped surface, 321 
matter equations, 59-7 1 ,  88-96, 1 1 7 ,  

254 
maximal development, 25 1-252 
maximal timelike curve, 1 1 0-12  
Maxwell's equations, 68 ,  85 ,  1 56, 179  
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metric tensor, 36-44, 61, 63-4 
covariant derivative, 40, 4 1  
Lorentz, 38, 3 9 ,  44, 56, 5 7 ,  1 90, 237 
on hypersurface, 44-6, 231 
positive definite, 38, 45, 126,  257, 259, 

278, 282, 283 
space of metrics, 1 98, 252 

microwave background radiation, 1 39, 
348-50, 354, 356 

isotropy, 348-53, 358 
Minkowski space-time, 1 1 8-24, 205, 2 18 ,  

222, 274, 275 ,  3 1 0  
Misner's two-dimensional space-time, 

1 7 1-4 

naked singularities, 3 1 1  
Newman-Penrose formalism, 344 
Newtonian gravitational theory, 7 1-4, 

76, 80, 201 ,  303-5 
non-spacelike curve, 60, 1 1 2, 184, 1 85, 

207 
geodesic, 105, 2 1 3  

Nordstrom theory, 7 6  
normal coordinates, 34, 41 ,  63 
normal neighbourhood, 34, 280 ; see also 

convex normal neighbourhood 
null vector, 38, 57 

cone, 38, 42, 60, 1 03-5, 1 84, 198 : 
reconverging, 266, 354 

convergence condition, 95, 192, 263, 
265, 3 1 1 , 3 1 8, 320 

geodesics, 86-8, 103, 105, 1 1 6, 1 33, 
1 7 1 ,  1 84, 1 88, 203, 204, 258, 3 12 ,  
3 1 9, 354 : reconverging, 267 ,  271 ,  
354, 355 ; closed null geodesics, 
1 90-1 ,  290 

hypersurface, 45 

optical depth, 355, 357, 359 
orientable manifold, 13 

time orientable, 1 8 1 ,  182 
space orientable, 1 8 1 ,  1 82 

orientation 
of boundary, 27 
of hypersurface, 44 

orthogonal group O(p,  q),  5 2 ,  277-83 
orthogonal vectors, 36 
orthonormal basis, 38, 52, 54, 80--2, 

276-83, 291  
pseudo-orthonormal basis, 86- 7, 344 

outer trapped surface, 319, 320 

pancake singularity, 144 
paracompact manifold, 14, 34, 38, 57 
parallel transport, 32, 40, 277 

non-integrability, 35, 36 
p.p.  singularity, 260, 290, 29 1 

parallelizable manifold, 52, 1 82 

partially imprisoned non-spacelike curve, 
1 94, 289-92 

partial Cauchy surface, 204, 2 1 7, 265, 
274, 295, 301 

and black holes, 3 1 0--24 
particle horizon, 128, 140, 144 
past, dual of future, 183 ; thus past set 

is dual of future set, 186 
PIPs, PIFs, 218 
Penrose collapse theorem, 262 
Penrose diagram, 123 
perfect fluid, 69-70, 79, 84,  1 36, 143,  1 68, 

305, 372 
plane-wave solutions, 1 78, 1 88, 206, 260 
postulates for special and general 

relativity 
space-time model, 56 
local causality, 60 
conservation of energy and momentum, 

6 1  
metric tensor, 7 1 ,  77  

p.p .  curvature singularity, 260, 289-92 
prediction in General Relativity, 205-6 
product bundle, 50 
propagation equations 

expansion, 84, 88 
shear, 85, 88 
vorticity, 83, 88 

properly discontinuous group, 1 7 3  
pseudo-orthonormal basis, 86-7, 102, 

1 14, 27 1 ,  290, 344 

rank of map, 23 
Raychaudhuri equation, 84, 97, 1 36, 275, 

286, 352 
redshift, 1 29, 1 39, 144, 1 6 1 , 309, 355, 358 
regular predictable space, 318, 323 
Reissner-Nordstrom solution, 1 5 6-61, 

1 88, 206, 225, 3 10, 360--1 
global uniqueness, 326 

Ricci tensor, 36, 41, 72-5, 85, 88, 95, 290, 
352 

Riemann tensor, 35, 36, 41, 85, 290, 352 
Robertson-Walker spaces, 1 34--42, 276, 

352-7 

scalar field, 67, 68, 95 ; see also Brans
Dicke 

scalar polynomial curvature singularities, 
14 1-2, 146, 1 5 1 ,  260, 289 

Schwarzschild solution, 149- 56, 225, 262, 
3 10, 3 1 6, 326 

local uniqueness, 371  
global uniqueness, 326 
outside star, 299, 306, 308-9, 3 1 6, 360 

Schwarzschild radius, 299, 300, 307-8, 353 
mass, 306, 309 
length, 353, 358 
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second fundamental form of hypersur
surface, 46, 47 

of 3-surface, 99, 273, 274 
of 2-surface, 102, 262 

second order hyperbolic equation, 233-43 
second variation, 108, 1 10, 1 14, 296 
semispacelike set, see achronal set, 

186 
separation of timelike curves, 79, 96, 99 

of null geodesics, 86-7, 102 
shear tensor, 82, 85, 88, 97, 324, 351 
singularity, 3,  256-61 , 360-4 

s.p. singularity, 260, 289 
p.p.  singularity, 260, 290-2 
examples, 137-42, 144-6, 1 50-1 ,  1 59, 

1 62, 1 7 1-4, 1 77  
theorems, 7, 1 4 7 ,  263, 266, 2 7 1 ,  2 72, 

274, 285, 288, 292 
description, 276--84 
nature, 284-9, 360-1 ,  363 
in collapsing stars, 308, 3 10, 3 1 1 ,  360-1  
i n  universe, 355, 358-9 

singularity-free space-times, 258, 260 
examples, 1 1 9, 126, 1 33, 1 39, 1 70, 

305-6 
skew symmetry, 20-1 
Sobolev spaces, 234 
s.p. curvature singularity, 1 4 1-2, 146, 

1 5 1 ,  260, 289 
spacelike hypersurface, 45 
spacelike three-surface, 99, 1 70, 20 1 ,  204, 

3 1 3  
spacelike two-surface, 101,  262 
spacelike vector, 38, 57 
space-orientable, 181 
space-time manifold, 4, 14,  56, 57 

breakdown, 363 
connection, 4 1 ,  59, 63 
differentiability, 57, 58, 284-7 
inextendible, 58 
metric, 56, 60, 227 
non-compact, 190 
space and time orientable, 1 8 1-2 
topology, 197  

spatially homogeneous, 1 34, 142-9, 
3 7 1  

Special Relativity, 60, 62, 7 1 ,  1 1 8 
speed of light, 60, 6 1 ,  94 
spinors, 52, 59, 1 82 
spherically symmetric solutions, 1 35, 

149-6 1 ,  299, 305-6, 369-72 
stable causality, 198 
stability 

of Einstein's equations, 253, 255, 301 
of singularity, 273, 360 

star, 299-308 
white dwarfs, neutron stars, 304, 307 
life history, 301 ,  307-8 

static space-times, 72, 73 
spherically symmetric, 149-61 ,  305-6, 

3 7 1  
regular predictable space-times, 325-9 

stationary axisymmetric solutions, 1 6 1-
70 

stationary regular predictable space-
times, 323-4 7 

stationary limit surface, 1 65-167, 328, 331  
steady-state universe, 90 ,  126  
Stokes' theorem, 27 
strong causality condition, 1 9 2 ,  194, 195, 

208, 209, 2 1 7, 222, 261,  267, 27 1  
strong energy condition, 95 
strongly future asymptotically predict

able, 313, 3 1 7, 3 1 8  
summation convention, 1 5  
symmetric and skew-symmetric tensors, 

20-1 
symmetries of space-time, 44 

axial symmetry, 329 
homogeneity, 168  
spatial homogeneity, 1 35, 1 42 
spherical symmetry, 369 
static spaces, 72, 325 
stationary spaces, 323 
time-symmetry, 326 

tangent bundle, 51,  53-4, 292, 351  
tangent vector space, 16,  51 

dual space, 1 7  
Taub-NUT space, 1 70-8, 206, 26 1 ,  289-

92 
tensor of type (r, s) , 1 7  

field of type (r, s ) , 21 
bundle of tensors of type (r, s) , 51 

tensor product, 1 8  
theorems 

conservation theorem, 94 
singularities in homogeneous cos-

mologies, 1 4 7  
local Cauchy development, 248 
global Cauchy development, 251 
Cauchy stability theorem, 253 
singularity theorems : theorem 1, 263 ; 

theorem 2, 266 ; theorem 3, 271 ; 
theorem 4, 272 ; theorem 5, 292 ; 
weakened conditions, 285, 288 

tidal force, 80 
TIFs, TIPs, 21 8 
time coordinates, 1 70, 198 
time orientable, 131 ,  181,  1 82 
time symmetric, 326, 328 

black hole, 330 
timelike convergence conditions, 95, 265, 

266, 2 7 1 ,  272, 285, 363 
timelike curves, 69, 79-85, 103, 1 84, 

2 1 3-15, 2 1 8  
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timelike geodesics, 63, 96-100, 103,  
1 1 1-12 ,  1 33, 1 59, 1 70, 2 1 7, 258, 
288 

timelike hypersurface, 44 
timelike singularity, 1 59, 360-1 
timelike vector, 38, 57 
topology of manifold, 12-14  

Alexandrov topology, 196, 197  
topology of set of  Lorentz metrics, 1 98, 

252 
topology of space of curves, 208, 2 14  
torsion tensor, 34, 4 1  
totally imprisoned curves, 1 94, 195, 289-

98 
trapped region, 319-20 
trapped set, 267 
trapped surface, see closed trapped sur

face 

uniqueness of solutions 
of Einstein's equations : locally, 246, 

255 ; globally, 251 ,  255 
of second order linear equations, 239, 

243 
universe, 3,  348-59, 360, 362, 364 

spatially homogeneous universe models 
anisotropic, 142-9 ; isotropic, 1 34-
42, 35 1-3, 356-7 

vacuum solutions of field equations, 1 1 8, 
1 50, 1 6 1 ,  1 70, 1 78, 244-54 

variation 
of fields in Lagrangian, 65 
of timelike curve, 106-10, 295 
of non-spacelike curves, 1 1 2-16, 1 9 1  

vector, 1 5 ,  1 6, 3 8 ,  5 7  
field, 2 1 ,  2 7 ,  5 1 ,  52, 54, 55, 2 7 7 ,  278 
variation vector, 107-1 6, 1 9 1 ,  275, 295 
see also Killing vector 

vertical subspaces in bundles, 53, 277 
volume, 48, 49 
vorticity 

of Jacobi fields, 97 
of null geodesics, 88 
of timelike curves, 82-4, 352 

weak energy condition, 89, 94 
weakly asymptotically simple and empty 

spaces, 225, 310  
Wey! tensor, 4 1 ,  42, 85, 88, 10 1 ,  224, 344 
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