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1 Random Signals
Signal carries information. The information a signal conveys can be the parameter, im-

pulse response, and power spectral of the system either physical or biological, or in the

form of features for identifying artificial targets such as airplanes and vessels, weather

or hydrological forecast, and abnormality in electrocardiogram. A signal whose values

or observations are random variables is called a random signal. The term “random”

refers to the fact that the samples of the signal are distributed according to certain

probability law, which could be fully known, partially known, or completely unknown.

Stochastic process, random function, and random sequence are other names for ran-

dom signal. This chapter will focus on the representation of stationary random signals

in two domains: the time domain and the frequency domain, which are complementary

and of equal importance in characterizing random signals.

1.1 Signal Classifications

Mathematically, a signal is expressed by a series of variables. Let {s(t)} be an array of
real or complex numbers. Then, the sequence {s(t)} is a signal. When time t is defined
on interval of continuous variable, i.e., t ∈ (−∞,∞) or t ∈ [0,∞], {s(t)} is a continuous-
time signal. Many artificial and natural signals such as those arising from radar, sonar,

radio, telecommunications, control systems, and biomedical engineering are examples

of the continuous-time signals. However, when being processed in a digital computer,

a continuous-time signal must be first converted into a discrete-time signal. If the

time variable t of the signal takes value from the integer set, i.e., t = 0, ±1, . . . , or
t = 0, 1, . . . , the sequence of variables {s(t)} is a discrete-time signal.

The sequence {s(t)} is called a deterministic signal if its value at any time is not

random but can be specified by a certain deterministic function. Followings are several

deterministic signals commonly used.

– Step signal

U(t) =
{︃
1, t ≥ 0,
0, t < 0.

(1.1.1)

– Sign signal

sgn(t) =
{︃
1, t ≥ 0,
−1, t < 0.

(1.1.2)

– Rectangular impulse

Pa(t) =
{︃
1, |t| ≤ a,
0, |t| > a.

(1.1.3)

https://doi.org/10.1515/9783110475562-001
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t

U(t)

0

1

t

sgn(t)

−1

0

1

t

Pa(t)

1

0−a a

Fig. 1.1.1: Step signal, sign signal, and rectangular impulse.

– Sinusoidal signal (or harmonic signal)

s(t) = A sin(ωc t + θ0), (1.1.4)

where θ
0
is the given initial phase.

As an illustration, Fig. 1.1.1 depicts the waveforms of step signal, sign signal, and

rectangular impulse.

Sequence {s(t)} is called a random signal, if different from deterministic signal,

the value of the sequence {s(t)} at any given time is a random variable. For instance,

the sinusoidal signals with random phase

s(t) = A cos(ωc t + θ), (real harmonic signal) (1.1.5)

s(t) = Aexp(ωc t + θ). (complex harmonic signal) (1.1.6)

are random signals. Here, θ is a random variable distributed uniformly within interval

[−π, π], which has probability density function (PDF)

f (θ) =
{︃

1

2π , −π ≤ θ ≤ π,
0, otherwise.

(1.1.7)

Random signal, also known as stochastic process, has the following properties.

(1) The value of the random signal at any time is random and cannot be determined

in advance.

(2) Although its exact value at any time cannot be determined in advance, the random

signal is governed by statistical laws. In other words, a random signal or stochastic

process can be characterized statistically by probability distribution, which is

referred to as the statistical property of the signal.

Let x(t) be a complex stochastic process in continuous time. The stochastic process x(t)
at each time instant t is a random variable X = x(t), which has the mean μ(t) expressed
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by

μ(t) = E

{︀
x(t)
}︀

def

=

∞∫︁

−∞

xf (x, t) dx, (1.1.8)

where f (x, t) is the PDF of random variable X = x(t) at time t. The autocorrelation
function Rx(t1, t2) of complex random signal x(t) is defined as the correlation between
observations of x(t) at time t

1
and t

2
. Namely,

Rx(t1, t2)
def

= E

{︁
x(t

1
)x*(t

2
)

}︁

=

∞∫︁

−∞

∞∫︁

−∞

x
1
x*
2
f (x

1
, x

2
; t

1
, t

2
) dx

1
dx

2

=R*x(t2, t1),

(1.1.9)

where the superscript * is the complex conjugate, and f (x
1
, x

2
; t

1
, t

2
) is the joint PDF

of random variables X
1
= x(t

1
) and X

2
= x(t

2
). In general, autocorrelation function

depends upon both t
1
and t

2
. Given arbitrary set of complex numbers αk (k = 1, . . . , n),

define

Y =

n∑︁

k=1

αkx(tk). (1.1.10)

Obviously, Y is a random variable and E

{︀
|Y|2

}︀
≥ 0. Thus, we have

E

{︁
|Y|2

}︁
=

n∑︁

i=1

n∑︁

k=1

αiα*kE
{︁
x(ti)x*(tk)

}︁
=

n∑︁

i=1

n∑︁

k=1

αiα*kRx(ti , tk)

=[α
1
, α

2
, · · · , αn]

⎡
⎢⎢⎢⎢⎣

Rx(t1, t1) Rx(t1, t2) · · · Rx(t1, tn)
Rx(t2, t1) Rx(t2, t2) · · · Rx(t2, tn)

.

.

.

.

.

.

.

.

. · · ·

Rx(tn , t1) Rx(tn , t2) · · · Rx(tn , tn)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

α*
1

α*
2

.

.

.

α*n

⎤
⎥⎥⎥⎥⎦

≥0,

or ⎡
⎢⎢⎢⎢⎣

Rx(t1, t1) Rx(t1, t2) · · · Rx(t1, tn)
Rx(t2, t1) Rx(t2, t2) · · · Rx(t2, tn)

.

.

.

.

.

.

.

.

. · · ·

Rx(tn , t1) Rx(tn , t2) · · · Rx(tn , tn)

⎤
⎥⎥⎥⎥⎦
⪰ 0,

where R ⪰ 0 means that R is a positive semidefinite matrix. That is, all the eigenvalues

of R are non-negative. Note that the term “non-negative definite” is a synonym for

“positive semidefinite”. With Eq. (1.1.9), the above equation is reduced to

⎡
⎢⎢⎢⎢⎣

Rx(t1, t1) Rx(t1, t2) · · · Rx(t1, tn)
R*x(t1, t2) Rx(t2, t2) · · · Rx(t2, tn)

.

.

.

.

.

.

.

.

. · · ·

R*x(t1, tn) R*x(t2, tn) · · · Rx(tn , tn)

⎤
⎥⎥⎥⎥⎦
⪰ 0, (1.1.11)
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where the matrix on the left hand side (LHS) of the inequality is a conjugate symmetric

matrix or a Hermitian matrix.

In particular, when n = 2, Eq. (1.1.11) yields

[︃
Rx(t1, t1) Rx(t1, t2)
R*x(t1, t2) Rx(t2, t2)

]︃
⪰ 0,

or

|Rx(t1, t2)|2 ≤ Rx(t1, t1)Rx(t2, t2), (1.1.12)

which is called Schwartz inequality.

The mean and autocorrelation function Rx(t1, t2) are respectively the first and
second order moments of random signal x(t). Analogously, we can define the kth order
moment of the random signal x(t) as

μ(t
1
, · · · , tk)

def

= E

{︀
x(t

1
) · · · x(tk)

}︀
. (1.1.13)

By the dependence of kth order moment on time, random signals can be further cate-

gorized into two classes: stationary and non-stationary signals.

Definition 1.1.1 (nth order stationarity). Random signal {x(t)} is nth order stationary if
for all integers 1 ≤ k ≤ n, t

1
, . . . , tk and τ , {x(t)} has finite kth moment which satisfies

μ(t
1
, · · · , tk) = μ(t1 + τ, · · · , tk + τ). (1.1.14)

Specifically, a random signal is wide-sense stationary if it is second order stationary.

Definition 1.1.2 (wide-sense stationarity). Complex random signal {x(t)} is wide-sense
stationary, if
(1) its mean is constant, i.e., E

{︀
x(t)
}︀
= μx;

(2) its second order moment is bounded, i.e., E
{︀
x(t)x*(t)

}︀
= E

{︀
|x(t)|2

}︀
< ∞;

(3) its correlation function is time independent, i.e.,

Cxx(τ) = E

{︁
[x(t) − μx][x(t − τ) − μx]*

}︁
.

Wide-sense stationarity is also known as covariance stationarity and weak stationarity.

A wide-sense stationary signal is called a stationary signal for brevity.

Definition 1.1.3 (strict stationarity). Random signal {x(t)} is strictly stationary if the
sets of random variables {x(t

1
+ τ), · · · , x(tk + τ)} and {x(t

1
), · · · , x(tk)} have identical

joint probability distribution for any τ > 0 and t
1
, t

2
, · · · , tk, where k = 1, 2, . . . .

In plain words, the signal x(t) whose joint probability distribution is invariant with
time is strictly stationary.

The relation of nth order stationarity, wide-sense stationarity, strict stationarity,
and non-stationarity is summarized below.

(1) Wide-sensing stationarity is nth order stationarity for n = 2.
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(2) Strict stationarity must be wide-sensing stationarity. On the contrary, wide-sensing

stationarity does not necessarily imply strict stationarity.

(3) As a stochastic process that is not wide-sense stationary cannot be either nth
(n > 2) order stationary or strictly stationary, random signal not being wide-sense

stationary is called non-stationary signal.

The stationary signal is usually termed time-invariant signal, underlining the fact that

its statistics do not change with time. The non-stationary signal is similarly called

time-variant signal, since at least one of its statistics such as mean and autocorrelation

function is a function of time. Note that the concepts of the time-invariant and time-

variant signals are not related to whether or not the sample or waveform of a signal is

constant in time.

In wireless communications, the transmit signals are generally stationary, and

there are two types of wireless channel: Gaussian channel and Rayleigh fading channel.

Gaussian channel is non-fading and time-invariant and thus is stationary. Consequently,

passing through Gaussian channel, the communication signals at the receiver is still

stationary. Different from the Gaussian channel, the Rayleigh fading channel is non-

stationary and time-variant. So, the signal transmitted through the Rayleigh fading

channel becomes non-stationary at the receiver.

Ergodicity is another important property of random signals. It is connected to the

crucial question whether the statistics of a random signal such as autocorrelation

function and power spectral can be estimated from its single realization. A thorough

discussion of ergodicity requires advanced probability theory. So we only present the

concept of ergodicity in its most used form, i.e., the mean-square ergodicity.

Let {x(t)} be a stationary signal whose moments of nth and lower orders are in-
dependent of time. The signal is nth order mean-square ergodic if for all integers

k = 1, · · · , n and arbitrary t
1
, · · · , tk, the following equation of mean-square limit

holds.

lim

N→∞
E

⎧
⎨
⎩

⃒⃒
⃒⃒
⃒

1

2N + 1

N∑︁

t=−N
x(t + t

1
)x(t + t

2
) · · · x(t + tk) − μ(t1, · · · , tk)

⃒⃒
⃒⃒
⃒

2

⎫
⎬
⎭ = 0, (1.1.15)

from which comes the term “mean-square ergodicity”.

The statistical average of the nth and all the lower orders of a signal which is

stationary and nth order mean-square ergodic is identical to the corresponding time

average. In other words, the statistics can be estimated based on one realization of the

signal. In this book, we assume that all random signals under study are mean-square

ergodic.

For amean-square ergodic and stationary signal x(t)withN samples x(1), · · · , x(N),
its mean μx can be estimated from the time average

μx =
1

N

N∑︁

n=1
x(n). (1.1.16)
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1.2 Correlation Function, Covariance Function, and Power Spectral
Density

As stated in the previous section, a random signal can be characterized by its statistical

properties, which can be further classified as statistical properties of the first order,

second order, and high order (third order and higher). The aforementioned mean value

belongs to the first order statistics and is the mathematical expectation of the signal.

The second and higher-order statistics of a signal, which are more useful than the first

order statistics, can be obtained by taking the expectation of second and higher-order

(third order and higher) products of signal samples. The first few chapters of the book

will extensively utilize second order statistics as the mathematical tool for the analysis

and treatment of stationary random signals. The higher-order statistics of stationary

random signals will be the subject of Chapter 6.

Correlation function, covariance function, and power spectral density are among

the most used second order statistics. In this section, we will give the definitions of

the autocorrelation function, autocovariance function, and power spectral density

of a single stationary random signal along with the cross correlation function, cross

covariance function, and cross power spectral density between two stationary random

signals.

1.2.1 Autocorrelation Function, Autocovariance Function, and Power Spectral Density

Let x(t) be a wide-sense stationary random signal of complex value with time variable

t ∈ (−∞,∞) or t ∈ [0,∞]. The random signal x(t) has a constant mean independent of

time t, which is
μx = E

{︀
x(t)
}︀
, (1.2.1)

and has autocorrelation and autocovariance functions dependent solely on the differ-

ence of time τ = t
1
− t

2
, which are defined by

Rxx(τ) def= E

{︁
x(t)x*(t − τ)

}︁
, (1.2.2)

Cxx(τ) def= E

{︁
[x(t) − μx][x(t − τ) − μx]*

}︁

= Rxx(τ) − μxμ*x = Rxx(τ) − |μx|2.
(1.2.3)

Autocorrelation and autocovariance functions are also called correlation and covari-

ance functions for brevity. The quantity τ = t
1
− t

2
, which is the time difference between

two signal samples, is called lag.
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The correlation and covariance functions of complex signals are complex in general

and have the following properties.

R*xx(τ) = Rxx(−τ), (1.2.4)

C*xx(τ) = Cxx(−τ), (1.2.5)

|Cxx(τ)| ≤ Cxx(0), ∀τ, (1.2.6)

where the notation ∀τ means that the equations hold for any τ.
We give the proof for the first equation, and leave the rest as exercises. According

to the definition, we have

R*xx(τ) = E

{︁
x(t)x*(t − τ)

}︁
.

After the variable substitution u = t − τ, the above equation turns into

R*xx(τ) = E

{︁
x(u + τ)x*(u)

}︁
= Rxx(−τ).

In particular, for real signal x(t), we have

Rxx(τ) = Rxx(−τ), (1.2.7)

Cxx(τ) = Cxx(−τ), (1.2.8)

Rxx(τ) ≤ Rxx(0). (1.2.9)

The relation between the autocorrelation function and the autocovariance function is

summarized below.

(1) For random signal x(t) with zero mean, the autocorrelation function and autoco-

variance function are identical:

Rxx(τ) = Cxx(τ). (1.2.10)

(2) When τ = 0, the autocorrelation function of signal x(t) is reduced to the second
order moment, i.e.,

Rxx(0) = E

{︁
x(t)x*(t)

}︁
= E

{︁
|x(t)|2

}︁
. (1.2.11)

(3) When τ = 0, the autocovariance function of signal x(t) is reduced to the variance
of x(t)¹, i.e.,

Cxx(0) = var

[︀
x(t)
]︀
= E

{︁
[x(t) − μx][x(t) − μx]*

}︁

= E

{︁
|x(t) − μx|2

}︁
= E

{︁
|x(t)|2

}︁
− |μx|2

= Rxx(0) − |μx|2.

(1.2.12)

1 The variance of complex random variable is denoted as var [ξ ] which is defined by var [ξ ] =

E

{︀
[ξ − E {ξ}][ξ − E {ξ}]*

}︀
= E

{︀
|ξ − E {ξ} |2

}︀
, with σ =

√︀
var [ξ ] as the standard deviation.
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Consider the stochastic process x(t) on finite interval −T < t < T. The Fourier transform
of x(t) is

XT(f ) =
T∫︁

−T

(x(t) − μx)e−j2πft dt,

and the power spectral on the interval is

|XT(f )|2
2T ≥ 0.

Taking the ensemble average of the power spectral function yields

PT(f ) = E

{︂
|XT(f )|2
2T

}︂

=

1

2T

T∫︁

−T

T∫︁

−T

E

{︁
[x(t

1
) − μx][x(t2) − μx]*

}︁
e

−j2πf (t
1
−t

2
)

dt
1
dt

2

=

2T∫︁

−2T

Cxx(τ)
(︂
1 −

|τ|
2T

)︂
e

−j2πfτ
dτ

≥ 0.

Evidently, PT(f ) represents how the average power of stochastic process x(t) on interval
(−T, T) is distributed with frequency f . As T → ∞, the distribution yields the power

spectral density as

Pxx(f ) = lim

T→∞
PT(f ) =

2T∫︁

−2T

Cxx(τ)e−j2πfτ dτ. (1.2.13)

The above equation is essential in that it is the definition of power spectral density and

at the same time shows that the power spectral density must be non-negative. More

properties of power spectral density are listed below.

(1) Power spectral density Pxx(f ) is real.
(2) Power spectral density is non-negative, i.e., Pxx(f ) ≥ 0.
(3) The autocovariance function is the inverse Fourier transform of power spectral

density. That is,

Cxx(τ) =
∞∫︁

−∞

Pxx(f )ej2πfτ df . (1.2.14)

(4) Integration of power spectral density over frequency gives the variance of signal

{x(t)}. That is,
∞∫︁

−∞

Pxx(f ) df = var

[︀
x(t)
]︀
= E

{︁
|x(t) − μx|2

}︁
. (1.2.15)
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(5) If {x(t)} is stochastic process with zero mean, the covariance function and the cor-

relation function are identical, i.e., Cxx(τ) = Rxx(τ). Then, Eqs. (1.2.13) and (1.2.14)
are respectively equivalent to

Pxx(f ) =
∞∫︁

−∞

Rxx(τ)e−j2πfτ dτ, (1.2.16)

Rxx(τ) =
∞∫︁

−∞

Pxx(f )ej2πfτ df . (1.2.17)

The relation determined by Eqs. (1.2.16) and (1.2.17) is referred to as Wiener-

Khinchine theorem, which states that for a wide-sense stationary stochastic

process with zero mean, the power spectral density Pxx(f ) and the autocorrelation
function Rxx(τ) constitute a Fourier transform pair.

(6) For a stochastic process {x(t)}with zero mean, integration of its power spectral

density equals the value of correlation function at zero lag (τ = 0). Namely,

∞∫︁

−∞

Pxx(f ) df = E

{︁
|x(t)|2

}︁
= Rxx(0). (1.2.18)

We now prove Property (1) of power spectral density. According to the definition of

power spectral density of complex stochastic process x(t), we immediately have

P*xx(f ) =
∞∫︁

−∞

C*xx(τ)ej2πfτ dτ =
∞∫︁

−∞

Cxx(−τ)ej2πfτ dτ,

which after variable change τ′ = −τ gives

P*xx(f ) = −
−∞∫︁

∞

Cxx(τ′)e−j2πfτ
′

dτ′ =
∞∫︁

−∞

Cxx(τ′)e−j2πfτ
′

dτ′ = Pxx(f ).

That is, power spectral density Pxx(f ) must be a real function in frequency f .
The proof for Property (2) of power spectral density is more involved and will be

given later.

Further, if x(t) is real, its power spectral density Pxx(f ) must be a real even function.

If the power spectral density is constant, i.e., Pxx(f ) = N0
, the stochastic process

{x(t)} is called white noise since its power (or energy) is independent of frequency
and is similar to the energy distribution of white light. In contrast, noise whose power

spectral density is not constant is called colored noise.

Example 1.2.1 Let {x(t)} be a real sequence whose samples at any time are inde-

pendent and have zero mean and variance σ2. Then, {x(t)} is a sequence of white
noise.
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Solution. Let vector x = [x(1), · · · , x(N)]. Based on given facts, for each element x(i)
in the vector, we have E

{︀
x(i)
}︀
= 0 and

E

{︀
x(i)x(i − τ)

}︀
= Rxx(τ) =

{︃
σ2, τ = 0,

0, τ ̸= 0.

Since {x(t)} has zero mean, its covariance and correlation functions are the same,

which gives

Cxx(τ) = Rxx(τ) = σ2δ(τ), τ = 0, ±1, ±2, · · · .

Thus, {x(t)} has power spectral density as

Pxx(f ) =
∞∫︁

−∞

Cxx(τ)e−j2πfτ dτ =
∞∫︁

−∞

σ2δ(τ)e−j2πfτ dτ = σ2,

which shows that {x(t)} is indeed a white noise sequence. □

A function is positive definite if its Fourier transform is positive everywhere. A

function is non-negative definite or positive semidefinite if its Fourier transform is

non-negative. As the power spectral density is non-negative, the covariance function

is positive semidefinite.

Consider a discrete-time stationary random signal x(n) (n = 1, · · · , N). Denote
x(n) = [x(1), · · · , x(N)]T as the observation vector of random signal {x(n)}. Then, the
correlation function matrix is defined by

R def

= E

{︁
x(n)xH(n)

}︁
=

⎡
⎢⎢⎢⎢⎣

Rxx(0) Rxx(−1) · · · Rxx(−N + 1)

Rxx(1) Rxx(0) · · · Rxx(−N + 2)

.

.

.

.

.

.

.

.

.

.

.

.

Rxx(N − 1) Rxx(N − 2) · · · Rxx(0)

⎤
⎥⎥⎥⎥⎦
, (1.2.19)

where xH(n) is the conjugate transpose of x(n).
The structure of the correlation function matrix in Eq. (1.2.19) is rather special in

that not only the principal diagonal of the matrix has the same elements, but each

diagonal other than the principal one has a constant element. The matrix with such

property is called the Toeplitz matrix.

1.2.2 Cross Correlation Function, Cross Covariance Function, and Cross Power
Spectral Density

Next we discuss the statistics involving two stationary complex random signals x(t)
and y(t). Let

μx = E

{︀
x(t)
}︀

and μy = E

{︀
y(t)
}︀
, (1.2.20)
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which are both constant.

The cross correlation and cross corvarance functions between two complex random

signals x(t) and y(t) are respectively defined by

Rxy(t1, t2)
def

= E

{︁
x(t

1
)y*(t

2
)

}︁
, (1.2.21)

Cxy(t1, t2)
def

= E

{︁
[x(t

1
) − μx][y(t2) − μy]*

}︁
= Rxy(t1, t2) − μxμ*y . (1.2.22)

If both Rxy(t1, t2) = Rxy(t1 − t2) and Ryx(t1, t2) = Ryx(t1 − t2) depend solely on the lag
t
1
− t

2
, x(t) and y(t) are jointly stationary.

The cross correlation and cross covariance functions of two complex signals which

are jointly stationary are complex in general and have the properties below.

R*xy(τ) = R*yx(−τ), (1.2.23)

|Rxy(τ)|2 ≤ |Rxx(0)| · |R*yy(0)|, ∀τ, (1.2.24)

C*xy(τ) = C*yx(−τ). (1.2.25)

When μx = 0 and μy = 0, cross covariance and cross correlation functions are identical:

Cxy(τ) = Rxy(τ). (1.2.26)

With the cross covariance function, the cross correlation coefficient can be defined as

ρxy(τ) =
Cxy(τ)√︀

Cxx(0)Cyy(0)
. (1.2.27)

It can be shown that

|ρxy| ≤ 1, ∀τ. (1.2.28)

We now give a physical interpretation of the cross correlation coefficient. Notice that

the cross covariance function involves the product of two different signals x(t) and y(t).
In general, the two signals which have their means removed could have common parts,

which correspond to the deterministic components, and non-common parts, which

are the stochastic components. The sample values from the product of the common

parts always have consistent signs which have the common parts strengthened and

preserved, whereas the non-common parts of the two signals are random and thus

result in product values with both positive and negative signs, which after taking

expectation to get smoothed out. This indicates that the cross covariance function can

extract the common parts of two signals and suppress the non-common parts. Hence,

the cross covariance function can be utilized to characterize the similarity between two

signals. Nevertheless, the similarity measure defined by the cross covariance function

could be awkward in application as it is in the form of absolute value. In contrast, the

cross correlation coefficient derived from normalizing the cross covariance function is

more effective in measuring the similarity between two signals. To be more specific,

the two signals are more alike as the cross correlation coefficient comes close to one.

Conversely, the difference between the two signals becomes more evident when the

cross correlation coefficient goes to zero.
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Example 1.2.2 Consider two complex harmonic signals x(t) = Aejω1
t
and y(t) =

Bejω2
t
where A and B are Gaussian random variables with probability densities

fA(a) =
1√
2πσ

1

e

−a2/(2σ2
1

)

, fB(b) =
1√
2πσ

2

e

−b2/(2σ2
2

)

.

Suppose that A and B are independent random variables. Derive the autocovariance

function Rxx(τ) and the cross covariance function Cxy(τ).

Solution. As ejωi t (i = 1, 2) are deterministic functions, and the amplitudes A and B are
random variables with E {A} = E {B} = 0, E

{︀
A2
}︀
= σ2

1
, and E

{︀
B2
}︀
= σ2

2
, the means

of x(t) and y(t) are also those of random variables A and B, respectively. That is,

μx = E

{︁
Aejω1

t
}︁
= E {A} ejω1

t
= 0,

μy = E

{︁
Bejω2

t
}︁
= E {B} ejω2

t
= 0.

Therefore, Cxx(τ) = Rxx(τ) and Cxy(τ) = Rxy(τ).
Direct derivation gives

Rxx(τ) = E

{︁
Aejω1

t
[Aej(ω1

t−ω
1
τ)
]

*

}︁
= E

{︁
A2ejω1

τ
}︁
= E

{︁
A2
}︁
e

jω
1
τ
= σ2

1
e

jω
1
τ
.

Noticing that A and B are independent, we have

Cxy(τ) = E

{︁
Aejω1

t
[Bej(ω2

t−ω
2
τ)
]

*

}︁
= E

{︁
ABej(ω1

−ω
2
)t
e

jω
2
τ
}︁

= E {A}E {B} ej(ω1
−ω

2
)t
e

jω
2
τ
= 0 · 0 · e

j(ω
1
−ω

2
)t
e

jω
2
τ
= 0,

which shows that x(t) and y(t) are uncorrelated. □

The cross power spectral density of complex signals x(t) and y(t) is defined as the
Fourier transform of the cross covariance function. That is,

Pxy(f ) =
∞∫︁

−∞

Cxy(τ)e−j2πfτ dτ. (1.2.29)

Unlike power spectral density Pxx(f ) which is a real function of frequency f , cross
power spectral density is a complex function, whose real part is called cospectrum and

imaginary part is called quadrature spectrum.

Denote

Pxy(f ) = |Pxy(f )|exp[jϕxy(f )], (1.2.30)

˙ϕxy(f ) =
d

df ϕxy(f ), (1.2.31)

where |Pxy(f )| and ϕxy(f ) are respectively the amplitude and phase of cross power

spectral density, and
˙ϕxy(f ) is the group delay.
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Based on cross power spectral density, coherence function can be defined as

C(f ) def= |Pxy(f )|√︀
Pxx(f )Pyy(f )

, (1.2.32)

which is real and satisfies

|C(f )| ≤ 1. (1.2.33)

Correlation function, covariance function, and correlation coefficient are statistics of

signal in the time domain, belonging to the time-domain feature of signal, whereas

power spectral density and coherence function are statistics of signal in the frequency

domain, and are classified as the frequency-domain feature of the signal. Since covari-

ance function and power spectral density can be converted into each other through

Fourier transform, the signal features in both time and frequency domains are of equal

importance in applications.

The random signal with samples distributed according to the normal distribution

is called Gaussian random signal, while the random signal following non-normal

distribution is called a non-Gaussian random signal. For non-Gaussian signals, suf-

ficient characterization of statistics cannot be achieved by correlation function and

power spectral density alone and calls for the employment of statistics of third order or

higher, which are collectively called high-order statistics. High-order statistics consist

of high-order moments, high-order cumulants, and high-order spectrum, which will

be primarily covered in Chapter 6.

Before processing a stationary signal, the mean of the signal should be estimated

and removed from samples. This procedure is called the centralization of the stationary

signal. From now on, unless otherwise stated, we assume that signals or additive noise

all have zero mean. Due to the obligatory centralization as the preprocessing of signals,

the correlation and covariance functions are generally interchangeable in literature,

since both are equivalent for signals of zero mean.

1.3 Comparison and Discrimination between Two Random Signals

In the previous section, we have discussed the second order statistics of two signals.

In many applications, we are more interested in the comparison of statistics of two

signals, which covers issues such as whether two signals are statistically independent,

uncorrelated, or orthogonal. Some applications may require discrimination between

two signals, to determine whether two signals are strongly correlated or coherent, for

instance.



14 | 1 Random Signals

1.3.1 Independence, Uncorrelatedness, and Orthogonality

1. Independence
Consider two random variables y

1
and y

2
. The two random variables are indepen-

dent if the information of y
1
contains no information about y

2
and vice versa.

The independence of two random variables y
1
and y

2
can also be defined by their

PDFs. Let p(y
1
, y

2
) be the joint PDF of y

1
and y

2
, p(y

1
) be the marginal PDF of y

1
,

which is

p(y
1
) =

∫︁
p(y

1
, y

2
) dy

2
, (1.3.1)

and similarly p(y
2
) be the marginal PDF of y

2
given by

p(y
2
) =

∫︁
p(y

1
, y

2
) dy

1
. (1.3.2)

From the equations above, it can be seen that the two random variables y
1
and y

2
are

independent if and only if

p(y
1
, y

2
) = p(y

1
)p(y

2
). (1.3.3)

To generalize, the components of random vector y = [y
1
, · · · , ym]T are independent if

and only if

p(y) = p(y
1
, · · · , ym) = p(y1) · · · p(ym). (1.3.4)

If random variables y
1
and y

2
are independent, and h

1
(y

1
) and h

2
(y

2
) are functions in

y
1
and y

2
respectively, we have

E

{︀
h
1
(y

1
)h

2
(y

2
)

}︀
= E

{︀
h
1
(y

1
)

}︀
E

{︀
h
2
(y

2
)

}︀
, (1.3.5)

whose proof is given below

[109]

.

E

{︀
h
1
(y

1
)h

2
(y

2
)

}︀
=

∫︁ ∫︁
h
1
(y

1
)h

2
(y

2
)p(y

1
, y

2
) dy

1
dy

2

=

∫︁ ∫︁
h
1
(y

1
)h

2
(y

2
)p(y

1
)p(y

2
) dy

1
dy

2

=

∫︁
h
1
(y

1
)p(y

1
) dy

1

∫︁
h
2
(y

2
)p(y

2
) dy

2

= E

{︀
h
1
(y

1
)

}︀
E

{︀
h
2
(y

2
)

}︀
.

Extending the concept of independence of random variables to the case of two stochas-

tic processes x(t) and y(t), we say signals x(t) and y(t) are statistically independent if
the joint PDF fX,Y (x, y) equals the product of marginal PDFs fX(x) for x(t) and fY (y) for
y(t):

fX,Y (x, y) = fX(x)fY (y). (1.3.6)

2. Uncorrelatedness
Two random signals y

1
(t) and y

2
(t) are uncorrelated if

E

{︀
y
1
(t)y

2
(t)
}︀
= E

{︀
y
1
(t)
}︀
E

{︀
y
2
(t)
}︀
. (1.3.7)
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3. Orthogonality
Two random variables y

1
and y

2
are orthogonal if y

1
contains no component of y

2

and vice versa. The orthogonality of two random variables y
1
and y

2
are denoted as

y
1
⊥ y

2
, which mathematically is defined by

E {y
1
y
2
} = 0. (1.3.8)

By y
1
= x(t) and y

2
= y(t− τ), the orthogonality of two random variables can be directly

extended to the orthogonality of two random processes or signals. That is, two random

processes or signals x(t) and y(t) are orthogonal if for any lag τ, the correlation function
of x(t) and y(t) is identical to zero:

Rxy(τ) = E

{︁
x(t)y*(t − τ)

}︁
= 0, ∀τ. (1.3.9)

For simplicity, the orthogonal signals are denoted as x(t) ⊥ y(t). The notion of orthogo-
nality can also be expressed in the form of inner product as

⟨︀
x(t), y(t − τ)

⟩︀
=

∞∫︁

−∞

x(t)y*(t − τ) dt = 0, ∀τ. (1.3.10)

Next, we summarize the relations among statistical independence, uncorrelatedness,

and orthogonal.

(1) Statistical independence necessarily implies uncorrelatedness, but the converse

does not hold in general. The only exception is the case of the Gaussian stochastic

process, where the statistical independence and uncorrelatedness are equivalent

for arbitrary two Gaussian stochastic processes.

(2) If the means of x(t) and y(t) are both zero, uncorrelatedness and orthogonality are
equivalent.

Therefore, for two Gaussian signals with zero mean, the three concepts of statistical

independence, uncorrelatedness, and orthogonality are equivalent.

It can be seen from the definition of correlation coefficient that as Cxy(τ) = 0, ∀τ,
the correlation coefficient ρxy(τ) = 0, ∀τ. Hence ρxy(τ) = 0 (∀τ) implies that signals

x(t) and y(t) are uncorrelated.
Now consider the correlation coefficient of two special signals x(t) and y(t) =

c · x(t − τ
0
), where c is a complex constant and τ

0
is a real constant. Consequently, x(t)

and y(t) have the following properties.
(1) y(t) and x(t) differ by a complex amplitude c. For c = |c|ejϕc , y(t) differs from x(t)

by amplification or attenuation of |c| times and phase shift of ϕc.
(2) y(t) and x(t) differ by a time delay τ

0
.

The signals with both properties above are called coherent signals. Naturally, y(t) can
be called the coherent signal of x(t) and x(t) the coherent signal of y(t). To underline
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the fact that coherent signals are a replica of each other, coherent signal is called

replica signal occasionally. Since

μy = E

{︀
cx(t)

}︀
= cE

{︀
x(t − τ)

}︀
= cμx , (1.3.11)

Cyy(0) = E

{︁
[y(t) − μy][y(t) − μy]*

}︁

= E

{︁
[cx(t) − cμx][c*x*(t) − c*μ*x]

}︁

= |c|2[Rxx(0) − |μx|2]
= |c|2Cxx(0),

(1.3.12)

and

Cxy(τ) = E

{︁
[x(t) − μx][y(t − τ) − μy]*

}︁

= E

{︁
[x(t) − μx][c*x*(t − τ0 − τ) − c*μ*x]

}︁

= c*E
{︁
[x(t) − μx][x(t − τ0 − τ) − μx]*

}︁

= c*Cxx(τ + τ0), (1.3.13)

the correlation coefficient can be expressed as

ρxy(τ) =
Cxy(τ)√︀

Cxx(0)Cyy(0)
=

c*Cxx(τ + τ0)√︀
Cxx(0)|c|2Cxx(0)

=

c*
|c|
Cxx(τ + τ0)
Cxx(0)

.

Obviously, if τ = −τ
0
, the correlation coefficient of two coherent signals has unit

modulus, i.e.,

|ρxy(−τ0)| = 1, (1.3.14)

which suggest that if the cross correlation coefficient of signals x(t) and y(t) is unit
for some τ = −τ

0
, y(t) must be the coherent signal of x(t) and is time-delayed x(t) by

τ
0
. That is to say, apart from being a tool for detecting signal coherence, the cross

correlation coefficient also provides means for estimating the time delay of two sig-

nals. Coherent signal detection and delay estimation are crucial in many engineering

practices of radar, wireless communications, geophysics, etc. Take radar and wireless

communications for example, where the transmit signal reaches the receiver after mul-

tipath transmission. Themultipath signals are largely coherent but with reduced power

after attenuation. If the coherent signals are collected to achieve the so-called “coherent

combination”, the signal receiving can be beneficial from the combination, which can

effectively increase the energy of the received signal and boost the signal-to-noise ratio,

When signals x(t) and y(t) are coherent, it is easy to verify byEqs. (1.3.12) and (1.3.13)
that

Pyy(f ) = |c|2Pxx(f ) and Pyy(f ) = c*Pxx(f ).

So by definition, the coherence function of coherent signals satisfies

C(f ) = |c*Pxy(f )|√︀
Pxx(f )|c|2Pxx(f )

= 1, ∀f , (1.3.15)
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hence the name.

We summarize the discussion above as follows.

(1) If the cross correlation coefficient ρxy(τ) is identical to zero for any τ, signals x(t)
and y(t) are incoherent.

(2) If the cross correlation coefficient ρxy(τ) has unit modulus for some τ, signals x(t)
and y(t) are coherent.

(3) The coherence function of coherent signals is identical to one for any frequency f .

To sum up, independence, uncorrelatedness, orthogonality, and coherence are of great

importance in characterizing statistical relation between two random signals.

In many applications, the task of signal processing may involve more than one

signal but many signals make up a signal set. For instance, in multiple access of

wireless communications, each user is assigned a unique spreading sequence as its

“transmitting id” which is called the characteristic signal of the user. Then, under what

condition can each signal in the set be used as a characteristic signal? Usually, the

following two conditions are employed.

(1) It should be easy to distinguish each signal x(t) in the set from its time delayed

version x(t − τ).
(2) It should be easy to distinguish each signal x(t) in the set from any other signal

with or without delay.

As a matter of fact, apart from x(t) and y(t − τ), significant difference is also required
by the discrimination of x(t) and −y(t − τ). For example, y(t) and −y(t) must be both

treated when binary symbols is carried by y(t) or y(t) is modulated by some carrier.

Understandably, the larger the variance of signal difference is, the easier the two

signals can be discriminated or identified. Hence, the variance is a proper measure of

distinction between two signals, and the quantity

r(τ) = E

{︁
|x(t) ± y(t − τ)|2

}︁

= E

{︁
[x(t) ± y(t − τ)][x(t) ± y(t − τ)]*

}︁

= E

{︁
|x(t)|2

}︁
+ E

{︁
|y(t)|2

}︁
± E

{︁
x(t)y*(t − τ)

}︁
± E

{︁
y(t − τ)x*(t)

}︁

= Ex + Ey ± Rxy(τ) ± Ryx(−τ)
= Ex + Ey ± Rxy(τ) ± R*xy(τ) (1.3.16)

is defined as the identifiability of two signals.

As can be seen from Eq. (1.3.17), since the real and imaginary parts of cross corre-

lation function Rxy(τ) can be either positive or negative at different τ, the amplitude

of cross correlation function Rxy(τ) must be uniformly small for any τ so that r(τ) can
be maximized at all values of τ. Accordingly, the distinction between signals x(t) and
y(t) together with its delayed version becomes more evident with a smaller value of

correlation. Under the ideal condition of Rxy(τ) = 0 (∀τ), x(t) and y(t) can be perfectly
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discriminated. In other words, x(t) and y(t) can be perfectly discriminated when they

are orthogonal.

Eq. (1.3.17) also applies to the special case of y(t) = x(t), where to fulfill Condition
(1) the signal must have autocorrelation function Rxx(τ) = 0 (∀τ ̸= 0) since Rxx(0) =
E

{︀
|x(t)|2

}︀
is non-zero.

Applying the results above to code division multiple access (CDMA) system in

wireless communications, we know that the characteristic signal allocated to each user

should be close to white noise and the characteristic signals of different users should

be orthogonal to each other.

1.3.2 Gram-Schmidt Orthogonalization Process of Polynomial Sequence

Let functions fi(x) (i = 1, · · · , n) be polynomials of x. {fi(x)} is called a polynomial

sequence. If each element fi(x) in the sequence cannot be expressed by a linear combi-

nation of the others, the polynomials are linearly independent. {f
1
(x), f

2
(x), f

3
(x)}with

f
1
(x) = 1, f

2
(x) = x, and f

3
(x) = x2 is an example of linearly independent polynomial

sequence.

Let x take values in interval [a, b] and define the inner product between fi(x) and
fk(x) as

⟨︀
fi(x), fk(x)

⟩︀
def

=

b∫︁

a

fi(x)f *k (x) dx. (1.3.17)

So, if linearly independent polynomial sequence {fi(x)} satisfies
⟨︀
fi(x), fk(x)

⟩︀
= 0, ∀i ̸= k, (1.3.18)

{fi(x)} is an orthogonal polynomial sequence. Further, if it also holds along with

Eq. (1.3.18) that ⟨︀
fi(x), fi(x)

⟩︀
= 1, ∀i = 1, · · · , n, (1.3.19)

{fi(x)} is called an orthonormal polynomial sequence.

The orthonormal polynomial sequence {ϕi(x)} can be generated from a linearly

independent polynomial sequence {fi(x)} by Gram-Schmidt orthogonalization process.

Let

⃦⃦
f (x)

⃦⃦
=

⟨︀
f (x), f (x)

⟩︀
1/2

=

⎡
⎣

b∫︁

a

|f (x)|2 dx

⎤
⎦
1/2

(1.3.20)

be the norm of the function f (x).
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Gram-Schmidt orthogonalization process then operates as follows.

ϕ
1
(x) = f

1
(x)⃦⃦

f
1
(x)
⃦⃦ , (1.3.21)

ϕ
2
(x) =

f
2
(x) −

⟨︀
f
2
(x), ϕ

1
(x)
⟩︀
ϕ
1
(x)⃦⃦

f
2
(x) −

⟨︀
f
2
(x), ϕ

1
(x)
⟩︀
ϕ
1
(x)
⃦⃦ , (1.3.22)

.

.

.

ϕk(x) =
fk(x) −

∑︀k−1
i=1
⟨︀
fk(x), ϕi(x)

⟩︀
ϕi(x)⃦⃦

⃦fk(x) −
∑︀k−1

i=1
⟨︀
fk(x), ϕi(x)

⟩︀
ϕi(x)

⃦⃦
⃦
, k = 2, · · · , n. (1.3.23)

1.4 Linear System with Random Input

The previous discussion is related to the statistics of two random signals. But in a large

number of signal processing applications, one may be interested in the statistics of

the input and output of a linear system, especially the power spectral density of the

system output.

1.4.1 The Power Spectral Density of System Output

Suppose that a linear system is time-invariant with input random signal {x(t)}. Then
the system output y(t), which is also random, is expressed by the convolution between

the input and the impulse response of the system h(t), i.e.,

y(t) = x(t) * h(t) =
∞∫︁

−∞

h(u)x*(t − u) du (1.4.1)

= h(t) * x(t) =
∞∫︁

−∞

x(u)h*(t − u) du. (1.4.2)

Obviously, if the input is an impulse signal x(t) = δ(t), the output or response is given
by

y(t) =
∞∫︁

−∞

h(t − τ)δ(τ) dτ = h(t), (1.4.3)

which is exactly the reason why h(t) is named impulse response.

A linear time-invariant system is called causal system if

h(t) = 0, τ < 0, (1.4.4)

which suggests that before there is any input (cause), there is no system output (result).

If bounded input yields bounded output, the system is stable, which requires impulse
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response to satisfy

∞∫︁

−∞

|h(t)|dt < ∞. (1.4.5)

The condition requires that the impulse response is absolute integrable, whose proof

is left as an exercise.

The Fourier transform of the impulse response

H(f ) =
∞∫︁

−∞

h(t)e−j2πft dt (1.4.6)

is called the transfer function of a linear system. Next, we derive the first order (mean)

and second order statistics (covariance function and power spectral density) of system

output.

Taking expectation of both sides of Eq. (1.4.1) yields²

E

{︀
y(t)
}︀
=

∞∫︁

−∞

E

{︀
x(t − u)

}︀
h(u) du = E

{︀
x(t)
}︀
* h(t). (1.4.7)

Noting that the impulse response h(t) of linear time-invariant system is non-stochastic,

we have from Eq. (1.4.7) that the mean of output y(t) is the convolution of the mean

E

{︀
x(t)
}︀
of system input x(t) and system impulse response.

If E

{︀
x(t)
}︀
= μx is constant, Eq. (1.4.7) gives

E

{︀
y(t)
}︀
= μx

∞∫︁

−∞

h(t) dt = μxH(0) = constant, (1.4.8)

where H(0) =
∫︀
∞

−∞

h(t) dt is the value of transfer function H(f ) at zero frequency. In the
special case of x(t) being zero-mean random signal, the output y(t) is a random signal

with zero-mean as well.

Now consider the autocovariance function of system output when the input x(t) is a
wide-sense stationary stochastic process. By the convolutions in Eqs. (1.4.1) and (1.4.7),

it is straightforward to derive that

[y(t) − μy][y(t − τ) − μy]*

=

∞∫︁

−∞

∞∫︁

−∞

[x(t − u
1
) − μx][x*(t − τ − u2) − μ*x]h(u1)h*(u2) du1 du2.

2 When the function f (x) is absolute integrable, i.e.,
∫︀
∞

−∞

f (x) dx < ∞, expectation and integration can

be exchanged. In other words, E

{︀∫︀
∞

−∞

f (x) dx
}︀
=

∫︀
∞

−∞

E {f (x)} dx.
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Hence, the autocovariance function of system output is given by

Cyy(τ) = E

{︁
[y(t) − μy][y(t − τ) − μy]*

}︁

=

∞∫︁

−∞

∞∫︁

−∞

E

{︁
[x(t − u

1
) − μx][x*(t − τ − u2) − μ*x]

}︁
h(u

1
)h*(u

2
) du

1
du

2

=

∞∫︁

−∞

∞∫︁

−∞

Cxx(τ − u1 + u2)h(u1)h*(u2) du1 du2.

(1.4.9)

Applying Fourier transformwith respect to lag τ to both sides of the equality in Eq. (1.4.9)
gives the power spectral density of the system output:

Pyy(f ) =
∞∫︁

−∞

⎡
⎣
∞∫︁

−∞

∞∫︁

−∞

Cxx(τ − u1 + u2)h(u1)h*(u2) du1 du2

⎤
⎦
e

−j2πfτ
dτ,

which with variable change τ′ = τ − u
1
+ u

2
is reduced to

Pyy(f ) =
∞∫︁

−∞

Cxx(τ′)e−j2πfτ
′

dτ′
∞∫︁

−∞

h(u
1
)e

−j2πfu
1

du
2

∞∫︁

−∞

h*(u
2
)e

j2πfu
2

du
2

=Pxx(f )H(f )H*(f ),

or equivalently

Pyy(f ) = Pxx(f )|H(f )|2. (1.4.10)

As is revealed by Eq. (1.4.10), for the linear system H(f ) excited by random input x(t),
the power spectral density Pyy(f ) of system output is the product of Pxx(f ), the power
spectral density of system input, and |H(f )|2, the squared modulus of system transfer

function. The goal of power spectral analysis is to extract the output power spectral

density from N observations of system input. We will present a detailed discussion of

power spectral analysis and estimation in Chapter 4.

In particular, when system input x(t) with zero mean produces system output y(t)
with the same mean of zero, the statistics

E

{︁
|y(t)|2

}︁
= Ryy(0) =

∞∫︁

−∞

Pxx(f )|H(f )|2 df (1.4.11)

gives the average power of the output signal.

Example 1.4.1 Langevin equation and Brown motion. If y(0) = 0 and y(t) obeys the
following differential equation, known as the Langevin equation,

y′(t) + αy(t) = n(t), t ≥ 0,
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y(t) is called Brown motion. y(t) can be viewed as an output of a linear system whose

input is x(t) = n(t)U(t) and impulse response is h(t) = e

−αtU(t) with U(t) as the unit
step function. n(t) is stationary white noise with zero mean and covariance function

Cnn(τ) = σ2nδ(τ). Find the covariance function Cyy(τ) and the average power of y(t).

Solution. As Cnn(τ) = σ2nδ(τ), the power spectral density of the linear system input

is Pnn(f ) = σ2n. The system transfer function system can be derived from the impulse

response as

H(f ) =
∞∫︁

−∞

e

−αtU(t)e−j2πft dt =
∞∫︁

0

e

−(α+j2πf )t
dt = 1

α + j2πf .

Thus, the power spectral density of output is

Pyy(f ) = Pnn|H(f )|2 = σ2n
⃒⃒
⃒⃒ 1

α + j2πf

⃒⃒
⃒⃒
2

=

σ2n
α2 + 4π2f 2 ,

which by Fourier transform yields the covariance function of system output

Cyy(τ) =
∞∫︁

−∞

σ2n
α2 + 4π2f 2 e

j2πft
df = σ2n

2α e
−α|τ|

.

As the input is a stochastic process with zero mean, the output of the linear system is

also of zero mean and has average energy as

E

{︁
|y(t)|2

}︁
= Ryy(0) = Cyy(0) =

σ2n
2α .

□

1.4.2 Narrow Band Bandpass Filter

Consider a narrow band bandpass filter, which has an ideal transfer function

H(f ) =
{︃
1, a ≤ f ≤ b,
0, otherwise,

(1.4.12)

where b − a takes a small value.

From Eq. (1.4.10), the output power spectral density of the signal x(t) passing
through the narrow band bandpass filter can be expressed as

Pyy(f ) =
{︃
Pxx(f ), a ≤ f ≤ b,
0 otherwise.

(1.4.13)
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For x(t) with zero mean, the output y(t) is of zero mean and has an average power

E

{︁
|y(t)|2

}︁
=

∞∫︁

−∞

Pyy(f ) dy =
b∫︁

a

Pxx(f ) df . (1.4.14)

It can be seen that the signal power is restricted to a narrow band [a, b]. The concen-
tration of power is referred to as power localization.

Invoking the result of power localization in Eq. (1.4.14), we can effortlessly prove

that the power spectral density of any stationary stochastic process x(t) is non-negative
at all frequency f , i.e., Pxx(f ) ≥ 0. Applying the narrow band bandpass filter to signal

x(t), we have from Eq. (1.4.14) that the average power E

{︀
|y(t)|2

}︀
is always non-negative.

So,

E

{︁
|x(t)|2

}︁
=

b∫︁

a

Pxx(f ) df ≥ 0

holds for any a and b, which leads to Pxx(f ) ≥ 0.
The white noise is of wide band since it has uniform power throughout the fre-

quency range. But in signal processing, onemay encounter noise of a different character,

which is of narrow band and is thus called narrow band noise. Clearly, narrow band

noise can be viewed as the output of a narrow band bandpass filter with wide band

noise as the input.

Formally, random signal {x(t)} is called a narrow band noise process if its power

spectral density is non-zero within an extremely narrow range of frequency whose

bandwidth ∆f ≤ fc with fc as the center of the frequency range (or the center frequency
for short). That is, the power spectral density has an expression as

Pxx(f )

⎧
⎨
⎩
̸= 0, if f ∈

(︁
±fc − ∆f

2

, ±fc + ∆f
2

)︁
,

= 0, otherwise.

(1.4.15)

An alternative expression for the narrow band noise process x(t) is

x(t) = x
I
(t) cos(2πfc t) + xQ(t) cos(2πfc t), (1.4.16)

where x
I
(t) and x

Q
(t) are orthogonal stationary processes with zero mean. That is,

E

{︀
x
I
(t)
}︀
= 0, (1.4.17)

E

{︀
x
Q
(t)
}︀
= 0, (1.4.18)

E

{︀
x
I
(t)x

Q
(t − τ)

}︀
= 0, ∀τ, (1.4.19)

E

{︀
x
Q
(t)x

I
(t − τ)

}︀
= 0, ∀τ. (1.4.20)

Due to orthogonality, x
I
(t) and x

Q
(t) respectively are known as the inphase and quadra-

ture components of narrow band noise x(t). Note that as both x
I
(t) and x

Q
(t) have zero

mean, the orthogonal components of x
I
(t) and x

Q
(t) are uncorrelated as well.
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Define

Rx
I
,x

I

(τ) def= E

{︀
x
I
(t)x

I
(t − τ)

}︀
,

Rx
Q
,x

Q

(τ) def= E

{︀
x
Q
(t)x

Q
(t − τ)

}︀
.

Rx
I
,x

Q

(τ) def= E

{︀
x
I
(t)x

Q
(t − τ)

}︀
,

Rx
Q
,x

I

(τ) def= E

{︀
x
Q
(t)x

I
(t − τ)

}︀
.

As both cos(2πfc t) and sin(2πfc t) are deterministic, we have

E

{︀
x(t)
}︀
= E

{︀
x
I
(t) cos(2πfc t)

}︀
+ E

{︀
x
Q
(t) sin(2πfc t)

}︀

= E

{︀
x
I
(t)
}︀
cos(2πfc t) + E

{︀
x
Q
(t)
}︀
sin(2πfc t)

= 0 + 0

= 0,

(1.4.21)

and

Rx
I
,x

Q

(τ) = 0, ∀τ, (1.4.22)

Rx
Q
,x

I

(τ) = 0, ∀τ. (1.4.23)

For the narrow band noise process, the correlation function and covariance function

are equivalent as a result of zeromean. Then, from the definition of correlation function

and based on Eqs. (1.4.19) and (1.4.20), the covariance function of narrow band noise

process can be derived as

Cxx(τ) =Rxx(τ)
=E

{︀
[x

I
(t) cos(2πfc t) + xQ(t) sin(2πfc t)]

×[x
I
(t − τ) cos(2πfc(t − τ)) + xQ(t − τ) sin(2πfc(t − τ))]

}︀

(a)
= cos(2πfc t) cos(2πfc(t − τ))E

{︀
x
I
(t)x

I
(t − τ)

}︀

+ sin(2πfc t) sin(2πfc(t − τ))E
{︀
x
Q
(t)x

Q
(t − τ)

}︀

= cos(2πfc t) cos(2πfc(t − τ))Rx
I
,x

I

(τ)
+ sin(2πfc t) sin(2πfc(t − τ))Rx

Q
,x

Q

(τ),

(1.4.24)

where the equality (a) follows from the orthogonality of x
I
and x

Q
.

It is worth mentioning that in this section we confine the discussion to the second

order statistics of the input and output of linear system excited by Gaussian signal

and the high order statistics have not been touched upon. When a linear system is

excited by non-Gaussian signals, compared with second order statistics, the role of

higher-order statistics of the system output will be more prominent. Chapter 6 will be

devoted to related topics.
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Summary

In this chapter, we first reviewed the basic concept of the random signal along with

the definitions and properties of covariance function and power spectral density. From

the perspective of the four fundamental statistical relations of independence, uncorre-

latedness, orthogonality, and coherence, the comparison and discrimination of two

random signals were further discussed. Subsequently, the Gram-Schmidt orthogonal-

ization procedure for the polynomial sequence was introduced. Finally, focusing on

the linear system excited by random signals, the statistics of system input and output

were analyzed, which shed more insight into the relationship between two random

signals.

The basic statistics of random signals described in this chapter will provide a

theoretical foundation for topics of random signal processing in succeeding chapters.

Exercises

1.1 A discrete-time random signal is the superposition of two sinusoidal signals:

x(t) = A sin(ω
1
t) + B sin(ω

2
t), ωi = 2πfi , i = 1, 2,

where the amplitudes A and B are independent Gaussian random variables with PDFs

fA(a) =
1√
2πσ

1

e

−a2/(2σ2
1

)

,

fB(b) =
1√
2πσ

2

e

−b2/(2σ2
2

)

.

Give the condition for x(t) being strictly stationary.
1.2 The stochastic process expressed by

x(t) =
{︃
1 · q(t), with probability p,
−1 · q(t), with probability (1 − p),

is called the Bernoulli process. In the expression, q(t) = [u(t − (n − 1)T) − u(t − nT)]
with integer n and parameter T, and u(t) is the step function, i.e.,

u(t) =
{︃
1, t ≥ 0,
0, t < 0.

Find the PDF of x(t).
1.3 Consider the signal

x(t) = A cos(ωc t + π/2)
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where 0 ≤ t ≤ T, fc = 1

2T , and ωc = 2πfc is the carrier frequency. The amplitude of the

signal is random, i.e.,

A =

{︃
1 · q(t), with probability p,
−1 · q(t), with probability (1 − p),

where q(t) = [u(t − (n − 1)T) − u(t − nT)] with integer n and parameter T, and u(t) is
the step function. The signal is termed as amplitude shift keying signal. Find the joint

PDF of x(t).
1.4 Let random signal x(t) = sin(αt), where random variable α has finite fourth order
moment, i.e., E

{︀
|α|4

}︀
< ∞. Find the mean of random variable mx =

dx(t)
dt .

1.5 The time average of a real stochastic process {x(t)} is given by

x̄ = 1

T

T∫︁

0

x(t) dt.

Furthermore, we have

m(t) = E

{︀
x(t)
}︀
= νμ, ∀t

C(t, s) = E

{︀
[x(t) − m(t)][x(s) − m(s)]

}︀
= νμe−(t−s)/μ , ∀t, s ≥ 0.

Find E {x̄} and var [x̄].
1.6 Let harmonic (sinusoidal) signal x(t) = A cos(ω

0
t −ϕ), where the frequency ω

0
is

real and fixed, phase ϕ is a random variable uniformly distributed on [0, 2π]. Consider
the two cases below.

(1) Amplitude A is real and fixed;

(2) Amplitude A is a random variable of Rayleigh distribution, which is independent

of ϕ and has PDF

fA(a) =
a
σ2 e

=a2/(2σ2)
, a ≥ 0.

Question: is the harmonic signal wide sense stationary in the two cases?

1.7 Prove that the covariance function of the wide sense stationary stochastic process

x(t) has the following properties.

C*xx(τ) = Cxx(−τ),
|Cxx(τ)| ≤ Cxx(0).

1.8 Prove the following properties of the cross correlation and covariance functions

of two wide sense stationary stochastic processes:

C*xy(τ) = Cyx(−τ),
R*xy(τ) = Ryx(−τ),
|Rxy(τ)| ≤ Rxx(0)Ryy(0).
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1.9 Consider two harmonic signals x(t) and y(t):

x(t) = A cos(ωc t + ϕ),
y(t) = B cos(ωc t),

whereA andωc are positive constants,ϕ is a randomvariable fromuniformdistribution

and has PDF

f (ϕ) =
{︃

1

2π , 0 ≤ ϕ ≤ 2π,
0, otherwise,

and B is a normal random variable with zero mean and unit variance and has PDF

fB(b) =
1√
2π

e

−b2/2
, −∞ < b < ∞.

(1) Find the mean μx(t), variance σ2x(t), autocorrelation function Rxx(τ), and autoco-
variance function Cxx(τ) of x(t).

(2) If ϕ and B are independent random variables, find the cross correlation function

Rxy(τ) and autocovariance function Cxy(τ) of x(t) and y(t).

1.10 Let random signal z(t) be the sum of two random signals x(t) and y(t), i.e.,
z(t) = x(t) + y(t). Suppose that both x(t) and y(t) have zero mean. Find the covariance

function Czz(τ) of random signal z(t).
1.11 Let

x(t) = A cos(2πfc t + ϕ) + n(t)

where ϕ is a random variable uniformly distributed on [−π, π] and has PDF

f (ϕ) =
{︃

1

2π , −π ≤ ϕ < π,
0 otherwise,

and n(t) is stationary Gaussian noise with zero mean and has power spectral density

Pn(f ) =
{︃
N
0

2

, |f − fc| ≤ B/2,
0, otherwise.

ϕ and n(t) are independent. Have x(t) as the input of a “square-law circuit” and y(t) =
x2(t) as the output. Find the mean and autocorrelation function of output signal y(t).

Hint: the third order moment of zero-mean Gaussian random process is identical to
zero, i.e., E

{︀
n(t)n2(t − τ)

}︀
= E

{︀
n2(t)n(t − τ)

}︀
= 0, ∀τ.

1.12 Random signal x(t) has zero mean and power spectral density

Px(f ) =
{︃
σ2
B , −

B
2

≤ f ≤ B
2

,

0, otherwise,

where σ2 > 0. Find the autocorrelation function and power of the signal.
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1.13 Given the joint PDF of random variables x and y

f (x, y) = αexp
{︂
−

1

2(1 − r2)

(︂
(x − μx)2

σ2x
− 2r (x − μx)(y − μy)σxσy

+

(y − μy)2

σ2y

)︂}︂
,

where r is the correlation coefficient of x and y, i.e.,

r =
E

{︀
(x − μx)(y − μy)

}︀

σxσy
,

prove the following results.

(1) The marginal PDF of x and y are

f (x) = 1√
2πσx

exp

(︂
−

(x − μx)2

2σ2x

)︂
,

f (y) = 1√
2πσy

exp

(︂
−

(y − μy)2

2σ2y

)︂
,

which shows that both x and y are normal random variables.

(2) If random variables x and y are uncorrelated, they are also independent.

1.14 Let

y(t) =
∞∫︁

−∞

h(u)x(t − u) du.

Prove that for the system to be stable, the impulse response should be absolute inte-

grable, i.e.,

∞∫︁

−∞

|h(t)|dt < ∞.

1.15 The linearly independent polynomial sequence {fi(x)} is composed of polynomi-

als f
1
(x) = 1, f

2
(x) = x, and f

3
(x) = x2 with x taking value on interval [−1, 1].

(1) Use Gram-Schmidt orthogonalization algorithm

ϕk =
fx −

∑︀k−1
i=1 ⟨fk , ϕi⟩ϕi⃦⃦

⃦fx −
∑︀k−1

i=1 ⟨fk , ϕi⟩ϕi
⃦⃦
⃦
, k = 1, · · · , n,

to transform {fi(x)} into orthogonal sequence {ϕi(x)};
(2) Use Gram-Schmidt orthogonalization algorithm in the form of matrix norm

dk =

⃦⃦
⃦⃦
⃦⃦
⃦⃦
⃦⃦
⃦⃦

⟨f
1
, f

1
⟩ ⟨f

1
, f

2
⟩ · · · ⟨f

1
, fk⟩

⟨f
2
, f

1
⟩ ⟨f

2
, f

2
⟩ · · · ⟨f

2
, fk⟩

.

.

.

.

.

.

.

.

.

.

.

.

⟨fk−1, f1⟩ ⟨f
−
1k, f

2
⟩ · · · ⟨fk−1, fk⟩

f
1

f
2

· · · fk

⃦⃦
⃦⃦
⃦⃦
⃦⃦
⃦⃦
⃦⃦

,

ϕk =
dk

⟨dk , dk⟩1/2
, k = 1, · · · , n,
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to transform {fi(x)} into sequence {ϕi(x)}, and verify that the sequence {ϕi(x)} is
orthonormal.

1.16 Use finite series expansion

x̂(t) =
m∑︁

i=1
ciϕi(t)

to approximate signal x(t). Suppose that the continuous-time basis functions ϕ
1
(t),

· · · , ϕm(t) are known. Find the coefficients c
1
, · · · , cm.

1.17 Use finite series expansion

x̂(t) =
m∑︁

i=1
ciϕi(t)

to approximate signal x(t). Suppose that the values of basis functions ϕ
1
(tk). · · · ,

ϕm(tk) at discrete time k = 1, · · · , N are known. Find the coefficients c
1
, · · · , cm.



2 Parameter Estimation Theory
The fundamental task of signal processing is to make a statistical decision related

to the characteristics of signals and (or) systems based on observational data. The

statistical decision theory is mainly concerned with two large categories of problems:

hypothesis testing and estimation. Signal detection and radar maneuvering target

detection are typical problems of hypothesis testing. Estimation theory has a scope

much wider covering both parametric and non-parametric methods. The parametric

method assumes that the data are generated from some probabilistic model which has

a known structure but unknown parameters. Close related to system identification,

the parametric method has optimization theory as its basis, including the criteria

under which the optimality of the estimated parameter can be established and the

approaches by which the optimal parameter estimation can be reached. Contrary to

the parametric method, the non-parametric method does not hold the assumption that

the data are from a certain probabilistic model. Power spectral density estimation and

high order spectral estimation based on discrete Fourier transform are examples of the

non-parametric method.

Regarding signal processing,wehave classic andmodern signal processing. Known

as non-parametric signal processing, classic signal processing relies on Fourier trans-

formwith no reference to the system generating signals. Modern signal processing, also

called parametric signal processing, treats signals as the output of excited systems and

largely employs methods that estimate the model parameters of systems and signals.

Therefore, before the introduction of theories, methods, applications of modern signal

processing, it is necessary to first present the general theory of parameter estimation

as a unified basis and framework.

2.1 Performance of Estimators

Theproblemparameter estimation theory concerns how to identify the exact probability

distribution of random variable x whose presumed cumulative distribution function

is in some given family of distributions. Now, suppose we perform an experiment

that keeps records of realizations, also known as samples or observations, of random

variables, and expect to guess from N samples x
1
, · · · , xn the parameter θ which

determines the probability distribution of x. For example, let x
1
, · · · , xN be N samples

drawn fromnormal distributionN(θ, σ2) where themean parameter θ is to be estimated

from the samples. Undoubtedly there exist various functions of the data which can be

adopted to estimate θ. Among the functions, using the first sample x
1
as the estimate

of θ is the most straightforward. Although x
1
has a mean equal to θ, it is evident

that the estimate of θ from averaging more samples would be much better than the

one using x
1
alone. We may further conjecture that the sample mean x̄N =

1

N
∑︀N

i=1 xi

https://doi.org/10.1515/9783110475562-002
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could be the optimal estimate of θ. In parameter estimation theory, the estimate or

the estimated value of actual parameter θ is normally called the estimator of θ. An
estimator is a statistic and in a sense is the best approximation of the parameter. Then,

how to evaluate ormeasure the proximity between an estimator and the true parameter?

Further, how to estimate the proximity? The study of these problems constitutes the

two key subjects of parameter estimation theory:

(1) Give quantitative definition of the proximity between the estimator and true value.

(2) Study different estimation methods and compare their performance.

2.1.1 Unbiased and Asymptotic Unbiased Estimation

Above all, we give the definition of estimator.

Definition 2.1.1. The estimator of true parameters θ
1
, · · · , θp from N samples is a func-

tion T that maps the N-dim sample space XN to the p-dim parameter space Θ, i.e.,
T : XN → Θ.

For convenience, we only treat the case of p = 1. The estimator T(x
1
, · · · , xN) of θ is

usually denoted as
^θ for simplicity. As an approximate to the parameter θ, the estimator

^θ is thus expected to have proper proximity. The simplest measure of proximity is the

error
^θ−θ of the estimator

^θ. Since the N samples observed under varied circumstances

are random variables and the estimate of θ is random as well, the estimation error

is a random variable. Obviously, using random variable for evaluation can be rather

difficult. Therefore, the estimation error should be made into non-random quantity.

Definition 2.1.2. The bias of estimator ^θ for parameter θ is defined as the expectation
of estimation error, i.e.,

b( ^θ) def= E

{︁
^θ − θ

}︁
= E

{︁
^θ
}︁
− θ. (2.1.1)

The estimator ^θ is said to be unbiased if the bias b( ^θ) is zero or E
{︁
^θ
}︁
= θ, that is, the

expectation of the estimator equals the true parameter.

Example 2.1.1 Let x(1), · · · , x(N) be N independent samples of random signal x(n),

x̄ = 1

N

N∑︁

n=1
x(n) (2.1.2)

be the estimate of mean of x(n) obtained from samples. Taking the expectation of x̄,
we have

E {x̄} = E

{︃
1

N

N∑︁

n=1
x(n)

}︃
=

1

N

N∑︁

n=1
E

{︀
x(n)

}︀
=

1

N

N∑︁

n=1
mx = mx ,
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where mx = E

{︀
x(n)

}︀
is the mean of x(n). Hence, the estimate in Eq. (2.1.2) is an unbi-

ased estimate of the mean of x(n). With the mean estimate x̄, we have

var [x] =
1

N

N∑︁

n=1
[x(n) − x̄]2,

which is the estimate of the variance of x(n).

The estimation that is not unbiased is called biased estimation. Being unbiased is

an important feature that we expect an estimator to have. Nevertheless, it does not

mean that the biased estimate is worthless. As a matter of fact, biased estimate that is

asymptotically unbiased can still be “good” and even be better than unbiased ones.

Definition 2.1.3. Estimator ^θ of true parameter θ is asymptotically unbiased if the bias
b( ^θ) → 0 as the sample size N → ∞. That is,

lim

N→∞
E

{︁
^θN
}︁
= θ, (2.1.3)

where ^θN is the estimator obtained from N samples.

Notice that an unbiased estimator must be asymptotically unbiased but an asymptoti-

cally unbiased estimator is not necessarily biased.

Example 2.1.2 As a typical example, consider the following two estimators of the

autocorrelation function of real random signal x(n)

^R
1
(τ) = 1

N − τ

N−τ∑︁

n=1
x(n)x(n + τ), (2.1.4)

^R
2
(τ) == 1

N

N−τ∑︁

n=1
x(n)x(n + τ). (2.1.5)

Suppose the samples of x(n) are independent. It is easy to verify that

E

{︁
^R
1
(τ)
}︁
= E

{︃
1

N − τ

N−τ∑︁

n=1
x(n)x(n + τ)

}︃
=

1

N − τ

N−τ∑︁

n=1
E

{︀
x(n)x(n + τ)

}︀
= Rx(τ),

(2.1.6)

E

{︁
^R
2
(τ)
}︁
= E

{︃
1

N

N−τ∑︁

n=1
x(n)x(n + τ)

}︃
=

1

N

N−τ∑︁

n=1
E

{︀
x(n)x(n + τ)

}︀
=

(︁
1 −

τ
N

)︁
Rx(τ),

(2.1.7)

where Rx(τ) = E

{︀
x(n)x(n + τ)

}︀
is the true correlation function of random signal x(n).

As is demonstrated by Eqs. (2.1.6) and (2.1.7), the estimator
^R
1
(τ) is unbiased whereas

^R
2
(τ) is biased. However, ^R

2
(τ) is asymptotically unbiased, according to Eq. (2.1.7)

which gives

lim

N→∞
E

{︁
^R
2
(τ)
}︁
= Rx(τ).
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The asymptotically unbiased estimator
^R
2
(τ) is positive semidefinite while the un-

biased estimator
^R
1
(τ) is indefinite. As it is desirable to have the feature of positive

semidefiniteness in many signal processing applications, the biased but asymptotically

unbiased estimator
^R
2
(τ) is much preferred by researchers in comparison with the

scarce usage of the unbiased
^R
1
(τ).

Bias is the expected value of error. But a zero bias does not guarantee that a small error

of estimator occurs with high probability. The notion that reflects the probability of

small estimator error is consistency.

Definition 2.1.4. The estimator ^θ of parameter θ is said to be consistent with θ in proba-
bility if the estimator converges to the true parameter θ with probability one as N → ∞.
That is,

^θ
p
→ θ, when N → ∞, (2.1.8)

where
p
→ stands for convergence in probability.

2.1.2 Effectiveness of Estimators

Unbiasedness, asymptotical unbiasedness, and consistency are statistical properties an

estimator is expected to have. The latter two are related to the behavior of an estimator

when sample size goes to infinity and are known as large sample properties which

involve complicated theoretical analysis. When it comes to small data set with N
sampleswhich ismore frequent in practice, how to assess the performance of estimators

is an issue to be addressed.

1. Comparison of Two Unbiased Estimators.
If
^θ
1
and

^θ
2
are two unbiased estimators obtained from N samples, we prefer the

one with a smaller variance. For example, suppose
^θ
1
has variance larger than

^θ
2
, i.e.,

var[
^θ
1
] > var[

^θ
2
]. This means that values of

^θ
2
are more concentrated than those of

^θ
1

around the true parameter θ. In other words, the probability of ^θ
2
being in the region

(θ−ϵ, θ+ϵ) is higher than that of ^θ
1
. Thus,

^θ
2
is said to bemore effective than

^θ
1
. As the

widely-used measure of the effectiveness of two estimators, the relative effectiveness of

^θ
2
with respect to

^θ
1
is defined as

RE =

[︃
var[

^θ
1
]

var[
^θ
2
]

× 100

]︃
%. (2.1.9)

For instance, if var[
^θ
1
] = 1.25, var[

^θ
2
], RE = 125%.

2. Comparison of Unbiased and Asymptotically Unbiased Estimators.
Roughly speaking, any estimator that is not asymptotically unbiased (note that

an unbiased estimator must be asymptotically unbiased) is not a “good” estimator.

This means the missing of asymptotic unbiasedness for any estimator is regarded as a
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serious flaw. Suppose that one of
^θ
1
and

^θ
2
is unbiased and another is asymptotically

unbiased, or both estimators are unbiased. Under such circumstances, variance is not

the elusive measure that is fit for evaluating the effectiveness of estimators. Consider

the case where
^θ
1
has larger bias but smaller variance compared to

^θ
2
. In such case,

how should one choose between
^θ
1
and

^θ
2
? A reasonable solution is to take both bias

and variance into account and introduce the mean square error of estimator.

Definition 2.1.5. The mean square error M2

(
^θ) of estimator ^θ for the parameter θ is

defined as the expectation of the squared error between the estimator and true parameter.
That is,

M2

(
^θ) = E

{︁
(
^θ − θ)2

}︁
. (2.1.10)

It can be derived from the definition that

M2

(
^θ) = E

{︂[︁
^θ − E

{︁
^θ
}︁
+ E

{︁
^θ
}︁
− θ
]︁
2

}︂

= E

{︂[︁
^θ − E

{︁
^θ
}︁]︁

2

}︂
+ E

{︂[︁
E

{︁
^θ
}︁
− θ
]︁
2

}︂
+ 2E

{︁[︁
^θ − E

{︁
^θ
}︁]︁ [︁

E

{︁
^θ
}︁
− θ
]︁}︁

,

(2.1.11)

where var[
^θ] = E{[ ^θ−E{ ^θ}]2} is the variance of estimator

^θ. Note that E{ ^θ−θ} = E{ ^θ}−θ
is constant, it can be derived that E{[E{ ^θ} − θ]2} = [E{ ^θ} − θ]2 is the square of bias
E{ ^θ} − θ and E{[ ^θ − E{ ^θ}][E{ ^θ − θ}]} = [E{ ^θ} − θ]E{ ^θ − E{ ^θ}}. Substitute the results
into Eq. (2.1.11) to get

M2

(
^θ) = var[

^θ] + b2( ^θ) + 2
[︁
E

{︁
^θ
}︁
− θ
]︁
E

{︁
^θ − E

{︁
^θ
}︁}︁

.

Due to E{ ^θ − E{ ^θ}} = E{ ^θ} − E{ ^θ} = 0, the above equation is reduced to

M2

(
^θ) = var[

^θ] + b2( ^θ), (2.1.12)

which reveals that the mean square error E{( ^θ − θ)2} of estimator
^θ is the sum of

variance E{[ ^θ − E{ ^θ}]2} and square of bias E{ ^θ − θ}. Notably, when both estimators

are unbiased, the mean square errors of the estimators are reduced to their respective

variances owing to zero bias.

In summary, as the loss function (or cost function) for the error of estimator, the

mean square error is more appropriate than either variance or bias. According to their

mean square errors, different estimators of θ can be evaluated and their performances

can be compared.

Definition 2.1.6. Estimator ^θ
1
is said to be better than estimator ^θ

2
if the inequality

E

{︁
(
^θ
1
− θ)2

}︁
≤ E

{︁
(
^θ
2
− θ)2

}︁
(2.1.13)

holds for any θ.

The concept of effectiveness is mostly useful when comparing the performance of two

estimators, but gives no definite answer to the question that whether an estimator is the
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best among all possible estimators. To resolve the question, it is necessary to consider

whether an unbiased estimator of parameter θ has the minimum variance, which will

be the focus of the next section.

2.2 Fisher Information and Cramér-Rao Inequality

Suppose that the parameter θ is hidden behind the random signal x(t). One realization
x of the signal gives an estimator of θ. The natural question then arises: is this estimator

optimal? In fact, an equivalent question is: given actual parameter θ, which criterion
should be used to determine the optimal estimator obtained from the observation x.

2.2.1 Fisher Information

To answer the above question, one might as well treat x as a random variable and

assess the quality of conditional PDF f (x|θ). The measure for such assessment is called

score function of random variable x.

Definition 2.2.1. For given actual parameter θ, the score function V(x) of random vari-
able x is defined as the partial derivative of the log conditional PDF log f (x|θ)with respect
to the parameter θ. That is,

V(x) = ∂
∂θ log f (x|θ) =

∂
∂θ f (x|θ)
f (x|θ) . (2.2.1)

Definition 2.2.2. The variance of the score function, denoted by J(θ), is called Fisher
information and is defined by

J(θ) = E

{︃[︂
∂
∂θ log f (x|θ)

]︂
2

}︃
= −E

{︂
∂2
∂θ∂θ log f (x|θ)

}︂
. (2.2.2)

According to probability theory, the expectation of any function g(x) can be expressed
in the conditional PDF of x as

E

{︀
g(x)

}︀
=

∞∫︁

−∞

g(x)f (x|θ) dx. (2.2.3)

Substitute Definition 2.2.1 into Eq. (2.2.3) to have the expectation of score function as

E

{︀
V(x)

}︀
=

∞∫︁

−∞

∂
∂θ f (x|θ)
f (x|θ) f (x|θ) dx = ∂

∂θ

∞∫︁

−∞

f (x|θ) dx = 0,

where we have used the familiar result in probability theory

∞∫︁

−∞

f (x|θ) dx = 1.
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Due to zero expectation, the second moment of the score function is the variance, i.e.,

var

[︀
V(x)

]︀
= E

{︀
V2

(x)
}︀
, which plays a central role in evaluating unbiased estimators.

Now consider the case ofN samples x
1
, · · · , xN . Let sample vector x = [x

1
, · · · , xN ]

and the conditional PDF can be expressed as

f (x|θ) = f (x
1
, · · · , xN |θ).

Therefore, the Fisher information for N random samples x
1
, · · · , xN should be defined

by

J(θ) = E

{︃[︂
∂
∂θ log f (x|θ)

]︂
2

}︃
= −E

{︂
∂2
∂θ∂θ log f (x|θ)

}︂
. (2.2.4)

2.2.2 Cramér-Rao Lower Bound

The significance of Fisher information is revealed by the following theorem.

Theorem 2.2.1 (Cramér-Rao Inequality). Let x = [x
1
, · · · , xN ] be the sample vector. If

the estimate ^θ of actual parameter θ is unbiased, and both ∂f (x|θ)
∂θ and ∂2 f (x|θ)

∂θ2 exist, the
lower bound, aka Crameér-Rao bound, of mean square error of ^θ is the inverse of Fisher
information. That is,

var

[︁
^θ
]︁
= E

{︁
(
^θ − θ)2

}︁
≥

1

J(θ) , (2.2.5)

where Fisher information J(θ) is defined in Eq. (2.2.2). In Eq. (2.2.5), the equality holds if
and only if

∂
∂θ log f (x|θ) = K(θ)(

^θ − θ), (2.2.6)

where K(θ) is a positive function of θ and does not depend on samples x
1
, · · · , xN .

Proof. Based on the assumption that E{ ^θ} = θ or E{ ^θ − θ} = 0, we have

E

{︁
^θ − θ

}︁
=

∞∫︁

−∞

· · ·

∞∫︁

−∞

(
^θ − θ)f (x|θ) dx

1
· · · dxN = 0.

Taking partial derivative of both sides of the above equation with respect to θ gives

∂
∂θE

{︁
^θ − θ

}︁
=

∂
∂θ

∞∫︁

−∞

(
^θ − θ)f (x|θ) dx =

∞∫︁

−∞

∂
∂θ

[︁
(
^θ − θ)f (x|θ)

]︁
dx = 0,

which further yields

−

∞∫︁

−∞

f (x|θ) dx + (^θ − θ)
∞∫︁

−∞

∂
∂θ f (x|θ) dx = 0. (2.2.7)
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On the other hand, from the derivative of compound function, we have

∂
∂θ f (x|θ) =

[︂
∂
∂θ log f (x|θ)

]︂
f (x|θ). (2.2.8)

As f (x|θ) is conditional PDF of x, we get

∞∫︁

−∞

f (x|θ) dx = 1. (2.2.9)

Substitute Eqs. (2.2.8) and (2.2.9) into Eq. (2.2.7) to get

∞∫︁

−∞

[︂
∂
∂θ log f (x|θ)

]︂
f (x|θ)( ^θ − θ) dx = 1,

or equivalently

∞∫︁

−∞

[︂
∂
∂θ log f (x|θ)

√︀
f (x|θ)

]︂ [︁√︀
f (x|θ)( ^θ − θ)

]︁
dx = 1. (2.2.10)

From Cauchy-Schwartz inequality, for any two complex functions f (x) and g(x), the
inequality ⃒⃒

⃒⃒
⃒⃒
∞∫︁

−∞

f (x)g(x) dx

⃒⃒
⃒⃒
⃒⃒

2

≤

∞∫︁

−∞

|f (x)|2 dx
∞∫︁

−∞

|g(x)|2 dx (2.2.11)

always holds, and the equality holds if and only if f (x) = cg*(x). Apply Cauchy-Schwartz
inequality to Eq. (2.2.10) to get

∞∫︁

−∞

[︂
∂
∂θ log f (x|θ)

]︂
2

f (x|θ) dx
∞∫︁

−∞

(
^θ − θ)2f (x|θ) dx ≥ 1,

or equivalently

∞∫︁

−∞

(
^θ − θ)2f (x|θ) dx ≥ 1

∫︀
∞

−∞

[︁
∂
∂θ log f (x|θ)

]︁
2

f (x|θ) dx
. (2.2.12)

In addition, from the condition for equality in Cauchy-Schwartz inequality, the equality

in Eq. (2.2.12) holds if and only if

∂
∂θ log f (x|θ)

√︀
f (x|θ) = K(θ)( ^θ − θ)

√︀
f (x|θ). In other

words, only when Eq. (2.2.6) is satisfied, the equality in Eq. (2.2.12) is achieved.

Notice that E{ ^θ} = θ which gives

var

[︁
^θ
]︁
= E

{︁
(
^θ − θ)2

}︁
=

∞∫︁

−∞

(
^θ − θ)2f (x|θ) dx. (2.2.13)
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Also by Eq. (2.2.3), we have

E

{︃[︂
∂
∂θ log f (x|θ)

]︂
2

}︃
=

∞∫︁

−∞

[︂
∂
∂θ log f (x|θ)

]︂
2

f (x|θ) dx. (2.2.14)

The inequality in Eq. (2.2.5) directly follows from substituting Eqs. (2.2.13) and (2.2.14)

into Eq. (2.2.12), and Eq. (2.2.6) is both necessary and sufficient to achieve the equality

in Eq. (2.2.5).

Cramér-Rao lower bound provides the minimum variance that any unbiased estimator

can achieve and can be used to determine the most efficient estimator.

Definition 2.2.3. Unbiased estimator ^θ is called most efficient if its variance attains
Cramér-Rao lower bound, i.e., var[ ^θ] = 1/J(θ).

For biased estimator
^θ, Cramér-Rao inequality is

E

{︁
(
^θ − θ)2

}︁
≥

(︁
1 +

db(θ)
dθ

)︁
2

E

{︂[︁
∂
∂θ log f (x|θ)

]︁
2

}︂ , (2.2.15)

where b(θ) is the bias of estimator
^θ satisfying E{ ^θ} = θ + b(θ), and is assumed to be

differentiable in θ.
Fisher information measures the amount of information about θ that can be re-

trieved from observations, and for estimating parameter θ from observed data, it also

determines the lower bound of the variance of an estimator. However, it is noteworthy

that the estimator achieving the lower bound may not exist.

In the case of multiple parameters θ
1
, · · · , θp, let θ = [θ

1
, · · · , θp]T. Fisher in-

formation then becomes Fisher information matrix J(θ) whose element Jij(θ) is given
by

Jij(θ) = −
∫︁
f (x|θ)∂

2

log f (x|θ)
∂θi∂θj

dx = −E
{︂
∂2 log f (x|θ)
∂θi∂θj

}︂
, (2.2.16)

and Cramér-Rao inequality becomes the matrix inequality

Σ ≥ J−1(θ), (2.2.17)

where Σ is the covariance matrix of p unbiased estimators
^θ
1
, · · · ,

^θp, J−1(θ) is the
inverse of Fisher information matrix J(θ), and the matrix inequality Σ ≥ J−1(θ) means

that the matrix Σ − J−1(θ) is positive semidefinite.

2.3 Bayes Estimation

The quality of an estimator is determined by what criterion andmethod are adopted for

parameter estimation. As for the parameter estimationmethod, we have two categories:
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one merely fits specific problems, and another one, in contrast, is applicable to a

large body of problems. Since the estimation techniques of the former category are

too narrow to be of any generic guidance, we only concentrate upon methods from

the latter category in this book. Actually, it turns out that the parameter estimation

methods for general problems are few and from this section we will begin to introduce

them one by one. Note that the well-known moment method is of the latter category,

but we will not give it much attention in the book and would like to refer the readers to

[176] for the description of the method.

2.3.1 Definition of Risk Function

The estimation
^θ of parameter θ typically has non-zero estimation error θ− ^θ. Therefore,

the extent to which the estimation error approaches zero directly affects the quality

of estimation
^θ, and apart from measures such as bias, variance, and mean square

error, which were mentioned in previous sections, other measures of estimation error

reflecting the error range can also be employed. Such measures are collectively termed

as cost functions or loss functions, which are denoted by C( ^θ, θ).

Definition 2.3.1. Let θ be the parameter in the parameter space Θ, and ^θ be the estima-
tion taking values in the decision space A. C( ^θ, θ) is called loss function or cost function
if C( ^θ, θ) is a real function in ^θ and θ and satisfies the following two conditions:
(1) C( ^θ, θ) ≥ 0 for any ^θ ∈ A and θ ∈ Θ;
(2) there exists at least one ^θ in the decision space A for each θ ∈ Θ such that C( ^θ, θ) = 0.

Followings are three common loss functions, where C( ^θ, θ) is the loss function for

scalar parameter estimation
^θ, and C( ^θ, θ) is the loss function for vector parameter

estimation
^θ.

(1) Absolute loss function

C( ^θ, θ) = | ^θ − θ|, (scalar parameter) (2.3.1)

C( ^θ, θ) = ‖ ^θ − θ‖, (vector parameter) (2.3.2)

where ‖ ^θ − θ‖ represents the norm of estimation error vector
^θ − θ.

(2) Quadratic loss function

C( ^θ, θ) = | ^θ − θ|2, (scalar parameter) (2.3.3)

C( ^θ, θ) = ‖ ^θ − θ‖2. (vector parameter) (2.3.4)
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(3) Uniform loss

C( ^θ, θ) =
{︃
0, | ^θ − θ| < ∆,
1, | ^θ − θ| ≥ ∆.

(scalar parameter) (2.3.5)

C( ^θ, θ) =
{︃
0, ‖ ^θ − θ‖ < ∆,
1, ‖ ^θ − θ‖ ≥ ∆.

(vector parameter) (2.3.6)

It is noteworthy that as a function of the random observed data x, the loss function is
also random. As random function is inconvenient for evaluating parameter estimators,

it is necessary to convert the random loss function into a deterministic function. To

this end, the mathematical expectation of loss function

R( ^θ, θ) = E

{︁
C( ^θ, θ)

}︁
(2.3.7)

is taken as the performance measure of a parameter estimator, and is named risk

function. The parameter estimation that minimizes risk function R( ^θ, θ) is called Bayes
estimation.

2.3.2 Bayes Estimation

Next, we discuss the Bayes estimation under quadratic and uniform risk functions.

1. Quadratic Risk Function
The quadratic risk function is defined by

R
MMSE

def

= E

{︁
(
^θ − θ)2

}︁
=

∞∫︁

−∞

· · ·

∞∫︁

−∞

(
^θ − θ)2f (x

1
, · · · , xN , θ) dx1 · · · dxN dθ, (2.3.8)

which in fact is the mean square error between parameter estimation
^θ and actual

parameter θ. Accordingly, the estimation that minimizes the quadratic risk function is

called the minimummean square error (MMSE) estimation.

To obtain MMSE estimation, first recall the well-established equality in probability

theory

f (x
1
, · · · , xN , θ) = f (θ|x1, · · · , xN)f (x1, · · · , xN) = f (x1, · · · , xN)f (θ), (2.3.9)

where f (θ|x
1
, · · · , xN) is the posterior PDF of θ given N observed data x

1
, · · · , xN .

Consequently, Eq. (2.3.8) can be rewritten as

R
MMSE

=

∞∫︁

−∞

· · ·

∞∫︁

−∞

⎡
⎣
∞∫︁

−∞

(
^θ − θ)2f (θ|x

1
, · · · , xN) dθ

⎤
⎦ f (x

1
, · · · , xN) dx1 · · · dxN ,

where both the integral and the PDF f (x
1
, · · · , xN) are non-negative. To minimize the

risk R
MMSE

, take the derivative of R
MMSE

with respect to
^θ and let the derivative equal
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zero to get

∂R
MMSE

∂ ^θ
=

∞∫︁

−∞

· · ·

∞∫︁

−∞

⎡
⎣
2

∞∫︁

−∞

(
^θ − θ)f (θ|x

1
, · · · , xN) dθ

⎤
⎦ f (x

1
, · · · , xN) dx1 · · · dxN

=

∞∫︁

−∞

· · ·

∞∫︁

−∞

⎡
⎣
2

∞∫︁

−∞

^θf (θ|x
1
, · · · , xN) dθ − 2

∞∫︁

−∞

θf (θ|x
1
, · · · , xN) dθ

⎤
⎦
×

f (x
1
, · · · , xN) dx1 · · · dxN

= 0.

Rearranging the terms in the equation above yields

^θ
MMSE

·

∞∫︁

−∞

f (θ|x
1
, · · · , xN) dθ =

∞∫︁

−∞

θf (θ|x
1
, · · · , xN) dθ.

From

∫︀
∞

−∞

f (θ|x
1
, · · · , xN) dθ = 1, the MMSE estimation can then be solved as

^θ
MMSE

=

∞∫︁

−∞

θf (θ|x
1
, · · · , xN) dθ = E {θ|x

1
, · · · , xN} . (2.3.10)

In other words, for quadratic risk function, i.e., mean square error, the Bayesian esti-

mation of unknown parameter θ, or the MMSE estimation
^θ
MMSE

, is the posterior mean

of θ given samples x
1
, · · · , xN .

2. Uniform Risk Function
Denote the uniform loss function as C

unif
(
^θ, θ). From the definition in (2.3.5), we

have

∞∫︁

−∞

C
unif

(
^θ, θ)f (θ|x

1
, · · · , xN) dθ =

∫︁

θ ̸∈[ ^θ−∆, ^θ+∆]

f (θ|x
1
, · · · , xN) dθ

=

⎡
⎢⎣
∞∫︁

−∞

−

^θ+∆∫︁

^θ−∆

⎤
⎥⎦ f (θ|x1, · · · , xN) dθ

= 1 −

^θ+∆∫︁

^θ−∆

f (θ|x
1
, · · · , xN) dθ.

(2.3.11)
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Then, the uniform risk function can be written as

R
unif

= E

{︁
C
unif

(
^θ, θ)

}︁

=

∞∫︁

−∞

· · ·

∞∫︁

−∞

C
unif

(
^θ, θ)f (x

1
, · · · , xN , θ) dx1 · · · dxN dθ

=

∞∫︁

−∞

· · ·

∞∫︁

−∞

C
unif

(
^θ, θ)f (θ|x

1
, · · · , xN)f (x1, · · · , xN) dx1 · · · dxN dθ

=

∞∫︁

−∞

· · ·

∞∫︁

−∞

⎡
⎣
∞∫︁

−∞

C
unif

(
^θ, θ)f (θ|x

1
, · · · , xN) dθ

⎤
⎦ f (x

1
, · · · , xN) dx1 · · · dxN .

Substituting Eq. (2.3.11) into the above equation gives

R
unif

=

∞∫︁

−∞

· · ·

∞∫︁

−∞

f (x
1
, · · · , xN)

⎡
⎢⎣1 −

^θ+∆∫︁

^θ−∆

f (θ|x
1
, · · · , xN) dθ

⎤
⎥⎦dx1 · · · dxN . (2.3.12)

The necessary condition for R
unif

to attain the minimum is

∂R
unif

∂ ^θ
= 0, which by (2.3.12)

is equivalent to

f ( ^θ + ∆|x
1
, · · · , xN) − f ( ^θ − ∆|x1, · · · , xN) = 0. (2.3.13)

By Taylor series expansion at
^θ, Eq. (2.3.13) becomes

2

∂f ( ^θ|x
1
, · · · , xN)
∂θ ∆ + O(∆) = 0. (2.3.14)

As ∆ → 0, from the equation above, one may expect the optimum
^θ that minimizes the

risk should satisfy the stationary equation

∂
∂θ f (

^θ|x
1
, · · · , xN) = 0. (2.3.15)

The solution of (2.3.15)
^θ corresponds to the maximum of posterior PDF f (θ|x

1
, · · · , xN)

in the limit case of ∆ → 0. The resulting estimation, denoted as
^θ
MAP

, is calledmaximum

a posterior (MAP) estimation.

Now we have shown that MAP estimation is the limit of Bayesian estimation with

uniform loss. However, the derivation above is intuitive and does not constitute a formal

proof. In fact, certain conditions must be imposed upon the posterior PDF to guarantee

the validity of the claim and exceptions do exist if the conditions are missing.

More common form of Eq. (2.3.15) is

∂
∂θ log f (θ|x1, · · · , xN) = 0. (2.3.16)
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Substitute Eq. (2.3.9) into Eq. (2.3.16) to get

∂
∂θ
[︀
log f (x

1
, · · · , xN |θ) + log f (θ) − log f (x1, · · · , xN)

]︀
= 0. (2.3.17)

For θ with uniform distribution, its PDF f (θ) satisfies

∂ log f (θ)
∂θ = 0.

From the above equation and the fact that f (x
1
, · · · , xN) does not contain unknown

parameter θ, Eq. (2.3.17) can be reduced to

∂
∂θ log f (x1, · · · , xN |θ) = 0. (2.3.18)

Since log f (x
1
, · · · , xN |θ) is the (logarithm) likelihood of samples x

1
, · · · , xN , the es-

timation obtained from Eq. (2.3.18) is called maximum likelihood estimation, which

is denoted as
^θ
ML
. To conclude, for unknown parameter θ with uniform distribution,

the Bayesian estimation under uniform loss coincides with the maximum likelihood

estimation, i.e.,

^θ
MAP

=
^θ
ML
. (2.3.19)

In the following section, we will discuss the maximum likelihood estimation for θ with
general PDF f (θ).

2.4 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is one of the most popular and effective esti-

mation methods. The idea of MLE is to estimate the parameter from available samples

without any prior information about the unknown quantity or parameter. Thus, in the

MLE method, the parameter to be estimated is assumed to be constant but unknown,

whereas the observed data are supposed to be random.

Let x
1
, · · · , xN be the N samples of random variable x and {f (x

1
, · · · , xN |θ), θ ∈

Θ} be the joint conditional PDF of samples {x
1
, · · · , xN} given parameter θ. Assuming

that the joint conditional PDF exists and is bounded, we now consider the estimation

problem for the unknown and deterministic parameter θ. When treated as a function

of true parameter θ, the joint conditional PDF is called likelihood function. Simply put,

the likelihood function is a function incorporating information on the possibility of

parameter θ values, from which the term “likelihood” comes.

Strictly speaking, f (x
1
, · · · , xN |θ) multiplied by arbitrary function of samples

x
1
, · · · , xN gives a likelihood function. But in this book, we only call the joint con-

ditional PDF f (x
1
, · · · , xN |θ) likelihood function. Evidently, different realizations

x
1
, · · · , xN of random variable x yield different joint conditional PDF f (x

1
, · · · , xN |θ).

So the global maximum of likelihood is determined by sample values x
1
, · · · , xN .
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MLE is the estimate
^θ that maximizes the likelihood f (x

1
, · · · , xN |θ), which is

denoted by

^θ
ML

= argmax

θ∈Θ
f (x

1
, · · · , xN |θ), (2.4.1)

and can be viewed as the global maximum of the joint conditional PDF f (x
1
, · · · , xN |θ).

Due tomonotonicity of logarithmic function, log f (x
1
, · · · , xN |θ) and f (x1, · · · , xN |θ)

have the same maximum. So, the logarithm of likelihood log f (x
1
, · · · , xN |θ), called

log-likelihood, is usually used as a replacement of likelihood f (x
1
, · · · , xN |θ). In signal

processing literature, log f (x
1
, · · · , xN |θ) is also called likelihood for brevity.

For convenience, denote

L(θ) = log f (x
1
, · · · , xN |θ). (2.4.2)

The optimality condition for MLE of θ is then

∂L(θ)
∂θ = 0. (2.4.3)

In the case of vector parameter θ, i.e., θ = [θ
1
, · · · , θp]T, the MLEs ^θi,ML (i = 1, · · · , p)

of p unknown parameters are determined by equations

∂L(θ)
∂θi

= 0, i = 1, · · · , p. (2.4.4)

If x
1
, · · · , xN are samples drawn independently, the likelihood can be expressed as

L(θ) = log f (x
1
, · · · , xN |θ) = log

(︀
f (x

1
|θ) · · · f (xN |θ)

)︀
=

N∑︁

i=1
log f (xi|θ). (2.4.5)

Then,
^θiML (i = 1, · · · , p) can be solved from equations

∂L(θ)
∂θ

1

=

∂
∂θ

1

N∑︁

i=1
log f (xi|θ) = 0

.

.

.

∂L(θ)
∂θp

=

∂
∂θp

N∑︁

i=1
log f (xi|θ) = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.4.6)

MLE has properties as follows.

(1) MLE is not unbiased in general, but its bias can be corrected by multiplying the

estimate by a proper constant.

(2) MLE is consistent.

(3) If exists, the most efficient estimation is given by MLE.

(4) For large N, MLE ^θ
ML

asymptotically follows Gaussian distribution, which has

mean θ and variance

1

N

[︂
E

{︂
∂
∂θ [f (x1, · · · , xN |θ)]

2

}︂]︂
−1

.
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Example 2.4.1 Let x
1
, · · · , xN be random samples drawn from a normal distribution

with PDF

f (x|μ, σ2) = 1√
2πσ

e

−(x−μ)2/(2σ2)
.

Find the MLEs of mean μ and variance σ2.

Solution. As the likelihood is the function of mean μ and variance σ2, we have

f (x
1
, · · · , xN |μ, σ2) =

N∏︁

i=1

1√
2πσ

e

−(xi−μ)2/(2σ2)

= (2πσ2)−N/2exp
(︃
−

1

2σ2
N∑︁

i=1
(xi − μ)2

)︃
.

The log-likelihood is then

L(μ, σ2) = log f (x
1
, · · · , xN |μ, σ2) = −

N
2

log(2π) − N
2

log(σ2) − 1

2σ2
N∑︁

i=1
(xi − μ)2.

Take the derivatives of L(μ, σ2) with respective to μ and σ2 and let the derivatives equal
to zero to obtain

∂L
∂μ =

2

2σ2
N∑︁

i=1
(xi − μ) = 0,

∂L
∂σ2 = −

N
2σ2 +

1

2σ4
N∑︁

i=1
(xi − μ)2 = 0.

Solve

∂L
∂μ = 0 to get

μ̂
ML

=

1

N

N∑︁

i=1
xi = x̄.

Substitute the solution of μ into ∂L
∂σ2 to get

σ̂2
ML

=

1

N

N∑︁

i=1
(xi − x̄)2.

Note that the sample mean

x̄ = 1

N

N∑︁

i=1
xi , (2.4.7)

and the sample variance

s2 = 1

N − 1

N∑︁

i=1
(xi − x̄)2 (2.4.8)
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are both unbiased. As a result, the MLE of mean μ̂
ML

is unbiased but the MLE of

variance σ̂2
ML

is biased. Nevertheless, the modified estimate obtained from multiplying

σ̂2
ML

by constant

N
N−1 is unbiased and the bias in the original estimate σ̂2

ML

can then be

eliminated. □

Example 2.4.2 The received signal is given by

yi = s + wi , i = 1, · · · , N .

Suppose wi ∼ N(0, σ2) is Gaussian white noise, i.e.,

E {wi} = 0, i = 1, · · · , N,

E

{︀
wiwj

}︀
=

{︃
σ2, i = j,
0, i ̸= j.

Find the MLE ŝ
ML

of s and the Cramér-Rao bound for the variance of estimate ŝ
ML
, and

determine if ŝ
ML

is most efficient.

Solution. First, note that the received signal yi and additive noise wi are both Gaussian
and only have a difference in mean s. Thus,

f (y
1
, · · · , yN |s, σ2) =

N∏︁

i=1
f (wi) =

1

(2πσ2)N/2
exp

(︃
−

N∑︁

i=1

w2

i
2σ2

)︃

=

1

(2πσ2)N/2
exp

(︃
−

N∑︁

i=1

(yi − s)2
2σ2

)︃
,

by which the log-likelihood can be expressed as

L(s, σ2) = log f (y
1
, · · · , yN |s, σ2) = −

N
2

log(2πσ2) −
N∑︁

i=1

(yi − s)2
2σ2 . (2.4.9)

Consequently, the MLE of signal s can be solved by

∂L
∂s = 2

N∑︁

i=1

(yi − s)
2σ2 = 0,

which gives

ŝ
ML

=

1

N

N∑︁

i=1
yi = ȳ. (2.4.10)

The expectation of ŝ
ML

is

E

{︀
ŝ
ML

}︀
= E {ȳ} = E

{︃
1

N

N∑︁

i=1
yi

}︃
= E

{︃
1

N

N∑︁

i=1
(s + wi)

}︃
= s + 1

N

N∑︁

i=1
E {wi} = s.



2.5 Linear Mean Squares Estimation | 47

Therefore, ŝ
ML

is unbiased.

Take the second-order derivative of log-likelihood log f (y
1
, · · · , yN |s, σ2) with re-

spect to s to get

∂2
∂s2 log f (y1, · · · , yN |s, σ

2

) = −

N∑︁

i=1

1

σ2 = −

N
σ2 .

From Eq. (2.2.4), the Fisher information is

J(s) = −E
{︂
∂2
∂s2 log f (y1, · · · , yN |s, σ

2

)

}︂
= −

N∑︁

i=1

1

σ2 =

N
σ2 ,

From Theorem 2.2.1 the Cramér-Rao inequality is

var

[︀
ŝ
]︀
= E

{︁
(ŝ − s)2

}︁
≥

1

N
σ2

=

σ2
N , (2.4.11)

and the equality holds if and only if

∂
∂s log f (y1, · · · , yN |s, σ

2

) = K(s)(ŝ − s). (2.4.12)

Further from

∂
∂s log f (y1, · · · , yN |s, σ

2

) =

∑︀N
i=1 yi − Ns
σ2 =

Nȳ − Ns
σ2 =

N
σ2 (ȳ − s) =

N
σ2 (ŝML − s),

it can be deduced that Eq. (2.4.12) can be satisfied by taking K(s) = N/σ2. That is,

var

[︀
ŝ
ML

]︀
= E

{︁
(ŝ
ML
− s)2

}︁
=

σ2
N ,

which shows that MLE ŝ
ML

is most efficient. □

2.5 Linear Mean Squares Estimation

Bayesian estimation requires posterior PDF f (θ|x
1
, · · · , xN), and MLE likelihood func-

tion f (x
1
, · · · , xN |θ). However, under many circumstances, both functions could be

unavailable. Besides, MLE can sometimes result in a nonlinear estimation problem,

which is difficult to solve. Therefore, a linear estimation method that does not require

prior knowledge and is easy to implement ismuchmore appealing. Linearmean squares

(LMS) estimation and least squares estimation are both of such categories. We will

discuss LMS estimation in this section.

In LMS estimation, the estimator for the unknown parameter is expressed as the

linearly weighted sum of observed data. That is,

^θ
LMS

=

N∑︁

i=1
wixi , (2.5.1)
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where w
1
, · · · , wN are weights to be determined. The target of LMS estimation is to

minimize the mean square error E{( ^θ − θ)2}. Namely, the weights wi are solved from

minE

{︁
(
^θ − θ)2

}︁
= minE

⎧
⎨
⎩

(︃ N∑︁

i=1
wixi − θ

)︃
2

⎫
⎬
⎭ = minE

{︁
e2
}︁
, (2.5.2)

where e = ^θ − θ is the estimation error.

Setting the partial derivative of the objective in Eq. (2.5.2) with respect to wk to zero
gives

∂E
{︀
e2
}︀

∂wk
= E

{︂
∂e2
∂wk

}︂
= 2E

{︂
e ∂e∂wk

}︂
= 2E {exk} = 0,

or

E {exi} = 0, i = 1, · · · , N . (2.5.3)

This result is called the orthogonality principle. In plain words, the orthogonality

principle states that the mean square error is minimized if and only if the error e is
orthogonal to each observation xi (i = 1, · · · , N).

To derive the optimal weights, rewrite Eq. (2.5.3) as

E

{︃(︃ N∑︁

k=1

wkxk − θ
)︃
xi

}︃
= 0, i = 1, · · · , N . (2.5.4)

Notice that samples xi (i = 1, · · · , N) and θ are correlated such that E {θxi} does not
equal θE {xi}.

let

gi = E {θxi} and Rik = E {xixk} .

Eq. (2.5.4) can be expressed as

N∑︁

k=1

Rikwk = gi , i = 1, · · · , N, (2.5.5)

which is called a normal equation. Denoting

R = [Rij]N,Ni,j=1,

w = [w
1
, · · · , wN ]T,

g = [g
1
, · · · , gN ]T,

we can change Eq. (2.5.5) into a more concise form as Rw = g, which has solution

w = R−1g. (2.5.6)

The independence of samples x
1
, · · · , xN is one of the conditions that guarantee a

non-singular R.
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Being a class of important estimation method, LMS estimation cannot be applied

to the situation in which the correlation function gi = E {θxi} is not readily accessible.
Interestingly, in the applications of filtering, one can encounter problems analogous to

Eq. (2.5.1). Specifically, one may expect to design a set of filter coefficients w
1
, · · · , wM

such that the linear combination of the coefficients and a random signal x(n) with its
delays x(n − i)

^d(n) =
M∑︁

i=1
wix(n − i) (2.5.7)

is an approximation to a target signal d(n). In such case, the LMS estimation is applica-

ble since gi = E

{︀
d(n)x(n − i)

}︀
can be estimated. We will give a detailed discussion on

the LMS filter design problem in Chapter 5.

Due to the usage of the MMSE criterion, LMS estimation in essence gives an MMSE

estimator. Both orthogonality principle and LMS estimation are widely adopted in

signal processing applications and will be frequently revisited in this book.

2.6 Least Squares Estimation

In addition to LMS estimation, least squares (LS) estimation is another estimation

method that is prior-free.

2.6.1 Least Squares Estimation and Its Performance

In many applications, the unknown parameter vector θ = [θ
1
, · · · , θp]T is modeled as

a matrix equation

Aθ = b, (2.6.1)

where A and b are coefficient matrix and vector associated with observed data and are

both known. The data model incorporates the following three cases.

(1) The number of the unknown parameters is equal to that of equations, and the

matrix A is non-singular. In this case, matrix equation (2.6.1) is called a well-

determined equation and has unique solution θ = A−1b.
(2) ThematrixA is “tall” and hasmore rows than columns. That is, the number of equa-

tions is larger than that of unknownparameters. In this case,matrix equation (2.6.1)

is called a overdetermined equation.

(3) ThematrixA is “fat” and hasmore columns than rows. That is, the number of equa-

tions is less than that of unknown parameters. In this case, matrix equation (2.6.1)

is called a underdetermined equation.

Overdetermined equation is frequently used in spectral estimation and system identifi-

cation and is the focus of our book.
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To find out the estimation of the parameter vector
^θ, we consider the criterion

under which the sum of square errors

N∑︁

i=1
e2i = eTe = (A ^θ − b)T(A ^θ − b) (2.6.2)

is minimized. The resulting estimation is called LS estimation, denoted as
^θ
LS
.

Expanding the loss or cost function J = eTe gives

J = ^θ
T
ATA ^θ + bTb − ^θ

T
ATb − bTA ^θ.

Take the derivative of J with respect to ^θ and set the derivative to zero to get

∂J
∂ ^θ

= 2ATA ^θ − 2ATb = 0,

Accordingly, the LS estimation must satisfy the equation

ATA ^θ = ATb, (2.6.3)

which has two cases regarding its solution:

(1) A is full column rank. As ATA is non-singular, the LS estimation is uniquely deter-

mined by

^θ
LS

= (ATA)−1ATb, (2.6.4)

and the parameter vector θ is said to be uniquely identifiable.
(2) A is rank-deficient and different values of θ can yield identical value of Aθ. As a

result, although the vector b contains information aboutAθ, we cannot distinguish
different values of θ for the fixed value of Aθ. In this regard, we say that the

parameter vector θ is unidentifiable. To generalize, if different values of parameter

give identical distribution in sample space, the parameter is unidentifiable[68].

The following theorem states that if the error vector has uncorrelated components of

equal variance, LS estimation of the parameter θ in linear model (2.6.1) is optimal in

the sense of minimum variance.

Theorem 2.6.1 (Gauss-Markov Theorem). Let b be the random vector expressed by b =

Aθ+e, where N×p (N > p)matrixA has rank p, and the error vector e hasmean E {e} = 0
and variance (covariance) matrix var [e] = σ2I with unknown variance σ2. Then, given
the linear function of parameter β = cTθ, for any unbiased estimator ˜β of the function, it
always holds that E{ ^θLS} = θ and var[cT ^θLS] ≤ var[ ^β].

Proof. Because E {e} = 0 and var [e] = σ2I, it can be derived that

E {b} = E {Aθ} + E {e} = Aθ

and

var [b] = var [Aθ + e] = var [Aθ] + var [e] = var [e] = σ2I.
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Therefore,

E

{︁
^θ
LS

}︁
= E

{︁
(ATA)−1ATb

}︁
= (ATA)−1AT

E {b} = (ATA)−1ATAθ = θ,

from which we have

E

{︁
cT ^θ

LS

}︁
= cTE

{︁
^θ
LS

}︁
= cTθ = β.

Therefore, cT ^θ
LS
is unbiased. As

^β is a linear estimator, it can be expressed by
^β = wTb,

wherew is a constant vector. Further, from the fact that
^β is an unbiased estimator of

β, for any θ we have

wTAθ = wT

E {b} = E

{︁
wTb

}︁
= E

{︁
^β
}︁
= β = cTθ.

It then can be deduced thatwTA = cT.
From the variances

var

[︁
˜β
]︁
= var

[︁
wTb

]︁
= wT

var [b]w = σ2wTw,

var

[︁
cT ^θ

LS

]︁
= σ2cT(ATA)−1c = σ2wTA(ATA)−1ATw,

in order to prove var[cT ^θ
LS
] ≤ var[

˜β], we only need to prove

wTA(ATA)−1ATw ≤ wTw,

or equivalently F = I − A(ATA)−1AT

is positive semidefinite

[107]

. It is straightforward to

verify that F2 = FF = F so that F is idempotent. Since any idempotent matrix is positive

semidefinite, the theorem is proved.

2.6.2 Weighted Least Squares Estimation

Theorem 2.6.1 reveals that when the components of error vector e are both of identical
variance and uncorrelated, the LS estimator

^θ
LS

= (ATA)−1ATb has the minimum vari-

ance among all linear estimators and is thus optimal. However, when the components

of the error vector have unequal variances or are correlated, the LS estimation could

fail to attain minimum variance and its optimality no longer holds. Now the question

is: in such circumstance how to obtain the estimator of minimum variance?

To remedy the defect of LS estimation, we modify the original loss function of the

sum of square errors and adopt the “weighted sum of square errors” as the new loss

function:

Q( ^θ) = eTWe, (2.6.5)

where the weight matrixW is symmetric. Eq. (2.6.5) is named weighted error function

for short. Instead of minimizing J = eTe as in LS method, minimizing weighted error

function Q( ^θ) is now the criterion. The resulting estimator from the criterion is called
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weighted LS (WLS) estimator and is denoted by
^θ
WLS

. To obtain the WLS estimate,

expand Q( ^θ) as

Q( ^θ) = (b − A ^θ)TW(b − A ^θ) = bTWb − ^θ
T

ATWb − bTWA ^θ + ^θ
T
ATWA ^θ.

Take derivative of Q( ^θ) with respect to ^θ and set the derivative to zero to get

∂Q( ^θ)
∂ ^θ

= −2ATWb + 2ATWA ^θ = 0,

which gives the equation for the WLS estimator as

ATWA ^θ
WLS

= ATWb.

Suppose ATWA is non-singular and
^θ
WLS

is given by

^θ
WLS

= (ATWA)−1ATWb. (2.6.6)

Next, we consider how to chooseW.

Suppose the variance var [e] of error vector has a generic form of σ2Vwhere V is

known and positive definite. V can be expressed as V = PPT with non-singular matrix

P since it is positive definite. Let ϵ = P−1e and x = P−1b. Multiplying both sides of the
observation equation b = Aθ + e by P−1 gives

x = P−1Aθ + ϵ = Bθ + ϵ, (2.6.7)

where B = P−1A. Noticeably, the error vector in the new observation model (2.6.7) has

variance matrix

var [ϵ] = var

[︁
P−1e

]︁
= P−1var [e]P−T = P−1σ2PPTP−T = σ2I, (2.6.8)

where P−T = (P−1)T. Eq. (2.6.8) shows that the new error vector ϵ = P−1e has uncorre-
lated components with equal variance. Consequently, with the defined x, B and ϵ, the
observation model x = Bθ + ϵ becomes exactly the same model in Theorem 2.6.1 and

satisfies the conditions in theorem. So, Theorem 2.6.1 applies to the new model, and

the LS estimator

^θ
LS

= (BTB)−1BTx = (ATV−1A)−1ATV−1b (2.6.9)

must have the minimum variance and is optimal. Comparing Eqs. (2.6.9) and (2.6.6), it

follows that to obtain the optimal WLS estimate of θ, one may set the weight matrixW
to be

W = V−1, (2.6.10)

which is the inverse matrix of V. The matrix V is given by the variance matrix var [e] =
σ2V of the error vector.

Apart from LS and WLS methods, there are two variations of LS estimation: gener-

alized LS and total LS methods, which will be given full coverage in Chapter 4.
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Summary

Many problems in signal processing can be attributed to parameter estimation. In this

chapter, several basic properties regarding the performance of parameter estimator

were discussed first, including unbiasedness, asymptotic unbiasedness, and effective-

ness. Next, from the criterion of optimal estimator, we introduced the variance of score

function–Fisher information, and Cramér-Rao inequality indicating the lower bound

of variance. In the succeeding sections, Bayesian estimation, maximum likelihood

estimation, linear mean squares estimation, and least squares estimation, which are

among the most commonly used parameter estimation methods, are introduced in

sequence.

Like Chapter 1, this chapter involves theoretical fundamentals ofmodern signal pro-

cessing. The basic knowledge in this chapter will pave way for a better understanding

of theories, methods, and applications of modern signal processing in the subsequent

chapters.

Exercises

2.1 x is a normal or Gaussian random variable with PDF

f (x) = 1√
2πσ

e

−

(x−μ)2

2σ2 .

Prove that μ and σ2 are the mean and variance of x, respectively.
2.2 A normal random variable x of zero mean has PDF

f (x) = 1√
2πσ

e

−

x2
2σ2 .

Prove that the nth order moment of x is given by

E

{︀
xn
}︀
=

{︃
0, n = 2k + 1,
1 · 3 · · · (n − 1)σ2, n = 2k.

2.3 A random signal x(t) has observations x(1), x(2), · · · . Let x̄k and s2k be the sample

mean x̄k and variance s2 =

1

k
∑︀

i=1 k[x(i) − x̄k]
2

, respectively, both obtained from k
samples x(1), · · · , x(k). With a new sample x(k + 1) available, try to calculate x̄k+1 and
s2k+1 using x(k + 1), x̄k, and s

2

k . Find the updating formula for the calculation of sample

mean x̄k+1 and variance s2k+1.
2.4 Let {x(n)} be a stationary process with mean μ = E

{︀
x(n)

}︀
. Given N independent

samples x(1), · · · , x(N), prove that
(1) sample mean x̄ = 1

N
∑︀N

n=1 x(n) is unbiased estimation of mean μ;
(2) sample variance s2 =

1

N−1
∑︀N

n=1[x(n) − x̄]
2

is unbiased estimation of the true

variance σ2 = E

{︀
|x(n) − μ|2

}︀
.
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2.5 A random process is defined by x(n) = A + v(n), where A is an unknown constant,

v(n) is Gaussian white noise with zero mean and variance σ2. If ^A is the estimate of A
from samples x(1), · · · , x(N), find the Cramér-Rao lower bound for the variance of the

estimate.

2.6 A random process is described by x(n) = A + Bn + v(n), where v(n) is Gaussian
white noise with zero mean and variance σ2, and both A and B are unknown and need

to be estimated. Find the Cramér-Rao lower bounds for the variances of the estimates

^A and
^B.

2.7 The received signal is yi = s + wi (i = 1, · · · , N), where wi ∼ N(0, σ2) is Gaussian
white noise with zero mean and variance σ2. Suppose both signal s and noise variance
σ2 are unknown. Find the MLEs of s and σ2, and derive the Cramér-Rao lower bound

for the variance var[σ̂2] of σ̂2.
2.8 The observed data are given by yi = s + wi (i = 1, · · · , N), where wi is Gaussian
white noise of zero mean and unit variance. The signal s has PDF

f (s) = 1√
2π

e

−

s2
2

.

Find the MMSE estimation ŝ
MMSE

and MAP estimation ŝ
MAP

respectively.

2.9 The received signal is given by

yi = A cos(ωc i + θ) + wi , i = 1, · · · , N,

where wi ∼ N(0, 1) is Gaussian noise of zero mean and unit variance, ωc is the an-
gular frequency of the carrier, and θ is the unknown phase. Suppose w

1
, · · · , wN are

independent. Give the MLE
^θ
ML

of the unknown phase.

2.10 Consider a real random vector x. Find its LMS estimator x̂.
2.11 The unknown random variable follows uniform distribution and has PDF

f (x) =
{︃
1, 0 ≤ x ≤ 1,
0, otherwise.

Without any prior information, we can use a constant as the LMS estimation of the

random variable x. Find the constant.
2.12 Given n independent random variables x

1
, · · · , xn with identical mean μ and

different variances σ2
1
, · · · , σ2n, consider the sum of the random variables weighted by

n constants a
1
, · · · , an:

z =
n∑︁

i=1
aixi .

If E {z} = μ and σ2z is minimized, give the values of the weights a
1
, · · · , an.

2.13 Anaircraftmoves along a straight line during a period of timewith initial location

α and constant velocity β. The observed location of the aircraft is given by yi = α+βi+wi
(i = 1, · · · , N), where wi is random and has zero mean. There are ten samples of



Exercises | 55

observed locations y
1
= 1, y

2
= 2, y

3
= 2, y

4
= 4, y

5
= 4, y

6
= 8, y

7
= 9, y

8
= 10, y

9
=

12, y
10

= 13. Find the LS estimates of the initial location α and velocity β of the aircraft.
2.14 Consider the discrimination of signals of multi-class targets

[77]

. Suppose there

are c targets, and N = N
1
+ · · · + Nc feature vectors s11, · · · , s1N

1

, · · · , sc1, · · · , scNc
are retrieved during training phase, where Q × 1 vector sij represents the jth feature
vector of ith target. Define the with-in class scatter matrix

Sw =

c∑︁

i=1
Si ,

where

Si =
Ni∑︁

j=1
(sij −mi)(sij −mi)

T

,

andmi =
1

Ni
∑︀Ni

j=1 sij is the mean or center of feature vectors from ith target. Similarly,

define the between-class scatter matrix

Sb =
c∑︁

i=1
Ni(mi −m)(mi −m)

T

,

where

m =

1

N

c∑︁

i=1

Ni∑︁

j=1
sij =

1

N

c∑︁

i=1
Nimi

is the mean vector of N = N
1
+ · · · + Nc feature vectors. Let U be the Q × Q discriminant

matrix. Denote the vector containing the diagonal elements of a matrix X as diag {X}.
The function

J(U) =

∏︀
diag

{︁
UTSbU

}︁

∏︀
diag

{︀
UTSwU

}︀

is an effective measure of the separation of classes with N given feature vectors. Find

the optimal discriminant matrix that maximizes the function J(U).
2.15 Let y be the observed vector which follows the observation equation below

y = Hx + v,

where H is the observation matrix, x is the unknown state vector, and v is the addi-
tive observation noise vector. Suppose the observation noise follows the Gaussian

distribution

f (v) = 1√︀
(2π)p|R|

exp

(︂
−

1

2

vTRv
)︂
,

where R is the covariance matrix of observation noise and |R| is the determinant of

R. Give the MLE x̂ of the unknown state vector x and the covariance matrix Pe of the
estimation error e = x−x̂. The problem is known as themaximum likelihood estimation

for linear Gaussian model

[136]

.
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2.16 The following figure depicts a circuit that simulates MLE under Gaussian noise

[136]

. In the figure, Vi is the voltage drop between one end of the resistance Ri and the
ground, and the other ends of each resistance are connected to a common point. If

R
in
= ∞, find the output voltage V.

V

V1

R1
+

V2

R2

R3

V3

I1

I2

I3

I = 0I = 0

R

Rin = ∞

−

Fig-Exer. The circuit that simulates MLE

2.17 Suppose the observed data vector is expressed by y = Aθ + e, where the rank of
N × p matrix A is p and E {e} = 0 and var [e] = σ2Σ with positive definite matrix Σ. Let

^θ
WLS

= (ATΣ−1A)−1ATΣ−1y

be the WLS estimate of θ. Prove that

σ̂2 = 1

N − p (y − A
^θ
WLS

)

TΣ−1(y − A ^θ
WLS

)

is an unbiased estimate of σ2.



3 Signal Detection
Signal detection is referred to as the problem of inferring the existence of a particular

signal by using observed data, and in essence belongs to statistical hypothesis testing.

The so-called statistical hypothesis is simply a declaration about some unknown char-

acter of a population under investigation. The fundamental task of testing a statistical

hypothesis is to decide whether the declaration about the unknown character can be

supported by the samples from a random test. Generally speaking, such declaration is

associated with some unknown parameters or functions of sample distribution, and

the question of whether the declaration is statistically supported by samples is settled

based on probability. In a word, with the evidence of observed data, the declaration is

accepted if its correctness is highly probable, and is rejected otherwise.

From the perspective of statistical hypothesis testing, signal detection in various

circumstances can be analyzed and studied in a unified mathematical framework. It is

from this aspect that we start our discussion on the theory, method, and applications

of signal detection in this chapter.

3.1 Statistical Hypothesis Testing

In principle, signal detection theory (SDT) is a theory of statistical hypothesis testing.

By analyzing data from experiment, SDT can make decisions on uncertain stimulus (or

response) as to whether the stimulus is a signal generated by some known process, or

merely noise. SDT has broad applications of great diversity, including psychology (psy-

chophysics, perception, memory), medical diagnosis (whether the symptoms match

the diagnosis or not), wireless communications (whether the transmitted binary signal

is zero or one), and radar (whether the blip on a radar display is an aircraft, a missile,

or clutter interference), etc.

Psychologists are among the earliest to apply SDT to the study of cognition for the

purpose of differentiating signal (stimulus present) from noise (stimulus absent) with

memory recognition (to identify an object as being seen before or not) and lie test (to

identify the answers as being truth or lies) as examples.

3.1.1 Basic Concepts of Signal Detection

Fig. 3.1.1 depicts the basic procedure of signal detection.

In transmission and sensing, the physical (signal) source is first transmitted and

converted into observable data and then is observed and collected by sensors.

The observed physical process or phenomenon is called stimulus, and the output

of sensing is called observed data. Single sample from data is inadequate for making

https://doi.org/10.1515/9783110475562-003
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Physical
(signal)
source

Sensing
process

Observation
space

Inference
(decision)

process

Response
performance

Fig. 3.1.1: Prcedure of Signal Detection

correct statistical decision. Thus, it is necessary to use a collection of observed data

y
1
, · · · , yN for detector to make an inference or decision. The result of inference or

decision is called response, which is further shown by display equipment.

From the perspective of computation, SDT is a computational framework describing

how to extract signal from noise and explicating any deviation and factors that could

affect the extraction. Recently, SDT has been successfully applied in explaining how

human brain perceives environment and detects signal by suppressing noise through

inherent functions of brain

[92]

.

It should be mentioned that the concepts of signal and noise do not necessarily

refer to actual signal and noise. Rather, they are used metaphorically sometimes. In

general, common event is conventionally regarded as signal, and sporadic event is

treated as noise. For example, in the experiment ofmemory recognition, the participant

is required to decide whether the current stimulus has been presented before or not

[4]

.

In such case, signal is the familiar stimulus in memory, and noise is the perception

of a novel stimulus. As another example, in tumor diagnosis (by ultrasound), signal

of clear echo usually suggests benign lump. In contrast, indistinct echo or irregular

response could be a sign of a malignant tumor (cancer). In the following, we use the

terms of signal and noise to label different objects in detection.

In signal detection, there are two scenarios: the presence and absence of a signal,

where the absence of a signal also means the presence of noise. The output of decision

or detection is binary with either “yes” (affirmation) or “no” (rejection). Thus, the result

is one of the following four categories.

(1) The signal is present and the decision is “yes.” The decision is a success and is

called a “hit”.

(2) The signal is present but the decision is “no” which rejects the presence of signal.

The erroneous decision is called a missed detection or a “miss.” In radar or other

military applications, the result is also called “missing alarm”.

(3) The signal is absent but the decision is “yes” which affirms the presence of signal.

The incorrect decision is called a “false alert” or a “false alarm” (FA).

(4) The signal is absent and the decision is “no” and rejects the presence of signal.

The decision is called a correct denial or a “correct rejection” (CR).

Tab. 3.1.1 lists all possible results above in SDT

[4]

.
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Tab. 3.1.1: Four Possible Results in SDT

Signal Decision
Yes (Affirmation) No (Rejection)

Presence hit miss
Absence false alert, false alarm correct denial, correct rejection

Note that the consequences of incorrect decisions in different scenarios can differ

greatly. In wireless communications, bit errors occur in binary communications for de-

ciding 1 when 0 is transmitted or decide 0 when 1 is transmitted. Both detection errors

have almost identical consequences. However, in military applications such as radar

and sonar, the incorrect decision (missing alarm) when the signal (unexpected aircraft

or missile) is present could incur more severe consequence than the incorrect decision

(false alarm) when the signal is absent. Similarly, in the diagnosis of tumor, deciding

a benign tumor to be cancerous could cause much psychological stress to patient. In

contrast, diagnosing malignant tumor as being benign can delay the treatment of the

patient and may have fatal consequence.

The proportion of a stimulus or response in total number of experiment is called

relative frequency or probability. In SDT, the relative frequencies of four results are

related. For instance, when the signal is present, the sum of rates of hit and miss is

one (third row of Tab. 3.1.1). If the signal is absent, the sum of rates of FA and CR is also

one (fourth row of Tab. 3.1.1).

The observer that declares “no” on all occasions can achieve a CR rate of 100% but

never hit, with always missing alarms (third column of Tab. 3.1.1). On the contrary, the

observer that keeps declaring “yes” can make correct guess when signal is present but

never have CR, i.e., it has FAs all the time (second column in Tab. 3.1.1).

Following are three primary causes of error in signal and noise discrimination.

(1) The stimulus is beyond the standard detection window. For instance, the physical

or physiological detector might has a narrower frequency range than the detected

signal when detecting ultraviolet signal using visible light image sensors with color

vision deficiency.

(2) The stimulus is “masked” by external noise, which reduces SNR. In such case,

there are two cases as below.

➀ Noise increase. The external noise can severely affect detection.

➁ Signal decrease. The external noise could excite suppression causing lower

energy of signal.

(3) Change in converter or sensor (including the effect of gain control induced by

experiment or neurons and failure of normalization).

The so-called “statistical inference” is to form judgment on the hypothesis related to the

statistical properties (e.g., PDF) of random variable. The hypothesis could arise from
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practical observation or theoretical analysis of the stochastic phenomena. Basically,

the statistical hypothesis makes statements on the character of the studied population

and is denoted by H. Several simple examples are given below.

Example 3.1.1 On detecting the presence of a target, we have two hypotheses below.

{︃
H
0
: The target is not present.

H
1
: The target is present.

Example 3.1.2 For an athlete doping test, one may have two declarations below.

{︃
H
0
: The test result is negative.

H
1
: The test result is positive.

Example 3.1.3 For the probability distribution of a given random variable ξ , one may

have the following declarations or assumptions.

⎧
⎪⎪⎨
⎪⎪⎩

H
0
: ξ follows normal distribution.

H
1
: ξ follows exponential distribution.

H
2
: ξ follows χ2 distribution.

In the above examples, the sets of target signals, doping tests, and probability distribu-

tions are the populations we are interested in, and the presence of signal, positiveness

of test, and specific distribution are respectively the characters of the populations.

Binary hypothesis testing is the testing problem that has two statistical hypotheses.

Examples 3.1.1 and 3.1.2 are instances of binary hypothesis testing. In most cases, the

two statistical hypotheses cannot be true at the same time: either H
0
is true and H

1
is

false or H
1
is true and H

0
is false. Namely, the two hypotheses are mutually exclusive

as one is true and the other must be false. The random event that catches our attention

is mostly accidental and the declaration of its not occurring is thus taken as the default

hypothesis. For example, in radar, the presence of an aircraft target is accidental. In

doping test, the positive samples are also rare. As probability model, Gaussian (normal)

distribution is more common. It is the convention to take H
0
as the default hypothesis

of the random event not occurring and H
1
as the hypothesis of the occurrence of the

random event. The default hypothesis H
0
is called null or original hypothesis and the

opposite hypothesis H
1
is called alternative hypothesis.

Hypothesis testing can have more than two hypotheses, e.g., Example 3.1.3. Most

part of this chapter will be devoted to binary hypothesis testing but the last two sections

will introduce the subjects of testing multiple hypotheses and multiple hypothesis

testing respectively.
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3.1.2 Signal Detection Measures

The SDT measure can be expressed by rate or probability.

1. Measure of Rate
Hit rate and false-alarm rate are both rate measures.

(1) Hit rate

R
H
=

Number of hits

Number of signal events

. (3.1.1)

(2) False-alarm rate

R
FA

=

Number of false alarms

Number of noise events

. (3.1.2)

2. Measure of Probability
Probability measure is usually determined by certainmeasure function. ϕ function

and inverse ϕ function are two commonly used measure functions.

(1) ϕ function maps z score into probability. The value of ϕ function determine the

area under the PDF of normal distribution that lies on the left side of vertical line

set by z score. The larger z score is, the higher the probability gets. For example,

ϕ(−1.64) = 0.05 means that the probability that corresponds to z score −1.64 is
0.05.

On the other hand, z test can yield the area of normal distribution on the right side

of z score. As z score gets larger, z test gives smaller probability.

(2) Inverseϕ function is the inversion ofϕ function denoted byϕ−1. Inverseϕ function

maps probability into z score. For example, ϕ−1(0.05) = −1.64 means that the left

side probability of 0.05 has a z score of −1.64.

In binary hypothesis testing, the statistical evidence Y of one experiment is usually

first calculated from N observations y
1
, · · · , yN . Then, the test decision is made by

comparing Y against threshold λ, which is called decision parameter. As the statistical

evidence Y is a random variable rather than a constant, it is natural to consider odds

or probability as the measure that quantifies the consequence of the decision based on

certain statistical evidence.

The decision of accepting hypothesis Hi under hypothesis Hj is denoted by (Hi|Hj)
and the corresponding probabilitymeasure is given by conditional probability P(Hi|Hj),
which reads “the probability of accepting Hi when Hj is true”. In the case of binary
hypothesis testing, with such notation, there are four types of probabilities:

(1) Probability of false alarm P(H
1
|H

0
) = P

F
: the probability of deciding H

1
when H

0

actually occurs, which can be expressed as

P(H
1
|H

0
) = P

F
= P(Y > λ|H

0
) =

∞∫︁

λ

p(y|H
0
) dy. (3.1.3)

In the equations, we define p(y|H
0
) and p(y|H

1
) as the PDFs of observation y

conditioned on H
0
and H

1
, respectively.
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(2) Probability of correct rejection: the probability of deciding H
0
when H

0
is true,

expressed as

P(H
0
|H

0
) = P(Y < λ|H

0
) =

λ∫︁

−∞

p(y|H
0
) dy. (3.1.4)

(3) Probability of hit: the probability of deciding H
1
when H

1
is true, which has ex-

pression as

P(H
1
|H

1
) = P

H
= P(Y > λ|H

1
) =

∞∫︁

λ

p(y|H
1
) dy. (3.1.5)

(4) Probability of miss detection or missing alarm: the probability of choosing H
0

when H
1
is true, which is expressed by

P(H
0
|H

1
) = P(Y < λ|H

1
) =

λ∫︁

−∞

p(y|H
1
) dy. (3.1.6)

The probabilities of false alarm and correct rejection sum to one, and so do the proba-

bilities of hit and missing alarm. That is,

P(H
1
|H

0
) + P(H

0
|H

0
) = 1 and P(H

1
|H

1
) + P(H

0
|H

1
) = 1. (3.1.7)

As is evident from the definitions above, all four types of probabilities depend upon

yλ

p(y|H0) p(y|H1)

H0 is true H1 is true

Fig. 3.1.2: Influence of parameter λ on four probabilities

the decision parameter λ in the signal detection model (see Fig. 3.1.2). Fig. 3.1.2 gives

an illustration of the conditional PDFs p(y|H
0
) and p(y|H

1
) and the decision regions

determined by λ. From Fig. 3.1.2, several observations can be summarized.

(1) The effect of overlap area of PDFs. Smaller overlap area of conditional PDFs p(y|H
0
)

and p(y|H
1
) results in a smaller hit probability P

H
and a higher false alarm proba-

bility P
F
. On the contrary, larger overlap area of the two PDFs will increase the hit

probability and decrease the false alarm probability.
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(2) The effect of decision parameter λ. As λ moves left towards p(y|H
0
), i.e., λ is de-

creased, both P
H
and P

F
will grow. On the other hand, as λmoves right towards

p(y|H
1
), i.e., λ is increased, both P

H
and P

F
will decrease accordingly.

As the null hypothesis H
0
is the default hypothesis, the rejection of H

0
is the focus of

signal detection. Regarding the decision about H
0
, one may either reject H

0
or fail to

reject H
0
. Depending on what actually happens, there are two results for each decision:

reject H
0

{︃
when H

0
is true,

when H
0
is false.

fail to reject H
0

{︃
when H

0
is true,

when H
0
is false.

Note that failing to reject H
0
should not be identified with accepting H

0
. For instance,

in the early-warning radar network, as a simple rule of data fusion, the rejection of H
0

cannot be made until the decision is settled by the vote of multiple radars. It does not

means that the whole radar network should reach the decision of absence of target

when only a minority of radars fails to reject H
0
. Similarly, in Example 3.1.2, being

indecisive to reject H
0
in one doping test of an athlete gives at most a “suspected

negative” case, which requires more tests to completely rule out the possibility of a

positive doping test.

Furthermore, it should be emphasized that a decision in statistical hypothesis

testing is in essence a procedure of inference based on statistics of the observation.

Owing to the presence of observation noise or error and the limitation in observation

length, the estimation errors in statistics are inevitable. Consequently, our statistical

inference is fallible. In other words, deciding the rejection of H
0
does not necessarily

imply H
0
being false. In fact, H

0
could still be true and it is our inference that can

accidentally be incorrect. Likewise, failing to reject H
0
cannot be taken as the truth of

H
0
being definitely confirmed since our decision can have error.

If our decision is to reject H
0
, we are either rejecting the true hypothesis (erroneous

decision) or rejecting the false hypothesis (correct decision). Likewise, if we are unable

to reject H
0
, the decision either fails to reject the true hypothesis (correct decision),

or fails to reject the false hypothesis (erroneous decision). Therefore, no matter the

decision is to reject or not to reject H
0
, the final inference could be a deviation from

the reality, which is called inference error.

The error of rejecting a true H
0
hypothesis is called type I error or error of the first

kind, and the error for failing to reject a false H
0
hypothesis is called type II error or

error of the second kind. Noticeably, type I error occurs only when H
0
is true, and

type II error only when H
0
is untrue. As H

0
cannot not be both true and untrue, the

inference error must belong to either type of error, and cannot be both.

To quantify the inference error, a numeric parameter is required to measure the

odds of the two types of error, and the error probability is exactly the relevant metric to

use.
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Definition 3.1.1. The probability of rejecting H
0
when H

0
is true is called the probability

of type I error, which is denoted as α.

Definition 3.1.2. The probability of failing to reject H
0
when H

0
is false is called the

probability of type II error, which is denoted as β.

Obviously, the two types of error probabilities both lie between 0 and 1, i.e., 0 ≤ α ≤ 1
and 0 ≤ β ≤ 1.

From the definitions above, the probabilities of type I and II errors can be expressed

as

P(reject H
0
|H

0
is true) = α, (3.1.8)

P(fail to reject H
0
|H

0
is false) = β. (3.1.9)

From Eqs. (3.1.8) and (3.1.9), both error probabilities are conditional probabilities. In

general, due to the limitation in the knowledge of real world, we cannot get the precise

probabilities of type I and II errors, and instead the estimates of the probabilities α and
β of type I and II errors can be obtained in practice.

The probability of type I error α is also called level of statistical significance, which
indicates that with adequate sample, the evidence of rejecting H

0
is sufficient (or

significant) and the maximum error probability of rejection is at most α.
The fundamental problem in statistical hypothesis testing is how to make decision

about the truth of hypothesis H
0
. To this end, a decision rule must be designed to form

judgment from experiment data on whether rejecting H
0
or not. Such decision rule

constitutes the procedure of statistical hypothesis testing.

Definition 3.1.3. The statistical hypothesis testing based on the statistic of a population
is a decision rule, following which the decision on whether to reject H

0
can be made once

samples from random experiment are obtained.

Decision rule in statistical hypothesis testing is mostly in the form of a function. The

decision procedure can be reduced to the comparison between the statistic of observed

data and threshold. That is, the decision relies upon some proper statistic, which is

called test statistic.

Which statistic can be employed as test statistic is completely determined by the

model used in hypothesis testing problem and the decision rule. The sample average

ȳ = 1

N
∑︀N

n=1 yn of N observations y
1
, · · · , yN is one of the most simple and frequently

used test statistics.

Now consider the simple null hypothesis about parameter θ

H
0
: θ = θ

0
,

where θ
0
is the parameter under investigation.

If the alternative hypothesis is of the form

H
1
: θ > θ

0
or H

1
: θ < θ

0
,
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H
1
is called one-sided alternative hypothesis, since the value of θ under H

1
is only on

one side of the parameter θ
0
.

Different from one-sided alternative hypothesis, the alternative hypothesis

H
1
: θ ̸= θ

0

is called two-sided alternative hypothesis, since the value of θ under H
1
can lie on

both sides of the parameter θ
0
.

When H
1
is a composite alternative hypothesis, which is in a more complex form,

θ that rejects H
0
takes value in a parameter set. As H

0
is the null hypothesis, deciding

whether to reject H
0
is the fundamental task of hypothesis testing.

Definition 3.1.4. If the decision of rejecting H
0
is made by the result of comparison

g > Th, where g is test statistic and Th is preset threshold, the range (Th, ∞) is called the
critical region of the test statistic.

The critical region is denoted by R
c
= (Th,∞). Evidently, as the parameter θ traverses

the critical region R
c
, the probability of type II error β(θ) also varies to yield a function

β(θ), which is called operating characteristic function. The curve showing the variation
of β with θ is called operating characteristic curve.

β(θ) is the probability of θ falling outside critical region and failing to reject H
0
in

the case of false H
0
(incorrect decision) , and accordingly 1 − β(θ) is the probability of

test statistic in the critical region and rejecting H
0
for false H

0
(correct decision).

Definition 3.1.5. The function P(θ) = 1 − β(θ) is defined as the power function of statis-
tical hypothesis testing, which is the probability of rejecting H

0
for a false H

0
(correct

decision).

Notice that in binary hypothesis testing, false H
0
does not necessarily imply H

1
being

true. Rejecting H
0
or accepting H

1
is the basic decision in binary hypothesis testing.

Thus, 1 − β(θ) represents the effectiveness (power) of the basic decision of correctly
rejecting H

0
or accepting H

1
, which is the reason for the name of power function.

The power function 1−β(θ) and the characteristic function β(θ) are complementary

in that their sum is one.

3.1.3 Decision Space

Nowwe turn to the detection problem involving two signals S
1
and S

0
, which belongs to

the binary hypothesis testing. In varied scenarios of application, what the two signals

actually refer to could be quite different. In target detection of radar or sonar, S
1
and S

0

are the presence and absence of the target, respectively. However, in signal detection

of digital communications, S
1
= g(t) and S

0
= −g(t) are two transmitted signals with

opposite polarity.
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The collection of all signals is called signal or parameter space, and is denoted by 
S. In binary hypothesis testing, the signal space is composed of two signals S

0 and S
1
, 

that is,
S = {S

0
, S

1
}.

Transmitted through channel, the signal is mixed with additive noise wn and the 
observed data are:

{︃
H
0
: yn = S0 + wn ,

H
1
: yn = S1 + wn ,

n = 1, 2, · · · , (3.1.10)

where H
0
is the null hypothesis and H

1
is the alternative hypothesis.

The additive noise wn samples are assumed to be independent and stationary. In

common applications, the additive noise wn is also assumed to be white Gaussian with

mean E {wn} = μ0 and variance σ2.
Due to the existence of additive noise wn, the observed data yn are random. As a

consequence, correct decision about signal detection cannot be achieved with single

random sample yn, and the judgment on the presence of signal is made based on N
observed samples y

1
, · · · , yN in the signal detection problem. The judgment is called

decision in the detection problem.

For convenience, denote

y = (y
1
, · · · , yN) (3.1.11)

as the array of observed samples y
1
, · · · , yN . Note that y is not vector notation here.

The set of all possible observations constitute the space of observed samples, and

is denoted as Ω. The observation array y is an element of Ω, and belongs to the space
of observed samples, which is denoted as y ∈ Ω.

Still, y is an array of random variables, which is tedious to be used as a test statistic

for the detection problem. As such, the observation array is needed to be reduced into

a well-defined statistic, which is called decision statistic for the detection problem and

is expressed by

t = g(y) = g(y
1
, · · · , yN). (3.1.12)

The average of N samples is one of the most simple decision statistic

t = g(y) = ȳ = 1

N

N∑︁

n=1
yn . (3.1.13)

Suppose that the distribution is characterized by some unknown parameter θ. N sam-

ples y
1
, · · · , yN are drawn from the distribution (to estimate θ). Let t = g(y

1
, · · · , yN)

be the statistic (or random variable) obtained from observations y
1
, · · · , yN , and Pθ be

the distribution family parameterized by θ.

Definition 3.1.6.
[256]

Statistic t = g(y
1
, · · · , yN) is called the sufficient statistic of distri-

bution family Pθ if and only if any one of the following equivalent conditions holds:
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(1) For arbitrary event A, conditional probability P(A|t) is independent from θ.
(2) For any random variable α whose expectation E {α} exists, the conditional expecta-

tion E {α|t} is independent from θ.
(3) Given t, the conditional PDF p(α|t) of any random variable α, which always exists,

does not depend on θ.

In general, conditional probability P(A|t), conditional expectation E {α|t}, and condi-
tional distribution p(α|t) are all connected with θ. But for sufficient statistic t fixed as T,
the conditional distribution and expectation are independent from θ, which suggests
that letting t = T also has θ fixed. To put it in simple words, the statistic t plays the
same role as θ, as what the term “sufficient statistic” indicates. Comprehensibly, one

may expect test statistic t is a sufficient statistic in the hypothesis testing.

In some textbooks, decision statistic is also named decision function. Nevertheless,

in this book,we refer to the termof decision function as the function defined by decision

rule and denote the function by L(y) = L(y
1
, · · · , yN). One of themost popular decision

function is the ratio of two conditional PDFs: p(y|H
1
)/p(y|H

0
), which is usually named

as likelihood ratio. Generally, the derivation of decision function from observed data is

not straightforward. In contrast, decision statistic can be estimated directly from the

data.

Let Th be the threshold used in the decision. If the decision statistic is greater than

the threshold, H
0
is rejected and H

1
is accepted to decide that signal S

1
is present.

Otherwise, claim that H
0
is true and decide that signal S

0
is present. The decision rule

can written as

{︃
H
0
: if g(y) ≤ Th, decide signal S

0
is present,

H
1
: if g(y) > Th, decide signal S

1
is present,

(3.1.14)

or in a combined form,

g(y)
H
0

⋚
H
1

Th. (3.1.15)

Decision space is the set of all possible values of decision statistic, and is denoted as

D. With threshold Th as the boundary, the decision space D = (−∞,∞) is divided into

two subspaces: D = D
0
∪ D

1
, where

D
0
= (−∞, Th) and D

1
= (Th,∞).

All the decision results constitute an action space or outcome space. The outcome

space of binary hypothesis testing is composed of two elements A
0
and A

1
, i.e.,

A = {A
0
, A

1
},

where A
0
and A

1
are the outcomes of decision under hypotheses H

0
and H

1
, respec-

tively.
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A decision can be either hard or soft. A hard decision is simply a claim about the

presence of a signal or signal characteristic (e.g., signal polarity). While a soft decision

gives numeric value, i.e., probability, that measures the uncertainty in the presence of

a signal or signal characteristic. In binary hypothesis testing, hard decision is more

common.

If the signal space S = {S
1
, S

2
, · · · , SM} contains more than two elements, the

corresponding detection problem requires testing multiple hypothesis and is called

M-ary testing.

To sum up, the four spaces in decision theory are

S = signal or parameter space,

Ω = sample space,

D = decision space,

A = outcome space.

Signal space
S

Sample space
Ω

Decision space
D

Action space
A

S1 ∗
S0 ∗

Channel +
Observation

y D0 D1

Decision
Test statistic

g(y) > Th

< Th

A1

A0

Noise

Fig. 3.1.3: Decison space of binary hypothesis testing

Fig 3.1.3 depicts the relationship among decision theory spaces of binary hypothesis

testing as the example.

The random variable following normal distribution N(μ, σ2) with mean μ and
variance σ2 plays a central role in binary hypothesis testing. In fact, random variables

in many practical problems of science and engineering are normally distributed or

approximately normally distributed.

In the next section, we will concentrate on the derivation of the decision rule for

the detection of a signal.

3.2 Probability Density Function and Error Function

In signal detection theory and method, one may repeatedly encounter calculations

involving PDF and error function. So, before the discussion of signal detection, it is

necessary to review the basics of PDF and error function which are closely related to

signal detection.



3.2 Probability Density Function and Error Function | 69

3.2.1 Probability Density Function

Let x be a random variable. The probability distribution function of random variable x
is defined as

F(x) =
x∫︁

−∞

p(u) du, (3.2.1)

and p(x) is the distribution density function of x, or distribution density for short.
Distribution density function has the following properties:

p(x) ≥ 0 (nonnegative), (3.2.2)

∞∫︁

−∞

p(x) dx = 1 (normalized). (3.2.3)

In this chapter, we assume the occurrence of discrete events H
0
and H

1
is random and

observations y
1
, · · · , yN are continuous random variables.

In the detection problem for the presence of signal,

{︃
H
0
: yn = wn ,

H
1
: yn = s + wn ,

n = 1, · · · , N, (3.2.4)

the additive noise wn is assumed to be Gaussian white with zero mean and variance σ2.
Thus, conditioned on either hypothesis of H

0
and H

1
, the observed data yn is normally

distributed. The means of the normal distributions of yn are 0 and s, respectively, and
the variances have identical value of σ2. That is, the conditional distributions are

p(yn|H0
) =

1√
2πσ

e

−y2n/(2σ
2

)

, (3.2.5)

p(yn|H1
) =

1√
2πσ

e

−(yn−s)2/(2σ2)
, (3.2.6)

which can be written in a compact form as

p(yn|Hi) =
1√
2πσ

e

−(yn−μi)2/(2σ2)
, i = 0, 1. (3.2.7)

In (3.2.7), μ
0
= 0 and μ

1
= s.

For an array of samples y = (y
1,
, · · · , yN), the conditional PDF p(yn|Hi) is in fact a

marginal PDF conditioned on Hi.
In binary hypothesis testing, the decision is based on all N observed samples rather

than single sample. As the samples are independent, the joint conditional PDF p(y|Hi)
of the sample array y = (y

1
, · · · , yN) is the product of the marginal PDFs p(yn|Hi) of
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each sample yn:

p(y|Hi) = p(y
1
, · · · , yN |Hi) =

N∏︁

n=1
p(yn|Hi) =

N∏︁

n=1

1√
2πσ

e

−(yn−μi)2/(2σ2)

=

1

(2πσ2)N/2
exp

(︃
−

N∑︁

n=1

(yn − μi)2
2σ2

)︃
i = 1, 2. (3.2.8)

When discrete random event Hi occurs, the conditional PDF p(y1, · · · , yN |Hi) of con-
tinuous samples y = (y

1
, · · · , yN) and the conditional probability P(Hi|y1, · · · , yN)

have different meanings.

Conditional PDF. The conditional PDF p(y
1
, · · · , yN |Hi) given that random event

Hi i has occurred is called the likelihood function of samples y, since it represents the
plausibility, or the likelihood in terms of probability theory, of the random event Hi
generating the samples y, after the occurrence of event Hi. Accordingly, the ratio of two
likelihood functions p(y

1
, · · · , yN |H1

) and p(y
1
, · · · , yN |H0

) is called likelihood ratio.

Conditional Probability. The conditional probability P(Hi|y1, · · · , yN) is the plausi-
bility or probability of Hi to happen given samples y, and thus represents the decision
maker’s confidence in the occurrence of random event Hi after collecting samples

y
1
, · · · , yN .
The joint PDF of the sample and the random event H p(y

1
, · · · , yN , H) is defined

as

p(y
1
, · · · , yN , H) = p(y1, · · · , yN |H)P(H) = P(H|y1, · · · , yN)p(y1, · · · , yN), (3.2.9)

from which we have

P(H|y
1
, · · · , yN) =

p(y
1
, · · · , yN |H)P(H)
p(y

1
, · · · , yN)

. (3.2.10)

The integral of PDF over interval (−∞,∞) is identical to one. That is,

∞∫︁

−∞

· · ·

∞∫︁

−∞

p(y
1
, · · · , yN) dy1 · · · dyN = 1 (joint PDF), (3.2.11)

∞∫︁

−∞

· · ·

∞∫︁

−∞

p(y
1
, · · · , yN |H) dy1 · · · dyN = 1 (likelihood function). (3.2.12)

The mean or expectation of function g(y
1
, · · · , yN) is defined as the N-fold integral of

the product of this function and the joint PDF p(y
1
, · · · , yN):

E

{︀
g(y

1
, · · · , yN)

}︀
def

=

∞∫︁

−∞

· · ·

∞∫︁

−∞

g(y
1
, · · · , yN)p(y1, · · · , yN) dy1 · · · dyN . (3.2.13)

Particularly, when H = θ with θ as some random parameter, the integral involving

posterior PDF

E {θ|y
1
, · · · , yN}

def

=

∞∫︁

−∞

θp(θ|y
1
, · · · , yN) dθ (3.2.14)
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is the conditional mean or expectation of random parameter θ given N observed sam-

ples y
1
, · · · , yN . Clearly, conditional expectation E {θ|y

1
, · · · , yN} is the function of

observation array y = (y
1
, · · · , yN).

Next we analyze the relation between the expectation E {θ} and the conditional
expectation E {θ|y

1
, · · · , yN}.

Let Ey
1
,··· ,yN and Eθ be the notations for the expectations over random array

(y
1
, · · · , yN) and random parameter θ, respectively. We have

E {θ} = Ey
1
,··· ,yN {Eθ {θ|y1, · · · , yN}} , (3.2.15)

which is known as the law of conditional expectation. From

Ey
1
,··· ,yN

{︀
g(y

1
, · · · , yN)

}︀
=

∞∫︁

−∞

g(y
1
, · · · , yN)p(y1, · · · , yN) dy1 · · · dyN , (3.2.16)

the expectation of θ is obtained by substituting (3.2.14) and (3.2.16) into (3.2.15) as

E {θ} = Ey
1
,··· ,yN {Eθ {θ|y1, · · · , yN}} = E

⎧
⎨
⎩

∞∫︁

−∞

θp(θ|y
1
, · · · , yN) dθ

⎫
⎬
⎭

=

∞∫︁

−∞

· · ·

∞∫︁

−∞

⎡
⎣
∞∫︁

−∞

θp(θ|y
1
, · · · , yN) dθ

⎤
⎦ p(y

1
, · · · , yN) dy1 · · · dyN

=

∞∫︁

−∞

· · ·

∞∫︁

−∞

∞∫︁

−∞

θp(θ|y
1
, · · · , yN)p(y1, · · · , yN) dθ dy1 · · · dyN , (3.2.17)

which is an N + 1-fold integral.

3.2.2 Error Function and Complementary Error Function

In signal detection, it is often needed to calculate the detection probabilities and

error, which has a close relationship with error and complementary error functions of

Gaussian random variable.

For Gaussian random variable x, its PDF is

p(x) = 1√
2πσx

e

−(x−mx)
2

/(2σ2x )
, (3.2.18)

where mx and σ2x are respectively the mean and variance of Gaussian random variable

x. The cumulative distribution function (CDF) is defined by

F(x) =
∞∫︁

x

p(u) du = 1√
2πσx

∞∫︁

x

e

−(u−mx)
2

/(2σ2x )
du = 1

2

2√
π

∞∫︁

(x−mx)/(
√
2σx)

e

−t2
dt. (3.2.19)
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The error function is given by

erf(z) = 2√
π

z∫︁

0

e

−t2
dt, (3.2.20)

and the complementary error function is given by

erfc(z) = 2√
π

∞∫︁

z

e

−t2
dt = 1 − erf(z). (3.2.21)

The CDF of Gaussian random variable x in (3.2.19) can then be expressed by error and
complementary error functions as

F(x) = 1

2

erfc

(︂
x − mx√
2σx

)︂
=

1

2

[︂
1 − erf

(︂
x − mx√
2σx

)︂]︂
. (3.2.22)

So, the error function is also called probability integral.

Error function has the following symmetry properties

erf(−z) = −erf(z) and erf(z*) = (erf(z))*. (3.2.23)

In particular, for z → ∞, it holds that

lim

z→∞
erf(z) = 1 and lim

z→−∞
erf(z) = −1, | arg(z)| < π

4

. (3.2.24)

Thus, we have

lim

z→∞
erfc(z) = 0 and lim

z→−∞
erfc(z) = −2, | arg(z)| < π

4

, (3.2.25)

which is an important result and will be used in the following sections.

The area under the right tail of Gaussian PDF is denoted as Q(x), defined as

Q(x) = 1√
2π

∞∫︁

x

e

−t2
dt, (3.2.26)

which is called Q-function.
Comparing (3.2.20) and (3.2.26) yields the relation of Q-function, error and com-

plementary error functions:

Q(x) = 1

2

erf(

x√
2

) = 1 −

1

2

erfc(

x√
2

). (3.2.27)

Appendix 3A gives a table of error function. Both error function value for given x and
variable value x for given erf(x) can be obtained by looking up the table. Besides, values
of inverse complementary error function and Q-function can be read from the table.

Example 3.2.1 Find the value of inverse complementary error function erfc

−1

(0.02).
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Solution. Let x = erfc

−1

(0.02). The complementary error function has a value of

erfc(x) = 0.02. Then, the error function

erf(x) = 1 − erfc(x) = 1 − 0.02 = 0.98,

for which we get x = 1.64 on the table. So, the value of inverse complementary error

function erfc

−1

(0.02) = 1.64. □

Example 3.2.2 Find the value of inverse complementary error function erfc

−1

(1.8).

Solution. Let x = erfc

−1

(1.8). The complementary error function has a value of erfc(x) =
1.8, from which the error function is

erf(x) = 1 − erfc(x) = 1 − 1.8 = −0.8.

Look up the table to get erf(0.91) = 0.8. Using the symmetry property of error function

erf(−x) = −erf(x) immediately gives x = −0.91 for erf(x) = −0.8. So, the value of inverse
complementary error function erfc

−1

(1.8) = −0.91. □

Example 3.2.3 Find the values of Q-function Q(0.1) and Q(0.3).

Solution. For x = 0.1, x/
√
2 = 0.0707 and for x = 0.3, x/

√
2 = 0.2121. From the table,

we have

erf

(︂
x√
2

)︂
= erf

(︂
0.1√
2

)︂
= erf(0.0707) ≈ 0.07885,

erf

(︂
x√
2

)︂
= erf

(︂
0.3√
2

)︂
= erf(0.2121) ≈ 0.2336.

Therefore,

Q(0.1) = Q(x) = 1 −

1

2

erf

(︂
x√
2

)︂
= 1 −

1

2

× 0.07885 = 0.9606,

Q(0.3) = Q(x) = 1 −

1

2

erf

(︂
x√
2

)︂
= 1 −

1

2

× 0.2336 = 0.8832.

□

Aswill be evident in the following section, error and complementary error functions

are essential in expressing the probabilities of detection and false alarm.

3.3 Probabilities of Detection and Error

In Section 3.1, various spaces involved in decision theory are discussed, and in Sec-

tion 3.2, probability theory in signal detection is briefly reviewed. In this section, the

interaction between outcome space and signal space will be discussed in more depth.



74 | 3 Signal Detection

In binary hypothesis testing, if the result of the decision is eitherA
1
= S

1
orA

0
= S

0
,

that is, the outcome spaceA = {A
0
, A

1
} coincides with the signal space S = {S

0
, S

1
},

the signal is detected correctly. However, owing to the effect of observational noise (or

error) or finite size of data, the error in the estimation of decision statistic is inevitable,

and will give rise to the inconsistency of outcome space and signal space, which could

cause either A
1
= S

0
or A

0
= S

1
and a detection error. Next we present the analytic

theory on correct and erroneous detection.

3.3.1 Definitions of Detection and Error Probabilities

The correct decision about the presence of S
1
or S

0
is correct detection in binary hy-

pothesis testing. The probability of correct decision is called probability of (signal)

detection, which has the following two types.

1. Detection Probability of S
1

The probability of correctly detecting the presence of signal S
1
is the detection

probability of S
1
, and is determined by the conditional probability P(g > Th|H

1
) of

decision statistic g = g(y) exceeding the threshold Th given hypothesis H
1
, or equiva-

lently by the conditional probability P(g ∈ D
1
|H

1
) of decision statistic g in the decision

space D
1
= (Th,∞) given hypothesis H

1
. That is,

P
D
1

= P(g > Th|H
1
) = P(g ∈ D

1
|H

1
) =

∞∫︁

Th

p(g|H
1
) dg. (3.3.1)

2. Detection Probability of S
0

The probability of correctly detecting signal S
0
is the detection probability of S

0
,

and is the conditional probability P(g > Th|H
0
) of decision statistic g = g(y) below the

threshold Th given hypothesis H
0
, or equivalently by the conditional probability P(g ∈

D
0
|H

0
) of decision statistic g in the decision space D

0
= (−∞, Th) given hypothesis H

0
.

That is,

P
D
0

= P(g < Th|H
0
) = P(g ∈ D

0
|H

0
) =

Th∫︁

−∞

p(g|H
0
) dg. (3.3.2)

Opposite to the above two types of correct decisions, both mistaking S
1
for S

0
and

mistaking S
0
for S

1
are incorrect decisions. Theprobability ofmakingwrongdecisions is

called error probability in signal detection, which can be classified as error probabilities

of type I and type II.

3. Error Probability of Type I
Rejecting true H

0
(i.e., the presence of signal S

0
) and deciding the presence of

signal S
1
is type I error. The probability of type I error is denoted as α. In early-warning

radar system, type I error is also known as false alarm, since it is an incorrect alert

to decide the presence of a target when actually no target exists. The probability of
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false alarm is denoted by P
F
. However, in detecting wireless communication signals of

binary pulse amplitude modulation (PAM), S
1
= p(t) and S

0
= −p(t), where p(t) is an

impulse with positive amplitude, are two transmitted signals of opposite polarity. In

this case, the type I error is to mistake the signal of negative polarity S
0
= −p(t) for the

signal S
1
= p(t) of positive polarity.

Being the error probability of rejecting H
0
, the error probability of type I is given

by the conditional probability P(g > Th|H
0
) of decision statistic g above threshold

Th under hypothesis H
0
, or equivalently, the conditional probability P(g ∈ D

1
|H

0
) of

decision statistic g in the decision space D
1
= (Th,∞) given hypothesis H

0
. That is,

P
F
= α = P(g > Th|H

0
) = P(g ∈ D

1
|H

0
) =

∞∫︁

Th

p(g|H
0
) dg. (3.3.3)

4. Error Probability of Type II
For the false H

0
(i.e., the absence of signal S

0
), to decide the presence of signal S

0

is type II error of failing to reject the false H
0
. Similar to type I error, type II error has

different interpretation depending the application.

Recall that in radar detection S
1
represents the presence of a target and S

0
repre-

sents the absence of a target. So, in terms of radar early warning, falsely taking target

for no target is called probability of miss, which is denoted as P
M
or β. Differently, in

detecting wireless communication signals of binary PAM, the type II error is to mistake

the signal of positive polarity S
1
= p(t) for the signal S

0
= p(t) of negative polarity.

Being the error probability of failing to reject H
0
, the error probability of type II is

given by the conditional probability P(g < Th|H
1
) of decision statistic g below threshold

Th under true hypothesis H
1
, or equivalently, the conditional probability P(g ∈ D

0
|H

1
)

of decision statistic g in the decision space D
0
= (−∞, Th) under hypothesis H

1
. That

is,

P
M
= β = P(g < Th|H

1
) = P(g ∈ D

0
|H

1
) =

Th∫︁

−∞

p(g|H
1
) dg. (3.3.4)

Now we discuss the relation between detection and error probabilities. First notice that

∫︁

g∈D

p(g|Hi) dg =
∞∫︁

−∞

p(g|Hi) dg = 1, i = 1, 0.

Thus, the detection and error probabilities have the important properties

P
D
0

=

Th∫︁

−∞

p(g|H
0
) dg =

∞∫︁

−∞

p(g|H
0
) dg −

∞∫︁

Th

p(g|H
0
) dg = 1 − α, (3.3.5)

P
D
1

=

∞∫︁

Th

p(g|H
1
) dg =

∞∫︁

−∞

p(g|H
1
) dg −

Th∫︁

−∞

p(g|H
1
) dg = 1 − β. (3.3.6)
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The physical interpretation of the above two equations is as follows. Since the proba-

bilities of detecting and missing a signal sums to one, the probability P
D
0

of signal S
0

being correctly detected is one minus the error probability α. Likewise, the probability
P
D
1

of signal S
1
being correctly detected is one minus the error probability β.

The complete detection probability P
D
in binary hypothesis testing incorporates

both detection probabilities of hypotheses H
0
and H

1
. Denote pi (i = 1, 0) be the prior

probability of signal Si being present, with p0 + p1 = 1. The detection probability in

binary hypothesis testing is

P
D
= p

0
P
D
0

+ p
1
P
D
1

= p
0

Th∫︁

−∞

p(g|H
0
) dg + p

1

∞∫︁

Th

p(g|H
1
) dg. (3.3.7)

Similarly, the error probability in binary hypothesis testing incorporates both probabil-

ity of false alarm α and probability of miss β:

P
E
= p

0
P
F
+ p

1
P
M
= p

0
α + p

1
β

= p
0

∞∫︁

Th

p(g|H
0
) dg + p

1

Th∫︁

−∞

p(g|H
1
) dg.

(3.3.8)

Detection probability P
D
and error probability P

E
satisfy

P
D
= 1 − P

E
. (3.3.9)

It is noteworthy that in radar signal detection, since S
0
represents no target, the proba-

bility of detecting signal is usually referred to as the probability of detecting S
1
, and the

detection probability of S
0
is less cared about. But when it comes to error probability,

both error probability for S
0
(probability of false alarm α) and error probability for

S
1
(probability of miss β) are received equal attention. In such case, the detection

probability is defined as the probability of detecting S
1

P
D
=

∞∫︁

Th

p(g|H
1
) dg = 1 − β = γ, (3.3.10)

where γ is called power of test and depends upon the alternative hypothesis H
1
.

The physical interpretation of (3.3.10) is as follows. As H
0
and H

1
are respectively

the hypotheses corresponding to the presence and absence of a target, γ = 1 − β is the
detection probability of a true target and thus represents the power of binary hypothesis

testing.

With radar signal detection as the example, Fig 3.3.1 depicts the conditional PDFs

p(g|H
1
) and p(g|H

0
) of the decision statistic g and the relation among detection proba-

bility P
D
= γ, probability of miss α, probability of false alarm β, and decision space

D = D
0
+ D

1
.
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f (g|H0) f (g|H1)

0 g

f (g|Hi)

Th

f (g|H0) f (g|H1)

D0 D1

β α

γ

False alarm probability: PF = α = area of grid line region
Missing alarm probability: PM = β = area of backslash region excluding grid line region

Detection probability: PD = γ = area of forwardslash region including grid line region

Fig. 3.3.1: Relation among PF ,PM and PD

3.3.2 Power Function

Eq. (3.3.10) defines the power of the binary hypothesis testing
{︃
H
0
: yn = wn ,

H
1
: yn = S1 + wn ,

which is to decide the presence of a target signal. Now consider the more general

problem of binary hypothesis testing

{︃
H
0
: yn = S0 + wn ,

H
1
: yn = S1 + wn ,

(3.3.11)

where wn is a Gaussian random variable with mean μ and variance σ2.
From (3.3.4), the probability β of type II error is a function of threshold Th, which is

further related to parameter S
1
in hypothesis H

1
. As a result, β is in essence a function

of parameter S
1
in H

1
, and can be written as β(S

1
).

Definition 3.3.1. For the binary hypothesis testing based on decision function L(y) or
decision statistic g(y), P(y) = 1 − β(S

1
) is called the power function of the hypothesis

testing, which is the probability of rejecting H
0
with the decision function or statistic in

the case of a false H
0
.

From the above definition, power function is the detection probability of signal S
1
with

β(S
1
) as the probability of missing S

1
. As such, it is desirable to have larger value of

power function P(y) = 1−β(S
1
) in theory. Thedecision statistic g(y) is themost powerful

if its power function has greatest value. In other words, the most powerful decision

statistic is optimal in the sense of power function. However, in different applications,

the criterion of optimal power may differ. So, the decision criterion should be adapted

for detecting different target of interest.
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1. Neyman-Pearson Criterion
In applications such as early warning radar, H

0
is the hypothesis of no target,

i.e., S
0
= 0, and H

1
is the hypothesis of existence of a target. As the damage caused

by type II error (missing a target) is much severe than type I error (falsely warning

a target), the probability of miss should be minimized with the probability of false

alarm (probability of type I error) kept below certain level. Or equivalently, the power

function, which is the detection probability of signal S
1
, is maximized. Such is the

renowned Neyman-Pearson criterion.

2. Uniformly Most Power Criterion
Inwireless communication,when the transmitted signals are reverse polarity signal

S
1
= s(t) and S

0
= −s(t), or when the transmitted characters are binary characters 1

and −1, type I and type II errors are both error codes, which causes basically the same

consequences with no difference in severity. Since the power function represents the

probability of detecting signal S
1
, it is a function of the parameter S

1
in H

1
. So in such

application problems, if the power function can be made independent of S
1
parameter,

it is possible to achieve the same maximum power function for all possible values of

parameter S
1
. Such a maximum power function is called a uniformly (or consistent)

most power function, and the corresponding decision criterion is called a uniformly

most power criterion.

3. Bayesian Criterion
Any decision rule is accompanied by risk, and the decision rule with optimal power

can give rise to higher risk. Therefore, in some applications the optimality of power

is less emphasized, and the decision that has minimum risk is much favored. The

criterion that minimizes risk function is called Bayesian criterion.

In the following sections, our discussionwill revolve around the above three criteria

and their performance analysis.

3.4 Neyman-Pearson Criterion

In the applications of signal detection, many practical problems can be attributed to

binary hypothesis testing where the null hypothesis represents that the observed data

contains noise only and the alternative hypothesis represents that the data contains

signal of interest. Typical example of such problem is the signal detection in radar and

sonar.
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3.4.1 Probabilities of False Alarm and Miss alarm in Radar Signal Detection

In radar signal detection, the radar echo signal can be described by the following

binary hypothesis testing model:

{︃
H
0
: yn = wn , The target is absent,

H
1
: yn = S + wn , The target is present,

(3.4.1)

where S denotes the amplitude of the radar echo pulse, which is a deterministic signal.

The additive noise wn is white Gaussian with zero mean and variance σ2, i.e.,

E {wn} = 0, var [wn] = σ2, E {wnwk} = 0, (if n ̸= k).

For the above model, the sample mean of N samples y
1
, · · · , yN

ȳ = 1

N

N∑︁

n=1
yn (3.4.2)

is used as the decision function. Thus, the decision rule is

{︃
H
0
: decide target is absent, if ȳ ≤ Th,

H
1
: decide target is present, if ȳ > Th.

(3.4.3)

Therefore, it is crucial to choose a proper threshold Th.

Note that S is deterministic and wn is white Gaussian noise with zero mean and

variance σ2. So it follows that like wn, the sample mean ȳ is Gaussian as well.
Conditioned on the hypotheses, the expectations of sample mean ȳ are

E {ȳ|H
0
} = E {wn} = 0, E {ȳ|H

1
} = E {S} = S,

and the variances are

var [ȳ|H0]
= var [ȳ|H1]

=

σ2
N .

In short, sample mean ȳ is normally distributed with zero mean and variance σ2/N
under H

0
and with mean S and variance σ2 under H

1
. Then, the conditional PDFs of

the Gaussian random variable ȳ are

p(ȳ|H
0
) =

1√︀
2πvar [ȳ|H0]

exp

[︂
−

(ȳ − E {ȳ|H
0
})2

2var [ȳ|H0]

]︂

=

1√︀
2π/Nσ

exp

(︂
−

ȳ2
2σ2/N

)︂
, (3.4.4)

p(ȳ|H
1
) =

1√︀
2πvar [ȳ|H1]

exp

[︂
−

(ȳ − E {ȳ|H
1
})2

2var [ȳ|H1]

]︂

=

1√︀
2π/Nσ

exp

(︂
−

(ȳ − S)2
2σ2/N

)︂
. (3.4.5)
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So, the probability of false alarm is

α =
∞∫︁

Th

p(ȳ|H
0
) dȳ =

∞∫︁

Th

1√︀
2π/Nσ

exp

(︂
−

ȳ2
2σ2/N

)︂
dȳ = 1

2

2√
π

∞∫︁

Th√
2/N

σ

e

−u2
du,

which can be expressed by the complementary error function in (3.2.21) as

α = 1

2

erfc

(︃
Th√︀
2/Nσ

)︃
. (3.4.6)

Therefore, the threshold can be derived from the probability of false alarm as

Th =

√
2σ√
N
erfc

−1

(2α). (3.4.7)

Similarly, noticing

∫︀
∞

−∞

p(ȳ|H
1
) dȳ, the probability of miss alarm is

β =
Th∫︁

−∞

p(ȳ|H
1
) dȳ = 1 −

∞∫︁

Th

p(ȳ|H
1
) dȳ

= 1 −

∞∫︁

Th

1√︀
2π/Nσ

exp

(︂
−

(ȳ − S)2
2σ2/N

)︂
dȳ

= 1 −

1

2

2√
π

∫︁

Th−S√
2/Nσ

e

−u2
du,

which can be expressed by complementary error function as

β = 1 −

1

2

erfc

(︃
Th − S√︀
2/Nσ

)︃
. (3.4.8)

Finally, the detection probability is

P
D
=

∞∫︁

Th

p(ȳ|H
1
) dȳ =

∞∫︁

Th

1√︀
2π/Nσ

exp

(︂
−

(ȳ − S)2
2σ2/N

)︂
dȳ = 1

2

2√
π

∞∫︁

Th−S√
2/Nσ

e

−u2
du,

which gives

P
D
=

1

2

erfc

(︃
Th − S√︀
2/Nσ

)︃
= 1 − β (3.4.9)

and is consistent with (3.3.10).

In radar or sonar signal detection, the value of threshold Th and sample size N are

to be specified such that the requirement from application on the probability α of false
alarm and/or probability β of miss alarm is met.



3.4 Neyman-Pearson Criterion | 81

Example 3.4.1 The received signal of the radar is

yn =
{︃
H
0
: wn , target is absent,

H
1
: 1 + wn , target is present,

where the additive noise wn is Gaussian white with zero mean and unit variance. For

the probability of false alarm fixed as α = 0.01, find the threshold Th, probability of

miss β, and detection probability P
D
at sample sizes N = 20 and N = 25, respectively.

Solution. From (3.4.7) and σ = 1, we have

Th =

√
2σ√
N
erfc

−1

(2α) =
√
2√
N
erfc

−1

(2α).

Let erfc

−1

(2α) = x,

erf(x) = 1 − erfc(x) = 1 − 2α = 1 − 2 × 0.01 = 0.98.

From the table of error function (Appendix 3A), we get x = 1.64. Thus, the thresholds

are given by

Th =

√︀
2/Nerfc−1(2α) =

√︀
2/N × 1.64 =

{︃
0.5186, N = 20,

0.4639, N = 25.

From (3.4.9) with S = 1 and the above threshold values, the detection probabilities are

P
D
=

1

2

erfc

(︃
Th − S√︀
2/Nσ

)︃

=

{︃
0.5erfc(−1.5223) = 0.5[1 + erf(1.5223)] ≈ 0.984, N = 20,

0.5erfc(−1.8954) = 0.5[1 + erf(1.8954)] ≈ 0.996, N = 25,

where erf(1.5223) ≈ 0.9864 and erf(1.8954) ≈ 0.9926 are from the table of error

function. The probabilities of miss alarm is

β = 1 − P
D
=

{︃
0.016, N = 20,

0.004, N = 25.

In conclusion, when the sample size N = 20, threshold Th = 0.5186, probability of

miss β = 0.016, and detection probability P
D
= 0.984. When the sample size N = 25,

threshold Th = 0.4639, probability of miss β = 0.004, and detection probability

P
D
= 0.996. □

Example 3.4.2 The model for the radar data is the same as in Example 3.4.1. For the

probability of false alarm α = P
F
= 0.01 and the probability of miss β = P

M
= 0.05,

find the value of threshold Th and sample size N satisfying the requirement of error

probabilities.
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Solution. From Example 3.4.1, the probability of false alarm is

α = 1

2

erfc

(︃
Th√︀
2/N

)︃

and the probability of miss is

β = 1 −

1

2

erfc

(︃
Th − 1√︀
2/N

)︃
.

From the above equations and the given conditions α = 0.01 and β = 0.05, we have

Th =

√
2√
N
erfc

−1

(2α) =
√
2√
N
erfc

−1

(0.02),

Th − 1 =

√
2√
N
erfc

−1

(2(1 − β)) =
√
2√
N
erfc

−1

(1.9).

The ratio of the two equations is

Th

1 − Th

=

erfc

−1

(0.02)

erfc

−1

(1.9)

≈

1.64

−1.16

= −1.1438,

which gives Th = 0.5857. The sample size canbe solved by substitution of the threshold

Th =

√
2√
N
erfc

−1

(0.02) =

√
2√
N
× 1.64 = 0.5857

to yield N = 15.6808 and we take N = 16. Therefore, in the detection of radar signal,

by setting the threshold Th = 0.5857, the sample size N = 16 for the observed array,

and using the decision rule based on sample mean ȳ
{︃
H
1
: decide the target is present, if ȳ > 0.5857,

H
0
: decide the target is absent, if ȳ < 0.5857,

the requirements of probability of false alarm α = 0.01 and probability ofmiss β = 0.05

can be met. □

As the detection probability P
D
is a monotonic function of the probability of false

alarm P
F
, the relation illustrated by the P

D
∼ P

F
curve of the function is called receiver

operating characteristic (ROC).

3.4.2 Neyman-Pearson Lemma and Neyman-Pearson Criterion

In military, missing alarm can have more detrimental consequence in comparison with

false alarm. Therefore, in applications of radar and sonar signal detection, the criterion
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of choosing decision statistic or decision function is to minimize the probability of

miss β or to maximize the detection probability to improve the power γ = 1 − β, with
probability of false alarm kept below a value of α

0
. Specifically, if the conditional PDF

p(y|H
1
) is chosen as the decision function, the criterion of maximizing power under

constraint gives the following optimization problem

γ = max

∞∫︁

Th

p(y|H
1
) dy = max

∫︁

y∈R
c

p(y|H
1
) dy, (3.4.10)

with constraint ∫︁

y∈R
c

p(y|H
0
) dy = α

0
. (3.4.11)

Strictly speaking, the inequality constraint

∫︀
y∈R

c

p(y|H
0
) dy ≤ α

0
should be used.

However, the inequality constraint could result in amore difficult problem than the one

with equality constraint. So, the above problem is solved under the equality constraint

of the false alarm probability α
0
.

The central task in the criterion of maximum power is to solve the optimal critical

region, which is depicted in Fig 3.4.1, and requires the following Neyman-Pearson

lemma.

Rc

g(y)

R R1

Fig. 3.4.1: Illustration of critical regions

Corollary 3.4.1. Neyman-Pearson Lemma
Let

Rc = {y : p(y|H
1
) > ηp(y|H

0
)}, (3.4.12)

where η is the constant such that Eq. (3.4.11) is satisfied. Let R be arbitrary region in the
sample space Ω and ∫︁

y∈R

p(y|H
0
) dy = α

0
. (3.4.13)
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Then ∫︁

y∈Rc

p(y|H
1
) dy ≥

∫︁

y∈R

p(y|H
1
) dy. (3.4.14)

Neyman-Pearson lemma shows that the power of any region R in the sample space

Ω cannot exceed the power of the critical region R
c
. So, R

c
is optimal in the sense of

power maximization and the region defined in (3.4.12) is the optimal solution of the

constrained problem in (3.4.10).

The decision rule derived from Neyman-Pearson is called the Neyman-Pearson

criterion.

Taking the likelihood ratio function from the sample array y = (y
1
, · · · , yN)

L(y) = p(y|H1
)

p(y|H
0
)

(3.4.15)

as the decision function, the Neyman-Pearson criterion can be recast as

L(y) = p(y|H1
)

p(y|H
0
)

H
0

⋚
H
1

η, (3.4.16)

where η is the threshold. Accordingly, the solution of critical region in (3.4.12) has the
equivalent form

R
c
= {y : L(y) > η}. (3.4.17)

Again rewrite the likelihood ratio function by the common logarithm transform

L
1
(y) = log[L(y)] = log

[︂
p(y|H

1
)

p(y|H
0
)

]︂
= log[p(y|H

1
)] − log[p(y|H

0
)]. (3.4.18)

With the form above, the Neyman-Pearson criterion gives the equivalent decision rule

as

L
1
(y) = log[L(y)] = log

[︂
p(y|H

1
)

p(y|H
0
)

]︂ H
0

⋚
H
1

log η, (3.4.19)

which decides hypothesis H
1
to be true for the decision function greater than the

threshold log η and hypothesis H
0
to be true otherwise.

Note that the threshold η or log η is determined by the preset probability of false

alarm α
0
, which is also known as level of test and is the performance measure of

detection of radar and sonar signal.

Next we give examples demonstrating how to apply Neyman-Pearson criterion in

practice.

Example 3.4.3 Let y
1
, · · · , yN be the N observed samples of a Gaussian random

variable with unknown mean μ and known variance σ2. Find the optimal critical

region of the hypothesis testing with μ
1
> μ

0

{︃
H
0
: μ = μ

0
,

H
1
: μ = μ

1
,
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under level of test α
0
.

Solution. From the given conditions, the observed sample yn is normally distributed

with mean μ and variance σ2 and has conditional PDF as

p(yn|Hi) =
1√
2πσ

exp

(︂
−

(yn − μi)2
2σ2

)︂
, i = 0, 1.

Since yn (n = 1, · · · , N) are independent, the joint conditional PDF of N samples

y
1
, · · · , yN is the product of marginal (conditional) PDFs

p(y
1
, · · · , yN |Hi) =

N∏︁

n=1
p(yn|Hi) =

1

(

√
2πσ)N

exp

(︃
−

N∑︁

n=1

(yn − μi)2
2σ2

)︃
.

Thus, from the Neyman-Pearson criterion, the decision function

L(y
1
, · · · , yN) =

p(y
1
, · · · , yN |H1

)

p(y
1
, · · · , yN |H0

)

=

exp

(︁
−

∑︀N
n=1

(yn−μ1)2
2σ2

)︁

exp

(︁
−

∑︀N
n=1

(yn−μ0)2
2σ2

)︁ > k.

Taking logarithm of both sides, the above equation is reduced to

−

N∑︁

n=1
(yn − μ1)2 +

N∑︁

n=1
(yn − μ0)2 > 2σ2 log(k), (3.4.20)

The difference of the two summations in left hand side of (3.4.20) is

−

N∑︁

n=1
(yn − μ1)2 +

N∑︁

n=1
(yn − μ0)2 = −N(μ21 − μ20) + 2(μ1 − μ0)

N∑︁

n=1
yn .

Substituting the above equation into (3.4.20) gives

−N(μ2
1
− μ2

0
) + 2(μ

1
− μ

0
)

N∑︁

n=1
yn > 2σ2 log(k),

or

2(μ
1
− μ

0
)ȳ > 2σ2 log(k) + N(μ2

1
− μ2

0
),

where

ȳ = 1

N

N∑︁

n=1
yn

is the mean of N random samples. Noticing that μ
1
> μ

0
and 2(μ

1
− μ

0
) is always

positive, we have

ȳ > N(μ
2

1
− μ2

0
) + 2σ2 log(k)

2(μ
1
− μ

0
)

,
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which reveals that the decision statistic is the sample mean, i.e., g(y
1
, · · · , yN) = ȳ,

and the threshold is

Th =

N(μ2
1
− μ2

0
) + 2σ2 log(k)

2(μ
1
− μ

0
)

.

Namely, the optimal critical region for the decision statistic g(y
1
, · · · , yN) = ȳ is

R
c
=

(︂
N(μ2

1
− μ2

0
) + 2σ2 log(k)

2(μ
1
− μ

0
)

, ∞

)︂
,

where μ
1
> μ

0
. □

As a summary, in the above example, the decision function is the likelihood

ratio L(y
1
, · · · , yN) = p(y

1
, · · · , yN |H1

)/p(y
1
, · · · , yN |H0

) and the decision statistic

g(y
1
, · · · , yN) is the sample mean ȳ.

3.5 Uniformly Most Power Criterion

In Section 3.4, taking the radar signal detection as an example, the problem of binary

hypothesis test with different results between missing alarm and false alarm is dis-

cussed. Taking the binary pulse amplitude modulation (PAM) communication system

as an example, this section studies another type of binary hypothesis testing when the

consequences caused by two wrong decisions are almost or exactly the same.

3.5.1 Communication Signal Detection Problem

Considering the binary PAM communication system, the transmitted signal waveforms

are S
1
(t) = p(t) and S

0
(t) = −p(t), where p(t) is an arbitrary pulse, which is zero in the

symbol interval 0 ≤ t ≤ T, but is zero at other times. Since S
1
(t) = −S

0
(t), these two

signals are called antipodal signals.

The binary hypothesis testing problem of binary PAM communication can be

described as {︃
H
0
: r

0
(t) = S

0
(t) + w(t)

H
1
: r

1
(t) = S

1
(t) + w(t)

0 ⩽ t ⩽ T . (3.5.1)

Different from radar signal detection, the communication transmission signal S
1
(t) =

p(t) being wrongly judged as S
0
(t) = −p(t) by the decision criteria, or S

0
(t) = −p(t)

being wrongly judged as S
1
(t) = p(t), the impact of these two wrong decisions is the

same, and there are no serious consequences such as false alarm and missing alarm.

In the problem of communication signal detection, all detection errors are collectively

referred to as bit error, and there are no missing alarm and false alarm. Therefore, in

the wireless communication system, there are only two indexes: detection probability

P
D
and error probability P

E
. Bit error probability is abbreviated as bit error rate. Due to
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P
D
+ P

E
= 1, only the bit error rate needs to be analyzed. In practical applications, the

bit error rate is often used

BER =

Number of bit error

Total number of bits transmitted

× 100%. (3.5.2)

The detection problem shown in Eq.(3.5.1) is not easy to solve. Therefore, we consider

the results of the correlation demodulation of the observed signal using the known

pulse signal p(t)

ri =
T∫︁

0

ri(t)p(t)dt =
T∫︁

0

Si(t)p(t)dt, i = 0, 1. (3.5.3)

In this way, the detection problem Eq.(3.5.1) of the binary PAM communication signal

becomes {︃
H
0
: r

0
= S

0
+ n = −Ep + n,

H
1
: r

1
= S

1
+ n = Ep + n,

(3.5.4)

where

S
0
=

T∫︁

0

S
0
(t)p(t)dt = −

T∫︁

0

p2(t)dt = −E
p
, (3.5.5)

S
1
=

T∫︁

0

S
1
(t)p(t)dt =

T∫︁

0

p2(t)dt = E
p
, (3.5.6)

n =
T∫︁

0

w(t)p(t)dt, (3.5.7)

and E
p
represents the energy of the pulse signal p(t)

E
p
=

∞∫︁

0

p2(t)dt =
T∫︁

0

p2(t)dt. (3.5.8)

Because the pulse signal p(t) is a deterministic signal, it is statistically uncorrelated

with any random signal including Gaussian white noise, i.e., E{w(t)p(t)} = 0, so it has

E{n} =
T∫︁

0

E{w(t)p(t)}dt = 0. (3.5.9)

Note that n is a Gaussian random variable with zero mean.

Based on the above discussion, the decision rule of binary PAM communication

signal detection can be obtained: set the threshold to zero, if the output signal r of
the correlation demodulator is greater than zero, the transmitted signal is judged as

S
1
(t) = p(t); Otherwise, it is judged as S

0
(t) = −p(t).

It should be noted that although the mean of Gaussian random variable n is zero,
using zero as the threshold will still cause wrong judgment due to its random change.
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3.5.2 Uniformly Most Power Test

Eq.(3.5.4) is extended to a more general binary hypothesis testing model

{︃
H
0
: yn = s0 + wn = −

√︀
E
p
+ wn ,

H
1
: yn = s1 + wn =

√︀
E
p
+ wn ,

(3.5.10)

where wn is a Gaussian white noise with zero mean and variance σ2.
Assuming that the signal s

1
=

√︀
E
p
is transmitted, since the threshold of the deci-

sion is zero, the error probability P(e|H
1
) under H

1
hypothesis testing is the probability

of the output y < 0 directly, i.e.,

P(e|H
1
) =

0∫︁

−∞

p(y|H
1
)dy = 1√

πN
0

0∫︁

−∞

exp

(︃
−

(y −
√︀
E
p
)

2

N
0

)︃
dy

=

1√
2π

−

√
2E

p
/N

0∫︁

−∞

e

−x2/2
dx = 1√

2π

∞∫︁

√
2E

p
/N

0

e

−x2/2
dx

= Q
(︃√︂

2E
p

N
0

)︃
, (3.5.11)

where N
0
=

1

2

σ2 represents the energy of the additive white Gaussian noise w(n), and
Q(x) denotes Q function.

Similarly, when the signal s
0
= −

√︀
E
p
is transmitted, the error probability under

H
0
hypothesis testing is the probability of r > 0, and P(e|H

0
) = Q(

√︀
2E

p
/N

0
) also

holds. Since the binary signals s
1
=

√︀
E
p
and s

0
= −

√︀
E
p
are usually transmitted with

equal probability, i.e. p
1
= p

0
=

1

2

, the average error probability (bit error rate) is

PE = p1P(e|H1
) + p

0
P(e|H

0
) =

1

2

P(e|H
1
) +

1

2

P(e|H
0
) = Q

(︃√︂
2E

p

N
0

)︃
. (3.5.12)

Two important facts can be observed from the above:

(1) The bit error rate is only related to the ratio

2E
p

N
0

, but has nothing to do with other

characteristics of the signal and noise.

(2) The ratio

2Ep
N
0

represents the output signal-to-noise ratio (SNR) of the receiver. Since

the output includes two bit symbols,

E
p

N
0

is called the SNR of each bit.

The critical region Rc or the threshold Th is generally related to the parameters of the

alternative hypothesis H
1
.

Definition 3.5.1. For the binary hypothesis testing described in Eq.(3.5.10), if the critical
region Rc or threshold Th is independent of the parameter s1 of the alternative hypothesis
H
1
, the hypothesis testing is called uniformly most power (UMP) test.
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Interpreting the above definition, “the critical region Rc or threshold Th is independent
of the parameter s

1
of alternative hypothesis H

1
” means that the power function of the

hypothesis testing is the same or consistent for all different parameters s
1
. It always

seeks the maximum power of the hypothesis testing, so it is called UMP test.

If the binary hypothesis testing is the UMP test, the test statistic g(y
1
, · · · , yN) used

is called the UMP test statistic.

The question is, how to construct UMP statistics for a binary hypothesis testing?

We still consider the hypothesis testing in the case of additive Gaussian white noise,

but wn is not zero mean, but the mean is m and the variance is still σ2.
Because wn is white noise and s1 and s0 are definite, y1, · · · , yN are independent

under the two assumptions H
0
and H

1
, and {yn} is a Gaussian random process with

mean s̄i and variance σ2 under the assumption Hi, i.e.,

P(yn|H1
) =

1√
2πσ2

exp

(︂
−

(yn − s̄1)2
2σ2

)︂
, (3.5.13)

P(yn|H0
) =

1√
2πσ2

exp

(︂
−

(yn − s̄0)2
2σ2

)︂
, (3.5.14)

where s̄
1
= s

1
+ m and s̄

0
= s

0
+ m.

Using the independence of {yi} under hypotheses H0
and H

1
, the conditional

distribution density functions of the observation data y = (y
1
, · · · , yN) under H1

and

H
0
respectively is

P(y|H
1
) =

N∏︁

n=1
p(yn|H1

) =

1

(2πσ2)N/2
exp

(︃
−

N∑︁

n=1

(yn − s̄1)2
2σ2

)︃
, (3.5.15)

P(y|H
0
) =

N∏︁

n=1
p(yn|H0

) =

1

(2πσ2)N/2
exp

(︃
−

N∑︁

n=1

(yn − s̄0)2
2σ2

)︃
. (3.5.16)

The likelihood ratio function is obtained

p(y|H
1
)

p(y|H
0
)

=

exp

(︁
−

∑︀N
n=1

(yn−s̄1)2
2σ2

)︁

exp

(︁
−

∑︀N
n=1

(yn−s̄0)2
2σ2

)︁ . (3.5.17)

Consider using the log likelihood ratio function as the decision function

L
1
(y) = ln

[︃
p(y|H

1
)

p(y|H
0
)

= −

N∑︁

n=1

(yn − s̄1)2
2σ2 +

N∑︁

n=1

(yn − s̄0)2
2σ2

]︃
. (3.5.18)

Thus, similar to the Neyman-Pearson criterion, if the decision function L
1
(y) > k

1
, i.e.,

−

N∑︁

n=1

(yn − s̄1)2
2σ2 +

N∑︁

n=1

(yn − s̄0)2
2σ2 > k

1
,
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judge that the transmitted signal is s
1
. Otherwise, judge that signal s

0
is transmitted.

By simplifying the above expression, the following decision criteria can be obtained: if

(s̄
1
− s̄

0
)

N∑︁

n=1
yn −

N
2

(s̄2
1
− s̄2

0
) > σ2k

1
,

it is judged that the transmitted signal is s
1
; Otherwise, judge that signal s

0
is transmit-

ted. This decision criterion can be described equivalently as: judging that signal s
1
is

transmitted, if

1

N

N∑︁

n=1
yn >

1

N

[︂
σ2k

1
+

N
2

(s̄2
1
− s̄2

0
)

]︂
1

s̄
1
− s̄

0

. (3.5.19)

Let the test statistics be

g(y) = ȳ = 1

N

N∑︁

n=1
yn , (3.5.20)

and the threshold be

Th =

1

N

[︂
σ2k

1
+

N
2

(s̄2
1
− s̄2

0
)

]︂
1

s̄
1
− s̄

0

, (3.5.21)

then the decision criterion Eq.(3.5.19) can be described as: if the decision statistic

g(y) = ȳ = 1

N

N∑︁

n=1
yn > Th, (3.5.22)

judge signal s
1
is transmitted; Otherwise, judge signal s

0
is transmitted.

The properties of the decision statistic g(y) = ȳ are analyzed below. Firstly, because
the decision statistic is the sample mean of the observation data, and this mean obeys

the same normal distribution as the observation data, when the decision statistic

takes a random value g, the conditional distribution density functions of g(y) under
hypotheses H

1
and H

0
are normal distribution, respectively

p(g|H
1
) =

1√︀
2πσ2/N

exp

(︂
−

(g − s̄
1
)

2

2σ2/N

)︂
, (3.5.23)

p(g|H
0
) =

1√︀
2πσ2/N

exp

(︂
−

(g − s̄
0
)

2

2σ2/N

)︂
. (3.5.24)

Follow the false alarm rate in Section 3.4, define

α =
∞∫︁

Th

p(g|H
0
)dg =

∞∫︁

Th

1√︀
2πσ2/N

exp

[︂
−

(g − s̄
0
)

2

2σ2/N

]︂
dg

=

1

2

2√
π

∞∫︁

Th−s̄
0√

2σ/
√
N

e

−t2
dt = 1

2

erfc

(︂
Th − s̄

0√
2σ/

√
N

)︂
. (3.5.25)
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That is, the false alarm rate α is half of the value of the complementary error func-

tion of the conditional distribution density function p(g|H
0
) under

Th−s̄
0√

2σ/
√
N
, which is

independent of parameter s
1
of alternative hypothesis H

1
.

From the false alarm rate Eq.(3.5.25), the threshold can be obtained

Th =

√
2σ√
N
erfc

−1

(2α) + s̄
0
, (3.5.26)

where erfc

−1

(z) is the inverse function of the complementary error function erfc(z).
Since the false alarm rate α is independent of parameter s

1
, the selection of threshold

Th is independent of parameter s
1
of alternative hypothesis H

1
. Therefore, the optimal

decision statistic g(y) = ȳ given in Eq.(3.5.22) is a UMP statistic. The corresponding

decision criterion is also independent of parameter s
1
of alternative hypothesis H

1
,

which is a UMP criterion.

Conclusion: if the noise wn in the binary hypothesis testing Eq. (3.5.10) is a Gaus-
sian white noise with mean m and variance σ2, and the likelihood ratio function or
log likelihood ratio function is used as the decision function, the sample mean of N
observation data y

1
, · · · , yN is a UMP test statistic.

3.5.3 Physical Meaning of UMP Criterion

Similar to the derivation of the false alarm rate Eq.(3.5.25), the detection probability is

P
D
=

∞∫︁

Th

p(g|H
1
)dg = 1

2

2√
π

∞∫︁

Th−s̄
1√

2σ/
√
N

e

−t2
dt = 1

2

erfc

(︂
Th − s̄

1√
2σ/

√
N

)︂
. (3.5.27)

Therefore, the probability of missing alarm is

P
M
= 1 − P

D
= 1 −

1

2

erfc

(︂
Th − s̄

1√
2σ/

√
N

)︂
. (3.5.28)

Consider the special case of signal s
0
= 0 presence or absence detection. Let’s analyze

the physical meaning of the UMP criterion in this case. Without losing generality, it is

assumed that the mean of the additive Gaussian white noise is zero (m = 0). Then, in

the threshold equation Eq.(3.5.26) s̄
0
= 0, so the threshold is

Th =

√
2σ√
N
erfc

−1

(2α). (3.5.29)

Substituting the above equation and s̄
1
= s

1
+ m = s

1
into Eq.(3.5.27), there is

P
D
=

1

2

erfc

(︂
erfc

−1

(2α) − s̄
1√

2σ/
√
N

)︂
. (3.5.30)

Let

B =

s̄
1√

2σ/
√
N
, (3.5.31)
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then B2 can be regarded as SNR. Therefore, Eq.(3.5.30) can be abbreviated as

P
D
=

1

2

erfc[erfc

−1

(2α) − B]. (3.5.32)

This shows that the detection probability P
D
is a function of the false alarm rate α and

the SNR B2. When SNR B2 → 0 or equivalently B → 0, the detection probability

P
D
=

1

2

(2α) = α (If SNR = 0). (3.5.33)

When SNR B2 → ∞ or equivalently B → ∞ and use Eq.(3.2.25) to get the detection

probability

P
D
= lim

B→∞

1

2

erfc(−B) = 1

2

lim

x→−∞
erfc(x) = 1 (If SNR → ∞). (3.5.34)

From the above analysis, it can be concluded that the physical meaning of the UMP

criterion in the detection of signal presence and absence is as follows:

(1) When the SNR is zero, the detection probability of signal s
1
is equal to the false

alarm probability.

(2) When the SNR is infinite, the detection probability of signal s
1
is 1, and s

1
can be

100% correctly detected.

(3) The higher the SNR, the greater the detection probability of signal s
1
. Therefore,

in the detection of the signal presence or absence, the UMP criterion is equivalent

to maximizing the SNR when the false alarm probability α is limited to a certain

level, or equivalent to maximizing the detection probability.

In the detection of the signal presence or absence, UMP criterion is equivalent to

Neyman-Pearson criterion.

3.6 Bayes Criterion

If the test statistic is regarded as a parameter, the decision-making process is also a

parameter estimation process in essence. Therefore, we can also discuss the decision

criteria of binary hypothesis testing from the perspective of parameter estimation. Such

a criterion is called Bayes criterion. Different from Neyman-Pearson criterion, which

maximizes the detection probability when the false alarm probability is limited to a

certain level, and the UMP criterion pursuing that the threshold is independent of the

parameters of the alternative hypothesis, Bayes criterion aims to minimize the risk of

decision-making.

3.6.1 Bayes Decision Criterion

Judging Hj hypothesis as Hi hypothesis requires cost, which is expressed by a cost

factor Cij.
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The cost factor Cij has the following basic properties:
(1) The cost factor is always nonnegative, that is, Cij ≥ 0, ∀i, j.
(2) For the same hypothesis testing Hj, the cost of wrong decision is always greater

than that of correct decision, i.e.,

Cij > Cjj , j ̸= i. (3.6.1)

For example, C
10

> C
00

and C
01

> C
11
.

The conditional probability P(Hi|Hj) represents the probability that the decision result
is Hi hypothesis under the condition that Hj hypothesis is true. The corresponding
cost is represented by CijP(Hi|Hj). If the prior probability P(Hj) of the occurrence
of Hj hypothesis is known, the cost of deciding Hi hypothesis under Hj hypothesis
is CijP(Hj)P(Hi|Hj). Therefore, in the binary hypothesis testing, the cost of correct

decision under Hj hypothesis is CijP(Hj)P(Hj|Hj), and the cost of wrong decision is

CijP(Hj)P(Hi|Hj), i ̸= j. The sum of the cost of correct and wrong decisions is called the

total cost under Hj hypothesis, i.e.,

C(Hj) = C0jP(Hj)P(H0
|H

1
) + C

1jP(Hj)P(H1
|Hj), j = 0, 1. (3.6.2)

The first term on the right of the above equation represents the cost of wrong decision

under Hj hypothesis, and the second term is the cost of correct decision under Hj
hypothesis.

The total average cost of statistical decision of binary hypothesis testing problem

consists of the sum of the total cost of hypothesis H
0
and the total cost of hypothesis

H
1
:

C = C(H
0
) + C(H

1
) =

1∑︁

j=0

1∑︁

i=0
CijP(Hj)P(Hi|Hj). (3.6.3)

The total average cost is referred to as the average cost, also known as average risk.

If N observations y
1
, · · · , yN constitute the evidence Y = g(y

1
, · · · , yN) of hypoth-

esis testing. For example, the sampling mean Y =

1

N
∑︀N

i=1 yi can be used as the amount

of evidence. Let λ be the threshold when making statistical decision by using the

amount of evidence. Substitute the definition Eq.(3.1.3)∼ Eq.(3.1.6) of the conditional

probability P(Hi|Hj) into Eq.(3.6.3) to obtain

C = C
10
p
0
+ C

11
p
1
+

λ∫︁

−∞

[(C
01
− C

11
)p

1
p(Y|H

1
) − (C

10
− C

00
)p

0
p(Y|H

0
)]dY , (3.6.4)

where R
0
= (−∞, λ) represents the decision region of H

0
hypothesis corresponding to

Y < λ.
Bayes Criterion: when the prior probability pj = P(Hj) is known and the cost factor

Cij is given, minimize the average cost C.
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Due to the non negativity of a priori probability and cost factor, in order tominimize

the average cost, the integral function in Eq.(3.6.4) should be negative, i.e.,

R
0
: (C

01
− C

11
)p

1
p(Y|H

1
) < (C

10
− C

00
)p

0
p(Y|H

0
). (3.6.5)

Then, the amount of evidence Y will be located in the decision area R
0
= (−∞, λ),

that is, the decision with the H
0
hypothesis should be made. Where, the evidence

Y = p(y
1
, · · · , yN) is a statistic obtained from N observations.

On the contrary, if

R
0
: (C

01
− C

11
)p

1
p(Y|H

1
) > (C

10
− C

00
)p

0
p(Y|H

0
), (3.6.6)

the amount of evidence Y is located in the decision area R
1
= (λ, ∞), judge H

1
hypoth-

esis holds.

Therefore, the Bayes criterion of binary hypothesis testing problem can be written

as

p(Y|H
1
)

p(Y|H
0
)

> η judge H
1
holds,

p(Y|H
1
)

p(Y|H
0
)

≤ η judge H
0
holds.

Or, combine the above two expressions into one decision expression

p(Y|H
1
)

p(Y|H
0
)

H
0

⩽
>

H
1

η, (3.6.7)

where

η = (C
10
− C

00
)p

0

(C
01
− C

11
)p

1

, (3.6.8)

is the threshold of Bayes decision criterion.

Take logarithm on both sides of Eq.(3.6.1) to get the common form of Bayes criterion

L(Y)
H
0

⩽
>

H
1

ln η. (3.6.9)

The Bayes criterion Eq.(3.6.1) is also called likelihood ratio criterion. The logarithm of

the ratio of conditional distribution density

L(Y) = ln

p(Y|H
1
)

p(Y|H
0
)

, (3.6.10)

is called the likelihood function of observation data y.
When the prior probability pj = p(Hj), j = 0, 1 is known and the cost factor

Cij , i = 0, 1 is given, the threshold η of Bayes criterion can be determined for a bi-

nary hypothesis testing problem.
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3.6.2 Detection of Binary Signal Waveform

As an application example of Baye criterion, consider binary communication signal

{︃
H
0
: y(t) = S

0
(t) + n(t), 0 ≤ t ≤ T,

H
1
: y(t) = S

1
(t) + n(t), 0 ≤ t ≤ T,

(3.6.11)

where n(t) ∼ N(0, σ2n) is a white Gaussian noise with zero mean and variance σ2n; T is
bit interval (symbol interval); S

0
(t) and S

1
(t) are the modulation waveform with energy

{︃
E
0
=

∫︀ T
0

|S
0
(t)|2dt,

E
1
=

∫︀ T
0

|S
1
(t)|2dt,

(3.6.12)

respectively.

The waveform correlation coefficient between modulated signals S
0
(t) and S

1
(t) is

ρ = 1√
E
0
E
1

T∫︁

0

S
0
(t)S

1
(t)dt. (3.6.13)

To obtain the discrete signal, Karhunen-Loeve (K-L) transform is performed on the

analog binary communication signal to get

y(t) = lim

N→∞

N∑︁

k=1

yk fk(t). (3.6.14)

Taking the sum of the first N terms as approximation, we can get

yN(t) =
N∑︁

k=1

yk fk(t), (3.6.15)

where yk is the K-L expansion coefficient

yk =
T∫︁

0

y(t)fk(t)dt. (3.6.16)

fk(t) is orthogonal basis function, which can be constructed by Gram-Schmidt standard

orthogonalization

⎧
⎨
⎩
f
1
(t) = 1√

E
1
S
1
(t) , 0 ≤ t ≤ T,

f
2
(t) = 1√

(1−ρ2)E
0

[︁
S
0
(t) − ρ

√︁
E
0

E
1

S
1
(t)
]︁
, 0 ≤ t ≤ T,

(3.6.17)

and the other orthogonal basis functions fk(t), k = 3, 4, · · · are all orthogoanl to

f
1
(t), f

2
(t).
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Using the K-L expansion coefficient rk, the analog expression Eq.(3.6.11) of the

original binary hypothesis testing problem can be written equivalently as

{︃
H
0
: yk = S0 + nk , k = 1, 2, · · · ,

H
1
: yk = S1 + nk , k = 1, 2, · · · .

(3.6.18)

From Eq.(3.6.18), we have

E{yk|H0
} = E{S

0k + nk} = S0k , (3.6.19)

var(yk|H0
) = E{(yk − s0)2} = E{n2k} = σ

2

n , (3.6.20)

E{yk|H1
} = E{S

1k + nk} = S1k , (3.6.21)

var(yk|H1
) = E{(yk − s1)2} = E{n2k} = σ

2

n . (3.6.22)

Since yk follows normal distribution like Gaussian white noise nk, the conditional
distribution density function of observation data yk is

p{yk|H0
} = 1√

2πσn
exp

(︂
−

(yk − S0k)2

2σ2n

)︂
, (3.6.23)

p{yk|H1
} = 1√

2πσn
exp

(︂
−

(yk − S1k)2

2σ2n

)︂
. (3.6.24)

Taking a function of the observation data y
1
, · · · , yn as evidence Y = g(y

1
, · · · , yn),

the joint conditional distribution density functions of the evidence Y are

p{Y|H
0
} =

N∏︁

k=1

p{yk|H0
}

=

(︂
1√
2πσn

)︂N
exp

[︃
−

1

2σ2n

(︃ N∑︁

k=1

y2k − 2
N∑︁

k=1

ykS0k +
N∑︁

k=1

S2
0k

)︃]︃
, (3.6.25)

p{Y|H
1
} =

N∏︁

k=1

p{yk|H1
}

=

(︂
1√
2πσn

)︂N
exp

[︃
−

1

2σ2n

(︃ N∑︁

k=1

y2k − 2
N∑︁

k=1

ykS1k +
N∑︁

k=1

S2
1k

)︃]︃
, (3.6.26)

respectively. Note that

∑︀N
k=1 S

2

0k = E0,
∑︀N

k=1 S
2

1k = E1 and

RyS
0

=

N∑︁

k=1

ykS0k ⇔ RyS
0

=

T∫︁

0

y(t)S
0
(t)dt, (3.6.27)

RyS
1

=

N∑︁

k=1

ykS1k ⇔ RyS
1

=

T∫︁

0

y(t)S
1
(t)dt, (3.6.28)
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repectively represent the cross-correlation function of observation signal and modula-

tion signal, so the original form of Bayes decision criterion is

p(Y|H
1
)

p(Y|H
0
)

= exp

⎡
⎣ 1

σ2n

⎛
⎝

T∫︁

0

y(t)S
1
(t)dt −

T∫︁

0

y(t)S
0
(t)dt

⎞
⎠
−

1

2σ2n
(E

1
− E

0
)

⎤
⎦

H
0

⩽
>

H
1

η.

(3.6.29)

Taking logarithm on both sides of the above equation, the Bayes decision criterion

can be written as

T∫︁

0

y(t)S
1
(t)dt −

T∫︁

0

y(t)S
0
(t)dt

H
0

⩽
>

H
1

σ2 ln η + 1

2

(E
1
− E

0
), (3.6.30)

or abbreviated as

Y
H
0

⩽
>

H
1

λ, (3.6.31)

where

Y =

N∑︁

k=1

ykS1k −
N∑︁

k=1

ykS0k =
T∫︁

0

y(t)S
1
(t)dt −

T∫︁

0

y(t)S
0
(t)dt, (3.6.32)

λ = σ2n ln η +
1

2

(E
1
− E

0
), (3.6.33)

are the amount of evidence and threshold of the binary hypothesis testing problem,

respectively.

×

×

∑

∫ T

0
(·)dt

∫ T

0
(·)dt

Integrating
circuit

Decision
circuit

y(t)

S0(t)

S1(t)

−

+

λ

if 6 λ,H0 holds

if > λ,H1 holds

Fig. 3.6.1: Detection system of binary communication signals

Fig 3.6.1 shows the detection system for binary communication signals.
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From Eq.(3.6.32) and Eq.(3.6.13), the conditional mean

E{Y|H
0
} = E

{︃ N∑︁

k=1

(S
0k + nk)S1k −

N∑︁

k=1

(S
0k + nk)S0k

}︃
= ρ
√︀
E
0
E
1
− E

0
(3.6.34)

E{Y|H
1
} = E

{︃ N∑︁

k=1

(S
1k + nk)S1k −

N∑︁

k=1

(S
1k + nk)S0k

}︃
= E

1
− ρ
√︀
E
0
E
1

(3.6.35)

and conditional variance

var{Y|H
0
} = var

{︃ N∑︁

k=1

(S
0k + nk)S1k −

N∑︁

k=1

(S
0k + nk)S0k

}︃
= ρ
√︀
E
0
E
1
− E

0
(3.6.36)

var{Y|H
1
} = var

{︃ N∑︁

k=1

(S
1k + nk)S1k −

N∑︁

k=1

(S
1k + nk)S0k

}︃
= E

1
− ρ
√︀
E
0
E
1

(3.6.37)

of the evidence Y can be obtained.

3.6.3 Detection Probability Analysis

1. Sample Statistics Analysis
Calculate the conditional mean and conditional variance of evidence Y.

(1) The conditional mean: under H
1
assumption, the conditional mean of the amount

of evidence Y is

E{Y|H
1
} = E

{︃
1

N

N∑︁

k=1

yk|H1

}︃
= E

{︃
1

N

N∑︁

k=1

(S
1
+ nk)

}︃
= S

1
, (3.6.38)

while the conditional mean of evidence Y under H
0
hypothesis is

E{Y|H
0
} = E

{︃
1

N

N∑︁

k=1

yk|H0

}︃
= E

{︃
1

N

N∑︁

k=1

(S
0
+ nk)

}︃
= S

0
. (3.6.39)

(2) The conditional variance: under H
1
assumption, the conditional variance of the

amount of evidence Y is

var(Y|H
1
) = var

(︃
1

N

N∑︁

k=1

yk|H1

)︃
= var

(︃
1

N

N∑︁

k=1

(S
1
+ nk)

)︃
=

1

N σ
2

n , (3.6.40)

while the conditional variance of evidence Y under H
0
hypothesis is

var(Y|H
0
) = var

(︃
1

N

N∑︁

k=1

yk|H0

)︃
= var

(︃
1

N

N∑︁

k=1

(S
0
+ nk)

)︃
=

1

N σ
2

n . (3.6.41)
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2. Detection Probability Analysis
From the above conditional mean and conditional variance, it is easy to know that

the conditional distribution density of the sample mean evidence respectively is

p{Y|H
1
} =

√
N√

2πσn
exp

(︂
−

N(Y − S
1
)

2

2σ2n

)︂
, (3.6.42)

p{Y|H
0
} =

√
N√

2πσn
exp

(︂
−

N(Y − S
0
)

2

2σ2n

)︂
. (3.6.43)

Once the conditional distribution density of the sample mean evidence is obtained,

the detection probability in the sample mean Bayes criterion can be calculated.

(1) False alarm probability

p(H
1
|H

0
) =

∞∫︁

λ

p(Y|H
0
)dY =

∞∫︁

σ2n
N(S

1
−S

0
)

ln η+ (S
1
+S

0
)

2

√
N√

2πσn
exp

(︂
−

N(Y − S
0
)

2

2σ2n

)︂
dY .

Replace the variable u =
√
N(Y−S

0
)√

2σn
, and the above equation can be expressed as

p(H
1
|H

0
) =

∞∫︁

σn√
2N(S

1
−S

0
)

ln η+
√
N(S

1
−S

0
)

2

√
2σn

1√
π
exp(−u2)du

=

1

2

erfc

(︂
σn√

2N(S
1
− S

0
)

ln η +
√
N(S

1
− S

0
)

2

√
2σn

)︂
, (3.6.44)

where erfc(x) =
∫︀
∞

x
2√
π exp(−u

2

)du is the complement error function of x.
(2) Hit probability

p(H
1
|H

1
) =

∞∫︁

λ

p(Y|H
1
)dY =

∞∫︁

σ2n
N(S

1
−S

0
)

ln η+ S
1
+S

0

2

√
N√

2πσn
exp

(︂
−

N(Y − S
1
)

2

2σ2n

)︂
dY .

Replace the variable u =
√
N(Y−S

1
)√

2σn
, and we get

p(H
1
|H

1
) =

∞∫︁

σn√
2N(S

1
−S

0
)

ln η+
√
N(S

1
−S

0
)

2

√
2σn

1√
π
exp(−u2)du

=

1

2

erfc

(︂
σn√

2N(S
1
− S

0
)

ln η −
√
N(S

1
− S

0
)

2

√
2σn

)︂
. (3.6.45)

(3) The rejection probability p(H
0
|H

0
) = 1−p(H

1
|H

0
) and themissed alarmprobability

p(H
0
|H

1
) = 1 − p(H

1
|H

1
) respectively are

p(H
0
|H

0
) = 1 −

1

2

erfc

(︂
σn√

2N(S
1
− S

0
)

ln η +
√
N(S

1
− S

0
)

2

√
2σn

)︂
, (3.6.46)

p(H
0
|H

1
) = 1 −

1

2

erfc

(︂
σn√

2N(S
1
− S

0
)

ln η −
√
N(S

1
− S

0
)

2

√
2σn

)︂
. (3.6.47)
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Table 3.6.1 compares the signal model, decision criterion, decision function and thresh-

old of Neyman-Pearson criterion, UMP criterion and Bayes criterion. In the table, a
0
is

the preset false alarm probability.

The following conclusions can be drawn from the table:

(1) The three decision criteria all use the likelihood ratio function as the decision

function, but the choice of the threshold of the decision function is different: in

the Neyman-Pearson criterion and UMP criterion, the threshold of the decision

function depends on the allowable false alarm probability a
0
, while the threshold

of the decision function of Bayes criterion is directly determined by the ratio p
0
/p

1

of the a priori probability of H
0
and H

1
assumptions.

(2) The three decision criteria all use themean of the observation samples as detection

statistics, and their thresholds are different.

In the detection of binary digital communication signals, the cost factor C
10

= C
01

and C
11

= C
00
is usually assumed, so from Eq.(3.6.8), the original threshold of Bayes

decision criterion is

η = (C
10
− C

00
)p

0

(C
01
− C

11
)p

1

=

p
0

p
1

. (3.6.48)

Then, when the sample mean Y of N observation data is used as the evidence, the

actual threshold of Bayes decision criterion is

λ = σ2n
N(S

1
− S

0
)

[ln p
0
− ln p

1
] +

S
1
+ S

0

2

. (3.6.49)

3.7 Bayes Derived Criteria

Depending on the choice of the cost factor, Bayes criterion can derive several other

decision criteria.

3.7.1 Minimum Error Probability Criterion

In some applications (such as binary digital communication), both correct rejection

and hit are correct detection, which has no cost, that is, the cost factor C
00

= C
11

= 0.

On the other hand, although the wrong decision needs to pay a price, the cost of false

alarm and missed alarm is the same, that is, the cost factor C
10

= C
01
. Under these

assumptions of cost factor, the average cost C is simplified to the error probability P
E
,

i.e.,

C = p
0
P(H

1
|H

0
) + p

1
P(H

0
|H

1
) = p

0
α + p

1
β = P

E
. (3.7.1)
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Thus, the Bayes criterion for minimizing the average cost becomes the minimum error

probability criterion

p(Y|H
1
)

p(Y|H
0
)

H
0

⩽
>

H
1

η = p0p
1

. (3.7.2)

In otherwords, the calculationmethod and steps ofminimumerror probability criterion

and Bayes criterion are exactly the same, but their threshold η is different.
In addition, sometimes the cost factor is normalized, so the assumption of the

above cost factor is often expressed as C
00

= C
11

= 0 and C
01

= C
10

= 1.

3.7.2 Maximum A Posteriori Probability Criterion

In some applications, the difference between the cost of wrong and correct decisions

under different test assumptions Hj is the same, that is, C
01
− C

11
= C

10
− C

00
. Under

this assumption, Bayes criterion can be reduced to

p(Y|H
1
)

p(Y|H
0
)

H
0

⩽
>

H
1

p
0

p
1

(= η), (3.7.3)

which is the same as the minimum error probability criterion. Note that the above

criterion can be written equivalently as

p
1
p(Y|H

1
)

H
0

⩽
>

H
1

p
0
p(Y|H

0
). (3.7.4)

Using p(Hi|Y) = p(Y)p(Hi)p(Y|Hi) = p(Y)pip(Y|Hi), the above equation can be ex-

pressed as a posteriori probability p(Hi|Y)

p(H
1
|Y)

H
0

⩽
>

H
1

p(H
0
|Y). (3.7.5)

Eq.(3.7.5) shows that thedecision criterionof binaryhypothesis testing is: thehypothesis

with the largest a posteriori probability is tenable. Specifically, if p(H
1
|Y) = p(H

0
|Y),

judge H
1
hypothesis holds; On the contrary, judget H

0
hypothesis holds. Therefore,

the criterion shown in Eq.(3.7.5) is conventionally called the maximum a posteriori

probability criterion.

Example 3.7.1 The observation data model is

yn = 1 + wn (H
1
: with signal),

yn = wn (H
0
: without signal),
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where n = 1, · · · , 24, and wn is a Gaussian white noise with zero mean and variance 1.

If a priori probability p
0
= 1/5, p

1
= 4/5, try to find the error probability P

E
and the

detection probability P
D
.

Solution. The threshold is

η = ln

p
0

p
1

= ln(0.25) = −1.3863.

Since the probability distribution of yn under H0
hypothesis is the same as that of

additive Gaussian white noise wn, and yn is a Gaussian white noise with mean 1 and

variance 1 under H
1
hypothesis, the conditional probability density functions of the

observation array y = (y
1
, · · · , yN) are

p(y|H
0
) =

24∏︁

n=1
p(yn|H0

) =

1

(2π)24/2
exp

(︃
−

24∑︁

n=1
y2n/2

)︃
,

and

p(y|H
1
) =

24∏︁

n=1
p(yn|H1

) =

1

(2π)24/2
exp

(︃
−

24∑︁

n=1
(yn − 1)2/2

)︃
.

Calculating the log likelihood ratio function yields

L(y) = ln

(︂
p(y|H

1
)

p(y|H
0
)

)︂
= −

24∑︁

n=1

(yn − 1)2
2

+

24∑︁

n=1

y2n
2

=

24∑︁

n=1
yn −

24

2

= 24ȳ − 12.

Substitute this result directly into Bayes criterion

L(y) = ln

(︂
p(y|H

1
)

p(y|H
0
)

)︂
> ln

(︂
p
0

p
1

)︂
= −1.3863,

so that 24ȳ − 12 > −1.3863, thus

ȳ > 0.4422

is obtained. In other words, when using the mean of the observation data as decision

statistics, the threshold is λ = 0.4422. Therefore, if the samplemean of the observation

data is greater than 0.4422, judge the signal present, otherwise judge the signal absent.

On the other hand, the sample mean

ȳ = 1

24

24∑︁

n=1
yn ,

is also a Gaussian distributed random variable with conditional mean

E{ȳ|H
0
} = 0, E{ȳ|H

1
} = 1,

and variance

var{ȳ|H
0
} = var{ȳ|H

1
} = 1

σ2w
=

1

25

.
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Therefore, the conditional distribution density functions of the sample average ȳ are

p(ȳ|H
0
) =

1

(2π/24)1/2
exp

(︂
−

ȳ2
2/24

)︂
,

p(ȳ|H
1
) =

1

(2π/24)1/2
exp

(︂
−

(ȳ − 1)2
2/24

)︂
.

Therefore, the detection probabilities under H
0
and H

1
hypothesis testing are

pD
0

=

η∫︁

−∞

p(ȳ|H
0
)dȳ =

∞∫︁

−∞

p(ȳ|H
0
)dȳ −

∞∫︁

η

p(ȳ|H
0
)dȳ,

= 1 −

∞∫︁

η

p(ȳ|H
0
)dȳ = 1 −

1

2

erfc

(︃
0.4422√︀
2/24

)︃
= 1 − 0.5erfc(1.53)

= 0.9847

pD
1

=

∞∫︁

η

p(ȳ|H
1
)dȳ = 1

2

erfc

(︃
0.4422 − 1√︀

2/24

)︃
= 0.5erfc(−1.93)

= 0.9968.

Therefore, the false alarm probability and missed alarm probability are respectively

α = 1 − pD
0

= 1 − 0.9847 = 0.0153,

β = 1 − pD
1

= 1 − 0.9968 = 0.0032.

The error probability is

PE = p0α + p1β =
1

5

× 0.0153 +

4

5

× 0.0032 = 0.0056.

The detection probability is

PD = p
0
pD

0

+ p
1
pD

1

=

1

5

× 0.9847 +

4

5

× 0.9968 = 0.9944.

□

3.7.3 Minimax Criterion

Bayes criterion and its derived minimum total error probability criterion and maximum

a posteriori probability criterion all assume that the priori probability p
1
or p

0
is

known and fixed. Since p
1
= 1 − p

0
and H

1
is the alternative hypothesis of interest,

the unknown a priori probability p
1
must be regarded as a variable rather than a fixed

value. The problem is: when the prior probability p
1
is unknown or fluctuates greatly,
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how to select its guessed value, so as to control the error of Bayes criterion within a

certain range and avoid large error fluctuation.

To solve this problem, note α = P
F
= P(H

1
|H

0
) and β = P

M
= P(H

0
|H

1
). So, there

is P(H
0
|H

0
) = 1 − α and P(H

1
|H

1
) = 1 − β. Let α(p

1
) and β(p

1
) represent the false

alarm probability and missed alarm probability corresponding to the unknown p
1

respectively, then the average cost or average risk can be rewritten as

C(p
1
) = C

00
+ (C

10
− C

00
)α(p

1
)

+ p
1
[C

11
− C

00
+ (C

01
− C

11
)β(p

1
) − (C

10
− C

00
)α(p

1
)]. (3.7.6)

It can be proved that when the likelihood ratio p(Y|H
1
)/p(Y|H

0
) obeys a strictly mono-

tonic probability distribution, the average cost C(p
1
) is a strictly convex function of

the variable p
1
, as shown in Fig 3.7.1. Let C

min
(p

1
) represent the minimum average cost

O p1

C

C(p1)
Cmin

(p
∗

1
)

Cmin(p1 max)

p∗1 p1 max

Fig. 3.7.1: Average cost function

function required by Bayes criterion, i.e.,

C
min

(p
1
) = minC(p

1
) ⇔ ∂C(p

1
)

∂p
1

= 0, (3.7.7)

where

∂C(p
1
)

∂p
1

= C
11
− C

00
+ (C

01
− C

11
)β(p

1
) − (C

10
− C

00
)α(p

1
) = 0.

Sort out the above equation to get

C
10
α(p

1
) + C

00
[1 − α(p

1
)] = C

01
β(p

1
) + C

11
[1 − β(p

1
)]. (3.7.8)

This is the minimax equation of the unknown a priori probability p
1
.

Note that using p
0
instead of p

1
in Eq.(3.7.8), we can get the unknown priori proba-

bility p
0
= P(H

0
). That is, the minimax equation of the unknown priori probability p

0

is

C
10
α(p

0
) + C

00
[1 − α(p

0
)] = C

01
β(p

0
) + C

11
[1 − β(p

0
)]. (3.7.9)
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From α = P(H
1
|H

0
) and β = P(H

0
|H

1
), the left side of minimax equation Eq.(3.7.8)

represents the cost under H
0
hypothesis and the right side represents the cost under H

1

hypothesis. The solution of minimax equation Eq.(3.7.8) is to balance these two costs. In

particular, if the cost function satisfies theminimumerror probability criterion, because

C
11

= C
00

= 0 and C
10

= C
01

= 1, the minimax equation is reduced to α(p
1
) = β(p

1
),

i.e., the false alarm and missed alarm probabilities are the same. A typical example of

this situation is that in digital communication, the binary 0 is determined to be 1 and 1

is determined to be 0, and the two bit error rates are the same.

Eq.(3.7.7) shows that the minimum average cost function C
min

(p
1
) is actually the

tangent equation of the average cost function C(p
1
) at the priori probability p

1
point,

which is a straight line.

Since C(p
1
) is strictly convex, C

min
(p

1
) has oneandonly onemaximum C

max min
(p

1
) =

maxC
min

(p
1
). This maximum is actually the most unfavorable average cost in Bayes

criterion. The corresponding prior probability p
1
is denoted as p

1max
, which is called

the most unfavorable prior probability. Thus, C
min

(p
1max

) is the tangent of the average

cost function C(p
1
) at the point of the most unfavorable priori probability p

1max
. This is

a horizontal line parallel to the horizontal axis, as shown by the dotted line in Fig 3.7.1.

The most unfavorable priori probability p
1max

is actually the maximum value of

minimizing the average cost function, i.e.,

p
1max

= arg max min C(p
1
) = arg max C

min
(p

1
) (3.7.10)

According to the order of optimization, the optimization process is called max min. It

should be noted that there are also references called max min maximumminimization

according to the order of symbols.

The optimization criterion of minimax method is to use the most unfavorable a

priori probability p
1max

as the guess value of unknown a priori probability p
1
. This is

called minimax criterion.

Contrary to the most unfavorable priori probability, let C
min

(p*
1
) be the minimum

average cost function corresponding to the unknown real a priori probability p*
1
. It is

the tangent of the average cost function C(p
1
) at the point of the real priori probability

p*
1
, which is an oblique line, as shown in Fig 3.7.1.

By comparing the horizontal tangent C
min

(p
1max

) with the oblique straight line

C
min

(p*
1
), it is easy to know:

(1) Comparedwith themost unfavorable a priori probability p
1max

, the result C
min

(p
1g
)

of any other guess value p
1g

of the unknown priori probability p
1
is the same

as C
min

(p
1max

), which is neither optimal nor worst. Therefore, "using the most

unfavorable a priori probability as a guess" is not good enough, but it is a safe

choice.

(2) Because the prior probability p
1
is unknown, its true value p*

1
can not be obtained.

If the difference between the guessed priori probability p
1g

and the real priori

probability p*
1
is relatively small, the guessed average cost C

min
(p

1g
) is not much

different from the ideal average cost C
min

(p*
1
), which is naturally a good choice.
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Tab. 3.7.1: Comparison of Bayes criterion and its derived criteria

Method Priori probability p1 , p0 Known conditions Decision criterion

Bayesian known, fixed C01 , C11 , C10 , C00 p(y|H1)
p(y|H0)

H0
⩽
>
H1

p0(C10−C00)
p1(C01−C11)

Minimum error
known, fixed C00 = C11 = 0, p(y|H1)

p(y|H0)

H0
⩽
>
H1

p0
p1

probability

Maximum a posteriori
known, fixed

C01 − C11
p(y|H1)
p(y|H0)

H0
⩽
>
H1

p0
p1

probability = C10 − C00

Minimax unknown or fluctuating α(p1), β(p1)
C10α(p1) + C00[1 − α(p1)]

= C01β(p1) + C01[1 − β(p1)]

However, if the guess value p
1g
deviates from the real priori probability p*

1
, the cor-

responding average cost C
min

(p
1g
) may be greatly different from the ideal average

cost C
min

(p*
1
). Therefore, trying to pursue a better guess than the most unfavor-

able priori probability is likely to cause a large error fluctuation of Bayes criterion,

resulting in great risk.

In a word, minimax criterion is a Bayes decision method to determine the threshold

according to the most unfavorable a priori probability.

The characteristic or advantage of minimax criterion is that the average cost is

constant and does not change with the fluctuation of a priori probability.

3.8 Multivariate Hypotheses Testing

In some complex hypothesis testing problems, there are often multiple hypotheses.

For example, in blind signal separation, it is necessary to judge whether the signal is

Gaussian, sub-Gaussian or super-Gaussian distribution:

⎧
⎪⎪⎨
⎪⎪⎩

H
0
: Gaussian distribution,

H
1
: sub-Gaussian distribution,

H
2
: super-Gaussian distribution.

(3.8.1)
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For another example, the multivariate hypotheses model of tumor diagnosis is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H
0
: Benign tumor,

H
1
: Malignant tumor: early stage,

H
2
: Malignant tumor: metaphase,

H
3
: Malignant tumor: middle-late stage,

H
4
: Malignant tumor: late stage.

(3.8.2)

3.8.1 Multivariate Hypotheses Testing Problem

The testing of several hypotheses is called multivariate hypothesis testing.

Consider the M-ary hypothesis testing problem

H
0
: yk = S0 + nk , k = 1, · · · , N,

H
1
: yk = S1 + nk , k = 1, · · · , N,

.

.

.

HM−1 : yk = SM−1 + nk , k = 1, · · · , N .

(3.8.3)

Let Y = g(y
1
, · · · , yN) be the amount of evidence obtained from N observations

when Hj is assumed to be true. If the hypothesis Hj is true, the amount of evidence

Y determines that the hypothesis Hi is true, then the judgment result is marked as

(Hi|Hj). Therefore, in theM-ary hypothesis testing, there areM possible decision results

(H
0
|Hj), (H1

|Hj), · · · , (HM−1|Hj) under Hj hypothesis. Under the M-ary hypothesis,
there are M ×M = M2

possible decision results

(H
0
|Hj), (H1

|Hj), · · · , (HM−1|Hj), j = 0, 1, · · · ,M − 1.

The corresponding decision probability is

P(H
0
|Hj), P(H1

|Hj), · · · , P(HM−1|Hj), j = 0, 1, · · · ,M − 1,

where, there are only M correct decisions, and the decision probability is P(Hj|Hj), j =
0, 1, · · · ,M − 1. The otherM(M − 1) decisions are wrong, and the probability of wrong
decisions is P(Hi|Hj), i ̸= j(i, j = 0, 1, · · · ,M − 1).

Let Ri indicate the area where the evidence is located when the judgment is Hi
hypothesis. It is generally assumed that these areas are non empty and non crosslinked:

Ri ̸= Φ, Ri ∩ Rj = Φ (i ̸= j). (3.8.4)

If the amount of evidence Y falls in the decision domain Ri , i = 0, 1, · · · ,M − 1, judge
Hi hypothesis to be true.

The union of M decision domains R
0
, R

1
, · · · , RM−1 forms the decision domain of

M-ary hypothesis testing

R = ∪M−1i=0 Ri . (3.8.5)
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3.8.2 Bayes Criteria for Multiple Hypotheses Testing

Assuming that the prior probability pi = P(Hi), i = 0, 1, · · · ,M − 1 is known, the cost
factors Cij , i, j = 0, 1, · · · ,M − 1 of various decisions have also been determined.

Bayes average cost

C =

M−1∑︁

j=0

M−1∑︁

i=0
CijpjP

(︀
Hi | Hj

)︀

=

M−1∑︁

j=0

M−1∑︁

i=0
Cijpj

∫︁

Ri

p
(︀
Y | Hj

)︀
dY

=

M−1∑︁

i=0

⎡
⎢⎣Ciipi

∫︁

Ri

p
(︀
Y | Hj

)︀
dY +

M−1∑︁

j=0, j̸= i
Cijpj

∫︁

Ri

p
(︀
Y | Hj

)︀
dY

⎤
⎥⎦ . (3.8.6)

From

∫︀
R p
(︀
Y | H

0

)︀
dY = 1, we have

∫︁

Ri

p
(︀
Y | Hi

)︀
dY +

∫︁

⋃︀M−1
j=0, j̸= i Rj

p
(︀
Y | Hi

)︀
dY = 1. (3.8.7)

Substituting Eq. (3.8.7) into Eq. (3.8.6), it is easy to obtain

C =

M−1∑︁

i=0
Ciipi

⎡
⎢⎣1 −

M−1∑︁

j=0,j ̸=i

∫︁

Ri

p
(︀
Y | Hj

)︀
dY

⎤
⎥⎦ +

M−1∑︁

i=0

M−1∑︁

j=0, j̸= i
Cijpj

∫︁

Ri

p
(︀
Y | Hj

)︀
dY

=

M−1∑︁

i=0
Ciipi −

M−1∑︁

i=0

M−1∑︁

j=0, j̸= i
Ciipi

∫︁

Ri

p
(︀
Y | Hi

)︀
dY +

M−1∑︁

i=0

M−1∑︁

j=0, j̸= i
Cijpj

∫︁

Ri

p
(︀
Y | Hj

)︀
dY

=

M−1∑︁

i=0
Ciipi +

M−1∑︁

i=0

∫︁

Ri

M−1∑︁

j=0, j̸= i
pj
(︀
Cij − Cjj

)︀
p
(︀
Y | Hj

)︀
dY . (3.8.8)

In the above equation, the first term on the right is the fixed cost, which is irrelevant

with the judgment area Ri. The second term is the cost function, which is related to the

decision domain Ri.
Bayes criterion minimizes the average cost C. For this reason, let

Ii(Y) =
M−1∑︁

j=0, j̸= i
pj
(︀
Cij − Cjj

)︀
p
(︀
Y | Hj

)︀
. (3.8.9)

Then Eq. (3.8.8) can be abbreviated as

C =

M−1∑︁

i=0
Ciipi +

M−1∑︁

i=0

∫︁

Ri

Ii(Y)dY . (3.8.10)
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Since the first term is a constant, there is

min C ⇐⇒ min

{︀
I
0
(Y), I

1
(Y), · · · , IM−1(Y)

}︀
. (3.8.11)

Bayes criterion of M-ary hypothesis testing: if

Ii(Y) = min

{︀
I
0
(Y), I

1
(Y), · · · , IM−1(Y)

}︀
, (3.8.12)

judge Y ∈ Ri, i.e., Hihypothesis holds.
In particular, if Cii = 0 and Cij = 1, j ̸= i, then the average cost of Bayes criterion

for M-ary hypothesis testing becomes the error probability, that is

C =

M−1∑︁

i=0

M−1∑︁

j=0, j̸= i
pjP

(︀
Hi | Hj

)︀
= P

E
. (3.8.13)

So, there is

min C ⇐⇒ min P
E
. (3.8.14)

In other words, if Cii = 0 and Cij = 1, j ̸= i, then the Bayes criterion ofM-ary hypothesis

testing is simplified to the minimum error probability criterion.

On the other hand, when Cii = 0 and Cij = 1, j ̸ = i, Ii(y) difined by Eq. (3.8.9)

becomes

Ii(Y) =
M−1∑︁

j=0, j̸= i
pjp

(︀
Y | Hj

)︀
=

M−1∑︁

j=0, j̸= i
p(Y)p

(︀
Hj | Y

)︀
=

[︀
1 − p

(︀
Hi | Y

)︀]︀
p(Y), (3.8.15)

where

∑︀M−1
j=0, j̸= i p

(︀
Hj | Y

)︀
=

∑︀M−1
j=0 p

(︀
Hj | Y

)︀
− P

(︀
Hi | Y

)︀
= 1 − p

(︀
Hi | Y

)︀
is used. So,

again

min Ii(Y) ⇔ max p
(︀
Hi | Y

)︀
. (3.8.16)

That is, if Cii = 0 and Cij = 1, j ̸= i, then the Bayes criterion ofM-ary hypothesis testing

is simplified to the maximum a posteriori probability criterion.

3.9 Multiple Hypothesis Testing

In multiple hypothesis testing problem, there is only one original hypothesis H
0
, but

there are M − 1 alternative assumptions H
1
, · · ·HM−1. In other words, all the M as-

sumptions in the multiple hypothesis are independent and do not duplicate each

other. However, in some important applications, although there are m > 2 hypotheses,

they are not independent, but there are a lot of repetitions, with only two different

hypotheses.
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For example, in biostatistics, there are m = S + V differentially expressed genes,

of which S are truly differentially expressed genes, and V are actually non differen-

tially expressed genes, which are false positive. Thus, M genes obey only two kinds of

assumptions {︃
H
0
: non differentially expressed genes,

H
1
: differentially expressed genes.

(3.9.1)

The basic task of biostatistics is to select the number of differentially expressed genes

through judgment, and hope that the average value of error ratio (error rate) Q = V/m
does not exceed a preset value (e.g. 0.05 or 0.01).

Broadly speaking, due to repeated assumptions, there are only two types of as-

sumptions H
0
and H

1
in multiple hypotheses, which is called multiple hypothesis

testing problem. In biostatistics, gene expression profile and genome-wide association

analysis need tens of thousands or even millions of multiple testing. Therefore, the

M-multiple hypothesis testing can be regarded as a special case of M-ary hypothesis
testing in the case of repeated hypotheses, with only the original hypothesis H

0
and

alternative hypothesis H
1
.

Multiple hypothesis testing is a common problem in data analysis, which widely

exists in the fields of internet communication, social economics, medicine and health

statistics, etc.

3.9.1 Error Rate of Multiple Hypothesis Testing

Table 3.9.1 summarizes possible results of M-ary hypothesis testing

[26]

.

Tab. 3.9.1: Number of correct and wrong decisions of M-ary hypothesis testing

Original Not reject H0 hypothesis Reject H0 hypothesis Numberhypothesis (non significant testing) (significance testing)

H0 is true U (Hit) V (type I error) m0: number of H0
assumed to be true

H0 is false T (type II error) S (Correct rejection) m − m0: number of H0
assumed to be false

Number of Testing
m − R R m: assumption numberresults

In the table, m
0
H
0
assumptions among the m hypotheses are true, and the other

m − m
0
H
0
are assumed to be false, which corresponds to m − m

0
H
1
assumptions to

be true. In the m-multiple hypothesis testing, the number of the original hypotheses

hit are U, and the number of the original hypotheses misjudged by type I are V, where
U + V = m

0
. On the other hand, the number of original assumptions misjudged by
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type II is T, and the number of the original assumptions correctly rejected is S. Let
R = V + S represent the total number of rejected original assumptions, then the number

of original assumptions not rejected is m − R.
If each original hypothesis takes α as the testing significance level, when the

amount of evidence is less than or equal to α (i.e. non significant testing), the judgment

result is not to reject H
0
assumption. On the contrary, if the amount of evidence is

larger than α (i.e. significant testing), then H
0
assumption will be rejected. Obviously,

the number R of H
0
hypotheses rejected is an observable random variable R(α) related

to the testing significance level α, while U, V , S, T are unobservable random variables.

When conducting multiple testing on m hypotheses, it is demanded to judge how

many H
1
hypotheses hold. At this time, an important question is: how to minimize the

error of the final testing.

In the general binary hypothesis testing, there is only one original hypothesis.

At this time, the Neyman-Pearson criterion is to minimize the probability of type II

error (miss alarm) β, or maximize the equivalent power function, while allowing the

probability of type I error (false alarm) to be limited to the level α.
However, if the Neyman-Pearson criterion is directly applied to themultiple hypoth-

esis testing, and the probability α of type I error is still used to measure the overall error

of the multiple hypothesis testing, it will lead to invalidity. In other words, in the multi-

ple hypothesis testing problem, a new measure must be used to test the significance

level α.
In multiple hypothesis testing, it is necessary to treat the m test as a whole, and

take the proportion of type I error or type II error in all errors as the error measurement

standard. Here are five common error metrics[140].

1. Per-family Error Rate (PFER)
The PFER is defined as

PFER = E{V}. (3.9.2)

Since the number V of assumption of making type I error rate is an unpredictable

random variable, its expected value (average) E{V} is used as the error measure.

An obvious disadvantage of this error measure is that the total number of original

assumptions m is not considered, and the total number of original assumptions is

closely related to the final error control.

2. Per-comparison Error Rate (PCER)
The PCER is defined as

PCER = E{V}/m. (3.9.3)

This measure considers the ratio of PFER in the total number of assumptions m, which
is an improvement of PFER.

The disadvantage of PCER is that each hypothesis testing in the m-fold hypoth-
esis testing is carried out under α without considering the "totality" of the multiple

hypothesis testing problem, which makes the testing standard too “loose”.
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3. Family-wise Error Rate (FWER)
The FWER is defined as

FWER = P(V ⩾ 1). (3.9.4)

Different from PCER, FWER is a probability value, which represents the probability of

making at least one type I error in the m-ary test.
4. False Discovery Rate (FDR)

The FDR is defined as

FDR =

{︃
E{ V

V+S } = E{
V
R }, R ̸= 0,

0, R = 0.

(3.9.5)

This is proposed by Benjamini and Hochberg in 1995[26].

Let Q =

V
V+S indicate the ratio of the number of original hypotheses making type I

errors to the total number of rejected original hypotheses, then naturally specify Q = 0

if V + S = 0. The expected value of ratio Q is

Q
E
= E{Q} = E{V/(V + S)} = E{V/R} (3.9.6)

The error detection rate has the following important properties[26]:

(1) If all the original assumptions are true, i.e. m
0
= m , then FDR = FWER. Thus,

S = 0 and V = R. Then, if V = 0, then Q = 0; And if V > 0, then Q = 1. This means

P(V ⩾ 1) = E{Q} = Q
E
. Therefore, controlling the FDR means that the FWER can

be controlled under weak controlled conditions.

(2) Whenm
0
< m, the FDR is less than or equal to the FWER. At this time, if V > 0, then

V
R ⩽ 1, resulting in the probability distributionX

(V⩾1)
⩾ Q. Take themathematical

expectation on both sides and get P(V ⩾ 1) ⩾ Q
E
. There is a great difference

between the two error rates. As a result, any process that controls FWER also

controls FDR. If a process can only control FDR, this may be "less stringent". Since

most of the original assumptions often encountered in the actual test are not true,

the power of this process that only controls FDR will be improved.

5. Positive False Discovery Rate (PFDR)[200]
The PFDR is defined as

PFDR = E

{︂
V
R |R > 0

}︂
. (3.9.7)

Obviously, PFDR is a special case of FDR when R ̸ = 0. It should be noted that[26],

when all m original assumptions are true, PFDR = 1 because V = R. In this case,

significance level α cannot be selected so that PFDR<α. In other words, PFDR fails

when all m original assumptions are true. However, in practical problems, there are

very few cases wherem original hypotheses are true. PFDR is widely used in hypothesis

testing problems with untrue original hypotheses.
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3.9.2 Error Control Method of Multiple Hypothesis Testing

Here are four error control methods for m-multiple hypothesis testing

[140]

.

1. Classical Bonferroni Multiple Testing
[31]

Consider the m-fold hypothesis testing {H
1
, H

2
, · · · , Hm}. If Pi is the prior prob-

ability (p value for short) corresponding to each original hypothesis Hi, there is a
prior probability set {P

1
, P

2
, · · · , Pm}. Given a significance level α, treat each original

hypothesis equally, that is, divide the significance level α by m, based on α/m. For
the p-value set {P

1
, P

2
, · · · , Pm}, the classical Bonferroni multiple test method is as

follows:

if Pi ⩽ α/m, reject Hi (i = 1, · · · ,m). (3.9.8)

All rejected hypotheses belong to the alternative hypothesis H
1
of the two types of

hypotheses in the multiple hypothesis testing, while all other hypotheses that have not

been rejected belong to the original hypothesis H
0
of the multiple hypothesis testing.

The probability can be obtained from the Bonferroni inequality Pi ⩽ α/m

P
{︃ m⋃︁

i=1
(Pi ⩽ α/m) < α (0 ⩽ α ⩽ 1)

}︃
. (3.9.9)

The classical Bonferroni multiple test method was proposed by Bonferroni in 1930.

Its advantage is simple and intuitive. Since the assumption of density distribution of

random variables is not involved, it is easy to apply.

2. Improved Bonferroni Multiple Test
There are three ways to improve the classical Bonferroni multiple test method:

(1) Holm step-down control method

[105]

: Before the hypothesis testing, the p-value
P
1
, P

2
, · · · , Pm is rearranged into P

(1)
, P

(2)
, · · · , P

(m) from small to large. Then,

for all j = 1, · · · , i, judge whether the inequality P
(j) ⩽ α/(m − j + 1) holds? If this

inequality holds, the hypothesis H
(j) is rejected.

(2) Simes controlmethod

[195]

: On the basis of Holm test, the control process is improved:

for all j = 1, · · · ,m, judge whether the inequality P
(j) ⩽ jα/m, is true. If the

inequality holds for a certain j, reject all the reordering original assumptions

H
(1)
, H

(2)
, · · · , H

(j).

(3) Hochberg step-up control method

[104]

: if

k = max

i

{︂
P
(i) ⩽

1

m − i + 1α
}︂

(0 ⩽ α ⩽ 1), (3.9.10)

then reject the original reordered hypotheses H
(1)
, H

(2)
, · · · , H

(k).

3. FDR Multiple Test
[26]

FDR multiple test method, also known as FDR error control method, is proposed

by Benjamini and Hochberg in 1995. This method determines the domain of P value
by controlling the FDR. For example, select R = V + S differentially expressed genes,
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of which S are truly differentially expressed, and the other V are not differentially

expressed and are false positive genes. In biostatistics, it is hoped that the expected or

average value of error rate Q = V/R cannot exceed a preset threshold (e.g. 0.05 or 0.01).

Statistically, this is equivalent to controlling the FDR no more than 5% or 1%.

FDR multiple test is a step-down control method.

Algorithm 3.9.1. FDR multiple test algorithm
Step 1 Sort: arrange the p-value P

1
, P

2
, · · · , Pm into P

(1)
< P

(2)
< · · · < P

(m) from small
to large, and record the corresponding original hypotheses as H

(1)
, H

(2)
, · · · , H

(m).
Step 2 let i = m,m − 1, · · · , 1 and test inequality P

(i) <

i
m α. If k is the maximum i

value satisfying this inequality, all the original assumptions H
(1)
, H

(2)
, · · · , H

(k) are
rejected.

Step 3 if no i satisfies the inequality P
(i) <

i
m α, the original hypotheses H(1)

, H
(2)
, · · · , H

(m)
are not rejected.

For example, in biostatistics, if H
0
is assumed to be non differentially expressed genes,

the selection result of FDR error control method is k differentially expressed genes

H
(1)
, H

(2)
, · · · , H

(k).

In recent ten years, the applied research results of FDR multiple test method have

been reported in Science and Nature, two top academic journals in the world[140]. In

2001, astrophysicists and statisticians jointly published a paper on confirming the big

bang theory of the origin of the universe by FDR method in Science[156]; In 2005, in

Nature, geneticists cooperated with statisticians to apply FDR method to the study of

the effect of interaction between genetic polymorphisms on gene expression[33].

4. Storey multiple test method
[199, 200]

The above three error control methods follow a common pattern: on the premise of

giving the error control level (i.e. fixing type I error level), based on a single hypothesis

testing, the rejection domain of the test is constructed through the error control method,

and the test results can be obtained.

In 2002 and 2003, Storey put forward a new idea of hypothesis testing: give a

rejection domain empirically, then estimate the error rate. If the error rate can be

accepted, the test is considered to be valid; If the error rate is large, the rejection

domain needs to be readjusted until the error rate is controlled at a satisfactory level.

The theory and method of multiple hypothesis testing are especially suitable for

the statistical analysis of complex data such as gene chip. There are also a large num-

ber of similar complex data in the fields of Internet, social economics, medicine and

health statistics. Therefore, multiple hypothesis testing is also widely used in Internet

communication, econometrics and statistical analysis of medical and health data such

as epidemiology and health statistics.

The following introduces two important applications ofmultiple hypothesis testing:

multiple linear regression and the test of equality of multi population mean.
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3.9.3 Multiple Linear Regression

Consider the multiple linear regression model

yi = β0 + β1x1i + · · · + βmxmi , i = 1, · · · , N, (3.9.11)

where, yi and x1i , · · · , xmi , i = 1, · · · , N are called explained variable and explanatory

variables respectively; β
0
, β

1
, · · · , βm are called linear regression parameters and m is

called linear regression order.

Multiple linear regression, also known as multiple linear fitting, has two main

purposes:

(1) Determine whether the multiple regression model is linear or nonlinear.

(2) If themultiple linear regressionmodel holds, the order of themultiple linear regres-

sion model (i.e., the number of explanatory variables) m needs to be determined.

The above objectives are essentially equivalent to testing whether the regression pa-

rameter βj , j = 1, · · · ,m in the multiple regression model is significantly non-zero?

Therefore, m-ary linear regression is essentially an m-multiple hypothesis test

{︃
H
0
: ∀j ∈ {1, 2, · · · ,m, } βj = 0 (linear regression does not hold),

H
1
: ∃j ∈ {1, 2, · · · ,m, } βj ̸= 0 (linear regression holds).

(3.9.12)

Suppose the true value of the explained variable is Yi, the linear regression or obser-
vation value is

ŷi = ^β
0
+
^β
1
x
1i + · · · + ^βmxmi , i = 1, · · · , N . (3.9.13)

And the mean of the linear regression is

ȳ = 1

N

N∑︁

i=1
ŷi . (3.9.14)

There are three measures of regression or fitting quality.

(1) Total sum of squares (TSS) measure: Sum of squares of regression dispersion

vi = ŷi − ȳ

TSS =

N∑︁

i=1

(︀
ŷi − ȳ

)︀
2

=

N∑︁

i=1
v2i . (3.9.15)

(2) Regression sum of squares (RSS) measure: Sum of squares of error between final

approximate value and the true value δi = ȳ − yi

RSS =

N∑︁

i=1
(ȳ − yi)2 . (3.9.16)

(3) Error sum of squares (ESS) measure: Sum of squares of the observation error (error

for short) ei = yi − ŷi

ESS =

N∑︁

i=1
e2i , (3.9.17)
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where the mean of the error ei = yi − ŷi is zero, i.e., 1

N

N∑︀
i=1
ei = 0, and the optimal

regression error ei is orthogonal to the known variables xki , k = 1, · · · ,m, i.e.,
ei ⊥ xki , k = 1, · · · ,m.

Consider the total sum of squares

TSS =

N∑︁

i=1

(︀
ŷi − ȳ

)︀
2

=

N∑︁

i=1

[︀(︀
ŷi − yi

)︀
+ (yi − ȳ)

]︀
2

=

N∑︁

i=1

(︀
ŷi − yi

)︀
2

+ 2

N∑︁

i=1

(︀
ŷi − yi

)︀
(yi − ȳ) +

N∑︁

i=1
(yi − ȳ)2 .

According to the nature of regression error, the second summation term of the above

equation is equal to zero, so we have

TSS =

N∑︁

i=1

(︀
ŷi − yi

)︀
2

+

N∑︁

i=1
(yi − ȳ)2 = ESS + RSS. (3.9.18)

That is, TSS is equal to the sum of ESS and RSS.

Consider the relationship between the explanatory variable (independent variable)

x
1
, · · · , xm and the explained variable (dependent variable) y. Let the observed values

obtained from N experiments be (x
1i , · · · , xmi; yi) , i = 1, · · · , N. Let

x̄i =
1

N

N∑︁

k=1

xik , i = 1, · · · ,m, (3.9.19)

ȳ = 1

N

N∑︁

k=1

yk , (3.9.20)

lij =
N∑︁

k=1
(xik − x̄i)

(︀
xjk − x̄j

)︀
, i, j = 1, · · · ,m, (3.9.21)

ri =
N∑︁

k=1
(xik − x̄i) (yk − ȳ) , i = 1, · · · ,m, (3.9.22)

then we get the covariance matrix

L =

⎡
⎢⎢⎣

l
11

· · · l
1m

.

.

.

.
.
.

.

.

.

lm1 · · · lmm

⎤
⎥⎥⎦ , (3.9.23)

and its inverse matrix

L−1 =

⎡
⎢⎢⎣

c
11

· · · c
1m

.

.

.

.
.
.

.

.

.

cm1 · · · cmm

⎤
⎥⎥⎦ . (3.9.24)
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Sum all i = 1, · · · and N on both sides of Eq. (3.9.11), and then divide them by N to

obtain the average value

ȳ = β
0
+ β

1
x̄
1
+ · · · + βm x̄m . (3.9.25)

Subtract Eq. (3.9.11) from (3.9.3) to get

yk − ȳ = β1 (x1k − x1) + · · · + βm (xmk − x̄m) , k = 1, · · · , N . (3.9.26)

In equation (3.9.26), multiply both sides by

(︀
xjk − x̄j

)︀
, and sum k = 1, · · · , N, then we

have

rj = β1lj1 + · · · + βm ljm , j = 1, · · · ,m. (3.9.27)

Or in matrix form ⎡
⎢⎢⎣

l
11

· · · l
1m

.

.

.

.
.
.

.

.

.

lm1 · · · lmm

⎤
⎥⎥⎦

⎡
⎢⎢⎣

β
1

.

.

.

βm

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r
1

.

.

.

rm

⎤
⎥⎥⎦ . (3.9.28)

Then the solution of the regression parameters can be obtained

⎡
⎢⎢⎣

^β
1

.

.

.

^βm

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

l
11

· · · l
1m

.

.

.

.
.
.

.

.

.

lm1 · · · lmm

⎤
⎥⎥⎦

−1
⎡
⎢⎢⎣

r
1

.

.

.

rm

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c
11

· · · c
1m

.

.

.

.
.
.

.

.

.

cm1 · · · cmm

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r
1

.

.

.

rm

⎤
⎥⎥⎦ . (3.9.29)

By substituting these regression parameters into equation (3.9.3), we can get the

solution of β
0

^β
0
= ȳ − ^β

1
x̄
1
− · · · −

^βm x̄m . (3.9.30)

“The overall linear relationship of the multiple linear regression is significant” does

not mean that each explanatory variable x
1i , · · · , xmi , i = 1, · · · , N has a significant

effect on the explained variable yi. Therefore, a significance test must be performed on

each explanatory variable to determine whether each explanatory variable should be

retained in the multiple linear regression model. This test is achieved by the t test for
the explanatory variables.

Definition 3.9.1. If the random variables X ∼ N(0, 1) and Y ∼ χn are independent, then

T =

√
nX
Y (3.9.31)

obeys t distribution with a degree of freedom of n, denoted as T ∼ tn.

Define the t statistic for the explanatory variable xi as

ti =
^βi − βi√︁
cii eTe

N−m−1

. (3.9.32)
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Then the t statistic follows the t distribution with a degree of freedom of N −m − 1, i.e.,

ti =
^βi − βi√︁
cii eTe

N−m−1

∼ t(N − m − 1), (3.9.33)

where e = [e1, · · · , em]T is the error vector.
Thus, the multiple hypothesis testing equation (3.9.3) for multiple linear regression

becomes a t test: given the significance level α, the critical value tα/2(N −m − 1) can be
found from the t distribution table

[97]

. Then, the value of the statistic ti , i = 0, 1, · · · , tm
can be calculated from samples, and finally by testing

|ti|
H
0

⩽
>

H
1

tα/2(N − m − 1), i = 0, 1, · · · ,m, (3.9.34)

judge whether the corresponding explanatory variables should be included in the

multiple linear regression model.

The following is the t test algorithm for multiple hypothesis testing of multiple

linear regression

[97]

.

Algorithm 3.9.2. t-test algorithm of multiple linear regression
Known: experimental observations (x

1i , · · · , xmi; yi), i = 1, · · · , N, and given the signif-
icance level α.
Step 1 Calculate the regression parameter vector β̂ =

[︁
^β
1
, · · · ,

^βm
]︁T

from equation (3.9.3)

or β̂ = (LTL)−1LTr, and then calculate the constant term ^β
0
from equation (3.9.30)

Step 2 Calculate

Sre =
N∑︁

i=1

(︀
ŷi − ȳ

)︀
2

. (3.9.35)

Step 3 Calculate the residual standard deviation

s =
√︂

Sre
N − m − 1 , (3.9.36)

and partial regression square sum

pi =
^β2i
cii

, i = 1, · · · ,m, (3.9.37)

where cii is the diagonal element of the inverse matrix L−1.
Step 4 Calculate the t-statistic

ti =
√pi
s , i = 1, · · · ,m. (3.9.38)

Step 5 Look up the t distribution table according to the given significance level α to obtain
the critical value tα/2(N − m − 1), and then use the t test of equation (3.9.3) to
judge whether each explanatory variable should be included in the multiple linear
regression model.



For example, in the ternary linear regression, given the significance levels α = 0.05

and N = 23, the degree of freedom of t distribution is N −m − 1 = 23 − 3 − 1 = 19. The

corresponding critical value t
0.025

(19) = 2.093 can be found through the t distribution
table. If the absolute values |t

0
|, |t

1
|, |t

2
| and |t

3
| of all calculated t values are greater

than the critical value t
0.025

(19), then the four explanatory variables including the

constant term β
0
, x

1
, x

2
and x

3
are significant at the level of 95%, that is, the four

explanatory variables have passed the significance test. This shows that the explanatory

variables have obvious explanatory power to the explained variable y, i.e., the ternary
linear regression model holds.

3.9.4 Multivariate Statistical Analysis

In economic and medical multivariate statistical analysis, it is often necessary to evalu-

ate whether there are differences in the results? For example, different personnel of

several appraisal institutions have evaluated the investment environment in China.

Let the political environment score of the jth appraiser of the ith institution is x(i)j1 ,
the legal environment score is x(i)j2 , the economic environment score is x(i)j3 and the

cultural environment score is x(i)j4 . According to these scores, it is necessary to analyze
whether there are differences in the evaluation of China’s investment environment

by these evaluation institutions? For another example, in order to study a disease,

several groups of people of different ages and genders were subjected to biochemical

examination, in which the total cholesterol (CHO) of the jth person in group i was x(i)j1 ,
triglyceride (TG) was x(i)j2 , low density lipoprotein cholesterol (LDL) was x(i)j3 , and high
density lipoprotein cholesterol (HDL) was x(i)j4 . At this time, it is necessary to analyze

whether there are significant differences in biochemical indexes among these groups?

The essence of m-ary statistical analysis is to analyze m related variables at the

same time: compare whether the mean or covariance matrix of these correlation vari-

ables are equal. Note that multivariate statistical analysis is not a multivariate hypoth-

esis testing, but a multiple hypothesis testing, because multivariate statistical analysis

has only two hypotheses H
0
and H

1
.

Just as univariate normal distributionN
(︀
μ, σ2

)︀
is the basic hypothesis of binary

hypothesis testing and statistical analysis, multivariate normal distribution is the basic

hypothesis of multivariate and multiple hypothesis testing and multivariate statistical

analysis.

Definition 3.9.2. Let x = [x1, · · · , xq]T, where x1, · · · , xq is an independent univariate
normal distribution N(0, 1). If μ is a p-dimensional constant vector and A is a q × p
constant matrix, then

y = μ + ATx (3.9.39)
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follows the p-ary normal distribution, denoted as x ∼ Np(μ, Σ), where μ and Σ = ATA
are called the mean vector and variance matrix of p-ary normal distribution respectively.

In fact, the distribution of many practical problems is often multivariate normal distri-

bution or approximate multivariate normal distribution; Or even if it is not multivariate

normal distribution, its sample mean is approximately multivariate normal distribu-

tion.

The test methods of multivariate statistical analysis are introduced in three cases.

(1) Test for equality of multivariate normal mean vectors

The mathematical description of the test problem of equality of multivariate normal

mean vectors is {︃
H
0
: μ

1
= · · · = μm

H
1
: otherwise

(3.9.40)

Considerm variables X
1
, · · · , Xm. Let x(i)kj represent the j-th observation data in the i-th

(where i = 1, · · · , p) observation data group of Xk, and let the k-th variable Xk of the
i-th group have Ni(i = 1, · · · , p) observation data.

The i-th sample mean of the k-th variable Xk is

¯X(i)k =

1

Ni

Ni∑︁

j=1
x(i)kj , i = 1, · · · , p; k = 1, · · · ,m. (3.9.41)

The group i sample mean of m variables constitutes the group i multivariate sample

mean vector

x̄(i) =
[︁
¯X(i)
1

, · · · , X(i)m
]︁
T

, i = 1, · · · , p. (3.9.42)

Let N = N
1
+ · · · + Nm, then the population sample mean of the k-th variable Xk is

¯Xk =
1

N

p∑︁

i=1

Ni∑︁

j=1
x(i)kj , k = 1, · · · ,m. (3.9.43)

They form the total mean vector

x̄ =
[︀
¯X
1
, · · · ,

¯Xm
]︀
T

. (3.9.44)

Define the data matrix for group i

X(i)
=

⎡
⎢⎢⎣

x(i)
11

· · · x(i)
1Ni

.

.

.

.
.
.

.

.

.

x(i)m1 · · · x(i)mNi

⎤
⎥⎥⎦ =

[︁
x(i)
1

, · · · , x(i)Ni
]︁
, (3.9.45)

where

x(i)j =

[︁
x(i)
1j , · · · , x

(i)
mj

]︁
T

, j = 1, · · · , Ni . (3.9.46)
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From the above definition, the sample covariance matrix in group i is

Ei =
[︁
x
1
− x̄(i), · · · , x(i)Ni − x̄

(i)
]︁ [︁

x
1
− x̄(i), · · · , x(i)Ni − x̄

(i)
]︁
T

=

Ni∑︁

j=1

(︁
x(i)j − x̄

(i)
)︁(︁

x(i)j − x̄
(i)
)︁
T

, i = 1, · · · , p. (3.9.47)

The covariance matrix of total samples within the group is

E =

p∑︁

i=1
Ei =

p∑︁

i=1

Ni∑︁

j=1

(︁
x(i)j − x̄

(i)
)︁(︁

x(i)j − x̄
(i)
)︁
T

. (3.9.48)

The total sample covariance matrix between groups is

B =

p∑︁

i=1
Ni
(︁
x̄ − x̄(i)

)︁(︁
x̄ − x̄(i)

)︁
T

. (3.9.49)

The sum of total sample covariance matrix within group and total sample covariance

matrix between groups is

A = E + B, (3.9.50)

which is called the total sample covariance matrix.

The statistical meaning

[256]

of the determinant of the above matrix is as follows.

|B|: inter group variance of m sets of sample points divided by the population

sample of m variables;

|E|: the sum of the inter group variances of each group from m groups;

|A|: total variance of m groups of sample points.

If the overall mean of m variables is equal, the sample points of m groups should

be very close. The intra group variance is large, but the inter group variance is small,

that is, the intra group variance is almost the total variance. At this time, λ2/n = |E|
|B+E|

should be close to 1.

Definition 3.9.3.
[256]

Let the data matrix Xn×p ∼ Nn×p (0, In ⊗ Σ), then the covariance
matrixW follows the Wishart distribution and is recorded asW ∼ Wp(n, Σ).

Definition 3.9.4.
[256]

Let E ∼ Wp(n, Σ) and B ∼ Wp(m, Σ) be independent of each other,
and m > p, n > p. Matrix Σ is positive definite, then

Λ =

|E|
|E + B| or λ1 =

|E|N/2

|E + B|N/2
, (3.9.51)

obeysWilks distribution, denoted as λ
1
∼ Λp.n,m. The critical point or quantile α of Wilks

distribution Λp,n,m can be obtained by looking up the table in reference [239].

Theorem 3.9.1.
[256]

When the mean of multivariate normal variables μ
1
= · · · = μm,

there are

A ∼ Wp(N − 1, Σ), E ∼ Wp(N − m, Σ), B ∼ Wp(m − 1, Σ).
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E and B are independent of each other. Thus λ
1
defined by equation (3.9.51) obeys Wilks

distribution, namely λ
1
∼ Λp,N−m,m−1.

Algorithm 3.9.3. Test for equality of multivariate normal mean vectors
[256]

Given: Signifi-
cance level α.
Step 1 Calculate the i-th set of multivariate mean vectors x̄(i) and the total sample mean

vector x̄ using equations (3.9.41)∼ (3.9.44).
Step 2 Calculate the within-group total sample covariance matrix E and the inter-group

total sample covariance matrix B using equation (3.9.48) and equation (3.9.49),
respectively.

Step 3 Calculate the parameter λ
1
from equation (3.9.51), and then perform the following

test decision

λ
H
0

⩽
>

H
1

Λp,N−m,m−1(α). (3.9.52)

(2) Test for equality of multivariate normal covariance matrices

The problem formulation of the test for equality of multivariate normal covariance

matrices

[256]

is {︃
H
0
: Σ

1
= · · · = Σm ,

H
1
: Σ

1
, · · · , Σm not all equal.

(3.9.53)

Let x(k)ijk denote the jth observation of the ith data set of the kth variable, where i =
1, · · · , p; jk = 1, · · · , Nk; k = 1, · · · ,m. Let the sample vector of the kth variable obey
a multivariate normal distribution

x(k)j =

[︁
x(k)
1j , · · · , x

(k)
pj

]︁
T

∼ Np
(︀
μk , Σk

)︀
, j = 1, · · · , Nk , (3.9.54)

that is ⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x(1)
1

, · · · , x(1)N
1

∼ Np
(︀
μ
1

, Σ
1

)︀

.

.

.

x(m)
1

, · · · , x(m)Nm ∼ Np
(︀
μm , Σm

)︀
(3.9.55)

Let N = N
1
+ · · · + Nm. It can be proven that

[256]

, the likelihood ratio statistic of H
0
to H

1

is

λ
2
=

m∏︀
k=1

|Ak/Nk|Nk/2

|A/N|N/2
, (3.9.56)
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where

Ak =

Nk∑︁

j=1

(︁
x(k)j − x̄(k)

)︁(︁
x(k)j − x̄(k)

)︁
T

, k = 1, · · · ,m, (3.9.57)

x̄(k) =

1

Nk

Nk∑︁

j=1
x(k)j , k = 1, · · · ,m, (3.9.58)

A = A
1
+ · · · + Am . (3.9.59)

Algorithm 3.9.4. Algorithm for testing equality of multivariate normal covariance matri-
ces
Given the significance level α.
Step 1 Compute the matrices A

1
, · · · , Am and A using Eq. (3.9.57)∼ (3.9.59).

Step 2 Compute the likelihood ratio statistic λ
2
of H

0
to H

1
using equation (3.9.56).

Step 3 If λ
2
> Λp,N−m,m−1(α), then reject H0

hypothesis; otherwise, judge that H
0
hypoth-

esis holds.

(3) Test for equality of multivariate normal mean vectors and covariance matrices

Consider the test of equality of multivariate normal mean vectors and covariance

matrices

[256]

{︃
H
0
: μ

1

= · · · = μm; Σ1 = · · · = Σm ,
H
1
: μ

1

, · · · , μm not all equal and Σ
1
, · · · , Σm not all equal.

(3.9.60)

It can be proved that

[256]

the likelihood ratio statistic of H
0
to H

1
is

λ
3
=

NpN/2
∏︀m
k=1 |Ak|

Nk/2

|T|N/2
∏︀m
k=1 N

pNk/2
k

, (3.9.61)

where

Ak =
Nk∑︁

j=1

(︁
x(k)j − x̄(k)

)︁(︁
x(k)j − x̄(k)

)︁
T

, k = 1, · · · ,m, (3.9.62)

T =

m∑︁

k=1

Nk∑︁

j=1

(︁
x(k)j − x̄

)︁(︁
x(k)j − x̄

)︁
T

, (3.9.63)

x̄ = 1

N

m∑︁

k=1

Nk∑︁

j=1
x(k)j . (3.9.64)

Algorithm 3.9.5. Test for equality of multivariate normal mean vectors and covariance
matrices Given: significance level α.
Step 1 Use equations (3.9.62)∼ (3.9.64) to calculate the matrices A

1
, · · · , Am and T.

Step 2 Use equation (3.9.61) to calculate the likelihood ratio statistics λ
3
of H

0
to H

1
.

Step 3 If λ
3
> Λp,N−m,m−1(α), then reject H0

assumption; Otherwise, judge H
0
hypothesis

holds.
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Summary

This chapter focuses on the basic theory andmethods of binary hypothesis testing, first

classifying signal detection problems into three different types, such as radar target

detection, communication signal detection and signal detection problems emphasiz-

ing risk minimization. Then for these three types of signal detection problems, the

corresponding decision criteria are highlighted: the Neyman-Pearson criterion, the

UMP criterion and the Bayes criterion. Although the starting points and core ideas

of the three decision criteria are different, they all ultimately use the likelihood ratio

function as the decision function, but the choice of the threshold value is different. The

last three sections introduce the theory, methods and applications of the Bayes-derived

criterion, multivariate hypothesis testing and multiple hypothesis testing, respectively.

Exercises

3.1 The observed data model is

{︃
H
1
: yn = 4 + wn when signal is present,

H
0
: yn = wn when signal is absent,

where n = 1, · · · , 16, and wn is a Gaussian white noise with mean of 1 and variance of

4. If the false alarm probability α = 0.05 is required, try to find the detection probability

using the Neyman-Pearson criterion.

3.2 The binary phase-shift keying (BPSK) signal is observed in additive Gaussian

white noise w(t): {︃
H
1
: y(t) = A cos (ωc t + θ) + w(t),

H
0
: y(t) = −A cos (ωc t + θ) + w(t),

where 0 ⩽ t ⩽ 2μ s, the mean value of Gaussian white noise w(t) is 0 and the power
spectral density is 10

−12

W/Hz. If the BPSK signal is emitted with equal probability

and the amplitude of the carrier A = 10mV, find the BER.

3.3 Let y
1
, · · · , yN is from the Poisson distribution

p(y; λ) =
{︃

e−λλy
y , y = 0, 1, 2, · · · ; λ > 0

0, other

of a random sample of observations, where λ is unknown at the end. Try to determine

the optimal critical region for the binary hypothesis testing

{︃
H
0
: λ = λ

0

H
1
: λ = λ

1

at the test level α , where λ
1
> λ

0
.
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3.4 Observed data by the model

{︃
H
1
: yn = 1 + wn when signal + 1 is transmitted

H
0
: yn = −1 + wn when signal − 1 is transmitted

where n = 1, · · · , 16, and the mean value of Gaussian white noise wn is 1 and the

variance is 9. If the emission probability p(1) = 0.75 for +1 signal and p(−1) = 0.25 for

−1 signal, try to determine the detection probability and false alarm probability using

Bayes criterion.

3.5 BPSK signal is observed in a Gaussian white noise w(t) with zeromean and power

spectral density of σ
0
/2:

{︃
H
1
: y(t) = A cos (ωc t + θ) + w(t)

H
0
: y(t) = −A cos (ωc t + θ) + w(t)

where θ is an unknown constant. If p
0
= 0.25, p

1
= 0.75. Compute the error probability

p
E
.

3.6 Continuous observation data are

{︃
H
1
: y(t) = s(t) + w(t) ( signal is present )

H
0
: y(t) = w(t) ( signal is absent )

t = 1, · · · , T .

where w(t) is a Gaussian white noise with an average value of 0 and a power spectral

density of N
0
/2. Let E =

T∫︀
0

s2(t)dt represent the energy of signal s(t) in the observation

time [0, T].
(1) If the probability of false alarm does not exceed α, prove: when

T∫︁

0

y(t)s(t)dt ⩾ Th,

the detector designed by Neyman- Pearson criterion will decide signal s(t) present.
In the above equation, Th is a threshold determined by the complementary error

function erfc(

√︁
2

N
0
ETh) = α .

(2) Prove: detection probability

P
D
= erfc

(︃
erfc

−1

(α) −
√︂

2E
N
0

)︃
.

3.7 Suppose y
1
, · · · , yN be samples taken from distribution p(y) . Consider the hy-

pothesis testing of distribution p(y)
⎧
⎨
⎩
H
0
: p(y) = 1√

2π
exp

(︀
−

1

2

y2
)︀

H
1
: p(y) = 1

2

exp (−|y|)
.
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Use the Neyman-Pearson criterion to determine the test statistics and their decision

areas when the significance level of the test is α
0
.

3.8 Suppose T = T (y1, y2, · · · , yN) be a statistic. If the conditional distribution

of samples y
1
, y

2
, · · · , yN is independent of hypothesis H when T is given, then T

is called a sufficient statistic about hypothesis H. Let the samples y
1
, y

2
, · · · , yN be

independently and homogeneously distributed and obey the exponential distribution.

Consider the hypothesis testing of distribution

{︃
H
0
: p(y) = 1

λ
0

exp

(︀
−y/λ

0

)︀

H
1
: p(y) = 1

λ
1

exp

(︀
−y/λ

1

)︀ .

Prove that the sample mean ȳ = 1

N
∑︀N

i=1 yi is a sufficient statistic.

3.9 Let y
1
, · · · , yN be samples taken from the zero mean Gaussian distribution. Con-

sider the test of Gaussian distribution variance

{︃
H
0
: σ2 = σ2

0

H
1
: σ2 = σ2

1

where σ
0
and σ

1
are known constants and satisfy σ2

0
< σ2

1
.

(1) Calculate the logarithmic likelihood ratio;

(2) Assume that the threshold Th satisfies

LLR (y1, · · · , yN) < Th ⇒ H
0
,

LLR (y1, · · · , yN) ⩾ Th ⇒ H
1
,

where, LLR is the abbreviation of logarithmic likelihood function. Prove that

T (y1, · · · , yN) =
∑︀N

i=1 y
2

i is a sufficient statistic; And represent the threshold η of
the statistic

T (y1, · · · , yN) < η ⇒ H
0

T (y1, · · · , yN) ⩾ η ⇒ H
1

as a function of the threshold Th and constants σ
0
, σ

1
;

(3) Try to find the expressions of α
0
and β;

(4) Draw the receiver operating characteristic curve when N = 1, σ2
1
= 1.5 and σ2

0
= 1.

3.10 Prove that the decision function of Bayes test can be written in the form of

p
(︀
y
1
, · · · , yN | H1

)︀

p
(︀
y
1
, · · · , yN | H0

)︀ ⩾ Th,

i.e., the Bayes test is equivalent to likelihood ratio test.

3.11 Let y =
∑︀n

i=1 xi, where xi ∼ N(0, σ2) is an independent Gaussian variable with
the same distribution, and n is a random variable of Poisson distribution

P(n = k) = λ
k

k! exp(−λ), k = 0, 1, · · · .
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Now we need to decide between two hypotheses

{︃
H
0
: n > 1

H
1
: n ⩽ 1

.

Try to write the expression of Neyman-Paron test with false alarm probability α
0
.

3.12 In the above question, if the assumption is replaced by

{︃
H
0
: λ = λ

0

H
1
: λ = λ

1

,

please write the expression of Neyman-Pearson test with false alarm probability α
0
.

3.13 The method of combining two tests with a certain probability scheme is called

randomization decision rule. Taking likelihood ratio test as an example, the threshold

values of the two tests are Th
1
and Th

2
, respectively. Then the randomization decision

refers to the test results with probability η using Th
1
as the threshold and probability

1 − η using Th
2
as the threshold value.

(1) Represent the detection probability of randomization decision by the detection

probability of two likelihood ratio tests;

(2) Prove that the operating characteristic curves of the receiver tested by continuous

likelihood ratio test are concave.

3.14 Prove that the slope of a receiver operating characteristic curve at a specific

point is equal to the threshold of likelihood ratio test.

3.15 The observation data y
1
, · · · , yN are generated by the following model

yi = θ + ni ,

where θ obeys Gaussian distributionN
(︀
0, σ2

)︀
, andni is an independent identically

distributed Gaussian variableN
(︀
0, σ2n

)︀
. Try to find the least mean square estimation

and the maximum a posteriori estimation of θ.
3.16 The value set of the independent identically distributed variables y

1
, · · · , yN is

{0, 1}, where

P (yi = 0) = p, P (yi = 1) = (1 − p), i = 0, 1, · · · , N .

The hypothesis testing on parameter p is as follows
{︃
H
0
: p = p

0

H
1
: p = p

1

.

(1) Try to determine the sufficient statistics for the hypothesis testing;

(2) Write the expression of Neyman-Pearson test with false alarm probability α
0
.
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3.17 The joint distribution density of random variables y
1
, · · · , yN is

p
(︀
y
1
, · · · , yN | H1

)︀
=

N∑︀
i=1
pi 1

(2πσ2)N/2
exp

(︁
−

(yi−m)2
2σ2

)︁∏︀N
k̸= i exp

(︁
−

y2k
2σ2

)︁
,

p
(︀
y
1
, · · · , yN | H0

)︀
=

∏︀N
i=1

1√
2πσ

exp

(︁
−

y2i
2σ2

)︁
,

where

N∑︀
i=1
pi = 1.

(1) Try to find the likelihood ratio test;

(2) In the condition of N = 2 and p
1
= p

2
=

1

2

, draw the decision region corresponding

to each detection threshold on y1, y
2
plane;

(3) Write the expression of false alarm probability and power function. Get the upper

and lower bounds of the two expressions by changing their integral domain.

3.18 Let y
1
, · · · , yN be the samples taken from the Gaussian distribution. Consider

the problem of hypothesis testing for Gaussian distribution

⎧
⎨
⎩
H
0
: p(y) = 1√

2πσ
0

exp

(︁
−

(y−m0)

2

2σ2
0

)︁

H
1
: p(y) = 1√

2πσ
1

exp

(︁
−

(y−m1)

2

2σ2
1

)︁

(1) Compute the likelihood ratio;

(2) Denote lα =
N∑︀
i=1
yi and lβ =

N∑︀
i=1
y2i . Try to draw the decision region in lα , lβ plane in

the condition of 2m
0
= m

1
> 0, 2σ

1
= σ

0
.

3.19 Let y
1
, · · · , yN be samples of Gaussian distribution. Consider the Gaussian

distribution test ⎧
⎨
⎩
H
0
: p(y) = 1√

2πσ
exp

(︁
−

y2
2σ

0

)︁

H
1
: p(y) = 1√

2πσ
exp

(︁
−

(y−m)2
2σ2

)︁
,

where m > 0 is an unknown non-random parameter. Determine if there is a uniform

most power test for this test? If exists, try to construct the test; if not, try to explain why.

3.20 Change the conditions for the previous question:

(1) Change the condition to m < 0, repeat the previous problem;

(2) Change the condition to m ̸= 0, repeat the previous problem.

3.21 Suppose there are N statistically independent random variables y
1
, · · · , yN , and

their distribution density under the two hypotheses is

⎧
⎨
⎩
H
0
: p(y) = 1√

2πσ
0

exp

(︁
−

(y−m0)

2

2σ2
0

)︁

H
1
: p(y) = 1√

2πσ
1

exp

(︁
−

(y−m1)

2

2σ2
1

)︁
,

where σ
0
is known, and σ

1
is an unknown non random parameter satisfying σ

1
> σ

0

parameters.
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−1 1 y0

1

p(y|h0)

−1 2 y0

1/3

p(y|h1)

Fig-Exer. The distribution of observation signals under the two hypotheses

(1) Assume that we want the false alarm probability to be α
0
, construct the upper

bound of the power function;

(2) Is there a uniformmost power test? If exists, try to construct it; if not, try to explain

why.

3.22 The distribution density of the random variable m is

p(m) = 1√
2πσm

exp

(︂
−

m2

2σ2m

)︂

Try to determine the Neyman-Pearson test expression when the false alarm probability

is α
0
.

3.23 In the binary hypothesis testing problem, the distribution of observation sig-

nals under the two hypotheses is shown in the figure below. Get the Bayes decision

expression. 3.24 Consider the hypothesis testing problem of ternary signals. The

hypothesis is ⎧
⎪⎪⎨
⎪⎪⎩

H
0
: y = n

H
1
: y = 1 + n

H
2
: y = 2 + n

,

where, the noise n follows distribution p(n) = 1 − |n|, −1 ⩽ n ⩽ 1. In the case of

prior probability P (H0)
= P (H1)

, find the minimum total error probability P
E
.

3.25 The hypothesis testing problem of continuous time observation data is

{︃
H
1
: y(t) = 1 + w(t)

H
0
: y(t) = w(t)

where w(t) represents Gaussian white noise with zero mean.

(1) For the given threshold Th, calculate the corresponding detection probability P
D

and false alarm probability P
F
;

(2) Draw the receiver operating characteristic curve (ROC) when the variance of w(t)
is 0.5, 1, 2, 4, respectively.
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4 Modern Spectral Estimation
Power spectrum estimation refers to the estimation of the power spectrum of a station-

ary stochastic signal using the given set of sample data. The analysis and estimation of

the power spectrum is of great significance in practice because it can show the distri-

bution of the energy of the analyzed object with respect to the frequency. For instance,

in radar signal processing, the position, the radiation intensity and the velocity of

the moving object can be determined by the power spectrum, the width, height, and

position of the spectral peak of the radar echo signal. In passive sonar signal process-

ing, the direction (azimuth) of the torpedo can be estimated from the position of the

spectral peak. In biomedical engineering, the peak shape and waveform of the power

spectral density show the cycle of epileptic seizures. In target recognition, the power

spectrum can be used as one of the characteristics of the target.

The smooth periodic graph for estimating power spectral density is a kind of

nonparametric method, which is independent of any model parameters. The main

problem of this method is that the estimated power spectrum is not matched with

the real power spectrum due to the assumption of zero value of the autocorrelation

function outside the data observation interval. In general, the asymptotic properties of

periodic graphs cannot give a satisfactory approximation of the real power spectrum,

so it is a low resolution spectral estimation method.

Different from the periodic graph method, another class of power spectrum estima-

tion methods use parameterized models, referred to as parameterized power spectrum

estimation. Since this kind of method can give much higher frequency resolution than

the periodic graphmethod,which is called high resolution spectrumestimationmethod

or modern spectrum estimation method.

Various modern spectrum estimation methods will be discussed in this chapter,

which constitutes a very important field in modern signal processing and forms the

common basis of many signal processing techniques (e.g. radar signal processing,

communication signal processing, sonar signal processing, seismic signal processing,

and biomedical signal processing).

4.1 Nonparametric Spectral Estimation

In digital signal processing, a continuous time random process must first be sampled

and then processed into a discrete sequence. Therefore, it is necessary to extend the

concept of the continuous stochastic process to a discrete form. This process includes

the change from continuous function to discrete sequence, from analog system to

discrete system and from Fourier integration to Fourier series.

https://doi.org/10.1515/9783110475562-004
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4.1.1 Discrete Stochastic Process

A discrete process x(n) is a sequence of real or complex random variables defined

for each integer n. Let the sampling interval be T, and for simplicity, x(nT) is often
abbreviated as x(n). The autocorrelation function and the autocovariance function of a
discrete process x(n) are respectively defined as

Rxx(n1, n2)
def

= E{x(n
1
)x*(n

2
)}, (4.1.1)

Cxx(n1, n2)
def

= E{[x(n
1
) − μx(n1)][x(n2) − μx(n2)]*

= Rxx(n1, n2) − μx(n1)μ*x(n2), (4.1.2)

where μx(n) = E{x(n)} is the mean of the signal at time n.
The cross correlation function Rxy(n1, n2) and the cross covariance function

Cxy(n1, n2) of the discrete processes x(n) and y(n) are defined as

Rxy(n1, n2)
def

= E{x(n
1
)y*(n

2
)}, (4.1.3)

Cxy(n1, n2)
def

= E{[x(n
1
) − μx(n1)][y(n2) − μy(n2)]*

= Rxy(n1, n2) − μx(n1)μ*y(n2), (4.1.4)

The discrete process x(n) is a (generalized) stationary process if the mean is a constant

and the autocorrelation function depends only on the time difference k = n
1
− n

2
, i.e.,

Rxx(k) = E{x(n)x*(n − k)} = Cxx(k) + |μx|2. (4.1.5)

The two random processes x(n) and y(n) are (generalized) jointly stationary if each
of them is stationary and their cross correlation function depends only on the time

difference k = n
1
− n

2
, i.e.,

Rxy(k) = E{x(n)y*(n − k)} = Cxy(k) + μxμ*y . (4.1.6)

The power spectral density of the stationary discrete process x(n) is defined as the

Fourier series of the self-covariance function, i.e.,

Pxx(ω) def=
∞∑︁

k=−∞

Cxx(k)e−jkTω . (4.1.7)

Pxx(ω) is a function of period σ =

π
T . Hence, the autocovariance function can be

expressed by the power spectral density as

Cxx(τ) =
1

2σ

σ∫︁

−σ

Pxx(ω)ejτTωdω. (4.1.8)

Similarly, the cross-power spectrum is defined as

Pxy(ω) def=
∞∑︁

k=−∞

Cxy(k)e−jkTω . (4.1.9)
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4.1.2 Non-parametric Power Spectrum Estimation

Assume that the discrete random process has N data samples x(0), x(1), · · · , x(N −
1). Without loss of generality, assume that these data are zero averaged. Spectrum

estimationof thediscrete signal x(n) canbedivided intonon-parametric andparametric

methods. Non-parametric spectrum estimation also regarded as classical spectrum

estimation can be divided into direct and indirect methods.

The direct method first calculates the Fourier transform (i.e. spectrum) of the

following N data

XN(ω) =
N−1∑︁

n=0
x(n)e−jnω , (4.1.10)

Then take the product of the spectrum and its conjugate to get the power spectrum

Px(ω) =
1

N |XN(ω)|2 =
1

N

⃒⃒
⃒⃒
N−1∑︁

n=0
x(n)e−jnω

⃒⃒
⃒⃒
2

. (4.1.11)

The indirect method first estimates the sample autocorrelation function based on N
sample data

^Rx(k) =
1

N

N−1∑︁

n=0
x(n + k)x*(n), k = 0, 1, · · · ,M, (4.1.12)

where 1 ≪ M < N, ^Rx(−k) = ^R*x(k). The power spectrum can be obtained by calculating

the Fourier transform of the sample autocorrelation function

Px(ω) =
M∑︁

k=−M

^Rx(k)e−jkω . (4.1.13)

When computing the Fourier transform of Eqs. (4.1.11) and (4.1.13), x(n) and ^Rx(k) are
regarded as periodic functions, so the power spectra estimated by direct and indirect

methods are often calledperiodic graphs. Thepower spectrumestimatedby theperiodic

graph method is biased. To reduce its deviation, a window function is usually needed

to smooth the periodogram.

There are two different methods of adding window functions. One is to add the

window function c(n) directly to the sample data, and the resulting power spectrum is

often called a modified periodogram, defined as

Px(ω) def=
1

NW

⃒⃒
⃒⃒
N−1∑︁

n=0
x(n)c(n)e−jnω

⃒⃒
⃒⃒
2

, (4.1.14)

where

W =

1

N

N−1∑︁

n=0
|c(n)|2 = 1

2πN

π∫︁

−π

|C(ω)|2dω, (4.1.15)
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where C(ω) is the Fourier transform of the window function c(n). The other method is

to add the window function w(n) directly to the sample autocorrelation function, and

the resulting power spectrum is called periodogram smoothing, which is proposed by

Blackman and Tukey

[29]

, also known as Blackman-Tukey method. The power spectrum

is defined as

PBT(ω)
def

=

M∑︁

k=−M

^Rx(k)w(k)e−jkω . (4.1.16)

Thewindow function c(n) directly added to the data is called the datawindow,while the
window function w(k) added to the autocorrelation function is called the lag window,
and its Fourier transform is called the spectral window.

The following are some typical window functions.

(1) Hanning window

w(n) =
{︃
0.5 − 0.5cos(

2πn
N−1 ), n = 0, 1, · · · , N − 1,

0, Others,

(4.1.17)

(2) Hamming window

w(n) =
{︃
0.54 − 0.46cos(

2nπ
N−1 ), n = 0, 1, · · · , N − 1,

0, Others,

(4.1.18)

(3) Blackman window

w(n) =
{︃
0.42 − 0.5cos(

2nπ
N−1 ) + 0.08cos(

4nπ
N−1 ), n = 0, 1, · · · , N − 1,

0, Others.

(4.1.19)

Window functions can reduce the deviation of the periodogram and improve the

smoothness of the power spectrum curve. However, as a nonparametric spectrum

estimation, the periodic graph has inherent defects of low resolution, which can not

meet the needs of high resolution power spectrum estimation. In contrast, parametric

spectrum estimation can provide much higher frequency resolution than periodogram,

so it is often called high resolution spectrum estimation. Parametric spectral estimation

is the main topic of this chapter.

4.2 Stationary ARMA Process

The system is called a time invariant system if its parameters do not change with time.

Quite a number of stationary random processes can be generated by exciting a linear

time invariant system with white noise, and the linear system can be described by

a linear difference equation, which is referred to as autoregressive moving average

(ARMA) model.
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If the discrete stochastic process {x(n)} obeys the linear difference equation

x(n) +
p∑︁

i=1
aix(n − i) = e(n) +

q∑︁

j=1
bje(n − j), (4.2.1)

where e(n) is a discrete white noise, it is called an ARMA process. The difference

equation shown by Eq. (4.2.1) is called an ARMA model. The coefficients a
1
, · · · , ap

and b
1
, · · · , bq are the autoregressive (AR) and moving average (MA) parameters,

respectively. p and q are the order of AR and MA , respectively. It is clear that the ARMA

model describes a linear time invariant system. The ARMA process with AR order p
and MA order q is usually abbreviated as ARMA(p, q).

ARMA process can be written in a more compact form

A(z)x(n) = B(z)e(n), n = 0, ±1, ±2 · · · , (4.2.2)

where A(z) and B(z) are called AR and MA polynomials respectively, i.e.,

A(z) = 1 + a
1
z−1 + · · · + apz−p , (4.2.3)

B(z) = 1 + b
1
z−1 + · · · + bqz−q , (4.2.4)

where z−j is a backward shift operator, defined as

z−jx(n) def= x(n − j), j = 0, ±1, ±2 · · · . (4.2.5)

The transfer function of the linear time invariant system described by the ARMAmodel

is defined as

H(z) def= B(z)
A(z) =

∞∑︁

i=−∞
hiz−i , (4.2.6)

where hi is the impulse response coefficient of the system. It can be seen that the pole

A(z) = 0 contribution of the system is autoregressive and the zero B(z) = 0 contribution

is moving average.

There are two special cases of the ARMA process.

(1) If B(z) = 1, ARMA(p, q) is reduced to

x(n) + a
1
x(n − 1) + · · · + apx(n − p) = e(n), (4.2.7)

which is called an AR process with order p, abbreviated as AR(p) process.
(2) If A(z) = 1, ARMA(p, q) is reduced to

x(n) = e(n) + b
1
e(n − 1) + · · · + bqe(n − p), (4.2.8)

which is called an MA process with order q, abbreviated as MA(q) process.

The important properties of the ARMA process are discussed below.
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First, to make the linear time invariant system stable, i.e., bounded input e(n)
certainly generates bounded output x(n), then the impulse response hi of the system
must be definitely summable

∞∑︁

i=−∞
|hi| < ∞. (4.2.9)

This condition is equivalent to that the system transfer function cannot have poles on

the unit circle, i.e., A(z) ̸= 0, |z| = 1.

Secondly, the system model cannot be abbreviated, which requires that the poly-

nomials A(z) and B(z) have no common factors, or A(z) and B(z) are mutually prime.

In addition to stability and mutuality, the linear time invariant system is also

required to be physically realizable, namely a causal system.

Definition 4.2.1. (Causal process) An ARMA process defined by A(z)x(n) = B(z)e(n) is
called a causal process, i.e., x(n) is the causal function of e(n), if there is a constant
sequence satisfying the following two conditions

∞∑︁

i=0
|hi| < ∞, (4.2.10)

x(n) =
∞∑︁

i=0
hie(n − i). (4.2.11)

Eq. (4.2.10) is to ensure that the output of the system is bounded at any time, while

Eq. (4.2.11) is the real condition for causality. The above two conditions mean that

hi = 0, i < 0. It should be noted that causality is not a separate property of output x(n),
but a relationship between the output and the input excitation.

The following theorem gives a necessary and sufficient condition for the ARMA

process to be a causal process.

Theorem 4.2.1. Let {x(n)} be an ARMA(p, q) process with no common zeros for A(z)
and B(z), then x is causal if and only if A(z) ̸= 0 for all |z| ≥ 1.

Proof. Prove sufficiency first (⇒). Assume A(z) ̸= 0, |z| ≥ 1. This means that there is an

arbitrarily small nonnegative number ϵ ≥ 0 such that 1

A(z) has a power series expansion

1

A(z) =
∞∑︁

i=0
ξiz−i = ξ (z), |z| > 1 + ϵ.

In other words, when i → ∞, ξi(1 + ϵ/2)−i → 0. Therefore, there exists K ∈ (0, +∞)

such that

|ξi| < K(1 + ϵ/2)i , i = 0, 1, 2, · · · .

Accordingly,

∑︀
∞

i=0 |ξi| < ∞ and ξ (z)A(z) = 1, ∀|z| ≥ 1. Multiply the two sides of the
difference equation A(z)x(n) = B(z)e(n) by the same operator ξ (z), we have

x(n) = ξ (z)B(z)e(n) = B(z)
A(z) e(n).



138 | 4 Modern Spectral Estimation

Let H(z) = ξ (z)B(z), the desired expression can be obtained

x(n) =
∞∑︁

i=0
hiz−ie(n) =

∞∑︁

i=0
hie(n − i).

Then prove the necessity (⇐). Assume {x(n)} is causal, i,e., x(n) =
∑︀
∞

i=0 hie(n − i), the
sequence satisfying

∑︀
∞

i=0 |hi| < ∞ and H(z) ̸= 0, |z| ≥ 1. This means x(n) = H(z)e(n).
We have

B(z)e(n) = A(z)x(n) = A(z)H(z)e(n).

Let η(z) = A(z)H(z) =
∑︀
∞

i=0 ηiz
−i
, |z| ≥ 1, then the above equation can written as

q∑︁

i=0
θie(n − i) =

∞∑︁

i=0
ηie(n − i), |z| ≥ 1,

multiplying both sides of the above equation by e(n − k) to get the mathematical

expectation, since e(n) is a white noise satisfying E{e(n − i)e(n − k)} = σ2δ(k − i),
ηi = θi , i = 0, 1, · · · , q and ηi = 0, i > q. So we have

B(z) = η(z) = A(z)H(z), |z| ≥ 1. (4.2.12)

On the other side,

|H(z)| = |
∞∑︁

i=0
hiz−i| <

∞∑︁

i=0
|hi||z−i| ≤

∞∑︁

i=0
|hi|, |z| ≥ 1.

However, according to the stability condition, hi is absolutely summable, so from the

above equation, we have

|H(z)| < ∞, |z| ≥ 1. (4.2.13)

There are no common zeros for B(z) and A(z), so from Eq. (4.2.12) and Eq. (4.2.13), for

|z| ≥ 1, it is impossible to have A(z) = 0. So far, the theorem is proved.

Theorem 4.2.1 shows that if and only if all the poles of the system are within the unit

circle, the output x(n) is a causal function of the input e(n). If all the poles of the system
are outside the unit circle, the output is an inverse causal function of the input and the

corresponding system is called an anti-causal system. Note that stability requires that

the system poles cannot be on the unit circle. The system whose poles are both inside

and outside the unit circle is called a noncausal system.

The function of the zero point of the system is discussed below, which determines

the reversibility of the system.

Definition 4.2.2. (Reversible process) An ARMA process defined by A(z)x(n) = B(z)e(n)
is called a reversible process, if there is a constant sequence {πi} satisfying

∞∑︁

i=0
|πi| < ∞, (4.2.14)
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e(n) =
∞∑︁

i=0
πix(n − i). (4.2.15)

Like causality, reversibility is not a separate property of the ARMA process {x(n)}, but
a relationship between the output and the input excitation e(n). The following theorem
gives the necessary and sufficient conditions for invertibility.

Theorem 4.2.2. Let {x(n)} be an ARMA(p, q) process with no common zeros for A(z)
and B(z). The ARMA process is invertible if and only if B(z) ̸= 0 for all complex z with
|z| ≥ 1. The coefficient πi of the reversible process Eq. (4.2.15) is determined by

π(z) =
∞∑︁

i=0
πiz−i =

A(z)
B(z) , |z| ≥ 1. (4.2.16)

Proof. Similar to the proof of Theorem 4.2.1, this proof is left for the reader to exercise.

Theorem 4.2.2 shows that if and only if all the system zeros are within the unit circle,

the input e(n) is the invertible function of the output x(n). If an ARMA(p, q) process is
invertible, all the poles of its inverse system A(z)/B(z) are within the unit circle, so it
is a causal system. A reversible system is also called a minimum phase system. If the

zeros of the system are on or outside the unit circle, it is called the maximum phase

system. If the system has zeros inside and outside the unit circle, it is called a non

minimum phase system. Note that when the system has zeros on the unit circle, its

inverse system is unstable. When all zeros of the system are outside the unit circle, the

inverse system is an anti-causal system.

More generally, we discuss the case of A(z) ̸ = 0 when |z| = 1. In this case, it is

known from the complex number analysis that there exists a radius r > 1, making the

Laurent series

A(z)
B(z) =

∞∑︁

i=−∞
hiz−i = H(z), (4.2.17)

absolutely converge in the annular region r−1 < |z| < r. The convergence of the Laurent
series plays a key role in the proof of the following theorem.

Theorem 4.2.3. If A(z) ̸ = 0 for all |z| = 1, then ARMA process has unique stationary
solution

x(n) = H(z)e(n) =
∞∑︁

i=−∞
hie(n − i), (4.2.18)

where the coefficient hi is determined by Eq. (4.2.17).

Proof. Prove sufficiency first (⇒). If A(z) ̸= 0 for all |z| = 1, from Theorem 4.2.1, there

exists δ > 1 making the series

∑︀
∞

i=−∞ ξiz
−i
=

1

A(z) = ξ (z) absolutely converge in annular
region δ−1 < |z| < δ. Therefore, multiplying both sides of the ARMAmodel A(z)x(n) =
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B(z)e(n) by the same operator ξ (z) yields

ξ (z)A(z)x(n) = ξ (z)B(z)e(n).

Because ξ (z)A(z) = 1, the above equation can be written as

x(n) = ξ (z)B(z)e(n) = H(z)e(n) =
∞∑︁

i=−∞
hie(n − i),

where H(z) = ξ (z)B(z) = B(z)
A(z) , i.e., the coefficient hi of H(z) is determined by Eq. (4.2.17).

Then prove the necessity (⇐). Assume the ARMA process has a unique stationary

solution Eq. (4.2.18). Applying the operator A(z) to both sides of Eq. (4.2.18) yields

A(z)x(n) = A(z)H(z)e(n) = B(z)e(n),

Namely, the process with a unique stationary solution is an ARMA process. Since the

ARMA process needs to satisfy stability, A(z) ̸= 0 should always hold for all |z| = 1.

Combined with Theorem 4.2.2 and Theorem 4.2.3, the Wold decomposition theorem

describing the relationship between ARMA, MA, and AR processes can be obtained.

Theorem 4.2.4. (Wold decomposition theorem) Any ARMA or MA process with finite
variance can be expressed as a unique AR process with probably infinite order; Similarly,
any ARMA or AR process can also be expressed as an MA process with probably infinite
order. If A(z) ̸= 0 for all |z| = 1|, then ARMA process has unique stationary solution

x(n) = H(z)e(n) =
∞∑︁

i=−∞
hie(n − i), (4.2.19)

where the coefficient hi is determined by Eq. (4.2.17).

The above theorem plays an important role in practical application. If one of the three

models selected is wrong, a reasonable approximation can still be obtained by setting

a very high order. Therefore, an ARMAmodel can be approximated by an AR model

with enough high order. Compared with the ARMAmodel, which needs not only the

determination of AR andMA order but also parameter estimation of AR andMAmodels

(among themMAmodel parameter estimation needs to solve nonlinear equations), the

AR model only needs parameter estimation, hence many engineers and technicians

often like to use AR model for approximation.

For MA(q) random process, the parameters of the model are exactly the same as

the impulse response of the system, i.e.,

bi = hi , i = 0, 1, · · · , q, (4.2.20)

where b
0
= h

0
= 1, because

x(n) = e(n) + b
1
e(n − 1) + · · · + bqe(n − q) =

∞∑︁

i=0
hie(n − i)

= e(n) + h
1
e(n − 1) + · · · + hqe(n − q).
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Since there are only q + 1 impulse response coefficients, such a system is called a finite

impulse response system, or FIR system for short. Here FIR is the abbreviation of the

finite impulse response. Hence MA model is also called the FIR model. On the contrary,

ARMA and AR systems are called infinite impulse response system, because they have

infinite impulse response coefficients.

4.3 Power Spectral Density of Stationary Process

The power spectral density of a stationary ARMA process is widely representative. For

example, any rational spectral density, AR process observed in additive white noise and

sine wave (more generalized as harmonic) process with line spectrum can be expressed

by ARMA spectral density. Due to its wide representativeness and applicability, ARMA

spectral analysis has become one of the most important methods in modern spectral

analysis.

4.3.1 Power Spectral Density of ARMA Process

Theorem 4.3.1. Let {y(n)} be a discrete-time stationary process with zero mean and
power spectral density Py(ω). If x(n) is described by

x(n) =
∞∑︁

i=−∞
hiy(n − i), (4.3.1)

where hi is absolutely summable, i.e.,
∑︀
∞

i=−∞ |hi| < ∞, then x(n) is also a stationary
process with zero mean and power spectral density represented as

Px(ω) = |H(e−jω)|2Py(ω), (4.3.2)

where H(e−jω) is a polynomial of e−jω

H(e−jω) =
∞∑︁

i=−∞
hiz−i

⃒⃒
⃒⃒
z=ejω

. (4.3.3)

Proof. Under the condition that hi can be absolutely summable, when the mathe-

matical expectation is calculated on both sides of the Eq. (4.3.1), the position of the

mathematical expectation can be exchanged with the summation operator, so

E{x(n)} =
∞∑︁

i=−∞
hiE{y(n − i)} = 0.

The above equationuses the assumption of E{y(n)} = 0. Calculating the autocorrelation

function of the ARMA process {x(n)} and considering that y(n) is a stationary process,
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we have

Rx(n1, n2) = E{x(n
1
)x*(n

2
)}

=

∞∑︁

i=−∞

∞∑︁

j=−∞
hih*j E{y(n1 − i)y*(n2 − j)}

=

∞∑︁

i=−∞

∞∑︁

j=−∞
hih*j Ry(n1 − n2 + j − i).

Let τ = n
1
− n

2
denote the time difference, then the above equation can be written as

Rx(τ) =
∞∑︁

i=−∞

∞∑︁

j=−∞
hih*j Ry(τ + j − i). (4.3.4)

So {x(n)} is a stationary process with zero mean.

Compute the complex conjugate of both sides of Eq. (4.3.3), we have

H*(e−jω) =
∞∑︁

i=−∞
h*i zi

⃒⃒
⃒⃒
z=ejω

.

Using variable substitution τ = τ′ + j − i, the power spectral density Px(ω) =∑︀
∞

τ=−∞ Cx(τ)e
−jωτ

can be rewritten as

Px(ω) =
∞∑︁

i=−∞
hie−jωi

∞∑︁

j=−∞
hjejωj

∞∑︁

τ=−∞
Cy(τ′ + j − i)e−jω(τ

′

+j−i)

= H(e−jω)H*(e−jω)Py(ω)

= |H(e−jω)|2Py(ω),

which is Eq. (4.3.2).

As an application example of Theorem4.3.1, the power spectral density of any stationary

process ARMA(p, q) is derived below. e(n) is a normal distribution process with zero

mean and variance σ2, denoted by e(n) ∼ N(0, σ2).

Theorem 4.3.2. Let x(n) be a stationary ARMA(p, q) process, satisfying the following
difference equation

x(n) + a
1
x(n − 1) + · · · + apx(n − p) = e(n) + b1e(n − 1) + · · · + bqe(n − q), (4.3.5)

where e(n) ∼ N(0, σ2), then the power spectral density is

Px(ω) = σ2
|B(z)|2
|A(z)|2

⃒⃒
⃒⃒
z=ejω

= σ2 |B(e
jω
)|2

|A(ejω)|2
, (4.3.6)

where

A(z) = 1 + a
1
z−1 + · · · + apz−p , (4.3.7)

B(z) = 1 + b
1
z−1 + · · · + bqz−q . (4.3.8)



4.3 Power Spectral Density of Stationary Process | 143

Proof. From Theorem 4.2.3, the only stationary solution of Eq. (4.3.5) can be written

as x(n) =
∑︀
∞

i=−∞ hie(n − i), where
∑︀
∞

i=−∞ |hi| < ∞, and H(z) = B(z)/A(z). e(n) is white
noise, its covariance function Ce(τ) = σ2δ(τ), i.e., the power spectral density is a
constant σ2, hence using Theorem 4.3.1 directly yields

Px(ω) = |H(ejω)|2Pe(ω) = σ2
|B(ejω)|2
|A(ejω)|2 .

The power spectral density defined by Eq. (4.3.6) is the ratio of two polynomials, so it

is usually called rational spectral density. Theorem 4.3.2 shows an important result:

The power spectral density of a discrete ARMA(p, q) process is a rational function of
e−jω. On the contrary, if a stationary process {x(n)} has rational spectral density ex-
pressed as Eq. (4.3.6), {x(n)} can also be proven to be an ARMA(p, q) process described
by Eq. (4.3.5). Hence, let H(z) = B(z)/A(z) =

∑︀
∞

i=−∞ hiz
−i
. Take {x(n)} as a process

generated by Eq. (4.3.1), then from the known conditions and Theorem 4.3.1, we get

Py(ω) = σ2. So {y(n)} is Gaussian white noiseN(0, σ2), i.e., {x(n)} can be written as

x(n) =
∞∑︁

i=−∞
hie(n − i), e(n) ∼ N(0, σ2).

Since H(z) = B(z)/A(z), the above equation is equivalent to Eq. (4.3.5).
For the ARMA process shown in Eq. (4.3.5), an important equation can be obtained

from Eq. (4.3.4)

Rx(τ) =
∞∑︁

i=−∞

∞∑︁

j=−∞
hih*j σ2δ(τ + j − i).

Notice that the condition of δ(τ+ j− i) = 1 is j = i−τ, while in other cases δ(τ+ j− i) ≡ 0,

so Rx(τ) can be expressed as

Rx(τ) = σ2
∞∑︁

i=−∞
hih*i−τ .

The above equation represents the relationship between the autocorrelation function

and the impulse response of an ARMA process {x(n)}, which is of great significance.
In particular, when τ = 0, Eq. (4.3.6) gives the result

Rx(0) = E{x(n)x*(n)} = σ2
∞∑︁

i=−∞
|hi|2,

where E{x(n)x*(n)} = E{|x(n)|2} indicating the energy of the ARMA process {x(n)}. To
make the energy of {x(n)} limited, from the above equation, the following condition

must be satisfied

∞∑︁

i=−∞
|hi|2 < ∞, (4.3.9)
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which is called the square summability condition of the impulse response.

Here is an introduction of the other two processeswhich can be expressed by ARMA

spectral density Eq. (4.3.6).

1. White Noise Driven AR Process
Assume {s(n)} is an AR(p) process satisfying the following difference equation

s(n) + a
1
s(n − 1) + · · · + aps(n − p) = e(n), e(n) ∼ N(0, σ2),

and this process is observed in additive white noise, i.e., x(n) = s(n) + v(n), where v(n)
and s(n) are independent, and the variance of the white noise is σ2v . Let’s calculate the
power spectral density of the process {x(n)}.

From Theorem 4.3.2, the power spectral density of signal s(n) is

Ps(ω) =
σ2

|1 + a
1
e−jω + · · · + ape−jωp|2

=

σ2
|A(z)|2

⃒⃒
⃒⃒
z=ejω

.

When s(n) and v(n) are independent of each other, using the definition of covariance
function, it is easy to prove

Cx(τ) = Cs(τ) + Cv(τ) = Cs(τ) + σ2vδ(τ). (4.3.10)

Via the definition of power spectral density from discrete process, it is obvious to get

the following result

Px(ω) = Ps(ω) + Pv(ω) =
σ2

|A(z)|2

⃒⃒
⃒⃒
z=ejω

+ σ2v = σ2ω
|B(z)|2
|A(z)|2

⃒⃒
⃒⃒
z=ejω

, (4.3.11)

where σ2ω = σ2 + σ2v , and B(z)B*(z) = [σ2 + σ2vA(z)A*(z)]/(σ2 + σ2v ).
This example shows that an AR(p) process in white noise is an ARMA(p, q) process,

with white noise as excitation and variance σ2ω = σ2 + σ2v , i.e., w(n) ∼ N(0, σ2 + σ2v ).
Note that Eq. (4.3.10) and Eq. (4.3.11) are applicable to any two independent processes

{s(n)} and {v(n)}.
2. Predictable Process

Definition 4.3.1. If {s(n)} is a recursive process without excitation

s(n) + a
1
s(n − 1) + · · · + aps(n − p) = 0, (4.3.12)

it is called a (fully) predictable process.

The predictable process is also called the degenerate AR process or non incentive AR

process. Another equivalent expression of Eq. (4.3.12) is

s(n) = −
p∑︁

i=1
ais(n − i). (4.3.13)

If p values s(1), · · · , s(p) are given, s(p + 1), s(p + 2), · · · can be calculated in turn

according to Eq. (4.3.13). In fact, as long as the values of any p continuous time of
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the signal s(n) are given, the signal values at other times can be completely predicted

according to these p values. Hence get the name of the predictable process.

Assume s(n) is a predictable process with order p, and it is observed in additive
white noise v(n). Let x(n) = s(n) + v(n), where v(n) ∼ N(0, σ2) is independent of s(n).
Substituting s(n) = x(n) − v(n) into the Eq. (4.3.12) yields,

x(n) +
p∑︁

i=1
aix(n − i) = v(n) +

p∑︁

j=1
bjv(n − j). (4.3.14)

The above equation shows that the predictable process in additive white noise is a

special ARMA(p, q) process, with the same MA order and AR order.

The power spectral density of the predictable process is derived below.

First, multiply both sides of Eq. (4.3.12) by s(n − τ), τ ≥ 0, and compute the mathe-

matical expectation, we have

Rs(τ) + a1Rs(τ − 1) + · · · + apRs(τ − p) = 0, ∀τ ≥ 0. (4.3.15)

Proposition 4.3.1. Let zk be the root of the characteristic polynomial A(z) = 1 + a
1
z−1 +

· · · + apz−p, then the autocorrelation function of the predictable process {s(n)} can be
expressed as

Rs(m) =
p∑︁

i=1
cizmi , |z| ≤ 1, (4.3.16)

where ci is the constant to be determined.

Proof. Since zk is the root of A(z) = 0, we have

A(zk) =
p∑︁

i=0
aiz−ik = 0, (4.3.17)

where a
0
= 1. Construct function Rs(m) according to Eq. (4.3.16), then

p∑︁

i=0
aiRs(m − i) =

p∑︁

i=0
ai

p∑︁

k=1

ckzm−ik =

p∑︁

k=1

ckzmk
p∑︁

i=0
aiz−ik .

Substituting Eq. (4.3.16) into the right side of the above equation, the result is equal to

zero, i.e.,

p∑︁

i=0
aiRs(m − i) = 0.

That is to say, the function Rs(m) satisfies the relation Eq. (4.3.14) that only the auto-
correlation function of the predictable process satisfies. Hence, the function Rs(m)
defined by Eq. (4.3.16) is really the autocorrelation function of predictable process.

In particular, if the order p of the predictable process is an even number, and the

coefficients satisfy the symmetry condition ai = ap−i , i = 0, 1, · · · , p/2, (a
0
= 1) , then
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the p pairs of conjugate roots zi of the characteristic polynomial A(z) = 0 are all on the

unit circle. Hence, The autocorrelation function Eq. (4.3.16) of the predictable process

with symmetric coefficients can be specifically expressed as

Rs(m) =
p∑︁

i=1
ciejmωi , |ωi| < π. (4.3.18)

Since the mean of the predictable process is zero and its auto-covariance function

and autocorrelation function are equal, the power spectral density of the predictable

process is

Ps(ω) =
∞∑︁

k=−∞

Rs(k)e−jkω =

p∑︁

i=1
ci

∞∑︁

k=−∞

Using the well-known discrete time Fourier transform pair ejω0
k
↔

1

2π δ(ω − ω0
), the

e−jk(ω−ωi).

above equation can be written as

Ps(ω) =
1

2π

p∑︁

i=1
ciδ(ω − ωi). (4.3.19)

This shows that the power spectral density of the p-order predictable (real) process is
composed of p individual linear spectra, which are called line spectrum.

The power spectral density P(ω) of any stationary process can be written as the
sum of the two parts

P(ω) = Pα(ω) + Pβ(ω), (4.3.20)

where Pα(ω) is the rational power spectral density represented by Eq. (4.3.6), while
Pβ(ω) is line spectrum represented by Eq. (4.3.19). Eq. (4.3.20) is also called Wold de-

composition

[171]

. Note that it is different from the meaning of the Wold decomposition

theorem in Section 4.2.Wold decomposition theorem describes the approximate equiva-

lence among three differencemodels of a stationary process, whileWold decomposition

here refers to the decomposition of the power spectral density of a stationary process.

4.3.2 Power Spectrum Equivalence

Power spectrum describes the distribution of signal power with frequency, so it plays a

very important role inmany practical projects. However, it is necessary to point out that

the self power spectral density has a limitation, that is, the signals obtained from some

different ARMA models may have the same power spectrum, which is called power

spectrum equivalence.

Let’s investigate ARMA(p, q) process A(z)x(n) = B(z)e(n), where e(n) ∼ N(0, σ2),
and A(z) ̸= 0, |z| = 1, B(z) ̸= 0, |z| = 1. Suppose the linear system has p poles αi and q
zeros βi, then the original ARMAmodel can be rewritten as

p∏︁

i=1
(1 − αiz−1)x(n) =

q∏︁

i=1
(1 − βiz−1)e(n), e(n) ∼ N(0, σ2). (4.3.21)
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Suppose there are p poles of which r poles are within the unit circle and the rest are
outside the unit circle. Similarly, s of q zeros are inside the unit circle and the rest are
outside the unit circle. Namely, we have

|αi| < 1, 1 ≤ i ≤ r (Causal part),

|αi| > 1, r < i ≤ p (Anti causal part),

|βi| < 1, 1 ≤ i ≤ s (Minimum phase part),

|βi| > 1, s < i ≤ q (Maximum phase part).

From Theorem 4.3.2, the power spectral density of the ARMA process {x(n)} can be
written as

Px(ω) = σ2
|B(z)|2
|A(z)|2

⃒⃒
⃒⃒
z=ejω

= σ2
∏︀q
i=1 |1 − βie

−jω|2∏︀p
i=1 |1 − αie−jω|2

. (4.3.22)

A new ARMA process is obtained by inverting all the zeros and poles outside the unit

circle into the unit circle

˜A(z)x̃(n) = ˜B(z)ẽ(n), (4.3.23)

where

˜A(z) =
r∏︁

i=1
(1 − αiz−1)

p∏︁

i=r+1
(1 − ᾱiz−1),

˜B(z) =
s∏︁

i=1
(1 − βiz−1)

p∏︁

i=s+1
(1 −

¯βiz−1),

where ᾱi = 1/α*i , i = r + 1, · · · , p; ¯βi = 1/β*i , i = s + 1, · · · , q. Obviously, the power
spectral density of the new ARMA process {x̃(n)} is

Px̃(ω) = σ2
|B(z)|2
|A(z)|2

⃒⃒
⃒⃒
z=ejω

= σ2

⃒⃒
⃒⃒∏︀s

i=1(1 − βie
−jω

)

∏︀p
i=s+1(1 −

¯βie−jω)
⃒⃒
⃒⃒
2

⃒⃒
⃒⃒∏︀r

i=1(1 − αie−jω)
∏︀p
i=r+1(1 − ᾱie−jω)

⃒⃒
⃒⃒
2

. (4.3.24)

From complex number operation, the following expression can be obtained

|1 − ᾱie−jω| = |1 − α−1i ejω| = |α−1i ejω||αie−jω − 1| = |α−1i ||1 − αie−jω|.

Similarly, get the following equation

|1 − ¯βie−jω| = |β−1i ||1 − βie−jω|.

Substituting the above two results into the Eq. (4.3.24), yields

Px̃(ω) = σ2
∏︀q
i=s+1 |β

−1

i |2∏︀p
i=r+1 |α−1i |2

⃒⃒
⃒⃒∏︀q

i=1(1 − βie
−jω

)

⃒⃒
⃒⃒
2

⃒⃒
⃒⃒∏︀p

i=1(1 − αie−jω)
⃒⃒
⃒⃒
2

=

∏︀p
i=r+1 |αi|

2

∏︀q
i=s+1 |βi|2

Px(ω).



148 | 4 Modern Spectral Estimation

It shows that the two ARMA processes {x(n)} and {x̃(n)} have exactly the same power

spectral density shape, and the only difference is a fixed scale factor.

Example 4.3.1 ARMA process

x(n) − 2.5x(n − 1) = e(n) + 4e(n − 1), e(n) ∼ N(0, σ2e ),

is an anti causal and maximum phase system because its pole 2.5 and zero −4 are all

outside the unit circle. A causal and minimum phase ARMA process is obtained by

inverting its pole and zero inside the unit circle

x̃(n) − 0.4x̃(n − 1) = ẽ(n) + 0.25ẽ(n − 1), ẽ(n) ∼ N(0, σ2ẽ ).

Then the power spectral density of the above two ARMAprocesses have the same shape,

with the only difference being a fixed scale factor. In particular, if σ2ẽ = 2.56σ2e , {x̃(n)}
and {x(n)} have exactly the same power spectral density.

In fact, if any zeros and/or poles of an ARMA model are inversed from the inside to the

outside of the unit circle, or from the outside to the inside of the unit circle, the power

spectral density with exactly the same shape can be obtained, with only a scale factor

being different. This property is called the equivalence of power spectrum. In other

words, it is impossible to distinguish whether an ARMAmodel is a causal minimum

phase or a noncausal non minimum phase process by self power spectral density.

Therefore, the power spectrum equivalence is also called the multiplicity of the ARMA

model. Since the power spectral density is obtained by the discrete Fourier transform of

the autocovariance function, the power spectral equivalencemeans the autocovariance

function equivalence. The equivalence or multiplicity tells us that the causality and

minimum phase of the ARMA process can not be distinguished or identified by using

auto covariance function or power spectral density. In order to ensure the uniqueness

of ARMAmodel identification, it is usually assumed that the ARMAmodel is a causal

and minimum phase when auto covariance function or power spectral density is used

as an analysis tool.

When a linear system H(ejω) is excited by an input y(n), it is known from Theorem

4.3.2 that the output power spectral density of {x(n)} is Px(ω) = |H(ejω)|2Py(ω). It
can be seen from this expression that even if both Py(ω) and Px(ω) are known, only
|H(ejω)|2 can be identified, but not H(ejω), because the previous analysis has shown
that |H(ejω)| has the same form after taking the conjugate reciprocal of any zeros or

poles of the system.

However, if the cross power spectral density is used to identify the system, the

result will be different.

Considering the output of the discrete linear time invariant system described by

Eq. (4.3.1), From Theorem 4.3.1, when the input y(n) is a generalized stationary process
with zeromean, the output x(n) is also a generalized stationary process with zeromean.
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From Eq. (4.3.1), we have

y(n)x*(n − τ) =
∞∑︁

k=−∞

y(n)y*(n − τ − k)h*(k),

x(n)x*(n − τ) =
∞∑︁

k=−∞

y(n − k)x*(n − τ)h(k).

Take the mathematical expectation of the above two equations to get

Cyx(τ) = Ryx(τ) =
∞∑︁

k=−∞

Ryy(τ + k)h*(k), (4.3.25)

Cxx(τ) = Rxx(τ) =
∞∑︁

k=−∞

Ryx(τ − k)h(k). (4.3.26)

Taking the discrete Fourier transform of the above two equations, yields

Pyx(ω) = Pyy(ω)H*(ejω), (4.3.27)

Pxx(ω) = Pyx(ω)H(ejω). (4.3.28)

Obviously, if the mutual power spectral density Pyx(ω) between the input and output
and the power spectral density Pyy(ω) of the input are known, or Pyx(ω) and Pxx(ω)
are known, the real transfer function H(ejω) of the system can be identified according

to Eq. (4.3.27) and Eq. (4.3.28). Therefore, although the power spectral density can not

identify the noncausality and non minimum phase of the system, the cross power spec-

tral density can do so. By the way, using higher-order statistics can identify noncausal

non minimum phase systems, which will be discussed in Chapter 6.

4.4 ARMA Spectrum Estimation

The expression Eq. (4.3.6) of the power spectral density for the ARMA process is de-

rived in Section 4.3. The purpose of ARMA spectrum estimation is to calculate the

power spectral density of ARMA process {x(n)} using N known observation data

x(0), x(1), · · · , x(N − 1). Obviously, when Eq. (4.3.6) is used to estimate the spectrum

directly, it is necessary to identify the whole ARMA model and the variance of the

excitation noise in advance. The identification of the ARMAmodel involves the deter-

mination of the order of AR and MAmodels, as well as the estimation of AR and MA

parameters. The estimation of MA parameters needs to solve nonlinear equations (see

section 4.5 for details). Can we avoid this nonlinear operation and only use the linear

operation to estimate the power spectral density of the ARMA process? The answer is

yes.
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4.4.1 Two Linear Methods for ARMA Power Spectrum Estimation

As to the power spectral density Px(ω) = Px(z)
⃒⃒
⃒⃒
z=ejω

, for simplicity, the ARMA power

spectral density is expressed as Px(z). Therefore, the ARMA power spectral density

shown in Eq. (4.3.6) can be written as

Px(z) = σ2
|B(z)|2
|A(z)|2 = σ2 B(z)B(z

−1

)

A(z)A(z−1) , (4.4.1)

where A(z−1) = A*(z); B(z−1) = B*(z).
1. Cadzow Spectrum Estimator

In 1980, Cadzow

[40]

proposed to decompose the power spectral density of the ARMA

process into the sum of two parts

Px(z) = σ2
B(z)B(z−1)
A(z)A(z−1) =

N(z)
A(z) +

N(z−1)
A(z−1) , (4.4.2)

where N(z) is a p-order polynomial, defined as

N(z) =
p∑︁

i=0
Niz−i . (4.4.3)

The power spectral density Px(z) is divided into two terms: N(z)/A(z) is a polynomial

of z−1, and N(z−1)/A(z−1) is a polynomial of z.
To satisfy Eq. (4.4.2), obviously, the following equation should hold

N(z)A(z−1) + N(z−1)A(z) = σ2B(z)B(z−1). (4.4.4)

On the other hand, the power spectral density expressed by the discrete Fourier series

of the covariance function can be similarly decomposed

Px(z) =
∞∑︁

k=−∞

Cx(k)z−k =
∞∑︁

k=0

ρ(k)z−k +
∞∑︁

k=0

ρ(−k)zk , (4.4.5)

where ρ(−k) = ρ(k), and

ρ(k) =
{︃

1

2

Cx(k), k = 0,

Cx(k), Others.

(4.4.6)

To ensure the decomposition shown in Eq. (4.4.2) and Eq. (4.4.5) equal, let

N(z)
A(z) =

∑︀p
i=0 niz

−i
∑︀p

i=0 aiz−i
=

∞∑︁

k=0

ρ(k)z−k , (4.4.7)

Multiply both sides of Eq. (4.4.7) with

∑︀p
i=0 aiz

−i
and compare the coefficients of the

same power term to get

nk =
p∑︁

i=0
aiρ(k − i), k = 0, 1, · · · , p. (4.4.8)
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In short, the key of the Cadzow spectrum estimator is to determine the AR order P and
estimate the AR parameters, because the coefficients nk can be calculated directly by
Eq. (4.4.8). This method avoids the determination of MA order, the estimation of MA

parameters and the exciting white noise variance.

2. Kaveh Spectrum Estimator
The ARMA power spectral density expression Eq. (4.4.1) can be rewritten as

Px(z) = σ2
B(z)B(z−1)
A(z)A(z−1) =

∑︀q
i=−q ckz

−k

A(z)A(z−1) =

∞∑︁

l=−∞

Cx(l)z−l . (4.4.9)

To ensure that the equation holds, the relationship between the coefficients ck and the
MA parameters should satisfy the following equation

σ2B(z)B(z−1) =
q∑︁

k=−q

ckz−k . (4.4.10)

It can be seen that the coefficients ck are symmetrical, i.e., c
−k = ck.

From the third equation of Eq. (4.4.9), we can get

q∑︁

k=−q

ck(k)z−k = A(z)A(z−1)
∞∑︁

l=−∞

Cx(l)z−l . (4.4.11)

Note A(z)A(z−1) =
∑︀p

i=0
∑︀p

j=0 aia
*

j (k)z−i+j, and compare the coefficients of the same

power term on both sides of Eq. (4.4.11), we can get the calculation formula of coeffi-

cients ck

ck =
p∑︁

i=0

p∑︁

j=0
aia*j Cx(k − i + j), k = 0, 1, · · · , q . (4.4.12)

The ARMA spectrum estimator proposed by Kaveh is

Px(ω) =
∑︀q

k=−q ckz
−k

⃒⃒
1 +

∑︀p
i=1 aiz−i

⃒⃒
2

⃒⃒
⃒⃒
⃒
z=ejω

. (4.4.13)

Obviously, the Kaveh spectrum estimator does not need the white noise variance σ2

and MA parameters bi, but needs to know MA order.

4.4.2 Modified Yule-Walker Equation

Both the Cadzow spectrum estimator and Kaveh spectrum estimator need to be known

the order and parameters of the AR model. In practice, they can be estimated by obser-

vation data. Hence, it is necessary to deduce the linear equations of AR parameters.

According to Theorem 4.2.3, the causal ARMA process {x(n)} has a unique station-
ary solution

x(n) =
∞∑︁

i=0
h(i)e(n − i). (4.4.14)
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The correlation function of {x(n)} is

Rx(τ) = E{x(n)x(n + τ)}

= E

{︃[︃
∞∑︁

i=0
h(i)e(n − i)

]︃[︃
∞∑︁

k=0

h(k)e(n + τ − k)
]︃}︃

=

∞∑︁

i=0

∞∑︁

k=0

h(i)h(k)E{e(n − i)e(n + τ − k)}, (4.4.15)

and e(n) is white noise, so

E{e(n − i)e(n + τ − k)} =
{︃
σ2, k = τ + i,
0, Others.

Substituting the above equation into Eq. (4.4.15), we have

Rx(τ) = σ2
∞∑︁

i=0
h(i)h(i + τ). (4.4.16)

This equation describing the relationship between the correlation function and the

impulse response is important and will be often used later.

The impulse response h(n) of a linear system is the output response when the

system is excited by the impulse signal δ(n). Therefore, according to the definition of
the ARMA process, there is the following equation directly

p∑︁

i=0
aih(n − i) =

q∑︁

k=0

bkδ(n − k) = bn . (4.4.17)

So, using Eq. (4.4.16) and Eq. (4.4.17), it is easy to get

p∑︁

i=0
aiRx(l − i) = σ2

∞∑︁

k=0

h(k)
p∑︁

i=0
h(k + l − i) = σ2

∞∑︁

k=0

h(k)bk+l . (4.4.18)

Note that for an ARMA(p, q) process, its MA parameters bi = 0, i > q, so Eq. (4.4.18) is
always equal to zero if l > q, i.e.,

Rx(l) +
p∑︁

i=1
aiRx(l − i) = 0, ∀l > q. (4.4.19)

This normal equation is the famous modified Yule-Walker equation, often abbreviated

as the MYW equation.

In particular, for an AR(p) process, Eq. (4.4.19) can be simplified as

Rx(l) +
p∑︁

i=1
aiRx(l − i) = 0, ∀l > 0. (4.4.20)
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This normal equation is called Yule-Walker equation, sometimes called YW equation

for short.

Since the modified Yule-Walker equation holds for all l > q, is it necessary to
solve infinitely many equations to determine the AR parameters a

1
, · · · , ap? This is the

problem of unique identifiability of parameters mentioned in Chapter 4. The answer to

this problem is given by the following theorem proposed by Gersch

[84]

in 1970.

Theorem 4.4.1. (The identifiability of AR parameters) If the polynomials A(z) and B(z)
of the ARMA (p, q)model have no cancellable common factors and ap ̸= 0, then the AR
parameters a

1
, · · · , ap of this ARMA model can be uniquely determined or identified by

the following p modified Yule-Walker equations
p∑︁

i=1
aiRx(l − i) = −Rx(l), l = q + 1, · · · , q + p. (4.4.21)

Theorem 4.4.1 tells us that when the true AR order p and the autocorrelation function
Rx(τ) of ARMA(p, q) process {x(n)} are known, only pmodified Yule-Walker equations

need to be solved to identify AR parameters. However, in practical application, the AR

order and the autocorrelation function are unknown. How can we solve this problem?

Let’s still assume that the autocorrelation function Rx(τ) is known, but AR order p
is unknown. In this case, if the original ARMA(p, q) process {x(n)} is regarded as an
ARMA(pe , q) process with extended AR order pe ≥ p, then the modified Yule-Walker

equation still holds when p is replaced by pe and l > qe (where qe ≥ q). Write it as

Reae = 0, (4.4.22)

where

Re =

⎡
⎢⎢⎢⎢⎣

Rx(qe + 1) Rx(qe) · · · Rx(qe + 1 − pe)
Rx(qe + 2) Rx(qe + 1) · · · Rx(qe + 2 − pe)

.

.

.

.

.

.

.

.

.

.

.

.

Rx(qe +M) Rx(qe +M − 1) · · · Rx(qe +M − pe)

⎤
⎥⎥⎥⎥⎦
, (4.4.23)

ae = [1, a
1
, · · · , ap , ap+1, · · · , ape ]T . (4.4.24)

Here M ≫ p. Therefore, Eq. (4.4.22) is an overdetermined set of equations. Now the

question is whether the rank of matrix Re is still equal to p? The following proposition
answers this question.

Proposition 4.4.1.
[41]

If M ≥ pe , pe ≥ p, qe ≥ q, and qe − pe ≥ q − p, then rank(Re) = p.

This proposition shows that if the autocorrelation function Rx(τ) is known, only p of the
pe+1 singular values ofmatrix Re are not equal to zero, and the rest are all equal to zero.
Therefore, AR order p can be determined by singular value decomposition of matrix

Re. However, in practical application, not only the AR order is unknown, but also

the true autocorrelation function is unknown. Only N observation data x(1), · · · , x(N)
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can be used. So we need to calculate the sample autocorrelation function
^Rx(τ) first,

and then use it to replace the element Rx(τ) in matrix Re. A natural question is: can a

time averaged sample autocorrelation function
^Rx(τ) replace the real autocorrelation

function Rx(τ)? The following second-order mean square ergodic theorem definitely

answers this question.

Theorem 4.4.2. (Second-order mean square ergodic theorem) Let {x(n)} be a Gaussian
wide-sense stationary complex process with zeromean. If the true or total autocorrelation
is square summable, i.e.,

limN→∞
1

N

N−1∑︁

k=0

|Rx(k)|2 = 0. (4.4.25)

Then for any fixed τ = 0, ±1, ±2, · · · , there is

limN→∞E{[ ^Rx(τ) − Rx(τ)]2} = 0, (4.4.26)

where the sample autocorrelation function is

^Rx(τ) =
1

N

N∑︁

n=1
x(n)x*(n − τ). (4.4.27)

Proof. See reference [120].

4.4.3 Singular Value Decomposition Method for AR Order Determination

The methods to determine the order of an ARMAmodel can be divided into two cate-

gories: information criterion method and linear algebra method.

The most famous information criterion methods are the final prediction error (FPE)

method

[6]

and Akachi information criterion (AIC) method

[7]

, which were proposed by a

Japanese mathematical statistician Akachi in 1969 and 1974 respectively.

The final prediction error (FPE) criterion selects the order (p, q) of the ARMAmodel

which makes the information

FPE(p, q) def= σ̂2wp
(︂
N + p + q + 1
N − p − q − 1

)︂
, (4.4.28)

minimum, where σ̂2wp is the variance of the linear prediction error, and the calculation
formula is

σ̂2wp =
p∑︁

i=0
âi ^Rx(q − i). (4.4.29)

In the AIC criterion, the selection criterion of ARMA model order (p, q) is to minimize

information

AIC(p, q) def= lnσ2wp + 2(p + q)/N, (4.4.30)
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where N is the data length (also called sample size). Obviously, whether using FPE or

AIC criterion, it is necessary to use the least square method to fit the ARMAmodel of

various possible orders in advance, and then according to the "parsimony principle",

determine a combination of order (p, q) of the ARMA model as small as possible.

When the sample size N → ∞, the information criteria FPE(p, q) and AIC(p, q) are
equivalent. Kashyap

[121]

proved that when N → ∞, the error probability of the AIC

criterion choosing the right order does not tend to zero. Hence, the AIC criterion is a

statistically inconsistent estimation.

The improved form of AIC is called the BIC criterion. The principle of choosing

(p, q) is to minimize the information

BIC(p, q) def= lnσ2wp + (p + q)
lnN
N . (4.4.31)

Rissanen

[183]

presented another information criterion to choose the order (p, q) of the
ARMAmodel using the minimum description length (MDL), which is called the MDL

criterion. The information is defined as

MDL(p, q) def= Nlnσ̂2wp + (p + q)lnN . (4.4.32)

The criterion autoregressive transfer function is also a commonly used information

criterion, referred to as CAT criterion, proposed by Parzen

[172]

in 1974. CAT function is

defined as

CAT(p, q) def=
(︃
1

N

p∑︁

k=1

1

σ̄2k,q

)︃
−

1

σ̄2p,q
, (4.4.33)

where

σ̄2k,q =
N

N − k σ̂
2

k,q . (4.4.34)

The order (p, q) should selected to minimize CAT(p, q).
MDL information criterion is statistically consistent. The experimental results show

that for a short data length, the AR order should be in the range of N/3 ∼ N/2 to get
good results. Ulrych and Clayton

[212]

proved that for a short data segment, none of the

FPE, AIC, and CAT methods works well.

Typical linear algebra order determination methods include determinant test

method

[56]

, Gram-Schmidt orthogonal method

[48]

and singular value decomposition

method. The singular value decomposition method is introduced here.

Singular value decomposition (SVD) is mainly used to solve linear equations. The

matrix associated with the equations not only represents the characteristics of the

desired solution, but also represents the information of dynamic performance. There-

fore, it is necessary to study the characteristics of this characteristic matrix. The matrix

singular value decomposition in the following theorem can play this role.

Theorem 4.4.3. Let A be an m × n complex matrix, then there exist an m × m unitary
matrix U and an n × n unitary matrix V , so that A can be decomposed as

A = UΣVH , (4.4.35)
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where the superscript H denotes the conjugate transpose of a complex matrix, Σ is an
m × n diagonal matrix with nonnegative principal diagonal elements arranged in the
following order

σ
11
≥ σ

22
≥ · · · ≥ σhh ≥ 0, (4.4.36)

where h = min(m, n).

The proof of the above theorem can be found in many works of linear algebra or matrix

theory, such as references [107], [93] and [240].

A complex matrix B is called unitary matrix if B−1 = BH

. In particular, a real

unitary matrix is called an orthogonal matrix, i.e., B−1 = BT

. The elements σkk on the
main diagonal of diagonal matrix Σ are called singular values of matrix A. The unitary
matrices U and V are called left singular vector matrix and right singular vector matrix

respectively. The column vectors of ui and vj are called left singular vector and right
singular vector of matrix U = [u

1
, · · · , um]T and V = [v

1
, · · · , vn]T , respectively.

Singular values σkk contain useful information about the properties of the rank of

matrix A. In practical applications, it is often necessary to find the best approximation

^A of m × n matrix A in the sense of Frobenious norm.

Keeping the first k singular values of Σ unchanged and setting other singular values
zero to get a matrix Σk, which is called the rank k approximation of Σ. Namely, we can

use

A(k)
= UΣkVH

, (4.4.37)

to approximate matrix A. The quality of the approximation is measured by the Frobe-

nious norm of the matrix difference A − A(k)

||A − A(k)||
F
= ||UΣVH

− UΣkVH||
F
. (4.4.38)

According to the operation of norm, form ×m unitary matrix U and n × n unitary matrix

V, their norms are ||U||
F
=

√
m and ||V ||

F
=

√
n, respectively, so Eq. (4.4.38) can be

simplified as

||A − A(k)||
F
= ||U||

F
||Σ − Σk||F||VH||

F
=

√
mn

⎛
⎝

min(m,n)∑︁

i=k+1

σ2ii

⎞
⎠

1/2

.

The above equation shows that the accuracy of matrix A(k)
approximating A depends

on the sum of the squares of the singular values set to zero. Obviously, if k is larger,
||A − A(k)||

F
is smaller, and when k = h = min(m, n), ||A − A(k)||

F
is equal to zero.

Naturally, we hope that the Frobenious norm of the approximation error matrix A−A(k)

is small enough when k takes a suitable value p, and the Frebenious norm will not

decrease significantly when k > p. This value p is called the effective rank of matrix

A. The method of determining the effective rank of A can be realized by the following

method. Define a normalized ratio

ν(k) = ||A(k)||
F

||A||
F

=

(︂
σ2
11

+ · · · + σ2kk
σ2
11

+ · · · + σ2hh

)︂1/2

, 1 ≤ k ≤ h, (4.4.39)
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and pre-determine a threshold very close to 1 (e.g. 0.995). Therefore, when p is the
smallest integer while ν(k) is greater than or equal to the threshold, the first p singular
values can be considered as the primary singular values, while all the other singular

values are less important singular values, thus p is determined as the effective rank of

matrix A.
In addition to the normalized ratio ν(k), the normalized singular value can also

be used to determine the effective rank of a matrix. The normalized singular value is

defined as

σ̄kk
def

= σkk/σ11, 1 ≤ k ≤ h. (4.4.40)

Obviously, σ̄
11

= 1. Contrary to the case of using normalized ratio ν(k), when using
normalized singular value to determine the effective rank, a positive number close to

zero (e.g. 0.05) is selected as the threshold, and the largest integer k when σ̄kk greater
than the threshold is taken as the effective rank p of the matrix A.

In Eq. (4.4.23), using the sample correlation function instead of the ensemble

correlation function yields,

Re =

⎡
⎢⎢⎢⎢⎣

^Rx(qe + 1) ^Rx(qe) · · ·
^Rx(qe + 1 − pe)

^Rx(qe + 2) ^Rx(qe + 1) · · ·
^Rx(qe + 2 − pe)

.

.

.

.

.

.

.

.

.

.

.

.

^Rx(qe +M)
^Rx(qe +M − 1) · · ·

^Rx(qe +M − pe)

⎤
⎥⎥⎥⎥⎦
. (4.4.41)

The AR order of the ARMAmodel can be estimated by determining the effective rank of

the above matrix via the normalized ratio ν(k) or the normalized singular value σ̄kk.

4.4.4 Total Least Squares Method for AR Parameter Estimation

Once the AR order p is determined, how to get the estimated values of p AR parameters?

The intuitive idea is to use the least square method, but this will bring two problems:

first, we must relist the normal equations, so that they contain only p unknown num-

bers; Second, the least squaremethod for solving Ax = b only considers that b contains
errors, but actually the coefficient matrix A (here is the sample correlation matrix) also

contains errors. Therefore, a more reasonable method than the least squares should

consider the error or disturbance of A and b at the same time. Let the error matrix of

m × n matrix A be E and the error vector of vector b be e, that is, consider the least
square solution of the matrix equation

(A + E)x = b + e. (4.4.42)

Because the total error is considered, this method is called the total least squares (TLS)

method.

Eq. (4.4.42) can be equivalently written as
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(︁
[ −b A ] + [ −e E ]

)︁[︃
1

x

]︃
= 0, (4.4.43)

or

(B + D)z = 0, (4.4.44)

where

B = [ −b A ], D = [ −e E ], z =
[︃
1

x

]︃
.

So, the TLS method for solving the equations Eq. (4.4.42) can be expressed as solving

the vector z such that
||D||

F
= min, (4.4.45)

where

||D||
F
=

⎛
⎝

m∑︁

i=1

n∑︁

j=1
d2ij

⎞
⎠

1/2

, (4.4.46)

is the Frobenious norm of the disturbance matrix D. Here the overdetermined equation

solution is considered, that is, assuming m > n + 1.
The basic idea of the TLS method is to minimize the influence of noise disturbance

from A and b. The specific step is to find a disturbance matrix D ∈ Rm×(n+1) with

minimum norm so that B + D is not full rank (If full rank, there is only trivial solution

z = 0). The singular value decomposition can achieve this purpose. Let

B = UΣVH

, (4.4.47)

and the singular values are still in descending order

σ
11
≥ σ

22
≥ · · · ≥ σn+1,n+1 ≥ 0.

Let m × (n + 1) matrix
^B be the best approximation of B and the effective rank of B be

p, then from the previous discussion, the best approximation
^B is

^B = UΣpVH

, (4.4.48)

where the first p singular values of Σp are the same as the first p singular values of Σ,
while the other singular values are zero.

Letm×(p+1) matrix
^B(j, p+ j) be a submatrix of them×(n+1) best approximation

matrix
^B, defined as

^B(j, p + j) def= Submatrix composed of j-th to (p + j)-th columns of matrix. (4.4.49)

Obviously, there are n + 1 − p submatrices, namely
^B(1, p + 1), · · · , ^B(n + 1 − p, n + 1).

The effective rank of matrix B is p, which means that only p undetermined param-

eters in the unknown parameter vector x are independent. Let these parameters be the
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first p parameters of x, and together with 1, they form a (p + 1 × 1)-dimensional param-

eter vector a = [1, x
1
, · · · , xp]T. So the solution of the original equations Eq. (4.4.44)

becomes the solution of n + 1 − p equations.

^B(k, p + k)a = 0, k = 1, · · · , n + 1 − p, (4.4.50)

or equivalent to the solution of

⎡
⎢⎢⎢⎢⎣

^B(1 : p + 1)
^B(2 : p + 2)

.

.

.

^B(n + 1 − p : n + 1)

⎤
⎥⎥⎥⎥⎦
a = 0. (4.4.51)

It’s not hard to prove

^B(k, p + k) =
p∑︁

j=1
σjjuj(vkj )H, (4.4.52)

where uj is the j-th column of the unitary matrix U, and vkj is a windowed segment of

column j of the unitary matrix V, defined as

vkj = [v(k, j), v(k + 1, j), · · · , v(k + p, j)]T, (4.4.53)

where v(k, j) is the element of row k and column j of matrix V .
According to the principle of least squares, finding the least square solution of the

equations Eq. (4.4.51) is equivalent to minimizing the following cost function

f (a) = [
^B(1 : p + 1)a]H ^B(1 : p + 1)a + · · ·

+ [
^B(n + 1 − p : n + 1)a]H ^B(n + 1 − p : n + 1)a

= aH
[︃n+1−p∑︁

i=1

^B
H

(i : p + i) ^B(i : p + i)
]︃
a. (4.4.54)

Define (p + 1) × (p + 1) matrix

S(p) =
n+1−p∑︁

i=1

^B
H

(i : p + i) ^B(i : p + i). (4.4.55)

Substituting Eq. (4.4.52) into the above equation yields

S(p) =
p∑︁

j=1

n+1−p∑︁

i=1
σ2jjvij(vij)H. (4.4.56)

In addition, substituting Eq. (4.4.55) into Eq. (4.4.54), the cost function can be rewritten

as f (a) = aHS(p)a. From ∂f (a)
∂a = 0, we have

S(p)a = αe, (4.4.57)
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where e = [1, 0, · · · , 0]

H

. The normalization constant α should be selected so that the
first element of the parameter vector a is 1.

It is easy to solve Eq. (4.4.57). If S−(p) is the inverse matrix of S(p), the solution
depends only on the first column of the inverse matrix S−(p). It is easy to solve

x̂i = S−(p)(i + 1, 1)/S−(p)(1, 1), i = 1, · · · , p. (4.4.58)

To sum up, the algorithm for finding the total least squares solution consists of the

following steps.

Algorithm 4.4.1. SVD-TLS Algorithm
Step 1 Calculate the SVD of the augmented matrix B and store the singular values and

matrix V;
Step 2 Determine the effective rank p of the augmented matrix B;
Step 3 Calculate matrix S(p) using Eq. (4.4.56) and Eq. (4.4.53);
Step 4 Solve the inverse matrix S−(p) of S(p) and calculate the total least squares estima-

tion of unknown parameters by Eq. (4.4.58).

Taking the autocorrelation matrix Re defined in Eq. (4.4.41) as the augmented matrix B
in the above algorithm, the AR order p of the ARMA model can be determined, and the

overall least squares solution of p AR parameters can be obtained.

Once the AR order p and AR parameters a
1
, · · · , ap are estimated, the power

spectral density of ARMA process {x(n)} can be obtained using the Cadzow spectrum

estimator or Kaveh spectrum estimator.

4.5 ARMA Model Identification

In some applications, we hope not only to obtain AR order and AR parameters, but

also to obtain the estimation of MA order and MA parameters, and finally get the

identification of the whole ARMAmodel.

4.5.1 MA Order Determination

For an ARMAmodel, the determination of its MA order is very simple in theory, but the

effectiveness of the actual algorithms is not as simple as expected.

Modified Yule-Walker equation (4.4.19) holds for all l > q. This equation also shows

Rx(l) +
p∑︁

i=1
aiRx(l − i) ̸= 0, l = q, (4.5.1)

otherwise, it will mean that Eq. (4.4.19) is true for all l, that is, the order of the ARMA
process is q − 1, which is contrary to ARMA(p, q) model. In fact, Eq. (4.5.1) may or may
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not hold for some l < q, but it must hold for l = q. This shows that the MA order is the

maximum integer l that makes the following equation t

Rx(l) +
p∑︁

i=1
aiRx(l − i) ̸= 0, l ≤ q. (4.5.2)

The principle of determining MA order was proposed by Chow

[56]

in 1972. The problem

is: in the case of short data, the sample correlation function
^Rx(l) has a large estimation

error and variance. Therefore, the test method of Eq. (4.5.2) lacks numerical stability.

The better method is the linear algebra method

[251]

. Its theoretical basis is that the

information of MA order q is contained in a Hankel matrix.

Proposition 4.5.1.
[251]

Let R
1
be a (p + 1) × (p + 1) Hankel matrix, i.e.,

R
1
=

⎡
⎢⎢⎢⎢⎣

Rx(q) Rx(q − 1) · · · Rx(q − p)
Rx(q + 1) Rx(q) · · · Rx(q + 1 − p)

...
...

...
...

Rx(q + p) Rx(q + p − 1) · · · Rx(q)

⎤
⎥⎥⎥⎥⎦
. (4.5.3)

If ap ̸= 0, rank(R
1
) = p + 1.

Furthermore, the rank of matrix R
1e with extended order q is considered.

Proposition 4.5.2.
[251]

Suppose p has been determined and let R
1e be a (p + 1) × (p + 1)

matrix, defined as

R
1e =

⎡
⎢⎢⎢⎢⎣

Rx(qe) Rx(qe − 1) · · · Rx(qe − p)
Rx(qe + 1) Rx(qe) · · · Rx(qe − p + 1)

...
...

...
...

Rx(qe + p) Rx(qe + p − 1) · · · Rx(qe)

⎤
⎥⎥⎥⎥⎦
. (4.5.4)

Then when qe > q, rank(R1e) = p, and only when q = p, rank(R1e) = p + 1.

Proposition 4.5.2 shows that the real MA order q is implied in the matrix R
1e. The-

oretically, the order q can be determined as follows: start from Q = qe > q, take
Q ← Q − 1 in turn, and use SVD to determine the rank of R

1e; When the first turning

point of rank from p to p + 1 occurs in Q = q. However, in practical application, due
to the use of the sample autocorrelation function, the turning point of order from

p jump to p + 1 is often not obvious. In order to develop a practical algorithm for

MA order determination, the overdetermined matrix R
2e can be used with elements

R
2e[i, j] = ^Rx(qe + i − j), i = 1, · · · ,M; j = 1, · · · , pe + 1;M ≫ pe. Obviously, we have

rank(R
2e) = rank(R

1e). (4.5.5)

Because R
2e contains the whole R1e, any k-th (k ≥ p + 2) column (or row) is linearly

related to its left p columns (or upper p rows). This does not change the rank of the
whole matrix.
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The algorithm

[251]

for determining the MA order of ARMA(p, q) model using SVD is

as follows.

Algorithm 4.5.1. MA order determination algorithm
Step 1 Step 1 and step 2 of the SVD-TLS algorithm for AR order determination and param-

eter estimation are used to determine the AR order and take Q = qe > q;
Step 2 Let Q ← Q −1, and construct the sample autocorrelation function R

2e to calculate
its SVD;

Step 3 If the p + 1-th singular value has an obvious turning point compared with the last
calculation result, select q = Q; Otherwise, return to Step 2 and continue the above
steps until q is selected.

Note 1 Due to p ≥ q, the simplest and effective way to select the initial value of Q is

to take Q = qe = p + 1, so that q can be found as soon as possible.
Note 2 The above MA order determination method is only related to AR order, but

independent of AR parameters. In other words, the AR order and MA order can be

determined respectively before parameter estimation.

Note 3 The key of the algorithm is to determine the turning point of the p + 1-th
singular value in Step 3. As a turning point test rule, the ratio can be considered

α =
σ(Q)p+1,p+1

σ(Q+1)p+1,p+1
, (4.5.6)

where σ(Q)p+1,p+1 is the p + 1-th singular value when R
2e corresponds to Q value. If the

relative change rate of the p + 1-th singular value is greater than a given threshold for
a Q value, the Q value is accepted as the turning point.

Example 4.5.1 A time series is generated by

x(n) =
√
20cos(2π0.2n) +

√
2cos(2π0.213n) + v(n),

where v(n) is Gaussian white noise with mean value of 0 and variance of 1. The signal-

to-noise ratio (SNR) of each cosine wave is defined as the ratio of the power of the

cosine wave to the average noise power, i.e. variance. Therefore, the cosine waves

with frequencies of 0.2 and 0.213 have SNR of 10dB and 0dB respectively. A total of

10 independent experiments were conducted, and the running data length of each

time is 300. In each operation, the SVD method gives the AR order estimation result of

p = 4, and the above SVD method for MA order determination also gives the MA order

estimation of q = 4, with the calculated minimum ratio α = 38.94%. The following are

the singular values corresponding to α = 38.94%.

When Q = 5, the singular values of Re are

σ
11

= 102.942, σ
22

= 102.349 σ
33

= 2.622, σ
44

= 2.508,

σ
55

= 0.588, σ
66

= 0.517, · · · , σ
15,15

= 0.216,
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It is easy to see that the first four singular values dominate, so the AR order estimation

of p = 4 is given.

When Q = 4, the singular values of R
2e are

σ
11

= 103.918, σ
22

= 102.736 σ
33

= 2.621, σ
44

= 2.510,

σ
55

= 0.817, σ
66

= 0.575, · · · , σ
15,15

= 0.142.

We can see that σ
55
has an obvious turning point when Q = 4, so q = 4 is selected as

the result of MA order estimation.

4.5.2 MA Parameter Estimation

When deriving the Kaveh spectrum estimator, Eq. (4.4.10) has been obtained. By com-

paring the coefficients of the samepower termon the left and right sides of this equation,

a set of important equations can be obtained

σ2(b2
0
+ b2

1
+ · · · + b2q) = c

0

σ2(b
0
b
1
+ · · · + bq−1bq) = c

1

.

.

.

σ2b
0
bq = cq

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (4.5.7)

Observing the above nonlinear equations, we can see that there are q + 2 unknown
parameters b

0
, b

1
, · · · , bq and σ2, but there are only q + 1 equations. To ensure the

uniqueness of the solution, it is usually assumed that σ2 = 1 or b
0
= 1. In fact, the two

assumptions are inclusive, because under the assumption of σ2 = 1, σ2 = b2
0
can still

be obtained by normalizing the MA parameter b
0
= 1. For convenience, it is assumed

here that σ2 = 1.

The Newton-Raphson algorithm

[32]

for solving nonlinear equations Eq. (4.5.7) is

introduced below.

Define the fitting error function

fk =
q∑︁

i=0
bibi+k − ck , k = 0, 1, · · · , q, (4.5.8)

as well as (q + 1) × 1 vectors

b = [b
0
, b

1
, · · · , bq]T, (4.5.9)

f = [f
0
, f

1
, · · · , fq]T, (4.5.10)

and (q + 1) × (q + 1) matrix

F =

∂f
∂bT

=

⎡
⎢⎢⎣

∂f
0

∂b
0

∂f
0

∂b
1

· · ·

∂f
0

∂bq
.

.

.

.

.

.

.

.

.

.

.

.

∂fq
∂b

0

∂fq
∂b

1

· · ·

∂fq
∂bq

⎤
⎥⎥⎦ . (4.5.11)
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Take the partial derivative of Eq. (4.5.8) and substitute it into Eq. (4.5.11), we have

F =

⎡
⎢⎢⎢⎢⎣

b
0

b
1

· · · bq
b
1

· · · bq
.

.

. .
.
.

bq 0

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

b
0

b
1
· · · bq

b
0
· · · bq−1
.
.
.

.

.

.

0 b
0

⎤
⎥⎥⎥⎥⎦
. (4.5.12)

According to the principle of the Newton-Raphson method, if the MA parameter vector

obtained in the i-the iteration is b(i), the estimated value of the MA parameter vector in

the i + 1-the iteration is given by the following equation

b(i+1) = b(i) − F−(i)f (i), (4.5.13)

where F−(i) is the inverse of matrix F(i) of F in the i-th iteration.
To sum up, the Newton-Raphson algorithm for estimating MA parameters consists

of the following steps.

Algorithm 4.5.2. Newton-Raphson Algorithm
Initialization Use Eq. (4.4.12) to calculate theMA spectrum coefficient ck , k = 0, 1, · · · , q,

and let the initial values b(0)
0

=

√c
0
, b(0)i = 0, i = 1, · · · , q.

Step 1 Calculate the fitting error function f (i)k , k = 0, 1, · · · , q from Eq. (4.5.8), and calcu-
late F(i) with Eq. (4.5.12);

Step 2 Update MA parameter estimation vector b(i+1) by Eq. (4.5.13);
Step 3 Test whether the MA parameter estimation vector converges. If it converges, stop

the iteration and output the MA parameter estimation result; Otherwise, let i ← i + 1,
return to Step 1, and repeat the above steps until the MA parameter estimation
converges.

As a rule of terminating the iteration,we can compare the absolute error of the estimated

values of each parameter obtained by the previous and subsequent two iterations.

However, this method is more suitable for MA parameters with large absolute value,

but not for M parameters with small absolute value. A better method is to use relative

error

[248]

to measure whether a parameter converges during iteration, such as

[︃
b(i+1)k − b(i)k
b(i+1)k

]︃
≤ α, (4.5.14)

where the threshold can be a small number, such as 0.05.

When there is additive AR colored noise, the ARMA power spectrum estimation

needs to use the generalized least square algorithm, and the bootstrap method is used

to calculate the AR parameters of the ARMA model from the modified Yule-Walker

equation under AR colored noise. Readers interested in this algorithm can refer to

reference [249].
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4.6 Maximum Entropy Spectrum Estimation

The theoretical basis of ARMA spectrum estimation is the modeling of a stochastic

process. This section introduces another power spectrum estimation method from

the point of view of information theory–maximum entropy method. This method was

proposed by Burg

[39]

in 1967. Due to a series of advantages of the maximum entropy

method, it has become an important branch of modern spectrum estimation. Inter-

estingly, the maximum entropy spectrum estimation is equivalent to AR and ARMA

spectrum estimation under different conditions.

4.6.1 Burg Maximum Entropy Spectrum Estimation

In information theory, we are often interested in howmuch information can be obtained

after an event X = xk with probability pk is observed. This information is represented

by the symbol I(xk) and is defined as

I(xk)
def

= I(X = xk) = log

1

pk
= −logpk , (4.6.1)

where the base of the logarithm can be selected arbitrarily. When natural logarithm is

used, the unit of information is nat. When the base 2 logarithm is used, its unit is bit.

In the following description, the base 2 logarithm is used, unless otherwise specified.

No matter what logarithm is used, it is easy to prove by Eq. (4.5.13) that the amount of

information has the following properties.

Property 1 The event that must occur contains no information, i.e.,

I(xk) = 0, ∀pk = 1. (4.6.2)

Property 2 The amount of information is nonnegative, i.e.,

I(xk) ≥ 0, 0 ≤ pk ≤ 1. (4.6.3)

This is called the nonnegative property of information, which shows that the

occurrence of a random event either brings information or does not bring any

information, but it will never cause the loss of information.

Property 3 The smaller the probability of an event, the more information we get from

it, i.e.,

I(xk) > I(xi), if pk < pi . (4.6.4)

Consider the discrete random variable X, whose character set of value is X. Let the
probability that the random variable X takes value of xk be Pr{X = xk}, xk ∈ X.

Definition 4.6.1. The average value of information I(x) in the character set X is called
the entropy of the discrete random variable X, denoted as H(x) and defined as

H(X) def= E

{︀
I(x)
}︀
=

∑︁

xk∈X

pk I(xk) = −
∑︁

xk∈X

pk log pk . (4.6.5)
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Here, 0log0 = 0 is agreed, which can be easily proved from the limit limx→0 xlogx = 0. 
This shows that adding a zero probability term to the definition of entropy will not 
have any effect on entropy.

Entropy is a function of the distribution of random variable X, which has nothing 
to do with the actual value of random variable X, but only with the probability of this 
value.

If the character set X consists of 2K + 1 characters, the entropy can be expressed

as

H(X) =
K∑︁

k=−K

pk I(xk) = −
K∑︁

k=−K

pk log pk . (4.6.6)

The entropy is a bounded function, i.e,

0 ≤ H(X) ≤ log(2K + 1). (4.6.7)

The following are the properties of the lower and upper bounds of entropy.

(1) H(x) = 0, if and only if pk = 1 for a certain X = xk, so that the probability of X
taking other values in setX is all zero; In other words, the lower bound 0 of entropy

corresponds to no uncertainty;

(2) H(x) = log(2K+1), if and only if pk = 1/(2K+1) is constant for all k, i.e., all discrete
values are equal probability. Therefore, the upper bound of entropy corresponds

to the maximum uncertainty.

The proof of property 2 can be found in Reference [94].

Example 4.6.1 Let

X =

{︃
1, with probability p,
0, with probability 1 − p.

The entropy of X can be calculated by Eq. (4.6.5)

H(x) = −p log p − (1 − p) log(1 − p).

In particular, if p = 1/2, H(X) = 1 bit.

Example 4.6.2 Let

X =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

a, with probability 1/2,

b, with probability 1/8,

c, with probability 1/4,

d, with probability 1/8,

then the entropy of X is

H(x) = −1
2

log

1

2

−

1

8

log

1

8

−

1

4

log

1

4

−

1

8

log

1

8

=

7

4

bit.
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If Definition 4.6.2 is extended to continuous random variables, there is the following

definition.

Definition 4.6.2. (Entropy of continuous random variables) Let the distribution density
function of continuous random variable x be p(x), then its entropy is defined as

H(x) def= −
∞∫︁

−∞

p(x) ln p(x)dx = −E
{︀
{ln p(x)}

}︀
. (4.6.8)

In 1967, following the definition of entropy of continuous random variables, Burg

[39]

defined

H[P(ω)] = 1

2π

π∫︁

−π

ln P(ω)dω, (4.6.9)

as the entropy of power spectrum P(ω) (spectral entropy for short), and proposed

that the spectral entropy should be maximized when estimating the power spectrum

using a given 2p + 1 sample autocorrelation functions
^Rx(k), k = 0, ±1, · · · ± p. This

is the well-known Burg maximum entropy spectrum estimation method. Of course,

the inverse Fourier transform of the estimated power spectrum should also be able to

restore the original 2p + 1 sample autocorrelation functions
^Rx(k), k = 0, ±1, · · · ± p.

Specifically, the Burg maximum entropy spectrum estimation can be described as:

finding the power spectral density P(ω) so that P(ω) canmaximize the spectral entropy

H[P(ω)] under the constraint

^Rx(m) =
1

2π

π∫︁

−π

P(ω)ejωmdω, m = 0, ±1, · · · , ±p. (4.6.10)

This constrained optimization problem can be easily solved by the Lagrange multiplier

method.

Construct objective function

J[P(ω)] = 1

2π

π∫︁

−π

ln P(ω)dω +

p∑︁

k=−p

λk

⎡
⎣ ^Rx(k) − 1

2π

π∫︁

−π

P(ω)ejωkdω

⎤
⎦
, (4.6.11)

where λk is a Lagrange multiplier. Find the partial derivative of J[P(ω)] relative to P(ω)
and make it equal to 0, then we have

P(ω) = 1∑︀p
k=−p λkejωk

. (4.6.12)

Replace the variable μk = λ−k, then Eq. (4.6.12) can be written as

P(ω) = 1∑︀p
k=−p μke−jωk

. (4.6.13)
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Let

W(z) =
p∑︁

k=−p

μkz−k ,

then P(ω) = 1/W(e

jω
). Since the power spectral density is non negative, there is

W(e

jω
) ≥ 0.

Theorem 4.6.1. (Fejer-Riesz Theorem)
[170]

If

W(z) =
p∑︁

k=−p

μkz−k or W(ejω) ≥ 0,

we can find a function

A(z) =
p∑︁

i=0
a(i)z−i , (4.6.14)

so that
W(ejω) = |A(ejω)|2. (4.6.15)

If the roots of A(z) = 0 are all in the unit circle, the function A(z) is uniquely determined.

According to Fejer-Riesz Theorem, if a(0) = 1 is assumed, Eq. (4.6.13) can be expressed

as

P(ω) = σ2
|A(ejω)|2 . (4.6.16)

The above equation is exactly the previous AR power spectral density. This shows that

Burg maximum entropy power spectrum is equivalent to the AR power spectrum.

4.6.2 Levinson Recursion

To realize the maximum entropy spectrum estimation, the order p and coefficients ai
need to be determined. This raises a question: what is the appropriate order? Burg

proposes to use the linear prediction method to recursively calculate the coefficients

of the predictor with different orders, and then compare the prediction error power of

each predictor. The basis of this recursive calculation is the famous Levinson recursion

(also known as Levinson-Durbin recursion).

The maximum entropy method uses both forward and backward prediction. The

forward prediction is to use the givenm data x(n −m), · · · , x(n −1) to predict the value
of x(n), which is called m-order forward linear prediction.

The filter that realizes forward linear prediction is called a forward linear prediction

filter or forward linear predictor. The m-order forward linear prediction value of x(n) is
denoted as x̂(n) and defined as

x̂(n) def= −
m∑︁

i=1
am(i)x(n − i), (4.6.17)
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where am(i) represents the i-th coefficient of the m-order forward linear prediction

filter.

Similarly, predicting the value of x(n −m) with givenm data x(n −m +1), · · · , x(n)
is called m-order backward linear prediction, which is defined as

x̂(n − m) def= −
m∑︁

i=1
a*m(i)x(n − m + i), (4.6.18)

where a*m(i) is the complex conjugate of am(i). The filter that realizes backward linear
prediction is called a backward linear prediction filter.

The following discusses how to design forward and backward linear prediction

filters according to the minimummean square error (MMSE) criterion.

The forward and backward linear prediction errors are respectively defined as

f (n) def= x(n) − x̂(n) =
m∑︁

i=0
am(i)x(n − i), (4.6.19)

g(n − m) def= x(n − m) − x̂(n − m) =
m∑︁

i=0
a*m(i)x(n − m + i), (4.6.20)

where am(0) = 1. According to the principle of orthogonality, to make the prediction

value x̂(n) be the linear mean square estimation of x(n), the forward prediction error
f (n) must be orthogonal to the known data x(n − m), · · · , x(n − 1), i.e.,

E{f (n)x*(n − k)} = 0, 1 ≤ k ≤ m. (4.6.21)

Substituting Eq. (4.6.19) into Eq. (4.6.21), a set of normal equations can be obtained

Rx(0)am(1) + Rx(−1)am(2) + · · · + Rx(−m + 1)am(m) = −Rx(1)
Rx(1)am(1) + Rx(0)am(2) + · · · + Rx(−m + 2)am(m) = −Rx(2)

.

.

.

Rx(m − 1)am(1) + Rx(m − 2)am(2) + · · · + Rx(0)am(m) = −Rx(m)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (4.6.22)

where Rx(k) = E{x(n)x*(n − k)} is the autocorrelation function of {x(n)}.
Define the mean square error of the forward linear prediction as

Pm def

= E{|f (n)|2} = E{f (n)[x(n) − x̂(n)]*}

= E{f (n)x*(n)} −
m∑︁

i=1
a*m(i)E{f (n)x*(n − i)}

= E{f (n)x*(n)}. (4.6.23)

The summation term

∑︀
in the above equation is zero, which is the result of the direct

substitution of Eq. (4.6.21). Expand the right side of Eq. (4.6.23) to obtain the following

equation directly

Pm =

m∑︁

i=0
am(i)Rx(−i). (4.6.24)
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The mean square error of forward linear prediction is the output power of forward

prediction error, which is referred to as forward prediction error power for short.

Combine Eq. (4.6.22) and Eq. (4.6.24), we have

⎡
⎢⎢⎢⎢⎣

Rx(0) Rx(−1) · · · Rx(−m)
Rx(1) Rx(0) · · · Rx(−m + 1)

.

.

.

.

.

.

.

.

.

.

.

.

Rx(m) Rx(m − 1) · · · Rx(0)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1

am(1)
.

.

.

am(m)

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

Pm
0

.

.

.

0

⎤
⎥⎥⎥⎥⎦
. (4.6.25)

By solvingEq. (4.6.25), the coefficients am(1), · · · , am(m) ofm-order forwardprediction
filter can be obtained directly, but the corresponding prediction error power is not

necessarily small. Therefore, it needs to calculate the coefficients of various possible

orders of forward prediction filter and the corresponding forward prediction error

power. For different m, it is obviously too time-consuming to solve the filter equations

independently. Assuming that the coefficients am−1(1), · · · , am−1(m − 1) of m − 1-
order forward prediction filter have been calculated, how to recursively calculate the

coefficients am(1), · · · , am(m) of m-order forward prediction filter from them?

From Eq. (4.6.25), it is easy to list the equations of m − 1-order forward prediction
filter

⎡
⎢⎢⎢⎢⎣

Rx(0) Rx(−1) · · · Rx(−m + 1)

Rx(1) Rx(0) · · · Rx(−m)
.

.

.

.

.

.

.

.

.

.

.

.

Rx(m − 1) Rx(m − 2) · · · Rx(0)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1

am−1(1)
.

.

.

am−1(m − 1)

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

Pm
0

.

.

.

0

⎤
⎥⎥⎥⎥⎦
. (4.6.26)

Considering the m − 1-order backward prediction error, from Eq. (4.6.20), we have

g(n − m + 1)

def

= x(n − m + 1) − x̂(n − m + 1)

=

m−1∑︁

i=0
a*m−1(i)x(n − m + 1 + i). (4.6.27)

From the principle of orthogonality, In order for x̂(n −m +1) to be a linear mean square

estimate of x(n−m+1), the backward prediction error g(n−m+1) should be orthogonal

to the known data x(n − m + 2), · · · , x(n), i.e

E{g(n − m + 1)x*(n − m + 1 + k)} = 0, k = 1, · · · ,m − 1. (4.6.28)

Combine Eq. (4.6.27) and Eq. (4.6.28) to get

m−1∑︁

i=0
a*m−1(i)Rx(i − k) = 0, k = 1, · · · ,m − 1, (4.6.29)

Pm−1 = E{|g(n − m + 1)|2} =
m−1∑︁

i=0
a*m−1(i)Rx(i). (4.6.30)
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Eq. (4.6.29) and Eq. (4.6.30) can be combined together and written in matrix form as

⎡
⎢⎢⎢⎢⎣

Rx(0) Rx(−1) · · · Rx(−m + 1)

Rx(1) Rx(0) · · · Rx(−m)
.

.

.

.

.

.

.

.

.

.

.

.

Rx(m − 1) Rx(m − 2) · · · Rx(0)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a*m−1(m − 1)
.

.

.

a*m−1(1)
1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

0

.

.

.

0

Pm−1

⎤
⎥⎥⎥⎥⎦
. (4.6.31)

The basic idea of using am−1(i) to recursively calculate am(i) is to directly use the sum of

am−1(i) and the correction term as the value of am(i). This idea of the recursive formula

is widely used in signal processing (such as adaptive filtering), neural networks, and

neural computing (such as learning algorithms). In Levinson recursion, the correction

term is reflected by the coefficients of the m − 1-order backward prediction filter, i.e.,

am(i) = am−1(i) + Kma*m−1(m − i), i = 0, 1, · · · ,m, (4.6.32)

where Km is the reflection coefficient.

The following are two edge cases of Eq. (4.6.32).

(1) If i = 0, since am(0) = am−1(0) + Kma*m−1(m) and am−1(m) = 0, there is am(0) =
am−1(0). This shows that if a1(0) = 1, then am(0) = 1,m ≥ 2.

(2) If i = m, since am(m) = am−1(m) + Kma*m−1(0), am−1(m) = 0, and am−1(0) = 1,

there is am(m) = Km.

To get the recursion of the prediction error Pm, Eq. (4.6.32) is rewritten as
⎡
⎢⎢⎢⎢⎢⎢⎣

1

am(1)
.

.

.

am(m − 1)
am(m)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

am−1(1)
.

.

.

am−1(m − 1)
0

⎤
⎥⎥⎥⎥⎥⎥⎦
+ Km

⎡
⎢⎢⎢⎢⎢⎢⎣

0

a*m−1(m − 1)
.

.

.

a*m−1(1)
1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4.6.33)

Substituting Eq. (4.6.33) into Eq. (4.6.25), we have

⎡
⎢⎢⎢⎢⎣

Rx(0) Rx(−1) · · · Rx(−m)
Rx(1) Rx(0) · · · Rx(−m + 1)

.

.

.

.

.

.

.

.

.

.

.

.

Rx(m) Rx(m − 1) · · · Rx(0)

⎤
⎥⎥⎥⎥⎦
×

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

1

am−1(1)
.

.

.

am−1(m − 1)
0

⎤
⎥⎥⎥⎥⎥⎥⎦
+ Km

⎡
⎢⎢⎢⎢⎢⎢⎣

0

a*m−1(m − 1)
.

.

.

a*m−1(1)
1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

Pm
0

.

.

.

0

⎤
⎥⎥⎥⎥⎦
. (4.6.34)
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Substituting Eq. (4.6.26) and Eq. (4.6.31) into the above equation yields

⎡
⎢⎢⎢⎢⎢⎢⎣

Pm−1
0

.

.

.

0

X

⎤
⎥⎥⎥⎥⎥⎥⎦
+ Km

⎡
⎢⎢⎢⎢⎢⎢⎣

Y
0

.

.

.

0

Pm−1

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

Pm
0

.

.

.

0

⎤
⎥⎥⎥⎥⎦
,

or

Pm−1 + KmY = Pm , (4.6.35)

X + KmPm−1 = 0, (4.6.36)

where

X =

m−1∑︁

i=0
am−1(i)Rx(m − i), (4.6.37)

Y =

m−1∑︁

i=0
a*m−1(i)Rx(i − m). (4.6.38)

Note that Rx(i − m) = R*x(m − i) =, so from Eq. (4.6.37) and Eq. (4.6.38) we have

Y = X*, (4.6.39)

while from Eq. (4.6.36) we have

X = −KmPm−1,

so Y = −K*mPm−1. Note that the prediction error power Pm−1 is a real number. By

substituting Y = −K*mPm−1 into Eq. (4.6.35), the recursive equation of the prediction
error power is obtained

Pm = (1 − |Km|2)Pm−1. (4.6.40)

To summarize the above discussion, we have the following recursive algorithms.

Algorithm 4.6.1. Levinson recursive algorithm (upward recursion)

am(i) = am−1(i) + Kma*m−1(m − i), i = 1, · · · ,m − 1, (4.6.41)

am(m) = Km , (4.6.42)

Pm = (1 − |Km|2)Pm−1. (4.6.43)

When m = 0, Eq. (4.6.24) gives the initial value of the prediction error power

P
0
= Rx(0) =

1

N

N∑︁

n=1
|x(n)|2. (4.6.44)
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Eq. (4.6.41) to Eq. (4.6.43) are called (upward) Levinson recursive equations, i.e., the coef-

ficients of the second-order prediction filter are recursively derived from the coefficients

of the first-order prediction filter, and then the third-order is from the second-order.

Sometimes, we are interested in the recursive calculation of M − 1 order prediction
filter from M order prediction filter, and then m − 2 order from M − 1 order. Such a

recursive method of calculating low-order filter coefficients from high-order filter coeffi-

cients is called downward recursion. The following is the downward Levinson recursive

algorithm [178].

Algorithm 4.6.2. Levinson recursive algorithm (downward recursion)

am(i) =
1

1 − |Km+1|2
[am+1(i) − Km+1am+1(m − i + 1)], (4.6.45)

Km = am(m), (4.6.46)

Pm =

1

1 − |Km+1|2
Pm+1, (4.6.47)

where i = 1, · · · ,m.
In the recursion process of the algorithm, when |k

0
| = 1, the recursion stops.

4.6.3 Burg Algorithm

By observing Levinson recursion, the remaining problem is how to find the recursion

formula of the reflection coefficient Km. This problem has limited the practical ap-

plication of Levinson recursion until Burg

[39]

studied the maximum entropy method.

The basic idea of the Burg algorithm is to minimize the average power of forward and

backward prediction errors.

Burg defined m-order forward and backward prediction errors as

fm(n) =
m∑︁

i=0
am(i)x(n − i), (4.6.48)

gm(n) =
m∑︁

i=0
a*m(m − i)x(n − i). (4.6.49)

Substituting Eq. (4.6.41) into Eq. (4.6.48) and Eq. (4.6.49) respectively, the order recur-

sive equations of forward and backward prediction errors can be obtained as

fm(n) = fm−1(n) + Kmgm−1(n − 1), (4.6.50)

gm(n) = K*m fm−1(n) + gm−1(n − 1). (4.6.51)

Define the average power of the m-order (forward and backward) prediction errors as

Pm =

1

2

N∑︁

n=m
[|fm(n)|2 + |gm(n)|2]. (4.6.52)
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Substituting the order recursion equations Eq. (4.6.50) and Eq. (4.6.51) into Eq. (4.6.52),

and letting

∂Pm
∂Km = 0 yields

Km =

−

∑︀N
n=m+1 fm−1(n)g*m−1(n − 1)

1

2

∑︀N
n=m+1[|fm−1(n)|2 + |gm−1(n − 1)|2]

, (4.6.53)

where m = 1, 2, · · · .

To sum up, the Burg algorithm for calculating the coefficients of the forward pre-

diction filter is as follows.

Algorithm 4.6.3. Burg Algorithm
Step 1 Calculate the initial value of error power

P
0
=

1

N

N∑︁

n=1
|x(n)|2,

the initial value of the forward and backward prediction error

f
0
(n) = g

0
(n) = x(n),

and let m = 1;
Step 2 Calculate the reflection coefficient

Km =

−

∑︀N
n=m+1 fm−1(n)g*m−1(n − 1)

1

2

∑︀N
n=m+1[|fm−1(n)|2 + |gm−1(n − 1)|2]

;

Step 3 Calculate the forward prediction filter coefficients

am(i) = am−1(i) + Kma*m−1(m − i), i = 1, · · · ,m − 1,
am(m) = Km;

Step 4 Calculate the prediction error power

Pm = (1 − |Km|2)Pm−1;

Step 5 Calculate the output of the filter

fm(n) = fm−1(n) + Kmgm−1(n − 1),
gm(n) = K*m fm−1(n) + gm−1(n − 1);

Step 6 Let m ← m + 1, and repeat steps 2 to 5 until the prediction error power Pm is no
longer significantly reduced.

4.6.4 Burg Maximum Entropy Spectrum Analysis and ARMA Spectrum Estimation

If a constraint is added, Burg maximum entropy power spectral density is equivalent to

ARMApower spectral density. This conclusionwas independently provedbyLagunas

[131]
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and Ihara

[110]

using different methods. Lagunas et al.

[130]

deduced this equivalence from

the perspective of engineering application, using an easy to understand the method,

and proposed a specific maximum entropy ARMA spectrum estimation algorithm.

Considering the logarithmic power spectral density ln P(ω), the inverse Fourier
transform is called the cepstrum coefficient, i.e

cx(k) =
1

2π

π∫︁

−π

ln P(ω)ejωkdω. (4.6.54)

Let 2M + 1 autocorrelation functions
^Rx(m),m = 0, ±1, · · · , ±M and 2N cepstrum

coefficients ĉx(l), l = ±1, · · · , ±N be known. Now consider finding the power spectral

density P(ω) under the constraints of autocorrelation function matching

^Rx(m) =
1

2π

π∫︁

−π

P(ω)ejωmdω, m = 0, ±1, · · · , ±M, (4.6.55)

and cepstrum matching

ĉx(k) =
1

2π

π∫︁

−π

ln P(ω)ejωldω, l = ±1, · · · , ±N, (4.6.56)

to maximize its spectral entropy H[P(ω)]. Note that when l = 0, the cepstrum ĉx(0)
defined by Eq. (4.6.56) is exactly the spectral entropy, so ĉx(0) should not be included
in cepstrum matching condition Eq. (4.6.56).

Using the Lagrange multiplier method, construct the cost function

J[P(ω)] = 1

2π

π∫︁

−π

ln P(ω)dω +

M∑︁

m=−M
λm[ ^Rx(m) −

1

2π

π∫︁

−π

P(ω)ejωmdω]

+

N∑︁

l̸= 0,l=−N

μl[ĉx(l) −
1

2π

π∫︁

−π

ln P(ω)ejωldω], (4.6.57)

where λm and μl are two undetermined Lagrange multipliers. Let

∂J[P(ω)]
∂P(ω) = 0, and

substitute βl = −μl to obtain the expression of power spectral density

P(ω) =
∑︀N

l=−N βle
jωl

∑︀M
m=−M λmejωm

, (4.6.58)

where β
0
= 1.

From theorem 4.6.1, that is, Fejer-Riesz theorem, Eq. (4.6.58) can be written as

P(ω) = |B(z)|2
|A(z)|2 =

|
∑︀N

i=0 biz
−i|2

|1 +
∑︀M

i=1 aiz−i|2

⃒⃒
⃒⃒
z=ejω

. (4.6.59)
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Obviously, this is a rational ARMA power spectrum.

It is not difficult to see that the constraint of the autocorrelation function leads to

the autoregressive part, which acts as the pole, while the constraint of the cepstrum

contributes to the moving average part, which acts as the zero.

In addition, Lagunas et al.

[130]

also introduced the specific algorithm of maximum

entropy ARMA spectrum estimation, which is omitted here.

The above maximum entropymethod uses both autocorrelation functionmatching

and cepstrum matching to obtain the maximum entropy ARMA power spectrum, while

Burg maximum entropy method only uses autocorrelation function matching, which is

equivalent to the AR power spectrum.

In the spectral entropy defined by Burg, we can see that it is significantly different

from the entropy of continuous random variables defined by Eq. (4.6.8). If the entropy

of the power spectrum is defined strictly following Eq. (4.6.8), it should be

H
2
[P(ω)] = − 1

2π

π∫︁

−π

P(ω) ln P(ω)dω, (4.6.60)

which is called configuration entropy, proposed by Frieden

[80]

.

Traditionally, the power spectrum estimation using spectral entropy maximiza-

tion is called the first type of maximum entropy method (MEM-1 for short), and the

power spectrum estimation using configuration entropy (which is negative entropy)

minimization is called the second type of maximum entropy method (MEM-2 for short).

By using the Lagrange multiplier method, the cost function is constructed

J[P(ω)] = − 1

2π

π∫︁

−π

ln P(ω)dω

+

M∑︁

m=−M
λm

⎡
⎣ 1

2π

π∫︁

−π

P(ω)ejωmdω − ^Rx(m)

⎤
⎦
. (4.6.61)

Let

∂J[P(ω)]
∂P(ω) = 0 to get

ln P(ω) = −1 +
M∑︁

m=−M
λmejωm , (4.6.62)

where λm is the undetermined Lagrange multiplier. Via variable substitution cm =

λ
−m ,m = ±1, · · · , ±M and c

0
= −1 + λ

0
, Eq. (4.6.62) can be rewritten as

ln P(ω) =
M∑︁

m=−M
cme−jωm .

So the maximum entropy power spectral density is

P(ω) = exp

(︃ M∑︁

m=−M
cme−jωm

)︃
. (4.6.63)
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Obviously, the key to calculate MEM-2 power spectral density is to estimate the coeffi-

cient cm. In general, cm is called complex cepstrum.

Substituting Eq. (4.6.63) into the autocorrelation function matching Eq. (4.6.55),

there is

1

2π

π∫︁

−π

exp

(︃ M∑︁

k=−M

cke−jωk
)︃
e

jωm
dω =

^Rx(m), m = 0, ±1, · · · , ±M. (4.6.64)

This is a nonlinear equation system. Using the Newton-Raphson method, the complex

cepstrum coefficient ck can be obtained from the nonlinear equations according to the

given 2M + 1 sample autocorrelation functions. The biggest disadvantage of MEM-2

lies in its nonlinear calculation.

Nadeu et al.

[161]

observed through simulation experiments that for the ARMAmodel

whose poles are not close to the unit circle, the spectral estimation performance of

MEM-2 is better than MEM-1, but when the poles are close to the unit circle, MEM-1 is

better than MEM-2. This result is explained theoretically in reference [218].

The analysis in this section shows that two different maximum entropy power

spectrum estimation methods can be obtained by using different definitions of power

spectrum entropy: using spectrum entropy definition, two different spectral estima-

tors equivalent to AR and ARMA spectral estimation are obtained under different

constraints.

4.7 Pisarenko Harmonic Decomposition Method

The harmonic process is often encountered inmany signal processing applications, and

it is necessary to determine the frequency and power of these harmonics (collectively

referred to as harmonic recovery). The key task of harmonic recovery is the estimation

of the number and frequency of harmonics. This section introduces the Pisarenko

harmonic decomposition method for harmonic frequency estimation, which lays the

theoretical foundation for harmonic recovery.

4.7.1 Pisarenko Harmonic Decomposition

In the Pisarenko harmonic decomposition method, the process composed of p real sine
waves is considered

x(n) =
P∑︁

i=1
Aisin(2πfin + θi). (4.7.1)

When phase θi is a constant, the above harmonic process is a non-stationary determin-

istic process. To ensure the stationarity of the harmonic process, it is usually assumed
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that the phase is a random number uniformly distributed in the range of [−π, π]. At
this time, the harmonic process is a random process.

The harmonic process can be described by a difference equation. Consider a single

sine wave, for simple calculation, let x(n) = sin(2πfn + θ). From the trigonometric

function identity, we have

sin(2πfn + θ) + sin[2πf (n − 2) + θ] = 2cos(2πf )sin[2πf (n − 1) + θ].

If x(n) = sin(2πfn+θ) is substituted into the above formula, the second-order difference

equation is obtained

x(n) − 2cos(2πf )x(n − 1) + x(n − 2) = 0.

Calculating the Z transform of the above equation to obtain

[1 − 2cos(2πf )z−1 + z−2]X(z) = 0.

Then the characteristic polynomial is obtained

1 − 2cos(2πf )z−1 + z−2 = 0,

which has a pair of conjugate complex roots, i.e.,

z = cos(2πf ) ± jsin(2πf ) = e

±j2πf
.

Note that themodulus of the conjugate roots are 1, i.e., |z
1
| = |z

2
| = 1, and the frequency

of the sine wave can be determined by the roots, i.e.,

fi = arctan[Im(zi)/Re(zi)]/2π. (4.7.2)

Usually, only positive frequencies are taken. Obviously, if p real sine wave signals have
no repetition frequency, these p frequencies should be determined by the roots of the

characteristic polynomial

p∏︁

i=1
(z − zi)(z − z*i ) =

2p∑︁

i=0
aiz2p−i = 0,

or

1 + a
1
z−1 + · · · + a

2p−1z−(2p−1) + z−2p = 0. (4.7.3)

It is easy to know that the modules of these roots are all equal to 1. Because all roots

exist in the form of conjugate pairs, the coefficients of characteristic polynomials have

features of symmetry, i.e.,

ai = a2p−1, i = 0, 1, · · · , p. (4.7.4)

The difference equation corresponding to Eq. (4.7.3) is

x(n) +
2p∑︁

i=1
aix(n − i) = 0, (4.7.5)
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which is an AR process without excitation and has exactly the same form as the differ-

ence equation of the predictable process introduced in Section 4.3.

Note that the sine wave process is generally observed in the additive white noise

w(n), that is, the observation process can be expressed as

y(n) = x(n) + w(n) =
p∑︁

i=1
Aisin(2πfin + θi) + w(n), (4.7.6)

where w(n) ∼ N(0, σ2w) is the Gaussian white noise, statistically independent of the
sine wave signal x(n). By substituting x(n) = y(n) − w(n) into Eq. (4.7.5), the difference
equation satisfied by the sine wave process in white noise is obtained

y(n) +
2p∑︁

i=1
aiy(n − I) = w(n) +

2p∑︁

i=1
aiw(n − i). (4.7.7)

This is a special ARMA process, as not only the AR order is equal to the MA order, but

also the AR parameters are exactly the same as the MA parameters.

Now, the normal equation satisfied by the AR parameters of this special ARMA

process is derived. So define the following vectors

y = [y(n), y(n − 1), · · · , y(n − 2p)]T

a = [1, a
1
, · · · , a

2p]
T

w = [w(n), w(n − 1), · · · , w(n − 2p)]T

⎫
⎪⎬
⎪⎭
. (4.7.8)

Thus, Eq. (4.7.7) can be written as

yTa = wTa. (4.7.9)

Left multiply Eq. (4.7.9) by vector y and take the mathematical expectation to obtain

E{yyT}a = E{ywT}a, (4.7.10)

Let Ry(k) = E{y(n + k)y(n)} to obtain

E{yyT} =

⎡
⎢⎢⎢⎢⎣

Ry(0) Ry(−1) · · · Ry(−2p)
Ry(1) Ry(0) · · · Ry(−2p + 1)
.

.

.

.

.

.

.

.

.

.

.

.

Ry(2p) Ry(2p − 1) · · · Ry(0)

⎤
⎥⎥⎥⎥⎦

def

= Ry ,

E{ywT} = E{(x + w)wT} = E{wwT} = σ2I,

where the assumption that x(n) and w(n) are statistically independent is used. By
substituting the above two equations into Eq. (4.7.10), an important normal equation is

obtained

Rya = σ2wa, (4.7.11)
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which shows that σ2w is the eigenvalue of the autocorrelation matrix Ry of the obser-
vation process {y(n)}, and the coefficient vector a of the characteristic polynomial

is the eigenvector corresponding to this eigenvalue. This is the theoretical basis of

the Pisarenko harmonic decomposition method, which enlightens us that the har-

monic recovery problem can be transformed into the eigenvalue decomposition of the

autocorrelation matrix Ry.
When performing Pisarenko decompositionmethod, it usually starts from anm×m

(m > 2p) autocorrelation matrix R. If the minimum eigenvalue of the autocorrelation

matrix has multiple degrees, the coefficient vector a will have multiple solutions. The

solution is to reduce the dimension of the autocorrelationmatrix until it has exactly one

minimum eigenvalue. The problem is that the dimension of the autocorrelation matrix

is small and the sample autocorrelation functions used are not enough, which will

seriously affect the estimation accuracy of the coefficient vector. Although Pisarenko

harmonic decomposition establishes the relationship between the coefficient vector of

the characteristic polynomial and the eigenvector of the autocorrelation matrix for the

first time in theory, it is not an effective harmonic recovery algorithm from the practical

effect. In contrast, the ARMA modeling method introduced below is a very effective

harmonic recovery method.

4.7.2 ARMA Modeling Method for Harmonic Recovery

As mentioned above, when the harmonic signal is observed in additive white noise,

the observation process is a special ARMA random process with exactly the same AR

parameters and MA parameters. Because A(z) and B(z) = A(z) have common factors,

the modified Yule-Walker equation cannot be directly applied. Now, from another point

of view, we establish the normal equation of this special ARMA process.

Multiply x(n − k) on both sides of the difference Eq. (4.7.5) of the AR model without

excitation and take the mathematical expectation, then there is

Rx(k) +
2p∑︁

i=1
aiRx(k − i) = 0, ∀k. (4.7.12)

Note that the harmonic signal x(n) and the additive white noise w(n) are statistically
independent, so Ry(k) = Rx(k) + Rv(k) = Rx(k) + σ2wδ(k). Substituting this relation into
Eq. (4.7.12), we can get

Ry(k) +
2p∑︁

i=1
aiRy(k − i) = σ2w

2p∑︁

i=0
aiδ(k − i).
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Obviously, when k > 2p, the impulse function δ(·) in the summation term on the right

side of the above equation is equal to 0, so the above equation can be simplified to

Ry(k) +
2p∑︁

i=1
aiRy(k − i) = 0, k > 2p. (4.7.13)

This is the normal equation obeyed by the special ARMA process of Eq. (4.7.7), which is

consistent with the modified Yule-Walker equation of ARMA(2p, 2p) process in form.

Similar to the modified Yule-Walker equation, the normal equation (4.7.13) can

also form an overdetermined system of equations, which can be solved by the SVD-TLS

algorithm.

Algorithm 4.7.1. ARMA modeling algorithm for harmonic recovery
Step 1 Using the sample autocorrelation function ^Ry(k) of the observation data, the ex-

tended order autocorrelation matrix of the normal equation (4.7.13) is constructed

Re =

⎡
⎢⎢⎢⎢⎣

^Ry(pe + 1) ^Ry(pe) · · ·
^Ry(1)

^Ry(pe + 2) ^Ry(pe + 1) · · ·
^Ry(2)

...
...

...
...

^Ry(pe +M)
^Ry(pe +M − 1) · · ·

^Ry(M)

⎤
⎥⎥⎥⎥⎦
, (4.7.14)

where pe > 2p, and M ≫ p;
Step 2 Matrix Re is regarded as augmented matrix B, and SVD-TLS algorithm is used to

determine the overall least squares estimation of AR order 2p and the coefficient
vector a;

Step 3 Calculate the conjugate root pairs (zi , z*i ), i = 1, · · · , p of the characteristic poly-
nomial

A(z) = 1 +

2p∑︁

i=1
aiz−i; (4.7.15)

Step 4 Calculate the frequency of each harmonic using Eq. (4.7.2).

The above algorithm has very good numerical stability due to the use of singular value

decomposition and the total least squares method, and the estimation of AR order

and parameters also has very high accuracy. For short, it is an effective algorithm for

harmonic recovery.

Finally, it should be pointed out that the above results are still applicable when the

harmonic signal is complex harmonic, except that the order of the difference equation

is not 2p but p, and the roots of the characteristic polynomial are no longer conjugate

root pairs.
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4.8 Extended Prony Method

As early as 1975, Prony proposed a mathematical model using the linear combination

of exponential functions to describe uniformly spaced sampling data. Therefore, the

traditional Prony method is not a power spectrum estimation technology in the general

sense.

After appropriate expansion, the Prony method can be used to estimate rational

power spectral density. This section introduces this extended Prony method

[123]

.

The mathematical model adopted by the extended Prony method is a set of p
exponential functions with arbitrary amplitude, phase, frequency, and attenuation

factor. Its discrete time function is

x̂(n) =
p∑︁

i=1
bizni , n = 0, 1, · · · , N − 1, (4.8.1)

and x̂(n) is used as the approximation of x(n). In Eq. (4.8.1), bi and zi are assumed as

complex numbers, i.e.,

bi = Aiexp(jθi), (4.8.2)

zi = exp[(αi + j2πfi)∆t], (4.8.3)

where Ai is the amplitude; θi is the phase (in radians); αi attenuation factor; fi repre-
sents the oscillation frequency; ∆t represents the sampling interval. For convenience,

let ∆t = 1.

Construct cost function as

ϵ =
N−1∑︁

n=0
|x(n) − x̂(n)|2. (4.8.4)

If the square sum of error is minimized, the parameter quadruple (Ai , θi , αi , fi) can
be solved. However, this requires solving nonlinear equations. Generally, finding a

nonlinear solution is an iterative process. For example, see reference [153]. Here, only

the linear estimation of parameter quaternion is discussed.

The key of the Prony method is to realize that the fitting of Eq. (4.8.1) is a homoge-

neous solution of a linear difference equation with constant coefficients. To derive the

linear difference equation, define the characteristic polynomial first as

ψ(z) =
p∏︁

i=1
(z − zi) =

p∑︁

i=0
aizp−i , (4.8.5)

where a
0
= 1. From Eq. (4.8.1), we have

x̂(n − k) =
p∑︁

i=1
bizn−ki , 0 ≤ n − k ≤ N − 1.
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Multiply both sides by ak and sum to get

p∑︁

k=0

ak x̂(n − k) =
p∑︁

i=1
bi

p∑︁

k=0

akzn−ki , p ≤ n ≤ N − 1.

Substitute zn−ki = zn−pi zp−ki to obtain

p∑︁

k=0

ak x̂(n − k) =
p∑︁

i=1
bizn−pi

p∑︁

k=0

akzp−ki = 0. (4.8.6)

Eq. (4.8.6) is equal to 0 because the second summation term is exactly the characteristic

polynomial ψ(zi) = 0 of Eq. (4.8.5) at root zi.
Eq. (4.8.6) means that x̂(n) satisfies the recursive difference equation

x̂(n) = −
p∑︁

i=1
ai x̂(n − i), n = 0, 1, · · · , N − 1. (4.8.7)

To establish Prony method, the error between the actual measured data x(n) and its
approximate value x̂(n) is defined as e(n), i.e.,

x(n) = x̂(n) + e(n), n = 0, 1, · · · , N − 1. (4.8.8)

Substituting Eq. (4.8.7) into Eq. (4.8.8) yields

x(n) = −
p∑︁

i=1
aix(n − i) +

p∑︁

i=0
aie(n − i), n = 0, 1, · · · , N − 1. (4.8.9)

The difference Eq. (4.8.9) shows that the exponential process in white noise is a special

ARMA(p, q) process, which has the same AR and MA parameters, and the excitation

noise is the original additive white noise e(n). This is very similar to the complex

ARMA(p, q) process in the Pisarenko harmonic decomposition method, except that

the root of the characteristic polynomial ψ(z) in the extended Prony method is not

constrained by the unit module root (i.e. no attenuation harmonic).

Now, the criterion for the least squares estimation of parameters a
1
, · · · , ap is

to minimize the error square sum

∑︀N−1
n=p |e(n)|2. However, this will lead to a set of

nonlinear equations. The linear method of estimating a
1
, · · · , ap is to define

ϵ(n) =
p∑︁

i=0
aie(n − i), n = p, · · · , N − 1, (4.8.10)

and rewrite Eq. (4.8.9) as

x(n) = −
p∑︁

i=1
aix(n − i) + ϵ(n), n = 0, 1, · · · , N − 1. (4.8.11)
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If minimizing

∑︀N−1
n=p |ϵ(n)|2 instead of

∑︀N−1
n=p |e(n)|2, we can get a set of linear matrix

equations as

⎡
⎢⎢⎢⎢⎣

x(p) x(p − 1) · · · x(0)
x(p + 1) x(p) · · · x(1)

.

.

.

.

.

.

.

.

.

.

.

.

x(N − 1) x(N − 2) · · · x(N − p − 1)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1

a
1

.

.

.

ap

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

ϵ(p)
ϵ(p + 1)

.

.

.

ϵ(N − 1)

⎤
⎥⎥⎥⎥⎦
, (4.8.12)

or

Xa = ϵ, (4.8.13)

for simple expression. The linear least squares method for solving Eq. (4.8.13) is called

the extended Prony method.

To minimize the cost function

J(a) =
N−1∑︁

n=p
|ϵ(n)|2 =

N−1∑︁

n=p

⃒⃒
⃒⃒
⃒⃒
p∑︁

j=0
ajx(n − j)

⃒⃒
⃒⃒
⃒⃒

2

, (4.8.14)

let

∂J(a)
∂ai = 0, i = 1, · · · , p, then we have

p∑︁

j=0
aj

[︃N−1∑︁

n=p
x(n − j)x*(n − i)

]︃
= 0, i = 1, · · · , p. (4.8.15)

The corresponding minimum error energy is

ϵp =
p∑︁

j=0
aj

[︃N−1∑︁

n=p
x(n − j)x*(n)

]︃
. (4.8.16)

Define

r(i, j) =
N−1∑︁

n=p
x(n − j)x*(n − i), i, j = 0, 1, · · · , p. (4.8.17)

Then Eqs. (4.8.15) and (4.8.16) can be combined together to get the normal equation

form of the Prony method

⎡
⎢⎢⎢⎢⎣

r(0, 0) r(0, 1) · · · r(0, p)
r(1, 0) r(1, 1) · · · r(1, p)

.

.

.

.

.

.

.

.

.

.

.

.

r(p, 0) r(p, 1) · · · r(p, p)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1

a
1

.

.

.

ap

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

ϵp
0

.

.

.

0

⎤
⎥⎥⎥⎥⎦
. (4.8.18)

By solving the above equation, the estimation of the coefficients a
1
, · · · , ap and mini-

mum error energy ϵp can be obtained.
Once the coefficients a

1
, · · · , ap have been obtained, the roots zi , i = 1, · · · , p, of

the characteristic polynomial

1 + a
1
z−1 + · · · + apz−p , (4.8.19)
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can be found. Sometimes, zi is called the Prony pole.
From now on, Eq. (4.8.1) of the exponential model is simplified to a linear equation

with unknown parameter bi, expressed in matrix form as

Zb = x̂, (4.8.20)

where

Z =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

z
1

z
2

· · · zp
.

.

.

.

.

.

.

.

.

.

.

.

zN−1
1

zN−1
2

· · · zN−1p

⎤
⎥⎥⎥⎥⎦
, (4.8.21)

b = [b
1
, b

2
, · · · , bp]T, (4.8.22)

x̂ = [x̂(0), x̂(1), · · · , x̂(N − 1)]T. (4.8.23)

Here, Z is an N × p Vandermonde matrix. Because zi is different, the columns of Van-

dermonde matrix Z are linearly independent, that is, it is full column rank. Therefore,

the least square solution of Eq. (4.8.20) is

b = (ZHZ)−1ZH x̂. (4.8.24)

It is easy to prove

ZtextHZ =

⎡
⎢⎢⎢⎢⎣

γ
11

γ
12

· · · γ
1p

γ
21

γ
22

· · · γ
2p

.

.

.

.

.

.

.

.

.

.

.

.

γp1 γp2 · · · γpp

⎤
⎥⎥⎥⎥⎦
, (4.8.25)

where

γij =
(z*i zj)N − 1
(z*i zj) − 1

. (4.8.26)

To summarize the above discussion, the extended Prony method can be described as

follows.

Algorithm 4.8.1. Extended Prony Algorithm for Harmonic Recovery
Step 1 Calculate the sample function r(i, j) using Eq. (4.8.17), and construct the extended

order matrix

Re =

⎡
⎢⎢⎢⎢⎣

r(1, 0) r(1, 1) · · · r(1, pe)
r(2, 0) r(2, 1) · · · r(2, pe)

...
...

...
...

r(pe , 0) r(pe , 1) · · · r(pe , pe)

⎤
⎥⎥⎥⎥⎦
, pe ≫ p; (4.8.27)

Step 2 Use Algorithm 4.4.1 (SVD-TLS Algorithm) to determine the effective rank p ofmatrix
Re and the total least squares estimation of coefficients a1, · · · , ap;
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Step 3 Find the roots z
1
, · · · , zp of the characteristic polynomial a1, · · · , ap, and use

Eq. (4.8.7) to calculate x̂(n), n = 1, · · · , N − 1, where x̂(0) = x(0);
Step 4 Calculate the parameters b

1
, · · · , bp using Eq. (4.8.24)∼ Eq. (4.8.26);

Step 5 Use the following equation to calculate the amplitude Ai, phase θi, frequency fi
and attenuation factor αi:

Ai = |bi|
θi = arctan[Im(bi)/Re(bi)]/(2π∆t)
αi = ln |zi|/∆t
fi = arctan[Im(zi)/Re(zi)]/(2π∆t)

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
, i = 1, · · · , p. (4.8.28)

With a little generalization, the extended Pronymethod can be used for power spectrum

estimation. From x̂(n), n = 0, 1, · · · , N − 1, which is calculated in Step 3, the spectrum
can be obtained

^X(f ) = F[x̂(n)] =
p∑︁

i=1
Aiexp(jθi)

2αi
α2i + [2π(f − fi)]2

. (4.8.29)

whereF[x̂(n)] represents the Fourier transform of x̂(n). Thus, the Prony power spectrum
can be calculated as

PProny(f ) = | ^X(f )|2. (4.8.30)

It should be noted that in some cases, the additive noise will seriously affect the

estimation accuracy of Prony pole zi, and the noise will also make the calculation of

the attenuation factor have relatively large errors.

Prony harmonic decomposition method is superior to Pisarenko harmonic decom-

position method in the following aspects:

(1) Prony method does not need to estimate the sample autocorrelation function;

(2) The estimated variance of frequency and power (or amplitude) given by the Prony

method is relatively small;

(3) Prony method only needs to solve two sets of homogeneous linear equations and

one time factorization, while the Pisarenko method requires solving characteristic

equations.

If p sine wave signals are real, non attenuated, and observed in noise, there is a special
variant

[103]

of the Prony method. At this time, the signal model in Eq. (4.8.1) becomes

x̂(n) =
p∑︁

i=1
(bizni + b*i z*

n
i ) =

p∑︁

i=1
Aicos(2πfin + θi), (4.8.31)

where bi = 0.5Aiejθi ; zi = e

j2πfi
. The corresponding characteristic polynomial becomes

ψ(z) =
p∏︁

i=1
(z − zi)(z − zi)* =

2p∑︁

i=0
aiz2p−i = 0, (4.8.32)
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where a
0
= 1, and ai is the real coefficient. Since zi are the unit module roots, they

appear in the form of conjugate pairs. Therefore, zi in Eq. (4.8.32) is still valid after

being replaced by z−1i , i.e.,

z2pψ(z−1) = z2p
2p∑︁

i=0
aizi−2p =

2p∑︁

k=0

akzk = 0. (4.8.33)

By comparing Eq. (4.8.32) with Eq. (4.8.33), it can be concluded that: ai = a2p−i , i =
0, 1, · · · , p, and a

0
= a

2p = 1.

In this case, the corresponding form of Eq. (4.8.11) is

ϵ(n) =
p∑︁

i=0
āi[x(n + i) + x(n − i)], (4.8.34)

where āi = ai , i = 0, 1, · · · , p − 1, while āp = 1

2

ap. The factor āp is halved because the
factor āp is calculated twice in Eq. (4.8.34).

Let

N−1∑︁

n=p
|ϵ(n)|2 =

N−1∑︁

n=p

⃒⃒
⃒⃒
⃒

p∑︁

i=0
[x(n + i) + x(n − i)]

⃒⃒
⃒⃒
⃒

2

. (4.8.35)

By minimizing the square sum of errors in the above equation, a normal equation

similar to Eq. (4.8.18) is obtained

p∑︁

i=0
āir(i, j) = 0, (4.8.36)

except that the function r(i, j) takes a different form from Eq. (4.8.17), i.e.,

r(i, j) =
N−1∑︁

n=p
[x(n + j) + x(n − j)][x*(n + i) + x*(n − i)]. (4.8.37)

The above method of estimating coefficients āi is called Prony spectral line estimation.

Algorithm 4.8.2. Prony spectral line estimation algorithm
Step 1 Use Eq. (4.8.37) to calculate function r(i, j), i, j = 0, 1, · · · , pe, where pe ≫ p;

Construct matrix Re by Eq. (4.8.27);
Step 2 Determine the effective rank p and coefficients ā

1
, · · · , āp of Re using the SVD-TLS

algorithm. Let a
2p−i = āi , i = 1, · · · , p − 1 and ap = 2āp;

Step 3 Find the conjugate root pairs (zi , z*i ), i = 1, · · · , p of the characteristic polynomial
1 + a

1
z−1 + · · · + a

2pz−2p = 0;
Step 4 Calculate the frequency of p harmonics

fi = arctan[Im(zi)/Re(zi)]/(2π∆t).
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Summary

This chapter introduces some main methods of modern power spectrum estimation

from different aspects:

(1) ARMA spectrum estimation is modern spectrum estimation based on the signal

difference model;

(2) Burg maximum entropy spectrum estimation is modern spectrum estimation de-

rived from information theory, which is equivalent to AR and ARMA spectrum

estimation respectively under different constraints;

(3) Pisarenko harmonic decomposition is a spectrum estimation method with a har-

monic signal as a specific object, which transforms the estimation of harmonic

frequency into eigenvalue decomposition of signal correlation matrix;

(4) Extended Prony method uses the complex harmonic model to fit complex signals.

Exercises

4.1 Let {x(t)} and {y(t)} be stationary stochastic processes satisfying the following
difference equations

x(t) − αx(t − 1) = w(t), {w(t)} ∼ N(0, σ2),
y(t) − αy(t − 1) = x(t) + u(t), {u(t)} ∼ N(0, σ2),

where |α| < 1; {w(t)} and {u(t)} are uncorrelated. Calculate the power spectrum of

{y(t)}.
4.2 Assume that the input signal {x(t)} is Gaussian white noise with zero mean and

power spectrum Px(f ) = N0
and the impulse response of the linear system is

h(t) =
{︃
e−t , t ≥ 0,
0, others.

Solve the power spectrum and covariance function of the output y(t) = x(t) * h(t).
4.3 It is known that the transfer function of a wireless channel is described by

H(f ) = Ke−j2πfτ0 , τ
0
= r/c,

where r is the propagation distance and c is the speed of light. Such channel is called a
nondispersive channel. Assume that the transmitted signal is

x(t) = A cos(2πfc t + Φ),

where Φ is a random variable uniformly distributed in [−π, π]. Let y(t) be the signal
received by the receiver after the transmitted signal x(t) passes through the nondisper-
sive channel. There is Gaussian white noise n(t) at the receiver, with zero mean and the
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power spectral density N
0
. The additive noise n(t) is independent of the transmitted

signal x(t). Find the power spectrum Py(f ) of the received signal y(t) of the receiver
and the cross power spectrum Pxy(f ) between the transmitted signal and the received

signal.

4.4 The power spectral density of a random signal is

P(ω) = 1.25 + cosω
1.0625 + 0.5 cosω .

If this is regarded as the power spectrumof the output of the linear causal andminimum

phase system H(z) excited by white noise with unit power spectrum, solve this linear

system H(z).
4.5 The power spectrum of a random signal x(n) is a rational expression of ω

P(ω) = ω
2

+ 4

ω2

+ 1

.

If signal x(n) is regarded as the output of linear causal and minimum phase system

H(z) excited by a white noise of unit power spectrum, try to determine this system.

4.6 The discrete-time second-order ARprocess is described by the difference equation

x(n) = a
1
x(n − 1) + a

2
x(n − 2) + w(n),

where w(n) is a white noise with zero mean and variance σ2w. Prove that the power
spectrum of x(n) is

Px(f ) =
σ2w

1 + a2
1

+ a2
2

− 2a
1
(1 − a

2
) cos(2πf ) − 2a

2
cos(4πf )

.

4.7 The second-order moving average process is defined by

x(n) = w(n) + b
1
w(n − 1) + b

2
w(n − 2), {w(n)} ∼ N(0, σ2),

where N(0, σ2) represents normal distribution with zero mean and variance σ2. Find
the power spectrum of x(n).
4.8 Thedifferencemodel of anMA randomprocess is y(t) = w(t)+1.5w(y−1)−w(t−2),
where {w(t)} is a Gaussian white noise process with zero mean and variance σ2w = 1.

Find another equivalent MA model of y(t).
4.9 Let x(t) be an unknown random process with zero mean, and the first three

values of its autocorrelation function are Rx(0) = 2, Rx(1) = 0, and Rx(2) = −1. In this
case, can an ARMA(1,1) model be used to fit it?

4.10 The error power is defined as

Pm(rm) =
1

2

E{
⃒⃒
efm−1(n) + rme

b
m−1(n − 1)

⃒⃒
2

+

⃒⃒
r*mefm−1(n − 1) + e

b
m−1(n − 1)

⃒⃒
2}.

(1) Calculate min

rm
[Pm(rm)];
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(2) Prove

rm =

−2

∑︀N
n=m+1 e

f
m−1(n)e

b*
m−1(n − 1)∑︀N

n=m+1[
⃒⃒
efm−1(n)

⃒⃒
2

+

⃒⃒
ebm−1(n − 1)

⃒⃒
2

]

,m = 1, 2, · · · .

(3) Prove |rm| ≤ 1 is constant for m = 1, 2, · · · .

4.11 If the forward and backward prediction errors are defined as

efm(n) =
m∑︁

k=0

am(k)x(n − k),

ebm(n) =
m∑︁

k=0

a*m−k(k)x(n − k),

Using Burg recurrence equation to prove

(1) efm(n) = efm−1(n) + rme
b
m−1(n − 1);

(2) ebm(n) = r*mefm−1(n) + e
b
m−1(n − 1).

4.12 The observation is

x(n) =
{︃

1, n = 0, 1, · · · , N − 1.
0, others.

Now use the Prony method to model x(n) so that x(n) is the unit impulse response of a

linear time invariant filter H(z) with only one pole and one zero. Find the expression of
the filter transfer function H(z) and solve H(z) when n = 21.

4.13 An observation data vector x = [1, α, α2, · · · , αN ]T is known, where |α| < 1.

Suppose the Prony method is used to fit the data, and the filter transfer function is

H(z) = b
0

1+a
1
z−1 , find the coefficients a

1
and b

0
, and write the specific form of H(z).

4.14 Consider a code division multiple access (CDMA) system in wireless communi-

cation, which has K users

[207]

. User 1 is the desired user. A receiver receives the signals

transmitted by all the K users, and the vector form of the received signal is given by

y(n) =
K∑︁

k=1

yk(n) = h
1
w
1
(n) + Hw(n) + v(n),

wherew
1
(n) is the bit signal transmitted by the desired user to be detected, and h

1
is the

equivalent characteristic waveform vector of the desired user, which is known; H and

w(n) are the matrix and interference bit vector composed of characteristic waveform

vectors of all the other users (interference users for short). It is assumed that the additive

noise of the channel is Gaussian white noise with each noise componentthe of zero

mean and the variance σ2.
(1) Design a minimum variance receiver f to minimize the mean square error between

the receiver output ŵ
1
(n) = f Ty(n) and w

1
(n) while meeting the constraint f Th

1
=

1. Find the expression of the minimum variance receiver f .
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(2) If the desired user’s equivalent characteristic waveform vector h
1
is h

1
= C

1
g
1
,

where

C
1
=

⎡
⎢⎢⎢⎢⎢⎣

c
1
(0) · · · 0

.

.

.

.

.

. c
1
(0)

c
1
(P − 1) · · ·

.

.

.

0 · · · c
1
(P − 1)

⎤
⎥⎥⎥⎥⎥⎦
, g

1
=

⎡
⎢⎣
g
1
(0)

· · ·

g
1
(L)

⎤
⎥⎦ ,

and c
1
(0), · · · , c

1
(P −1) in the above equation is the spreading code of the desired

user, and g
1
(l) represents the parameter of the l-th transmission path. Design

a minimum variance distortionless response (MVDR) beamformer g and prove

it to be the generalized eigenvector corresponding to the minimum generalized

eigenvalue of the matrix beam (CH
1
RyC1, CH1C1).

4.15 Consider the following generalization of Pisarenko harmonic decomposition of

M real harmonic signals

[127]

. Let the dimension of the noise subspace be greater than 1,

so the elements of each column vector of matrix Vn spanning noise subspace satisfy

2M∑︁

k=0

vkejωik =
2M∑︁

k=0

vke−jωik = 0, 1 ≤ i ≤ M.

Let p̄ = Vnα represent a nondegenerate linear combination of the column vectors of Vn.
The so-called nondegeneratemeans that the polynomial p(z) composed of the elements

of vector p̄ = [p̄
0
, p̄

1
, · · · , p̄

2M]
T

has at least 2M order, i.e., p(z) = p̄
0
+p̄

1
z+· · ·+p̄

2Mz2M,
p̄
2M ̸= 0. Therefore, this polynomial also satisfies the above equation. This means that

all harmonic frequencies can be obtained from the 2M roots of the polynomial p(z) on
the unit circle. Now we want to select the coefficient vector α satisfying the conditions

p
0
= 1 and

∑︀K
k=1 p

2

k = min.

(1) Let vT be the first row of matrix Vn, and V be a matrix composed of all the other

rows of Vn. If p is a vector composed of all the elements of p̄ except for the first

element, try to prove

α = arg minαTVTVα,

with constraint VTα = 1.

(2) Using the Lagrange multiplier method to prove that the solution of the constrained

optimization problem is

α =

(VTV)−1v
vT(VTV)−1v

,

p =

V(VTV)−1v
vT(VTV)−1v

.

4.16 Each element ei(t) of the additive noise vector e(t) = [e
1
(t), · · · , em(t)]T is a zero

mean complex white noise and has the same variance σ2. Assume that these complex
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white noises are statistically uncorrelated with each other. Prove that the noise vector

satisfies the condition

E{e(n)} = 0, E{e(n)eT(n)} = σ2I, E{e(n)eT(n)} = O,

where I and o are the identity matrix and zero matrix, respectively.

4.17 Assume that the simulated observation data are generated by

x(n) =
√
20 sin(2π0.2n) +

√
2 sin(2π0.213n) + w(n),

where w(n) is a white Gaussian noise with zero mean and variance 1, and n =

1, · · · , 128. Using the TLS and SVD-TLS methods to estimate the AR parameters of the

ARMAmodel of the observation data and estimate the frequencies of the sine waves. In

computer simulation, when running the least square TLS method, the AR order is set

to 4 and 6 respectively; When running the SVD-TLS method, it is assumed that the AR

order is unknown. The computer simulation will run at least 20 times independently.

It is required to complete the computer simulation experiment report, which mainly

includes:

(1) The basic theory and method of harmonic recovery;

(2) The statistical results (mean and deviation) of the AR parameters and the sine

wave frequency estimates;

(3) The discussion of the advantages and precautions of using SVD to determine the

effective rank of the sample autocorrelation matrix.



5 Adaptive Filter
Filter is a device that extracts signals fromnoisy observation data in the formof physical

hardware or computer software. The filter can realize the basic tasks of information

processing such as filtering, smoothing and prediction. If the output of the filter is a

linear function of the input, it is called a linear filter; Otherwise, it is called a nonlinear

filter. If the impulse response of the filter is infinite, it is called infinite impulse response

(IIR) filter , and the filter with limited impulse response is called finite impulse response

(FIR) filter . If the filter is implemented in the time domain, frequency domain, or spatial

domain, it is called time domain filter, frequency domain filter or spatial domain filter

respectively. The courses “Signals and Systems” and “Digital Signal Processing”mainly

discuss filters in the frequency domain. This chapter focuses on time domain filters.

In real-time signal processing, it is often hoped that the filter can track and adapt

to the dynamic changes of the system or environment when realizing tasks such as

filtering, smoothing, or prediction, which requires that the parameters of the (time

domain) filter can be changed or updated with time simply, because the complex

operation does not meet the needs of real-time fast processing. In other words, the

parameters of the filter should be updated adaptively in a recursive way. Such filters

are collectively referred to as adaptive filters.

This chapter will first discuss two common optimal filters — the matched filter and

Wiener filter, and then focus on various adaptive implementation algorithms of Kalman

filter and Wiener filter. For any kind of adaptive filter, the adaptive algorithm itself

is important, but the statistical performance of the algorithm, especially the ability

to track the dynamic changes of the system or environment, and its application in

practice are also important. They constitute the main content of this chapter.

5.1 Matched Filter

Roughly speaking, a filter is a signal extractor. Its function is to extract the original

signal from the signal polluted by noise. Of course, the signal extraction should meet

some optimization criteria. There are two optimal design criteria for continuous time

filters. One criterion is to make the output of the filter reach the maximum signal-to-

noise ratio, called matched filter. The other is to minimize the mean square estimation

error of the output filter, called Wiener filter. This section introduces the matched filter

and Section 5.2 discusses continuous time Wiener filter.

https://doi.org/10.1515/9783110475562-005
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+ h(t)
s(t)

n(t)

y(t) y0(t)

Fig. 5.1.1: Schematic illustration for the linear continuous time filter

5.1.1 Matched Filter

Consider the received or observed signal

y(t) = s(t) + n(t), −∞ < t < ∞, (5.1.1)

where s(t) is a known signal; n(t) is stationary noise with zero mean. Note that the

additive noise n(t) can be white or colored.
Let h(t) be the time invariant impulse response function of the filter. Our goal is to

design the impulse response function h(t) of the filter to maximize the signal-to-noise

ratio of the filter output. Fig 5.1.1 shows the structure of the linear continuous time

filter. From the figure, the output of the filter can be expressed as

y
0
(t) =

∞∫︁

−∞

h(t − τ)y(τ)dτ

=

∞∫︁

−∞

h(t − τ)s(τ)dτ +
∞∫︁

−∞

h(t − τ)n(τ)dτ

def

= s
0
(t) + n

0
(t), (5.1.2)

where

s
0
(t) def=

∞∫︁

−∞

h(t − τ)s(τ)dτ, (5.1.3)

n
0
(t) def=

∞∫︁

−∞

h(t − τ)n(τ)dτ, (5.1.4)

s
0
(t) and n

0
(t) are respectively the signal component and noise component in the filter

output. It can be seen from the above definition that the signal component and the

noise component are actually the output of the signal and additive noise after passing

through the filter, respectively.
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The output signal-to-noise ratio of the filter at time t is defined as
(︂
S
N

)︂
2

def

=

Output instantaneous signal power at t = T
0

Average power of output noise

=

s2
0
(T

0
)

E{n2
0

(t)}
. (5.1.5)

Apply the Parseval theorem to Eq. (5.1.3) to get

∞∫︁

−∞

x*(τ)y(τ)dτ = 1

2π

∞∫︁

−∞

X*(ω)Y(ω)dω, (5.1.6)

then the output signal can be rewritten as

s
0
(t) = 1

2π

∞∫︁

−∞

H(ω)S(ω)ejωtdω, (5.1.7)

where

H(ω) =
∞∫︁

−∞

h(t)e−jωtdt, (5.1.8)

S(ω) =
∞∫︁

−∞

s(t)e−jωtdt, (5.1.9)

and they are the transfer function of the filter and the signal spectrum.

The instantaneous power of the output signal at t = T
0
can be obtained from

Eq. (5.1.7) as

s2
0
(T

0
) =

⃒⃒
⃒⃒
⃒⃒
1

2π

∞∫︁

−∞

H(ω)S(ω)ejωT0dω

⃒⃒
⃒⃒
⃒⃒

2

, (5.1.10)

and the average power of output noise can be obtained from Eq. (5.1.4) as

E{n2
0
(t)} = E

⎧
⎪⎨
⎪⎩

⎡
⎣
∞∫︁

−∞

h(t − τ)n(τ)dτ

⎤
⎦
2

⎫
⎪⎬
⎪⎭
. (5.1.11)

Let Pn(ω) be the power spectral density of the additive noise n(t), then the power

spectral density of the output noise is

Pn
0

(ω) = |H(ω)|2Pn(ω), (5.1.12)

and the average power of the output noise can be written as

E{n2
0
(t)} = 1

2π

∞∫︁

−∞

Pn
0

(ω)dω =

1

2π

∞∫︁

−∞

|H(ω)|2Pn(ω)dω. (5.1.13)
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Substituting Eqs. (5.1.10) and (5.1.13) into the output signal-to-noise ratio defined by

Eq. (5.1.5), yields

(︂
S
N

)︂
2

=

⃒⃒
⃒ 1
2π
∫︀
∞

−∞

H(ω)S(ω)ejωT0dω
⃒⃒
⃒
2

1

2π
∫︀
∞

−∞

|H(ω)|2Pn(ω)dω

=

1

2π

⃒⃒
⃒⃒∫︀∞
−∞

(︁
H(ω)

√︀
Pn(ω)

)︁(︂
S(ω)√
Pn(ω)

)︂
e

jωT
0

dω
⃒⃒
⃒⃒
2

∫︀
∞

−∞

|H(ω)|2Pn(ω)dω
. (5.1.14)

Reviewing Cauchy-Schwartz inequality

⃒⃒
⃒⃒
⃒⃒
∞∫︁

−∞

f (x)g(x)dx

⃒⃒
⃒⃒
⃒⃒

2

≤

⎛
⎝

∞∫︁

−∞

|f (x)|2dx

⎞
⎠
⎛
⎝

∞∫︁

−∞

|g(x)|2dx

⎞
⎠
, (5.1.15)

the equal sign holds if and only if f (x) = cg*(x), where c is an arbitrary complex

constant. Without loss of generality, taking c = 1 in the following.

In Eq. (5.1.15), let

f (x) = H(ω)
√︀
Pn(ω) and g(x) = S(ω)√︀

Pn(ω)
e

jωT
0

.

Apply these substitutions to Eq. (5.1.14) to get

(︂
S
N

)︂
2

≤

1

2π

∫︀
∞

−∞

|H(ω)|2Pn(ω)dω
∫︀
∞

−∞

|S(ω)|2√
Pn(ω)

dω
∫︀
∞

−∞

|H(ω)|2Pn(ω)dω
, (5.1.16)

or (︂
S
N

)︂
2

≤

1

2π

∞∫︁

−∞

|S(ω)|2
Pn(ω)

dω, (5.1.17)

for simplification. Denote the filter transfer function when the equal sign in Eq. (5.1.17)

is true as H
opt
(ω). From the condition for equality of Cauchy-Schwartz inequality, we

have

H
opt
(ω)
√︀
Pn(ω) =

[︃
S(ω)√︀
Pn(ω)

]︃
*

e

−jωT
0

=

S*(ω)√︀
P*n(ω)

e

−jωT
0

,

that is,

H
opt
(ω) = S(−ω)Pn(ω)

e

−jωT
0

, (5.1.18)

where S(−ω) = S*(ω).
When the transfer function of the filter takes the form of Eq. (5.1.18), the equal sign

of Eq. (5.1.17) holds, i.e., the maximum signal-to-noise ratio of the filter output is

SNR
max

=

1

2π

∞∫︁

−∞

|S(ω)|2
Pn(ω)

dω. (5.1.19)
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In the sense of maximizing the output signal-to-noise ratio, the filter defined in

Eq. (5.1.18) is the optimal linear filter. Therefore, the transfer function H
opt
(ω) shown

in Eq. (5.1.18) is the transfer function of the optimal linear filter.

Discussing the following two cases of additive noise will help us to understand the

linear optimal filter more deeply.

1. Optimal Filter in the Case of White Noise – Matched Filter
When the additive noise n(t) is white noise with zero mean and unit variance,

because its power spectral density Pn(ω) = 1, Eq. (5.1.18) is simplified as

H
0
(ω) = S(−ω)e−jωT0 . (5.1.20)

From the above equation, there is |H
0
(ω)| = |S*(ω)| = |S(ω)|. In other words, when

the filter reaches the maximum output signal-to-noise ratio, the amplitude frequency

characteristic |H(ω)| of the filter is equal to the amplitude frequency characteristic

|S(ω)| of the signal s(t), or theymatch. Therefore, the linear filter H
0
(ω) that maximizes

the signal-to-noise ratio in the case of white noise is often called a matched filter.

Perform inverse Fourier transformon both sides of Eq. (5.1.20) to obtain the impulse

response of matched filter H
0
(ω)

h
0
(t) =

∞∫︁

−∞

S(−ω)e−jωT0ejωtdω.

By variable substitution ω′ = −ω, the above formula becomes

h
0
(t) =

∞∫︁

−∞

S(ω′)ejω
′

(T
0
−t)
dω′ = s(T

0
− t). (5.1.21)

That is, the impulse response h
0
(t) of the matched filter is a mirror signal of the signal

s(t).
2. Optimal Filter in the Case of Colored Nise – Generalized Matched Filter

Let w(t) be a filter with transfer function

W(ω) = 1√︀
Pn(ω)

. (5.1.22)

Then, when the colored noise n(t) is filted byW(ω), the power spectral density of the
output signal ñ(t) is

Pñ(ω) = |W(ω)|2Pn(ω) = 1. (5.1.23)

Therefore, the filterW(ω) shown in Eq. (5.1.22) is a whitening filter for colored noise.
Consequently, Eq. (5.1.18) can be written as

H
opt
(ω) = S*(ω)

Pn(ω)
e

−jωT
0

= W(ω)[S*(ω)W*

(ω)e−jωT0 ]. (5.1.24)
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Let
˜S(ω) = S(ω)W(ω), and perform inverse Fourier transform on both sides to obtain

s̃(t) = s(t) *w(t), that is, s̃(t) is the filtering result of the original signal s(t) by using the
whitening filter w(t), and H

0
(ω) = ˜S*(ω)e−jωT0 can be regarded as the filter extracting

the signal from the filtered observation process ỹ(t), where

ỹ(t) = y(t) * w(t) = [s(t) + n(t)] * w(t) = s(t) * w(t) + n(t) * w(t) = s̃(t) + ñ(t).

The difference is that ñ(t) = n(t) * w(t) has become white noise, so H
0
(ω) is a matched

filter. Therefore, the linear filter H
opt
(ω) that maximizes the signal-to-noise ratio in

the case of colored noise is formed by cascading the whitening filter W(ω) and the
matched filter H

0
(ω). In view of this, H

opt
(ω) is often called generalized matched filter,

and its working principle is shown in Fig. 5.1.2.

W (ω) H0(ω)
s(t) + n(t) s̃(t) + ñ(t) s0(t) + n0(t)

Whitening filter Matched filter

Fig. 5.1.2:Working principle of the generalized matched filter

Example 5.1.1 Given that the original signal is a harmonic process

s(t) = Acos(2πfc t), fc =
1

T ,

while the additive noise is colored noise, and its power spectrum is

Pn(f ) =
1

1 + 4π2f 2 .

Solve the impulse response of the optimal linear filter with the maximum signal-to-

noise ratio.

Solution. Since
s(t) = Acos(2πfc t) =

A
2

[e

j2πfc t
+ e

−j2πfc t
],

the spectrum of the harmonic signal s(t) is

S(f ) = A
2

∞∫︁

−∞

[e

−j2π(f−fc)t
+ e

−j2π(f+fc)t
]dt = A

2

[δ(f + fc) + δ(f − fc)].

From the above equation, we have

S(−f ) = A
2

[δ(−f − fc) + δ(−f + fc)] =
A
2

[δ(f + fc) + δ(f − fc)].
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Here we use the properties of δ function δ(−x) = δ(x). Therefore, the optimal linear

filter H
opt
(f ) that maximizes the signal-to-noise ratio is given by Eq. (5.1.18), and its

impulse response is determined by Eq. (5.1.21) as

h
opt
(t) = A

2

∞∫︁

−∞

[δ(f + fc) + δ(f − fc)]
(1 + 4π2f 2)−1 e

−j2πf (T−t)
df

=

A
2

(1 + 4π2f 2c )[ej2πfc(T−t) + e−j2πfc(T−t)]

= A(1 + 4π2f 2c )cos[2πfc(T − t)].

□

5.1.2 Properties of Matched Filter

Since matched filter has important applications in many engineering problems, it is

necessary to understand its important properties.

Property 1 Among all linear filters, the output signal-to-noise ratio of the matched filter

is the largest, and SNR
max

=

Es
N
0
/2

, which is independent of the waveform of the

input signal and the distribution characteristics of the additive noise.

Property 2 The instantaneous power of the output signal of the matched filter reaches

the maximum at t = T
0
.

Property 3 The time T
0
when the output signal-to-noise ratio of the matched filter

reaches the maximum should be selected to be equal to the duration T of the

original signal s(t).
Property 4 The matched filter is adaptive to the delay signal with the same waveform

but different amplitude.

Property 5 Matched filter has no adaptability to frequency shift signal.

Let s
2
(t) be the frequency shift signal of s(t), that is, S

2
(ω) = S(ω + ωα). For example,

S(ω) represents the frequency spectrum of radar fixed target echo signal, S
2
(ω) rep-

resents the frequency spectrum of moving target echo with radial velocity, and ωα is
called Doppler frequency shift. From Eq. (5.1.18), the transfer function of the matched

filter corresponding to signal s
2
(t) is

H
2
(ω) = S*(ω + ωα)e−jωT0 .

Let ω′ = ω + ωα, then

H
2
(ω′) = S*(ω′)e−jω

′T
0
+jωαT0

= H(ω′)ejωαT0 .

It can be seen that the transfer functions of the matched filter of the original signal

s(t) and the frequency shift signal s
2
(t) are different, i.e., the matched filter has no

adaptability to the frequency shift signal.
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Note 1 If T
0
< T, the obtainedmatched filter will not be physically realizable. At this

time, if the matched filter is approximated by a physically realizable filter, its output

signal-to-noise ratio at T
0
= T will not be maximum.

Note 2 If the signal becomes very small from time T
0
, i.e., the matched filter can be

designed using the signal up to time T
0
, which is a quasi-optimal linear filter.

5.1.3 Implementation of Matched Filter

If the precise structure of signal s(t) is known, the impulse response of thematchedfilter

can be directly determined by Eq. (5.1.21), so as to realize matched filtering. However,

in many practical applications, only the signal power spectrum Ps(ω) = |S(ω)|2 can
be known. In such cases, it is necessary to separate the spectral expression S(ω) of
the signal from the power spectrum, and then use Eq. (5.1.20) to design the transfer

function of the matched filter.

In addition, when designing a whitening filter with colored noise, it is often the

case that only the power spectrum Pn(ω) = |N(ω)|2 of the noise is known. In order to
design the whitening filter W(ω) = 1

N(ω) =
1√
Pn(ω)

, it is also necessary to decompose

the noise power spectrum to obtain the noise spectrum N(ω) =
√︀
Pn(ω). The process

of obtaining spectrum from power spectrum is called factorization of power spectrum,

also called spectral decomposition for short.

For any stationary signal x(t), its power spectral density Px(ω) = |X(ω)|2 is gener-
ally a rational function, expressed as

Px(ω) = σ2
(ω + z

1
) · · · (ω + zn)

(ω + p
1
) · · · (ω + pm)

, (5.1.25)

where zi , i = 1, · · · , n, and pj , j = 1, · · · ,m, are respectively called the zeros and poles
of power spectrum. Usually, n < m is assumed. In addition, any zero and the poles are

irreducible.

The power spectrum is a nonnegative real and even function, i.e.,

Px(ω) = P*x(ω). (5.1.26)

It can be seen that the zeros and poles of Px(ω) appear in conjugate pairs certainly.

Therefore, the power spectrum can always be written as

Px(ω) =
[︂
α (jω + α

1
) · · · (jω + αq)

(jω + β
1
) · · · (jω + βq)

]︂ [︂
α (−jω + α

1
) · · · (−jω + αq)

(−jω + β
1
) · · · (−jω + βq)

]︂
. (5.1.27)

Denote P+x (ω) as the factor formed by the zeros and poles of Px(ω) on the left half plane,
and P−x (ω) as factor formed by the zeros and poles on the right half plane, and divide

the zeros and poles of Px(ω) on the axis in half to P+x (ω) and P−x (ω). In this way, the
power spectrum Px(ω) can be factorized into

Px(ω) = P+x (ω)P−x (ω), (5.1.28)
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which is called spectrum decomposition.

To make the matched filter physically realizable, just take

S(ω) = P+s (ω), (5.1.29)

and substitute it into Eq. (5.1.20). Similarly, by selecting

W(ω) = 1

P+n(ω)
, (5.1.30)

a physically realizable whitening filter can be obtained.

5.2 Continuous Time Wiener Filter

In the matched filter, the receiver must know and store the precise structure or power

spectrum of the signal, and the integral interval must be synchronized with the interval

in which the signal takes non-zero value. Unfortunately, sometimes it is difficult to

know the structure or power spectrum of the signal alone, and once the signal prop-

agation delay, phase drift, or frequency drift occurs in the transmission process, the

synchronization between the integral interval and the signal interval will also lead to

error. In these cases, the application of matched filter is difficult to obtain satisfactory

results, or even impossible. It is necessary to find other linear optimal filters.

Since the observation data y(t) = s(t) + n(t), using filter H(ω), the estimation of

signal s(t) can be obtained

ŝ(t) =
∞∫︁

−∞

h(t − τ)y(τ)dτ =
∞∫︁

−∞

h(τ)y(t − τ)dτ. (5.2.1)

Recall that it has been pointed out in Chapter 2 (Parameter Estimation Theory) that the

estimation error s(t) − ŝ(t) is a random variable and is not suitable for evaluating the

performance of a parameter estimator or filter. Whereas different from the estimation

error, themean square error is a deterministic quantity and is one of themainmeasures

of filter performance.

Consider minimizing the mean square error

J = E{[s(t) − ŝ(t)]2} = E

⎧
⎪⎨
⎪⎩

⎡
⎣s(t) −

∞∫︁

−∞

h(τ)y(t − τ)dτ

⎤
⎦
2

⎫
⎪⎬
⎪⎭
, (5.2.2)

which is theminimummean square error (MMSE) criterion. Thus, the impulse response

of the linear optimal filter can be expressed as

h
opt
(t) = argmin

h(t)
E

⎧
⎪⎨
⎪⎩

⎡
⎣s(t) −

∞∫︁

−∞

h(τ)y(t − τ)dτ

⎤
⎦
2

⎫
⎪⎬
⎪⎭
, (5.2.3)
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and its Fourier transform is the frequency response of the linear optimal filter.

The linear optimal filter

H
opt
(ω) = Psy(ω)

Pyy(ω)
, (5.2.4)

is a noncausal Wiener filter, since the filter impulse response h
opt
(t) takes value in time

interval (−∞, +∞). Note that the noncausal Wiener filter is physically unrealizable.

Any noncausal linear system can be divided into causal and anticausal parts. The

causal part is physically realizable, and the anticausal part is physically unrealizable.

Therefore, it is considered that the causal part is separated from a noncausal Wiener

filter to obtain a physically realizable causal Wiener filter.

Given

H(ω) = Psy(ω)
Pyy(ω)

. (5.2.5)

In general, it is difficult to separate the causal part H
opt
(ω) =

∑︀
∞

k=0 h(k)e
−jωk

from

H(ω) =
∑︀
∞

k=−∞ h(k)e
−jωk

. However, if the power spectrum Pyy(ω) is a rational function
of ω, the causal Wiener filter H

opt
(ω) can be easily obtained.

Firstly, the rational power spectrum Pyy(ω) is decomposed into

Pyy(ω) = A+yy(ω)A−yy(ω), (5.2.6)

where, the zeros and poles of A+yy(ω) are all located in the left half plane, while the

zeros and poles of A−yy(ω) are all located in the right half plane, and the zeros and poles
located on the ω axis are divided into A+yy(ω) and A−yy(ω) in half.

Then, further decomposition can be performed to obtain

Psy(ω)
A−yy(ω)

= B+(ω) + B−(ω), (5.2.7)

where the zeros and poles of B+(ω) are all located in the left half plane, while the

zeros and poles of B−(ω) are all located in the right half plane, and the zeros and poles
located on the ω axis are also divided into B+(ω) and B−(ω) in half.

Finally, rewrite Eq. (5.2.5) as

H(ω) = Psy(ω)
A+yy(ω)A−yy(ω)

=

1

A+yy(ω)
Psy(ω)
A−yy(ω)

=

1

A+yy(ω)
[B+(ω) + B−(ω)], (5.2.8)

then

H
opt
(ω) = B+(ω)

A+yy(ω)
, (5.2.9)

contains only the zeros and poles of the left half plane, so obviously it is physically

realizable.

To summarize the above discussions, when Pyy(ω) is a rational power spectrum,

the design algorithm of causal Wiener filter is as follows.

Algorithm 5.2.1. Causal Wiener filter design algorithm 1
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Step 1 Perform spectral decomposition of Pyy(ω) according to Eq. (5.2.6);
Step 2 Calculate Eq. (5.2.7);
Step 3 Get the transfer function Hopt(ω) of causal Wiener filter using Eq. (5.2.9).

If z = e

jω
and the power spectral density is written as Psy(z) and Pyy(z), the above

algorithm can be easily extended as follows.

Algorithm 5.2.2. Causal Wiener filter design algorithm 2
Step 1 Perform spectral decomposition of Pyy(z) to obtain

Pyy(z) = A+yy(z)A−yy(z), (5.2.10)

where the zeros and poles of A+yy(z) are all located inside the unit circle, while the
zeros and poles of A−yy(z) are all located outside the unit circle.

Step 2 Calculate
Psy(z)
A−yy(z)

= B+(z) + B−(z), (5.2.11)

where the zeros and poles of B+(z) are all located inside the unit circle, while the
zeros and poles of B−(z) are all located outside the unit circle.

Step 3 Determine the transfer function Hopt(z) of the causal Wiener filter by

Hopt(z) =
B+(z)
A+yy(z)

. (5.2.12)

It should be noted that the decomposition of Eq. (5.2.10) is the factorization of the

power spectrum, while the decomposition of Eq. (5.2.11) is the decomposition of the

positive and negative frequency parts of the power spectrum.

5.3 Optimal Filtering Theory and Wiener Filter

The continuous time Wiener filter was discussed in Section 5.2. In digital signal pro-

cessing, it is desirable to obtain discrete time filters so that they can be implemented

with digital hardware or computer software. Therefore, it is necessary to discuss the

optimal filtering of discrete time signals.

5.3.1 Linear Optimal Filter

Consider the linear discrete time filter shown in Fig. 5.3.1. The input of the filter includes

infinite time series u(0), u(1), · · · , and the impulse response of the filter is an also

infinite sequence as w
0
, w

1
, · · · . Let y(n) represent the output of the filter at discrete

time n, hoping that it is an estimate of the desired response d(n).
The estimation error e(n) is definedas thedifferencebetween the expected response

d(n) and the filter output y(n), i.e., e(n) = d(n) − y(n). The requirement for the filter is
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Linear discrete-time filter
ω0, ω1, · · · Σ

Input u(0), u(1), · · · Output y(n) Estimation error e(n)

Desired response d(n)

+
−

Fig. 5.3.1: Schematic illustration for the linear discrete time filter

to make the estimation error as small as possible in a certain statistical sense. For this

purpose, the filter is subject to the following constraints:

(1) The filter is linear (on the one hand, it is to prevent the signal from distortion after

passing through the filter, on the other hand, it is to facilitate the mathematical

analysis of the filter);

(2) The filter is discrete in time domain, which will enable the filter to be implemented

by digital hardware or software.

According to whether the impulse response is finite or infinite, the linear discrete time

filter is divided into finite impulse response (FIR) filter and infinite impulse response

(IIR) filter. Since FIR filter is a special case of IIR filter, IIR filter is discussed here.

Thefilterwhose estimation error is as small as possible in a statistical sense is called

the optimal filter in this statistical sense. So, how to design the criteria of statistical

optimization? The most common criterion is to minimize a cost function.

There are many forms of the cost function, and the most typical forms are:

(1) The mean square value of the estimation error;

(2) The expected value of the absolute estimation error;

(3) The expected value of the third or higher power of the absolute estimation error.

The statistical optimization criterion that minimizes the mean square value of estima-

tion error is called the minimummean square error criterion, i.e., the MMSE criterion.

It is the most widely used optimization criterion in the design of filters, estimators,

detectors, and so on.

To sum up the above discussion, the optimal design problem of linear discrete

time filter can be expressed as follows.

The coefficient wk of a linear discrete time filter is designed so that the output

y(n) gives the estimation of the expected response d(n) given the input sample set

u(0), u(1), · · · , and the mean square value E{|e(n)|2} of the estimation error e(n) =
d(n) − y(n) can be minimized.
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5.3.2 Orthogonality Principle

Consider the optimal design of the linear discrete-time filter shown in Fig.5.3.1. The

output y(n) of the filter in discrete time n is the linear convolution sum of the input

u(k) and the filter impulse response w*k, that is

y(n) =
∞∑︁

k=0

w*ku(n − k), n = 1, 2, · · · . (5.3.1)

Assume that both the filter input and the expected response are a single instance of the

generalized stationary random process. Since the estimation of the expected response

d(n) is always accompanied by errors, which can be defined as

e(n) = d(n) − y(n), (5.3.2)

the MMSE criterion is used to design the optimal filter. Therefore, the cost function is

defined as the mean square error

J(n) = E{|e(n)|2} = E{e(n)e*(n)}. (5.3.3)

For complex input data, the tap weight coefficient wk of the filter is generally complex-

valued. Assuming that there are an infinite number of tap weight coefficients wk, this
filter is an IIR filter. The tap weight coefficient may be divided into real and imaginary

parts as

wk = ak + jbk , k = 0, 1, 2, · · · . (5.3.4)

Define the gradient operator as

∇k =
∂
∂ak

+ j

∂
∂bk

, k = 0, 1, 2, · · · , (5.3.5)

we have

∇kJ(n)
def

=

∂J(n)
∂wk

=

∂J(n)
∂ak

+ j

∂J(n)
∂bk

, k = 0, 1, 2, · · · . (5.3.6)

To minimize the cost function J, all elements of gradient∇kJ(n) must be equal to zero

at the same time, i.e.,

∇kJ(n) = 0, k = 0, 1, 2, · · · . (5.3.7)

Under this set of conditions, the filter is optimal in the sense of minimummean square

error.

From Eqs. (5.3.2) and (5.3.3), it is easy to obtain

∇kJ(n) = E

{︂
∂e(n)
∂ak

e*(n) + ∂e
*

(n)
∂ak

e(n) + j∂e(n)∂bk
e*(n) + j∂e

*

(n)
∂bk

e(n)
}︂
. (5.3.8)

Using Eqs. (5.3.2) and (5.3.5), the partial derivative can be expressed as

∂e(n)
∂ak = −u(n − k)
∂e(n)
∂bk = ju(n − k)

∂e*(n)
∂ak = −u*(n − k)
∂e*(n)
∂bk = −ju*(n − k)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (5.3.9)
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Substituting Eq. (5.3.9) into Eq. (5.3.8), there is

∇kJ(n) = −2E
{︁
u(n − k)e*(n)

}︁
. (5.3.10)

Let e
opt
(n) represent the estimation error of the filter under the optimal condition. From

Eq. (5.3.10), e
opt
(n) should satisfy∇kJ = −2E

{︀
u(n − k)e*

opt
(n)
}︀
= 0, or equivalently

E

{︁
u(n − k)e*

opt
(n)
}︁
= 0, k = 0, 1, 2, · · · . (5.3.11)

Eq. (5.3.11) indicates that the necessary and sufficient condition for minimizing the cost

function J is that the estimation error e
opt
(n) is orthogonal to the input u(0), · · · , u(n).

This is the famous orthogonality principle, which is often used as a theorem. It is one

of the most important theorems in linear optimal filtering theory. At the same time, it

also provides a mathematical basis for the test method to test whether the filter works

under the optimal condition.

On the other hand, it is easy to verify

E

{︁
y(n)e*(n)

}︁
= E

{︃
∞∑︁

k=0

w*ku(n − k)e*(n)
}︃
=

∞∑︁

k=0

w*kE
{︁
u(n − k)e*(n)

}︁
. (5.3.12)

Let y
opt
(n) represent the output of the optimal filter in the sense of minimum mean

square. According to Eqs. (5.3.11) and (5.3.12), the orthogonality principle can be equiv-

alently written as

E

{︁
y
opt
(n)e*

opt
(n)
}︁
= 0. (5.3.13)

The above equation means that when the filter works under the optimal condition,

the estimation of the desired response y
opt
(n) is defined by the filter output, and the

corresponding estimation error e
opt
(n) are orthogonal to each other. This is called the

lemma of the orthogonality principle.

5.3.3 Wiener Filter

The necessary and sufficient condition for the filter to be in the optimal working state

is derived and shown in Eq. (5.3.11). Take Eq. (5.3.2) into consideration, Eq. (5.3.11) can

be rewritten as

E

{︃
u(n − k)

[︃
d*(n) −

∞∑︁

i=0
w
opt,iu*(n − i)

]︃}︃
= 0, k = 1, 2, · · · , (5.3.14)

where w
opt,i represents the i-th coefficient of the impulse response of the optimal filter.

Expand the above equation and rearrange it to obtain

∞∑︁

i=0
w
opt,iE

{︁
u(n − k)u*(n − i)

}︁
= E

{︁
u(n − k)d*(n)

}︁
, k = 1, 2, · · · . (5.3.15)

The two mathematical expectation terms in Eq. (5.3.15) have the following physical

meanings respectively:
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z−1 z−1 z−1

w∗
0 w∗

1 w∗
M−2 w∗

M−1

∑ ∑ ∑ ∑

u(n) u(n− 1) u(n−M + 2) u(n−M + 1)

d̂(n)

+
−

d(n)

e(n)

Fig. 5.3.2: FIR filter

(1) The mathematical expectation term E

{︀
u(n − k)u*(n − i)

}︀
represents the autocor-

relation function Ruu(i − k) of the filter input at lag i − k, i.e.,

Ruu(i − k) = E

{︁
u(n − k)u*(n − i)

}︁
. (5.3.16)

(2) The mathematical expectation term E

{︀
u(n − k)d*(n)

}︀
is equal to the cross-

correlation function Ru,d(−k) between the filter input u(n − k) and the expected
response d(n) at lag −k, i.e.,

Ru,d(−k) = E

{︁
u(n − k)d*(n)

}︁
. (5.3.17)

Using Eqs. (5.3.16) and (5.3.17), Eq. (5.3.15) can be written in a concise form as

∞∑︁

i=0
w
opt,iRu,u(i − k) = Ru,d(−k), k = 1, 2, · · · . (5.3.18)

This is the famousWiener-Hopf (difference) equation, which defines the conditions that

the optimal filter coefficients must obey. In principle, if the autocorrelation function

Ru,u(τ) of the filter input and the cross-correlation function Ru,d(τ) between the input
and the expected response can be estimated, the coefficients of the optimal filter can

be obtained by solving the Wiener-Hopf equation, so as to complete the optimal filter

design. However, for the IIR filter design, it is unrealistic to solveWiener-Hopf equation,

because infinite equations need to be solved.

If the filter has a finite number of impulse response coefficients, the filter design

will be greatly simplified. This kind of filter is FIR filter, also known as transversal filter.

Fig.5.3.2 shows the principle of an FIR filter.

As shown in Fig.5.3.2, the filter impulse response is defined by M tap weight coeffi-

cients w
0
, w

1
, · · · , wM−1. Thus, the filter output is

y(n) =
M−1∑︁

i=0
w*i u(n − i), n = 0, 1, · · · , (5.3.19)
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and consequently the Wiener-Hopf equation (5.3.18) is simplified to M homogeneous

equations

M−1∑︁

i=0
w
opt,iRu,u(i − k) = Ru,d(−k), k = 0, 1, · · · ,M − 1, (5.3.20)

wherew
opt,i represents the optimal tapweight coefficient of the transversal filter. Define

an M × 1 input vector

u(n) = [u(n), u(n − 1), · · · , u(n −M + 1)]

T

, (5.3.21)

to get its autocorrelation matrix as

R = E{u(n)uH(n)} =

⎡
⎢⎢⎢⎢⎣

Ru,u(0) Ru,u(1) · · · Ru,u(M − 1)
R*u,u(1) Ru,u(0) · · · Ru,u(M − 2)

.

.

.

.

.

.

.

.

.

.

.

.

R*u,u(M − 1) R*u,u(M − 2) · · · Ru,u(0)

⎤
⎥⎥⎥⎥⎦
. (5.3.22)

Similarly, the cross-correlation vector between the input and the desired response is

r = E{u(n)d*(n)} = [Ru,d(0), Ru,d(−1), · · · , Ru,d(−M + 1)]

T

. (5.3.23)

UsingEqs. (5.3.21)∼ (5.3.23),Wiener-Hopf equation (5.3.20) canbewritten in a compact

matrix form as

Rw
opt

= r, (5.3.24)

where w
opt

= [w
opt,0

, w
opt,1

, · · · , w
opt,M−1]

T

represents the M × 1 optimal tap weight

vector of the transversal filter.

From matrix equation (5.3.24), the solution of the optimal tap weight vector can

be obtained as

w
opt

= R−1r. (5.3.25)

The discrete-time transversal filter satisfying this relationship is called Wiener filter,

which is optimal under the criterion ofminimummean square error. In fact, the discrete-

time filter in many signal processing problems has the form of Wiener filter. By the way,

the optimal filtering theory was first established by Wiener for continuous time signals.

Two main conclusions about the Wiener filter can be drawn from Eq. (5.3.25).

(1) The calculation of the optimal tap weight vector of Wiener filter requires the follow-

ing statistics to be known: ➀ the autocorrelation matrix R of the input vector u(n);
➁ the cross correlation vector r between the input vector u(n) and the expected
response d(n).

(2) Wiener filter is actually the solution of the optimal filtering problem of uncon-

strained optimization.
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5.4 Kalman Filter

In section 5.3, the linear optimal filter in the presence of expected response is analyzed,

andWiener filter is obtained. Anatural question is: if the expected response is unknown,

how to perform linear optimal filtering? This question will be answered in this section

based on the state spacemodel. The linear optimal filter based on the state spacemodel

is proposed by Kalman, which is called Kalman filter.

Kalman filtering theory is the extension of Wiener filtering theory. It was first

used for parameter estimation of stochastic processes, and then it was widely used in

various optimal filtering and optimal control problems. Kalman filter has the following

characteristics: (1) its mathematical formula is described by the concept of state space;

(2) Its solution is calculated recursively, i.e., unlike theWiener filter, the Kalman filter is

an adaptive filter. It is worth noting that the Kalman filter provides a unified framework

for deriving a large class of adaptive filters called recursive least squares filter. The

widely used recursive least squares algorithm in practice is a special case of the Kalman

filter.

5.4.1 Kalman Filtering Problem

A discrete-time dynamic system is considered, which is represented by the process

equation describing the state vector and the observation equation describing the ob-

servation vector.

(1) The process equation is

x(n + 1) = F(n + 1, n)x(n) + v
1
(n), (5.4.1)

where M × 1 vector x(n) represents the state vector of the system at discrete time n
and is unobservable; M ×M matrix F(n + 1, n) is called the state transition matrix

describing the transition of the dynamic system from the state of time n to the state
of n +1, which should be known; TheM ×1 vector v

1
(n) is the process noise vector,

which describes the additive noise or error in the state transition.

(2) The observation equation is

y(n) = C(n)x(n) + v
2
(n), (5.4.2)

where y(n) represents the N × 1 observation vector of the dynamic system at time

n; N × M matrix C(n) is called the observation matrix (describing that the state

becomes observable data through its function), which is required to be known;

v
2
(n) represents the observation noise vector, and its dimension is the same as

that of the observation vector.

The process equation is also called the state equation. For the convenience of analysis,

it is usually assumed that both process noise v
1
(n) and observation noise v

2
(n) are
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white noise processes with zero mean, and their correlation matrices are

E{v
1
(n)vH

1
(k)} =

{︃
Q
1
(n), n = k,

0, n ̸= k,
(5.4.3)

E{v
2
(n)vH

2
(k)} =

{︃
Q
2
(n), n = k,

0, n ̸= k.
(5.4.4)

It is also assumed that the initial value x(0) of the state are not correlated with v
1
(n)

and v
2
(n) (where n > 0) , and the noise vectors v

1
(n) and v

2
(n) are not correlated with

each other either, that is

E{v
1
(n)vH

2
(k)} = 0, ∀n, k. (5.4.5)

The problem of the Kalman filter can be described as: using the observed data vector

y(1), · · · , y(n), for n ≥ 1, find the least squares estimation of each entry of the state

vector x(i). According to the different values of i and n, the Kalman filtering problem

can be further divided into the following three types:

(1) Filtering (i = n): Extracting the information at time n by using the measurement

data at time n and before;
(2) Smoothing (1 ≤ i < n): Different from filtering, the information to be extracted is

not necessarily at time n, but generally the information of a certain time before

n. And the measurement data after time n can also be used. in other words, the
time to obtain the result of interest usually lags behind the time to obtain the

measurement data. Since not only the measurement data at time n and before, but
also the measurement data after time n can be used, the smoothing result is more

accurate than the filtering result in a sense.

(3) Prediction (i > n): Determine the information of time n + τ (where τ > 0) using the
measurement data of time n and before, so it is a prediction result of the actual
information of time n + τ.

5.4.2 Innovation Process

Consider the one-step prediction problem: given the observation value y(1), · · · , y(n),
find the least squares estimation of the observation vector y(n) and denote it as ŷ

1

(n) def=
ŷ(n|y(1), · · · , y(n − 1)). Such a one-step prediction problem is easy to solve via the

innovation method, proposed by Kailath in 1968

[116, 117]

.

1. Properties of the Innovation Process
The innovation process of y(n) is defined as

α(n) = y(n) − ŷ
1

(n), n = 1, 2, · · · , (5.4.6)

where N × 1 vector α(n) represents the new information of the observation data y(n),
called innovation for short.

The innovation α(n) has the following properties.
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Property 1 The innovation α(n) at time n is orthogonal to all past observations

y(1), · · · , y(n − 1), that is,

E{α(n)yH(k)} = 0, 1 ≤ k ≤ n − 1, (5.4.7)

where 0 represents a zero matrix (i.e., a matrix whose elements are all zero).

Property 2 The innovation process consists of a random vector sequence {α(n)} which
is orthogonal to each other, i.e.,

E{α(n)αH(k)} = 0, 1 ≤ k ≤ n − 1. (5.4.8)

Property 3 The random vector sequence {y(1), · · · , y(n)} representing the observation
data corresponds to the random vector sequence {α(1), · · · , α(n)} representing
the innovation process one by one, i.e.,

{y(1), · · · , y(n)} ⇔ {α(1), · · · , α(n)}, (5.4.9)

The above properties show that the innovation α(n) at time n is a random process

that is not related to the observation data y(1), · · · , y(n − 1) before time n and has the
property of white noise, but it can provide new information about y(n). This is just the
physical meaning of innovation.

2. Calculation of Innovation Process
Let the correlation matrix of the innovation process be

R(n) = E{α(n)αH(n)}. (5.4.10)

In the Kalman filter, the one-step prediction ŷ
1

(n) of the observation data vector is not
estimated directly, but the one-step prediction of the state vector is calculated first

x̂
1
(n) def= x(n|y(1), · · · , y(n − 1)), (5.4.11)

and then obtain

ŷ
1

(n) = C(n)x̂
1
(n). (5.4.12)

By substituting the above equation into Eq. (5.4.6), the innovation process can be

rewritten as

α(n) = y(n) − C(n)x̂
1
(n) = C(n)[x(n) − x̂

1
(n)] + v

2
(n). (5.4.13)

This is the actual calculation formula of the innovation process, provided that the

one-step prediction x̂
1
(n) of the state vector has been obtained.

Define the one-step prediction error of the state vector

ϵ(n, n − 1) def= x(n) − x̂
1
(n), (5.4.14)

and substituting the above equation into Eq. (5.4.13) yields

α(n) = C(n)ϵ(n, n − 1) + v
2
(n). (5.4.15)
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Substitute Eq. (5.4.14) into the correlationmatrix defined in Eq. (5.4.10) of the innovation

process, and note that the observation matrix C(n) is a known deterministic matrix, so

we have

R(n) = C(n)E{ϵ(n, n − 1)ϵH(n, n − 1)}CH(n) + E{v
2
(n)vH

2
(n)}

= C(n)K(n, n − 1)CH(n) + Q
2
(n), (5.4.16)

where Q
2
(n) is the correlation matrix of the observation noise v

2
(n), and

K(n, n − 1) = E{ϵ(n, n − 1)ϵH(n, n − 1)} (5.4.17)

represents the correlation matrix of (one-step) prediction state error.

5.4.3 Kalman Filtering Algorithm

With the knowledge and information about the innovation process, we can discuss the

core problems of the Kalman filtering algorithm: How to use the innovation process

to predict state vector? The most natural method is to use the linear combination

of the innovation process sequence α(1), · · · , α(n) to directly construct the one-step
prediction of the state vector

x̂
1
(n + 1) def= x̂(n + 1|y(1), · · · , y(n)) =

n∑︁

k=1

W
1
(k)α(k), (5.4.18)

whereW
1
(k) represents the weight matrix corresponding to the one-step prediction,

and k is discrete time. The question now becomes how to determine the weight matrix.

According to the principle of orthogonality, the estimation error ϵ(n + 1, n) =
x(n+1)− x̂

1
(n+1) of the optimal prediction should be orthogonal to the known values,

so we have

E{ϵ(n + 1, n)αH(k)} = E{[x(n + 1) − x̂
1
(n + 1)]αH(k)} = 0, k = 1, · · · , n. (5.4.19)

Substituting Eq. (5.4.18) into Eq. (5.4.19), and using the orthogonality of the innovation

process, we obtain

E{x(n + 1)αH(k)} = W
1
(k)E{α(k)αH(k)} = W

1
(k)R(k).

Thus, the expression of the weight matrix can be obtained

W
1
(k) = E{x(n + 1)αH(k)}R−1(k), (5.4.20)

and substituting Eq. (5.4.20) into Eq. (5.4.18) further, the minimummean square esti-

mation of one-step prediction of the state vector can be expressed as

x̂
1
(n + 1) =

n−1∑︁

k=1

E{x(n + 1)αH(k)}R−1(k)α(k)

+ E{x(n + 1)αH(n)}R−1(n)α(n). (5.4.21)
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Notice E{v
1
(n)α(k)} = 0, k = 0, 1, · · · , n, and use the state equation (5.4.1) , it is easy

to find that

E{x(n + 1)αH(k)} = E{[F(n + 1, n)x(n) + v
1
(n)]αH(k)} (5.4.22)

= F(n + 1, n)E{x(n)αH(k)}, (5.4.23)

holds for k = 0, 1, · · · , n.
By substituting Eq. (5.4.23) into the first term (summation term) on the right of

Eq. (5.4.21), it can be reduced to

n−1∑︁

k=1

E{x(n + 1)αH(k)}R−1(k)α(k) = F(n + 1, n)
n−1∑︁

k=1

E{x(n)αH(k)}R−1(k)α(k)

= F(n + 1, n)x̂
1
(n). (5.4.24)

On the other hand, if

G(n) def= E{x(n + 1)αH(n)}R−1(n), (5.4.25)

is defined and Eqs. (5.4.24) and (5.4.25) are substituted into Eq. (5.4.21), the update

equation of one-step prediction of the state vector can be obtained as

x̂
1
(n + 1) = F(n + 1, n)x̂

1
(n) + G(n)α(n). (5.4.26)

Eq. (5.4.26) plays a key role in Kalman filtering algorithm because it shows that the

one-step prediction of the state vector at time n + 1 can be divided into nonadaptive
(i.e. determinate) part F(n + 1, n)x̂

1
(n) and adaptive (i.e. corrective) part G(n)α(n).

Therefore, G(n) is called Kalman gain (matrix).

The following is the Kalman adaptive filtering algorithm based on one-step predic-

tion.

Algorithm 5.4.1. Kalman adaptive filtering algorithm
Initial conditions:

x̂
1
(1) = E{x(1)},

K(1, 0) = E{[x(1) − x̄(1)][x(1) − x̄(1)]H},

where x̄(1) = E{x(1)}.
Input observation vector process:

Observation vector sequence {y(1), · · · , y(n)}.
Known parameters:

State transition matrix F(n + 1, n),
Observation matrix C(n),
Correlation matrix Q

1
(n) of the process noise vector,

Correlation matrix Q
2
(n) of the observation noise vector,
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Calculate: n = 1, 2, 3, · · ·

G = F(n + 1, n)K(n, n − 1)CH(n)
[︁
C(n)K(n, n − 1)CH(n) + Q

2
(n)
]︁
−1

,

α(n) = y(n) − C(n)x̂
1
(n),

x̂
1
(n + 1) = F(n + 1, n)x̂

1
(n) + G(n)α(n),

P(n) = K(n, n − 1) − F−1(n + 1, n)G(n)C(n)K(n, n − 1),

K(n, n − 1) = F(n + 1, n)P(n)FH(n + 1, n) + Q
1
(n).

The estimation performance of the Kalman filter is that it minimizes the trace of the

correlationmatrix P(n) of the filtered state estimation error. Thismeans that the Kalman

filter is a linear minimum variance estimate of the state vector x(n)
[100]

.

5.5 LMS Adaptive Algorithms

Different from the Kalman filtering algorithm based on the state space model, another

kind of adaptive algorithm is based on the (gradient) descent algorithm in optimization

theory. There are two main implementation forms of the descent algorithm. One is the

adaptive gradient algorithm, the other is the adaptive Gauss-Newton algorithm.

The adaptive gradient algorithm includes the least mean squares algorithm, its

variants and improvements (collectively referred to as LMS adaptive algorithms). And

adaptive Gauss-Newton algorithm includes the recursive least square algorithm and its

variants and improvements.

This section describes LMS adaptive algorithms.

5.5.1 Descent Algorithm

The most common criterion for filter design is to minimize the mean square error

E{|e(n)|2} between the actual output y(n) = uT(n)w* = wHu(n) of the filter and the
expected response d(n), which is the famous minimum mean square error (MMSE)

criterion.

Fig. 5.5.1 shows a schematic diagram of an adaptive FIR filter.

Let

ϵ(n) = d(n) − wHu(n), (5.5.1)

represent the estimation error of the filter at time n, and define the mean square error

J(n) def= E{|e(n)|2} = E

{︂⃒⃒
⃒d(n) − wHu(n)

⃒⃒
⃒
2

}︂
, (5.5.2)

as the cost function.
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Fig. 5.5.1: Schematic diagram of an adaptive FIR filter

The gradient of the cost function relative to the filter tap weight vector w is

∇kJ(n) = −2E{u(n − k)ϵ*(n)}

= −2E

{︁
u(n − k)[d(n) − wHu(n)]*

}︁
, k = 0, 1, · · · ,M − 1. (5.5.3)

Let wi = ai + jbi , i = 0, 1, · · · ,M − 1, and define the gradient vector

∇J(n) def= [∇
0
J(n),∇

1
J(n), · · · ,∇M−1J(n)]T

=

⎡
⎢⎢⎢⎢⎣

∂J(n)
∂a

0
(n) + j

∂J(n)
∂b

0
(n)

∂J(n)
∂a

1
(n) + j

∂J(n)
∂b

1
(n)

.

.

.

∂J(n)
∂aM−1(n)

+ j

∂J(n)
∂bM−1(n)

⎤
⎥⎥⎥⎥⎦
, (5.5.4)

the input vector and the tap weight vector

u(n) = [u(n), u(n − 1), · · · , u(n −M + 1)]

T

, (5.5.5)

w(n) = [w
0
(n), w

1
(n), · · · , wM−1(n)]T, (5.5.6)

then Eq. (5.5.4) can be written in vector form

∇J(n) = −2E{u(n)[d*(n) − uH(n)w(n)]} = −2r + 2Rw(n), (5.5.7)

where

R = E{u(n)uH(n)}, (5.5.8)

r = E{u(n)d*(n)}. (5.5.9)

The most widely used adaptive algorithm is “descent algorithm”

w(n) = w(n − 1) + μ(n)v(n), (5.5.10)

where w(n) is the weight vector of the n-th iteration (i.e. time n), μ(n) is the update
step of the n-th iteration, and v(n) is the update direction (vector) of the n-th iteration.
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5.5.2 LMS Algorithm and Its Basic Variants

The most commonly used descent algorithm is the gradient descent method, which

is often called the steepest descent method. In this algorithm, the update direction

vector v(n) is taken as the negative gradient of the cost function J[w(n − 1)] of iteration
n − 1, i.e., the unified form of the steepest descent method (also known as gradient

algorithm) is

w(n) = w(n − 1) − 1

2

μ(n)∇J(n − 1), (5.5.11)

where the coefficient 1/2 is to make the resulted update formula simpler.

By substituting Eq. (5.5.7) into Eq. (5.5.11), the update formula of tap weight vector

w(n) can be obtained

w(n) = w(n − 1) + μ(n)[r − Rw(n − 1)], n = 1, 2, · · · . (5.5.12)

The update formula (5.5.12) shows that

(1) r − Rw(n − 1) is the error vector, which represents the correction amount of w(n)
in each step.

(2) The parameter μ(n) is multiplied by the correction amount, which is a parameter

controlling the actual correction amount of w(n) at each step, so μ(n) is called the
“step parameter” at time n. This parameter determines the convergence speed of

the update algorithm as Eq. (5.5.12).

(3) When the adaptive algorithm tends to converge, there is r − Rw(n − 1) → 0 (if

n → ∞), i.e.,

lim

n→∞
w(n − 1) = R−1r

that is, the tap weight vector converges to Wiener filter.

When themathematical expectation termsE{u(n)d*(n)} andE{u(n)uH(n)} in Eq. (5.5.7)
are replaced by their instantaneous values u(n)d*(n) and u(n)uH(n) respectively, the
estimated value of the real gradient vector is obtained

^∇J(n) = −2[u(n)d*(n) − u(n)uH(n)w(n)], (5.5.13)

which is commonly referred to as the instantaneous gradient.

If the real gradient vector∇J(n − 1) in the gradient algorithm shown by Eq. (5.5.11)

is replaced by the instantaneous gradient vector
^∇J(n − 1), the instantaneous gradient

algorithm is obtained

w(n) = w(n − 1) + μ(n)u(n)[d(n) − uT(n)w*(n − 1)]*

= w(n − 1) + μ(n)e*(n)u(n), (5.5.14)

where

e(n) = d(n) − uT(n)w*(n − 1) = d(n) − wH

(n − 1)u(n). (5.5.15)
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Note that although e(n) and ϵ(n) defined in Eq. (5.5.3) represent the estimation error of

the filter at time n, they are different in that e(n) is determined by w(n − 1) and ϵ(n)
is determined by w(n). In order to distinguish, e(n) is often called a priori estimation

error and ϵ(n) is a posteriori estimation error.

The algorithm shown in Eq. (5.5.14) is the famous least mean square error adaptive

algorithm, referred to as LMS algorithm, which was proposed by Widrow in the early

1960s

[227]

.

It is easy to verify that the instantaneous gradient vector is an unbiased estimation

of the real gradient vector because

E{ ^∇J(n)} = −2E{u(n)[d*(n) − uH(n)w(n − 1)]}
= −2[r − Rw(n − 1)] = ∇J(n). (5.5.16)

For the convenience of readers, the LMS adaptive algorithm and its several basic vari-

ants are summarized as follows.

Algorithm 5.5.1. LMS adaptive algorithm and its basic variants
Step 1 Initialization w(0) = 0;
Step 2 Update n = 1, 2, · · ·

e(n) = d(n) − wH
(n − 1)u(n),

w(n) = w(n − 1) + μ(n)u(n)e*(n),

Here are some notes about the LMS algorithm.

Note 1 If μ(n) = constant, it is called basic LMS algorithm.

Note 2 If μ(n) = α
β+uH(n)u(n) , where α ∈ (0, 2), β ≥ 0, the normalized LMS algorithm

is obtained, which is an improvement of the basic LMS algorithm.

Note 3 In the power normalized LMS algorithm, μ(n) = α
σ2u(n)

is taken, where σ2u(n)
represents the variance of u(n), which can be calculated recursively by σ2u(n)λσ2u(n −
1) + e2(n). Here λ ∈ (0, 1] is the forgetting factor, which is determined by 0 < α <

2

M ,

and M is the order of the filter.

Note 4When the desired signal is unknown, d(n) in Step 2 can be directly replaced
by the actual output y(n) of the filter.

5.5.3 Decorrelation LMS Algorithm

In the LMS algorithm, there is an implicit assumption of independence that the input

vector u(1), · · · , u(n) of the transverse filter is a sequence of vectors that are statisti-
cally independent of each other. When they do not meet the condition of statistical

independence, the performance of the basic LMS algorithm may degrade, especially

the convergence speedwill be slow. Therefore, in this case, it is necessary to decorrelate

the input vectors at each time to keep them as statistically independent as possible.
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This operation is called decorrelation. A large number of studies show that ([90] and

other related references) decorrelation can effectively accelerate the convergence rate

of the LMS algorithm.

1. Time Domain Decorrelation LMS Algorithm
Define the correlation coefficient between u(n) and u(n − 1) at time n as

a(n) def= uH(n − 1)u(n)
uH(n − 1)u(n − 1) . (5.5.17)

According to the definition, if a(n) = 1, u(n) is the coherent signal of u(n−1); If a(n) = 0,

u(n) is not related to u(n − 1); When 0 < a(n) < 1, u(n) is correlated with u(n − 1), and
the greater a(n), the stronger the correlation between them.

Obviously, a(n)u(n −1) represents the part of u(n) related to u(n −1). If this part is
subtracted from u(n), the subtraction operation is equivalent to “decorrelation”. Now,
use the result of decorrelation as the update direction vector

v(n) = u(n) − a(n)u(n − 1), (5.5.18)

From this point of view, it is more appropriate to call α(n) as the decorrelation coeffi-

cient.

On the other hand, the step parameter μ(n) should be the solution satisfying the
minimization problem

μ(n) = argmin

μ
J[w(n − 1) + μv(n)]. (5.5.19)

Thus

μ(n) = e(n)
uH(n)v(n) . (5.5.20)

Based on the above results, the decorrelation LMS algorithm

[75]

can be summarized as

follows.

Algorithm 5.5.2. Decorrelation LMS algorithm
Step 1 Initialization: w(0) = 0;
Step 2 Update: n = 1, 2, · · ·

e(n) = d(n) − wH
(n − 1)u(n),

a(n) = uH(n − 1)u(n)
uH(n − 1)u(n − 1) ,

v(n) = u(n) − a(n)u(n − 1),

μ(n) = ρe(n)
uH(n)v(n) ,

w(n) = w(n − 1) + μ(n)v(n).

In the above algorithm, the parameter ρ is called the trimming factor.
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The decorrelation LMS algorithm can be regarded as an adaptive auxiliary variable

method, in which the auxiliary variable is given by v(n) = u(n) − a(n)u(n − 1). Roughly
speaking, the selection principle of the auxiliary variable is that it should be strongly

related to the lagging input and output, but not to interference. Readers interested in

the auxiliary variable methods and their adaptive algorithms can refer to [242].

Further, the auxiliary variable in the above algorithm can be replaced by the error

vector of a forward predictor. Let a(n) be the weight vector of the M-order forward
predictor, and calculate the forward prediction error

ef(n) = u(n) +
M∑︁

i=1
ai(n)u(n − i) = u(n) + aH(n)u(n − 1), (5.5.21)

where u(n − 1) = [u(n − 1), · · · , u(n −M)]

T

and a(n) = [a
1
(n), · · · , aM(n)]T.

The forward prediction error vector is used as the auxiliary variable, that is, the

update direction vector

v(n) = ef(n) = [ef(n), ef(n − 1), · · · , ef(n −M + 1)]

T

. (5.5.22)

If the forward predictor is used to filter the instantaneous estimation error e(n) =
y(n) − waH(n − 1)u(n), the filtered LMS algorithm is obtained as follows

[151]

.

Algorithm 5.5.3. Filtered LMS algorithm
Step 1 Initialization: w(0) = 0;
Step 2 Update: n = 1, 2, · · ·

Given the estimation of a forward predictor a(n),

e(n) = d(n) − wH
(n − 1)u(n),

e(n) = [e(n), e(n − 1), · · · , e(n −M + 1)]

T
,

ef(n) = u(n) + aT(n)u(n − 1),

ef(n) = [ef(n), ef(n − 1), · · · , ef(n −M + 1)]

T
,

ẽ(n) = e(n) + aH(n)e(n) (filtering),

w(n) = w(n − 1) + μef(n)ẽ(n).

2. Transform Domain Decorrelation LMS Algorithm
The early work to improve the performance of the LMS algorithm is to use uni-

tary transformation for the input data vector u(n). For some types of input signals,

the algorithm of unitary transformation can improve the convergence rate, but the

computational complexity is equivalent to that of the LMS algorithm. These algorithms

and their variants are collectively referred to as transform domain adaptive filtering

algorithms

[22]

.

The unitary transform can use discrete Fourier transform (DFT), discrete cosine

transform (DCT), and discrete Hartley transform (DHT), which can effectively improve

the convergence rate of the LMS algorithm.
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Let S be a M ×M unitary transformation matrix, i.e.,

SSH = βI, (5.5.23)

where β > 0 is a fixed scalar.
Being transformed by the unitary matrix S, the input data vector u(n) becomes

x(n) as
x(n) = Su(n). (5.5.24)

Accordingly, the unitarily transformed weight vector w(n − 1) becomes

ŵ(n − 1) = 1

β Sw(n − 1), (5.5.25)

which is the weight vector of the transform domain adaptive filter that needs to update.

Therefore, the original prediction error e(n) = d(n) − wH

(n − 1)u(n) can be repre-
sented by the transformed input data vector x(n) and the filter weight vector ŵ(n − 1)
as,

e(n) = d(n) − ŵH

(n − 1)x(n). (5.5.26)

Comparing the input data vectors u(n) and x(n) before and after transformation, it can

be seen that the elements of the original data vector are the shift form of u(n− i+1), and
they have strong correlation, while the elements of x(n) = [x

1
(n), x

2
(n), · · · , xM(n)]T

are equivalent to the signal of M channels. It can be expected that they have a weaker

correlation than the original signal u(n). In other words, a certain degree of decorrela-
tion is achieved in the transform domain through unitary transformation. From the

perspective of filter, the original single channel M-order FIR transverse filter becomes

an equivalent multi-channel filter, and the original input signal u(n) is equivalent to
passing through a filter bank containing M filters.

Summarizing the above analysis, it is easy to get the transform domain LMS algo-

rithm as follows.

Algorithm 5.5.4. Transform domain LMS algorithm
Step 1 Initialization: ŵ(0) = 0;
Step 2 Given a unitary transformation matrix S,

Update: n = 1, 2, · · ·

x(n) = Su(n),

e(n) = d(n) − ŵH
(n − 1)x(n),

ŵ(n) = ŵ(n − 1) + μ(n)x(n)e(n).

In particular, if the unitary transform adopts DFT, u becomes the Fourier transform

of the input data vector u(n) within a sliding window. This shows that the estimated

weight vector ŵ(n) is the frequency response of the time domain filter w(n). Therefore,
the adaptation, in this case, occurs in the frequency domain, and the resulted filter is

called frequency domain adaptive filter accordingly.
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5.5.4 Selection of the Learning Rate Parameter

The step size parameter μ in the LMS algorithm determines the update amount of tap

weight vector in each iteration, which is the key parameter affecting the convergence

rate of the algorithm. Since the purpose of the LMS algorithm is to make the tap weight

vector approach the Wiener filter in the updating process, the updating process of the

weight vector can be regarded as a learning process, and μ determines the speed of the

learning process of LMS algorithm. In this sense, the step parameter μ is also called
the learning rate parameter. The following discusses the selection of the learning rate

parameter from the perspective of LMS algorithm convergence.

The convergence of the basic LMS algorithm can be divided into mean convergence

and mean square convergence

[100]

.

1. Mean Convergence
From Eq. (5.5.14), the condition that the convergence of the basic LMS algorithm

must meet is

E{e(n)} → 0 if n → ∞.

Or equivalent to that ŵ(n) converging to the optimal Wiener filter, i.e.,

lim

n→∞
E{ŵ(n)} = wopt . (5.5.27)

This is called mean convergence.

To ensure the convergence of the weight vector mean of the LMS algorithm, the

learning rate parameter μ(n) must satisfy

0 < μ <

2

λ
maxt

. (5.5.28)

2. Mean Square Convergence
LMS algorithm is called mean square convergence. If the number of iterations n

tends to infinity, the mean square value of the error signal ϵ(n) = d(n) − wH

(n)u(n)
converges to a constant, i.e.,

lim

n→∞
E

{︁
|e(n)|2

}︁
= c, (5.5.29)

where c is a positive constant.
The condition that theweight vectormean square convergence of the LMSalgorithm

needs to meet is

0 < μ <

2

tr(R) , (5.5.30)

or

0 < μ <

2

Total input energy

, (5.5.31)

where tr(R) is the rank of the autocorrelation function matrix of the filter output vector.

For the transverse filter shown in Fig. 5.5.1, the denominator of Eq. (5.5.31) is M
times the input energy E

{︀
|u(n)|2

}︀
.
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3. Adaptive Learning Rate Parameter
The conditions that the learning rate parameters shouldmeet are obtained from the

perspective of mean convergence and mean square convergence of the LMS algorithm.

In the LMSalgorithm, the simplest selection of the learning rate parameter is to take μ(n)
as a constant, i.e., μ(n) = μ. μ is determined by Eq. (5.5.28), Eq. (5.5.30) or Eq. (5.5.31).

However, this method will cause a contradiction between convergence and steady-state

performance: a large learning rate can improve the convergence rate of the filter, but

the steady-state performance will be reduced; On the contrary, when a small learning

rate is used to improve the steady-state performance, the convergence will slow down.

Therefore, the selection of learning rate should take into account the steady-state

performance and convergence rate. A simple and effective method is to use different

learning rate parameters at different iteration times, that is, time-varying learning

rate

[184]

, and the simplest time-varying learning rate is

μ(n) = c
n , (5.5.32)

where c is a constant. This choice is often called the simulated annealing rule. It should

be noted that if parameter c is large, the LMS algorithm will fall into divergence after

several iterations.

A better approach is to use a large learning rate in the transient stage, namely, the

transition stage, and a small learning rate in the steady state. This selection of learning

rate parameters is called gear-shifting approach

[227]

. For example, the “constant plus

time-varying” learning rate is a typical gear-shifting method. Here are two typical

examples.

The first example is to use the so-called “search first, then convergence” rule

[70]

μ(n) = μ
0

1 + (n/τ) , (5.5.33)

where μ
0
is a fixed learning rate parameter, and τ represents a search time constant.

As can be seen from Eq. (5.5.33), this rule uses an approximately fixed learning rate μ
0

in the iteration time of n ≤ τ; When the iteration time n is greater than the search time

parameter τ, the learning rate decreases with time, and the decrease speed is faster

and faster.

The second example is the “fixed first, then exponential decay” rule

[232]

μ(n) =
{︃
μ
0
, n ≤ N

0
,

μ
0
e−Nd(n−N0

)

, n > N
0
,

(5.5.34)

where μ
0
and Nd are positive constants, respectively; N0

is a positive integer.

The above time-varying learning rate is predetermined and has no direct relation-

shipwith the actual running state of the LMSalgorithm. If the time-varying learning rate

is controlled by the actual running state of the LMS algorithm, this kind of time-varying

learning rate is called adaptive learning rate, also known as learning of learning rules,

which was proposed by Amari in 1967

[11]

. Many methods have been proposed to select

adaptive learning rate, and three examples are introduced here.
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(1) Harries et al. controlled the learning rate by testing the polarity of adjacent sample

values of LMS algorithm estimation error

[99]

. If there are m
0
adjacent sign changes

in the estimation error, the learning rate is appropriately reduced; If there are m
1

adjacent identical signs, the learning rate is appropriately increased.

(2) Kwong and Johston proposed to adjust the learning rate according to the square of

the prediction error

[129]

.

(3) The above methods require the user to select some additional constants and initial

learning rates, which are based on language rules such as “large learning rate in

the initial stage and small learning rate in the steady-state stage”, and convert these

language rules into mathematical models to adjust the learning rate parameters.

Naturally, the tuning of the learning rate can also be realized by using fuzzy system

theory and language models to form the so-called fuzzy step adjustment. Readers

interested in this method can refer to [83].

5.5.5 Statistical Performance Analysis of LMS Algorithm

The basic LMS adaptive algorithm and the selection of its learning rate are introduced

above. Next, the statistical performance of the LMS algorithm is analyzed by using the

independence theory.

The independence theory of the LMS algorithm was first proposed by Widrow et

al.

[226]

and Mazo

[150]

, which was based on the following independence assumption.

(1) The input vectors u(1), u(2), · · · , u(n) are statistically independent of each other;
(2) At time n, the input vector u(n) is statistically independent of the expected re-

sponses d(1), · · · , d(n − 1) at all past times;

(3) At time n, the expected response d(n) is related to the input vector u(n), but statis-
tically independent of all the input vectors at the past time;

(4) The input vector u(n) and the expected response d(n) constitute a random variable

of joint Gaussian distribution for all n.

Let w
opt

represent the optimal Wiener filter, then the weight error vector is defined as

ϵ(n) def= w(n) − w
opt

. (5.5.35)

Thus, the estimation error e(n) def= d(n) − wH

(n)u(n) generated by LMS algorithm can

be rewritten as

e(n) = d(n) − wH

opt
u(n) − ϵH(n)u(n) = e

opt
(n) − ϵH(n)u(n), (5.5.36)

where e
opt
(n) is the estimation error of the optimalWiener filter. Themean square value

of the estimation error of the tap weight vector w(n), shortened to the mean square

error, is written as

ξ (n) = MSE(w(n)) = E{|e(n)|2}. (5.5.37)
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Using the independence hypothesis, it is easy to obtain

ξ (n) = E

{︁[︁
e
opt
(n) − ϵH(n)u(n)

]︁ [︁
e*
opt
(n) − uH(n)ϵ(n)

]︁}︁

= ξ
min

(n) + E
{︁
ϵH(n)u(n)uH(n)ϵ(n)

}︁
, (5.5.38)

where

ξ
min

(n) = E

{︁⃒⃒
e
opt
(n)
⃒⃒
2

}︁
= E

{︁
e
opt
(n)e*

opt
(n)
}︁
, (5.5.39)

is the minimummean square error generated by the optimal Wiener filter.

Calculate the second term on the right of Eq. (5.5.38) to yield

E

{︁
ϵH(n)u(n)uH(n)ϵ(n)

}︁
= E

{︁
tr

(︁
ϵH(n)u(n)uH(n)ϵ(n)

)︁}︁

= tr

(︁
E

{︁
u(n)uH(n)ϵ(n)ϵH(n)

}︁)︁
. (5.5.40)

The above equation uses the properties of matrix trace tr(AB) = tr(BA) and assumes

that ϵ(n) and u(n) are statistically independent.
Using the independence hypothesis, Eq. (5.5.40) can also be written as

E

{︁
ϵH(n)u(n)uH(n)ϵ(n)

}︁
= tr

(︁
E

{︁
u(n)uH(n)

}︁
E

{︁
ϵ(n)ϵH(n)

}︁)︁
= tr[RK(n)], (5.5.41)

where R = E
{︁
u(n)uH(n)

}︁
is the correlation matrix of the input vector, and K(n) =

E
{︁
ϵ(n)ϵH(n)

}︁
represents the correlation matrix of the filter weight error vector at time

n, abbreviated as the weight error correlation matrix.

By further substituting Eq. (5.5.41) into Eq. (5.5.38), the mean square error in the

LMS algorithm can be expressed as

ξ (n) = ξ
min

+ tr[RK(n)]. (5.5.42)

The difference between themean square error ξ (n) generated by the adaptive algorithm
at time n and the minimummean square error ξ

min
generated by the optimal Wiener

filter is called the residual mean square error of the adaptive algorithm at time n, which
is recorded as ξ

ex
(n), i.e.,

ξ
ex
(n) = ξ (n) − ξ

min
= tr[RK(n)]. (5.5.43)

When n → ∞, the limit of the residual mean square error is called steady-state residual

mean square error (or asymptotic residual mean square error), denoted as

ξ
ex
= ξ

ex
(∞) = lim

n→∞
tr[RK(n)]. (5.5.44)

Finally, this subsection considers a special choice of the expected response d(n),
namely, d ≡ 0. At this time, the cost function of the minimum mean square error

criterion becomes

J(n) = E

{︁⃒⃒
wHu(n)

⃒⃒
2

}︁
. (5.5.45)
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Since the right side of the above equation represents the filter output energy, the mini-

mization of the above equation is called the minimum output energy (MOE) criterion.

Define the mean output energy of the filter tap weight vector w(n) at time n as

η(n) def= MOE((n)) = E

{︁⃒⃒
wHu(n)

⃒⃒
2

}︁
. (5.5.46)

Since the weight error vector ϵ(n) = w(n) − w
opt

and w
opt

are statistically independent

of the filter input vector u(n), from Eq. (5.5.46) it is obtained

η(n) = E

{︁⃒⃒ [︀
w
opt

+ ϵ(n)
]︀
H u(n)

⃒⃒
2

}︁

= E

{︁⃒⃒
wH

opt
u(n)

⃒⃒
2

}︁
+ E

{︁
ϵH(n)u(n)uH(n)ϵ(n)

}︁

= η
min

+ E

{︁
ϵH(n)u(n)uH(n)ϵ(n)

}︁
, (5.5.47)

where η
min

= E

{︁⃒⃒
wH

opt
u(n)

⃒⃒
2

}︁
represents the output energy of the optimal filter, which

is the minimum output energy that the adaptive filter can achieve.

The design criterion that makes the filter reach the minimum output energy is

called the MOE criterion

Define the residual output energy as

η
ex
(n) def= η(n) − η

min
, (5.5.48)

and from Eq. (5.5.41), we have

η
ex
(n) = E

{︁
ϵH(n)u(n)uH(n)ϵ(n)

}︁
= tr[RK(n)]. (5.5.49)

Compare Eq. (5.5.49) and Eq. (5.5.43) to obtain

η
ex
(∞) = ξ

ex
(∞). (5.5.50)

That is, the steady-state residual output energy of the filter is equivalent to the steady-

state residual output mean square error.

The above analysis shows that although the filter tap weight vectors designed

according to the MMSE criterion and MOE criterion may be different, their steady-state

residual mean square error and steady-state residual output energy are equivalent. In

particular, the variation curve of the actually measured residual mean square error

ξ
ex
(n) relative to the iteration time n is called the learning curve of the LMS algorithm. It

is a curve that decreaseswith time, fromwhichwe can see the convergence performance

of the LMS algorithm (the speed of convergence and the value of steady-state residual

mean square error).

5.5.6 Tracking Performance of LMS Algorithm

sis of the statistical performance of the LMS algorithm is carried out under the basic

assumption that the Wiener filter is fixed. Therefore, these statistical performances
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are the “average performance” of standard LMS algorithms, which are suitable for

stationary environments.

In the non-stationary environment, the parameters of the system are time-varying,

so the parameters of the Wiener filter should also be time-varying to track the dynamic

changes of the system. The index to evaluate the adaptability of the LMS algorithm to

a non-stationary environment is its tracking performance. According to the speed of

parameters changing with time, time-varying systems can be divided into fast time-

varying and slow time-varying. Only the slow time-varying environment is discussed

here.

An unknown dynamic system can be modeled by a transverse filter whose tap

weight vector, i.e. impulse response vectorw
opt
(n), follows a first-order Markov process

w
opt
(n + 1) = aw

opt
(n) + ω(n), (5.5.51)

where a is a fixed parameter. For slow time-varying systems, a is a positive number

very close to 1, ω(n) is the process noise with zero mean and correlation matrix Q.

The transverse filter output wH

opt
(n)u(n) approximates the desired response, and

its approximation error v(n) is called the measurement noise. Therefore, the desired

response of the transverse filter can be expressed as

d(n) = wH

opt
(n)u(n) + v(n). (5.5.52)

The input, process, and measurement noises of the filter are assumed as follows:

(1) The process noise vector ω(n) is independent of the input vector u(n) and the

measurement noise vector v(n);
(2) The input vector u(n) and the measurement noise v(n) are independent of each

other;

(3) The measurement noise v(n) is white noise with zero mean and finite variance

σ2v < ∞.

To describe the fast and slow change of the model, Macchi

[144, 145]

defines the degree

of nonstationarity of the time-varying system as the ratio of the average noise power

caused by the process noise vector ω(n) to the average noise power caused by the

measurement noise, i.e.,

α def

=

⎛
⎝
E

{︁⃒⃒
ωH

(n)u(n)
⃒⃒
2

}︁

E

{︀
|v(n)|2

}︀

⎞
⎠

1/2

. (5.5.53)

Note that the degree of nonstationarity α is only a characteristic description of time-

varying systems, and it does not describe adaptive filters.

Using the statistical independence between the process noise vector ω(n) and the
input vector u(n), and noting that for scalar xHy, E

{︁
xHy

}︁
= tr

[︁
E

{︁
xyH

}︁]︁
, it is easy to
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obtain that the numerator of Eq. (5.5.53) is

[100]

E

{︁⃒⃒
ωH

(n)u(n)
⃒⃒
2

}︁
= E

{︁
ωH

(n)u(n)uH(n)ω(n)
}︁

= tr

[︁
E

{︁
ωH

(n)u(n)uH(n)ω(n)
}︁]︁

= E

{︁
tr

[︁
ω(n)ωH

(n)u(n)uH(n)
]︁}︁

= tr

[︁
E

{︁
ω(n)ωH

(n)
}︁
E

{︁
u(n)uH(n)

}︁]︁

= tr(QR), (5.5.54)

where Q = E

{︁
ω(n)ωH

(n)
}︁
is the correlation matrix of the process noise vector ω(n);

R = E

{︁
u(n)uH(n)

}︁
represents the correlation matrix of the input vector u(n).

On the other hand, the denominator of Eq. (5.5.53) is the variance σ2v of the mea-

surement noise v(n) with zero mean. By substituting this result and Eq. (5.5.54) into

Eq. (5.5.53), the degree of nonstationary can be simplified as

α = 1

σv
(tr[QR])1/2 = 1

σv
(tr[RQ])1/2, (5.5.55)

where tr[QR] = tr[RQ] since the matrix products QR and RQ have the same diagonal

elements.

In addition to the convergence rate introduced earlier, misadjustment is another

important index to measure the performance of the adaptive filter. The misadjustment

of adaptive filter is defined as the ratio of filter steady-state residual mean square error

J
ex
to filter minimummean square error J

min
, i.e.,

M
def

=

J
ex

J
min

, (5.5.56)

In the above equation, the steady-state residual mean square error is defined as the

difference between the actual mean square error and the minimummean square error

of the filter output, i.e., J
out
− J

min
.

Obviously, when J
ex

= 0, the filter output reaches the minimum output mean

square error exactly, which is the optimal filter in the sense of minimummean square

error. At this time,M = 0, i.e., there is no misadjustment in the filter. It can be seen

that the misadjustmentM is actually a measure of the deviation of the filter from the

optimal filter. As long as the remaining output energy is not equal to zero, the filter is

said to be maladjusted. It is generally expected that the smaller the misadjustment, the

better the adaptive filter, which depends on the design of the filter and the environment

in which the filter is located (for example, the degree of nonstationarity of the signal

that the filter wants to track).

The relationship between the degree of nonstationary α and the misadjustment of

the adaptive filter is analyzed below. For a filter designed by the MMSE criterion, its
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minimummean square error J
min

is equal to the variance of the measurement noise,

i.e.,

J
min

= σ2v . (5.5.57)

On the other hand, it can be seen from the Markov model defined by Eq. (5.5.51) that

the process noise vector ω(n) is actually the filter weight error vector, i.e., ω(n) ≈
w
opt
(n + 1) − w

opt
(n) = ϵ(n), because the coefficient α in Eq. (5.5.51) is very close to

1. This shows that at time n, the correlation matrix of the process noise vector ω(n)
satisfying Q(n) = E{ω(n)ωH

(n)} ≈ E{ϵ(n)ϵH(n)} = K(n). Substituting this relation
into Eq. (5.5.49), we can find the residual output energy of the adaptive filter at time n
to be

η
ex
(n) ≈ tr(RQ).

If the adaptive filter has no misadjustment, its steady-state residual output energy

J
ex
= η

ex
(∞) = tr(RQ). That is, the minimummean square error filter is equivalent to

the minimum energy filter. If the adaptive filter has misadjustment, its steady-state

residual output energy J
ex
> tr(RQ). Therefore, there is

J
ex
≥ tr(RQ). (5.5.58)

Substituting Eqs. (5.5.57) and (5.5.58) into Eq. (5.5.56), there is

M ≥

tr(RQ)
σ2v

= α2. (5.5.59)

In other words, the misadjustmentM of the adaptive filter is the upper bound of the

square value of the degree of nonstationarity of the time-varying system.

The following conclusions can be drawn from the above analysis

[100]

.

(1) For slow time-varying systems, because the degree of nonstationary α is small, the

adaptive filter can track the changes of time-varying systems.

(2) If the time-varying system changes so fast that the degree of nonstationarity α is
greater than 1, in this case, the misadjustmentM caused by the adaptive filter is

also greater than 1, i.e., the misadjustment will exceed 100%. This means that the

adaptive filter will not be able to track the changes of this fast time-varying system

anymore.

5.6 RLS Adaptive Algorithm

This section will discuss the adaptive implementation of the least square method. Its

purpose is to design an adaptive transverse filter so that when the filter tap weight

coefficient at time n − 1 is known, the filter tap weight coefficient at time n can be

obtained through simple update. Such an adaptive least squares algorithm is called

recursive least squares (RLS) algorithm.
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5.6.1 RLS Algorithm

Different from the general least squares method, an exponentially weighted least

squares method is considered here. As the name suggests, in this method, the expo-

nentially weighted sum of squares of errors is used as the cost function, i.e.,

J(n) =
n∑︁

i=0
λn−i|ϵ(i)|2, (5.6.1)

where the weighting factor 0 < λ < 1 is called forgetting factor. Its function is to add a
larger weight to the error closer to time n and a smaller weight to the error farther from

time n. In other words, λ has a certain forgetting effect on the error of each time, so it

is called a forgetting factor. In this sense, λ ≡ 1 means that the errors at all times are

treated equally, that is, there is no forgetting function or infinite memory function. At

this time, the exponentially weighted least squares method degenerates into a general

least squares method. On the contrary, if λ = 0, only the error of the current moment

works, while the error of the past moment is completely forgotten and has no effect.

In the nonstationary environment, to track the changing system, these two extreme

forgetting factor values are not appropriate.

The estimation error in Eq. (5.6.1) is defined as

ϵ(i) = d(i) − wH

(n)u(i), (5.6.2)

where d(i) represents the expected response at time i. When the desired response

cannot be known, the actual output of the filter can be taken directly as the desired

response d(i). Note that the tap weight vector in Eq. (5.6.2) is the weight vector w(n)
at time n rather than the weight vector w(i) at time i. The reason is as follows: in the
adaptive update process, the filter is always getting better and better, which means that

the absolute value |ϵ(i)| = |d(i) − wH

(n)u(i)| of the estimation error is always smaller

than |e(i)| = |d(i) − wH

(i)u(i)| for any time i ≤ n. Therefore, the cost function J(n)
composed of ϵ(i) is always smaller than the cost function

˜J(n) composed of e(i), thus
the cost function J(n) is more reasonable than

˜J(n). According to the definition, ϵ(i) is
called the posterior estimation error of the filter at time i, and e(i) is called the prior
estimation error at time i. Therefore, the complete expression of the sum of squares of

the weighted errors is

J(n) =
n∑︁

i=0
λn−i

⃒⃒
d(i) − wH

(n)u(i)
⃒⃒
2

, (5.6.3)

which is a function of w(n). From ∂J(n)
∂w = 0, it is easy to get R(n)w(n) = r(n), and its

solution is

w(n) = R−1(n)r(n), (5.6.4)
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where

R(n) =
n∑︁

i=0
λn−iu(i)uH(i), (5.6.5)

r(n) =
n∑︁

i=0
λn−iu(i)d*(i). (5.6.6)

Again, Eq. (5.6.2) shows that the solution w(n) of the exponentially weighted least

squares problem is a Wiener filter. Consider its adaptive update below.

According to the definitions of Eq. (5.6.5) and Eq. (5.6.6), it is easy to obtain the

following recursive estimation equations

R(n) = λR(n − 1) + u(n)uH(n), (5.6.7)

r(n) = λr(n − 1) + u(n)d*(n). (5.6.8)

Using the famous matrix inverse lemma for Eq. (5.6.7), the recursive expression of the

inverse matrix P(n) = R−1(n) can be obtained

P(n) = 1

λ

[︂
P(n − 1) − P(n − 1)u(n)uH(n)P(n − 1)

λ + uH(n)P(n − 1)u(n)

]︂

=

1

λ

[︁
P(n − 1) − k(n)uH(n)P(n − 1)

]︁
, (5.6.9)

where k(n) is called the gain vector, defined as

k(n) = P(n − 1)u(n)
λ + uH(n)P(n − 1)u(n) . (5.6.10)

By using Eq. (5.6.9), it is not difficult to prove

P(n)u(n) = 1

λ

[︁
P(n − 1)u(n) − k(n)uH(n)P(n − 1)u(n)

]︁

=

1

λ

{︁[︁
λ + uH(n)P(n − 1)u(n)

]︁
k(n) − k(n)uH(n)P(n − 1)u(n)

}︁

= k(n). (5.6.11)

Meanwhile, from Eq. (5.6.4) it can be obtained

w(n) = R−1(n)r(n) = P(n)r(n)

=

1

λ

[︁
P(n − 1) − k(n)uH(n)P(n − 1)

]︁ [︁
λr(n − 1) + d*(n)u(n)

]︁

= P(n − 1)r(n − 1) + 1

λ d
*

(n)
[︁
P(n − 1)u(n) − k(n)uH(n)P(n − 1)u(n)

]︁

− k(n)uH(n)P(n − 1)r(n − 1).

Substitute Eq. (5.6.11) into the above equation to obtain

w(n) = w(n − 1) + d*(n)k(n) − k(n)uH(n)w(n − 1)
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After simplification, we get

w(n) = w(n − 1) + k(n)e*(n), (5.6.12)

where

e(n) = d(n) − uT(n)w*(n − 1) = d(n) − wH

(n − 1)u(n), (5.6.13)

is a priori estimation error.

To sum up, the RLS direct algorithm can be obtained as follows.

Algorithm 5.6.1. RLS direct algorithm
Step 1 Initialization: w(0) = 0, P(0) = δ−1I, where δ is a very small number.
Step 2 Update: n = 1, 2, · · ·

e(n) = d(n) − wH
(n − 1)u(n),

k(n) = P(n − 1)u(n)
λ + uH(n)P(n − 1)u(n) ,

P(n) = 1

λ

[︁
P(n − 1) − k(n)uH(n)P(n − 1)

]︁
,

w(n) = w(n − 1) + k(n)e*(n).

The application of RLS algorithm requires the initial value P(0) = R−1(0). In the non-
stationary environment, the initial value is

P(0) = R−1(0) =

⎛
⎝

0∑︁

i=−n
0

λ−iu(i)uH(i)

⎞
⎠
−1

. (5.6.14)

Therefore, the correlation matrix Eq. (5.6.6) becomes

R(n) =
n∑︁

i=1
λn−iu(i)uH(i) + R(0), (5.6.15)

Due to the forgetting effect of λ, it is natural to hope that R(0) plays a small role in

Eq. (5.6.15). Considering this, a small identity matrix is used to approximate R(0), i.e.,

R(0) = δI, (5.6.16)

with δ being a small positive number and I. being identity matrix. Then, the initial

value of P(0) is
P(0) = δ−1I, (5.6.17)

with δ being the same as in Eq. (5.6.16).This is why in Algorithm 5.6.1, the initial value

P(0) = δ−1I (where δ is very small).

The smaller the value of δ, the smaller the proportion of the initial value of the

correlation matrix R(0) in the calculation of R(n), which is desirable; otherwise, the
role of R(0) will be highlighted, which should be avoided. The typical value of δ is
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δ = 0.01 or less. Generally, when δ = 0.01 and δ = 10

−4

are taken, there is no obvious

difference in the results given by the RLS algorithm, but taking δ = 1 will seriously

affect the convergence speed and convergence results of the RLS algorithm, whichmust

be paid attention to when applying RLS algorithm.

5.6.2 Comparison between RLS Algorithm and Kalman Filtering Algorithm

A special non excitation dynamic model is considered

x(n + 1) = λ−1/2x(n), (5.6.18)

y(n) = uH(n)x(n) + v(n), (5.6.19)

where x(n) is the state vector of the model; y(n) is a scalar observation or reference

signal; uH(n) is the observation matrix; v(n) represents a scalar white noise process
with zero mean and unit variance. The model parameter λ is a real positive constant.

From Eq. (5.6.18), it is easy to get

x(n) = λ−n/2x(0), (5.6.20)

where x(0) is the initial value of the state vector. Substitute Eq. (5.6.20) into Eq. (5.6.19)
and use the common term x(0) to represent the observations at each time to get

y(0) = uH(0)x(0) + v(0)
y(1) = λ−1/2uH(1)x(0) + v(1)

.

.

.

y(n) = λ−n/2uH(n)x(0) + v(n)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (5.6.21)

or equivalently

y(0) = uH(0)x(0) + v(0)
λ1/2y(1) = uH(1)x(0) + λ1/2v(1)

.

.

.

λn/2y(n) = uH(n)x(0) + λn/2v(n)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (5.6.22)

From the viewpoint of Kalman filtering, the equation set (5.6.22) represents the random

characteristics of the non excitation dynamic model.

Different from the Kalman filter using a stochastic model, the RLS algorithm adopts

a deterministic model, i.e., the desired signal (also known as reference signal) can be

expressed as a linear regression model

d*(0) = uH(0)wo + e*o(0)
d*(1) = uH(1)wo + e*o(1)

.

.

.

d*(n) = uH(n)wo + e*o(n)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (5.6.23)
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where wo represents the unknown parameter vector of the model, u(n) is the input
vector, and eo(n) is the observation noise.

If the initial value of the state vector in the Kalman filter is equal to the tap weight

vector in the RLS algorithm, i.e.,

x(0) = wo , (5.6.24)

it is easy to see that the equivalence condition between the determination model in

Eq. (5.6.23) of the RLS algorithm and the special random model in Eq. (5.6.22) of the

Kalman filtering algorithm is the following one-to-one correspondence

y(n) = λ−n/2d*(n), (5.6.25)

v(n) = λ−n/2e*o(n), (5.6.26)

with the left and right sides of the above equations being the parameters of the state

space model and the linear regression model, respectively.

Summarizing the above analysis, we can draw the following conclusion: the de-

terministic linear regression model of the RLS adaptive algorithm is a special non

excitation state space model of the Kalman filtering algorithm. This equivalence rela-

tionship was established by Sayed and Kailaith in 1994

[190]

.

Table 5.6.1 summarizes the corresponding relationship of each variable between

the Kalman filter algorithm and RLS algorithm

[100]

.

Tab. 5.6.1: The association between the parameters of Kalman filter algorithm and that of RLS
algorithm

Kalman algorithm RLS algorithm
Parameter Variable Variable Parameter
Initial state vector x(0) w(0) Tap weight vector

State vector x(n) λ−n/2w0
Exponentially weighted tap weight
vector

Reference signal y(n) λ−n/2d*(n) Expected response
Observation noise v(n) λ−n/2e*o(n) Measurement error
One-step predicted x̂(n + 1|y1 , · · · , yn) λ−n/2ŵ(n) Estimation of tap weight vectorstate vector
Correlation matrix K(n) λ−1P(n) Inverse of input vector correlation
of state prediction error matrix
Kalman gain g(n) λ−1/2k(n) Gain vector
Innovation α(n) λ−n/2ξ*(n) A priori estimation error
Initial condition x̂(1) = 0 ŵ(0) = 0 Initial condition

K(0) δ−1P(0)
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5.6.3 Statistical Performance Analysis of RLS Algorithm

Since themeasurement error e
opt
(n) = d(n)−wH

opt
u(n) of theWiener filter hasminimum

mean square value, the desired response d(n) can be written as

d(n) = e
opt
(n) + wH

opt
u(n), (5.6.27)

which is often called the linear regression model of the expected response d(n), and
the M × 1 weight vector w

opt
represents the regression parameter vector of the model.

From Eq. (5.6.13) and Eq. (5.6.27), by eliminating d(n), the a priori estimation error

can be expressed as

e(n) = e
opt
(n) −

[︀
w(n − 1) − w

opt

]︀
H u(n)

= e
opt
(n) − ϵH(n − 1)u(n), (5.6.28)

where

ϵ(n − 1) = w(n − 1) − w
opt

, (5.6.29)

represents the difference between the actual tap weight vector at time n − 1 and the
tap weight vector of the optimal Wiener filter, shortened to the weight error vector.

Consider the mean square value of the a priori estimation error, i.e., the mean

square estimation error

ξ (n) = MSE(w(n)) = E{|e(n)|2}. (5.6.30)

Substitute Eq. (5.6.28) into Eq. (5.6.30) and sort it out to obtain

ξ (n) = E

{︁⃒⃒
e
opt
(n)
⃒⃒
2

}︁
+ E

{︁
uH(n)ϵ(n − 1)ϵH(n − 1)u(n)

}︁

− E

{︁
e
opt
(n)uH(n)ϵ(n − 1)

}︁
− E

{︁
ϵH(n − 1)u(n)e*

opt
(n)
}︁
. (5.6.31)

The values of each item on the right side of Eq. (5.6.31) are analyzed below.

(1) The first term on the right of Eq. (5.6.31) represents the mean square error of the

optimal Wiener filter, which is the minimum mean square error that all filters

would have, denoted as

ξ
min

= E

{︁
|e
opt
(n)|2

}︁
. (5.6.32)

(2) Calculate the second term on the right of Eq. (5.6.31) and get

E

{︁
uH(n)ϵ(n − 1)ϵH(n − 1)u(n)

}︁
= E

{︁
tr

[︁
uH(n)ϵ(n − 1)ϵH(n − 1)u(n)

]︁}︁

= E

{︁
tr

[︁
u(n)uH(n)ϵ(n − 1)ϵH(n − 1)

]︁}︁

= tr

[︁
E

{︁
u(n)uH(n)ϵ(n − 1)ϵH(n − 1)

}︁]︁

= tr

[︁
E

{︁
u(n)uH(n)

}︁
E

{︁
ϵ(n − 1)ϵH(n − 1)

}︁]︁

= tr

[︀
RK(n − 1)

]︀
, (5.6.33)
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whereR = E

{︁
u(n)uH(n)

}︁
is the correlationmatrix of the filter input, andK(n−1) =

E

{︁
ϵ(n − 1)ϵH(n − 1)

}︁
is the weight error correlation matrix at time n − 1.

(3) Since the weight error vector ϵ(n − 1) at time n − 1 is statistically independent of
the input vector u(n) and the measurement error e

opt
(n) at time n, the third term

on the right of Eq. (5.6.31) is

E

{︁
e
opt
(n)uH(n)ϵ(n − 1)

}︁
= E

{︁
e
opt
(n)uH(n)

}︁
E

{︀
ϵ(n − 1)

}︀
,

According to the orthogonality principle, the measurement error e
opt
(n) is orthog-

onal to all elements of the input vector u(n), i.e., E
{︁
e
opt
(n)uH(n)

}︁
= 0, so we can

get

E

{︁
e
opt
(n)uH(n)ϵ(n − 1)

}︁
= 0. (5.6.34)

(4) Similarly, we have

E

{︁
ϵH(n − 1)u(n)e*

opt
(n)
}︁
= E

{︁
ϵH(n − 1)

}︁
E

{︁
u(n)e*

opt
(n)
}︁
= 0. (5.6.35)

Substitute Eq. (5.6.32) ∼ Eq. (5.6.35) into Eq. (5.6.31) to obtain ξ (n) = ξ
min

+

tr

[︀
RK(n − 1)

]︀
, from which the residual mean square error

ξ
ex
(n) = ξ (n) − ξ

min
= tr

[︀
RK(n − 1)

]︀
, (5.6.36)

and the steady-state or asymptotic residual mean square error

ξ
ex
(∞) = lim

n→∞
tr

[︀
RK(n − 1)

]︀
, (5.6.37)

can be obtained.

The curve of the actual measured residual mean square error ξ
ex
(n) relative to the

iteration time n is called the learning curve of the RLS algorithm. In general, it is a curve

that decreases with time, indicating the convergence performance, i.e., convergence

rate and the steady-state residual mean square error of the RLS algorithm.

5.6.4 Fast RLS Algorithm

It has been proved that the Kalman gain vector in the RLS direct algorithm can be

updated in a fast way so that the RLS algorithm can be implemented quickly

[43, 141]

. The

key of fast RLS algorithm is tomake proper use of the shift invariant property of the data

matrix. For this purpose, consider the data vector xM(n) = [u(n), u(n − 1), · · · , u(n −
M + 1)]

T
after the data vector xM+1

(n) = [u(n), u(n − 1), · · · , u(n −M)]

T
is increased by

one order. Obviously, it has two different block forms

xM+1
(n) =

[︃
xM(n)
u(n −M)

]︃
=

[︃
u(n)

xM−1(n − 1)

]︃
. (5.6.38)
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Using these two block forms, the appropriate blocking of the increased order autocor-
relation matrix RM+1

(n) can be obtained. According to these blocks, the Kalman gain 
vector cM(n) at time n can be obtained from cM−1(n − 1) by the increased order vector 
cM+1

(n). The overall renewal mechanism can be expressed as

aM(n − 1) bM(n − 1)
↓ ↓

cM−1(n − 1) → cM+1
(n) → cM(n)

↓ ↓
aM(n) bM(n)

, (5.6.39)

where the auxiliary vectors aM(n) and bM(n) represent the forward and backward least
squares predictors, which are FIR transversal filters after letting y(n) = u(n + 1) and
y(n) = u(n −M) in Eq. (5.5.1). Here, the stabilized fast RLS algorithm

[90]

is given.

Algorithm 5.6.2. Stabilized fast RLS algorithm
Initialization:

wM(0) = 0, cM(0) = 0, aM(0) = [1, 0, · · · , 0]

T
,

bM(0) = [0, · · · , 0, 1]

T
, αM(0) = 1, αfM(0) = λ

MαbM(0), αbM(0) = δ > 0,

Calculate: n = 1, 2, · · ·

efM(n) = u(n) + aTM(n − 1)xM(n − 1),

ϵfM(n) = efM(n)/αM(n − 1),

aM(n) = aM(n − 1) − cM(n − 1)ϵfM(n),

αfM(n) = λαfM(n − 1) + e
f
M(n)ϵ

f
M(n),

kM+1
(n) = λ−1αfM(n − 1)e

f
M(n),

cM+1
(n) =

[︃
0

cM(n)

]︃
+

[︃
1

aM(n − 1)

]︃
kM+1

(n − 1),

dM+1
=

[︃
dM(n)
dM+1

(n)

]︃
,

ebM(n) = λαbM(n − 1)dM+1
(n),

ẽbM(n) = u(n −M) + bTM(n − 1)xM(n),

∆b(n) = ẽbM(n) − ebM(n),

êbM,i(n) = ẽbM(n) + σi∆b(n), i = 1, 2, 3, · · · ,

cM(n) = dM(n) − bM(n − 1)dM+1
(n),

αM+1
(n) = αM(n − 1) − kM+1

(n)efM(n),

αM(n) = αM+1
(n) + dM+1

(n)êbM,1
(n),

α̃M(n + 1) = 1 + cTM(n)xM(n),
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∆α(n) = α̃M(n) + σ∆α(n),

ϵbM,i(n) = êbM,i(n)/α̂M(n), i = 2, 3, · · · ,

bM(n) = bM(n − 1) − cM(n)ϵbM,2
(n),

αbM(n) = λαbM(n − 1) + êbM,3
(n)ϵbM,3

(n),

eM(n) = y(n) − wT
(n − 1)xM(n),

ϵM(n) = eM(n)/α̂M(n),
μ(n) = αM(n)/[1 − ρα̂M(n)],

wM(n) = wM(n − 1) + μ(n)cM(n)ϵM(n).

The relevant calculation equations of the above algorithm reflect the update rela-

tionship shown in Eq. (5.6.39). For example, the relationship between cM−1(n − 1)
and aM(n − 1) on the left of Eq. (5.6.39) to synthesize aM(n) is reflected in aM(n) =
aM(n − 1) − cM(n − 1)ϵfM(n), while the relationship between cM(n) and aM(n − 1) to
synthesize cM+1

(n) is reflected in

cM+1
(n) =

[︃
0

cM(n)

]︃
+

[︃
1

aM(n − 1)

]︃
kM+1

(n − 1).

5.7 Adaptive Line Enhancer and Notch Filter

Adaptive spectral line enhancer was first proposed by Widrow et al. in 1975 when

studying the adaptive noise cancellation

[224]

. The purpose is to separate sine wave from

broadband noise to extract sine wave signal. On the contrary, if the sine wave signal is

the noise or interference to be suppressed (for example, in biomedical instruments,

50Hz AC is called the power line interference), the adaptive filter for this purpose is

called notch filter. Now, the adaptive spectral line enhancer and notch filter have been

widely used in instantaneous frequency estimation, spectral analysis, narrowband

detection, speech coding, narrowband interference suppression, interference detection,

adaptive carrier recovery of digital data receiver, etc. Please refer to reference [238].

5.7.1 Transfer Functions of Line Enhancer and Notch Filter

Consider the following observed signal

x(n) = s(n) + v(n) =
p∑︁

i=1
Aisin(ωin + θi) + v(n), (5.7.1)

where Ai , ωi , θi are the amplitude, frequency, and initial phase of the i-th sine wave
signal, respectively; v(n) is additive broadband noise and it can be colored.
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Now we hope to design a filter, when x(n) passes through this filter, the output

contains only p sine wave signals s(n) without any other signal or noise. Because the
power spectrum of p sine wave signals is p discrete spectral lines, this filter that only
extracts sine wave signals is called line enhancer.

Let H(ω) be the transfer function of the line enhancer. To extract p sine waves and
reject all other signals and noise, the transfer function H(ω) must meet the following

condition

H
LE
(ω) =

{︃
1, if ω = ω

1
, · · · , ωp ,

0, others.

(5.7.2)

Conversely, if the transfer function of the filter is

H
notch

(ω) =
{︃

0, if ω = ω
1
, · · · , ωp ,

1, others,

(5.7.3)

then the filter will suppress p sine wave signals and let v(n) pass completely. The

function of this filter is equivalent to the trap of sine waves, called a notch filter.

Obviously, the relationship between the transfer functions of the line enhancer

and notch filter is

H
LE
(ω) = 1 − H

notch
(ω), (5.7.4)

Fig. 5.7.1 (a) and (b)show the curves of the transfer functions of the line enhancer and

ω1 ω2 ω3 ω

1

H(ω)

(a) Enhancer

ω1 ω2 ω3 ω

1

H(ω)

(b) Notch filter

Fig. 5.7.1: Curves of the transfer functions of the line enhancer and the notch filter

the notch filter for three sine wave signals, respectively.

An adaptive line enhancer or notch filter is an adaptive filter, and the transfer

function satisfies Eq. (5.7.2) or Eq. (5.7.3). In fact, the adaptive line enhancer can be

easily realized by an adaptive notch filter, as shown in Fig. 5.7.2.

As shown in Fig. 5.7.2, the observation signal x(n) = s(n) + v(n) suppresses the sine
wave signal through the adaptive notch filter to generate the optimal estimation v̂(n)
of v(n), and then subtracts it from the observation signal to generate the estimation

ŝ(n) = s(n)+v(n)−v̂(n) of the sinewave signal. If the notch filter is ideal, then v̂(n) = v(n)
so that ŝ(n) = s(n). The adaptive line enhancer constructed by notch filter is called

notch adaptive line enhancer for short.
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Notcher
H(z) Σ

Adaptive algorithm

x(n) = s(n) + v(n) v̂(n) ŝ(n)
+

−

Fig. 5.7.2: Adaptive line enhancer realized by adaptive notch filter

5.7.2 Adaptive Notch Filter based on Lattice IIR Filter

Based on the adaptive infinite impulse response (IIR) filter, the adaptive notch filter

and adaptive line enhancer can be realized. The adaptive line enhancer proposed by

Rao and Kung only needs to adaptively adjust 2pweight coefficients for p sine waves
[182]

.

In 1985, Nehorai proposed another notch adaptive line enhancer

[162]

. By limiting the

zero point of the notch filter to the unit circle, only p weight coefficients of the filter

need to be adjusted for p sine waves. The idea of using an IIR notch filter is attractive

because it can reject interference signals. In addition, the filter length required is much

smaller than that of the adaptive line enhancer using an FIR filter.

To enhance a sine wave signal s(n) = rejωn, the transfer function of the notch filter
is determined by

H(z) = (1 − rejωz−1)(1 − re−jωz−1)
(1 − αrejωz−1)(1 − αre−jωz−1) , (5.7.5)

=

1 + ω
1
z−1 + ω

2
z−2

1 + αω
1
z−1 + α2ω

2
z−2 , (5.7.6)

where ω
1
= −2rcosω, ω

2
= r2, and α is a parameter determining the bandwidth of the

notch filter.

From Eq. (5.7.5), when z = re±jω and α ̸ = 1, H(z) = 0. On the other hand, it can

also be seen that when z ̸= re±jω and α → 1, H(z) ≈ 1. Therefore, as long as α → 1 is

selected, the notch effect can be approximately realized, and the closer α is to 1, the
more ideal the notch effect of H(z) is. The adaptive algorithm of the line enhancer is

to adjust the weight coefficients ω
1
and ω

2
to minimize the mean square value of the

estimation error v̂(n), which can be realized by the Gaussian-Newton algorithm (such

as LMS algorithm). However, the Gauss-Newton algorithm is sensitive to some initial

conditions.

To improve the defect of direct IIR notch filter, Cho et al.

[53]

proposed to use lattice

IIR notch filter to realize notch transfer function in the line enhancer. The structure

of this lattice IIR filter is shown in Fig. 5.7.3, which is formed by cascading two lattice
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filters. The input of the upper lattice filter H
1
(z) is x(n) and the output is s

0
(n); While

the input of the lower lattice filter H
2
(z) is s

0
(n) and the output is s

2
(n).

+

+

+

+

a1

−a1

k1

k1

z−1

z−1

x(n)

Input
+

+

+

+

a0

−a0

k0

k0

z−1

z−1
r1(n)

s0(n)

s0(n)s1(n)

r0(n)

s2(n)

Output

r2(n)

Fig. 5.7.3: Structure of a lattice IIR filter

From Fig. 5.7.3, it is easy to write the input-output equations of the lattice filters H
1
(z)

and H
2
(z) as follows

s
0
(n) + a

0
(1 + a

1
)s
0
(n − 1) + a

1
s
0
(n − 2) = x(n),

s
0
(n) + k

0
(1 + k

1
)s
0
(n − 1) + k

1
s
0
(n − 2) = s

2
(n),

or written in Z-transform expression

[1 + a
0
(1 + a

1
)z−1 + a

1
z−2]S

0
(z) = X(z),

[1 + k
0
(1 + k

1
)z−1 + k

1
z−2]S

0
(z) = S

2
(z).

Therefore, the transfer functions of the two lattice filters are defined as

H
1
(z) def= S

0
(z)

X(z) =

1

1 + a
0
(1 + a

1
)z−1 + a

1
z−2 , (5.7.7)

H
2
(z) def= S

2
(z)

S
0
(z) = 1 + k

0
(1 + k

1
)z−1 + k

1
z−2. (5.7.8)

Thus, the transfer function of the whole lattice filter is

H(z) def= S
2
(z)

X(z) =

S
2
(z)

S
0
(z)

S
0
(z)

X(z) =

1 + k
0
(1 + k

1
)z−1 + k

1
z−2

1 + a
0
(1 + a

1
)z−1 + a

1
z−2 . (5.7.9)
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From Fig. 5.7.3, it can be seen that the upper lattice filter H
1
(z) contributes to the pole

part of the whole lattice filter, which is equivalent to an AR model; The lower lattice

filter H
2
(z) contributes to the zero part of the whole lattice filter, which is a lattice FIR

filter. Therefore, the whole lattice filter has an infinite number of impulse responses,

which is a lattice IIR filter.

Since Eq. (5.7.9) must meet the condition Eq. (5.7.6) of the notch filter, there is

a
0
(1 + a

1
) = αk

0
(1 + k

1
) and a

1
= α2k

1
, (5.7.10)

then we have

a
0
=

αk
0
(1 + k

1
)

1 + α2k
1

, (5.7.11)

Eq. (5.7.10) and Eq. (5.7.11) show that the weight coefficients a
0
and a

1
are determined

by the weight coefficients k
0
and k

1
. Since α is close to 1, there is an approximate

relationship

a
1
= α2k

1
≈ αk

1
,

a
0
(1 + a

1
) = αk

0
(1 + k

1
) ≈ k

0
(1 + αk

1
) ≈ k

0
(1 + a

1
),

or written as

a
1
≈αk

1
, (5.7.12)

a
0
≈k

0
. (5.7.13)

This shows that it is only needed to deduce the adaptive update equations of k
0
and k

1
.

Since H
1
(z) is a pole model, to ensure the stability of this filter, the pole of H

1
(z)

must be located inside the unit circle, i.e., the modulus |a
0
| and |a

1
| of the weight

coefficients must be less than 1. Therefore, the modulus |k
0
| and |k

1
| of the weight

coefficients of H
2
(z) must also be less than 1.

The weight coefficients k
0
and k

1
can be adjusted adaptively by using the adaptive

algorithm of lattice FIR filter

[146]

:

km(n) = −
Cm(n)
Dm(n)

, (5.7.14)

Cm(n) = λCm(n − 1) + sm(n)rm(n − 1), (5.7.15)

Dm(n) = λDm(n − 1) +
1

2

[︁
s2m(n) + r2m(n − 1)

]︁
, (5.7.16)

where m = 0, 1; the forgetting factor 0 < λ ≤ 1; sm(n) and rm(n) are the forward and
backward residuals of the m-th stage of the lower lattice filter in Fig. 5.7.3, respectively.

The lattice IIR filter shown in Fig. 5.7.3 can enhance only one sine wave signal. For

enhancing p sine wave signals, p IIR lattice line enhancers need to be cascaded. Each

lattice filter can be adaptively adjusted by using the algorithm shown in Eq. (5.7.14)∼
Eq. (5.7.16).



242 | 5 Adaptive Filter

5.8 Generalized Sidelobe Canceller

Let c
0
be a vector representing the feature of the desired source s

0
(t), shortened to

the feature vector. For example, in array signal processing, c
0
= a(ϕ

0
) is the direction

vector of the desired source. As another example, in the code division multiple access

system of wireless communication, c
0
is the signature vector of the desired user. Now

we want to design a narrowband beamformer w to extract the desired source s
0
(t), i.e.,

w is required to meet the following linear constraint

wHc
0
= g, (5.8.1)

where g ̸= 0 is a constant.

Suppose there are p signals s
1
(t), · · · , sp(t), and the vectors representing their

characteristics are c
1
, · · · , cp. If one of them is to be extracted and all the other sig-

nals are to be suppressed, the single linear constraint should be extended to p linear
constraints, i.e.,

CHw = g, (5.8.2)

where C is called the constraint matrix, represented as C = [c
1
, · · · , cp]. The column

vector g is called a gain vector, and its elements determine whether the corresponding

signal is extracted or suppressed. Take two linear constraints as an example

[c
1
, c

2
]

Hw =

[︃
1

0

]︃
, (5.8.3)

which indicates that the source s
1
(t) will be extracted and the source s

2
(t) will be

suppressed. Using the terminology of array signal processing, the first constraint cH
1
w =

1 represents the main lobe of the array, and the second constraint cH
2
w = α (α < 1)

represents the side lobe of the array. When α = 0, the side lobe is cancelled. Given this,

the filter satisfying Eq. (5.8.3) is often called a sidelobe canceller. So, how to realize the

adaptive sidelobe canceller?

Suppose that M array elements are used to receive L sources, i.e., in Eq. (5.8.2),

there are L linear constraints, that is, C is anM ×L constraint matrix, while the sidelobe

canceller w hasM tap coefficients, that is, W isM × 1-dimensional, and the gain vector

g = [1, 0, · · · , 0]

T

is ×1-dimensional. Therefore, if g = [1, 0, · · · , 0]

T

, the sidelobe

canceller satisfying Eq. (5.8.2) only retains the desired signal s
1
(t) and eliminates the

other L − 1 (interference) signals, i.e., all sidelobes are suppressed.
Generally, the number of array elements M is greater than the number of signals

L. Let the columns of M × (M − L) matrix Ca be linearly independent vectors, forming

a set of basis vectors. Assume that the space expanded by these basis vectors is an

orthogonal complement of the space expanded by the columns of the constraint matrix

C. According to the definition of orthogonal complement, a matrix C and its orthogonal
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complement matrix Ca are orthogonal to each other, then we have

CHCa = 0L×(M−L), (5.8.4)

CHaC = 0
(M−L)×L , (5.8.5)

where 0L×(M−L) and 0
(M−L)×L are all zero matrices, and the subscript indicates their

dimension.

Using the constraint matrix C and its orthogonal complement Ca as submatrices,

a matrix is synthesized

U = [C, Ca], (5.8.6)

Using the matrix U, the M × 1 weight vector w of the beamformer can be defined as

w = Uq or q = U−1w. (5.8.7)

Partition the vector q into blocks as

q =

[︃
v
−wa

]︃
, (5.8.8)

where v is an L×1 vector, andwa is an (M−L)×1 vector. Further substituting Eqs. (5.8.6)
and (5.8.8) into Eq. (5.8.7) yields

w = [C, Ca]
[︃

v
−wa

]︃
= Cv − Cawa . (5.8.9)

Use CH to premultiply both sides of Eq. (5.8.9), and then substitute it into Eq. (5.8.2) to

get

g = CHCv − CHCawa .

Using the orthogonality of C and Ca (i.e., CHCa is equal to zero matrix 0), the above
equation can be abbreviated as g = CHCv. Solve this equation to obtain

v = (CHC)−1g . (5.8.10)

Substitute Eq. (5.8.10) into Eq. (5.8.9) to obtain

w = C(CHC)−1g − Cawa . (5.8.11)

Define

w
0

def

= C(CHC)−1g, (5.8.12)

then Eq. (5.8.11) can be represented as

w = w
0
− Cawa . (5.8.13)

Eq. (5.8.13) shows that the sidelobe canceller w defined in Eq. (5.8.2) can be divided

into two parts:
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(1) The filter w
0
defined by Eq. (5.8.12) is a fixed part of the sidelobe canceller and is

determined by the constraint matrix C and the gain vector g;
(2) Cawa represents the adaptive part of the sidelobe canceller.

Since the filter w
0
and the orthogonal complement matrix Ca of the constraint matrix

are known invariants after the constraint matrix C and the gain vector g are given, the
adaptive update of the sidelobe canceller w is converted to the update of the adaptive

filter wa. Given this, the sidelobe canceller defined in Eq. (5.8.13) is often called a

generalized sidelobe canceller.

The following is a further physical explanation of the generalized sidelobe can-

celler.

(1) Substituting Eq. (5.8.13) into the constraint Eq. (5.8.2) of the sidelobe canceller, we

get

CHw
0
− CHCawa = g .

Since CHCa = 0, the above equation can be simplified as

CHw
0
= g, (5.8.14)

which shows that the filter w
0
is actually a fixed sidelobe canceller satisfying the

constraint Eq. (5.8.2).

(2) The decomposition shown in Eq. (5.8.13) is a typical orthogonal decomposition

due to

< Cawa ,w0
⟩ = wH

aCHaC(CHC)−1g = 0,

where the orthogonality of Ca and C is used, i.e., CHaC = 0.

The term “generalized sidelobe canceller” was first introduced by Griffiths and Jim

[96]

and is further discussed in literature [215], [16] and [100].

Generalized sidelobe canceller has important applications in array signal pro-

cessing and multi-user detection of wireless communication. For example, refer to

literature [241]. In the next section, its application in blind multiuser detection will be

introduced.

5.9 Blind Adaptive Multiuser Detection

Taking the code division multiple access (CDMA) system in wireless communication

as an example, this section introduces how to use the generalized sidelobe canceller

and adaptive filtering algorithm to realize blind multiuser detection of CDMA, and

compares the statistical performance of LMS, RLS, and Kalman filtering algorithms to

track the desired user signal in this application.
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5.9.1 Canonical Representation of Blind Multiuser Detection

A direct sequence code division multiple access (DS-CDMA) system is discussed in

this subsection. It has K users and the wireless channel is an additive Gaussian white

noise channel. After a series of processing (chip filtering, chip rate sampling), the

discrete-time output of the receiver during a symbol interval can be represented by the

following signal model

y(n) =
K∑︁

k=1

Akbk(n)sk(n) + σv(n), n = 0, 1, · · · , Ts − 1, (5.9.1)

where v(n) is the channel noise; Ak, bk(n) and sk(n) are the received amplitude, infor-

mation character sequence and characteristic waveform of the k-th user, respectively;
σ is a constant. Now, it is assumed that the information characters of each user are

independently and equally selected from {−1, +1}, and the characteristic waveform
has unit energy, i.e.,

Ts−1∑︁

n=0
|sk(n)|2 = 1.

The support interval of the characteristic waveform is [0, Ts], where Ts = NTc is the
symbol interval; N and Tc are the spread spectrum gain and chip interval, respectively.

The blind multiuser detection problem is to estimate the information characters

bd(0), bd(1), · · · , bd(N − 1) transmitted by the desired user when only the received

signal y(0), · · · , y(N − 1) within one symbol interval and the characteristic waveform

sd(0), sd(1), · · · , sd(N−1) of the desired user are known. Here, the term "blind"means

that we do not know any information about other users. Without losing generality, user

1 is assumed to be the desired user.

Define

y(n) = [y(0), y(1), · · · , y(N − 1)]T, (5.9.2)

v(n) = [v(0), v(1), · · · , v(N − 1)]T, (5.9.3)

as the received signal vector and noise vector respectively, and the characteristic wave-

form vector of user k as

sk(n) = [sk(0), sk(1), · · · , sk(N − 1)]T. (5.9.4)

Then Eq. (5.9.1) can be written in vector form

y(n) = A
1
b
1
(n)s

1
+

K∑︁

k=2

Akbk(n)sk + σv(n), (5.9.5)

where the first term on the right side is the desired user signal, the second term is the

sum of the interference signals of all other users (collectively referred to as interference

users), and the third term represents channel noise.
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Now, the multiuser detector c
1
is designed for the desired user, and the detector

output is cT
1
y(n) =< c

1
, y⟩. Therefore, the detection result of the information symbol of

the desired user within the n-th symbol interval is

^b
1
(n) = sgn(⟨c

1
, y⟩) = sgn(cT

1
(n)y(n)). (5.9.6)

Blind multiuser detector c
1
has two canonical representations:

Canonical representation 1:

c
1
(n) = s

1
+ x

1
(n). (5.9.7)

Canonical representation 2:

c
1
(n) = s

1
− C

1,null
w
1
. (5.9.8)

Both canonical representations decompose the adaptive multiuser detector into the

sum of the fixed part s
1
and the other adaptive part, and the two parts are orthogo-

nal (orthogonal decomposition), i.e., the two parts respectively satisfy the following

equations

⟨s
1
, x

1
⟩ = 0, (5.9.9)

⟨s
1
, C

1,null
w
1
⟩ = 0. (5.9.10)

Canonical representation 1 was proposed by Honig et al.

[106]

. The constraint condition

Eq. (5.9.7) can be equivalently expressed as

⟨c
1
, s

1
⟩ = ⟨s

1
, s

1
⟩ = 1. (5.9.11)

Since ⟨c
1
, s

1
⟩ = 1, c

1
(n) is a standardized multiuser detector, which is the meaning of

canonical representation.

Canonical representation 2 is obtained by Kapoor et al.

[118]

, under the framework

of generalized sidelobe canceller and the constraint ⟨c
1
, s

1
⟩ = 1. In this canonical

representation, the matrix C
1,null

is expanded into the zero space of the desired user

characteristic waveform vector s
1
⩾ 1, i.e., ⟨s

1
, C

1,null
w
1
⟩ = 0. It is easy to see that the

canonical representation 1 and 2 are equivalent.

5.9.2 LMS and RLS Algorithms for Blind Multiuser Detection

Consider using canonical representation 1 to derive LMS and RLS algorithms for blind

multiuser detection.

1. LMS Algorithm
Considering the blind multiuser detector c

1
(n) described by canonical represen-

tation 1, the mean output energy and mean square error of its output signal ⟨c
1
, y⟩
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are

MOE(c
1
) = E

{︁
⟨c

1
, y⟩2

}︁
= E

{︁
(cT

1
(n)y(n))2

}︁
, (5.9.12)

MSE(c
1
) = E

{︁
(A

1
b
1
− ⟨c

1
, y⟩)2

}︁
. (5.9.13)

Define

e(n) = ⟨c
1
, y⟩ = cT

1
(n)y(n), (5.9.14)

then the mean of e(n) is zero and the variance
[106, 187]

is

cov{e(n)} = E{e2(n)} = A2
1
+ MSE(c

1
(n)). (5.9.15)

Find the unconstrained gradient of the MOE with respect to c
1
(n), and obtain

∇MOE = 2E{⟨y, s
1
+ x

1
⟩}y. (5.9.16)

Therefore, the random gradient adaptive algorithm of the adaptive part x
1
(i) of the

blind multiuser detector c
1
(n) is

x
1
(i) = x

1
(i − 1) − μ ^∇MOE, (5.9.17)

where
^∇MOE is the estimation of∇MOE. The instantaneous gradient is adopted, i.e.,

the mathematical expectation in Eq. (5.9.16) is directly replaced by its instantaneous

value to obtain

^∇MOE = 2⟨y, s
1
+ x

1
⟩y. (5.9.18)

It is easy to prove

[y − ⟨y, s1⟩s1]T s1 = yTs
1
sT
1
s
1
= 0.

Since each user characteristic waveform has unit energy, that is, sT
1
s
1
= 1, the above

equation is equivalent to

[y − ⟨y, s1⟩s1] ⊥ s
1
,

indicating that the component orthogonal to s
1
in y is

y − ⟨y, s
1
⟩s

1
. (5.9.19)

Therefore, from Eqs. (5.9.18) and (5.9.19), the projection gradient (namely, the compo-

nent orthogonal to s
1
in the gradient) is

2⟨y, s
1
+ x

1
⟩[y − ⟨y, s

1
⟩s

1
]. (5.9.20)

Let the matched filter output responses of s
1
and s

1
+ x

1
be

Z
MF
(i) = ⟨y(i), s

1
⟩, (5.9.21)

Z(i) = ⟨y(i), s
1
+ x

1
(i − 1)⟩, (5.9.22)
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×

×

×

s1

+

+

+

∫ T

0
(·)dt

Delay

∫ T

0
(·)dt

y[i]

+

−

−

ZMF(i)

+

+ Z(i)

µ

x1[i− 1]

− +

Fig. 5.9.1: Schematic illustration of LMS algorithm for blind multiuser detection

respectively. Substituting Eqs. (5.9.21) and (5.9.22) into Eq. (5.9.17), the update equation

of the random gradient adaptive algorithm is obtained

x
1
(i) = x

1
(i − 1) − μZ(i)[y(i) − Z

MF
(i)s

1
]. (5.9.23)

The implementation of the algorithm is shown in Fig. 5.9.1. This is the LMS algorithm

for blind multiuser detection proposed by Honig et al.

When there is no interference characteristic waveform information, the initial

condition of Eq. (5.9.23) can usually be selected to be x
1
(0) = 0.

2. RLS Algorithm
Different from the LMS algorithm proposed by Honig et al., whichminimizes theMOE of

the blind detector, poor andWang

[175]

proposed to minimize the exponentially weighted

output energy of the blind detector, i.e.,

min

n∑︁

i=1
λn−i

[︁
cT
1
(n)y(i)

]︁
2

subject to sT
1
c
1
(n) = 1, (5.9.24)

where 0 < λ < 1 is a forgetting factor.
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It can be proved that the optimal detector satisfying Eq. (5.9.24) is

c
1
(n) = R−1(n)s

1

sT
1

R−1(n)s
1

, (5.9.25)

where

R(n) =
n∑︁

i=1
λn−iy(i)yT(i) (5.9.26)

is the autocorrelation matrix of the observed signal. From the matrix inversion lemma,

the update formula of R−1(n) can be obtained, and the RLS algorithm for updating

blind multiuser detector c
1
(n) is as follows

k(n) = R−1(n − 1)y(n)
λ + yT(n)R−1(n − 1)y(n)

, (5.9.27)

h(n) = R−1(n)s
1
=

1

λ [h(n − 1) − k(n)y
T

(n)h(n − 1)], (5.9.28)

c
1
(n) = 1

s
1
h(n)h(n), (5.9.29)

R−1(n) = 1

λ [R
−1

(n − 1) − k(n)yT(n)R−1(n − 1)]. (5.9.30)

This is the RLS algorithm for blind adaptive multiuser detection proposed by poor and

Wang

[175]

.

5.9.3 Kalman Adaptive Algorithm for Blind Multiuser Detection

Now consider using canonical representation 2 to design a Kalman adaptive algorithm

for blind multiuser detection. Given the eigenvector s
1
of user 1, C

1,null
can be easily

obtained by Gram-Schmidt orthogonalization or singular value decomposition.

For a time invariant CDMA system, an important fact is that the optimal detector or

tap weight vector c
opt1

(n) is also time invariant, i.e., c
opt1

(n + 1) = c
opt1

(n). Let w
opt1

be the adaptive part in canonical representation 2 of c
1
, then there is the following

state equation for the state variable w
opt1

w
opt1

(n + 1) = w
opt1

(n). (5.9.31)

Meanwhile, take canonical representation 2 into consideration and substituting

Eq. (5.9.8) into Eq. (5.9.14) gives

e(n) = sT
1
y(n) − yT(n)C

1,null
w
1
(n). (5.9.32)

Let ỹ(n) = sT
1
y(n) and dT(n) = yT(n)C

1,null
. If w

1
reaches w

opt1
, Eq. (5.9.32) can be

written as a measurement equation

ỹ(n) = dT(n)w
opt1

(n) + e
opt
(n). (5.9.33)
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The state equation (5.9.31) and measurement equation (5.9.33) together constitute

the dynamic system equation of user 1, which is the basis of Kalman filtering. The

Kalman filtering problem in blind multiuser detection can be described as: given the

measurement matrix dT(n), use the observation data ỹ(n) to calculate the minimum

mean square error estimation of each coefficient of the state vector w
opt1

for each n ≥ 1.
From Eq. (5.9.15), the variance of the optimal detection error is obtained

ξ
min

= cov{e
opt
(n)} = E{e2

opt
(n)} = A2

1
+ ϵ

min
, (5.9.34)

where ξ
min

= MSE(c
opt1

(n)) represents the minimummean square error when the tap

weight vector c
1
is optimal, so ξ

min
= MOE(c

opt1
(n)) represents the minimum average

output energy of the dynamic system of user 1.

For synchronization model Eq. (5.9.1), it is easy to prove that E{e
opt
(n)e

opt
(l)} =

0, n ̸= l, because E{y(n)y(l) = 0}, n ̸= l. This shows that e
opt
(n) is a white noise with

zero mean and variance ξ
min

in the case of synchronization.

Compared with the first-order dynamic system model described by Eq. (5.4.1) and

Eq. (5.4.2), the linear first-order state space model determined by Eq. (5.9.31) and

Eq. (5.9.33) has the following characteristics:

(1) The state vector is w
opt1

, the state transition matrix F(n + 1, n) is an N × N identity

matrix, and the process noise is a zero vector;

(2) The observation vector becomes a scalar ỹ(n) = sT
1
y(n) and the observation matrix

becomes a vector dT(n) = yT(n)C
1,null

.

Comparing Eq. (5.4.1) and Eq. (5.4.2) of the standard dynamic system model with

Eq. (5.9.31) and Eq. (5.9.33) of the dynamic system of user 1, it is easy to extend the

standard Kalman filtering algorithm to the following Kalman adaptive algorithm for

blind multiuser detection.

Algorithm 5.9.1. Kalman adaptive algorithm for blind multiuser detection
Initial condition: K(1, 0) = I
Iterative calculation: n = 1, 2, 3, · · ·

g(n) = K(n, n − 1)d(n)
{︁
dH(n)K(n, n − 1)d(n) + ξmin

}︁
−1

, (5.9.35)

K(n + 1, n) = K(n, n − 1) − g(n)dH(n)K(n, n − 1), (5.9.36)

ŵopt1(n) = ŵopt1(n − 1) + g(n)
{︁
y(n) − dH(n)ŵopt1(n − 1)

}︁
, (5.9.37)

c
1
(n) = s

1
− C

1,nullŵopt1(n), (5.9.38)

where ŵopt1(n), g(n) and d(n) are (N −1) × 1matrices; K(n +1, n) is an (N −1) × (N −1)
matrix.

The Kalman adaptive filtering algorithm for blind multiuser detection was proposed by

Zhang and Wei

[250]

in 2002. To optimize the Kalman filter, the initial state is required to
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be a Gaussian random vector. Therefore, the initial prediction estimation ŵ
opt1

(0) =

E{ŵ
opt1

(n)} = 0 can be selected, and its correlation matrix is

K(1, 0) = E

{︁
[w

opt1
(0) − E{w

opt1
(0)}][w

opt1
(0) − E{w

opt1
(0)}]T

}︁
= I.

Eq. (5.9.37) is important because it shows that the correction term is equal to the innova-

tion process e(n) = ỹ(n) − dT(n)ŵ(n − 1) multiplied by the Kalman gain g(n). Although
the calculation of g(n) in Eq. (5.9.35) requires that the minimum mean square error

ξ
min

is known or estimated, this requirement does not play much role. There are two

reasons:

(1) The Kalman gain vector g(n) is only a time-varying step for updating ŵ
opt1

(n);
(2) According to Ref.[106], after the inter symbol interference is suppressed, the signal-

to-interference ratio (SIR) of the desired user output is defined as

SIR = 10log

⟨c
opt1

, s
1
⟩2

ϵ
min

= −10logϵ
min

(dB).

The above equation is based on Eq. (5.9.11). Since the maximum SIR of the desired

user output is usually expected to be greater than 10dB, theminimummean square

error ξ
min

is generally less than 0.1. It is noted that the received signal amplitude

A
1
of the desired user in the n-th symbol interval is usually large and satisfies

A2
1
≫ 0.1, so

^ξ
min

≈ A2
1
can be directly taken as the estimation of the unknown

parameter ξ
min

in Eq. (5.9.34).

Although the above discussion takes the stationary wireless channel as the assumption,

the obtained Kalman algorithm is also applicable to the slow time-varying channels.

According to Ref. [100], a slow time-varying dynamic system can be modeled by a

transverse filter whose tap weight vector w
opt1

follows a first-order Markov process

w
opt1

(n + 1) = aw
opt1

(n) + v
1
(n), (5.9.39)

where a is a fixed model parameter; v
1
(n) is the process noise with zero mean and

correlation matrix Q
1
. Therefore, Eq. (5.9.36) and Eq. (5.9.37) in the Kalman algorithm

equations should be replaced by

K(n + 1, n) = K(n, n − 1) − g(n)dH(n)K(n, n − 1) + Q
1
, (5.9.40)

ŵ
opt1

(n) = ŵ
opt1

(n − 1) + g(n)[ỹ(n) − dT(n)ŵ
opt1

(n − 1)]. (5.9.41)

respectively.

For a slow time-varying CDMA system, it can be assumed that the parameter a is
very close to 1, and each element of the process noise correlation matrix Q

1
takes a

small value. Therefore, although the Kalman algorithm needs the unknown parameters

such as ξ
min

, a and Q
1
in a slow time-varying CDMA system, the estimated values

^ξ
min
≈ A2

1
, a ≈ 1 and Q

1
≈ 0 (zero matrix) can be used. That is, the Kalman algorithm

is suitable for slow time-varying CDMA systems.
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The following is a comparison of the computational complexity of LMS, RLS, and

Kalman algorithms (the amount of calculation to update the tap weight vector c
1
(n) in

each symbol interval).

LMS algorithm

[106]

: 4N times multiplication and 6N times addition;

RLS algorithm

[175]

: 4N2

+ 7N times multiplication and 3N2

+ 4N times addition;

Kalman algorithm

[250]

: 4N2

− 3N times multiplication and 4N2

− 3N times addition.

Theorem 5.9.1.
[250]

When n is large enough, the mean output energy ξ (n) of the Kalman
filtering algorithm is

ξ (n) ≤ ξmin(1 + n−1N), (5.9.42)

for a stationary CDMA system.

Theoretical analysis in reference [250] shows that when the blind adaptive multiuser

detector converges, the steady-state residual mean output energy of the above three

algorithms is

ξ
min

(∞) =

⎧
⎪⎨
⎪⎩

ξ
min

μ
2

tr(Rvy)
1−

μ
2

tr(Rvy)
, LMS algorithm,

1−λ
λ (N − 1)ξ

min
, RLS algorithm,

0, Kalman algorithm,

(5.9.43)

where Rvy = E{(I − s
1
sT
1
)y(n)yT(n)} is the cross-correlation matrix of vectors v(n) =

(I − s
1
sT
1
)y(n) and y(n); μ and λ are the step size of LMS algorithm and the forgetting

factor of RLS algorithm, respectively.

Notes From Eq. (5.9.42), for Kalman algorithm, when the number of iterations n =
2N, the mean output energy ξ (n) ≤ 1.5ξ

min
; when n = 16N, ξ (n) ≤ 1.0625ξ

min
. This

shows that the output energy ξ (n) of the Kalman filtering algorithm quickly tends to the

minimummean output energy ξ
min

with the increase of n. Therefore, the convergence
performance of the average output energy ξ (n) of the three algorithms is as follows:

(1) As shown in Eq. (5.9.42), the convergence of the Kalman filtering algorithm only

depends on the spread spectrum gain N, which is independent of data correlation
matrix R;

(2) The convergence of the LMS algorithm depends on the eigenvalue distribution of

data correlation matrix R;
(3) The convergence of RLS algorithmdepends on the trace ofmatrix productRM(n−1),

whereM(n) = E{[c
1
(n) − c

opt1
][c

1
(n) − c

opt1
]

T}.

When using the LMS algorithm, the step size μ must meet the stability condition of the

output mean square error convergence

[106]

μ <

2∑︀K
k=1 A2k + Nσ2

. (5.9.44)
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To compare the multiple access interference suppression ability of different algorithms,

the time average SIR of n-step iteration is often used as an index

SIR(n) = 10log

∑︀M
i=1(c

T

1l(n)s1)
2

∑︀M
l=1

cT
1l(n)

(︀
yl(n) − b1,l(n)s1

)︀
2

, (5.9.45)

where M is the number of independent experiments, the subscript l indicates the l-th
experiment, and the variance of the background noise is σ2. Assume that the SNR of

user k is SNR = 10log(Ek/σ2), where Ek = A2k is the bit energy of user k.

Summary

The main content of this chapter is the optimal design and adaptive implementation of

filters. Firstly, different filters are introduced from three perspectives:

(1) Based on the principle of maximum SNR, the matched filter is discussed;

(2) Based on the minimummean square error criterion, the Wiener filter is derived;

(3) Based on the state space model, the Kalman filter and its adaptive algorithm are

introduced.

Then, for the adaptive implementation of the Wiener filter, LMS and RLS adaptive

algorithms are introduced. To overcome the disadvantage of slow convergence of the

transverse filter, the LMS lattice filter with symmetric structure and LS lattice filter with

the asymmetric structure are introduced in this chapter.

Finally, as the application of adaptive filters, adaptive line enhancer andnotch filter,

generalized sidelobe canceller, and blind adaptive multiuser detector are introduced,

respectively.

Exercises

5.1 The harmonic signal is

s(t) = A cos(2πfc t), 0 ≤ t ≤ T, fc =
1

T .

The observation sample is y(t) = s(t) + w(t), where w(t) is a Gaussian white noise with
zero mean and variance σ2. Find the output of the matched filter when t = T and its
mean and variance.

5.2 Suppose that the transmitter transmits signals s
1
(t) and s

2
(t) in turn,

s
1
(t) = A cos(2πfc t), 0 ≤ t ≤ T, fc =

1

T ,

s
2
(t) = A sin(2πfc t), 0 ≤ t ≤ T .
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The attenuation in the signal transmission process is ignored, and the observation

noise at the receiver is white noise w(t), with zero mean and variance σ2. A matched

filter is designed at the receiver to extract signal s
1
(t) and calculate the output of the

matched filter when t = T.
5.3 Set the signal to be

s(t) =
{︃

e

−t
, t > 0,

0, t < 0,

and the noise n(t) to be a white noise with zero mean and variance 1. Solve the impulse

response h
0
(t) of the matched filter.

5.4 The autocorrelation function

Rss(τ) = A
sin

2

(ατ)
τ2 ,

of signal s(t) and the autocorrelation function Rvv(τ) = Nδ(τ) of the additive noise are
known. The signal is not correlated with the noise, i.e., Rsv(τ) = E{s(t)v(t − τ)} = 0, ∀τ.
Find the non causal Wiener filter H(ω) for estimating s(t) with the observation data
x(t) = s(t) + v(t).
5.5 Let s(t) be a stationary random process, and

Rss(τ) = E{s(t)s(t − τ)} = 1

2

e

−|τ|
,

Rnn(τ) = E{n(t)n(t − τ)} =
{︃

1, τ = 0,

0, τ ̸= 0.

The signal is uncorrelated with the noise, i.e., E{s(t)n(t − τ)} = 0, ∀τ. Find the transfer
function expression of the causal Wiener filter.

5.6 Let y(t) = s(t) + n(t). Given

Pss(ω) =
N
0

α2 + ω2

, Pnn(ω) = N and Psn(ω) = 0,

where α > 0. Find the transfer function of the causal Wiener filter.

5.7 The discrete-time signal s(n) is a first-order AR process, and its correlation func-

tion is Rs(k) = α|k|, 0 < α < 1. Let the observation data be x(n) = s(n) + v(n), where
s(n) and v(n) are uncorrelated. v(n) is a white noise with zero mean and variance of σ2v .
Design its Wiener filter H(z).
5.8 Assume that the filter acting on the observation data y(t) = s(t) + n(t) has a
transfer function

a(t, u) = m(1 + u)
m−1

(1 + t)m , 0 ≤ u ≤ t,m > 0.

Find the innovation process of y(t), and design a filter b(t, s) acting on the innovation.
5.9 Suppose the power spectrum of the observation signal y(t) = s(t) + n(t) is

Pyy(ω) =
ω2

+ 25

(ω2

+ 1)(ω2

+ 4)

.
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Solve the innovation process w(t) and the expression of linear mean square estimation

ŝ(t) of signal s(t).
5.10 Let x(t) be a time invariant scalar random variable, which is observed in additive

white Gaussian noise v(t), that is, y(t) = x(t) + v(t) is the observed data. If Kalman filter

is used to adaptively estimate x(t), try to design a Kalman filter:

(1) Construct a discrete-time state space equation;

(2) Find the update equation of the state variable x(k).

5.11 Kalman filter estimation of AR(1) process. The state variable obeys AR(1) model

x(n) = 0.8x(n − 1) + w(n), where w(n) is a white noise with zero mean and variance

σ2w = 0.36. The observation equation is y(n) = x(n) + v(n), where v(n) is a white noise
independent of w(n), with zero mean and variance σ2v = 1. The Kalman filter is used to

estimate the state variable. Find the specific expression of x̂(n).
5.12 The state transition equation and observation equation of a time-varying system

are

x(n + 1) =
[︃
1/2 1/8

1/8 1/2

]︃
x(n) + v

1
(n),

and

y(n) = x(n) + v
2
(n),

respectively, where

E{v
1
(n)} = 0,

E{v
1
(n)vT

1
(k)} =

{︃
σ2
1
I, n = k,

0, n ̸= k,

E{v
2
(n)vT

2
(k)} =

{︃
σ2
2
I, n = k,

0, n ̸= k.

E{v
1
(n)vT

2
(k)} = 0, ∀n, k,

E{x(1)xT(1)} = I,

where0 and I are zeromatrix and identitymatrix, respectively. Find theupdate equation

of x(n).
5.13 The following figure shows a two-dimensional radar tracking schematic diagram.

In the figure, the target aircraft flies in the x direction at a constant speed V, the radar
is at the origin O, the distance between the aircraft and the radar is r, and the azimuth

is θ. To make the radar track the aircraft, Kalman filter is applied to adaptively estimate

the aircraft distance r, the aircraft velocity ṙ, azimuth θ and angular velocity ˙θ on the
radar line of sight. For the problem of two-dimensional radar tracking, try to construct

a discrete-time state space equation.
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Fig-Exer. Geometry illustration of radar tracking

5.14 The time-varying real ARMA process is described by the difference equation

y(n) +
p∑︁

i=1
ai(n)y(n − i) =

q∑︁

i=1
ap+iv(n − i) + v(n),

where a
1
(n), · · · , ap(n), ap+1(n), · · · , ap+q(n) are parameters of the ARMAmodel, v(n)

is the input, and y(n) is the output. Assume that the input process v(n) is Gaussian
white noise with variance σ2. The parameters of the ARMA model obey a random

disturbance model

ak(n + 1) = ak(n) + wk(n), k = 1, · · · , p, p + 1, · · · , p + q,

wherewk(n) is a Gaussianwhite noise with zeromean, which is independent ofwj(n), j ̸
= k and v(n). Define the (p + q) × 1 state vector

x(n) = [a
1
(n), · · · , ap(n), ap+1(n), · · · , ap+q(n)]T.

And define the measurement matrix

C(n) = [−y(n − 1), · · · , −y(n − p), v(n − 1), · · · , v(n − q)],

which is essentially a row vector here. According to the above conditions, solve the

following problems:

(1) Establish the state space equation of the time-varying ARMA process;

(2) Give the Kalman adaptive filtering algorithm for updating the state vector x(n + 1);
(3) How to set the initial values?

5.15 In the case of stationary system, if the state transition matrix F(n + 1, n) is the
identity matrix and the state noise vector is zero. Prove that the predicted state error

correlation matrix K(n + 1, n) is equal to the filtered state error correlation matrix K(n).
5.16 In wireless communication, the FIR filter with known impulse response is often

used as the wireless channel model. If the channel output, i.e., the signal y(n) received
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by the receiver, is given by

y(n) = hTx(n) + w(n),

where h is anM ×1 vector, representing the channel impulse response; x(n) is anM ×1
vector, representing the current value and M − 1 previous transmission values of the

channel input; w(n) is a Gaussian white noise with zero mean and variance σ2w. At
time n, the channel input u(n) is composed of binaries {−1, +1}, which is statistically
independent of w(n). Therefore, the state equation can be written as

[133]

x(n + 1) = Ax(n) + e
1
v(n),

where v(n) is a Gaussian white noise with zero mean and variance σ2v , which is inde-
pendent of w(n). The matrix A is an M ×M matrix, with elements

aij =
{︃

1, i = j + 1,
0, others.

and e
1
is an M × 1 vector, with elements

ei =
{︃

1, i = 1,

0, others.

When the channel model and the observation y(n) with noise are known, an equalizer
is constructed by using Kalman filter, which can give an estimated value of the channel

input u(n) at a certain delay time (n + D), where 0 ≤ D ≤ M − 1. Prove that the equalizer
is an infinite impulse response filter, and its coefficients are determined by two groups

of different parameters:

(1) M × 1 channel impulse response vector;

(2) Kalman gain vector (which is an M dimensional column vector).

5.17 Consider a code divisionmultiple access (CDMA) systemwith K users. Assuming

that user 1 is the desired user, its characteristic waveform vector s
1
is known and

satisfies the unit energy condition ⟨s
1
, s

1
>= sT

1
s
1
= 1. The observation data vector

of the receiver is y(n), which contains the linear mixture of K user signals. To detect

the desired user’s signal, we want to design a multiuser detector c
1
to minimize the

output energy of the detector. If the multiuser detector obeys the constraint c
1
=

s
1
+ U iw, where U i is called the interference subspace, i.e., its columns are expanded

into interference subspace.

(1) Find the LMS adaptive algorithm of the linear detector c
1
;

(2) How to compute the interference subspace U i?

5.18 If the j-order least squares backward prediction error vector is given by

P⊥
0,j−1(n)z−jx(n) = ebj (n).
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Prove

P⊥
1,j(n)z−j−1x(n) = z−1ebj (n).

5.19 Given a time signal v(n) = [v(1), v(2), v(3), · · · , v(n)]T. Calculate
(1) the data vectors v(2) and v(3);
(2) the vectors z−1v(2) and z−2v(2);
(3) the vectors z−1v(3) and z−2v(3).

If u(n) = z−1v(n), calculate
(4) the projection matrix Pu(2) and Pu(3);
(5) the least square prediction of v(n) by u(n). This prediction is called one-step for-

ward prediction of v(n);
(6) the forward prediction error vectors ef

1

(2) and ef
1

(3).

5.20 It is known that the forward and backward prediction residuals are respectively

ϵfm(n) = ⟨x(n), P⊥
1,m(n)x(n)⟩,

ϵbm(n) = ⟨z−mx(n), P⊥
0,m−1(n)z−mx(n)⟩,

and the partial correlation coefficient ∆fm+1(n) = ⟨efm(n), z−1ebm(n)⟩. Prove

ϵfm+1(n) = ϵfm(n) −
∆2m+1(n)
ϵbm(n − 1)

,

ϵbm+1(n) = ϵbm(n − 1) −
∆2m+1(n)
ϵfm(n)

.



6 Higher-Order Statistical Analysis
The signal processing methods used in the previous chapters use the second-order

statistics (time-domain is the correlation function and frequency-domain is the power

spectrum) as the mathematical analysis tool. The correlation function and the power

spectrum have some shortcomings. For example, they have equivalence or multiplicity

and can not identify the nonminimum phase systems; they are sensitive to additive

noise and can only deal with the observation with additive white noise. To overcome

these shortcomings, third-order or higher-order statistics must be used. Here all these

statistics are called higher-order statistics. The signal analysis based on higher-order

statistics is referred to as higher-order statistical analysis of the signal, also known as

non-Gaussian signal processing. Second-order statistical analysis can only extract the

main information of the signal, i.e., the profile, while higher-order statistical analysis

can provide detailed information about the signal. Therefore, higher-order statistics is

an indispensable mathematical tool in signal processing.

As early as the 1960s, higher-order statistics had been studied by mathematicians.

However, this research did not gain comparative development because no appropriate

applications were found at that time. It was not until the late 1980s that the experts

in signal processing ignited the fire of this research and it rapidly developed into an

important branch of modern signal processing. This chapter will systematically intro-

duce the theory, method, and some typical applications of the higher-order statistical

analysis.

6.1 Moments and Cumulants

Themost commonly used higher-order statistics are higher-order cumulants andhigher-

order spectra.

6.1.1 Definition of Higher-order Moments and Cumulants

The characteristic function method is one of the main analysis tools of probability

theory and mathematical statistics. Using the characteristic function, it is easy to get

the definition of the higher-order moments and higher-order cumulants.

Consider a continuous random variable x, if the probability density function of x
is f (x), and g(x) is an arbitrary function, then the expectation of g(x) can be defined as

E{g(x)} def

=

+∞∫︁

−∞

f (x)g(x)dx. (6.1.1)

https://doi.org/10.1515/9783110475562-006
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Especially, when g(x) = ejωx, we have

Φ(ω) def= E{ejωx} =
+∞∫︁

−∞

f (x)ejωxdx, (6.1.2)

and this function is called the first characteristic function. In other words, the first

characteristic function is the inverse Fourier transform of the characteristic function

f (x). Since the probability density function f (x) ≥ 0, the first characteristic function
Φ(x) has a maximum value at the origin, i.e.,

|Φ(ω)| ≤ Φ(0) = 1. (6.1.3)

Taking the kth-order derivative of the first characteristic function, it is obtained that

Φk(ω) = d
kΦ(ω)
dωk

= jkE{xkejωx}. (6.1.4)

Given a random variable x, its kth-order (original) moment mk and central moment μk
are defined as

mk
def

= E{xk} =
+∞∫︁

−∞

xk f (x)dx, (6.1.5)

μk
def

= E{(x − η)k} =
+∞∫︁

−∞

(x − η)k f (x)dx, (6.1.6)

where η = E{x} represents the first-order moment (i.e. mean) of the random variable

x. For a random variable x with zero mean, the kth-order original moment mk and

central moment μk are equivalent. In the following, let the mean of random variables

and signals be zero.

By making ω = 0 in Eq. (6.1.4), the kth-order moment of x can be obtained

mk = E{xk} = (−j)k d
kΦ(ω)
dωk

⃒⃒
⃒⃒
ω=0

= (−j)kΦk(0). (6.1.7)

Since the kth-order moment E{xk} of x can be generated using the first characteristic
function, the first characteristic function is usually called the moment-generating

function.

The natural logarithm of the first characteristic function is called the second char-

acteristic function, denoted by

Ψ(ω) def= lnΦ(ω). (6.1.8)

Similar to the definition of Eq. (6.1.7) for kth-order moments, one can also define the

kth-order cumulants of a random variable x as

ckx = (−j)k d
k
lnΨ(ω)
dωk

⃒⃒
⃒⃒
ω=0

= (−j)kΨ k
(0). (6.1.9)
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Therefore, the second characteristic function is called the cumulant-generating func-

tion.

The above discussion on single random variable x can be easily extended to multi-

ple random variables. Let x
1
, · · · , xk be k continuous random variables and the joint

probability density function is f (x
1
, · · · , xk), then the first joint characteristic function

for these k random variables is defined as

Φ(ω
1
, · · · , ωk)

def

= E{ej(ω1
x
1
+···+ωkxk)}

=

∞∫︁

−∞

· · ·

∞∫︁

−∞

f (x
1
, · · · , xk)ej(ω1

x
1
+···+ωkxk)dx

1
· · · dxk . (6.1.10)

Taking the (r = r
1
+ · · · + rk)th-order partial derivatives of Φ(ω1

, · · · , ωk) with respect
to ω

1
, · · · , ωk, we have

∂rΦ(ω
1
, · · · , ωk)

∂ωr1
1

· · · ∂ωrkk
= (−j)rE{xr1

1

· · · xrkk e
j(ω

1
x
1
+···+ωkxk)}. (6.1.11)

Therefore, the rth-order joint moment of k random variables is

mr
1
···rk

def

= E{xr1
1

· · · xrkk } = (−j)r ∂
rΦ(ω

1
, · · · , ωk)

∂ωr1
1

· · · ∂ωrkk

⃒⃒
⃒⃒
ω
1
=···=ωk=0

. (6.1.12)

Similarly, the second joint characteristic function is defined as

Ψ(ω
1
, · · · , ωk) = lnΦ(ω

1
, · · · , ωk). (6.1.13)

The rth-order joint cumulants of the random variables x
1
, · · · , xk are defined as

cr
1
···rk

def

= cum(xr1
1

· · · xrkk ) = (−j)r ∂
r
lnΦ(ω

1
, · · · , ωk)

∂ωr1
1

· · · ∂ωrkk

⃒⃒
⃒⃒
ω
1
=···=ωk=0

. (6.1.14)

In practice, it is often taken as r
1
= · · · = rk = 1, from which the kth-order moments

and kth-order cumulants of the k random variables are obtained as

m
1···1

def

= E{x
1
· · · xk} = (−j)k ∂

kΦ(ω
1
, · · · , ωk)

∂ω
1
· · · ∂ωk

⃒⃒
⃒⃒
ω
1
=···=ωk=0

, (6.1.15)

c
1···1

def

= cum(x
1
· · · xk) = (−j)k ∂

k
lnΦ(ω

1
, · · · , ωk)

∂ω
1
· · · ∂ωk

⃒⃒
⃒⃒
ω
1
=···=ωk=0

. (6.1.16)

Consider a stationary continuous random signal x(t). Let x
1

= x(t), x
2

= x(t +
τ
1
), · · · , xk = x(t + τk−1), then mkx(τ1, · · · , τk−1) = m

1···1
is called the kth-order

moment of the random signal x(t). Hence, from Eq. (6.1.15) we get

mkx(τ1, · · · , τk−1) = E{x(t)x(t + τ1) · · · x(t + τk−1)}. (6.1.17)

Similarly, higher-order cumulants of random signal x(t) can be expressed as

ckx(τ1, · · · , τk−1) = cum[x(t), x(t + τ
1
), · · · , x(t + τk−1)]. (6.1.18)
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The above equation is only a formal definition of higher-order cumulants and does

not give the concrete expression of cumulants. In fact, cumulants can be expressed by

moments, and we will discuss this later.

Especially, the third- and fourth-order cumulants are most commonly used in

higher-order statistical analysis.

6.1.2 Higher-order Moments and Cumulants of Gaussian Signal

Let x be a Gaussian random signal with zeromean and variance σ2, or it can be denoted
by distribution symbol as x ∼ N(0, σ2). Since the probability density function of x is

f (x) = 1√
2πσ

exp

(︀
−

x2
2σ2

)︀
, (6.1.19)

then the moment-generating function of Gaussian random signal x is given by

Φ(ω) =
∞∫︁

−∞

f (x)ejωxdx

=

1√
2πσ

∞∫︁

−∞

exp

(︂
−

x2
2σ2 + jωx

)︂
dx. (6.1.20)

In the following integral formula

∞∫︁

−∞

exp(−Ax2 ± 2Bx − C)dx =
√︂
π
A exp

(︂
−

AC − B2
A

)︂
, (6.1.21)

let A =

1

2σ2 , B =

jω
2

, C = 0, then from Eq. (6.1.20) and (6.1.21) we can get

Φ(ω) = e−σ
2ω2

/2

. (6.1.22)

Computing the derivatives of Φ(ω), we obtain

Φ
′

(ω) = −σ2ωe−σ
2ω2

/2

,

Φ
′′

(ω) = (σ4ω2

− σ2)e−σ
2ω2

/2

,

Φ3

(ω) = (3σ4ω − σ6ω3

)e−σ
2ω2

/2

,

Φ4

(ω) = (3σ4 − 6σ6ω2

+ σ8ω4

)e−σ
2ω2

/2

.

Substituting these values into Eq. (6.1.7), we can get the moments of Gaussian random

variable

m
1
= 0,m

2
= σ2,m

3
= 0,m

4
= 3σ4.
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By extension, for any integer k, the moments of Gaussian random variable can be

written uniformly

mk =

{︂
0, k = odd,

1 · 3 · · · (k − 1)σk , k = even.

(6.1.23)

From Eq. (6.1.22), the cumulant-generating function of Gaussian random variable x
can be obtained directly

Ψ(ω) = lnΦ(ω) = σ
2ω2

2

,

its derivatives are Ψ
′

(ω) = −σ2ω, Ψ
′′

(ω) = −σ2, and Ψ (k)
(ω) ≡ 0, k = 3, 4, · · · . Substi-

tuting these values into Eq. (6.1.9), we can obtain the cumulants of Gaussian random

variable, i.e., c
1
= 0, c

2
= σ2 and ck = 0 for k = 3, 4, · · · .

The above results of moments and cumulants of Gaussian random variables can be

easily generalized as follows: the second-ordermoment and the second-order cumulant

of any zero mean Gaussian stochastic process are identical, which are equal to the

variance σ2; its odd-order moments are always zero, but its even-order moments are

not zero; higher-order (third-order and above) cumulants are equal to zero. In this

sense, the higher-order cumulants are said to be “blind” to the Gaussian stochastic

processes.

6.1.3 Transformation Relationships between Moments and Cumulants

Let {x
1
, · · · , xk} be a set of k random variables, and its indices set is I = {1, 2, · · · , k}.

Now consider dividing set I into several subsets such that none of these subsets is

empty, no two subsets have the same elements and these subsets have no order. Such

division is called nonintersecting and nonempty division of set I. That is, the division
is an unordered collection of nonintersecting nonempty subsets Ip such that

⋃︀
Ip = I.

Here

⋃︀
Ip denotes the union of all the subsets. Let mx(I) and cx(I) denote the kth-

order moment and kth-order cumulant of a random signal x(t), respectively. Moreover,
mx(Ip) and cx(Ip) represent the moments and cumulants of indices set Ip. For example,

Ip = {1, 3}, then mx(Ip) = E{x(t)x(t + τ2} and cx(Ip) = cum{x(t), x(t + τ
2
}.

Using moments,the cumulants can be described as

cx(I) =
∑︁

⋃︀q
p=1 Ip=I

(−1)

q−1
(q − 1)!

q∏︁

p=1
mx(Ip), (6.1.24)

this relation is known as the moment-to-cumulant transform formula or M-C formula

for short.

Similarly, moments can also be expressed as cumulants

mx(I) =
∑︁

⋃︀q
p=1 Ip=I

q∏︁

p=1
cx(Ip), (6.1.25)
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this equation is called cumulant-to-moment transform formula or C-M formula for

short.

Next, taking the third-order cumulant as an example, we will discuss how to get

the formula of cumulant expressed by moment using the M-C formula.

(1) If q = 1, i.e., set I = {1, 2, 3} decomposes into one subset, then I
1
= {1, 2, 3}.

(2) If q = 2, i.e., set I = {1, 2, 3} decomposes into two subsets, then we have three

kinds of decomposition: I
1
= {1}, I

2
= {2, 3}; I

1
= {2}, I

2
= {3, 1} and I

1
= {3},

I
2
= {1, 2}.

(3) If q = 3, i.e., set I = {1, 2, 3} decomposes into three subsets, then we have only

one kind of decomposition: I
1
= {1}, I

2
= {2} and I

3
= {3}.

Substituting the above decomposition into Eq. (6.1.24), we can get

c
3x(τ1, τ2) =E{x(t)x(t + τ1)x(t + τ2)} − E{x(t)}E{x(t + τ1)x(t + τ2)}

− E{x(t + τ
1
)}E{x(t + τ

2
)x(t)} − E{x(t + τ

2
)}E{x(t)x(t + τ

1
}

+ 2E{x(t)}E{x(t + τ
1
)}E{x(t + τ

2
)}. (6.1.26)

If let the mean of stationary random real signal x(t) is μx = E{x(t)} and the correlation
function is Rx = E{x(t)x(t + τ)}, then Eq. (6.1.26) can be represented as

c
3x(τ1, τ2) =E{x(t)x(t + τ1)x(t + τ2)} − μxRx(τ2 − τ1)

− μxRx(τ2) − μxRx(τ1) + 2μ3x , (6.1.27)

this form is very complicated. Similarly, the fourth-order cumulant can be expressed

by the first-, second-, and third-order moments, but its form will be more complex.

However, these expressions can be greatly simplified when x(t) is a random signal with

zero mean. For convenience, the second-, third- and fourth-order cumulants of a zero

mean random real signal x(t) are summarized as follows:

c
2x(τ) = E{x(t)x(t + τ)} = Rx(τ), (6.1.28)

c
3x(τ1, τ2) = E{x(t)x(t + τ1)x(t + τ2)}, (6.1.29)

c
4x(τ1, τ2, τ3) = E{x(t)x(t + τ1)x(t + τ2)x(t + τ3)} − Rx(τ1)Rx(τ3 − τ2)

− Rx(τ2)Rx(τ3 − τ1) − Rx(τ3)Rx(τ2 − τ1). (6.1.30)

In real applications, it is necessary to estimate the cumulants of each order based

on the known data samples. In order to obtain the consistent sample estimation of

kth-order cumulants, it is usually necessary to assume that the non-Gaussian signal

x(t) is 2kth-order absolutely summable, i.e.,

∞∑︁

τ
1
=−∞

· · ·

∞∑︁

τm−1=−∞
|cmx(τ1, · · · , τm−1)| < ∞,m = 1, · · · , 2k. (6.1.31)
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When x(t) satisfies this condition, the higher-order cumulants can be estimated using

the data samples x(1), · · · , x(N)

ĉ
3x(τ1, τ2) =

1

N

N∑︁

n=1
x(n)x(n + τ

1
)x(n + τ

2
), (6.1.32)

m̂
4x(τ1, τ2, τ3) =

1

N

N∑︁

n=1
x(n)x(n + τ

1
)x(n + τ

2
)x(n + τ

3
), (6.1.33)

ĉ
4x(τ1, τ2, τ3) = m̂4x(τ1, τ2, τ3) − ^Rx(τ1) ^Rx(τ3 − τ2)

−
^Rx(τ2) ^Rx(τ3 − τ1) − ^Rx(τ3) ^Rx(τ2 − τ1), (6.1.34)

where

^Rx(τ) =
1

N

N∑︁

n=1
x(n)x(n + τ), ^Rx(−τ) = Rx(τ). (6.1.35)

In the above formulas, let x(n) = 0 when n ≤ 0 or n > N.

6.2 Properties of Moments and Cumulants

Now we discuss the important properties of moment and cumulant, and further reveal

the difference betweenmoment and cumulant. In particular, the properties of cumulant

will be frequently cited later. For the convenience of narration, mom(x
1
, · · · , xk) and

cumm(x
1
, · · · , xk) are respectively used to represent the moment and cumulant of k

random variables x
1
, · · · , xk.

Property 1 Let λi be constant, xi be random variable, i = 1, · · · , k, then

mom(λ
1
x
1
, · · · , λkxk) =

k∏︁

i=1
λimom(x

1
, · · · , xk), (6.2.1)

cum(λ
1
x
1
, · · · , λkxk) =

k∏︁

i=1
λicum(x

1
, · · · , xk). (6.2.2)

Proof. From the definition of moment and the assumption that λ
1
, · · · , λk are con-

stants, it is immediately seen that Eq. (6.2.1) holds. In order to prove Eq. (6.2.2) holds,

notice that the variable sets y = {λ
1
x
1
, · · · , λkxk} and x = {x

1
, · · · , xk} have the same

indicator set, i.e., Iy = Ix. According to the M-C formula Eq. (6.1.24), we have

cy(Iy) =
∑︁

⋃︀p
q=1 Ip=I

(−1)

q−1
(q − 1)!

q∏︁

p=1
my(Ip),

where

q∏︁

p=1
my(Ip) =

q∏︁

p=1
λp

q∏︁

p=1
mx(Ip).
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Here, the definition of the moment and the properties of expectation are used. Thus,

cy(Iy) =
q∏︁

p=1
λpcx(Ix). (6.2.3)

Since Iy = Ix, Eq. (6.2.3) is the equivalent representation of Eq. (6.2.2).

Property 2 Moments and cumulants are symmetric in their arguments, i.e.,

mom(x
1
, · · · , xk) = mom(xi

1

, · · · , xik ), (6.2.4)

cum(x
1
, · · · , xk) = cum(xi

1

, · · · , xik ), (6.2.5)

where (i
1
, · · · , ik) is a permutation of (1, · · · , k).

Proof. Since mom(x
1
, · · · , xk) = E{x1 · · · xk}, then exchanging the positions of the

arguments has no effect on the moment. Obviously, Eq. (6.2.4) holds. On the other

hand, from the M-C formula Eq. (6.1.24), we know that the division of set Ix satisfies⋃︀
Ip = I is an unordered collection of nonintersecting nonempty subsets. Thus, the

order of the cumulant arguments is independent of the cumulant value, and the result

is that the cumulant is symmetric in their arguments.

Property 3 Moments and cumulants are additive in their arguments, i.e.,

mom(x
1
+ y

1
, x

2
, · · · , xk) = mom(x

1
, x

2
, · · · , xk) + mom(y

1
, x

2
, · · · , xk),

(6.2.6)

cum(x
1
+ y

1
, x

2
, · · · , xk) = cum(x

1
, x

2
, · · · , xk) + cum(y

1
, x

2
, · · · , xk).

(6.2.7)

This property means that the cumulants of the sum are equal to the sum of cumu-

lants, terminology "cumulant" is named because of this.

Proof. Noticing

mom(x
1
+ y

1
, x

2
, · · · , xk) = E{(x1 + y1)x2 · · · xk} = E{x1x2 · · · xk} + E{y1x2 · · · xk}

is the equivalent form of Eq. (6.2.6). Let z = (x
1
+ y

1
, x

2
, · · · , xk), x = (x

1
, x

2
, · · · , xk)

and v = (y
1
, x

2
, · · · , xk). Sincemz(Ip) is the expectation of the product of the elements

in the subdivision Ip, and x1 + y1 only appears in the form of single power, thus

q∏︁

p=1
mz(Ip) =

q∏︁

p=1
mx(Ip) +

q∏︁

p=1
mv(Ip).

Substituting the above equation into the M-C formula (6.1.24), we can get the result of

Eq. (6.2.7).
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Property 4 If the random variables {xi} are independent of the random variables {yi},
then the cumulants are “semi-invariant”, i.e.,

cum(x
1
+ y

1
, · · · , xk + yk) = cum(x

1
, · · · , xk) + cum(y

1
, · · · , yk). (6.2.8)

But the higher-order moments are generally not semi-invariance, i.e.,

mom(x
1
+ y

1
, · · · , xk + yk) ̸= mom(x

1
, · · · , xk) + mom(y

1
, · · · , yk). (6.2.9)

This property gives another name of cumulant – semi-invariant.

Proof. Let z = (x
1
+y

1
, · · · , xk+yk) = x+y, where x = (x

1
, · · · , xk) and y = (y

1
, · · · , yk).

According to the statistically independent of {xi} and {yi}, it is immediately seen that

Ψz(ω1
, · · · , ωk) = ln E

{︁
ej[ω1

(x
1
+y

1
)+···+ωk(xk+yk)]

}︁

= ln E
{︁
ej(ω1

x
1
+···+ωkxk)

}︁
+ ln E

{︁
ej(ω1

y
1
+···+ωkyk)

}︁

= Ψx(ω1
, · · · , ωk) + Ψy(ω1

, · · · , ωk).

From the above equation and the definition of cumulant, Eq. (6.2.9) holds.

Property 5 If a subset of k variables {x
1
, · · · , xk} is independent of the rest, then

cum(x
1
, · · · , xk) = 0, (6.2.10)

mom(x
1
, · · · , xk) ̸= 0. (6.2.11)

Proof. According to property 2, cumulants are symmetric in their arguments. Therefore,

without loss of generality, assume that {x
1
, · · · , xi} is independent of {xi+1, · · · , xk},

hence

Ψx(ω1
, · · · , ωk) = ln E

{︁
ej(ω1

x
1
+···+ωixi)

}︁
+ ln E

{︁
ej(ωi+1xi+1+···+ωkxk)

}︁

= Ψx(ω1
, · · · , ωi) + Ψx(ωi+1, · · · , ωk), (6.2.12)

and

Φx(ω1
, · · · , ωk) = Φx(ω1

, · · · , ωi)Φx(ωi+1, · · · , ωk). (6.2.13)

From Eq. (6.2.12), it follows that

∂kΨx(ω1
, · · · , ωk)

∂ω
1
· · · ∂ωk

=

∂kΨx(ω1
, · · · , ωi)

∂ω
1
· · · ∂ωk

+

∂kΨx(ωi+1, · · · , ωk)
∂ω

1
· · · ∂ωk

= 0 + 0 = 0. (6.2.14)

This is because Ψx(ω1
, · · · , ωi) does not contain variables ωi+1, · · · , ωk, while

Ψx(ωi+1, · · · , ωk) does not contain variables ω1
, · · · , ωi. Thus, their kth-order partial

derivatives with respect to ω
1
, · · · , ωk are equal to zero, respectively. According to the

defintion of cumulant (6.1.15) and Eq. (6.2.14), we know immediately that Eq. (6.2.10)

is true.
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From Eq. (6.2.13), it follows that

∂kΦx(ω1
, · · · , ωk)

∂ω
1
· · · ∂ωk

=

∂k
∂ω

1
· · · ∂ωk

[Φx(ω1
, · · · , ωi)Φx(ωi+1, · · · , ωk)].

Because Φx(ω1
, · · · , ωi)Φx(ωi+1, · · · , ωk) contains variables ω1

, · · · , ωk, the above
partial derivative is not zero, that is, Eq. (6.2.11) holds.

Property 6 If α is constant, then

cum(x
1
+ α, x

2
, · · · , xk) = cum(x

1
, x

2
, · · · , xk), (6.2.15)

mom(x
1
+ α, x

2
, · · · , xk) ̸= mom(x

1
, x

2
, · · · , xk). (6.2.16)

Proof. Using Property 3 and Property 5, it follows that

cum(x
1
+ α, x

2
· · · , xk) = cum(x

1
, x

2
, · · · , xk) + cum(α, x

2
, · · · , xk)

= cum(x
1
, x

2
, · · · , xk) + 0.

This is Eq. (6.2.15). But

mom(x
1
+ α, x

2
· · · , xk) = mom(x

1
, x

2
, · · · , xk) + mom(α, x

2
, · · · , xk)

= mom(x
1
, x

2
, · · · , xk) + αE{x2 · · · xk},

is not equal to mom(x
1
, x

2
· · · , xk), that is, Eq. (6.2.16) holds.

The above properties of cumulants are often used in the following sections. Here, we

give three important examples to illustrate the important applications of cumulant

properties.

1. The Symmetric Forms of the Third-order Cumulant
Property 2 shows that the kth-order cumulant has k! symmetric forms. Taking the

third-order cumulant as an example, there are six symmetric forms

c
3x(m, n) = c

3x(n,m) = c3x(−n,m − n) = c3x(n − m, −m)
= c

3x(m − n, −n) = c3x(−m, n − m). (6.2.17)

2. Independently Identically Distributed Stochastic Process
As the name implies, an independently identically distributed (IID) randomprocess

is a kind of random variable whose values are independent at any time and obey

the same distribution. According to Property 5, the cumulant of an independently

identically distributed process {e(t)} is

cke(τ1, · · · , τk−1) = cum{e(t), e(t + τ
1
), · · · , e(t + τk−1)}

=

{︂
γke , τ

1
= · · · = τk−1 = 0

0, others

= γkeδ(τ1, · · · , τk−1), (6.2.18)
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where δ(τ
1
, · · · , τk−1) is a (k − 1)-dimemsional δ function, and given by

δ(τ
1
, · · · , τk−1) =

{︂
1, τ

1
= · · · = τk−1 = 0,

0, others.
(6.2.19)

Eq. (6.2.18) shows that the kth-order cumulant of independently identically distributed

stochastic processes is a (k − 1)-dimensional δ function. In particular, Eq. (6.2.18) de-
generates into Re(τ) = σ2eδ(τ) when k = 2, and this is known as white noise. Just as the

power spectrum of white noise is constant and has the property of white light, since

the kth-order cumulant of an independently identically distributed process satisfying

Eq. (6.2.17) for k ≥ 2 is a (k − 1)-dimensional δ function, its (k − 1)-dimensional Fourier

transform (called higher-order spectrum) is also a constant. That is, the higher-order

spectrum of independently identically distributed non-Gaussian noise is multidimen-

sional flat, so it is called higher-order white noise.

It is necessary to point out that the kth-order moment of an independently identi-

cally distributed stochastic process is not a δ function. Taking the fourth-order moment

as an example, it is easy to know

cke(0, τ, τ) = E{e2(t)e2(t + τ)} = E{e2(t)}E{e2(t + τ)} = σ4e

i.e., the fourth-order moment of an independently identically distributed stochastic

process is not a δ function, hence the fourth-order moment spectrum is not multidi-

mensional flat.

3. Blindness to Colored Gaussian Noise
Consider a random signal x(t) observed in colored Gaussian noise v(t), if v(t) and

x(t) are statistically independent, we can know from property 4 that the cumulant of

the observation process y(t) = x(t) + v(t) is

cky(τ1, · · · , τk−1) = ckx(τ1, · · · , τk−1) + ckv(τ1, · · · , τk−1).

However, since the higher-order cumulants of any colored Gaussian noise are equal to

zero, the above formula can be simplified as

cky(τ1, · · · , τk−1) = ckx(τ1, · · · , τk−1), k > 2.

This shows that when a non-Gaussian signal is observed in additive colored Gaussian

noise, the higher-order cumulants of the observation process are equivalent to that of

the non-Gaussian signal, that is, the higher-order cumulants are blind or immune to

colored Gaussian noise. However, according to Eq. (6.2.9), the higher-order moments

of the observation process are not necessarily equal to the higher-order moments of

the non-Gaussian signal, that is, the higher-order moments are sensitive to Gaussian

noise.

The above important application answers an important question: why do we usu-

ally use higher-order cumulants instead of higher-order moments in higher-order

statistical analysis to analyze and process non-Gaussian signals?
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For a stationary process {x(t)} with zero mean, its kth-order cumulant can be 
defined as 

[171]

cky(τ1, · · · , τk−1) =E{x(t)x(t + τ1) · · · x(t + τk−1)}
− E{g(t)g(t + τ

1
) · · · g(t + τk−1)}, (6.2.20)

where {g(t)} is a Gaussian stochastic process and it has the same correlation function

and power spectrum as {x(t)}, i.e.,

E{g(t)g(t + τ)} = E{x(t)x(t + τ)}. (6.2.21)

Formula (6.2.21) is an engineering definition, which is more intuitive and easy to

understand. In particular, it provides a measure of the deviation of a stochastic process

{x(t)} from normal or Gaussian.

6.3 Higher-order Spectra

For stationary random signal x(t) with zero mean, the power spectral density is de-

fined as the Fourier transform of the autocorrelation function. Similarly, higher-order

moment spectra and higher-order cumulant spectra can be defined.

6.3.1 Higher-order Moment Spectra and Higher-order Cumulant Spectra

When defining the power spectrum, the autocorrelation function should be absolutely

summable. Similarly, in order to ensure the existence of the Fourier transform of higher-

order moments and higher-order cumulants, it is also required that the higher-order

moments and higher-order cumulants are absolutely summable.

Definition 6.3.1. If the higher-order moment mkx(τ1, · · · , τk−1) is absolutely summable,
i.e.,

∞∑︁

τ
1
=−∞

· · ·

∞∑︁

τk−1=−∞
|mkx(τ1, · · · , τk−1)| < ∞, (6.3.1)

then the kth-order moment spectrum is defined as the (k−1)-dimensional discrete Fourier
transform of the kth-order moment, namely

Mkx(ω1
, · · · , ωk−1) =

∞∑︁

τ
1
=−∞

· · ·

∞∑︁

τk−1=−∞
mkx(τ1, · · · , τk−1)e−j(ω1

τ
1
+···+ωk−1τk−1)

. (6.3.2)

Definition 6.3.2. Suppose that the higher-order cumulant ckx(τ1, · · · , τk−1) is abso-
lutely summable, i.e.,

∞∑︁

τ
1
=−∞

· · ·

∞∑︁

τk−1=−∞
|ckx(τ1, · · · , τk−1)| < ∞, (6.3.3)
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then the kth-order cumulant spectrum is defined as the (k − 1)-dimensional discrete
Fourier transform of the kth-order cumulant, namely

Skx(ω1
, · · · , ωk−1) =

∞∑︁

τ
1
=−∞

· · ·

∞∑︁

τk−1=−∞
ckx(τ1, · · · , τk−1)e−j(ω1

τ
1
+···+ωk−1τk−1)

. (6.3.4)

Higher-order moments, higher-order cumulants, higher-order moment spectra, and

higher-order cumulant spectra are the main four higher-order statistics. In general,

higher-order cumulants and higher-order cumulant spectra are often used, while

higher-order moments and higher-order moment spectra are rarely used. For this

reason, higher-order cumulant spectra are often referred to as higher-order spectra,

although higher-order spectra are the combination of higher-order moment spectra

and higher-order cumulant spectra.

Higher-order spectra is also called multispectrum, which means the spectra of

multiple frequencies. In particular, the third-order spectrum S
3x(ω1

, ω
2
) is called bis-

pectrum, and the fourth-order spectrum S
4x(ω1

, ω
2
, ω

3
) is called trispectrum, because

they are energy spectra of two and three frequencies respectively. Generally, Bx(ω1
, ω

2
)

and Tx(ω1
, ω

2
, ω

3
) are used to represent bispectrum and trispectrum. Next, we focus

on the properties and defined region of the bispectrum.

Bispectrum has the following properties.

(1) Bispectrum is usually complex, i.e.,

Bx(ω1
, ω

2
) = |Bx(ω1

, ω
2
)|ejϕB(ω1

,ω
2
)

, (6.3.5)

where |Bx(ω1
, ω

2
)| and ϕB(ω1

, ω
2
) represent the amplitude and phase of the

bispectrum, respectively.

(2) Bispectrum is a biperiodic function, and both periods are 2π, i.e.,

Bx(ω1
, ω

2
) = Bx(ω1

+ 2π, ω
2
+ 2π). (6.3.6)

(3) The bispectrum has symmetry,

Bx(ω1
, ω

2
) = Bx(ω2

, ω
1
) = B*x(−ω1

, −ω
2
)

= B*x(−ω2
, −ω

1
) = Bx(−ω1

− ω
2
, ω

2
)

= Bx(ω1
, −ω1 − ω

2
) = Bx(−ω1

− ω
2
, ω

1
)

= Bx(ω2
, −ω

1
− ω

2
). (6.3.7)
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−π
O

π ω1

−π

π

ω2

ω1 = ω2

Fig. 6.3.1: The symmetrical regions of the bispectrum

As an example, we prove that Bx(ω1
, ω

2
) = Bx(−ω1

− ω
2
, ω

2
). From property 2 of

cumulants, we can get

Bx(ω1
, ω

2
) =

∞∑︁

m=−∞

∞∑︁

n=−∞
c
3x(m, n)e−j(mω1

+nω
2
)

=

∞∑︁

m=−∞

∞∑︁

m=−∞
c
3x(−m, n − m)e−j[m(ω1

+ω
2
)+(n−m)ω

2
]

=

∞∑︁

τ
1
=−∞

∞∑︁

τ
2
=−∞

c
3x(τ1, τ2)e−j[(−ω1

−ω
2
)τ

1
+ω

2
τ
2
]

= Bx(−ω1
− ω

2
, ω

2
).

As shown in Fig. 6.3.1, the defined region of the bispectrum can be divided into 12

sectors. Therefore, from the symmetry of the bispectrum, it is known that all bispectra

can be completely described by knowing the bispectrum within the triangle ω
2
≥ 0,

ω
1
≥ ω

2
, ω

1
+ ω

2
≤ π (as shown in the shaded area). Because all the bispectra in the

other sectors can be obtained from the bispectrum in the triangle using the symmetry. In

Ref [173], Pflug et al. pointed out that the trispectrum of a real signal has 96 symmetrical

regions.

6.3.2 Bispectrum Estimation

Two nonparametric methods of bispectrum estimation can be obtained by extending

the two periodogram methods (direct method and indirect method) of power spectrum

estimation.

Let x(0), x(1), · · · , x(N − 1) be the observation sample with zero mean, and its

sampling frequency is fs.

Algorithm 6.3.1. Direct algorithm of bispectrum estimation
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Step 1 Divided the data into K segments, each segment contains M observation samples,
which are recorded as x(k)(0), x(k)(1), · · · , x(k)(M − 1), where k = 1, · · · , K. Note
that overlap between two adjacent data segments is allowed here.

Step 2 Calculate the discrete Fourier transform (DFT) coefficients

X(k)(λ) = 1

M

M−1∑︁

n=0
x(k)(n)e−j2πnλ/M (6.3.8)

where λ = 0, 1, · · · ,M/2; k = 1, · · · , K.
Step 3 Calculate the triple correlation of DFT coefficients

^bk(λ1, λ2) =
1

△2

0

L
1∑︁

i
1
=−L

1

L
1∑︁

i
2
=−L

1

X(k)(λ
1
+ i

1
)X(k)(λ

2
+ i

2
)X(k)(−λ

1
− λ

2
− i

1
− i

2
)

k = 1, · · · , K; 0 ≤ λ
2
≤ λ

1
, λ

1
+ λ

2
≤ fs/2

where△
0
= fs/N0

, N
0
and L

1
should be selected to satisfy M = (2L

1
+ 1)N

0
.

Step 4 The mean value of K bispectral estimation gives the bispectral estimation of the
given data x(0), x(1), · · · , x(N − 1)

^BD(ω1
, ω

2
) =

1

K

K∑︁

k=1

^bk(ω1
, ω

2
), (6.3.9)

where ω
1
=

2πfs
N
0

λ
1
, ω

2
=

2πfs
N
0

λ
2
.

Algorithm 6.3.2. Indirect algorithm of bispectrum estimation
Step 1 Divided the data into K segments and each segment contains M observation

samples.
Step 2 Let x(k)(0), x(k)(1), · · · , x(k)(M − 1) be the k-th segment data, then estimate the

third-order cumulant of each data segment

c(k)(i, j) = 1

M

M
2∑︁

n=−M
1

x(k)(n)x(k)(n + i)x(k)(n + j), k = 1, · · · , K, (6.3.10)

where M
1
= max(0, −i − j) and M

2
= min(M − 1,M − 1 − i,M − 1 − j).

Step 3 Take the average of the third-order cumulants of all segments as the third-order
cumulant estimation of the whole observation data, namely

ĉ(i, j) = 1

K

K∑︁

k=1

c(k)(i, j). (6.3.11)

Step 4 Calculate the bispectrum estimation

^BIN(ω1
, ω

2
) =

L∑︁

i=−L

L∑︁

l=−L

ĉ(i, l)w(i, l)e−j(ω1
i+ω

2
l)
, (6.3.12)

where L < M − 1 and w(i, j) is the two-dimensional lag window function.
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The two-dimensional window function w(m, n) of bispectral estimation was first de-

rived and discussed in reference [189]. It is proved that the two-dimensional window

function must satisfy the following four conditions:

(1) w(m, n) = w(n,m) = w(−m, n − m) = w(m − n, −n);
(2) If (m, n) is outside the support region of the cumulant estimation ĉ

3x(m, n), then
w(m, n) = 0;

(3) w(0, 0) = 1 (normalization condition);

(4) W(ω
1
, ω

2
) ≥ 0 for ∀(ω

1
, ω

2
).

It is easy to see that constraint (1) can guarantee that c
3x(m, n)w(m, n) has the same

symmetry as the third-order cumulant c
3x(m, n). It is worth pointing out that the two-

dimensional window function w(m, n) satisfying the above four constraints can be

constructed by using the one-dimensional lag window function d(m), that is

w(m, n) = d(m)d(n)d(n − m), (6.3.13)

where the one-dimensional lag window d(m) should satisfy the following four condi-
tions:

d(m) = d(−m) (6.3.14)

d(m) = 0, m > L (6.3.15)

d(0) = 1 (6.3.16)

D(ω) ≥ 0, ∀ω (6.3.17)

where D(ω) is the Fourier transform of d(n).
It is easy to prove that the following three window functions satisfy the above

constraints.

(1) Optimum window

d
opt
(m) =

{︃
1

π |sin
πm
L |
(︁
1 −

|m|
L

)︁
cos πmL , |m| ≤ L

0, |m| > L
(6.3.18)

(2) Parzen window

d
Parzen

(m) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 6

(︁
|m|
L

)︁
2

+ 6

(︁
|m|
L

)︁
3

, |m| ≤ L/2

2

(︁
1 −

|m|
L

)︁
3

, L/2 < |m| ≤ L
0, |m| > L

(6.3.19)

(3) Uniform window in the spectral domain

W
uniform

(ω
1
, ω

2
) =

{︃
4π
3Ω

0

, |ω| ≤ Ω
0

0, |ω| > Ω
0

(6.3.20)

where |ω| = max(|ω
1
|, |ω

2
|, |ω

1
+ ω

2
|), Ω

0
= a

0
/L and a

0
is a constant.
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In order to evaluate the above three window functions, the bispectral bias spectrum

J = 1

(2π)2

π∫︁

−π

π∫︁

−π

(ω
1
− ω

2
)

2W(ω
1
, ω

2
)dω

1
dω

2
, (6.3.21)

and approximate normalized bispectral variance

V =

L∑︁

m=−L

L∑︁

n=−L
|w(m, n)|2 (6.3.22)

are defined in reference [189]. In fact, V denotes the energy of the window function.

Table 6.3.1 lists the performance evaluation results of the three window functions.

Tab. 6.3.1: Performance of three bispectral estimation window functions

Window function Deviation supremum (J) Variance (V)
Optimum window Jopt = 6π2

L2 Vopt : 0.05L2
Parzen window JParzen = 72

L2 VParzen : 0.037L2

Uniform window Juniform = 5
6
(︀ a0
L
)︀2 Vuniform : 4π

3

(︁
L
a0

)︁2

It can be seen from the table that J
uniform

≈ 3.7J
opt

when V
uniform

= V
opt
, that is, the

upper bound on the deviation of the uniform window is significantly larger than that of

the optimal window. Comparing the optimal window with the Parzen window, we also

know that J
Parzen

= 1.215J
opt

and V
Parzen

= 0.74V
opt
. The optimal window function

outperforms the other two window functions in the sense of having the smallest upper

bound on the deviation.

In reference [163], it is proved that the bispectral estimations are asymptotically un-

biased and consistent, and they obey the asymptotically complex normal distribution.

For sufficiently largeM and N, both indirect and direct methods give an asymptotically

unbiased bispectral estimation, i.e.,

E{ ^B
IN
(ω

1
, ω

2
)} ≈ E{ ^B

D
(ω

1
, ω

2
)} ≈ B(ω

1
, ω

2
). (6.3.23)

And the indirect and the direct methods have the asymptotic variance respectively

var{Re[ ^B
IN
(ω

1
, ω

2
)]} = var{Im[

^B
IN
(ω

1
, ω

2
)]}

≈ V
(2L + 1)2K P(ω1

)P(ω
2
)P(ω

1
+ ω

2
), (6.3.24)

var{Re[ ^B
D
(ω

1
, ω

2
)]} = var{Im[

^B
D
(ω

1
, ω

2
)]}

≈ 1

KM
1

P(ω
1
)P(ω

2
)P(ω

1
+ ω

2
), (6.3.25)

where V is defined in Eq. (6.3.22), P(ω) represents the true power spectral density of
signal {x(n)}. Note that when the window function is not used in formula (6.3.12) of
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the indirect bispectrum estimation, then V/(2L + 1)2 = 1. If the direct method is not

smoothing in frequency domain (i.e. M
1
= 1), then Eq. (6.3.24) and Eq. (6.3.25) are

equivalent.

6.4 Non-Gaussian Signal and Linear System

Signals whose probability density distribution is nonnormal distribution are called

non-Gaussian signals. The higher-order cumulants of the Gaussian signal are equal

to zero, but there must be some higher-order cumulants of the non-Gaussian signals

that are not equal to zero. This section provides a further discussion on the distinction

between Gaussian and non-Gaussian signals.

6.4.1 Sub-Gaussian and Super-Gaussian Signal

In the high-order statistical analysis of signal, it is often of interest to a special slice

of the high-order statistics of real signal x(t). Consider the special slices c
3x(0, 0) =

E{x3(t)} and c
4x(0, 0, 0) = E{x4(t)} − 3E2{x2(t)} of higher-order cumulants when all

delays are equal to zero, where E2{x2(t)} is the square of the expectation E{x2(t)}.
From these two special slices, two important terms can be derived.

Definition 6.4.1. The skewness of real signal x(t) is defined as

Sx
def
= E{x3(t)}, (6.4.1)

kurtosis is defined as
Kx

def
= E{x4(t)} − 3E2{x2(t)}, (6.4.2)

and
Kx

def
=

E{x4(t)}
E2{x2(t)} − 3 (6.4.3)

is called the return to zero kurtosis.

For any signal, if its skewness is equal to zero, then its third-order cumulant is equal to

zero. If the skewness is equal to zero, it means that the signal obeys symmetric distribu-

tion, while if the skewness is not equal to zero, it must obey asymmetric distribution.

In other words, skewness is actually a measure of how skewed the distribution of a

signal deviates from the symmetric distribution.

There is another definition of kurtosis.

Definition 6.4.2. The normalized kurtosis of the real signal is defined as

Kx
def
=

E{x4(t)}
E2{x2(t)} . (6.4.4)
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Kurtosis can be used not only to distinguish Gaussian and non-Gaussian signals but

also to further classify non-Gaussian signals into sub-Gaussian and super-Gaussian

signals.

(1) Signal classification based on the return to zero kurtosis

Gaussian signal: a signal with kurtosis equal to zero;

Sub-Gaussian signal: a signal with kurtosis less than zero;

Super-Gaussian signal: a signal with kurtosis greater than zero.

(2) Signal classification based on the normalized kurtosis

Gaussian signal: real signal with normalized kurtosis equal to 3 or complex signal

with normalized kurtosis equal to 2;

Sub-Gaussian signal: real signal with normalized kurtosis less than 3 or complex

signal with normalized kurtosis less than 2;

Super-Gaussian signal: real signal with normalized kurtosis greater than 3 or

complex signal with normalized kurtosis greater than 2.

It can be seen that the kurtosis of the sub-Gaussian signal is lower than that of the

Gaussian signal, and the kurtosis of the super-Gaussian signal is higher than that of the

Gaussian signal. This is why they are called sub-Gaussian and super-Gaussian signals,

respectively. Most of the digitally modulated signals used in wireless communication

are sub-Gaussian signals.

6.4.2 Non-Gaussian Signal Passing Through Linear System

Consider the single-input single-output linear time-invariant system depicted in

Fig. 6.4.1 which is excited by discrete-time non-Gaussian noise e(n).

H (z) +
e (n) x (n)

v (n)

y (n)

Fig. 6.4.1: A single-input single-output linear time-invariant system

It is assumed that the additive noise v(n) is colored Gaussian noise and is statistically
independent of e(n). Thus, it is statistically independent of the system output x(n).
Since the higher-order cumulants of any Gaussian stochastic process are equal to zero,

we have

cky(τ1, · · · , τk−1) = ckx(τ1, · · · , τk−1) + ckv(τ1, · · · , τk−1)
= ckx(τ1, · · · , τk−1).
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On the other hand, since the output x(n) is equal to the convolution of the input e(n)
and the system impulse response, i.e.,

x(n) = e(n) * h(n) =
∞∑︁

i=−∞
h(i)e(n − i). (6.4.5)

Using this result and the definition of cumulant, and applying property 1 and property

5 repeatedly, we can obtain

ckx(τ1, · · · , τk−1) = cum[x(n), x(n + τ
1
), · · · , x(n + τk−1)]

= cum

(︃
∞∑︁

i
1
=−∞

h(i
1
)e(n − i

1
), · · · ,

∞∑︁

ik=−∞
h(ik)e(n + τk−1 − ik)

)︃

=

∞∑︁

i
1
=−∞

· · ·

∞∑︁

ik=−∞
h(i

1
) · · · h(ik)cum[e(n − i

1
), · · · , e(n + τk−1 − ik)]

Using the defintion of cumulant cke(τ1, · · · , τk−1) = cum[e(n), e(n + τ
1
), · · · , e(n +

τk−1)], the above equation can be expressed as

ckx(τ1, · · · , τk−1) =
∞∑︁

i
1
=−∞

· · ·

∞∑︁

ik=−∞
h(i

1
) · · · h(ik)cke(τ1 + i1 − i2, · · · , τk−1 + i1 − ik).

(6.4.6)

This formula describes the relationship between the cumulant of the output and the

cumulant of the input noise and the system impulse response.

Taking the (k − 1)-dimensional Fourier transform and Z-transform of Eq. (6.4.6),

two other important formulas can be obtained

Skx(ω1
, · · · , ωk−1) = Ske(ω1

, · · · , ωk−1)H(ω1
) · · ·H(ωk−1)H(−ω1

− · · · − ωk−1)
(6.4.7)

Skx(z1, · · · , zk−1) = Ske(z1, · · · , zk−1)H(z1) · · ·H(zk−1)H(−z1 − · · · − zk−1)
(6.4.8)

where H(ω) =
∑︀
∞

i=−∞ h(i)e
−jωi

and H(z) =
∑︀
∞

i=−∞ h(i)z
−i
represent system transfer

function and its Z-transform form, respectively. Eq. (6.4.7) describes the relationship

between the higher-order spectra of the system output signal and the higher-order

spectra of the input signal and the system transfer function, while Eq. (6.4.8) is the

Z-transform of Eq. (6.4.7).

Eqs. (6.4.6) to (6.4.8) were first obtained by Bartlett

[20]

, but he only considered the

special case of k = 2, 3, 4 at that time. Later, Bringer and Rosenblatt generalized these

three formulas to any kth-order
[34]

. Therefore, Eqs. (6.4.6) to (6.4.8) are often referred

to as the Bartlett-Brllinger-Rosenblatt formula or the BBR formula for short.
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In particular, when the input e(n) of the system is independently identically dis-

tributed higher-order white noise, Eqs. (6.4.6) to (6.4.8) can be simplified as

ckx(τ1, · · · , τk−1) = γke
∞∑︁

i=−∞
h(i)h(i + τ

1
) · · · h(i + τk−1), (6.4.9)

Skx(ω1
, · · · , ωk−1) = γkeH(ω1

) · · ·H(ωk−1)H(−ω1
− · · · − ωk−1), (6.4.10)

Skx(z1, · · · , zk−1) = γkeH(z1) · · ·H(zk−1)H(z−11 · · · z−1k−1). (6.4.11)

For convenience, the BBR formula of k = 2, 3, 4 are summarized as follows:

(1) BBR formula for the cumulants

c
2x(τ) = Rx(τ) = σ2e

∞∑︁

i=−∞
h(i)h(i + τ), (6.4.12)

c
3x(τ1, τ2) = γ3e

∞∑︁

i=−∞
h(i)h(i + τ

1
)h(i + τ

2
), (6.4.13)

c
4x(τ1, τ2, τ3) = γ4e

∞∑︁

i=−∞
h(i)h(i + τ

1
)h(i + τ

2
)h(i + τ

3
). (6.4.14)

(2) BBR formula for spectrum, bispectrum ,and trispectrum

Px(ω) = σ2eH(ω)H*(ω) = σ2e |H(ω)|2, (6.4.15)

Bx(ω1
, ω

2
) = γ

3eH(ω1
)H(ω

2
)H(−ω

1
− ω

2
), (6.4.16)

Tx(ω1
, ω

2
, ω

3
) = γ

3eH(ω1
)H(ω

2
)H(ω

3
)H(−ω

1
− ω

2
− ω

3
). (6.4.17)

The aboveBBR formulawill be used frequently in the future. As an example,we consider

the special slice c
3x(m) = c3x(m,m) of the third-order cumulant, which is often called

the diagonal slice.

According to the BBR formula (6.4.9) for cumulant, the third-order cumulant of

the diagonal slice can be written as

c
3x(m) = γke

∞∑︁

i=−∞
h(i)h2(i + m), (6.4.18)

its Z-transform is

C(z) = γ
3e

∞∑︁

m=−∞

[︃
∞∑︁

i=−∞
h(i)h2(i + m)

]︃
z−m

= γ
3e

∞∑︁

m=−∞
h(i)zi

∞∑︁

k=−∞

h2(k)z−k

= γ
3eH(z−1)H2

(z), (6.4.19)
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where

H(z−1) =
∞∑︁

i=−∞
h(i)zi , (6.4.20)

H
2
(z) =

∞∑︁

k=−∞

h2(k)z−k = H(z) * H(z). (6.4.21)

Note that h2(k) = h(k)h(k) is a product, and the Z-transform of the product a(k)b(k)
corresponds to the convolution A(z) * B(z).

Since the power spectrum P(z) = σ2eH(z)H(z−1), multiply both sides of Eq. (6.4.19)

by σ2eH(z), we can get

H
2
(z)P(z) = σ2e

γ
3e
H(z)C(z). (6.4.22)

The Z-transform C(z) of the third-order cumulant diagonal slice c
3x(m) is called the 11

2

-

D spectrum, and the relationship formula (6.4.22) between it and the power spectrum

P(z) is derived in reference [87]. This relationship plays an important role in the q-slice
method of FIR system identification.

6.5 FIR System Identification

The finite impulse response (FIR) filter plays an important role in wireless communica-

tion, radar, and other signal processing. The output of the FIR system is equivalent to a

MA stochastic process. In modern spectral estimation, the relationship between the

autocorrelation function and MA parameters is a set of nonlinear equations, and it is

known by autocorrelation equivalence that only the minimum phase FIR system can be

identified by the autocorrelation function. Compared with the FIR system identification

based on autocorrelation function, the FIR system identification with higher-order

cumulants is not only linear but also suitable for the nonminimum phase system

identification.

6.5.1 RC Algorithm

The method that applies correlation (R) functions and cumulants (C) to identify the

FIR system is called the RC algorithm.

Consider a stationary non-Gaussian MA(q) stochastic process

x(n) =
q∑︁

i=0
b(i)e(n − i), e(n) ∼ IID(0, σ2e , γke), (6.5.1)

where b(0) = 1, b(q) ̸= 0, and e(n) ∼ IID(0, σ2e , γke) means that e(n) is an IID process

with zero mean, variance σ2e and kth-order cumulant γke. Without loss of generality,

suppose γke ̸= 0 for a k > 2.
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Consider two different FIR systems, their outputs are described by difference equa-

tions

FIR system one : x(n) = e(n) + 0.3e(n − 1) − 0.4e(n − 2), (6.5.2)

FIR system two : x′(n) = e(n) − 1.2e(n − 1) − 1.6e(n − 2). (6.5.3)

The characteristic polynomial of system one is

1 + 0.3z−1 − 0.4z−2 = (1 − 0.5z−1)(1 + 0.8z−1),

its zero points are z
1
= 0.5 and z

2
= −0.8; the characteristic polynomial of system two

is

1 − 1.2z−1 − 1.6z−2 = (1 − 2z−1)(1 + 0.8z−1),

its zero points are z
1
= 2 and z

2
= −0.8. Obviously, system one is a minimum phase

system and system two is a nonminimum phase system. They have a same zero point

and the other zero point is reciprocal.

If σ2e = 1, then the autocorrelation function of signal x(n) and x′(n) can be calcu-
lated using the BBR formula (6.4.12)

Rx(0) = b2(0) + b2(1) + b2(2) = 1.25, Rx′ (0) = 5.0;

Rx(1) = b(0)b(1) + b(1)b(2) = 0.18, Rx′ (1) = 0.72;

Rx(2) = b(0)b(2) = −0.4, Rx′ (2) = −1.6;
Rx(τ) = 0, ∀τ > 2, Rx′ (τ) = 0, ∀τ > 2.

This shows that the autocorrelation functions of this two stochastic processes differ only

by a fixed scale factor, i.e., Rx′ (τ) = 4Rx(τ), ∀τ. Since their autocorrelation functions
have exactly the same shape, it would be impossible to distinguish between these two

different systems using the autocorrelation functions.

The case of cumulant is quite different. From the BBR formula1 (6.4.13) of the

cumulant, it is not difficult to calculate the third-order cumulants of x(n) and x′(n) (for
convenience, let γ

3e = 1 here) as

c
3x(0, 0) = b3(0) + b3(1) + b3(2) = 0.963, c

3x′ (0, 0) = −4.878;

c
3x(0, 1) = b2(0)b(1) + b2(1)b(2) = 1.264, c

3x′ (0, 1) = −3.504;

c
3x(0, 2) = b2(0)b(2) = −0.4, c

3x′ (0, 2) = −1.6.

It can be seen that the third-order cumulants of signal x(n) and x
′

(n) are completely

different. This shows that the third-order cumulants can be used to distinguish these

two different systems.

1.GM Agorithm
Taking the inverse Z-transform on both sides of Eq. (6.4.22), then its time-domain

expression can be obtained

∞∑︁

i=−∞
b2(i)Rx(m − i) = ε3

∞∑︁

i=−∞
b(i)c

3x(m − i,m − i), (6.5.4)
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where ε
3
= σ2e /γ3e.

For the FIR system, Eq. (6.5.4) can be written as

q∑︁

i=0
b2(i)Rx(m − i) = ε3

q∑︁

i=0
b(i)c

3x(m − i,m − i), −q ≤ m ≤ 2q. (6.5.5)

The fourth-order result corresponding to the above equation is

q∑︁

i=0
b3(i)Rx(m − i) = ε4

q∑︁

i=0
b(i)c

4x(m − i,m − i), −q ≤ m ≤ 2q, (6.5.6)

where ε
4
= σ2e /γ4e

Eqs. (6.5.5) and (6.5.6) are established by Giannakis and Mendel and are called

GM equations

[87]

. The linear algebraic method for solving this equation is called the

GM algorithm.

For the GM algorithm, we must pay attention to several problems

[154]

:

(1) GM algorithm treats b2(i) and b3(i) as independent parameters, however, they are

not. Therefore, this “over parameterization” method is suboptimal.

(2) Eq. (6.5.5) has 3q + 1 equations with 2q + 1 unknown parameters b(1), · · · , b(q),
b2(1), · · · , b2(q) and ε

3
, which is overdetermined equation. However, it is possible

that the rank of the coefficient matrix may not equal 2q + 1, hence more slices may

have to be used to determine the 2q + 1 unknown parameters. Exactly how many

slices and which slices are needed to ensure the identifiability of the parameters is

an open question.

(3) As an RC method, due to the use of correlation function, Eq. (6.5.5) is only appli-

cable to the special case without additive noise, where Ry(τ) = Rx(τ). When the

additive noise is white noise, in which case Ry(m) = Rx(m) + σ2eδ(m), the lag m
cannot include the values 0, 1, · · · , q to avoid the effects of noise. This leads to an
underdetermined equation of GM algorithm

q∑︁

i=0
b2(i)Rx(m − i) = ε3

q∑︁

i=0
b(i)c

3y(m − i,m − i), −q ≤ m ≤ −1; q + 1 ≤ m ≤ 2q.

It has 2q equations with 2q + 1 unknowns. The above equation can be rearranged
as

q∑︁

i=1
b(i)c

3y(m − i,m − i) −
q∑︁

i=0
[εb2(i)]Ry(m − i) = −c3y(m,m),

−q ≤ m ≤ −1; q + 1 ≤ m ≤ 2q, (6.5.7)

where ε = γ
3e/σ2e .
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2. Tugnait Algorithm
In order tomake the GM algorithm suitable for additive white noise, a new equation

must be added. Therefore, using the BBR formula we can obtain

q∑︁

i=0
b(i)c

3y(i − τ, q) =
q∑︁

i=0
b(i)

q∑︁

k=0

γ
3eh(k)h(k + i − τ)h(k + q)

= γ
3e

q∑︁

i=0
b(i)h(0)h(i − τ)h(q). (6.5.8)

Notice that h(q) = b(q), h(0) = 1 and the second-order of BBR formula

q∑︁

i=0
b(i)h(i − τ) =

q∑︁

i=0
h(i)h(i − τ) = σ−2e Rx(τ) = σ−2e [Ry(τ) − σ2eδ(τ)],

then Eq. (6.5.8) becomes

q∑︁

i=0
b(i)c

3y(i − m, q) = [εb(q)][Ry(m) − σ2eδ(m)]. (6.5.9)

Obviously, in order to avoid the influence of the white noise v(n), the above formula

cannot contain m = 0. Rearranging the above formula yields

q∑︁

i=0
b(i)c

3y(i − m, q) − [εb(q)]Ry(m) = −c3y(−m, q), 1 ≤ m ≤ q. (6.5.10)

Concatenating Eqs. (6.5.7) and (6.5.10), and solving the unknown parameter b(1), · · · ,
b(q), εb(q) and εb2(1), · · · , εb2(q), the RC algorithm of Tugnait is formed

[209]

. In this

algorithm, the equations are overdetermined, it has 4q equationswith 2q+2unknowns,
and it has been proved that these parameters are uniquely identifiable. Incidentally,

this algorithm is obtained by rearranging and modifying another RC algorithm of

Tugnait

[208]

.

3.Combined Cumulant Slice Method
In addition to the two typical RC algorithms mentioned above, there is another

variant of the RC algorithm, which is called the combined cumulant slice method,

proposed by Fonollasa and Vidal

[79]

.

Using b(i) = h(i), the BBR formula for FIR system can be written as

ckx(τ1, · · · , τk−1) = γke
q∑︁

j=0

k−1∏︁

l=0

b(j + τl), τ
0
= 0, k ≥ 2. (6.5.11)

If let τ
1
= i be a variable and τ

2
, · · · , τk−1 be fixed, then the 1-D slice cumulant can be

expressed as the correlation between parameters b(j) and b(i; τ
2
, · · · , τk−1), i.e.,

ckx(i, τ2, · · · , τk−1) =
q∑︁

j=0
b(j + i)b(j; τ

2
, · · · , τk−1), (6.5.12)
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where the causal sequence b(i; τ
2
, · · · , τk−1) is defined as

b(i; τ
2
, · · · , τk−1) = γkeb(i)

k−1∏︁

j=2
b(i + τj). (6.5.13)

Concatenating Eqs. (6.5.12) and (6.5.13), then the linear combination of any slice

Cw(i) = w2
c
2x(i) +

q∑︁

j=−q
w
3
(j)c

3x(i, j) +
q∑︁

j=−q

j∑︁

l=−q

w
4
(j, l)c

4x(i, j, l) + · · · (6.5.14)

can be expressed as the correlation of b(i) and gw(i), i.e.,

Cw(i) =
∞∑︁

n=0
b(n + i)gw(n), (6.5.15)

where gw(n) is a causal sequence

gw(n) = w2
b(n) +

q∑︁

j=−q
w
3
(j)b(n; j) +

q∑︁

j=−q

j∑︁

l=−q

w
4
(j, l)b(n; j, l) + · · · . (6.5.16)

It can be regarded as the weighted coefficient of MA parameter b(i).
Eq. (6.5.15) shows that for a MAmodel, any w-slice can be expressed as the correla-

tion of two finite causal sequences b(n) and gw(n). Therefore, if we choose the weight
coefficient

gw(n) = δ(n) =
{︂
1, n = 0

0, n ̸= 0

,

we can develop an FIR system identification method, which is called w-slice method

[79]

.

6.5.2 Cumulant Algorithm

The main deficiency of RC and w-slice algorithm is that they can only be applied to

additive white noise (Gaussian or non-Gaussian). Obviously, in order to completely

suppress the colored Gaussian noise in theory, it is necessary to avoid using the auto-

correlation function and only use higher-order cumulants. Such an algorithm has been

proposed in Ref.[253].

It is assumed that the non-Gaussian MA process {x(n)} is observed in an addi-

tive colored Gaussian noise v(n) which is independent of x(n), i.e. the observed data
y(n) = x(n) + v(n). At this point, cky(τ1, · · · , τk−1) = ckx(τ1, · · · , τk−1). Without loss of

generality, it is also assumed that h(0) = 1.

It is noted that for a MA(q) process, h(i) = 0(i < 0, or i > q) always hold, so the BBR
formula can be simplified as

cky(τ1, · · · , τk−1) = ckx(τ1, · · · , τk−1) = γ
q∑︁

i=0
h(i)h(i + τ

1
) · · · h(i + τk−1). (6.5.17)
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Consider a special slice τ
1
= τ, τ

2
= · · · = τk−1 = 0, then

cky(τ, 0, · · · , 0) = γke
q∑︁

i=0
hk−1(i)h(i + τ). (6.5.18)

Using cky(m, n) = cky(m, n, 0, · · · , 0) and substituting b(i+ τ) = h(i+ τ) into the above
equation, we can get

cky(τ, 0) = γke
q∑︁

i=0
hk−1(i)b(i + τ) = γke

q∑︁

i=0
b(j)hk−1(j − τ), ∀τ, (6.5.19)

where b(i) = h(i) = 0 (i < 0, or i > q) is used.
On the other hand, from Eq. (6.5.17) we have

cky(q, 0) = γkeh(q), (6.5.20)

cky(q, n) = γkeh(n)h(q). (6.5.21)

In order to ensure theuniqueness ofMA(q) process, it is generally assumed that b(0) ̸= 0

and b(q) ̸= 0. From thess assumption and Eqs. (6.5.20) and (6.5.21), it is immediately

seen that cke(q, 0) ̸= 0 and cky(q, q) ̸= 0.

Combining Eqs. (6.5.20) and (6.5.21), we can obtain an important formula

h(n) =
cky(q, n)
cky(q, 0)

= b(n). (6.5.22)

Because of the form that the above equation has, it is customary to call it the C(q, n) for-
mula. This formula is proposed by Giannakis

[85]

(Chinese scholar Qiansheng Cheng

[180]

has obtained the same results almost independently at the same time).

C(q, n) formula shows that the parameters of the MA model can be calculated

directly according to the cumulants. However, due to the large error and variance in the

case of short data, such a direct algorithm is not practical for short data. However, using

it can help us to obtain a set of linear normal equations for MA parameter estimation

from Eq. (6.5.19). Therefore, substituting Eq. (6.5.22) into Eq. (6.5.19) and organizing it,

we can obtain

γke
q∑︁

i=0
b(i)ck−1ky (q, i − τ) = cky(τ, 0)ck−1ky (q, 0), ∀τ. (6.5.23)

This equation is called the first normal equation of MA parameter estimation.

Similarily, if subsituting b(i) = h(i) into Eq. (6.5.18) and keeping h(i+τ) unchanged,
then we have

cke(τ, 0) = γke
q∑︁

i=0
bk−1(i)h(i + τ), ∀τ. (6.5.24)

Subsituting Eq. (6.5.22) into Eq. (6.5.24), the second normal equation can be obtained

γke
q∑︁

i=0
bk−1(i)cky(q, i + τ) = cky(τ, 0)cky(q, 0). (6.5.25)
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Normal equations Eqs. (6.5.23) and (6.5.25) are formally similar to the modified Yule-

Walker equation of the ARMA model. Theoretically, solving these two normal equa-

tions separately yields an estimation of the parameters γke , γkeb(1), · · · , γkeb(q) or
γke , γkebk−1(1), · · · , γkebk−1(q). However, if the estimated value of γke is very small,

it can easily lead to ill-conditioned problems. Fortunately, this problem can be easily

overcome. The method is to let τ = q in Eq. (6.5.25) to obtain

γke =
c2ky(q, 0)
cky(q, q)

. (6.5.26)

Then substituting Eq. (6.5.26) into the normal equation (6.5.23), we can get the normal

equation without γke
q∑︁

i=0
b(i)ck−1ky (q, i − τ) = cky(τ, 0)ck−3ky (q, 0)cky(q, q), τ = −q, · · · , 0, · · · , q. (6.5.27)

This normal equation is the basis of the method for cumulant estimation of FIR system

identification in reference [253].

The parametric identifiability of this normal equation is analyzed below. Defining

C
1
=

⎡
⎢⎢⎢⎢⎣

ck−1ky (q, q) 0

ck−1ky (q, q − 1) ck−1ky (q, q)
.

.

.

.

.

.

.
.
.

ck−1ky (q, 1) ck−1ky (q, 2) · · · ck−1ky (q, q) 0

⎤
⎥⎥⎥⎥⎦
, (6.5.28)

C
2
=

⎡
⎢⎢⎢⎢⎣

ck−1ky (q, 0) ck−1ky (q, 1) · · · ck−1ky (q, q)
ck−1ky (q, 0) · · · ck−1ky (q, q − 1)

.
.
.

.

.

.

0 ck−1ky (q, 0)

⎤
⎥⎥⎥⎥⎦
, (6.5.29)

b
1
= [b(0), b(1), · · · , b(q)]T, (6.5.30)

and

c
1
=

⎡
⎢⎢⎢⎢⎣

cky(−q, 0)ck−3ky (q, 0)cky(q, q)
cky(−q + 1, 0)ck−3ky (q, 0)cky(q, q)

.

.

.

cky(−1, 0)ck−3ky (q, 0)cky(q, q)

⎤
⎥⎥⎥⎥⎦
, (6.5.31)

c
2
=

⎡
⎢⎢⎢⎢⎣

cky(0, 0)ck−3ky (q, 0)cky(q, q)
cky(1, 0)ck−3ky (q, 0)cky(q, q)

.

.

.

ck−2ky (q, 0)cky(q, q)

⎤
⎥⎥⎥⎥⎦
, (6.5.32)
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then the normal equation Eq. (6.5.27) can be simplified as

[︃
C
1

C
2

]︃
b
1
=

[︃
c
1

c
2

]︃
. (6.5.33)

Solving the matrix equation Eq. (6.5.33), the estimation of the FIR parameters

b(0), b(1), · · · , b(q) can be obtained. The question is, can this method guarantee

the unique identifiability of the FIR system parameters? The following theorem gives a

positive answer to this question.

Theorem 6.5.1. Assume that the true cumulants cky(q, τ1), 0 ≤ τ1 ≤ q and cky(τ2, 0),
−q ≤ τ

2
≤ q are known, then the q + 1 parameters of FIR system are uniquely determined

by the solution of Eq. (6.5.33).

Proof. Since cky(q, 0) ̸= 0, then the determinant of the (q +1) × (q +1) upper triangular
matrix C

2
is

det(C
2
) =

q+1∏︁

i=1
c
2
(i, i) = c(k−1)(q+1)ky (q, 0) ̸= 0.

Hence

rank

[︃
C
1

C
2

]︃
= rank(C

2
) = q + 1.

This shows that the matrix equation Eq. (6.5.33) with q + 1 unknowns has a unique
least square solution b

1
= (CTC)−1CTc, where C = [CT

1
, CT

2
]

T

and c = [cT
1
, cT

2
]

T

.

Similarly, by substituting Eq. (6.5.26) into Eq. (6.5.25), we can obtain another cumulant

algorithm for FIR system parameters estimation

q∑︁

i=0
bk−1(i)cky(q, i + τ) = cky(τ, 0)cky(q, q)/cky(q, 0), τ = −q, · · · , 0, · · · , q.

(6.5.34)

This algorithm also ensures the unique identifiability of the unknown parameters.

Theorem 6.5.2. Assume that the true cumulants cky(q, τ1), 0 ≤ τ1 ≤ q and cky(τ2, 0),
−q ≤ τ

2
≤ q are known, then the q + 1 unknowns bk−1(0), bk−1(1), · · · , bk−1(q) can be

recovered uniquely by the solution of Eq. (6.5.34).

Proof. This proof is exactly similar to the proof of Theorem 6.5.1, which is omitted

here.

For the above two algorithms, the following notes are available.

(1) In Eq. (6.5.27),
^b(i)/ ^b(0) are taken as the final estimation of b(i), i = 1, · · · , q to

satisfy the normalized condition b(0) = 1. Similarly, in Eq. (6.5.34),
^bk−1(i)/ ^bk−1(0)

are taken as the final estimations of bk−1(i), i = 1, · · · , q. However, since we are
only interested in the estimation of b(i), when k = 4 (i.e., using the fourth-order
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cumulant), we can directly take
^b(i) = 3

√︁
^b3(i) ^b3(0), i = 1, · · · , q; when k = 3, the

sign of the estimation
^b(i) is taken as that of b(n) = c

3y(q, n)/c3x(q, 0) given by

C(q, n) method, and the amplitude of
^b(i) is taken as | ^b(i)| =

√︁
^b2(i)/ ^b2(0).

(2) It is better to implement these two algorithms simultaneously. If the | ^b(0)| obtained
by Algorithm 1 is much smaller than 1, then the estimation given by Algorithm 1 is

considered to be poor. Similarly, if the | ^bk−1(0)| obtained by Algorithm 2 is much

smaller than 1, then the estimation given by Algorithm 2 is considered to be poor.

In this case, the estimation given by another algorithm should be taken. In this

way, the performance of the MA parameter estimation can be improved.

(3) The GM algorithm and the Tugnait method are overparametrized in the sense that

they estimate not only b(i) but also b2(i). Thus, they are suboptimal. In contrast,

the cumulant method is well parametrized in the sense that only b(i) or bk−1(i) are
estimated. In addition, the GM algorithm, Tugnait method, and w-slice method

are only applicable to the additive white noise, while the cumulant method can

theoretically completely suppress the additive colored Gaussian noise.

In addition to the four linear normal equation methods that can be used to estimate the

MA parameters, there are several closed-form recursive estimation methods proposed

by Ref.[87], [202],[208], [209] and [254], respectively (not presented here due to space

limitations). By the way, it is noted that the first four recursions use both correlation

function and higher-order cumulants and thus are only applicable to additive white

noise, while the last recursion only uses higher-order cumulants.

6.5.3 MA Order Determination

The above discussion only deals with the parameter estimation of the MAmodel, while

implicitly assuming that the MA order is known. In practice, this order is required to

be determined in advance before parameter estimation.

It can be seen from BBR formula (6.5.18) and C(q, n) formula (6.5.22) of special

slice cumulant

cky(q, 0) = cky(q, 0, · · · , 0) ̸= 0, (6.5.35)

cky(q, n) = cky(q, n, · · · , n) = 0, ∀n > q. (6.5.36)

The above equation implies that the MA order q should be the smallest positive integer

n that satisfies Eq. (6.5.36). This is the order determination method in Ref.[88]. The

problem is that for a group of short data observed in colored Gaussian noise, the sample

cumulant ĉky(q, n) tends to exhibit large error and variance, which makes the test of

Eq. (6.5.36) difficult to manipulate.

In Ref.[252], a singular value decomposition method for determining the order q of
MA is proposed, which has good numerical stability. The basic idea of this method is to
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turn the estimation of the MA order into a problem of determining the matrix rank, the

key of which is to construct the following (q +1) × (q +1)-dimensional cumulant matrix

C
MA

=

⎡
⎢⎢⎢⎢⎣

cky(0, 0) cky(1, 0) · · · cky(q, 0)
cky(1, 0) · · · cky(q, 0)

.

.

. .
.
.

cky(q, 0) 0

⎤
⎥⎥⎥⎥⎦
. (6.5.37)

Since the diagonal elements cky(q, 0) ̸= 0, C
MA

is clearly a full rank matrix, i.e., there is

rank(C
MA

) = q + 1. (6.5.38)

Although the order estimation of MA now becomes the determination of the matrix

rank, the cumulant matrix contains the unknown order q. To make this approach

practical, consider the extended cumulant matrix

C
MA,e

=

⎡
⎢⎢⎢⎢⎣

cky(0, 0) cky(1, 0) · · · cky(qe , 0)
cky(1, 0) · · · cky(qe , 0)

.

.

. .
.
.

cky(qe , 0) 0

⎤
⎥⎥⎥⎥⎦
, (6.5.39)

where qe > q. Since cky(m, 0) = 0, ∀m > q, it is easy to verify

rank(C
MA,e

) = rank(C
MA

) = q + 1. (6.5.40)

In practice, the elements of the cumulant matrix C
MA,e

are replaced by the sample

cumulants, and then q can be determined from the effective rank of C
MA,e

(which is

equal to q + 1) which can be obtained by using the singular value decomposition.

On the other hand, it is easy to know from the upper triangular structure of the

cumulant matrix C
MA,e

that the determination of its effective rank is equivalent to

the judgment that the product of diagonal elements is not equal to zero, i.e., q is the
maximum integer m such that

cm+1ky (m, 0) ̸= 0, m = 1, 2, · · · . (6.5.41)

Obviously, from the point of numerical performance, testing for Eq. (6.5.41) is more

numerically robust than testing for Eq. (6.5.36).

To summarize the above discussion, the MA order can be determined either by

the effective rank of the extended cumulant matrix C
MA,e

or estimated from Eq. (6.5.41).

These two linear algebraic methods have stable numerical performance.

6.6 Identification of Causal ARMA Models

Compared with the finite impulse response (FIR) system introduced in the previous

section, the infinite impulse response (IIR) system is more representative. For the IIR
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system, the ARMAmodel is more reasonable than the MAmodel and AR model from

the point of view of parameter parsimony, because the latter two models use too many

parameters. This section discusses the identification of the causal ARMAmodel.

6.6.1 Identification of AR Parameters

Consider the following ARMAmodel

p∑︁

i=0
a(i)x(n − i) =

q∑︁

i=0
b(i)e(n − i), (6.6.1)

where the ARMA(p, q) random process {x(n)} is observed in additive noise v(n), i.e.,

y(n) = x(n) + v(n). (6.6.2)

Without loss of generality, the following conditions are assumed to hold.

(AS1)The system transfer function H(z) = B(z)/A(z) =
∑︀
∞

i=0 h(i)z
−i
is free of pole-zero

cancellations, i.e., a(p) ̸= 0 and b(q) ̸= 0.

(AS2)The input e(n) is a non-Gaussian white noise with finite nonzero cumulant γke.
(AS3)The observe noise v(n) is a colored Gaussian noise and is independent of e(n)

and x(n).

Condition (AS1) means that the system is causal (the impulse response is constant zero

when time is negative) and the ARMA(p, q) model cannot be further simplified. Note

that no constraint is placed on the zeros of the system, which means that they can lie

inside and outside the unit circle. Moreover, if the inverse system of the ARMAmodel

is not used, the zeros are also allowed to be on the unit circle.

Let ckx(m, n) = ckx(m, n, 0, · · · , 0), then under the conditions (AS1)∼ (AS3), it is

easy to obtain the following equation by the BBR formula

p∑︁

i=0
a(i)ckx(m − i, n) = γke

∞∑︁

j=0
hk−2(j)h(j + n)

p∑︁

i=0
a(i)h(j + m − i)

= γke
∞∑︁

j=0
hk−2(j)h(j + n)b(j + m), (6.6.3)

where the definition of the impulse response

p∑︁

i=0
a(i)h(n − i) =

q∑︁

j=0
b(j)δ(n − j) = b(n) (6.6.4)

is used.
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Since a(p) ̸= 0 and b(q) ̸= 0 are assumed, and b(j) ≡ 0(j > q), then an important

set of normal equations

p∑︁

i=0
a(i)ckx(m − i, n) = 0, m > q, ∀n (6.6.5)

can be obtained from Eq. (6.6.3). This is the modified Yule-Walker equation expressed

in terms of higher-order cumulants or the MYW equation for short. Note that the MYW

equation can also be written in other forms, such as

[204]

p∑︁

i=0
a(i)ckx(i − m, n) = 0, m > q, ∀n. (6.6.6)

This normal equation can be derived by imitating the derivation of Eq. (6.6.5). If these

two MYW equations use the same range of (m, n), they are essentially equivalent.
An important question is how to take the appropriate values of m and n in the

MYW equation to ensure that the solution of the AR parameter is unique. This problem

is called the identifiability of AR parameters based on higher-order cumulants. It may

be useful to look at an example first

[205]

.

Example 6.6.1. Consider the following causal maximum phase system

H(z) = (z − α−2
1
)(z − α−1

1
α−1
2
)

(z − α
1
)(z − α

2
)

, (6.6.7)

where α
1
̸= α

2
. Assuming that the third-order cumulant is used and takes n ̸= 0, then the

MYW equation is

ckx(−m, n) − α2ckx(1 − m, n) = 0, m > 1, n ̸= 0. (6.6.8)

This equation shows that if n = 0 is excluded, no matter how to choose the combination
of m and n, it is impossible to identify the pole α

1
. However, if n = 0 is included, the MYW

equation will be different from Eq. (6.6.8) and will be able to identify the poles α
1
and α

2
.

This example shows that the combination of m and n needs to be chosen carefully and
cannot be chosen arbitrarily. So, what combination will ensure the unique identifiable

of the AR parameters? The answer to this question is given in the following theorem.

Theorem 6.6.1.
[86, 88]

Under the conditions (AS1)∼ (AS3), theARparameters of theARMA
model (6.6.1) can be identified uniquely as the least square solution of the following
equation

p∑︁

i=0
a(i)cky(m − i, n) = 0, m = q + 1, · · · , q + p; n = q − p, · · · , q. (6.6.9)

In principle, the determination of the AR order p is to find the rank of the cumulant

matrix C. However, since C itself uses the unknown orders p and q, the structure of C
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must be modified so that the new cumulants no longer contain the unknown p and q, 
but it still has rank p. Considering the connection with the total least square method 
of AR parameter estimation, the result of the modification can be described as follows.

Theorem 6.6.2. 
[88] 

Define the M
2
(N

2 − N
1 + 1) × M

2 extended cumulant matrix

Ce =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ckx(M1
, N

1
) · · · ckx(M1

+M
2
− 1, N

1
)

...
...

...
ckx(M1

, N
2
) · · · ckx(M1

+M
2
− 1, N

2
)

...
...

...
ckx(M1

+M
2
, N

1
) · · · ckx(M1

+ 2M
2
− 1, N

1
)

...
...

...
ckx(M1

+M
2
, N

2
) · · · ckx(M1

+ 2M
2
− 1, N

2
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.6.10)

where M
1
≥ q + 1 − p, M

2
≥ p, N

1
≤ q − p and N

2
≥ q. Matrix Ce has rank p if and only if

the ARMA(p, q) model is free of pole-zero cancellations.

This theorem suggests that if the true cumulant ckx(m, n) of the signal is replaced by
the sample cumulant ĉkx(m, n) of the observed data, the effective rank of the sample

cumulant matrix Ce will be equal to p.
Collating the above results, the singular value decomposition-total least squares

(SVD-TLS) algorithm for AR order determination and AR parameter estimation of the

causal ARMAmodel can be obtained as follows.

Algorithm 6.6.1. Cumulant-based SVD-TLS algorithm
Step 1 Define the M

2
(N

2
− N

1
+ 1) ×M

2
extended cumulant matrix

Ce =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĉkx(M1
+M

2
− 1, N

1
) · · · ĉkx(M1

, N
1
)

...
...

...
ĉkx(M1

+M
2
− 1, N

2
) · · · ĉkx(M1

, N
2
)

/

...
...

...
ĉkx(M1

+ 2M
2
− 1, N

1
) · · · ĉkx(M1

+M
2
, N

1
)

...
...

...
ĉkx(M1

+ 2M
2
− 1, N

2
) · · · ĉkx(M1

+M
2
, N

2
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.6.11)

calculate its singular value decomposition Ce = UΣVT and store the matrix V .
Step 2 Determine the effective rank of matrix Ce and give the AR order estimate p.
Step 3 Compute the (p + 1) × (p + 1)matrix

Sp =
p∑︁

j=1

M
2
−p∑︁

i=1
σ2j vij(vij)T, (6.6.12)

where vij = [v(i, j), v(i + 1, j), · · · , v(i + p, j)]T and v(i, j) is ith row and jth column
element of the matrix V .



6.6 Identification of Causal ARMA Models | 293

Step 4 Find the inverse matrix S(−p) of the matrix S(p), then the total least square estima-
tion of the AR parameters are given by

â(i) = S−(p)(i + 1, 1)/S−(p)(1, 1). (6.6.13)

Here, S−(p)(i, 1) is the ith row and first column element of the inverse matrix S−(p).

Applying the SVD-TLS algorithm to solve the MYW equation can significantly improve

the estimation accuracy of the AR parameters, which is especially important for sys-

tem identification using higher-order cumulants because the sample higher-order

cumulants for short data inherently have relatively large estimation errors.

6.6.2 MA order Determination

If the AR part of the causal ARMA process has been identified, then using the available

AR order and AR parameters, we can get the following equation by “filtering” the

original observed process

ỹ(n) =
p∑︁

i=0
a(i)y(n − i) (6.6.14)

and {ỹ(n)} is called the “residual time series”. Substitute Eq. (6.6.2) into Eq.(6.6.14)

yields

ỹ(n) =
p∑︁

i=0
a(i)x(n − i) +

p∑︁

i=0
a(i)v(n − i) =

q∑︁

j=0
b(j)e(n − j) + ṽ(n). (6.6.15)

Here, in order to obtain the first term of the second equation, Eq. (6.6.1) is substituted,

and

ṽ(n) =
p∑︁

i=0
a(i)v(n − i) (6.6.16)

is still colored Gaussian noise.

Eq. (6.6.15) shows that the residual time series {ỹ(n)} is a MA(q) process observed
in colored Gaussian noise. Therefore, MA parameter estimates for the causal ARMA

process can be obtained by simply applying the RCmethod or the cumulant method for

FIR system parameter estimation introduced in Section 6.5 to the residual time series.

The method to transform the MA parameter estimation of the causal ARMA process

into a pure FIR system parameter identification of the residual time series is called

the residual time series method and is proposed in the [88]. Moreover, the method to

estimate the MA order of the ARMAmodel is also proposed. Here, the maximum integer

m satisfying

ckỹ(m, 0, · · · , 0) ̸= 0 (6.6.17)
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is used as the MA order of the ARMAmodel. More generally, all the order determination

methods applicable to pure MA models can be applied to the residual time series to

obtain the estimation of the MA order of the ARMAmodel.

Now consider the method of determining the MA order of the ARMAmodel directly

without constructing residual time series. Therefore, the fitting error function is defined

as

fk(m, n) =
p∑︁

i=0
a(i)cky(m − i, n) =

p∑︁

i=0
a(i)ckx(m − i, n). (6.6.18)

Here cky(m, n) = ckx(m, n) is used. Substituting Eq. (6.6.3) into Eq. (6.6.18), it is imme-

diately obtain

fk(m, n) = γke
∞∑︁

j=0
hk−2(j)h(j + n)b(j + m). (6.6.19)

Obviously,

fk(q, 0) = γkehk−1(0)b(q) = γkeb(q) ̸= 0 (6.6.20)

because h(0) = 1 and b(q) ̸= 0.

On the other hand, using the fitting error function, the MYW equation can be

expressed as

fk(m, n) = 0, m > q, ∀n. (6.6.21)

Eqs. (6.6.20) and (6.6.21) inspire a method to determine the MA order of ARMA model,

i.e., q is the largest integer m that makes

fk(m)
def

= fk(m, 0) =
p∑︁

i=0
a(i)cky(m − i, 0, · · · , 0) ̸= 0 (6.6.22)

hold. Although this order determination method is theoretically attractive, it is difficult

to adopt in practice because there will be a large error in the estimated value
^fk(m)

when the data are relatively short.

To overcome this difficulty, a simple and effective method is proposed in Ref.[252].

The basic idea is to introduce a fitted error matrix and to transform the determination

of the MA order into the determination of the effective rank of this matrix, which can

be achieved using a stable method such as singular value decomposition.

The basic idea is that the introduction of a fitted error matrix transforms the deter-

mination of the MA order into the determination of the effective rank of this matrix,

and the latter can be achieved using a numerically stable method such as singular

value decomposition.

Construct the fitted error matrix

F =

⎡
⎢⎢⎢⎢⎣

fk(0) fk(1) · · · fk(q)
fk(1) · · · fk(q)
.

.

. .
.
.

fk(q) 0

⎤
⎥⎥⎥⎥⎦
. (6.6.23)
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This is a Henkel matrix, and it is also an upper triangular matrix. Clearly

det(F) =
q+1∏︁

i=1
f (i, q + 2 − i) = f q+1k (q) ̸= 0. (6.6.24)

That is to say, rank(F) = q + 1. Since the MA order q is unknown, it is necessary to
modify the fitted error matrix F so that its elements no longer contain the unknown q,
but still have the rank q + 1. Therefore, construct the extended fitted error matrix

Fe =

⎡
⎢⎢⎢⎢⎣

fk(0) fk(1) · · · fk(qe)
fk(1) · · · fk(qe)
.

.

. .
.
.

fk(qe) 0

⎤
⎥⎥⎥⎥⎦
, qe > q. (6.6.25)

Using Eqs. (6.6.20) and (6.6.21), it is easy to verify that

rank(Fe) = rank(F) = q + 1. (6.6.26)

Although q is unknown, it is a not difficult to choose one qe such that qe > q.
Eq. (6.6.26) shows that the effective rank of Fe can be determined using the singu-

lar value decomposition (SVD) if the elements of the matrix Fe are replaced by their
estimations

^fk(m). On the other hand, by the upper triangular structure of the matrix

Fe, it is known that the effective rank determination of Fe is equivalent to testing the
following inequality

^fm+1k (m) ̸= 0. (6.6.27)

The largest integer m that makes the above inequality hold approximately is the esti-

mation of the MA order q. The test of ^fm+1k (m) ̸= 0 is called as the product of diagonal

entries (PODE) test. Clearly, PODE test inequality Eq. (6.6.27) is more reasonable than

directly test inequality Eq. (6.6.22), since the former can be expected to provide better

numerical stability than that of the latter.

Ref.[252] found that when using the SVD or PODE test to determine the MA order

of the ARMA model alone, the model order determined may be overdetermined or

underdetermined. Therefore, it is suggested a combination of the SVD and PODE test.

The specific operation is: firstly, the orderM determinedby SVD is taken as the reference.

If fM+1

k (M) and fM+2

k (M + 1) differ greatly from zero, then this M is underdetermined,

and we should use Eq. (6.6.27) to take the PODE test for order M′ = M + 1; conversely,

if fM+1

k (M) and fM+2

k (M + 1) obviously are close to zero, then this M is overdetermined,

and we should use Eq. (6.6.27) to take the PODE test for order M′ = M − 1. A perfect

estimate of M should satisfy that fM+1

k (M) differs greatly from zero and fM+2

k (M + 1) is

close to zero.
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6.6.3 Estimation of MA Parameters

It has been pointed out earlier that the estimation of the MA parameters of the ARMA

model can be obtained by applying either the RC method of pure MA parameter estima-

tion or the higher-order cumulant method to the residual time series. This estimation

problem will be discussed in the following.

1. Residual Time Series Cumulant Method
In fact, the MA parameters of the ARMA model can be estimated successively

without computing the residual time series. Consider the cumulants of the residual

time series

ckỹ(τ1, · · · , τk−1) = cum[ỹ(n), ỹ(n + τ
1
), · · · , ỹ(n + τk−1)]. (6.6.28)

Substituting the residual time series defined in Eq.(6.6.14) into the above equation and

using the definition and properties of the cumulants, we have

ckỹ(τ1, · · · , τk−1) = cum

⎡
⎣

p∑︁

i
1
=0

a(i
1
)y(n − i

1
), · · · ,

p∑︁

ik=0
a(ik)y(n − ik)

⎤
⎦

=

p∑︁

i
1
=0

· · ·

p∑︁

ik=0
a(i

1
) · · · a(ik)cky(τ1 + i1 − i2, · · · , τk−1 + i1 − ik).

(6.6.29)

In particularly, the k-th order (k = 2, 3, 4) are

Rỹ(m) =
p∑︁

i
1
=0

p∑︁

j=0
a(i)a(j)Ry(m + i − j), (6.6.30)

c
3ỹ(m, n) =

p∑︁

i
1
=0

p∑︁

i
2
=0

p∑︁

i
3
=0

a(i
1
)a(i

2
)a(i

3
)cky(m + i

1
− i

2
, n + i

1
− i

3
), (6.6.31)

c
4ỹ(m, n, l) =

p∑︁

i
1
=0

· · ·

p∑︁

i
4
=0

a(i
1
) · · · a(i

4
)cky(m + i

1
− i

2
, n + i

1
− i

3
, l + i

1
− i

4
).

(6.6.32)

The above method that can directly obtain the cumulants of the residual time series

without computing the residual time series itself is proposed in Ref.[247]. Although

this method calculates the third- and fourth-order cumulants of the residual time

series involving triple and quadruple summation, respectively, compared with the

(direct) residual time series method which first generates the residual time series

and then calculates the estimates of the third-order and fourth-order cumulants, the

computational complexity of Eqs. (6.6.31) and (6.6.32) is much smaller.
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2. q-slice Algorithm
Let m = q in Eq.(6.6.19), then we have

fk(q, n) = γke
∞∑︁

i=0
hk−2(i)h(i + n)b(i + q) = γkeh(n)b(q). (6.6.33)

Dividing the above formula by Eq. (6.6.20), yields

h(n) = fk(q, n)fk(q, 0)
=

∑︀p
i=0 a(i)cky(q − i, n)∑︀p
i=0 a(i)cky(q − i, 0)

. (6.6.34)

Since for a fixed n, only the 1-D slices of cumulants cky(q, n), · · · , cky(q−p, n) are used
in the numerator of Eq. (6.6.34), while q alices are required to calculate the q impulse

response coefficients h(1), · · · , h(n). Consequently, the above estimation method for

the impulse response of the ARMA system is called the “q-slice” algorithm. By the way,

it is noted that Eq. (6.5.22) of C(q, n) for estimating the impulse response of the FIR

system given in Section 6.5 is a special case of Eq. (6.6.34) of q-slice but with AR order

p = 0.

Once the impulse response h(n), n = 1, · · · , q of the ARMAmodel has been directly

calculated or estimated from Eq. (6.6.34), the familiar equation

b(n) =
p∑︁

i=0
a(i)h(n − i), n = 1, · · · , q (6.6.35)

can be used to calculate the MA parameters directly.

Interestingly, the algorithm for estimating AR parameters and impulse response

can be obtained by modifying the q-slice algorithm. This algorithm was proposed by

Swami and Mendel

[203]

. Let ε = −fk(q, 0), then Eq. (6.6.34) can be modified as

p∑︁

i=0
a(i)cky(q − i, n) + εh(n) = −cky(q, n). (6.6.36)

Concatenating the above equation for n = 0, 1, · · · , Q(Q ≥ q), we can obtain
⎡
⎢⎢⎢⎢⎣

cky(q − 1, 0) · · · cky(q − p, 0)
cky(q − 1, 1) · · · cky(q − p, 1)

.

.

.

.

.

.

.

.

.

cky(q − 1, Q) · · · cky(q − p, Q)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a(1)
a(2)
.

.

.

a(p)

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

ε
εh(1)
.

.

.

εh(Q)

⎤
⎥⎥⎥⎥⎦
= −

⎡
⎢⎢⎢⎢⎣

cky(q, 0)
cky(q, 1)

.

.

.

cky(q, Q)

⎤
⎥⎥⎥⎥⎦

(6.6.37)

which may be compactly written as

C
1
a + εh = −c

1
. (6.6.38)

Concatenating Eq. (6.6.38) with the MYW equation to yield

[︃
C 0
C
1

I

]︃[︃
a
εh

]︃
= −

[︃
c
c
1

]︃
. (6.6.39)
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Eq. (6.6.39) represents an overdetermined system of linear equations from which

the unknown AR parameters a(1), · · · , a(p) and the implus response parameters

h(1), · · · , h(Q) can be simultaneously estimated.

3. The Closed Solution
The higher-order spectra of a random process {x(n)} defined in Eq. (6.4.11) can be

rewritten as the Z-transform form

Sx(z1, · · · , zk−1) = γkeH(z1) · · ·H(zk−1)H(z−11 · · · z−1k−1)

= γke
βk(z1, · · · , zk−1)
αk(z1, · · · , zk−1)

(6.6.40)

or

Sx(z1, · · · , zk−1) =
∞∑︁

i
1
=−∞

· · ·

∞∑︁

ik−1=−∞
cky(i1, · · · , ik−1)z−i11

· · · z−ik−1k−1 . (6.6.41)

In Eq. (6.6.40),

αk(z1, · · · , zk−1) = A(z
1
) · · ·A(zk−1)A(z−11 · · · z−1k−1)

=

p∑︁

i
1
=−p
· · ·

p∑︁

ik−1=−p
αk(i1, · · · , ik−1)z−i11

· · · z−ik−1k−1 , (6.6.42)

βk(z1, · · · , zk−1) = B(z
1
) · · · B(zk−1)B(z−11 · · · z−1k−1)

=

p∑︁

i
1
=−p
· · ·

p∑︁

ik−1=−p
βk(i1, · · · , ik−1)z−i11

· · · z−ik−1k−1 . (6.6.43)

Comparing the coefficients of the same power term on both sides of the above two

equations respectively, it is easy to obtain

αk(z1, · · · , zk−1) =
p∑︁

j=0
a(j)a(j + i

1
) · · · a(j + ik−1), (6.6.44)

βk(z1, · · · , zk−1) =
q∑︁

j=0
b(j)b(j + i

1
) · · · b(j + ik−1). (6.6.45)

According to their specific forms, αk(z1, · · · , zk−1) and βk(z1, · · · , zk−1) are called the
kth-order correlation coefficients of the AR and MA parameters

[89]

, respectively.

If letting i
1
= p, i

2
= · · · = ik−1 = 0, then from Eq. (6.6.44) we can get

a(p) = αk(p, 0, · · · , 0).

If letting i
1
= p, i

2
= i and i

3
= · · · = ik−1 = 0, then Eq. (6.6.44) gives the result

a(p)a(i) = αk(p, i, 0, · · · , 0).

From the above two equations, it is immediately seen that

a(i) = αk(p, i, 0, · · · , 0)αk(p, 0, · · · , 0)
, i = 1, · · · , p. (6.6.46)
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Similarly, from Eq. (6.6.45), it follows that

b(i) = βk(q, i, 0, · · · , 0)βk(q, 0, · · · , 0)
, i = 1, · · · , q. (6.6.47)

This shows that the if βk(q, i, 0, · · · , 0) is known, the MA parameters can be calculated

directly from Eq. (6.6.47). Therefore, the key to the direct calculation of the MA parame-

ters is how to obtain the kth-order correlation coefficients βk(q, i, 0, · · · , 0) for the MA
parameters.

From Eqs. (6.6.40) and (6.6.41), it is easy to know that

p∑︁

i
1
=−p
· · ·

p∑︁

ik−1=−p
αk(i1, · · · , ik−1)cky(τ1 − i1, · · · , τk−1 − ik−1)

=

{︂
γkeβk(τ1, · · · , τk−1), τi ∈ [−q, q]

0, others

. (6.6.48)

Combining Eqs. (6.6.47) and (6.6.48), another formula for directly calculating the MA

parameters can be obtained

b(m) = βk(q,m, 0, · · · , 0)
βk(q, 0, · · · , 0)

=

γkeβk(q,m, 0, · · · , 0)
γkeβk(q, 0, · · · , 0)

=

∑︀p
i
1
=−p · · ·

∑︀p
ik−1=−p αk(i1, · · · , ik−1)cky(q − i1,m − i2, −i3, · · · , −ik−1)∑︀p

i
1
=−p · · ·

∑︀p
ik−1=−p αk(i1, · · · , ik−1)cky(q − i1, −i2, −i3, · · · , −ik−1)

,

(6.6.49)

where m = 1, · · · , q.
After the AR parameter is estimated, its kth-order correlation αk(i1, · · · , ik−1) can

be calculated by its definition Eq. (6.6.44), so Eq. (6.6.49) is easy to calculate. It should

be pointed out that although the direct calculation formulation of MA parameters is

theoretically appealing and again reflects the superiority of higher-order cumulants in

the identification of ARMA model systems, it is rarely used directly in practice. This is

mainly because the higher-order cumulants have relatively large estimation error and

variance in the case of short data, which will seriously affect the estimation error and

variance of MA parameters obtained by direct calculation.

Finally, it is noted that there are other closed-form recursive solutions for the

estimation of the MA parameters of the ARMA process, and the interested reader is

referred to Ref.[254].

6.7 Harmonic Retrieval in Colored Noise

In Chapter 4, we have discussed various methods of harmonic retrieval in additive

white noise, and the second-order statistics (correlation function) are used. This section

analyzes the problem of harmonic retrieval in colored noise. In order to suppress the

influence of colored noise, higher-order statistics are used.
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6.7.1 Cumulant Definition for Complex Signal

The discussion in the previous sections is limited to the higher-order statistics of 
real signals. Since the complex harmonic process is a complex signal, it is necessary 
to introduce the definition of the cumulants of the complex signal. Brillinger and 
Rosenblatt

[35] 
pointed out that “in particular, for each partition of k (divided into j 

conjugate elements and k − j unconjugated elements), there can be a corresponding 
kth-order spectral density”. Therefore, there are 2k 

possible expressions for the kth-
order spectrum.

Assuming that the complex signal of interest is a complex harmonic process

x(n) =
p∑︁

i=1
αiej(ωin+ϕi), (6.7.1)

where the ϕi’s are independent identically distributed random variables uniformly

distributed over [−π, π]. Since ϕi’s are independent of each other, we conclude from
the properties of the cumulant, that the cumulant of the signal x(n) is the sum of the

cumulants due to the individual harmonics. Therefore, when discussing the definition

of cumulants for complex harmonic processes, it is sufficient to consider only the

definition of a single cumulant.

Let s = ejϕ, where ϕ is uniformly distributed over [0, 2π) (ϕ ∼ U[0, 2π)). For
m ̸= 0, we have E{ejmϕ} = 0. Hence, it is easy to have

cum(s, s) = 0, cum(s*, s) = E{|s|2} = 1, (6.7.2)

cum(s, s, s) = cum(s*, s, s) = 0, (6.7.3)

cum(s, s, s, s) = cum(s*, s, s, s) = 0, (6.7.4)

cum(s*, s*, s, s) = E{|s|4} − |E{s2}|2 − 2E{|s|2}E{|s|2} = −1. (6.7.5)

From the above four equations, the following important conclusions can be drawn.

(1) There are two definitions for the second-order cumulant of the complex harmonic

processes, of which only definition cum(s*, s) gives nonzero results;
(2) No matter how the cumulant is defined, the third-order cumulant of the harmonic

signal is identically zero;

(3) There are several different ways of defining the fourth-order cumulant of the har-

monic process, only the definition cum(s*, s*, s, s) yields nonzero values.

Of course, the fourth-order cumulant cum(s*, s, s*, s) and cum(s, s, s*, s*) also give
nonzero cumulants, we conclude from the symmetry of the cumulants that these

definitions are equivalent to cum(s*, s*, s, s). Without loss of generality, the conjugated

elements will be arranged in the front and the unconjugated elements will be arranged

in the back. Accordingly, the definition of the fourth-order cumulant of the complex

signals can be derived.
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Definition 6.7.1. The fourth-order cumulant of the complex process {x(n)} with zero
mean is defined as

c
4x(m1

,m
2
,m

3
) = cum[x*(n), x*(n + m

1
), x(n + m

2
), x(n + m

3
)]. (6.7.6)

Note that, there are two special harmonic processes whose higher-order cumulants

must take other definition forms. These two special harmonic processes are the

quadratic phase-coupled harmonic process and the cubically phase-coupled harmonic

process, respectively.

1.Quadratic Phase-coupled Harmonic Process

Definition 6.7.2. If the harmonic process x(n) =

∑︀
3

i=1 αie
j(ωin+ϕi) satisfy that ϕ

3
=

ϕ
1
+ϕ

2
and ω

3
= ω

1
+ω

2
, then this harmonic process is called quadratic phase-coupled

process.

Definition 6.7.3. The third-order cumulant of the quadratic phase-coupled harmonic
process is defined as

c
3x(τ1, τ2)

def
= cum[x*(n), x(n + τ

1
), x(n + τ

2
)]. (6.7.7)

It is easy to verify that the above definition gives a nonzero cumulant

c
3x(τ1, τ2) = α1α2α*3

[︁
ej(ω1

τ
1
+ω

2
τ
2
)

+ ej(ω2
τ
1
+ω

1
τ
2
)

]︁
, (6.7.8)

while the other definition cum[x(n), x(n + m
1
), x(n + m

2
)] and cum[x*(n), x*(n +

m
1
), x(n + m

2
)] are identically zero.

Taking the 2-D Fourier transform of Eq. (6.7.8), it is easy to see that the bispectrum

of the quadratic phase-coupled harmonic process is

Bx(λ1, λ2) = α1α2α*3[δ(λ1 − ω1
, λ

2
− ω

2
) + δ(λ

1
− ω

2
, λ

2
− ω

1
), (6.7.9)

where

δ(i, j) =
{︂
1, i = j = 0

0, others

(6.7.10)

is a 2-D δ function.
Eq. (6.7.9) shows that the bispectrum consists of a pair of impulses at (ω

1
, ω

2
) and

(ω
2
, ω

1
), and is identically zero at other frequency. This is an important property of

the quadratic phase-coupled harmonic process, which can be used to test whether a

harmonic process is a quadratic phase coupled process.

2. Cubically Phase-coupled Harmonic Process

Definition 6.7.4. If the harmonic process x(n) =

∑︀
4

i=1 αie
j(ωin+ϕi) satisfy that ϕ

4
=

ϕ
1
+ ϕ

2
+ ϕ

3
and ω

4
= ω

1
+ ω

2
+ ω

3
, then this harmonic process is called cubically

phase-coupled process.
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Note that, for the cubically phase-coupled harmonic process, the fourth-order cumulant 
given by definition 6.7.1 is identically zero. Hence, the following definition of cumulant 
must be used.

Definition 6 .7.5. The fourth-order cumulant of the cubically phase-coupled harmonic 
process is defined as

c
4x(τ1, τ2, τ3)

def
= cum[x*(n), x(n + τ

1
), x(n + τ

2
), x(n + τ

3
)]. (6.7.11)

According to Eq. (6.7.11), the fourth-order cumulant of the cubically phase-coupled

harmonic process can be derived as

c
4x(τ1, τ2, τ3) = α1α2α3α*4

[︁
ej(ω1

τ
1
+ω

2
τ
2
+ω

3
τ
3
)

+ ej(ω2
τ
1
+ω

1
τ
2
+ω

3
τ
3
)

+ ej(ω1
τ
1
+ω

3
τ
2
+ω

2
τ
3
)

+ ej(ω2
τ
1
+ω

3
τ
2
+ω

1
τ
3
)

+ ej(ω3
τ
1
+ω

1
τ
2
+ω

2
τ
3
)

+ ej(ω3
τ
1
+ω

2
τ
2
+ω

1
τ
3
)

]︁
. (6.7.12)

Taking the 3-D Fourier transform of the above equation, then the trispectrum of the

cubically phase-coupled harmonic process is obtained

Tx(λ1, λ2, λ3) = α1α2α3α*4[δ(λ1 − ω1
, λ

2
− ω

2
, λ

3
− ω

3
)

+ δ(λ
1
− ω

2
, λ

2
− ω

1
, λ

3
− ω

3
) + δ(λ

1
− ω

1
, λ

2
− ω

3
, λ

3
− ω

2
)

+ δ(λ
1
− ω

2
, λ

2
− ω

3
, λ

3
− ω

1
) + δ(λ

1
− ω

3
, λ

2
− ω

1
, λ

3
− ω

2
)

+ δ(λ
1
− ω

3
, λ

2
− ω

2
, λ

3
− ω

1
), (6.7.13)

i.e., the trispectrum consists of impulses at (ω
1
, ω

2
, ω

3
) and its permutations. This

important property can be used to test whether a harmonic process is a cubically phase

coupled process.

From the discussion above, it can be seen that the definition of cumulants of

complex processes is not unique, and different cumulant definitions should be used

depending on the circumstances. In the following discussion, it will be assumed that

the harmonic process is not a phase-coupled process.

6.7.2 Cumulants of Harmonic Process

Regarding the cumulants of the harmonic process {x(n)}, Swami and Mendel proved

the following propositions

[204]

.
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Proposition 6.7.1. For the harmonic process {x(n)} shown in Eq. (6.7.1), its autocorrela-
tion and fourth-order cumulant are given by

Rx(τ) =
p∑︁

k=1

|αk|2ejωτ , (6.7.14)

c
4x(τ1, τ2, τ3) = −

p∑︁

k=1

|αk|4ejωk(−τ1+τ2+τ3). (6.7.15)

Proposition 6.7.2. Consider a real harmonic signal

x(n) =
p∑︁

k=1

αkcos(ωkn + ϕk), (6.7.16)

if ϕk’s are independent and uniformly distributed over [−π, π), and αk > 0, then the
autocorrelation and the fourth-order cumulant of x(n) are given by

Rx(τ) =
1

2

p∑︁

k=1

α2kcos(ωkτ), (6.7.17)

c
4x(τ1, τ2, τ3) = −

1

8

p∑︁

k=1

α4k [cos(τ1 − τ2 − τ3) + cos(τ2 − τ3 − τ1)]

+ cos(τ
3
− τ

1
− τ

2
). (6.7.18)

The above two propositions are important because they describe the relationship

between the cumulants of complex-valued and real-valued harmonic signals and the

harmonic parameters, respectively. In particular, let us examine the 1-D special slice of

the cumulants - the diagonal slice.

Let τ
1
= τ

2
= τ

3
= τ in Eq. (6.7.15), then for the complex harmonic process, there is

c
4x(τ)

def

= c
4x(τ, τ, τ) = −

p∑︁

k=1

|αk|4ejωkτ . (6.7.19)

Similarly, let τ
1
= τ

2
= τ

3
= τ in Eq. (6.7.18), then for the real harmonic process, there

is

c
4x(τ)

def

= c
4x(τ, τ, τ) = −

1

8

p∑︁

k=1

α4kcos(ωkτ). (6.7.20)

Eqs. (6.7.19)) and (6.7.20) are of special significance because they clearly show that the

diagonal slices of the fourth-order cumulants of complex and real harmonic processes

retain all the pertinent information needed to recover all the parameters (the number

of harmonics p, amplitude αk and frequency ωk) of the harmonic process.

Compare Eq. (6.7.19) with Eq. (6.7.14), and Eq. (6.7.20) with Eq. (6.7.17), it is immedi-

ately obtain the following important result.
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Corollary 6.7.1. The 1-D slice of the fourth-order cumulant of the complex harmonic
process x(n) in Eq. (6.7.1) is identical (ignoring the negative sign) with the autocorrelation
of the signal

x̃(n) =
p∑︁

k=1

|αk|2ej(ωkn+ϕk). (6.7.21)

Additionally, the diagonal slice of the fourth-order cumulant of the real harmonic process
x(n) in Eq. (6.7.16) is identical (ignoring the scale factor −3/4) with the autocorrelation
of the signal

x̃(n) =
p∑︁

k=1

α2kcos(ωkn + ϕk). (6.7.22)

6.7.3 Harmonic Retrieval in Colored Gaussian Noise

Corollary 6.7.1 enlightens us that the harmonic retrieval methods based on autocor-

relation functions (e.g., ARMAmodeling method, etc.) can become cumulant-based

harmonic retrieval methods after the autocorrelation functions are replaced by the

diagonal slices of the fourth-order cumulant.

As a typical example, we consider the ARMAmodeling method of the complex har-

monic retrieval in colored Gaussian noise. The MYW equation of the complex harmonic

signal based on the autocorrelation function is

p∑︁

i=0
a(i)Rx(m − i) = 0, m > p (complex harmonic). (6.7.23)

Multiplying both sides of the above equation by −1, and taking into account c
4x(τ) =

−Rx(τ), hence the above equation becomes the MYW equation for the complex har-

monic signal based on the fourth-order cumulant, i.e., we have

p∑︁

i=0
a(i)c

4x(m − i) = 0, m > p (complex harmonic). (6.7.24)

Obviously, the unknown AR order p (i.e., the number of complex harmonic signals) of

the ARMA model can be determined using the singular value decomposition (SVD) for

Eq. (6.7.24), and then the SVD-TLS is used to obtain the total least-squares solution of

the AR parameters. Finally, the roots of the characteristic polynomial

1 + a(1)z−1 + · · · + a(p)z−p = 0 (complex harmonic) (6.7.25)

are given as estimations of the harmonic frequencies.

For the real harmonic signal, the MYW equation based on the autocorrelation is

2p∑︁

i=0
a(i)Rx(m − i) = 0, m > 2p (real harmonic). (6.7.26)
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Multiplying both sides of the above equation by −3/4, and substituting c
4x(τ) =

−

3

4

Rx(τ), then we can get the MYW equation based on the cumulants

2p∑︁

i=0
a(i)c

4x(m − i) = 0, m > 2p (real harmonic). (6.7.27)

In the case of colored Gaussian noise v(n), since the fourth-order cumulant of the

observed data y(n) = x(n) + v(n) is identical to the fourth-order cumulant of the har-

monic signal x(n), the corresponding method for harmonic retrieval directly using the

diagonal slice of the fourth-order cumulant of the observed data can be obtained by

simply replacing c
4x(τ) with c4y(τ) in the above equations.

6.7.4 Harmonic Retrieval in Colored Non-Gaussian Noise

Consider a real harmonic process {x(n)}, it observed in a colored non-Gaussian ARMA
noise

V(n) +
nb∑︁

i=1
b(i)v(n − i) =

nd∑︁

j=0
d(j)w(n − j), (6.7.28)

where nb and nd are the AR order andMA order of the ARMAnoise process, respectively.

w(n) is an independently identically distributed process that takes real values, and the
third-order cumulant γ

3w ̸= 0.

Let

B(q) =
nb∑︁

i=0
b(i)q−i and D(q) =

nd∑︁

i=0
d(i)q−i , (6.7.29)

where q−1 is the backward shift operator, i.e., q−ix(n) = x(n − i). Using Eq. (6.7.29),
Eq. (6.7.28) can be simplified as

B(q)v(n) = D(q)w(n). (6.7.30)

Assume that the additive non-Gaussiannoise v(n) is independent of theharmonic signal

x(n), and they are of zero mean. Since the third-order cumulant of the harmonic signal

x(n) is identically zero, the third-order cumulant of the observed data y(n) = x(n)+ v(n)
is identically to that of the non-Gaussian noise v(n), that is

c
3y(τ1, τ2) = c3v(τ1, τ2). (6.7.31)

This shows that the AR parameters b(i), i = 1, · · · , b(nb) of the non-Gaussian ARMA
noisemodel canbe identifiedusing the third-order cumulant c

3y(τ1, τ2) of the observed
data.

Once the AR parameters of the noise process are identified, then the observed

process can be filtered to obtain

ỹ(n) = B(q)y(n) = B(q)[x(n) + v(n)] = x̃(n) + ṽ(n), (6.7.32)
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where

x̃(n) = B(q)x(n) =
nb∑︁

i=0
b(i)x(n − i) (6.7.33)

ṽ(n) = B(q)v(n) = D(q)w(n) =
nd∑︁

j=0
d(j)w(n − j) (6.7.34)

represent the filtered harmonic signal and the filtered colored non-Gaussian noise,

respectively. Note that since x(n) and v(n) are statistically independent, their linear
transformations x̃(n) and ṽ(n) are also statistically independent.

After filtering, the original additive non-Gaussian noise is transformed from ARMA

to the MA process shown in Eq. (6.7.34). Using the truncated tail property of the auto-

correlation and the higher-order cumulants of the MA process, we have

Rṽ(τ) = 0, τ > nd , (6.7.35)

ckṽ(τ1, · · · , τk−1) = 0, τ > nd; k > 2. (6.7.36)

The question is, is it possible to retrieval the harmonic signal from the filtered observa-

tion process ỹ(n)? The answer is yes: using Eqs. (6.7.35) and (6.7.36), two methods for

harmonic retrieval in colored non-Gaussian noise can be obtained.

1. The Hybrid Method
For the filtered harmonic signal x̃(n), by Eq. (6.7.33) we can obtain

E{x̃(n)x̃(n − τ)} = E

⎧
⎨
⎩

nb∑︁

i=0
b(i)x(n − i) ·

nb∑︁

j=0
b(j)x(n − τ − j)

⎫
⎬
⎭

=

nb∑︁

i=0

nb∑︁

j=0
b(i)b(j)E{x(n − i)x(n − τ − j)},

namely,

Rx̃(τ) =
nb∑︁

i=0

nb∑︁

j=0
b(i)b(j)Rx(τ + j − i). (6.7.37)

Let a(1), · · · , a(2p) be the coefficents of the characteristic polynomial 1 + a(1)z−1 +
· · · + a(2p)z−2p = 0 of the harmonic signal x(n). Interestingly, from Eq. (6.7.37), it is

easy to obtain

2p∑︁

k=0

Rx̃(m − k) =
nb∑︁

i=0

nb∑︁

j=0
b(i)b(j)

2p∑︁

k=0

a(k)Rx(m − k + j − i) = 0, ∀m. (6.7.38)

Since the harmonic signal x(n) is a completely predictable process, it obeys the normal

equation

∑︀
2p
k=0 a(k)Rx(m − k) = 0, ∀m.
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From the statistical independence of x̃(n) and ṽ(n), we know that Rỹ(m) = Rx̃(m) +
Rṽ(m). Substituting this relationship into Eq. (6.7.38), we have

2p∑︁

i=0
a(i)Rỹ(m − i) =

2p∑︁

i=0
a(i)Rṽ(m − i), ∀m. (6.7.39)

Substituting Eq. (6.7.35) into Eq. (6.7.39) yields

2p∑︁

i=0
a(i)Rỹ(m − i) = 0, m > 2p + nd . (6.7.40)

It is easy to prove that when L ≥ (pe + 1), the rank of L × (pe + 1) matrix

Re =

⎡
⎢⎢⎢⎢⎣

Rỹ(qe + 1) Rỹ(qe) · · · Rỹ(qe − pe + 1)
Rỹ(qe + 2) Rỹ(qe + 1) · · · Rỹ(qe − pe + 2)

.

.

.

.

.

.

.

.

.

.

.

.

Rỹ(qe + L) Rỹ(qe + L − 1) · · · Rỹ(qe − pe + L)

⎤
⎥⎥⎥⎥⎦

(6.7.41)

is equal to 2p, if pe ≥ 2p and qe ≥ pe + nd are taken.
Based on the above discussion, a hybrid approach to harmonic retrieval in non-

Gaussian ARMA(nb , nd) noise can be obtained
[245]

.

Algorithm 6.7.1. The hybrid approach to harmonic retrieval in non-Gaussian noise
Step 1 Use the SVD-TLS method and the third-order cumulant of the observed process

y(n) to estimate the AR order nb and the AR parameters b(1), · · · , b(nb) of the
non-Gaussian ARMA noise.

Step 2 Use the estimated AR parameters b(1), · · · , b(nb) and Eq. (6.7.32) to filter the
observed data y(n), obtain the filtered observed process ỹ(n).

Step 3 Replace the true autocorrelation Rỹ(m) by the sample autocorrelation ^Rỹ(m) of
ỹ(n) in Eq. (6.7.41) and take pe ≥ 2p and qe ≥ pe + nd to determine the effective
rank of ^Re, say 2p. Then apply the SVD-TLS method to estimate the AR parameters
a(1), · · · , a(2p) of the harmonic process x(n).

Step 4 Find the roots zi of the characteristic polynomial A(z) = 1 + a(1)z−1 + · · · +

a(2p)z−2p = 0 and compute the frequencies of the harmonics (only take the positive
frequencies) as follows:

ωi =
1

2π arctan[Im(zi)/Re(zi)]. (6.7.42)

2. Prefiltering-based ESPRIT Method
In the following, another method to harmonic retrieval in non-Gaussian ARMA

noise (prefiltering-based ESPRIT method

[244]

) is introduced. The core of the ESPRIT

method is how to construct the appropriate matrix pencil. Therefore, let us consider

two cross-covariance matrices of the filtered observation process {ỹ(n)}. Denoting

ỹ
1
(n) = ỹ(n + m + nd) (6.7.43)

ỹ
2
(n) = ỹ(n + m + nd + 1) (6.7.44)
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and taking m > d (for the complex harmonic process d = p and for the real harmonic

process d = 2p).
Construct two m × 1 vectors

ỹ
1

= [ỹ
1
(n), · · · , ỹ

1
(n + 1), · · · , ỹ

1
(n + m − 1)]T

= [ỹ
1
(n + m + nd), · · · , ỹ1(n + 2m + nd − 1)]T, (6.7.45)

ỹ
2

= [ỹ
2
(n), · · · , ỹ

2
(n + 1), · · · , ỹ

2
(n + m − 1)]T

= [ỹ
2
(n + m + nd + 1), · · · , ỹ2(n + 2m + nd)]T. (6.7.46)

Define

ỹ(n) = [ỹ(n), ỹ(n + 1), · · · , ỹ(n + m − 1)]T, (6.7.47)

x̃(n) = [x̃(n), x̃(n + 1), · · · , x̃(n + m − 1)]T, (6.7.48)

ṽ(n) = [ṽ(n), ṽ(n + 1), · · · , ṽ(n + m − 1)]T, (6.7.49)

then Eq. (6.7.32) can be written in vector form

ỹ(n) = x̃(n) + ṽ(n), (6.7.50)

and

ỹ
1

(n) = x̃(n + m + nd) + ṽ(n + m + nd), (6.7.51)

ỹ
2

(n) = x̃(n + m + nd + 1) + ṽ(n + m + nd + 1). (6.7.52)

For the complex harmonic signal x(n) =

∑︀p
i=1 αie

j(ωin+ϕi)
, its vector form x(n) =

[x(n), x(n + 1), · · · , x(n + m − 1)]T can be expressed as

x(n) = As
1
(n), (6.7.53)

where

s
1
(n) = [α

1
ej(ω1

n+ϕ
1
)

, · · · , αpej(ωpn+ϕp)]T, (6.7.54)

A =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

ejω1 ejω2

· · · ejωp
.

.

.

.

.

.

.

.

.

.

.

.

ej(m−1)ω1 ej(m−1)ω2

· · · ej(m−1)ωp

⎤
⎥⎥⎥⎥⎦
. (6.7.55)

Similarly, the vector x(n − k) = [x(n − k), x(n − k + 1), · · · , x(n − k + m − 1)]T can be

written as

x(n − k) = AΦ−ks
1
(n), (6.7.56)

whereΦ−k is the −kth-order power of the diagonal matrixΦ that is defined by

Φ = diag(ejω1

, · · · , ejωp ). (6.7.57)
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Using Eq. (6.7.56) it is easy to obtain

s̃(n) =
[︃ p∑︁

i=0
a(i)x(n − i), · · · ,

p∑︁

i=0
a(i)x(n + m − 1 − i)

]︃
T

=

p∑︁

i=0
a(i)[x(n − i), · · · , x(n + m − 1 − i)]T =

p∑︁

i=0
a(i)x(n − i)

=

p∑︁

i=0
a(i)AΦ−is

1
(n) = A

[︃
I +

p∑︁

i=0
a(i)Φ

]︃
s
1
(n). (6.7.58)

Similarly, we have

s̃(n + k) =
p∑︁

i=0
a(i)AΦk−is

1
(n) = AΦk

[︃
I +

p∑︁

i=1
a(i)Φ−i

]︃
s
1
(n). (6.7.59)

Let

Φ
1
= I +

p∑︁

i=1
a(i)Φ−i , (6.7.60)

then Eqs. (6.7.58) and (6.7.59) can be simplified as

s̃(n) = AΦ
1
s
1
(n), (6.7.61)

s̃(n + k) = AΦkΦ
1
s
1
(n). (6.7.62)

Using Eqs. (6.7.61) and (6.7.62), Eq. (6.7.50)∼ (6.7.52) can be rewritten as

ỹ(n) = AΦ
1
s
1
(n) + ṽ(n), (6.7.63)

ỹ
1

(n) = AΦm+ndΦ
1
s
1
(n) + ṽ(n + m + nd), (6.7.64)

ỹ
2

(n) = AΦm+nd+1Φ
1
s
1
(n) + ṽ(n + m + nd + 1). (6.7.65)

Proposition 6.7.3.
[244]

Let Rỹ,ỹi be the cross-covariance matrix of the vector processes ỹ
and ỹi (i = 1, 2), namely, Rỹ,ỹi = E{ỹỹ

H
i }, where the superscript H denotes the conjugate

transposition of the vector. If let
S = E{s

1
sH
1
}, (6.7.66)

then we have

Rỹ,ỹ
1

= AΦ
1
SΦH

1
(Φm+nd

)

HAH
, (6.7.67)

Rỹ,ỹ
2

= AΦ
1
SΦH

1
(Φm+nd+1

)

HAH
. (6.7.68)
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It is easy to prove that the structures of the matrices Rỹ ,ỹ
1 
and Rỹ ,ỹ

2 
in Proposition 6.7.3 

are

Rỹ,ỹ
1

=

⎡
⎢⎢⎢⎢⎣

Rỹ(m + nd) Rỹ(m + nd + 1) · · · Rỹ(2m + nd − 1)
Rỹ(m + nd − 1) Rỹ(m + nd) · · · Rỹ(2m + nd − 2)

.

.

.

.

.

.

.

.

.

.

.

.

Rỹ(nd + 1) Rỹ(nd + 2) · · · Rỹ(nd + m)

⎤
⎥⎥⎥⎥⎦
, (6.7.69)

Rỹ,ỹ
2

=

⎡
⎢⎢⎢⎢⎣

Rỹ(m + nd + 1) Rỹ(m + nd + 2) · · · Rỹ(2m + nd)
Rỹ(m + nd) Rỹ(m + nd + 1) · · · Rỹ(2m + nd − 1)

.

.

.

.

.

.

.

.

.

.

.

.

Rỹ(nd + 2) Rỹ(nd + 3) · · · Rỹ(nd + m + 1)

⎤
⎥⎥⎥⎥⎦
. (6.7.70)

Theorem 6.7.1.
[244]

Define Γ as the generalized eigenvalue matrix associated with the
matrix pencil {Rỹ,ỹ

1

, Rỹ,ỹ
2

}, then the following results are true
(1) The m × d Vandermonde matrix A defined in Eq. (6.7.55) is full rank, and the d × d

diagonal matrix S is nonsingular, i.e., rank(A) = rank(S) = d;
(2) m × m matrix Γ is related to the diagonal matrixΦ by

Γ =

[︃
Φ O
O O

]︃
(6.7.71)

where O is the zero matrix and the diagonal entries ofΦ may be permutated.

Theorem 6.7.1 leads to the prefiltering-based ESPRIT method for the harmonic retrieval

in non-Gaussian noise

[244]

.

Algorithm 6.7.2. Prefiltering-based ESPRIT Method
Step 1 Cumulant estimation: Estimate the third-order cumulant c

3y(τ1, τ2) from the ob-
served data y(1), · · · , y(N).

Step 2 AR modeling of the noise: Use SVD-TLS method and the third-order cumulant
c
3y(τ1, τ2) to estimate the AR order nb and AR parameters b(1), · · · , b(nb) of the
non-Gaussian ARMA noise.

Step 3 Prefiltering: Use the estimated AR parameters b(1), · · · , b(nb) and Eq. (6.7.32) to
filter the observed data y(n) and obtain the filtered observed process ỹ(n).

Step 4 Cross-covariance matrices compuatation: Estimate the autocorrelation Rỹ(τ) of
the filtered process and construct the cross-covariance matrices Rỹ,ỹ

1

and Rỹ,ỹ
2

using Eqs. (6.7.69) and (6.7.70).
Step 5 TLS-ESPRIT algorithm: Compute the SVD Rỹ,ỹ

1

= UΣVH of Rỹ,ỹ
1

to determine its
effective rank, yielding the estimation of the number of harmonics d. The left and right
singular matrices and singular value matrices corresponding to the d large singular
values are U, V , and Σ, respectively. Then, Compute the d non-zero generalized
eigenvalues, say, γ

1
, · · · , γd, of the matrix pencil {Σ1, UH

1
Rỹ,ỹ

2

V
1
}. The harmonic



6.8 The Adaptive Filtering of Non-Gaussian Signal | 311

frequencies are given by

ωi =
1

2π arctan[Im(γi)/Re(γi)], i = 1, · · · , d. (6.7.72)

Themethod for harmonic retrieval in mixed colored Gaussian and non-Gaussian noises

can be found in reference [243].

6.8 The Adaptive Filtering of Non-Gaussian Signal

Some typical adaptive filtering algorithms are presented in Chapter 5. The application of

these algorithms assumes that the additive noise is white since the cost functions used

(i.e., the mean-squared error or the weighted sum of squared errors) are second-order

statistics. Therefore, in order to perform adaptive filtering of non-Gaussian signals in

the presence of additive colored noise, it is necessary to use the higher-order statistics

and modify the form of the cost function.

Assuming adaptive filtering of the observed data signal x(n) using m weight coef-

ficients w
1
, · · · , wm, the principle of determining the optimal weight coefficients by

MMSE criterion is to minimize the mean square error

J
1

def

= E{|e(n)|2} = E

⎧
⎨
⎩

⃒⃒
⃒⃒
⃒x(n) −

m∑︁

i=1
wix(n − i)

⃒⃒
⃒⃒
⃒

2

⎫
⎬
⎭ , (6.8.1)

where

e(n) = x(n) −
m∑︁

i=1
wix(n − i) (6.8.2)

is the error signal. The solution to this optimization problem is the Weiner filter

wopt = R−1r, (6.8.3)

where R = E{x(n)xH(n)} and r = E{x(n)x(n)}, and they are sensitive to additive noises.
If x(n) is the output of a linear system H(z) drived by an independently identi-

cally distributed noise v(n) ∼ IID(0, σ2v , γ3v), then the power spectrum is Px(ω) =
σ2vH(ω)H*(ω) and the bispectrum is B(ω

1
, ω

2
) = γ

3vH(ω1
)H(ω

2
)H*(ω

1
+ ω

2
). Con-

sider a special bispectrum slice with ω
1
= ω and ω

2
= ω, it is clearly that

Px(ω) =
B(ω, 0)

γ
3vH(0)/σ2v

= αB(ω, 0), (6.8.4)

where α = σ2v /[γ3vH(0)] is a constant.
Taking the inverse Fourier transform of Eq. (6.8.4) yields

Rx(τ) = α
∞∑︁

m=−∞
c
3x(τ,m). (6.8.5)
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This relationship inspires a cost function immune to the additive colored Gaussian

noise, i.e., the correlation function Rx(τ) is replaced by Eq. (6.8.5). Eq. (6.8.5) can be
equivalently written as

E{x(n)x(n + τ)} = α
∞∑︁

m=−∞
E{x(n)x(n + τ)x(n + m)}. (6.8.6)

In particular, if τ = 0, then

E{|x(n)|2)} = α
∞∑︁

m=−∞
E{x(n + m)|x(n)|2)}. (6.8.7)

Similarly, define

E{|e(n)|2)} = α
∞∑︁

m=−∞
E{e(n + m)|e(n)|2)}, (6.8.8)

then the cost function J
1
defined in Eq. (6.8.1) can be modified as

J
2

def

=

∞∑︁

m=−∞
E{x(n + m)|e(n)|2)}, (6.8.9)

where the error signal e(n) is difined by Eq. (6.8.2).
The cost function Eq. (6.8.9) is proposed by Delopoulos and Giannakis

[74]

, they also

prove that J
2
= αJ

1
, where α = σ2v /[γ3vH(0)].

Unlike the J
1
criterion, the criterion J

2
uses the third-order cumulant of x(n). There-

fore, not only does it theoretically suppresses the colored Gaussian noise completely,

but also suppresses the colored non-Gaussian noise of symmetric distribution. Because

the third-order cumulant of this colored non-Gaussian noise is identically zero.

6.9 Time Delay Estimation

Time delay estimation is an important problem in the applications such as sonar, radar,

biomedicine, and geophysics. For example, target localization in sonar and radar,

stratigraphic structures (such as dams, etc.), and other issues need to determine the

time delay between the received signals of two sensors or the time delay between the

received signals relative to the transmitted signals. These two kinds of time delays are

referred to as time delays.

6.9.1 The Generalized Correlation Mehtod

Consider two spatially separated sensors whose observations x(n) and y(n) satisfy

x(n) = s(n) + w
1
(n), (6.9.1)

y(n) = s(n − D) + w
2
(n), (6.9.2)
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where s(n) is real, and s(n − D) denotes the delayed signal of s(n) where the time delay

is D and may also include the amplitude factor α. w
1
(n) and w

2
(n) are the observed

noise of the two sensors, respectively, which are statistically independent of each

other and uncorrelated with the signal s(n). The problem of time delay estimation is to

estimate the time delay parameter D by using the observed data x(n) and y(n) (where
n = 1, · · · , N).

Essentially, timedelay estimation is to find the timedifference (lag) of themaximum

similarity between two signals. In signal processing, “finding the similarity between

the two” can be translated as “finding the cross correlation function between them”.

For this purpose, we examine the cross correlation function

Rxy(τ) def= E{x(n)y(n + τ)}
= E{[s(n) + w

1
(n)][s(n + τ − D) + w

2
(n + τ)]}

= Rss(τ − D) (6.9.3)

between x(n) and y(n), where Rss(τ) = E{s(n)s(n + τ)} is the autocorrelation of the

signal s(n). Since the autocorrelation has the property that Rss(τ) ≤ Rss(0), the cross
correlation takes the maximum value at τ = D. In other words, the lag τ at which the
cross correlation takes its maximum value gives an estimation of the time delay D.

Since the estimated cross correlation functions using x(n) and y(n) may have

relatively large biases, in order to obtain better time delay estimation, it is necessary to

smooth the estimated cross correlation function. For example, using

Rxy(τ) = F−1[Pxy(ω)W(ω)] = Rxy(τ) * w(τ) (6.9.4)

to estimate the time delay parameter D, where * denotes convolution, and Pxy(ω) =
F[Rxy(τ)] is the Fourier transform of the cross correlation Rxy(τ), i.e., the cross power
spectrum of x(n) and y(n). This method, proposed by Knapp and Carter, is known as

the generalized correlation method

[125]

.

The key of the generalized correlation method is the choice of the smoothed func-

tion w(n). The following are some typical window functions.

1. The Smoothed Coherence Transform Window
Knapp and Carter proposed to use the window function

[125]

W(ω) = 1√︀
Px(ω)Py(ω)

= H
1
(ω)H

2
(ω), (6.9.5)

where Px(ω) and Py(ω) are the power spectra of x(n) and y(n) respectively, and

H
1
(ω) = 1√︀

Px(ω)
, (6.9.6)

H
2
(ω) = 1√︀

Py(ω)
. (6.9.7)
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Since y(n) = s(n − D) is the coherent signal of x(n) = s(n) in the noiseless case,

H
1
(ω)H

2
(ω) can be regarded as a coherent transformation, which is exactly the reason

for calling the smoothed window functionW(ω) a smoothed coherent transformation

window.

2.The Maximum Likelihood Window or Hannan-Thompson Window
Chan et al.

[49]

proposed that the window function takes

W(ω) = z(ω)
|Pxy(ω)|

=

1

|Pxy(ω)|
|γxy(ω)|

1 − |γxy(ω)|2
, (6.9.8)

where

|γxy(ω)|2 =
|Pxy(ω)|2

Px(ω)Py(ω)
(6.9.9)

is the correlation coefficient of the magnitude square, which takes values between 0

and 1. Chan et al. proved that for uncorrelated Gaussian processes x(n) and y(n) with
zero mean, the function

z(ω) = |γxy(ω)|
1 − |γxy(ω)|2

∝ 1

the phase variance of Pxy(ω)
, (6.9.10)

where a ∝ b denotes that a is proportional to b.
In the generalized cross correlationmethodusing themaximum likelihoodwindow,

the lag τ corresponding to the maximummagnitude of the cross correlation function

Rxy(τ) = F−1
[︂
Pxy(ω)
|Pxy(ω)|

z(ω)
]︂

(6.9.11)

is used as the estimation of the time delay D.

6.9.2 Higher-Order Statistics Method

In many practical applications (such as passive and active sonar), signal s(n) is of-
ten a non-Gaussian process, while the additive noise w

1
(n) and w

2
(n) are Gaussian

processes

[188, 220]

. In such cases, it is more reasonable to use the higher-order cumulants

for time delay estimation, since the Gaussian noise can be theoretically completely

suppressed.

Let x(n) and y(n) be the observed data with zero mean, then the third-order cumu-

lant of x(n) is

c
3x(τ1, τ2)

def

= E{x(n)x(n + τ
1
)x(n + τ

2
)} = c

3s(τ1, τ2), (6.9.12)

where

c
3s(τ1, τ2)

def

= E{s(n)s(n + τ
1
)s(n + τ

2
)}. (6.9.13)

Define the cross third-order cumulant of the signal x(n) and y(n) be

cxyx(τ1, τ2)
def

= E{x(n)y(n + τ
1
)x(n + τ

2
)} = c

3s(τ1 − D, τ2). (6.9.14)
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Taking the 2-D Fiourier transform of Eqs. (6.9.12) and (6.9.14) yields the bispectrum

P
3x(ω1

, ω
2
) = P

3s(ω1
, ω

2
) (6.9.15)

and the cross bispectrum

Pxyx(ω1
, ω

2
) = P

3s(ω1
, ω

2
)ejω1

D
. (6.9.16)

In addition, we have

P
3x(ω1

, ω
2
) = |P

3x(ω1
, ω

2
)|ejϕ3x(ω1

,ω
2
)

, (6.9.17)

Pxyx(ω1
, ω

2
) = |Pxyx(ω1

, ω
2
)|ejϕxyx(ω1

,ω
2
)

, (6.9.18)

whereϕ
3x(ω1

, ω
2
) andϕxyx(ω1

, ω
2
) represent thephase of thebispectrum P

3x(ω1
, ω

2
)

and Pxyx(ω1
, ω

2
), respectively.

The following are several higher-order statistics methods for time delay estimation.

1. Non-parametric Bispectrum Method 1
[188, 206]

Define the following function

I(ω
1
, ω

2
) =

Pxyx(ω1
, ω

2
)

P
3x(ω1

, ω
2
)

. (6.9.19)

Substituting Eqs. (6.9.15) and (6.9.16) into Eq. (6.9.19), then the function I(ω
1
, ω

2
) can

be rewritten as

I(ω
1
, ω

2
) = ejω1

D
. (6.9.20)

Therefore

T
1
(τ) =

∞∫︁

−∞

∞∫︁

−∞

I
1
(ω

1
, ω

2
)e−jω1

τdω
1
dω

2
=

∞∫︁

−∞

dω
2

∞∫︁

−∞

ejω1
(D−τ)dω

1
(6.9.21)

peaks at τ = D.
2. Non-parametric Bispectrum Method 2

[165]

Using the difference between the phase of the cross bispectrum Pxyx(ω1
, ω

2
) and

the phase of the bispectrum P
3x(ω1

, ω
2
), a new phase

ϕ(ω
1
, ω

2
) = ϕxyx(ω1

, ω
2
) − ϕ

3x(ω1
, ω

2
) (6.9.22)

can be defined. Then, using this new phase, a new function

I
2
(ω

1
, ω

2
) = ejϕ(ω1

,ω
2
)

(6.9.23)

can be constructed. From Eq. (6.9.15) to Eq. (6.9.18), it follows that I
2
(ω

1
, ω

2
) = ejω1

D
,

hence the function

T
2
(τ) =

∞∫︁

−∞

∞∫︁

−∞

I
2
(ω

1
, ω

2
)e−jω1

τdω
1
dω

2
=

∞∫︁

−∞

dω
2

∞∫︁

−∞

ejω1
(D−τ)dω

1
(6.9.24)

also peaks at τ = D.
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Algorithm 6.9.1. Non-parametric bispectrum method for time delay estimation
Step 1 Divide the N data samples into K segments, each segment contains M data and

there is 50% data overlap between two adjacent segments, i.e., N = KM/2. The
data in the kth segment are denoted as x(k)(n) and y(k)(n), where k = 1, · · · , K;
n = 0, 1, · · · ,M − 1.

Step 2 Compute the discrete Fourier transform for each segment of data

X(k)(ω) =
M−1∑︁

n=0
x(k)(n)e−j

nω
M
, (6.9.25)

Y (k)(ω) =
M−1∑︁

n=0
y(k)(n)e−j

nω
M
, (6.9.26)

where k = 1, · · · , K.
Step 3 Estimate the bispectrum and the cross bispectrum for each segment separately

P(k)
3x (ω1

, ω
2
) = X(k)(ω

1
)X(k)(ω

2
)X(k)*(ω

1
+ ω

2
), (6.9.27)

P(k)xyx(ω1
, ω

2
) = X(k)(ω

1
)Y (k)(ω

2
)X(k)*(ω

1
+ ω

2
), (6.9.28)

where k = 1, · · · , K, and X(k)*(ω) denotes the complex conjugate of X(k)(ω).
Step 4 Smoothing the K bispectrum and the cross bispectrum to obtain the bispectrum

and the cross bispectrum of N data

^P
3x(ω1

, ω
2
) =

1

K

K∑︁

k=1

P(k)
3x (ω1

, ω
2
), (6.9.29)

^Pxyx(ω1
, ω

2
) =

1

K

K∑︁

k=1

P(k)xyx(ω1
, ω

2
). (6.9.30)

Step 5 Compute the phases of the bispectrum and the cross bispectrum

^ϕ
3x(ω1

, ω
2
) = arctan

{︂
Im[ ^P

3x(ω1
, ω

2
)]

Re[ ^P
3x(ω1

, ω
2
)]

}︂
, (6.9.31)

^ϕxyx(ω1
, ω

2
) = arctan

{︃
Im[ ^Pxyx(ω1

, ω
2
)]

Re[ ^Pxyx(ω1
, ω

2
)]

}︃
. (6.9.32)

Step 6 Compute
^ϕ(ω

1
, ω

2
) =

^ϕxyx(ω1
, ω

2
) −

^ϕ
3x(ω1

, ω
2
) (6.9.33)

and construct
^I
2
(ω

1
, ω

2
) = ej ^ϕ(ω1

,ω
2
)

. (6.9.34)

Step 7 Compute

^T
2
(τ) =

M−1∑︁

ω
1
=0

M−1∑︁

ω
2
=0

^I
2
(ω

1
, ω

2
)e−jω1

τ
. (6.9.35)
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Step 8 Choose the τ when ^T
2
(τ) takes its maximum as the estimation ^D of the time delay.

Obviously, by replacing Eq. (6.9.34) in the above algorithm with Eq. (6.9.19), the algo-

rithm for estimating the time delay parameter by Sasaki et al. is obtained

[188]

.

3. The Cross Bicepstrum Method
The above methods are not direct estimations of the time delay parameters and

belong to the category of non-direct methods. A direct method proposed in Ref.[164],

which uses both the cross bicepstrum and the cross bispectrum, is presented below.

From Eqs. (6.9.19) and (6.9.20), Eq. (6.9.19) can be rewritten in Z-transform form as

P
3x(z1, z2)

Pxyx(z1, z2)
= z−D

1
, (6.9.36)

where z−D
1

= ejω1
D
, and

P
3x(ω1

, ω
2
) = P

3x(z1, z2)|z
1
=e−jω1 ,z

2
=e−jω2 , (6.9.37)

Pxyx(ω1
, ω

2
) = Pxyx(z1, z2)|z

1
=e−jω1 ,z

2
=e−jω2 . (6.9.38)

If we take the complex logarithm of Eq. (6.9.36), then we have

ln[Pxyx(z1, z2)] − ln[P3x(z1, z2)] = −Dln[z1], (6.9.39)

where ln[P
3x(z1, z2)] and ln[Pxyx(z1, z2)] are called the bicepstrumof x(n) and the cross

bicepstrum of x(n) and y(n), respectively. Taking the partial derivative of Eq. (6.9.39)
with respect to z

1
, we can obtain

1

Pxyx(z1, z2)
∂Pxyx(z1, z2)

∂z
1

−

1

P
3x(z1, z2)

∂P
3x(z1, z2)
∂z

1

=

D
z
1

, (6.9.40)

and the corresponding time-domain representation is

c
3x(m, n) * [m · cxyx(m, n)] − cxyx(m, n) * [m · m3x(m, n)] = Dcxyx(m, n) * c3x(m, n).

Taking the 2-D Fourier transform on both sides of the above equation with respect to

variables m and n yields

D(ω
1
, ω

2
) =

F
2
[m · cxyx(m, n)]
F
2
[cxyx(m, n)]

−

F
2
[m · c

3x(m, n)]
F
2
[c
3x(m, n)]

, (6.9.41)

where

F
2
[m · cxyx(m, n)] =

∞∫︁

−∞

m · cxyx(m, n)e−j(ω1
m+ω

2
n)dmdn,

F
2
[m · c

3x(m, n)] =
∞∫︁

−∞

m · c
3x(m, n)e−j(ω1

m+ω
2
n)dmdn.
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The peak of D(ω
1
, ω

2
) gives the estimation of the time delay parameter D. Note that in

order to reduce the estimation error and variance, a segmented smoothing method can

be adopted:
^D(k)

(ω
1
, ω

2
) for the K segments of data is first found, then

^D(ω
1
, ω

2
) =

1

K

K∑︁

k=1

^D(k)
(ω

1
, ω

2
) (6.9.42)

is calculated, and finally its peak value is used as the estimation of the time delay D.
4. The Fourth-order Statistics Method

The time delay estimation problem can be solved by optimization methods. Chan

et al. pointed out

[50]

that the generalized cross correlation method without weighting,

i.e., adding a rectangular window function, is equivalent to selecting the time delay D
to minimize the cost function

J
2
(D) = E{[x(n − D) − y(n)]2}. (6.9.43)

Tugnait generalizes the above cost function to fourth-order statistics and proposes that

using the cost function

[210]

J
4
(D) = E{[x(n − D) − y(n)]4} − 3(E{[x(n − D) − y(n)]2})2, (6.9.44)

the desired time delay D
0
is defined as the solution to the following optimization

problem:

(1) If the kurtosis of signal x(n)

γ
4s = E{s4(n)} − 3σ4s (6.9.45)

is greater than zero, then D
0
is the solution that minimizes J

4
(D);

(2) If the kurtosis γ
4s is smaller than zero, then D

0
is the solution that maximizes

J
4
(D).

In practice, the cost function is

^J
4
(D) = 1

N

N∑︁

n=1
[x(n − D) − y(n)]4 − 3

(︃
1

N

N∑︁

n=1
[x(n − D) − y(n)]2

)︃
2

, (6.9.46)

where kurtosis γ
4s can be estimated by

[210]

γ̂
4s =

1

2

(Ax + Ay), (6.9.47)

where

Ax =
1

N

N∑︁

n=1
x4(n) − 3

[︃
1

N

N∑︁

n=1
x2(n)

]︃
2

, (6.9.48)

Ay =
1

N

N∑︁

n=1
y4(n) − 3

[︃
1

N

N∑︁

n=1
y2(n)

]︃
2

. (6.9.49)
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There are still some better methods for time delay estimation, which will not be dis-

cussed here due to space. The reader can refer to references [166] and [69] for more

details.

6.10 Application of Bispectrum in Signal Classification

As the name suggests, signal classification is to classify the signals with unknown

attributes into several types; object identification is to classify and recognize the target

signals with unknown attributes. Automatic signal classification and object identifica-

tion may be subdivided into three phases: (1)data acquisition; (2) data representation;

(3)data classification. In the data representation phase, some salient features are ex-

tracted from the collected data. Such a representation is called a feature vector. In the

classification phase, the feature vector of an unknown signal is compared with those

of known signals stored in the database to determine the type.

Because the phase information is provided, higher-order statistics (especially

bispectra) were widely used in feature extraction. The direct use of bispectra results in

a complex 2-D matching, which limits the application of the direct bispectrum in real-

time object identification. To overcome this difficulty, it is necessary to transform the

bispectra into a 1-D function or other characteristic function that facilitates real-time

applications. This is the main content that will be presented in this section.

6.10.1 The Integrated Bispectra

Inmany important applications (such as radar target recognition), it is usually required

that the extracted signal features have time translation invariance, scale variant, and

phase preserving (that is, the phase information cannot be destroyed) for the following

reasons:

(1) Aircraft, especially fighter aircraft, are usually inmaneuvering flight. If the features

of the target aircraft change with the attitude of the aircraft, i.e., the features have

time translation variance, then this is undoubtedly very unfavorable to the radar

target recognition.

(2) Different aircraft have different geometries (especially length and wing width). If

the signal features contain the aircraft scale information, it will be helpful for radar

target recognition.

(3) The phase information reflects the radiation and scattering characteristics of the

aircraft to the electromagnetic waves, which are directly related to the skin and

critical parts of the aircraft (such as engines, radomes, air vents, etc.).

The bispectrum has exactly the above three properties because the cumulant andmulti-

spectra retain the amplitude and phase information of the signal and are independent
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of time. In addition, the cumulant andmultispectra can suppress any colored Gaussian

noise. However, since the bispectrum is a 2-D function, directly using all the bispectrum

of the signal as the signal features will lead to 2-D template matching, which is compu-

tationally intensive and cannot meet the requirements of real-time object identification.

Obviously, one way to overcome this difficulty is to transform the 2-D bispectrum into a

1-D function. There are three methods to achieve this transformation of the bispectrum.

The transformed bispectrum is referred to as the integrated bispectrum.

1. Radially Integrated Bispectra (RIB)
Chandran and Elgar

[51]

were the first to propose using the phase of radially inte-

grated bispectra (PRIB)

PRIB(a) = arctan

(︂
Ii(a)
Ir(a)

)︂
(6.10.1)

as the signal features, where

I(a) = Ii(a) + jIr(a) =
1/(1+a)∫︁

0

B(f
1
, af

1
)df

1
(6.10.2)

is the integration of the bispectra along radial lines passing through the origin in

bifrequency space. Here 0 < a ≤ 1 and j =
√
−1 is an imaginary number.

I(a) defined by Eq. (6.10.2) is called radially integrated bispectra, and PRIB(a) is
the phase of the integrated bispectra. In the PRIB method, the intraclass mean and

intraclass variance of PRIB(a) need to be computed for each class of know signal over

the entire training data set. Moreover, the interclass mean and interclass variance

between two classes of the signal also need to be computed. Then, the K sets of phases

of integrated bispectra PRIB(a) that maximize

Interclass separation =

the mean-square difference between PRIB(a) for two classes
the sum of the two intraclass standard deviations

(6.10.3)

are chosen as the characteristic parameters combinations P(1), · · · , P(K). These se-
lected integration paths a and the corresponding integrated bispectra phase PRIB(a)
are stored as the feature parameters of the signal and used as model features. In the

test phase, the values of PRIB(a) on these integration paths are computed for the test

samples and compared to the values of PRIB(a) of the various types of signals on the
model. Finally, the known signal with the greatest similarity is selected as the class of

the test sample.

Since only the phase of the radially integrated bispectrum is taken, the amplitude

information of the bispectrum is lost, i.e., PRIB(a) loses the scale variance. Obviously,
if the radially integrated bispectrum

RIB(a) = I(a) =
1/(1+a)∫︁

0

B(f
1
, af

1
)df

1
(6.10.4)
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is taken directly as the feature parameter, RIB(a) will be time-shift invariant, scale

invariant and phase preserving at the same time.

2. Axially Integrated Bispectra (AIB)
Another integrated bispectra method was developed by Tugnait

[211]

and the inte-

grated paths are parallel to the ω
1
or ω

2
axes.

Let B(ω
1
, ω

2
) be the bispectrum of the signal x(t), and denoted as

y(t) def= x2(t) − E{x2(t)} and ỹ(t) def= x2(t), (6.10.5)

then the axially integrated bispectra (AIB) is defined as

AIB(ω) = Pỹx(ω) =
1

2π

∞∫︁

−∞

B(ω, ω
2
)dω

2
=

1

2π

∞∫︁

−∞

B(ω
1
, ω)dω

1
, (6.10.6)

where

Pỹx(ω)
def

=

∞∫︁

−∞

E{ỹ(t)x(t + τ)}e−jωτdτ. (6.10.7)

The estimation variance of AIB(ω) is equal to the estimation variance of the power

spectrum thus much less than that of the bispectrum. In addition, AIB(ω) retains the
amplitude information of the bispectrum and thus has the scale variance. However, a

shortcoming of the AIB method is that the AIB loses most of the phase information of

the bispectrum. From Eqs. (6.10.6) and (6.10.7), it is easy to see that

AIB(ω) =
∞∫︁

−∞

c
3x(0, τ)e−jωτdτ, (6.10.8)

since E{ỹ(t)x(t)} = E{x(t)x(t)x(t + τ)} = c
3x(0, τ), that is AIB(ω) is only the Fourier

transform of the cumulant slice c
3x(0, τ), while the phase information of the bispectra

corresponding to the other slices c
3x(m, τ),m ̸= 0 is lost.

3. Circularly Integrated Bispectra (CIB)
The third integrated bispectra, called circularly integrated bispectra (CIB), was

proposed by Liao and Bao

[139]

. Unlike the RIB and AIB, the integral paths of CIB are a

set of concentric circles with the origin as the center, i.e.,

CIB(a) =
∫︁
Bp(a, θ)dθ, (6.10.9)

where Bp(a, θ) is the polar representation of B(ω1
, ω

2
), i.e., Bp(a, θ) = B(ω1

, ω
2
) with

ω
1
= acosθ and ω

2
= asinθ.

Since Bp(a, kπ/2) with integer k provides no phase information, and Bp(a, θ) with
k near 2π provides little phase information. These bispectra should not be integrated.

Therefore, the weighted circularly integrated bispectra (WCIB)

WCIB(a) =
∫︁
w(θ)Bp(a, θ)dθ (6.10.10)
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is used instead of the CIB, where w(θ) takes a very small value when θ ≈ kπ/2k is an
integer.

Summarizing the above discussion, it can be seen that all the above integrated

bispectra can be considered as some form of axially integrated bispectra:

(1) The AIB are the axially integrated bispectra of B(ω
1
, ω

2
) and the integrated paths

are parallel to the ω
1
or ω

2
axes.

(2) The RIB are the axially integrated bispectra of the polar representation Bp(a, θ)
and the integrated paths are parallel to the a axis.

(3) The PRIB are the phases of the RIB.

(4) The CIB is the axially integrated bispectra of the polar representation Bp(a, θ) and
the integrated paths are parallel to the θ axis.

The integrated bispectra transform the 2-D bispectra function into a 1-D function, which

facilitates the implementation of real-time target recognition. However, these methods

have the following common drawbacks.

(1) The computer implementation of the integrated bispectra is usually the result of

summing the integrals over a path. Obviously, the integrated bispectra of a certain

path is selected as the signal feature, which means that the sum of all bispectra in

the path plays an important role in target recognition. However, this does not mean

that every bispectrum on that path plays an important role in target recognition. In

other words, there may be some bispectra points, which have little effect on target

recognition and belong to ordinary bispectrum.

(2) If there is a cross term in the original observed signal (the range profile of high-

resolution radar is a typical example), the cross termwill be more serious when the

third-order cumulant is obtained through the cubic correlation function. Therefore,

the cross-terms are generally more serious in the obtained bispectra estimation.

Since the cross-terms are randomly distributed, they will be difficult to avoid in

the chosen integration path. Usually, the cross-terms are detrimental to the target

identification.

6.10.2 Selected Bispectra

In order to overcome the drawbacks of the integrated bispectra mentioned above, the

selected bispectra method is proposed in Ref.[246]. The so-called selected bispectra

are that only those bispectra with the most discriminant power are selected as signal

feature parameters. Obviously, this can avoid either trivial bispectra or the cross terms.

In order to select the powerful bispectrum set as the feature parameter set, a

discriminant measurem(ω) is required to judge the role of a bispectrum value in signal

type recognition. Fisher’s class separability is one such well-known measure.

Consider interclass separation of class i and class j using the bispectra. For sim-

plicity, denote ω = (ω
1
, ω

2
) and B(ω) = B(ω

1
, ω

2
). Suppose the training set consists
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of bispectrum samples {B(i)k (ω)}k=1,··· ,Ni and {B(j)k (ω)}k=1,··· ,Nj , where the subscript k
stands for bispectra computed from the kth set of observed data, and the superscript i
and j represent the type of the signal, and Ni and Nj are the set number of observed

data of the ith and jth class signals, respectively. Taking three classes of signals as

example, we need compute m(12)

(ω), m(23)

(ω) and m(13)

(ω), respectively.
The Fisher class separability measure between the ith and jth classes is difined by

m(i,j)
(ω) =

∑︀
l=i,j p

(l)
[︁
meank

(︁
Blk(ω)

)︁
− meanl

[︁
meank

(︁
Blk(ω)

)︁]︁]︁
2

∑︀
l=i,j p(l)vark

(︀
Blk(ω)

)︀ , i ̸= j,

(6.10.11)

where p(l) is the prior probability of the random variable B(l) = B(l)k (ω), meank(B(l)k (ω))
and vark(B(l)k (ω)) represent the mean and variance of all the sample bispectra at the

frequency ω = (ω
1
, ω

2
) of the lth class, andmeanl[meank(B(l)k (ω))] represents the total

centroid of all the sample bispectra at the frequency ω over all the classes. In general,

the prior probability p(l) can be equal for every class. Therefore, p(l) can be withdrawn
from Eq. (6.10.11).

The largerm(i,j)
(ω) is, the stronger the separability between class i and j. Therefore,

the frequency set {ω(h), h = 1, · · · , Q}with Q largest Fisher separability are chosen as

the feature frequencies. The center frequency is called the selected frequencies on the

bifrequency plane. The bispectra at these selected frequencies are called the selected

bispectra.

Given the kth observation of the lth class of signal x(l)k , · · · , x
(l)
k (N), where l =

1, · · · , c and k = 1, · · · , Nl. The off-line training algorithm
[246]

is shown in the following.

Algorithm 6.10.1. Off-Line Training Algorithm
Step 1 Calculate the Fourier transform X(l)k (ω) for all the observed data.
Step 2 Compute the bispectra

B(l)k (ω) = B
(l)
k (ω1

, ω
2
) = X(l)k (ω1

)X(l)k (ω2
)X(l)k (−ω1

− ω
2
).

Step 3 Use Eq. (6.10.11) to compute the Fisher class separability measure m(ij)
(ω) for all

class combinations (i, j), and requeue the M largest measures such that

m(ij)
(v

1
) ≥ m(ij)

(v
2
) ≥ · · ·m(ij)

(vM).

Step 4 Calculate the normalized Fisher class separability measure

m̄(ij)
(vp) =

√︃
m(ij)

(vp)∑︀M
k=1[m(ij)

(vk)]2
, p = 1, · · · ,M, (6.10.12)

determine the “effective” number of selected bispectra for inter-class (i, j), and
denote it by H(ij). The corresponding frequencies {ω(ij)

(p), p = 1, · · · , H(ij)} are
called the “effective” frequencies. The repeated frequency for different combinations
(i, j) remains only one.
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Step 5 Arrange the obtained effective frequencies ω(ij)
(p), p = 1, · · · , H(ij) into the se-

quence ω(q), q = 1, · · ·Q, where Q =

∑︀
i,j H

(ij), and arrange the corresponding
selected bispectra of the kth record in class l into sequence {B(l)k (q), q = 1, · · · , Q},
k = 1, · · · , Nl.The feature vector of the first type of signal is s1, · · · , sN

1

, the feature
vector of the second type of signal is sN

1
+1
, · · · , sN

1
+N

2

and the feature vector of the
cth type of signal is sN

1
+···+Nc−1+1, · · · , sN1

+···+Nc . All these feature vectors have the
strongest Fisher class separability.

Step 6 Use the selected bispectra to train the radial-basis function (RBF) neural network
as a classifier.

If the selected bispectra in Algorithm 6.10.1 are replaced by the PRIB, RIB, AIB, and

CIB, we can get the corresponding integrated bispectra training algorithm.

Consider an RBF network for three types signals classification. Let s
1
, · · · , sN

1

be

the feature vector of the first type of signal, sN
1
+1
, · · · , sN

1
+N

2

be the feature vector

of the second type of signal, and sN
1
+N

2
+1
, · · · , sN

1
+N

2
+N

3

be the feature vector of the

third type of signal. Let H = [hij](N
1
+N

2
+N

3
)(N

1
+N

2
+N

3
)
represent the hidden node output

matrix, where

hij = exp

(︃
−

||si − sj||2

σ2

)︃
, (6.10.13)

and the variance σ2 of the Gaussian kernel function is the total variance of all feature
vectors si, i = 1, · · · , N

1
+N

2
+N

3
. Hence, the weight matrix of the RBF neural network

is given by

W = (HHH)−1HHO, (6.10.14)

where O is the (N
1
+ N

2
+ N

3
) × 3 desired output matrix given by

O =

⎡
⎢⎣
1 · · · 1 0 · · · 0 0 · · · 0

0 · · · 0 1 · · · 1 0 · · · 0

0 · · · 0 0 · · · 0 1 · · · 1

⎤
⎥⎦ , (6.10.15)

and the number of elements 1 in rows 1, 2 and 3 are N
1
, N

2
and N

3
, respectively.

Once the RBF neural network as the classifier is trained, it is sufficient to store the

weight matrixW of the neural network.

Let x = [B(1), · · · , B(Q)]T be the bispectra computed from a set of observed data,

and they are the sample bispectra corresponding to the Q selected frequencies. Then,

input this vector to the trained RBF neural network, we can obtain the neural network’s

hidden node output vector

hi = exp

(︂
−

||x − si||2
σ2i

)︂
, (6.10.16)

where the variance σ2i in the Gaussian kernel function is the variance of the feature
vector si determined in the training phase. The output vector of the RBF neural network

is given by

o = WTh, (6.10.17)
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which gives the classification result of the observed signal.

The experimental results of the range profiles of the high-resolution radar in a

microwave anechoic chamber and the measured range profiles of the far-field high-

resolution radar show that the integrated bispectrum is an effective signal classification

tool

[246]

.

Summary

This chapter introduces the theory, methods, and applications of the higher-order

statistical analysis and processing of non-Gaussian signals. Firstly, the definitions of

moments, cumulants, and higher-order spectra are introduced and their mathemati-

cal properties are discussed respectively. Then, the theory and methods of nonmini-

mum phase system identification, harmonic retrieval, and adaptive filtering based on

higher-order cumulants are introduced. Finally, time-delay estimation and radar target

recognition are used as examples to introduce how to use the cumulant and high-order

spectra to solve practical engineering problems.

It can be said that the higher-order statistical analysis of signals is actually a

generalization and deepening of the familiar statistical analysis of random signals

based on correlation functions and power spectra. The purpose of the higher-order

statistical signal analysis is to analyze the higher-level statistical information of the

signal.

Exercises

6.1 Let x
1
, x

2
, · · · , xn be n independent Gaussian random variables with mean

E{xi} = μ and variance var(xi) = E{[xi − μ]2} = σ2. Let x̄ =

1

N
∑︀n

i=1 xi. Find the

probability density distribution of the sample mean x̄.
6.2 Let x be a Gaussian random variable with mean (vector) v and covariance matrix

R. Prove that the moment generating function of x is

Φ(x) = exp

(︂
jωTv − 1

2

ωTRω
)︂
.

6.3 If the k-th order moment of a finite energy signal x(n) is defined as

mkx(τ1, · · · , τk−1)
def
=

∞∑︁

n=−∞
x(n)x(n + τ

1
) · · · x(n + τk−1).

A sequence is given by x(n) = anu(n), where −1 < a < 1, and u(n) is a unit step function.
Find the moment m

1x ,m2x(τ),m3x(τ1, τ2) and m3x(τ, τ, τ) of x(n).
6.4 Let x have a translational exponential distribution f (x) = e−(x+1), x ≥ −1 (x
translates −1 in order to make the mean of x equal to zero). Find ckx = cum(x, · · · , x).
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6.5 Let the probability density function of x be f (x) = 0.5e−|x|, −∞ < x < ∞. Find

ckx , k ≥ 2.
6.6 Let x be the square of m independent identically distributed Gaussian random

variables with zero mean and unit variance, then the distribution of x is called χ2

distribution with m degrees of freedom, denoted as χ2m. Find the k-order cumulant ckx
of the random variable x.
6.7 Given two statistically independent Gaussian stochastic processes {x(t)}, {y(t)}
and

fx(x) =
1√︁
2πσ2

1

exp

(︂
−

(x − μ
1
)

2

2σ2
1

)︂
,

fy(y) =
1√︁
2πσ2

2

exp

(︂
−

(y − μ
2
)

2

2σ2
2

)︂
.

Let z(t) = x(t) + y(t). Prove that {z(t)} is a Gaussian stochastic process. This conclu-

sion shows that the sum of any two Gaussian stochastic processes is still a Gaussian

stochastic process.

6.8 Let {e(n)} be a non-Gaussian stationary process, and assume that {e(n)} passes
through a linear invariant stable system with impulse response {hi}, producing an
output sequence of {y(n)}.
(1) Express the cumulant of {y(n)} by the cumulant of {e(n)};
(2) Find the multispectrum of {y(n)} by the multispectrum of {e(n)} and the impulse

response coefficient {hi}.

6.9 z(n) = x(n)cos(ωcn) + y(n)sin(ωcn), where x(n) and y(n) are independent sta-
tionary processes, and E{x(n)} = E{y(n)} = 0, c

2x(τ) = E{x(n)x(n + τ)} = c
2y(τ),

and c
3x(τ1, τ2) = E{x(n)x(n + τ1)x(n + τ2)} = c3y(τ1, τ2). Is z(n) a stationary random

process?

6.10 Prove that the symmetry of the bispectra B(ω
1
, ω

2
) = B*(−ω

2
, −ω

1
) =

B(ω
2
, −ω

1
− ω

2
).

6.11 Given that the impulse response {hi} of a linear system satisfies the absolute

summability condition

∑︀
∞

i=−∞ |hi| < ∞, proved that the multispectrum existence and

continuity of the linear process generated by the independent identically distributed

e(n) excitation of the linear system.

6.12 Let H(ejω) satisfies H(ejω) ̸= 0, ∀ω, and
∑︀
∞

i=−∞ |ihi| < ∞. Assume that the k-th
order cumulant of the excited independent identically distributed processes are not

equal to zero, where k > 2. Prove that H(ejω) can be obtained from the k-th order

spectrum S(ω
1
, · · · , ωk−1) differing by at most an unknown complex constant scale

factor Aejωm, where A is a real number (positive or negative) and m is an integer.

6.13 Prove the multispectra formula

Skx(ω1
, · · · , ωk−1) = γkeH(ω1

) · · ·H(ωk−1)H(−ω1
− · · · − ωk−1)
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6.14 Assume H(ejω) ̸= 0, ∀ω, and
∑︀
∞

i=−∞ |i · hi| < ∞. Prove that the phase ϕ(ω) of
H(ejω) is continuously derivable with respect to ω.
6.15 Let {y(n)} be a non-Gaussian MA(q) process with the excitation process γ

3e ̸= 0.

Find the range of τ
1
, τ

2
of c

3y(τ1, τ2) and draw the support region of τ
1
, τ

2
in the

(τ
1
, τ

2
) plane.

6.16 Let x be a randomprocess with independently and identically distributed values

at each moment, and x̃ = x * hj be the convolution of x with the impulse response {hi}
of a linear time-invariant system. Prove that if E{|x̃|2} = E{|x|2}, then the following
relation holds:

(1) |K(x̃)| ≤ |K(x)|;
(2) |K(x̃)| ≤ |K(x)| if and only if s = [s

1
, s

2
, · · · ]

T

is a vector with only one nonzero

element (its magnitude is 1).

6.17 Consider MA(1) stochastic process x(n) = w(n) − w(n − 1), n = 0, ±1, ±2, · · · ,

where {w(n)} be an independent identically distributed stochastic processes, and

E{e(n)} = 0, E{w2

(n)} = 1, E{w3

(n)} = 1. Find the power spectrum and bispectrum

of {x(n)}.
6.18 Let P

1x(ω) =
∑︀
∞

τ=−∞ c4x(τ, 0, 0)e
−jωτ

be the power spectrum of the special

fourth-order cumulant c
4x(τ, 0, 0). Consider a complex harmonic process x(n) = αejω0

n

where ω
0
is a constant, α is a random variable, and E{α} = 0, E{α2} = Q, E{α3} = 0,

and E{α4} = μ. If the fourth-order cumulant of the complex harmonic process is

defined as

c
4x(τ1, τ2, τ3) = cum[x(n), x*(n + τ

1
, x(n + τ

2
), x*(n + τ

3
)].

Prove that P
1x(ω) = γ

Q Sx(ω), where γ = μ − 3Q
2

and Sx(ω) is the power spectrum of

{x(n)}.
6.19 The impulse response of the first-order FIR system is h(n) = δ(n) − αδ(n −
1). Let {x(n)} be the output sequence obtained by exciting the FIR system using the

independent identically distributed process {e(n)}, where E{e(n)} = 0, E{e2(n)} = σ2e
and γ

3e = E{e3(n)} ̸= 0. Prove that the following relationship between the special slice

S
3x(ω, 0) of the bispectrum and the power spectrum Sx(ω) of {x(n)}

S
3x(ω, 0) =

γ
3e
σ2e
H(0)Sx(ω)

where H(0) is the value of the frequency transfer function H(ω) of the FIR system at

zero frequency.

6.20 Consider a real harmonic signal x(n) =
∑︀p

k=1 Akcos(ωkn + ϕk), where ϕk is an
independent uniform distribution U[−π, π) and Ak > 0. Prove that the fourth-order

cumulant of {x(n)} is

c
4x(τ1, τ2, τ3) = −

1

8

p∑︁

k=1

α4k [cos(τ1 − τ2 − τ3) + cos(τ2 − τ3 − τ1) + cos(τ3 − τ1 − τ2)]
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6.21 Let s(n) =

∑︀
∞

i=−∞ f (i)e(n − i) be the signal, while x(n) = s(n) + w
1
(n) and

y(n) = s(n − D) + w
2
(n) are the observed processes, respectively. Define the criterion

function

J
1
(d) = |cum[x(n − d), x(n − d), y(n), y(n)]|√︀

|CUM
4
[x(n)]||CUM

4
[y(n)]|

where CUM
4
[x(n)] = cum[x(n), x(n), x(n), x(n)]. Prove that the following results hold.

(1) 0 ≤ J
1
(d) ≤ 1, ∀d;

(2) J
1
(d) = 1 if and only if d = D.

Notes: The criterion J
1
(d) gives an alternative fourth-order cumulant method for time

delay estimation.

6.22 Signal s(n) and observation process x(n), y(n) are the same as in the above

question, and the criterion function f is defined as

J
2
(d) = |CUM

4
[x(n − d) + y(n)]|

16

√︀
|CUM

4
[x(n)]||CUM

4
[y(n)]|

where CUM
4
[x(n)] = cum[x(n), x(n), x(n), x(n)]. Prove that the following results hold.

(1) 0 ≤ J
2
(d) ≤ 1, ∀d;

(2) J
2
(d) = 1 if and only if d = D.

Notes: The criterion J
2
(d) gives an alternative fourth-order cumulant method for time

delay estimation.

6.23 A non-minimum phase MA model is given by

x(n) = w(n) + 0.9w(n − 1) + 0.385w(n − 2) − 0.771w(n − 3)

where w(n) is an independent identically distributed stochastic process with zero

mean, variance of 1, and third-order cumulant γ
3w = 1. The observed data is y(n) =

x(n) + v(n), where v(n) is a Gaussian colored noise with zero mean and adjustable

variance. Adjust the variance of v(n) to obtain 0 dB and 10 dB signal-to-noise ratios,
respectively, and use the Giannakis-Mendel algorithm and cumulant algorithm to

estimate the MA parameters, respectively. For each algorithm, 50 computer simulation

experiments are run independently under different signal-to-noise ratios, and the

parameter estimation results of the two algorithms were tried to be counted.



7 Linear Time-Frequency Transform
In the previous chapters, the signal analysis is either in the time-domain or in the

frequency-domain, which constitutes the time-domain analysis or frequency-domain

analysismethodof the signal. Themainmathematical tool used is the Fourier transform,

which is only suitable for stationary signals whose statistics do not vary with time.

However, the real signals often have a statistic which is a function of time, and such

kind of signal is collectively referred to as a non-stationary signal. Many artificial and

natural signals are nonstationary, such as temperature and blood pressure.

Although the adaptive filtering algorithms such as Kalman filtering and RLS algo-

rithm are also applicable to non-stationary signals, they are limited to the tracking

of slow time-varying signals and can not get the statistics of the general time-varying

signals (such as power spectrum, etc). In other words, these signal processing methods

cannot meet the special requirements of non-stationary signal analysis. Therefore, it is

necessary to discuss the analysis and processing methods of non-stationary signals.

Since the statistical properties of nonstationary signals vary with time, the main inter-

est in non-stationary signals should naturally focus on their local statistical properties.

For non-stationary signals, the Fourier transform is no longer an effectivemathematical

analysis tool, because it is a global transformation of the signal, while the analysis of

the local performance of the signal must rely on the local transformation of the signal.

On the other hand, the local performance of the signal can only be accurately described

by using the two-dimensional joint representation of the time domain and frequency

domain. In this sense, the two-dimensional analysis of nonstationary signals is often

referred to as time-frequency signal analysis.

The time-frequency analysis of non-stationary signals can be divided into two cate-

gories: linear and non-linear transformations. In this chapter, the linear transformation

of the time-frequency signal is discussed, while the nonlinear transformation of the

time-frequency signal, i.e., the quadratic time-frequency distribution, is left to the next

chapter.

7.1 Local Transformation of Signals

The Fourier transform F and the inverse Fourier transform F−1 serve as a bridge to

establish a one-to-one correspondence between the signal s(t) and its spectrum S(f )

S(f ) = F[s(t)] =
∞∫︁

−∞

s(t)e−j2πftdt (Fourier transform), (7.1.1)

s(t) = F−1[S(f )] =
∞∫︁

−∞

S(f )ej2πftdf (inverse Fourier transform). (7.1.2)

https://doi.org/10.1515/9783110475562-007
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This Fourier transform pair can also be expressed in terms of angular frequency as

S(ω) =

∞∫︁

−∞

s(t)e−jωtdt (Fourier transform), (7.1.3)

s(t) =

1

2π

∞∫︁

−∞

S(ω)ejωtdω (inverse Fourier transform). (7.1.4)

Eqs. (7.1.1) and (7.1.2) are called the frequency-domain representation and the time-

domain representation of signals respectively, which constitute two ways to observe

a signal. The Fourier transform decomposes the signal into different frequency com-

ponents as a whole and lacks local information, i.e. it does not tell us when a certain

frequency component occurs. However, this information is very important for non-

stationary signal analysis.

When discussing a linear transformation, it is often convenient to write it in the

form of an inner product between the transformed function and the transformed kernel

function. Therefore, the inner product of the complex functions f (x) and g(x) is defined
as

⟨f (x), g(x)⟩ def

=

∞∫︁

−∞

f (x)g*(x)dx. (7.1.5)

Then the Fourier transform pair of Eqs. (7.1.1) and (7.1.2) can be concisely expressed in

inner product form as

S(f ) = ⟨s(t), ej2πft⟩ (Fourier transform), (7.1.6)

s(t) = ⟨S(f ), e−j2πft⟩ (inverse Fourier transform). (7.1.7)

Obviously, the kernel function of the Fourier transform is an exponential function.

It can be seen from Eqs. (7.1.6) and (7.1.7) that the time lengths of both the origi-

nal function s(t) and the kernel function ej2πft of the Fourier transform are taken as

(−∞,∞), while the original function S(f ) and the kernel function e−j2πft of the inverse
Fourier transform are also taken on the whole frequency axis. In this sense, the Fourier

transform is essentially a global transformation of the signal s(t), while the inverse
Fourier transform is a global transformation of the spectrum S(f ). Although the Fourier
transform and its inverse transform are powerful tools for signal analysis, as Gabor

pointed out in his classic paper “Theory of Communication” in 1946

[82]

:

So far, thebasis of communication theory consists of twomethods of signal analysis:

one describing the signal as a function of time and the other describing the signal as

a function of frequency (Fourier analysis). Both methods are idealized,· · · · · · . Yet, in

our everyday experience, especially our hearing, has always been a signal described in

terms of both time and frequency.
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In order to describe a signal using both time and frequency, it is natural to use a

joint time-frequency representation S(t, f ) for a non-stationary signal s(t). So, how to

establish the transform relationship between s(t) and S(t, f )? Obviously, we cannot
use the Fourier transform, which is a global transform, but should instead use the local

transform of the signal.

Since any signal transform can be written as an inner product between that sig-

nal and some selected kernel function, it is easy to associate that the signal local

transformation can be constructed using two basic forms:

Local transform of s(t) = ⟨s(t)taken locally, kernel function infinitely long⟩, (7.1.8)

or

Local transform of s(t) = ⟨s(t) taken in its entirety, kernel function localized⟩. (7.1.9)

The following are a few typical examples of local transform of signals.

(1) Short-time Fourier transform

STFT(t, f ) =
∞∫︁

−∞

[s(u)g*(u − t)]e−j2πfudu = ⟨s(u)g*(u − t), e−j2πfu⟩, (7.1.10)

where g(t) is a narrow window function.

(2) Wigner-Ville time-frequency distribution

P(t, f ) =

∞∫︁

−∞

z(t + τ
2

)z*(t − τ
2

)e−j2πfτdτ

=

⟨
z(t + τ

2

)z*(t − τ
2

), e−j2πfτ
⟩
. (7.1.11)

(3) Wavelet transform

WT(a, b) = 1√
a

∞∫︁

−∞

s(t)h*
(︂
t − b
a

)︂
dt =

∞∫︁

−∞

s(t)h*ab(t)dt = ⟨s(t), hab(t)⟩, (7.1.12)

where the kernel function of the transform

hab(t) =
1√
a
h
(︂
t − b
a

)︂
(7.1.13)

is called the wavelet basis function.

(4) Gabor transform

amn =

∞∫︁

−∞

s(t)γ*(t − mT)e−j2π(nF)tdt (7.1.14)

=

∞∫︁

−∞

s(t)γ*mn(t)dt = ⟨s(t), γmn(t)⟩, (7.1.15)
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where

γmn(t) = γ(t − mT)ej2π(nF)t (7.1.16)

is referred to as the Gabor basis function.

It is easy to see that the short-time Fourier transform and the Wigner-Ville distribution

belong to the first local transform shown in Eq. (7.1.8), while the wavelet transform and

the Gabor transform belong to the second signal local transform shown in Eq. (7.1.9).

In addition to the above four typical forms, there are various other local transform

forms, such as the Radon-Wigner transform, fractional Fourier transform, and so on.

The above four local transformations are conventionally called the time-frequency

representation of the signal. According to whether the superposition principle or lin-

ear principle is satisfied, the time-frequency representation is divided into two cate-

gories: linear time-frequency representation and nonlinear time-frequency represen-

tation. Specifically, if signal s(t) is a linear combination of several components, and

the time-frequency representation Ts(t, f ) of s(t) is the same linear combination of

the time-frequency representation of each signal component, this Ts(t, f ) is called
linear time-frequency representation; otherwise, it is called nonlinear time-frequency

representation. Take the signal of two components as an example, if

s(t) = c
1
s
1
(t) + c

2
s
2
(t) → Ts(t, f ) = c1Ts1 (t, f ) + c2Ts2 (t, f ), (7.1.17)

then Ts(t, f ) is linear time-frequency representation.

Short-time Fourier transform, wavelet transform and Gabor transform are linear

transforms or linear time-frequency representations of time-frequency signal analysis,

while the Wigner-Ville distribution is a nonlinear transform (quadratic transform) of

time-frequency signal analysis, which is a nonlinear time-frequency representation.

It can be said that the generalized or modified Fourier transform is used for the time-

frequency analysis of non-stationary signals.

7.2 Analytic Signal and Instantaneous Physical Quantity

In the analysis and processing of non-stationary signals, the actual signal is often real,

but it needs to be transformed into a complex signal for mathematical representation

and analysis. In particular, some important instantaneous physical quantities and

time-frequency representations are defined directly using the complex signal form of

the real signal to be analyzed. So why do we need such a transformation?

When signal s(t) is real, its spectrum

S(f ) =
∞∫︁

−∞

s(t)e−j2πftdt (7.2.1)
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has conjugate symmetry because

S*(f ) =
∞∫︁

−∞

s(t)ej2πftdt = S(−f ). (7.2.2)

From the perspective of effective information utilization, the negative frequency spec-

trum of the real signal is completely redundant, because it can be obtained from the

positive frequency spectrum. By removing the negative frequency spectrum part of

the real signal and keeping only the positive frequency spectrum part, the signal oc-

cupies half of the frequency band, which is beneficial for wireless communication

(called single-sideband communication), etc. The signal that retains only the positive

frequency spectrum part, its spectrum no longer has conjugate symmetry, and the

corresponding time-domain signal should be complex.

The most common way to represent complex variables is to use both real and imag-

inary components. The same is true for the complex signal, which must be represented

using both real and imaginary parts. Of course, the two-way signals will bring trouble

in the transmission, so the real signal is always used in the actual signal transmission,

while the complex signal is used in the processing of the received signal. In the follow-

ing, two commonly used complex signals are discussed: analytic signal and baseband

signal.

7.2.1 Analytic Signal

The simplest way to represent the complex signal z(t) is to use the given real signal s(t)
as its real part and additionally construct a “virtual signal” ŝ(t) as its imaginary part,

i.e.,

z(t) = s(t) + jŝ(t). (7.2.3)

The simplest way to construct the virtual signal ŝ(t) is to use the original real signal
s(t) to excite a filter and use its output as the virtual signal. Let the impulse response

of the filter be h(t), then

ŝ(t) = s(t) * h(t) =
∞∫︁

−∞

s(t − u)h(u)du, (7.2.4)

that is, the complex signal can be expressed as

z(t) = s(t) + js(t) * h(t), (7.2.5)

where * represents the convolution operation. Taking the Fourier transform on both

sides of the above equation, then the spectrum expression can be obtained

Z(f ) = S(f ) + jS(f )H(f ) = S(f )[1 + jH(f )]. (7.2.6)
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For the special case of narrow-band signal, the positive frequency part of the signal 
spectrum is often retained, while the negative frequency part is removed (to keep the 
total energy of the signal unchanged, the spectrum value of the positive frequency 
needs to be doubled). This means that the spectrum of complex signal z(t) should have 
the form

Z(f ) =

⎧
⎪⎨
⎪⎩

2S(f ), f > 0
S(f ), f = 0

0, f < 0
. (7.2.7)

Comparing Eqs. (7.2.6) and (7.2.7), it is easy to see that we only need to select the transfer

function of the filter to satisfy

H(f ) = −jsgn(f ) =

⎧
⎪⎨
⎪⎩

−j, f > 0
0, f = 0

j, f < 0
, (7.2.8)

where

sgn(f ) =

⎧
⎪⎨
⎪⎩

+1, f > 0
0, f = 0

−1, f < 0
(7.2.9)

is the sign function.

Taking the inverse Fourier transform on both sides of Eq. (7.2.8), the impulse re-

sponse of the filter is obtained

h(t) =
∞∫︁

−∞

H(f )ej2πftdf = 1

πt . (7.2.10)

Substituting Eq. (7.2.10) into Eq. (7.2.4) creates

ŝ(t) = H[s(t)] = s(t) * 1

πt =
1

π

∞∫︁

−∞

s(τ)
t − τ dτ, (7.2.11)

where t and τ are real variables, andH[s(t)] denotes the Hilbert transform of the real

signal s(t). Since the impulse response h(t) shown in Eq. (7.2.10) is to make the real

signal s(t) become its Hilbert transform, h(t) or H(f ) = H[h(t)] is called the Hilbert

transformer, also known as the Hilbert filter.

If the Hilbert transform ŝ(t) is known, the original real signal

s(t) = −1πt * ŝ(t) =
−1

π

∞∫︁

−∞

ŝ(τ)
t − τ dτ (7.2.12)

can also be recovered from it.

Eq. (7.2.8) shows that Hilbert filter H(f ) is an all-pass filter, since |H(f )| = 1, ∀f ̸= 0,

see Fig. 7.2.1(a), while the phase characteristics of the Hilbert filter H(f ) is shown in
Fig.7.2.1(b).
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O f

(a)

|H (f) |
1

O f

(b)

φ (f)
π
2

−π
2

Fig. 7.2.1: The transfer function of the Hilbert filter

Definition 7.2.1. (Analytic signal) The analytic signal corresponding to the real signal
s(t) is denoted as sA(t) and defined as sA(t) = A[s(t)], where A[s(t)] = s(t) + jH[s(t)] is
the operator that constitutes the analytic signal and ŝ(t) = H[s(t)] is the Hilbert transform
of s(t).

The Hilbert transform has the following properties.

Property 1 After the signal s(t) passes through the Hilbert transformer, the amplitude

of the signal spectrum does not change.

Property 2 s(t) = −H[ŝ(t)].
Property 3 s(t) = −H2

[ŝ(t)], whereH2

[ŝ(t)] = H{H[s(t)]}.

It is easy to verify that the Hilbert transform also has the following linearity, time-shift

invariance, and scale invariance:

x(t) = as
1
(t) + bs

2
(t) ⇒ x̂(t) = aŝ

1
(t) + bŝ

2
(t), (7.2.13)

x(t) = s(t − a) ⇒ x̂(t) = ŝ(t − a), (7.2.14)

x(t) = s(at), a > 0 ⇒ x̂(t) = ŝ(at), (7.2.15)

x(t) = s(−at) ⇒ x̂(t) = −ŝ(−at). (7.2.16)

Table 7.2.1 lists some typical signals and their Hilbert transforms

[178]

.

7.2.2 Baseband Signal

For information systems such as communication and radar, the commonly used signal

is the real narrowband signal, i.e.,

s(t) = a(t) cos[2πfc t + ϕ(t)] =
1

2

a(t)
(︁
ej[2πfc t+ϕ(t)] + e−j[2πfc t+ϕ(t)]

)︁
, (7.2.17)

where fc is the carrier frequency. The positive andnegative frequency components of the

narrowband signal are clearly separated, and the negative frequency component is easy
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Tab. 7.2.1: Hilbert transform pairs

Typical Signals Signal Representation Hilbert Transform

Constant signal a zero
Sinusoidal signal sin(ωt) − cos(ωt)
Cosine signal cos(ωt) sin(ωt)
Exponential signal ejωt −jsgn(ω)ejωt

Square wave pulse signal pa(t) =
{︃

1 |t| ≤ a
0, others

1
π ln

⃒⃒ t+a
t−a

⃒⃒
Bipolar pulse signal pa(t)sgn(t) − 1

π ln
⃒⃒⃒
1 − a2

t2

⃒⃒⃒
Double triangle signal tpa(t)sgn(t) − 1

π ln
⃒⃒⃒
1 − a2

t2

⃒⃒⃒
Triangle signal Tri(t) =

{︃
1 − |t/a| |t| ≤ a

0, |t| > a − 1
π

[︁
ln

⃒⃒ t−a
t+a

⃒⃒
+ t

a

⃒⃒⃒
t2

t2−a2

⃒⃒⃒]︁
Cauchy pulse signal a

a2+t2
t

a2+t2

Gaussian pulse signal e−πt2 1
π
∫︀ ∞
0 e−

1
4π ω

2
sin(ωt)dω

Symmetric exponential signal e−a|t| 1
π
∫︀ ∞
0

2a
a2−ω2 sin(ωt)dω

Sinc signal sin(at)
at

sin2(at/2)
(at/2) = 1−cos(at)

at
Asymmetric exponential signall sgn(t)e−a|t| − 1

π
∫︀ ∞
0

2a
a2−ω2 cos(ωt)dω

to be filtered out. If the positive frequency component is retained and the amplitude is

doubled, then the analytic signal can be obtained as

sA(t) = a(t)ejϕ(t)ej2πfc t , (7.2.18)

where ej2πfc t is a complex number, which is used as the carrier of information and

does not contain useful information. Multiplying both sides of the above equation with

e−j2πfc t, the signal frequency can be shifted down fc to zero carrier frequency, and the
new signal is obtained as

sB(t) = a(t)ejϕ(t). (7.2.19)

This kind of zero carrier frequency signal is called a baseband signal, or zero interme-

diate frequency signal.

The above discussion shows that the single side spectrum can be obtained af-

ter complex signal processing. Any frequency conversion processing only the carrier

frequency fc is shifted and the envelope information remains unchanged. Different

from the complex signal, the real signal cannot shift the carrier frequency very low,

otherwise, the mixture of the positive spectrum and negative spectrum will distort the

envelope.

Comparing Eq. (7.2.19) and Eq. (7.2.18), it can be seen that there exists a relationship

sA(t) = sB(t)ej2πf0 t (7.2.20)

between the analytic signal and the baseband signal. This shows that the baseband

signal sB(t) is the complex envelope of the analytic signal sA(t), which is a complex

signal like sA(t).
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It should be noted that the baseband signal sB(t) has a zero medium frequency,

it contains both positive and negative frequency components; however, since it is a

complex signal, its spectrum does not have conjugate symmetry properties. Therefore,

if the negative frequency component is removed from the baseband signal, it will result

in the loss of useful information. On the other hand, it is easy to see that the baseband

signal of Eq. (7.2.19) is only a frequency-shifted form of the analytic signal of Eq. (7.2.18).

Therefore, on many occasions (such as time-frequency analysis, etc.), it is appropriate

to use the baseband signal as the analytic signal. Especially in communication signal

processing, it is more convenient to use the baseband signal than the analytic signal,

because the baseband signal does not contain a carrier, and the analytic signal contains

a carrier, and the role of the carrier is only as a carrier of the information signal, does

not contain any useful information.

7.2.3 Instantaneous Frequency and Group Delay

The difference between the highest and lowest frequencies of the signal, B = f
max
− f

min
,

is called the bandwidth of the signal, and the duration of the signal, T, is called the
time width of the signal.

All actual signals have a time starting point and a time ending point. The time

width T has the same role in the time domain as the bandwidth B has in the frequency

domain. It is often desirable to know how the energy of the signal is distributed over

the time interval 0 < t < T. This is the so-called frequency characteristic of the signal.
In order to describe the time-varying frequency characteristics of the nonstationary

signal, instantaneous physical quantities often play an important role. Instantaneous

frequency and group delay are two physical quantities.

“Frequency” is one of the most commonly used technical terms in engineering,

physics, and even daily life. In the analysis and processing of stationary signals, fre-

quency refers to the parameters of the Fourier transform, i.e., the circular frequency f
or the angular frequency ω, which are independent of time. However, for nonstationary

signals, Fourier frequency is no longer an appropriate physical quantity. There are

two reasons: (1) nonstationary signals are no longer simply analyzed using the Fourier

transform; (2) the frequency of nonstationary signals changes with time. Therefore,

another concept of frequency is needed, which is instantaneous frequency.

From the physical point of view, signals can be divided into two categories: single-

component and multicomponent signals. Single component signals have only one

frequency at any time, which is called the instantaneous frequency of the signal. Multi-

component signals have several different instantaneous frequencies at certain mo-

ments. There were two different definitions of instantaneous frequency, which were

given by Carson and Fry

[47]

and Gabor

[82]

, respectively. Later, Ville unified these two

different definitions

[112]

, and defined the instantaneous frequency of a signal s(t) =



338 | 7 Linear Time-Frequency Transform

a(t) cos(ϕ(t)) with instantaneous phase ϕ(t) as

fi(t) =
1

2π
d
dt [argz(t)], (7.2.21)

where z(t) is the analytic signal of the real signal s(t), and arg[z(t)] is the phase of the
analytic signal z(t). That is, the instantaneous frequency is defined as the derivative
of the phase arg[z(t)] of the analytic signal z(t). Eq. (7.2.21) has a very clear physical
meaning: since the analytic signal z(t) represents a vector in the complex plane, the

instantaneous frequency represents the rotational speed of the argument of this vector

(in terms of the number of cycles per unit time, which should be multiplied by 2π if
measured in radians). Ville further noticed that since the instantaneous frequency

is time-varying, there should exist an instantaneous spectrum corresponding to the

instantaneous frequency, and the average frequency of this instantaneous spectrum is

the instantaneous frequency.

Let E represents the total energy of the signal z(t), i.e.,

E =

∞∫︁

−∞

|z(t)|2dt =
∞∫︁

−∞

|Z(f )|2df . (7.2.22)

Thus, the normalized functions |z(t)|2/E and |Z(f )|2/E can be considered as the en-

ergy density functions of the signal z(t) in the time-domain and frequency-domain,

respectively. At this point, the concept of the moment in probability theory can be used

to quantitatively describe the performance of the signal. For example, the first-order

moment can be used to define the average frequency of the signal spectrum

¯f = 1

E

∞∫︁

−∞

f |Z(f )|2df =
∫︀
∞

−∞

f |Z(f )|2df∫︀
∞

−∞

|Z(f )|2df
(7.2.23)

and the time average of the instantaneous frequency

¯fi =
1

E

∞∫︁

−∞

fi(t)|z(t)|2dt =
∫︀
∞

−∞

fi(t)|z(t)|2dt∫︀
∞

−∞

|z(t)|2dt
. (7.2.24)

Using Gabor’s average measure

[82]

, Ville

[112]

proved that the average frequency of the

signal spectrum is equal to the time average of the instantaneous frequency, i.e.,
¯f = ¯fi.

The instantaneous frequency of Eq. (7.2.21) can also be written in differential form

fi(t) = lim

△t→0

1

4π△t {arg[z(t +△t)] − arg[z(t −△t)]}. (7.2.25)

Let the discrete sampling frequency be fs, then using Eq. (7.2.25), the instantaneous
frequency of the discrete-time signal s(n) can be defined as

fi(n) =
fs
4π {arg[z(n + 1)] − arg[z(n − 1)]}. (7.2.26)
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The instantaneous physical quantity corresponding to the time-domain signal z(t) is
the instantaneous frequency, while the instantaneous physical quantity corresponding

to the frequency-domain signal Z(f ) is called the group delay τg(f ). The group delay
represents the (group) delay of each component of the frequency spectrum Z(f ) with
frequency f , defined as

τg(f ) = −
1

2π
d
df arg[Z(f )], (7.2.27)

where arg[Z(f )] is the phase spectrum of the signal z(t). If Z(f ) = A(f )ejθ(f ), then
arg[Z(f )] = θ(f ).

Similar to Eq. (7.2.25), the group delay can also be defined as

τg(f ) = lim

△f→0

1

4π△f {arg[Z(f +△f )] − arg[Z(f −△f )]}. (7.2.28)

And the group delay of the discrete-time signal z(n) is defined as

τg(k) =
1

4π {arg[Z(k + 1)] − arg[Z(k − 1)]}. (7.2.29)

Like the instantaneous frequency, the group delay has its physical explanation. If the

signal has a linear phase and its initial phase is zero, then the signal is delayed without

distortion, and its delay time is the negative slope of the linear phase characteristic,i.e.,

Eq. (7.2.29). Although the general signal does not have linear phase characteristics, the

phase characteristics within a very narrow frequency band around a certain frequency

can still be approximated as linear, so it is reasonable to use the slope of its phase

characteristic as the group delay of these components.

7.2.4 Exclusion Principle

Since the non-stationary signal analysis uses a joint time-frequency representation, is

it possible to obtain the desired time resolution and frequency resolution at the same

time? The answer to this question is no.

Let s(t) be a zero-mean signal with finite energy, and h(t) be a window function.

The average time
¯ts and average frequency ω̄s of the signal s(t) are defined as

¯ts def

=

∞∫︁

−∞

t|s(t)|2dt, (7.2.30)

ω̄s def

=

∞∫︁

−∞

ω|S(ω)|2dω, (7.2.31)

where S(ω) is the Fourier transform of s(t).
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Similarly, the average time and average frequency of the window function h(t) are
defined as

¯th
def

=

∞∫︁

−∞

t|h(t)|2dt, (7.2.32)

ω̄h
def

=

∞∫︁

−∞

ω|H(ω)|2dω. (7.2.33)

The time width Ts and bandwidth Bs of signal s(t) are defined as[82]

T2s
def

=

∞∫︁

−∞

(t − ¯ts)2|s(t)|2dt, (7.2.34)

B2s
def

=

∞∫︁

−∞

(ω − ω̄s)2|S(ω)|2dω. (7.2.35)

Time width and bandwidth can also be defined as

T2s
def

=

∫︀
∞

−∞

t2|s(t)|2dt∫︀
∞

−∞

|s(t)|2dt
, (7.2.36)

B2s
def

=

∫︀
∞

−∞

ω2|S(ω)|2dω∫︀
∞

−∞

|S(ω)|2dω
, (7.2.37)

which are called the effective time width and effective bandwidth of signal s(t), respec-
tively.

A signal whose energy is approximately distributed within the time width

[−T/2, T/2] and bandwidth [−B/2, B/2] is called a finite energy signal.
Consider the relationship between the variation of time width and bandwidth.

Let the energy of the signal s(t) be entirely within the time width [−T/2, T/2], that
is, the signal has a time width T in the strict sense. Let us see what happens when

we stretch s(t) along the time axis without changing the amplitude of the signal. Let

sk(t) = s(kt) represent the stretched signal, where k is the stretching ratio (k < 1

corresponds to the compression of the signal in the time region and k > 1 corresponds
to the stretching of the signal in time region). From the definition of the time width

Ts, the time width of the stretched signal is k times that of the original signal, i.e.,

Tsk = kTs. In addition, calculating the Fourier transform of the stretched signal, we

can get Sk(ω) = 1

k S(
ω
k ), k > 0. From the definition of the bandwidth Bs, the bandwidth

of the stretched signal is

1

k times that of the original signal, i.e., Bsk = 1

k Bs. Obviously,
the product of the time width and bandwidth of the stretched signal is the same as

that of the original signal, i.e., TskBsk = TsBs. This conclusion shows that it is possible
to have the relation TsBs = constant for any signal. This basic relationship between

the time width and bandwidth of a signal can be described in mathematical terms as

follows.
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Exclusion Principle: The product of time width and bandwidth of any signal s(t)
with finite energy or window function h(t) satisfies the inequality

Time width -bandwith product = TsBs = △ts△ωs ≥
1

2

or ThBh = △th△ωh ≥
1

2

.

(7.2.38)

The exclusion principle is also known as the uncertainty principle or Heisenberg

inequality.

The△t and△ω in Eq. (7.2.38) are called the time resolution and frequency resolu-

tion, respectively. As the name implies, the time resolution and frequency resolution

are the ability of the signal to differentiate between two time points and two frequency

points, respectively. The exclusion principle suggests that time width and bandwidth

(i.e., time resolution and frequency resolution) are contradictory quantities, and it is

impossible to obtain arbitrarily high time resolution and frequency resolution at the

same time. Two extreme examples are: the time width of the impulsive signal s(t) = δ(t)
is zero and has the highest time resolution; while its bandwidth is infinite (its spectrum

is equal to 1) and has no frequency resolution; the bandwidth of the unit DC signal

s(t) = 1 is zero (its spectrum is an impulsive function) and has the highest frequency

resolution, but its time width is infinite and its time resolution is zero. Only when the

signal is a Gaussian function e−πt
2

, inequality (7.2.38) takes the equal sign.

The window function plays an important role in the non-stationary signal process-

ing: whether the window function has a high time resolution and frequency resolution

is related to the non-stationary characteristics of the signal to be analyzed. According

to the above analysis, if the impulse function is used as the window function, it is

equivalent to only taking the value of the non-stationary signal at the time t for analysis.
The time resolution is the highest, but the frequency resolution is completely lost. On

the contrary, if the unit DC signal is taken as the window function, that is, the infinitely

long signal is analyzed like the Fourier transform, the frequency resolution is the high-

est, but there is no time resolution at all. This indicates that for non-stationary signals,

the window function of the local transform must be chosen with an appropriate com-

promise between the time resolution and frequency resolution of the signal. It is worth

emphasizing that for the local processing of a non-stationary signal with a window, the

signal within the window function must be stationary, that is, the window width must

be compatible with the local stationarity of the non-stationary signal. Therefore, the

frequency resolution obtained by non-stationary signal analysis is related to the local

stationary length of the signal. It is impossible to obtain high frequency resolution

directly for a short non-stationary signal.

The above relationship between the window function and the local stationary

length tells us that the time-frequency analysis is suitable for non-stationary signals

with relatively large local stationary length; if the local stationary length is small,

the time-frequency analysis is less effective. This point is important to note when

performing time-frequency signal analysis. The relationship between the window
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width selection and the resolution of time-frequency analysis will be further discussed

later.

7.3 Short-Time Fourier Transform

Although the instantaneous frequency and group delay are two useful physical quan-

tities to describe the local characteristics of non-stationary signals, they are not ap-

plicable to multi-component signals. For example, if z(t) = A(t)ejϕ(t) =
∑︀p

i=1 zi(t) is a
p-component signal, we cannot obtain the instantaneous frequencies of each compo-

nent signals from the derivative of the phase ϕ(t). In order to obtain the instantaneous
frequencies of each component, an intuitive way is to introduce the concept of “local

spectrum”: a very narrowwindow function is used to extract the signal and calculate its

Fourier transform. Since this spectrum is the spectrum of the signal in a narrow interval

of the window function, excluding the spectrum of the signal outside the window

function, it is appropriate to call it the local spectrum of the signal. Fourier transform

using a narrow window function is customarily called the short-time Fourier transform,

which is a form of the windowed Fourier transform. Windowed Fourier transform was

first proposed by Gabor in 1946

[82]

.

7.3.1 The Continuous Short-Time Fourier Transform

Let g(t) be a window function with a short time width that slides along the time axis.

Therefore, the continuous short-time Fourier transform (STFT) of signal z(t) is defined
as

STFTz(t, f ) =
∞∫︁

−∞

[z(u)g*(u − t)]e−j2πfudu, (7.3.1)

where the superscript * denotes the complex conjugate. Obviously, if we take the infinite

(global) rectangular window function g(t) = 1, ∀t, the short-time Fourier transform

will degenerate into the traditional Fourier transform.

Since the signal z(u) multiplied by a very short window function g(u − t) is equiva-
lent to taking a slice of the signal around the analysis time point t, STFT(t, f ) can be
understood as the Fourier transform of the signal z(u) around the “analysis time” t
(called the “local spectrum”).

The continuous Fourier transform has the following basic properties.

Property 1 STFT is a linear time-frequency representation.

Property 2 STFT has frequency-shift invariance

z̃(t) = z(t)ej2πf0 t → STFTz̃(t, f ) = STFTz(t, f − f0), (7.3.2)
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and does not have time-shift invariance

z̃(t) = z(t − t
0
) → STFTz̃(t, f ) = STFTz(t − t0, f )e−j2πt0 f , (7.3.3)

i.e., does not satisfy STFTz̃(t, f ) = STFTz(t − t0, f ).

In signal processing, the traditional Fourier transform is called Fourier analysis, while

the inverse Fourier transform is called Fourier synthesis, because the inverse Fourier

transform uses the Fourier spectrum to reconstruct or synthesize the original signal.

Similarly, STFT is also divided into analysis and synthesis. Obviously, in order to make

STFT as a valuable tool for non-stationary signals, the signal z(t) should be completely

reconstructed by STFTz(t, f ). The reconstruction equation is

p(u) =
∞∫︁

−∞

∞∫︁

−∞

STFTz(t, f )γ(u − t)ej2πfudtdf . (7.3.4)

Substituting Eq. (7.3.1) into Eq. (7.3.4), it is easy to prove that

p(u) =

∞∫︁

−∞

∞∫︁

−∞

⎡
⎣
∞∫︁

−∞

e−j2πf (t
′

−u)df

⎤
⎦ z(t′)g*(t′ − t)γ(u − t)dt′dt

=

∞∫︁

−∞

∞∫︁

−∞

z(t′)g*(t′ − t)γ(u − t)δ(t′ − u)dt′dt.

The well-known integral result

∫︀
∞

−∞

e−j2πf (t
′

−u)df = δ(t′ − u) is used here. Using the

properties of the δ function, we immediately have

p(u) = z(u)
∞∫︁

−∞

g*(u − t)γ(u − t)dt = z(u)
∞∫︁

−∞

g*(t)γ(t)dt. (7.3.5)

When the reconstructed result p(u) is always equal to the original signal z(t), such
a reconstruction is called “complete reconstruction”. It can be seen from the above

equation that in order to achieve complete reconstruction that is, in order to make

p(u) = z(u), the window function g(t) and γ(t) must satisfy the condition

∞∫︁

−∞

g*(t)γ(t)dt = 1, (7.3.6)

which is known as the STFT complete reconstruction condition.

The complete reconstruction condition is a very wide condition, and for a given

analytic window function g(t), the synthesis window function γ(t) satisfying condition
Eq. (7.3.6) can have infinite choices. Then, how to choose an appropriate synthesis

window function γ(t)? Here are three simplest options: (1) γ(t) = g(t); (2) γ(t) = δ(t); (3)
γ(t) = 1.
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The most interested is the first choice γ(t) = g(t), and the corresponding complete

reconstruction condition Eq. (7.3.6) becomes

∞∫︁

−∞

|g(t)|2dt = 1. (7.3.7)

This formula is called energy normalization. In this case, Eq. (7.3.4) can be written as

z(t) =
∞∫︁

−∞

∞∫︁

−∞

STFTz(t′, f ′)g(t − t′)ej2πf
′ t′dt′df ′. (7.3.8)

The above formula can be regarded as the generalized inverse short-time Fourier trans-

form. Different from Fourier transform and inverse Fourier transform which are both

1-D transforms, the short-time Fourier transform Eq. (7.3.1) is a 1-D transform, and the

generalized inverse short-time Fourier transform Eq. (7.3.8) is 2-D transform.

In summary, STFT can be regarded as the time-frequency analysis of non-stationary

signals, while generalized inverse STFT is the time-frequency synthesis of non-

stationary signals. This is why g(t) and γ(t) are called the analytic window function

and synthesis window function, respectively.

The function STFTz(t, f ) can be regarded as the inner product of the signal z(t) and
the time shift-frequency modulation form gt,f (u) of the window function g(u), i.e.,

STFTz(t, f ) = ⟨z, gt,f ⟩, (7.3.9)

where ⟨z, gt,f ⟩ =
∫︀
∞

−∞

z(u)g*t,f (u)du and

gt,f (u) = g(u − t)ej2πfu . (7.3.10)

In principle, the analytic window function g(t) can be chosen arbitrarily in the square
integrable space, i.e. L2(R) space. However, in practical application, it is often desirable
to choose a window function g(t) that is a “narrow” time function, so that the integra-

tion of Eq. (7.3.1) is affected only by the value of z(t) and its nearby values. Naturally, it
is also desirable that the Fourier transform G(f ) of g(t) is also a “narrow” function. In
order to see the necessity of this requirement, it is useful to recall the following convolu-

tion theorem: the product z(t)g(t) of two functions in the time-domain is equivalent to

their convolution Z(f ) * G(f ) in the frequency-domain. If the Fourier transform G(f ) of
g(t) is wide, the Fourier transform Z(f ) of the signal will be affected by G(f ) over a wide
range of frequency after convolution. This is exactly what we want to be avoided. Un-

fortunately, according to the previous exclusion principle, the effective time-width τ
eff

and bandwidth ω
eff
of the window function g(t) cannot be arbitrarily small, because

their product obeys the Heisenberg inequality τ
eff
ω
eff
≥ 0.5 and τ

eff
ω
eff

= 0.5 when

the window function takes a Gaussian function, i.e., g(t) = e−πt
2

. That is, the Gaussian

window function has the best (i.e., the smallest) time-width-bandwidth product. In

order to make the window function also has unit energy, it is often taken as

g0(t) = 2

1/4e−πt
2

. (7.3.11)
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The resulting basis function g0t,f (t
′

) = g0(t′ − t)ej2πft
′

is called the “standard coherent

state” in physics, while in engineering, it was introduced by Gabor when he proposed

the windowed Fourier transform. Therefore, g0(t) is often referred to as Gabor atom
and g0t,f (t

′

) is called a Gabor basis function. The Gabor basis function g0t,f is highly
concentrated in the time-frequency plane around the time-frequency point (t, f ).

The practical purpose of the proposed STFT is mainly to understand the local

frequency characteristics of the signal. The “local spectrum” has been mentioned re-

peatedly above. What is the connection between the “local spectrum” and the “global

spectrum” based on the (global) Fourier transform? From Eq. (7.3.1), it can be seen that

STFTz(t, f ) at certain time t, that is the Fourier transform of z(t′)g*(t′ − t), is not only
determined by the signal in the window function near time t, but also related to the
window function g(t) itself. Taking a single frequency signal with frequency f

0
as an

example, the global spectrum based on the Fourier transform is an impulsive function

δ(f
0
) located at f

0
. If such a non-time-varying signal is described by time-frequency

representation (time as the horizontal axis, frequency as the vertical axis), the “local

spectrum” of the signal in the time-frequency plane should be a horizontal impulse

line function at f
0
, i.e., the slice at any time t is the same impulse spectrum. However,

this is not the case in practice, because the “local spectrum” obtained according to

Eq. (7.3.1) is equal to G(f − f
0
)ej2πft, where G(f ) represents the spectrum of the analytic

window function g(t). Therefore, the local characteristics of the single-frequency sig-
nal are expressed in the phase factor ej2πft, and the local spectrum is broadened by

the spectrum G(f ) of the analytic window function. The narrower the window is, the

wider the spectrum G(f ) is, and the wider the local spectrum of the single-frequency

signal is. This indicates that the introduction of the analytical spectrum will reduce

the resolution of the local spectrum. In order to maintain the resolution of the local

spectrum, the analytic window should be wide, but when the window width exceeds

the local stationary length of the non-stationary signal, the signal within the window

function will be non-stationary, which in turn will cause the adjacent spectra to be

mixed and thus not represent the local spectrum correctly. In other words, the window

width should be appropriate to the local stationary length of the signal.

7.3.2 The Discrete Short-Time Fourier Transform

The continuous short-time Fourier transform is discussed above. For any practical appli-

cation, STFTz(t, f ) needs to be discretized, i.e., STFTz(t, f ) is sampled at the equidistant

time-frequency grid point (mT, nF), where T > 0 and F > 0 are the sampling periods of

the time and frequency variables, respectively, while m and n are integers. For simplic-

ity, the symbol STFT(m, n) = STFT(mT, nF) is introduced. Thus, for a discrete signal
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z(k), it is easy to obtain the discretized form

STFT(m, n) =
∞∑︁

k=−∞

z(k)g*(kT − mT)e−j2π(nF)k (7.3.12)

of the short-time Fourier transform formula Eq. (7.3.1) and the discretized form

z(k) =
∞∑︁

m=−∞

∞∑︁

n=−∞
STFT(m, n)γ(kT − mT)e−j2π(nF)k (7.3.13)

of the generalized inverse short-time Fourier transform formula Eq. (7.3.4).

Eqs. (7.3.2) and (7.3.13) are called the discrete short-time Fourier transform and the

inverse discrete short-time Fourier transform, respectively.

It should be noted that corresponding to the complete reconstruction constraint

Eq. (7.3.6), the time sampling period T, the frequency sampling period F, the discrete an-
alytic window g(k) and the discrete synthesis window γ(k) should satisfy the “complete

reconstruction condition” in the discrete case

1

F

∞∑︁

m=−∞
g
(︂
kT + n 1F − mT

)︂
γ*(kT − mT) = δ(n), ∀k. (7.3.14)

Obviously, the above condition is more rigorous than the complete reconstruction

condition

∫︀
∞

−∞

g(t)γ*(t)dt = 1 in the continuous case. In particular, if γ(k) = g(k) is
chosen, the discrete short-time Fourier transform is

z(k) =
∞∑︁

m=−∞

∞∑︁

n=−∞
STFT(m, n)g(kT − mT)ej2π(nF)k . (7.3.15)

STFT has an important application in speech signal processing because the typical

example of signal frequency components changing rapidly with time and being com-

plex is human speech. In order to analyze speech signals, Koenig et al.

[181]

and Potter et

al.

[177]

proposed the (acoustic) spectrogram methods as early as half a century ago. The

spectrogram is defined as the square of themodulus of the short-time Fourier transform

of the signal, i.e.,

SPEC(t, ω) = |STFT(t, ω)|2. (7.3.16)

The mean time of the signal z(t), the window function g(t), and the spectrogram are

defined as

¯tz def

=

∞∫︁

−∞

t|z(t)|2dt, (7.3.17)

¯tg def

=

∞∫︁

−∞

t|g(t)|2dt, (7.3.18)

¯t
SPEC

def

=

∞∫︁

−∞

∞∫︁

−∞

t|SPEC(t, ω)|2dtdω. (7.3.19)
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The average frequency is defined as

ω̄z def

=

∞∫︁

−∞

ω|Z(ω)|2dω, (7.3.20)

ω̄g def

=

∞∫︁

−∞

ω|G(ω)|2dω, (7.3.21)

ω̄
SPEC

def

=

∞∫︁

−∞

∞∫︁

−∞

ω|SPEC(t, ω)|2dtdω. (7.3.22)

Using these physical quantities, the time-width of the signal, window function, and

spectrogram can be defined as

T2z
def

=

∞∫︁

−∞

(t − ¯tz)2|z(t)|2dt, (7.3.23)

T2g
def

=

∞∫︁

−∞

(t − ¯tg)2|g(t)|2dt, (7.3.24)

T2
SPEC

def

=

∞∫︁

−∞

∞∫︁

−∞

(t − ¯t
SPEC

)

2|SPEC(t, ω)|2dtdω. (7.3.25)

and the bandwidth are

B2z
def

=

∞∫︁

−∞

(ω − ω̄z)2|Z(ω)|2dω, (7.3.26)

B2g
def

=

∞∫︁

−∞

(ω − ω̄g)2|G(ω)|2dω, (7.3.27)

B2
SPEC

def

=

∞∫︁

−∞

∞∫︁

−∞

(ω − ω̄
SPEC

)

2|SPEC(t, ω)|2dtdω. (7.3.28)

By direct calculation, it is easy to verify that the following relationships exist between

the spectrogram SPEC and the signal z(t), the window function g(t)

¯t
SPEC

=
¯tz − ¯tg , (7.3.29)

ω̄
SPEC

= ω̄z + ω̄g , (7.3.30)

T2
SPEC

= T2z + T2g , (7.3.31)

B2
SPEC

= B2z + B2g . (7.3.32)

The last two equations are the relationship between the time-width and bandwidth of

the spectrogram, the signal, and the window function.
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STFT can be considered as a windowed Fourier transformwith a very short window

function. When the window function takes other forms, other types of window Fourier

transforms can be obtained, such as the Gabor transform, which will be described in

the next section.

7.4 Gabor Transform

Using series as the expansion form of signal or function is an important signal pro-

cessing method. According to whether the basis function is orthogonal or not, series

expansion can be divided into orthogonal series expansion and non-orthogonal series

expansion. Fourier series in Fourier analysis is a typical orthogonal series expansion.

This section introduces a non-orthogonal expansion of the signal — Gabor expansion,

which was proposed by Gabor in 1949

[82]

. The integral expression of the Gabor expan-

sion coefficient is called Gabor transform. Now, Gabor expansion and Gabor transform

are recognized as one of the best methods of signal representation, especially image

representation, in communication and signal processing.

7.4.1 The Continuous Gabor Transform

Let ϕ(t) be the real continuous time signal of interest and sample the signal at time

interval T. The time and frequency joint function Φ of signal ϕ(t) is introduced, which
is defined as

Φ(t, f ) =
∞∑︁

m=−∞
ϕ(t + mT)e−j2πfmT (7.4.1)

and is called the complex spectrogram of signal ϕ(t). Assume that g(t) is a window
function added to signal ϕ(t) and

G(t, f ) =
∞∑︁

m=−∞
g(t + mT)e−j2πfmT (7.4.2)

is defined as the complex spectrogram of the window function g(t).
How to use the complex spectrogram G(t, f ) of the window function to represent

the complex spectrogram Φ(t, f ) of the signal? A simple way is to take

Φ(t, f ) = A(t, f )G(t, f ), (7.4.3)

where A(t, f ) is defined as

A(t, f ) =
∞∑︁

m=−∞

∞∑︁

n=−∞
amne−j2π(mTf−nFt). (7.4.4)

Here F represents the frequency sampling interval of signal ϕ(t).
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Substituting Eqs. (7.4.1), (7.4.2) and (7.4.4) into Eq. (7.4.3), then comparing the coef-

ficients of the same power on the left and right sides to obtain

ϕ(t) =
∞∑︁

m=−∞

∞∑︁

n=−∞
amngmn(t), (7.4.5)

where

gmn(t) = g(t − mT)ej2πnFt . (7.4.6)

Eq. (7.4.5) is the expansion form of signal ϕ(t) proposed by Gabor half a century ago
[82]

,

which is now customarily called the continuous Gabor expansion of the (continuous)

signal ϕ(t). The coefficient amn is called the Gabor expansion coefficient, and gmn(t) is
called the (m, n)-th order Gabor basis function or Gabor atom.

Since the Gabor basis function gmn(t) is constructed only by the translation and
modulation of the generating function g(t), if g(t) is a non-orthogonal function, the
Gabor basis function gmn(t) is also non-orthogonal. Therefore, the Gabor expansion is a
non-orthogonal series expansion. In mathematics, a non-orthogonal series expansion

of function is called atomic expansion; in physics, a non-orthogonal expansion is a

series expansion concerning a discrete set of coherent states. This is why Gabor basis

functions are also called Gabor atoms.

The sampling that satisfies TF = 1 is called critical sampling, and the correspond-

ing Gabor expansion is called critical sampling Gabor expansion. In addition, there

are two other kinds of Gabor expansions:

(1) undersampling Gabor expansion: TF > 1;

(2) oversampling Gabor expansion: TF < 1.

It has been shown that undersamplingGabor expansion leads tonumerical instability

[71]

,

so it is not a practical method and will not be discussed in this book.

The Gabor expansion and Gabor transform in the case of critical sampling and

oversampling are discussed below.

1. The Critical Sampling Gabor Expansion
Although the critical sampling Gabor expansion was introduced as early as 1946,

there is no good method to determine the coefficients of Gabor expansion, so it has

been sleeping for more than 30 years. It was only in 1981 that Bastiaans proposed a

simple and effective method

[21]

, which made Gabor expansion develop rapidly.

This method of Bastiaans is called Bastiaan analytic method and its basic idea

is to introduce an auxiliary function Γ(t, f ) under the assumption that G(t, f ) can be
divided, which is 1/T times the conjugate reciprocal of G(t, f ), i.e.,

Γ(t, f )G*(t, f ) = 1

T = F, (7.4.7)

where

Γ(t, f ) =
∞∑︁

m=−∞
γ(t + mT)e−j2πfmT . (7.4.8)
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Substituting Eq. (7.4.3) into Eq. (7.4.7) yields

1

T A(t, f ) = Φ(t, f )Γ(t, f ). (7.4.9)

Then substitute Eqs. (7.4.3), (7.4.4) and (7.4.8) into Eq. (7.4.9) and compare the coefficients

of the same power on the left and right sides of this equation, which gives an important

formula

amn =
∞∫︁

−∞

ϕ(t)γ*(t − mT)e−j2πnFtdt =
∞∫︁

−∞

ϕ(t)γ*mn(t)dt, (7.4.10)

where

γmn(t) = γ(t − mT)e−j2πnFt . (7.4.11)

Eq. (7.4.10) is called the Gabor transform of the signal ϕ(t). It shows that when the

signal ϕ(t) and the auxiliary function γ(t) are given, the Gabor expansion coefficient

amn can be obtained using the Gabor transform.

To sumup, the two important issues that need to be addressedwhenusingEq. (7.4.5)

for the Gabor expansion of the signal ϕ(t) are
(1) Choosing the window function g(t) in order to construct the Gabor basis function

gmn(t) using Eq. (7.4.6);
(2) Selecting the auxiliary function γ(t) and calculating theGabor transformEq. (7.4.10)

to obtain the Gabor expansion coefficients amn.

Obviously, the key to Gabor expansion is the choice of window function g(t) and
auxiliary function γ(t).

In the following, the relationship between these two functions is discussed. First,

the relationship between γmn(t) and gmn(t) is investigated. Therefore, substituting
Eq. (7.4.10) into Eq. (7.4.5) to obtain

ϕ(t) =

∞∑︁

m=−∞

∞∑︁

n=−∞

∞∫︁

−∞

ϕ(t′)γ*mn(t′)gmn(t)dt′

=

∞∫︁

−∞

ϕ(t′)
∞∑︁

m=−∞

∞∑︁

n=−∞
gmn(t)γ*mn(t′)dt′.

This is the reconstruction formula for the signal. If the above equation holds for all

time t, then the signal ϕ(t) is said to be completely reconstructed. In this case, it is

required that gmn(t) and γmn(t) satisfy

∞∑︁

m=−∞

∞∑︁

n=−∞
gmn(t)γ*mn(t′) = δ(t − t′). (7.4.12)

This is the complete reconstruction formula of Gabor expansion.
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Although Eq. (7.4.12) is important, it is inconvenient to use. More practical is the

relationship between g(t) and γ(t). It can be shown that they should satisfy the relation

∞∫︁

−∞

g(t)γ*(t − mT)e−j2πnFt = δ(m)δ(n). (7.4.13)

This relation is called the biorthogonal relation between the window function g(t)
and the auxiliary window function γ(t). The so-called biorthogonal means that γ(t) is
orthogonal to g(t) as long as one of m, n in the (m, n)th-order Gabor expansion is not
zero. Thus, the auxiliary function γ(t) is often called the biorthogonal function of the
window function g(t).

In summary, after choosing a suitable Gabor basis function g(t), the analytic
method for determining the Gabor expansion coefficients can be carried out in two

steps:

(1) Solving the biorthogonal Eq. (7.4.13) to obtain the auxiliary function γ(t);
(2) Calculating the Gabor transform Eq. (7.4.10) to obtain the Gabor expansion coeffi-

cient amn.

It can be seen that the introduction of the auxiliary function Γ(t, f ) makes the deter-

mination of the Gabor expansion coefficient amn very simple, thus solving a difficult

problem that has long plagued Gabor expansion.

Interestingly, the biorthogonal relation Eq. (7.4.13) still holds after exchanging the

function g(t) and γ(t). By extension, the functions g(t) and γ(t) in each of the relevant
equations obtained from the above discussion can be interchanged. In other words,

Gabor expansion Eq. (7.4.5) and Gabor transform Eq. (7.4.10) of signal ϕ(t) can also take
the following dual forms

ϕ(t) =

∞∑︁

m=−∞

∞∑︁

n=−∞
amnγ(t − mT)ej2πnFt (7.4.14)

=

∞∑︁

m=−∞

∞∑︁

n=−∞
amnγmn(t) (7.4.15)

and

amn =
∞∫︁

−∞

ϕ(t)g*(t − mT)e−j2πnFtdt =
∞∫︁

−∞

ϕ(t)g*mn(t)dt. (7.4.16)

Therefore, γ(t) is often called the dual function of g(t). Obviously, γmn(t) and the Gabor
basis function gmn(t) are dual, so γmn(t) is also called dual Gabor basis function.

Here are some examples of window function g(t) and its dual function γ(t):
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(1) Rectangular window function

g(t) =

(︂
1

T

)︂
1/2

p
(︂
2

t
T

)︂
, (7.4.17)

γ(t) =

(︂
1

T

)︂
1/2

p
(︂
2

t
T

)︂
. (7.4.18)

(2) Generalized rectangular window function

g(t) =

(︂
1

T

)︂
1/2

p
(︂
2

t
T

)︂
f (t), (7.4.19)

γ(t) =

(︂
1

T

)︂
1/2

p
(︂
2

t
T

)︂
1

f *(t) , (7.4.20)

where f (t) is an arbitrary function of t.
(3) Gaussian window function

g(t) =

(︂√
2

T

)︂
1/2

e−π(t/T)
2

, (7.4.21)

γ(t) =

(︂
1√
2T

)︂
1/2

eπ(t/T)
2
∑︁

n+ 1

2

≥

1

T

(−1)

ne−π(n+t/T)
2

. (7.4.22)

The typical Gabor basis function is

gmn(t) = gT(t − mT)ej2πnFt , (7.4.23)

where gT(t) is a Gaussian function, that is,

gT(t) = e−π(t/T)
2

. (7.4.24)

2. The Oversampling Gabor Expansion
For the oversampling case, let the time sampling interval be T

1
, the frequency

sampling interval be F
1
, and T

1
F
1
< 1. The formulas for the oversampling Gabor

expansion and Gabor transform have the same form as those of the critical sampling

Gabor expansion and Gabor transform

ϕ(t) =

∞∑︁

m=−∞

∞∑︁

n=−∞
amngmn(t), (7.4.25)

amn =

∞∫︁

−∞

ϕ(t)γ*(t)dt. (7.4.26)

And the Gabor basis function gmn(t) and the dual Gabor basis function γ(t) are defined
as

gmn(t) = g(t − mT
1
)ej2πnF1 t , (7.4.27)

γmn(t) = γ(t − mT
1
)ej2πnF1 t . (7.4.28)
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The main difference between the oversampling and critical sampling is that the rela-

tionship between the Gabor basis function g(t) and its dual function γ(t) needs to be
modified. Specifically, the biorthogonal formula Eq.(7.4.13) for critical sampling needs

to be modified to

[222]

∞∫︁

−∞

g(t)γ*(t − mT
0
)e−j2πnF0 t = T1T

0

δ(m)δ(n), T
0
=

1

F
1

, F
0
=

1

T
1

. (7.4.29)

The complete reconstruction formula Eq.(7.4.12) for critical sampling needs to be modi-

fied to

∞∑︁

m=−∞
g(t − mT

1
)γ*(t − mT

1
+ nT

0
) =

1

T
0

δ(n). (7.4.30)

Since the right side of Eq. (7.4.29) is multiplied by a non-1 factor, Eq. (7.4.29) is of-

ten called a quasi-biorthogonal formula. Similarly, Eq. (7.4.30) is called the quasi-

orthogonal formula.

It is worth pointing out that the critical sampling Gabor expansion and Gabor trans-

form do not contain redundancy, which is reflected in the fact that when g(t) is given,
the dual function γ(t) satisfying the complete reconstruction condition Eq. (7.4.12) is

uniquely determined. However, the oversampling Gabor expansion and Gabor trans-

form bring redundancy, because for a given g(t), the dual function γ(t) satisfying the
full reconstruction condition Eq. (7.4.30) has multiple possible solutions.

Defining the matrix

W(t) = {wij(t)} and ˜W(t) = {w̃ij(t)}, (7.4.31)

where

wij(t) = g[t + (iT1 − jT0)] and w̃ij(t) = T1γ*[t − (iT0 − jT1)], (7.4.32)

where i, j = −∞, · · · , ∞. Note thatW(t) and ˜W(t) are infinite dimensional matrices. It

is easy to verify that the complete reconstruction condition Eq. (7.4.30) can be written

as

W(t) ˜W(t) = I, (7.4.33)

where I is an identity matrix.

The minimum norm solution of matrix equation (7.4.33) is given by

˜W(t) = WT
(t)[W(t)WT

(t)]−1. (7.4.34)

The auxiliary function γ(t) corresponding to the matrix
˜W(t) is called the optimal

biorthogonal function of g(t).
Defining the Zak transform of g(t) as

Zak[g(t)] = ĝ(t, f ) =
∞∑︁

k=−∞

g(t − k)e−j2πkf , (7.4.35)
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it can be shown

[222]

that the biorthogonal function γ(t) of g(t) can be calculated as

γ(t) = 2π
1∫︁

0

df
ĝ*(t, f ) . (7.4.36)

Once the γ(t) is obtained, the Gabor transform can be calculated directly using

Eq. (7.4.26).

In the Gabor expansion of a continuous time signal ϕ(t), the Gabor basis function
gmn(t) is usually required to obey the energy normalization condition

∞∫︁

−∞

|gmn(t)|2dt = 1. (7.4.37)

It is necessary to compare the similarities and differences between Gabor transform

and STFT. Comparing Eq. (7.4.10) with Eq. (7.3.1), we know that the Gabor transform

and STFT are similar in form, but there are the following essential differences between

them:

(1) The window function g(t) of STFT must be a narrow window, while the window

function γ(t) of Gabor transform has no such limitation. Therefore, the Gabor

transform can be regarded as a windowed Fourier transform, which has a wider

application than STFT;

(2) STFT(t, f ) is a time-frequency 2-D representation of the signal, while the Gabor

transform coefficient amn is a time-shift-frequency-modulated 2-D representation

of the signal, because it can be seen from Eq. (7.4.10) that the parameter m is

equivalent to the time-shift mT units of the signal ϕ(t), while the role of n is

reflected in the frequency modulation of the signal ϕ(t) using the exponential
function ej2πnFt.

7.4.2 The Discrete Gabor Transform

A sampling of time variables leads to periodicity in the frequency domain, while sam-

pling of frequency variables leads to periodicity in the time domain. Because time and

frequency need to be discretized at the same time, the discrete form of the Gabor trans-

form (referred to as the discrete Gabor transform) is only applicable to discrete-time

periodic signals. In the following, the discrete-time periodic signal is denoted by
˜ϕ(k),

and the discrete Gabor expansion coefficient and window function of the periodic

signal are denoted by ãmn and g̃(k), respectively.
Let the period of the discrete periodic signal

˜ϕ(k) be L, i.e., ˜ϕ(k) = ˜ϕ(k + L), and
its discrete Gabor expansion is defined as

[222]

˜ϕ(k) =
M−1∑︁

m=0

N−1∑︁

n=0
ãmn g̃(k − m△M)ej2πnk△N

, (7.4.38)



7.4 Gabor Transform | 355

where the Gabor expansion coefficient is

ãmn =
L−1∑︁

k=0

˜ϕ(k)γ̃*(k − m△M)e−j2πnk△N
, (7.4.39)

where△M and△N are the time and frequency sampling intervals, respectively, while

M and N are the number of samples sampled at time and frequency, respectively.

The oversampling rate is defined as

α = L
△M△N

(7.4.40)

and requires M△M = N△N = L. Substituting this relationship into Eq. (7.4.40), and the
definition of the oversampling rate can be rewritten as

α = Number of Gabor expansion coefficients MN
Number of signal samples L . (7.4.41)

When α = 1, the discrete Gabor transform is critical sampling, and the number of

Gabor expansion coefficients is equal to the number of signal samples. If α > 1, then
the discrete Gabor transform is oversampling, i.e., the number of Gabor expansion

coefficients is more than the number of signal samples. In other words, the Gabor

expansion contains redundancy at this point.

In the following, the discrete Gabor expansion and discrete Gabor transform for

the critical sampling and oversampling cases are described, respectively.

1. The Discrete Gabor Transform for the Critical Sampling Case
In the critical sampling case, choosing M to satisfy

L = MN, (7.4.42)

then the discrete Gabor expansion and Gabor transform become

˜ϕ(k) =
M−1∑︁

m=0

N−1∑︁

n=0
ãmn g̃mn(k), (7.4.43)

ãmn =
L−1∑︁

k=0

˜ϕ(k)γ̃*mn(k), (7.4.44)

where

g̃mn(k) = g̃(k − mN)ej2πnk/N , (7.4.45)

γ̃mn(k) = γ̃(k − mN)ej2πnk/N , (7.4.46)

and g̃(k) is a periodic Gabor basis function with period L, i.e.,

g̃(k) =
∑︁

l

g̃(k + lL) = g̃(k + L). (7.4.47)
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And γ̃(k) is also a periodic sequence that satisfies the biorthogonality condition
L−1∑︁

k=0

[g̃(k + mN)e−j2πnk/N ]γ̃*(k) =
L−1∑︁

k=0

[g̃*(k + mN)ej2πnk/N ]γ̃(k) = δ(m)δ(n), (7.4.48)

where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1.
For a predetermined L, there may be multiple choices of M and N satisfying the

decomposition L = MN. Therefore, the discrete Gabor expansion and Gabor transform
in the critical sampling case are generally non-uniquely defined, in contrast to the fact

that the continuous Gabor expansion and Gabor transform are uniquely determined.

The biorthogonal condition Eq. (7.4.48) can be written in matrix form

Wγ = e
1
, (7.4.49)

where

W =

⎡
⎢⎢⎢⎢⎣

W (0) W (1)

· · · W (M−1)

W (1) W (2)

· · · W (0)

.

.

.

.

.

.

.

.

.

.

.

.

W (M−1) W (0)

· · · W (M−2)

⎤
⎥⎥⎥⎥⎦
, (7.4.50)

γ = [γ̃(0), γ̃(1), · · · , γ̃(L − 1)]T , (7.4.51)

e
1

= [1, 0, · · · , 0]

T
, (7.4.52)

whileW (i)
is a N × N matrix

W (i)
=

⎡
⎢⎢⎢⎢⎣

g̃*(iN)w0 g̃*(iN + 1)w0

· · · g̃*(iN + N − 1)w0

g̃*(iN)w0 g̃*(iN + 1)w1

· · · g̃*(iN + N − 1)wN−1
.

.

.

.

.

.

.

.

.

.

.

.

g̃*(iN)w0 g̃*(iN + 1)wN−1 · · · g̃*(iN + N − 1)w1

⎤
⎥⎥⎥⎥⎦
, w = ej2π/N .

(7.4.53)

The least-squares solution of Eq. (7.4.49) is

γ = W−1e
1
. (7.4.54)

Once γ is obtained, γ̃(0), · · · , γ̃(N − 1) can be found. Then, using Eqs. (7.4.46) and

(7.4.44), γ̃mn(t) and the Gabor expansion coefficient ãmn can be estimated successively.

2. The Discrete Gabor Transform for the Oversampling Case
In the case of oversampling (MN > L), the period L of the discrete-time periodic

function
˜ϕ(k) is decomposed into

L = ¯NM = N ¯M, (7.4.55)

where
¯N, N,M,

¯M are positive integers,
¯N < N and

¯M < M. In this case, the Gabor

expansion of the periodic signal is

˜ϕ(k) =
M−1∑︁

m=0

N−1∑︁

n=0
ãmn g̃mn(k). (7.4.56)
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And the Gabor expansion coefficient is determined by the discrete Gabor transform

ãmn =
L−1∑︁

k=0

˜ϕ(k)γ̃*mn(k), (7.4.57)

where

g̃mn(k) = g̃(k − m ¯N)ej2πnk/N , (7.4.58)

γ̃mn(k) = γ̃(k − m ¯N)ej2πnk/N . (7.4.59)

The discrete sequence g̃(k) is defined by Eq. (7.4.47), and γ̃ obeys the approximate

biorthogonal condition

L−1∑︁

k=0

[g̃*(k + mN)ej2πnk/ ¯N ]γ̃(k) = L
MN δ(m)δ(n), (7.4.60)

or is written in matrix form

Wγ = b, (7.4.61)

where

W =

⎡
⎢⎢⎢⎢⎣

W (0) W (1)

· · · W (
¯M−1)

W (1) W (2)

· · · W (0)

.

.

.

.

.

.

.

.

.

.

.

.

W (
¯M−1) W (0)

· · · W (
¯M−2)

⎤
⎥⎥⎥⎥⎦
, (7.4.62)

γ = [γ̃(0), γ̃(1), · · · , γ̃(L − 1)]T , (7.4.63)

b = [L/(MN), 0, · · · , 0]T . (7.4.64)

The matrix equation Eq. (7.4.61) is an underdetermined equation with infinite solutions

and its minimum norm solution

γ = WH
(WWH

)

−1b (7.4.65)

is uniquely determined. In this case, thewindow function sequence γ̃(0), γ̃(1), · · · , γ̃(L−
1) has the minimum energy.

It is necessary to point out that in many applications (e.g., signal feature extraction

and classification), the Gabor expansion coefficients amn can be used as features of
the signal. This kind of application only uses the Gabor transform and does not need

to perform Gabor expansion on the signal. In these cases, it is only necessary to select

a basic window function, and it is not necessary to determine its dual function.

7.5 Fractional Fourier transform

Short-Time Fourier Transform and Gabor transform belong to the windowed Fourier

transform. This section introduces another generalized form of windowed Fourier

transform – fractional Fourier transform.
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The fractional power theory of the Fourier transform was first established by

Namias in 1980

[213]

, and this generalized Fourier transform is called fractional Fourier

transform (FRFT). Later, McBride and Kerr

[152]

made a more rigorous mathematical defi-

nition of fractional Fourier transform, which made it have some important properties.

7.5.1 Definition and Properties of Fractional Fourier Transform

The functions g(t) and G(ω) are called (symmetric) Fourier transform pairs if

G(ω) =

1√
2π

∞∫︁

−∞

g(t)e−jωtdt, (7.5.1)

g(t) =

1√
2π

∞∫︁

−∞

G(ω)ejωtdω. (7.5.2)

Let F and F−1 denote the Fourier transform operator and the inverse Fourier transform

operator, i.e., G = Fg and g = F−1G.
If n is an integer and the integer power Fn of the Fourier transform represents the

n-th order Fourier transform of function g(t), it is easy to conclude that:
(1) The 1st order Fourier transform of function g(t) is its spectrum G(ω), i.e., F1g(t) =

G(ω);
(2) The 2nd order Fourier transform of function g(t) is g(−t), because F2g(t) =

F[Fg(t)] = FG(ω) = g(−t);
(3) The 3rd order Fourier transform of function g(t) is G(−ω), because F3g(t) =

F[F2g(t)] = Fg(−t) = G(−ω);
(4) The 4nd order Fourier transform of function g(t) is g(t) itself, i.e., it is equivalent

to the zero order Fourier transform, because F4g(t) = F[F3g(t)] = FG(−ω) = g(t) =
F0g(t).

In the two-dimensional time-frequency plane, the 1st order Fourier transform is equiv-

alent to rotating the time axis counterclockwise by

π
2

, the 2nd order Fourier transform

is equivalent to rotating the time axis counterclockwise by 2 ·

π
2

, etc. More generally,

the n-th order Fourier transform is equivalent to rotating the time axis by n · π
2

.

If let α = n · π/2 and use the rotation operator Rα = Rn·π/2 = Fn to represent the

n-th order Fourier transform, then the rotation operator has the following properties:

(1) Zero rotation: the zero rotation operator R0 = I is an identity operator;
(2) Equivalence with Fourier transform: Rπ/2 = F1

;

(3) Additivity of rotations: Rα+β = RαRβ;
(4) 2π rotation (identity operator): R2π = I.
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Consider an interesting and important question: as shown in Fig. 7.5.1, if the rotation

angle α = p · π
2

, where p is a positive fraction, what kind of linear transformation can

be obtained?

t

ω

u

α

v
α

Fig. 7.5.1: (t, ω)-plane rotated to (u, v)-plane

Definition 7.5.1. (Continuous fractional Fourier transform)
[38]

Let α = p · π
2

where p ∈ R.
The p-th order Fourier transformFp of function or signal x(t) is a linear integral transform
that maps x(t) to a function

Xp(u) = Fp(u) =
∞∫︁

−∞

Kp(t, u)x(t)dt, (7.5.3)

where the transform kernel function is

Kp(t, u) =

⎧
⎪⎨
⎪⎩

cαexp
[︀
j
(︀
(u2 + t2)cotα − 2 ut

sinα
)︀]︀
, if α ̸= nπ

δ(t − u), if α = 2nπ
δ(t + u), if α = (2n + 1)π

(7.5.4)

with coefficients

cα =
√︀
1 − jcotα = e

−j[πsgn(sinα)/4−α/2]
√︀

|sinα|
. (7.5.5)

The fractional Fourier transform Xp(u) of a non-stationary signal x(t) has some typical

properties, as shown in Tab.7.5.1

[8]

.

Properties 1 and 2 are the time-shift and frequency-shift characteristics of the

fractional Fourier transform, respectively. Properties 3 and 4 are called differential and

integral properties of fractional Fourier transform respectively. Property 7 reflects the

odd and even properties of the fractional Fourier transform: If x(t) is an even function
of t, then Xp(u) is an even function of u; If x(t) is an odd function of t, then Xp(u) is
an odd function of u. Property 8 describes the scale property of the fractional Fourier
transform. Moreover, Table 7.5.2 lists the fractional Fourier transforms of some common

signals.

Assuming that the time-frequency plane coordinate system (t, ω) is transformed into a

new coordinate system (u, v) after rotating by an angle α = pπ/2, then there are the
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Tab. 7.5.1: The typical properties of the fractional Fourier transform

Property Signal Fractional Fourier transform with angle α = pπ/2

1 x(t − τ) Xp(u − τ cos α)exp
[︁
j
(︁
τ2
2 sin α cos α − uτ sin α

)︁]︁
2 x(t)ejvt Xp(u − v sin α)exp

[︁
−j

(︁
v2
2 sin α cos α + uv cos α

)︁]︁
3 x(t)′ X ′p cos α + juXp(u) sin α

4
∫︀ t
a x(t′)dt′

if α − π/2 is not an integer multiple of π, secαexp
(︁
−j u22 tanα

)︁ ∫︀ u
a Xp(z)exp

(︁
j z

2

2 tanα
)︁
dz

If α − π/2 is an integer multiple of π, it obeys the property of traditional FT.
5 tx(t) Xp cos α) + jX ′p(u) sin α

6 x(t)/t −jsecαexp
(︁
j u

2

2 cos α
)︁ ∫︀ u

−∞ x(z)exp
(︁
−j z22 cos α

)︁
dz

if α is not an integer multiple of π
7 x(−t) Xp(−u)

8 x(ct)
√︁

1−jcotα
c2−jcotα exp

[︁
j u

2

2 cos α
(︁
1 − cos2 ψ

cos2 α

)︁]︁
Xp(u sin ψ

c sin α )
where ψ = arctan(c2tanα) = qπ/2

Tab. 7.5.2: The fractional Fourier transforms of some common signals

Signal Fractional Fourier transform with angle α = pπ/2

δ(t − τ)
√︁

1−jcotα
2π exp

[︁
j
(︁
τ2+u2
2 cotα − uτcscα

)︁]︁
, if α − π/2 is not an integer multiple of π

1
√︀
1 + jtanαexp

[︁
−j( u22 tanα

]︁
, if α − π/2 is not an integer multiple of π

exp(jvt)
√︀
1 + jtanαexp

[︁
j( v2+u22 tanα + uvsecα)

]︁
, if α − π/2 is not an integer multiple of π

exp(jct2/2)
√︁

1+jtanα
1+ctanα exp

(︁
j u

2

2
c−tanα
1+ctanα

)︁
, if α − arctanc − π/2 is not an integer multiple of π

exp(−t2/2) exp(−u2/2)
Hn(t)exp( −t

2

2 ) exp(−jnα)Hn(u)exp(−u2/2), where Hn is a Hermitian polynomial
exp(−ct2/2)

√︁
1−jcotα
c−jcotα exp

(︁
j u

2

2
(c2−1)cotα
c2+cot2α

)︁
exp

(︁
− u2

2
ccsc2α
c2+cot2α

)︁

following relationships between the new coordinate system and the original coordinate

system: {︃
u = t cos α + ω sin α
v = −t sin α + ω cos α

(7.5.6)

and {︃
t = u cos α − v sin α
ω = u sin α + v cos α

(7.5.7)

The fractional Fourier transform Zp(u) of nonstationary signal z(t) can be calculated
by the following three steps.

(1) Find the Wigner-Ville distribution of signal z(t)

Wz(t, ω) =
∞∫︁

−∞

z(t + τ
2

)z*(t − τ
2

)e−jωτdτ. (7.5.8)
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(2) Obtain the fractional Winger-Ville distribution of the rotated α by transforming

equation Eq. (7.5.7) of the coordinate system

Wp(u, v) = Wz(ucosα − ω sin α, ω cos α + t sin α). (7.5.9)

(3) Obtain the fractional Fourier transform of nonstationary signal z(t) from the 1-D

inverse Fourier transform of fractional Winger-Ville distribution Wp(u, v) with
respect to variable v

Zp(u) =
∞∫︁

−∞

Wp(u, v)ejuvdv. (7.5.10)

7.5.2 Calculation of Fractional Fourier Transform

In practical applications, the continuous fractional Fourier transform must be trans-

formed into a discrete fractional Fourier transform to facilitate computer calculations.

To better understand the definition of the discrete fractional Fourier transform, it

is necessary to review the definition of the discrete Fourier transform of a data vector.

Definition 7.5.2. (Discrete Fourier transform) Let F be an N × N-D Fourier matrix whose
elements F i,n = W in

/

√
N and W = e−j2π/N . The discrete Fourier transform of a dis-

crete data vector x = [x(0), x(1), · · · , x(N − 1)]T is defined as N × 1 vector X = Fx =

[X(0), X(1), · · · , X(N − 1)]T whose element is

X(i) =
N−1∑︁

n=0
Fi,nx(n) =

1√
N

N−1∑︁

n=0
x(n)e−j2πi/N , i = 0, 1, · · · , N − 1. (7.5.11)

The discrete fractional Fourier transform is an extension of the discrete Fourier trans-

form.

Definition 7.5.3. (Discrete Fractional Fourier transform) The p-th order discrete frac-
tional Fourier transform of the discrete data vector x = [x(0), x(1), · · · , x(N − 1)]T is
defined as an N × 1-D vector Xp = Fαx = [Xp(0), Xp(1), · · · , Xp(N − 1)]T whose element
is

Xp(i) =
N−1∑︁

n=0
Fαi,nx(n), (7.5.12)

where Fαi,n is the i-th row and n-th column element of the N × N-D fractional Fourier
matrix Fα = EΣαET , and E is the eigenvector of the Fourier matrix F = EΣET .

The N-th order discrete Fourier transform has a fast algorithm FFT, and its computa-

tional complexity is NlogN. The discrete fractional Fourier transform does not have a

fast algorithm like the FFT, but only a fast approximate implementation.

There are two Matlab algorithms for fast approximation of the discrete fractional

Fourier transform.
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(1) One uses the subfunction fracF of MATLAB. The relevant computational method

was proposed by Ozaktas et al in 1996

[168]

or published by Ozaktas et al.in

reference[169]. The subfunction fracF can be downloaded from the website

[128].

(2) The other one uses MATLAB to code fracft, which is a part of the time-frequency

analysis software package developed by O’Neill and available from the Mathworks

website [167].

It should be noted that the MATLAB subroutine, fracF, requires that the signal length

N be odd.

7.6 Wavelet Transform

The short-time Fourier transform andGabor transformbelong to the “windowed Fourier

transform”, that is, they analyze the signal with a fixed sliding window. With the

sliding of the window function, the local frequency characteristics of the signal can be

characterized. Obviously, this kind of sliding window processing with equal width in

the time domain is not suitable for all signals. For example, an obvious feature of an

artificial seismic exploration signal is that it should have a high frequency resolution

at the low frequency end of the signal and a low frequency resolution at the high

frequency end. From the perspective of the time-frequency exclusion principle, the

high-frequency component of this kind of signal should have a high time resolution,

while the low frequency component can have a lower time resolution. In fact, not

only artificial seismic exploration signals but also many natural signals (such as voice,

images, etc.) have similar characteristics. It is easy to associate that the linear time-

frequency analysis of such non-stationary signals should have different resolutions

at different locations in the time-frequency plane, i.e., it should be a multi-resolution

analysis method. Wavelet transform is such a multi-resolution analysis method, and

its purpose is to “see not only the forest (the general of the signal), but also the trees

(the details of the signal)”, so the wavelet transform is often called the mathematical

microscope of the signal.

7.6.1 Physical Considerations of Wavelets

STFT and Gabor transform can be expressed uniformly by the inner product <

s(t), gmn(t) > of the signal s(t) and the basis function gmn = g(t − mT)ej2πnFT . Once
the window function g(t), the time sampling interval T, and the frequency sampling

interval F are selected, STFT and Gabor transform use a fixed window function to

perform sliding window processing on the non-stationary signal. Obviously, no matter

how m and n change, the envelope of the basis function remains the same, that is,
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|gmn(t)| = |g(t)|, ∀m, n. Since the basis function has a fixed time sampling interval

T and frequency sampling interval F, the window function and the two transforms

have equal time width in the time domain and equal bandwidth in the frequency

domain. That is to say, STFT and Gabor transform have the same resolution in the

time-frequency plane.

Different from STFT and Gabor transform with fixed time interval and fixed fre-

quency interval, the continuous wavelet transform of a square integrable function s(t)
is defined as

WTs(a, b) =
1√
a

∞∫︁

−∞

s(t)ψ*
(︂
t − b
a

)︂
dt = ⟨s(t), ψa,b(t)⟩, a > 0, (7.6.1)

that is, the wavelet basis function ψab(t) = 1√
aψ
(︁
t−b
a

)︁
(multiplied by factor

1√
a is

introduced to normalize the transform result) is the result of time translation b and
scale scaling a of the window function ψ(t). The constants a and b are called scale
parameter and translation parameter respectively. The envelope of the wavelet basis

function ψab(t) varies with a due to the scale parameter a. Specifically, for a given
window function ψ(t), if the scale parameter a > 1, the basis function is equivalent to

stretching the window function to increase the windowwidth; while a < 1 is equivalent

to compressing the window function so that the window function shrinks.

The effect of the scale parameter in the frequency-domain can be explained by

Fourier transform Ψ(ω) of the window function ψ(t). According to the scaling property
of the Fourier transform, theparameter a > 1 is equivalent to compressing the frequency

characteristic of the window function and reducing the frequency bandwidth; a < 1

is equivalent to stretching the frequency characteristic of the window function and

increasing the frequency bandwidth. In contrast, the effect of the translation parameter

b is only to make the wavelet basis function slide.

From the time-frequency grid division, a large scale parameter a corresponds to
the low frequency and has high frequency resolution and low time resolution. On the

contrary, a small scale parameter a corresponds to the high frequency and has low

frequency resolution and high time resolution. Both the windowed Fourier transform

and wavelet transform can be regarded as band-pass filters, and their bandwidths are

shown in Fig. 7.6.1(a) and (b), respectively. The multiresolution characteristics of the

wavelet transform can be seen in Fig. 7.6.1(b).

In order to have multiresolution properties, the wavelet transform should satisfy the

following conditions.

(1) Admissible condition

In physical terms, a wavelet is “a small segment wave”. Therefore, wavelet ψ(t) is
required to satisfy the admissible condition

∞∫︁

−∞

ψ(t)dt = 0. (7.6.2)
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Fig. 7.6.1: (a) Bandwidth of windowed Fourier transform bandpass filter;(b) Bandwidth of wavelet
transform bandpass filter.

This condition will make the function ψ(t) conform to the waveform characteristic

“a small segment wave”, which is the minimum condition that a wavelet must have.

The wavelet that satisfies the admissible condition is called an admissible wavelet.

(2) Normalization condition

The wavelet ψ(t) should have unit energy, i.e.,

Eψ =

∞∫︁

−∞

|ψ(t)|2dt = 1. (7.6.3)

7.6.2 The Continuous Wavelet Transform

The admissible condition and normalization condition are requirements for wavelets

from physical considerations. From the point of view of signal transformation, more

strict mathematical conditions are also required for the wavelet transform defined by

Eq. (7.6.1).
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1. Complete Reconstruction Condition
The Fourier transform Ψ(ω) of the base wavelet ψ(t) must satisfy the condition

∞∫︁

−∞

|Ψ(ω)|2
|ω| dω < ∞, (7.6.4)

which is called the complete reconstruction condition or the constant resolution condi-

tion.

2. Stability Condition
Since the wavelet ψa.b(t) generated by the base wavelet ψ(t) acts as an observation

window for the signal being analyzed in the wavelet transform, ψ(t) should also satisfy
the constraint condition

∞∫︁

−∞

|ψ(t)|dt < ∞ (7.6.5)

of the general window function, i.e., Ψ(ω) must be a continuous function. This means

that in order to satisfy the complete reconstruction condition Eq. (7.6.4), Ψ(ω) must be

equal to zero at the origin, i.e., Ψ(0) =
∫︀
∞

−∞

ψ(t)dt = 0, which is exactly the admissible

condition Eq. (7.6.2) mentioned above that any wavelets must obey.

In order to implement the signal reconstruction to be numerically stable, in addi-

tion to the complete reconstruction condition, the Fourier transform of wavelet ψ(t) is
required to satisfy the following “stability condition”

A ≤
∞∑︁

j=−∞
|Ψ(2jω)|2 ≤ B, (7.6.6)

where 0 < A ≤ B < ∞.

The continuous wavelet transform has the following important properties.

Property 1 (Linear) The wavelet transform of a multi-component signal is equal to the

sum of the wavelet transform of each component.

Property 2 (Translation invariance) If f (t) ↔ WTf (a, b), then f (t−τ) ↔ WTf (a, b−τ).
Property 3 (Stretch covariance) If f (t) ↔ WTf (a, b), then f (ct) ↔ 1√

cWTf (ca, cb),
where c > 0.

Property 4 (Self-similarity) The continuous wavelet transforms corresponding to differ-

ent scaling parameters a and translation parameters b are self-similar.

Property 5 (Redundancy) There is redundancy of information representation in the

continuous wavelet transform.

Property 1 comes directly from the fact that wavelet transform can bewritten as an inner

product, and the inner product has linear property. Property 2 is easy to verify according

to the definition of the wavelet transform. The proof of property 3 is as follows: let
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x(t) = f (ct), then there is

WTx(a, b) =

1√
a

∞∫︁

−∞

x(t)ψ*
(︂
t − b
a

)︂
dt

=

1√
c
√
ca

∞∫︁

−∞

f (ct)ψ*
(︂
ct − cb
ca

)︂
d(ct)

=

1√
c
WTf (ca, cb),

which is property 3.

Since thewavelet familyψa,b(t) is obtained by the samewaveletψ(t) through trans-
lation and stretch, and the continuous wavelet transform has translation invariance

and stretch covariance, the continuous wavelet transform at different grid points (a, b)
has self-similarity, that is, the property 4 holds.

Essentially, the continuous wavelet transform maps one-dimensional signal f (t)
equidistant to a two-dimensional scale-time (a, b) plane, and its freedom degree in-

creases obviously so that the wavelet transform contains redundancy, that is, the

property 5 holds. Redundancy is also a direct reflection of self-similarity, which is

mainly reflected in the following two aspects:

(1) The reconstruction formula for recovering the original signal by the continuous

wavelet transform is not unique. That is, there is no one-to-one correspondence

between the wavelet transform of signal s(t) and the inverse wavelet transform,

while there is a one-to-one correspondence between the Fourier transform and the

inverse Fourier transform.

(2) There are many possible choices for the kernel function of the wavelet transform,

i.e., the wavelet family functions ψa,b(t) (for example, they can be non-orthogonal

wavelet, orthogonal wavelet or biorthogonal wavelet, or even allowed to be linearly

related to each other, as described later).

The correlation of the wavelet transform between different grid points (a, b) increases
the difficulty of analyzing and interpreting the results of the wavelet transform. There-

fore, the redundancy of wavelet transform should be as small as possible, which is one

of the main problems of wavelet analysis.

7.6.3 Discretization of Continuous Wavelet Transform

When using wavelet transform to reconstruct the signal, it is necessary to discretize

the wavelet and use the discrete wavelet transform. Different from the traditional time

discretization, the continuous wavelet ψa,b(t) and the continuous wavelet transform
WTf (a, b) are discretized for the continuous scale parameter a and the continuous

translational parameter b, rather than for the time variable t.
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Usually, the discretization formulas for the scale parameter a and the translation
parameter b are taken as a = aj

0

and b = kaj
0

b
0
, respectively. The corresponding

discrete wavelet ψj,k(t) is

ψj,k(t) = a
−j/2
0

ψ(a−j
0

t − kb
0
). (7.6.7)

And the discrete wavelet transform WTf (a
j
0

, kaj
0

b
0
) is abbreviated as WTf (j, k) and

called

cj,k
def

= WTf (j, k) =
∞∫︁

−∞

f (t)ψ*j,k(t)dt = ⟨f , ψj,k⟩ (7.6.8)

as the discrete wavelet (transform) coefficient.

The purpose of using wavelet transform is to reconstruct the signal. How to select

the scale parameter a and the translation parameter b to ensure the accuracy of the
reconstructed signal? Qualitatively, the grid points should be as dense as possible

(i.e., a
0
and b

0
should be as small as possible), because if the grid points are sparser,

the fewer wavelet functions ψj,k(t) and discrete wavelet coefficients cj,k are used, and
the accuracy of the reconstructed signal will be lower. This implies that there exists a

threshold for the grid parameters.

In order tomake thewavelet transform have variable time and frequency resolution

and to adapt to the non-stationary characteristics of the signal to be analyzed, it

is natural to change the value of a and b to make the wavelet transform have the

“zoom” function. In other words, a dynamic sampling grid is used in practice. The most

commonly used is the binary dynamic sampling grid with a
0
= 2, b

0
= 1. The scale

of each grid is 2

j
, and the translation is 2

jk. In particular, when the discretization

parameters a
0
= 2 and b

0
= 1, the discretized wavelet

ψj,k(t) = 2

j/2ψ(2j t − k), j, k ∈ Z (7.6.9)

is called a binary wavelet basis function, where Z denotes the integer domain.

The binary wavelet has a zoom effect on the analysis of the signal. It is assumed

that a magnification 2

j
is chosen at the beginning, which corresponds to a certain part

of the observed signal. If one wants to further view the smaller details of the signal,

one needs to increase the magnification i.e. decrease the value of j. Conversely, if one
wants to understand the coarser of the signal, one can decrease the magnification i.e.

increase the value of j. In this sense, the wavelet transform is called a mathematical

microscope.

7.7 Wavelet Analysis and Frame Theory

Fourier analysis is a powerfulmathematical tool for stationary signal analysis. Similarly,

wavelet analysis is a powerful mathematical tool for non-stationary signal analysis.
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7.7.1 Wavelet Analysis

Fourier signal analysis consists of “Fourier (integral) transform” and “Fourier series”:

the former transforms the continuous signal f (t) by Fourier transform to obtain the

spectrum F(ω) of the signal, while the latter expands by Fourier series to obtain the
reconstruction formula of the original signal f (t). The kernel function e−jωt of the
Fourier transform is called the basis function, and the kernel function ejωt of the series
expansion is often called the dual basis function.

Like the Fourier analysis of stationary signals, the wavelet analysis of non-

stationary signals also consists of two important mathematical entities, the “wavelet

(integral) transform” and the “wavelet series”. The kernel function ψ(t) of the wavelet
transform is called wavelet, while the kernel function

˜ψ(t), which reconstructs the

wavelet series of the original signal f (t), is called dual wavelet. The strict mathematical

definition of dual wavelet is as follows.

Definition 7.7.1. (Dual wavelet) If the wavelet ψ(t) satisfies the stability condition
Eq. (7.6.6), then there exists a dual wavelet ˜ψ(t) whose Fourier transform Ψ(ω) is given
by the Fourier transform of the wavelet

˜Ψ(ω) = Ψ*(ω)∑︀
∞

j=−∞ |Ψ(2jω)|2
. (7.7.1)

In Fourier analysis, any square integrable real function f (t) ∈ L2(R) has a Fourier series
expression

f (t) =
∞∑︁

k=−∞

ckejkωt , (7.7.2)

in which the expansion parameter

ck =
1

2π

2π∫︁

0

f (t)e−jkωtdt (7.7.3)

is called the Fourier coefficient of the real function f , which is square summable

∞∑︁

k=−∞

|ck|2 < ∞. (7.7.4)

Similarly, wavelet analysis can also be defined: any square integrable real function

f (t) ∈ L2(R) has a wavelet series expression

f (t) =
∞∑︁

j=−∞

∞∑︁

k=−∞

cj,k ˜ψj,k(t), (7.7.5)

where the wavelet coefficients {cj,k} are defined by Eq. (7.6.8), which is a sequence of
square summable, i.e.,

∞∑︁

j=−∞

∞∑︁

k=−∞

|cj,k|2 < ∞. (7.7.6)
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The basis function
˜ψj,k(t) of wavelet level expansion equation Eq. (7.7.5) is called the

dual basis of the wavelet basis function ψj,k(t) and defined as

˜ψj,k(t) = 2

j/2
˜ψ(2j t − k), j, k ∈ Z, (7.7.7)

where
˜ψ(t) is the dual wavelet of wavelet ψ(t) (Definition 7.7.1). In particular, when the

wavelet and its dual wavelet are equal, i.e.,
˜ψ(t) = ψ(t), the wavelet basis function and

its dual wavelet basis function are also equal, i.e.,
˜ψj,k(t) = ψj,k(t).

In Fourier analysis and wavelet analysis, the basis function plays an important

role.

Definition 7.7.2. (Hilbert Base)
[223]

Let H be a complete inner product space, i.e., Hilbert
space, and the family of discrete sequences {ϕn(t) : n ∈ Z} (where Z is the integer
domain) be called standard orthogonal basis or Hilbert basis within H if the following
three conditions are satisfied:
(1) Orthogonality condition: if m, n ∈ Z and m ̸= n, then < ϕm , ϕn >= 0;
(2) Normalization condition: for each n ∈ Z with ||ϕn|| = 1;
(3) Completeness condition: if f ∈ H and ⟨f , ϕn⟩ = 0, ∀n ∈ Z, then f = 0.

If the family of discrete sequences {ϕn(t)} satisfies only the first and third conditions,
it is called an orthogonal basis. A set that satisfies only the first two conditions, but

not necessarily the third one, is called a standard orthogonal system. If only the first

condition is satisfied, the set is called an orthogonal system.

A Hilbert space is said to be a separable Hilbert space if the number of basis

functions of the space is countable. Another expression for the completeness of a

separable Hilbert space is called denseness.

Definition 7.7.3. (Denseness) The family of discrete sequences {ϕn : n ∈ Z} is dense in
H, if for each f ∈ H and ϵ > 0, we can find a sufficiently large integer N and constant
c
−N , c−N+1, · · · , cN−1, cN such that ||f −

∑︀N
k=−N ckϕk|| < ϵ. In other words, any function

f ∈ H can be approximated by a finite number of linear combinations of the function
family {ϕn : n ∈ Z}, then {ϕn : n ∈ Z} is said to be dense in H.

A standard orthogonal system {ϕn} is dense when and only when it is complete. In

other words, a dense standard orthogonal system is a standard orthogonal basis.

The Fourier basis ejkt of Fourier analysis is a standard orthogonal basis, which
is chosen uniquely. As mentioned earlier, the redundancy of the wavelet transform

increases the difficulty of analyzing and interpreting the results of the wavelet trans-

form, so the redundancy of the wavelet transform should be as small as possible. This

means that the linear correlation between wavelets should be reduced. In other words,

it is desired that the wavelet family ψj,k(t) has linear independence. Considering the
accuracy of the signal reconstruction, the orthogonal basis is the most ideal basis func-

tion for signal reconstruction, so it is more desirable that the wavelets are orthogonal.

However, other important aspects must be considered in the selection of wavelets.
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As Sweldens points out
[217] 
, in order to make the wavelet transform to be a useful 

signal processing tool, wavelets must satisfy the following three basic requirements:

(1) Wavele is the building block of general function: wavelet can be used as the basis

function to expand the general function in wavelet series.

(2) Wavelet has time-frequency aggregation: usually, most of the energy of the wavelet

is required to be gathered in a finite interval. Ideally, outside this interval, the

energy of the wavelet function ψ(t) should be equal to zero, that is, the wavelet
should be a compactly supported function in the frequency domain. However, it is

known from the exclusion principle that a function that is compactly supported in

the frequency domain has an infinite support region in the time domain. Therefore,

the wavelet function should be compactly supported in the time domain and be

able to decay rapidly in the frequency domain.

(3) Wavelet has a fast transform algorithm: in order to make the wavelet function easy

to realize by computer, we hope that the wavelet transform has a fast algorithm as

the Fourier transform.

It can be said that the implementation of these three basic requirements constitutes

the core of the wavelet transform. Let us first look at the time-frequency aggregation of

the wavelets.

The decay of a wavelet function to high frequency corresponds to the smoothness

of the wavelet. The smoother the wavelet, the faster it decays to a higher frequency. If

the decay is exponential, the wavelet will be infinitely derivable.

The decay of a wavelet function to low frequency corresponds to the order of the

vanishing moment of that wavelet (the definition is given later).

Therefore, with the smoothness and vanishingmoment of thewavelet function, the

“frequency aggregation” of the wavelet can be ensured and the desired time-frequency

aggregation can be obtained.

If the function f (t) has N − 1th-order continuous derivative and its Nth-order
derivative in the neighborhood of the point t

0
are finite, then Taylor theorem of complex

function theory tells us that for every point t in the neighborhood, it is possible to find
t
1
= t

1
(t) in that neighborhood such that

f (t) = f (t
0
) +

N−1∑︁

k=1

f (k)(t
0
)

k! (t − t
0
)

k
+

f (N)(t
1
)

N! (t − t
0
)

N
. (7.7.8)

If that neighborhood is very small and the Nth-order derivative cannot be too large,
then the unknown residual term

f (N)(t
1
)

N! (t − t
0
)

N
will be small, i.e., the function f (t) can

be adequately approximated by f (t
0
) +

∑︀N−1
k=1

f (k)(t
0
)

k! (t − t
0
)

k
.
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Definition 7.7.4. The wavelet ψ(t) is said to have Nth-order vanishing moment if
∫︁
(t − t

0
)

kψ(t)dt = 0, k = 0, 1, · · · , N−, 1, (7.7.9)

∫︁
(t − t

0
)

Nψ(t)dt ̸= 0. (7.7.10)

The vanishingmoment determines the smoothness of the function. Ifψ(t) hasNth-order
vanishing moments at time zero t

0
= 0, then its Fourier transform Ψ(ω) is Nth-order

differentiable at frequency zero ω = 0 and Ψ k
(0) = 0, where k = 0, 1, · · · , N − 1.

Now assume that the signal f (t) has Nth-order continuous derivatives in the neigh-
borhood of t

0
and |f (N)(t)| ≤ M < ∞ is bounded in that neighborhood. Let ψ(t) be a

real wavelet whose support region is [−R, R] and has Nth-order vanishing moments at

the zero point. If we use ψa(t) = aψ(at − t0) to generate the wavelet family function

{ψa(t)} and use Eqs. (7.7.8) and (7.7.9), we can get

< f , ψa >=
∞∫︁

−∞

f (t)aψ(at − t
0
)dt = f (t

0
) +

1

N! =
∞∫︁

−∞

f (N)(t
1
)(t − t − 0)Naψ(at − t

0
)dt.

The above equation can be written as a triangle inequality

|⟨f , ψa⟩ − f (t0)| ≤
2M
N!

(︂
R
a

)︂N
. (7.7.11)

Eq. (7.7.11) shows the following important facts:

(1) The accuracy |⟨f , ψa⟩−f (t0)| ofwavelet transformapproximating the original signal

f (t) depends on the support region R and scale constant a of the wavelet function
ψ(t). The support of a function refers to the closed interval of the definition domain

of that function. If its support area is a finite closed interval (this support is called

compact support), then the function is said to be a compact support function. If R is
finitely large that ψ(t) is a compactly supported function, then Eq. (7.7.11) becomes

|⟨f , ψa⟩ − f (t0)| → 0 when the scale parameter a → ∞.

(2) When the scale parameter a > R, if the value of N is larger, the higher the accuracy

|⟨f , ψa⟩ − f (t0)| of the wavelet transform approximating the original signal f (t).

Therefore, from the perspective of function approximation, wavelet ψ(t) is required to
have compact support and Nth-order vanishing moment, and the smaller R and (or)
the larger the N, the higher the accuracy of the wavelet transform approximation signal.

On the other hand, compactly supported wavelets have good time-local properties and

are beneficial for algorithm implementation. However, from the exclusion principle,

it is known that the time-local characteristics and the frequency-local characteristics

are a pair of contradictions. Considering the frequency resolution, it is desired that the

wavelet has a larger time support region.

According to the equation WT(a, b) =< f , ψa,b > of the wavelet transform, in order

to make WT(a, b) to keep the phase of the signal f (t) without distortion, the wavelet
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ψab(t) should have linear phase. The function g(t) is called a symmetric function, if

g(t + T) = g(t − T) or g(t + T
2

) = g(t − T
2

) for some integer or semi-integer T (i.e.,T/2 is an
integer); if g(t+T) = −g(t−T) or g(t+ T

2

) = −g(t− T
2

), g(t) is said to be an antisymmetric

function. The following proposition shows that the linear phase property of the wavelet

is determined by its symmetry or antisymmetry.

Proposition 7.7.1. If the function g(t) is symmetric or antisymmetric with respect to some
integer or semi-integer T, then the phase response of g(t) is linear.

Proof. See reference [223].

As block functions for general signals, the basis functions can be non-orthogonal,

orthogonal, and biorthogonal.

In practical applications, wavelets are usually expected to have the following

properties

[113]

:

(1) Compact support: If the scaling function and wavelet are compactly supported,

the filter H and G are finite impulse response filters, and their summation in the

orthogonal fastwavelet transform is the summationof finite terms. This is beneficial

for implementation. If they are not compactly supported, a fast decay is desirable.

(2) Symmetry: If the scaling function and wavelet are symmetric, then the filters have

a generalized linear phase. If the filters don’t have a linear phase, phase distortion

will occur after the signal passes through the filters. Therefore, the linear phase

requirement of the filter is very important in signal processing applications.

(3) Smoothness: Smoothness is very important in compression applications. Compres-

sion is usually achieved by setting the small coefficients cj,k to zero and leaving
out the corresponding component cj,kψj,k from the original function. If the orig-

inal function represents an image and the wavelet is not smooth, the error in

the compressed image can easily be caught by the human eye. More smoothness

corresponds to better frequency localization of the filters.

(4) Orthogonality: In any linear expansion or approximation of signal, the orthogonal

basis is the best basis function. Therefore, when an orthogonal scaling function is

used, it can provide the best signal approximation.

7.7.2 Frame Theory

The so-called non-orthogonal expansion is to construct non-orthogonal basis functions

by using the basic operations of translation andmodulation of a single non-orthogonal

function and then use these basis functions to expand the signal in series. In fact, we

are familiar with this kind of non-orthogonal expansion, because the Gabor expansion

is a typical example.

The non-orthogonal expansion has the following advantages in wavelet analysis:
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(1) Orthogonal wavelet is a complex function, and any “good” function can be used

as the basis wavelet of non-orthogonal expansion.

(2) In some cases of interest, orthogonal bases for coherent states do not even exist,

so it is natural to look for non-orthogonal expansions.

(3) The non-orthogonal expansion can obtain higher numerical stability than the

orthogonal expansion.

In wavelet analysis, non-orthogonal expansions often use linear independent bases,

and the concept of linear independent bases is closely related to the frame.

Definition 7.7.5. (Frame) The set {ψmn} of sequences in the square summable space, i.e.,
l2(Z2)-space, forms a frame if there exist two positive constants A and B (0 < A ≤ B < ∞)
such that the following equation holds for all f (t) ∈ l2(R)

A||f ||2 ≤
∞∑︁

−∞

∞∑︁

−∞

|⟨f , ψmn⟩|2 ≤ B||f ||2, (7.7.12)

where ⟨f , ψmn⟩ represents the inner product of the function f (t) and ψmn(t)

< f , ψmn >=
∞∫︁

−∞

f (t)ψ*mn(t)dt. (7.7.13)

The positive constants A and B are called the lower and upper bounds of the frame,
respectively.

A sequence gmn is said to be complete if the only element orthogonal to gmn in l2(Z2)-
space is a zero element. It is easy to verify that the frame is complete. Examining the

inequality on the left side of Eq.(7.7.12) shows that when the frame ψmn(t) is orthogonal
to the function f (t), i.e., < f , ψmn >= 0, there is

0 ≤ A||f ||2 ≤
∞∑︁

−∞

∞∑︁

−∞

0 = 0 ⇒ f = 0, (7.7.14)

that is, the frame is complete.

Definition 7.7.6. (Snug frame and tight frame) Let {ψmn} be a frame, if B/A ≈ 1, then
ψmn is said to be a snug frame. In particular, when A = B, then ψmn is said to be a tight
frame.

The snug frame is also known as an almost-tight frame.

Proposition 7.7.2. If {gk(t)} is a tight frame with A = B = 1 and all frame elements have
unit norm, then frame {gk(t)} is a standard orthogonal basis.

Proof. Let gl be a fixed element in the frame. Since A = B = 1,

||gl||2 =
∑︁

k∈K
|⟨gk , gl⟩|2 = ||gl||4 +

∑︁

k̸= l

|⟨gk , gl⟩|2 (7.7.15)



is obtained from the definition of the frame. Since ||gl||4 = ||gl||2 = 1, the above

equation implies that < gk , gl >= 0 holds for all k ̸ = l. That is, the frame {gk(t)} is
an orthogonal basis. Since the norm of each frame element is equal to 1, {gk(t)}
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is a

standard orthogonal basis.

Definition 7.7.7. (Frame Operator) Let {gk , k ∈ K} be a known frame, if

Tf =
∑︁

k∈K
⟨f , gk⟩gk (7.7.16)

is an operator that maps function f ∈ L2(R) to Tf ∈ L2(R), then T is said to be a frame
operator.

The following are the properties of the frame operator {gk , k ∈ K}.
Property 1 The frame operator is bounded.

Property 2 The frame operator is self-adjoint, that is, ⟨f , Th⟩ = ⟨f , h⟩ holds for all
functions f and h.

Property 3 The frame operator is a positivity operator, that is., ⟨f , Th⟩ > 0.
Property 4 The frame operator is reversible, that is, T−1 exists.

Definition 7.7.8. (Exact frame) If the wavelet frame {ψmn} is a set of independent se-
quences, it is said to be an exact frame.

In the sense that it is no longer a frame after removing any element, the exact frame can

be understood as “just the right frame”. In wavelet analysis, the exact frame is often

called the Riesz basis. Due to the importance of the Riesz basis, its strict definition is

given here.

Definition 7.7.9. (Riesz Basis) If the family of discrete wavelet basis functions {ψj,k(t) :
j, k ∈ Z} is linearly independent, and there exist two positive constants A and B (0 < A ≤
B < ∞) such that

A||{cj,k}||22 ≤
∞∑︁

j=−∞

∞∑︁

k=−∞

|cj,kψj,k|2 ≤ B||{cj,k}||22 (7.7.17)

holds for all square summable sequences {cj,k}, where

||{cj,k}||22 =
∞∑︁

j=−∞

∞∑︁

k=−∞

|cj,k|2 ≤ ∞, (7.7.18)

then the two-dimensional sequence {ψj,k(t) : j, k ∈ Z} is said to be a Riesz basis
within L2(R), and the constants A and B are called the Riesz lower and upper bounds,
respectively.

Theorem 7.7.1.
[57, 58]

Let ψ(t) ∈ L2(R), and ψj,k(t) be a wavelet generated by ψ(t), then
the following three statements are equivalent:
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(1) {ψj,k} is the Riesz basis of L2(R);
(2) {ψj,k} is the exact frame of L2(R);
(3) {ψj,k} is a frame of L2(R) and is also a linearly independent family, i.e.,

∑︀
j
∑︀

k cj,k
ψj,k(t) = 0means cj,k ≡ 0, and the Riesz bound is the same as the frame bound.

So far, we have obtained three necessary conditions for a basic wavelet or a mother

wavelet ψ(t) to be used as a wavelet transform:

(1) The complete reconstruction condition Eq. (7.7.11) is equivalent to the admissible

condition Eq. (7.7.3);

(2) The stability condition equation Eq. (7.7.13) for the basic wavelet ψ(t);
(3) The linear independence condition of the wavelet family {ψj,k}, i.e., the Riesz

basis or linear independence basis condition Eq. (7.7.18).

By Gram-Schmidt orthogonalization, a Riesz basis can be transformed into a standard

orthogonal basis

[72]

.

A wavelet ψ(t) ∈ L2(R) is called a Riesz wavelet if the family of discrete functions

{ψj,k(t)} generated by it according to Eq. (7.7.20) is a Riesz basis.

Definition 7.7.10. (Orthogonal wavelet) A Riesz wavelet {ψ(t)} is called an orthogonal
wavelet if the generated family of discrete wavelets {ψj,k(t) : j, k ∈ Z} satisfies the
orthogonality condition

⟨ψj,k , ψm,n⟩ = δ(j − m)δ(k − n), ∀j, k,m, n ∈ Z. (7.7.19)

Definition 7.7.11. (Semiorthogonalwavelet) ARieszwavelet {ψ(t)} is calleda semiorthog-
nal wavelet if the generated family of discrete wavelets {ψj,k(t)} satisfies the “cross-scale
orthogonality”

⟨ψj,k , ψm,n⟩ = 0, ∀j, k,m, n ∈ Z and j ̸= m. (7.7.20)

Since the semi-orthogonal wavelets can be transformed into orthogonal wavelets by

standard orthogonalization, the semi-orthogonal wavelets will not be discussed later.

Definition 7.7.12. (Non-orthogonal wavelet) If a Riesz wavelet ψ(t) is not a semi-
orthogonal wavelet, it is called a non-orthogonal wavelet.

Definition 7.7.13. (Biorthogonal wavelet) A Riesz wavelet {ψ(t)} is called a biorthogonal
wavelet if the wavelet families {ψj,k(t)} and { ˜ψj,k(t)} generated by ψ(t) and its dual ˜ψ(t)
are biorthogonal Riesz bases

⟨ψj,k , ˜ψm,n⟩ = δ(j − m)δ(k − n), ∀j, k,m, n ∈ Z. (7.7.21)

The orthogonality defined above is the orthogonality of a single function itself, while

biorthogonality refers to the orthogonality between two functions. Note that the

biorthogonal wavelet does not involve the orthogonality of ψ(t) and ψj,k(t) itself.
ObviouslyAnal wavelet must be a biorthogonal wavelet, but a biorthogonal wavelet is
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not necessarily an orthogonal wavelet. Therefore, an orthogonal wavelet is a special

case of a biorthogonal wavelet.

Here are several typical wavelet functions.

(1) Gaussian wavelet

The wavelet function is a Gaussian function, i.e.,

ψ(t) = e−t
2

/2

. (7.7.22)

This wavelet is continuously differentiable. Its first-order derivative is

ψ′(t) = −te−t
2

/2

. (7.7.23)

(2) Mexican hat wavelet

The second-order derivative

ψ(t) = (t2 − 1)e−t
2

/2

(7.7.24)

of a Gaussian wavelet is called a Mexican hat wavelet, because its waveform is

similar to a Mexican hat.

Both Gaussianwavelet andMexican hatwavelet do not satisfy the orthogonal condition,

so they are non-orthogonal wavelets.

(3) Gabor wavelet

The Gabor function is defined as

G(t) = g(t − b)ejωt . (7.7.25)

It is the kernel function of the windowed Fourier transform introduced earlier,

where g(t) is a basis function, often taken as a Gaussian function. If the scale

parameter a is taken as the scaled form of the Gabor function, that is, the Gabor

wavelet

ψ(t) = 1√
a
g
(︂
t − b
a

)︂
ejωt (7.7.26)

is obtained.

(4) Morlet wavelet is defined as

ψ(t) = 1√
a
g
(︂
t − b
a

)︂
ejωt/a . (7.7.27)

It is very similar to the Gabor wavelet, but the frequency modulation term is differ-

ent.

Gaussian wavelet and Mexican hat wavelet are real wavelet functions, while Gabor

wavelet and Morlet wavelet are complex wavelet functions. The first three wavelets

satisfy the admissible condition Eq. (7.7.3), while Morlet wavelets only approximately

satisfy the admissible condition.
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7.8 Multiresolution Analysis

It is no exaggeration to say that without the Fast Fourier Transform (FFT), Fourier

analysis cannot be practically applied. Similarly, without the fast wavelet transform

(FWT), wavelet analysis would only be a theoretical artifact in signal processing.

In 1989, Mallat proposed a fast algorithm for computing the orthogonal wavelet

transform using quadrature mirror filters

[147]

, which is now conventionally referred to

as the fast wavelet transform. Later, this method has been extended to non-orthogonal

wavelet basis functions. Since the design of the quadrature mirror filters is based on

the multiresolution analysis of the signal, and wavelet analysis itself is multiresolution

analysis, it is necessary to introduce the theory andmethods ofmultiresolution analysis.

Consider the approximation of a strictly square integrable function u(t) ∈ L2(R)
using multiple resolutions. If this function is a signal, then “approximating it with

variable resolution 2

j
” can also be equivalently described as “analyzing the signal with

resolution 2

j
”. Therefore, multiresolution approximation and multiresolution analysis

are equivalent.

Let s(t) be a square integrable function, i.e., s(t) ∈ L2(R) means

∞∫︁

−∞

|s(t)|2dt < ∞. (7.8.1)

Definition 7.8.1. Multiresolution analysis within space L2(R)means constructing a sub-
space or chain {Vj : j ∈ Z} within space L2(R) such that it has the following properties:
(1) Inclusiveness

· · · ⊂ V
−2

⊂ V
−1

⊂ V
0
⊂ V

1
⊂ V

2
⊂ · · ·

or abbreviated as Vj ⊂ Vj+1, ∀j ∈ Z.
(2) Approximation (decreasing and increasing)

limj→+∞Vj = L2(R) i.e., ∪j<N Vj = L2(R), ∀N (decreasing)
limj→+∞Vj = 0 i.e., ∩j<N Vj = {0}, ∀N (increasing)

(3) Translation invariance

s(t) ∈ Vj ⇔ s(t − k) ∈ Vj , ∀k ∈ Z,

and scalable
s(t) ∈ Vj ⇔ s(2t) ∈ Vj+1.

(4) Existence of Riesz basis: There exists a function ϕ(t)whose translation {ϕ(t−k), k ∈
Z} forms the Riesz basis of the reference subspace V

0
.

The physical interpretation of the above properties of the subspace column or subspace

chain {Vj : j ∈ Z} is as follows:
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Inclusion: Lower resolution corresponds to coarser signal content, which corre-

sponds to a larger subspace.

Approximation: The union of all multiresolution analysis subspaces represents the

entire space of the square integrable function ϕ(t), i.e., the L2(R) space. In addition,
from the inclusiveness, the intersection of all subspaces Vj , j ∈ Z should be zero space.

Translation invariance and scalable: The translation of function s(t) does not
change its shape and its time resolution remains unchanged, so s(t) and s(t − k) be-
long to the same subspace. The increase of the time scale means that the function is

expanded and its time resolution decreases, so the subspace Vj is required to have
similar scalability, i.e., s(t) ∈ Vj ⇔ s(2t) ∈ Vj+1.

Existence of Riesz basis: The subspace V
0
is used as the reference space. With

{ϕ(t − k), k ∈ Z} as the Riesz basis of the subspace V
0
, this basis function can be used

to expand the signal f (t) to be approximated. The function ϕ(t) is called the generator
of multiresolution analysis. Since multiresolution analysis is also called multiscale

analysis, the generator ϕ(t) of multiresolution analysis is usually called scale function.

It should be pointed out that there are two kinds of symbols in multiresolution

analysis:

(1) Daubechies symbol

[72]

defines the resolution of subspace Vj as 2−j. Therefore, as j
decreases, the value of 2

−j
increases, i.e., the resolution of subspace Vj decreases.

In this case, the inclusiveness is Vj ∈ Vj−1 and the scalability is ϕ(t) ∈ Vj ⇔
ϕ(2t) ∈ Vj−1. And limj→−∞Vj = L2(R).

(2) Malllat symbol

[147]

defines the resolution of the subspace of Vj as 2jVj → L2(R), j →
+∞. Therefore, the smaller the value of j, the smaller the value of 2

−j
, i.e., the

higher the resolution of the subspace Vj. Thus, the inclusiveness is Vj ∈ Vj+1 and
the scalability is ϕ(t) ∈ Vj ⇔ ϕ(2t) ∈ Vj+1. And limj→∞Vj = L2(R). This is the
notation used in this book.

When reading other documents, readers should pay attention to the difference between

these two kinds of symbols.

From the scalability and inclusiveness, we know that ϕ( t
2

) ∈ V
−1

⊂ V
0
is ϕ( t

2

) ∈
V
0
, so ϕ( t

2

) can be expanded by the Riesz basis function {ϕ(t − k), k ∈ Z} of the
subspace V

0
. Let the expansion formula be

ϕ
(︂
t
2

)︂
=

√
2

∞∑︁

k=−∞

h(k)ϕ(t − k) (7.8.2)

or its equivalent be

ϕ(t) =
√
2

∞∑︁

k=−∞

h(k)ϕ(2t − k). (7.8.3)

This equation is the two-scale difference equation of the scaling function, where {h(k)}
is a square summable sequence.
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The spectrum of the scaling function is defined as

Φ(ω) = 1

2

∞∑︁

t=−∞
ϕ(t)e−jωt . (7.8.4)

Define the filter

H(ω) =
∞∑︁

k=−∞

h(k)√
2

e−jωk . (7.8.5)

Note that the filter H(ω) is equivalent to the discrete Fourier transform of h(k) in the
sense that it only differs by a constant factor

1√
2

. It is easy to verify that H(ω) is a
periodic function with period 2π.

From Eq. (7.8.3) to Eq. (7.8.5), we can obtain

Φ(ω) =

1

2

∞∑︁

t=−∞

[︃
√
2

∞∑︁

k=−∞

h(k)ϕ(2t − k)
]︃
e−jωt

=

∞∑︁

k=−∞

h(k)√
2

Φ
(︁ω
2

)︁
e−jωk/2 (make variable substitution 2t − k = u)

= H
(︁ω
2

)︁
Φ
(︁ω
2

)︁
. (7.8.6)

When ω = 0, the above equation gives the result Φ(0) = H(0)Φ(0). As long as Φ(0) ̸= 0,

then there must be H(0) = 1. This shows that the filter H(ω) is a low-pass filter.
Similarly, the two-scale difference equation of the wavelet function is

ψ(t) =
√
2

∞∑︁

k=−∞

g(k)ϕ(2t − k), (7.8.7)

where {g(k)} is a square summable sequence.

The spectrum of the wavelet function is defined as

Ψ(ω) = 1

2

∞∑︁

t=−∞
ψ(t)e−jωt . (7.8.8)

Similar to Eq. (7.8.5), a filter

G(ω) =
∞∑︁

k=−∞

g(k)√
2

e−jωk (7.8.9)

is defined, then there is

Ψ(ω) =

1

2

∞∑︁

t=−∞

[︃
√
2

∞∑︁

k=−∞

g(k)ϕ(2t − k)
]︃
e−jωt

=

∞∑︁

k=−∞

g(k)√
2

Φ
(︁ω
2

)︁
e−jωk/2 (make variable substitution 2t − k = u)

= G
(︁ω
2

)︁
Φ
(︁ω
2

)︁
. (7.8.10)



380 | 7 Linear Time-Frequency Transform

Making the variable substitution ω′ = ω/2, Eq. (7.8.6) gives

Φ
(︁ω
2

)︁
= H

(︁ω
4

)︁
Φ
(︁ω
4

)︁
. (7.8.11)

And so on, finally, there is

Φ(ω) =
∞∏︁

k=1

H
(︁ ω
2
k

)︁
Φ(0). (7.8.12)

To make the spectrum Φ(ω) of the scaling function only related to H(ω), let

ϕ(0) =
∞∫︁

−∞

ϕ(t)dt = 1 (7.8.13)

and call it the admissible condition of the scaling function. In this way, Eq. (7.8.12) is

simplified to

Φ(ω) =
∞∏︁

k=1

H
(︁ ω
2
k

)︁
. (7.8.14)

This shows that the spectrum Φ(ω) of the scaling function ϕ(t) is completely deter-

mined by the low-pass filter H(ω). In other words, if the low-pass filter H(ω) is given,
the spectrum Φ(ω) of the scaling function is uniquely determined, and its inverse

Fourier transform, the scaling function ϕ(t), is also uniquely determined. Therefore,

the generation of a suitable scaling function is attributed to the design of the low-pass

filter H(ω), which is independent of the initial value of this function.
Substituting the admissible condition Ψ(0) = 0 of wavelet and the admissible

condition Φ(0) = 1 of scaling function into Eq. (7.8.10), we immediately have G(0) = 0.

This shows that the filter G(ω) is a high-pass filter.
LetWj be the complementary spaces of Vj+1 within Vj, i.e., these subspaces satisfy

the relation

Vj+1 = Vj ⊕Wj , (7.8.15)

where⊕ is the direct sum of the subspaces. The so-called direct sum means that every

element of subspace Vj+1 can be written in a unique form as the sum of an element of

subspaceWj and an element of subspace Vj.
Since the subspace Vj is used to approximate the original signal or function with

resolution 2

j
, the subspace Vj contains the rough “image information” for approxi-

mating the original signal or function with resolution 2

j
, and the subspaceWj which

contains the detail information needed from the approximation with resolution 2

j
to

the approximation with resolution 2

j+1
.

If the translation set {ψ(t − k) : k ∈ Z} of function ψ(t) is the Riesz basis of
the subspace W

0
, then the function ψ(t) is called a wavelet function, or wavelet for

short. Then, the set {ϕj,k : j, k ∈ Z} of wavelet functions is the basis function of

L2(R). Subspaces Vj andWj are sometimes referred to as scaling subspace and wavelet



7.9 Orthogonal Filter Banks | 381

subspace respectively, for which the scaling and wavelet functions are used as the

basis functions, respectively.

Themain purpose of themultiresolution analysis is to construct the desiredwavelet

using the scaling function. In order to make the set {ϕ(t − k) : k ∈ Z} to approximate

even the simplest functions (such as constants), it is natural to assume that the scaling

function and its integer time translations obey the so-called “unit decomposition”, i.e.,

∞∑︁

k=−∞

ϕ(t − k) = 1, ∀t ∈ R. (7.8.16)

To summarize the above discussion, the scaling function in themultiresolution analysis

should satisfy two basic constraints: (1) admissible condition Eq. (7.8.13); (2) unit

decomposition Eq. (7.8.16).

7.9 Orthogonal Filter Banks

Once the scaling function ϕ(t) of multiresolution analysis has been determined, the

wavelet function ψ(t) can also be constructed. According to the constructed orthogonal
scaling function or biorthogonal scaling function, the obtained wavelets are called

orthogonal wavelet and biorthogonal wavelet respectively; the corresponding multires-

olution analysis is orthogonal and biorthogonal multiresolution analysis.

This section mainly discusses how to construct orthogonal wavelets and biorthog-

onal wavelets.

7.9.1 Orthogonal wavelet

The two-scale difference equations of the scaling functionϕ(t) and thewavelet function
ψ(t) are

ϕ(t) =

√
2

N−1∑︁

k=0

h(k)ϕ(2t − k), (7.9.1)

ψ(t) =

√
2

N−1∑︁

k=0

g(k)ϕ(2t − k), (7.9.2)

where h(k) and g(k) are the coefficients of the low-pass filter H(ω) and the high-pass
filter G(ω), respectively. Therefore, the construction of the scaling function and wavelet
function depends on the design of the filter banks.

In the following, several well-known orthogonal wavelets are described.

Haar wavelet: its scaling function is called the Haar scaling function, defined as

ϕ(t) =
{︃
1, 0 ≤ t ≤ 1
0, Others

. (7.9.3)
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1 t
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φ (t)

(a)Harr scale function

1
2

t

−1

1

ψ (t)

(b)Harr wavelet function

Fig. 7.9.1: Haar scaling function ϕ(t) and Haar wavelet ψ(t)

The expression of the Haar wavelet function is

ψ(t) = X
[0,1/2]

(x) − X
[1/2,1]

(x) =

⎧
⎪⎨
⎪⎩

1, 0 ≤ t ≤ 0.5
−1, 0.5 ≤ t ≤ 1
0, Others

, (7.9.4)

where X
[a,b](x) is a box function, defined as

X
[a,b](x) =

{︃
1, a ≤ t < b
0, Others

. (7.9.5)

Fig. 7.9.1 (a) and (b) show the waveforms of the Haar scaling function and Haar wavelet,

respectively.

It is easy to see from Fig. 7.9.1 that the Haar scaling function ϕ(t) and the Haar

wavelet ψ(t) are standard orthogonal functions, respectively, and the scaling function
and wavelet function are also orthogonal to each other.

Shannon wavelet is defined as

ψ
Shannon

(t) = sin(2πt) − sin(πt)
πt . (7.9.6)

Haar wavelet and Shannon wavelet are less used in practice, because Haar wavelet is

not smooth, while Shannon wavelet is smooth but decays very slowly.

Daubechies wavelet: Daubechies proposes the following iterative method

[111]

to

construct the scaling function.

Algorithm 7.9.1. Iterative Construction Algorithm of scaling function
Step 1 Let the initial value ϕ(0)

(t) = p
[0,1)

(t), where

p
[0,1)

(x) =
{︃
1, t ∈ [0, 1)

0, Others
(7.9.7)

is a rectangular window function defined in the interval [0, 1).
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Fig. 7.9.2: The first two recursive steps of the iterative construction of a scaling function

Step 2 Compute

ϕ(i+1)
(t) =

√
2

N−1∑︁

k=0

h(k)ϕ(i)
(2t − k). (7.9.8)

Step 3 Determine whether ϕ(i)
(t) converges or not. If it converges, stop the iteration;

otherwise, let i ← i + 1 and return to Step 2 to continue the iteration until the
algorithm converges.

It has been proved that after iterations, ϕ(i)
(t) converges to ϕ(t), differing by at most a

multiplier factor

[111]

. As an example, Fig. 7.9.2 illustrates the first two recursive steps of

the iterative construction of the scaling function, where the filter coefficients h(k) =√
2

2

{︀
1

2

, 1,

1

2

}︀
.

The construction algorithm of Daubechies orthogonal wavelet

[111]

is as follows.

Algorithm 7.9.2. Daubechies standard orthonormal wavelet construction algorithm
Step 1 Select the length N of the scaling filter H(ω).
Step 2 Let

P(z) =
N−1∑︁

k=0

(︃
N − 1 + k

k

)︃(︂
2 − z − z−1

4

)︂k
+

(︂
2 − z − z−1

4

)︂N
R
(︂
z + z−1

4

)︂
, (7.9.9)

where R(z) is a polynomial of odd order such that P(ejω) is nonnegative for all ω.
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Step 3 Decompose P(z) into P(z) = Q(z)Q(z−1), where Q(z) is a polynomial of z. The most
common method is to take the roots of P(z) in the unit circle to form the polynomial
Q(z).

Step 4 Construct the scaling function

H(ω) =
(︂
1 + e−jω

2

)︂M
Q(e−jω) (7.9.10)

and let G(ω) = e−jωH*(ω + π) or g(k) = (−1)

kh*(1 − k).
Step 5 Use Algorithm 7.9.1 to iteratively construct the scaling function ϕ(t) and use

Eq. (7.9.2) to construct the wavelet function ψ(t).

For the convenience of readers, Table 7.9.1 lists the 4th, 6th, and 8th order scaling filter

coefficients used by the Daubechies orthogonal wavelet

[178]

.

Tab. 7.9.1: The low-pass filter coefficients for Daubechies orthogonal wavelets

N n h(n) N n h(n) N n h(n)

4 0 0.482962913145 6 0 0.332670552950 8 0 0.230377813309
1 0.836516303738 1 0.806891509311 1 0.714846570553
2 0.224143868042 2 0.459877502118 2 0.630880767930
3 -0.129409522551 3 -0.135011020010 3 -0.027983769417

4 -0.085441273882 4 -0.187034811719
5 0.035226291882 5 0.030841381836

6 0.032883011667
7 -0.010597401785

7.9.2 Fast Orthogonal Wavelet Transform

The frequency of a non-stationary signal varies with time, and this variation can be

divided into two parts: slow-varying and fast-varying. The slow-varying part corre-

sponds to the low-frequency part of the non-stationary signal and represents the main

contour or rough image of the signal, while the fast-varying part corresponds to the

high-frequency part of the signal and represents the details of the signal. Similarly,

any image can be decomposed into two parts: contour edge (low frequency) and detail

texture (high frequency). It is on this basis that a famous pyramidal algorithm for image

decomposition and reconstruction was developed. Its basic idea is that the original

image f (x, y) is regarded as a discrete approximation A
0
f with resolution 20 = 1, and

it can then be decomposed into the sum of a coarse approximation AJ f with resolution
2

J
and a number of successive detail approximations Dj f with resolution 2j(0 < j < J).
Inspired by the pyramidal algorithm mentioned above and combined with mul-

tiresolution analysis, Mallat proposed a pyramidal multiresolution decomposition
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and synthesis algorithm for signal

[147]

, which is customarily called the fast orthogonal

wavelet transform algorithm, often abbreviated as Mallat algorithm. The status of the

orthogonal fast wavelet transform algorithm in wavelet analysis is quite similar to that

of FFT in classical Fourier analysis.

The idea of the orthogonal fast wavelet transform algorithm is as follows: assuming

that the discrete approximation Aj f of a function or signal f (t) ∈ L2(R) at the resolution
2

j
has been calculated, the discrete approximation Aj−1f (t) of f (t) at the resolution

2

j−1
can be obtained by filtering Aj f (t) with a discrete low-pass filter H.
Let ϕ(t) and ψ(t) be the scaling function and wavelet function of function f (t) at

2

j
resolution approximation, respectively, then the discrete approximation Aj f (t) and

detail Dj f (t) can be expressed as

Aj f (t) =
∞∑︁

k=−∞

cj,kϕj,k(t) and Dj f (t) =
∞∑︁

k=−∞

dj,kψj,k(t), (7.9.11)

where cj,k and dj,k are the scaling (or rough image) and wavelet (or detail) coefficients

at 2

j
resolution, respectively.

If Aj f (t) is decomposed into the sum of rough image Aj−1f (t) and detail Dj−1f (t)

Aj f (t) = Aj−1f (t) + Dj−1f (t), (7.9.12)

where

Aj−1f (t) =
∞∑︁

m=−∞
cj−1,mϕj−1,m(t), (7.9.13)

Dj−1f (t) =
∞∑︁

m=−∞
dj−1,mψj−1,m(t), (7.9.14)

then we have

∞∑︁

m=−∞
cj−1,mϕj−1,m(t) +

∞∑︁

m=−∞
dj−1,mψj−1,m(t) =

∞∑︁

m=−∞
cj,mϕj,m(t). (7.9.15)

Next, we study the relationship between cj−1,k and cj,m, as well as the relationship
between dj−1,k and dj,m. Note that the scaling functions ϕ(t) and ψ(t) are (standard)
orthogonal functions, respectively. First, from the two-scale difference equation of the

scaling function, we get

ϕj−1,k(t) = 2

(j−1)/2ϕ(2j−1t − k) = 2

(j−1)/2 �
√
2

∞∑︁

i=−∞
h(i)ϕ(2j t − 2k − i).

Making variable substitution m′ = 2k + i, and the above equation becomes

ϕj−1,k(t) =
∞∑︁

m′=−∞

h(m′ − 2k)2j/2ϕ(2j t − m′) =
∞∑︁

m′=−∞

h(m′ − 2k)ϕj,m′ (t). (7.9.16)
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Multiplying both sides of Eq. (7.9.16) by ϕ*j,m(t) and taking the integral about t, then
using the orthogonality of ϕj,k(t) yields

⟨ϕj−1,k , ϕj,m⟩ = h(m − 2k).

Taking the complex conjugate we obtain

⟨ϕj,m , ϕj−1,k⟩ = h*(m − 2k). (7.9.17)

Similarly, using the two-scale difference equation of the wavelet function we have

ψj−1,k(t) = 2

(j−1)/2ψ(2(j−1)(t − k)

= 2

(j−1)/2√
2

∞∑︁

i=−∞
g(i)ϕ(2j t − 2k − i)

=

∞∑︁

m′=−∞

g(m′ − 2k)ϕj,m′ (t). (7.9.18)

Multiplying both sides of Eq. (7.9.18) by ϕ*j,m(t) and taking the integral about t, we get

⟨ϕj,m , ψj−1,k⟩ = g*(m − 2k). (7.9.19)

Multiplying a suitable function on both sides of Eq. (7.9.15) and making the integral

about t, then using the relevant orthogonality, the following three important results

can be obtained.

(1) Multiplying ϕ*j−1,k(t) and using Eq. (7.9.17), we have

cj−1,k =
∞∑︁

m=−∞
h*(m − 2k)cj,m . (7.9.20)

(2) Multiplying ψ*j−1,k(t) and using Eq. (7.9.19), we have

dj−1,k =
∞∑︁

m=−∞
g*(m − 2k)dj,m . (7.9.21)

(3) Multiplying ϕ*j,k(t), using Eqs. (7.9.17) and (7.9.19), we have

cj,k =
∞∑︁

m=−∞
h(m − 2k)cj−1,m +

∞∑︁

m=−∞
g(m − 2k)dj−1,m . (7.9.22)

Defining infinite dimensional vectors cj = [cj,k]∞k=−∞, dj = [dj,k]∞k=−∞ and matrices

H = [Hm,k]∞m,k=−∞, G = [Gm,k]∞m,k=−∞, where Hm,k = h*(m − 2k), and Gm,k = g*(m − 2k),
then Eq. (7.9.20) to Eq. (7.9.22) can be abbreviated as

{︃
cj−1 = Hcj
dj−1 = Gdj

j = 0, −1, · · · , −J + 1 (7.9.23)
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and

cj = H*cj−1 + G*dj−1, j = −J + 1, · · · , −1, 0, (7.9.24)

where H* and G* are the conjugate matrices of H and G, respectively.
Eq. (7.9.23) is the fast orthogonal wavelet transform algorithm (or Mallat pyramidal

decomposition algorithm),while Eq. (7.9.24) is the inverse orthogonalwavelet transform

algorithm (orMallat pyramidal reconstruction algorithm),which are respectively shown

in Fig. 7.9.3 (a) and (b), and the pyramidal structure of these two algorithms is clear

when drawn in vertical form.

c0 c−1 c−2 c−3 c−4

d−1 d−2 d−3 d−4

H H H H

G G G G

H

G · · ·

(a)

c0 c−1 c−2 c−3 c−4

d−1 d−2 d−3 d−4

H∗ H∗ H∗ H∗

G∗
G∗ G∗ G∗

H∗

G∗ · · ·

(b)

Fig. 7.9.3: (a) The fast orthogonal wavelet transform algorithm; (b) The inverse transform algorithm

The low-pass filter H and high-pass filter G form a filter bank, and the conjugate filter

bank (H*, G*) decomposes the original signal and is called the analysis filter bank. Filter

bank (H, G) is used to reconstruct the signal, that is, to obtain the signal reconstruction
of orthogonal multiresolution analysis

[147]

, called synthetic filter bank. The left half of

Fig. 7.9.4 shows the signal analysis schematic diagram for orthogonal multiresolution

analysis, and the right half shows the signal reconstruction schematic diagram.

In the figure, ↓ 2 denotes downsampling (i.e., sampling of one out of every two

samples), while ↑ 2 is upsampling (i.e., inserting a zero between every two samples),

or interpolation.

The finite impulse response filter (FIR) is easy to implement, and the linear phase

is the prerequisite for maintaining the signal without distortion. Therefore, from the

practical application, it is natural to expect that both the analysis filter bank and

synthesis filter bank can be constructed with FIR filters with a linear phase.

The orthogonal multiresolution analysis includes four basic operations: filtering,

downsampling, upsampling (i.e., interpolation), and reconstruction. The operation

form composed of them is called the conjugate quadratic filter subband coding method
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Fig. 7.9.4: The signal reconstruction schematic diagram of orthogonal multiresolution analysis

in signal processing, originally proposed by Smith and Barnwell in 1986 as an image

processing method

[196]

.

The advantage of using conjugate quadratic filters to realize the fast orthogonal

wavelet transform is that only two filters H(ω) and G(ω) need to be designed. However,
unless both H(ω) and G(ω) are taken as Haar filters, they cannot be both FIR and linear
phase

[58]

. Unfortunately, the wavelets generated by the Haar filter are discontinuous

and nonsmooth, so this wavelet has no practical application.

7.10 Biorthgonal Filter Bank

The low-pass filter H and high-pass filter G of the orthogonal filter bank can not be FIR

and linear phase at the same time. An effective way to overcome this major drawback

is not only to use the filter bank (H, G) but also to add another non-conjugate filter
bank (

˜H, ˜G), to expand the freedom of filter design. This is the basic starting point of

the biorthogonal filter bank.

7.10.1 Biorthogonal Multiresolution Analysis

Compared with the orthogonal wavelet transform, although the synthetic filter bank

(H, G) is used, the analysis filter bank ( ˜H*, ˜G*) used in biorthogonal wavelet transform
is no longer the conjugate form of the synthetic filter bank (H, G), but the conjugate
form of another filter bank (

˜H, ˜G), as shown in Fig. 7.10.1.
Since two filters are added to the orthogonal wavelet, there is more freedom in

filter design, thus it is possible to implement all the four filters H(ω), G(ω), ( ˜H(ω) and
˜G(ω) with linear phase FIR filter.

Let the functions constructed by filters H(ω) and ˜H(ω) be the scaling function
ϕ(t) and the dual scaling function

˜ϕ(t), respectively, and the function constructed

by filters G(ω) and ˜G(ω) be the wavelet function ψ(t) and the dual wavelet function
˜ψ(t). Biorthogonal multiresolution analysis actually consists of two multiresolution
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Fig. 7.10.1: The signal reconstruction schematic diagram of biorthogonal multiresolution analysis

analyses: one is the multiresolution analysis generated by the scaling function ϕ(t)
and the wavelet function ψ(t) , i.e., Vj+1 = Vj⊕Wj; the other is the dual multiresolution

analysis generated by the dual scaling function
˜ϕ(t) and the dual wavelet function

˜ψ(t), i.e., ˜Vj+1 = ˜Vj ⊕ ˜Wj.

It should be noted that thewavelet subspaceWj is no longer the orthogonal comple-

ment of the scaling subspaceVj, and the dualwavelet subspace ˜Wj is not the orthogonal

complement of the dual scaling subspace
˜Vj. However, the orthogonal complement

relationships

Wj ⊥ ˜Vj
˜Wj ⊥ Vj

}︃
(7.10.1)

still exist between these four subspaces, that is, the wavelet subspaceWj is the orthog-

onal complement of dual scaling subspace
˜Vj in ˜Vj+1, while dual wavelet subspace ˜Wj

is the orthogonal complement of scaling subspace Vj in Vj + 1. From Eq.(7.10.1), it is

easy to know

˜Wj ⊥ Wj′ ∀j ̸= j′. (7.10.2)

The multiresolution analysis subspaces corresponding to
˜Wj and Wj are Vj and ˜Vj,

respectively. Note that the scaling function ϕ(t) still satisfies the admissible condition

Eq. (7.8.13) and the unit decomposition Eq. (7.8.16).

Now, the task is how to design the filter banks (H, G) and ˜H, ˜G) to construct the
biorthogonal wavelet function. Therefore, it is necessary to analyze the constraints

between these four filters from the complete reconstruction of the signal[58],

Let the Fourier transform of the discrete signal s(n) be

S(ω) =
∞∑︁

n=−∞
s(n)e−jnω . (7.10.3)
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Using the filters
˜H and

˜G, the discrete signal s(n) is transformed into an approximation

sequence a(n) and a detail sequence d(n), whose Fourier transforms are defined as

A(ω) =

1

2

[
˜H*(ω)S(ω) + ˜H*(ω + π)S(ω + π)], (7.10.4)

D(ω) =

1

2

[
˜G*(ω)S(ω) + ˜G*(ω + π)S(ω + π)], (7.10.5)

respectively. Thus, the frequency domain form of the reconstructed signal r(n) can be
written as

R(ω) = α(ω)S(ω) + β(ω)S(ω + π), (7.10.6)

where

α(ω) = H(ω) ˜H*(ω) + G(ω) ˜G*(ω), (7.10.7)

β(ω) = H(ω) ˜H*(ω + π) + G(ω) ˜G*(ω + π). (7.10.8)

When α = 1 and β = 0 hold for all Ω ∈ [−π, π], Eq. (7.10.6) gives the expected complete

reconstruction result R(ω) = S(ω), which is expressed as r(n) = s(n) in time domain,

i.e., the complete reconstruction of the discrete signal s(n) is realized. That is, the
conditions for complete signal reconstruction are

H(ω) ˜H*(ω) + G(ω) ˜G*(ω) = 1, (7.10.9)

H(ω) ˜H*(ω + π)S(ω) + G(ω) ˜G*(ω + π) = 0. (7.10.10)

Definition 7.10.1. Consider the filter bank (A, B) and its dual filter bank ( ˜A, ˜B), let

M =

[︃
A(ω) A(ω + π)
B(ω) B(ω + π)

]︃
and M̃ =

[︃
˜A(ω) ˜A(ω + π)
˜B(ω) ˜B(ω + π)

]︃
, (7.10.11)

if
M̃HM = I

2
or MTM̃*

= I
2

(7.10.12)

where I
2
is a 2 × 2 identity matrix, then (A, B) and ( ˜A, ˜B) are called biorthogonal filter

banks.

It can be proved (left as an exercise) that the filter banks (H, G) and ( ˜H, ˜G) satisfy the
above definition, so they are biorthogonal filter banks.

Let z = ejω, then Eq. (7.10.9) and Eq. (7.10.10) can be written as

H(z) ˜H(z−1) + G(z) ˜G(z−1) = 1,

H(z) ˜H(−z−1) + G(z) ˜G(−z−1) = 0,

respectively, and their solutions are

H(z) = ∆H∆ and G(z) = ∆G∆ , (7.10.13)
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where

∆ =

⃒⃒
⃒⃒
⃒
˜H(z−1) ˜G(z−1)
˜H(−z−1) ˜G(−z−1)

⃒⃒
⃒⃒
⃒ , (7.10.14)

∆H =

⃒⃒
⃒⃒
⃒
0

˜G(z−1)
1

˜G(−z−1)

⃒⃒
⃒⃒
⃒ =

˜G(−z−1), (7.10.15)

∆G =

⃒⃒
⃒⃒
⃒
˜H(z−1) 1

˜H(−z−1) 0

⃒⃒
⃒⃒
⃒ = −

˜H(−z−1). (7.10.16)

Obviously, to make H(z) and G(z) avoid infinite impulse response solutions, the deter-

minant△ of the equation must be a monomial az. For simplicity, choose△ = −z, then
Eq. (7.10.14) gives

[−z−1 ˜G(−z−1)] ˜H(z−1) + [−z−1 ˜G(z−1)] ˜H(−z−1)] = 1. (7.10.17)

In this case, from Eqs. (7.10.13) and (7.10.14) we can get

H(z) =
˜G(−z−1)
−z = −z−1 ˜G(−z−1) or H(−z) = ˜G(z−1). (7.10.18)

Substituting them into Eq. (7.10.17) yields

H(z) ˜H(z−1) + H(−z) ˜H(−z−1) = 1. (7.10.19)

The filter
˜H(ω) satisfying this condition is called the dual filter of H(ω).

On the other hand, from Eqs. (7.10.13) and (7.10.16), it is easily obtain G(z) =

z−1 ˜H(−z−1). Combining it with the solution H(−z) = z−1 ˜G(z−1) obtained earlier, we

have

G(z) = z−1 ˜H(−z−1) or G(ω) = e−jω ˜H*(ω + π), (7.10.20)

˜G(z) = z−1H(−z−1) or
˜G(ω) = e−jωH*(ω + π). (7.10.21)

Substituting the above two equations into Eq. (7.10.17), we obtain

G(z) ˜G(z−1) + G(−z) ˜G(−z−1) = 1. (7.10.22)

The filter
˜G(ω) satisfying this condition is called the dual filter of G(ω).

7.10.2 Design of Biorthogonal Filter Banks

Eq. (7.10.19) can be rewritten as

P(z) + P(−z) = 1, (7.10.23)

where P(z) = H(z) ˜H(z−1).
Summarizing the above discussion, the following steps can be derived for the

design of biorthogonal filter banks:
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(1) Determine the filters H(z) and ˜H(z) from the factorization P(z) = H(z) ˜H(z−1) of the
solution P(z) of Eq. (7.10.23);

(2) Designing filters G(z) and ˜G(z) using Eq. (7.10.20) and Eq. (7.10.21), respectively.

For the FIR structure of filter bank (H, G) satisfying Eq. (7.10.23), Vetterli and Herley
proved the following important result

[216]

.

Proposition 7.10.1. The linear phase real FIR filters H(z) and ˜H(z) satisfying the com-
plete reconstruction condition have one of the following forms:
(1) Both the filter H(z) and ˜H(z) are symmetric and odd length, and their lengths differ

by an odd multiple of 2.
(2) One filter is symmetric and the other is antisymmetric. Both filters are of even length,

and their lengths are equal or differ by an even multiple of 2.
(3) One filter is of odd length and the other filter is of even length, and the zeros of the

two filters are all on the unit circle. The two filters are either symmetric, or one is
symmetric and the other is antisymmetric.

Note that the filter of the form (3) has almost no practical significance and is a trivial

solution.

The filter bank based on the complete reconstruction of the signal will lead to the

biorthogonal scaling function and wavelet function. The proof is as follows.

(1) Eq. (7.10.19) means that the same odd power terms of z in H(z) ˜H(z−1) and
H(−z) ˜H(−z−1) cancel each other, while all even power terms of z should be

equal to zero, and the zero power term of H(z) ˜H(z−1) is equal to 1

2

. If let

H(z) =
∞∑︁

k=−∞

h(k)√
2

z−k and
˜H(z) =

∞∑︁

k=−∞

˜h(k)√
2

z−k , (7.10.24)

then the inverse z transform of H(z) ˜H(z) is
∑︁

k

h(k) ˜h(k − 2n) = δ(n). (7.10.25)

This shows that the low-pass filter coefficient h(k) and its dual low-pass filter

coefficient
˜h(k) are biorthogonal.

(2) Eq. (7.10.22) means that the same odd power terms of z in G(z) ˜G(z−1) and
G(−z) ˜G(−z−1) cancel each other, while all even power terms of z should be equal
to zero, and the zero power term of G(z) ˜G(z−1) is equal to 1

2

. If let

G(z) =
∞∑︁

k=−∞

g(k)√
2

z−k and
˜G(z) =

∞∑︁

k=−∞

g̃(k)√
2

z−k , (7.10.26)

then the inverse z transform of G(z) ˜G(z) is
∑︁

k

g(k)g̃(k − 2n) = δ(n). (7.10.27)
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This shows that the high-pass filter coefficient g(k) and its dual high-pass filter
coefficient g̃(k) are biorthogonal.

(3) Using Eq. (7.10.20), we can obtain

G(z) ˜H(z) = z−1 ˜H(z−1) ˜H(z−1). (7.10.28)

Notice that
˜H(z−1) ˜H(z−1) has only zero and even power terms of z with coefficients

not equal to zero, while the coefficients of all odd terms are zero, so G(z) ˜H(z) =
z−1 ˜H(z−1) ˜H(z−1) has only odd power terms of z with coefficients not equal to zero,

while the coefficients of zero and all even power terms are zero. This means that

the inverse z transform of G(z) ˜H(z) is
∑︁

k

g(k) ˜h(k − 2n) = 0, ∀n. (7.10.29)

Similarly, it can be proved that

∑︁

k

h(k)g̃(k − 2n) = 0, ∀n. (7.10.30)

To summarize the abovediscussion, an important conclusion canbedrawn: the analytic

filter bank (
˜H, ˜G) and the synthetic filter bank (G, H) satisfy the complete reconstruction

condition generate biorthogonal scaling functions and wavelet functions.

7.10.3 Biorthogonal Wavelet and Fast Biorthogonal Transform

The above theory of filter bank can be used to design biorthogonal wavelet function.

First, consider the iterative construction of the scaling function and the dual scaling

function.

(1) A unit DC signal U(x) = 1 (where x ∈ [0, 1]) is used as the initial value ϕ(0)

(x) of
the scaling function iteration. If let the filter H(0)

= h(0)(0) = 1, then the initial

value can be written as

ϕ(0)

(x) = U(x) = h(0)(0) = 1, 0 ≤ x ≤ 1. (7.10.31)

(2) Taking the 2 ↓ sampling (downsampling) for ϕ(0)

(x), and then passing the sam-

pling result through the filter H(z) to obtain the first iteration ϕ(1)

(x) of the scaling
function, as shown in the left half of Fig. 7.10.2(a). Since using 2 downsampling

and then filtering is equivalent to filtering with H(z2) and then downsampling, the

left half is equivalently drawn as the right half. If let the equivalent filter

H(1)

(z) = H(z2) =
1∏︁

m=1
H(z2

m
), (7.10.32)
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then the scaling function generated by the first iteration is a piecewise invariant

function and can be expressed as

ϕ(1)

(x) = 2

1/2h(1)(k), 2

−1k ≤ x < 2−1(k + 1), (7.10.33)

where h(1)(k) is the k-th coefficient of the filter H(1)

(z). Note that the length of

H(1)

(z) is twice as long as H(z).
(3) Then, taking the 2 ↓ sampling of ϕ(0)

(x) and filtering to obtain the second iteration
ϕ(2)

(x) of the scaling function. And so on, the scaling function produced by the
i-th iteration is the output of U(x) through the i-th cascade of downsampling +

filtering, as shown in Fig. 7.10.2(b). Obviously, this result can be equivalently drawn

as Fig. 7.10.2.

H (z) H
(
z2
)

↓ 2 ↓ 2≡
U (x) φ(1) (x) U (x) φ(1) (x)

(a)

H (z) H (z)↓ 2 ↓ 2
· · ·

U (x) φ(i) (x)

(b)

H
(
z2
)
H
(
z4
)
· · ·H

(
z2

i
)

↓ 2
U (x) φ(i) (x)

(c)

Fig. 7.10.2: Iterative generation of the scaling function

The z-transform of the equivalent filter is

H(i)
(z) =

i∏︁

m=1
H(z2

m
). (7.10.34)

When U(x) is used as input, the output of the equivalent filter is

ϕ(i)
(x) = 2

i/2h(i)(k), 2

−ik ≤ x < 2−i(k + 1), (7.10.35)

where h(i)(k) denotes the k-th coefficient of the filter H(i)
(z).

If the filter H(z) in Fig. 7.10.2 is replaced by ˜H(z), then the output of the equivalent
filter is

˜ϕ(i)
(x) = 2

i/2
˜h(i)(k), 2

−ik ≤ x < 2−i(k + 1), (7.10.36)
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where
˜h(i)(k) denotes the k-th coefficient of the filter

˜H(i)
(z).

In the process of iteratively constructing the scaling function and the dual scaling

function, using the formula

ψ(i)
(x) =

√
2

L−1∑︁

k=0

g(i)(k)ϕ(i)
(2x − k), 2

−ik ≤ x < 2−i(k + 1), (7.10.37)

˜ψ(i)
(x) =

√
2

L−1∑︁

k=0

g̃(i)(k) ˜ϕ(i)
(2x − k), 2

−ik ≤ x < 2−i(k + 1), (7.10.38)

the wavelet function ψ(i)
(x) and the dual wavelet function ˜ψ(i)

(x) can be constructed,
respectively.

Eq. (7.10.35) to Eq. (7.10.38) constitute the iterative construction algorithm of the

scaling function ϕ(x), dual scaling function
˜ϕ(x), wavelet function ψ(x) and dual

wavelet function
˜ψ(x).

If the filter bank satisfies the complete reconstruction condition and the low-pass

filter H(z) and ˜H(z) can guarantee ϕ(i)
(x) and ˜ϕ(i)

(x) to converge to continuous func-
tions, respectively, then the constructed scaling function and wavelet function satisfy

the biorthogonality condition

⟨ϕ(x − n), ˜ϕ(x − l)⟩ = δnl , (7.10.39)

⟨ψ(x − n), ˜ψ(x − l)⟩ = δnl , (7.10.40)

⟨ϕ(x − n), ˜ψ(x − l)⟩ = 0, ∀n, l, (7.10.41)

⟨ψ(x − n), ˜ϕ(x − l)⟩ = 0, ∀n, l, (7.10.42)

i.e., the constructed wavelet function is biorthogonal.

In wavelet analysis, frame theory, multiresolution analysis, and filter bank theory

are closely related to each other. A more detailed discussion of frame theory and filter

bank can be found in the literature [201].

The fast wavelet transform formula Eq. (7.9.23) and inverse wavelet transform

formula Eq. (7.9.24) can be easily generalized to the biorthogonal wavelet transform

algorithm {︃
cj−1 =

˜Hcj
dj−1 =

˜Gcj
j = 0, −1, · · · , −J + 1 (7.10.43)

and inverse biorthogonal wavelet transform algorithm

cj = Hcj−1 + Gdj−1 j = −J + 1, · · · , −1, 0, (7.10.44)

where cj = [cj,k]∞k=−∞, dj = [dj,k]∞k=−∞, ˜H = [
˜h(m−2k)]∞m,k=−∞ and

˜G = [g̃(m−2k)]∞m,k=−∞.
Fig. 7.10.3 (a) and (b) show the fast biorthogonal wavelet transform algorithm and

the inverse transform algorithm, respectively.

When using orthogonal signal transform and non-orthogonal signal transform,

we need to pay attention to the following matters

[28]

.

Precautions for orthogonal signal transform:
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c0 c−1 c−2 c−3 c−4

d−1 d−2 d−3 d−4

H̃ H̃ H̃ H̃

G̃ G̃ G̃ G̃

H̃

G̃ · · ·

(a)

c0 c−1 c−2 c−3 c−4

d−1 d−2 d−3 d−4

H H H H

G G G G

H

G · · ·

(b)

Fig. 7.10.3: (a) The fast orthogonal wavelet transform algorithm; (b) The inverse transform algorithm

(1) The orthogonal transform of a signal represents the approximation of the signal at

a certain time period and these approximations cannot be used to extrapolate or

predict the value of the signal outside this time period.

(2) When using orthogonal signal transform, it is difficult and often impossible to

obtain a priori information about the input signal source.

(3) If the real components of the signal are not orthogonal to each other, the orthogonal

transform does not decompose the signal into their real components.

(4) The orthogonal signal transform is not suitable for irregular sampling signal³.

Precautions for non-orthogonal signal transform:

(1) If a signal transform uses a set of orthogonal continuous basis functions which

are digitized using irregular sampling, then the digitized signal transform is non-

orthogonal.

(2) When the observation time interval is shorter than the time period of the signal,

the signal transform must use a non-orthogonal transform.

(3) If the real components of the signal are not orthogonal to each other, the signal

transform must use a non-orthogonal transform.

3 Uniform sampling refers to equally spaced sampling, and nonuniform sampling refers to non-equally

spaced sampling. However, nonuniform sampling can be either nonuniformly sampled according to

some rules (nonuniform sampling) or completely irregularly sampled (irregular sampling).
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Summary

This chapter first introduces two basic forms of signal local transform, the analytic

signal, and the exclusion principle. Then, focusing on the linear transform of time-

frequency signal analysis, the short-time Fourier transform, critical sampling, and

oversampling Gabor transform are discussed; and the fractional-order Fourier trans-

form is introduced.

Wavelet analysis is an important part of this chapter, which includes two basic

problems: the design of the wavelet and the fast algorithm for the wavelet transform.

We discuss the design method of wavelet and the realization of fast wavelet transform

in detail from the frame theory, multiresolution analysis, and filter bank theory.

Exercises

7.1 Find the instantaneous frequency ωi(t) and average frequency ω̄ of the following

signals:

(1) Normalized Gaussian signal

s(t) = g(t) =
(︁ α
π

)︁
1/4

exp

(︁
−

α
2

t2
)︁
, α > 0

(2) Linear FM signal with Gaussian envelope

s(t) = g(t)ejmt
2

7.2 Let

Y(t, ω) =
∞∫︁

−∞

y(u)γ*(u − t)e−jωudu

be the short-time Fourier transform. Express Y(t, ω) in terms of the Fourier transform

of y(t) and γ(t), and use this representation to show why γ(t) is required to be a narrow-
band function?

7.3 Prove the following properties of the short-time Fourier transform:

(1) Short-time Fourier transform is a linear time-frequency representation;

(2) Short-time Fourier transform is frequency shift invariant

z̃(t) = z(t)ejω0
t
→ STFTz̃(t, ω) = STFTz(t, ω − ω0

)

7.4 Let the window function be

g(t) =
(︁ α
π

)︁
1/4

exp

(︁
−

α
2

t2
)︁
.

Find the short-time Fourier transform STFT(t, ω) of the Gaussian signal

s(t) =
(︂
β
π

)︂
1/4

exp

(︂
−

β
2

t2
)︂
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7.5 Prove that the signal z(t) can be recovered or reconstructed using an inverse

short-time Fourier transform, i.e.,

z(t) = 1

g*(0)

∞∫︁

−∞

STFT(t, f )ej2πftdf

7.6 Let e
1
= [1, 0]

T
and e

2
= [0, 1]

T
. Defining g

1
= e

1
, g

2
= −0.5e

1
+ 0.5

√
3e

2
and

g
3
= −0.5e

1
− 0.5

√
3e

2
. Does {gi , i = 1, 2, 3} constitute a framework? If not, explain

the reason; If so, what kind of framework is it?

7.7 Prove that any frame {gk , k ∈ K} is a complete set of L
2
spaces.

7.8 Prove that the filter G(ω) that generates the standard orthogonal wavelet satisfies
the condition

|G(ω)|2 + |G(ω + π)|2 = 1

7.9 Let P be a probability measure whose support region is [−ϵ, ϵ] ⊂
[︀
−

π
3

,

π
3

]︀
. The

Fourier transform of a scaling function is known to be

Φ(ω) =

⎡
⎣
ω+π∫︁

ω−π

dP

⎤
⎦
1/2

which is the nonnegative square root of an integral, prove that this scaling function is

orthogonal.

7.10 Prove that the filter bank (H, G) and the dual filter bank ( ˜H, ˜G) satisfying the
signal complete reconstruction condition

H(ω) ˜H*(ω) + G(ω) ˜G*(ω) = 1

H(ω) ˜H*(ω + π) + G(ω) ˜G*(ω + π) = 0

are biorthogonal filter banks.

7.11 Let
˜f (t) be the biorthogonal dual function of f (t), i.e.,

⟨f (t − n), ˜f (n − k)⟩ = δ(n − k)

and F(ω) and ˜F(ω) are the Fourier transform of f (t) and ˜f (t), respectively. Prove

∞∑︁

k=−∞

F(ω + 2kπ) ˜F*(ω + 2kπ) = 1, ∀ω

7.12 Prove that if the two-scale difference equation of the scaling function ϕ(t) is
rewritten as the equation of ϕjk(t), then there is

ϕjk(t) =
∑︁

l

h(l − 2k)ϕj+1,l(t)
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7.13 Prove that the scaling function ϕ(2t) can be expanded into a sum of two series

using the scaling function ϕ(t) and the wavelet function ψ(t)

ϕ(2t − k) =
∑︁

l

˜h(k − 2l)ϕ(t − l) +
∑︁

l

g̃(k − 2l)ψ(t − l)

7.14 Let the low-pass filter be

H(ω) =
{︃
1, |ω| ≤ | π

2

|
0, Others

and

G(ω) = −e−jωH*(ω + π)

Find the wavelet function ψ(t) generated by G(ω).
7.15 Let g(t) =

√
2λe−λt , t ≥ 0. Prove that the biorthogonal function γ(t) of g(t) is

given by

γ(t) =

⎧
⎪⎪⎨
⎪⎪⎩

−

eλt√
2λ
, −1 ≤ t < 0

eλt√
2λ
, 0 < t ≤ 1

0, Others

7.16 Let

H
Zak

(t, f ) =
∞∑︁

k=−∞

h(t − k)e−j2πkf

be the Zak transform of function {h(t)}. Prove that for any integer n, there is always

Hz(t − n, f ) = ej2πnfHz(t, f )

7.17 Let H
Zak

(t, f ) and G
Zak

(t, f ) be the Zak transform of function h(t) and g(t), re-
spectively. Given

⟨h, gmn⟩2 =
1∫︁

0

1∫︁

0

H
Zak

(t, f )G*
Zak

(t, f )e−j2π(mt−nf )dtdf

try to deduce the identity

∑︁

m

∑︁

n
|⟨h, gmn⟩|2 =

1∫︁

0

1∫︁

0

|H
Zak

(t, f )|2|G*
Zak

(t, f )|2dtdf

from this relationship, and use the above identity to prove that {gmn(t)} is a frame if

and only if

A ≤ |G
Zak

(t, f )|2 ≤ B

holds almost everywhere in (t, f ) ∈ [0, 1] × [0, 1]. Hint: Using the Poisson summation
formula.
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7.18 Let

y(t) =
∞∑︁

m=−∞

∞∑︁

n=−∞
amng(t − m)dj2πnt

is the Gabor expansion of function y(t). Prove that the Gabor expansion coefficient amn
can be determined by

amn =
1∫︁

0

1∫︁

0

Y
Zak

(t, f )
G
Zak

(t, f ) e
−j2π(nt+mf )dtdf

where Y
Zak

(t, f ) and G
Zak

(t, f ) are Zak transform of y(t) and h(t), respectively.



8 Quadratic Time-frequency Distribution
In the previous chapter, three linear time-frequency representations of short-time

Fourier transform, wavelet transform and Gabor transform are discussed, which use a

joint function of time and frequency (taken in the form of a linear transform) to describe

the variation of the signal spectrum with time. Similarly, the joint function of time

and frequency can be used to describe the variation of the energy density of the signal

with time. The energy expression of a non-stationary signal is called time-frequency

distribution for short. Since the energy itself is the quadratic representation of the

signal, the time-frequency distribution is a kind of nonlinear transformation of the

non-stationary signal (“energized” quadratic transformation).

This chapter will start with the general theory of time-frequency distribution and

introduce the forms, mathematical properties of various time-frequency distributions,

and how to improve their time-frequency aggregation performance.

8.1 The General Theory of Time-frequency Distribution

Although the linear time-frequency representations such as short-time Fourier trans-

form, Gabor transform, and wavelet transform can effectively describe the local per-

formance of a non-stationary signal, the quadratic time-frequency representation is a

more intuitive and reasonable signal representation when the time-frequency repre-

sentation is used to describe the energy variation of non-stationary signal, because the

energy itself is a quadratic representation.

Many quadratic time-frequency representations can be used to roughly represent

energy. Two prominent examples are spectrogram and scalogram. The spectrogram is

defined as the square of the modulus of the short-time Fourier transform

SPEC(t, ω) = |STFT(t, ω)|2. (8.1.1)

While the scalogram is defined as the square of the modulus of the wavelet transform

SCAL(a, b) = |WT(a, b)|2. (8.1.2)

However, the description of energy distribution by spectrogram and scalogram is

very rough, because they do not satisfy the more stringent requirements for energy

distribution.

In order to more accurately describe the energy distribution of non-stationary sig-

nals with time, it is necessary to investigate other “energized” quadratic time-frequency

representations with better performance. Since these time-frequency representations

can describe the energy density distribution of signals, they are often referred to as

time-frequency distributions. In fact, the time-frequency distribution outperforms the

spectrogram and scalogram in many properties. In order to better understand the

https://doi.org/10.1515/9783110475562-008
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various time-frequency distributions, it is necessary to discuss their basic concepts

and the basic properties required for them before studying specific time-frequency

distributions.

8.1.1 Definition of the Time-frequency Distribution

We are no stranger to the quadratic (bilinear) transform z(t)z*(t) of complex signals

since it is used in stationary signals to obtain the correlation function and power

spectrum, that is,

R(τ) =
∞∫︁

−∞

z(t)z*(t − τ)dt, (8.1.3)

P(ω) =
∞∫︁

−∞

R(τ)e−jωτdτ. (8.1.4)

In addition to the asymmetric form of Eq. (8.1.3), the autocorrelation function can also

be defined in symmetric form

R(τ) =
∞∫︁

−∞

z(t + τ
2

)z*(t − τ
2

)dt, (8.1.5)

The above-mentioned definitions of the autocorrelation function and power spectrum

of stationary signals can be easily generalized to non-stationary signals, and the time-

varying autocorrelation function Rz(t, τ) in symmetric form is more useful than the

asymmetric form in the analysis of non-stationary signals because the symmetric form

of bilinear transformation z(t + τ
2

)z*(t − τ
2

) of the signal z(t) can show some important

characteristics of non-stationary signals. However, when a bilinear transform similar to

Eq. (8.1.5) is used for a non-stationary signal, in order to reflect the local time-domain

characteristics of the signal, a sliding window processing similar to that in the short-

time Fourier transform should be made, while weighting along the τ axis to obtain the
time-varying correlation function

R(t, τ) =
∞∫︁

−∞

ϕ(u − t, τ)z(u + τ
2

)z*(u − τ
2

)du. (8.1.6)

where ϕ(t, τ) is the window function and R(t, τ) is the “local correlation function”.

The Fourier transform of the local correlation function gives the time-varying power

spectrum, which is the time-frequency distribution of the signal energy

P(t, ω) =
∞∫︁

−∞

R(t, τ)e−jωτdτ. (8.1.7)
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This shows that the time-frequency distribution P(t, ω) can also be defined by using the
local correlation function R(t, τ). In fact, if different forms of local correlation functions

are taken, different definitions of time-frequency distribution can be obtained. This

will be discussed in detail in the subsequent sections.

8.1.2 Basic Properties of Time-frequency Distribution

Since it is the representation of the energy distribution of a non-stationary signal, the

time-frequency distribution should have some basic properties.

Property 1 The time-frequency distribution must be real (and hopefully nonnegative).

Property 2 The integration of the time-frequency distribution with respect to time t and
ω should give the total energy E of the signal, i.e.,

1

2π

∞∫︁

−∞

∞∫︁

−∞

P(t, ω)dtdω = E (Total energy of signal). (8.1.8)

Property 3 Edge characteristics

∞∫︁

−∞

P(t, ω)dt = |Z(ω)|2 and

1

2π

∞∫︁

−∞

P(t, ω)dω = |z(t)|2, (8.1.9)

i.e., the integration of the time-frequency distribution with respect to time t and
frequency ω gives the spectral density of the signal at frequency ω and the instan-

taneous power of the signal at moment t, respectively.
Property 4 The first order moment of the time-frequency distribution gives the instan-

taneous frequency ωi(t) and the group delay τg(ω), i.e.,

ωi(t) =
∫︀
∞

−∞

ωP(t, ω)dω∫︀
∞

−∞

P(t, ω)dω
and τg(ω) =

∫︀
∞

−∞

tP(t, ω)dt∫︀
∞

−∞

P(t, ω)dt
. (8.1.10)

Property 5 Finite time support

z(t) = 0 (|t| > t
0
) ⇒ P(t, ω) = 0 (|t| > t

0
), (8.1.11)

and finite frequency support

Z(ω) = 0 (|ω| > ω
0
) ⇒ P(t, ω) = 0 (|ω| > ω

0
). (8.1.12)

Finite support is a fundamental property proposed for the time-frequency distribution

from the perspective of energy. In signal processing, as an engineering approximation,

the signal is often required to have a finite time width and finite bandwidth. If a signal

z(t) only takes a non-zero value in a certain time interval, and the signal spectrum Z(ω)
only takes a non-zero value in a certain frequency interval, then the signal z(t) and
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its spectrum are said to be finite support. Similarly, if the time-frequency distribution

of the signal is equal to zero outside the total support area of z(t) and Z(ω), it is said
that the time-frequency distribution is finite support. Cohen

[63]

proposed that an ideal

time-frequency distribution should also have a finite support property, that is, where

z(t) and Z(ω) are equal to zero, the time-frequency distribution P(t, ω) should also be
equal to zero.

It should be pointed out that as a representation of energy density, the time-

frequency distribution should not only be real but also nonnegative. However, as

we will be seen in the next, the actual time-frequency distribution is hardly guaranteed

to take a positive value.

Like other linear functions, the linear time-frequency representation satisfies the

linear superposition principle, which brings great convenience to the analysis and

processing of multicomponent signals, because we can first analyze and process each

single component signal separately, and then simply superpose the results. Unlike

the linear time-frequency representation, the quadratic time-frequency distribution

no longer obeys the linear superposition principle, which makes the time-frequency

analysis of multicomponent signals no longer as simple as the processing of the linear

time-frequency representation. For example, it is easy to see from the definition of the

spectrogram that the spectrogram of the sum of two signals z
1
(t) + z

2
(t) is not equal to

the sum of the individual signal spectrogram, i.e.,

SPECz
1
+z

2

(t, ω) ̸= |STFTz
1
+z

2

(t, ω)|2, (8.1.13)

SPECz
1

(t, ω) + SPECz
2

(t, ω) ̸= |STFTz
1

(t, ω)|2 + |STFTz
2

(t, ω)|2. (8.1.14)

That is, the linear structure of the STFT is broken in the quadratic spectrogram.

Similar to the linear time-frequency representation obeying the “linear superpo-

sition principle”, any quadratic time-frequency representation satisfies the so-called

“quadratic superposition principle”. Therefore, it is necessary to focus on it.

Let

z(t) = c
1
z
1
(t) + c

2
z
2
(t) (8.1.15)

then any quadratic time-frequency distribution obeys the following quadratic superpo-

sition principle

Pz(t, ω) = |c
1
|2Pz

1

(t, ω) + |c
2
|2Pz

2

(t, ω) + c
1
c*
2
Pz

1
,z

2

(t, ω) + c
2
c*
1
Pz

2
,z

1

(t, ω), (8.1.16)

where Pz(t, ω) = Pz,z(t, ω) represents the “self time-frequency distribution” of signal

z(t) (referred to as “signal term” or “self term”), which is a bilinear function of z(t);
Pz

1
,z

2

(t, ω) represents the “mutual time-frequency distribution” of signal components

z
1
(t) and z

2
(t), (referred to as “cross term”), which is a bilinear function of z

1
(t) and

z
2
(t). The cross term is usually equal to the interference.

Extending the principle of quadratic superposition to the p-component signal

z(t) =
∑︀p

k=1 ckzk(t), the following general rule can be obtained:
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(1) Each signal component ckzk(t) has a self (time-frequency distribution) compo-

nent,i.e., a signal term |ck|2Pzk (t, ω);
(2) Each pair of signal components ckzk(t) and clzl(t) (where k ̸ = l) has a corre-

sponding mutual (time-frequency distribution) component, i.e., the cross term

ckc*l Pzk ,zl (t, ω) + clc*kPzl ,zk (t, ω).

Therefore, for a p-component signal z(t), the time-frequency distribution Pz(t, ω) will

contain p signal terms as well as

(︃
p
2

)︃
= p(p − 1)/2 pairwise combine of cross-terms.

Since the number of cross-terms increases quadraticallywith the increase of the number

of signal components, the more signal components are, the more serious the cross-

terms are.

In most practical applications, the main purpose of time-frequency signal anal-

ysis is to extract the signal components and suppress the cross-terms that exist as

interference. Therefore, it is usually desired that a time-frequency distribution should

have as strong a signal term as possible and as weak a cross term as possible. It can

be said that cross-term suppression is both the focus and difficulty in the design of

time-frequency distribution. This will be the main topic of discussion throughout the

subsequent sections of this chapter.

8.2 The Wigner-Ville Distribution

The properties of the time-frequency distribution are divided into macroscopic prop-

erties (e.g., real-valued, total energy conservation) and local properties (e.g., edge

characteristics, instantaneous frequency, etc.). In order to correctly describe the lo-

cal energy distribution of the signal, it is hoped that wherever the signal has local

energy, the time-frequency distribution also gathers in these places, which is the

time-frequency local aggregation, and it is one of the important indicators to mea-

sure the time-frequency distribution. A time-frequency distribution is an impractical

time-frequency distribution, even if it has ideal macroscopic properties if spurious

signals appear locally (i.e., poor local aggregation). In other words, it is better that

some macroscopic properties are not satisfied, the time-frequency distribution should

also have good local characteristics.

How to get a time-frequency distribution with good local aggregation? Since the

Wigner-Ville distribution is the first time-frequency distribution to be introduced, and

all other time-frequency distributions can be regarded as the windowing form of the

Wigner-Ville distribution, the Wigner-Ville distribution is regarded as the mother of

all time-frequency distributions. In this section, we will discuss and analyze this time-

frequency distribution first.
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8.2.1 Mathematical Properties

It is pointed out in the previous section that taking different forms of the local cor-

relation function yields different time-frequency distributions. Now consider a sim-

ple and effective form of local correlation function: using the time impulse function

ϕ(u − t, τ) = δ(u − t) (without limitation for τ, but taking the instantaneous value in
the time-domain) as the window function, i.e., the local correlation function is taken

as

Rz(t, τ) =
∞∫︁

−∞

δ(u − t)z(u + τ
2

)z*(u − τ
2

)du = z(t + τ
2

)z*(t − τ
2

), (8.2.1)

which is called the instantaneous correlation function or bilinear transformation of

signal z(t).
The Fourier transform of the local correlation function Rz(t, τ) with respect to the

lag variable τ is

Wz(t, ω) =
∞∫︁

−∞

z(t + τ
2

)z*(t − τ
2

)e−jωτdτ. (8.2.2)

Since this distribution was first introduced in quantum mechanics by Wigner

[228]

in

1932, and Ville

[112]

proposed it as a signal analysis tool in 1948, it is now customarily

called the Wigner-Ville distribution.

The Wigner-Ville distribution can also be defined as

WZ(ω, t) =
1

2π

∞∫︁

−∞

Z(ω +

υ
2

)Z*(ω − υ
2

)ejυτdυ (8.2.3)

by the signal spectrum Z(ω), where υ is the frequency offset. Note that the Wigner-Ville

distribution involves four parameters: time t, time delay τ, frequency ω and frequency

offset υ.
The main mathematical properties of the Wigner-Ville distribution are discussed

below.

(1) Real-valued: The Wigner-Ville distributionWz(t, ω) is a real function of t and ω.
(2) Time-shift invariance: If z̃(t) = z(t − t

0
), thenWz̃(t, ω) = Wz(t − t0, ω).

(3) Frequency-shift invariance: If z̃(t) = z(t)ejω0
t
, thenWz̃(t, ω) = Wz(t, ω − ω0

).

(4) Time edge characteristics: The Wigner-Ville distribution satisfies the time edge

characteristic

1

2π
∫︀
∞

−∞

Wz(t, ω)dω = |z(t)|2 (instantaneous power).

In addition to the above basic properties, the Wigner-Ville distribution also has some

other basic properties, as shown in Table 8.2.1.

The time edge property P4 and the frequency edge property P5 show that the

Wigner-Ville distribution is not guaranteed to be positive in the entire time-frequency

plane. In other words, the Wigner-Ville distribution violates the principle that real
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Tab. 8.2.1: The important mathematical properties of the Wigner-Ville distribution

P1(Real-valued) W*
z (t, ω) = Wz(t, ω)

P2(Time-shift invariance) z̃(t) = z(t − t0) ⇒ W z̃(t, ω) = Wz(t − t0 , ω)
P3(Frequency-shift invariance) z̃(t) = z(t)ejω0 t ⇒ W z̃(t, ω) = Wz(t, ω − ω0)
P4(Time edge characteristics) 1

2π
∫︀ ∞
−∞ Wz(t, ω)dω = |z(t)|2

P5(Frequency edge characteristics)
∫︀ ∞
−∞ Wz(t, ω)dt = |Z(ω)|2

P6(Instantaneous frequency) ωi(t) =
∫︀ ∞
−∞ tWz (t,ω)dω∫︀ ∞
−∞ Wz (t,ω)dω

P7(Group delay) τg(ω) =
∫︀ ∞
−∞ tWz (t,ω)dt∫︀ ∞
−∞ Wz (t,ω)dt

P8(Finite time support) z(t) = 0(t /∈ [t1 , t2]) ⇒ Wz(t, ω) = 0(t /∈ [t1 , t2])
P9(Finite frequency support) Z(ω) = 0(ω /∈ [ω1 , ω2]) ⇒ Wz(t, ω) = 0(ω /∈ [ω1 , ω2])
P10(Moyal formula) 1

2π
∫︀ ∞
−∞

∫︀ ∞
−∞ Wx (t, ω)Wy (t, ω)dω = |⟨x, y⟩|2

P11(Convolution property) z̃(t) =
∫︀ ∞
−∞ z(u)h(t − u)du ⇒ W z̃(t, ω) =

∫︀ ∞
−∞ Wz(u, ω)Wh(t − u, ω)du

P12(Product property) z̃(t) = z(t)h(t) ⇒ W z̃(t, ω) = 1
2π

∫︀ ∞
−∞ Wz(t, υ)Wh(t, ω − υ)dυ

P13(Fourier transform property) Wz(ω, t) = 2πWz(t, −ω)

time-frequency energy distribution must not be negative. This sometimes leads to

unexplained results.

Taking the complex conjugate of Eq. (8.2.3) and using the real-valuedW*

z (t, ω) =
Wz(t, ω), the definition Eq. (8.2.3) of the Wigner-Ville distribution can be equivalently

written as

WZ(ω, t) =
∞∫︁

−∞

Z*(ω +

υ
2

)Z(ω − υ
2

)e−jυτdυ. (8.2.4)

Example 8.2.1 Wigner-Ville distribution of complex harmonic signals

When the signal z(t) = ejω0
t
is a single complex harmonic signal, its Wigner-Ville

distribution is

Wz(t, ω) =
∞∫︁

−∞

exp

[︁
jω

0

(︁
t + τ

2

− t + τ
2

)︁]︁
exp(−jωτ)dτ

=

∞∫︁

−∞

exp[−j(ω − ω
0
)τ]dτ

= 2πδ(ω − ω
0
). (8.2.5)

And when the signal z(t) = ejω1
t
+ ejω2

t
is a superposition of two complex harmonic

signals, its Wigner-Ville distribution is

Wz(t, ω) = W
auto

(t, ω) +W
cross

(t, ω)
= Wz

1

(t, ω) +Wz
2

(t, ω) + 2Re[Wz
1
,z

2

(t, ω)]. (8.2.6)

In the equation, the signal term, i.e., the self term, is

Wz(t, ω) = 2π[δ(ω − ω
1
) + δ(ω − ω

2
)] (8.2.7)
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and the cross-term is

Wz
1
,z

2

(t, ω) =
∞∫︁

−∞

exp

[︁
jω

1

(︁
t + τ

2

)︁
− jω

2

(︁
t − τ

2

)︁]︁
exp(−jωτ)dτ

= exp[(ω
1
− ω

2
)t]

∞∫︁

−∞

exp

[︁
−j
(︁
ω − ω1

+ ω
2

2

)︁
τ
]︁
dτ

= 2πδ(ω − ωm)exp(ωd t), (8.2.8)

where ωm =

1

2

(ω
1
+ ω

2
) is the average of the two frequencies and ωd = ω1

− ω
2
is the

difference between the two frequencies. Therefore, the Wigner-Ville distribution of the

two complex harmonic signals can be expressed as

Wz(t, ω) = 2π[δ(ω − ω
1
) + δ(ω − ω

2
)] + 4πδ(ω − ωm)cos(ωd t). (8.2.9)

This shows that the signal term of the Wigner-Ville distributionW
auto

(t, ω) is a band
impulse function along the straight line of the two frequencies of the complex harmonic

signals and the amplitude is 2π. The two frequencies of the complex harmonic signals

can be correctly detected by the signal term. In addition to the signal term, there is a

relatively large cross term at the average frequency ωm of the two frequencies, whose

envelope is 2πcos(ωd), which is related to the difference between the two frequencies.

This example can also be extended to the case of a superposition of p complex harmonic

signals: the signal termof theWigner-Ville distribution is expressed as a p-band impulse

function along a straight line at each harmonic frequency. If the sample data of signal

z(t) is limited, the signal term of the Wigner-Ville distribution is distributed in the

dorsal fin shape of a fish along a straight line at each harmonic frequency and is no

longer the ideal band impulse function. It can also be seen from this example that the

cross-terms of the Wigner-Ville distribution are serious.

8.2.2 Relationship to Evolutive Spectrum

Defining the time-varying autocorrelation function of the signal z(t) as

Rz(t, τ) = E
{︁
z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁}︁
. (8.2.10)

Similar to the power spectrum of the stationary signal, the Fourier transform of the

time-varying autocorrelation function is defined as the time-varying power spectrum

Sz(t, ω) =
∞∫︁

−∞

Rz(t, τ)e−j2πτf dτ (8.2.11)

=

∞∫︁

−∞

E
{︁
z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁}︁
e−jωτdτ (8.2.12)
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of z(t). The time-varying power spectrum is often called an evolutive spectrum. If the

positions of the two operators of mathematical expectation and integral are exchanged,

then Eq. (8.2.12) gives the result

Sz(t, ω) = E

⎧
⎨
⎩

∞∫︁

−∞

z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁
e−jωτdτ

⎫
⎬
⎭ . (8.2.13)

This shows that the evolutive spectrum of the signal z(t) is equal to the mathematical

expectation of the Wigner-Ville distributionWz(t, ω) of the signal, that is, there is

Sz(t, ω) = E{Wz(t, ω)}. (8.2.14)

Because of this relationship, the evolutive spectrum is sometimes called the Wigner-

Ville spectrum.

It is well known that in the correlation analysis of stationary random signals, the

coherence of two random signals x(t) and y(t) is defined as

αxy(ω) =
Sxy(ω)√︀
Sx(ω)Sy(ω)

, (8.2.15)

where Sxy(ω) is the mutual power spectrum of x(t) and y(t), while Sx(ω) and Sy(ω) are
the power spectra of x(t) and y(t), respectively.

Similarly, the coherence of two non-stationary random signals x(t) and y(t) can be
defined. Since this coherence is a function of two variables, time and frequency, it is

called the time-frequency coherence function, defined as

αxy(t, ω) =
Sxy(t, ω)√︀

Sx(t, ω)Sy(t, ω)
, (8.2.16)

where Sx(t, ω) and Sy(t, ω) are the (self) evolutive spectra or Wigner-Ville spectra of

signals x(t) and y(t), respectively, while Sxy(t, ω) is the mutual evolutive spectrum or

mutual Wigner-Ville spectrum of x(t) and y(t), defined as

Sxy(t, ω) =
∞∫︁

−∞

E
{︁
x
(︁
t + τ

2

)︁
y*
(︁
t − τ

2

)︁}︁
e−jωτdτ = E{Wxy(t, ω)}. (8.2.17)

From the definition of Eq. (8.2.16), it is easy to prove that the time-frequency coherence

function has the following properties.

Property 1 0 ≤ |αxy(t, ω)| ≤ 1.
Property 2 If x and y are uncorrelated at time t, i.e., Rxy(t + τ

2

, t − τ
2

) = 0, ∀τ, then
Sxy(t, ω) = 0.

Property 3 If x(t) and y(t) are the outputs obtained by non-stationary signal q(t)
through linear shift-invariant filters H

1
and H

2
, respectively, then

αxy(t, ω) =
Sq(t, ω) * *Wh

1
,h

2

(t, ω)√︀
Sq(t, ω) * *Wh

1

(t, ω)
√︀
Sq(t, ω) * *Wh

2

(t, ω)
, (8.2.18)
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where ** denotes the two-dimensional convolution and

Wh
1
,h

2

(t, ω) =
∞∫︁

−∞

h
1
(t + τ

2

)h*
2
(t − τ

2

)e−jωτdτ (8.2.19)

is the mutual Wigner-Ville distribution of the impulse responses h
1
(t) and h

2
(t) of

filters H
1
and H

2
.

8.2.3 Signal Reconstruction based on Wigner-Ville Distribution

Now consider how the discrete signal z(n) can be recovered or reconstructed from the

Wigner-Ville distribution. Let z(n) have length 2L + 1 and the discrete Wigner-Ville

distribution is defined as

Wz(n, k) = 2

L∑︁

m=−L
z(n + m)z*(n − m)e−j4πkm/N . (8.2.20)

Taking the inverse discrete Fourier transform of both sides of the above equation and

making variable substitutions n = n
1
+n

2

2

and m =

n
1
−n

2

2

, we have

1

2

L∑︁

k=−L

Wz
(︁n

1
+ n

2

2

, k
)︁
ej2π(n1−n2)k/N = z(n

1
)z*(n

2
). (8.2.21)

If let n
1
= 2n and n

2
= 0, then Eq. (8.2.21) gives the result

1

2

L∑︁

k=−L

Wz(n, k)ej4πnk/N = z(2n)z*(0). (8.2.22)

This shows that the sampled signal z(2n) of an even index can be reconstructed

uniquely by the discrete Wigner-Ville distributionWz(n, k) differing by up to a complex

multiplicative constant z*(0). Similarly, if let n
1
= 2n − 1 and n

2
= 1 in Eq. (8.2.21),

then we have

1

2

L∑︁

k=−L

Wz(n, k)ej4π(n−1)k/N = z(2n − 1)z*(1). (8.2.23)

which means that the sampled signal z(2n − 1) of an odd ordinal number can be

recovered uniquely byWz(n, k) differing by up to a complex multiplicative constant

z*(1).
Eqs. (8.2.22) and (8.2.23) show that the inverse problem of the discrete Wigner-Ville

distribution can be decomposed into two smaller inverse problems: finding samples

with even index and finding samples with odd index, i.e., if the discrete Wigner-Ville

distribution of the discretely sampled signal z(n) is known, the sampled signals with



8.2 The Wigner-Ville Distribution | 411

even index and odd index can be uniquely recovered within the following range of

complex exponential constants, respectively.

z*(0)
|z(0)| = e

jϕe
and

z*(1)
|z(1)| = e

jϕo
. (8.2.24)

This result tells us that if two adjacent (one even and one odd) nonzero sample values

of signal z(n) are known, the accurate reconstruction of the discrete signal z(n) can be
realized.

So, how to realize the above signal reconstruction or synthesis? Find the instanta-

neous correlation function to obtain

kz(n,m) =
1

2

L∑︁

k=−L

Wz(n, k)ej4πkm/N = z(n + m)z*(n − m). (8.2.25)

As mentioned above, it is only necessary to solve samples with even index ze(n′) =
z(2n′). In order to reconstruct z(2n′), we construct a N

2

×

N
2

-dimensional matrix Ae
whose elements are

ae(i, j) = kz(i + j, i − j) = ze(i)z*e(j). (8.2.26)

The rank of Ae is equal to 1 and its Eigen decomposition is

Ae =
N/2∑︁

i=1
λieie*i = λ1e1e*1, (8.2.27)

where λi and ei are the i-th eigenvalue and the corresponding eigenvector of Ae, re-
spectively. Since the rank of Ae is equal to 1, only the first eigenvalue is nonzero, while
the other

N
2

− 1 eigenvalues are all zero. Thus, the reconstruction with even samples of

the signal is given by

ze =
√︀
λ
1
e
1
ejϕe , (8.2.28)

where

ze = [z(0), z(2), · · · , z(N/2)]T . (8.2.29)

Again, it shows that the samples with an even index can be reconstructed accurately

within the range of one complex exponential parameter. This means that phase loss

will occur when using the Wigner-Ville distribution to reconstruct the signal, so this

kind of signal reconstruction is not suitable for the situation where phase information

is required.

In order to reduce the cross term interference, Boashash

[30]

suggests using the

Wigner-Ville distributionWza (t, ω) of the analytic signal za(t). Since the analytic signal
is a handband function with only positive frequency components,Wza (t, ω) can avoid
the cross-terms caused by negative frequency components.

However, it is important to note that the analytic signal za(t) is different from the

original real signal z(t) in many aspects. For example, the analytic signal za(t) of the
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original time-limited signal z(t) = 0, t /∈ [t
1
, t

2
] is no longer time-limited because the

analytic signal is bandlimited. Therefore, for a real signal, whether to use its Wigner-

Ville distribution Wz(t, ω) directly or the Wigner-Ville distribution Wza (t, ω) of the
analytic signal should be carefully selected. However, the Wigner-Ville distribution of

analytic signal should be used asmuch as possiblewhen the suppression of cross-terms

is the main consideration.

8.3 Ambiguity Function

As mentioned earlier, the Wigner-Ville distribution is a Fourier transform of the time-

delay parameter τ of the instantaneous correlation function kz(t, τ) = z(t + τ
2

)z*(t − τ
2

).

If the Fourier transform is applied to the time variable t of the instantaneous correlation
function, another important time-frequency distribution function

Az(τ, υ) =
∞∫︁

−∞

z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁
e−jυtdt

=

∞∫︁

−∞

kz(t, τ)e−jυtdt

= Ft→υ[kz(t, τ)] (8.3.1)

is obtained. In radar signal processing, it is called the radar ambiguity function.

The radar ambiguity function is mainly used to analyze the resolution performance

of the radar signal after matched filtering of the transmit signal. As the impulse re-

sponse of the matched filter is proportional to the conjugate reciprocal of the signal,

when the radar regards the general target as a “point” target, the waveform of the

echo signal is the same as the transmitted signal, but with a different time delay τ
and different frequency offset υ (i.e., Doppler angular frequency), which makes the

ambiguity function become the two-dimensional response of the matched filter output

of the radar signal to τ and υ.
In non-stationary signal processing, the ambiguity function is defined differently:

the inverse Fourier transform of the instantaneous correlation function with respect to

time t, rather than the Fourier transform, that is, the ambiguity function is defined as

Az(τ, υ) = F−1t→υ[kz(t, τ)] =
∞∫︁

−∞

z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁
ejυtdt. (8.3.2)

The ambiguity function can also be defined as

AZ(υ, τ) =
∞∫︁

−∞

Z*
(︁
ω +

υ
2

)︁
Z
(︁
ω − υ

2

)︁
ejωτdω (8.3.3)
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by the Fourier transform Z(ω) of the signal.
Comparing the ambiguity function and the Wigner-Ville distribution, we know

that they are both bilinear transformations of the signal or some kind of linear trans-

formation of the instantaneous correlation function kz(t, τ). The latter transforms to

the time-frequency plane, which represents the energy distribution and is the energy

domain representation; the latter transforms to the time-delay frequency offset plane,

which represents the correlation and is the correlation domain representation. Since

the ambiguity function represents correlation and the Wigner-Ville distribution repre-

sents the energy distribution, then the Wigner-Ville distribution should be some kind

of Fourier transform of the ambiguity function. From the definition Eq. (8.3.2) of the

Wigner-Ville distribution, it is easy to prove that

Wz(t, ω) =
∞∫︁

−∞

z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁
e−jωτdτ

=

∞∫︁

−∞

∞∫︁

−∞

z
(︁
u + τ

2

)︁
z*
(︁
u − τ

2

)︁
e−jωτδ(u − t)dudτ

=

1

2π

∞∫︁

−∞

∞∫︁

−∞

∞∫︁

−∞

z
(︁
u + τ

2

)︁
z*
(︁
u − τ

2

)︁
e−jωτejυ(u−t)dudτdυ

=

1

2π

∞∫︁

−∞

∞∫︁

−∞

⎡
⎣
∞∫︁

−∞

z
(︁
u + τ

2

)︁
z*
(︁
u − τ

2

)︁
ejυudu

⎤
⎦ e−j(υt+ωτ)dυdτ.

The well-known Fourier transform

1

2π
∫︀
∞

−∞

ejυ(u−t)dυ = δ(u − t) is used. Substituting the
definition of the ambiguity function Eq. (8.3.2) into the above equation, we immediately

have

Wz(t, ω) =
1

2π

∞∫︁

−∞

∞∫︁

−∞

Az(τ, υ)e−j(υt+ωτ)dυdτ. (8.3.4)

That is, the Wigner-Ville distribution is equivalent to the two-dimensional Fourier

transform of the ambiguity function, only differing by a constant factor

1

2π .

According to the definition Eq. (8.3.2), it is not difficult to prove that the ambiguity

function has the following properties.

P1 (Conjugate symmetry) The ambiguity function is conjugate symmetric, i.e., it has

Az(τ, υ) = A*z(−τ, −υ). (8.3.5)

P2 (Time-shift ambiguity) The mode of the ambiguity function is insensitive to the

time shift, i.e., there is

z̃(t) = z(t − t
0
) ⇒ Az̃(τ, υ) = Az(τ, υ)ej2πt0υ . (8.3.6)
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P3 (Frequency-shift ambiguity) The mode of the ambiguity function is also insensitive

to the frequency shift, i.e., there is

z̃(t) = z(t)ejω0
t ⇒ Az̃(τ, υ) = Az(τ, υ)ej2πf0τ . (8.3.7)

P4 (Time-delay edge characteristics)

Az(0, υ) =
1

2π

∞∫︁

−∞

Z
(︂
ω − 1

2

υ
)︂
Z*
(︂
ω +

1

2

υ
)︂
dω. (8.3.8)

P5 (Frequency offset edge characteristics)

Az(τ, 0) =
∞∫︁

−∞

z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁
dt. (8.3.9)

P6 (Total energy retention)

Az(0, 0) =
∞∫︁

−∞

|z(t)|2dt = 1

2π

∞∫︁

−∞

|Z(ω)|2dω = E(Total energy of signal). (8.3.10)

P7 (Instantaneous frequency)

ωi(t) =

∫︀
∞

−∞

[︁
∂Az(τ,υ)
∂τ

]︁
τ=0

ejυtdυ
∫︀
∞

−∞

Az(0, υ)ejυtdυ
. (8.3.11)

P8 (Group delay)

τg(υ) =

∫︀
∞

−∞

[︁
∂Az(τ,υ)
∂υ

]︁
υ=0

ejυτdτ
∫︀
∞

−∞

Az(0, υ)ejυτdτ
. (8.3.12)

P9 (Finite delay support) If z(t) = 0, t /∈ [t
1
, t

2
], then Az(τ, υ) = 0, τ > t

2
− t

1
.

P10 (Finite frequency offset support) If Z(ω) = 0, t /∈ [ω
1
, ω

2
], then Az(τ, υ) = 0, υ >

ω
2
− ω

1
.

P11 (Moyal formula)

1

2π

∞∫︁

−∞

∞∫︁

−∞

Az(τ, υ)A*x(τ, υ)dτdυ =

⃒⃒
⃒⃒
⃒⃒
∞∫︁

−∞

z(t)x*(t)dt

⃒⃒
⃒⃒
⃒⃒

2

= |⟨z, x⟩|2 (8.3.13)

In particular, if x(t) = z(t), then

1

2π

∞∫︁

−∞

∞∫︁

−∞

|Az(τ, υ)|2dτdυ =

⎡
⎣
∞∫︁

−∞

|z(t)|2dt

⎤
⎦
2

(8.3.14)

is called the volume invariance of the ambiguity function.
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P12 (Convolution property) If z(t) = x(t) * h(t) =
∫︀
∞

−∞

x(u)h(t − u)du, then

Az(τ, υ) =
∞∫︁

−∞

Ax(τ, υ′)Ah(τ − τ′, υ)dτ′. (8.3.15)

P13 (Product property) If z(t) = x(t)h(t) then

Az(τ, υ) =
1

2π

∞∫︁

−∞

Ax(τ, θ)Ah(τ, υ − θ)dθ. (8.3.16)

P14 (Fourier transform) The relationship between the ambiguity function AZ(τ, υ) of
the Fourier transform Z(ω) of the signal z(t) and the ambiguity function Az(τ, υ)
of the original signal is

AZ(τ, υ) = 2πAz(τ, −υ). (8.3.17)

For convenience, the above properties of the ambiguity function are summarized in

Table 8.3.1.

Tab. 8.3.1: The important mathematical properties of the ambiguity function

P1(Conjugate symmetry) Az(τ, υ) = A*z(−τ, −υ)
P2(Time-shift ambiguity) z̃(t) = z(t − t0) ⇒ A z̃(τ, υ) = Az(τ, υ)ej2πt0υ
P3(Frequency-shift ambiguity) z̃(t) = z(t)ejω0 t ⇒ A z̃(τ, υ) = Az(τ, υ)ej2πf0 τ
P4(Time-delay edge characteristics) Az(0, υ) = 1

2π
∫︀ ∞
−∞ Z

(︀
ω − 1

2 υ
)︀
Z*

(︀
ω + 1

2 υ
)︀
dω

P5(Frequency offset edge characteristics) Az(τ, 0) =
∫︀ ∞
−∞ z

(︀
t + τ

2
)︀
z*

(︀
t − τ

2
)︀
dt

P6(Total energy retention) Az(0, 0) =
∫︀ ∞
−∞ |z(t)|2dt = 1

2π
∫︀ ∞
−∞ |Z(ω)|2dω = E

P7(Instantaneous frequency) ωi(t) =
∫︀ ∞
−∞

[︁
∂Az (τ,υ)

∂τ

]︁
τ=0
ejυtdυ∫︀ ∞

−∞ Az (0,υ)ejυtdυ

P8 (Group delay) τg(υ) =
∫︀ ∞
−∞

[︁
∂Az (τ,υ)
∂υ

]︁
υ=0

ejυτdτ∫︀ ∞
−∞ Az (0,υ)ejυτdτ

P9(Finite delay support) z(t) = 0, t /∈ [t1 , t2] ⇒ Az(τ, υ) = 0, τ > t2 − t1
P10(Finite frequency offset support) Z(ω) = 0, t /∈ [ω1 , ω2] ⇒ Az(τ, υ) = 0, υ > ω2 − ω1
P11(Moyal formula) 1

2π
∫︀ ∞
−∞

∫︀ ∞
−∞ |Az(τ, υ)|2dτdυ =

[︀∫︀ ∞
−∞ |z(t)|2dt

]︀2 = |⟨z, x⟩|2
P12(Convolution property) z(t) = x(t) * h(t) ⇒ Az(τ, υ) =

∫︀ ∞
−∞ Ax (τ, υ′)Ah(τ − τ′ , υ)dτ′

P13(Prodct property) z(t) = x(t)h(t) ⇒ Az(τ, υ) = 1
2π

∫︀ ∞
−∞ Ax (τ, θ)Ah(τ, υ − θ)dθ

P14(Fourier transform) AZ (τ, υ) = 2πAz(τ, −υ)

Since the ambiguity function is also a time-frequency distribution of signals, it must

also obey the principle of quadratic superposition, that is, there are cross-terms, so it

is necessary to examine the mutual ambiguity function of two signals.

The mutual ambiguity function of signal z(t) and g(t) is defined as

Az,g(τ, υ) =
∞∫︁

−∞

z
(︁
t + τ

2

)︁
g*
(︁
t − τ

2

)︁
ejtυdt. (8.3.18)
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Note that in the general case, the mutual ambiguity function takes complex values and

it has no conjugate symmetry, i.e.,

Az(τ, υ) ̸= A*z(τ, υ). (8.3.19)

The Wigner-Ville distribution Wz(t, ω) is centered on the signal parameter (t
0
, ω

0
),

while the ambiguity function Az(τ, θ) is centered on the origin (0, 0) and is an oscil-
lating waveform whose phase ω

0
τ − t

0
θ is related to the time shift t

0
and frequency

modulation ω
0
of the signal.

For multicomponent signals, the ambiguity functions of each signal component

are centered at the origin (0, 0) and mixed. In this sense, this time-frequency function

is ambiguous for each signal component. However, all the cross-terms of the ambiguity

function are generally far from the origin. As the two-dimensional Fourier transform of

the ambiguity function is the Wigner-Ville distribution, the energy domain representa-

tion (time-frequency distribution) and correlation domain representation (ambiguity

function) of a non-stationary signal are equally important in the analysis and pro-

cessing of the non-stationary signal, just as the time domain and frequency domain

representation of the stationary signal.

8.4 Cohen’s Class Time-frequency Distribution

Since the appearance of the Wigner-Ville distribution in 1948, it has been widely used

in many fields. In practice, it has been found that the Wigner-Ville distribution should

be improved for different application needs, resulting in a series of other forms of time-

frequency distribution. In 1966, Cohen

[62]

found that many time-frequency distributions

are just variations of the Wigner-Ville distribution, and they can be expressed in a uni-

form form. Generally speaking, in this unified representation, different time-frequency

distributions only add different kernel functions to the Wigner-Ville distribution, and

the requirements for various properties of the time-frequency distribution are reflected

in the constraints on the kernel functions. This unified time-frequency distribution is

now conventionally called Cohen’s class time-frequency distribution.

8.4.1 Definition of Cohen’s Class Time-frequency Distribution

In reference [62], Cohen defined the time-varying autocorrelation function as

Rz(t, τ) =
1

2π

∞∫︁

−∞

Az(τ, υ)ϕ(τ, υ)e−jυtdυ, (8.4.1)

where Az(τ, υ) is the ambiguity function of the signal z(t), defined by Eq. (8.3.2);ϕ(τ, υ)
is called the kernel function. Since the Fourier transform of the time-varying autocorre-
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lation function gives the time-frequency distribution, there is

Cz(t, ω) def=
∞∫︁

−∞

Rz(t, τ)e−jωτdτ =
∞∫︁

−∞

∞∫︁

−∞

Az(τ, υ)ϕ(τ, υ)e−j(υt+ωτ)dτdυ. (8.4.2)

The time-frequency distributions with this form are conventionally referred to as Co-

hen’s class time-frequency distribution. As will be seen later, most of the existing

time-frequency distributions belong to Cohen’s class distribution, but they take differ-

ent kernel functions.

Substituting the convolution theorem

G(ω) =
∞∫︁

−∞

s
1
(x)s

2
(x)e−jωxdx = 1

2π S1(ω) * S2(ω) (8.4.3)

into Eq. (8.4.1), then the time-varying autocorrelation function can be rewritten as

Rz(t, τ) = υ
F

→ t[Az(τ, υ)] *
F

υ → t[ϕz(τ, υ)] (8.4.4)

=

[︁
z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁]︁
* ψ(t, τ) (8.4.5)

=

∞∫︁

−∞

z
(︁
u + τ

2

)︁
z*
(︁
u − τ

2

)︁
ψ(t − u, τ)du, (8.4.6)

where

ψ(t, τ) = υ
F

→ t[ϕ(τ, υ)] =
∞∫︁

−∞

ϕ(τ, υ)e−jυtdυ. (8.4.7)

Subsitituting Eq. (8.4.6) into Eq. (8.4.2) yields an alternative definition of Cohen’s class

distribution

Cz(t, ω) =
∞∫︁

−∞

∞∫︁

−∞

z
(︁
u + τ

2

)︁
z*
(︁
u − τ

2

)︁
ψ(t − u, τ)e−jωτdudτ. (8.4.8)

Eqs. (8.4.2) and (8.4.8) are commonly used defining formulas for Cohen’s class distri-

bution, and they are equivalent to each other.

Consider a special choice of the kernel function ϕ(τ, υ) ≡ 1. At this time, the

definition of Eq. (8.4.2) degenerates to the right side of Eq. (8.3.4), i.e., the Cohen’s

class distribution with window function ϕ(τ, υ) ≡ 1 is the Wigner-Ville distribution. In

addition, we know from Eq. (8.4.7), the kernel function corresponding to ϕ(τ, υ) ≡ 1

is ψ(t, τ) = δ(t), so we can also get Cz(t, ω) = Wz(t, ω) from Eq. (8.4.8), which proves

again that the Wigner-Ville distribution is Cohen’s class distribution with ϕ(τ, υ) ≡ 1.

TheWigner-Ville distribution and the ambiguity function have four variables t,ω, τ
and υ. In principle, any two of them can form a two-dimensional distribution. For exam-

ple, the instantaneous correlation function kz(t, τ) itself is also a two-dimensional dis-

tribution, which takes time t and time-shift τ as variables. The fourth two-dimensional
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kz (t, τ)

Az (τ, ν)

Kz (ω, ν)

Wz (t, ω)
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t

τ

ω

(b)

Fig. 8.4.1: (a) Relationship of the four distributions of Cohen’s class; (b) Relationship between the
four kernel functions

distribution takes frequency ω and frequency offset υ as variables, which is called

the point spectrum correlation function, that is, Kz(ω, υ). According to the previous
definition, the Fourier transform of the point spectrum correlation function to υ should
be the Wigner-Ville distribution; and if we follow the definition of the instantaneous

correlation function, the point spectrum correlation function should be defined as

Z
(︀
ω +

υ
2

)︀
Z*
(︀
ω − υ

2

)︀
. In fact, calculating the Fourier transformof Z

(︀
ω +

υ
2

)︀
Z*
(︀
ω − υ

2

)︀
,

we can obtain

∞∫︁

−∞

Z
(︁
ω +

υ
2

)︁
Z*
(︁
ω − υ

2

)︁
e−jυtdυ = Wz(−t, ω), (8.4.9)

and it violates the Wigner-Ville distribution. In order to solve this contradiction, the

point spectrum correlation function needs to be defined as

Kz(ω, υ) = Z*
(︁
ω +

υ
2

)︁
Z
(︁
ω − υ

2

)︁
. (8.4.10)

Wigner-Ville distribution, ambiguity function, instantaneous correlation function, and

point spectrum correlation function are the four basic distributions of Cohen’s class.

In order to facilitate readers to understand intuitively and vividly, Fig. 8.4.1(a) shows

the transformation relations among these four distributions, while Fig. 8.4.1(b) shows

the transformation relations among the four kernel functions ψ(t, τ), Ψ(ω, υ), Φ(t, ω)
and ϕ(τ, υ).

From Fig. 8.4.1(a), the relationship between the Wigner-Ville distribution, the

ambiguity function, the instantaneous correlation function z
(︀
t + τ

2

)︀
z*
(︀
t − τ

2

)︀
and the
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point spectrum correlation function Z
(︀
ω +

υ
2

)︀
Z*
(︀
ω − υ

2

)︀
can be written as

Wz(t, ω) =
∞∫︁

−∞

z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁
e−jωτdτ, (8.4.11)

WZ(ω, t) =
∞∫︁

−∞

Z*
(︁
ω +

υ
2

)︁
Z
(︁
ω − υ

2

)︁
e−jυtdυ, (8.4.12)

Az(τ, υ) =
∞∫︁

−∞

z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁
ejυtdt, (8.4.13)

AZ(υ, τ) =
∞∫︁

−∞

Z*
(︁
ω +

υ
2

)︁
Z
(︁
ω − υ

2

)︁
ejωτdω, (8.4.14)

Wz(t, ω) =
1

2π

∞∫︁

−∞

∞∫︁

−∞

Az(τ, υ)e−j(υt+ωτ)dυdτ. (8.4.15)

These equations are consistent with the corresponding equations defined or deduced

earlier.

In addition, from Fig. 8.4.1(b), it is possible to write the relationship between the

four nuclear functions

ψ(t, τ) =
∞∫︁

−∞

ϕ(τ, υ)e−jυtdυ, (8.4.16)

Ψ(ω, υ) =
∞∫︁

−∞

ϕ(τ, υ)e−jωτdτ, (8.4.17)

Φ(t, ω) =
∞∫︁

−∞

ψ(t, ω)e−jωτdτ, (8.4.18)

Φ(t, ω) =
∞∫︁

−∞

Ψ(ω, υ)e−jυtdυ, (8.4.19)

Φ(t, ω) =
∞∫︁

−∞

∞∫︁

−∞

ϕ(τ, υ)e−j(υt+ωτ)dυdτ, (8.4.20)

Ψ(ω, υ) =
∞∫︁

−∞

∞∫︁

−∞

ψ(t, τ)ej(υt−ωτ)dtdτ. (8.4.21)

According to the relationship shown in Fig. 8.4.1, readers can also write other equations

between two kernel functions.

It is necessary to point out that in some literature (for example, Reference [178]

and [179]), the ambiguity function is directly defined using the definition of the radar
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ambiguity function Eq. (8.3.1). At this time, all Fourier transform about υ in Fig. 8.4.1,
Eqs. (8.4.11)∼(8.4.15), and Eqs. (8.4.16)∼(8.4.21) need to be changed to the inverse

Fourier transform, and all inverse Fourier transform about υ need to be changed to
the Fourier transform as well. This point is expected to be noted by the reader when

reading other literature. However, from Fig. 8.4.1, the ambiguity function is defined

as the inverse Fourier transform of z
(︀
t + τ

2

)︀
z*
(︀
t − τ

2

)︀
with respect to υ, which brings

a very easy rule to remember the Fourier transform relationships between the two

time-frequency distributions and the Fourier transform relationships between the two

kernel functions.

8.4.2 Requirements for Kernel Function

When ϕ(τ, υ) = 1, i.e., without kernel function, Eq. (8.4.2) is simplified to Eq. (8.3.4),

that is, the Cohen’s class time-frequency distribution gives the Wigner-Ville distribu-

tion. In other words, Cohen’s class distribution is a filtered form of the Wigner-Ville

distribution.

Since Cohen’s class distribution is the filtering result of the Wigner-Ville distribu-

tion, the kernel function will naturally cause some changes in the properties of the

original Wigner-Ville distribution. Therefore, if the changed time-frequency distribu-

tion is still required to satisfy some basic properties, the kernel function should be

subject to certain restrictions.

1. Total Energy and Edge Characteristics
If Cohen’s class distribution Cz(t, ω) is required to be a joint distribution of energy

density, it is expected to satisfy two edge characteristics: the integral over the frequency

variables is equal to the instantaneous power |z(t)|2, while the integral over the time

variables gives the energy density spectrum |Z(ω)|2.
The integral of Eq. (8.4.2) with respect to the frequency ω gives the result

1

2π

∞∫︁

−∞

Cz(t, ω)dω =

∞∫︁

−∞

∞∫︁

−∞

∞∫︁

−∞

z
(︁
u + τ

2

)︁
z*
(︁
u − τ

2

)︁

× δ(τ)ej2πυ(u−t)ϕ(τ, υ)dτdυdu

=

∞∫︁

−∞

∞∫︁

−∞

|z(u)|2ej2πυ(u−t)ϕ(0, υ)dυdu.

Obviously, the only choice to make the above equation equal to |z(t)|2 is
∫︀
∞

−∞

ϕ(0, υ)
ej2π(u−t)dυ = δ(t − u), which means

ϕ(0, υ) = 1. (8.4.22)

Similarly, if

∫︀
∞

−∞

Cz(t, ω)dt = |Z(ω)|2 is desired, then the kernel function must satisfy

ϕ(τ, 0) = 1. (8.4.23)
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For the same reason, it is also generally desired that the total energy of the signal

(normalized energy) remains constant, i.e.,

1

2π

∞∫︁

−∞

∞∫︁

−∞

Cz(t, ω)dωdt = 1 = Total energy. (8.4.24)

Therefore, it is necessary to take

ϕ(0, 0) = 1. (8.4.25)

This condition is called the normalization condition, which is weaker than the edge

conditions Eqs. (8.4.22) and (8.4.23). That is, there may exist some time-frequency

distribution whose total energy is the same as the total energy of the signal, but the

edge characteristics may not be satisfied.

2. Real-valued
Thebilinear distribution is generally not guaranteed to bepositive, but as ameasure

of energy, it should at least be required to be real. Taking the complex conjugate

of Eq. (8.4.2) and letting C*z(t, ω) = Cz(t, ω), it is easy to prove that Cohen’s class

distribution is real-valued if and only if the kernel function satisfies the condition

ϕ(τ, υ) = ϕ*(−τ, −υ). (8.4.26)

Table 8.4.1 summarizes the constraints that the kernel function should satisfy to make

Cohen’s class distributionhave somebasic properties. The kernel function requirements

1 ∼ 10 in the table are proposed by Classen and Mecklenbrauker

[61]

.

Tab. 8.4.1: Requirements of kernel function for the basic properties of Cohen’s class time-frequency
distribution

No Basic Property Requirement of the kernel function ϕ(τ, υ)

1 Time-shift invariance Independent of the time variable t
2 Frequency-shift invariance Independent of the frequency variable ω
3 Real-valued ϕ(τ, υ) = ϕ*(−τ, −υ)
4 Time edge characteristics ϕ(0, υ) = 1
5 Frequency edge characteristics ϕ(τ, 0) = 1
6 Instantaneous frequency characteristics ϕ(0, υ) = 1 and ∂

∂τ ϕ(τ, υ)|τ=0 = 0
7 Group delay characteristics ϕ(τ, 0) = 1 and ∂

∂υ ϕ(τ, υ)|υ=0 = 0
8 Positivity ϕ(τ, υ) is the ambiguity function of any window function γ(t)
9 Finite time support ψ(t, τ) =

∫︀ ∞
−∞ ϕ(τ, υ)e−jυtdυ = 0 (where |t| > |τ|

2 )
10 Finite frequency support Ψ(ω, υ) =

∫︀ ∞
−∞ ϕ(τ, υ)e−jωτdτ = 0 (where |ω| > |υ|

2 )
11 Moyal formula |ϕ(τ, υ)| = 1
12 Convolution property ϕ(τ1 + τ2 , υ) = ϕ(τ1 , υ)ϕ(τ2 , υ)
13 Prodct property ϕ(τ, υ1 + υ2) = ϕ(τ, υ1)ϕ(τ, υ2)
14 Fourier transform ϕ(τ, υ) = ϕ(υ, −τ), ∀τ and υ
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8.5 Performance Evaluation and Improvement of Time-frequency
Distribution

Most applications of time-frequency signal analysis are related to multicomponent

extraction of non-stationary signals. It is usually expected that time-frequency signal

analysis has the following functions:

(1) It can determine the number of signal components in a signal;

(2) It can identify signal components and cross-terms;

(3) It can distinguish two or more signal components that are very close to each other

on the time-frequency plane;

(4) It can estimate the instantaneous frequency of each component of the signal.

Determining whether a time-frequency distribution has these functions involves the

performance evaluation of time-frequency distribution. In order to select an appropri-

ate time-frequency distribution in the practical application of time-frequency signal

analysis, it is necessary to understand the advantages and disadvantages of various

time-frequency distributions. The advantages and disadvantages of a time-frequency

distribution are mainly determined by its time-frequency aggregation and cross-terms.

They are analyzed and discussed respectively.

8.5.1 Time-frequency Aggregation

Just as the typical stationary signal is a Gaussian signal, the non-stationary signal also

has a typical signal, which is linear frequency modulation (LFM) signal⁴. As the name

suggests, the LFM signal is a signal whose frequency varies according to a linear law

over time. Now, it has been widely recognized that any kind of time-frequency analysis

can not be used as a time-frequency analysis tool for non-stationary signals if it does

not provide good time-frequency aggregation performance for LFM signals.

Since the time-frequency distribution is used to describe the time-varying or local

time-frequency characteristics of non-stationary signals, it is natural to expect it to

be well time-frequency localized, i.e., it is required to be highly aggregated in the

time-frequency plane. This property is called the time-frequency aggregation of the

time-frequency distribution.

Consider a single-component LFM signal

z(t) = ej(ω0
t+ 1

2

mt2)
(8.5.1)

4 The LFM signal is also called chirp signal
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with amplitude 1, which is widely used in detection systems such as radar, sonar, and

seismic. The bilinear transformation of the single-component LFM signal is

z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁
= exp

{︂
j
[︂
ω
0

(︁
t + τ

2

)︁
+

1

2

m
(︁
t + τ

2

)︁
2

]︂}︂

× exp

{︂
−j
[︂
ω
0

(︁
t − τ

2

)︁
+

1

2

m
(︁
t − τ

2

)︁
2

]︂}︂

= exp[j(ω
0
+ mt)τ]. (8.5.2)

Thus the Wigner-Ville distribution of the LFM signal can be obtained as

W
LFM

(t, ω) =
∞∫︁

−∞

z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁
e−j2πτf dτ

=

∞∫︁

−∞

exp[j(ω
0
+ mt)τ]exp(−jωτ)dτ

= δ[ω − (ω
0
+ mt)]. (8.5.3)

The integration result

∞∫︁

−∞

e−j[ω−(ω0
+mt)]τdτ = δ[ω − (ω

0
+ mt)] (8.5.4)

is used here.

It can be seen from Eq. (8.5.3) that the Wigner-Ville distribution of the single-

component LFM signal is an impulse line spectrum distributed along the line ω =

ω
0
+ mt, that is, the amplitude of the time-frequency distribution concentrates on the

straight line representing the variation law of the instantaneous frequency of the signal.

Therefore, the Wigner-Ville distribution has ideal time-frequency aggregation in the

sense of the best frequency modulation law of the LFM signal. Note that the conclusion

that the Wigner-Ville distribution is an impulse line spectrum is only applicable to LFM

signals of infinite length. In practice, the length of the signal is always finite, and the

Wigner-Ville distribution is in the shape of the dorsal fin of a fish.

In fact, for a single-component LFM signal, no matter how to choose the window

function ϕ(τ, υ) to get the Cohen distribution, it is impossible to give better time-

frequency aggregation than the Wigner-Ville distribution with the window function

ϕ(τ, υ) = 1. This conclusion is not surprising, because according to the exclusion

principle, the bandwidth of the infinite width window function ϕ(τ, υ) = 1 is zero,

so it has the highest frequency resolution. But the problem is, the LFM signal is a

non-stationary signal, why can we take the infinite width window function? This is

mainly due to the quadratic stationarity of the single component LFM signal. From

the quadratic signal expression Eq. (8.5.2) of the LFM signal, it is easy to find that its

time-varying autocorrelation function is

R(t, τ′) = E{ej(ω0
+mt)τe−j(ω0

+m(t−τ′))τ} = ejmττ
′

, (8.5.5)
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which is independent of time t. That is to say, the quadratic signal z
(︀
t + τ

2

)︀
z*
(︀
t − τ

2

)︀

of the single component LFM signal is second-order stationary. This is the reason why

the window function ϕ(τ, υ) = 1 with infinite time width can be added to the quadratic

signal of the single-component LFM signal (it is not to the signal itself). However, for

slightly more complex signals, the situation is quite different. For example, if z(t) =∑︀
2

i=1 e
j(ωi t+ 1

2

mi t2)
is the superposition of two LFM signals, the autocorrelation function

of the quadratic signal z
(︀
t + τ

2

)︀
z*
(︀
t − τ

2

)︀
is a function of time, i.e., the quadratic signal

is not second-order stationary. This means that the window function ϕ(τ, υ) = 1 is no

longer optimal, i.e., the Wigner-Ville distribution needs to be improved.

8.5.2 Cross-Term Suppression

For any multicomponent signal, there is a cross term in the quadratic time-frequency

distribution, which comes from the cross interaction between different signal compo-

nents in themulticomponent signal. The signal terms in the time-frequency distribution

correspond to each component of the signal itself, and they are consistent with the

physical properties of the signal for which the time-frequency distribution has finite

support. That is, if a priori knowledge of the signal z(t) and its spectrum is given, the

signal terms appear in the time-frequency plane only in those places where we want

them to appear. In contrast to the case of the signal terms, the cross-terms are the

interference products in time-frequency distribution, and they exhibit results in the

time and/or frequency domains that contradict the physical properties of the original

signal. Therefore, one of the main problems of the time-frequency distribution is how

to suppress its cross-terms.

There are two key filtering methods for cross-term suppression:

(1) Ambiguity domain filtering;

(2) Filtering with kernel functions.

Ambiguity domain filtering is a result of applying radar theory to the time-frequency

distribution. In the previous discussion of the ambiguity function, we have highlighted

an important fact: in the ambiguity domain, the cross-terms tend to move away from

the origin, while the signal terms cluster near the origin. It is useful to remember

this important fact because the Wigner-Ville distribution is a two-dimensional Fourier

transform of the ambiguity function. Therefore, a natural way to reduce the cross-

terms is to filter the ambiguity function in the ambiguity domain to filter out the cross-

terms; then, the Wigner-Ville distribution is derived from the two-dimensional Fourier

transform of the ambiguity function.

All Cohen’s class distributions can be regarded as the filtering form of the Wigner-

Ville distribution using kernel function ϕ(τ, υ) ̸= 1 or ψ(t, τ) ̸= δ(t), and the purpose
of filtering is to suppress the cross-terms. Therefore, the kernel function of Cohen’s

class distribution has become a hot research in time-frequency signal analysis. Before
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discussing how to choose the kernel function, it is necessary to analyze the cross term

of the Wigner-Ville distribution. When analyzing the effect of cross-terms, the tone

signal and the LFM signal are often used. For simplicity, a stationary tone signal is

used here as an example.

For a stationary tone signal z(t) = ejω0
t
, from the equivalent defining equation

(8.4.8) of the Cohen’s class time-frequency distribution, we have

C(t, ω) =
∞∫︁

−∞

∞∫︁

−∞

ψ(t − u, τ)ejω0
(u+ τ

2

)e−jω0
(u− τ

2

)e−jωτdudτ

=

∞∫︁

−∞

∞∫︁

−∞

ψ(t − u, τ)e−j(ω−ω0
)τdudτ

=

∞∫︁

−∞

∞∫︁

−∞

ψ(t′, τ)e−j[0·t
′

+τ(ω−ω
0
)]dt′dτ.

Applying the relationship between Ψ(ω, υ) and ψ(t, τ) (see Fig 8.4.1) to the last equa-

tion above yields

C(t, ω) = Ψ(ω − ω
0
, 0). (8.5.6)

This shows that Cohen’s class time-frequency distribution of tone signal is directly the

kernel function value Ψ(ω − ω
0
, 0), but with an offset in the frequency of the kernel

function (the offset is the input frequency ω
0
).

Now consider the two-tone signal

z(t) = z
1
(t) + z

2
(t) = ejω1

t
+ ejω2

t
, ω

1
< ω

2
(8.5.7)

whose Cohen’s class time-frequency distribution consists of signal term and cross term

C(t, ω) = C
auto

(t, ω) + C
cross

(t, ω)
= C

auto
(t, ω) + Cz

1
,z

2

(t, ω) + Cz
2
,z

1

(t, ω), (8.5.8)

where the signal term is

C
auto

(t, ω) = Ψ(ω − ω
1
, 0) + Ψ(ω − ω

2
, 0) (8.5.9)

and the first cross term is

Cz
1
,z

2

(t, ω) =
∞∫︁

−∞

∞∫︁

−∞

ψ(t − u, τ)ejω1
(u+ τ

2

)e−jω2
(u− τ

2

)e−jωτdudτ

=

∞∫︁

−∞

∞∫︁

−∞

ψ(t − u, τ)e−j(ω2
−ω

1
)ue−j(ω−

ω
1
+ω

2

2

)τdudτ

= e−j(ω2
−ω

1
)

∞∫︁

−∞

∞∫︁

−∞

ψ(u′, τ)ej[(ω2
−ω

1
)u′−(ω− ω1+ω2

2

)τ]du′dτ.
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Using the relationship between ψ(t, τ) and Ψ(ω, υ), we get

Cz
1
,z

2

(t, ω) = Ψ
(︁
ω − ω1

+ ω
2

2

, ω
2
− ω

1

)︁
ej(ω1

−ω
2
)t
. (8.5.10)

Similarly, the second cross term is

Cz
2
,z

1

(t, ω) = Ψ
(︁
ω − ω1

+ ω
2

2

, ω
2
− ω

1

)︁
ej(ω2

−ω
1
)t
. (8.5.11)

Therefore, the sum of the cross-terms of the two-tone signals is

C
cross

(t, ω) = Cz
1
,z

2

(t, ω) + Cz
2
,z

1

(t, ω)

= 2Re

[︁
Ψ
(︁
ω − ω1

+ ω
2

2

, ω
2
− ω

1

)︁
ej(ω2

−ω
1
)t
]︁
. (8.5.12)

Then can the cross-terms in the Wigner-Ville distribution be completely eliminated?

Eq. (8.5.12) tells us that this is not possible unless a meaningless kernel function

Ψ(ω, υ) ≡ 0 is chosen (in this case, all signal terms are also equal to zero).

Next, consider how to suppress the cross-terms represented by Eq. (8.5.12).

1. Weak Finite Support of the Cross-terms
When Cohen

[63]

expressed the time-frequency distribution in a uniform form, he

proposed that an ideal time-frequency distribution should also have the finite support

property, that is, wherever the signal z(t) and its spectrum Z(ω) are equal to zero, the
Cohen’s class distribution C(t, ω) should also be equal to zero. This means that the

kernel function should satisfy the conditions

[60]

ψ(t, τ) =
∞∫︁

−∞

ϕ(τ, υ)ejυtdυ = 0, |t| > |τ|
2

(8.5.13)

and

Ψ(ω, υ) =
∞∫︁

−∞

ϕ(τ, υ)e−jωτdτ = 0, |ω| > |υ|
2

. (8.5.14)

However, these two conditions can only guarantee the “weak finite support” of the

time-frequency distribution, which has a limited effect on cross-term suppression. To

see this clearly, substituting Eq. (8.5.14) into the kernel function Ψ(ω, υ) in Eq. (8.5.12)
yields

Ψ
(︁
ω − ω1

+ ω
2

2

, ω
2
− ω

1

)︁
= 0, if

⃒⃒
⃒ω − ω1

+ ω
2

2

⃒⃒
⃒ > |ω

2
− ω

1
|

2

. (8.5.15)

From the above equation and Eq. (8.5.12), the cross term is equal to zero whenω < ω
1
or

ω > ω
2
. That is to say, only the cross-terms outside the region [ω

1
, ω

2
] are suppressed.

2. Strong Finite Support of the Cross-terms
The question is, can the cross-terms within the region [ω

1
, ω

2
] also be suppressed?

Since the two-tone signal takes values at frequencies ω
1
and ω

2
, and the cross-terms of

any time-frequency distribution can not be completely suppressed, it is natural to ask:
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can the cross-terms of the Winger-Ville distribution only appear at two signal frequen-

cies, while the cross-terms of other frequencies can be suppressed? This requirement is

called strong finite frequency support of the cross-terms. Similarly, if the cross term is

equal to zero when there is no signal, it is called strong finite time support of the cross

term.

The question is how to make the cross-terms have the desired strong finite time

support and strong finite frequency support. For this purpose, consider

K(ω;Ψ) = Ψ
(︁
ω − ω1

+ ω
2

2

, ω
2
− ω

1

)︁
(8.5.16)

which represents the envelope of the cross-terms of the two-tone signal.

From Eq. (8.5.16), it is easy to see that the values of the cross-term envelope at

signal frequency ω
1
and ω

2
are

K(ω;Ψ)|ω=ω
1

= Ψ
(︁ω

1
− ω

2

2

, ω
2
− ω

1

)︁
= Ψ(ω, υ)|υ=ω

2
−ω

1
,ω=υ/2 (8.5.17)

K(ω;Ψ)|ω=ω
2

= Ψ
(︁ω

2
− ω

1

2

, ω
2
− ω

1

)︁
= Ψ(ω, υ)|υ=ω

2
−ω

1
,ω=−υ/2 (8.5.18)

respectively. Thus, the nature of the cross-term of the two-tone signal is revealed.

The above results show that in order to prevent cross-terms of the time-frequency

distribution fromappearing at nonsignal frequencies, it is sufficient to add the following

constraint to the kernel function Ψ(ω, υ):

Ψ(ω, υ) = 0, ∀ |ω| ̸= |υ|
2

. (8.5.19)

This is the frequency domain constraint that must be satisfied by the kernel function

Ψ(ω, υ) when the cross-terms have strong finite frequency support properties.

Similarly, the constraint

ψ(t, τ) = 0, ∀ |t| ̸= |τ|
2

(8.5.20)

ensures that the cross-terms will not appear in the time period when the signal z(t) is
equal to zero.

The cross term strong finite support constraints Eqs. (8.5.19) and (8.5.20) were

proposed by Loughlin et al

[143]

. Although it is derived for the case of the tone signals, it

can be shown that these two conditions hold for any signals. Readers interested in this

proof can refer to [143].

It should be noted that the suppression of the cross term and the maintenance of

the signal term are a pair of contradictions because the reduction of the cross term will

inevitably have a flattening negative effect on the signal term. If the kernel function

satisfies the strong finite support conditions of the cross term, Eqs. (8.5.19) and (8.5.20),

although the cross term is completely suppressed in the time-frequency region where

there is no signal term, it is always accompanied by the presence of the cross term

wherever the signal term exists. This coexistence of the signal term and the cross term

is obviously disadvantageous to signal recovery.
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8.5.3 Other Typical Time-frequency Distributions

Around the cross-term suppression and the improvement of the Wigner-Ville distribu-

tion, many specific Cohen’s class distributions have been proposed.

Table 8.5.1 lists some commonly used Cohen’s class distributions and their corre-

sponding kernel functions. The kernel functions in the table are all fixed functions,

and their design is independent of the signal to be analyzed.

Several typical Cohen’s class distributions are described below.

1. The Choi-Williams Distribution
The signal term of the ambiguity function, i.e. the self term, is centered at the origin

(0, 0), while the mutual ambiguity function, i.e., the cross-terms, occurs far away from

the origin. In order to suppress the ambiguity function far away from the origin, Choi

and Williams

[54]

introduced the exponential kernel function

ϕ(τ, υ) = exp[−α(τυ)2] (8.5.21)

into Cohen’s class distribution. The inverse Fourier transform of this exponential kernel

function is

ψ(t, τ) =
∞∫︁

−∞

ϕ(τ, υ)ejυtdυ = 1√
4πατ2

exp

(︂
−

1

4ατ2 t
2

)︂
. (8.5.22)

Substituting Eq. (8.5.22) into Cohen’s class distribution definition Eq. (8.4.8), the ex-

pression of the Choi-Williams distribution

CWDz(t, ω) =
∞∫︁

−∞

1√
4πατ2

exp

(︂
−

(t − u)2
4ατ2

)︂
z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁
e−jωτdudτ (8.5.23)

is obtained.

In the following, the functions of the Choi-Williams distribution in cross items

suppression are given.

(1) From Eq. (8.5.21), it is easy to verify ϕ(0, 0) = 1, ϕ(0, υ) = 1 and ϕ(τ, 0) = 1. This

shows that the exponential kernel function does not affect the ambiguity functions

on the origin (0, 0), the horizontal (τ axis), and vertical (υ axis) axes. Therefore, if
the cross-terms of the ambiguity function appear on the horizontal and vertical

axes, they will not be suppressed and thus the corresponding cross-terms in the

time-frequency distribution will not be suppressed.

(2) Since ϕ(τ, υ) < 1, if τ ̸= 0 and υ ̸= 0, the cross-terms of the ambiguity function

outside the coordinate axes can be suppressed to some extent so that the cross-

terms of the time-frequency distribution corresponding to these ambiguity cross-

terms can be reduced.
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2. The Reduced Interference Distribution
The Choi-Williams distribution can suppress the cross-terms outside the horizontal

and vertical axes in the ambiguity domain but still retains the cross-terms on the hori-

zontal and vertical axes. Considering the general principle of cross-term suppression,

since the signal term is generally located near the origin in the ambiguity plane, i.e.

the (τ, υ) plane, while the cross-terms occur far away from the origin, it is natural to

expect the kernel function ϕ(τ, υ) to be a two-dimensional low-pass filter, i.e.,

|ϕ(τ, υ)| ≪ 1, for |τυ| ≫ 0. (8.5.24)

This specific condition was proposed by Williams and Jeong

[114]

based on the idea of

reference [54]. The low-pass kernel function can be designed by the following two

steps

[114]

.

Step 1 Design a real-valued window function h(t) that satisfies the following:
R1:

∫︀
∞

−∞

h(t) = 1;

R2: h(t) = h(−t);
R3: h(t) = 0, where |t| > 0.5;
R4: The Fourier transform H(ω) of h(t) is differentiable and has a low-pass charac-

teristic, i.e., for large frequency ω, the amplitude response of the filter is much

less than 1, or |H(ω)| ≪ 1.

Step 2 The kernel function is taken as

ϕ(τ, υ) = H(τυ). (8.5.25)

Cohen’s class distributions with such kernel functions are called reduced interference

distribution (RID) by Jeong and Williams. Many window functions can be used as the

real-valued window function h(t). Examples of the window functions given by Jeong

andWilliams include triangular window, generalizedHammingwindow, and truncated

Gaussian window. It can be easily seen that the RID has the following kernel functions

in the domains:

ψ
RID

(t, τ) = 1

|τ|h
(︂
t
τ

)︂
, (8.5.26)

Ψ
RID

(ω, υ) = 1

|υ|h
(︁ω
υ

)︁
, (8.5.27)

ϕ
RID

(τ, υ) = H(τυ), (8.5.28)

Φ
RID

(t, ω) =
∞∫︁

−∞

h
(︂
t
τ

)︂
e−j2πτωdτ. (8.5.29)

Note that Eqs. (8.5.26) and (8.5.27) show that the kernel function in the frequency-

frequency offset domain, i.e., the (ω, υ) plane, has the same shape as the kernel func-

tion in the time- time delay domain, i.e., the (t, τ) plane.
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The RID distribution can be expressed as the integral form of the basic function

h(t)

RIDz(t, ω; h) =
∞∫︁

−∞

∞∫︁

−∞

1

|τ|h
(︂
u − t
τ

)︂
z
(︁
u + τ

2

)︁
z*
(︁
u − τ

2

)︁
e−jωτdudτ. (8.5.30)

To calculate the RID distribution, the generalized correlation function at time instant t
can be defined as

R′z(t, τ; h) =
∞∫︁

−∞

1

|τ|h
(︂
u − t
τ

)︂
z
(︁
u + τ

2

)︁
z*
(︁
u − τ

2

)︁
du. (8.5.31)

Thus, the calculation of the RID distribution is converted into the calculation of the

Fourier transform of the generalized correlation function

RIDz(t, ω; h) =
∞∫︁

−∞

R′z(t, τ; h)e−jωτdτ. (8.5.32)

For the convenience of the reader, the requirements of the cross-term suppression for

the kernel function are summarized as follows.

(1) Weak finite time support of the cross-terms

ψ(t, τ) =
∞∫︁

−∞

ϕ(τ, υ)ejυtdυ = 0, |t| > |τ|
2

. (8.5.33)

(2) Weak finite frequency support of the cross-terms

Ψ(ω, υ) =
∞∫︁

−∞

ϕ(τ, υ)e−jωτdτ = 0, |ω| > |υ|
2

. (8.5.34)

(3) Strong finite time support of the cross-terms

ψ(t, τ) = 0, |t| ̸= |τ|
2

. (8.5.35)

(4) Strong finite frequency support of the cross-terms

Ψ(ω, υ) = 0, |ω| ̸= |υ|
2

. (8.5.36)

(5) The Reduced cross-terms

|ϕ(τ, υ)| ≪ 1, for |τυ| ≫ 0. (8.5.37)
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t

τ

τ = 2t

Fig. 8.5.1: Cone-shaped kernel function

3. The Zhao-Atlas-Marks Distribution (Cone-shaped Distribution)
Another well-known time-frequency distribution is called the cone-shaped distri-

bution, which is named after the conical shape of its kernel function. This distribution

was proposed by Zhao et al.

[255]

and its kernel function is taken as

ψ(t, τ) =
{︃
g(τ), |τ| ≥ 2|t|
0, Others

. (8.5.38)

Fig. 8.5.1 shows this kernel function, which is shaped like a cone.

The representation of this cone-shaped kernel function in the ambiguity domain

(τ, υ) is

ψ(τ, υ) =
∞∫︁

−∞

ψ(t, τ)e−jυtdt = g(τ)
τ/2∫︁

−τ/2

e−jυtdt = 2g(τ) sin(τυ/2)υ . (8.5.39)

In particular, if let

g(τ) = 1

τ e
−ατ2

, (8.5.40)

then the cone-shaped kernel function is

ϕ(τ, υ) = sin(τυ/2)
τυ/2 e−ατ

2

, α > 0. (8.5.41)

Different from the exponential kernel function Eq. (8.5.22) which can not suppress

the cross-terms on the coordinate axis, the cone-shaped kernel function shown in

Eq. (8.5.41) can suppress the cross-terms on the τ axis.
4. Variants of the Wigner-Ville Distribution

The following are several modified distributions of the Winger-Ville distribution.

(1) The pseudo Wigner-Ville distribution (PWD)

Eq. (8.5.26) shows that the RID distribution achieves cross-terms suppression by

adding the window function ψ(t, τ) = h( tτ ) to the variables t and τ. Since the Wigner-

Ville distribution corresponds to a Cohen’s class distribution with a window function
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ψ(t, τ) = δ(t), the simplest way to modify this distribution is to add a window function

h(τ) to the variable τ to reduce the cross term. The modified Wigner-Ville distribution

is conventionally called the pseudo Wigner-Ville distribution (PWD) and is defined as

PWDz(t, ω)
def
=

∞∫︁

−∞

z
(︁
t + τ

2

)︁
z*
(︁
t − τ

2

)︁
h(τ)e−jωτdτ = Wz(t, ω)

ω
* H(ω), (8.5.42)

where

ω
* represents the convolution about the frequency variable ω. Note that the win-

dow function h(τ) should satisfy the requirements R1to R4, i.e.,H(ω) should essentially
be a low-pass filter.

(2) The smoothed Wigner-Ville distribution (SWD)

Another approach to reducing the cross-terms of the Wigner-Ville distribution is to

directly smooth theWigner-Ville distributionWz(t, ω) to obtain the so-called smoothed

Wigner-Ville distribution

SWDz(t, ω) = Wz(t, ω)
t
*

ω
*G(t, ω), (8.5.43)

where

t
*

ω
* represents the two-dimensional convolution of time and frequency, and

G(t, ω) is a smoothing filter.

Interestingly, the spectrogram can be seen as a special case of the smoothedWigner-

Ville distribution. From the definition of the spectrum and short-time Fourier transform,

it is easy to know

SPEC(t, ω) = |STFT(t, ω)|2

=

∞∫︁

−∞

z(u)γ*(u − t)e−jωudu
∞∫︁

−∞

z*(s)γ(s − t)ejωsds

= Wz(t, ω)
t
*

ω
*Wγ(−t, ω), (8.5.44)

whereWγ(−t, ω) is the time-reversal form of the Wigner-Ville distributionWγ(t, ω) of
the window function γ(t) of the short-time Fourier transform. The above formula shows

that the spectrogram is a two-dimensional convolution of the signal and the Wigner

Ville distribution of the window function. In particular, if the smoothing filter

G(t, ω) = Wγ(−t, ω) (8.5.45)

is selected in the smoothedWigner-Ville distribution Eq. (8.5.43), the smoothedWigner-

Ville distribution Eq. (8.5.43) degenerates to spectrogram Eq. (8.5.44).

(3) The smoothed pseudo Wigner-Ville distribution (SPWD)

Eq. (8.5.26) enlightens us that the RID distribution obtains ideal cross-term sup-

pression effect by adding combined window function h
(︀ t
τ
)︀
to t and τ. In fact, the idea

of addingwindow functions to t and τ is also applicable to theWigner-Ville distribution,

but the added window function is different from the window function h
(︀ t
τ
)︀
of the RID
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distribution. Specifically, a window function g(t)h(τ) is used to smooth the t and τ by
adding g(t) and h(τ). The Wigner-Ville distribution obtained by this modification is

called the smoothed pseudo Wigner-Ville distribution, defined as

SPWDz(t, ω) =
∞∫︁

−∞

∞∫︁

−∞

g(u)h(τ)z
(︁
t − u + τ

2

)︁
z*
(︁
t − u − τ

2

)︁
e−jωτdudτ, (8.5.46)

where g(t) and h(τ) are two real even window functions with h(0) = g(0) = 1.

(4) The modified smoothed pseudo Wigner-Ville distribution (MSPWD)

Auger and Flandrin

[15]

found that the performance of the smoothed pseudo-Wigner-

Ville distribution will be further improved after a proper “reassignment” (modification),

and the smoothed pseudo Wigner-Ville distribution after reassignment is called modi-

fied smoothed pseudo Wigner-Ville distribution (MSPWD), i.e.,

MSPWDz(t, ω) =
∞∫︁

−∞

∞∫︁

−∞

SPWDz(t′, ω′)δ[t − ^t(t′, ω′)]δ[ω − ω̂(t′, ω′)]dt′dω′ (8.5.47)

where
^t(t′, ω′) and ω̂(t′, ω′) represent the time and frequency points after reassignment,

respectively.

It should be noted that the Wigner-Ville distribution and its three generalized

forms are bilinear time-frequency representations, but the modified smoothed pseudo

Wigner-Ville distribution is not. Moreover, what it loses is only this bilinear, which can

retain other properties of the Wigner-Ville distribution.

5. B Distribution
B distribution is a time-frequency distribution proposed by Barkat and Boashash

[19]

.

In the B distribution, the kernel function is taken as

ψ(t, τ) =
(︂

|τ|
cosh

2

(t)

)︂σ
, (8.5.48)

where σ is a constant, and its choice is application dependent, but its range is between
0 and 1, i.e., 0 < σ ≤ 1.

B distribution is defined as

B(t, ω) def=
∞∫︁

−∞

∞∫︁

−∞

z
(︁
u + τ

2

)︁
z*
(︁
u − τ

2

)︁ |τ|σ

cosh

2σ
(u − t)

e−jωτdudτ. (8.5.49)

It is easy to show that the B distribution satisfies most of the properties of the time-

frequency distribution. In particular, the B distribution has the following important

properties.

Property 1 The B distribution is real since ϕ(τ, υ) = ϕ*(−τ, 0υ);
Property 2 The B distribution is time-shift invariant since the kernel function ϕ(τ, υ) is

not a function of time;



Summary | 435

Property 3 The B distribution is frequency-shift invariant since the kernel function

ϕ(τ, υ) is not a function of frequency;
Property 4 The first moment of the B distribution yields the instantaneous frequency

fi(t) =
∫︀
∞

−∞

fBz(t, f )df∫︀
∞

−∞

Bz(t, f )df
(8.5.50)

since the kernel function satisfies

∂ϕ(τ, υ)
∂τ

⃒⃒
⃒⃒
υ=0

= 0 and ϕ(0, υ) = constant. (8.5.51)

The above repeatedly emphasizes the harmful side of the cross-term and introduces

various kernel function design methods to reduce the cross-term in detail. It should be

noted that the reader should not be under the illusion that the cross-term is just a black

sheep, which has hundreds of harm but no benefit. In fact, in some important signal

processing applications, the cross-term can be a useful asset. For example, when using

coherent radar to detect icebergs floating on the surface of the ocean, the cross-term

is a reflection of the existence of the detection target (iceberg) and is therefore useful.

Readers interested in this application can refer to reference [101].

Summary

This chapter first focuses on the mother of time-frequency distributions, the Wigner-

Ville distribution, followed by a discussion of the relationship between it and the

ambiguity functions, and the unified form of the time-frequency distributions, the

Cohen’s class time-frequency distribution, which is the windowed form of the Wigner-

Ville distribution.

The evaluation of the performance of time-frequency distribution is mainly de-

termined by the time-frequency aggregation and the cross-term suppression, and the

latter becomes the focus and difficulty of time-frequency distribution research and ap-

plication. Various improved time-frequency distributions can be obtained by selecting

different window functions. Being familiar with various time-frequency distributions

will help to select an appropriate time-frequency distribution for the application.

This chapter concludes with a presentation of the time-frequency analysis of poly-

nomial FM signals. In particular, as a product of the combination of time-frequency

signal analysis and higher-order statistical analysis, the trispectrum of theWigner-Ville

distribution is a powerful analytical tool for polynomial FM signals.
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Exercises

8.1 Compute the Wigner-Ville distributions of time domain δ function z(t) = δ(t − t
0
)

and frequency domain δ function Z(ω) = δ(ω − ω
0
).

8.2 z(t) = ej
1

2

mt2
is a linear frequency modulation (LFM) signal, where m is the

frequency modulation slope. Find its Wigner-Ville distribution.

8.3 Find the Wigner-ville distribution of the Gaussian signal z(t) = 1√
σ e
−πt2/σ2

.

8.4 Signal

z(t) =
(︁ α
π

)︁
1/4

exp

(︁α
2

t2
)︁

is a normalized Gaussian signal with unit energy. Find its Wigner-Ville distribution.

8.5 A non-stationary signal is composed of two Gaussian functions

z(t) =
(︁ α
π

)︁
1/4
[︁
exp

(︁
−

α
2

(t − t
1
)

2

+ jω
1
t
)︁
+ exp

(︁
−

α
2

(t − t
2
)

2

+ jω
2
t
)︁]︁

,

where t
1
> t

2
and ω

1
> ω

2
. Prove that the signal term (self term)

W
auto

(t, ω) = 2

2∑︁

i=1
exp

(︂
−α(t − ti)2 −

1

α (ω − ωi)
)︂

and the cross-term

W
cross

(t, ω) = 4exp

[︂
−α(t − tm)2 −

1

α (ω − ωm)
2

]︂
cos[(ω − ωm)td + ωd t]

of the Wigner-Ville distribution of signal z(t), where

tm =

1

2

(t
1
+ t

2
) and ωm =

1

2

(ω
1
+ ω

2
)

are the average of the time delay and the average of the frequency of the two harmonic

signals respectively, while

td = t1 − t2 and ωd = ω1
− ω

2

are the difference in time delay and frequency of the two harmonic signals, respectively.

8.6 The frequency domain definition of themutualWigner-Ville distribution of signal

x(t) and g(t) is

WX,G(t, ω) =
1

2π

∞∫︁

−∞

X
(︁
ω +

υ
2

)︁
G*
(︁
ω − υ

2

)︁
ejυtdυ.

Prove

∞∫︁

−∞

WX,G(t, ω)dt =
∞∫︁

−∞

Wx(t, ω)dt.
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8.7 Prove that the definition formula of the instantaneous frequency

ωi(t) =
∫︀
∞

−∞

ωWx(t, ω)dω∫︀
∞

−∞

Wx(t, ω)dω
.

Hint: Using the integral formula

∞∫︁

−∞

ωe−jωτdω =

2π
j
∂δ(τ)
∂τ .

8.8 Let xa(t) = x(t) + jx̂(t) be the analytic signal of the real signal x(t), where x̂(t)
is the Hilbert transform of x(t). Try to find the relationship between the Wigner-Ville

transform of the analytic signal xa(t) and the Wigner-Ville transform of the real signal

x(t).
8.9 Compute the ambiguity function of time domain δ signal z(t) = δ(t − t

0
) and

frequency domain δ signal Z(ω) = δ(ω − ω
0
).

8.10 Find the ambiguity function of the LFM signal z(t) = e
1

2

mt2
.

8.11 Find the ambiguity function of the Gaussian signal z(t) = 1√
σ e
−πt2/σ2

.

8.12 Find the Wigner-Ville distribution and ambiguity function of a single Gaussian

signal

z(t) =
(︁ α
π

)︁
1/4

exp

[︁
−

α
2

(t − t
0
)

2

+ jω
0
t
]︁
.

8.13 Find the self-term and cross-term of the ambiguity function of the signal super-

imposed by two Gaussian functions

z(t) =
(︁ α
π

)︁
1/4
[︁
exp

(︁
−

α
2

(t − t
1
)

2

+ jω
1
t
)︁
+ exp

(︁
−

α
2

(t − t
2
)

2

+ jω
2
t
)︁]︁

,

where t
1
> t

2
and ω

1
> ω

2
.

8.14 Prove that when the kernel function ϕ(τ, υ) takes the ambiguity function of any

window function γ(t), the Cohen’s class time-frequency distribution is equivalent to

the spectrogram, i.e., it has non-negativity.

8.15 Prove the time shift-invariance and frequency shift-invariance of Cohen’s class

time-frequency distribution.

8.16 Prove the unitary form of Cohen’s class time-frequency distribution or Moyal

formula

1

2π ⟨Cz , Cx⟩ = |⟨z, x⟩|2.

8.17 Let

SWDz(t, ω) =
1

2π

∞∫︁

−∞

∞∫︁

−∞

Φ(θ, υ)Wz(t − θ, ω − υ)dυdθ

be the modified Wigner-Ville distribution of signal z(t). If

Φ(t, ω) = (0.5πt
0
ω
0
)

−1/2e−(t/t0)
2

−(ω/ω
0
)

2

.

Prove that SWDz(t, ω) is non-negative in the special case t0ω0
= 1.



9 Blind Signal Separation
The study of blind signal separation (BBS) originated from a paper published by Jutten

and Herault in 1991 [115]. Later in 1994, another BSS technique named as independent

component analysis (ICA) method is proposed by Common

[64]

. It is their pioneering

works that have greatly promoted the research on blind signal separation, making it a

research hotspot in signal processing, machine learning, and neural computation over

the last three decades. With the extensive application as the background, the theory

andmethods of BSS have gained rapid development. At the same time, it also promoted

and enriched the development of the theory andmethods of signal processing,machine

learning, and neural computation significantly, and gained wide application in many

fields such as data communication, multimedia communication, image processing,

speech processing, biomedical signal processing, radar and wireless communications

and so on.

In this chapter, we will introduce the main theory, methods, and some typical

applications of blind signal separation.

9.1 Basic Theory of Blind Signal Processing

Before introducing the theory and method related to BSS, it is necessary to begin with

a broader vision from the problem of blind signal processing.

9.1.1 A Brief Introduction to Blind Signal Processing

Blind signal processing can be divided into two categories:

(1) Fully-blind signal processing: techniques using only the output (or observed) data

of the system.

(2) Semi-blind signal processing: techniques using not only the output data of the

system but also the input or some statistical characteristic of the system.

Fully-blind signal processing is relatively difficult since only a little information is avail-

able, while semi-blind signal processing is easier since more information is available

compared to the fully-blind case.

Take the problem of system identification shown in Fig.9.1.1 as an example, system

identification techniques can be classified into the following three catcategories

(1) White box technique: structure of the system is known (be transparent inside);

(2) Gray box technique: partial structure of the system is known (can be obtained

through physical observation);

(3) Black box technique: structure of the system is unknown.

https://doi.org/10.1515/9783110475562-009
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System
Input Output

Fig. 9.1.1: System identification

The following are some typical examples of blind signal processing.

(1) Radar target detection: the target (such as a fighter andmissile) is a non-cooperative

object.

(2) Seismic exploration (to get the reflection coefficient of the earth layer): the earth

layer is a non-cooperative object.

(3) Mobile communication: the user is a cooperative object and thus the transmitted

signal can be encoded with some structural feature through design.

The main branches of blind signal processing include blind signal separation, blind

beamforming, blind channel estimation, blind system identification and target recog-

nition, blind equalization, and so on.

Blind signal processing is an important branch of blind signal processing and is

closely related to other important branches of blind signal processing (blind beam-

forming, etc.).

9.1.2 Model and Basic Problem of BSS

Blind signal separation (BSS), is also known as blind source separation. Its mathemati-

cal model can be formulated uniformly as

x (t) = As (t) . (9.1.1)

There are two different interpretations of this model.

Model of the array signal processing: A physical model where A is the response ma-

trix of a sensor array, representing the channel through which the signal is transmitted,

with a clear physical meaning. After the signal is transmitted through the channel, it is

received or observed by the sensor array and becomes the array response x (t) = As (t).
Model of the blind signal separation : A physically independentmathematicalmodel

where A is a mixing matrix whose elements represent the linear mixing coefficient

corresponding to each source. Thus there is no explicitly physical parameter and As (t)
essentially represents the linear mixing result of multiple signals.

The basic problem of BSS is to identify the mixing matrix A or recover all source

signals s (t) using only the observation vector x (t) without any a priori knowledge
about A.
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A typical engineering application of BSS is the cocktail party problem: there are n
guests talking at the party and m sensors are used to obtain the observation data. It is

desired to separate the mixed conversation signals to obtain certain conversations of

interest.

The term “blind” has two meanings: (1) the source can not be observed; (2) the

mixing matrix is unknown, that is, how the signals are mixed in unknown. Therefore,

blind signal separation is a natural choice when it is difficult to establish the mathe-

matical model of the transmission process from the source signal to the sensor, or prior

knowledge about the transmission is not available.

Consider using m sensors to observe n source signals s
1 (
t) , · · · , sn (t), and then

use the mixed signal As (t) for blind signal separation. Under this case, the observed
signal is a m × 1 vector x (t) = [x1 (t) , · · · , xm (t)]T = As (t), the mixing matrix A is a

m × n matrix, and the source signal is s (t) = [s1 (t) , · · · , xn (t)]T. It is usually required
that the number of sensors must not be less than the number of unknown source

signals, i.e., m ⩾ n.
The ideal result of signal separation can be expressed as

s (t) = A†x (t) =
(︁
ATA

)︁
−1

ATx (t) . (9.1.2)

However,since the mixing matrix A is unknown, it is impossible to find the Moore-

Penrose inverse matrix

(︁
ATA

)︁
−1

AT

, which makes s (t) = A†x (t) impossible to realize.

The mixing matrix bdsymA is unknown, resulting in two uncertainties or ambigu-

ities in BSS. Denote the mixing matrix as A = [a1, · · · , an], then we have

x (t) = As (t) =
n∑︁

i=1
aisi (t) =

n∑︁

i=1

ai
αi
αisi (t) . (9.1.3)

In other words, the following two types of uncertainties exist in BSS.

(1) Uncertainty of the source signal ordering. If permuting the column vector ai and aj
of the mixing matrix as well as permuting the order of the source signal si and sj,
the mixed signal x (t) =

∑︀n
i=1 aisi (t) remains unchanged. That is, the mixed signal

x (t) does not contain any information about the order of the individual source

signals.

(2) Uncertainty of the source signal amplitude. If dividing the column vector ai by a
nonzero complex-valued constant αi andmultiplying the corresponding source sig-

nal by the same αi, the mixed signal x (t) = As (t) =
∑︀n

i=1
ai
αi αisi (t) =

∑︀n
i=1 aisi (t)

remains unchanged. That is, the true amplitude and phase of any source signal

can not be identified uniquely by the mixed signal x (t).

The basic principle of BSS (see Fig.9.1.2) is to design an n × m separation matrix (or

demixing matrix) B for an m × n unknown mixing matrix such that its output

y (t) = Bx (t) = BAs (t) = ŝ (t) (9.1.4)
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

s1 (t)
...

sn (t)


 = s (t) y (t) =



y1 (t)
...

yn (t)


 = ŝ (t)A B

Mixing
matrix

Separating
matrix

x (t) y (t)

Fig. 9.1.2: The basic principle of the BSS

is an estimate of the source signal vector s (t).
Obviously, if the separation matrix is designed to satisfy

B = GA† (9.1.5)

where G is an n × n generalized permutation matrix, which refers to a matrix that con-

tains exactly one nonzero element in each row and each column. Then the separation

output can be expressed as

y (t) =
(︁
GA†

)︁
As (t) = G

(︁
ATA

)︁
−1

ATAs (t) = Gs (t) = ŝ (t) , (9.1.6)

which shows that since the mixing matrix A is unknown, there exist two types of

uncertainty in identifying the Moore-Penrose inverse matrix A†, that is, uncertainty in
the ordering of its column vectors and uncertainty in the element magnitudes, which

leads to two types of uncertainty in the results of the BSS as

(1) Uncertainty in the ordering of the separation signal Gs (t) = ŝ (t);
(2) Uncertainty in the waveform (i.e., amplitude and phase) of the separated signals

Gs (t) = ŝ (t).

These two types of uncertainty are consistent with that of the mixed signal. It is that

the mixed signal can not distinguish the ordering of the source signals and the true

amplitude of each signal, so the BSS y (t) = Bx (t) = Gs (t) = ŝ (t) using only the mixed

signal will lead to the uncertainty of the ordering and waveform of the separated signal

.

It is worth pointing out that these two types of uncertainties are allowed by signal

separation, since the separated signal y (t) = Gs (t) is a copy of the source signal s (t),
which ensures that the two essential requirements of signal separation are met.

(1) The ordering of the original signals is not the main object of our interest when

performing signal separation.

(2) The separated signal should be “hi-fidelity” to the original signal. The fixed initial

phase difference between the separated and the original signal may be corrected

by proper phase compensation, while a fixed amplitude difference only stands for

that a signal is amplified or attenuated by a fixed scale, and would not have any

influence on the fidelity of signal waveform.
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9.1.3 Basic Assumption and Performance Requirement of BSS

In order to realize the two basic purposes of blind signal separation, namely, separating 
the mixed signal and keeping a high fidelity, it is necessary the make some basic 
assumptions and propose some basic performance requirements.

1. Basic Assumption of BSS
In order to make up for the insufficiency of the given information in the BSS prob-

lem, it is usually necessary to make some basic assumptions as follows to the BSS:

Assumption 1 Each component of the signal vector s (t) is independent at any time t.
Assumption 2 There is at most one Gaussian signal among all the components si (t) of

s (t).
Assumption 3 The m × n mixing matrix to be of full column rank, and m ⩽ n.
Assumption 4 The components of s (t) have unit variance.

These assumptions are reasonable for most applications for the following reasons.

(1) Assumption 1 is a crucial assumption that a signal can be blind separated. Although

this assumption is a strong statistical hypothesis but a physically very plausible one

since it is expected to be verified whenever the source signals arise from physically

separated systems.

(2) Since the linear mixture of two Gaussian signals is still a Gaussian signal, Assump-

tion 2 is a very natural one.

(3) Assumption 3 requires that the number m of the sensors be not less than that

n of the independent source signals, that is, it requires that the model of BSS

be well-determined (m = n) or over-determined m > n. In practice, most ap-

plications belong to well-determined or over-determined BSS problems. In the

under-determined (m < n) BSS, the number of the sensors is less than that of

the independent source signals, which will be discussed in the last topic of this

chapter.

(4) Assumption 4 is related to the ambiguity of signal separation. The incomplete

identification of the mixing matrix A is called the uncertainty of A. Since A has

uncertainty, without loss of generality, it is natural to assume that the source signal

has unit variance, that is, the dynamic variations of the amplitude and phase of

each source signal can be merged into the corresponding column vectors of A.

Assumption 2 allows there is at most one source signal to be Gaussian, all the other

sources must be non-Gaussian ones. As mentioned in Chapter 6, the non-Gaussian

signal can be classified as sub-Gaussian signal and supper-Gaussian signal. It is worth

noting that the methods suitable for separating sub-Gaussian and super-Gaussian are

somewhat different.

2. Basic Performance Requirement of the BSS
The basic performance requirement of the BSS is that the separated signal must

have equivariance.
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Definition 9.1.1. A BSS method is called to have equivariance, if its separating output
y (t) = Bx (t) obtained using the observed signal x (t) = As (t) does not change with the
variations of the mixing matrix A when the source signal s (t) is given.

BSS methods may be divided into online methods and offline methods. Offline BSS

methods are also known as batch-processing or fixed BSS methods, while online BSS

methods are usually called as adaptive BSS methods.

Equivariance is a basic performance requirement for batch-processing methods.

The batch-processing separators are named as equivariance (batch-processing) signal

separators if their outputs satisfy the equivariance requirement, and theywould exhibit

a uniform BSS performance consequently.

BSS that uses equivariance separators is called equivariance BSS. In signal sepa-

ration, the performance of any equivariant signal separation algorithm is completely

independent of the mixing matrix (i.e., the channel of signal transmission), which is

the meaning of the so-called “uniform performance”. Otherwise, a blind signal separa-

tor suitable for some linear mixed signals may not be suitable for other linear mixed

forms. Obviously, a blind signal separator without uniform performance cannot be

generalized and lacks the value of practical applications.

Definition 9.1.2. LetW (k) be the separation matrix or ing matrix of a BSS algorithm,
and construct a mixing-demixing system C (k) = W (k)A. A BSS algorithm is called to
have equivariance if C (k) satifies

C (k + 1) = C (k) − η (k)H (C (k) s (k)) C (k) (9.1.7)

and the matrix function H (C (k) s (k)) of matrix C (k) s (k) is independent of the mixing
matrix A.

“The performance of a batch-processing signal separation algorithm is independent of

how the source signals are mixed” is a basic performance desired for any BSS algorithm

to have. It is worth pointing out that if a batch-processing BSS algorithm does not have

equivarance, its corresponding adaptive algorithm must not have equivarance.

9.2 Adaptive Blind Signal Separation

If a batch-processing BSS algorithm with equivariance is modified to an adaptive one,

the “uniform performance” of the original batch algorithm would be inherited by its

corresponding adaptive algorithm.



444 | 9 Blind Signal Separation



s1 (t)
...
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
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matrix

x (t) y (t)

Fig. 9.2.1: The block diagram of the adaptive BSS

Unknown

Dynamic
system

Neural network
(reconstruction system)

Adaptive
learning algorithm

s1 (t)

sn (t)

x1 (t)

xm (t)

y1 (t) = F (si)

yn (t) = F (sj)

...
...

...

Fig. 9.2.2: Functional block diagram illustrating a general BSS

9.2.1 Neural Network Implementation of Adaptive Blind Signal Separation

Fig.9.2.1 shows the block diagram of the adaptive BSS, where the separating matrix B
of the batch-processing algorithm is replaced by the weighting matrixW (k) which is
adjusted adaptively by the (machine) learning algorithms.

Adaptive BSS is usually realized using a neural network, the principle of which is

shown in Fig.9.2.2.

More specifically, the structure of the feed-forward neural network of adaptive BSS

is shown in Fig.9.2.3, in which Fig.9.2.3(a) is a block diagram and Fig.9.2.3(b) is the

detailed structure of the mixing model and a basic feed-forward neural network of the

adaptive BSS.

As shown in Fig.9.2.3(b), let the weight coefficient of the feed-forward neural net-

work be wij , i = 1, · · · , n; j = 1, · · · ,m and the n × m weight matrix at time t be
W (t) =

[︀
wij (t)

]︀
, then we have

y (t) = W (t) x (t) , (9.2.1)

where W (t) is known to be an unmixing matrix or demixing matrix for BSS while

synaptic weight matrix for the neural network.

As emphasized in the previous section, the goal of BSS is to find a separation

matrix B such that BA = G, where G is a generalized permutation matrix. Therefore, it

is desired to use the adaptive learning algorithm so that the converged synaptic weight
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(b) The detailed architecture of mixing and separating models

Fig. 9.2.3: Illustration of the mixing model and a basic feed-forward neural network of adaptive
BSS[10]

matrixW
∞
satisfies the following relation

W
∞
A = G. (9.2.2)

That is to say, the separation performance of a neural network at time t is evaluated
by the composite matrix T (t) def

= W (t)A, and this matrix describes the “separation

precision” of all the separated independent components of the signal in the mixing-

separating model y (t) = T (t) s (t).
Although what is illustrated in Fig.9.2.3 is a feed-forward neural network, a fully

connected feedback (recurrent) neural network is also applicable. Let the weightmatrix

of a simple recurrent neural network at time t to be ^W (t), then

yi (t) = xi (t) −
n∑︁

j=1
ŵij(t)yj (t) . (9.2.3)

Schematic illustrations of a simple recurrent neural network (m = n), a feed-forward-
feedback cascaded model, and a hybrid model are shown in Fig.9.2.4(a) (c).
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∑x (t) + y (t)

Ŵ

−m m

(a) The recurrent neural network model

∑x (t) Ŵ + y (t)

Ŵ

−m n n

(b) The feed-forward-feedback cascaded

model

∑x (t) + Ŵ y (t)

Ŵ

−m

m

n

(c) The hybrid model

Fig. 9.2.4: The neural network structure of adaptive BSS[10]

It should be noted that, for the ideal memoryless case, the basic model of the recurrent

and feed-forward neural network are equivalent under the condition that

W (t) =
[︁
I + ^W (t)

]︁
−1

. (9.2.4)

Let the mathematical model of the recurrent neural network be

y (t) =
[︁
I + ^W (t)

]︁
−1

x (t) , (9.2.5)

if a linear adaptive neural network is employed to perform the BSS, its output would be

y (t) = NN (W , x (t)) = Wx (t) , (9.2.6)

where W is the neural network weight matrix and NN (·) represents a linear neural

network function.

The task of the neural network is to adjust the weight matrix (or demixing weight)

W adaptively by sample training to

W = ΛPA† = GA†, (9.2.7)

where Λ is a nonsingular diagonal matrix, P is a permutation matrix, and G is a gener-

alized permutation matrix.

In most cases, the core problem of adaptive BSS is the learning algorithm of sep-

arating (or demixing) matrix, which is an unsupervised machine learning problem.
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The basic idea of unsupervised machine learning is to extract statistically independent

features as input representations without losing information.

When the mixing model is nonlinear, the source signals usually can not be recov-

ered directly from the observed mixtures, unless some prior knowledge or information

about the signal and (or) the mixing model is available. In the following sections of

this chapter, only BSS in the case of the linear mixing model is discussed.

9.2.2 Quasiidentity Matrix and Contrast Function

The normalization of the variance of each source signal only resolves the uncertainty

of the amplitude of each element of the mixing matrix A, while the ordering of each
column of A and the initial phase of each source remain uncertain. In order to de-

scribe and resolve these two kinds of the uncertainty of mixing matrix A, Cardoso
and Laheld

[44]

introduce the concept of “quasiidentity” between two matrices into the

problem of BSS.

Definition 9.2.1. (Quasiidentity Matrix): m × n matrix A and matrix U is called to be
quasiidentity matrix, denoted as A .

= U, if A = UG where G is a n × n generalized
permutaion matrix.

The BSS problem can also be described as follows: identify the demixing matrix (or

separating matrix) W = AG which is a quasiidentity matrix to the mixing matrix A
and/or obtain a copy or estimate x̂ (n) of the source signal based only on the sensor
output x (t).

Just as any optimization algorithm needs one or more objective functions, an

adaptive BSS algorithm also needs an objective function. In the area of adaptive BSS,

“contrast function” is often used to call the objective function.

Definition 9.2.2. (Contrast Function)
[64]

A contrast function of a n×1 vector y, denoted as
C (y), is amapping from n-dimensional complex-valued spaceCn to a positive real-valued
function R+ to satisfying the following three requirements.
(1) The contrast function C (y) does not change is the elements yi of y permuted. In other

words, C (Py) = C (y) always holds for any permutation matrix P.
(2) The contrast function C (y) is invariant by “scale” of elements yi of y. In other words,

C (Dy) = C (y) always holds for any diagonal invertible matrix D.
(3) If y has independent components, then

C (By) ⩽ C (y) (9.2.8)

where B is an arbitrary invertible matrix.

Requirement (1) and (2) can be expressed as C (Gy) = C (y) by the generalized permu-

tation matrix G. From this result and y = Wx it is easy to know

C (y) = C (Wx) = C (GWx) . (9.2.9)
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If W is a separating matrix, and its output is y = Wx, the separating matrix can be 
given by the solution that maximizes the contrast function

^W = argmax C (y) = arg max

E{||Wx||
F
}=1

C (GWx) (9.2.10)

or minimizes the contrast function

^W = argmin C (y) = arg min

E{||Wx||
F
}=1

C (GWx) , (9.2.11)

according to the specific choice of different contrast functions. These discussion sug-

gests that the separating matrix GA† obtained by means of maximizing (or minimizing)

the contrast function is an estimate of GW, which is just a quasiidentity matrix GA†

to the unknown ideal separating matrix W = A†. Obviously, the function that does

not satisfy Eq. (9.2.9) cannot be used as the contrast function for BSS, because this

would result in the solution of the optimization algorithm not being quasiidentity to

the Moore-Penrose inverse A† of the mixing matrix, thus making it impossible for the

separated output vector to be a copy of the source signal.

The core problem of BSS is the design of the contrast function and optimization

algorithm, and with the contrast function differs, the corresponding BSS algorithm

will differ accordingly. In the following sections of this chapter, we will focus on sev-

eral representative BSS algorithms according to the different choices of the contrast

function.

Four basic problems to be solved by the neural network approach to BSS can be

summarized as:

(1) the existence and identifiability of the inverse system;

(2) the stability of the inverse system model;

(3) the convergency, converge rate, and how to avoid falling into local extreme points

of a machine learning algorithm;

(4) the reconstruction precision of the source signals.

9.3 Indenpent Component Analysis

Independent component analysis (ICA) is a pioneering method proposed by Common

for BSS in 1994. As the term suggests, the basic purpose of ICA is to determine the linear

transformation matrix or separating matrixW such that each component yi (t) of its
output vector y (t) = Wx (t) is as statistically independent as possible. such that each
component y of its output vector Q is as statistically independent as possible.

9.3.1 Mutual Information and Negentropy

In order to realize independent component analysis, it is necessary to have a measure

to measure the statistical independence between the components of the signal vector.
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Definition 9.3.1. The mutual information between each component of a signal vector
y = [y1, · · · , yn]T, ususally denoted as I (y), is defined as

I (y) =
∫︁
py (y1, · · · , yn) log

py (y1, · · · , yn)∏︀n
i=1 pi (yi)

dy
1
· · ·dyn . (9.3.1)

Mutual information is a nonnegative quantity, that is

I (y) ≥ 0. (9.3.2)

always hold.

Definition 9.3.2. Let y (t) = Wx (t) be the output vector of a neural network whose
probability density function and its decomposition form are py (y,W) and p̃y (y,W) re-
spectively, then the Kullaback-Leibler (K-L) divergency between py (y,W) and p̃y (y,W , )

D (y) = KL
[︀
py (y,W) || p̃y (y,W)

]︀
def

=

∫︁
py (y,W) log

py (y,W)

p̃y (y,W)

dy (9.3.3)

is called the dependence between each component of the output signal vector y. In which,
the decomposition form of the density function p̃y (y,W) is the product of the marginal
probability density function of each component of y, that is, p̃y (y,W) =

∏︀n
i=1 pi (yi ,W).

By comparing Definition 9.3.1 with Definition 9.3.2, it is easy to find that the mutual

information and dependence between each component of the output signal vector y
are equivalent, that is

I (y) = D (y) ≥ 0. (9.3.4)

Obviously, if each component yi(t) of the output y(t) =
[︀
y
1
(t), · · · , yn(t)

]︀
T

is statistically

independent to each other, then I (y) = D (y) = 0 because of py (y,W) = p̃y (y,W).

Conversely, if I (y) = D (y) = 0 then each component of the neural network outputs is

statistically independent to each other. In other words, there is an equivalent relation

I (y) = D (y) = 0 ⇐⇒ yi(t), i = 1, · · · , n being statistically indenpendent.

(9.3.5)

And minimize the mutual information (or dependence) of the separated output vector

inspires the idea of the ICA technique.

The equivalent relation described in Eq. (9.3.5) may also be expressed as: mutual

information is the contrast function of ICA, that is

[64]

I (y) = 0 iff W = ΛPA† = GA†. (9.3.6)

On the other hand, entropy is the basic concept of information theory. The entropy of a

random variable can be interpreted as the degree of information that the observation

of the random variable gives. The more “random”, i.e. unpredictable and unstructured

the variable is, the larger its entropy

[109]

. The mutual information can be expressed in

terms of entropy as

I (y) = D (y) = −H (y,W) +

n∑︁

i=1
H (yi ,W) . (9.3.7)
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According to Eq. (9.3.7), the condition for the the mutual information to be minimum is

that the entropy H (y,W) takes the maximum value

∑︀n
i−1 H (yi ,W). Therefore, mini-

mizing the mutual information is equivalent to maximizing the entropy, i.e., the inde-

pendent component analysis method is equivalent to the maximum entropy method.

Let y = [y1, · · · , yn]T, then its differential entropy can be expressed as

H (y,W) = −

∫︁
f (y) log f (y) dy (9.3.8)

= −

∫︁
· · ·

∫︁
f (y1, · · · , yn) log f (y1, · · · , yn) dy1 · · · dyn . (9.3.9)

A fundamental result of information theory is that a Gaussian variable has the largest

entropy among all random variables of equal variance. This means that entropy could

be used as a measure of non-Gaussianity. Therefore, using the entropy of the Gaussian

random variable, differential entropy can be normalized to the negentropy

[108]

J (y) = H (yGauss ,W) − H (y,W) , (9.3.10)

where yGauss is a Guassian random vector output of the separating matrixW, and has

the same variance matrix V =

[︀
Vij
]︀
as the non-Gaussian random vector output y.

Negentropy has the following outstanding properties

[64]

.

(1) Negentropy is always non-negative, i.e., J (y) ≥ 0.
(2) Negentropy is invariant for invertible linear transformations.

(3) Negentropy may be interpreted as a measure of non-Gaussianity, and it is zero if

and only if y has a Gaussian distribution.

It is widely known that the entropy of a Gaussian random vector is

H (yGauss ,W) =

1

2

[n + n log (2π) + log detV] , (9.3.11)

and the entropy of the component yi,Gauss of a Gaussian random vector is

H
(︀
yi,Gauss ,W

)︀
=

1

2

[1 + log (2π) + log detVii] . (9.3.12)

Substituting Eq. (9.3.10) into Eq. (9.3.7) and then using Eqs. (9.3.11) and (9.3.12), the

mutual information can be rewritten as

I (y) = J (y) +
n∑︁

i=1
H (yi ,W) − H (yGauss ,W)

= J (y) −
n∑︁

i=1
J (yi) +

n∑︁

i=1
H (yi ,W) − H (yGauss ,W)

= J (y) −
n∑︁

i=1
J (yi) +

1

2

(︃ n∑︁

i=1
logVii − log detV

)︃
,
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that is

[64]

I (y) = J (y) −
n∑︁

i=1
J (yi) +

1

2

(︂
log

∏︀n
i=1 Vii
detV

)︂
. (9.3.13)

Particularly, if each component of y is uncorrelated, its covariance matrix V =

diag (V11, · · · , Vnn) will be a diagonalmatrix. In this case, we can learn fromEq. (9.3.13)

that the negentropy of a random vector with all components to be uncorrelated can be

expressed as

I (y) = J (y) −
n∑︁

i=1
J (yi) . (9.3.14)

Eq. (9.3.1) reveals that the essence of the ICA method for finding the separation matrix

W is that minimizing the mutual information I(y) of the output vector y = Wx is

equivalent to maximizing the negetropy

∑︀n
i=1 J (yi), thus achieving the goal that the

components of output y are as independent of each other as possible.

9.3.2 Natural Gradient Algorithm

In order to measure the independence between the outputs, in addition to using the

second-order correlation function between them, we must also use the high-order

statistics between them. Therefore, the same nonlinear transformationmust be applied

to each component of the output vector y (t). Let the nonlinear transform be g (·), then

z (t) = g (y (t)) = [g (y1 (t)) , · · · , g (yn (t))]T . (9.3.15)

It has been proved

[12]

that

maxH (y,W) = maxH (z,W) (9.3.16)

and

∂H (z,W)

∂W = W−T

− E

{︁
ϕ (y) yT

}︁
, (9.3.17)

where

ϕ (y) =
[︂
−

g′′ (y1)
g′ (y1)

, · · · , −

g′′ (yn)
g′ (yn)

]︂
T

, (9.3.18)

and g′ (yi) and g′′ (yi) are the first and second derivatives of the nonlinear transform
function g (yi), respectively.

The standard gradient (or else, absolute gradient) algorithm to update the weight

matrixW can be described as

dW
dt = η ∂H (z,W)

∂W = η
(︁
W−T

− E

{︁
ϕ (y) yT

}︁)︁
. (9.3.19)

If the expectation term E

{︁
ϕ (y) yT

}︁
in the gradient algorithm is replaced by the instan-

taneous value ϕ (y) yT, the stochastic gradient algorithm
dW
dt = η

(︁
W−T

− ϕ (y) yT
)︁
. (9.3.20)
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is obtained, which was proposed by Bell and Sejnowski in 1995

[23]

.

The main drawback of the stochastic gradient algorithm for a parametric system is

that it converges very slowly. Therefore, it is desirable to find an optimization algorithm

that can not only maintain the simplicity and numerical stability of the stochastic

gradient algorithm but also gain a good asymptotic convergency. In addition, it is

also desirable that the performance of the optimization algorithm is independent

of the mixing matrix A, so that the algorithm can work well even when A is nearly

singular. Fortunately, it is completely achievable, since it has been proved that (see,

e.g., reference [233] and [12] for more details) that if an invertible matrix G−1 is applied
to the matrix

dW
dt = ηG−1 ∂H (z,W)

∂W (9.3.21)

in the stochastic gradient algorithm, then the convergence performance and numerical

stability of the algorithm will be significantly improved.

Starting from the Riemann structure of the parametric space of the matrixW, Yang

and Amari

[233]

proved in 1997 that the natural selection of G is

G−1 ∂H (z,W)

∂W =

∂H (z,W)

∂W WTW . (9.3.22)

Thus, Eq. (9.3.19) of the standard algorithm can be improved to the standard (or real)

natural gradient algorithm

dW
dt = η

(︁
W−T

− E

{︁
ϕ (y) yT

}︁)︁
WTW = η

(︁
I − E

{︁
ϕ (y) yT

}︁)︁
W . (9.3.23)

And Eq. (9.3.20) of the stochastic algorithm can also be modified to the stochastic

natural gradient algorithm

dW
dt = η

(︁
W−T

− ϕ (y) yT
)︁
WTW = η

(︁
I − ϕ (y) yT

)︁
W . (9.3.24)

The standard gradient algorithm formula Eq. (9.3.19), the stochastic gradient algorithm

formula Eq. (9.3.20), the standard natural gradient algorithm formula Eq. (9.3.23), and

the natural stochastic gradient algorithm formula Eq. (9.3.19) using respectively the

following gradients

(1) Real or “absolute” gradient :∇f (W) =

∂H(W)

∂W ;

(2) Stochastic gradient : the instantaneous value of ^∇f (W) = ∇f (W);

(3) Real natural gradient : ∂H(W)

∂W WTW = ∇f (W)WTW;

(4) Stochastic natural gradient : ^∇f (W)WTW;

Stochastic natural gradient and stochastic natural gradient algorithms are usually

called as natural gradient and natural gradient algorithm for short, respectively.

The discrete form of the updation formula of the natural gradient algorithm is

Wk+1 = Wk + ηk
(︁
I − ϕ (yk) y

T

k

)︁
Wk . (9.3.25)
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According to Eq. (9.3.23) of the real natural gradient algorithm, it is easy to know that

the condition for the neural network to converge to the equilibrium point is

E

{︁
ϕ (y) yT

}︁
= I or E

{︀
ϕ (yi (t)) yj (t)

}︀
= δij . (9.3.26)

In addition to the natural gradient, there is also relative gradient

[44]

∂H (z,W)

∂W WT

. (9.3.27)

and the blind signal separation algorithm that uses relative gradient is called the

Equivariant Adaptive Separating via Independence (EASI), which can be expressed as

Wk+1 = Wk − ηk
[︁
yky

T

k − I + ϕ (yk) y
T

k − ykϕ
T

(yk)
]︁
Wk , (9.3.28)

and was proposed by Cardoso and Leheld in 1996

[44]

.

The normalized form of the EASI algorithm is known as the normalized EASI

algorithm with the update formula

[44]

Wk+1 = Wk − ηk

[︃
ykyTk − I

1 + ηkykyTk
+

ϕ (yk) yTk − ykϕ
T

(yk)
1 + ηk|ykϕT

(yk) |

]︃
Wk . (9.3.29)

As a simplification and improvement of the EASI algorithm, Cruces et al. proposed the

iterative inversion algorithm

[9]

in 2000

Wk+1 = Wk − ηk
[︁
ϕ (yk) f

T

(yk) − I
]︁
Wk , (9.3.30)

and the corresponding normalized iterative inversion algorithm

[9]

is

Wk+1 = Wk − ηk

[︃
ϕ (yk) f

T

(yk) − I
1 + ηk|f T (yk)ϕ (yk) |

]︃
Wk . (9.3.31)

The iterative inversion algorithm incorporates the natural gradient algorithm and the

ESAI algorithm as simplified algorithms:

(1) If f (yk) = yk, then Eq. (9.3.30) of the iterative inversion algorithm is simplified to

Eq. (9.3.25) of the natural gradient algorithm, and Eq. (9.3.31) of the normal iterative

inversion algorithm is simplified to the formula of the normalized natural gradient

algorithm

Wk+1 = Wk − ηk

[︃
ϕ (yk) yTk − I

1 + ηk|yTkϕ (yk) |

]︃
Wk . (9.3.32)

(2) If

ϕ (yk) f
T

(yk) = yky
T

k + ϕ (yk) y
T

k − ykϕ
T

(yk) , (9.3.33)

then Eq. (9.3.30) of the iterative inversion algorithm becomes Eq. (9.3.28) of the

EASI algorithm, and Eq. (9.3.31) of the normalized iterative inversion algorithm

becomes Eq. (9.3.2) of the normalized EASI algorithm.



454 | 9 Blind Signal Separation

The EASI algorithm and the iterative inversion algorithm can be regarded as variations

of the natural gradient algorithm.

These three gradient algorithms discussed previously are only suitable for the

instances in which only sub-Gaussian signal or super-Gaussian signal is involved in

the mixed signals. For the cases that both sub-Gaussian and super-Gaussian signals

are mixed in the signal to be separated simultaneously, adaptive algorithms such as

the generalized ICA algorithm

[135]

or the flexible ICA algorithm

[55]

. In general, these

algorithms are very complicated.

9.3.3 Implementation of the Natural Gradient Algorithm

Let ϕ (y (t)) = [ϕ1 (
y
1)
, · · · , ϕm (ym)]T denote the nonlinear transform vector. When

implementing the natural gradient algorithm, two practical problems must be solved,

namely, the selection of activation function ϕi (yi) and the selection of adaptive step
ηk.
1. Selection of Activation Function

The equilibrium point of the ICA algorithm must be stable. A sufficient and neces-

sary condition for the activation function ϕi (yi) to satisfy the stability of equilibrium
point is

[13, 12]

:

E

{︁
y2i ϕ′i (yi)

}︁
+ 1 > 0, (9.3.34)

E

{︁
ϕ′i (yi)

}︁
> 0, (9.3.35)

E

{︁
y2i
}︁
E

{︁
y2j
}︁
E

{︁
ϕ′i (yi)

}︁
E

{︁
ϕ′j
(︀
yj
)︀}︁

> 0, (9.3.36)

where yi = yi (t) is the source signal extracted from the i-th output, and ϕ′i (yi) =
dϕi(yi)
dyi

is the first derivative of the activation function ϕi (yi).
A commonly used activation function ϕi (yi) whose equilibrium point satisfies the

stationary condition is

[10]

:

ϕi (yi) =
{︃
αyi + tanh (γyi) , (α > 0, γ > 2) for super-Gaussian signal,

αyi + y3i , (α > 0) for sub-Gaussian signal.

(9.3.37)

And here we give several alternative of the activation function ϕi (yi) as follows:
(1) Odd activation function

[13]

ϕi (yi) = |yi|psgn (yi) , p = 1, 2, 3, · · · , (9.3.38)

where sgn (u) is the sign function.
(2) Symmetrical sigmoidal odd funciton

[13]

ϕi (yi) = tanh (γyi) , γ > 0. (9.3.39)
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(3) Odd quadratic function

[119]

ϕi (yi) =
{︃
y2i + yi , yi ⩾ 0,

−y2i + yi , yi < 0.
(9.3.40)

The following is the updation formula of the natural gradient algorithm proposed by

Yang

[233]

κi
3
(t) = κi

3
(t − 1) − μ (t)

[︁
κi
3
(t − 1) − y3i (t)

]︁
, (9.3.41)

κi
4
(t) = κi

4
(t − 1) − μ (t)

[︁
κi
4
(t − 1) − y4i (t) + 3

]︁
, (9.3.42)

αi
(︁
κi
3
(t) , κi

4
(t)
)︁
= −

1

2

κi
3
(t) +

9

4

κi
3
(t) κi

4
(t) , (9.3.43)

βi
(︁
κi
3
(t) , κi

4
(t)
)︁
= −

1

6

κi
4
(t) +

3

2

(︁
κi
3
(t)
)︁
2

+

3

4

(︁
κi
4
(t)
)︁
2

, (9.3.44)

ϕi (yi (t)) = αi
(︁
κi
3
(t) , κi

4
(t)
)︁
y2i (t) + βi

(︁
κi
3
(t) , κi

4
(t)
)︁
y3i (t), (9.3.45)

W (t + 1) =W (t) + η (t)
(︁
I − ϕ (y (t)) yT (t)

)︁
W (t) . (9.3.46)

2. Selection of the Adaptive Step
In the adaptive ICA algorithms, the selection of the learning rate ηk plays a key role

in the convergence of the algorithm. The simplest way is to use a fixed learning rate.

Similar to the general gradient algorithm, its disadvantage is that if the learning rate is

large, the algorithm converges quickly, but the separation precision of the signal, (i.e.,

steady-state performance) is poor. On the contrary, if the learning is small, the steady-

state performance is good, but the algorithm converges slowly. A better approach is

to use a time-varying learning rate, namely, a variable step. Furthermore, variable

step methods can be divided into non-adaptive variable step methods and adaptive

variable step methods. For example, the learning rate based on annealing rules

[10]

and the learning rate of exponential decay

[232]

are two typical non-adaptive steps. The

adaptive step, also known as the learning of learning rate, is a technique proposed by

Amari as early as 1967

[11]

. In particular, here we mainly introduce several adaptive step

methods for the ICA algorithm, such as the algorithm in which every weight coefficient

is updated in an individual step respectively

[59]

and the variable step algorithm that is

based on auxiliary variables

[159]

.

Here we introduce a fuzzy inference system for adaptive learning step determina-

tion of blind signal separation

[142]

. Its basis is that the relationships among the second-

and higher order correlation measures which reflect the separation state of source

signals at each time instant. Based on this, the output signal with a larger correlation

measure should use a larger learning rate to speed up its capturing, and the output

signal with a smaller correlation measure should use a smaller learning rate to track

finely.
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Although the mutual information is a perfect measure of the dependence between

the components of a blind signal separation neural network, it cannot be used to

evaluate the dependence between output components at separation stages due to the

use of the unknown probability density distribution of each source signal. Therefore,

it is necessary to introduce another measure available for practical applications. These

practical measures can be classified into second-order correlation measure rij and
higher-order correlation measure hrij which is defined as

rij =
Cij√︀
CiiCjj

=

cov

[︀
yi (t) , yj (t)

]︀

cov [yi (t)] cov
[︀
yj (t)

]︀ , i, j = 1, · · · , l; i ̸= j, (9.3.47)

hrij =
HCij√︀
HiiCjj

=

cov

[︀
ϕ (yi (t)) , yj (t)

]︀

cov [ϕ (yi (t))] cov
[︀
yj (t)

]︀ , i, j = 1, · · · , l; i ̸= j, (9.3.48)

where

m̄x =
1

N

N∑︁

t=1
x (t) , (9.3.49)

cov [x (t)] =
1

N

N∑︁

t=1
|x (t) − m̄x|2, (9.3.50)

cov [x (t) , y (t)] =
1

N

N∑︁

t=1
[x (t) − m̄x] [y (t) − m̄y]

*

. (9.3.51)

The adaptive updation formula of the second-order correlation and higher-order corre-

lation can be summarized, respectively, as

[142]

m̄yi (t) = λ
t − 1
t m̄yi (t − 1) +

1

t yi (t) , (9.3.52)

∆yi (t) = m̄yi (t) − m̄yi (t − 1) , (9.3.53)

Cij (t) = λ
t − 1
t
[︀
Cij (t − 1) + ∆yi (t) ∆yj (t)

]︀
(9.3.54)

+

1

t [yi (t) − m̄yi (t)]
[︀
yj (t) − m̄yj (t)

]︀
*

,

and

m̄ϕi (t) = λ
t − 1
t m̄ϕi (t − 1) +

1

t ϕ (yi (t)) , (9.3.55)

∆ϕi (t) = m̄ϕi (t) − m̄ϕi (t − 1) , (9.3.56)

HCij (t) = λ
t − 1
t

[︁
HCij (t − 1) + ∆ϕi (t) ∆ϕj (t)

]︁
(9.3.57)

+

1

t
[︀
ϕ (yi (t)) − m̄ϕi (t)

]︀ [︀
yj (t) − m̄yj (t)

]︀
*

,

Hii (t) = λ
t − 1
t

[︁
Hii (t − 1) + ∆2ϕi (t)

]︁
+

1

t
[︀
ϕ (yi (t)) − m̄ϕi (t)

]︀
2

, (9.3.58)

where i, j = 1, · · · , l , and λ is the forgetting factor.
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Let

Di (t)
def

= D (yi (t)) =
√︂

1

l − 1

l∑︁

j=1, j̸= i
r2ij (t) , i = 1, · · · , l, (9.3.59)

HDi (t)
def

= HD (yi (t)) =
√︂

1

l − 1

l∑︁

j=1, j̸= i
hr2ij (t) , i = 1, · · · , l (9.3.60)

represent the second-order correlation measure and higher-order correlation measure

of yi (t) relative to all the other output components yj (t) , j ̸= i.
According to the second-order correlation measure and higher-order correlation

measure, the fuzzy rule for blind signal separation can be obtained as follows.

(1) If both Di (t) and HDi (t) are sufficiently small, we may say that the output com-

ponent yi (t) are almost independent of all the other output components, i.e., the

separation state of yi (t) from the other components is good.

(2) If either Di (t) or HDi (t) is not small, then the output component yi (t) is at least
correlated with another output component, i.e., the separation state of yi (t) is not
good.

(3) If both Di (t) and HDi (t) is large, we may consider yi (t) to be correlated strongly
with the other components, i.e., the separation state of yi (t) is worse.

Specifically, the implementation rules of the fuzzy rules for blind signal separation

may be described as follows

[142]

(1) If Di (t) and HDi (t) are less than 0.1, then the separation state is quite good.
(2) If Di (t) and HDi (t) are located at the interval [0.1, 0.2], then the moderate sepa-

ration state is reached.

(3) If Di (t) and HDi (t) are greater than 0.2, then the separation state is poor.

If the second-order correlationmeasure rij of two separated output components satisfies

rij ≈ 1, then these two components are copies of each other, and thus the j-th row of the

demixing matrix should be deleted from the matrix in order to remove the redundant

output component yj (t). Hence, them × n demixing matrixW reduced to a l × nmatrix,

where l = m − 1. With this procedure continues, the rows of the l × n demixing matrix

will be reduced to l = m − 1, · · · , n successively until a number n satisfies that there
are exactly n independent output components separated from the mixed signals.

3. Performance Evaluation
In the research and implementation of adaptive blind signal separation, it is often

desired to compare the performance of several different algorithms. A commonly used

evaluation metric is the root-mean-square error (RMSE) of the cross-talking error

[234]

E =

l∑︁

i=1

⎛
⎝

n∑︁

j=1

|bij|
max

k
|bik|

− 1

⎞
⎠
+

n∑︁

j=1

⎛
⎝

l∑︁

i=1

|bij|
max

k
|bkj|

− 1

⎞
⎠
, (9.3.61)
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whereB =

[︀
bij
]︀
= WA is amatrix obtaindby rightmulitplying the l×m separatingmatrix

W with a m × m mixing matrix A, and max

k
|bik| = {|bi1|, · · · , |bin|} and max

k
|bkj| =

{|b
1j|, · · · , |blj|}, respectively.
As illustrated by Fig.9.3.1, by plotting the cross-talking error curve with the length

of sample N, we may intuitively compare the convergence and tracking performance of

the same blind separation algorithm with different steps or different blind separation

algorithms.

9.3.4 Fixed-Point Algorithm

For cases where adaptive separation is not required, the fixed-point algorithm proposed

by Hyvarinen

[108]

is a fast and numerically stable ICA algorithm. The contrast function

of this algorithm is defined as

JG (w) =
[︁
E

{︁
G
(︁
wTx

)︁}︁
− E{G (v)}

]︁
2

, (9.3.62)

where G (·) is practically any nonquadratic function, and v is a Gaussian random vector

of zero mean and unit variance, and w is a weight vector satisfies E

{︂(︁
wTx

)︁
2

}︂
= 1.

Based on the principle of separated one-by-one, the ICA of n source signals becomes
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the solution of n constrained optimization subproblems formulated as

wi = argmin

n∑︁

i=1
JG (wi) , i = 1, · · · , n (9.3.63)

with constraint E

{︁(︁
wT

kx
)︁(︁

wT

j x
)︁}︁

= δjk.
The solution to the above optimization problem can be obtained using the fixed-

point ICA algorithm

wp+1 ←− wp+1 −

p∑︁

j=1
wT

p+1Cwjwj , (9.3.64)

wp+1 ←−
wp+1√︁

wT

p+1Cwp+1
, (9.3.65)

where C = E

{︁
xxT
}︁
is the covariance matrix of the observation data. Eqs. (9.3.64) and

(9.3.65) can be computed iteratively until wp+1 converges. In addition, it should be

noted that data x need to be prewhitened in the fixed-point ICA algorithm.

The following are three choices of the contrast function G (·) used in the fixed-point
ICA algorithm

G
1 (
u) =

1

a
1

log cosh (a1u) , (9.3.66)

g
1 (
u) = tanh (a1u) , (9.3.67)

G
2 (
u) = −

1

a
2

exp

(︁
−a

2
u2/2

)︁
, (9.3.68)

g
2 (
u) = uexp

(︁
−a

2
u2/2

)︁
, (9.3.69)

G
3 (
u) =

1

4

u4, (9.3.70)

g
3 (
u) = u3, (9.3.71)

where gi (u) is the first derivative of the corresponding contrast function Gi (u).
Here are also some considerations for selecting the contrast function G (u):

(1) G
1 (
u) is suitable for the cases where both the sub-Gaussian and super-Gaussian

signals coexist.

(2) When the independent source signals are super-Gaussian signals with very large

kurtosis or when robustness is very important, G
2 (
u) may be better.

(3) Using G
3 (
u) for estimating sub-Gaussian signals.

The core of the fixed-point ICA algorithm is the compression mapping performed in

Eq. (9.3.64). The idea of using compression mapping techniques to separate signals

one-by-one in ICA was first proposed in the literature [73]. Although this literature

introduces the adaptive ICAalgorithmbasedon compressionmapping, the effectiveness

of the algorithm still needs to be proved. The fixed-point ICA algorithm is also known

as the fast ICA algorithm.
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9.4 Nonlinear Principal Component Analysis

The main idea of independent component analysis is to make each component of the

output vector y (t) = Wx (t) as statistically independent as possible by minimizing

mutual information or maximizing entropy.

Strict statistical independence means that the statistics of each order are uncorre-

lated. If the cross-correlation function between two stochastic processes is statistically

uncorrelated and a higher-order cross-correlation function (third-order or fourth-order

cross-correlation) between them is also statistically uncorrelated, the two stochastic

processes can be approximated to be statistically independent.

That the cross-correlation function of each component of the output vector z (t) =
Bx (t) to be statistically uncorrelated may be realized easily by means of pre-whitening.

If each component of the output vector is subjected to appropriate nonlinear transfor-

mation, the statistical uncorrelation of the third-order or fourth-order cross-correlation

function of each component can be realized. To sum up, pre-whitening and nonlinear

transformation is the basic idea of the nonlinear principal component analysis method

for blind signal separation.

9.4.1 Pre-whitening

Assume that the mean value of them ×1 observation data vector x (t) is already zeroing.
Pre-whitening is a commonly used technique in the field of signal processing field, the

procedure of which may be described as

(1) Compute the m × m autocorrelation matrix
^R =

1

N

N∑︀
t=1

x (t) xH (t) according to the

m × 1 observation vector x (t).
(2) Compute the eigenvalue decomposition of

^R and denote the greatest n eigenvalues
as λ

1
, · · · , λn and the corresponding eigenvector as h1, · · · , hn.

(3) Take the mean of the m − n smallest eigenvalue of
^R as the variance estimation σ̂2

of the additive white noise.

(4) Compute the n × n pre-whitened data vector z (t) = [z1 (t) , · · · , zn (t)]T = Bx (t),
where B =

[︀(︀
λ
1
− σ̂2

)︀
h
1
, · · · ,

(︀
λn − σ̂2

)︀
hn
]︀
H

is a m × n pre-whiten matrix.

Now, the components of the n × n pre-whitened data vector z (t) = Bx (t) are already
second-order statistically uncorrelated. The next step of blind signal separation is

how to make each component of the separated output y = Wz (t) be higher-order
statistically uncorrelated with each other, so as to realize the approximate statistical

independence between each component of the separated output.
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9.4.2 Linear Principal Component Analysis

The purpose of blind signal separation is to separate or extract n (where n ⩽ m) source
signals fromm observation signals. From the perspective of information theory, there is

information redundancy in the m observation signals, which span the m-dimensional

observation space, while the separated n signals form a lower dimensional space (n-
dimensional signal space) without information redundancy. The linear transformation

from a high-dimensional space with information redundancy to a low-dimensional

space without information redundancy is called dimension reduction. A commonly

used method of dimension reduction is principal component analysis (PCA).

By performing transformation using the orthogonal matrix Q, the observation
signals x (t) with additive white noise, which are not statistically independent can be
transformed into m components y (t) = Q [x (t) + e (t)] which are orthogonal to each
other. Among these resultedm new components, n signal components that have higher

power may be regarded as the n principal components of the m new components,

which are also named principal components for short. Correspondingly, data or signal

analysis using only n principal components in the m-dimensional data vector is called

principal component analysis.

Definition 9.4.1. Let Rx be the autocorrelation matrix of a m-dimensional data vector
x (t) and assume Rx has n principal eigenvalues. The n eigenvector corresponding to
these principal eigenvalues are called the principal components of the data vector x (t).

The main steps and ideas of PCA are as follows.

(1) Dimension Reduction Synthesize n principal components from m random vari-

ables using

x̃j (t) =
m∑︁

i=1
h*ijxi (t) = hHj x (t) , j = 1, · · · , n, (9.4.1)

where hj =
[︀
h
1j , · · · , hmj

]︀
T

and x (t) = [x1 (t) , · · · , xm (t)]T, respectively.
(2) Orthgonalization To make the principal components orthogonal to each other and

each with unit variance (normalization), i.e.,

⟨xi (t) , xj (t)⟩ = δij =
{︃

1, i = j
0, otherwise

(9.4.2)

then it is known from

⟨x̃i (t) , x̃j (t)⟩ = x (t)H hHi hjx (t) =
{︃

1, i = j
0, i ̸= j

(9.4.3)

that the coefficient vector hi must be selected to satisfy the normal orthogonal

condition hHi hj = δij
(3) Power maximization If we choose hi = ui , i = 1, · · · , n,, where ui , (i = 1, · · · , n)

is the eigenvectors corresponding to the n large eigenvalues λ
1
⩾ · · · ⩾ λn of the
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autocorrelation matrix Rx = E{x (t) xH (t)}, it is easy to compute the energy of each

non-redundant component as

Ex̃i = E{|x̃i (t) |2} = E

{︂
hHi x (t)

[︁
hHi x (t)

]︁
*

}︂

= uHi E{x (t) xH (t)}ui = uHi Rxui

= uHi [u1, u2, · · · , um]

⎡
⎢⎢⎢⎢⎣

λ
1

0

λ
2

.
.
.

0 λm

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

uH
1

uH
2

.

.

.

uHm

⎤
⎥⎥⎥⎥⎦
ui

= λi . (9.4.4)

Since the eigenvalues are arranged in nondegenerate order so

Ex̃
1

⩾ Ex̃
2

⩾ · · · ⩾ Ex̃n . (9.4.5)

Therefore, according to the magnitude of energy, x̃
1 (
t) is often called the first

principal component, x̃
2 (
t) the second principal component and so on.

Note the m × m autocorrelation matrix

Rx = E

{︁
x (t) xH (t)

}︁

=

⎡
⎢⎢⎢⎢⎣

E

{︀
|x
1 (
t) |2

}︀
E

{︀
x
1 (
t) x*

2
(t)
}︀

· · · E

{︀
x
1 (
t) x*m (t)

}︀

E

{︀
x
2 (
t) x*

1
(t)
}︀

E

{︀
|x
2 (
t) |2

}︀
· · · E

{︀
x
2 (
t) x*m (t)

}︀

.

.

.

.

.

.

.
.
.

.

.

.

E

{︀
xm (t) x*

1
(t)
}︀

E

{︀
xm (t) x*

2
(t)
}︀

· · · E

{︀
|xm (t) |2

}︀

⎤
⎥⎥⎥⎥⎦
, (9.4.6)

and use the definition and property of matrix trace to know

tr (Rx) = E

{︁
|x
1 (
t) |2

}︁
+E

{︁
|x
2 (
t) |2

}︁
+· · ·+E

{︁
|xm (t) |2

}︁
= λ

1
+λ

2
+· · ·+λm . (9.4.7)

Furthermore, if the autocorrelation matrix Rx has only n large eigenvalues, then
there is

E

{︁
|x
1 (
t) |2

}︁
+ E

{︁
|x
2 (
t) |2

}︁
+ · · · + E

{︁
|xm (t) |2

}︁
≈ λ

1
+ λ

2
+ · · · + λn . (9.4.8)

In summary, it can be concluded that the basic idea of principal component analysis

is to transform the original m statistically correlated random data into n mutually

orthogonal principal components through three steps including dimension reduction,

orthogonalization, and power maximization, and the sum of the energy of these princi-

pal components should be approximately equal to the sum of the energy of the original

m random data.

Definition 9.4.2.
[229]

LetRx be the autocorrelationmatrix of am-dimensional data vector
x and assume it has m pricipal eigenvalues and m − n minor (i.e., smaller) eigenvalues.
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Those m − n eigenvectors that corresponding to the m − n minor eigenvalues is called
the minor component of the data vector x (t).

Data analysis or signal analysis using only m − n minor components of the data vector

is called minor component analysis (MCA). The principal component analysis can give

the contour and main information of the analyzed signal and image. In contrast, the

minor component analysis may provide signal details and image texture. The minor

component analysis is widely used in many fields. For example, minor component

analysis has been used for frequency estimation

[148, 149]

, blind beamforming

[95]

, moving

target indication

[124]

, clutter cancellation

[18]

, etc. In pattern recognition, when principal

component analysis could not recognize two object signals, the minor component

analysis should be further conducted to compare the details of the information they

contain.

By constructing the cost function of principal component analysis

J (W) = E

{︁
|| x (t) −WWHx (t) ||2

}︁
, (9.4.9)

reference [231] proves that the solution of the optimization problemmin J (W) will hold

several important properties as follows:

(1) The globalminimumof the objective function J (W) is given byW = U rQ, where U r
is composed of r pricipal eigenvectors of the autocorrelation matrix R = E

{︁
xxH

}︁
,

and Q is an arbitrary unitary matrix.

(2) The resulted solution matrixW must be a quasiunitary (or semiorthogonal) matrix,

i.e.,WHW = I.

The above important properties show that, if PCA is used for blind signal processing, it

will bring the following advantages or benefits:

(1) The stationary point when the blind signal separation algorithm converges must

be the global minimum point of the optimization algorithm it uses.

(2) Since the solution of the blind signal separation algorithm isW = U rQ, the sepa-
rated signal can be obtained directly by

ŝ (t) = W†x (t) =
(︁
WHW

)︁
−1

Wx (t) = WHx (t) , (9.4.10)

and it is unnecessary to compute the Moore-Penrose inverse matrix W†

, which

simplifies the calculation.

Define the exponentially weighted objective function

J
1 (
W (t)) =

t∑︁

i=1
βt−i || x (i) −W (t)WH

(t) x (i) ||2

=

t∑︁

i=1
βt−i || x (i) −W (t) y (i) ||2, (9.4.11)
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where 0 ⩽ β ⩽ 1 is a forgetting factor, and y (i) = WH 
(t) x (i).

Based on the exponentially weighted objective function J
1 (W (t)), Yang proposed 

a Projection Approximation Subspace Tracking (PAST) algorithm for linear principal 
component analysis in 1995

[231] 
.

Algorithm 9.4.1. PAST algorithm for linear principal component analysis
Step 1 Choose P (0) and W (0) suitably
Step 2 For t = 1, 2, · · · , compute

y (t) = WH
(t − 1) x (t)

h (t) = P (t − 1) y (t)

g (t) = h (t)[︀
β + yH (t) h (t)

]︀

P (t) = 1

βTri
[︁
P (t − 1) − g (t) hH (t)

]︁

e (t) = x (t) −W (t − 1) y (t)
W (t) = W (t − 1) + e (t) gH (t)

where the operator Tri [A] indicates that only the upper (or lower) triangular part of
matrix A is calculated and its Hermitian transposed version is copied to another lower
(or upper) triangular part.

9.4.3 Nonlinear Principal Component Analysis

Linear Principal component analysis can not be applied directly to the blind signal

separation, because the principal components of the autocorrelation matrix Rx are
only the principal components of the second-order statistics, which is not sufficient for

the blind separation of non-Gaussian signals.

In order to solve the problem of blind separation of non-Gaussian signals, a non-

linear transformation

y (t) = g
(︁
WHx (t)

)︁
(9.4.12)

must be introduced before applying the principal component analysis method, where

g (u (t)) = [g (u1 (t)) , · · · , g (um (t))]T is the nonlinear transformation vector.

The purpose of performing the nonlinear transformation is to introduce the higher-

order statistics of a stochastic signal into the analysis.

The vector y (t) of the linear principal component analysis objective function

Eq. (9.4.11) is replaced by the nonlinear transformation y (t) = g
(︁
WHx (t)

)︁
, i.e., the ob-

jective function of the exponentially weighted nonlinear principal component analysis

is obtained

[119]

. Therefore, the PAST algorithm for linear principal component analysis

algorithm is generalized to the PAST algorithm for nonlinear principal component

analysis

[119]

.
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Algorithm 9.4.2. PAST algorithm for nonlinear principal component analysis of blind
signal separation
For t = 1, 2, · · · , compute

y (t) = g
(︁
WH

(t − 1) x (t)
)︁

h (t) = P (t − 1) y (t)

g (t) = h (t)[︀
β + yH (t) h (t)

]︀

P (t) = 1

βTri
[︁
P (t − 1) − g (t) hH (t)

]︁

e (t) = x (t) −WH
(t − 1) y (t)

W (t) = W (t − 1) + e (t) gH (t)

where the nonlinear transform can be an odd quadratic function
[132]

, i.e.,

g (u) = −
E
{︀
|u|2

}︀
p′u (u)

pu (u)
, (9.4.13)

where pu (u) and p′u (u) are the probability density function of random variable u and its
first derivative.

In a simple case, the nonlinear transformation function can be
[119]

:

g (u) =
{︃
u2 + u, u ⩾ 0

−u2 + u, u < 0
. (9.4.14)

Here, we may also make a brief comparison between the PAST algorithm of nonlinear

principal component analysis and the natural gradient algorithm for blind signal

separation as follows:

(1) The natural gradient algorithm belongs to the LMS algorithm, while the PAST

algorithm belongs to the RLS algorithm. Generally speaking, LMS algorithms is

a point update without memory. Since only the data at the current time is used,

the utilization rate of information is low, so the convergence is slow. The RLS

algorithm is a block update with memory, which uses the data (blocks) of the

current and several previous moments, and the utilization rate of information is

high. Therefore, the RLS algorithm converges faster than the LMS algorithm.

(2) The natural gradient algorithm and nonlinear principal component analysis both

use the nonlinear transformation of signal to introduce higher-order statistics.

9.5 Joint Diagonalization of Matrices

In addition to the independent component analysis (ICA) method and the nonlinear

principal component analysis (NPCA) method, the blind signal separation problem

can also be solved by the joint diagonalization of matrices.
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9.5.1 Blind Signal Separation and Joint Diagonalization of Matrices

Considering the array received signal model

x(n) = As(n) + v(n), n = 1, 2, · · · (9.5.1)

in the presence of additive noise, the main purpose of blind signal separation is to find

the demixing matrixW .

= A = AG that is essentially equal to the mixing matrix A, and
then realize blind signal separation by ŝ(n) = W†x(n).

Two mainstream algorithms, ICA and NPCA, for finding the separating matrixW
which is essentially equal to the mixing matrix A were introduced in the previous

section, respectively. Next, another mainstream method, the joint diagonalization of

matrices, is discussed below.

Unlike the ICA and NPCA methods, the assumptions on additive noise are more

relaxed here.

(1) The additive noise is a temporally white, spatially colored Gaussian noise, i.e., the

autocorrelation matrix is

Rv(k) = E

{︁
v(t)vH(t − k)

}︁
= δ(k)Rv =

{︃
Rv , k = 0 (Spatially colored)

O, k ̸= 0 (Temporally white)

.

The temporally white means that the additive noise on each sensor is Gaussian

white noise, while the spatially colored means that the additive Gaussian white

noise of different sensors may be correlated.

(2) The n source signals are statistically independent, i.e., E

{︁
s(t)sH(t − k)

}︁
=

Dk (Diagonal matrix).

(3) The source signals independent of the additive noise, i.e., E

{︁
s(t)vH(t − k)

}︁
=

O (Zero matrix).

Under the above assumptions, the autocorrelation matrix of the array output vector is

Rx(k) = E
{︁
x(t)xH(t − k)

}︁

= E

{︁[︀
As(t) + v(t)

]︀ [︀
As(t − k) + v(t − k)

]︀
H

}︁

= AE
{︁
s(t)sH(t − k)

}︁
AH

+ E

{︁
v(t)vH(t − k)

}︁

=

{︃
AD

0
AH

+ Rv , k = 0

ADkAH

, k ̸= 0

. (9.5.2)

This result shows that the effect of the temporally white, spatially colored Gaussian

noise v(n) can be completely suppressed if the K autocorrelation matrices Rx(k), k =
1, · · · , K without noise influence (lag k ̸= 0) are used.

Given K autocorrelation matrices Rx = Rx(k), k = 1, · · · , K, the joint diagonaliza-
tion is

Rk = WΣkWH

, k = 1, · · · , K, (9.5.3)
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whereW is called the joint diagonalizer of the K autocorrelation matrices R
1
, · · · , Rk.

Comparing Eqs. (9.5.2) and (9.5.3), it is easy to know that the joint diagonalizerW
is not necessarily a mixing matrix, but must be a matrix that is essentially equivalent

to the mixing matrix A,

W .

= A = AG, (9.5.4)

where G is a generalized permutation matrix.

The above analysis shows that the demixing matrix (or separation matrix) in blind

signal separation can also be obtained by the joint diagonalization of matrices. A

prominent advantage of joint diagonalization is that it can theoretically completely

suppress the effect of the temporally white, spatially colored additive Gaussian noise.

Once the mixing matrix has been solved by the joint diagonalization, blind signal

separation ŝ(n) = W†x(n) can be performed.

The joint diagonalization of multiple matrices was first proposed by Flury in

1984 when considering the common principal component analysis of K covariance

matrices

[160]

. Later, Cardoso and Souloumiac

[46]

in 1996 and Belochrani et al.

[25]

in 1997

proposed the approximate joint diagonalization of multiple cumulant matrices and

covariance matrices from the perspective of blind signal separation, respectively. Since

then, joint diagonalization has been widely studied and applied in the field of blind

signal separation.

The mathematical problem of joint diagonalization is: given K m × m symmetric

matrix A
1
, · · · , AK, the joint diagonalization seeks a m × n full column rank matrixW

making the K matrices diagonalize at the same time (joint diagonalization)

Ak = WΛkWH

, k = 1, · · · , K, (9.5.5)

where W ∈ Cm×n is called as joint diagonalizer, and Λk ∈ Rn×n, k = 1, · · · , K are

diagonal matrices.

Joint diagonalization Ak = WΛkWH

is exact joint diagonalization. However, the

actual joint diagonalization is an approximate joint diagonalization. Given the set of

matrices A = {A
1
, · · · , AK}, the approximate joint diagonalization problem seeks a

joint diagonalizerW ∈ Cm×n and K associated n × n diagonal matrices Λ
1
, · · · , ΛK to

minimize the objective function

[45, 46]

min J
1
(W , Λ

1
, · · · , ΛK) = min

K∑︁

k=1

αk || WHAkW − Λk ||2F (9.5.6)

or

[219, 235]

min J
2
(W , Λ

1
, · · · , ΛK) = min

K∑︁

k=1

αk || Ak −WΛkWH

||

2

F , (9.5.7)

where α
1
, · · · , αK are the positive weights. For simplicity, assume α

1
= · · · = αK = 1.
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9.5.2 Orthogonal Approximate Joint Diagonalization

The so-called orthogonal approximate joint diagonalization requires that the m × n
(m ≥ n) dimensional joint diagonalizer must be a semi-orthogonal matrixWHW = In.
Therefore, the orthogonal approximate joint diagonalization problem is a constrained

optimization problem

min J
1
(W , Λ

1
, · · · , ΛK) = min

K∑︁

k=1

|| WHAkW − Λk ||2F , (9.5.8)

subject to WHW = I, (9.5.9)

or

min J
2
(W , Λ

1
, · · · , ΛK) = min

K∑︁

k=1

|| Ak −WΛkWH

||

2

F , (9.5.10)

subject to WHW = I. (9.5.11)

In many engineering applications, only the joint diagonalization matrix W is used

instead of the diagonal matrices Λ
1
, · · · , ΛK . Therefore, it is a practical problem to

convert the objective function of the approximate joint diagonalization problem into a

function containing only the joint diagonalization matrixW .

1. Off-diagonal Function Minimization Method
A m × m matrixM is said to be normal matrix ifMMH

= MHM.

Spectral theorem

[107]

: A normal matrixM is unitarily diagonalizable, if there exists

a unitary matrix U and a diagonal matrix D such thatM = UDUH

.

In numerical analysis, the “off” of a m × m matrixM = [Mij], written as off(M), is

defined as the sum of squares of the absolute values of all non-diagonal elements, ie.,

off(M)

def

=

m∑︁

i=1, i̸= j

n∑︁

j=1
|Mij|

2

. (9.5.12)

From the spectrum theorem, ifM = UDUH

, where U is unitarymatrix and D is diagonal

with distinct diagonal elements, then matrixM may be unitarily diagonalized only by

unitary matrix V .

= U that are essentially equal to U. That is, if off(VHMV) = 0, then

V .

= U.
If all non-principal diagonal elements of the square matrixM are extracted to form

a matrix

[M
off
]ij =

{︃
0, i = j
Mij , i ̸= j

(9.5.13)

called off matrix, then the off function is the square of the Frobenius norm of the off

matrix

off(M) =|| M
off
||

2

F . (9.5.14)
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Using the off function, the orthogonal approximate joint diagonalization problem can

be expressed as

[45, 46]

min J
1a(W) =

K∑︁

k=1

off(WHAkW) =

K∑︁

k=1

n∑︁

i=1, i̸= j

n∑︁

j=1
|(WHAkW)ij|

2

. (9.5.15)

The orthogonal joint diagonal of the matrices A
1
, · · · , AK can be achieved by imple-

menting a series of Given rotations on the off-diagonal elements of these matrices. The

product of all Given rotation matrices gives the orthogonal joint diagonalizerW . This

is the Jacobi algorithm for orthogonal approximate joint diagonalization proposed by

Cardoso et al

[45, 46]

.

2. Diagonal Function Maxmization Method
The diagonal function of a squarematrix can be a scalar function, a vector function,

or a matrix function.

(1) Diagonal function. diag(B) ∈ R is a diagonal function of the m × m matrix B,
defined as

diag(B) def=
m∑︁

i=1
|Bii|2. (9.5.16)

(2) Diagonal vector function. The diagonal vector function ofm ×mmatrix B, denoted
as diag(B) ∈ Cm, is a vector that aligns the diagonal elements of matrix B, i.e.,

diag(B) def= [B
11
, · · · , Bmm]T. (9.5.17)

(3) Diagonal matrix funcion. The diagonal matrix function ofm ×mmatrix B, denoted
as Diag(B) ∈ Cm×m, is a diagonal matrix consisting of the diagonal elements of

matrix B, i.e., there is

Diag(B) def=

⎡
⎢⎢⎣

B
11

0

.
.
.

0 Bmm

⎤
⎥⎥⎦ . (9.5.18)

The minimization of off(B) can be equivalent to the maximization of diagonal function

diag(B), that is, there is
min off(B) = maxdiag(B). (9.5.19)

Therefore, Eq. (9.5.15) can be rewritten as

[219]

max J
1b(W) =

K∑︁

k=1

diag(WHAkW) =

K∑︁

k=1

n∑︁

i=1
|(WHAkW)ii|

2

. (9.5.20)

The following is the orthogonal approximate joint diagonalization algorithm for blind

signal separation

[24]

.

Algorithm 9.5.1. Orthogonal approximate joint diagonalization algorithm for blind sig-
nal separation
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Step 1 Estimate the m × m autocorrelation matrix ^R =

1

N
∑︀N

t=1 x(t)x
H
(t) from the m × 1

observed data vector x(t) with zero mean. Compute the eigenvalue decomposition
of ^R and denote by λ

1
, · · · , λn the n largest eigenvalues and h1, · · · , hn the corre-

sponding eigenvectors of ^R.
Step 2 Pre-whitening: The estimation σ̂2 of the noise variance is the average of the

m − n smallest eigenvalues of ^R. The whitened n × n signal vector is z(t) =

[z
1
(t), · · · , zn(t)]T = Wx(t), where W = [(λ

1
− σ̂2)−

1

2 h
1
, · · · , (λn − σ̂2)−

1

2 hn]H

is the m × n pre-whitening matrix.
Step 3 Compute the K autocorrelation matrix of the pre-whitening data vectors, ^Rz(k) =

1

N
∑︀N

t=1 z(t)z*(t − k), k = 1, · · · , K.
Step 4 Joint diagonalization: Take the orthogonal approximate joint diagonalization for

the K autocorrelation matrices ^Rz(k)

^Rz(k) = UΣkUH
, k = 1, · · · , K, (9.5.21)

the unitary matrix U as a joint diagonalizer is obtained.
Step 5 Blind signal separation: The source signals are estimated as ŝ(t) = UHz(t), and/or

the mixing matrix ^A = W†U.

9.5.3 Nonorthogonal Approximate Joint Diagonalization

The advantage of orthogonal joint diagonalization is that there will be no trivial solu-

tion, i.e., zero solution (W = 0) and degenerate solution (i.e., singular solution), the
disadvantage of orthogonal joint diagonalization is that the observation data vector

must be pre-whitened first.

Pre-whitening has two main disadvantages.

(1) The pre-whitening phase seriously affects the performance of the signal separation

because the errors of whitening are not corrected in the later signal separation,

which easily causes the propagation and spread of errors.

(2) The pre-whitening phase can practically distort theweighted least squares criterion.

It would attain exact diagonalization of the selected matrix at the possible cost of

poor diagonalization of the others.

The nonorthogonal joint diagonalization is the joint diagonalization without the con-

straint WHW = I, which becomes the mainstream joint diagonalization method in

blind signal separation. The advantage of nonorthogonal joint diagonalization is that

it does not have the two disadvantages of whitening, while the disadvantage is that

there may be trivial solutions and degenerate solutions.

Typical algorithms for nonorthogonal joint diagonalization includePham’s iterative

algorithm that minimizes an information theoretic criterion

[174]

, Vander Veen’s Newton

iterative subspace fitting algorithm

[214]

, Yeredor’s AC-DC algorithm

[235]

, etc.
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The AC-DC algorithm separates the coupled optimization problem

J
WLS2

(W , Λ
1
, · · · , ΛK) =

K∑︁

k=1

αk || Ak −WΛkWH

||

2

F

=

K∑︁

k=1

αk || Ak −
N∑︁

n=1
λ[k]n wkwH

k ||
2

F

into two decoupled optimization problems. This algorithm consists of two stages.

(1) The alternating columns (AC) phase minimizes J
WLS2

(W) with respect to a selected

column ofW while keeping its other columns,as well as Λ
1
, · · · , ΛK fixed.

(2) The diagonal centers (DC) phase minimizes J
WLS2

(W , Λ
1
, · · · , ΛK) with respect to

all the diagonal matrices Λ
1
, · · · , ΛK while keepingW fixed.

A simple way to avoid the trivial solution is to add the constraint Diag(B) = I. However,
themain drawback of nonorthogonal joint diagonalization is that the joint diagonalizer

W may be singular or has a large condition number. A solution that is singular or has a

large condition number is called a degenerate solution. The degenerate solution of the

nonorthogonal joint diagonalization problem was proposed and solved in Reference

[137].

In order to avoid the trivial solution and any degenerate solution simultaneously,

Li and Zhang proposed the following objective function minimization

[137]

min f (W) =

K∑︁

k=1

αk
N∑︁

i=1

N∑︁

j=1, j̸= i

⃒⃒
⃒⃒
[︁
WHAkW

]︁
ij

⃒⃒
⃒⃒
2

− β ln |det (W)| , (9.5.22)

where αk (1 ≤ k ≤ K) are the positive weights, β is a positive number, and ln is the

natural logarithm.

The above cost function can be divided into the sum of the squared off-diagonal

error term

f
1
(W) =

K∑︁

k=1

αk
N∑︁

i=1

N∑︁

j=1, j̸= i

⃒⃒
⃒⃒
[︁
WHAkW

]︁
ij

⃒⃒
⃒⃒
2

(9.5.23)

and the minus log determinant term

f
2
(W) = − ln

⃒⃒
det(W)

⃒⃒
. (9.5.24)

An obvious advantage of the cost function Eq. (9.5.22) is that W = O or singular,

f
2
(W) → +∞. Therefore, the minimization of the cost function f (W) can avoid the

trivial solution and any degenerate solutions simultaneously.

In addition, the following important results were proved in Reference [137].

(1) f
1
(W) is lower unbounded if and only if there exists a nonsingular matrixW that

diagonalizes all the given matrices Ak, k = 1, · · · , K exactly. In other words, in the

approximate joint diagonalization, f (W) is lower bounded.
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(2) The minimization of the cost function f (W) is independent of the penalty factor β.
This means that β can be chosen to any infinite value, and simply choose β = 1,

thus avoiding that the performance of the penalty function method depends on

the selection of the penalty parameters.

The joint diagonalization has been widely used in common problems, such as blind

signal separation

[158, 235]

, blind beamforming

[45]

, time-delay estimation

[236]

, frequency

estimation

[155]

, array signal processing

[221]

, blind MIMO equalization

[65]

, and blind MIMO

system identification

[52]

, and so on.

9.6 Blind Signal Extraction

Blind signal separation usually separates all source signals simultaneously. In practice,

the number of sensors (i.e., the number of mixed signals) may be large, but the number

of source signals of interest is relatively small. If blind signal separation is still used to

separate all source signals, it will increase the unnecessary computational complexity

and cause waste of computational resources. In this case, it is necessary to separate or

extract only a few source signals of interest, while keeping the uninteresting source

signals in the mixed signal. This is the blind signal extraction (BSE) problem.

9.6.1 Orthognal Blind Signal Extraction

Consider the same mixed signal model

x(n) = AS(n) (9.6.1)

as blind signal separation, where x ∈ Cm×1, A ∈ Cm×n, and s (n) ∈ Cn×1, and m ≫ n.
Consider the pre-whitening of the observed signal vector. Let m × m matrixM =

R−1/2x , where Rx = E{x(n)xH(n)} is the autocorrelation matrix of the observed data

vector x(n). It is easy to verify that

z(n) = Mx(n) (9.6.2)

satisfies E{z(n)zT(n)} = I. This shows that the new observed signal vector z(n) is the
pre-whitening result of the original observed signal vector x(n), i.e., the matrixM is

the pre-whitening matrix of x(n).
Now design a m × 1 demixing vector w

1
to extract a (not necessarily the original

first) source signal in the source signal vector, i.e.,

sk(n) = wHz(n), k ∈ {1, · · · , n} (9.6.3)

is a source signal sk(n) in the source signal vector.
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Design a (m − 1) × m matrix

B =

⎡
⎢⎢⎣

bT
1

.

.

.

bTm−1

⎤
⎥⎥⎦ (9.6.4)

with each of its row vectors orthogonal to the demixing vector w
1
, i.e., bHi w1

= 0,

i = 1, · · · ,m − 1.
From sk(n) = wHz(n) and bHi w1

= 0, it is easy to know that the (m − 1) × 1 vector

z
1
(n) = Bz(n) =

⎡
⎢⎢⎣

bT
1

.

.

.

bTm−1

⎤
⎥⎥⎦ z(n) (9.6.5)

will not contain any component of the extracted resource signal sk(n), k ∈ {1, · · · , n}.
The (m − 1) × m matrix B is called the block matrix since it blocks some source signal,

and Bz(n) is essentially a deflation of the pre-whitened observed signal vector.
For the (m−1)×1 new observed signal vector z

1
that blocks sk(n), a new (m−1)×1

demixing matrix w
2
can be designed to extract another source signal in the source

signal vector. Then, a new (m − 2) × (m − 1) block matrix B is designed to block the

newly extracted source signal. This continues until all source signals of interest are

extracted.

Since the above method uses the orthogonality of vectors in the signal extraction

process, it is called orthogonal blind signal extraction.

9.6.2 Nonorthogonal Blind Signal Extraction

Orthogonal blind signal extraction requires pre-whitening of the observed signal vector,

which introduces whitening errors. At the same time, it is also not easy to implement

in real-time. Therefore, it is necessary to use non-orthogonal blind signal extraction.

The instantaneous linear mixed source model can be rewritten as

x(t) = As(t) =
n∑︁

j=1
ajsj(t) = a

1
s
1
(t) +

n∑︁

j=2
ajsj(t). (9.6.6)

If the source signal s (t) is the desired extracted signal, then the first term of the above

equation is the desired term, and the second term (summation term) is the interference

term.

Let u and a
1
have the same column space, i.e.,

U = span(u) = span(a
1
). (9.6.7)

It represents the signal subspace of the desired signal s
1
(t).
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If let the column space formed by n and a
2
, · · · , an is the same as

N = span(n) = span(a
2
, · · · , an), (9.6.8)

then N represents the subspace of interference signal s
2
(t), · · · , sn(t), and

N⊥
= span(n⊥

) (9.6.9)

denotes the orthogonal complement space of the interference signal s
2
(t), · · · , sn(t).

If making the oblique projection EU|N⊥ of the observed signal vector x(t) onto the
signal subspace U of the desired signal along the orthogonal complement subspace

N⊥
of the interference signals, then the desired signal s

1
(t) will be extracted and all the

interference signals s
2
(t), · · · , sn(t) will be suppressed. In other words, multiplying

both sides of Eq. (9.6.6) left by the oblique projection matrix EU|N⊥ , we have

EU|N⊥x(t) = a
1
s
1
(t) = us

1
(t), (9.6.10)

where the oblique projection EU|N⊥ is

EU|N⊥ = u(uHP⊥
N⊥u)−1uHP⊥

N⊥ . (9.6.11)

Note that the orthogonal projection P⊥
N⊥y of any vector to the orthogonal complement

space N⊥
is on the vector space N, that is,

P⊥
N⊥y = αn, ∀y ̸= 0. (9.6.12)

Therefore, the oblique projection matrix

EU|N⊥ = u(uHn)−1nH =

unH
uHn . (9.6.13)

Substituting Eq. (9.6.13) into Eq. (9.6.10),

unH
uHn x(t) = us

1
(t) (9.6.14)

is obtained immediately. Since the above equation holds for all vectors u satisfying

span(u) = span(a
1
), we have

s
1
(t) = nHx(t)

uHn . (9.6.15)

This is the extraction formula for the source signal s
1
(t). The problem is how to find

the vectors u and n.
On the other hand, consider the joint diagonalization of the autocorrelation matri-

ces Rk = 1

T
∑︀T

t=1 x(t)x(t − k), k = 1, · · · , K

Rku = UΣkU =

n∑︁

i=1
λk(i)uiuHi , k = 1, · · · , K. (9.6.16)
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Let u = u
1
, then we have

Rku = UΣkUHu = dkn, k = 1, · · · , K. (9.6.17)

Let d = [d
1
, · · · , dn]T, from Eq. (9.6.17), it is easy to get the optimization problem

min J(u, n, d) = min

1

2

K∑︁

k=1

|| Rku − dkn ||22, (9.6.18)

subject to || n ||=|| d ||= 1. (9.6.19)

which is an optimization problem with three variable vectors u, n, and d. It can be

decoupled into the following three sub-optimization problems.

(1) The optimization of vector u

Fix n and d. This is an unconstrained optimization problem

Ju(u) = J(u, n, d). (9.6.20)

Using the conjugate gradient

∂Ju(u)
∂u* =

K∑︁

k=1

RH

k (Rku − dkn) = 0, (9.6.21)

the closed solution

u =

(︃ K∑︁

k=1

RH

k Rk

)︃
−1
(︃ K∑︁

k=1

dkRH

k n
)︃

(9.6.22)

can be obtained.

(2) The optimization of vector d

Fix u and n. Since the constraint || d ||= 1 exists, the optimization of d is a constrained

optimization problem. Its Lagrange objective function is

Jd(d) = J(u, n, d) + λd(dHd − 1). (9.6.23)

Using the conjugate gradient

∂Jd(d)
∂d*

= −

⎡
⎢⎢⎣

nHR
1
u

.

.

.

nHRku

⎤
⎥⎥⎦ + (1 + λd)d = 0 (9.6.24)

and the constraint || d ||= 1, the closed solution

d =

1∑︀K
k=1 || nHRku ||2

⎡
⎢⎢⎣

nHR
1
u

.

.

.

nHRku

⎤
⎥⎥⎦ (9.6.25)

can be obtained.
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(3) The optimization of vector n

Fix u and d. Since the constraint || n ||= 1 exists, the optimization of n is a constrained

optimization problem. Its Lagrange objective function is

Jn(n) = J(u, n, d) + λn(nHn − 1). (9.6.26)

Using the conjugate gradient

∂Jn(n)
∂n* = −

K∑︁

k=1

d*k(Rku − dkn) + λnn = 0 (9.6.27)

and the constraint || n ||= 1, the closed solution

n =

1∑︀K
k=1 || d*kRku ||2

K∑︁

k=1

d*kRku (9.6.28)

can be obtained.

The above sequential blind extraction algorithm via approximate joint diagonal-

ization was proposed in Reference [138] and is summarized in the following.

Algorithm 9.6.1. Sequential blind extraction algorithm via approximate joint diagonal-
ization
Initialization: vector d, n.
Step 1 Compute the autocorrelation matrix Rk = 1

T
∑︀T

t=1 x(t + k)x*(t), k = 1, · · · , K.
Step 2 Compute vector u, d, and n using Eqs. (9.6.22), (9.6.25), and (9.6.28). Repeat this

step until convergence.
Step 3 Extract some source signal using Eq. (9.6.15)and the converged u and n.
Step 4 Delete the extracted signal from the observed data using deflation. Then the above

steps are repeated for the deflation observed data to extract the next source signal.
This blind “signal extraction + deflation” is repeated until all the source signals of
interest are extracted.

9.7 Blind Signal Separation of Convolutively Mixed Sources

The linear mixing methods of signals are usually divided into instantaneous linear

mixing and convolutively linear mixing. As the name suggests, instantaneous linear

mixing is the linear mixing of multiple sources at a certain time, excluding the source

at any other time. Instantaneous linear mixing, also known as memoryless mixing,

has a memoryless channel: the source signal is transmitted through the memoryless

channel without any time delay between the observed data and the source signal.

Convolutively linear mixing is memorized mixing, and its transmission channel is a

memorized channel; after the source signal is transmitted through the memorized
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channel, the mixed data with time delay is generated, and the channel is equivalent

to having the function of memorizing the data of previous moments. The previous

sections of this chapter focus on the blind signal separation of instantaneous linear

mixed sources, and this section discusses the blind signal separation of convolutively

mixed.

9.7.1 Convolutively Mixed Sources

Assume that the mixing channel is a linear time-invariant multiple input-multiple

output (MIMO) system, which is excited by a n × l dimensional source signal vector

s(t) = [s
1
(t), · · · , sn(t)]T, and the source signal vector is unobservable. The mixing

MIM0 system or channel has a m × n dimensional transfer function matrix A(z), whose
elements aij(z) are polynomials of a time delay operator z. The output end uses m
sensors to observe the convoluted mixed signal, and the observed data vector is x(t) =
[x

1
(t), · · · , xm(t)]T.
There are two commonly used representation models for convolutively mixed

sources.

(1) Z-transform domain product model

x̃(z) = A(z)s̃(z) + ẽ(z), (9.7.1)

where s̃(z), ẽ(z), and x̃(z) are Z transforms of the source signal vector s(t), the additive
noise e(t) and the observation data vector x(t), respectively. Since s(t), e(t) and x(t)
are not polynomial forms of z and are independent of z, s̃(z) = s(t), ẽ(z) = e(t), and
x̃(z) = x(t). Therefore, the convolutional mixing formula Eq. (9.7.1) in the Z transform
domain can be written as

x(t) = A(z)s(t) + e(t). (9.7.2)

(2) Time domain convolutively model

The transfer function matrix A(z) of the MIMO system is usually assumed to be the

finite impulse response polynomial matrix in the z domain

A =

⎡
⎢⎢⎢⎢⎣

A
11
(z) A

12
(z) · · · A

1n(z)
A
21
(z) A

12
(z) · · · A

2n(z)
.

.

.

.

.

.

.
.
.

.

.

.

Am1(z) A
12
(z) · · · Amn(z)

⎤
⎥⎥⎥⎥⎦
, (9.7.3)

where Aij(z) represents the mixing FIR filter between the jth input (source signal) and
the ith output (observation signal). Mixing FIR filter can describe the acoustic reverber-

ation phenomenon in the actual indoor environment and the multipath problems in

wireless communications.
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Matrix A(z) is called the mixing FIR filter matrix.

Let the maximum order of FIR filter A(z) be L and the filter coefficients be aij(k),
k = 0, 1, · · · , L, there is

Aij(z) =
L∑︁

k=0

aij(k)z−k , i = 1, · · · ,m; j = 1, · · · , n. (9.7.4)

Therefore, formula Eq. (9.7.2) of the product model in the Z transform domain can be

expressed as a time domain convolution model

xi(t) =
n∑︁

j=1

L∑︁

k=0

aij(k)sj(t − k) + ei(t), i = 1, · · · ,m (9.7.5)

in the form of elements.

The problemof blind signal separation of convolutivelymixed sources is to separate

the source signal si(t), i = 1, · · · , n only by using the observation data vector x(t).
Therefore, it is necessary to design a demixing (or deconvoluted) FIR polynomial matrix

W(z) ∈ Cn×m so that the output

y(t) = W(z)x(t) (9.7.6)

of the demixing FIR polynomial matrix is a copy of the source signal vector s(k).
In order to perform blind signal separation of convolutively mixed sources, the

following assumptions need to be made.

Assumption 1 The source signal si(t), i = 1, · · · , n is a non-Gaussian zero mean inde-

pendently identically distributed random signal, and each component is statisti-

cally independent.

Assumption 2 The additive observation noise vector e(t) is negligible.
Assumption 3 The number of source signals, n, is less than or equal to the number of

sensors, m, that is, n ≤ m.
Assumption 4 A(z) is am×n dimensional FIR polynomialmatrix, the rank of A(z) is full

column rank for every non-zero time delay z, i.e., rank(A(z)) = n, ∀z = 1, · · · , ∞.

Under the conditions of Assumption 2, substituting Eq. (9.7.6) into Eq. (9.7.2) yields

y(t) = W(z)A(z)s(t). (9.7.7)

Therefore, in the case of ideal blind signal separation, the n × m demixing FIR polyno-

mial matrixW(z) and the m × n mixing FIR polynomial matrix A(z) should satisfy the
following relationship

W(z)A(z) = I or W(z) = A†(z), ∀z = 1, · · · , ∞, (9.7.8)

where I is a n × n identity matrix.
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However, since A(z) is unknown, it is impossible to design the demixing FIR poly-

nomial matrixW(z) = A†(z). Therefore, the design objective should be relaxed to

W(z) = G(z)A†(z), ∀z = 1, · · · , ∞, (9.7.9)

where G(z) = [g
1
(z), · · · , gn(z)]T is the generalized exchange FIR polynomial vector.

Each generalized exchange FIR polynomial vector g i(z) has exactly one nonzero ele-
ment (FIR polynomial) di′ z−τi′ , which is the i′-th element of g i(z). However, i′ is not
necessarily the same as i, and the nonzero elements of any two vectors g i

1

(z) and g i
2

(z),
i
1
̸= i

2
, cannot appear in the same position.

Like the blind separation of instantaneous linear mixed sources, the blind separa-

tion of convolutively linearmixed sources also has two uncertainties: (1) the uncertainty

of the ordering of the separated sources and (2) the uncertainty of the amplitude of

each separated signal.

Blind separation of convolutively linear mixed sources can be divided into the

following three types.

(1) Time domain blind signal separation methods: the convolutively mixed source is

transformed into an equivalent instantaneous mixed source, and the design and

adaptive updating of the demixing matrix are performed in the time domain.

(2) Frequency domain blind signal separation method: the time domain observation

data are transformed into the frequency domain, and the design and adaptive

update of the demixing matrix are performed in the frequency domain.

(3) Time-frequency domain blind signal separation method: using the quadratic time-

frequency distribution of non-stationary observation data, the design and adaptive

updating of the demixing matrix is performed in the time-frequency domain.

The following three sections will introduce the above three methods respectively.

9.7.2 Time Domain Blind Signal Separation of Convolutively Mixed Sources

SinceW(z)A(z) = I cannot be realized, the design of blind signal separation needs to
consider how to relizeW(z) = G(z)A†(z) orW(z)A(z) = G(z).

Denote the demixing FIR filter matrix as

W(z) =

⎡
⎢⎢⎣

wT

1
(z)
.

.

.

wT

n(z)

⎤
⎥⎥⎦ , (9.7.10)

wherewT

i = [wi1(z), · · · , wim(z)] denotes the i-th row vector ofW(z). Thus,W(z)A(z) =
G(z) can be equivalently written as

wT

i (z)A(z) = gTi (z), i = 1, · · · , n. (9.7.11)
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Note that the row vector gTi (z) on the right side of Eq. (9.7.11) has only one non-zero

term di′ z−τi′ , which is the i-th element of the row vector gTi (z), but i′ is not necessarily
the same as i.

Therefore, the i-th component of the output vector y(t) = W(z)A(z)s(t) of the
demixing FIR polynomial matrixW(z) can be expressed as

yi(t) = wT

i (z)A(z)s(t) = gTi (z)s(t) = di′ si′ (t − τi′ ), i = 1, · · · , n. (9.7.12)

In other words, the i-th component yi(t) of the output vector y(t) is a copy of the i′-th
source signal si′ (t) and may differ from si′ (t) by a scale factor di′ and a time delay τi′ .

Since themixing FIR polynomial matrix A(z) is unobservable and the source signal
si(t) is unkonwn, the following assumption is added to si(t).
Assumption 5 Each source signal si(t) has a unit variance.

Under the condition of Assumption 5, the variance of the output signal yi(t) is con-
strained to 1, that is, Eq. (9.7.12) is simplified to

yi(t) = wT

i (z)A(z)s(t) = si′ (t − τi′ ) = si′ (t)z
−τi′

, i = 1, · · · , n. (9.7.13)

This shows that one of the n source signals can be extracted from the convolutively

mixed signal.

The expression of FIR filterwT

i (z) = [wi1(z), · · · , wim(z)] satisfying the blind signal
separation Eq. (9.7.13) of the convolutively mixed source is derived below.

Let the maximum order of the demixing FIR filter wT

i (z) be K, i.e.,

wij(z) =
K∑︁

k=0

wij(k)z−k , i = 1, · · · , n; j = 1, · · · ,m. (9.7.14)

The order K of the demixing FIR filter should be greater than or equal to the order L of
the mixing FIR filter, i.e. K ≥ L.

The specific expression of the separated signal of the demixing FIR filter shown in

Eq. (9.7.13) is

yi(t) = wT

i (z)x(t) = [wi1(z), · · · , wim(z)]

⎡
⎢⎢⎣

x
1
(t)
.

.

.

xm(t)

⎤
⎥⎥⎦

=

K∑︁

k=0

wi1(k)x1(t − k) + · · · +
K∑︁

k=0

wim(k)xm(t − k). (9.7.15)

In the matrix representation of the FIR filter, the underlined vectors and matrices are

commonly used to represent the vectors and matrices related to the FIR filter, which

are referred to as FIR vectors and FIR matrices for short.
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The multiplication of two FIR matrices A and B is defined as

[132]

A · B =

⎡
⎢⎢⎣

a
11

· · · a
1n

.

.

.

.
.
.

.

.

.

am1 · · · amn

⎤
⎥⎥⎦

⎡
⎢⎢⎣

b
11

· · · b
1p

.

.

.

.
.
.

.

.

.

bn1 · · · bnp

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

∑︀n
j=1 a1j * bj1 · · ·

∑︀n
j=1 a1j * bjk

.

.

.

.
.
.

.

.

.∑︀n
j=1 amj * bj1 · · ·

∑︀n
j=1 amj * bjk

⎤
⎥⎥⎦ , (9.7.16)

where * represents convolution. For example, if b = s(t) = [s
1
(t), · · · , sn(t)]T, then

A · s(t) =

⎡
⎢⎢⎣

∑︀n
j=1
∑︀K

k=0 a1j(k)sj(t − k) · · ·

∑︀n
j=1
∑︀K

k=0 a1j(k)sj(t − k)
.

.

.

.
.
.

.

.

.∑︀n
j=1
∑︀K

k=0 amj(k)sj(t − k) · · ·

∑︀n
j=1
∑︀K

k=0 amj(k)sj(t − k)

⎤
⎥⎥⎦ . (9.7.17)

Therefore, the convolutively mixing model can be expressed as

x(t) = A · s(t). (9.7.18)

Using the FIR matrix, Eq. (9.7.15) can be simplified as

yi(t) = wT

i (t)x(t), i = 1, · · · , n, (9.7.19)

where

wT

i = [wi1(0), wi1(1), · · · , wi1(K), · · · , wim(0), wim(1), · · · , wim(K)], (9.7.20)

x(t) = [x
1
(t), x

1
(t − 1), · · · , x

1
(t − K), · · · , xm(t), xm(t − 1), · · · , xm(t − K)]T.

(9.7.21)

The FIR vector wi is the demixing vector, also known as the extraction vector.

Let i = 1, · · · , n, then Eq. (9.7.19) can be expressed in terms of FIR vectors and FIR

matrices as

y(t) = Wx(t). (9.7.22)

Compared with the instantaneous linear mixed source, the blind signal separation of

the convolutively linear mixed source has the following differences.

(1) The separation or demixing model for instantaneous linear mixing is y(t) = Wx(t),
while the separation model for convolutively linear mixing is y(t) = Wx(t).

(2) The dimension of the demixing matrixW of the instantaneous linear mixed source

is n × m, while the dimension of the demixing FIR matrixW of the convolutively

linear mixed source is n × (K + 1)m.
(3) The observation vector x(t) of the instantaneous linear mixed model is an m × 1

vector whose elements include only x
1
(t), · · · , xn(t), while the observation vector
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x(t) of the convolutively linear mixed model is a (K + 1)m × 1 dimensional FIR

vectorwhose elements include x
1
(t), · · · , xm(t) and their delays xi(t−1), · · · , xi(t−

K), i = 1, · · · ,m. In other words, the elements of the observation vector of the

instantaneous linear mixed model are all memoryless observations, while the

elements of the observation vector of the convolutively linear mixed model are the

observation data themselves and their delays (memory length is K).

The above comparison reveals the following relationships between instantaneous

linear mixing and convolutively linear mixing.

(1) As long as the m × 1 observation data vector x(t) and the n ×m demixing matrixW
of the instantaneous linear mixing model are replaced by the FIR data vector x(t)
and the n × (K + 1)m demixing FIR matrixW of the convolutively linear mixing

model, then the blind signal separation algorithm of the instantaneous linear

mixed source can be used for the blind signal separation of the convolutively linear

mixed source in principle.

(2) The instantaneous linear mixed source is a special case of the convolutively linear

mixed source in the case of the single-tap FIR filter.

Since delayed observations are used, the convolutively linear mixed source is also

called a delayed linear mixed source.

For example, the natural gradient algorithm for the blind signal separation of

convolutively mixed sources is

Wk+1 = Wk + ηk[I − ϕ(yk)y
H

k ]Wk . (9.7.23)

Similarly, it is easy to generalize other algorithms for blind signal separation of instan-

taneous mixed sources (e.g., EASI algorithm and iterative inverse algorithm) to the

corresponding time domain algorithms for blind signal separation of convolutively

mixed sources.

9.7.3 Frequency Domain Blind Signal Separation of Convolutively Mixed Sources

Consider the noise-free case of the convolutively mixture model Eq. (9.7.5)

xi(t) =
n∑︁

j=1

L∑︁

k=0

aij(k)sj(t − k) = aTi s(t), i = 1, · · · ,m, (9.7.24)

where aTi is the i-th row vector of the mixing matrix A.
The sampling frequency fs is used to discretely sample the time domain observation

signal xi(t), and the N-point discrete short-time Fourier transform

Xi(τ, f ) =
N/2∑︁

p=−N/2

xi(τ + p)h(p)e−j2πfp (9.7.25)
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is performed on xi(t), where f ∈ {0, 1

N fs , · · · ,
N−1
N fs} is the frequency point, h(p) is the

smoothing window function with a time width of τ.
On the other hand, the discrete short-time Fourier transform is performed on both

sides of the time-domain expression Eq. (9.7.24) of the convolutively mixing model, we

can obtain the frequency domain expression

Xi(τ, f ) =
n∑︁

j=1
aij(f )Sj(τ, f ) (9.7.26)

of the linear mixing model immediately, where Sj(τ, f ) is the short-time Fourier trans-

form of the j-th source signal sj(t) and aij(f ) is the frequency response of the j-th source
signal sj(t) to the i-th sensor.

Take i = 1, · · · ,m and let x̂(τ, f ) = [X
1
(τ, f ), · · · , Xm(τ, f )]T represents the short-

time Fourier transform vector of the observed data. Thus, Eq. (9.7.26) can be expressed

as

x̂(τ, f ) =
n∑︁

j=1
aj(f )Sj(τ, f ), (9.7.27)

where aTj (f ) = [a
1j(f ), · · · , amj(f )] represents the frequency response of the j-th source

signal to all sensors.

The objective of blind signal separation for convolutively linear mixed sources is

to design a n × m frequency domain demixing matrixW(f ) such that its output

ŷ(τ, f ) = [Y
1
(τ, f ), · · · , Yn(τ, f )]T = W(f )x̂(τ, f ) (9.7.28)

is a frequency domain vector with independent components.

Compared with instantaneous linear mixed sources, the frequency domain blind

signal separation of convolutively linear mixed sources has the following similarities

and differences.

(1) The separation model of instantaneous linear mixing is y(t) = Wx(t), while the
frequency domain separation model of convolutively linear mixing is ŷ(τ, f ) =
W(f )x̂(τ, f ).

(2) The time domain separation matrixW of the instantaneous linear mixed source

and the frequency domain separation matrix of the convolutively mixed source

have the same dimension, both are n × m.
(3) The observation vector x(t) of instantaneous linearmixed source ism×1 vector, and

its element is x
1
(t), · · · , xn(t); while the equivalent observation vector x̂(τ, f ) of

convolutively linearmixed source is the short-time Fourier transformof observation

data.

The above comparison reveals the relationship between the time domain blind signal

separation of instantaneous linear mixing and the frequency domain of convolutively

linear mixing: as long as the m × 1 observation data vector x(t) and n × m separation
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matrix W in the instantaneous linear mixing model are replaced by the frequency

domain (short-time Fourier transform) vector x̂(τ, f ) and n × m frequency domain

separation matrixW(f ) of the convolutional linear mixing model, respectively, both

ICA and nonlinear PCA algorithms for instantaneous linear mixed source separation

can be used or frequency domain blind signal separation of convolutional linear mixed

sources.

Algorithm 9.7.1. Frequency domain blind signal separation of convolutively linear mixed
sources
Step 1 Preprocessing: Make the observed data vector with zero-mean.
Step 2 Estimation of the number of sources: Compute the eigenvalue decomposition

of the autocorrelation matrix Rx = 1

T
∑︀T

t=1 x(t)x
H
(t) and the number of the large

eigenvalues gives an estimation of the number of sources n.
Step 3 Update of the frequency domain separation matrix: Calculate the short-time

Fourier transform Xi(τ, f ), i = 1, · · · ,m of the observed data, and adaptively update
the n × m frequency domain separation matrixW(f ) using the ICA or nonlinear PCA
algorithm for blind signal separation in the frequency domain.

Step 4 Signal separation: Calculate the short-time Fourier transform Yj(τ, f ), j =

1, · · · , n of the separated output using Eq. (9.7.28), and then perform the inverse
short-time Fourier transform to recover or reconstruct the source signal.

9.7.4 Time-Frequency Domain Blind Signal Separation of Convolutively Mixed
Sources

Considering the non-stationary signal z(t), the commonly used time-frequency signal

representation is the following quadratic time-frequency distributions.

(1) Cohen’s class of time-frequency distribution

ρcohenzz (t, f ) =
∞∫︁

−∞

∞∫︁

−∞

ϕ(ν, τ)z(t + ν + τ
2

)z*(t + ν − τ
2

)e−j2πfτdνdτ. (9.7.29)

(2) Wigner-Ville distribution (WVD)

ρwvdzz (t, f ) =
∞∫︁

−∞

z(t + τ
2

)z*(t − τ
2

)e−j2πfτdτ. (9.7.30)

The advantage of the WVD is the high time-frequency resolution, and the disad-

vantage is the computational complexity and the existence of the cross-terms.

(3) Short-time Fourier transform (STFT)

STFTz(t, f ) =
∞∫︁

−∞

z(t)h(τ − t)e−j2πfτdτ, (9.7.31)
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where h(t) is a window function. STFT is a linear time-frequency representation,

and its quadratic time-frequency distribution is the spectrogram

ρspeczz (t, f ) = |STFTz(t, f )|2. (9.7.32)

The advantages of the STFT and the spectrogram are the computational simplicity

and the free of cross-terms. The disadvantage is that the time-frequency resolution

is much lower than that of the Wigner- Ville distribution.

(4) Masked Wigner-Ville distribution (MWVD)

ρmwvdzz (t, f ) = ρwvdzz (t, f ) · ρspeczz (t, f ). (9.7.33)

The masked Wigner-Ville distribution combines the advantages of the Wigner-Ville

distribution (high resolution) with those of the spectrogram (free of cross-terms).

It is called the masked Wigner-Ville distribution because ρmwvdzz (t, f ) acts as a mask

for the cross-terms of the Wigner-Ville distribution.

The short-time Fourier transform and spectrogram are particularly suitable for speech

or audio signals, while the Wigner-Ville distribution is more suitable for frequency

modulation (FM) signals.

For signal vector z(t) = [z
1
(t), · · · , zm(t)]T, its time-frequency representation in-

volves the quadratic cross time-frequency distribution between the signal components

z
1
(t) and z

2
(t).

(1) Cohen’s class of cross time-frequency distribution

ρcohenz
1
z
2

(t, f ) =
∞∫︁

−∞

∞∫︁

−∞

ϕ(ν, τ)z
1
(t + ν + τ

2

)z*
2
(t + ν − τ

2

)e−j2πfτdνdτ. (9.7.34)

(2) Cross Wigner-Ville distribution

ρwvdz
1
z
2

(t, f ) =
∞∫︁

−∞

z
1
(t + τ

2

)z*
2
(t − τ

2

)e−j2πfτdτ. (9.7.35)

(3) Cross spectrogram

ρspecz
1
z
2

(t, f ) = STFTz
1

(t, f )STFT*z
2

(t, f ). (9.7.36)

(4) Masked cross Wigner-Ville distribution

ρmwvdz
1
z
2

(t, f ) = ρwvdz
1
z
2

(t, f ) · ρspecz
1
z
2

(t, f ). (9.7.37)

Wigner-Ville distribution has not only high temporal resolution, but also high frequency

resolution. However, it introduces the cross-termswhen the signal is amulti-component

signal. These cross-terms come from the interaction between different signal compo-

nents.
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In order to perform a time-frequency analysis of non-stationary signals, it is nec-

essary to use a “clear” time-frequency distribution of the signal, which reveals the

characteristics of the signal and is free from any “ghost” components. In other words,

the time-frequency distribution is expected to be free of cross-terms while maintaining

a high time-frequency resolution.

As a high resolution quadratic time-frequency distribution, the B distribution

[19]

is

defined as

ρBzz(t, f ) =
∞∫︁

−∞

∞∫︁

−∞

(︂
|τ|

cosh(u)

)︂σ
z(t − u + τ

2

)z*(t − u − τ
2

)e−j2πfτdudτ, (9.7.38)

where 0 ≤ σ ≤ 1 is a real parameter.

A noise thresholding procedure

T
th
(t, f ) =

{︃
T(t, f ), if T(t, f ) > ε
0, Others

(9.7.39)

is used to remove those points that have low energy time-frequency distribution in the

time-frequency domain that is smaller than the threshold value ε.
The threshold usually selected as ε = 0.01max T(t, f ), (t, f ) ∈ Ω or ε = 0.05.

For a noiseless or cross-terms-free time-frequency distribution, the number of

signal components at a moment t
0
can be estimated by the number of peaks in the

slices T(t
0
, f ) of the TFD. By searching and calculating the peak of each TFD slice, a

histogram of the number of peaks at different moments can be obtained. Themaximum

number of peaks in this histogram gives an estimation of the signal number. Algorithm

9.7.2 gives the steps for estimation of the number of signals.

Algorithm 9.7.2. Estimation of the number of signals
Step 1 Compute the TFD slices T(t

0
, f ) for each moment t

0
= 1, · · · , t

max
.

Step 2 Search and calculate the number of peaks of each TFD slice.
Step 3 Obtain the histogramof the number of peaks at differentmoments t

0
= 1, · · · , t

max
.

Step 4 The maximum peak number of the histogram is taken as the estimation of the
signal components number.

Assuming that the vector z(t) = [z
1
(t), · · · , zm(t)]T is composed of m source signals

emitted in different spaces or observed signals from m sensors at different locations,

the cross-TFD of different elements of vector z(t) is called the spatial time-frequency

distribution (STFD). The matrix is composed of the spatial time-frequency distribution

Dzz(t, f ) =

⎡
⎢⎢⎣

ρz
1
z
1

(t, f ) · · · ρz
1
zm (t, f )

.

.

.

.
.
.

.

.

.

ρzmz1 (t, f ) · · · ρzmzm (t, f )

⎤
⎥⎥⎦ (9.7.40)
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is called the STFDmatrix

[24]

. Here, ρzizj (t, f ) represent the cross-TFDbetween two signals

zi(t) and zj(t). According to different non-stationary signals, the cross-TFD is usually

ρcohenzizj (t, f ), ρwvdzizj (t, f ), ρ
spec

zizj (t, f ), or ρ
mwvd

zizj (t, f ).
For the unmixed source signal vector s(t) = [s

1
(t), · · · , sn(t)]T, we call an auto-

source TF point (ta , fa) a point at which there is a true energy ρsisj (t, f ), i = 1, · · · , n
contribution/concentration of source or sources in the TF domain, and a cross-source

TF point (t, f ) a point at which there is a “false” energy ρsisj (t, f ), i ̸= j contribution
(due to the cross-term effect of quadratic TFDs)

[5]

. The area composed of auto-source

TF points is called the auto-source TF area, and the area composed of cross-source

TF points is called the cross-source TF area. Note that, at other points with no energy

contribution, the TFD value is ideally equal to zero.

Let Ω
1
and Ω

2
be the TF supports (i.e., the definition domain of time-frequency

distribution) of two sources s
1
(t) and s

2
(t). If Ω

1
∩Ω

2
= ∅, then s

1
(t) and s

2
(t) is called

disjoint in TF domain. On the contrary, the two non-stationary signals are said to be

nondisjoint in the TF domain.

Disjoint in the TF domain is a rather strict restriction for non-stationary signals. In

fact, the sources are nondisjoint in some local TF domains.

The following assumptions are usually madewhen using TFD for underdetermined

blind signal separation

[5]

.

Assumption 1 The column vector of the mixing matrix A = [a
1
, · · · , an] are pairwise

linearly independent. That is, for any i ̸= j, we have ai and aj linearly independent.
Assumption 2 The number of sources p that contribute their energy at any TF point

(t, f ) (i.e., with nonzero TFD) is strictly less than the number of sensors m, that is,
p < m.

Assumption 3 For each source, there exists a region in the TF domain, where this source

exists alone.

Consider the blind signal separation model

x(t) = As(t) or xi(t) = aTi s(t), (9.7.41)

where aTi ∈ C1×n
, i = 1, · · · ,m is the ith row vector of the mixing matrix, we have

A =

⎡
⎢⎢⎣

aT
1

.

.

.

aTm

⎤
⎥⎥⎦ and AH

= [a*
1
, · · · , a*m]. (9.7.42)

Next, taking Cohen’s class TFD as an example, the expression of the STFD matrix

Dxx(t, f ) of the observed data is derived.
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The Cohen’s class time-frequency distribution between the elements xi(t) and xk(t)
of the observed data vector x(t) is

ρxixk (t, f ) =
∞∫︁

−∞

∞∫︁

−∞

ϕ(ν, f )xi(t + ν +
τ
2

)x*k(t + ν −
τ
2

)e−j2πfτdνdτ

=

∞∫︁

−∞

∞∫︁

−∞

ϕ(ν, f )
[︁
aTi s

(︁
t + ν + τ

2

)︁]︁ [︁
aTks

(︁
t + ν − τ

2

)︁]︁
*

e−j2πfτdνdτ

= aTi Dss(t, f )a*k , (9.7.43)

where Dss(t, f ) = [ρsisj (t, f )]ij is the STFD matrix of the source signal. Here, aTks(t
′

) =

sT(t′)ak and [aTks(t
′

)]

*

= sH(t′)a′k are used to obtain the final result of the above formula.

Eq. (9.7.43) can be written as the STFD matrix of the observation data

Dxx(t, f ) =

⎡
⎢⎢⎣

ρx
1
x
1

(t, f ) · · · ρx
1
xm (t, f )

.

.

.

.
.
.

.

.

.

ρxmx1 (t, f ) · · · ρxmxm (t, f )

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

aT
1
Dss(t, f )a*

1
· · · aT

1
Dss(t, f )a*m

.

.

.

.
.
.

.

.

.

aTmDss(t, f )a*
1
· · · aTmDss(t, f )a*m

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

aT
1

.

.

.

aTm

⎤
⎥⎥⎦Dss(t, f )[a*1, · · · , a*m]. (9.7.44)

Substituting Eq. (9.7.42) into Eq. (9.7.44), the concise expression for the STFD matrix

Dxx(t, f ) = ADss(t, f )AH

(9.7.45)

of the observed data can be obtained.

Next, two time-frequency blind signal separation algorithms for solving the time-

frequency representation matrix Eq. (9.7.45) of blind signal separation are introduced.

1. Joint Diagonalization Algorithm
Since the off-diagonal elements of the source STFD matrix Dss(t, f ) represent the

mutual TFD between different source signals, the mutual TFD is equal to zero when

any two source signals are mutually uncorrelated. Therefore, Dss(t, f ) is a diagonal
matrix.

Under the condition that Dss(t, f ) is a diagonal matrix, Eq. (9.7.45) shows that,

given K fixed time-frequency points (tk , fk), k = 1, · · · , K, the joint diagonalization of
the STFD matrix Dxx(tk , fk), k = 1, · · · , K of the observed data

Dxx(tk , fk) = WΣkWH

(9.7.46)
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can be used to obtain the matrixW
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.

= A essentially equal to the mixed matrix A can

be obtained. Then, the blind separation result of the source signal vector s(t) can be
obtained by using ŝ(t) = W†x(t).

The following is the orthogonal approximate joint diagonalization algorithm for

blind signal separation using time-frequency distribution, which was proposed by

Belouchrani and Amin in 1998

[24]

.

Algorithm 9.7.3. Orthogonal joint diagonalization time-frequency blind signal separa-
tion algorithm
Step 1 Eigenvalue decomposition: Estimate the m × m autocorrelation matrix ^R =

1

N
∑︀N

t=1 x(t)x
H
(t) from the zero-mean m × 1 observed data vector x(t). Then com-

pute the eigenvalue decomposition of ^R and denote the n largest eigenvalues by
λ
1
, · · · , λn and h1, · · · , hn the corresponding eigenvectors.

Step 2 Prewhitening: The average of the m − n smallest eigenvalues of ^R is taken as the
estimate σ̂2 of the noise variance. Then the prewhitened n × n data vector is z(t) =
[z
1
(t), · · · , zn(t)]T = Wx(t), whereW = [(λ

1
− σ̂2)−1/2h

1
, · · · , (λn − σ̂2)−1/2hn]H is

the m × n prewhitening matrix.
Step 3 Estimate the STFD matrix: Compute the K STFD matrices of the prewhitened data

vector Dxx = Dzz(tk , fk), k = 1, · · · , K.
Step 4 Joint diagonalization: Take orthogonal approximate joint diagonalization for the

K STFD matrices Dk
Dk = UΣkUH

, k = 1, · · · , K, (9.7.47)

obtain the unitary matrix U as the joint diagonalizer.
Step 5 Blind signal separation: The source signals are estimated as ŝ(t) = UHz(t), and/or

the mixing matrix A is estimated as ^A = W†U.

2. Cluster-based Quadratic Time-Frequency Blind Signal Separation Algorithm
In Algorithm 9.7.2, the number of source signals is estimated by searching the peak

number of the time-frequency distribution slices. The following algorithm uses vector

clustering to estimate the number of source signals

[5]

.

Algorithm 9.7.4. Cluster-based quadratic time-frequency blind signal separation algo-
rithm
Step 1 Sample STFD estimation: Compute

[︁
Dwvd
xx (t, f )

]︁
ij
= ρwvdxixj (t, f ), (9.7.48)

[︁
Dstft
xx (t, f )

]︁
ij
= ρstftxixj (t, f ), (9.7.49)

[︁
Dmwvd
xx (t, f )

]︁
ij
= ρwvdxixj (t, f ) · ρ

stft
xixj (t, f ). (9.7.50)

Step 2 Selection of effective time-frequency point of signal: If

||Dmwvd
xx (tp , fq)||

maxf

{︁
||Dmwvd

xx (tp , f )||
}︁ > ε, (9.7.51)
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then time-frequency point (tp , fq) is selected and kept as an effective point. Here, ε
is a small threshold and typically ε = 0.05.

Step 3 Vector clustering and effective TFD estimation: Compute the spatial direction for
each effective time-frequency point (tp , fq) ∈ Ω

a(ta , fa) =
diag{Dstft

xx (ta , fa)}
||diag{Dstft

xx (ta , fa)||
, (9.7.52)

where diag{B} denotes a vector with diagonal elements of matrix B. Without loss
of generality, let the first entry of the spatial direction vector be real and positive.
After obtaining

{︀
a(ta , fa)|(ta , fa) ∈ Ω

}︀
, they are clustered into n classes using the

unsupervised clustering algorithm.
Step 4 Source TFD estimation

ρ̂wvdsi (t, f ) =
{︃
tr
(︁
Dwvd
xx (t, f )

)︁
, (t, f ) ∈ Ω

0, Others
. (9.7.53)

Step 5 Signal separation: Reconstruct signal si(t) using the TFD ρ̂wvdsi (t, f ) of the signal.

Table 9.7.1 compares three blind signal separationmethods of convolutively linearmixed

source signals in the time domain, frequency domain, and time-frequency domain.

Tab. 9.7.1: Comparison of time domain, frequency domain, and time-frequency domain blind signal
separation

Method Mixing Model Separation Algorithm Separation Signal

Time domain x(t) = As(t) yk = Wkx(t),W1 = I ŝ(t) = y(t)W k+1 = Wk + ηk[I − ϕ(yk)yHk ]Wk

Frequency domain x̂(τ, f ) =
∑︀n

j=1 aj(f )Sj(τ, f )
ŷk = W f

k x̂(τ, f ),W
f
1 = I

ŷ(τ, f )
ISTFT
−→ ŝ(t)W f

k+1 = W f
k + ηk[I − ϕ(ŷk)ŷ

H
k ]W

f
k

time-frequency Dxx (t, f ) = ADxx (t, f )AH Dxx (t, f ) = UΣkUH ŝ(t) = UHx(t)domain

Blind signal separation has been widely used in speech signal processing, image

processing and imaging, communication signal processing, medical signal processing,

radar signal processing, and so on.

When designing and applying blind signal separation algorithms, the following

matters need to be noted

[193]

.

(1) The closer the mixing matrix is to a singular matrix the harder the separation task

is for algorithms that do not exhibit the equivariant behavior. In the presence of

noise, the task becomes harder also for equivariant algorithms.

(2) Whether it is instantaneousmixing or convolutivelymixing, the probability density

functions of the signals have an effect. Usually the closer the signals are to Gaussian

distributions, the harder the separation gets.
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(3) The performance of the blind signal separation algorithm may vary greatly for the

narrowband and wideband signals. Therefore, tests of the blind signal separation

algorithm should include both of these two signals. A good blind signal separation

algorithm should have good performance for both narrowband and wideband

signals.

(4) A good blind signal separation algorithm should have good performance for both

slow time-varying signals and fast time-varying signals.

The following is the Internet address of some international scholars, research groups,

and some program codes that conduct blind signal separation research abroad.

http://www.bsp.brain.riken.go.jp/ICALAB

http://www.islab.brain.riken.go.jp/shiro

http://www.cnl.salk.edu/tewon/ICA/Code/

http://www .cnl.salk.edu/ tony/ica.html

http://www.lis.inpg.fr/demos/sep-sourc/ICAdemo

http://www.cis.hut.fi/projects/ica/

http://www.cis.hut.fi/projects/ica/fastica/

Summary

This chapter first introduces the basic theory of blind signal separation and then

introduces three mainstream methods of blind signal separation for linear mixed

sources: independent component analysis, nonlinear principal component analysis

method, and joint diagonalization method. Then, the blind signal extraction methods

for linear mixed sources are discussed. The following are the basic principles and

comparisons of these four methods.

Independent component analysis method: Through nonlinear transform, the mu-

tual information between each separated output signal component is minimized, i.e.,

statistically independent.

Nonlinear principal component analysis method: Through nonlinear transform,

the main signal components in the mixed observation data are extracted, and these

principal components are made to be approximately statistically independent from

each other.

Joint diagonalization of matrices: The blind signal separation is achieved directly

by using the joint diagonalizer (which is a matrix essentially equal to the unknown

mixed matrix) of a set of autocorrelation matrices of the observed data vectors (it is the

matrix that is essentially equal to the unknown mixture matrix).

Blind signal extraction method: Only the signal component with the largest energy

is extracted, and the next signal component with the largest energy is extracted after

deflation, so as to extract all the signal components of interest.
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In addition, this chapter also introduces the time domain blind signal separa-

tion method, frequency domain blind signal separation method, and time-frequency

domain blind signal separation method for convolutiivelyl mixed sources. The basic

principles and comparison of these three methods are as follows.

Time domain blind signal separation method: Using the FIR matrix, the convolu-

tively mixed source model is transformed into the time domain representationmodel of

the linear mixed source, and then the blind signal separation can be achieved by using

the independent component analysis or nonlinear principal component analysis.

Frequency domain blind signal separation method: For the short-time Fourier

transform of the observed data, the independent component analysis or nonlinear prin-

cipal component analysis method of frequency domain blind signal separation is used

to adaptively update the frequency domain demixing matrix to obtain the short-time

Fourier transform of the separated signal, and then the time-domain reconstruction of

the separated source is realized through the inverse short-time Fourier transform.

Time-frequency domain blind signal separation method: The joint diagonalizer

of the spatial time-frequency distribution (STFD) matrix of the observed data gives

the estimation of the mixing matrix directly, thus realizing the blind separation of the

non-stationary signals.

Exercises

9.1 Let x(t) = As(t) be n × 1 sensor observed vector, where A is the m × n mixing

matrix and s(t) is the n ×1 source vector. Nowwe want to design am ×m pre-whitening

matrixW so that y(t) = Wx(t) is a standard white noise. Try to find the relationship
between the pre-whitening matrixW and the mixing matrix A.
9.2 Consider the mixed signal model x(k) = As(k), where the elements aij of the
mixing matrix A = [aij]m,ni=1,j=1 are arbitrarily selected from the random variables uni-

formly distributed over [−1, +1], and the number of sources is n = 3. If the source

s
1
(k) = sin(200k) be a sine wave signal, s

2
(k) = sgn(50k + 6 cos(45k)) be a sign signal,

and s
3
(k) be a uniformly distributed signal over [−1, +1]. Select k = 1, 2, · · · , 512.

(1) Under-determined mixing: take m = 2 and draw the waveforms of x
1
(k) and x

2
(k),

respectively.

(2) Well-dtermined mixing: take m = 3 and draw the waveform of si(k), i = 1, 2, 3,

respectively.

(3) Over-determined mixing: take m = 5 and draw the waveform of si(k), i = 1, · · · , 5,

respectively.

9.3 Consider the following mixed model
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(1) Unit linear transformation

[︃
x
1
(t)

x
2
(t)

]︃
=

[︃
2 1

1 1

]︃[︃
s
1
(t)

s
2
(t)

]︃

(2) The unit linear transformation is the same as (1), but the two sources are exchanged.

[︃
x
1
(t)

x
2
(t)

]︃
=

[︃
2 1

1 1

]︃[︃
s
2
(t)

s
1
(t)

]︃

(3) The unit linear transformation is the same as (1), but the polarities of the two

sources are opposite. [︃
x
1
(t)

x
2
(t)

]︃
=

[︃
2 1

1 1

]︃[︃
−s

1
(t)

−s
2
(t)

]︃

(4) Rotation linear transformation and the source is the same as (1)

[︃
x
1
(t)

x
2
(t)

]︃
=

[︃
cos α − sin α
sin α cos α

]︃[︃
s
1
(t)

s
2
(t)

]︃

(5) Ordinary linear transformation, the source is the same as (1)

[︃
x
1
(t)

x
2
(t)

]︃
=

[︃
a
11

a
12

a
21

a
22

]︃[︃
s
1
(t)

s
2
(t)

]︃

For example, the elements aij of the mixing matrix A are arbitrarily selected random

variables uniformly distributed over [−1, +1].

The sources are divided into three cases.

(a) s
1
(t) is a Gaussian signalN(0, 1) and s

2
(t) is a signal uniformly distributed over

[−1, +1];

(b) s
1
(t) is a signal uniformly distributed over [−1, +1] and s

2
(t) is a signal uniformly

distributed over [−0.5, +0.5];

(c) s
1
(t) is a Gaussian signalN(0, 1) and s

2
(t) is also a Gaussian signal, but the vari-

ance is different, such as s
2
(t) ∽ N(0, 1).

Try to draw the sample distribution diagram (x
1
, x

2
) of the mixed signals for each

of the five different mixing models in three rows: the first row corresponds to source

distribution (a), the second row corresponds to source distribution (b), and the third

line corresponds to source distribution (c).

Try to answer the following questions based on the distribution diagram of the

observed samples.

(1) Can the mixed signals be separated in the case of different mixing matrices? Why?

(2) In the case that the sources obey which distribution, the mixed signal cannot be

separated, can be separated one or two sources?
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9.4 Consider the stochastic gradient algorithm for blind signal separation

W(k + 1) = W(k) + μ[I − ϕ(y(k))yH(k)],

its continuous time stochastic gradient algorithm is

˙W(t) = μ(t)[I − ϕ(y(t))yH(t)].

It has been proved

[13]

that the solution of the separationmatrix of the learning algorithm

is a stable equilibrium point if and only if the following three conditions are satisfied

mi + 1 > 0, ki > 0, σ2i σ2j kikj > 1, ∀i, j(i ≠ j),

where

mi = E

{︁
y2i ˙ϕi(yi)

}︁
= pE

{︁
|yi|p+1

}︁
> 0,

ki = E

{︁
˙ϕi(yi)

}︁
= pE

{︁
|yi|p−1

}︁
> 0,

σ2i = E
{︁
y2i
}︁
,

where p is an integer, ϕ(yi) is the activation function of the stochastic gradient algo-
rithm, and

˙ϕ =

dϕ(t)
dt .

If the odd activation function ϕi(yi) = |yi|psgn(yi), p = 1, 2, 3, · · · , is selected, try

to verify that the three conditions of the above equilibrium point are met.

9.5 The same as the above problem, but the activation function takes the symmetric

S-shaped odd function ϕi(yi) = tanh(γyi), where γ is any positive real number. Prove

that the three conditions for verifying the equilibrium point are also met.

9.6 (linear mixed static signals) The source signal vector is known to consist of five

non-Gaussian signals

s(t) = [sgn(cos(2π155t)), sin(2π800t), sin(2π300t+6 cos(2π600t)), sin(2π90t), r(t)],

where r(t) is a uniformly distributed signal over [−1, +1]. The mixed signals are gen-

erated by the m × p mixing matrix A through x(t) = As(t). The sampling period is

Ts = 0.0001s, and the data length is taken as N = 5000. For the following cases, the

blind signal separation using the natural gradient algorithm, the nonlinear princi-

pal component analysis algorithm, and the fixed-point ICA algorithm is performed

independently for 100 computer simulation experiments. Draw the waveform of each

separation output in any operation, and plot the curve of the statistical average of

crosstalk error of various algorithms with the number of iterative samples.

(1) Well-determined blind signal separation: m = p = 5, no additive noise.

(2) Overdetermined blind signal separation: m = 8, p = 5, divided into no additive

noise and additive noise n(t) ∼ N(0, 1).

9.7 (Linear mixed image signals) Consider the linear mixed images: sample by frame

and then connect in sequence to form the discrete sampling value of the image. The
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elements of themixingmatrix are still generated by randomvariables that are uniformly

distributed over [−1, +1].

(1) Multiple face images are selected as the sources and blind separation of image

signals is performed using the natural gradient algorithm, nonlinear principal

component analysis method, and fixed-point ICA method, and the separation

results are recovered into images, which are compared with the original images.

(2) Different images such as human faces, natural scenery, and traffic are selected

for the linear mixing. Blind separation of image signals is performed using the

same algorithm as above, and the separation results are recovered into images and

compared with the original images.

9.8 (Linear mixed dynamic signals) Consider the separation of mixed speech: the

speech signal is first converted into an analog electrical signal using amicrophone, and

then the discrete sample values are obtained by A/D conversion. The source signals are

twomale and two female signals, and each of the four people reads the same sentences

for 3 seconds. Each speech signal was first sampled and A/D converted at 22050 Hz/8

bit to obtain the respective discrete sample values. The samples are then mixed by a

linear mixing model x(k) = As(k), and the number of samples is taken as N = 2048,

where the elements aij(i = 1, · · · , 6; j = 1, · · · , 4) of the mixing matrix A are chosen

as uniformly distributed random variables over [−1, +1].

(1) Draw the continuous-time waveforms of the four speech signals and the linear

mixed signals.

(2) Use the natural gradient algorithm, the nonlinear principal component analysis

method, the fixed-point ICA algorithm, and the nonorthogonal joint diagonaliza-

tion method to perform blind signal separation and compare the results of the

separated signals.

(3) Conduct the computer experiments 100 times and plot the statistical mean and de-

viation of the crosstalk error obtained by various blind signal separation methods.

(4) Select the separation results of several independent experiments randomly and

play them to text the separation effect of each speech signal.

9.9 (Convolutively mixed dynamic signals) The four speech signals are the same as

the previous problem, but they are convolutional linear mixed

xi(t) =
4∑︁

j=1

3∑︁

k=0

aij(k)sj(t − k) = aTi s(t),

where the 6 × 4 mixing matrix A is the same as above.

(1)

i = 1, · · · , 6; t = 1, · · · , 2048,

Draw the waveforms of four speech signals and convolution linear mixed signals

respectively.

(2) Use the time domain blind signal separation, frequency domain blind signal sepa-

ration (algorithm 9.7.1), and time-frequency domain blind signal separation of the
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convolutively linear mixed source to carry out computer separation experiments

and compare the separation results.

(3) Conduct the computer experiments 100 times independently and plot the statistical

mean and deviation curves of the crosstalk errors of various blind signal separation

methods.

(4) Select the separation results of several independent experiments randomly and

play to test the separation effect of each speech signal.



10 Array Signal Processing
When multiple signal sources exist in space, it is often necessary to locate these spatial

signals to track or detect those of interest and suppress those considered to be inter-

ference. Therefore, it is necessary to use an array antenna to receive multiple spatial

signals. The analysis and processing of spatial signals received by an array antenna

are collectively referred to as array signal processing.

Array signal processinghasbeenwidelyused,with typical applications including

[215]

:

Radar: phased-array radar, air traffic control radar, synthetic aperture radar, etc;

Sonar: source localization and classification;

Communications: directional transmission and reception, sector broadcast in satellite

communications, mobile communications, etc;

Imaging: ultrasonic imaging, optical imaging, tomographic imaging, etc;

Geophysical exploration: earth crust mapping, oil exploration, etc;

Astrophysical exploration: high-resolution imaging of the universe;

Biomedicine: fetal heart monitoring, tissue hyperthermia, hearing aids, etc.

The main problems of array signal processing are

[102, 126]

(1) Beamforming - make the mainlobe of the array pattern point to the desired direc-

tion;

(2) Nulling forming - align the zero point of the antennawith all interference directions;

(3) Direction of arrival estimation (DOA) - super resolution estimation of the DOA of

spatial signals.

The first special issue on array signal processing was published in 1964 in the IEEE

Transactions on Antenna Propagation Transactions

[1]

. Since then, IEEE journals have

published several special issues on array signal processing

[2, 3]

.

This chapter will introduce the basic theory, main methods, and typical applica-

tions for array signal processing.

10.1 Coordinate Representation of Array

A beamformer is a signal processor used in conjunction with a sensor array to provide

a versatile form of spatial filtering

[215]

. The sensor array collects spatial samples of

propagating wave field, which are processed by the beamformer. The objective is to

estimate the signal arriving from a desired direction in the presence of noise and

interfering signals. A beamformer performs spatial filtering to separate multiple spatial

signals that have overlapping frequency content but originate from different spatial

locations. The spatial signal from the desired direction is called the desired signal,

and all other spatial signals in the undesired directions are collectively referred to as

interfering signals.

https://doi.org/10.1515/9783110475562-010
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10.1.1 Array and Noise

An array is the arrangement of multiple sensors or antennas. The sensor or antenna

element of the array is referred to as the array element. The layout forms of the array el-

ements can be generally divided into categorises as uniform, nonuniform, and random

distribution.

According to the arrangement or layout rules of the array elements, the array is

divided into the following three categories.

(1) Linear array: the sensors aligned with a line, divided into uniform linear array,

nonuniform linear array (sparse array and random linear array).

(2) Planar array: composed of multiple uniform linear array or uniform circular array,

nonuniform circular array.

(3) Cubic array: multiple planar arrays aligned with equal intervals or cylindrical

arrays (multiple uniform circular arrays concentric arrangement).

The transmitted sources in space or the receiving signals of the sensors are collectively

referred to as spatial signals. The main characteristics of spatial signals are

Time-domain characteristics: modulated (such as linear frequency modulation

signal, BPSK signal, etc.) and non-modulated signal.

Frequency-domain characteristics: narrowband signals and wideband signals.

Spatial characteristics: near-field signals (spherical wave signals) and far-field

signals (planar wave signals).

Noise (or interference) is classified as follows.

Noise

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

By interference mode

{︃
Additive noise

Multiplicative noise

By statistical characteristics

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

White noise

{︃
Time domain white noise

Spatial white noise

Colored noise

{︃
Time domain colored noise

Spatial colored noise

By probability density

{︃
Gaussian noise

Non-Gaussian noise

where

Additive noise: signal added by noise;

Multiplicative noise: signal multiplied by noise;

Time-domain white noise: statistically uncorrelated noise at different moments;

Time-domain colored noise: statistically correlated noise at different moments;

Spatial white noise: the noise of different array element statistically uncorrelated;

Spatial colored noise: the noise of different array element statistically correlated.
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10.1.2 Coordinate System of Array

Consider p signal sources propagating in space, all of which are narrowband signals.
Now, a sensor array with M omnidirectional elements is used to receive these signals.

The coordinate system representations of a planar array and linear array are dis-

cussed below.

1. Planar Array Coordinate System
Assuming that the array is arranged on the x − y plane, take the first element as

the origin O of the planner array coordinate system (i.e., the time reference point of the

planar array), as shown in Figure 10.1.1.

O y

z

x

S

B
A

θ

φ

rm

rM

Fig. 10.1.1: Planar array coordinate system

The core problem of array signal processing is to locate the spatial source using om-

nidirectional sensor or antenna array. As is widely known, the location of a source

is determined by three-dimensional parameters of the source: the distance OS from
the origin to the source (source spatial distance), the angle θ between the source and
the normal of the x − y plane (z-axis), i.e., the source elevation angle, and the source
azimuth angle ϕ. In array signal processing, only the elevation angle θ and the azimuth

angle ϕ need to be considered.

For the direction cosine ui of the i-th source with respective to the x-axis , the
directional cosine vj with respective to the y-axis, and the elevation angle θ and azimuth

angle ϕ, there exist a relationship between them as

ui + jvi = sinθiejϕi . (10.1.1)

Thus, if the cosine ui in the x-axis direction and the cosine vi in the y-axis direction of
the i-th source are obtained, the elevation angle θ and azimuth angle ϕ of the source

can be determined as

ϕi = arctan(ui/vi), θi = arctan(ui/sinϕi). (10.1.2)
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Therefore, main parameters need to be estimated by a two-dimensional array signal

processing algorithm is x-axis cosine u and y-axis cosine v of each source.
The vertical distance SB from the source S to the x − y plane is called the target down-
range distance, and the vertical distance AB from S to the normal plane x − z is called
the target cross-range distance. The resolution of source localization is divided into

target down-range resolution and cross-range resolution.

The time taken by a plane wave departing from the i-th source in direction (ϕi , θi)
and received by the m-th element is given by

τm(ϕi , θi) =
⟨rm , v̂(ϕi , θi)⟩

c , (10.1.3)

where rm is the position vector of them-th element to the first element, i.e., the reference

point (the origin of the coordinate system), v̂(ϕi , θi) is the unit vector in direction

(ϕi , θi), c is the propagation speed of the plane wave front.
2. Uniform Linear Array Coordinate System

Assuming that a linear array of equispaced elements with element spacing d
aligned with the x-axis such that the first element is situated at the origin (i.e., the time

reference point), as shown in Figure 10.1.2.

1 d 2 3 4
· · ·

M

? Si (t)

θi

Fig. 10.1.2: Uniform linear array coordinate system

At this time, the azimuth angle of the source ϕ = 0, and the elevation angle θ of the
source is called the DOA. The time taken by a plane wave arriving from the i-th source
in DOA θi and received by the m-th element is given by

τm(θi) =
d
c (m − 1)cosθi , m = 1, 2, · · · ,M. (10.1.4)

The signal induced on the reference element due to the i-th source is norrmally ex-

pressed in complex-valued notation as

x
1
(t) = mi(t)ej2πf0 t = mi(t)ejω0

t
, (10.1.5)

where mi(t) is the complex-valued modulation function, ω
0
= 2πf

0
is the frequency of

the source. The structure of the complex-valued modulation function is determined by
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the particular modulation used in the array signal processing system. For example, in

mobile communication systems, the typical modulation functions are concentrated as

follows

[91]

.

(1) For a frequency division multiple access (FDMA) communication system, it is a

frequency-modulated signal given by

mi(t) = Aiejξi(t), (10.1.6)

where Ai is the amplitude of the i-th user and ξi(t) is the message of the i-th user
at moment t.

(2) For a time division multiple access (TDMA) communication system, it is a time-

modulated signal given by

mi(t) =
∑︁

n
di(n)p(t − n∆), (10.1.7)

where p(t) is the sampling pulse, the amplitude di(n) is the message symbol of the

i-th user, and ∆ is the sampling imterval.

(3) For a code divisionmultiple access (CDMA) communication system, themodulation

function is

mi(t) = di(n)g(t), (10.1.8)

where di(n) denotes the message sequence of the i-th user and g(t) is a peseudo-
random binary sequence having the values +1 or −1.

Assuming that the wavefront arrives at the i-th element τm(ϕi , θi) seconds earlier
before it arrives at the reference element. Under this assumption, it is readily to have

τ
1
(ϕi , θi) = 0, and the signal induced on the m-th element due to the i-th source can

be then formulated as

xm(t) = mi(t)ejω0
[t+τm(ϕi ,θi)]

, m = 1, 2, · · · ,M. (10.1.9)

For the first array element to be the reference element, its observation signal is x
1
(t) =

mi(t)ejω0
t
, since τ

1
(ϕi , θi) = 0.

Suppose the m-th element has additive observation noise em(t), we will find that

xm(t) = mi(t)ejω0
[t+τm(ϕi ,θi)]

+ em(t), m = 1, 2, · · · ,M. (10.1.10)

The additive noise em(t) usually includes background noise of the m-th element, ob-

servation error, and electronic noise generated in the channel from the i-th source to
the m-th element.

10.2 Beamforming and Spatial Filtering

A beamformer is essentially a spatial filter that extracts the desired signal. The desired

signal is identified by time-delay steering of the sensor output: any signal incident on
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the array from the direction of interest will appear at the output of the steering filter

as an exact copy of the signal itself; any other signal that does not have this property

is considered as noise or interference. The purpose of a beamformer is to minimize

the influence of noise or interference at the output of the array while maintaining the

frequency response of the desired signal.

Each element in the array is usually omnidirectional (i.e., omnidirectional). Such a

sensor array is called an omnidirectional array, which can not only greatly reduce the

cost of the array, but also facilitate the detection of sources from any direction of 360

∘
.

Using a set of finite impulse response (FIR) filters, the observation signals from a set

of omnidirectional elements (or sensors) can be properly weighted and summed to form

a beam (major lobe) that is directly aligned with a source of interest (desired source)

and thatminimizes the effect of other undesired signals (collectively referred to as noise

or interference) leaked from the sidelobe. Since this filter is neither a time-domain filter

nor a frequency-domain filter, but only uses several taps as the coefficients of the filter,

it is called a (spatial) beamformer and is a spatial filter.

The relationship between the FIR filter and the beamformer is analyzed below.

10.2.1 Spatial FIR Filter

Since the envelope of the narrowband signal changes slowly, the envelope of the same

signal received by each element of the uniform linear array is the same. If the spatial

signal si(n) is far enough away from the element such that thewave front of its electronic

wave reaching each element is a plane, such a spatial signal is called a far-field signal.

On the contrary, if the spatial signal si(n) is close to the element and the wave front

of the electronic wave arriving at each element is a spherical wave, then it is called a

near-field signal.

The directional angle of the far-field signal si(n) arriving at each element is the

same, denoted by θi, and is called the DOA, which is defined as the angle between

the direct line of the signal si(n) arriving at the element and the normal direction of

the array. Taking the first element as the reference point (referred to as the reference

element), that is, the received signal si(n) of spatial signal si(n) on the reference element

is equal to si(n). There is a delay (or advanced) in the arrival of this signal to the other
elements with respective to the reference element. Let the phase difference caused

by the delay of signal si(n) propagation at the second element be ωi, then there is a
relationship between the DOA θi and the phase difference ωi

ωi = 2π dλ sin(θi), (10.2.1)

where d is the distance between two adjacent elements and λ is the signal wavelength.
The element distance d should satisfy the half-wavelength condition, i.e., d ≤ λ/2,
otherwise the phase difference ωi may be greater than π, resulting in the so-called

direction ambiguity, that is, θi and θi + π can all be the DOA of signal si(t). Obviously,
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since it is an uniform linear array, the phase difference between the waves of signal

si(n) arriving at m-th element and those arriving at the reference element is (m −
1)ωi = 2π dλ (m − 1)sin(θi). Therefore, the received signal si(n) at the m-th element is

si(n)ej(m−1)ωi .
If the array consists of M elements, then the vector

a(θi)
def

= [1, e

jωi
, · · · , e

−j(M−1)ωi
]

T

= [a
1
(θ

1
), · · · , aM(θi)]T, (10.2.2)

consisting of the phase differences of the signal si(n) arriving at each element is called

the response vector, direction vector, or streering vector of the signal si(n) = siejωin
[215]

.

The geometric interpretation of the steering vector a(θi) is a vector pointing to the i-th
source, i.e., the beam.

The m-th element e

j(m−1)ωi
of the steering vector a(θi) describes the phase dif-

ference of the wave propagation of the i-th source at the m-th array element, with

respective to the reference element.

If there are p signals in the far-field (where p ≤ M), then the observed or received
signal xm(n) at the m-th element is

xm(n) =
p∑︁

i=1
am(ωi)si(n) + em(n), m = 1, · · · ,M, (10.2.3)

where em(n) denotes the additive observation noise on the m-th element. The observa-

tions of all the M elements form an M × 1 observation data vector as

x(n) = [x
1
(n), · · · , xM(n)]T. (10.2.4)

Similarly, an M × 1 observation noise vector

e(n) = [e
1
(n), · · · , eM(n)]T (10.2.5)

can be defined. In this way, Eq. (10.2.3) can be expressed in vector form as

x(n) =
p∑︁

i=1
a(ωi)si(n) + e(n) = A(ω)s(n) + e(n), (10.2.6)

where

A(ω) = [a(ω
1
), · · · , a(ωp)] (10.2.7)

=

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

e

−jω
1

e

−jω
2

· · · e

−jωp

.

.

.

.

.

.

.

.

.

.

.

.

e

−j(M−1)ω
1

e

−j(M−1)ω
2

· · · e

−j(M−1)ωp

⎤
⎥⎥⎥⎥⎦
, (10.2.8)

s(n) = [s
1
(n), · · · , sp(n)]T (10.2.9)
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are the M × p array response matrix (or direction matrix, transmission matrix) and the

p × 1 signal vector, respectively. A matrix with the structure shown in Eq. (10.2.8) is

said to be an Vandermonde matrix. The characteristic of Vandermonde matrix is that if

ω
1
, · · · , ωp are different from each other, then its columns are independent of each

other, that is, the Vandermonde matrix has full column rank.

In array signal processing, one sample is called one snapshot. Assuming that the

received signal xm(1), · · · , xm(N) of N snapshots is observed on each element, where

m = 1, · · · ,M. The beamforming problem can be formulated as follows: only using

these observations, how to find the DOA θd of a desired signal sd(n) so as to achieve
the localization of the desired spatial source.

Fig.10.2.1 shows the schematic diagram of the spatial FIR filter for beamforming.

Sensor No.

...

w∗
1

w∗
2

w∗
M

∑

1
x1 (t)

2
x2 (t)

M
xM (t)

+
+

+

y (n)

Fig. 10.2.1: Spatial FIR filter

In the figure, the signal x
1
(n), · · · , xM(n) fromeach element aremutiplied by theweight

vectorw = [w
1
, · · · , wM]T of the spatial FIR filter and summed to form the array output

y(n) =
M∑︁

m=1
w*mxm(n). (10.2.10)

Since each sensor generally uses a quadrature receiver to generate biphasic (in-phase

and quadrature) data, the observation data and the tap coefficients FIR filter take

complex values.

Taking the first sensor as reference, if the signal propagation delay between two

adjacent sensors is△, then the frequency response of the FIR filter w = [w
1
, · · · , wM]T

can be expressed as

r(ω) =
M∑︁

m=1
w*me−j(m−1)ω△ = wHd(ω), (10.2.11)
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where

d(ω) = [1, e

−jω△
, · · · , e

−j(M−1)ω△
]

T

(10.2.12)

represents the response of the FIR filter to a complex exponential signal of frequency

ω and dm(ω) = e

−j(m−1)ω△
, m = 1, · · · ,M is the phase of the complex exponential at

each tap of the FIR filter relative to the tap associated with w
1
.

The signal received by a sensor is usually assumed to be zero-mean, and the

variance or expected power of the FIR filter output is thereby

|E{y(n)}|2 = wHE{x(n)xH(n)}w = wRxxw. (10.2.13)

If the received data x(n) of the sensor iswide sense stationary, thenRxx = E{x(n)xH(n)},
the data covariance matrix, is independent of time. Although we often encounter non-

stationary data, the wide sense stationary assumption is used to develop statistically

optimal FIR filters and evaluate steady-state performance.

Using the frequency response vector d(ω) of the FIR filter, the frequency response

of the sensor observation data vector can be expressed as x̂(ω) = S(ω)d(ω), where
S(ω) = F{x(n)} is the spectrum of the desired spatial source s(n). Let Ps(ω) = |S(ω)|2 =
S(ω)S*(ω) represent the power spectrum of s(n), and suppose the spectrum S(ω) of
the spatial source s(n) has no energy outside of the spectral band [ωa , ωb]. then the
data covariance matrix can be formulated as

Rxx = E{x(n)xH(n)} = E{x̂(ω)x̂H(ω)} =
1

2π

ωb∫︁

ωa

Ps(ω)d(ω)dH(ω)dω, (10.2.14)

where the frequency band [ωa , ωb] is narrow enough and corresponds to a narrowband

signal.

It should be noted that d(ω) is only the frequency response vector of the FIR filter,

instead of the steering vector because ω is the frequency, not the DOA θ. Therefore, an
interesting and important question is, what is the relationship between the DOA and

the frequency ω? Can the FIR filter and beamformer be analogized or interchanged?

This is exactly the problem to be discussed below.

10.2.2 Broadband Beamformer

The broadband beamformer samples the signal waveform propagating in the spatial

field and time field, which is suitable for the signal with obvious frequency bandwidth

(broadband signal).

As shown in Fig.10.2.2, the output y(n) at moment n of the broadband beamformer

can be expressed as

y(n) =
M∑︁

m=1

K−1∑︁

p=0
w*m,pxm(n − p), (10.2.15)
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M
xM (t)

+

y (n)

Fig. 10.2.2: Broadband beamformer

where K − 1 is the number of delays in each of the M sensor channels.

The output of the FIR filter and the broadband beamformer can be expressed

uniformly in vector form as

y(n) = wHx(n), (10.2.16)

where

FIR filter:

{︃
w = [w

1
, · · · , wM]T,

x(n) = [x
1
(n), · · · , xM(n)]T,

Beamforming:

{︃
w = [w

1,0
, · · · , w

1,K−1, · · · , wM,0
, · · · , wM,K−1]

T

,

x(n) = [x
1
(n), · · · , x

1
(n − K + 1), · · · , xM(n), · · · , xM(n − K + 1)]

T

.

The response of broadband beamformer is defined as the amplitude and phase pre-

sented to a complex-valued plane wave as a function of the location and frequency of

the source. The spatial location of a source is generally a three-dimensional quantity,

but often we are only concerned with one-dimensional or two-dimensional DOA, not

the distance between the source and the sensor.

When a sensor array samples a spatially propagating far-field signal, it is usually

assumed that the far-field signal is a complex-valued plane wave with DOA θ and
frequency ω. For convenience let the first sensor be the reference point and the phase
be zero. This implies x

1
(n) = e

jωn
and xm(n) = e

jω[n−△m(θ)]
, m = 2, · · · ,M. △m(θ)
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represents the time delay due to propagation from the first to them-th sensor. Especially,
the time delay from the first to itself is△

1
(θ) = 0.

Substituting the observation signal xm(n) = e

jω[n−△m(θ)]
of the m-th sensor into the

expression of the broadband beamformer output, we can obtain

y(n) = e

jωk
M∑︁

m=1

K−1∑︁

p=0
w*m,pe−jω[△m(θ)+p]

= e

jωkr(θ, ω), (10.2.17)

where r(θ, ω) is the frequency response of the broadband beamformer and can be

expressed in vector form as

r(θ, ω) =
M∑︁

m=1

K−1∑︁

p=0
w*m,pe−jω[△m(θ)+p]

= wHd(θ, ω) (10.2.18)

where the elements wm,p of

w = [wT

1
, · · · ,wT

M]
T

= [w
1,0

, · · · , w
1,K−1, · · · , wM,0

, · · · , wM,K−1]
T

(10.2.19)

represent the weight coefficients of the m-th FIR filter w = [wm,0, wm,1, · · · , wm,K−1]T

to the sensor observation data xm(n − p). The elements of d(θ, ω) correspond to the
complex exponentials e

−jω[△m(θ)+p]
. In general, it can be expressed as

d(θ, ω) = [d
1
(θ, ω), d

2
(θ, ω), · · · , dMK(θ, ω)]T

= [1, e

jωτ
2
(θ,ω)

, e

jωτ
3
(θ,ω)

, · · · , e

jωτMK (θ,ω)
]

T

, (10.2.20)

where the subscripts of di(θ, ω), i = 1, 2, · · · ,MK are

i = (m − 1)K + p + 1, m = 1, · · · ,M; p = 0, 1, · · · , K − 1. (10.2.21)

Let the first sensor be taken as the reference and its time delay be zero, that is, τ
1
(θ, ω) =

0, then the time delay τi(θ, ω) = −[△m(θ) + p] includes two parts:
(1) the time delay −△m(θ, ω) due to propagation from the first to the M-th sensor;

(2) the time delay −p of them-th FIR filter wm due to the tap delay from the zero phase

reference wm,0 to the wm,p.

Using the steering vector d(θ, ω) of the broadband beamformer, the frequency re-

sponse of the sensor observation data vector can be expressed as x̂(ω) = F{x(n)} =
S(ω)d(θ, ω). Suppose the spatial source s(n) has no energy outside of the spectral
band [ωa , ωb]. At this time, the data covariance matrix is

Rxx = E{x(n)xH(n)} = E{x̂(ω)x̂H(ω)} =
1

2π

ωb∫︁

ωa

Ps(ω)d(θ, ω)dH(θ, ω)dω, (10.2.22)

where Ps(ω) = |S(ω)|2 represents the power spectrum of the source with its frequency

band [ωa , ωb] being relatively wide, corresponding to a broadband signal.
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10.2.3 Analogy and Interchange between Spatial FIR Filter and Beamformer

The vector notation in the frequency response r(θ, ω) = wHd(θ, ω) of the broadband
beamformer suggests a vector space interpretation of beamforming. This point of view

is useful both in beamformer design and analysis. Since the weight vector w and the

array response vectors d(θ, ω) are vectors in aMK-dimensional vector space, the cosine

of the angle between w and d(θ, ω), namely,

cos α = ⟨w, d(θ, ω)⟩
|| w ||

2
· || d(θ) ||

2

=

wHd(θ, ω)
|| w ||

2
· || d(θ) ||

2

, (10.2.23)

determine the response r(θ, ω) of the beamformer. Specifically, for some DOA and

frequency combination (θ
0
, ω

0
), if the angle between w and d(θ

0
, ω

0
) is 90

∘
, i.e.,

they are orthogonal to each other, then the response r(θ
0
, ω

0
) = wHd(θ

0
, ω

0
) of the

beamformer is zero. This shows that the signal on DOA θ
1
is completely cancelled, thus

constituting the nulling froming.On the contrary, if w = d(θ
1
, ω

1
), the output f of the

beamformer r(θ
1
, ω

1
) = wHd(θ

1
, ω

1
) =|| d(θ

1
, ω

1
) ||

2

2
reaches a maximum, i.e., the

spatial signal on DOA θ
1
is detected with the maximum intensity.

Consider two sources at different locations and/or frequencies, say (θ
1
, ω

1
) and

(θ
2
, ω

2
), the abiltiy to descriminate between them is determinded by the cosine

cos α = ⟨d(θ
1
, ω

1
), d(θ

2
, ω

2
)⟩

|| d(θ
1
, ω

1
) ||

2
· || d(θ

2
, ω

2
) ||

2

(10.2.24)

of the angle between their array response vectors

[67]

d(θ
1
, ω

1
) and d(θ

2
, ω

2
). Obviously,

if w = d(θ
1
, ω

1
) and d(θ

1
, ω

1
) ⊥ d(θ

2
, ω

2
), then the two sources can be fully identi-

fied. Otherwise, even if w = d(θ
1
, ω

1
) is selected, but d(θ

1
, ω

1
) is not orthogonal to

d(θ
2
, ω

2
), then although r(θ

1
, ω

1
) = M is maximum, r(θ

2
, ω

2
) ̸= 0, so the two spatial

sources will be detected at the same time, only the intensity of detection is different,

thus forming the mainlobe and sidelobe.

The above analysis suggests that if w = d(θd , ω) is selected and appropriate

constraints are imposed, it is possible to extract only the spatial sources with DOA θ
and suppress all sources with the other DOA. The source is called a narrowband signal

with center frequency ω, if the covariance matrix Rxx can be expressed as an outer

product in the form

Rxx = σ2sd(θ, ω0
)dH(θ

1
, ω

0
) (10.2.25)

of rank 1

[215]

, where

σ2s =
1

aπ

ωb∫︁

ωa

Ps(ω)d(ω) (10.2.26)

is the variance or average power of the narrowband source.

The observation time bandwidth product (TBWP) is a basic parameter that deter-

mines whether a source can be viewed as narrowband

[36, 66]

. As the observation time
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interval is increased, the bandwidth must decrease. On the contrary, as the observation

time interval is decreased, the bandwidth must increase.

The analogy between an omnidirectional narrowband uniform linear array and a

single-channel FIR filer is illustrated in Fig.10.2.3

[215]

.

· · ·

· · ·w∗
1 w∗

M−1 w∗
M

z−1 z−1

∑

1
x1 (n) = x (n) x2 (n) = x (n− 1) xM (n) = x (n−M + 1)

+

+ +
y (n)

(a) A single-channel FIR filter

Sensor No.

d

d

d

...

w∗
1

w∗
2

w∗
3

w∗
M

∑

1
x1 (t)

2
x2 (t)

3
x3 (t)

M
xM (t)

+
+

+
+

y (n)

(b) A omnidirectional narrowband ULA

Fig. 10.2.3: The analogy between an omnidirectional narrowband ULA and a single-channel FIR filter.

The correspondence between FIR filtering and beamforming is closest when the beam-

former operates at a single temporal frequency ω
0
and the array geometry is linear and

uniform. Letting the sensor spaceing be d, propagation velocity be c, and θ represent
DOA relative to broadside (perpendicular to the array), then we have

[215]

τi(θ) = (i − 1)dc sin θ. (10.2.27)
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In this case, the relationship between temporal frequency ωin the frequency response
d(ω) of the spatial FIR filter and the steering vector d(θ, ω

0
) of the beamformer is

ω =

ω
0
d
c sin θ. (10.2.28)

Thus, temporal frequency in a spatial FIR filter corresponds to the sine of DOA in

a narrowband, uniform linear beamformer. Therefore, complete interchange of FIR

filter and beamformer is possible for this special case provided the mapping between

frequency and DOA is accounted for.

The general effects of spatial sampling are similar to temporal sampling. Spatial

sampling may also produce spatial aliasing, which corresponds to ambiguity or uncer-

tainty in source locations

[215]

. This implies that sources at different locations may have

the same array response vector.

(1) For narrowband sources, d(θ
1
, ω

0
) = d(θ

2
, ω

0
). This can occur if the sensors are

spaced too far apart. If the sensors are too close together, spatial discrimination

suffers as a result of the smaller than necessary aperture.

(2) For broadband sources, another type of ambiguity occurs when a source at one

location and frequency cannot be distinguished froma source at a different location

and frequency, i.e., the steeing vetcor d(θ
1
, ω

1
) = d(θ

2
, ω

2
). For example, this

occurs in an uniform linear array whenever ω
1
sin θ

1
= ω

2
sin θ

2
.

The array aperture determines the beamwidth of the mainlobe generated by the array 
beamformer. The way to prevent the narrowband source identification from ambiguity 
is to properly configure the sensor spacing of the uniform array to meet the required 
aperture requirements. In addition, the introduction of temporal sample technique 
with a single spatial sample may also prevent the broadband source identification from 
ambiguity.

Consider an FIR filter with M taps to separate a complex-valuedfrequency compo-

nent ω
0 from other frequency components. At this point, the desired FIR frequency

response is

r(ω) = wHd(ω) =
{︃
1, ω = ω

0
,

0, ω ̸= ω
0
.

(10.2.29)

A common solution to this desired response problem is to choose the FIR filter response

with frequency ω
0
, that is

w = d(ω
0
). (10.2.30)

The FIR filter with the desired frequency response shown in Eq. (10.2.29) is equivalent

to a spectral line enhancer with frequency ω
0
, which only outputs the source with

frequency ω
1
and suppresses all other frequency sources.

The actual response r(ω) is not a binary function of {1, 0} but a function char-

acterized by a mainlobe and many sidelobes. The amplitude squared |r(ω)|2 of the
frequency response r(ω) is called the beampattern of the FIR filter.
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Since w = d(ω
0
), each element wm = dm(ω) = e

−j(m−1)ω△
of w has unit magnitude.

The mainlobe or beamwidth is in contradiction with the size of the sidelobe. Therefore,

tapping or windowing the amplitudes of the elements ofw permits trading of mainlobe

or beamwidth against sidelobe levels to form the response into a desired shape.

By extension, the desired frequency response of the broadband beamformer, i.e.,

the desired steering vector

rd(θ, ω) = wHd(θ, ω) =
{︃
1, ω = ω

0
,

0, ω ̸= ω
0
.

(10.2.31)

The magnitude square of the actual steering vector is referred to as the beampattern of

the broadband beamformer.

Consider source s(n) = ms(n)ejω0
k
, where ms(n) and ω0

are the modulation func-

tion and frequency of the source respectively. Assume that the power of the source s(n)
is Ps = E{|s(n)|2} = E{|ms(n)|2}, and the direction angle of the source observed from
the array is θ

0
.

The selected beamformer vector is equal to the steering vector d(θ
0
, ω

0
) of the

source s(n), i.e.,

w = d(θ
0
, ω

0
) = [1, e

jω
0
τ
2
(θ

0
,ω

0
)

, · · · , e

jω
0
τM(θ0 ,ω0

)

]

T

. (10.2.32)

The observation data of the source s(n) by the m-th sensor is

xs,m(n) = ms(n)ejω0
[k+τm(θ0 ,ω0

)]

. (10.2.33)

Therefore, the array observation vector generated by the source s(n) in the observation
direction is

xs(n) = [xs,1(n), · · · , xs,M(n)]T = ms(n)ejω0 s
0
(n), (10.2.34)

where

s
0
(n) = [1, e

jω
0
τ
2
(θ

0
,ω

0
)

, · · · , e

jω
0
τM(θ0 ,ω0

)

]

T

. (10.2.35)

When w = d(θ
0
, ω

0
), the output of the beamformer is

y(n) = wHxs(n) = ms(n)ejω0
k
, (10.2.36)

and its average power is

Py = E{|y(n)|2} = E{|ms(n)|2} = Ps . (10.2.37)

This indicates that mean output power Py of the beamformer steered in the observation

direction is equal to the power Ps of the source s(n) in the observation direction θ0.
This process is similar to steering the array mechanically in the observation direction

except that is done electronically.

The main differences between electronic steering and mechanical steering are as

follows.
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(1) Mechanical steering is only suitable for directional antennas, while electronic

steering is suitable for omnidirectional antennas or sensors.

(2) Mechanical steering rotates the antenna mechanically to the desired direction,

while for electronic steering, it is done electronically by adjusting the phase of the

beamformer to achieve the pointing of the array.

(3) The aperture of an electronically steered array is different from that of a mechani-

cally steered array

[91]

.

The design objective of the broadbandbeamformer is to choosew so the actual response

r(θ, ω) = wHd(θ, ω) approximates a desired response rd(θ, ω).

10.3 Linearly-Constrained Adaptive Beamformer

Beamformers can be classified as data independent and statistically optimal

[215]

. The

weights in a data independent beamformer do not depend on the array data and are

chosen to present a specified response for all signal and interference scenarios. The

weights in a statistically optimal beamformer are chosen based on the statistics of the

array data to optimize the array response. In general, the statistically optimal beam-

former places nulls in the directions of interfering sources in an attempt to maximize

the signal-to-noise ratio at the beamformer output.

The desired signal and noise (or interference) are spatial position changing and

waveform changing with time. In order to track the spatial-varying and time-varying

desired sources, the statistically optimal beamformer should also be time-varying, with

taps that can be adjusted at different times. Therefore, the beamformer is essentially a

spatial-time two-dimensional filter or signal processor.

The optimal implementation of a time-varying beamformer is an adaptive beam-

former. In order to generate only one mainlobe while minimizing the other sidelobes, it

is necessary to impose constraints to the adaptive beamformer. The simplest and most

effective constraint is the linear constraint. An adaptive beamformer that obeys the

linear constraint is referred to as a linearly constrained adaptive beamformer.

Linearly constrained adaptive beamformer, also known as linearly constrained

adaptive array processing, has two main implementations: the direct form and the gen-

eralized sidelobe canceling form. These two linearly constrained adaptive beamformers

are introduced below.

10.3.1 Classical Beamforming

The design task of the broadband beamformer is to choosew so that the actual response

r(θ, ω) = wHd(θ, ω) approximates a desired response rd(θ, ω).
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Consider the p DOA and frequencies at point (θ
1
, ω

1
), · · · , (θp , ωp) so that the actual

response of the beamformer approximates the desired response. Let the steering vector

matrix and response vector of these points be

A = [a(θ
1
, ω

1
), · · · , a(θp , ωp)], (10.3.1)

rd = [r(θ
1
, ω

1
), · · · , r(θp , ωp)]T. (10.3.2)

The general optimization criterion for solving the approximation problems is to min-

imize the lq norm of the error vector between the actual and the desired response

vector

w
opt

= argmin

w
E{|| AHw − rd ||q}, (10.3.3)

subject to f (w) = 0. (10.3.4)

where f (w) represents the linear constrain and || x ||q represents the lq norm of vector

x = [x
1
, · · · , xp]T, that is,

|| x ||q= (xq
1

+ · · · + xqp)1/q . (10.3.5)

The most commonly used vector norm is l
2
norm, i.e., Frobenius norm, and the corre-

sponding optimization criterion is

w
opt

= argmin

w
E{|| AHw − rd ||22}, (10.3.6)

subject to f (w) = 0. (10.3.7)

Assuming that the steering vector A has full row rank, then the optimal beamformer is

the least squares solution

w
opt

= (AAH

)

−1Ard . (10.3.8)

of the optimizationproblem. Choosingdifferent optimization criteria and/or constraints

f (w), different types of optimal beamformers will be obtained. Several classical types

of optimal beamformers are introduced below.

1. Multiple Sidelobe Canceller
The multiple sidelobe canceller (MSC) is perhaps the earliest statistically optimal

beamformer. It was proposed by Applebaum in 1966 in the form of a technical report

and formally published as a paper in the IEEE Transactions on Antenna Propagation

in 1976

[14]

. An MSC consists of a “main channel” and one or more “auxiliary channels”.

The main channel can be either a single high gain antenna or a data independent

beamformer. It has a highly directional response. When the main channel is pointed in

the desired signal direction, the interfering signals enter through the main channel

sidelobes. There is no desired signal in the auxiliary channels, while only interference

signals are received. The goal of the auxiliary channels is to cancel the main channel

interference component.
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2. Beamformer Using Reference Signal
If the desired signal yd(n) were known, then the weights could be chosen to minimize

the error between the beamformer output y(n) = wHx(n) and the reference signal as
depicted in Fig.10.3.1.

Sensor No.

...

w∗
1

w∗
2

w∗
M

∑

∑Weight coefficient
control

1
x1 (n)

2
x2 (n)

M
xM (n)

+

+
+

y (n)

−

Reference
signal

+

Fig. 10.3.1: Beamformer using reference signal

In practical applications, enough may be known about the desired signal to generate a

signal that closely represents it. This signal is called a reference signal. The beamformer

using reference signal was proposed by Widrow on 1967

[225]

.

3. Maximization of Signal-to-Noise Ratio
The criterion of the maximization of signal-to-noise ratio beamformer is to maxi-

mize the SNR wHRsw/(wHRnw). This SNR maximization problem is actually a gener-

alized Rayleigh quotient maximization problem, which is also equivalent to solving

the generalized eigenvalue problem Rsw = λ
max

Rnw.
The maximization of signal-to-noise ratio beamformer was proposed by Monzingo

and Miller in 1980

[157]

.

4. Linearly Constrained Minimum Variance Beamformer
In many applications, the desired signal may be of unknown strength, resulting in

the reference signal cannot being generated and preventing utilization of the reference

signal approach. Or because the covariance matrices Rs and Rn of signal and noise
cannot be estimated, the maximum SNR beamformer cannot be realized. In addition,

the desired signal may always be present in the auxiliary channels which makes the

MSC doesn’t work. These limitations can be overcome by applying linear constraints to

the beamformer vector of the linearly constrained minimum variance beamformer.
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The linearly constrained minimum variance beamformer was proposed by Frost on

1972

[81]

, which minimizes the variance of the output under the linear constraints and

can be formulated as

min

w
wHRxxw, (10.3.9)

subject to CHw = g, (10.3.10)

where the m × p constrain matrix C represents the constraints of the m-element array

on the p spatial signals, and the p × 1 vector g is reference vector.
Using the Lagrange multiplier method, it is easy to obtain the solution of the above

linear constrained minimum variance optimization problem as

w
opt

= R−1xxC(CHR−1xxC−1g), (10.3.11)

which is called the linear constrained minimum variance beamformer.

Table 10.3.1 lists and compares the parameter definitions, output representations,

optimization criterion, closed-form solutions, advantages and disadvantages of the

above four classical optimal beamformers.

Tab. 10.3.1: Classical optimal beamformers

Type MSC Reference Signal Max SNR LCMV

Definitions

xa - auxiliary data x-array data x = s + n- array data x-array data
ym - primary data yd - desired signal s - signal component C - constraint matrix
rma = E{y*mxa} rxd = E{xy*d} n - noise component g - reference vector
Ra = E{xaxHa} Rxx = E{xxH} Rs = E{ssH} Rxx = E{xxH}

Rn = E{nnH}
Output y = ym − wH

axa y = wHx y = wHx y = wHx

Criterion min
wa

E{|ym − wH
axa|2} min E{|y − yd|2} min

w
wHRsw
wHRnw

min
w
E{wHRxxw}
s.t. cHw = g

Optimal wa = R−1
a rma w = R−1

xx rxd R−1
n Rsw = λmaxw w = R−1

xxC(CHR−1
xxC)−1gWeights

Advantage
Direction of Maximization Flexible and

Simple desired signal of SNR general constraints
can be unkonwn

Disadvantages

Requires absence of Must know Rs Computation of
desired signal from Must generate and Rn, and perform constrained

auxiliary channels for reference signal generalized eigenvalue weight vector
weight determination decomposition for weights

According to the choice of the linear constraints, the minimum variance beamformer

has different applications. Several typical application examples are listed below.

Example 10.3.1 In multi-user detection for wireless communication, user 1 with

spreading code vector s
1
is constrained as wHs

1
= 1, at this point, C = s

1
and g = 1,

so the optimal detector for user 1 is

w
opt

=

R−1xx s1
sH
1

R−1xx s1
. (10.3.12)
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Example 10.3.2 When the constraint matrix

C = [a(θi −△θi), a(θi), a(θi +△θi)], g = [1, 1, 1]

T

, (10.3.13)

for the i-th spatial signal is chosen, the minimum variance beamformer can improve

the robustness of the estimation of the DOA θi and reduce the fluctuation of the DOA
estimation result caused by the slow moving of the i-th spatial signal.

Example 10.3.3 When a spatial signal is known to be in θ
0
direction and possibly

near θ
0
direction, if

C = [a(θ
0
), a′(θ

0
), · · · , a(k)(θ

0
)], g = [1, 0, · · · , 0]

T

, (10.3.14)

is chosen, then the minimum variance beamformer can spread the mainlobe aligned

with DOA θ
0
, where a(k) denotes the k-th order derivative of the steering vector a(θ)

with respect to the DOA θ.

In particular, when C = a(θ) and g = 1 are selected, the linearly constrained minimum

variance beamformer becomes

w
opt

=

R−1xxa(θ)
aH(θ)R−1xxa(θ)

, (10.3.15)

commonly called the minimum variance distortionless response (MVDR) beamformer,

which was proposed by Capon in 1969

[42]

.

The linearly constrained minimum variance beamformer is a generalization of the

MVDR beamformer from single linear constraint condition to multiple linear constraint

conditions.

In practical applications, beamformers are often required to be able to adjust in

real-time adaptively. For this reason, the adaptive implementation of beamformer is

discussed below.

10.3.2 Direct Implementation of Adaptive Beamforming

Assume that there are M omnidirectional sensors and xm(n) is the sampled output of

the m-th time-delayed sensor

xm(n) = s(n) + nm(n), (10.3.16)

where s(n) is the desired signal and nm(n) represents the totality of noise and interfer-
ence (including all other undesired signals) observed by them-th sensor. A beamformed

output signal y(n) can be formulated as the sum of the delayed and weighted outputs

of the M sensors, i.e.,

y(n) =
M∑︁

m=1

K∑︁

i=−K
am,ixm(n − τi), (10.3.17)
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where am,i represents the weight coefficients used for the m-th sensor signal xm(n − τi)
at delay τi. Each channel uses a filter (whose length is 2K + 1) to weight and adjust

their 2K + 1 delays and that the zero time reference is at the filter midpoint.

Let

ai = [a
1,i , a2,i , · · · , aM,i]

T

, (10.3.18)

x(n) = [x
1
(n), x

2
(n), · · · , xM(n)]T (10.3.19)

represent the i-th weight coefficient vector and sensor output vector of the M spatial

filters, respectively, then the output of the beamformer can be expressed in vector form

as

y(n) =
K∑︁

i=−K
aHi x(n − τi), (10.3.20)

where

x(n − τi) = s(n − τi)1 + n(n − τi). (10.3.21)

Note that 1 is an M-dimensional vector with all elements equal to 1, which is called

the summing vector. n(n) = [n
1
(n), n

2
(n), · · · , nM(n)]T represents the additive noise

(or interference) vector on the M sensors.

Prescribed gain and phase response for the desired signal is ensured by constrain-

ing the sum of channel weights at each delay point to be specific values. Let f (i) be the
sum for the set of spatial filter weight coefficients at delay i, that is,

aHi 1 = f (i). (10.3.22)

Substituting Eq. (10.3.21) into Eq. (10.3.20) and using Eq. (10.3.22), the output of the

spatial filter corresponding to the desired signal is

ys(n) =
K∑︁

i=−K
f (i)s(n − τi) +

K∑︁

i=−K
aHi n(n − τi). (10.3.23)

If ai is orthogonal to the noise or interference subspace span{n(n)}, the noise or
interference can be completely suppressed, that is, the second term of Eq. (10.3.23) is

zero. At this time, Eq. (10.3.23) is simplified as

ys(n) =
K∑︁

i=−K
f (i)s(n − τi). (10.3.24)

Eq. (10.3.24) shows that f (i) represent the impulse response of a FIR filter have length

2K +1. The problem now is : how to constrain the response f (i) of the FIR beamformer?

One commonly used constant is that of zero distortion in which

f (i) = δ(i) =
{︃

1, i = 0,

0, otherwise.

(10.3.25)



518 | 10 Array Signal Processing

Under this constraint, we have ys(n) = s(n), that is, the FIR filter is like an ideal

beamformer, which produces only one beam (directly pointed to the desired signal).

Given this, such an FIR filter is called FIR beamforming.

The zero distortion constraint Eq. (10.3.25) can be normalized as

f T1 = 1, (10.3.26)

where

f [f (−K), · · · , f (0), · · · , f (K)]T (10.3.27)

is the impulse response vector of the FIR beamformer.

The typical adaptive implementation of the FIR beamformer is

[96]

ai(k + 1) = ai(n) +△i(n), (10.3.28)

where i = −K, · · · , 0, · · · , K is the time delay and the correction term used is the Frost

linearly-constrained error correction method

[96]

, i.e.,

△i(n) = μky(n)[qx(n − i)1 − x(n − i)] − qa,i(n)1 +
1

M f (i)1, (10.3.29)

where

qx(n − i) =
1

M xT(n − i)1, (10.3.30)

qa,i(n) =
1

M aTi (n)1. (10.3.31)

The adaptive step size μ is a scalar which controls both the convergence rate and

tracking performance of the adaptive beamformer and it can be choosen as

μk =
α
P(n) , (10.3.32)

where P(n) is the total power of the sampled signal

P(n) =
M∑︁

m=1

K∑︁

i=−K
x2m(n − i). (10.3.33)

Convergence of the algorithm is ensured if 0 < α < 1.
Fig.10.3.2 illustrates the direct form implementation of the linearly constrained

adaptive beamforming

[96]

. In this figure, time-delay steering elements τ
1
, · · · , τM are

used to point the array in the direction of interest. Each coefficient (the tapped delay in

the figure) in the beamformer is updated by the adaptive algorithm.

10.3.3 Generlized Sidelobe Canceling Form of Adaptive Beamforming

The direct form implementation of linearly constrained adaptive beamforming directly

generates a beam pointing to the desired signal. The linearly constrained adaptive
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Sensor No.

...
...

τ1

τ2

τM

Tapped delay line

Tapped delay line

Tapped delay line

∑

Linearly-constrained
adaptive algorithm

1

2

M

x1 (n− τ1)

x2 (n− τ2)

xM (n− τM )

+
+

+

yo (n)

Fig. 10.3.2: Direct implementation of linearly-constrained adaptive beamforming

beamforming can also be implemented in an indirect form, which is called the general-

ized sidelobe canceling form, which was proposed by Griffiths and Jim in 1982

[96]

.

Fig.10.3.3 shows the schematic diagram of the generlized sidelobe canceling form

of adaptive beamforming.

Sensor No.

...
...

...
...

τ1

τ2

τM

w∗
c1

w∗
c2

w∗
cM

∑ ∑

∑

Tapped
delay line

Tapped delay line

Tapped delay line

Tapped delay line

W s

1
x1 (n)

2
x2 (n)

M
xM (n)

+
+

+

yc (n) ỹ (n)

+

x̃M (n)

x̃2 (n)

x̃1 (n)

+
+

+

ys (n)
−

y (n)

Fig. 10.3.3: Generlized sidelobe canceling form of linearly-constrained adaptive beamforming

The adaptive beamforming based on the generalized sidelobe canceling consists of

two distinct substructures which are shown as the upper and lower processing paths.

The upper is the fixed beamformer path and the lower is the sidelobe canceling path.
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(1) Fixed beamformer path

For the fixed beamformer, each element of the weight coefficient vector wc =

[wc1, wc2, · · · , wcM]T is a fixed constant which produce non-adaptive beamformed

signal

yc(n) = wT

cx(n) =
M∑︁

m=1
wcmxm(n − τm). (10.3.34)

Theweightswc of the fixed beamformer can be chosen so as to trade off the relationship

between array beamwidth and average sidelobe level

[76]

. One widely used method

employs Chebyshev polynomials to design the wc.

Without a priori knowledge of the desired signal, the weight coefficient wcm of the

fixed beamformer can be designed in the form of RAKE receiver.

wcm =

|xm(n)|2
|x
1
(n)|2 + · · · + |xM(n)|2

, m = 1, · · · ,M. (10.3.35)

Therefore, the non-adaptive beamforming signal is composed of a desired signal with

large energy and an interference signal.

In some applications, some a priori knowledge of the desired signal may be known.

For example, in a CDMAsystemofwireless communication, the characteristicwaveform

matrix C = [c
1
, · · · , cM] of each user is known to the base station. At this time, the

weight coefficient vector of the fixedbeamformer (calledmulti-user detection inwireless

communication systems) is determined by

wc = (CHC)−1CHg, (10.3.36)

where g is the gain vector, which has only one nonzero element 1. The position number

of the nonzero element 1 represents that the user of this number is the desired user.

A fixed beamformer can not only produce the main beam (mainlobe) pointing to the

desired signal, but also it will inevitably produce several sidelobes pointing to themain

interference source at the same time.

All weight coefficient wcm, m = 1, · · · ,M are assumed to be nonzero and are

normalized to have a sum of unity, i.e.,

wT

c1 = 1. (10.3.37)

The output of the filter

ỹc(n) =
K∑︁

i=−K
f (i)yc(n − i) (10.3.38)

is obtained by filtering the output of the fixed beamformer using the FIR filter with

coefficient f (i), where the coefficent f (i) of the filter f = [f (−K), · · · , f (0), · · · , f (K)]T

obeys the constraint condition f T1 = 1.

(2) Sidelobe canceling path

The sidelobe canceling path consists of a (M − 1) × M matrix preprocessor
¯W s

followed by a set of tapped-delay lines. Each tapped-delay line contains 2K +1 weights.
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The purpose of
¯W s is to block the desired signal s(n) from the lower path. Since s(n) is

common to each of the steered sensor outputs, the blocking is ensured if the rows of

¯W s sum up to zero. To see this clearly, the delayed observation vector is denoted as

x(n − τ) = [x
1
(n − τ

1
), · · · , xM(n − τM)]T. (10.3.39)

Using the matrix preprocessor
¯W s to preprocess x(n − τ), the output

x̃(n) = ¯W sx(n − τ) =

⎡
⎢⎢⎣

bT
1

.

.

.

bTM−1

⎤
⎥⎥⎦ x(n − τ) (10.3.40)

contains M − 1 components. Here, the sum of each row of the (M − 1) × M matrix

preprocessor
¯W s is zero, i.e.,

bTm1 = 0, ∀ m = 1, · · · ,M − 1. (10.3.41)

Since s(n) is common to eachof the steered sensor outputs, i.e., x(n−τ) = s(n)1+n(n−τ),
from Eqs. (10.3.40) and (10.3.41), we have

x̃(n) = ¯W sx(n − τ) =

⎡
⎢⎢⎣

bT
1

.

.

.

bTM−1

⎤
⎥⎥⎦ [s(n)1 + +n(n − τ)] =

⎡
⎢⎢⎣

bT
1

.

.

.

bTM−1

⎤
⎥⎥⎦ n(n − τ).

That is, the desired signal is blocked, leaving only the linearly mixed sidelobe signal.

The lower path of the sidelobe canceler ãi is a (M − 1) ×M vector

ãi = [ã
1,i , · · · , ãM−1,i]T, i = −K, · · · , K. (10.3.42)

This sidelobe canceler generates a scalar output as the sum of delayed and weighted

elements of x̃(n)

yA(n) =
K∑︁

i=−K
ãTi x̃(n − i). (10.3.43)

Note that, yA(n) only contains the interferences, i.e., sidelobes. In contrast, ỹc(n) con-
tains the desired signal (mainlobe) and interferences (sidelobes), and the difference

y(n) = ỹc(n) − ỹA(n) (10.3.44)

is used as the output of the beamformer based on the generalized sidelobe canceling

structure. In other words, the sidelobes are canceled, and the generalized sidelobe

canceler only outputs the mainlobe signal, which is equivalent to beamforming for the

desired signal.

The adaptive update algorithm of the sidelobe canceler is

ãi(k + 1) = ãi(n) + μy(n)x̃(n − i). (10.3.45)
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Eqs. (10.3.35), (10.3.37) and (10.3.41) constitute the adaptive algorithm of the generalized

sidelobe canceller in Reference [96].

The beamformer uses a weighted sum of the observation data from the sensor array

to form a scalar output signal. The weight coefficients determine the spatial filtering

characteristics of the beamformer. If the source signals are at different spatial locations,

the beamformer can separate these spatial source signals even if they have overlapping

frequency components. The statistically optimal beamformers optimize its response by

selecting the weight coefficients based on the statistics of the observation data. Now

that the data statistics are usually unknown, so statistically optimal beamformer is

usually implemented using adaptive FIR spatial filters.

10.4 Multiple Signal Classification (MUSIC)

As mentioned previously, array signal processing can be classified into two major

techniques: beamforming and DOA estimation. The representative method of DOA

estimation is high-resolution spatial spectrum estimation.

Power spectral density describes the distribution of signal power with frequency

and is a frequency domain representation of the signal. Since the main task of array

signal processing is to estimate signal spatial parameters (location parameters of the

source), it is of great importance to extend and promote the concept of power spectral

density to the spatial domain. This generalized power spectrum is often referred to as

the spatial spectrum. The spatial spectrum describes the distribution of the spatial

parameters of the signal.

10.4.1 Spatial Spectrum

Consider minimizing the average output energy of N snapshots, that is

minw
1

N

N∑︁

n=1
|y(n)|2 = minw

1

N

N∑︁

n=1
|wHx(n)|2. (10.4.1)

This criterion for designing the weight vector w is called the minimum output en-

ergy (MOE) criterion. Let

^Rx =
1

N

N∑︁

t=1
x(n)xH(n) (10.4.2)

be the sample autocovariance matrix of the signal vector x(n), then the MOE criterion
can be rewritten as

min

w
1

N

N∑︁

n=1
|y(n)|2 = min

w
wH

(︃
1

N

N∑︁

n=1
x(n)xH(n)

)︃
w = min

w
wH

^Rxw.
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When N → ∞, the above equation becomes

E

{︁
|y(n)|2

}︁
= lim

N→∞

1

N

N∑︁

n=1
|y(n)|2 = wHRxxw. (10.4.3)

Note that the signal vector observed by the array can be formulated as

x(n) = a (ωk) sk(n) +
p∑︁

i=1, i̸= k

a (ωi) si(n) + e(n), (10.4.4)

where the first term on the right side of the equal sign is the desired signal, while the

second term is the sumof other signals that is wished to be rejected (collectively referred

to as interference signals), and the third term is the additive noise term. Substituting

Eq. (10.4.4) into Eq. (10.4.3), it follows that

E

{︁
|y(n)|2

}︁
= E

{︁⃒⃒
sk(n)

⃒⃒
2

}︁ ⃒⃒
⃒wHa (ωk)

⃒⃒
⃒
2

+

p∑︁

i=1, i̸= k

E

{︁⃒⃒
si(n)

⃒⃒
2

}︁ ⃒⃒
⃒wHa (ωi)

⃒⃒
⃒
2

+ σ2|w|2

(10.4.5)

by assuming the additive noise e
1
(n), · · · , em(n) to have identical variance.

From Eq. (10.4.5), it is easy to see that if the weight vector w satisfies the constraint

condition

wHa (ωk) = aH (ωk)w = 1, (Beamforming condition) , (10.4.6)

and

wHa (ωi) = 0, ωi ̸= ωk , (Zero-point formation conditions ) , (10.4.7)

simultaneously, then the weight vector would only extract the desired signal, while

rejecting all other interference signals. For this case, Eq. (10.4.5) is simplified to

E

{︁
|y(n)|2

}︁
= E

{︁⃒⃒
sk(n)

⃒⃒
2

}︁
+ σ2|w|2. (10.4.8)

It is worth pointing out that the average output energy of the beamformer is still the

same as the above formula by only minimizing the output energy E

{︀
|y(n)|2

}︀
under

the constraints of beamforming conditions, that is, the zero-point forming conditions

can be established automatically. Therefore, the optimal beamformer design becomes

one that minimizes the output energy E

{︀
|y(n)|2

}︀
under constraint in Eq. (10.4.6).

Next, the Lagrange multiplier method is used to solve this optimization problem.

For this reason, the objective function

J(w) = wHRxxw + λ
[︁
1 − wHa (ωk)

]︁
(10.4.9)

is constructed according to Eqs. (10.4.3) and (10.4.6). From

∂J(w)
∂wH

= 0, we have Rxxw −
λa (ωk) = 0. Therefore, the optimal beamformer that minimizes the output energy is

obtained

w
opt

= λR−1xxa (ωk) . (10.4.10)
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Substituting this beamformer into the constraint condition in Eq. (10.4.6), it can be

seen that

λ = 1

aH (ωk)R−1xxa (ωk)
, (10.4.11)

because the Lagrange multiplier λ is a real number.

Substituting Eq. (10.4.11) into Eq. (10.4.10), we immediately get the optimal beam-

former that minimize the output energy

w
opt

=

R−1xxa (ωk)
aH (ωk)R−1xxa (ωk)

, (10.4.12)

which is just the minimum variance distortionless response (MVDR) beamformer pro-

posed by Capon in 1969

[42]

. The basic principle of MVDR is to minimize the power

contributed by any interference from the undesired DOA, while keeping the signal

power constant in the observation direction. Therefore, it may be regarded as a sharp

bandpass filter.

Eq. (10.4.12) shows that the design of the optimal beamformer for the k-th signal
source is determined by the estimation of the frequency ωk of that signal. In order to
determine the frequency of p signals ω

1
, · · · , ωp, Capon

[42]

defines "spatial spectrum"

as

P
Capon

(ω) = 1

aH(ω)R−1xxa(ω)
, (10.4.13)

and ω
1
, · · · , ωp corresponding to the peaks are set as the frequency of p signals.

The spatial spectrumdefined by Eq. (10.4.13) is customarily called the Capon spatial

spectrum. Since the optimal filter used by Capon’s spatial spectrum is similar to the

form of maximum likelihood estimation for estimating the amplitude of a sinusoidal

wave with known frequency in Gaussian random noise, Eq. (10.4.13) is oftenmistakenly

called “maximum likelihood spectrum estimation”. Now, in many documents, this

popular name is still used.

Once the frequencies ω
1
, · · · , ωp of p sources are estimated using the spatial

spectrum, Eq. (10.2.1), namely, ωi = 2π dλ sin θi can be used to find the DOA θi , i =
1, · · · , p of each source in the case of an uniform linear array. In other words, the

estimation of the DOA is actually equivalent to the estimation of the spatial spectrum.

10.4.2 Signal Subspace and Noise Subspace

In order to estimate the spatial spectrum, consider the array observation model

x(n) = A(ω)s(n) + e(n) =
p∑︁

i=1
a (ωi) si(n) + e(n), (10.4.14)

where A(ω) = [a (ω1)
, · · · , a (ωp)]. In the case of uniform linear arrays, the steering

vector is

a(ω) =
[︁
1, e

jω
, · · · , e

jω(M−1)
]︁
T

. (10.4.15)
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For the array observation model, the following assumptions are usually made.

Assumption 1 For different values of ωi, the vectors a (ωi) are linearly independent of
each other;

Assumption 2 Each element of the additive noise vector e(t) is a complex-valued white

noise with zero mean and variance σ2, and is independent of each other;
Assumption 3 The matrix P = E

{︁
s(n)sH(n)

}︁
is nonsingular, that is, rank(P) = p.

For uniform linear arrays, Assumption 1 is automatically satisfied. Assumption 2means

that the additive white noise vector e(n) satisfies the following conditions

E{e(n)} = 0, E

{︁
e(n)eH(n)

}︁
= σ2I, E

{︁
e(n)eT(n)

}︁
= O, (10.4.16)

where 0 and O represent zero vector and zero matrix respectively. If each signal is

transmitted independently, Assumption 3 is automatically satisfied. Therefore, the

above three assumptions are just general assumptions, which are easily met in practice.

Under the assumption of 1 ∼ 3, it is easy to get from Eq. (10.4.14) that

Rxx def

= E

{︁
x(n)xH(n)

}︁

= A(ω)E
{︁
s(n)sH(n)

}︁
AH

(ω) + σ2I

= APAH

+ σ2I, (10.4.17)

where A = A(ω). It can be seen that Rxx is an Hermitian symmetric matrix. Let its

eigenvalue decomposition be

Rxx = UΣUH

, (10.4.18)

where Σ = diag

(︀
σ2
1
, · · · , σ2M

)︀
.

Since A has full rank, so rank

(︁
APAH

)︁
= rank(P) = p. Assuming that the number

of signal sources p is less than that of the sensorsM, that is, p < M. Then, according to

UHRxxU = Σ, it can be derived that

UHRxxU = UHAPAHU + σ2UHU

= diag

(︁
α2
1
, · · · , α2p , 0, · · · , 0

)︁
+ σ2I = Σ, (10.4.19)

where α2
1
, · · · , α2p is the eigenvalue of the autocovariance matrix APAH

of the observa-

tion signal Ax(n) without additive noise.
Eq. (10.4.19) shows that the eigenvalue of the autocovariance matrix Rxx is

λi = σ2i =
{︃
α2i + σ2, i = 1, · · · , p,
σ2, i = p + 1, · · · ,M.

(10.4.20)

In other words, when there is additive observation white noise, the eigenvalues of the

autocovariance matrix of the observation data vector x(n) consist of two parts: the first
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p eigenvalues are equal to the sum of α2i and the additive white noise variance σ2, and
the following m − p eigenvalues are all equal to the variance of additive white noise.

Obviously, when the signal-to-noise ratio is high enough to make α2i significantly
larger than the additive white noise variance σ2, it is easy to differentiate the first p
large eigenvalues α2i + σ2 and the following m − p small eigenvalues σ2 of the matrix

Rxx. These p principal eigenvalues are called signal eigenvalues, and the remaining

m − p secondary eigenvalues are called noise eigenvalues. According to the signal

eigenvalues and noise eigenvalues, the column vector of the eigenvalue matrix U can

be divided into two parts, namely

U = [S, G] , (10.4.21)

where

S = [s1, · · · , sp] = [u1, · · · , up] , (10.4.22)

G =

[︀
g
1
, · · · , gm−p

]︀
=

[︀
up+1, · · · , um

]︀
(10.4.23)

are composed of signal eigenvectors and noise eigenvectors.

Note that ⟨S, S⟩ = SHS = I, so the projection matrix

PS
def

= S⟨S, S⟩−1SH = SSH, (10.4.24)

Pn def

= G⟨G, G⟩−1GH

= GGH

(10.4.25)

respectively represent the projection operator of the signal subspace and the noise

subspace, and there are

Pn = GGH

= I − SSH = I − Ps . (10.4.26)

10.4.3 MUSIC Algorithm

Multiple signals can be classified using the concept of subspace.

Since Rxx = APAH

+ σ2I, and RxxG = APAHG + σ2G, there is

RxxG =

[︁
S, G

]︁
Σ
[︃
SH

GH

]︃
G = [S;G]Σ

[︃
O
I

]︃
= σ2G. (10.4.27)

Using the result of Eq. (10.4.27), we immediately get

APAHG = O. (10.4.28)

Then there is

GHAPAHG = O. (10.4.29)
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As is known, tHQt = 0 holds if and only if t = 0, so the sufficient and necessary

condition for Eq. (10.4.29) to hold is

GHA = O. (10.4.30)

Substituting A = [a (ω1)
, · · · , a (ωp)] into Eq. (10.4.30), it yields that

GHa (ωi) = 0, i = 1, · · · , p, (10.4.31)

or in scalar form that

|GHa(ωi)|22 = aH(ωi)GGHa(ωi) = 0, i = 1, · · · , p, (10.4.32)

which is named as null spectrum. Obviously, when ω ̸ = ω
1
, · · · , ωp, the obtained

spectrum is nonzero spectrum due to aH(ω)GGHa(ω) ̸= 0. In other words, the spatial

parameters ω
1
, · · · , ωp satisfying the null spectrum are the spatial frequency estima-

tions of the p sources.
In practical applications, the null spectrum definition in Eq. (10.4.32) is often

rewritten as a function similar to the power spectrum

P
MUSIC

(ω) = aH(ω)a(ω)
|aH(ω)G|2

2

=

aH(ω)a(ω)
aH(ω)GGHa(ω)

. (10.4.33)

This is formally similar to the Capon spatial spectrum defined in Eq. (10.4.13), with the

difference that the covariance matrix Rxx of the Capon spatial spectrum is replaced by

the noise subspace GGH

.

Eq. (10.4.33) take the ω values ω
1
, · · · , ωp of the peaks to give the frequencies of

the p signal sources, so that the DOA θ
1
, · · · , θp can be obtained from Eq. (10.2.1).

Since the spatial spectrum defined by Eq. (10.4.33) can distinguish (i.e., classify)

multiple spatial signals, it is called multiple signal classification (MUSIC) spatial spec-

trum, first proposedbySchmidt

[192]

, BienvenuandKopp

[27]

independently at an academic

conferences in 1979. Later, Schmidt republished his paper in the IEEE Transactions on

Antenna Propagation in 1986

[191]

. It is worth pointing out that Eq. (10.4.31) is the basic

formula of the MUSIC spatial spectrum.

The separation of mixed multiple signals using MUSIC spatial spectrum is called

multiple signal classification method, or MUSIC method for short. As will be seen later,

various extensions of the MUSIC method are developed based on Eq. (10.4.31).

The MUSIC spatial spectrum estimation method has become a representative topic

of signal processing and has been used extensively. Since the spatial spectrum is

defined by the noise subspace GGH

, the MUSIC method is a noise subspace method.

In practical applications, ω is usually divided into hundreds of equally spaced

bins to get

ωi = 2πi∆f . (10.4.34)

For example, take ∆f = 0.5

500

= 0.001, and then substitute each value of ωi into the MU-
SIC spatial spectrum definition in Eq. (10.4.33) to find all the value of ω corresponding
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to the peak value. As a consequence, the MUSIC algorithm needs to perform a global

search on the frequency axis to get those p peaks, and thus the amount of calculation

is relatively large.

In order to improve the performance of the MUSIC algorithm, several variants have

been proposed. Readers interested in them may refer to the literature [194]. In the

following, one of them will be introduced, and its basis is the maximum likelihood

method. Specifically, this modified MUSIC algorithm maximizes the likelihood value of

the variable

ϵi = aH(ω)g i , i = 1, · · · ,m − p. (10.4.35)

Note that the basicMUSIC algorithm is tominimize

∑︀m−p
i=1 |ϵi|2. SharmanandDurrani

[194]

proved that the asymptotic (large sample N) estimator of Eq. (10.4.35) with the largest

likelihood is maximized by the following function

P
MUSIC

(ω) = aH(ω) ^Ua(ω)
aH(ω)GGHa(ω) , (10.4.36)

where

^U = σ2
p∑︁

k=1

λk(︀
σ2 − λk

)︀
2

ukuHk . (10.4.37)

Algorithm 10.4.1. Improved MUSIC algorithm
[194]

Step 1 Compute the eigenvalue decomposition of the sample covariance matrix Rxx, and
get its principal eigenvalues λ

1
, · · · , λp and secondary eigenvalues σ2, and store

the principal eigenvector u
1
, · · · , up.

Step 2 Use Eq. (10.4.36) to calculate the MUSIC spectrum PMUSIC (ωi), where ωi = (i −
1)∆ω, and the step size ∆ω can be taken as 2π · 0.001, for instance.

Step 3 Search for the p peaks of PMUSIC(ω), to give the estimation of the MUSIC spatial
parameter ω

1
, · · · , ωp, and then the estimation of the DOA θ1, · · · , θp from ωi =

2π dλ sin θi.

Stoica and Nehorai

[198]

analyzed the estimation performance of the MUSIC algorithm

and proved the following conclusions:

(1) The estimation error

(︀
ûi − ui

)︀
of the eigenvector ui follows an asymptotic (for large

samples N) joint Gaussian distribution with its mean to be a vector of all zero;

(2) The estimation error

(︀
ω̂i − ωi

)︀
also follows an asymptotic joint Gaussian distribu-

tion with its mean to be a vector of all zero;

(3) Assume that the function r(ω) = a(ω) ^Ua(ω) satisfies the constrained condition
r (ωi) ̸= 0, i = 1, · · · , p, then the maximization of the MUSIC spectrum P

MUSIC
(ω)

defined by Eq. (10.4.36) and Eq. (10.4.33) ω̂
1
, · · · , ω̂p follows the same asymptotic

distribution.
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10.5 Extensions of MUSIC Algorithm

The previous section focuses on the basicMUSICmethod of spatial spectrumestimation.

In some practical applications, it is necessary to make important extensions from

the basic MUSIC method to improve the computational effectiveness or estimation

performance of the MUSIC method. These applications include:

(1) Some two sources may be coherent;

(2) Real-time applications require to avoid searching for spatial spectrum peaks;

(3) The resolution of the MUSIC method needs to be further improved.

This section will focus on these important applications and introduce several ex-

tensions of the MUSIC method: decoherent MUSIC method, root-MUSIC method,

beamspace MUSIC (BS-MUSIC) method, and so on.

10.5.1 Decoherent MUSIC Algorithm

Due to the influence of multipath transmission or artificial interference, the signals

received by the array from different directions are sometimes coherent, which will lead

to the source covariance matrix P to be rank-dificient.

As a simplest example, consider using two array elements to receive two spatial

signals

x(t) = As(t) + n(t) = s
1
(t)a (ω1)

+ s
2
(t)a (ω2)

+ n(t), (10.5.1)

where A = [a (θ1) , a (θ2)]. Consider two narrowband spatial signals s1(t) = s1ejω1
t
and

s
2
(t) = s

2
e

jω
2
t
. Therefore, the array correlation matrix Rx = E

{︁
x(t)xH(t)

}︁
is

Rx = AE
[︃
s
1
(t)s*

1
(t) s

1
(t)s*

2
(t)

s
2
(t)s*

1
(t) s

2
(t)s*

2
(t).

]︃
AH

= A
[︃

σ2
1

ρ
12
σ
1
σ*
2

ρ*
12
σ
2
σ*
1

σ2
2

]︃
AH

. (10.5.2)

If the two spatial signals are coherent, then |ρ
12
| = 1, so that the determinant

⃒⃒
⃒⃒
⃒

σ2
1

ρ
12
σ
1
σ*
2

ρ*
12
σ
2
σ*
1

σ2
2

⃒⃒
⃒⃒
⃒ = 0.

That is, the rank of the 2 × 2 array correlation matrix Rx is 1, which suggests its rank
dificiency. At this time, the array correlation matrix Rx has only one eigenvalue, which
is neither related to the DOA θ

1
of signal s

1
(t) or the DOA θ

2
of signal s

2
(t). In order to

see this fact more clearly, let the coherent signal s
2
(t) = C · s

1
(t), where C is a nonzero

complex constant. Then, the array signal vector would be reduced to

x(t) = s
1
(t) [a (θ1) + Ca (θ2)] = s1(t)b(θ),

where b(θ) = a (θ1) + Ca (θ2) is the equivalent steering vector of s1(t) in the coherent
case. Obviously, the DOA θ would be neither θ

1
nor θ

2
. In other words, if only one uni-
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form linear array is used to observe two coherent spatial signals, it would be impossible

to estimate the DOA of either spatial signal.

If twoof the p spatial signals are coherent, then the rankof the p×p array correlation
matrix Rx is equal to p − 1, which is rank-deficient, resulting in that the dimension of

the signal subspace is also p − 1. The MUSIC method will not be able to estimate the

DOA of either of the two coherent spatial signals anymore.

In order to solve the rank deficiency of the array correlation matrix in the presence

of coherent signals, it is necessary to introduce additionally a nonlinear correlation

array vector. For uniform linear arrays, taking the "reverse array vector" as such an

vector is an effective option.

Let J be the L × L permutation matrix, that is, all the elements on the anti-diagonal

of J are 1, while all the other elements are equal to 0, then for an uniform linear array,

there is Ja*(θ) = e

−j(L−1)ϕa(θ). Then, the corresponding array covariance matrix can

be derived as

R
B
= JR*xJ = AΦ−(L−1)PΦ−(L−1)AH

+ σ2I, (10.5.3)

where Φ is a diagonal matrix, and the diagonal elements are e

jmϕ
(m = 1, · · · ,M).

Find the average of the (forward) array covariance matrix Rxx and the reverse array
covariance matrix R

B
and we can get the forward and reverse array covariance matrix

R
FB

=

1

2

(Rxx + RB
) =

1

2

(︁
Rxx + JR*xJ

)︁
= A ˜PAH

+ σ2I, (10.5.4)

where the new source covariance matrix
˜P =

1

2

(︁
P + Φ−(L−1)PΦ−(L−1)

)︁
usually has full

rank.

Any algorithm based on the covariance matrix can be modified into the forward

and reverse form like the algorithm mentioned above by simply replacing
^Rx with

^R
FB
. The transformation

^Rx → ^R
FB

is also used to improve the estimated variance in

noncoherent situations.

Spatial smoothing technique is another effective method to deal with coherent

or highly correlated signals. The basic idea is to divide the N element uniform linear

array into L = N −M + 1 overlapping subarrays, where each subarray is composed of

M array elements. Figure 10.5.1 shows an example of a 7-element array divided into

three subarrays.

In the case of an uniform linear array, since each subarray with M array elements

have the same array manifold, the steering vector of each subarray can be denoted as

aM(θ) =
[︁
1, e

jπθ
, · · · , e

jπ(M−1)θ
]︁
T

. (10.5.5)

Therefore, the observation signal vector of the first subarray is

x
1
(t) = AMs(t) + n1(t), (10.5.6)

and the observation signal vector of the second subarray is

x
2
(t) = AMDs(t) + n2(t), (10.5.7)
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x

y

Subarray 1

Subarray 2

Subarray 3

Fig. 10.5.1: Uniform linear array divided into three subarrays

where D = diag

(︁
e

jπ sin θ
1

, · · · , e

jπθ
P

)︁
is a diagonal matrix of p × p, and n

2
(t) is the

additive white noise of the second subarray. Similarly, the observation signal vector of

the L-th subarray is
xL(t) = AMDL−1s(t) + nL(t). (10.5.8)

If the average of the signal vectors of the L subarrays is taken as the spatial smoothing

array signal vector

x(t) = 1√
L

L∑︁

i=1
xi(t), (10.5.9)

then the spatial smoothing array correlation matrix can be derived as

Rx = E

{︁
x(t)xH(t)

}︁
= AM

[︃
1

L

L∑︁

i=1
D(i−1)RsD−(i−1)

]︃
AH

M + σ2n , (10.5.10)

or simply as

Rx = AMRsAH

M , (10.5.11)

where

Rs =
1

L

L∑︁

i=1
D(i−1)RsD−(i−1) (10.5.12)

represents the result of spatial smoothing of the source correlation matrix Rs =

E

{︁
s(t)sH(t)

}︁
through L subarrays, which is also named as the spatial smoothing

source correlation matrix.

In the case that the two sources in p spatial information sources are coherent,

although the rank of the p × p source correlation matrix Rs is equal to p − 1, namely

the rank is deficient, the rank of the p × p spatial smoothing source correlation matrix

Rs is equal to p, which is a full-rank matrix.



532 | 10 Array Signal Processing

Since the rank of the spatial smoothing source correlation matrix Rs is equal to p, as
long as the DOA of the p spatial signals is different, then the rank of the M ×M spatial

smoothing array correlation matrix Rx is the same as the rank of Rs, which is also

equal to p.
Let the eigenvalue decomposition of the correlation matrix of the M × M spatial

smoothing array be

Rx = UΣUH

, (10.5.13)

where the first p of the M eigenvalues of the eigenvalue matrix Σ are large eigenvalues,

corresponding to p spatial signals; the remaining M − p small eigenvalues are the

corresponding variance of the array observation noise. The eigenvectors corresponding

to these small eigenvalues form the spatial smoothing noise subspace
¯G ¯GH

, where

G =

[︀
up+1, · · · , uM

]︀
. (10.5.14)

Therefore, we only need to replace the original N elements steering vector a(θ) =[︁
1, e

jπθ
, · · · , e

jπ(N−1)θ
]︁
T

in the MUSIC spatial spectrum with the M element subarray

steering vector aM(θ) =
[︁
1, e

jπθ
, · · · , e

jπ(M−1)θ
]︁
T

, and replace the noise subspace with

¯G ¯GH, then the basic MUSIC method can be extended to the decoherent MUSIC method,

and its spatial spectrum is

P
DECMUSIC

(θ) = aHM(θ)aM(θ)
aHM(θ)GG

HaM(θ)
. (10.5.15)

The disadvantage of spatial smoothing is that the effective aperture of the array is

reduced because the subarrays are smaller than the original array. The more subarrays

there are, the smaller the effective aperture of the array. Generally, it is divided into

two subarrays. However, despite this aperture loss, the spatial smoothing transform

alleviates the limitations of all subspace estimation techniques and is able to preserve

the computational validity of the one-dimensional spectral search.

10.5.2 Root-MUSIC Algorithm

The root-MUSIC method is a polynomial root finding form of the MUSIC method, pro-

posed by Barabell

[17]

.

The peaks of the basic MUSIC spatial spectrum is equivalent to aH(ω)Un = 0T or
aH(ω)uj = 0, j = p + 1, · · · ,M, where up+1, · · · , uM are the secondary eigenvectors of

the array sample covariance matrix
^Rx.

If let p(z) = a(ω)
⃒⃒
z=ejω , then we have

p(z) =
[︁
1, z, · · · , zM−1

]︁
T

. (10.5.16)
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The vector inner product uHi p(z) gives a polynomial representation

p(z) = uHi p(z) = u*1,j + u*2,jz + · · · + u*M,jzM−1, (10.5.17)

where ui,j is the (i, j) element of the M × (M − p) eigenvector matrix Un. Therefore, the
equation aH(ω)uj = 0 or uHj a(ω) = 0, j = p + 1, · · · ,M for the basic MUSIC spatial

spectrum can be equivalently expressed as

pi(z) = uHj p(z) = 0, j = p + 1, · · · ,M. (10.5.18)

The above equation can be combined together as UH

n p(z) = 0 or

⃒⃒
⃒UH

n p(z)
⃒⃒
⃒
2

2

= 0, and

that is,

pH(z)UnUH

n p(z) = 0, z = e

jω
1

, · · · , e

jωp
. (10.5.19)

In other words, as long as the roots zi of the polynomial pH(z)UnUH

n p(z), which should
be on the unit circle, were found, we can get the spatial parameters ω

1
, · · · , ωp imme-

diately. This is the basic idea of the root-MUSIC.

However, the Eq. (10.5.19) is not a polynomial of z, because it also contains the
power term of z*. Since we are only interested in the value of z on the unit circle, we
can use pT

(︀
z−1
)︀
instead of pH(z) which gives the root-MUSIC polynomial

p(z) = zM−1pT
(︁
z−1
)︁
^Un ^U

H

n p(z). (10.5.20)

Now, p(z) is a polynomial of order 2(M −1), and its roots are several mirror-image pairs

with respect to the unit circle. Among them, the phase of the p roots ẑ
1
, ẑ

2
, · · · , ẑp

with the largest amplitude provides the DOA estimation, and there is

^θi = arccos

[︂
1

kd arg

(︀
ẑm
)︀]︂

, i = 1, · · · , p. (10.5.21)

It has been proved

[198]

that MUSIC and root-MUSIC have the same asymptotic perfor-

mance, but for small samples the performance of the root-MUSICmethod is significantly

better than that of MUSIC.

10.5.3 Minimum Norm Algorithm

The minimum norm method is suitable for uniform linear arrays, and its basic idea is

to search for the peak of the spatial spectrum

P
MN

(ω) = aH(ω)a(ω)⃒⃒
aH(ω)w

⃒⃒
2

(10.5.22)

to estimate the DOA

[78]

. In this formula, w is the array weight vector, which belongs to

the noise subspace and has the smallest norm min |w|
2
.
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In addition to Eq. (10.4.31), i.e., aH(ω)G = 0

T

, the basic formula of MUSIC method can

also be expressed by the projection formula.

With regard to the projection of the steering vector on the subspace spanned by

the array element observation vector, there are the following basic facts:

(1) Only when the spatial frequency is ω ∈ {ω
1
, · · · , ωp}, the projection of the steer-

ing vector a(ω) on the signal subspace SSH is the steering vector itself, while the

projection on the noise space GGH

= I − SSH should be equal to zero vector.

(2) When the spatial frequency is not equal to the spatial frequency of any signal

source, the projection of the steering vector a(ω) on the signal subspace SSH

should be equal to zero vector, and the projection on the noise space GGH

is equal

to the steering vector itself.

Obviously, these basic facts described above can be expressed as

GGHa(ω) =
{︃
0, ω = ω

1
, · · · , ωp

a(ω), else,

, (10.5.23)

or

aH(ω)GGH

=

{︃
0T, ω = ω

1
, · · · , ωp

aH(ω), else .

. (10.5.24)

Note that for an uniform linear array with M array elements, the steering vector is

a(ω) =
[︁
1, e

−jω
, · · · , e

−j(M−1)ω
]︁
T

, so aH(ω)e
1
= 1, where e

1
is a basis vector with the

first element to be 1 and all other elements to be zero.

Therefore, Eq. (10.5.24) can be rewritten in a scalar form as

aH(ω)GGHe
1
=

{︃
0, ω = ω

1
, · · · , ωp ,

1, else.

(10.5.25)

The corresponding spatial spectrum formulation is

P
MN

(ω) = aH(ω)a(ω)⃒⃒
⃒aH(ω)GGHe

1

⃒⃒
⃒
2

, (10.5.26)

which is equivalent to taking

w = GGHe
1

(10.5.27)

as the array weight vector in Eq. (10.5.22). The spatial spectrum P
MN

(ω) defined by

Eq. (10.5.26) is called the minimum norm spatial spectrum.

Just as the basic MUSIC method requires one-dimensional search, the minimum

norm method also needs to search for spectral peaks. Similarly, there is also a root-

finding minimum norm method.

The minimum norm method has the following properties

[122, 91]

:

(1) Deviation: smaller than the basic MUSIC method;

(2) Resolution: higher than the basic MUSIC method.
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10.5.4 First Principal Vector MUSIC Algorithm

The basic MUSIC method, the decoherent MUSIC method, as well as the root-MUSIC

method introduced above all estimate the spatial spectrum based on the observation

data of M elements directly, and is collectively referred to as the element space (ES)

MUSIC method, abbreviated as ES-MUSIC method.

There is another important extension of the ES-MUSIC method, which can also

improve the spatial spectrum estimation resolution of the MUSIC method. The method,

which was proposed by Buckley and Xu

[37]

in 1990, is called the first principal vector

(FIrst priNcipal vEctor, FINE) method.

The core idea of the FINE method is to use the signal covariance matrix. For the

array model x(t) = As(t) + n(t), the array covariance matrix is

Rxx = E

{︁
x(t)xH(t)

}︁
= Rs + σ2nI = APsAH

, (10.5.28)

where Rs is the signal covariance matrix, which represents the covariance matrix of

the signal arriving at the array through channel transmission, and σ2n represents the
variance of the additive noise on each array element. Note that the signal covariance

matrix Rs and the source covariance matrix Ps = E

{︁
s(t)sH(t)

}︁
are different concepts.

Let the eigenvalue decomposition of the sample covariance matrix

^Rx =
1

N

N∑︁

t=1
x(t)xH(t),

be

^Rx =
M∑︁

i=1
λiuiuHi , (10.5.29)

and the M × (Mp) matrix consisting of the eigenvectors corresponding to the smaller

eigenvalues λp+1 ≈ · · · ≈ λM = σ̂2n be

G =

[︀
up+1, · · · , uM

]︀
, (10.5.30)

then the basic MUSIC spatial spectrum is

P
MUSIC

(ω) = aH(ω)a(ω)⃒⃒
aH(ω)G

⃒⃒
2

2

, (10.5.31)

and the eigenvalue decomposition of the sample signal covariance matrix is

^Rs = ^Rx − σ̂2nI =
M∑︁

i=1
ηivivHi . (10.5.32)

Assume that the K principal eigenvectors of the sample signal covariance matrix form

a M × K matrix

V = [v1, · · · , vK] . (10.5.33)
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Using the eigenvectors of the sample covariancematrix Rx to formM×(M−p) secondary
eigenvector matrix G, if the sample signal covariance matrix Rs is known, then its

principal eigenvectors can be used to form the M × K source principal eigenvector

matrix V .
Furthermore, from the singular value decomposition of the K × (M − p) matrix

product of VHG
VHG = YΣZH, (10.5.34)

we can get the (M−p)×(M−p) right singular vectormatrix Z and then get theM×(M−p)
matrix T as

T = GZ =

[︀
t
FINE

, t
2
, · · · , tM−p

]︀
, (10.5.35)

in which the first column vector t
FINE

is named as the first principal vector of matrix

T, and the first several column vectors are called the primary principal vectors of T,
denoted as T

FINES
.

The M × (Mp) matrix T = GZ has an important property: the matrix is located in

the noise space GGH

of the array observation vector x(t), because the projection of the
matrix T to the noise space is equal to the matrix itself, that is

GGHT = GGHGZ = GZ = T . (10.5.36)

Furthermore, multiply both sides of aH(ω)G = 0

T

of the basic MUSIC method with the

nonsingular matrix Z, it can be derived that

aH(ω)GZ = aH(ω)T = 0T, ω = ω
1
, · · · , ωp . (10.5.37)

Substituting Eq. (10.5.36) into Eq. (10.5.37) yields

aH(ω)T = aH(ω)GGHT = 0T, ω = ω
1
, · · · , ωp . (10.5.38)

This leads to an important null spectrum formula

⃒⃒
⃒aH(ω)GGHt

FINE

⃒⃒
⃒
2

= 0, ω = ω
1
, · · · , ωp , (10.5.39)

or ⃒⃒
⃒aH(ω)GGHT

FINES

⃒⃒
⃒
2

2

= 0, ω = ω
1
, · · · , ωp . (10.5.40)

The corresponding first principal vector (FINE) spatial spectrum

[37]

is

P
FINE

(ω) = aH(ω)a(ω)⃒⃒
⃒aH(ω)GGHT

FINE

⃒⃒
⃒
2

, (10.5.41)

and the multi-principal vector spatial spectrum is

P
Fines

(ω) = aH(ω)a(ω)⃒⃒
aH(ω)GGHT

FINES

⃒⃒
2

2

. (10.5.42)
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Compared with the minimum norm spatial spectrum P
MN

(ω) defined by Eq. (10.5.26),
the FINE spatial spectrum P

FINE
(ω) is just to replace the basic vector e

1
in Eq. (10.5.26)

with the first principal vector t
FINE

.

Literature [37] proved that the spatial spectral estimation resolution of the MUSIC

method can be enhanced by using the first principal eigenvector of the covariance

matrix.

The FINE method has the following properties

[91, 230]

.

Deviation: less than the deviation of the MUSIC method;

Variance: smaller than the minimum norm method;

Resolution: better than the resolution of MUSIC and minimum norm method;

Advantages: good performance when the signal-to-noise ratio is low.

The key of the FINE spatial spectrum method is the estimation of the signal covari-

ance matrix Rs to obtain the source principal eigenvector matrix V .

10.6 Beamspace MUSIC Algorithm

Different from theES-MUSICmethod, theMUSICmethodnot only uses the array element

observation data, but also uses the spatial beam output, which can be named as the

beamspace MUSIC method, and abbreviated as the BS-MUSIC method.

10.6.1 BS-MUSIC Algorithm

Consider the array observation model

x(n) = As(n) + e(n) =
p∑︁

i=1
a (ωi) si(n) + e(n), (10.6.1)

where the array observation vector is x(n) =
[︀
x
1
(n), · · · , xM(n)

]︀
T

, array responsematrix

is A = [a (ω1)
, · · · , a (ωp)], and the steering vector is a(ω) =

[︁
1, e

jω
, · · · , e

jω(M−1)
]︁
T

,

and the additive white Gaussian noise e
1
(n), · · · , eM(n) has the same variance σ2e .

The covariance matrix of the array observation vector is

Rxx = E

{︁
x(n)xH(n)

}︁
= APAH

+ σ2e I. (10.6.2)

where P = E

{︁
s(n)sH(n)

}︁
is nonsingular.

The discrete space Fourier transform (DSFT) of M array element observation data

xm(n),m = 1, · · · ,M is defined as

[197]

X(u; n) =
M−1∑︁

m=0
xm(n)e−jmπu . (10.6.3)
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The relationship between the space parameter u and the wave arrival direction angle
θ is u = sin θ. In the above formula, −1 ⩽ u ⩽ 1 corresponds to the angle interval

−90

∘ ⩽ θ ⩽ 90

∘
, and this area is called the visible region of the array.

Discrete space Fourier transform can be calculated by discrete Fourier trans-

form. It should be noted that the M × 1 data vector of the n snapshot is x(n) =[︀
x
1
(n), · · · , xM(n)

]︀
T

, and M point discrete space Fourier transform will give the M
equally spaced samples in discrete space Fourier transform with the space parameter

interval 0 ⩽ u ⩽ 2.

Define M × 1 discrete Fourier transform beamforming weight vector be

vM(u) =
[︁
1, e

jπu
, · · · , e

j (M−1)πu
]︁
T

. (10.6.4)

It has a Vandermonde structure. Thus, the linear transformation

X(u; n) = vHM(u)x(n) (10.6.5)

gives the discrete space Fourier transform of the n snapshot in the space parameter u.
Split the space parameter 0 ⩽ u ⩽ 2 intoM equal parts by utilizing equal intervals

∆u = 2/M, and define the M × B beam forming matrix as

W =

1√
M

[︂
vM(0), vM

(︂
2

M

)︂
, · · · , vM

(︂
(B − 1) 2M

)︂]︂
(10.6.6)

=

1√
M

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

1 e

j2π/M
· · · e

j2π(B−1)/M

.

.

.

.

.

.

.

.

.

.

.

.

1 e

j2π(M−1)/M
· · · e

j2π(M−1)(B−1)/M

⎤
⎥⎥⎥⎥⎦

(10.6.7)

=

1√
M

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

1 w · · · wB−1
.

.

.

.

.

.

.

.

.

.

.

.

1 wM−1 · · · w(M−1)(B−1)

⎤
⎥⎥⎥⎥⎦
w=e2π/M

, (10.6.8)

which has the structure of the Fourier matrix, and is called the beamspace Fourier

matrix. According to the geometric progression summation formula a
1
+ a

1
q + · · ·

+a
1
qn = a

1(1−qn)
1−q , 1 + w + · · · + wM−1 = 0. With this result, it is easy to verify

WHW = I. (10.6.9)

Then, using the beamforming matrixW to perform linear transformation on the M × 1
observation data vector x(n) , the B × 1 beamspace snapshot vector can be derived as

x̃(n) =

⎡
⎢⎢⎢⎢⎣

X(0; n)
X
(︀
2

M ; n
)︀

.

.

.

X
(︀
(B − 1) 2M

)︀

⎤
⎥⎥⎥⎥⎦
= WHx(n) = WHAs(n) +WHe(n)

= Bs(n) +WHe(n), (10.6.10)
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, · · · , b (ωB)]
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is the beamspace steering vector matrix, and

b(ω) = WHa(ω). In other words, the beamspace snapshot vector x̃(n) is the B point
discrete space Fourier transform of the array element space snapshot vector x(n).

Consider the covariance matrix of the B × 1 beamspace snapshot vector (referred

as the beam space covariance matrix)

Rx̄x̄ = E

{︁
WHx(n)xH(n)W

}︁
= WHAPAHW + σ2e I. (10.6.11)

Let the eigenvalue decomposition of the beamspace sample covariance matrix be

^Rx̄x̄ =
i∑︁

i=1
uiuHi , (10.6.12)

and the estimated number of large eigenvalues be K, then the number of small eigenval-

ues is B − K. Then, the signal eigenvectors u
1
, · · · , uK span the signal subspace UsUH

s
with Us = [u1, · · · , uK], while the eigenvectors associated to the small eigenvalues

span the noise subspace UnUH

n with Un = [uK+1, · · · , uB].
From Eq. (10.6.11), we have

UH

n ^Rx̃x̄Un = UH

nWHAPAHWG + σ̂2e I

= UH

n [Us , Un]

[︃
Σ + σ̂2e I O

O σ̂2e I

]︃[︃
UH

s
UH

n

]︃
Un

= σ̂2e I.

Comparing line 1 and line 3 of the above equation, it is easy to see thatUH

nWHAPAHWUn
is equal to zero matrix. Since the matrix P is nonsingular, there is AHWUn = O, or

aH(ω)WUn = 0T, ω = ω
1
, · · · , ωp . (10.6.13)

Therefore, the beamspace null spectrum can be derived as

⃒⃒
⃒aHWUn

⃒⃒
⃒
2

2

= aH(ω)WUnUH

nWHa(ω) = 0, ω = ω
1
, · · · , ωp , (10.6.14)

while the beamspace MUSIC spatial spectrum

[194]

can be derived as

P
BS−MUSIC

(ω) = aH(ω)a(ω)
aH(ω)WUnUH

nWHa(ω)
. (10.6.15)

Algorithm 10.6.1. Beamspace MUSIC algorithm
Step 1 Use B point discrete space Fourier transform to calculate the beamspace observa-

tion data vector x̃(n) = WHx(n), where n = 1, · · · , N.
Step 2 Calculate the eigenvalue decomposition of the sample covariance matrix Rx̄x̄

from Eq. (10.6.11), and obtain its principal eigenvalues λ
1
, · · · , λK and secondary

eigenvalues λK+1, · · · , λB, and construct the secondary eigenvector matrix Un =

[uK+1, · · · , uB].
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Step 3 Use Eq. (10.6.15) to calculate the beamspace MUSIC spectrum PBS-MUSIC (ωi),
where ωi = (i − 1)∆ω, and the grid ∆ω can be taken as 2π · 0.001 etc.

Step 4 Search to determine the p peaks of PBS-MUSIC(ω), and give the estimated value
of the MUSIC spatial parameter ω

1
, · · · , ωp. Then, estimate the DOA from ωi =

2π dλ sin θi θ1, · · · , θp .

10.6.2 Comparison of BS-MUSIC and ES-MUSIC

Compared with the array element space MUSIC methods, beamspace MUSIC methods

have the following advantages

[237]

.

(1) In the case of low signal-to-noise ratio, beamspace MUSIC is better than sensor ar-

ray element spaceMUSIC, since the beamforming of beamspaceMUSIC can provide

processing gain. When there is only a single narrowband signal, the beamforming

gain is equal to the number of sensors. Note that the beamforming gain plays an

important role in overcoming the obvious signal power attenuation.

(2) The basic assumption of array element space MUSIC is that the source is a point

target. The extended target violates this assumption so as to it cannot be handled

correctly by the array element spaceMUSICmethod. Since there are no assumptions

about the target characteristics (type and size), the beamspace MUSIC is more

attractive. It can be used to perform point target imaging as well as extended target

imaging. This ability is essential for indoor imaging (such as through-wall radar

imaging): due to the small separation distance, limited bandwidth and aperture,

many targets behind the wall can be classified as spatially extended targets.

(3) In applications such as imaging, the array element space MUSIC requires two-

dimensional interpolation to obtain sampled data along the rectangular grid.While

in the beamspace MUSIC, the sampled data along the rectangular grid is obtained

by beamforming instead of interpolation. Avoiding interpolation is a popular step

because even an outlier in the data set can cause large interpolation errors.

It is assumed that all antennas of the imaging system have the same characteristics. The

beamforming position can be anywhere in the antenna radiation pattern. Therefore,

the number of beams can be arbitrarily selected. However, since DFT implementation

requires beams to be evenly spaced apart, the number of beams needs to be determined

according to the beam spacing. The imaging array antenna can provide a good founda-

tion for the formation of different beam directions through the corresponding delay

and the resolution of the beamformer. In order to ensure that all targets in the scene

can be detected and imaged, the beam spacing should be smaller than the beamwidth.

The beam spacing also determines the target resolution.

Comparing the array element space MUSIC and the beamspace MUSIC algorithm

shown in the table 10.6.1, an important conclusion can be drawn: as long as the steer-

ing vector in the null spectrum a(ω) is replaced byWHa(ω), and the noise subspace
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Tab. 10.6.1: Comparision of the relation and difference between array element space MUSIC (ES-
MUSIC) and beamspace MUSIC (BS-MUSIC) algorithm.

Method ES-MUSIC BS-MUSIC

Model x(n) = As(n) + e(n) x̃(n) = Bs(n) +WHe(n)
Data The original observation data xm(n) Discrete space Fourier transform x̃(n) = vHMx(n)
Steering vector a(ω) =

[︀
1, ejω , · · · , ej(M−1)ω

]︀T b(ω) = WHa(ω)
Beamforming matrix I W = 1√

M

[︀
vM(0), vM

(︀ 2
M
)︀
, · · · , vM

(︀
(B − 1) 2M

)︀]︀
Data vector x(n) =

[︀
x1(n), · · · , xM(n)

]︀T x̃(n) = WHx(n) (B × 1)
Covariance matrix R̂xx = 1

N
∑︀N

n=1 x(n)xH(n) (M × M) R̂ x̃ x̃ = 1
N
∑︀N

n=1 x̃(n)x̃H(n) (B × B)
Eigenvalue Decomposition R̂xx =

∑︀M
i=1 λiuiuHi R̂ x̃ x̃ =

∑︀B
i=1 λiuiuHi

Secondary eigenvector matrix G =
[︀
up+1 , · · · , uM

]︀
Un = [uK+1 , · · · , uB]

Noise subspace GGH =
∑︀M

i=p+1 uiuHi UnUH
n =

∑︀B
i=K+1 uiuHi

Spatial spectrum PES−MUSIC(ω) = aH(ω)a(ω)
aH(ω)GGHa(ω) PBS−MUSIC(ω) = a

aH(ω)WUnUH
nWHa(ω)

DOA θ ω = 2π dλ sin θ sin θ

of the array element space GG H

is replaced by the noise subspace of the beamspace

UnUH

n , the array element spaceMUSIC spatial spectrum is generalized to the beamspace

MUSIC spatial spectrum. Given this, a(ω) and b(ω) = WHa(ω) are respectively called
the array element space steering vector and the beamspace steering vector.

Using these two correspondences between the array element space and the

beamspace, it is easy to obtain the following spatial spectrum of the beamspace:

(1) Beamspace minimum norm spatial spectrum

P
BS−MN

(ω) = aH(ω)a(ω)⃒⃒
⃒aH(ω)WUnUH

n e1
⃒⃒
⃒
2

. (10.6.16)

(2) Beamspace first principal vector spatial spectrum

P
BS−FINE

(ω) = aH(ω)a(ω)⃒⃒
⃒aH(ω)WUnUH

n tFINE
⃒⃒
⃒
2

. (10.6.17)

(3) Beamspace multi-principal vector spatial spectrum

P
BS−FINES

(ω) = aH(ω)a(ω)⃒⃒
⃒aH(ω)WUnUH

n TFINES

⃒⃒
⃒
2

. (10.6.18)

Let

p(z) = a(ω)
⃒⃒
z=ejω , (10.6.19)

then the beamspace MUSIC null spectrum formula

⃒⃒
⃒aH(ω)WG

⃒⃒
⃒
2

2

= 0 can be rewritten

in the form of the polynomial of z as

pH(z)WUnUH

nWHp(z) = 0. (10.6.20)

Premultiplying the above formula with zM−1, then we have

p
BS-ROOT-MUSIC

(z) = zM−1pT
(︁
z−1
)︁
WUnUH

nWHp(z) = 0. (10.6.21)
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This is the beamspace root-MUSIC polynomial.

Comparing the array element space root-MUSIC polynomial and the beamspace

root-MUSIC polynomial, we can get the following two substitution relations: when

p(z) is replaced byWHp(z), and the noise subspace of the array element space GGH

is

replaced by the noise subspace of the beam space UnUH

n , the root-MUSIC polynomial

in the array element space is generalized to the root-MUSIC polynomial in the beam

space. Using these two substitution relations, the following extensions of the MUSIC

polynomial for finding roots in beam space are immediately obtained:

(1) Beamspace rooting-minimum norm polynomial

p
BS-ROOT-MN

(z) = zM−1pT
(︁
z−1
)︁
WUnUH

n e1eT1UnUH

nWHp(z) = 0. (10.6.22)

(2) Beamspace rooting-first principal vector polynomial

p
BS−ROOT−FINE

(z) = zM−1pT
(︁
z−1
)︁
WUnUH

n tFINEtHFINEUnUH

nWHp(z) = 0. (10.6.23)

(3) Beamspace rooting-Multi-principal vector polynomial

p
BS−ROOT−FINES

(z) = zM−1pT
(︁
z−1
)︁
WUnUH

n TFINES
TH

FINES
UnUH

nWHp(z) = 0.

(10.6.24)

Summarizing the above discussion and analysis, the following main points of the

beamspace MUSIC method and its various extensions can be extracted:

(1) Since the beam transformation matrixW is an M × B Fourier matrix, linear trans-

formation of x̃(n) = WH x(n) can be effectively performed using methods such as

FFT.

(2) Replace the null spectrum steering vector a(ω) (or polynomial vector p(z)) with
WH a(ω) (orWp(z) ), and replace the noise subspace of the array element obser-

vation vector GGH

with the noise subspace of the beam observation vector UnUH

n ,

various MUSIC method in the array element space (including various root-finding

MUSIC methods) would become the corresponding MUSIC methods in the beam

space directly.

(3) If the spatial Fourier transform domain is regarded as the spatial frequency domain

of the spatial signal, the beamspace MUSIC method based on the discrete space

Fourier transform and its extension are a space-time-frequency three-dimensional

signal processing, while the array element space MUSIC method and its extension

are a space-time two-dimensional signal processing.

(4) Because more information in the spatial frequency domain is used, various

beamspace MUSIC methods can be expected to have higher DOA estimation

resolution than the corresponding array element space MUSIC methods.

Table 10.6.2 summarizes the basic MUSIC and its various extensions.

MUSIC method uses the spatial spectrum to estimate the DOA of the source, which

is a subspace method. The DOA can also be estimated with the help of eigenvalues or
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Tab. 10.6.2:MUSIC method and its various extensions.

Method Spatial spectrum or polynomial

ES-MUSIC PES−MUSIC(ω) = aH(ω)a(ω)
aH(ω)GGHa(ω)

BS-MUSIC PBS−MUSIC(ω) = aH(ω)a(ω)
aH(ω)WUnUH

nWHa(ω)

ES-MN PES−MN(ω) = aH(ω)a(ω)
|aH(ω)GGHe1|2

BS-MN PBS−MN(ω) = aH(ω)a(ω)
|aH(ω)WUnUH

ne1|2

ES-FINE PES−MN(ω) = aH(ω)a(ω)
|aH(ω)GGH tFINE|2

BS-FINE PBS−MN(ω) = aH(ω)a(ω)
|aH(ω)WUnUH

n tFINE|2

ES-ROOT-MUSIC PES−MN(ω) = aH(ω)a(ω)
|aH(ω)GGHTFINES|22

BS-ROOT-MUSIC PBS−MN(ω) = aH(ω)a(ω)
|aH(ω)WUnUH

nTFINES|22
BS-FINES (z) = zM−1pT

(︀
z−1

)︀
GGHp(z) = 0

ES-ROOT-MUSIC pES-ROOT-MUSIC (z) = zM−1pT
(︀
z−1

)︀
GGHp(z) = 0

BS-ROOT-MUSIC pBS-ROOT-MUSIC (z) = zM−1pT
(︀
z−1

)︀
WUnUH

nWHp(z) = 0
ES-ROOT-MN pES-ROOT-MN (z) = zM−1pT

(︀
z−1

)︀
GGHe1eT1GGHp(z) = 0

BS-ROOT-MN pBS-ROOT-MN (z) = zM−1pT
(︀
z−1

)︀
WUnUH

ne1eT1UnUH
nWHp(z) = 0

ES-ROOT-FINE pES-ROOT-FINE (z) = zM−1pT
(︀
z−1

)︀
GGHtFINEtHFINEGG

Hp(z) = 0
BS-ROOT-FINE pBS-ROOT-FINE (z) = zM−1pT

(︀
z−1

)︀
WUnUH

n tFINEtHFINEUnUH
nWHp(z) = 0

ES-ROOT-FINES pES-ROOT-FINE (z) = zM−1pT
(︀
z−1

)︀
GGHTFINESTH

FINESGGHp(z) = 0
BS-ROOT-FINES pBS-ROOT-FINES (z) = zM−1pT

(︀
z−1

)︀
WUnUH

nTFINESTH
FINESUnUH

nWHp(z) = 0

generalized eigenvalues. This type of method is the Estimating Signal Parameters via

Rotational Invariance Techniques (ESPRIT) method that will be introduced in the next

section.

10.7 Estimating Signal Parameters via Rotational Invariance
Techniques

Estimating Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithm,

first proposed by Roy, et.al. in 1986, is an abbreviation for the method of Estimating

Signal Parameters via Rotational Invariance Techniques

[186]

. ESPRIT becomes a typical

method and is widely used in modern signal processing field up to now.

Similar to MUSIC, ESPRIT algorithms can also be divided into two categories: i.e.,

element space (ES) algorithms and beam space (BS) algorithms. Furthermore, there is

unitary ESPRIT method especially designed for complex-valued signals.
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10.7.1 Basic ESPRIT Algorithm

Consider p complex harmonic signals in white noise,

x(n) =
p∑︁

i=1
siejnωi + w(n), (10.7.1)

where si andωi ∈ (−π, π) denotes the amplitude andphase of the i-th signal,respectively.
Assuming w(n) is a white complex gaussian noise process with zero mean and variance

of σ2, namely

E

{︁
w(n)w*(l)

}︁
= σ2δ(n − l),

E

{︀
w(n)w(l)

}︀
= 0, ∀k, l.

Define a new process y(n) def

= x(n + 1). Choose M > p , and introduce the following
M × 1 vectors

x(n) def= [x(n), x(n + 1), · · · , x(n +M − 1)]T, (10.7.2)

w(n) def= [w(n), w(n + 1), · · · , w(n +M − 1)]T, (10.7.3)

y(n) def= [y(n), y(n + 1), · · · , y(n +M − 1)]T,

= [x(n + 1), x(n + 2), · · · , x(n +M)]

T

, (10.7.4)

a(ωi)
def

= [1, e

jωi
, · · · , e

j(M−1)ωi
]

T

, (10.7.5)

then x(n) in Eq. (10.7.1) can be expressed in vector form as

x(n) = As(n) + w(n), (10.7.6)

and y(n) = x(n + 1) can also be formulated in vector form as

y(n) = x(n + 1) = AΦs(n) + w(n + 1), (10.7.7)

where

A def

= [a(ω
1
), a(ω

2
), · · · , a(ωp)], (10.7.8)

s(n) def= [s
1
e

jω
1
n
, s

2
e

jω
2
n
, · · · , spejωpn]T, (10.7.9)

Φ def

= diag(e

jω
1

, e

jω
2

, · · · , e

jωp
). (10.7.10)

Note that Φ in Eq. (10.7.7) is an unitary matrix such that ΦHΦ = ΦΦH

= I, which
collects the two vectors x(n) and y(n). A is an M × p Vandermonde matrix. Since

y(n) = x(n + 1), y(n) can be regarded as a translation version of x(n). In view of this,

Φ is named rotation operator, since translation is the simplest rotation.

Eqs. (10.7.6)∼ (10.7.10) establish the signal model of ESPRIT algorithm. It can be

proved that this signal model is also applicable to the uniform linear array withM array
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elements. Take the first element as reference, similar to Eq. (10.7.1), the observation

signal of this array can be expressed as

x
1
(n) =

p∑︁

i=1
siejωin + w1

(n) =
p∑︁

i=1
si(n) + w1

(n), (10.7.11)

in which si(n) = siejωin is the i-th source signal.
According to the structure of ULA, there exists a propagation phase difference

e

j(m−1)ωi
when the source signal reaches the m-th element. Therefore, the signal ob-

served by the m-th element is

xm(n) =
p∑︁

i=1
si(n)ej(m−1)ωi + wm(n), (10.7.12)

and Eq. (10.7.12) can be rewritten in matrix-vector form as

x(n) = [x
1
(n), x

2
(n), · · · , xM(n)]T = As(n) + w(n), (10.7.13)

where A = [a(ω
1
), a(ω

2
), · · · , a(ωp)],s(n) = [s

1
(n), s

2
(n), · · · , sp(n)]T and a(ωi) =

[1, e

jωi
, · · · , e

j(M−1)ωi
]

T

. Then, the translation vector of x(n) can be expressed as

y(n) = x(n + 1) = As(n + 1) + w(n + 1) = AΦs(n) + w(n + 1). (10.7.14)

Since

s(n + 1) =

⎡
⎢⎢⎣

s
1
e

jω
1
(n+1)

.

.

.

spejωp(n+1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

e

jω
1

0

.
.
.

0 e

jωp

⎤
⎥⎥⎦

⎡
⎢⎢⎣

s
1
e

jω
1
n

.

.

.

spejωpn

⎤
⎥⎥⎦ = Φs(n). (10.7.15)

By comparing Eq. (10.7.13) with Eq. (10.7.6), it is easy to find that signal model in

Eq. (10.7.14) for ULA is the same as the signal model in Eq. (10.7.7) of ESPRIT algo-

rithm. Therefore, the key of ESPRIT algorithm is how to construct the observation

vector x(n) and its translation vector y(n) = x(n + 1) .
The autocovariance matrix of observation vector x(n) can be expressed as

Rxx = E

{︁
x(n)xH(n)

}︁
= APAH

+ σ2I, (10.7.16)

where

P = E

{︁
s(n)sH(n)

}︁
, (10.7.17)

is the covariance matrix of the signal vector. If the signals are not coherent, P =

diag

(︀
E

{︀
|s
1
|2
}︀
, · · · , E

{︀
|sp|2

}︀)︀
is a nonnegative diagnal matrix of size p × p, with

each diagnoal element being the power of the corresponding source. In the ESPRIT

algorithm, only nonsigularity of P is demanded, and diagnoality is not mandatory

requirements.
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The crosscovariance matrix between the observation signal vector x(n) and its transla-
tion y(n) can be written as

Rxy = E

{︁
x(n)yH(n)

}︁
= APΦHAH

+ σ2Z, (10.7.18)

in which σ2Z = E

{︁
w(n)wH

(n + 1)
}︁
. It is easy to verify that Z is a spectial matrix with

a size of M ×M

Z =

⎡
⎢⎢⎢⎢⎣

0 0

1 0

.
.
.

.
.
.

0 0 1 0

⎤
⎥⎥⎥⎥⎦
. (10.7.19)

That is, all elements on the diagonal below the main diagonal are 1 and all others are 0.

Since the element of autocovariance matrix [Rxx]ij = E

{︀
x(i)x*(j)

}︀
= Rxx(i − j) =

R*xx(j − i), it follows that

Rxx =

⎡
⎢⎢⎢⎢⎣

Rxx(0) R*xx(1) · · · R*xx(M − 1)
Rxx(1) Rxx(0) · · · R*xx(M − 2)

.

.

.

.

.

.

.
.
.

.

.

.

Rxx(M − 1) Rxx(M − 2) · · · Rxx(0)

⎤
⎥⎥⎥⎥⎦
. (10.7.20)

Similarly, the element of crosscovariance matrix

[Rxy]ij = E

{︁
x(i)y*(j)

}︁
= E

{︁
x(i)x*(j + 1)

}︁
= Rxx(i − j − 1) = R*xx(j − i + 1)

satisfies

Rxy =

⎡
⎢⎢⎢⎢⎣

R*xx(1) R*xx(2) · · · R*xx(M)

Rxx(0) R*xx(1) · · · R*xx(M − 1)
.

.

.

.

.

.

.
.
.

.

.

.

Rxx(M − 2) Rxx(M − 3) · · · R*xx(1)

⎤
⎥⎥⎥⎥⎦
. (10.7.21)

Note that Rxx(0) = R*xx(0).
Now the problem is: given autocovariance function Rxx(0), Rxx(1), · · · , Rxx(M),

how to estimae the number p of the harmonic sources, as well as the frequency ωi and
power |si|2, i = 1, · · · , p of each source.

After translation, the vector x(n) becomes y(n) = x(n + 1). However, since Rxx def

=

E

{︁
x(n)xH(n)

}︁
= E

{︁
x(n + 1)xH(n + 1)

}︁
def

= Ryy, that is,Rxx is equal toRyy exactly. This
indicates that the translation maintains the invariance of the subspace corresponding

to x(n) and y(n) respectively.
Performing eigenvalue decomposition on Rxx, we can obtain its minimum eigen-

value λmin = σ2. Then, a new pair of matrices can be constructed as follows

Cxx = Rxx − λminI = Rxx − σ2I = APAH

, (10.7.22)

Cxy = Rxy − λminZ = Rxy − σ2Z = APΦHAH

, (10.7.23)
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is called a matrix pencil or a matrix pair.

The generalized eigenvalue decomposition of matrix pencil {Cxx , Cxy} is defined
as

Cxxu = γCxyu, (10.7.24)

where γ and u are called the generalized eigenvalue and generalized eigenvector, re-
spectively. Then, the tuple (γ, u) is called generalized eigenpair. If only the eigenvalues
is of interest, the matrix pencil is usually written as Cxx − γCxy. In case that γ is not
a generalized eigenvalue, then the matrix pencil Cxx − γCxy has full rank, while γ
that causes rank dificiency of matrix pencil Cxx − γCxy is defined to be its generalized
eigenvalue.

Invistigate the matrix pencil

Cxx − γCxy = AP(I − γΦH

)AH

. (10.7.25)

Since A has full column rank and P is nonsigular, in terms of matrix rank, from

Eq. (10.7.25) we can obtain

rank(Cxx − γCxy) = rank(I − γΦH

). (10.7.26)

If γ ̸ = ωi , i = 1, · · · , p, the matrix I − γΦH

is a nonsigular, while if γ equals to ejωi ,
I − γΦH

is a singular matrix, namely, rank deficient matrix, due to γe−jωi = 1. The

derivation shows that e

jωi
, i = 1, · · · , p are all the generalized eigenvalues of matrix

pencil {Cxx , Cxy , }. This result can be summarized as the following theorem.

Theorem 10.7.1. Let Γ be the generalized eigenvalue matrix of matrix pencil {Cxx , Cxy},
in which Cxx = Rxx − λminI and Cxy = Rxy − λminZ, and λmin

is the smallest eigenvalue of
autocovariance matrix Rxx. If matrix P is nonsigular, then matrix Γ and rotation operator
matrixΦ satisfy

Γ =
[︃
Φ 0
0 0

]︃
, (10.7.27)

namely, nonzero elements of matrix Γ is an arrangement of the elements of the rotation
operator matraixΦ.

By summarying the above analyses, we can obtain the basic ESPRIT algorithm as

follows.

Algorithm 10.7.1. Basic ESPRIT algorithm
Step 1 Estimate the autocovariance function Rxx(i), i = 0, · · · ,M, using given observa-

tion data x(1), · · · , x(N);
Step 2 Construct the M ×M autocovariance matrix Rxx and M ×M crosscovariance matrix

Rxy using Rxx(i), i = 0, · · · ,M;
Step 3 Perform eigenvalue decomposition of Rxx. For M > p. Take the mean value of the

smallest eigenvalues as the estimation of noise power σ2;
Step 4 Compute Cxx and Cxy using σ as well as Cxx = Rxx − λminI and Cxy = Rxy − λminZ;
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Step 5 Compute the generalized eigenvalue decomposition of matrix pencil Cxx , Cxy and
find p eigenvalues ejωi , i = 1, · · · , p that locate on the unit circle , which can be
mapped to the frequency estimation of complex exponential signal directly, and then
estimate the DOA θ

1
, · · · , θp according to ωi = 2π dλ sin θi.

Let the generalized eigenvector that corresponding to the generalized eigenvalue γi be
ei. From its definition, ei satifies

APAHei = γiAPΦHAHei , (10.7.28)

which is equivalent to

eHi AP
(︁
I − γiΦH

)︁
AHei = 0, (10.7.29)

from which it is obviously that the i-th diagonal elements of the diagonal matrix are

zeros while all of its other diagnal elements are nonzero, which are denoted as × to

indicate that they are not of interest for us. Namely,

P
(︁
I − γiΦH

)︁
= diag(×, · · · , ×, 0, ×, · · · , ×). (10.7.30)

Consequently, to make Eq. (10.7.29) holds, eHi A and AHei must have the following form

eHi A = [0, · · · , 0, e*i a(ωi), 0, · · · , 0], (10.7.31)

AHei = [0, · · · , 0, aH(ωi)ei , 0, · · · , 0)H. (10.7.32)

That is to say, the generalized eigenvector ei corresponding to the generalized eigen-
value γi is orthgonal to all other steering vectors a(ωj), j ̸= i except for a(ωi). On the
other hand, the element on (i, i) of the diagonal matrix γiΦ is 1, that is

γiΦ = diag

(︁
e

−jω
1

, · · · , e

−jωi−1
, 1, e

−jωi+1
, · · · , e

−jωp
)︁
. (10.7.33)

Substituting Cxx = APAH

into Eq. (10.7.29) yields

eHi APγiΦHAHei = eHi Cxxei . (10.7.34)

By further substituting Eqs. (10.7.32) and (10.7.33) into Eq. (10.7.34) and noticing that P
is a diagonal matrix, we can derive that

E

{︁
|si(n)|2

}︁
|eHi a(ωi)|2 = eHi Cxxei , (10.7.35)

in other words,

E

{︁
|si(n)|2

}︁
=

eHi Cxxei
|eHi a(ωi)|2

, (10.7.36)

which is the signal power estimation formula in case all the sources are independent

of each other.
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10.7.2 Element Space ESPRIT

It is necessary for the basic ESPRIT algorithm to perform the generalized eigenvalue de-

composition on matrix pencil {Cxx , Cxy}, which will cause the basic ESPRIT algorithm
to have two drawbacks:

(1) Unable to utilize the singular value decomposition of the observation data matrix

X =

[︀
x(1), · · · , x(N)

]︀
, which exihibits a better numerical stability than the gen-

eralized eigenvalue decomposition procedure necessary to be performed on the

covariance matrix pencil;

(2) More difficult in adaptively updating the covariance matrix.

Using the concept of subarray, element space ESPRIT algorithm for ULA can overcome

the above two drawbacks.

Consider an M-element ULA shown in Figure 10.7.1. The array is divided into two

subarrays, in which one subarray is composed of the first to M − 1-th array elements

and the other subarray is composed of 2-nd to M-th array elements.

Denote the M × N observation data matrix of the original array as

X =

[︀
x(1), · · · , x(N)

]︀
, (10.7.37)

in which x(n) = [x
1
(n), · · · , xm(n)]T is the observation data vector cosists of the obser-

vation signal at time n of all these m elements, and N is data length, i.e.,n = 1, · · · , N.
If denote signal matrix as

x

y

Subarray 1

Subarray 2

1 2 m− 1 m

· · ·

Fig. 10.7.1: Illustration of ULA divided into two subarrays

S = [s(1), · · · , s(N)], (10.7.38)

in which

s(n) = [s
1
(n), · · · , sp(n)]T, (10.7.39)
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is signal vector. Then, For the data composed of N snapshots, Eq. (10.7.37) can be

formulated as the matrix-vector equation

X = [x(1), · · · , x(N)] = As, (10.7.40)

where A is a m × p steering vector matrix.

Let J
1
and J

2
be two (m − 1) × m selection matrix defined as

J
1
= [Im−1 0m−1] , (10.7.41)

J
2
= [0m−1 Im−1] , (10.7.42)

in which Im−1 denotes (m − 1) × (m − 1) identity matrix and 0m−1denotes zero vector of
size (m − 1) × 1.

Premultiply the observation data matrix X with the selection matrix J
1
and J

2

yields

X
1
= J

1
X =

[︀
x
1
(1), · · · , x

1
(N)
]︀
, (10.7.43)

X
2
= J

2
X =

[︀
x
2
(1), · · · , x

2
(N)
]︀
, (10.7.44)

respectively, where

x
1
(n) = [x

1
(n), · · · , xm−1(n)]T n = 1, · · · , N, (10.7.45)

x
2
(n) = [x

2
(n), · · · , xm(n)]T n = 1, · · · , N . (10.7.46)

In other words, the observation data submatrix X
1
cosists of the first m − 1 rows of

the observation data matrix X, which is equivalent to the observation data matrix of

subarray 1; similar to X
1
, observation data submatrix X

2
cosists of the last m − 1 rows

of the observation data matrix X, which is equivalent to the observation data matrix of

subarray 2.

Rewrite A as

A =

[︃
A
1

last row

]︃
=

[︃
first row

A
2

]︃
, (10.7.47)

and from the structure of array response matrix A, the relation bewteen submatrix A
1

and A
2
can be formulted as

A
2
= A

1
Φ, (10.7.48)

and it is also easy to verify that

X
1
= A

1
S, (10.7.49)

X
2
= A

2
S = A

1
ΦS. (10.7.50)

SinceΦ is an unitary matrix, so X
1
and X

2
span the same signal subspace and noise

subspace, that is to say, subarray 1 and subarray 2 have the same observation space

(signal space and noise space). This is the physical interpretation for the translation

invariance property of ULA.
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The autocovariance matrix Rxx of the observation vector X
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can be written as

Rxx = APAH

+ σ2I =
[︁
Us Un

]︁ [︃Σs O
O σ2I

]︃[︃
UH

s
UH

n

]︃

=

[︁
UsΣs σ2Un

]︁ [︃UH

s
UH

n

]︃
= UsΣsUH

s + σ2UnUH

n . (10.7.51)

From I − UnUH

n = UsUH

s , Eq. (10.7.51) can be rearranged as

APAH

+ σ2UsUH

s = UsΣsUH

s . (10.7.52)

Postmultiplied at both side with Us and noted that UH

s Us = I, Eq. (10.7.52) can be

rearranged as

Us = AT, (10.7.53)

where

T = PAHUs
(︁
Σs − σ2I

)︁
−1

, (10.7.54)

is a nonsigular matrix.

Although T is unknown, it will not hamper the following analysis at all as T is only

a dummy argument and only its nonsingularity is used during the derivation below.

Postmultiplied by T, Eq. (10.7.47) becomes

AT =

[︃
A
1
T

last row

]︃
=

[︃
first row

A
2
T

]︃
. (10.7.55)

Using the same block form, Us can be divided into

Us =
[︃

U
1

last row

]︃
=

[︃
first row

U
2

]︃
. (10.7.56)

Since AT = Us, by comparing Eq. (10.7.55) with Eq. (10.7.56) we can get immediately

U
1
= A

1
T and U

2
= A

2
T . (10.7.57)

Further substituting A
2
= A

1
Φ into Eq. (10.7.57), we obtain

U
2
= A

1
ΦT, (10.7.58)

and by combining U
1
= A

1
T with Eq. (10.7.58), we can find

U
1
T−1ΦT = A

1
TT−1ΦT = A

1
ΦT = U

2
. (10.7.59)

Define

Ψ = T−1ΦT, (10.7.60)

in which Ψ is known to be a similarity transformation of matrix Φ. Since Ψ has

identically the same eigenvalues as matrixΦ, namely, the eigenvalues of Ψ are also
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e

jϕm
,m = 1, · · · ,M. Substituting Eq. (10.7.60) into Eq. (10.7.59) yields an important

relationship, that is

U
2
= U

1
Ψ . (10.7.61)

The results above can be concluded as the element space ESPRIT algorithm (ES-ESPRIT).

Algorithm 10.7.2. ES-ESPRIT algorithm
Step 1 Compute the singular value decomposition X = UΣVH for M × N observation data

matrix X and take the left singular vectors corresponding to the p principal singular
values to construct the matrix Us = [u1, · · · , up];

Step 2 Take the upper and lower M − 1 rows of Us to form U
1
and U

2
. Compute the

eigenvalue decompostion of the matrix Ψ =

(︁
UH
1
U
1

)︁
−1

UH
1
U
2
to get its eigenvalues

e

jωi
(i = 1, · · · , p), which is identically the same as that of rotation operator Φ, and

further to get the estimation of ωi (i = 1, · · · , p);
Step 3 Estimate DOA θ

1
, · · · , θp according to ω̂i = 2π dλ sin θi.

By comparing algorithm 10.7.2 with algorithm 10.7.1, we can find two main differences

between the basic ESPRIT and ES-ESPRIT algorithm as follows:

(1) It is necessary for the basic ESPRIT algorithm to compute the eigenvalue decom-

position of the M ×M autocovariance matrix Rxx and the generalized eigenvalue
decomposition of the matrix pencil {Cxx , Cxy}; while it is necessary for the ES-
ESPRIT algorithm to compute the singular value decomposition of the M × N
observation data matrix X and the eigenvalue decomposition for theM ×M matrix

Ψ.

(2) ES-ESPRIT algorithm can be easily generalized to the beam space ESPRIT algorithm,

unitary ESPRIT algorithm, and beam space unitary ESPRIT algorithm, as detailed

in the following subsections.

10.7.3 TLS-ESPRIT

The basic ESPRIT algorithm introduced above can be viewed as the least squares

(LS) operator, which plays a role in mapping the original M-dimensional observation

space to the constrained p-dimensional subspace with p being the spatial source

number. For this reason, the basic ESPRIT algorithm is usually called as LS-ESPRIT

algorithm. Roy and Kailath have pointed out in literature [185] that, LS-operator will

usually encounter some potential numerical difficulties when performing generalized

eigenvalue decomposition. It is widely known that SVD and totally least squares (TLS)

can be used to convert an ill-conditioned generalized eigenvalue decomposition of

larger M ×M matrix pencil into a well-conditioned generalized eigenvalue problem of

smaller p × p matrix pencil.

There are several TLS-ESPRIT algorithmsand theyneed toperformdifferent number

of times of SVD during implementation. The algorithm proposed by Zhang and Liang

[244]
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needs to perform SVD only once and thus is the TLS-ESPRIT algorithm with the highest

computational efficiency.

Consider the generalized eigenvalue decomposition of matrix pencil {R
1
, R

2
}.

Suppose that the SVD of matrix R
1
to be

R
1
= UΣVH

=

[︁
U
1

U
2

]︁ [︃Σ
1

O
O Σ

2

]︃[︃
VH

1

VH

2

]︃
, (10.7.62)

in which Σ
1
consists of p principal sigular value. Premultiplied and postmultiplied by

UH

1
and V

1
respectively, R

1
− γR

2
becomes

Σ
1
− γUH

1
R
2
V
1
, (10.7.63)

with its generalized eigenvalues unchanged. Now, the generalized eigenvalue decompo-

sition of higher order matrix pencil {R
1
, R

2
} turns out to be the generalized eigenvalue

decomposition of a lower order p × p matrix pencil {Σ
1
, UH

1
R
2
V
1
} .

Algorithm 10.7.3. TLS-ESPRIT algorithm
Step 1 Compute the eigenvalue decomposition of matrix R;
Step 2 Computematrix Cxx = Rxx−σ2I and Cxy = Rxy−σ2Z using the smallest eigenvalue

σ2 of the matrix R obtained in Step 1;
Step 3 Compute the sigular value decomposition of matrix Cxx and determine its effective

rank p, and construct Σ
1
, U

1
, V

1
that correspoding to the p principal sigular values;

Step 4 Compute UH
1
CxyV1

;
Step 5 Compute the generalized eigenvalue decomposition for the obtained matrix pencil{︁

Σ
1
, UH

1
CxyV1

}︁
to get the generalized eigenvalues on the unit circle. Get the circular

frequency of each complex exponential signal directly or estimate DOA θ
1
, · · · , θp

of each spatial sources according to ω̂i = 2π dλ sin θi.

It is proved that the LS-ESPRIT and TLS-ESPRIT algorithms gives the same asymptotic

estimation accuracy for large samples, and the TLS-ESPRIT always outperforms LS-

ESPRIT for smaller samples. Furthermore, different from LS-ESPRIT, the TLS-ESPRIT

algorithm takes both the effect of the noise of Cxx and that of Cxy, therefore, TLS-ESPRIT
is more plausible.

10.7.4 Beamspace ESPRIT Algorithm

When the number of the array element is too large, element space algorithms (such as

ES-MUSIC and ES-ESPRIT) need to perform O(M3

) times of eigenvalue decomposition

operation in real-time implementation. One effective approach to overcome this draw-

back is to decrease the space dimension, namely, convert the original data space into

lower B-dimensional (B < M) beam space using some kind of transformation (such as

FFT).
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The complexity of the beam space algorithm can be reduced from O(M3

) of the element

space algorithm to O(B3). Since the FLOPs of beam space transformation for each data

vector is O(MB), the sample covariance matrix can be real-time updated.

Using the discrete space Fourier matrixW defined in Eq. (10.6.5) to perform dis-

crete time Fourier transforme of the element observation data vector x(n) and its time

translation vector y(n) = x(n + 1) yields

x̃(n) = WHx(n), (10.7.64)

ỹ(n) = WHx(n + 1). (10.7.65)

By using the property of discrete space Fourier transform thatWHW = I, the autoco-
variance and crosscovariance matrix in beam space can be derived from Eqs. (10.7.16)

and (10.7.18) respectively as

Rx̃x̃ = E

{︁
x̃(n)x̃H(n)

}︁
= WHRxxW = WH

(APAH

+ σ2I)W

= WHAPAHW + σ2I, (10.7.66)

Rx̃ỹ = E

{︁
x̃(n)x̃H(n + 1)

}︁
= WHRxyW = WH

(APΦHAH

+ σ2Z)W

= WHAPΦHAHW + σ2Z. (10.7.67)

Subsequently, after eleminating the noise, the autocovariance and crosscovariance

matrix in beam space become respectively to

Cx̃x̃ = Rx̃x̃ − σ2I = WHAPAHW , (10.7.68)

Cx̃ỹ = Rx̃ỹ − σ2Z = WHAPΦHAHW . (10.7.69)

Study the beam space matrix pencil

Cx̃x̃ − γCx̃ỹ = WHAP(I −ΦH

)AHW . (10.7.70)

Since both the M × B Fourier matrix W and the M × p steering vector matrix A is

full column rank matix, and p × p autocovariance matrix P of the signal sources is

nonsigular, it is easy to find that the rank of beam space matrix pencil satisfies

rank(Cx̃x̃ − γCx̃ỹ) = rank(I − γΦH

), (10.7.71)

which indicates that the generalized eigenvalues γi = e

jωi ,i=1,··· ,p
of the beam space

matrix pencil

{︀
Cx̃x̃ , Cx̃ỹ

}︀
can be used directly to obtain the estimation result of spatial

parameters ωi , · · · , ωp and thereby the estimation of DOA.

The above algorithm that estimates the DOAof spatial signal source bymeans of the

generalized eigenvalue decomposition of the beam space matrix pencil

{︀
Cx̃x̃ , Cx̃ỹ

}︀
is

named as Beamspace ESPRIT or in short BS-ESPRIT algorithm, and was first proposed

in 1994 by Xu et.al.

[230]

.
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Algorithm 10.7.4. BS-ESPRIT algorithm 1
Step 1 Compute the discrete space Fourier transform x̃(n) = WHx(n) and the sample

autocovariance function Rx̃x̃(k) = 1

N
∑︀N

n=0 x̃(n)x̃*(n − k), k = 0, 1, · · · ,M;
Step 2 Construct the B × B sample autocovariance and sample crosscovariance matrix

respectively as

Rxy =

⎡
⎢⎢⎢⎢⎣

R*x̃x̃(1) R*x̃x̃(2) · · · R*x̃x̃(M)

Rx̃x̃(0) R*x̃x̃(1) · · · R*x̃x̃(M − 1)
...

...
. . .

...
Rx̃x̃(M − 2) Rx̃x̃(M − 3) · · · R*x̃x̃(1)

⎤
⎥⎥⎥⎥⎦
, (10.7.72)

Rx̃ỹ =

⎡
⎢⎢⎢⎢⎣

R*x̃x̃(1) R*x̃x̃(2) · · · R*x̃x̃(M)

Rx̃x̃(0) R*x̃x̃(1) · · · R*x̃x̃(M − 1)
...

...
. . .

...
Rx̃x̃(M − 2) Rx̃x̃(M − 3) · · · R*x̃x̃(1)

⎤
⎥⎥⎥⎥⎦
; (10.7.73)

Step 3 Compute the eigenvalue decomposition Rx̃x̃ =
∑︀B

i=1 λiuiu
H
i of the B×B beamspace

sample autocovariance matrix Rx̃x̃ and estimate the number of its larger eigenvalues
as well as noise variance σ2 = 1

B−p
∑︀B

i=P+1 λi;
Step 4 Compute Cx̃x̃ = Rx̃x̃ − σ2I and Cx̃ỹ = Rx̃ỹ − σ2Z and the generalized eigenvalue

decomposition of the beamspace matrix pencil
{︀
Cx̃x̃ , Cx̃ỹ

}︀
to obtain p generalized

eigenvalues γi = e

jωi on the unit circle. Then γi = e

jωi ,i=1,··· ,p can be used directly
to obtain the estimation result of spatial parameters ωi , · · · , ωp and thereby the
estimation of DOA θ

1
, · · · , θp of each spatial sources according to ω̂i = 2π dλ sin θi.

It is necessary for the implementation of BS-ESPRIT algorithm presented above to

perform eigenvalue decomposition of beamspace sample autocovariance matrix and

generalized eigenvalue decomposition of beamspace matrix pencil. By combining

BS-ESPRIT with ES-ESPRIT, a BS-ESPRIT that needs no generalized eigenvalue decom-

position of beamspace matrix pencil can be obtained.

Algorithm 10.7.5. BS-ESPRIT algorithm 2
Step 1 Construct M × N beamspace observation data matrix ˜X =

[︀
x̃(1), · · · , x̃(N)

]︀
using

the discrete space Fourier transform x̃(n) = WHx(n);
Step 2 Compute the singular value decomposition ˜X = UΣVH of the M × N observation

data matrix ˜X and take the left singular vectors corresponding to the p principal
singular values to construct the matrix Us = [u1, · · · , up];

Step 3 Take the upper and lower M − 1 rows of Us to form U
1
and U

2
, and compute the

eigenvalue decompostion of the matrix Ψ =

(︁
UH
1
U
1

)︁
−1

UH
1
U
2
to get its eigenvalues

e

jωi
(i = 1, · · · , p), which is identically the same as that of rotation operator Φ, and

further to get the estimation ωi (i = 1, · · · , p);
Step 4 Estimate DOA θ

1
, · · · , θp according to ω̂i = 2π dλ sin θi.
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It should be pointed out that, although the derivation process of the ESPRIT algorithm

makes them also suitable for complex-valued observation signal, the basic ESPRIT

algorithm and its variations such as TLS-ESPRIT algorithm, ES-ESPRIT algorithm,

BS-ESPRIT algorithm, and BS-ESPRIT algorithm 2 are more suitable for real-valued

observation signal. For the case of complex-valued observation signals, better methods

are the unitary ESPRIT algorithm and beamspace unitary ESPRIT algorithm, as will be

discussed in the following section.

10.8 Unitary ESPRIT and Its Extensions

For one-dimensional ULA, the MUSIC and root-MUSIC algorithm determine the DOA of

spatial sources through the location of spatial spectral peak or the root of the implicit

polynomial, respectively; while the ESPRIT algorithms find them through the general-

ized eigenvalue of the matrix pencil composed by autocovariance and crosscovariance

matrix. It is easy to verify that there exists a one-to-one correspondence between the

spectral peaks, the roots on the unit circle of the corresponding polynomial or the

generalized eigenvalues, and the DOA of spatial sources.

For a two-dimensional (planer) array, even if for uniform rectangular array (URA),

direction of each spatial source involves two spatial parameters, namely azimuth ϕ
and elevation θ. Consequently, it is necessary/naturally for two-dimensional MUSIC

algorithms to perform a two-dimensional search to find every (ϕi , θi) pair, while for
two-dimensional ESPRIT algorithm to perform nonlinear optimization.

One approach to avoid the two-dimensional search forMUSIC algorithm is to decou-

ple the two-dimensional MUSIC problem into two decoupled one-dimensional MUSIC

problems and perform azimuth search and elevation search, respectively. However, it

will be somewhat a problem for this scheme tomatch each azimuthϕi with its elevation
counterpart θi. While an effective alternative of the two-dimensional ESPRIT algorithms

to bypass the nonlinear optimization problem is the unitary ESPRIT algorithm.

10.8.1 Unitary ESPRIT Algorithm

Consider the M × N data matrix

X =

[︀
x(1) , · · · , x(N)

]︀
, (10.8.1)

observed by a sensor array in which x(t) =

[︀
x
1
(t) , · · · , xM(t)

]︀
T

is the data vector

observed by M array elements. Note that the uniform rectangular array can always be

arranged into a linear one and X is usually a complex-valued matrix.

In principle, the basic ESPRIT algorithm, the TLS-ESPRIT algorithm, and the BS-

ESPRIT algorithm may be used to estimate the desired DOA parameters. However, all

these approaches have the same drawback, namely, only the data x
1
(t), · · · , xM(t)



10.8 Unitary ESPRIT and Its Extensions | 557

observed directly by the array is used instead of both the observation data and its con-

jugation x*
1
(t), · · · , x*M(t). Due to the well-known fact that a complex-valued data and

its conjugation are complementary to each other as they contained different informa-

tion. Therefore, if both x
1
(t), · · · , xM(t) and x*1(t), · · · , x*M(t) can be utilized, then the

effective data length becomes equivalently doubled. Obviously, although using both

the complex-valued observation data and its conjugation would somewhat increase

the amount of computation, the estimation accuracy for the signal parameter would be

effectively improved over the conventional ESPRIT algorithm without the demand for

more array elements, as is just the problem that the unitary ESPRIT algorithm solves.

Specifically speaking, an unitary ESPRIT approach utilizing both the observation

complex-valued data matrix X ∈ CM×N and its conjugation matrix X* ∈ CM×N , both of
which together consititute a new M × 2N extended data matrix to estimate the spatial

signal parameters ω
1
, · · · , ωp. One simple kind of the extended data matrix may be

Z =

[︁
X,ΠMX*

]︁
, (10.8.2)

where ΠM is anM ×M real-valued permutation matrix with 1 on its main anti-diagonal

and 0 elsewhere, namely

ΠM =

⎡
⎢⎢⎢⎣

0 1

1

. . .

1 0

⎤
⎥⎥⎥⎦ ∈ RM×M , (10.8.3)

According to the structure of ΠM, It is easy to verify that

ΠMΠT

M = IM . (10.8.4)

The ESPRIT algorithm based on the extended data matrix Z is named as unitary ESPRIT

algorithm, which outperforms the conventional ESPRIT algorithm in improving the

estimation accuracy of DOA. However, since the column number of Z doubles to be

2N compared with that of the original observation data matrix and the data length

N are usually large, how to reduce the computation amount required by the singular

value decomposition of the extended data matrix naturally turns out to be a crucial

problem. It is closely related to the structure of the extended data matrix in the unitary

ESPRIT algorithms. An effective approach to deal with this problem is to construct a

data matrix with central Hermitian symmetry.

Definition 10.8.1. A complex-valued matrix B ∈ Cp×q is said to be a central Hermittian
symmetric matrix, if

ΠpB*Πq = B. (10.8.5)

Haardt and Nossek

[98]

proposed to construct an M × 2N matrix

B =

[︁
X,ΠMX*ΠN

]︁
∈ CM×2N , (10.8.6)
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as the extended data matrix. Easy to prove that this extended data matrix can achieves

the purpose of increasing the data length as well as to be central Hermittian symmetric.

Denote the bijection transformation of a central Hermittian symmetric matrix as

T(B), which is a real-valued matrix function defined as

[134]

T(B) def= QH

MBQ2N = QH

M

[︁
X,ΠMX*ΠN

]︁
Q
2N , (10.8.7)

where QM and Q
2N are called the left and right bijection transformmatrix, respectively.

Haardt and Nossek

[98]

introduce an effective method to select the bijection trans-

form:

(1) Divide the original observation data matrix into blocks as

X =

⎡
⎢⎣
X
1

gT

X
2

⎤
⎥⎦ , (10.8.8)

in which X
1
and X

2
have the same size as each other. Obviously, if the number

m of rows of the observation data matrix X ∈ M ×N is even, the block matrix in

Eq. (10.8.8) would not contain row vector gT any more.

(2) Select the left and right bijection transform matrix to be

QM =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1√
2

⎡
⎢⎣
I
(M−1)/2 0 jI

(M−1)/2

0T
√
2 0T

Π
(M−1)/2 0 −jΠ

(M−1)/2

⎤
⎥⎦ , if M is odd,

1√
2

[︃
IM/2

jIM/2

ΠM/2
−jΠM/2

]︃
, if M is even,

(10.8.9)

Q
2N =

1√
2

[︃
IN jIN
ΠN −jΠN

]︃
∈ C2N×2N

, (10.8.10)

respectively.

This bijection described above exhibits two important properties:

(1) The bijection transformation of a central Hermittian symmetric matrix B can be

derived as

T(B) =

⎡
⎢⎣
Re(X

1
+ ΠX*

2
) -Im(X

1
− ΠX*

2
)√

2Re(gT) −

√
2Im(gT)

Im(X
1
+ ΠX*

2
) Re(X

1
− ΠX*

2
)

⎤
⎥⎦ ∈ RM×2N , (10.8.11)

(2) The central Hermittian symmetric matrix B itself satisfies

QMT(B)QH

2N = QMQH

MBQ2NQH

2N = B, (10.8.12)

due to QMQH

M = IM and Q
2NQH

2N = I
2N .
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Assume the sigular value decompositon of the resulted real-valued matrix T(B) after
bijection transform to be

T(B) = UΣVH

(U ∈ CM×M , V ∈ C2N×2N
), (10.8.13)

then combining Eq. (10.8.12) with Eq. (10.8.13) yields

B = QMT(B)QH

2N = (QMU)Σ(VHQH

2Ns), (10.8.14)

which means that the sigular value decomposition of the central Hermittian symmetric

matrix B can be obtained directly to be B = (QMU)Σ(VHQH

2N) once the sigular value

decomposition T(B) = UΣVH

of the resulted real-valued matrix T(B) is known due to
that QMU and VHQH

2N are M ×M and 2N × 2N unitary matrix, respectively.

Themethod introduced above can not only utilize the extended datawith a doubled

length of X but also bypass the problem caused by the singular value decomposition of

thematrixwith large number of columnsbyperforming the sigular value decomposition

of the corresponding central Hermittian symmetric matrix. Consequently, it becomes

an efficient approach to get the singular value decomposition with a better accuracy

than that of the direct singular value decomposition of the observation data matrix X.
This efficient approach is proposed by Hardt and Nossek in 1995

[98]

.

In practice, it is unnecessary to compute the singular value decomposition of the

central Hermitian symmetric matrix B since the estimation of DOA can be obtained

immediately just by applying ES-ESPRIT algorithm to thematrix Us, which is composed

of the first p columns of the left singular vector UM = QMU. To sum up, the unitary

ESPRIT algorithm [98] can be described as below.

Algorithm 10.8.1. Unitary ESPRIT Algorithm
Given the observation data x

1
(t), · · · , xM(t), t = 1, · · · , N, of a sensor array with

M elements.
Step 1 Construct the observation data matrix X =

[︀
x(1), · · · , x(n)

]︀
;

Step 2 Divide X into blocks as Eq. (10.8.8) and then compute the M × 2N real-valued
matrix T(B) according to Eq. (10.8.11) with QM and Q

2N constructed as Eqs. (10.8.9)
and (10.8.10);

Step 3 Compute the singular value decomposition T(B) = UΣVH and find the number p
of its principal singular values, namely, effective rank of T(B);

Step 4 Compute the left singular vector matrix UM = QMU of the extended central Her-
mittian symmetric matrix B and take the first p columns from UM to construct Us,
column vectors of which span the signal subspace of B;

Step 5 Apply Step 2 and Step 3 of the ES-ESPRIT algorithm 10.7.2 to Us to estimate the
DOA.

To conclude, when applying the ESPRIT algorithm to complex-valued observation data,

utilizing in addition the conjugate observation data is equivalent to doubling the data

length, which is helpful to improve the estimation accuracy of the signal parameters.



By constructing an observation data matrix (“virtual”, not necessary to be computed

actually) with central Hermitian symmetry, the singular value decomposition of a

complex-valuedmatrix is reduced to that of a real-valuedmatrix. Consequently, unitary

ESPRIT is a computationally efficient ESPRIT algorithm under the complex-valued data
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case.

10.8.2 Beamspace Unitary ESPRIT Algorithm

By replacing the element space observation datamatrix in the unitary ESPRIT algorithm

discussed previously with the beam space observation data matrix, the beamspace

unitary ESPRIT algorithm may immediately be developed from its element space coun-

terpart.

Algorithm 10.8.2. Beamspace Unitary ESPRIT Algorithm
Given the observation data x

1
(t), · · · , xM(t), t = 1, · · · , N, of a sensor array with

M elements.
Step 1 Compute the M × N beamspace observation data martix ˜X = WH

MX by means of
discrete Fourier transform;

Step 2 Divide ˜X into blocks as Eq. (10.8.8) and then compute the M × 2N real-valued
matrix T(B) according to Eq. (10.8.11) with QM and Q

2N constructed as Eqs. (10.8.9)
and (10.8.10);

Step 3 Compute the singular value decomposition T(B) = UΣVH and find the number p
of its principal singular values, namely, effective rank of T(B);

Step 4 Compute the left singular vector matrix UM = QMU of the extended central Her-
mittian symmetric matrix B and take the first p columns from UM to construct Us,
column vectors of which span the signal subspace of B;

Step 5 Apply Step 2 and Step 3 of the ES-ESPRIT algorithm 10.7.2 to Us to estimate the
DOA.

The beamspace unitary ESPRIT algorithm is first proposed by Zoltowsk, et.al. in 1996,

and is named as two-dimensional discrete Fourier transform beam space ESPRIT algo-

rithm, or 2D-DFT-BS-ESPRIT algorithm for short

[257]

.

Algorithm 10.8.3. 2D-DFT-BS-ESPRIT Algorithm
Given the observation data x

1
(t), · · · , xM(t), t = 1, · · · , N, of a sensor array with

M elements.
Step 1 Compute the M × N beamspace observation data martix Y = WH

MX by means of
discrete Fourier transform;

Step 2 Divide ˜X into blocks as Eq. (10.8.8) and then compute the M × 2N real-valued
matrix T(B) according to Eq. (10.8.11) with QM and Q

2N constructed as Eqs. (10.8.9)
and (10.8.10);
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Step 3a Find the solution Ψμ of the (M − 1)MN × d matrix equation Γμ1UsΨμ = Γμ2Us.
Among which, both Γμ1 = IN

⨂︀
Γ
1
and Γμ2 = IN

⨂︀
Γ
2
are (M − 1)N × MN real-

valued matrix, where A
⨂︀

B =

[︀
aijB

]︀
respresents the Kronecker product of two

matrix A and B;

Γ
1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 cos

(︀ π
M
)︀

0 0 · · · · · · 0 0

0 cos

(︀ π
M
)︀

cos

(︀
2π
M
)︀

0 · · · · · · 0 0

0 0 cos

(︀
2π
M
)︀

cos

(︀
3π
M
)︀

· · · · · · 0 0

...
...

...
. . .

. . .
...

...
...

...
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · cos

(︁
(M−3)π
M

)︁
cos

(︁
(M−2)π
M

)︁
0

0 0 0 0 · · · · · · cos

(︁
(M−2)π
M

)︁
cos

(︁
(M−1)π
M

)︁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Γ
2
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 sin

(︀ π
M
)︀

0 0 · · · · · · 0 0

0 sin

(︀ π
M
)︀

sin

(︀
2π
M
)︀

0 · · · · · · 0 0

0 0 sin

(︀
2π
M
)︀

sin

(︀
3π
M
)︀

· · · · · · 0 0

...
...

...
. . .

. . .
...

...
...

...
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · sin

(︁
(M−3)π
M

)︁
sin

(︁
(M−2)π
M

)︁
0

0 0 0 0 · · · · · · sin

(︁
(M−2)π
M

)︁
sin

(︁
(M−1)π
M

)︁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step 3b Find the solution Ψν of the (N − 1)NM × d matrix equation Γν1UsΨν = Γν2Us.

In which, both Γν1 = Γ
3

⨂︀
IN and Γν2 = Γ

4

⨂︀
IN are (N − 1)M × NM real-valued

matrices, and both Γ
3
and Γ

4
are (N−1)×N matrix. Moreover, the structure of matrix

Γ
3
and Γ

4
are similar to that of matrix Γ

1
and Γ

2
, respectively, while the difference

lies in that their sizes are related to N instead of M;
Step 4 Estimate the eigenvalue λi , i = 1, · · · , d of the d × d matrix Ψμ + jΨν;
Step 5 Compute the direction cosine of the i-th source i = 1, · · · , d, namely, μi =

2arctan

(︀
Re(λi)

)︀
with respective to x-axis and νn = 2 arctan

(︀
Im(λi)

)︀
with respective

to y-axis, respectively;
Step 6 Compute the azimuth ϕi = arctan

(︀
μi/νi

)︀
and the elevation θi = arctan

(︀
μi/ sinϕi

)︀

of the i-th source i = 1, · · · , d, respectively.

By comparison, the difference between the ESPRIT and MUSIC algorithms may be

concluded as follows:

(1) MUSIC algorithms estimate theDOAusing spatial spectral estimation;while ESPRIT

algorithms usually estimate the DOA through the eigenvalue or the generalized

eigenvalue.

(2) MUSIC algorithm estimate the spatial spectrum using the eigenvector correspond-

ing to the noise variance, which belongs to the noise subspace approach; ESPRIT
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algorithm estimate the spatial parameters using the (generalized) principal eigen-

value, and thus is regarded as signal subspace technique.

Summary

There are mainly two kinds of techniques in the array signal processing field, that

is beamforming and DOA estimation. This chapter first focuses on the comparison

and analysis between the beamformer and the spatial FIR filter, which is followed by

the linearly constrained adaptive beamformer. As to the DOA estimation problem, the

well-known MUSIC and ESPRIT algorithms are mainly discussed.

MUSIC is a subspace technique to estimate the spatial parameters of the signal

source, which includes root-MUSIC, FINE-MUSIC as well as their variants.

ESPRIT is a rotation invariant technique to estimate the spatial parameters of the

signal. Although none concept of the spectrum is involved, the frequency of complex

harmonic sources may be obtained with a high accuracy via its idea of generalized

eigenvalue decomposition. As for the two-dimensional planer array, several unitary

ESPRIT methods are introduced.

In addition, the element space and beam space algorithms of both the MUSIC and

ESPRIT algorithm are illustrated and compared in particular.

Exercises

10.1 Consider a two-dimensional planer arrray consists of m elements and the i-th
element position to be ri = [xi , yi]T , i = 1, · · · ,m. A narrowband planer wave s(t) with
central frequency to be ω

0
incident upon this array and the transimssion direction

vector to be α =

1

c [cos θ, sin θ]
T

, in which c is the light velocity. Assume the signal

received by the i-th element to be

zi (t) = s
(︁
t − αTri

)︁
e

jω
0(t−αTri)

, i = 1, · · · ,m,

(1) Prove that the observation signal vector of the array to be

z (t) =

⎡
⎢⎢⎣

z
1 (
t)
.

.

.

z
1 (
t)

⎤
⎥⎥⎦ = s (t) ejω0

t

⎡
⎢⎢⎣

e

j

2π
λ (x1 cos θ+y1 sin θ)

.

.

.

e

j

2π
λ (xm cos θ+ym sin θ)

⎤
⎥⎥⎦ = s(t)ejω0

ta(θ),

where a(θ) =
[︁
e

j

2π
λ (x1 cos θ+y1 sin θ)

, · · · , e

j

2π
λ (xm cos θ+ym sin θ)

]︁
T

is the steering vector of

the narrowband signal s(t).
(2) Try to give the expression of the observation signal vector of the sensor array, if

the number of narrowband signal source is p, and is transmitted independently.
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10.2 Beampattern of a beamformer w is defined as

Pw (θ) = wTa (θ) ,

and the square of its modulus is named as the power pattern of an antenna. Consider

that a spatial signal incidents on an uniform linear array consists ofM elements with a

DOA of θ
0
.

(1) Prove that the power pattern of the antenna is

|Pw (θ)|2 =

⃒⃒
⃒⃒
⃒⃒
sin

(︁
m(ϕ−ϕ

0
)

2

)︁

sin

(︁
(ϕ−ϕ

0
)

2

)︁

⃒⃒
⃒⃒
⃒⃒ ,

in which ϕ = sin θ and ϕ
0
= sin θ

0
;

(2) Let θ
0
= π/4, plot the power pattern and find its mainlobe beamwidth.

10.3 Let Rxx = E

{︁
x(t)xH(t)

}︁
be the autocovariance matrix of the observation vector

x(t) of a sensor array. The optimal beamformer is usually determined by the solution

of a constrained optimization problem expressed as

min

w
= wHRxxw,

subject to f (w) = 0,

where f (w) = 0 is some kinds of constraint.

If f (w) is chosen to be f (w) = wHa(ω
0
) − 1 = 0, this optimation problem is known

to be the miminum square error (MSE) criterion of optimal beamformer design. Prove

that the optimal beamformer designed according to the MSE criterion is

w
opt

=

R−1xxa (ω0)

a (ω0)

H R−1xxa (ω0)

.

10.4 Assume the signal vector of an sensor array to be x = xs+xn, in which, the signal
component xs and the noise component xn are statistically incorrelated. Prove that
the optimal beamformer designed under the maximum signal-to-noise ratio criterion

satisfies

Rswopt = λmax
Rswopt

where Rs = E

{︁
xsxHs

}︁
and Rs = E

{︁
xnxHn

}︁
. In other words, the optimal beamformer

vector w
opt

is the generalized eigenvector corresponding to the largest generalized

eigenvalue of matrix pencil (Rs , Rn).
10.5 Consider the received signal vector of a ULA

x (t) = s1(t)a (θ1) + s2(t)a (θ2) + n (t)

where s
1
(t) and s

2
(t) are coherent with each other, namely, s

1
(t) = c · s

2
(t) with c to be

a complex-value constant. Moreover, n (t) =
[︀
n
1
(t), n

2
(t)
]︀
T

denotes the additive white
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noise vector of the ULA. Prove that neither θ
1
nor θ

2
can be estimated from the signal

vector x (t) of the ULA.
10.6 Consider three coherent spatial narrowband signals si (t) = Ai cos (2πf0t) , i =
1, 2, 3, where f

0
= 1000Hz,and their amplitudes are A

1
= 1 , A

2
= 2 and A

3
= 3,

respecitvely. In addition, their DOAs are θ
1
= 5

∘
, θ

2
= 15

∘
and θ

3
= 30

∘
. All these

signals are received by a ULA cosists of 10 elements and the signal received by the k-th
array element is

xk (t) =
3∑︁

i=1
si (t) exp

(︂
−j

2π
λ (k − 1) d sin θi

)︂
+ nk (t) , k = 1, · · · , 10.

Let d = λ/5 and the additive white noise follow N
(︀
0, σ2

)︀
, and the sample time is

t = 1, 2, · · · , 1024. Adjust the variance σ2 of the white noise to get the SNR of 5 ,

10 , 15 , 20 , 25 , 30 dB, respectively. Try to perform the DOA estimation for 20 runs

independently using each algorithm including the basic MUSIC, the MUSIC base on

two subarray spatial-sliding technique with each consists of 9 elements as well as the

ESPRIT algorithm. And furthermore, plot the mean and mean square root error of their

DOA estimation versus SNR, respectively.

10.7 Assume the simulated observation data be generated according to

x(n) =
√
20 sin (2π0.2n) +

√
2 sin (2π0.213n) + w(n),

where w(n) is a Gaussian white noise with zero mean and unit variance, and choose

n = 1, · · · , 128.

(1) Code the program of MUSIC algorithm to conduct the simulated harmonic recovery

experiments for 50 runs, and give the statistical result of the estimation.

(2) Code the program of root-MUSIC algorithm to conduct the simulated harmonic

recovery experiments for 50 runs, and plot the statistical mean and deviation error

curve of the frequency estimation result.

10.8 Use the same simulated data as the previous exercise. Code the program of

the basic ESPRIT, SVD-TLS-based ESPRIT algorithm, respectively, and conduct the

simulated harmonic recovery experiments each for 50 runs. plot the statistical mean

and deviation error curve of the frequency estimation result.
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–neural network implementation,

444

adaptive blind signal separation, 443

adaptive filter, 193

adaptive FIR filter, 214

adaptive LMS algorithm, 217

Akachi information criterion, 154

alternative hypothesis

– one-sided alternative hypothesis, 65

– two-sided alternative hypothesis, 65

alternative hypothesis, 60

ambiguity function

– conjugate symmetry, 413

– convolution property, 415

–finite delay support, 414

–finite frequency offset support, 414

–Fourier transform, 415

– frequency offset edge characteristics,

414

– frequency-shift ambiguity, 414

–group delay, 414

– instantaneous frequency, 414

–Moyal formula, 414

–product property, 415

– time-delay edge characteristics, 414

– time-shift ambiguity, 413

– total energy retention, 414

ambiguity function, 412

analysis filter bank, 387

analytic signal, 335

analytic window function, 344

anti-causal system, 138

array signal, 497

asymptotically unbiased estimator, 32

autocorrelation function matching,

175

autocorrelation function, 3

autocovariance function equivalence,

148

autocovariance function, 6

Autoregressive (AR) parameter, 136

autoregressive (AR) process, 136

autoregressive moving average

(ARMA) model, 135

autoregressive moving average

(ARMA) process, 136

average power of the prediction error,

173

azimuth angle, 499

B distribution, 434
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backorward linear prediction filter,

169

backward linear prediction error, 169

backward linear prediction, 169

backward shift operator, 136

bandwidth 337

Bartlett-Brllinger-Rosenblatt (BBR)

formula, 278

baseband signal, 335

Bastiaan analytic method, 349

Bayes estimation, 38

beam forming 538

biased estimation, 32

BIC criterion, 155

binary hypothesis testing, 60

binary wavelet basis function, 367

biorthogonal filter bank, 390

biorthogonal multiresolution analysis,

388

biorthogonal wavelet transform

algorithm, 395

biorthogonal, 351

bit, 165

Blackman window, 135

Blackman-Tukey method, 135

blind signal extraction (BSE)

–non-orthogonal blind signal

extraction, 473

–orthogonal blind signal extraction,

473

–Sequential approximate joint

diagonalization, 476

blind signal extraction (BSE), 472

blind signal processing

– fully-blind signal processing, 438

– semi-blind signal processing, 438

blind signal processing, 438

blind signal separation (BBS)

– array signal processing model, 439

–basic assumption, 442

–basic principle, 441

–blind signal separation model, 439

blind signal separation (BBS), 438

block matrix, 473

Bonferroni multiple testing, 114

broadband beamformer, 505

Burg algorithm, 174

Burg maximum entropy spectrum

estimation, 167

Cadzow spectrum estimator, 150

CAT function, 155

Cauchy-Schwartz inequality, 196

causal system, 19, 137

cepstrum matching, 175

cepstrum, 175

Choi-Williams distribution, 428

classical spectrum estimation, 134

Cohen’s class time-frequency

distribution, 416

coherence function, 13

coherent signal, 15

colored noise, 9

complementary error function, 72

complex harmonic process, 300

conditional mean expectation, 71

conditional PDF, 70

conditional probability, 70

Cone-shaped distribution, 432

Cone-shaped kernel function, 432

configuration entropy, 176

continuous fractional Fourier

transform

– fractional Fourier transforms of some

common signals, 360

– typical properties, 359

continuous fractional Fourier

transform, 359

continuous Gabor expansion, 349

continuous short-time Fourier

transform(STFT), 342

continuous wavelet transform

–complete reconstruction condition,

365



|Index 567

– linear, 365

– redundancy, 365

– self-similarity, 365

– stability condition, 365

– stretch covariance, 365

– translation invariance, 365

continuous wavelet transform, 364

continuous-time signal, 1

contrast function, 447

convolutively linear mixing, 476

convolutively mixed sources

– Z-transform domain product mode,

477

– frequency domain blind signal

separation algorithm, 484

– frequency domain blind signal

separation, 482

–natural gradient algorithm, 482

– time domain blind signal separation,

479

–Time domain convolutively model,

477

– time-frequency domain blind signal

separation, 484

convolutively mixed sources, 477

Cramér-Rao lower bound 36

critical sampling Gabor expansion,

349

cross correlation function, 11

cross covariance function, 11

cross-talking error, 457

cubically phase-coupled harmonic

process, 301

cumulant-generating function, 261

cumulant-to-moment (C-M) transform

formula, 264

cumulative distribution function

(CDF), 71

data window, 135

Daubechies standard orthonormal

wavelet construction algorithm,

383

Daubechies symbol, 378

Daubechies wavelet, 382

decision space, 67

decorrelation LMS algorithm, 217

definitely summable, 137

deflation, 473

degree of nonstationarity, 226

demixing FIR polynomial matrix, 478

demixing matrix, 444

dependence, 449

diagonal function, 469

diagonal matrix function, 469

diagonal vector function, 469

differential entropy, 450

discrete Fractional Fourier transform

– fast approximation, 361

discrete Fractional Fourier transform,

361

discrete Gabor expansion, 355

discrete Gabor transform, 355

discrete short-time Fourier transform,

346

discrete wavelet transform coefficient

367

discrete wavelet transform, 367

discrete-time signal, 1

downsampling, 387

dual function, 351

dual Gabor basis function, 351

dual scaling function, 388

dual scaling subspace, 389

dual wavelet function, 388

dual wavelet subspace, 389

dual wavelet, 368

effective bandwidth, 340

effective time width, 340

Element Space ESPRIT 549

elevation angle, 499



energy density spectrum, 420

entropy, 165

equivariance, 442
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Equivariant Adaptive Separating via

Independence (EASI), 453

error function, 72

error sum of squares (ESS) measure,

116

ESPRIT 543

estimator, 31

evolutive spectrum, 409

exaxt frame, 374

exclusion principle, 341

extended cumulant matrix, 289

extended Prony method, 184

false-alarm rate, 61

fast orthogonal wavelet transform

algorithm, 387

filter

–finite impulse response (FIR) filter,

193

– frequency domain filter, 193

– infinite impulse response (IIR) filter,

193

– linear filter, 193

–nonlinear filter, 193

– spatial domain filter, 193

– time domain filter, 193

– transversal filter, 207

filter, 193

final prediction error (FPE) criterion,

154

finite energy signal, 340

finite frequency support, 403

finite impulse response (FIR) system,

141

finite time support, 403

first characteristic function, 260

first joint characteristic function, 261

Fisher information matrix, 38

Fisher information, 35

fitted error matrix, 294

fixed-point ICA algorithm, 458

forgetting factor, 229

forward linear prediction error, 169

forward linear prediction filter, 168,

169

forward linear prediction, 168

forward prediction error power, 170

fourth-order cumulants, 262

frame

– lower bound 373

–upper bound, 373

frame operator, 374

frame, 373

frequency-domain representation,

330

Frost linear constraint error correction

method, 518

Gabor atom, 345, 349

Gabor basis function, 345, 349

Gabor expansion coefficient, 349

Gabor wavelet, 376

Gauss-Markov theorem, 50

Gaussian signal, 277

Gaussian wavelet, 376

Gaussian window function, 352

gear-shifting approach, 222

generalized correlation method, 313

generalized inverse short-time Fourier

transform, 344

generalized jointly stationary process,

133

generalized matched filter, 198

generalized rectangular window

function, 352

generalized sidelobe canceller, 244

generalized stationary process, 133

global transformation, 329

gradient descent method, 216

Gram-Schmidt orthogonalization, 19

group delay, 12, 339
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Haar scaling function, 381

Haar wavelet, 381

Hamming window, 135

handband function, 411

Hannan-Thompson window, 314

Hanning window, 135

hard decision, 68

Heisenberg inequality, 341

higher-order statistical analysis, 259

higher-order statistics, 259

higher-order white noise, 269

Hilbert base

– completeness condition, 369

–denseness, 369

–normalization condition, 369

–orthogonality condition, 369

Hilbert base, 369

Hilbert filter, 334

Hilbert transform

– linearity 335

– scale invariance, 335

– time-shift invariance, 335

Hilbert transform pairs, 336

Hilbert transform, 334

hit rate, 61

Hochberg step-up control method, 114

Holm step-down control method 114

identifiability, 17

identity operator, 358

improved Bonferroni multiple test,

114

impulse response coefficient, 136

independent component analysis

(ICA), 448

independently identically distributed

(IID), 268

infinite impulse response (IIR) filter,

204

infinite impulse response (IIR) system,

141

innovation method, 210

innovation process, 210

innovation, 210

instantaneous frequency, 337

instantaneous gradient algorithm, 216

instantaneous gradient, 216

instantaneous linear mixing, 476

integrated bispectra

– axially integrated bispectra (AIB),

321

– circularly integrated bispectra (CIB),

321

– radially integrated bispectra (RIB),

320

integrated bispectra, 319

inverse biorthogonal wavelet

transform algorithm, 395

inverse discrete short-time Fourier

transform, 346

inverse orthogonal wavelet transform

algorithm, 387

iterative inversion algorithm

–normalized iterative inversion

algorithm, 453

iterative inversion algorithm, 453

joint diagonalization of matrices 465

joint diagonalizer, 469

joint probability density function, 3

kth order moment, 4

Kalman adaptive filtering algorithm,

213

Kalman filtering problem

–filtering, 210

–prediction, 210

– smoothing, 210

Kalman filtering problem, 209

Kalman gain, 213

Kaveh spectrum estimator, 151

Kullaback-Leibler (K-L) divergency,

449

kurtosis, 276



lag window, 135

lag, 6

large sample property, 33

lattice IIR filter, 241

learning of learning rules, 222

learning rate parameter, 221
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least mean square error (LMS)

algorithm, 217

least squares (LS) estimation, 49

lemma of the orthogonality principle,

206

Levinson recursive algorithm

(downward recursion), 173

Levinson recursive algorithm (upward

recursion), 172

likelihood function, 43

likelihood ratio function, 67

line enhancer, 238

linear frequency modulation (LFM)

signal, 422

linear mean squares (LMS) estimation,

47

linear principal component analysis

–PAST algorithm, 464

linear principal component analysis,

464

linearly constrained adaptive

beamformer

–direct form, 512

– generalized sidelobe canceling form,

512

linearly constrained adaptive

beamformer, 512

linearly constrained minimum

variance beamformer, 515

local correlation function, 402

local transformation, 329

log-likelihood function, 44

loss function

–absolute loss function, 39

–quadratic loss function, 39

–uniform loss function, 40

loss function, 39

Mallat algorithm, 385

Mallat pyramidal decomposition

algorithm, 387

Mallat pyramidal reconstruction

algorithm, 387

Malllat symbol, 378

masked cross Wigner-Ville

distribution, 485

masked Wigner-Ville distribution

(MWVD), 485

matched filter, 197

matrix pencil, 547

maximization of signal-to-noise ratio

beamformer, 514

maximum a posteriori probability

criterion, 102

maximum entropy method

–first type of maximum entropy

method (MEM-1), 176

– second type of maximum entropy

method (MEM-2), 176

maximum entropy method, 165

Maximum likelihood estimation

(MLE), 43

maximum likelihood window, 314

mean convergence, 221

mean square convergence, 221

mean square error of the forward

linear prediction, 169

mean-square ergodicity, 5

measure function

–ϕ function, 61

– inverse ϕ function, 61

measure function, 61

Mexican hat wavelet, 376

minimax criterion, 106

minimax method, 106

minimum error probability criterion,

102
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minimummean square error (MMSE)

criterion, 201

minimummean square error (MMSE),

40

minimum output energy (MOE)

criterion, 225

minmum phase, 147

minor component analysis (MCA), 463

minor component, 463

misadjustment, 227

mixing FIR filter matrix, 478

mixing FIR filter, 477

MMSE estimation, 40

modified smoothed pseudo

Wigner-Ville distribution

(MSPWD), 434

modified Yule-Walker equation, 151

moment-generating function, 260

moment-to-cumulant (M-C) transform

formula, 263

Morlet wavelet, 376

mover average (MA) process, 136

moving average (MA) parameter, 136

Moyal formula, 407

multiple hypothesis testing, 111

multiple input-multiple output (MIMO)

system, 477

multiple linear fitting, 116

multiple linear regression, 116

multiple sidelobe canceller (MSC), 513

multiresolution analysis

– existence of Riesz basis, 377

– inclusiveness 377

– translation invariance, 377

– approximation, 377

– scalable, 378

multiresolution analysis, 377

MUSIC 522

mutual ambiguity function, 415

mutual information, 449

mutual time-frequency distribution,

404

mutually exclusive hypotheses, 60

nth order stationary, 4
narrow band bandpass filter, 22

narrow band noise, 23

nat, 165

natural gradient algorithm, 452

negentropy, 450

neural network model of BSS

– feed-forward-feedback cascaded

model, 446

–hybrid model, 445

– recurrent neural network model,

446

neural network model of BSS, 446

Newton-Raphson algorithm, 164

Neyman-Pearson criterion, 78

Neyman-Pearson lemma, 83

noise thresholding, 486

non-parametric bispectrum method 1,

315

non-parametric bispectrum method 2,

315

non-parametric estimation, 30

non-parametric Power Spectrum

Estimation, 134

non-stationary signal, 329

noncausal system, 138

nonintersecting and nonempty

division, 263

nonintersecting nonempty subsets,

263

nonlinear principal component

analysis

–PAST algorithm, 464

nonlinear principal component

analysis, 464

nonorthogonal approximate joint

diagonalization

–degenerate solution, 471

– trivial solution, 471
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nonorthogonal approximate joint

diagonalization, 470

normalized kurtosis, 276

notch filter, 238

null hypothesis, 60

object identification, 319

oblique projection matrix, 474

oblique projection, 474

off function, 468

off matrix, 468

one-step prediction error, 211

operating characteristic curve, 65

operating characteristic function, 65

order of autoregressive, 136

order of moving average, 136

orthogonal approximate joint

diagonalization

–diagonal function maxmization

method, 469

–off-diagonal function minimization

method, 468

orthogonal approximate joint

diagonalization algorithm, 469

orthogonal approximate joint

diagonalization, 468

orthogonal multiresolution analysis,

387

orthogonal polynomial sequence, 18

orthogonal signal, 15

orthonormal polynomial sequence, 18

overdetermined equation, 49

oversampling Gabor expansion, 349

oversampling rate, 355

parametric estimation, 30

Parseval theorem, 195

per-comparison error rate (PCER), 112

per-family error rate (PFER), 112

periodic graph, 134

periodogram smoothing, 135

phase of radially integrated bispectra

(PRIB), 320

Pisarenko harmonic decomposition,

177

planar array coordinate system, 499

point spectrum correlation function,

418

power function, 65, 77

power of test, 76

power spectral density, 8

power spectrum equivalence, 146

predictable process, 144

principal component analysis (PCA),

461

principal component, 461

probability density function, 2

probability distribution function

(PDF), 69

probability of correct rejection, 62

probability of detection

– error probability of type I, 74

– error probability of type II, 75

probability of detection, 74

probability of false alarm, 61

probability of hit, 62

probability of missing alarm, 62

product of diagonal entries (PODE)

test, 295

Prony spectral line estimation, 187

pseudo Wigner-Ville distribution

(PWD), 432

quadratic phase-coupled harmonic

process, 301

quadratic superposition principle,

404

quasi-biorthogonal, 353

quasi-orthogonal, 353

quasiidentity matrix, 447

radar ambiguity function, 412

random signal, 1
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rank k approximation , 156

RC algorithm

–GM algorithm, 281

–Tugnait Algorithm, 283

RC algorithm, 280

real gradient, 452

real natural gradient, 452

rectangular impulse, 1

recursive least squares (RLS)

algorithm, 228

reduced interference distribution

(RID), 430

reflection coefficient, 171

regression sum of squares (RSS)

measure, 116

relative gradient, 453

residual output energy, 225

return to zero kurtosis, 276

reversible process, 138

Riesz basis, 374

Riesz lower bound, 374

Riesz upper bound, 374

risk function

–quadratic risk function, 40

–uniform risk function, 41

risk function, 39

RLS direct algorithm, 231

scalogram, 401

Schwartz inequality, 4

score function, 35

second characteristic function, 260

second joint characteristic function,

261

second-order mean square ergodic

theorem, 154

selected bispectra, 322

self time-frequency distributio, 404

semi-invariant 267

Shannon wavelet, 382

sidelobe canceller, 242

sign signal, 1

signal classification, 319

signal detection theory (SDT), 57

signal detection, 57

signal space, 66

signal-to-noise ratio, 16, 195

Simes control method, 114

sinusoidal signal, 2

skewness, 276

small sample property, 33

smoothed coherence transform

window, 313

smoothed pseudo Wigner-Ville

distribution (SPWD), 433

smoothed Wigner-Ville distribution

(SPWD), 433

snug frame, 373

soft decision, 68

space of observed samples, 66

spatial filtering, 497

spectral window, 135

spectrogram

–mean time, 346

–average frequency, 347

spectrogram, 346

state equation, 209

state vector, 209

statistical hypothesis testing, 64

statistical significance, 64

statistically independent signal, 14

steady-state residual mean square

error, 227

steering vector, 503

step signal, 1

STFT complete reconstruction

condition, 343

stochastic gradient algorithm, 451

stochastic gradient, 452

stochastic natural gradient, 452

strictly stationary signal, 4

sub-Gaussian signal, 277

sufficient statistic, 66

super-Gaussian signal, 277



SVD-TLS Algorithm, 160

synaptic weight matrix, 444

synthesis window function, 344

synthetic filter bank, 387

system identification

–white box technique, 438

–black box technique, 438

–gray box technique, 438
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system identification, 438

test statistic, 64

third-order cumulants, 262

tight frame, 373

time bandwidth product (TBWP), 508

time delay estimation, 313

time width, 337

time-domain representation

–nonlinear time-frequency

representation, 332

– linear time-frequency representation,

332

time-domain representation, 330

time-frequency aggregation, 422

time-frequency coherence function,

409

time-frequency distribution, 402

time-frequency representation, 332

time-invariant, 5

time-variant, 5

tone signal, 425

total least squares (TLS) method, 157

total sum of squares (TSS) measure,

116

transfer function, 20

transform domain LMS algorithm, 220

two-scale difference equation, 378

type I error, 63

type II error, 63

unbiased estimation, 31

uncertainty of the source signal

amplitude, 440

uncertainty of the source signal

ordering, 440

uncertainty principle, 341

uncorrelatedness, 14

underdetermined equation, 49

undersampling Gabor expansion, 349

uniform linear array coordinate

system, 500

uniformly most power (UMP) test, 88

uniformly most power criterion, 78

uniformly most power test statistic, 89

Unitary ESPRIT 556

upsampling, 387

variance, 7

wavelet

–normalization condition, 364

–admissible condition, 363

– admissible wavelet, 364

–biorthogonal wavelet, 375

– compact support, 372

–non-orthogonal wavelet, 375

– orthogonal wavelet, 375

– orthogonality, 372

– semiorthogonal wavelet, 375

– smoothness, 372

– symmetry, 372

– vanishing moment, 371

wavelet analysis, 368

wavelet, 362

weighted least squares estimation, 51

well-determined equation, 49

white noise, 9

wide-sense stationary, 4

Wiener-Hopf equation, 207

Wigner-Ville Distribution, 405

Wigner-Ville spectra, 409

Wilks distribution, 122

Wishart distribution, 122

Wold decomposition theorem, 140

Wold decomposition, 146
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Zak transform, 353 Zhao-Atlas-Marks distribution, 432
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