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1 Random Signals

Signal carries information. The information a signal conveys can be the parameter, im-
pulse response, and power spectral of the system either physical or biological, or in the
form of features for identifying artificial targets such as airplanes and vessels, weather
or hydrological forecast, and abnormality in electrocardiogram. A signal whose values
or observations are random variables is called a random signal. The term “random”
refers to the fact that the samples of the signal are distributed according to certain
probability law, which could be fully known, partially known, or completely unknown.
Stochastic process, random function, and random sequence are other names for ran-
dom signal. This chapter will focus on the representation of stationary random signals
in two domains: the time domain and the frequency domain, which are complementary
and of equal importance in characterizing random signals.

1.1 Signal Classifications

Mathematically, a signal is expressed by a series of variables. Let {s(t)} be an array of
real or complex numbers. Then, the sequence {s(t)} is a signal. When time ¢ is defined
on interval of continuous variable, i.e., t € (—oo, o) or t € [0, o], {s(t)} is a continuous-
time signal. Many artificial and natural signals such as those arising from radar, sonar,
radio, telecommunications, control systems, and biomedical engineering are examples
of the continuous-time signals. However, when being processed in a digital computer,
a continuous-time signal must be first converted into a discrete-time signal. If the
time variable t of the signal takes value from the integer set, i.e., t = 0, +1,..., or
t=0,1,...,the sequence of variables {s(t)} is a discrete-time signal.

The sequence {s(t)} is called a deterministic signal if its value at any time is not
random but can be specified by a certain deterministic function. Followings are several
deterministic signals commonly used.

— Step signal
1, t=0,
U(t) = (1.1.1)
0, t<O.
- Sign signal
1, t=0,
sgn(t) = (1.1.2)
-1, t<O0.
- Rectangular impulse
1, |t|=a,
Pq(t) = i (1.13)
0, |t|>a.

https://doi.org/10.1515/9783110475562-001
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Ut sen(t) Pu(t)

Fig. 1.1.1: Step signal, sign signal, and rectangular impulse.

— Sinusoidal signal (or harmonic signal)
s(t) = Asin(wct + ), (1.1.4)

where 6 is the given initial phase.

As an illustration, Fig. 1.1.1 depicts the waveforms of step signal, sign signal, and
rectangular impulse.

Sequence {s(t)} is called a random signal, if different from deterministic signal,
the value of the sequence {s(t)} at any given time is a random variable. For instance,
the sinusoidal signals with random phase

s(t) = Acos(wct +6), (real harmonic signal) (1.1.5)
s(t) = Aexp(wct + 0). (complex harmonic signal) (1.1.6)

are random signals. Here, 0 is a random variable distributed uniformly within interval
[-7t, 7], which has probability density function (PDF)

1 <0<
f(9)={2”’ msfsm, 1.1.7)

0, otherwise.

Random signal, also known as stochastic process, has the following properties.

(1) The value of the random signal at any time is random and cannot be determined
in advance.

(2) Although its exact value at any time cannot be determined in advance, the random
signal is governed by statistical laws. In other words, a random signal or stochastic
process can be characterized statistically by probability distribution, which is
referred to as the statistical property of the signal.

Let x(t) be a complex stochastic process in continuous time. The stochastic process x(t)
at each time instant t is a random variable X = x(t), which has the mean u(t) expressed
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by

S

u() = E {x(0)} % / xf(x, f)dx, (118)

—oco

where f(x, t) is the PDF of random variable X = x(t) at time t. The autocorrelation
function Rx(t1, t,) of complex random signal x(t) is defined as the correlation between
observations of x(t) at time ¢, and t,. Namely,

Rultr, &) CE {x(6)x"(12)}

=//X1X;f(X1,X2;f1,fz)dX1 dx, (1.19)
=R;(t21t1)y

where the superscript * is the complex conjugate, and f(x1, x»; t1, t>) is the joint PDF
of random variables X; = x(t1) and X, = x(¢,). In general, autocorrelation function
depends upon both t; and t,. Given arbitrary set of complex numbers ay (k =1, ..., n),
define

Y= ax(ty). (1.1.10)

k=1
Obviously, Y is a random variable and E {|Y|2} > 0. Thus, we have

E {|Y|2} - Z Z a;aE {x(t,-)x*(tk)} - Z Z aiaRu(ti, ty)

i=1 k=1 i=1 k=1
Ri(ti,t1) Rx(ti,t2) -+ Ru(ts,tn)] [ay
Ri(tr,t1) Rx(t2,t2) -+ Ru(ta,tn)| |a)
=[0(1,0(2,---,0(n] . . . .
Ry(tn, t1) Rx(tn,t3) -+ Rx(tn,tn)] |an
>0,
or
Rx(t1,t1) Rx(t1,t) -+ Rx(t1,tn)
Rx(t2,t1) Rx(tz,t2) -+ Rx(t2,tn)
. . . >0,
Rx(tn, tl) Rx(tn, tz) e Rx(tn, tn)

where R = 0 means that R is a positive semidefinite matrix. That is, all the eigenvalues
of R are non-negative. Note that the term “non-negative definite” is a synonym for
“positive semidefinite”. With Eq. (1.1.9), the above equation is reduced to

Rx(t1,t1) Rx(t1,t2) -+ Rx(ty,tn)

Ry(t1,t2) Rx(ta,t2) -+ Rx(ta, tn)
. . . =0, (1.1.11)

R;(tl, tn) R;(tZ, tn) e Rx(tn, tn)
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where the matrix on the left hand side (LHS) of the inequality is a conjugate symmetric
matrix or a Hermitian matrix.
In particular, when n = 2, Eq. (1.1.11) yields

Rx(t1,t1) Rx(t1,t2)
Ry(t1,t2) Rx(ta,t2)| —

or
[Rx(t1, t2)|* < Rx(t1, t1)Rx(t2, t2), (1.1.12)

which is called Schwartz inequality.

The mean and autocorrelation function Rx(t1, t;) are respectively the first and
second order moments of random signal x(t). Analogously, we can define the kth order
moment of the random signal x(t) as

def

H(tly"' atk) = E{X(tl)"'x(tk)} . (1.1.13)

By the dependence of kth order moment on time, random signals can be further cate-
gorized into two classes: stationary and non-stationary signals.

Definition 1.1.1 (nth order stationarity). Random signal {x(t)} is nth order stationary if
forallintegers 1 <k <n,tq,...,tyand T, {x(t)} has finite kth moment which satisfies

Pltr, -+ t) =t + T, e+ 7). (1.1.14)

Specifically, a random signal is wide-sense stationary if it is second order stationary.

Definition 1.1.2 (wide-sense stationarity). Complex random signal {x(t)} is wide-sense
stationary, if

(1) its meanis constant, i.e., E {x(t)} = Ux;

(2) its second order moment is bounded, i.e., E {x()x"(t)} = E {|x()]*} < oo;

(3) its correlation function is time independent, i.e.,

Coe(r) = E{[x(0) - palx(t - 1) - ] }

Wide-sense stationarity is also known as covariance stationarity and weak stationarity.
A wide-sense stationary signal is called a stationary signal for brevity.

Definition 1.1.3 (strict stationarity). Random signal {x(t)} is strictly stationary if the
sets of random variables {x(t; + 1), - -+ , x(t, + T)} and {x(t1), - - - , x(¢;)} have identical
joint probability distribution forany T > O and t1, t5, -+ , ty, wherek=1,2,....

In plain words, the signal x(t) whose joint probability distribution is invariant with
time is strictly stationary.

The relation of nth order stationarity, wide-sense stationarity, strict stationarity,
and non-stationarity is summarized below.
(1) Wide-sensing stationarity is nth order stationarity for n = 2.
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(2) Strict stationarity must be wide-sensing stationarity. On the contrary, wide-sensing
stationarity does not necessarily imply strict stationarity.

(3) As a stochastic process that is not wide-sense stationary cannot be either nth
(n > 2) order stationary or strictly stationary, random signal not being wide-sense
stationary is called non-stationary signal.

The stationary signal is usually termed time-invariant signal, underlining the fact that
its statistics do not change with time. The non-stationary signal is similarly called
time-variant signal, since at least one of its statistics such as mean and autocorrelation
function is a function of time. Note that the concepts of the time-invariant and time-
variant signals are not related to whether or not the sample or waveform of a signal is
constant in time.

In wireless communications, the transmit signals are generally stationary, and
there are two types of wireless channel: Gaussian channel and Rayleigh fading channel.
Gaussian channel is non-fading and time-invariant and thus is stationary. Consequently,
passing through Gaussian channel, the communication signals at the receiver is still
stationary. Different from the Gaussian channel, the Rayleigh fading channel is non-
stationary and time-variant. So, the signal transmitted through the Rayleigh fading
channel becomes non-stationary at the receiver.

Ergodicity is another important property of random signals. It is connected to the
crucial question whether the statistics of a random signal such as autocorrelation
function and power spectral can be estimated from its single realization. A thorough
discussion of ergodicity requires advanced probability theory. So we only present the
concept of ergodicity in its most used form, i.e., the mean-square ergodicity.

Let {x(t)} be a stationary signal whose moments of nth and lower orders are in-
dependent of time. The signal is nth order mean-square ergodic if for all integers

k =1,---,n and arbitrary tq, - - - , ty, the following equation of mean-square limit
holds.
N 2
lim E SOt + t)x(t+ ) x(t+ t) — ulty, -+, )| p =0, (1115

N->oo 2N +1
t=-N

from which comes the term “mean-square ergodicity”.

The statistical average of the nth and all the lower orders of a signal which is
stationary and nth order mean-square ergodic is identical to the corresponding time
average. In other words, the statistics can be estimated based on one realization of the
signal. In this book, we assume that all random signals under study are mean-square
ergodic.

For a mean-square ergodic and stationary signal x(t) with N samples x(1), - - - , x(N),
its mean px can be estimated from the time average

N

M= x(n). (1.1.16)

n=1
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1.2 Correlation Function, Covariance Function, and Power Spectral
Density

As stated in the previous section, a random signal can be characterized by its statistical
properties, which can be further classified as statistical properties of the first order,
second order, and high order (third order and higher). The aforementioned mean value
belongs to the first order statistics and is the mathematical expectation of the signal.
The second and higher-order statistics of a signal, which are more useful than the first
order statistics, can be obtained by taking the expectation of second and higher-order
(third order and higher) products of signal samples. The first few chapters of the book
will extensively utilize second order statistics as the mathematical tool for the analysis
and treatment of stationary random signals. The higher-order statistics of stationary
random signals will be the subject of Chapter 6.

Correlation function, covariance function, and power spectral density are among
the most used second order statistics. In this section, we will give the definitions of
the autocorrelation function, autocovariance function, and power spectral density
of a single stationary random signal along with the cross correlation function, cross
covariance function, and cross power spectral density between two stationary random
signals.

1.2.1 Autocorrelation Function, Autocovariance Function, and Power Spectral Density

Let x(t) be a wide-sense stationary random signal of complex value with time variable
t € (oo, o0) or t € [0, oo]. The random signal x(t) has a constant mean independent of
time ¢, which is

ux =E{x()}, (1.2.1)

and has autocorrelation and autocovariance functions dependent solely on the differ-
ence of time 7 = t; — t,, which are defined by

Rux(7) €' E {x(t)x*(t - r)} , 1.2.2)

Cac(r) ©E {[x(t) —ulx(e-1) - ux]*}

= Rux(1) - lell;*c = Rux(1) - |llx‘2-

(1.2.3)

Autocorrelation and autocovariance functions are also called correlation and covari-
ance functions for brevity. The quantity T = t; —t,, which is the time difference between
two signal samples, is called lag.
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The correlation and covariance functions of complex signals are complex in general
and have the following properties.

Ryx(1) = Rux(-17), (1.2.4)
Crx(T) = Cxx (1), (1.2.5)
|Cxx(1)| < Cxx(0), VT, (1.2.6)

where the notation V7 means that the equations hold for any 7.
We give the proof for the first equation, and leave the rest as exercises. According
to the definition, we have

Ry (1) =E {x(t)x*(t - T)} .
After the variable substitution u = t — 7, the above equation turns into
Ry (1) =E {x(u + T)x*(u)} = Rux(-T1).

In particular, for real signal x(t), we have

Rxx(1) = R (1), (1.2.7)
Cxx(1) = Cxx(~1), (1.2.8)
Rxx(7) < Rxx(0). (1.2.9)

The relation between the autocorrelation function and the autocovariance function is

summarized below.

(1) For random signal x(t) with zero mean, the autocorrelation function and autoco-
variance function are identical:

Rux(T) = Cxx(T). (1.2.10)

(2) When 7 = 0, the autocorrelation function of signal x(t) is reduced to the second
order moment, i.e.,

Rux(0) =E {x(r)x*(t)} -E {|x(t)|2} . (1.2.11)

(3) When 7 = 0, the autocovariance function of signal x(t) is reduced to the variance
of x(t)1, i.e.,
Cxc(0) = var [x(0] = E {x(6) ~ ulx(®) - ]}

=E{\x(t)—yx|2} =E{|x(t)|2}—|yx|2 (1.212)
= Rxx(o) - |le|2-

1 The variance of complex random variable is denoted as var [¢] which is defined by var[¢{] =

E{[¢ -E{&}[§ -E{&}]"} = E{|¢ -E{&}|*}, with 0 = \/var [£] as the standard deviation.
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Consider the stochastic process x(t) on finite interval - T < t < T. The Fourier transform
of x(t) is
T
X1() = [ 60 - pwoe " at,
-T

and the power spectral on the interval is

(X1 ()
2T

> 0.

Taking the ensemble average of the power spectral function yields

Pr(f) = E { X7 (f)|? }

2T

N

T

T T
1 _ _ 1\ a-i2nf(t-ty)
- l l B{X(t0) - pallx(e) - ] } 2707 e ey
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Evidently, Py (f) represents how the average power of stochastic process x(t) on interval
(=T, T) is distributed with frequency f. As T - oo, the distribution yields the power
spectral density as

2T

Py(f) = lim Pr(f) = / Cx(1)e2T dr. (1.2.13)
-2T

The above equation is essential in that it is the definition of power spectral density and

at the same time shows that the power spectral density must be non-negative. More

properties of power spectral density are listed below.

(1) Power spectral density Pxx(f) is real.

(2) Power spectral density is non-negative, i.e., Pxx(f) = 0.

(3) The autocovariance function is the inverse Fourier transform of power spectral
density. That is,

Cxx(1) = / P ()&l df. (1.2.14)

(4) Integration of power spectral density over frequency gives the variance of signal
{x(t)}. That is,

S

/ Pxx(f) df =var [x(t)] =E {\x(t) - ux|2} . (1.2.15)

—co
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(5) If {x(t)} is stochastic process with zero mean, the covariance function and the cor-
relation function are identical, i.e., Cxx(T) = Rxx(T). Then, Egs. (1.2.13) and (1.2.14)
are respectively equivalent to

oo

Pexlf) = / Rux(D)e 77 dr, (1.216)

—oco

oo

Ru(1) = / Py (f)ei?T df. (1.2.17)

—oo

The relation determined by Egs. (1.2.16) and (1.2.17) is referred to as Wiener-
Khinchine theorem, which states that for a wide-sense stationary stochastic
process with zero mean, the power spectral density Pxx(f) and the autocorrelation
function Rxx(7) constitute a Fourier transform pair.

(6) For a stochastic process {x(t)} with zero mean, integration of its power spectral
density equals the value of correlation function at zero lag (t = 0). Namely,

S

/ Po)df = E {0 } = Ru(©). (1.2.18)

—oco

We now prove Property (1) of power spectral density. According to the definition of
power spectral density of complex stochastic process x(t), we immediately have

P;x(f) = / C;X(T)ejzrlf‘r dr = / Cxx(‘T)EiznfT dT,

which after variable change 7" = - gives
Pu(f) = - / Cox(T)e 21T dr’ = / Cox(T)e 27T A1’ = Py(f).

That is, power spectral density Pxx(f) must be a real function in frequency f.

The proof for Property (2) of power spectral density is more involved and will be
given later.

Further, if x(t) is real, its power spectral density Pxx(f) must be a real even function.

If the power spectral density is constant, i.e., Pxx(f) = Ny, the stochastic process
{x(t)} is called white noise since its power (or energy) is independent of frequency
and is similar to the energy distribution of white light. In contrast, noise whose power
spectral density is not constant is called colored noise.

Example 1.2.1 Let {x(t)} be a real sequence whose samples at any time are inde-
pendent and have zero mean and variance o2. Then, {x(t)} is a sequence of white
noise.
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Solution. Let vector x = [x(1),--- , x(N)]. Based on given facts, for each element x(i)
in the vector, we have E {x(i)} = 0 and

0%, 7=0,

E {x()x(i - 1)} = Rux(1) = {
0, t#O0.

Since {x(t)} has zero mean, its covariance and correlation functions are the same,
which gives
Cxx(1) = Rx(1) = 0%8(1), T = 0, £1,£2, -+ - .

Thus, {x(t)} has power spectral density as

Pux(f) = / Cax(1)e 2T dr = /ozé(r)e‘iz”fT dr = o2,
which shows that {x(t)} is indeed a white noise sequence. O

A function is positive definite if its Fourier transform is positive everywhere. A
function is non-negative definite or positive semidefinite if its Fourier transform is
non-negative. As the power spectral density is non-negative, the covariance function
is positive semidefinite.

Consider a discrete-time stationary random signal x(n) (n = 1,---, N). Denote
x(n) = [x(1), -++ , x(N)] as the observation vector of random signal {x(n)}. Then, the
correlation function matrix is defined by

Rxx(0) Rux(-1) «o+ Rux(-N+1)
Rxx(1 Rxx(0 cv+ Ryx(-N+2
RdifE{x(n)XH(n)} = ,( ) ,( ) . ( . = , (1.2.19)
Rxx(];I - 1) RXX(];I - 2) ‘ * Rxx'(o)

where x(n) is the conjugate transpose of x(n).

The structure of the correlation function matrix in Eq. (1.2.19) is rather special in
that not only the principal diagonal of the matrix has the same elements, but each
diagonal other than the principal one has a constant element. The matrix with such
property is called the Toeplitz matrix.

1.2.2 Cross Correlation Function, Cross Covariance Function, and Cross Power
Spectral Density

Next we discuss the statistics involving two stationary complex random signals x(t)
and y(t). Let
ux=E{x(©)} and py =E{y®)}, (1.2.20)
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which are both constant.
The cross correlation and cross corvarance functions between two complex random
signals x(t) and y(t) are respectively defined by

Ryy(t1, t2) ©'E {X(t1)y*(tz)} , (1.2.21)
Cay(ts, 1) ©'E {[X(tl) - uxlly(t2) - yy]*} = Ruy(t1, t2) - pxity- (1.2.22)

If both Ryy(t1, t2) = Rxy(t1 — t2) and Ryx(t1, t) = Ryx(t1 — t,) depend solely on the lag
t1 — tp, x(t) and y(t) are jointly stationary.

The cross correlation and cross covariance functions of two complex signals which
are jointly stationary are complex in general and have the properties below.

Ryy(1) = Ry(-1), 1.2.23)
|ny(T)|2 < [Rxx(0)| - \R;y(0)|, vT, (1.2.24)
Cry(1) = Cp(-1). (1.2.25)

When pyx = 0 and py = 0, cross covariance and cross correlation functions are identical:
Cxy(T) = Ryy(7). (1.2.26)

With the cross covariance function, the cross correlation coefficient can be defined as
Cxy (1)

Pxy(T) = ———o. (1.2.27)
P/ Cx(0)Cyy (0)
It can be shown that
lpxyl <1, VvrT. (1.2.28)

We now give a physical interpretation of the cross correlation coefficient. Notice that
the cross covariance function involves the product of two different signals x(t) and y(t).
In general, the two signals which have their means removed could have common parts,
which correspond to the deterministic components, and non-common parts, which
are the stochastic components. The sample values from the product of the common
parts always have consistent signs which have the common parts strengthened and
preserved, whereas the non-common parts of the two signals are random and thus
result in product values with both positive and negative signs, which after taking
expectation to get smoothed out. This indicates that the cross covariance function can
extract the common parts of two signals and suppress the non-common parts. Hence,
the cross covariance function can be utilized to characterize the similarity between two
signals. Nevertheless, the similarity measure defined by the cross covariance function
could be awkward in application as it is in the form of absolute value. In contrast, the
cross correlation coefficient derived from normalizing the cross covariance function is
more effective in measuring the similarity between two signals. To be more specific,
the two signals are more alike as the cross correlation coefficient comes close to one.
Conversely, the difference between the two signals becomes more evident when the
cross correlation coefficient goes to zero.
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Example 1.2.2 Consider two complex harmonic signals x(t) = Ae/'! and y(t) =
Bel“2! where A and B are Gaussian random variables with probability densities

1 -a*/(20%) 1 -b*/(203)
a) = e v, b) = e 2,
fal@) V2mo, fs(b) V2o,

Suppose that A and B are independent random variables. Derive the autocovariance
function Rxx(7) and the cross covariance function Cyy (7).

Solution. As el®it (i = 1, 2) are deterministic functions, and the amplitudes A and B are
random variables with E{A} = E{B} = 0,E{A”} = 01, and E {B*} = 03, the means
of x(t) and y(t) are also those of random variables A and B, respectively. That is,

wre = E{ae”} ~E{a} e -0,
uy =E {Bei‘“ﬂ} - E{B}e*! =0.

Therefore, Cxx(T) = Rxx(T) and Cxy (1) = Rxy (7).
Direct derivation gives

Rue(r) = E{ 4 (a0} ~E (a2} =g {a?} &7 = ofelr.
Noticing that A and B are independent, we have
Coy(r) = E{ A [Be @ ~:0] ) - E { aBelre?teloT |
= E{A}E{B} @im@igeaT _ . . dWimw2digioat _ o
which shows that x(t) and y(t) are uncorrelated. d

The cross power spectral density of complex signals x(t) and y(t) is defined as the
Fourier transform of the cross covariance function. That is,

Pyy(f) = / ny(T)e_jznfT dr. (1.2.29)

Unlike power spectral density Pxx(f) which is a real function of frequency f, cross
power spectral density is a complex function, whose real part is called cospectrum and
imaginary part is called quadrature spectrum.

Denote

Pxy(f) = |Pxy(f)|expligxy ()], (1.2.30)
Pr/(f) = d%%y(f), (1.2.31)

where |Pyy(f)| and ¢xy(f) are respectively the amplitude and phase of cross power
spectral density, and dbxy(f) is the group delay.
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Based on cross power spectral density, coherence function can be defined as

Pyxy(f)l
cp Pl (1.2.32)
V Pxx(f)PY)’(f)
which is real and satisfies
|C(H)| = 1. (1.2.33)

Correlation function, covariance function, and correlation coefficient are statistics of
signal in the time domain, belonging to the time-domain feature of signal, whereas
power spectral density and coherence function are statistics of signal in the frequency
domain, and are classified as the frequency-domain feature of the signal. Since covari-
ance function and power spectral density can be converted into each other through
Fourier transform, the signal features in both time and frequency domains are of equal
importance in applications.

The random signal with samples distributed according to the normal distribution
is called Gaussian random signal, while the random signal following non-normal
distribution is called a non-Gaussian random signal. For non-Gaussian signals, suf-
ficient characterization of statistics cannot be achieved by correlation function and
power spectral density alone and calls for the employment of statistics of third order or
higher, which are collectively called high-order statistics. High-order statistics consist
of high-order moments, high-order cumulants, and high-order spectrum, which will
be primarily covered in Chapter 6.

Before processing a stationary signal, the mean of the signal should be estimated
and removed from samples. This procedure is called the centralization of the stationary
signal. From now on, unless otherwise stated, we assume that signals or additive noise
all have zero mean. Due to the obligatory centralization as the preprocessing of signals,
the correlation and covariance functions are generally interchangeable in literature,
since both are equivalent for signals of zero mean.

1.3 Comparison and Discrimination between Two Random Signals

In the previous section, we have discussed the second order statistics of two signals.
In many applications, we are more interested in the comparison of statistics of two
signals, which covers issues such as whether two signals are statistically independent,
uncorrelated, or orthogonal. Some applications may require discrimination between
two signals, to determine whether two signals are strongly correlated or coherent, for
instance.
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1.3.1 Independence, Uncorrelatedness, and Orthogonality

1. Independence

Consider two random variables y; and y,. The two random variables are indepen-
dent if the information of y; contains no information about y, and vice versa.

The independence of two random variables y; and y, can also be defined by their
PDFs. Let p(y1, ¥») be the joint PDF of y; and y,, p(y,) be the marginal PDF of y,
which is

P2 = [ o1y dya, (13)

and similarly p(y,) be the marginal PDF of y, given by
p(y2) = / p(y1,y2)dys. (13.2)

From the equations above, it can be seen that the two random variables y; and y, are
independent if and only if

p(y1,y2) = p(y1)p(y2). (1.3.3)

To generalize, the components of random vectory = [y1, - -+ , ym] are independent if
and only if

p(y)=p(y1,-+,ym) =p(y1)---plym). (1.3.4)

If random variables y; and y, are independent, and h;(y1) and h,(y,) are functions in
y1 and y, respectively, we have

E{hi(y1)h2(y2)} =E{hi(y1)} E{h2(y2)}, (1.3.5)

. . [109]
whose proof is given below .

E{hi(y1)hz(y2)} =//hl(Jﬁ)hz()’z)p()’l,J’z)dh dy,
= / / hi(y1)ha(y2)p(y1)p(y2) dy: dya

_ / )Py dys / ha(y2)p(y2) dy:
=E{hi(y1)} E{ha(y2)}.

Extending the concept of independence of random variables to the case of two stochas-
tic processes x(t) and y(t), we say signals x(t) and y(t) are statistically independent if
the joint PDF fx y(x, y) equals the product of marginal PDFs fx(x) for x(t) and fy(y) 