
WAVE PROPAGATION 
THEORIES AND 
APPLICATIONS 

Edited by Yi Zheng 



WAVE PROPAGATION 
THEORIES AND 
APPLICATIONS 

 
Edited by Yi Zheng 

 

  



 
 
 
 
 
Wave Propagation Theories and Applications 
http://dx.doi.org/10.5772/3393 
Edited by Yi Zheng 
 
Contributors 
Yi Zheng, Xin Chen, Aiping Yao, Haoming Lin, Yuanyuan Shen, Ying Zhu, Minhua Lu, Tianfu 
Wang, Siping Chen, Mohamad Abed A. LRahman Arnaout, Alexey Androsov, Sven Harig, 
Annika Fuchs, Antonia Immerz, Natalja Rakowsky, Wolfgang Hiller, Sergey Danilov, Hitendra K. 
Malik, Alexey Pavelyev, Alexander Pavelyev, Stanislav Matyugov, Oleg Yakovlev, Yuei-An Liou, 
Kefei Zhang, Jens Wickert, Mir Ghoraishi, Jun-ichi Takada, Tetsuro Imai, Michal Čada, Montasir 
Qasymeh, Jaromír Pištora, Z. Menachem, S. Tapuchi, Kazuhito Murakami, Émilie Masson, Pierre 
Combeau, Yann Cocheril, Lilian Aveneau, Marion Berbineau, Rodolphe Vauzelle, Jorge Avella 
Castiblanco, Divitha Seetharamdoo, Marion Berbineau, Michel Ney, François Gallée, Shahrooz 
Asadi, Paulo Roberto de Freitas Teixeira, Somsak Akatimagool, Saran Choocadee, Hassan 
Yousefi, Asadollah Noorzad 
 
Published by InTech 
Janeza Trdine 9, 51000 Rijeka, Croatia 
 
Copyright © 2013 InTech 
All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, 
which allows users to download, copy and build upon published articles even for commercial 
purposes, as long as the author and publisher are properly credited, which ensures maximum 
dissemination and a wider impact of our publications. After this work has been published by 
InTech, authors have the right to republish it, in whole or part, in any publication of which they 
are the author, and to make other personal use of the work. Any republication, referencing or 
personal use of the work must explicitly identify the original source. 
 
Notice 
Statements and opinions expressed in the chapters are these of the individual contributors and 
not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy 
of information contained in the published chapters. The publisher assumes no responsibility for 
any damage or injury to persons or property arising out of the use of any materials, 
instructions, methods or ideas contained in the book. 
  
Publishing Process Manager Marina Jozipovic 
Typesetting InTech Prepress, Novi Sad 
Cover InTech Design Team 
 
First published January, 2013 
Printed in Croatia 
 
A free online edition of this book is available at www.intechopen.com 
Additional hard copies can be obtained from orders@intechopen.com 
 
 
Wave Propagation Theories and Applications, Edited by Yi Zheng  
    p. cm.  
ISBN 978-953-51-0979-2  



 



 
 

 
 

 
 
Contents 
 

Preface IX 

Chapter 1 Shear Wave Propagation in Soft Tissue  
and Ultrasound Vibrometry 1 
Yi Zheng, Xin Chen, Aiping Yao, Haoming Lin, Yuanyuan Shen, 
Ying Zhu, Minhua Lu, Tianfu Wang and Siping Chen 

Chapter 2 Acoustic Wave Propagation  
in a Pulsed Electro Acoustic Cell 25 
Mohamad Abed A. LRahman Arnaout 

Chapter 3 Tsunami Wave Propagation 43 
Alexey Androsov, Sven Harig, Annika Fuchs, Antonia Immerz, 
Natalja Rakowsky, Wolfgang Hiller and Sergey Danilov 

Chapter 4 Electromagnetic Waves and Their Application  
to Charged Particle Acceleration 73 
Hitendra K. Malik 

Chapter 5 Radio Wave Propagation Phenomena  
from GPS Occultation Data Analysis 113 
Alexey Pavelyev, Alexander Pavelyev, Stanislav Matyugov,  
Oleg Yakovlev, Yuei-An Liou, Kefei Zhang and Jens Wickert 

Chapter 6 RadioWave Propagation Through Vegetation 155 
Mir Ghoraishi, Jun-ichi Takada and Tetsuro Imai 

Chapter 7 Optical Wave Propagation in Kerr Media 175 
Michal Čada, Montasir Qasymeh and Jaromír Pištora 

Chapter 8 Analyzing Wave Propagation in Helical Waveguides  
Using Laplace, Fourier, and Their Inverse Transforms,  
and Applications 193 
Z. Menachem and S. Tapuchi 



VI Contents 
 

Chapter 9 Transient Responses on Traveling-Wave Loop  
Directional Filters 221 
Kazuhito Murakami 

Chapter 10 Ray Launching Modeling in Curved Tunnels  
with Rectangular or Non Rectangular Section 239 
Émilie Masson, Pierre Combeau, Yann Cocheril, Lilian Aveneau, 
Marion Berbineau and Rodolphe Vauzelle 

Chapter 11 Electromagnetic Wave Propagation Modeling  
for Finding Antenna Specifications and Positions  
in Tunnels of Arbitrary Cross-Section 261 
Jorge Avella Castiblanco, Divitha Seetharamdoo,  
Marion Berbineau, Michel Ney and François Gallée 

Chapter 12 Efficient CAD Tool for Noise Modeling  
of RF/Microwave Field Effect Transistors 289 
Shahrooz Asadi 

Chapter 13 A Numerical Model Based on Navier-Stokes  
Equations to Simulate Water Wave Propagation  
with Wave-Structure Interaction 311 
Paulo Roberto de Freitas Teixeira 

Chapter 14 Wave Iterative Method for Electromagnetic Simulation 331 
Somsak Akatimagool and Saran Choocadee 

Chapter 15 Wavelet Based Simulation of Elastic Wave Propagation 17 
Hassan Yousefi and Asadollah Noorzad 

 





 

 
 

 
 
 
Preface 
 

Wave is one of the basic physics phenomena observed by mankind since ancient time: 
water waves in the forms of ocean tides to ripples in a bucket, transverse body waves 
of snakes, longitudinal body waves of earth worms, sound echoes in caves, shock 
waves of earthquakes, vibrations of drums and strings, lights from rising sun and 
falling moon, reflections of light from shining surfaces, and many other forms of 
mechanical and electromagnetic waves. Perhaps the most commonly experienced 
wave by us is the sound wave used for oral communications.  

Wave is also one of the best-studied physics phenomena that can be well described by 
mathematics.  In fact, the study of waves and wave propagation was a driving force 
for advancing the differential equation and vector calculus. The study may be the best 
illustration of what is “science”, which approximates the nature by laws using human 
defined symbols, operators, and languages. One of such examples is the Maxwell’s 
equations for electromagnetic wave. 

Good understanding of waves and wave propagation can help us improve the quality 
of life and provide a pathway for future explorations of the nature and universe. In the 
past, this good understanding enabled the inventions of medical ultrasound, CT, MRI, 
and telecommunications technologies that shaped societies and global economy. In the 
future, it will continue to have a profound impact in the progress of analog and digital 
communications that constantly change the world. The communication between 
people and countries has reduced culture barriers and improved mutual 
understanding for global peace.  

As the wave exists everywhere in our daily life, it can be primarily divided in two 
forms: mechanical wave and electromagnetic wave. The basic parameters of waves 
are: amplitudes, phase, frequency, wave length, etc. The characteristics of wave 
propagation in different medium include: propagation speed, transmission, radiation, 
attenuation, reflection, scattering, diffraction, dispersion, etc. Knowledge of waves and 
wave propagation has been utilized in designs of telecommunications devices, 
wireless communications, machines, musical instruments, constructions, medical 
devices, imaging devices, numerous sensor devices, etc.  



X Preface 
 

One of the objectives of this book is to introduce the recent studies and applications of 
wave and applications of wave theories in various fields. Although the work 
presented in the book represents only a very small percentage of samples of the 
studies in recent years, it introduces some exciting applications and theories to those 
who have general interests in waves and wave propagation, and provides some 
insights and references to those who are specialized in the areas presented in the book. 

Most of the chapters present the theories and applications of electromagnetic waves 
ranged from radio frequencies to optics, while the first three chapters are related to 
mechanical waves from tsunami to ultrasound and the last several chapters discuss 
numerical methods and modeling for wave simulations. Variety of theories and 
applications presented in the book include ultrasound vibrometry for measuring shear 
wave propagations in tissue, wave propagation analysis for radio-occultation remote 
sensing, acoustic wave propagation induced by the pulsed electro-acoustic technique, 
THz rays and applications to charged particle acceleration, wave propagation in 
helical waveguides, traveling-wave loop directional filters, electromagnetic wave 
propagation and antenna considerations in tunnels, RF wave propagation through 
vegetation, optical wave propagation in Kerr media, new CAD model for microwave 
FET, and numerical methods and modeling for wave simulations, etc. 

We sincerely thank all authors, from around the world, for their contributions to this 
book. I also appreciate Ms. Marina Jozipovic and Ms. Romana Vukelic for their great 
work to make this publication possible.   

 
Yi Zheng, 郑翊 

Department of Electrical and Computer Engineering, 
St. Cloud State University,  

Minnesota,  
USA 



 



Chapter 1 

Shear Wave Propagation in Soft  
Tissue and Ultrasound Vibrometry 

Yi Zheng, Xin Chen, Aiping Yao, Haoming Lin, Yuanyuan Shen,  
Ying Zhu, Minhua Lu, Tianfu Wang and Siping Chen 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/48629 

1. Introduction 

Studies have found that shear moduli, having the dynamic range of several orders of 
magnitude for various biological tissues [1], are highly correlated with the pathological 
statues of human tissue such as livers [2, 3]. The shear moduli can be investigated by 
measuring the attenuation and velocity of the shear wave propagation in a tissue region. 
Many efforts have been made to measure shear wave propagations induced by different 
types of force, which include the motion force of human organs, external applied force [4], 
and ultrasound radiation force [5].  

In past 15 years, ultrasound radiation force has been successfully used to induce tissue motion 
for imaging tissue elasticity. Vibroacoustography (VA) uses bifocal beams to remotely induce 
vibration in a tissue region and detect the vibration using a hydrophone [5]. The vibration 
center is sequentially moved in the tissue region to form a two-dimensional image. Acoustic 
Radiation Force Imaging (ARFI) uses focused ultrasound to apply localized radiation force to 
small volumes of tissue for short durations and the resulting tissue displacements are mapped 
using ultrasonic correlation based methods [6]. Supersonic shear image remotely vibrates 
tissue and sequentially moves vibration center along the beam axis to create intense shear plan 
wave that is imaged at a high frame rate (5000 frames per second) [7]. These image methods 
provide measurements of tissue elasticity, but not the viscosity.  

Because of the dispersive property of biological tissue, the induced tissue displacement and 
the shear wave propagation are frequency dependent. Tissue shear property can be 
modeled by several models including Kelvin-Voigt (Voigt) model, Maxwell model, and 
Zener model [8]. Voigt model effectively describes the creep behavior of tissue, Maxwell 
model effectively describes the relaxation process, and the Zener model effectively describes 
both creep and relaxation but it requires one extra parameter. Voigt model is often used by 
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many researchers because of its simplicity and the effectiveness of modeling soft tissue. 
Voigt model consists of a purely viscous damper and a purely elastic spring connected in 
parallel. For Voigt tissue, the tissue motion at a very low frequency largely depends on the 
elasticity, while the motion at a very high frequency largely depends on the viscosity [8]. In 
general, the tissue motion depends on both elasticity and viscosity, and estimates of 
elasticity by ignoring viscosity are biased or erroneous.  

Back to the year of 1951, Dr. Oestreicher published his work to solve the wave equation for 
the Voigt soft tissue with harmonic motions [9]. With assumptions of isotropic tissue and 
plane wave, he derived equations that relate the shear wave attenuation and speed to the 
elasticity and viscosity of soft tissue. However, Oestreicher’s method was not realized for 
applications until the half century later. 

In the past ten years, Oestreicher’s method was utilized to quantitatively measure both 
tissue elasticity and viscosity. Ultrasound vibrometry has been developed to noninvasively 
and quantitatively measure tissue shear moduli [10-16]. It induces shear waves using 
ultrasound radiation force [5, 6] and estimates the shear moduli using shear wave phase 
velocities at several frequencies by measuring the phase shifts of the propagating shear 
wave over a short distance using pulse echo ultrasound [10-16]. Applications of the 
ultrasound vibrometry were conducted for viscoelasticities of liver [16], bovine and porcine 
striated muscles [17, 18], blood vessels [12, 19-21], and hearts [22]. A recent in vivo liver 
study shows that the ultrasound vibrometry can be implemented on a clinical ultrasound 
scanner of using an array transducer [23].  

One of potential applications of the ultrasound vibrometry is to characterize shear moduli of 
livers. The shear moduli of liver are highly correlated with liver pathology status [24, 25]. 
Recently, the shear viscoelasticity of liver tissue has been investigated by several research 
groups [23, 26-28]. The most of these studies applied ultrasound radiation force in liver 
tissue regions, measured the phase velocities of shear wave in a limited frequency range, 
and inversely solved the Voigt model with an assumption that liver local tissue is isotropic 
without considering boundary conditions. Because of the boundary conditions, shear wave 
propagations are impacted by the limited physical dimensions of tissue. Studies shows that 
considerations of boundary conditions should be taken for characterizing tissue that have 
limited physical dimensions such as heart [22], blood vessels [19-21], and liver [8], when 
ultrasound vibrometry is used.  

2. Shear wave propagation in soft tissue and shear viscoelasticity 

The shear wave propagation in soft tissue is a complicated process. When the tissue is 
isotropic and modeled by the Voigt model, the phase velocity and attenuation of the shear 
wave propagation in the tissue are associated with tissue viscoelasticity. Oesteicher 
documented the detailed derivations of the solution of the sound wave equation for Voigt 
tissue [9]. We extended the solution to other models [8] for the applications of ultrasound 
vibrometry [8]. In this section, we provide the simplified descriptions of the shear wave 
propagation in tissue modeled by Voigt model, Maxwell model, and Zener model.  
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Assuming that a harmonic motion produces the shear wave that propagates in a tissue 
region, the phase velocity cs(ω) of the wave can be estimated by measuring the phase shift 
Δϕ over a distance Δz: 

 ( ) /sc z      (1) 

The phase velocity is associated with the tissue property, which can be found by solving the 
wave equation with a tissue viscoelasticity model. For a small local region, the wave is 
approximated as a uniform plane wave, which has a simple form in isotropic medium: 

 
2

2
2 0d k

dz
 

S S           (2) 

where S is the phasor notation of the displacement of the time-harmonic field of the shear 
wave, z is the wave propagation distance which is perpendicular to the direction of the 
displacement of the shear wave, and the complex wave number is 

 r ik k ik   (3) 

The solution of (2) is a standard solution of a homogeneous wave equation: 

 0ˆ ikzxS eS  (4) 

where S0 is the displacement at z = 0, ݔො is an unit vector in x direction. The plane wave is 
independent in y direction. The real time time-harmonic shear wave is: 

   0ˆ ˆ( , , ) Re cos( )ik zi t
rS z t x e xS e t k z   S   (5) 

Although attenuation coefficient α = –ki carries information of the complex modulus of 
tissue, the phase measurement is often more reliable because it is relatively independent to 
transducers and measurement systems. The phase velocity is the speed of the wave 
propagating at a constant phase, which is a solution of ( ) / 0rd t k z dt   : 

 ( ) /s r
dzc k
dt

    (6) 

The complex wave number k of the plane shear wave is a function of the frequency and the 
complex modulus of the medium [9]: 

 2 /k     (7) 

where ρ is the density of the tissue and the complex modulus that connects stress σ and 
strain ε: 

 1 2/ i        (8) 
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which describes the relationship between stress and strain in the Voigt tissue. The Voigt 
model consists of an elastic spring μ1 and a viscous damper μ2 connected in parallel, which 
represents the same strain in each component as shown in Figure 1.  

 
Figure 1. Voigt model consists of an elastic spring μ1 and a viscous damper μ2 connected in parallel. 

The relation between stress σ and strain ε of the Maxwell tissue is:  

 1 2
d
dt
      (9) 

For a harmonic motion, (9) becomes: 

 1 2( )i      (10) 

which is the same as (8). Substituting (8) into (7) and finding the real part of the wave 
number, the phase velocity of the shear wave in Voigt tissue can be obtained from (6):  

 
2 2 2
1 2

2 2 2
1 1 2

2( )
( )

(
sc

  


    




 
  (11) 

The elasticity μ1 and viscosity μ2 are two constants and independent to the frequency.  

A numerical example of phase velocity of Voigt tissue is shown in Figure 2. Equation (11) 
shows that cs(ω) increases at the rate of square  root of the frequency and there is no the 
upper limit for cs(ω). As shown in the Figure 2, the phase velocity is determined by both 
elasticity and viscosity. Ignoring the viscosity introduces errors and biases for elasticity 
estimates. However, examining the velocities at the extreme frequencies is useful for 
understanding the model and obtaining initial values for numerical solutions of μ1 and μ2. 
In tissue characterization applications, μ1 is often in the order of a few thousands and μ2 is 
often less than 10. Thus, when the wave frequency is very low (less than a few Hz),  

 2
1 ( )            very low .sc      (12) 

When the frequency is very high (higher than a few tens of kHz),  

 2
2 ( ) / 2             very high .sc       (13) 
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Figure 2. Plot of phase velocity of shear wave having μ1=3 kpa and μ2=1 pa.s in Voigt tissue 

A broad frequency range is needed to accurately estimate both μ1 and μ2. (12) and (13) are 
only useful for estimating initial values for the numerical solutions of (11) with measured 
velocities, and they should not be used for final estimates.  

Equation (7) can be used for other models for the plane shear wave having a single frequency. 
The Maxwell model consists of a viscous damper η and an elastic spring E connected in series, 
which represents the same stress in each component, as shown in Figure 3.  

 
Figure 3. Maxwell model consists of a viscous damper η and an elastic spring E connected in series. 

The relation between stress σ and strain ε of the Maxwell tissue is: 

 1 d d
E dt dt

  


   (14) 

For a harmonic motion, (14) becomes: 

 
2 2 2

2 2 2 2 2 2
i E E Ei

E i E E
    
     
   

  
  (15) 

which is the complex shear modulus of the Maxwell model. Unlike the Voigt model, real 
and imaginary components of (15) are functions of the frequency. When the frequency is 
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fixed, the complex modulus is a function of ߟ and E. Substituting (15) into (7), the shear 
wave speed in Maxwell medium can be found from (6): 

 
2 2 2

2( )
(1 1

s
Ec
E


  


 

 (16) 

Equation (16) can be also obtained by replacing μ1 and μ2 of (8) with the real and imaginary 
terms of (15).  

A numerical example of phase velocity of Maxwell tissue is shown in Figure 4. Note that 
cs(ω) gradually increases to a limit that is proportional to the square  root of the elasticity. As 
shown in the Figure 4, the phase velocity is determined by both elasticity and viscosity. 
However, examining the velocities at the extreme frequencies is useful for understanding 
the model and obtaining initial values for numerical solutions of E and η. 2( )sE C  for a 
very large ω, 2( ) / 2sC     for a very small ω,  cs(ω) is zero for ω=0, and cs(ω) approaches 

/E   when ω is very high.  

 
Figure 4. Plot of phase velocity of shear wave having E = 7.5 kpa and η = 6 pa.s in Voigt tissue 

 
Figure 5. Zener model adds an elastic spring E1 to the Maxwell model (η, E2) in parallel. 
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The Zener model adds an additional elastic spring, having the elasticity of E1, to the Maxwell 
model (η, E2) in parallel. The Zener model combines the features of the Voigt model and the 
Maxwell models and describes both creep and relaxation. Based on the Maxwell model, the 
complex shear modulus of the Zener model can be readily obtained: 

 
2 2 2

2 2 2
1 1 2 2 2 2 2 2

2 2 2

i E E E
E E i

E i E E
   


    

    
  

  (17) 

Substituting (17) into (7), the shear wave speed in Zener medium can be found from (6): 

 
2 2 2 2 2

1 2 1 2
2 2 2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 2

2( ( ) )
( )

( ( ) ( ( ) )( )
s

E E E E
c

E E E E E E E E E

 


      

 


     
         (18) 

Equation (18) shows that 2
1 2 ( )sE E C    for a very large ω, 2

1 ( )sE C   for a very small 
ω, η is proportional to the slop of the speed curve, and cs(ω) approaches  1 2 /E E   when 
ω is very high. A numerical example of phase velocity of Zener tissue is shown in Figure 6. 

 
Figure 6. Plot of phase velocity of shear wave having E1 = 4.5 kpa, η = 1.5 pa.s, and E2 =7.5 ka in Zener 
tissue 

3. Ultrasound vibrometry 

Ultrasound vibrometry has been developed to induce shear wave in a tissue region, 
measure phase velocity of the shear wave, and calculate the tissue viscoelasticity based on 
(11), or (16), or (18). The basics of the ultrasound vibrometry are described in details in 
references [11-17, 32]. Ultrasound vibrometry induces tissue vibrations and shear waves 
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using ultrasound radiation force and detects the phase velocity of the shear wave 
propagation using pulse-echo ultrasound. 

From the solution of the wave equation, equation (5) can be represented by a harmonic 
motion at a location, 

 ( ) sin( )s sd t D t    (19)  

where s=2fs is the vibration angular frequency, the vibration displacement amplitude D  and 
phase s depend on the radiation force and tissue property. (19) is another representation of 
(5). Applying detection pulses to the motion that causes the travel time changes of detection 
pulses and phase shift changes of the return echoes, the received echo becomes [11]: 

  0 0( , ) ( , ) cos sin( ( ) )s sr t k g t k t t kT               (20) 

where T is the period of the push pulses shown in Figure 9 and the modulation index is: 

 02 cos( ) /D c     (21) 

where c is the sound propagation speed in the tissue, 0 is the angular modulation frequency 
of detection tone bursts, g(t,k) is the complex envelope of r(t,k), 0 is a transmitting phase 
constant and   is an angle between the ultrasound beam and the tissue vibration direction.  

Received echo r(t,k) is a two-dimensional signal. When one detection pulse is transmitted, its 
echo from the different depth of tissue is received as t changes. In medical ultrasound field, 
variable t is called fast time. When multiple detection pulses are transmitted, the multiple 
echo sequences are received as k changes. Variable k is called as slow time. r(t,k) in fast-time 
t is called as fast-time signal to represent the echo signal in beam axial direction or the depth 
location in the tissue. Its variation in slow-time k is called slow-time signal to represent the 
signals from one echo to another echo. If there is no tissue motion, r(t,k)  will be the same for 
different k values. The tissue motion information is carried by modulation index β and 
phase s. A quadrature demodulator is used to obtain β and phase s. 

As shown in Figure 7, a quadrature demodulator is applied to extract the motion information 
from r(t,k). The complex envelop consists of the in-phase and quadrature term [29]: 

,ݐ)݃  ݇) = ,ݐ)ܫ ݇) + ,ݐ)݆ܳ ݇) (22) 

Operating on the in-phase and quadrature components I and Q with input r(t,k), we obtain 
the tissue motion in slow time [11]: 

  1 1( , ) tan ( / ) mean of tan ( / ) sin ( )A s ss t k Q I Q I t kT                         (23) 

A phase constant can be added to the local oscillator of the demodulator [11] to avoid zeros 
in I. The signal extracted by (23) is proportional to the displacement of a harmonic motion 
induced by the push pulses.  
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Figure 7. Block diagram of quadrature demodulator 

Another motion detection method [14] uses a complex vector that is a multiplication 
between two successive complex envelops [29] 

        *,   i ,  , 1 ,X t k Y t k g t k g t k    (24) 

Thus, the motion velocity in slow time can be obtained, 

  1 ( , )( , ) tan 2 sin( / 2)cos ( ) / 2
( , )B s s s s

Y t ks t k T t kT T
X t k

      
      

 
   (25)  

which is proportional to the velocity of the tissue harmonic motion for ωsT/2 << 1. Thus, 
sin(ωsT/2) ≈ ωsT/2 and the velocity amplitude is sT  , which is also 0/ 2 cos( )s sD c     
because of the derivative relation between (19) and (25).. 

The slow-time signal s(t,k) represents the tissue motion at a particular location, its 
amplitudes and phases change over distances are described by (5). The measurements of 
amplitudes and phases at two locations are used to calculate attenuation and phase velocity. 
As shown in (1), the phase velocity is related to the frequency and inversely related to the 
phase difference Δϕ over a short distance Δd. Thus, estimating the phase differences is the 
key step of the ultrasound vibrometry. The phase difference can be obtained by comparing 
phases ϕs of the slow-time signals s(t,k) at two locations z and z+Δz: 

ϕ߂  = 	ϕୱ(z) − 	ϕୱ(z + Δz) (26) 

There are several methods to estimate the phases of slow-time signals: Fourier transform, 
correlation method, and Kalman filter [14]. The estimated phase of the slow-time signal at a 
location include some phase constants due to the tissue location t and different pulse k, and 
phase ϕs = -krz. Given a tissue location (axial location) in fast time, all constant phases are 
removed by (26) except the phase shift ߂ϕ in the lateral location. 

Ultrasound vibrometry is developed to induce the shear wave described by (19) and detect 
the phase shift ߂ϕ described by (26) for characterizing the tissue shear property using (1) 
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and (11), (14), and (16). Ultrasound virbometry uses interleaved periodic pulses to induce 
shear wave and detects the phase velocity of shear wave propagation using pulse-echo 
ultrasound. Figure 8 shows an application setup of the ultrasound vibrometry. An 
ultrasound transducer transmits push beams to a tissue region to induce vibrations and 
shear waves. The push beams are periodic pulses that have a fundamental frequency fv and 
harmonics nfv. During the off period of the push pulses, the detection pulses are transmitted 
and echoes are received by the transducer at lateral locations that are away from the center 
of the radiation force applied, as shown in Figure 9. In some of our applications, 
fundamental frequency fv of the push pulses is in the order of 100 Hz, and pulse repetition 
frequency fPRF of the detection pulses is in the order of 2 kHz. 

 
Figure 8. Array transducer for transmitting ultrasound radiation force and detecting shear wave 
propagation 

 
Figure 9. Interleaved push pulses for ultrasound radiation force and detection pulses 

There are different variations of the excitation pulses beside the on-off binary pulses: 
continuous waves [11], non-uniform binary pulses [15], and composed pulses or Orthogonal 
Frequency Ultrasound Vibrometry (OFUV) pulses [30, 31]. The OFUV pulses can be 
designed to enhance higher harmonics to compensate the high attenuations of high 
harmonics. The OFUV pulses have multiple binary pulses in one period of the fundamental 
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period [30, 31]. Other variations of the ultrasound vibrometry include consideration of 
background motion and boundary conditions that require more complicated models of 
tissue motions [13] and wave propagations [22]. 

4. Finite element simulation of shear wave propagation 

Simulations using Finite Element Method (FEM) were conducted to understand the shear 
wave propagation in tissue. The simulation tool is COMSOL 4.2. The simulated tissue region 
is a two-dimensional axisymmetric finite element model of a viscoelastic solid with a 
dimension of 100 mm × 100 mm, as shown in Figure 10. The size of domain Ω1 is 100 mm × 
80 mm. The domain is divided to 25,371 mesh elements and the average distance between 
adjacent nodes is 0.95 mm. The schematic diagram shown in Figure 10 includes simulation 
domains (Ω1, Ω2, Ω3) and boundaries (B1,B2). A line source (with a length of 60 mm) in the 
left of the solid represents as an excitation source of the shear wave.  

 
Figure 10. Schematic diagram of simulated tissue region (domain) and  

All domains had the same material property of the Voigt tissue and all boundaries were set 
free to avoid reflections. The material parameters were: density of 1055 kg/m3, Poisson’s ratio 
of 0.499, and Voigt rheological model of the viscoelasticity model. The Voigt model was 
converted and represented in the form of Prony series. The store modulus and loss modulus 
were calculated using frequency response analysis for demonstrating the conversion of the 
Prony series. The complex shear modulus of the Voigt model is the same as (8): μ(߱) = ଵߤ	 + ݅߱μଶ 

where elasticity modulus µ1 and viscosity modulus µ2  were set to be 2 kPa and 2 Pa*s, 
respectively, in this simulation.  

Transient analysis was used and the time step for solver was one eightieth of the time period 
of the shear wave. Uniform plane shear wave was produced by oscillating the line source 
with ten cycles of harmonic vibrations in the frequency range from 100 Hz to 400 Hz with a 
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maximal displacement in the order of tens of micrometers. The displacements of the shear 
wave were recorded for post-processing at 8 locations, 1 mm apart, along a straight line that 
is normal to the line source. The phases of the wave were estimated by the Kalman filter and 
the average phase shifts were estimated using a linear fitting method [14]. The estimates of 
shear wave velocity and viscoelasticity are shown in Table 1.  
 

 
 

Shear Wave Velocity (m/s) Viscoelasitcity Estimation 

100Hz 200Hz 300Hz 400Hz µ1(kPa) µ2(Pa*s) 
Reference value 1.5574 1.9372 2.3470 2.7362 2 2 
Measurement 1 1.46238 1.91972 2.37439 2.66872 1.69 1.90 
Measurement 2 1.50648 1.94791 2.42833 2.86637 1.63 2.10 
Measurement 3 1.52748 1.92955 2.46275 2.81089 1.74 2.10 

Average 1.49479 1.9216 2.44359 2.77296
1.69±0.056 2.03±0.11 Std 0.02828 0.02455 0.05672 0.08517

Table 1. Estimated Viscoelasticity of Voigt tissue having µ1 = 2 kPa and µ2 = 2 Pa*s 

The shear wave velocities in red represent the theoretical values of wave speeds in Voigt 
tissue. The estimates of the speeds and viscoelasticity moduli of three simulations are shown 
by three sets of the measurement. Their average values are close to the theoretical values  
as shown in Figure 11, except the elasticity µ1. Note that the differences between the average 
velocities and the reference velocities are less than 9% but the estimate error of µ1 is 15.5%. It  
is due to the fact that viscoelasticity moduli are proportional to the square of the phase 
velocity. Any small estimation errors of phase introduce large biases in the estimates of 
viscoelasticity, which is an intrinsic weakness of the ultrasound vibrometry, demonstrated by 
this example.  

100 150 200 250 300 350 400

1.2

1.5

1.8

2.1

2.4

2.7

3.0

3.3

 

Sh
ea

r W
av

e 
Ve

lo
ci

ty
 (m

/s
)

Frequency (Hz)

 Reference Values
 Estimation Values

 
Figure 11. Estimated shear phase velocities and set reference values 
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5. Experiment system and results 
Experiments were conducted for evaluating ultrasound vibrometry. The diagram of an 
experiment system is shown in Figure 12. This system mainly consists of a transmitter to 
produce the ultrasound radiation force and a receiver unit using a SonixRP system. Two 
arbitrary signal generators were utilized to generate the system timing and excitation 
waveform. The waveform was amplified by a power amplifier having a gain of 50 dB to drive 
an excitation transducer for inducing vibrations in a tissue region. The SonixRP system was 
applied to detect the vibration using pulse-echo mode with a linear array probe. The SonixRP 
is a diagnostic ultrasound system packaged with an Ultrasound Research Interface (URI). It 
has some special research tools which allow users to perform flexible tasks such as low-level 
ultrasound beam sequencing and control. The center frequency of the excitation transducer 
was 1 MHz. The center frequency of the linear array probe was 5 MHz and the sampling 
frequency of SonixRP was 40 MHz. The excitation transducer and detection transducer were 
fixed on multi-degree adjustable brackets and were controlled by three-axis motion stages.  

 
Figure 12. Block diagram of the experiment system 

The picture of experiment system setup is shown in Figure 13. The left lobe of a SD rat liver 
was embedded in gel phantom and placed in water tank. Before experiment, the SonixRP 
URI was run first to preview the internal structure of the liver. In the interface shown in 
Figure 14, the B-mode image and RF signal of a selected scan line were displayed together to 
help users selecting test points inside the liver tissue. The positions of the excitation 
transducer and the detection probe were adjusted to focus on two locations in the liver at 
the same vertical depth.  
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Figure 13. Experiment setup with SonixRP. 

 
Figure 14. Ultrasound Research Interface (URI) of SonixRP 
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Computer programs based on the software development kit (SDK) of SonixRP were 
developed for detecting the vibrations and shear wave propagation. The programs defined a 
specific detection sequencing and timing that repeatedly transmit pulses to a single scan line 
and repeatedly receive the echoes with a PRF of 2 KHz. The timing of the excitation and 
detection pulses is shown in Figure 15. The pulse repetition frequency of the excitation 
pulses was 100 Hz. 

 
Figure 15. Timing sequence of the experiment system 

An example of the typical fast-time RF ultrasound signal acquired by the SonixRP is shown 
in Figure 16. Figure 16a shows the echo through the entire liver tissue region, while Figure 
16b shows the echo around the focus point (75 mm in depth) in the liver tissue.  

 
Figure 16. Ultrasound RF echo (a) through the entire liver and (b) around the focus point in the liver 
tissue 

The vibration of shear wave at a location was extracted from I and Q channels using the I/Q 
estimation algorithm described by equation (23). Figure 17a shows the vibration 
displacement and Figure 17b shows the spectral amplitude of the vibration.  
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Figure 17. Displacements of the vibration and its frequency spectrum 

The extracted displacement signal sB(t,k) was processed by the Kalman filter [14] that 
simultaneously estimates phases of the fundamental frequency and all harmonics. Figure 18 
shows estimated vibration phase shifts of the first four harmonics over a distance up to 4 
mm. Linear regression was conducted to calculate the shear wave propagation speed for 
each frequency. 

 
Figure 18. Estimates of phase shifts over distances using vibration displacements and Kalman filter 
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Figure 19 shows the phase velocities at different harmonics and the fitting curves of three 
models: Voigt, Maxwell, and Zener models. The fitting values are shown in Table 2. As 
shown by the figure and table, the Voigt model and Zener model fit the measurements of 
the phase velocity of the liver tissue better than the Maxwell model for this liver. 

 
Figure 19. Curve fittings of three models with the estimates of the phase velocities of the liver tissue 

 

Voigt Model,  μ1,   μ2, fitting error 4.10 kPa 1.51 Pa·s 0.019 m/s 
Maxwell Model, E, η, fitting error 7.18 kPa 4.27 Pa·s 0.143 m/s 
Zener Model, E1, E2, η, fitting error 4.07 kPa, 45.9 kPa 1.47 Pa·s 0.020 m/s 

Table 2. Estimated viscoelasticity moduli of three models 

The second experiment was conducted to demonstrate the impact of boundary conditions. 
Because boundary conditions play very important roles in wave propagation, in vitro 
experiments were also conducted to investigate shear moduli of the superficial tissue of 
livers (0.4 mm below the capsule) and the deep tissue of livers (4.9 mm below the capsule). 
The excitation pulses were tone bursts having a center frequency of 3.37 MHz and a width 
of 200 μs for the binary excitation pulses and 100 μs or less for the OFUV excitation pulses. 
The pulse repetition frequency of the excitation pulses was 100 Hz. The broadband detection 
pulses had a center frequency of 7.5 MHz and pulse repetition frequency (PRF) of 4 kHz. 
Liver phantoms using fresh swine livers were carefully prepared so that the interface 
between the gelatin and the liver was flat. The thicknesses of liver samples were more than 2 
cm and the areas were about 4×4 cm2. The phantom was immersed in a water tank.  
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The shear wave speeds were measured from 100 Hz to 800 Hz over a distance up to 5 mm 
away from the center of the radiation force application. Figure 20 shows the estimates of the 
shear wave speeds. Each error bar was the standard deviation of 30 estimates from five data 
sets of repeated measurements and six distances (1 to 4 mm, 1 to 5 mm, etc). The estimates 
from 100 Hz to 400 Hz were almost identical for the binary excitation pulses and the OFUV 
excitation pulses. Because the estimate errors using binary excitation pulses were too high 
for the frequency beyond 400 Hz, the estimates at 4.9 mm were based on the OFUV method. 
Figure 20 represents the trend of our experiment results that the shear wave speed in the 
superficial liver tissue is generally higher than that in the deep tissue. The results should be 
carefully examined. One of the possibilities is that we think it is caused by the liver capsule 
as we have verified it with Finite Element (FE) simulations, and another possibility is that 
the shear wave speeds of the gelatin are between 3 to 4 m/s from 100 to 800 Hz, higher than 
that in the liver tissue.  

 
Figure 20. Shear wave speeds in superficial and deep liver tissues 

The estimates of shear wave speeds at deep tissue of 4.9 mm and superfical tissue of 0.4 mm 
were used to numerically solve for the shear moduli of the three models. The curves generated 
by the models were compared with the measurements. As shown in Figures 21a and 21b, we 
find that the Voigt model may not always suitable for modeling liver shear viscoelasticity, at 
least for in-vitro applications with increased frequencies of shear waves in some of our studies. 
On the other hand, we find that the Zener models matches the measurements very well with 
very small fitting errors as shown in the Figure 21 and Table 3.  

Table 3 shows the estimated shear moduli of different models with two different frequency 
ranges at two different depths in liver tissues based on our experiment data. Each modulus 
is an average of 30 estimates from 5 data sets and 6 distances. All elasticity has the unit of 
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kPa and all viscosity has the unit of Pa·s. The fitting errors (m/s) are the deifferences 
between the measurements and calculated shear wave speeds using the models. The 
changes represent the variations of the estiamtes from one frequency range to another. The 
statistics are not conclusive because of the small number of samples. But this study indicates 
the variations of estimates and importance of the selection of tissue viscoelasticity models. 

 
Figure 21. Model fittings for shear wave in the deep tissues (a), and superficial tissue (b)  

(a)

(b) 



 
Wave Propagation Theories and Applications 20 

Depth=0.4 mm 100 to 400 Hz 100 to 800 Hz Changes 
Voigt,  μ1,   μ2, fitting error 2.48, 2.00, 0.152 3.71, 1.46, 0.204 50%, 27% 
Maxwell, E, η, fitting error 10.7, 2.50, 0.043 11.7, 2.36, 0.048 10%, 6% 
Zener, E1, E2, η, fitting error 0.578, 9.033, 2.85, 0.028 1.34, 9.843, 2.56, 0.0569 132%, 9%, 10% 

Depth=4.9 mm  
Voigt,  μ1,   μ2, fitting error 2.74, 1.35, 0.108 3.59,   0.791, 0.151 31%, 41% 
Maxwell, E, η, fitting error 5.68, 2.82, 0.016 5.90,   2.70, 0.021 4%, 4% 
Zener, E1, E2, η, fitting error 1.49, 4.20, 2.44, 0.015 1.70, 4.25, 2.19, 0.018 14%, 1%, 10% 

Table 3. Estimates of Shear Moduli (elasticity in kPa, viscosity in Pa·s) 

The third experiment was conducted to demonstrate the effectiveness of the ultrasound 
vibrometry to characterize the injury of liver tissue. Table 4 shows that the measured shear 
moduli of the livers thermally damaged by a microwave oven using different amount of 
cooking time (3, 6, 9, and 12 seconds). All estimates were from the superficial tissue region. 
It shows that the shear wave speeds estimated in the superficial tissue region are effective 
for indicating the damage levels of the livers. The errors are the standard deviations of the 
differences between the measurements and calculated speeds of the models. The Zener 
model provides the best curve fitting with the minimum fitting error.  
 

 3 sec. 6 sec. 9 sec. 12 sec. 

Voigt Model 
μ1 9.23 9.67 11.2 13.0 
μ2 1.60 1.72 2.54 3.01 

Error, (m/s) 0.103 0.114 0.114 0.121 

Maxwell Model 
E 18.3 19.6 32.3 39.2 
η 3.60 3.73 3.93 4.48 

Error, (m/s) 0.117 0.173 0.172 0.231 

Zener Model 

E1 7.68 8.40 9.60 11.9 
E2 15.0 18.0 35.0 63.3 
η 1.90 1.91 2.81 3.10 

Error, (m/s) 0.029 0.034 0.0344 0.102 

Table 4. Shear Moduli of thermally damaged livers 

6. Discussion 

Shear moduli have very high dynamic ranges and are highly correlated with the 
pathological statues of human tissue. The solutions of the wave equation with constitutional 
models of tissue viscoelasticity show that the shear moduli of tissue can be estimated by 
measuring the phase velocity and attenuation of shear wave propagation in the tissue. 
However, it is a challenge to effectively and remotely generate vibrations and shear waves 
in a tissue region. It is also a challenge to measure shear wave because shear wave 
attenuates very fast as the propagation distance increases.  

In the past fifteen years, the use of pulsed and focused ultrasound beams has been 
demonstrated as an effective method to remotely induce localized vibrations and shear waves 
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in a tissue region. Several useful technologies have been developed for characterizing tissue 
viscoelasticity: Vibroacoutography, ARFI, Supersonic imaging, and ultrasound vibrometry, etc.  

The ultrasound vibrometry is only technique that quantitatively estimates both tissue elasticity 
and viscosity. We found that the estimates of tissue elasticity by ignoring the viscosity are 
erroneous. Shear phase velocity are frequency dependent because the dispersive property of 
the biological tissue. Therefore, regardless of the usefulness of the viscosity, accurate estimates 
of tissue elasticity require the inclusion of the viscosity in the tissue models, as indicated by the 
solutions of the wave equation with three viscoelasticity models. 

The ultrasound vibrometry transmits periodic push pulses to induce vibrations and shear 
waves in a tissue region, and detects the shear wave propagation using the pulse-echo 
ultrasound. The push pulses and detection pulses are interleaved so that one array 
transducer can be used for the applications of both pulses. The application of the array 
transducer allows the detection over a distance so that the phase velocities of several 
harmonics can be measured for calculating shear moduli.  

Accurate estimates of shear moduli require an extended frequency range over an extended 
distance. The current technology is only effective for a few hundred Hertz in the frequency 
and a few mm in the distance away from the center of the radiation force applied. Shear 
wave having a high frequency attenuates very quickly as distance increases. Other vibration 
methods such as OFUV may be worth to explore.  

We found that the shear wave speeds of livers are location dependent or dispersive in 
locations. Our experiment results indicate that the shear moduli estimated from a superficial 
tissue region and from a deep tissue region can be significantly different. Boundary 
conditions play a very important role in shear wave propagation and its phase velocity. The 
solution of the wave equation with boundary conditions should be considered for a tissue 
region that has a limited physical size. Some studies in this area have been done for 
myocardium and blood vessel walls.  

The measurements of the ultrasound vibrometry are based on the assumption that tissue 
under the test is isotropic, which is not true for most tissues. Nevertheless, the 
measurements may be useful in clinical practices, which need to be evaluated in vivo 
experiments and clinical studies. On the other hand, the solutions of the wave equation with 
anisotropic tissue are needed. 

Limited by the extensive contents in this chapter, we do not discuss the application of the 
Kalman filter in this work. The Kalman filter has great potential to include more complicated 
tissue models and motion models that are not fully explored yet, at least are not publically 
reported yet. On the other hand, Fourier transform and correlation method are also effective 
tools to calculate phases of the slow-time signals, if the motion model is simply sinusoidal.  

Our experiments demonstrate that the ultrasound vibrometry can be readily implemented 
by using commercial medical ultrasound scanners with minimum alterations. Our 
experiment results also demonstrate that the ultrasound vibrometry is effective to 
characterize the stiffness and injury levels of livers.  
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We find that the Zener model fit the shear wave speeds of the livers better than the Voigt 
model and Maxwell model in almost all cases that include different frequency ranges, 
different locations, and different tissue conditions. Our study also indicates that the Voigt 
model is sensitive to the change of the observation frequency. Measurements at higher 
frequencies should be included when the Voigt model is used. In this case, the OFUV is 
useful to enhance the higher frequency components of the shear waves. The Zener model 
and Maxwell model appear to be less impacted by the frequency changes with our 
experiment data.  

7. Conclusion 
Tissue pathological statues are related to tissue shear moduli, which can be estimated by 
measuring the phase velocity of shear wave propagation in a tissue region. Ultrasound 
vibrometry is an effective tool to quantitatively measure tissue elasticity and viscosity. 
Ultrasound vibrometry induces vibrations in a tissue region using pulsed and focused 
ultrasound radiation force and detects the shear wave propagation using pulse-echo 
ultrasound. Experiment results demonstrate the effectiveness of the ultrasound vibrometry 
for characterizing tissue stiffness and liver damages.  
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1. Introduction 

The pulsed electro-acoustic technique [1] is presented to the Electrical Engineering 
community where it can find many applications, from the development of improved 
materials for electrical insulation to the control of electrostatic surface discharge (ESD) 
phenomena [2]. This phenomenon could involve serious damage to the satellite structure. In 
order to get a better control on the discharge it is necessary to clarify the nature, the position 
and the quantity of stored charges with time and to understand the dynamics of the charge 
transport in solid dielectrics used in space environment. Since its first implementation, the 
PEA method has been improved and adapted to many configurations of measurement: in 
2D and 3D resolution [3] [4], with remote excitation [5] [6], on cables [7] [8] and under 
alternative stress [9] [10]. 

Recently, based on the PEA method, two original setups to measure space charge 
distribution in electron beam irradiated samples have been developed, and are called ‘open 
PEA’ and ‘Short-Circuit PEA’. One of the weaknesses of this current technique is spatial 
resolution, about 10 µm. Indeed, dielectrics materials used in satellite structure have a 
thickness around 50 µm. Our work aims at improving the spatial resolution of a cell 
measurement by analyzing: electrical component, signal treatment, electrode material and 
sensor. In this paper, we only focused on the study of acoustic wave generation and their 
propagation. An electro-acoustic model has been developed with commercial software 
COMSOL®. This model is one-dimensional, and system of equations with partial differential 
functions is solved using a finite element method in non-stationary situations. Results show 
the propagation of acoustic wave vs. time in each part of cell measurement: sample, 
electrodes, piezoelectric sensor, and absorber. Influence of sensor geometry on the quality of 
output signal is also analyzed.  
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2. PEA method 

The PEA measurement principle is given in Figure 1. Let us consider a sample having a 
thickness d presenting a layer of negative charge ρ at a depth x. This layer induces on the 
electrodes the charges ρd and ρ0 by total influence so that: 

 
Figure 1. Schematic diagram of a PEA system. 
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Application of a pulsed voltage Up(t) induces a transient displacement of the space charges 
around their positions along the x-axis under Coulomb effect. Thus elementary pressure 
waves pΔ(t), issued from each charged zone, with amplitude proportional to the local charge 
density propagates inside the sample with the speed of sound. Under the influence of these 
pressure variations, the piezoelectric sensor delivers a voltage Vs(t) which is characteristic of 
the pressures encountered. The charge distribution inside the sample becomes accessible by 
acoustic signal treatment.  

The expression of pressure waves reaches the piezoelectric detector is as follows: 
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e s

l xp t p x t U t x dx
v v
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With, ve and vs are the sound velocity of the electrode and the sample respectively.  

Various parameters relevant to the spatial resolution of PEA method are clearly identified: 
as the thickness of the piezoelectric sensor, the bandwidth of system acquisition, etc... To 
quantify the influence of each parameter, a simplified electro acoustic model is proposed 
based on PEA cell. 

3. Simulation set up 

Our approach consists to establish an electro acoustic model from five sub-domains which 
represent the essential PEA cell element [11]. Each sub-domain is defined by the material 
and the thickness Table 1. As the samples are very thin compared to the lateral dimensions, 
we will consider a one-dimensional modelling. Each element is defined by a segment of 
length equal to the actually thickness. 
 

Sub-domain Material Thickness (µm) 

Upper electrode Linear Low Density Poly Ethylene (LLDPE) 1000 

Sample Poly Tetra Fluoro Ethylene( PTFE) 300 

Lower electrode Aluminum 10 000 

Piezoelectric sensor PolyVinyliDene Fluoride(PVDF) 19 

Absorber Poly Methyl Meth Acrylate (PMMA) 2000 

Table 1. Characteristics of each sub-domain in PEA model 

Theoretically, the acoustic wave propagation is completely described by a partial differential 
equation (3). 

 
2

int2 2
00

1 1( ( ))p p q Q
x xc t

 
   

      (3) 

Where p represents the acoustic pressure (N.m-2), c sound velocity (m.s-1), ρ0 density of 
material (kg.m-3), q (N.m-3) and Qint (N.kg-1.m-1) reflect respectively the effect of external and 
the internal forces in the domain. 

Acoustic pressure is obtained by resolving equation 3. In order to simplify our model, some 
assumptions are defined below:  

- Attenuation and dispersion are not taken into account. 
- Acoustic waves are generated by Coulomb forces created by the application of electric 

pulse on the electric charges present in sample. 
- There is no acoustic source within the model: Qint = 0. 
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After these assumptions (3) becomes: 
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Given the different assumptions, we have grouped the five sub-domains into three 
categories.   

- Sub-domain which contains an acoustic source:  sample, upper and lower electrode.  
- Sub-domain that excludes acoustic source: absorber (PMMA).  
- Piezoelectric sub-domain: piezoelectric sensor (PVDF). 

Acoustic wave behavior in PEA simplified model depends on the acoustic impedance of 
each sub-domain. This impedance is equal to the product of sound velocity and density of 
material Table 2. 
 

Sub-domain Upper 
electrode 

Lower 
electrode 

Sample Piezoelectric 
sensor 

Absorber 

ρ0 (kg.m-3) 940 2700 2200 1780 1190 
c (m.s-1) 2200 6400 1300 1270 2750 

Z (kg.m-2.s-1) 2068 x103 17280 x103 286 x103 2260.6 x103 3272.5 x103 

Table 2. Acoustic parameters of each sub-domain in the model. 

The application of an electric field on a sample (which contains electric charges) induces a 
mechanical force. This force consists of four terms [12] (5). 
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: force produced by the  presence of  electric dipoles in the sample.     

- Ei, Ej, Ek: electric field components. 
- εij: electric permittivity.  
- αijkl: electrostriction tensor. 
- ρ: electric charge in the sample.  
- kpi: electric dipoles coefficient. 
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In 1D and without electric dipole equation (5) is: 
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Considering that: 
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Recognizing that: 
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Due to the application of electric pulse, the electric field varies from E to E+ΔE(t), so (9) 
becomes:  
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 (10) 

In order to simplify our model we consider that α=0 and ΔE, ε are uniforms. After 
simplification of (10), the mechanical force in our model is the product of electric charges 
present in sample by the applied electric pulse. 

 . ( )q E t            (11) 

In our model we consider that: 

- Electric charge profile ρ is established by three Gaussian shapes of width = 3µm. A 
normalized negative one at sample center and two positives at sample interfaces Figure 
2-a. 

- A normalized square electric pulse which has a 5ns pulse width that has almost the 
same value of the experimental pulse Figure 2-b. 

Piezoelectric transducer is used to convert electrical energy into mechanical energy and vice 
versa. The active element is basically a piece of polarized material, PVDF in our case. When 
the acoustic wave propagates in the PVDF, an electric voltage will appear at its interface, 
which it related to the direct piezoelectric effect [13].  

The piezoelectric relations are given in equation (12). 
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Figure 2. Modeling of mechanical force which is the product of electric charge distribution represented 
in (a) and the electric pulse represented in (b). 
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With, Di is the electric charge density displacement, Ei the electric field, Sij the strain and Tkl 
the stress. sEijkl is the compliance, εTij the permittivity. dikl is the matrix for the direct 
piezoelectric effect and dijk  is the matrix for the converse piezoelectric effect.  

In one dimension and referring to PEA case (D=0 because we have an open circuit 
configuration and Tkl=-p), the electric field vs. pressure waves is written as follow: 

 33
33

33
PVDF T

d
E p g p


   (13) 

Output voltage signal can be obtained by integrating the electric field i.e. pressure wave 
along the PVDF thickness: 
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  33
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3.1. Sub-domain without acoustic source 

This case represents the PMMA absorber. In principle, this material (PMMA) is used to 
avoid reflections of waves at the interface with the piezoelectric sensor. Unfortunately due 
to the difference between their acoustic impedance, we always have acoustic wave reflection 
at its interfaces. We estimate acoustic pressure in this sub-domain by neglecting the acoustic 
source, q = 0 in (4). 

3.2. Boundary conditions 

In our model, two kinds of boundary conditions are considered: 

- Dirichlet boundary condition: pressure at external interfaces is considered as null in our 
model (upper electrode and PMMA): 

 0p      (15) 

- Continuity condition: The internal interfaces of the geometry are specified by the 
continuity of velocity vibration and acoustic pressure:  
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1 1
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4. Simulation results  

Simulation of acoustic wave in the model is realized by the commercial software Comsol. 
This software is based on the finite element method [14]. The domain of calculation is 
divided into several uniform elements of width x. Time step, t, in the computation is 
chosen with respect to Friedrich-Levy [15] condition: 

 
xt

c


     (17) 

In our model Δx = 1µm and Δt = 0.1 ns. 

Figure 3 shows the pressure for T=20 ns, for 300µm sample thick and 9µm sensor thick. This 
figure is divided into three regions. The sample is presented in region 2, however regions 1 
and 3 represent respectively, and the adjacent upper and lower electrode. An electrical pulse 
is applied to probe the space charge distribution. Under the effect of the electric field pulse, 
the charges are shifted and come back to their original position, creating an acoustic wave 
(Coulomb forces effect).  
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Figure 3. Acoustic wave generation in the sample. 

When acoustic wave is completely generated for T=20 ns, we observe two pressure waves 
move at opposite way Figure 3: the first (at the left of Figure 3) moves towards the upper 
electrode and the second (at the right of Figure 3) moves towards the lower electrode. We 
can also observe a spreading more important for the pressure wave inside the lower 
electrode than the wave inside sample. This feature goes with the different values of the 
sound velocity between PTFE (sample) and Aluminum (lower electrode) Table 2. The same 
conclusion can be done for the upper electrode; value of sound velocity for the upper 
electrode is about 2 times larger than the sample. 

Figure 4 shows acoustic wave for T=0 across the five sub-domains of PEA model i.e. upper 
electrode, sample, lower electrode, piezoelectric sensor and the absorber.  
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Figure 4. PEA model for T=0s.  

For t= 800 ns we observe that the useful signal moves through lower electrode, Figure 5-a, 
and reaches the piezoelectric transducer at t = 1.5 µs, Figure 5-b. These results show that 
reflexion phenomena induce a lot of unwanted signals able to disturb the quality of the 
useful signal. 

Figure 6 shows the output voltage signal for the five values of sensor thickness. 

Only the useful signal (that its shape corresponds to the charge shape) has been integrated 
along the PVDF thickness referred to equation (14). We can observe when the sensor 
thickness decreases and reaches 1 µm, the output voltage signal leads to the same shape of 
space charge distribution inside the sample, Figure 2-a. For a larger thickness than 1 µm, the 
shape leads to a very different shape of the space charge distribution. The reflexion of 
acoustic waves on PVDF and PMMA interfaces plays an essential role in this case and 
involves some interference between the incident wave and reflected wave. This interference 
leads to a degradation of the output signal as shown in Figure 8.  In order to improve the 
quality of this signal for thicknesses larger than 1 µm, it will be necessary to adapt acoustic 
impedances between sensor and absorber. 

PMMA absorber is a related component with the piezoelectric sensor. Due to the difference 
between the acoustic impedance of these both materials, the transmission of acoustic waves 
is not optimally performed. Only a part of the wave is transmitted to the absorber, the other 
part is reflected on the interface and interferes with the incident wave. To improve the 
transmission coefficient wave, an acoustic impedance matching must be done i.e. the related 
materials should have the same acoustic impedance which is the product of material density 
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and material sound velocity. Therefore, in our study, the PMMA absorber is replaced by a 
PVDF.  
 

 
This simulation has been realized with a piezoelectric transducer thickness equal to 9 µm. With different sensors 
thicknesses, the same pressure wave evolution has been observed between sample and sensor (sensor not included). 
Only the shape of the output voltage signal is affected by the transducer thickness. 

Figure 5. Acoustic wave propagation in the model . a) for T=800ns.b) for T=1.5µs 
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Figure 6. Potential signal for different PVDF thicknesses 

Figure 7 shows the output voltage of piezoelectric sensor with and without a matched 
interface. The thickness of the sensor is fixed at 9 µm. This figure shows clearly the influence 
of the acoustic impedance on the quality of the output signal. Indeed, the reflected wave at 
the interface of PVDF / PMMA induces a strong distortion of the voltage signal that appears 
at each part of the useful signal. This distortion may affect the data processing, so a matched 
interface must be realized during the design of the new optimized cell. 
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Figure 7. PVDF output signal with and without a matched interface between the sensor and the 
absorber  
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5. Analysis 

Figure 7 shows a block diagram of a simplified PEA cell. In our case, voltage amplifier is 
considered ideal with a gain equal to 1 (infinite bandwidth). In this block diagram, input 
data is the distribution of net density of charge in the sample (charges at the both electrodes 
and in the bulk), denoted ρ, and the output data is the piezoelectric sensor voltage, denoted

PEAV . 

 
Figure 8. PEA bloc diagram 

According to this figure, equations (18) and (19), written in frequency domain, will allow 
defining the transfer function matrix: 

 ( ) ( ) ( ) ( )PEA PVDF ampliH f E f F f G f    (18) 

 ( ) ( ) ( )PEA PEAV f H f f  (19) 

Where PVDFF  and ampliG  are the transfer function respectively of PVDF sensor and voltage 

amplifier. According to (19) output voltage, is defined as a convolution product between 
transfer function and net density of charge in the studied dielectric: 

 ,iPEA PEA ji jv h        (20) 

Convolution being the sum of the product of one function with the time reversed copy of 
the other function, a symmetric Toeplitz matrix can be used to define PEAH [16]. This 
diagonal-constant matrix is a matrix in which each descending diagonal from left to right is 
constant. It is especially used for discrete convolution and it is completely determined by the 
first row. The following matrix A illustrates a symmetric Toeplitz matrix of order n and the 
following vector v represents exactly the same matrix A shown above where: 

1, 1ij i jA a    for i = 2, n and j = 2, n 
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In our case, vector v is the impulse response i.e. the values of the first peak of output voltage 
for a polarized material, (denoted and usually named “calibration signal”) and hence, 
equation (19) can be re-written as a linear function: 
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    (22) 

Using the simulated, it is relatively easy to define the transfer function matrix. Knowing 

PEAV  and PEAH the purpose of the next section is to analyze and to improve the condition 
number of PEAH matrix. 

In numerical analysis, the condition number of a matrix, denoted C in equation (23), 
measures the dependence of the solution compared to the data problem [17], in order to 
check the validity of a computed solution with respect to its data. Indeed, data from a 
numerical problem depends on experimental measurements and they are marred with error. 
We can say the condition number associated with a problem is a measure of the difficulty of 
numerical problem calculation. A problem with a condition number close to 1 is said to be 
well-conditioned problem, while a problem with a high condition number is said to be ill-
conditioned problem. The condition number of the PEA Toeplitz matrix is equal to 400,000 
and hence this very high value shows that our system is very ill-conditioned. 

 1
2 2PEA PEAC H H  (23) 

Where; 

2
max(det( ))t

PEA PEA PEAH H H I  
 

λ : Eigenvalues of  HPEA. 

i. Identity matrix 

The identification method of the matrix is preserved; our goal is to improve the matrix 
condition number by studying the influence of intrinsic parameters for a PEA cell. Three 
parameters are studied: the thickness of piezoelectric sensor, the shape of pulse voltage, and 
the matching interfaces. 
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Table 3 shows condition number values for different PEA configuration. As we can see on 
this table, a “theorical” optimized cell measurement can be defined using a piezo-electric of 
1µm, an impedance matching for all materials interfaces, and applying a Gaussian shape for 
electrical pulse. The condition number for this optimized cell is about 200 times smaller than 
the one from classical measurement cell! However, it should be noted that the choice of a 
Gaussian pulse decreases the expected resolution of the measure, it will be necessary to 
establish eventually a compromise between high spatial resolution and a well-posed system. 
 

Thickness of PVDF Pulse Shape Matching interfaces Condition number 
9µm Square without matching 4.13 x 105 
1µm Square without matching 4.2 x 104 
9µm Gaussian without matching 9.2 x 104 
9µm Square (PVDF/PMMA) 5.4 x 104 
9µm Square (Electrode/sample) 1.3 x 105 
1um Gaussian All interfaces 2 x 103 

Table 3. Impact of PEA intrinsic parameters on transfer matrix condition number 

In the next section, different deconvolution techniques are going to be used in order to 
recover the repartition of the net density of charge imposed on the Comsol model. 

Wiener filtering is commonly used to restore degraded signals or images by minimizing 
mean square error. It is based on a statistical approach i.e. this filter is assumed to have 
knowledge of the spectral properties of the original signal and noise. Wiener filter must be 
physically realizable and causal and it is frequently used in the process of deconvolution. In 
frequency domain, its equation can be written as following: 
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  (24) 

and equation (19) becomes: 

 ( ) ( ) ( )Wiener PEAf H f V f    (25) 

Where ; HPEA is the transfer function matrix and SNR(f)  the signal-to-noise ratio. When there 
is zero noise (i.e. infinite signal-to-noise), the term inside the brackets equals 1, which means 
that the Wiener filter is simply the inverse of the system. However, as the noise at certain 
frequencies increases, the signal-to-noise ratio drops, so the term inside the square bracket 
also drops. This means that the Wiener filter attenuates frequencies dependent on their 
signal-to-noise ratio. As explain previously, the condition number for HPEA is relatively high 
and the coefficient 1 / ( )a SNR f will be estimated using L-Curve method. 

The L-Curve method consists of the analysis of the piecewise linear curve whose break-
point are: 
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Figure 9. L-curve shape for unoptimized PEA cell 

This curve, in most cases, exhibits a typical “L” shape, and the optimal value of the 
regularization parameter a is considered to be the one corresponding to the corner of the 
“L”, Figure 10 [18-19]. The corner represents a compromise between the minimization of the 
norm of the residual and the semi-norm of the solution. This is particular evident in Fig.8, 
the horizontal branch of the “L” is dominated by the regularization error, while the vertical 
branch shows the sharp increase in the semi-norm caused by propagation errors. 

Our approach consists to establish the deconvolved charge by using the transfer matrix HPEA 
which was established. Gaussian filter is not accounted.  The main objective of this section is 
to analyze the shape of the recovered charges using current PEA cell and the shape of the 
recovered charges using an optimized cell. 
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Figure 10. Net density of charges estimated using Wiener filter and a =8x10-21 Current PEA cell with C 
= 400,000 for HPEA 

 
Figure 11. Net density of charges estimated using Wiener filter and a =3x10-12 Optimized PEA cell with 
C = 2,000 for HPEA 

Results presented in Figure 10 and Figure 11 show the net density of charges estimated by 
Wiener method using the current PEA cell, Figure 10, and using an optimized cell,  
Figure 11. 
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Figure 10 shows that the recuperated charges by Wiener deconvolution are completely 
wrong, only noise is recovered and amplified! The inversion of this matrix is equivalent to 
applying a high pass filter, thus amplifying any high frequency noise. That is mainly for this 
reason that a Gaussian filter is usually applied for the signal treatment of PEA cell. 

Using an optimized cell, result shown in Figure 11 has the similar shape, but unfortunately 
its amplitude is lower by 10 times than the net density of electric charge, and presents 
oscillations on both sides of the useful signal. These observations are typical of the 
adjustment when the system is ill conditioned. It is a compromise between filtering, and 
precision. This compromise is achieved by the settlement of regularized parameters 
determined by L-Curve method. Based on the previous results, the further work aims to 
redefine the method used for the calibration signal in order to have a condition number 
much more less than one obtained previously. 

6. Conclusion 

A one-dimensional numerical model based on acoustic wave propagation and established 
using COMSOL® was developed for a PEA cell with the objective to understand how sensor 
thickness is involved in the output voltage signal. In this model, transmission and reflection 
are taken into account, only attenuation and diffusion are neglected. Partial differential 
equation has been resolved using finite element method. In this paper, simulation results 
have been presented for different thicknesses of PVDF sensor from 1 µm to 9 µm.  Results 
show the interest to use an ultra-thin piezoelectric sensor for improving the spatial 
resolution of the PEA cell. This model also permits to analyze acoustic wave behavior from 
its generation in sample to its conversion to an electric signal by piezoelectric transducer. 
Referred to this model, a PEA transfer function has been developed using a Toeplitz matrix, 
kind of matrix based on convolution principle. In order to improve the condition number of 
the transfer matrix, an optimized PEA cell has been defined based on a piezo-electric of 
1µm, an impedance matching for all materials interfaces, and applying a Gaussian shape for 
electrical pulse. Deconvolution results show that a high condition number involves a strong 
deformation of estimated charge compare to a condition number much lower. Moreover, 
this study has highlighted the limits of regularization when the matrices are ill-conditioned: 
presence of oscillations, loss of information, etc. 
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1. Introduction

Tsunami hazard is connected with loss of human life, flooding of coastal structures,
destruction of berthing designs, infrastructures of coastal water areas.

In support of the Tsunami Early Warning System for the Indian Ocean, a finite element model
TsunAWI for simulations of wave propagation has been developed. It is part of German
Indonesian Tsunami Early Warning System (GITEWS) (www.gitews.de) serving to predict
arrival times and expected wave heights. TsunAWI is based on an unstructured grid approach
employing finite elements to solve the governing equations.

Finite-element methods are widely used in studies of wave generation and propagation in
different fields of fluid dynamics. They are often employed to simulate propagation of long
waves such as ocean tides and tsunamis in the ocean in the framework of shallow-water
equations [1–3]. The main reason to prefer FE modelling is that the solution is computed
over a mesh that can be adapted to cover basins with complex geometries characterized by
irregular bottom topography and coastlines.

The purpose of this work is to describe a complex system of tsunami warning, based on the
numerical modelling of tsunami events in Indian Ocean. The complexity of the problem
stems from insufficient information about the sources generating tsunami, real bottom
morphometry and extremely short warning time. In addition, some physical processes, such
as interaction of tsunami waves with long tidal waves or nonhydrostatic effects, commonly
neglected in models of tsunami wave propagation, may lead to substantial corrections.

Our work, therefore, addresses the influence of tidal dynamics on tsunami wave propagation
in coastal areas. A tsunami wave is much shorter than tidal waves which explain why tidal
waves are usually ignored in tsunami modelling. There are three approaches to account
for the interaction between tsunami waves and tides. The first one presumes that the
wave propagation is linear, so that tides reduce or augment (depending on their phase) the
amplitude of arriving waves [4]. In this case, having simulated tidal patterns in advance, it
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would be possible to predict arriving waves as a simple superposition of signals. The second
approach assumes that the interaction has a nonlinear character caused by changes in the
fluid layer thickness in the shallow area [5]. Finally, the third approach suggests that the main
effect is due to nonlinear interactions between tidal and tsunami velocities [6]. The studies
performed thus far are of theoretical character and do not involve practical examples.

As a tsunami wave arrives in coastal regions with rough bathymetry, the nonhydrostatic
part of pressure, neglected in the standard hydrostatic configuration of TsunAWI, gains in
importance. The account for nonhydrostatic effects corrects the wave propagation speed. The
impact of nonhydrostatic effects is investigated using the standard benchmark problem of a
solitary wave runup on a plane beach [7].

The organization of present work is as follows. Section 2 introduces the basic equations, the
numerical implementation of the model and the mesh generation algorithm. Its final part
presents the nonhydrostatic pressure correction algorithm. Section 3 describes the architecture
of the Tsunami Early Warning System. In section 4, the system is applied to simulate
some realistic scenario of tsunami wave propagation in the Indian Ocean. Section 5 deals
with tidal-tsunami interactions whereas section 6 illustrates manifestations of nonhydrostatic
effects. Section 7 contains the conclusions of the work.

2. Description of the model

2.1. Boundary-value problem in Cartesian coordinates

In the domain Ω̃ = {(x, y) ∈ Ω, 0 ≤ t ≤ T}, where Ω is a plane domain with boundary ∂Ω,
we consider the vertically averaged equations of motion and continuity

vt + (v · ∇)v + g∇ζ = Φ ≡ f k× v− rH−1v|v|+ H−1∇(Kh H∇v), (1)

ζt +∇ · (Hv) = 0, (2)

where v = (u, v) is the horizontal velocity vector, H = h + ζ is the total water depth, H > 0,
h is the unperturbed water depth, and ζ is the surface elevation, ∇ = (∂/∂x, ∂/∂y) is the
gradient operator, f the Coriolis parameter, k is the unit vector in the vertical direction, r is
the bottom friction coefficient, and Kh is the eddy viscosity coefficient. The set of (1) and (2) is
known as the rotating shallow water equations.
On the solid part of the boundary, ∂Ω1, and on its open part, ∂Ω2, we impose the following
boundary conditions

vn|∂Ω1
= 0, Γ(v, ζ)|∂Ω2 = Θ1, (3)

where vn is the velocity normal to ∂Ω1, Γ is the operator of the boundary conditions and Θ1
is a vector-function determined by the boundary regime and different for inflow and outflow
[8]. In practice, when the full information on the open boundary is unavailable, in place of the
second condition (3) one commonly imposes the boundary condition on the elevation ζ|∂Ω2 =
ψ(x, y, t) or the radiation boundary condition vn = v · n =

√
g/Hζ. The latter provides free

linear wave passage through the open boundary (when the Coriolis acceleration plays a small
role). Here n is the outer unit normal to ∂Ω2. The accuracy of the reduced boundary-value
formulation with only the sea level assigned at the open boundary, was analyzed in [9]. The
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problem (1)-(3) for the combination u = (v, ζ) is solved for given initial conditions: u|t=0 =
u0.

The equation of energy for set (1) and (2) has the form

∂E
∂t

+∇ ·
[

H
(

gζ +
1
2
|v|2

)
v

]
= −r |v|3/2 + v · ∇(Kh H∇v) (4)

where
E =

1
2

(
H |v|2 + gζ2

)
(5)

is the total energy per unit area.

2.2. Method

The finite element spatial discretization is based on the approach by Hanert et al. [10] with
some modifications like added viscous and bottom friction terms, corrected momentum
advection terms, radiation boundary condition and nodal lumping of mass matrix in the
continuity equation. The basic principles of discretization follow the paper of [10] and are
not repeated here.

Simulation of tsunami wave propagation benefits from using an explicit time discretization.
Indeed, numerical accuracy requires relatively small time steps, which reduces the main
advantage of implicit schemes. Furthermore, modelling the inundation processes usually
requires very high spatial resolution in coastal regions (up to some tens of meters) and
consequently large number of nodes, drastically increasing necessary computational resources
in case of implicit temporal discretization.
The leap-frog discretization was chosen as a simple and easy to implement method. We
rewrite eqs. (1) and (2) in time discrete form,

vn+1 − vn−1

2Δt
+ f k× vn + g∇ζn +

r
Hn |vn|vn+1 −∇Kh∇vn−1 + (vn∇)vn = 0, (6)

ζn+1 − ζn−1

2Δt
+∇ · (Hnvn) = 0. (7)

Here Δt is the time step length and n the time index. The leap-frog three-time-level scheme
provides second-order accuracy and is neutral within the stability range. This scheme
however has a numerical mode which is removed by the standard filtering procedure. Notice
that friction and viscosity contributions deviate from the usual leap-frog method.

2.3. Momentum advection scheme

Because of the discontinued character of velocity representation, special care is required
with respect to the implementation of momentum advection. Earlier experiments with
PNC

1 − P1 code revealed problems with spatial noise and instability of momentum advection
when the discretization is used in the form described in [10]. A modified implementation
without upwinding terms was found to work well, yet when paired with rather high
viscous dissipation for removing small-scale noise in the velocity field. In addition, the
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implementation of the momentum advection for PNC
1 velocities involves cycling over edges in

the numerical code, in addition to cycling over elements to assemble the elemental (regular)
contributions. This reduces numerical efficiency. This lead us to a simpler approach, which
provides some smoothing of the velocity field while removing edge contributions.
According to this approach, prior to calculating the advection term in the momentum equation
we project the velocity from the PNC

1 to the P1 space in order to smooth it. To make this
projection numerically efficient, nodal quadrature (lumped mass matrix) is employed. The
projected velocity is then used to estimate the advection term. Finally we proceed as usual by
multiplying the result with a PNC

1 basis function and integrating over the domain [11]. This
results in a very stable behaviour.

2.4. Other implementation details

2.4.1. Wetting and drying, viscosity

For modelling wetting and drying we use a moving boundary technique which utilizes linear
least square extrapolation through the wet-dry boundary and into the dry region. We apply
"dry node concept" developed in [12] The idea of this concept is to exclude dry nodes from the
solution and then to extrapolate elevation to the dry nodes from their wet neighbours. Because
the scheme is neutrally stable it demands horizontal viscosity in places of large gradients
of the solution. The coefficient of horizontal viscosity is determined by a Smagorinsky
parameterization [13].

2.4.2. Code parallelization

Since a large number of scenarios has to be calculated, code optimization and parallelization
is crucial. The operational version of TsunAWI is parallelized employing OpenMP. It is
therefore limited to shared memory platforms. The parallelization is implemented by defining
parallel regions in the numerically most demanding parts of the code and splitting up the
corresponding loops, thus sharing the load to the CPUs involved. The remaining part of the
code stays serial. The implementation in this ideology needs therefore smaller changes than a
full parallel implementation based on MPI, and proves to be numerically efficient.

2.4.3. Mesh generation

The quality of the triangulation of the model domain is crucial for the model results. The
meshes used in the following studies were generated by a mesh generator based on the
freely available software Triangle by Jonathan Shewchuk [14]. Starting from a model domain
defined within a topography/bathymetry data set (in our case GEBCO 30”) Triangle is used
to generate a mesh based on a refinement rule depending on the water depth and prescribed
by the corresponding wave phase velocity and the CFL criterion. The triangulation will be
refined until the edges in all triangles fulfill the criterion

Δx ≤ min{c
√

gh, cg
h
∇h
} (8)

Since the Triangle output is not yet smooth enough for numerical experiments several
iterations of smoothing are applied. Smoothing steps consist of edge swapping, torsion
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smoothing and linear smoothing. Torsion smoothing tries to equal out angles around each
node, linear smoothing acts on the distance between nodes. These strategies are described in
[15].

2.5. Nonhydrostatic approach

2.5.1. Limitations of the shallow water model

The shallow water equations are derived on the assumption that the horizontal motion of the
fluid dominates over the vertical one. Using the wave length λ and the reference water depth
h as characteristical values of horizontal and vertical motion the ratio

δ :=
h
λ
� 1, (9)

must be fulfilled. In this case, terms containing the vertical component of velocity are very
small compared with others and a model reduced to the two horizontal dimensions still
provides a good approximation of the three-dimensional flow transport. In the course of
neglecting the impact of vertical motion, the hydrostatic approximation is approved: The
pressure term is limited to static pressure p0 = ρg(ζ − z), as dynamic pressure forces are
mainly induced by vertical elevation. With regard to tsunami propagation, condition (9) is
satisfied in deep ocean, as the wave length accounts for hundreds of kilometers. When the
tsunami reaches coastal regions, the wave length decreases rapidly and the ratio δ as defined
above may become less strict, especially in the presence of horizontal inhomogeneities. Waves
become dispersive in this limit. They cannot be represented by the standard shallow water
equations since in a hydrostatic model the phase velocity c ≈ √

gh of a wave packet is not
affected by the wave length. A more accurate model may be required near the shore. We are
seeking how to improve TsunAWI so that the nonhydrostatic effects can be taken into account
if required.

2.5.2. The nonhydrostatic approach

In search of approach that corrects the given one, it is useful to look at terms neglected so far.
The deviation from the hydrostatic approximation to the real pressure

p′ = p− p0 (10)

is of particular interest and serves as a starting point. Returning to the momentum equation
in vertical direction and considering the missing nonhydrostatic pressure term in (1), the
depth-averaged momentum equations result in

∂tv + (v · ∇)v + g∇ζ +
1

ρH

∫ ζ

−h
∇p′dz = Φ (11)

∂tw + (v · ∇)w +
1

ρH

∫ ζ

−h
∂z p′dz = 0 (12)

in which w describes the depth-averaged vertical velocity component. Both additional
unknowns w and p′ are simplified by assuming linear behavior of non-averaged fields in
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vertical direction. The values at surface and bottom are partly given by the boundary
conditions: the kinematic boundary conditions determine the vertical velocities wζ and w−h
as

wζ = ∂tζ + v · ∇ζ, (13)

w−h = − v · ∇h. (14)

At the surface, the boundary condition for pressure enforces the nonhydrostatic part of
pressure to vanish, just like the hydrostatic counterpart. Hence, p′ depends only on
nonhydrostatic bottom pressure q := p′−h.

2.5.3. Discretization

For solving equations (11) and (12) a two-step procedure is applied, as suggested in [16] in the
framework of finite-difference model, used in [17] for wave breaking and run-up issues and
realized in a Finite Element/Finite Volume context by [18]. Firstly, the hydrostatic shallow
water equations (1), (2) are stepped forward as before, just as the hydrostatic variant of
equation (12) with p′ ≡ 0. The additional unknowns q and w are introduced as vectors
containing the values at the nodes of the triangulation in the same way as the sea surface
elevation ζ. In a second step the resulting velocity vector (ṽ, w̃) is corrected by

vn+1 = ṽn+1 +
2Δt

ρ

(
∇ qn+1

2
− qn+1

2
∇(ζn − h)

Hn

)
, (15)

wn+1 = w̃n+1 +
2Δt

ρ

qn+1

Hn , (16)

in which the correction terms depending on qn+1 are nothing else but the calculated integral
terms of (11) and (12). The factor 2Δt arises from using the leapfrog time-stepping scheme.
This correction is performed at the end of each time step. However, the nonhydrostatic part
of bottom pressure qn+1 must be estimated before. While p0 can be calculated explicitly, the
computation of q is performed in an implicit manner. By including the equations (15) and (16)
in the depth-integrated continuity equation∫ ζ

−h
∇ · v + ∂zw dz = 0, (17)

the nonhydrostatic bottom pressure can be determined. Because of finite-element
discretization, equation (17) reduces to a system of linear equations with a large sparse matrix
whose entries vary with time step. As concerns the CPU time, computing q proves to be rather
expensive compared to the time required by the shallow water model.

3. The German-Indonesian Tsunami Early Warning System GITEWS

The German-Indonesian Tsunami Early Warning System GITEWS was founded after the
devastating Indian Ocean Tsunami 2004 as a joint project of German research institutes
leaded by GFZ and Indonesian institutes and authorities. In 2005, Indonesia and Germany
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agreed in a joint declaration to develop a warning system coordinated by the UNESCO
Intergovernmental Oceanographic Commission. The system was inaugurated in 2008 and
evaluated in 2010 by an international commission including the heads of the four operating
worldwide tsunami warning centers.

3.1. Architecture of the Indonesian TEWS

The Indonesian warning systems meets the challenge of near field warning with extremely
short warning time. As tsunamigenic earthquakes originate close to the shore, the time
between a seismic event and the issue of a warning is limited to just a few minutes. The
TEWS therefore relies on a repository of tsunami scenarios TSR precomputed with the tsunami
model TsunAWI, see section 3.3. Figure 1 shows a schematic overview of the components of

Figure 1. Schematic overview of the early warning process. In case of an earthquake, all available sensor
data are gathered by the Decision Support System DSS via the Tsunami Service Bus TSB and sent to the
Simulation System SIM. A set of scenarios fitting to the sensor data are delivered and aggregated to an
overall perspective.

the TEWS. Data of various sensors, such as the seismic data analyzed by SeisComp, GPS
sensors as well as data from tide gauges and buoys is collected via the Tsunami Service
Bus TSB [19], and distributed to the Decision Support System DSS [20], which triggers the
Simulation System SIM (see section 3.2) with the available sensor data. Based on this data,
the SIM delivers a set of best matching scenarios. The DSS performs a worst case aggregation
over these scenarios and visualizes expected wave heights and arrival times for the Indonesian
coasts. The system is installed at the warning center in Jakarta/Indonesia and assists the Chief
Officer on Duty in assessing the potential tsunami risk. He then disseminates warnings to
governmental institutions, local disaster management, action forces and media.

3.2. Simulation System (SIM)

In the following the SIM with its components and the algorithm for selecting the best fitting
scenarios to an earthquake event shall be introduced in a nutshell. A more detailed overview
of the SIM is given in [21], though referring to a prior version of the selection algorithm.

The SIM is written as a Java web application offering web processing WPS and web
notification services WNS conforming to the open GIS consortium OGC standard. It is

49Tsunami Wave Propagation



8 Will-be-set-by-IN-TECH

accessible via HTTP-Requests where request and response details are transferred to and from
the SIM in XML format.

Figure 2. Overview of the SIM software components. Main components are the controller, responsible
for overall coordination of processes, the Index Database IDB with data products from the TSR for fast
access in case of an event, Postprocessing Unit for extraction of these data products from scenarios, the
selection module determining best fitting scenarios for given sensor data, and the OGC-adapter as
communication interface.

3.2.1. SIM components

A graphical overview of the software components is given in figure 2.

• Index Database IDB: As mentioned in section 3.1, warning time is crucial for the region
of the Sunda Arc. To ensure a response time of the SIM of less than 10 s, significant
data products are extracted in advance from each scenario contained in the pre-calculated
scenario repository TSR. The IDB contains maximum sea surface height (mwh) and
arrivaltimes at coastal forecast zones, isolines of mwh, isochrones, sea surface height time
series at tide gauge and buoy locations, and GPS displacement values at GPS station
locations.

• Index Database Updater: This component is used to store extracted data products in the
index database.

• Postprocessing Unit PPU: The data products are extracted by the post processing plugins
compounded in the PPU. The plugins are written in C to employ fast mathematical
calculation routines. There task is to extract the information stored in the IDB and to
generate SHP-files for visualizing the wave propagation in the DSS. Furthermore, the
simulated inundation can be extracted as SHP-files, which are a basis for a priori risk
assessment and hazard maps.

• Driver Layer: The driver layer separates the scenario data format from the internal
representation of data in the SIM and thus allows to integrate scenarios from different
origins and in different formats. One driver per scenario type acts as a translator between
scenario data format and the data structure used in the SIM. At the time being, only
scenarios calculated with TsunAWI are addressed.
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• Scenario Selection Module: The component responsible for the identification of the best
fitting scenarios to an earthquake event is described in section 3.2.2.

• Tsunami Scenario Repository TSR: It contains all pre calculated scenarios and is described
in more detail in section 3.3

3.2.2. Selection algorithm

102°E 104°E 106°E 108°E 110°E
9°S

7°S

5°S

3°S

1°S

 

 

Scenario Coverage
Trench
Scenarios
Epicenter

Mw ≤ 7.7
Mw = 8.1
Mw = 8.5
Mw = 8.9
Mw = 9

Figure 3. Visualization of the seismic uncertainty ellipse with different size depending on the observed
magnitude.

The selection algorithm uses a multi sensor approach combining the different available sensor
types to acquire a set of best matching scenarios to an earthquake event. By basing the
selection on different sensor data types, uncertainties resulting from inaccurate measurements
and errors in the tsunami model are reduced.

In the selection algorithm as described in [21], the different sensor types and even individual
sensor stations could be weighted so to factor their individual estimated uncertainty. Initially,
the so called matching values generated for each sensor type for a scenario were accumulated
in an overall weighted sum of matching values defining a measure of suitability to the current
event.

The experiences with real sensor data in the GITEWS project showed that each sensor group
has to be regarded separately with its characteristics in mind. The weighted sum over
all matching values is therefore replaced by a stepped approach starting with seismic data
delivering the most robust values, followed by CGPS data.

The algorithm is specialized for the Sunda Arc taking into advantage that the rupture is often
oriented along the trench. The preselection of scenarios based on seismic data is performed by
calculating an elliptic area around the measured epicenter within which the selected scenarios
lie (figure 3). The dimension of the ellipse depends on the measured magnitude MW , the long
ellipse-axis is given by

rL = 100.5−[MW+0.3]−1.8km.
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To ensure that at least one scenario is covered, for small magnitudes r̃L = 180km is chosen.
The orientation of the ellipse is derived from the orientation of the trench between the two
coordinates found by going rL/2 up an down the trench from the nearest point to the epicenter
on the trench.

The second important sensor data class in GITEWS are CGPS dislocation vectors. The sensor
data is reliable, and the measurement arrives at the DSS fast, thus allowing for a better
estimate of the tsunami hazard in the first few minutes after the earthquake. For each sensor
and each scenario (that remains after preselection by the seismic sensor data) the length of
the measured and the corresponding scenario dislocation vector are compared. Scenarios for
which a defined minimum number of similar GPS values is reached are taken into account for
the final set of best fitting scenarios.

If several scenarios are chosen for one epicenter, only those with the largest magnitude within
the uncertainty range [Mw − 0.5, Mw + 0.3] is kept in the list, because in DSS processing, a
worst case aggregation over all scenarios is performed. For each coastal forecast zone, the
shortest arrival time is taken from all scenarios in the list, and the highest maximum wave
height. The scenarios with lower magnitudes will not account for this aggregation, hence
skipping them reduces the amount of data to be processed without changing the result.

3.3. The Tsunami Scenario Repository

As of March 2012, the GITEWS Tsunami Scenario Repository TSR contains 3470 scenarios for
prototypic ruptures (RuptGen2.1 [22]) with magnitudes in the range of Mw=7.2,7.4,. . . ,9.0 on
528 different epicenters, see figure 4. These scenarios for prototypic ruptures in the Sunda

Figure 4. Tsunami scenario repository for GITEWS. Each circle symbolises a scenario with center at the
given position. Scenarios for up to ten different magnitudes Mw= 7.2, 7.4, ..., 9.0 are calculated at each of
the 528 positions, resulting in 3470 scenarios in total.

Arc are used in the warning situation as well as for a priori risk analysis and hazard maps.
The quality of the scenarios, being crucial for both tasks, relies strongly on the numerical
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implementation of the governing physical equations and on an accurate representation of the
bathymetry and topography especially in coastal regions. Therefore, GITEWS included the
development and concise validation of the tsunami model TsunAWI, described in detail in
section 4.

For the TSR, TsunAWI operates on a grid with the resolution changing seamlessly between
14 km in deep sea, 150 m at the coast and down to 50 m in regions of special interest,
e.g., densely populated areas and at tide gauges. The run-up scheme provides a realistic
approximation of the inundation hazard. The dense net of scenarios allows to evaluate the
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Figure 5. Influence of the magnitude Mw and of the source location on the strength of a tsunami:
Mareograms at Padang Harbor for TSR-scenarios originating at the same epicenter with different
magnitude (above) and with equal magnitude, but different origin (below).

effect of small changes in epicenter and magnitude as illustrated in figure 5 for artificial
mareograms for the harbour of Padang, Sumatra. The logarithmic energy scale of the
magnitude is clearly illustrated by the upper mareogram. The lower graph shows more
complex features due to varying epicenters on a line perpendicular to the trench. While the
magnitude is fixed to Mw=8.0 in this example, the tsunamis originating closest to the coast
have the lowest impact. On the one hand, this is due to the initial conditions generated by
RuptGen which assumes a source depth of 0 km at the trench increasing up to 100 km under
the main islands. A second factor determining the strength of the tsunami is the height of the
water column at the origin, and this of course is small in coastal regions.

Epicenters southwest off the coast yield increasing wave heights in Padang, until the
Mentawai islands are reached. The pink epicenter marks a turning point where the
corresponding tsunami is no longer trapped in reflections between Sumatra and the islands,
relieving the situation for Padang.

4. Tsunami modeling with finite elements: applications

TsunAWI is still under development and therefore the performance and model results must be
constantly evaluated to ensure a consistent and stable code. Validation needs to be performed
on several levels, among these are:
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• Consistency / convergence,

• Benchmarks in idealized settings with well defined results,

• Comparisons in real cases with measured data.

This section deals mostly with the last case, section 6 includes some cases with idealized
bathymetry and compares hydrostatic and non hydrostatic results.

4.1. Indian Ocean tsunami in December 2004

For the tsunami generated by the great Sumatra-Andaman earthquake on 26 December 2004,
a large amount of data is available. In this section model comparisons with observations from
satellite altimetry, tide gauge records, and field surveys are discussed. The mesh (figure 6)
employed in this study has been generated to deal with all the stages in the propagation of
the tsunami. All of the Indian Ocean is covered, the resolution in the deep ocean is about
15 km. In the Aceh region in the Northern tip of Sumatra, where inundation results of the
model are compared to field measurements, the mesh size reaches down to 40 m. The results
in this section are closely related to the studies published in [23] where additional information
can be found.

Figure 6. Mesh density in the model domain. The green areas are land nodes contained in the mesh
which are initially dry. The resolution ranges from 15 km in the deep ocean to 40 m in the Northern tip of
Sumatra.

4.1.1. Available topography and bathymetry data

Topography and bathymetry in the following experiments are based on several data sources.
The GEBCO data set [24] is globally available at 30 arc seconds resolution and is used in all
meshes as initial topographic and bathymetric information which is replaced by more precise
data wherever they are available. Bathymetric data is locally improved by ship measurements
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and nautical charts. Topographic information is improved by the SRTM data set [25] which is
freely available at a resolution of 90 m, however the vertical accuracy is usually not sufficient
for model studies of runup in the coastal domain. In the area of Indonesia the SRTM data were
additionally processed by the German Aerospace Agency (DLR) and provided at a resolution
of 30m. In Aceh region additional bathymetric and topographic data were provided by BPPT
Jogyakarta.

4.1.2. Source model

In tsunami modeling it turns out that the exact knowledge of the source, i.e. the initial
conditions of the model is of crucial importance for comparisons with data. Usually the
source parameters are optimized with respect to certain measurements and normally it’s not
possible to match model results with different measurements like tide gauges and inundation.
The source model used in the following studies is based on the results presented in [26]. The
objective of that paper is to optimize the subfaults of the earthquake such that an optimal
agreement with certain tide gauge records is obtained. The resulting subfaults are shown in
figure 7. In order to demonstrate the impact of source parameters with respect to the matching
with data the orientation of the Southern faults is modified as indicated in that figure. The
strike angle of subfaults A/C is changed from 340/340 degrees as proposed in [26] to 290/320
degrees. All other parameters can be found in in [23, 26].

Figure 7. Sub-faults as proposed in [26]. The rupture area has been decomposed into 12 sub-regions.
With a rupture speed of 1.7 km/s, the whole rupture process takes 12 min. Faults B and G have zero slip
in our experiments and are not displayed. The red faults have different strike angle and show better
agreement with satellite altimetry.

4.1.3. Model setup

The mesh used in these experiments consists of 5 million nodes and 10 million triangles. The
finest resolution enforces a time step of half a second. The model is integrated for 10 hours.
In the positions along the satellite tracks the model state is written to a file every second.
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This enables a careful comparison between model and satellite altimetry data. Additional
information on model setup and initialization is contained in [23].

4.1.4. Satellite altimetry

For the first time the Indian Ocean tsunami was observed by several Satellite missions. Jason

1 (J1) and TOPEX/POSEIDON (T/P) were above the bay of Bengal about two hours after the
earthquake, whereas ENVISAT observed the tsunami about 3h20’ after the event. In all cases
the tsunami signal was extracted from the altimeter measurements by subtracting the data
from consecutive cycles. Table 1 summarizes the cycles that were taken into account in the
three missions. Figure 8 contains the groundtracks of J1 and T/P whereas figure 9 displays
the extracted tsunami signal for J1 and T/P. The model results are interpolated in time and
space and extracted from a Hovmöller diagram as shown in figure 10. The J1 signal in figure 9
shows clearly a double peak in the position of the leading wave crest which is due to the
partial waves generated by the southern subfaults, whereas in the T/P measurements these
partial waves overlap. This behavior is reproduced by the model however as it turns out the
matching depends strongly on the fault parameters. Changing the strike angles in fault A
from 340 to 290 and in fault C from 340 to 320 improves the matching and lowers the RMS
errors as indicated in table 1.

Figure 8. Model snapshot after two hours. Sea surface elevation together with the positions of the
satellite tracks Jason 1 and TOPEX/POSEIDON

Mission Pass Cycle Equator time rms (340/340) rms (290/320)

Jason 1 129 109 02:55 UTC 0.243 m 0.238 m
Topex/Poseidon 129 452 03:01 UTC 0.223 m 0.164 m

Table 1. Satellite Missions used in this study for data comparison. The last columns quantify the RMS
error obtained in scenarios with different strike angles in subfaults A and C (figure 7).
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Figure 9. Tsunami signal extracted from satellite tracks Jason 1 and TOPEX/POSEIDON (blue lines)
together with model results along the tracks interpolated in space and time (red and black lines).

Figure 10. In the location of the satellite tracks (figure 8) the sea surface elevation is written to file every
second. From the resulting Hovmöller diagram the model results corresponding to the satellite
observations as shown in figure 9 are interpolated in space and time.

4.1.5. Inundation

After the event in December 2004 several field surveys examined the runup and flow depth
in the affected regions. In the area of Banda Aceh, which was most heavily hit by the tsunami
eight locations with well documented field measurements were chosen to compare model
runup to these results. Runup and flow depth depend heavily on the prescribed roughness
parameterization. Several experiments with identical initial conditions and varying Manning
parameter were conducted. In all cases constant manning number was applied in the whole
model domain.

Figure 11 shows the locations as well as a comparison of measurements and model results
for different roughness parameters in a bar diagram. These results are obtained with strike
angles 290/320 in subfaults A/C. From the corresponding rms errors the best fitting Manning
number for experiments with constant parameters can be chosen. Figure 12 shows the flow
depth in Aceh region together with a line depicting the boundary of inundation as it was
obtained from Satellite images (provided by DLR).
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Figure 13 displays the flow depth comparison for different strike angles in the Southern
subfaults. Also in this respect the modified orientation improves the results considerably.

Figure 11. a) Positions of field measurements, b) model results for varying roughness parameters in
comparison.

Figure 12. Flowdepth obtained for n=0.025 in Aceh region. The red line indicates the inundated area as
it was determined from satellite images and provided by DLR.

4.1.6. Tide gauge records

The Indian Ocean tsunami was observed by tide gauges world wide. Since the arrival time
and estimated wave height are among the most important warning products good matching
between model results and arrival times and the height of the leading wave crest as they were
recorded by tide gauges is desirable. Therefore hindcast experiments with such comparisons
are included in the present study as well. Figure 14 summarizes the time series in some of
the locations throughout the Indian Ocean where data is available. The comparisons between
tide gauge records and model results show generally a good agreement with respect to arrival
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Figure 13. Flowdepth comparison for experiments with strike angles of plates A and C set to 340/340
and 290/320 (compare figure 7). The rms error is considerably improved by the adjustment.

time. The wave height of the leading crest is sometimes underestimated however in most of
the locations the agreement is very good. The orientation of the Southern subfaults does not
influence the results in far distance as Salalah and Lamu show, the matching in Colombo is
slightly better with the uniform values (340/340). This is consistent with the derivation of
these strike values as this station was used for optimization in [26].

Figure 14. Tide gauge records (blue lines, time in hours, elevation in meter) and corresponding model
results in locations displayed in figure 6. The red lines show results for strike angles 290/320 degrees,
black lines the corresponding results for 340/340 degrees in subfaults A/C.

4.1.7. Summary of the Indian Ocean study

Summing up, it turns out that TsunAWI is able to reproduce observational results on several
scales of wave propagation. Both the large scale propagation and arrival times throughout the
Indian Ocean as well as the inundation in a selected area with high resolution is feasible in
the approach with unstructured meshes. However the model results depend strongly on the
quality of the source model.
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4.2. Inundation experiments with high resolution

The scenarios generated for the tsunami database are based on a mesh with resolution ranging
from 10 km in the deep ocean to 150 m along the global coastline and 50 m in priority regions.
This resolution is certainly not high enough for detailed inundation simulations. Hazard maps
are based on data sets with much higher resolution and the corresponding model setup must
contain a comparable mesh. The shallow water equations are based on very small aspect ratio
defined in (9) and as soon as the wave is determined by very fine scale topographic features
the validity of the SWE becomes questionable. As long as the focus of such model studies is
put on the inundated area alone the limitations of the SWE might still be acceptable and in the
following experiments with high resolution are presented. The actual error however has to be
investigated and comparisons to more appropriate models have to be performed. Section 2.5
deals with some of the improvements possible with nonhydrostatic corrections in idealized
settings. Within the GITEWS project hazard maps were produced by DLR based on model

Figure 15. Inundation in Mataram. Flowdepth in the model study based on the Intermap DSM. The
bottom roughness is given by a constant Manning value n=0.02.

results with MIKE 21 FM carried out by the German Research Center Geesthacht (GKSS). The
Manning roughness parameter in these model runs are varying in space and given by detailed
roughness maps. Details on this approach and the model can be found in [27] and citations
therein.

The focus of this section is to highlight the importance of the bottom roughness parameter.
Simulations of tsunamis with identical initial conditions were carried out in a mesh with
resolution up to 5 m. The study area is Mataram, on the island of Lombok, Indonesia. The
topography data in this case was based on the Intermap data set and provided by DLR. The
resolution of the topography data is 5m and two versions, a digital surface map (DSM) and
digital terrain map (DTM) were used. The DSM version is a first-reflection data set and
contains elevations of vegetation and buildings. The DTM on the other hand is a model where
all these features were removed.

Figure 15 displays the flow deph based on the DSM topography data, whereas figure 16 shows
the same quantity for the DTM data with three different values of Manning’s n. Additionally,
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Figure 16. Results as in figure 15, however for Intermap DTM with three different Manning parameters
n=0.04, n=0.06, and n=0.08 in the left, middle and right panel.

in case of a tsunami buildings and infrastructure will partly collapse and result in a very
heterogenious fluid flow which may be only poorly approximated by a bottom friction
parameterization. The result in figure 15 contains small scale features, however since it doesn’t
take into account the destruction of buildings and vegetation, it may be underestimating the
true inundation. [27] suggests the use of DTM data with detailed roughness maps. Results
for DTM data and different roughness values are displayed in figure 16. According to [27]
the right panel corresponds rather to the situation of an urban area with partly collapsing
buildings whereas the left panel corresponds to the situation of the whole area covered by
coarse sand.

Given the vast differences displayed in figure 15 and 16 this section and its results is
mostly meant to raise the awareness for the dependency of inundation results on the friction
parameters. The quality of topography data plays an even bigger role and the best suited data
set and model parameterization must be chosen before hazard maps are produced.

5. Tide-tsunami interaction

For investigating the influence of tidal motion on tsunami wave propagation three model runs
were carried out: a) pure tidal motion, b) pure tsunami wave propagation and c) tsunami
wave propagation on the background tidal motion. As object of modelling we have chosen
the Indonesian coast including south part of Java, Bali, Lombok, Sumbawa and Sumba islands
and North Sea. The choice of these two objects is not accidental. The first of these is the object
with complex morphometry and sharp bathymetry, which contains a large number of islands
and straits. The North Sea is a shelf sea with slowly varying bathymetry.

5.1. Interaction between tides and tsunami for Indonesian coast

For calculations, we use the ETOPO 30 sec. morphometry dataset and data on tides in the
Indian Ocean derived from the TPXO6.2 dataset of oceanic tides [28]. The calculations were
performed on an unstructured mesh (figure 17 a) with 177132 nodes and 347098 elements
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with a time step of 20 s. The horizontal mesh size varies in the range between 160 m (in the
inundation zone) and 29 km (deep ocean). The tsunami wave is initialized by a source model
as used in the GITEWS scenario database (figure 17 b). The particular choice of the initial
condition is irrelevant for our considerations here. The series of experiments deals with effects
of nonlinear interaction between tidal waves and tsunamis in the Indian Ocean. A full solution
(propagation of tsunami wave on the tidal background) and composite solution (an arithmetic
sum of tsunami wave and tides computed separately) are compared. It turns out that the
difference between these solutions is very significant (figure 18) reaching as high as 3.5 m in
the coastal region (St.3) where nonlinearity is particularly important. It is noteworthy that the
first tsunami wave is only slightly affected by nonlinearity (change in amplitude ≈ 5− 8%,
with max. amplitude of tsunami wave 16 m, St.3), while the second wave is affected more
essentially, at ≈ 25% (with max. amplitude second tsunami wave 3.5 m). Also, the strong
nonlinear interaction leads to phase changes.

In search of explanation as to why the impact of tide-tsunami interaction is so significant,
we repeated the above cases once more but switching off the momentum advection term in
the equation of motion. Figure 18 (Right panel) clearly shows that the evolution of potential
and kinetic energy is now significantly different from the full nonlinear case. Hence we
conclude that in the near-shore regime, non-linear interaction of the wave-induced velocities
contributes greatly to the complex behaviour of tide-tsunami wave phenomena. The exact
mechanisms still call for a more careful analysis and suggest a topic for future research.

5.2. Tide-tsunami interactions in the North Sea

The last known mega-tsunami to hit rim countries of the North Sea took place over 8,000
years ago. But coastal areas of the North Sea are vulnerable to tsunamis caused by localized
underwater landslides. Numerical simulations are performed on the basis of a high-resolution
multilayer model to study initial generation of waves by landslides in the Storegga area and
with a TsunAWI model to study the wave propagation further in the North Sea.

As before, three simulations have been performed to identify the character of the nonlinear
interaction of tide and tsunami waves. First simulation dealt with the M2 tidal structure in the
North Sea. In the second case only tsunami waves excited by a signal from the landslide model
were simulated. The third simulation dealt with a joint solution for the tsunami wave on the

Figure 17. a) Part of the unstructured mesh with control stations. White curve marks coastal line. b)
Initial condition for tsunami wave.

62 Wave Propagation Theories and Applications



Tsunami Wave Propagation 21

Figure 18. Left panel: Nonlinear interaction for control stations (1-4 - coastal; 5-8 - shelf; 9-12 - deep).
Difference in elevation between full solution and composite solution. Red line - high tide; blue line - low
tide. Right panel: Difference in potential (a) and kinetic energy (b) between full solution and composite
solution. Red line - with advection in momentum equation; blue line - without advection.

background of semidiurnal tide. In this case the boundary information (north boundary) is
represented by a superposition of two waves.

A combination of two Kelvin waves (one propagating from the northern open boundary along
the coast of England and another through the English Channel) produces three nodal lines:
on an output from English Channel, near north coast of Germany, and southern coast of
Norway [11]. There is reasonable agreement for semidiurnal tidal elevations with respect
to observation (figure 19).

Figure 19. Correlation between the observed and computed values of the amplitudes (a) and phases (b)
of the tide wave M2. The RMS error of the computation is 29.8 cm (for 112 stations).

A two-layer model based on shallow water equations written in a curvilinear coordinate
system is applied to simulate waves generated by hypothetical submarine slides at Storegga
on the Norwegian continental slope (figure 20). The numerical method is based on composite
schemes for split operators [29]. The model is initialized by prescribing submarine slides in the
Storegga area off western Norway [30, 31]. The signal at the open boundary of the North Sea
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Figure 20. Computational domain with slide positions (Storegga) and control stations. The brown line
shows the domain for submarine slides modelling. The red line marks the domain for tsunami wave
propagation (TsunAWI model).

simulated by the model serves as the boundary condition for finite-element model (TsunAWI)
used to simulate wave propagation further in the North Sea.

Figure 21. Thickness (m) and velocity (m/s) for Storegga landslide at four subsequent times (Left panel).
Sea surface elevation (cm) and velocity (m/s) for Storegga landslide (Right panel) at four time instants.

Figure 21 (Left panel) shows the position, thickness of the submarine slide (Storegga) and
velocity field in the bottom layer (landslide) at four different time moments. The slide velocity
reaches 25 m/s, in agreement with [30, 31]. The submarine slide leads to long wave on the
surface as shown in figure 21 (Right panel) for the same time moments as in figure 21 (Left
panel).
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A composite solution and full solution are compared. It turns out that the difference between
these solutions is fairly large (figure 22, Left panel) reaching as high as 60 cm in the coastal
region where nonlinearity is particularly important. Additional experiments showed that the
arrival time of tsunami waves in the full solution varies but slightly. In search of explanation

Figure 22. Left panel: Nonlinear interaction. Difference in elevation between a composite solution and
full solution. Red line - high tide; blue line - low tide. Right panel: Difference in energy between a
solution with advection and solution without (a) momentum advection (blue line) and solution without
(b) nonlinearity in the continuity equation (red line).

as to why the impact of tide-tsunami interaction is so significant, we repeated the above cases
once more but switching off the momentum advection term in the equation of motion (linear
case) or nonlinearity due to change of layer thickness in the equation of continuity (figure 22,
Right panel). Here we can see the other mechanism of tide-tsunami nonlinear interaction due
to level change.

6. Validation of the nonhydrostatic approach

For comparison of the results delivered by the original shallow water model on the one hand
with the nonhydrostatic extension on the other two standard testcases are carried out. The first
one is investigated in [18], it describes the behavior of a standing wave within a closed basin
in respect of the phase velocity depending on the ratio δ defined in (9). As second application
a tank experiment (see [32]) is modeled and the results are compared against observation data
at various instants. This example shows dispersive effects that occur when a solitary wave is
running up a plane beach.

6.1. Standing wave in a basin

The computational domain Ω of this testcase presents a rectangular basin with fixed length
and width l = 10 m and w = 4 m, respectively, while its depth h vary in different experiments
between 0.25 m and 10.5 m. At the walls of the basin, condition (3) for solid boundaries ∂Ω1
is applied. With a wave length of λ = 2l a standing wave with an amplitude of a = 0.01 m
can be arranged by the initial condition

ζ0(x, y) = −a cos(
2πx

λ
), (18)

65Tsunami Wave Propagation



24 Will-be-set-by-IN-TECH

as illustrated in Figure 23 a). Both, horizontal and vertical velocity equal zero initially. In the
absence of sinks and sources, two waves with same amplitude and frequency emerge. They
move in opposite directions and form a standing wave with antinodes at the boundaries,
x ∈ {0, l}, and a node in the middle of the basin, x = l/2. An unstructured mesh with a
resolution of about 0.125 m covers the domain Ω. Using a time step size of Δt = 0.005 s,
several experiments with varying basin depths were carried out with both the original
shallow water model and the nonhydrostatically corrected one. Because of the periodicity, the
propagation speed can be determined. In this example an inviscid fluid is assumed, so that the
pressure gradient is the only force. Modifications of the pressure term due to nonhydrostatic
effects entail changes of the motion. In Figure 23 b) the results of both models are compared
with the reference propagation speed, estimated by

c =
√

g
k

tanh (kh), (19)

in which k = 2π/λ is the wave number. If δ � 1, the argument of the hyperbolic tangent in
(19) is very small and the approximation tanh(x) ≈ x can be adopted. So, the propagation
speed converges to the phase velocity csw =

√
gh that is independent of wavelength and

characterizes motions in the standard shallow water approximation. It is not surprising that
the phase velocity curve based on the shallow water model is congruent with csw for all δ.
More interesting is the result of the nonhydrostatic approach: although it is simplified by
using depth-averaged values, it offers a good approximation to the propagation speed up to
ratio δ in excess of about 0.4. Consequently, as δ is increased, the nonhydrostatic correction
provides a better approximation to the wave propagation speed.

6.2. Solitary wave on a plane beach

In the second testcase the results of the shallow water model and the nonhydrostatic approach
are compared to observation data of a tank experiment [32]. The main part of tank is of
constant water depth d. Near the shoreline (x = 0), the bathymetry gradually ascents with
a constant slope of tan(α) = 1/19.85, as depicted in Figure 24. All spatial quantities in the
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Figure 24. Setup of testcase 6.2: Solitary wave on a plane beach.

model setup are made dimensionless with the tank depth d. To simplify matters, d = 1 m is
chosen. A solitary wave with maximum height as := a/d is given by

ζ0(x, y) =
a
d

sech2

(√
3a
4d

(x− xs)

)
, xs =

d
tan(α)

+

√
4d
3a

arccosh(
√

20). (20)

with an initial horizontal velocity of v0 = (−ζ0√g/d, 0)T . The vertical velocity is prescribed
by the boundary conditions (13) and (14). While the ramp can be flooded for x < 0,
boundary condition (3) on ∂Ω1 are imposed at the solid walls of the tank. An unstructured
mesh with Δx ∈ [0.1, 0.2], in which the finer resolution accords to the ascending part,
covers the computational domain Ω = [−10, 70] × [−0.5, 0.5]. The time step is selected as
Δτ = Δt

√
g/d = 0.004. With the help of a Manning factor of n = 0.01 the low friction inside

of the tank is approximated. By setting the maximum wave height as = 0.0185, the shallow
water model and the nonhydrostatic approach provide similar results which agree very well
with the observation data. More interesting is the case of breaking wave with as = 0.3.
Figure 25 illustrates different stages of the flow evolution in four snapshots. It is apparent that
the nonhydrostatic approach approximates the shape of the solitary wave much better than
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Figure 25. Snapshots at different times τ = t
√

g/d for a solitary wave with a maximum wave height of
as = a/d = 0.3.
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the hydrostatic shallow water model. As a consequence of boundary condition (13) the wave
front experiences a vertical displacement. Since this dispersive process cannot be represented
by the shallow water model, its wave front steepens in an unnatural way. Furthermore, the
snapshot at τ = 30 shows clearly that there are some differences with respect to inundation,
which is very important as concerns tsunami warning.

7. Discussion

The combination of non-conforming velocity with linear elevation suggests a well-rounded
choice for shallow-water modelling on unstructured triangular grids, with a particular focus
on simulating tsunami wave propagation. Although our approach was initially inspired by
the algorithm proposed by Hanert et al. [10] the resulting model is essentially different from
it in a number of key directions. First, it is equipped with wetting and drying algorithms and
can simulate inundation caused by tsunami. Second, it suggests a choice of stably working
discretization of the momentum advection which all improve over the original method of
Hanert et al. [10] and differ between themselves in a degree of smoothing applied. Third, it
uses the Smagorinsky horizontal viscosity which is crucial for keeping the dissipation on the
level that does not affect the quality of the solution. Finally, the explicit time stepping and use
of the nodal quadrature (mass matrix lumping) of the time derivative term in the continuity
equation ensure numerically efficient performance while providing a straightforward and
easy to implement algorithm.

Nonhydrostatic effects become important when vertical acceleration is not negligible. For
tsunami wave generation and propagation it can happen at the very initial stage and during
run up. In this context, we present an algorithm of the nonhydrostatical pressure for vertical
averaged equations.

We introduced the architecture of the German-Indonesian Tsunami Early Warning System
(GITEWS) and methodology for the GITEWS multi-sensor selection. The selection algorithm
uses a multi sensor approach combining the different available sensor types (SeisComP3,
CGPS and Tide Gauges) to acquire a set of best matching pre calculated scenarios (Tsunami
Scenario Repository, TSR) to an earthquake event. The basic principle is to reduce the number
of possible tsunami scenarios by using independent measurements of the same event. Only
a small number of scenarios can match the independent measurements, even with high
uncertainty in each individual set of measurements, since the combination needs to fit.

One of the important stages of the successful use of the numerical model is its verification and
validation. This work has been performed on test cases and published in [33].

We simulated the tsunami event generated by the Sumatra-Andaman (2004) and Tōhoku
(2012) earthquakes. The model results were compared to available data (tide gauge, satellite
altimetry, and field measurements in the inundation area). Given still only approximately
known parameters of the tsunami source the coincidence between the model and observation
is indeed good. Not only the arrival time of the first wave is reliably simulated, but the entire
shape of the signal is reproduced reasonably well, and with correct amplitude. The model
can be considered as an easy to use and reliable tool which not only serves the purposes of
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GITEWS but can be employed for other tasks which can be described in the framework of
shallow water equations (with exception of true shock waves for which continuous elevation
is a suboptimal choice).

Simulations suggest strong nonlinear interaction between the tsunami and tidal waves. The
major difference between tsunami simulations with and without tides occurs in the run-up
region. Two mechanism of nonlinear interaction were found to be directly related to the
morphometry of the object. In areas with high variability in morphometry (sharp bathymetry,
complex coastline, etc.), the main role is played by the nonlinear interaction of tidal velocities
and tsunamis velocity. Another mechanism of nonlinear interaction operates through the
changes in the thickness of the water layer in the presence of tides, which is typical for shallow
areas. In this case besides the amplitude of the incoming wave, the arrival time can vary due
to the change in wave phase speed. These results lead us to conclude that the account of tidal
dynamics may prove to be necessary for the faithful modelling of tsunami waves.

For comparison of the results delivered by the shallow water model in the original state and
with the nonhydrostatic extension on the other two standard test cases are executed. This
example shows dispersive effects that occur when a solution is running up a plain beach.

The comparison between the results of the original shallow water model and the model with
the nonhydrostatic correction, two test cases were performed. They illustrate the importance
of dispersive effects, which may have implication to inundation prediction. The inclusion of
nonhydrostatic effects may therefore be necessary for successful modeling of tsunami wave
propagation.

Brief overview

The wave propagation model TsunAWI based on finite elements was presented. We also
introduced the architecture of the Tsunami Early Warnin System and methodology for the
multi-sensor selection. We simulated the tsunami events generated by the Sumatra-Andaman
(2004) and Tōhoku (2012) earthquakes. Part of our work addresses the influence of tidal
dynamics on tsunami wave propagation in coastal areas. The impact of nonhydrostatic effects
is investigated in this study.
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1. Introduction 

A wave is a disturbance that propagates through space and time, usually with the transference 
of energy from one point to another without permanent displacement of particles of the 
medium. The particles under this situation only oscillate about their equilibrium positions. If 
the particles oscillate in the direction of wave propagation, then the wave is called longitudinal 
wave. However, if these oscillations take place in perpendicular direction with the direction of 
wave propagation, the wave is said to be transverse in nature. Electromagnetic (EM) waves are 
transverse in nature. In electromagnetic waves such as light waves, it is the changes in electric 
field and magnetic field that represent the wave disturbance. The propagation of the wave is 
described by the passage of a waveform through the medium with a certain velocity called the 
phase (or wave) velocity. However, the energy is transferred at the group velocity of the waves 
making the waveform. Electromagnetic radiation is a form of energy exhibiting wave like 
behavior as it travels through the space. The electromagnetic radiation is classified based on 
the frequency of its wave. Figure 1 shows the electromagnetic spectrum that consists of radio 
waves, microwaves, infrared (IR) radiation, visible light, ultraviolet (UV) radiation, X-rays and 
gamma rays. T-rays shown in the spectrum represent the terahertz (THz) radiations. This 
region of frequency (1011Hz to 1013 Hz) had remained the last unexplored region between 
long wavelength and visible electromagnetic radiation for a long time due to the lack of 
efficient emitters and receptors. Interestingly this region of the THz rays demarcates the 
regions of most fascinating subjects of electronics and photonics. 

2. Propagation of electromagnetic waves  

In order to study the propagation of wave, we first let the sinusoidal variation of oscillating 

quantities as   i k r te  
 

 that are associated with the wave. Here k


 is the wave vector that 
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tells about the direction of wave propagation and also gives the wavelength of oscillations 
as 2 / k   and  is the angular frequency of the oscillations that gives rise to the time 
period 2 /T   . The relation between   and k  is called the dispersion relation, based on 
which the wave propagation is investigated in a medium. The propagation of 
electromagnetic waves in any medium can be understood based on the fundamental 
equations of electromagnetic wave theory, i.e. the Maxwell’s equations, which were 
established by James Clerk Maxwell in 1873 and experimentally verified by Heinrich Hertz 
in 1888. These Maxwell’s equations are  

 D   


 (1) 

 0B 


  (2) 

 BE
t


 




 (3) 

 DH J
t


  



 
 (4) 

 
Figure 1. Electromagnetic spectrum. 

Here D


, B


, E


, H


, J


 and   are respectively the electric displacement (C/m2), magnetic 
flux density (Wb/m2), electric field strength (V/m), magnetic field strength (A/m), electric 
current density (A/m2) and electric charge density (C/m3), which are the real functions of 
position and time. For an isotropic medium D E

 
, i.e. the vector E


 is parallel to D


, and 

B H
 

, i.e. the vector H


 is parallel to B


. Here   is the electric permittivity of the medium 
that tells about the polarization of the medium and is determined by the electrical properties 
of the medium.   is the permeability of the medium that tells about the magnetization of 
the medium and is determined by the magnetic properties of the medium. Hence, the 
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properties of the medium associated with the Maxwell’s equations affect the 
electromagnetic wave propagation. Below we discuss the propagation of electromagnetic 
waves in different media. 

2.1. EM wave propagation in free space / vacuum 

For free space or vacuum 0  , 0  , 0J 


 and 0  . If we put these values in Eqs.(1) – 
(4) and take the curl of Eq.(3), we get 

 2
0( E) E=-μ ( H)

t


   


   
  (5) 

The use of Eqs.(4) and (1) in Eq.(5) yields the following de-coupled equation in E


 

 
2

2
0 0 2

EE μ ε 0
t


  




  (6) 

Similarly the wave equation for the field H


 is obtained as 

 
2

2
0 0 2

HH μ ε 0
t


  




  (7) 

Equations (6) and (7) describe respectively the propagation of the fields E


 and H


 in free 
space. For the plane uniform wave, following are the solutions of these second order 
homogeneous differential equations 

 ( ) ( )
0 0E( , ) E and H( , ) Hi k r t i k r tr t e r t e     

        
  (8) 

The above solutions should satisfy the respective wave equations. For example, when we 

put the solution for E


 in Eq.(6) and replace 


 by ik


 and 
t



 by i , we get for harmonic 

wave with single frequency 

 2 2
0 0( ω μ ε )E 0k  


  (9) 

Since E


 cannot be zero for the existence of wave, the wave equation will be satisfied only if 

  2 2
0 0ω μ ε 0k     (10) 

This is the dispersion relation of the electromagnetic wave in free space or vacuum. The 
ratio of    and k  gives rise to the phase velocity (say v ) of the wave, i.e.  

8

0 0

ω 1 3 10 m/sec= ,the speed of light.
μ ε

c
k

       
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Hence, it is clear that the electromagnetic wave propagates with the speed of light in free 
space.  

In addition, we can examine the nature of the electromagnetic wave based on the directions 
of the fields E


, H


 and the wave vector k


. The use of solution (8) in Eq.(3) yields 

 0E ωμ Hk 
  

  (11) 

Similarly we obtain from Eq.(4) 

 0H ωε Ek 
  

 (12) 

Equation (11) says that the field vector H


 is perpendicular to both k


 and E


 vectors. Also 
the vector E


 is perpendicular to both k


 and H


 vectors [see Eq.(12)]. When we combine 

both the equations (11) and (12), it is inferred that the vectors E


, H


 and k


 form a set of 
orthogonal vectors such that the cross product of E


 and H


 is always in the direction of k


. 

For this reason, the energy associated with the electromagnetic waves is carried in the 
direction of wave propagation. On the other hand, Eq.(1) reveals that 0k E 

 
 whereas 

Eq.(2) yields 0k H 
 

. It means the oscillations of the electric field E


 are perpendicular to 
the direction of wave propagation; the same is the case with the magnetic field. Hence, it is 
evident that the electromagnetic waves are transverse in nature.  

2.2. EM wave propagation in a dielectric 

In an isotropic dielectric medium, the current density J


 and volume charge density   are 
zero. Also the vectors D


 and B


 are defined as  0D E P E   

   
 and 0 0B H M H    

   
 

for the isotropic linear dielectric medium, which is polarizable and magnetic. Here the 
vectors P


 and M


 give respectively the measure of polarization and magnetization of the 

medium. Nonetheless, for the dielectric medium it would be sufficient to remember that 0  
and 0  of free space have been replaced with   and  . Hence, for the dielectric medium 
the Maxwell’s equations (1) – (4) take the form 

 E 0 
 

  (13) 

 H 0 
 

  (14) 

 
HE μ
t


  



 
  (15) 

 EH ε
t


  



 
  (16) 
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Following the similar procedure as done in the case of free space, the wave equations for the 
fields E


 and H


 are obtained as 

 
2 2

2 2
2 2,E HE H

t t
  

   
 

  
  (17) 

A comparison of these wave equations with Eqs.(6) and (7) reveals that the phase velocity v  
of the wave in a linear dielectric medium is 

 
0 r 0 r r r

1 1
με μ μ ε ε μ ε

c      (18) 

From the above equation, it is clear that the propagation velocity of an electromagnetic wave 
in a dielectric medium is less than that in free space. Also the refractive index, say n, can be 

evaluated as r r
cn
v

   . Since for a non-magnetic dielectric medium 1r  , the 

refractive index is simply given by square root of the relative permittivity, i.e. rn  . This 

is also true for most materials as for them 0   and hence 1r  . 

2.3. EM wave propagation in a conductor 

We consider a conducting linear and isotropic medium whose permeability is , permittivity is 
 and the conductivity is . In the cases of vacuum and dielectrics or insulators, the 
conductivity is zero and hence the current density J


 was neglected in the Maxwell’s 

equations. Moreover, the free charge density  was taken to be zero in these cases. In the case 
of conductors, the flow of charge however is not independently controlled and the current 
density in general cannot be neglected. Since any free charge supplied to a conductor gets 
dissipated, we can rather take 0  . This can be seen based on the continuity equation 

0J
t

 




. The use of Ohm’s law J E

 
 and Gauss law of electricity D  


  in this 

equation leads 1
t
 

 


 


, the integration of which gives    0
t

t e

 


  together with 

 0  as the initial free charge density. This relation shows that if we put some free charge on a 

conductor, it will flow out to the edges in a characteristic time f



 . For a perfect conductor 

this characteristic time 0f   as    , and for a good conductor f  will be much less than 

the other relevant times, for example 1


 in an oscillatory system, i.e. 1
f 
 . Under this 

situation, we can write the Maxwell’s equations as 

 E 0 
 

  (19) 
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 H 0 
 

  (20) 

 B HE μ
t t

 
    

 

  
  (21) 

 EH σE ε
t


  



  
  (22) 

Taking the curl of Eq.(21) and then making use of Eqs. (19) and (22), we get the following 
electromagnetic wave equation for the field E


 in a conductor 

 
2

2
2

E EE μσ με
t t

 
  

 

 
  (23) 

Similarly the wave equation for the field H


 is obtained as 

 
2

2
2

H HH μσ με
t t

 
  

 

 
  (24) 

In one-dimension (along z-axis) the wave equations are written as  

 
2 2

2 2
E E E

tz t
   

 
 

  
 (25) 

 
2 2

2 2
H H H

tz t
   

 
 

  
 (26) 

If we compare Eq.(23) with Eq.(6), we notice that an additional term E
t

 



 appears in the 

wave equation for the E


 field; the same is the case with Eq.(24) and an additional term 
H
t

 



 appears. Hence, these wave equations are called modified wave equations for the 

electromagnetic field in a conductor. Owing to the inclusion of conductivity , both the 
additional terms are called the dissipative terms as these allow the current to flow through 
the medium. 

We can assume the following plane wave solution (in one-dimension) to the wave equations 
(25) and (26)  

        
0 0, and ,i kz t i kz tE z t E e H z t H e   

   
  (27) 

Putting the above solution of E


 in Eq.(25) or of H


 in Eq.(26) we get  

 2 2k i    (28) 
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This relation shows that the wave vector is a complex quantity, say r ik k ik  . With this the 

fields E


 and H


 become 

        
0 0, and ,r ri ii k z t i k z tk z k zE z t E e e H z t H e e    

   
  (29) 

It is evident from the above expressions that when the electromagnetic wave propagates 
through a conductor, its amplitude decreases and hence the attenuation of the wave takes 
place. The distance through which the amplitude is reduced by a factor of 1 e  is called skin 
depth (say ). The skind depth is decided by the imaginary part of the wave vector, i.e. ik , 
as it can be seen that  

 1

ik
   (30) 

The real part of the wave vector determines the wavelength, phase velocity, and the 

refractive index in the usual manner, i.e. 2

rk
  , 

r
v

k


  and rckcn
v 

  . Putting r ik k ik 

in Eq.(28) we obtain 

 
2 2

1 1 and 1 1
2 2r ik k    

 

                    
         

 (31) 

It is evident that the propagation of the wave and the skin depth depend on the properties 
of the conductor and the frequency of the wave. Based on the expression of ik , this can be 
seen that the skin depth for the electromagnetic waves having high frequencies is smaller. 
Since the skin depth is a measure of how far the wave penetrates into the conductor, the 
high frequency waves are found to penetrate less into the conductor. For example, in the 
case of copper, the skin depth of approximately 6 cm is obtained at the frequency of 1 Hz 
and it decreases to about 2 mm if the frequency is increased to 1 KHz. The skin depth causes 
the effective resistance of the conductor to increase at higher frequencies where the skin 
depth is smaller, thus reducing the effective cross-section of the conductor. If we talk in 
general about the skin depth, it is the tendency of an alternating electric current to distribute 
itself within a conductor with the largest current density near the surface of the conductor 
and decreased density at greater depths. Under this situation, the electric current flows 
mainly at the skin of the conductor. Hence, the word skin comes into picture. 

During the wave propagation in conductors, unlike the cases of vacuum and dielectrics, the 
electric field and magnetic field vectors do not remain in phase. This can be seen as follows. 
Taking the direction of electric field E


 along the x-axis, we write it as 

   
0ˆ, ri i k z tk zE z t xE e e 


. Using this in Eq.(21), we get    0ˆ, ri i k z tk zkE

H z t y e e 





. Clearly 

the amplitude of field H


 contains k , which is a complex quantity and can be expressed in 
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terms of its magnitude (say k ) and phase (say k ) as kik k e  . Here 

2
2 2 1r ik k k  



         
   

 and 1tan i
k

r

k
k

   
   

 
 . With this the field can be written as 

   0ˆ, r ki i k z tk zk E
H z t y e e  


 




. A comparison of this expression with 

   
0ˆ, ri i k z tk zE z t xE e e 


 clearly infers that H E k    , where H  is the phase of the 

magnetic field and E  is the phase of the electric field. Hence, the magnetic field lags behind 
the electric field during the electromagnetic wave propagation in a conductor. 

3. EM waves and plasma interaction 

Our aim is to disucss the electromagnetic waves and plasma interaction in view of the 
particle acceleration. Hence, now we introduce the plasma as a new medium, which is 
sometimes referred to as the fourth state of the matter. 

3.1. Plasma: Fourth state of matter 

Everybody is well aware of three states of the matter, i.e. the solid, liquid and gas. In solids, the 
atoms are packed very close to each other and are fixed at definite positions. These are 
connected with each other by the interatomic forces. The atoms of solids start oscillating about 
their equilibrium positions when we supply energy to them, and as a result the interatomic 
forces become weaker and the atoms are separated significantly. This way the solid takes the 
form of liquid, where the atoms or molecules override. The liquid has a specific volume but 
does not have precise shape. So it changes shape according to the shape of the container in 
which it is kept. If we further supply energy to the atoms, the interatomic forces become 
insignificant, the atoms get separated and start moving freely. Under this situation, the liquid 
takes the form of gas. In gas, the atoms are not connected with each other and hence can move 
in any direction. The gas neither has precise shape nor the fixed volume. It takes the shape and 
volume of the container in which it is kept. If more energy is supplied to the atoms (or 
molecules) of a gas, the electrons from the outermost level of the atoms get easily detached and 
hence the atoms become ionized. As a result, we are left with the collection of ions, electrons 
and some neutrals (unionized atoms). This collection of charged and neutral particles is 
referred to as plasma. This is sometimes called the fourth state of matter, as it is found in 
natural conditions. For example, the gases near the sun are always in ionized state that 
qualifies for plasma. The species of the plasma being charged are connected with each other by 
the electromagnetic forces. This can be understood as follows. Since the charges separated with 
each other set up the electric field, the plasma species produce the electric field. However, the 
separation of charges of plasma is not fixed (as the species do not remain stationary). So this 
electric field is time varying field, which will generate magnetic field according to the 
Maxwell’s fourth equation. On the other hand, the motion of charges generates current and 
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hence the magnetic field. In view of this, the plasma species produce time varying magnetic 
field that will induce electric field according to the Maxwell’s third equation. Thus, it can be 
said that the plasma species are connected with each other by the electromagnetic fields. In 
view of almost equal number of ions and electrons in the plasma, the plasma as a whole is 
neutral. However, the plasma is quasineutral, as we cannot neglect the internal forces at the 
same time. Moreover, if we attempt to disturb a part of the plasma, the whole body of the 
plasma gets perturbed due to the connection of all the species with each other. This property is 
known as collective behaviour of the plasma. Therefore, an ionized gas can qualify for plasma 
state, if it is quasineutral and it shows collective behaviour.  

Another interesting property of the plasma is its ability to shield out the field that is applied 
on it. This can be better understood, for example, when we insert the electrodes of a battery 
into the plasma. Then the positive (negative) electrode attracts the electrons (ions) whose 
number is decided by the charge carried by the electrode. So an electron cloud is developed 
around the electrode that shields / cancels the external field. The thickness of this electron 
cloud is known as Debye length (say, De). Since the electrons are light species compared 
with ions, the shielding is generally accomplished by the electrons only. It is clear that the 
field exists within the cloud or the Debye sphere (sphere with the radius De). Now imagine 
if the Debye length is much less than the dimension (L) of the plasma. Then the bulk of the 
plasma will remain neutral. Therefore, De << L is the required condition for the 
quasineutrality. In aadtion, if the number of electrons in the Debye sphere (say, NDe) is much 
larger than unity, i.e. NDe >> 1, then the condition of collective behaviour will be fulfilled. 
Any distance in the plasma system is measured in terms of Debye length De and the time is 
measured in terms of reciprocal of plasma frequency (say fpe). The plasma frequency is 
nothing but the natural frequency of the plasma, the same as all the materials have their 
natural frequencies. Actually this is the frequency of oscillations made by the electrons 
about their equilibrium positions. The plasma frequency fpe and the Debye length De in SI 
system of units are given by 

1 12 22
0 0
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0 0

1 and
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pe De

e

n e kT
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In these expressions, n0 is the plasma density, which is the common density of ions (ni) and 
electrons (ne), i.e. n0 = ni = ne, Te is the electron temperature, k is the Boltzmann constant  
(k = 1.381023 J/K), e is the electronic charge and me is the electron mass. In plasmas, 
generally we do not talk about the temperature of the ions and electrons, but we specifically 
focus on their energies. It means the temperature is written in terms of the energy. For 
example, 1eV energy of the electron would be equal to its thermal energy kTe (for two-
dimensional system, and in general in plasma physics). So  

e
19 23

e

e

1eV = kT

or 1.6 10 ( ) 1.38 10 T (J/K)
or T 11,600 K.

J   

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It means 1eV energy is equivalent to 11,600 K temperature. The electron temperature in 
laboratory plasmas generally varies from 1 eV to 5 eV. For a plasma with number density of 
1018/m3 and temperature 2 eV, the Debye length comes out to be of the order of m and the 
plasma frequency of the order of GHz (109 Hz). 

Hence, it is clear that only the electrons would be able to respond to the high frequency field 
of the electromagnetic waves, for example, microwaves or lasers. As mentioned, our aim is 
to develop an understanding for the electromagnetic waves and plasma interaction for their 
possible applications to the particle acceleration. Below we discuss about this topic in 
greater detail and summarize the research conducted in this direction. At first we talk about 
the phenomena that may be realized during the interaction of electromagnetic waves and 
plasmas. 

3.2. Some basic phenomena 

According to linear theory, only the electromagnetic wave of frequency   higher than 
plasma frequency

 pe  can propagate through the plasma. The wave whose frequency   is 

below pe  gets reflected and the one with pe   gets absorbed resonantly in collisionless 

plasma. The plasma itself can support several types of electrostatic and electromagnetic 
waves such as electron plasma wave, ion acoustic wave, electron electromagnetic waves, etc. 
The interaction of electromagnetic wave with plasma can take place through the exciation of 
such waves and in this process the exchange of energy can be possible between the 
electromagnetic wave and plasma species. If the amplitude of wave is much higher than its 
nonlinear interaction with other collective modes in plasma, plasma instabilities are 
dominant. On the other hand, the wave can also decay by Landau damping and if plasma is 
underdense ( > pe ) then the wave can decay in electrostatic wave and some other 

electromagnetic waves, resulting in parametric instabilities including Raman scattering, 
Brillouin scattering, etc. In case of large amplitude wave, the effect of ponderomotive force 
also comes into picture. This is very important phenomenon in view of harmonic 
generation, beat wave excitation, wakefield excitation for particle acceleration, self-focusing 
of laser beam, filamentation of laser beam, etc.  

In the theory for resonance absorption, wave propagation in the resonance layer is 
described either by electron-ion collisions and thermal dispersion or by nonlinear effects 
like wave breaking, etc. [1 – 3]. The anomalous absorption of electromagnetic waves on a 
surface of an inhomogeneous unmagnetized plasma was theoretically predicted by 
Gildenburg [4]. Later this phenomenon was confirmed experimentally, out of which some 
experiments have shown that large amount of power can be absorbed by magnetized 
plasma at the electron and ion cyclotron frequencies. A usual way of coupling transverse 
waves into a plasma for the purpose of such resonant absorption has been to use a 
magnetic beach as suggested by Stix [5]. Breizman et al. [6] have presented a self-
consistent theory of the rf-wave propagation and ion motion through the resonance. An 
important ingredient of the problem is the ion flow along the magnetic field. The flow 
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velocity limits the time the ions spend at the resonance, which in turn limits the ion energy 
gain. A feature that makes the problem nonlinear is that the flow accelerates under the 
effect of B


 force and rf-pressure. This acceleration can produce a steep reduction in the 

plasma density at the resonance, resulting in partial reflection of the incident wave. The 
propagation and collisionless absorption of electromagnetic waves propagating in 
nonuniformly magnetized plasmas with regions of cyclotron resonance were computed 
by Kuckes [7]. He considered the particle dynamics associated with motion in a 
nonuniform magnetic field near cyclotron resonance explicitly and predicted the complete 
wave absorption above a critical plasma density.  

The nonlinear behaviour of the large-amplitude plasma wave and the effect of an 
inhomogeneous plasma on its growth and saturation in a collisionless plasma due to the 
beating of two laser beams with frequencies much above the plasma frequency pe  has been 
considered taking into account the modulation of the Lorentz force by the large-amplitude 
plasma wave as well as the temporal variation of its phase [8]. In this case, a novel 
parametric instability as a result of the modulation of the Lorentz force by the large-
amplitude plasma wave is found when the beat frequency is twice the plasma frequency. 
The high phase velocity electron plasma wave excited by collinear optical mixing has been 
detected directly [9], where the frequency, wave number, spatial extent, saturation time, and 
peak amplitude were all measured experimentally and found to be in reasonable agreement 
with the theoretical expectations. The resonant excitation of an electron plasma wave and its 
effects on the density profile steepening have been theoretically studied by using a 
modified, warm-capacitor model [10], where the scaling laws characterizing the process 
were established and the wave structure and density profile were self-consistently 
determined. 

Chang et al. [11] have observed experimentally the parametric excitation of ion acoustic 
waves and cyclotron harmonic waves by a high frequency electric field with frequencies  
near the harmonics of the cyclotron frequency. They have verified both the wave vector 
and the frequency selection rules. Parametric excitation of longitudinal oscillations of 
plasma was studied by Kitsenko et al. [12] in a weak alternating electric field with 
frequency 0  close to that of electron-ion hydrodynamic longitudinal oscillations of cold 

plasma,   2
1 1 cosLH i em m      , where LH  is the lower hybrid resonance 

frequency. In their study, the angle  between the direction of propagation of the 
oscillations and the magnetic field was close to / 2  and it was shown that oscillations 
can be excited in the plasma with frequencies much less than 0 , if the drift velocity of 
the particles in the steady external magnetic field and the alternating electric field is less 
than the thermal velocity of the ions.  

Optical investigations have been reported of the interaction of 0.3 TW, 250 fs Ti: sapphire 
laser pulses with underdense plasmas created from high density gas jet targets [13]. Time 
resolved shadowgraphy using a 2ω probe pulse, images of the transmitted radiation and 
images of 1ω and 2ω side radiations were presented for various gases. Their experimental 
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results and analysis based on a simple numerical Gaussian beam model showed that 
ionization-induced refraction dominates the interaction process for all gases except 
hydrogen. The numerical modeling has also shown that for a given laser power there exists 
only a narrow density range in which self-focusing can be expected to occur. On the other 
hand, it has been observed that the nonlinear frequency shift of a strong electromagnetic 
wave in a plasma due to weak relativistic effects and the v B

  force can cause modulation 
and self-focusing instabilities [14]. Kaw et al. [15] have shown that an electromagnetic wave 
interacting with a plasma is subject to instabilities that leads to light filamentation. 
Numerical studies of beam filamentation in laser produced plasma have been presented by 
Nickolas et al. [16] based on a parabolic wave equation, known as the Schroedinger  
equation, coupled with thermal transport equations for both the ions and electrons in two-
dimensions. Also the results of a numerical code have been described which models the 
relativistic self-focusing of high intensity laser beams in plasmas by the nonlinear relativistic 
dependence of the optical constants on laser intensity [17]. Here rapid relativistic self-
focussing down to a beam diameter of one micron in a distance of the order of the original 
beam diameter was observed. They also observed the production of GeV ions moving 
against the laser light.  

3.3. Particle acceleration  

Particle accelerators are among the largest machines built by humans. In the conventional 
linear accelerators (LINACs), the acceleration gradients are however limited to some tens 
of MeV/m. Since the energy gain of particles is the product of such acceleration gradient 
and the acceleration distance, we need to extend only the acceleration distances in order 
to reach high energies. That’s why these tools for high energy physics are becoming larger 
and larger, and increasingly more expensive. For the first time, it was realized by Tajima 
and Dawson [18] that a laser beam propagating in a plasma can excite electron plasma 
wave, which being longitudinal can be used to accelerate electrons. To understand the 
underline principle for plasma based acceleration, consider the limits of conventional 
particle accelerators based on rf-waves propagating in corrugated metallic cavities. They 
are limited first by the availability of high peak power drivers and ultimately by electrical 
breakdown of the metal structure. These factors correspond to linear accelerating gradient 
of 20 – 100 MeV/m. Plasmas though are not limited by breakdown as they are already 
ionized and indeed can support electric fields of the order 10 – 100 GeV/m. Consequently, 
with regard to the energy gain of particles in accelerators, a plasma accelerator can cut 
down significantly the acceleration distance to boost particles from rest to several MeV 
over a short distance (less than the millimeter range) and still provide high quality 
electron beam. Thus, plasma based particle accelerators opened a new and exciting field 
of extreme gradient (beyond 1TV/m). There has been a tremendous progress in recent 
years, due to the advances in technology, particularly by the development of compact 
terawatt laser systems based on the technique known as chirped-pulse amplification 
(CPA). 
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Figure 2. Laser intensity profile: Ponderomotive force. 

3.3.1. Excitation of Langmuir waves: Wakefield generation 

Although electric fields of the order of 1 TeV/m are readily achievable these days at the 
focus of a laser beam, these fields in vacuum cannot be used directly for the purpose of 
particle acceleration. This is because they are transverse and oscillatory in nature. However, 
if laser light can be used to excite Langmuir waves in plasma, these waves being 
longitudinal can be used to accelerate charged particles.  

The motion of the electron in the presence of electric field is governed by the Lorentz force. 
In the case of high, nonuniform electromagnetic (or purely electric) field, the expression for 
Lorentz force has a second order term, which is proportional to the laser intensity gradient. 
This second order force term is known as the ponderomotive force, given by 

   2 2 2 21 / 4pm eF e m E   
 

 (32) 

Here  is the frequency of laser having the electric field E and α is the ellipticity of the laser 
light, which is equal to zero for the linearly polarized light and is unity for the circularly 
polarized light. The above expression is for ponderomotive force on a single electron. 
However, for the plasma the ponderomotive force on the electrons is defined for unit 
volume as per the following relation 

     2 2/ 1 / 2pm peF c I     
 

  (33) 

Thus, any spatial variation of the laser intensity I will act to push the electrons / ions from 
the region of higher intensity to the region of lower intensity through the ponderomotive 
force (Fig.2). This displacement of electrons creates large amplitude plasma wave, which is 
called the wake. The field corresponding to this wake, i.e. the wakefield, can reach up to 100 
GeV/m provided there is a resonance between the plasma frequency pe and the 
ponderomotive force. The concept of wakefield acceleration can be understood based on the 
following example. When a speed-boat travels in water, it produces two types of waves viz. 
bow waves and wakefield waves. The bow waves are conical waves having tip at the front 
end of the boat. These are produced because the velocity of the boat exceeds that of the 
water waves. The wakefield waves are waves set up at the back (or wake) of the boat, which 
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travels with the velocity equal to the velocity of the boat. According to the principle of the 
Landau damping, a floating ball dropped in the wakefield wave of the boat will get 
accelerated to the velocity of the boat if its initial velocity is slightly less than that of the boat. 
This is exactly the principle of wakefield acceleration. 

Below we discuss a few methods that are used to excite plasma wave and hence the 
wakefield.  

3.3.1.1. Laser beat wave accelerator (LBWA) 

In the LBWA method, the plasma wave is excited by beating two optical waves of slightly 
different frequencies. Two laser waves of frequencies 1  and 2 , having polarization in the 
same direction, traveling in preformed plasma of uniform density 0n  (corresponding 

plasma frequency pe ) will beat at a frequency 1 2     . If this frequency difference is 

exactly equal to the plasma frequency (i.e. pe   ), then strong Langmuir wave will be 

excited in the plasma by the longitudinal ponderomotive force of the beat wave. Since the 
beat wave moves with the laser pulse, the plasma wave will also move with a phase velocity 
equal to the group velocity (near light velocity) of the laser pulses. Then a properly placed 
bunch of electrons with a velocity slightly lesser than the laser group velocity will get 
accelerated by wave-to-particle energy transfer. However, in this process there is a problem 
of detuning of resonance condition, which is attributed to the modified plasma frequency 

 1 /pe em   due to the change in electron mass because of their reltivistic speeds in very 

large amplitude of the wakefield. 

3.3.1.2. Laser wakefield accelerator (LWFA) 

In beat wave acceleration scheme, it is necessary to have plasma of uniform density along 
with strict requirement on plasma density to exactly match with the beat wave frequency 
and clamping of field due to relativistic effects. Hence, laser wakefield acceleration shceme 
was proposed in which all the above problems are absent. For LWFA, one uses a short pulse 
of very high intensity. When such a high intensity laser pulse is incident on a gas, it ionizes 
the gas. The laser light propagates in this plasma with a velocity equal to the group velocity 
 gv  in plasma, which is nearly equal to the velocity of the light. The short laser pulse 
duration   has a strong intensity variation in time and correspondingly in space. This leads 
to a strong longitudinal pondermotive force. The wavelength of this pondermotive force, 
and that of the density perturbation caused by it, is of the order of 2c . If this is made equal 
to the plasma wavelength (defined as 2 /p pec   ), then high amplitude wakefields are 
produced due to resonance (Fig.3). Similar to the case of the boat, the laser wakefield moves 
with the pulse at a velocity equal to the group velocity of the laser pulse. Under this 
situation, a correctly injected bunch of electrons can be accelerated by the longitudinal field 
of the plasma waves (Fig.3), where an electron bunch is injected in the plasma wave midway 
between every two alternate plasma wave peaks. If the plasma wave itself moves with a 
phase velocity pv  and the electron beam moves with a velocity bv , then the beam will be 
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forced by the plasma wave to travel with a velocity equal to that of the plasma wave. This is 
because, if b pv v , the electron bunch at point C (Fig.4) will start trailing from the midpoint 
and will experience a positive force due to electron bunch at point A. This will accelerate it 
in the +z direction till it attains a velocity equal to pv . If b pv v , then it will start drifting 
towards point B and the bunch at B will repel it backward till it slows down to a velocity 
equal to pv . If the electron beam has a velocity much different from that of the plasma 
wave, it will cross the repulsive barriers at point A or B and its velocity will keep oscillating 
about its mean velocity. In other words, such a beam of electrons will not have a net 
exchange of energy with the plasma wave. Hence, a beam of electrons traveling with a 
velocity slightly less than that of the plasma wave will get accelerated. Moreover, if the 
phase velocity of the plasma wave is relativistic, then the slight gain in velocity corresponds 
to a large gain in the energy. 

 
Figure 3. Schematic of LWFA. 

 
Figure 4. Force on an electron bunch trapped in an electron plasma wave. 
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3.3.1.3. Self modulated LWFA (SM-LWFA) 

In this scheme, the electron plasma wave is excited resonantly by the modulation of the laser 
pulse envelope. This occurs for a laser pulse having length  L  few times longer than the 

plasma wavelength  p  and pulse power larger than the power (critical power cP ) 

required to self-focus the laser beam. Owing to the finite pulse shape, a small plasma wave 
is excited non-resonantly, which results in growth of forward Raman scattering (FRS) 
instability. The FRS wave and the laser wave beat at the plasma frequency, which gives rise 
to an enhancement of the electron plasma wave. Thus, there exists an oscillating density 
perturbation within the pulse envelope. The laser pulse therefore sees a refractive index that 
is alternately peaked and dented at interval of / 2p . As the phase velocity of the laser wave 

depends on the density, the modulation in density gives rise to redistribution of the photon 
flux within the laser pulse, which leads to modulations in the envelope with a period of p . 

This modulation gives rise to strong ponderomotive force with wavelength exactly equal to 
the plasma wavelength (as in LWFA). This strongly enhances the plasma wave amplitude. 
This effect grows in time, thereby transforming the initial laser pulse envelope into a train of 

shorter laser pulses with width of p  or duration proportional to 1 / pe . Since 
0

1~p n
  

and 
0

1~cP
n

, the conditions pL   and cP P  for fixed laser parameters can usually be 

satisfied by operating at sufficiently high plasma density. Figure 5 shows the self-modulated 
scheme of laser wakefield acceleration.  

The advantages of the self-modulated LWFA over the standard LWFA are the simplicity 
and enhanced acceleration. Simplicity is that a preformed density channel and pulse 
tailoring are not required for the matching condition of ~ pL  . Enhanced acceleration is 

achieved for the following reasons. First, the SM-LWFA operates at a higher density, which 
leads to a larger wakefield ( 0~E n ). Second, the wakefield is resonantly excited by a series 

of pulses as opposed to a single pulse in the standard LWFA, relativistic optical guiding 
allows the modulated pulse structure to propagate for several Rayleigh lengths. This 
extends the acceleration distance and hence the large energy gain is achieved in this scheme. 

 
Figure 5. The self-modulated laser wakefield acceleration scheme. 
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So far we have seen that when a short laser pulse propagates through underdense plasma, a 
large amplitude plasma wave is excited in the wake of the laser pulse by the ponderomotive 
force associated with the temporal profile of the pulse. For tightly focused pulses (

0 1pk w  , where pk and 0w  are the plasma wave vector and the beam size at the waist, 

respectively), both longitudinal and radial components of the ponderomotive force generate 
a density perturbation, whereas in loosely focusing geometry ( 0 1pk w  ), only a 

longitudinal electron plasma wave is generated. The amplitude of the wave is maximum 
when ~ 1pe  , where   is the pulse duration and pe  is the plasma frequency. 

3.3.1.4. Plasma wakefield accelerator (PWFA) 

In a plasma wakefield accelerator (PWFA), the electron plasma wave is driven by one or 
more electron beams. Effectively the wakefield can be excited by a relativistic electron beam. 
This can be achieved if the electron beam terminates in a time shorter than the plasma 
period 1 / pe . In such a scheme, the ratio of energy gain to the drive beam energy (called 

transformation ratio) is limited to  2 for a symmetric driving beam in the linear regime. 
However, it can be increased by using an asymmetric drive beam.  

3.3.2. Studies on particle acceleration  

The researchers all over the world have made various attempts to accelerate the charged 
particles using wakefield and other mechanisms. Below we summarize the work done using 
lasers, microwaves and electron bunches. 

3.3.2.1. Acceleration by wakefield 

The investigations on the excitation of wakefield began with the pioneering work of Chen et 
al. [19], and the first experimental evidence was reported by Rosenzweig and coworkers [20, 
21] followed by Nakajima et al. [22]. The wakefield generation has been widely studied 
experimentally, analytically and using simulations [23 – 29]. Nishida et al. [30] have 
successfully excited wakefield in the ion wave regime with long pulse duration by 
employing a variety of driving bunch shapes. Later, Aossey et al. [31] observed such type of 
wakefield in three-component plasma also. On the other hand, efforts have been made 
related to wakefield excitation by relativistic electron bunch [29], [32], and coupling of 
longitudinal and transverse motion of accelerated electrons in laser wakefield [25]. Lotov 
[24] has analytically studied the laser wakefield acceleration in narrow plasma filled 
channels. Analytical investigations on wakefield acceleration using a dielectric lined 
waveguide structure showed the acceleration gradient for electrons or positrons in the range 
of  50 – 100 MV/m for a few nC driving bunches [33]. In another wakefield accelerator, a 
peak acceleration gradient of 155 MeV/m was predicted for a 2 nC rectangular drive bunch 
[34]. Jing et al. [35] have found transverse wakefield of about 0.13 MeV/mnC (0.2 MeV/mnC) 
due to X-dipole modes (Y-dipole modes) in an X-band structure generated by an electron 
bunch in dipole-mode wakefield in a waveguide accelerating structure. Short microwave 
pulses have also been used in some experiments to excite a nonlinear large amplitude ion 
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wave at resonance absorption region [36]. This has also been suggested that the wakefield of 
an ultra short laser pulse can be amplified by a second laser pulse copropagating behind 
with duration of a few plasma wavelengths or longer [37]. Malik [38] has analytically 
investigated the wakefield in waveguide generated by the different types of microwave 
pulses with moderate intensities.  

For the purpose of efficient acceleration, it is necessary to excite the wakefield of a large 
amplitude along with its speed nearly equal to the speed of light. The wakefield is reported 
to be enhanced by the nonlinearities in response of plasma to ponderomotive force of a long 
smooth laser pulse of relativistic intensity whose pulse length is much larger than the half of 
the plasma wavelength [39]. The amplitude of the laser wakefield has also been found to 
increase by the ionization processes of the gases at comparatively higher laser peak 
intensities [40]. A capillary tube can be used as a waveguide in order to enhance the 
interaction length [41]. Tapered plasma channels have been proposed for the enhancement 
of interaction length to achieve greater acceleration [42]. However, in such interactions, 
when the plasma wave acquires sufficiently large amplitude it becomes susceptible to 
instability, which is also an important issue in nonlinear plasma physics [43 – 53] in addition 
to other types of waves, structures and instabilities [54 – 63] including the laser produced 
plasmas [64] that may support different types of growing waves under the effect of high 
magnetic field [65]. 

3.3.2.2. Acceleration using lasers 

McKinstrie and Startsev [66] have proposed that a laser field can accelerate the pre-
accelerated electron significantly. However, they neglected the effect of longitudinal field of 
the laser pulse. On the basis of 3-D particle-in-cell simulations for the ion acceleration from a 
foil irradiated by a laser pulse, Pukhov [67] has shown that at the front side the laser 
ponderomotive force pushes electrons inward and creates the electric field by charge 
separation, which drags the ions. Yu et al. [68] considered the electron acceleration from the 
interaction of an intense short pulse laser with low density plasma and the optimum 
condition for the acceleration in the wake was obtained. They showed that the electron 
acceleration within the pulse dominates as the pulse becomes sufficiently short. By using 2-
D particle-in-cell simulation, Suk [69] has studied the electron acceleration based on self-
trapping by plasma wake. Sentoku et al. [70] examined experimentally the interaction of 
short laser pulse with dense plasma target for the proton acceleration and found that the 
peak proton energy increases in inverse proportion to the target thickness. Singh and 
Tripathi [71] have studied the laser induced electron acceleration in a tapered magnetic 
wiggler where the IFEL resonance condition was maintained for longer duration. With 
regard to the importance of polarization effects, Kado et al. [72] have observed strongly 
collimated proton beam from Tantalum targets when irradiated with circularly polarized 
laser pulses. With the help of radially polarized ultra relativistic laser pulses, Karmakar and 
Pukhov [73] have shown that collimated attosecond GeV electron bunches can be produced 
by ionization of high-Z material. They also compared the results with the case of Gaussian 
laser pulses and found that the radially polarized laser pulses are superior both in the 
maximum energy gain and in the quality of the produced electron beams. Xu et al. [74] 
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made a comparison between circularly polarized (CP) and linearly polarized (LP) fields 
with regard to the laser driven electron acceleration in vacuum and found that the CP field 
can give rise to greater acceleration efficiency.  

3.3.2.3. Acceleration using microwaves  

The researchers have made efforts to use microwave field for the particle acceleration [35, 
36, 75 – 85]. In microwave plasma interaction experiments, electron acceleration has been 
realized via the pv B

  process [75, 76] and that of resonance absorption during wave 

particle interaction [77]. In the pv B
  process, where pv  is the phase velocity of the wave, 

an electrostatic wave (e.g. electron plasma wave) propagates in a direction perpendicular 
to a magnetic field B


. Here an electron that is trapped in the wave trough gets accelerated 

in the pv B
 direction. In these experiments, the electrons could be accelerated up to 400 

eV. In another experiment, a nonlinear large amplitude ion wave was excited by using 
short microwave pulses at the resonance absorption region [36], where a strong electron 
wave was found to be excited after shut-off of the incident microwave pulse and high 
energy electrons got emitted and accelerated by the electron wave wakefield. Hirshfield et 
al. [80] have proposed a cyclotron autoresonance accelerator using rf gyroresonant 
acceleration, where the resonance for a TE11 mode was maintained along a waveguide by 
the applied magnetic field and group velocity axial tapers, and the maximum energy 
achieved by the electron beam in this process was up to 2.82 MeV. Yoder et al. [86] have 
measured the energy gain from a microwave inverse free electron laser accelerator 
including the energy change as a function of relative injection phase of the electron 
bunches. In this accelerator, the effective accelerating gradient was achieved as 0.43 MV/m 
and the gain for a 6 MeV electron bunch was observed about 360 keV. Carlsten  [81] has 
done modal analysis and gain calculation for a sheet electron beam in a ridged waveguide 
slow wave structure. Kumar and Malik [87] have discussed the importance of obliquely 
applied magnetic field to an electron acceleration and obtained that the larger acceleration 
is possible when the condition pe c   ( pe  is the electron plasma frequency and c  is 

the electron cyclotron frequency) is achieved in the plasma filled waveguide. Also it was 
proposed to use the field of superposed mode in waveguide for the effective electron 
acceleration [88]. 

4. Case study: Wakefield by lasers and microwaves 

Here we take an example of wakefield excitation by short pulse lasers in an infinite plasma 
[38] and by the microwave pulses in a rectangular waveguide [89, 90].  

4.1. Wakefield by different types of laser pulses 

A laser pulse with frequency  (= 2f), intensity I0 (corresponding field E0) and pulse 
duration  (= fp

1 = 2/pe) is considered to propagate in a homogeneous plasma of density n0 
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and excite wakefield Ex (corresponding potential ) behind it. The ions (density ni) in the 
plasma are taken to be immobile on the time scale of the interest and the plasma response to 
the electromagnetic field is given by the following cold and collisionless electron fluid 
equations 

   0e en t n v    
 

 (34) 

  dp dt e E v B   
  

  (35) 

 E B t   
 

  (36) 

  2
0 1 with eB j c E t j n ev      
   

   (37) 

 0B 


 (38) 

  0 i eE e n n    


  (39)  

With the help of above equations one can easily obtain the following dispersion relation for 

the laser propagation in the plasma 2 2 2 2
pec k   , from which the group velocity of the 

laser is found as  2 21g pev c    . Clearly the group velocity depends on the plasma 

density and it can be adjusted as per the requirement.  

We consider one-dimensional weakly relativistic case for the nonevolving system, i.e. when 
all the quantities depend only on gx v t   , and take the electron density 0e en n n   

together with en  as the density perturbation due to the laser pulse and n0 as the 

unperturbed density in a homogeneous plasma where 0 0n    . Then the fluid equations 
are integrated under the condition that the oscillating quantities vanish as   and also 
when the perturbations are not so great  0 1en n  . This yields 

 

2
2 2

2
2 4

0
2

pe

g e g

c e E
v m v

 


       
       

 (40) 

This is the general equation for the wake potential  which can directly use different 
envelopes of E, i.e. different shapes of the laser pulses. Here we concentrate on three types 
of the shapes, namely Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and 
rectangular-Gaussian (RG) pulse, as shown in Fig.6. 
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Figure 6. Different shapes of the laser pulses with pulse length L (duration ). 

The wakefield EGL for the case of GL pulse is obtained as 

     1 cos 2 cos 2GL p pE a k L k L   , where    2 2 4 2 2 2
1 0 1 /e ga ec E L m v L      

 and kp = 

pe/vg = 2/p together with p as the plasma wavelength, which is described by the group 
velocity of the laser pulse in the plasma. The density perturbations behind the pulse are 

obtained as           2 2 2 2
0 1 2 2cos 2 sin 2e e g p pGL

n n ea m v k L k L L L         .  

The wakefield ERT for the case of RT pulse is obtained as    2 3 cos 2RT pE a a k L   , 

where  2 2 4
2 0 2 e ga ec E m v   and 

           

           
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





    
      
       

   
    
    

 

together with  2 2 2 2 2
1 4c L L     and  2 2 2 2 2

2 9c L L    . The density perturbations 

behind the pulse are obtained as      2
0 2 31 sin 2e e g pRT

n n ea m v a k L       . 

For the case of RG pulse the wakefield ERG and density perturbations  0e RG
n n  are 

calculated as    4 5 cos 2RG pE a a k L    , 

        2 2 2 2
0 4 5 5 sin 2e e g pRG

n n ea a m v a k L L         . The constants a4 and a5 in these 

expressions are given by 

  
          

      

2 2 4 2 2 2
4 0

2 2 2 2 2 2

5 2

2

2 sin 4 cos 2 sin sin 2

sin 2 cos cos 2

e g

p p p p

p p p

a ec E m v L

L k L L k L L k L k L
a

k L L k L k L

  

   

 

 

      
   
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Figure 7. Wakefield EGL and density perturbations  0e GL
n n behind the Gaussian-like pulse up to 

distance 3L for different pulse durations (  = 20 ps, 30 ps) when the laser intensity is 31018 W/m2 and 
laser frequency is 1.6 PHz . 

In Fig. 7 we show the variation of wakefield EGL by solid line graphs and of density 
perturbations  0e GL

n n  by dotted line graphs behind the laser pulse ( 0  ) up to the 

distance  = 3L when f =1.6 PHz and I0 = 31018 W/m2. The wakefield of the strength of 
4.24109 V/m is excited by the GL pulse and the density perturbations ne = 0.0208 times of 
the unperturbed density n0 (= 1.371025/m3) for the pulse duration of 30 fs. A comparison of 
the graphs marked with 30 fs and 20 fs reveals that the effect of pulse duration is to increase 
the wakefield as well as the density perturbations. This may be attributed to the decreased 
plasma density n0 for the larger pulse duration as we considered  = fpe

1 = 2/pe as a 
condition for the wakefield excitation. For the fixed laser intensity, larger perturbations are 
realized in relatively lower density plasma and hence the enhanced field is obtained. Similar 
effects are observed for the cases of RT (Fig.8) and RG (Fig.9) pulses. Here the wakefield of 
the strength of 4.98109 V/m  (4.28109V/m ) and density perturbations of 0.023 (0.0209) times 
of the unperturbed density are obtained in case of RT (RG) pulse of the same duration of 30 
fs. This can also be seen that the pulses of higher intensity produce relatively larger 
wakefields and the density perturbations. However, a very weak effect of the laser 
frequency is noticed on the wakefields. In the present study of three pulses infers that the 
rectangular-triangular (RT) pulse is more suitable for the purpose of wakefield excitation in 
a homogeneous plasma. 



 
Electromagnetic Waves and Their Application to Charged Particle Acceleration 95 

 

 
Figure 8. Wakefield ERT and density perturbations ( en /n0)RT behind the rectangular-triangular pulse 
up to distance 3L for different pulse durations (  = 20 ps, 30 ps) and other parameters the same as in 
Fig.7. 

 
Figure 9. Wakefield ERG and density perturbation  0e RG

n n behind the rectangular-Gaussian pulse 

up to distance 3L for different pulse durations (  = 20 ps, 30 ps) and other parameters the same as in 
Fig.7. 
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4.1.1. Calculation of electron energy gain 

In order to calculate the energy gain achieved by the electron, we proceed with the 

momentum equation  dp eE
dt

   and the relativistic factor  relation 2 2 21 ep m c   .  

Here E is either EGL, ERT or ERG. We introduce a similarity variable  / 2pk L    that 

represents the phase of the wakefield as seen by the electron. For one-dimensional motion of 

the electron and gx v t   , we obtain 
 
2 2

e

peEd
dt m c




   and  
1

2 21 1 /p g
d k c v
dt
 

 
   
  

 from 

the above relations. Dividing d dt  by d dt  and integrating the resultant equation by 

taking  1/22/ 1 1 /xdx dt v c      and /r gv c   we get 

  
1

2 2
2

1 ( )r
e p

e E d
m c k

          (41) 

This is the general equation that describes the electron acceleration in the wakefield ( )E  . 
By using the expressions of wakefield E for different shapes of the laser pulses we can 
determine the corresponding relativistic factor (or the energy gain).  

For the case of GL pulse, the integration of the resultant equation with the initial value of   
as 0 at  = 0 yields  

       
1 1 2 2

2 2 02 2
0 0 2 4 2 2 2

1 1 cos 2 sin sin
2
p

r p
e g p

k Le E L
k L

m v k L


     

 

                        
. 

Without loss of generality we can assume 2 2
0, 1   . Hence, 

 

2 2
0

0 2 4 2 2 2
cos sin sin

2 21
p p

GL
e g p r

k L k Le E L

m v k L


   

  

                          

. Therefore, the 

energy gain obtained by the electron during its acceleration in the wakefield excited by the 
GL pulse can be given by 2

GL e GLW m c    .  

Similarly the electron energy gain in the case of RT and RG pulses are obtained as 

   
2 3 4 5sin sin and sin sin

2 21 1
p p

RT RG
p r p r

k L k Lea a ea a
W W

k k
 

 

                                  
 . 

Now we examine the effects of pulse duration (plasma density), laser intensity and laser 
frequency on the electron acceleration for different shapes of the laser pulses and make a 
comparative study. 
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4.1.1.1. Effect of pulse duration   

We have already seen that the wakefield gets enhanced with the increased pulse duration   
for all the shapes of the laser pulses. Therefore, it is obvious that the electron will gain larger 
energy in the wakefield, which is excited by the pulses of longer durations. The same has 
been portrayed in Fig.10 for the laser intensity of 31018 W/m2 and its frequency as 1.6 PHz. A 
comparison of the three graphs infers that the energy gains follow the trend 

RT RG GLW W W  . The increased gain for the longer pulse durations is attributed to the 
enhanced plasma wavelength p. Since p is independent of the pulse shapes, the electron 
gets larger energy for the increasing   for all types of the pulses irrespective of their shapes. 
This can also be seen from this figure that the change in energy gain is faster when the 
pulses of longer durations are employed for the wakefield excitation. 

 
Figure 10. Dependence of maximum energy gain of electron on the laser pulse duration for the same 
parameters as in Fig.2. WRT is the gain in case of rectangular-triangular pulse, WRG is for rectangular-
Gaussian pulse and WGL is for Gaussian-like pulse. 

4.1.1.2. Effect of laser frequency f 

The effect of laser frequency f on the maximum energy gain attained by an electron is shown 
in Fig.11, from where it is evident that the gain is larger in case of RT pulse. Moreover, the 
slopes of the graphs reveal that the effect of laser frequency is more significant in the case of 
RT pulse in comparison with RG and GL pulses. Since the wakefield and plasma 
wavelength show weak dependence on the frequency f, it is worth clarifying the main factor 
that leads to significant increase in the electron energy gain with  f. Actually a slight change 
in gv  due to f causes a greater change in the factor (1r) appearing in the denominator of 
the energy gain expressions. Since gv  increases for the larger frequencies, the gain gets 
larger with the increasing laser frequencies.  
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Figure 11. Dependence of maximum energy gain of electron on the laser frequency when the laser 
intensity is 31018 W/m2 and pulse duration is 30 fs. WRT, WRG and WGL have the same meaning as in 
Fig.10. 

 

 
Figure 12. Variation of maximum energy gain of electron with the laser intensity when the pulse 
duration is 30 fs and laser frequency is 1.6 PHz. WRT, WRG and WGL have the same meaning as in Fig.10. 
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4.1.1.3. Effect of laser intensity I0 

The expressions of wakefield for all types of the pulses show that the wake amplitude is 
directly proportional to 2

0E , i.e. the intensity of the laser. It means higher intensity pulses will 
excite larger amplitude wakefield owing to the larger density perturbations in the plasma. 
However, we cannot indefinitely increase the amplitude of the wakefield because there is a 
limit on the maximum field that a plasma can support. Figure 12 shows that the maximum 
energy gain is increased from 9.5 MeV to 33.5 MeV, when the laser intensity is raised from 
11018 W/m2 to 31018 W/m2 in case of RT pulse. A comparison of all the graphs shows that 
the RT pulse supersedes and gives the best results. Also the difference in energy gain 
becomes more and more significant when the intensity of the pulses is increased. The better 
results, i.e. higher amplitude wakefield and larger energy gain, obtained in case of RT pulse 
having smooth/fast rising time are consistent with the observations of Bulanov et al. [91] 
where he observed regular wakefields by a pulse with sharp steepening of its leading front. 

4.2. Wakefield by different microwave pulses in waveguides 

Here we present some results on wakefield excitation in a waveguide by different shapes of 
the microwave pulses, i.e. GL, RG and RT pulses.  

 
Figure 13. Schematic of wakefield generation in plasma filled rectangular waveguide by microwave 
pulse. Here gz v t    and L is the pulse width. 

We consider that a microwave pulse of pulse duration  at a frequency f  propagates in a 
plasma filled b h   rectangular waveguide. This pulse resonantly excites the wakefield 
(corresponding potential  ) in the waveguide under the action of ponderomotive force 
(Fig.13), when the pulse duration  matches with the inverse of the plasma frequency, i.e. 
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1
pef  . The electric and magnetic fields associated with the microwave are represented by 

E


 and B


. We use the Maxwell’s equations and obtain the group velocity of the microwave  

pulse  as  1/22 2 2 2 2 21g pv c c b       that coincides with the phase velocity of the 

wakefield. 

For the rectangular waveguide, we take the distribution of the microwave field as 

 ˆ sin xE y E
b
  

  
 


 and    ˆ ˆsin cos .x z

x xB x B z B
b b
     

    
   


 Using these relations in the 

basic fluid equations, we integrate them under the conditions that all the oscillating 
quantities tend to zero as    under the weakly nonlinear theory. With this we get the 
following equation 

  
222 2

2 2 2 2
sin 0,

2
p

e g g e g

e c e x F
bm v v m v

   


                   

                  (42) 

where 

     2 2
2 2

1 1 1
2 z

g

F E B
v c

  
  
    
  
  

. 

This equation can be viewed as the equation governing the forced (driven) harmonic 
oscillator. Here the last term is the force term that evolves due to the microwave field 
(ponderomotive force) and drives the wake in the plasma. The third term is proportional to 
  and hence its coefficient determines the natural frequency of the wake. The second term 
is the damping term through which the nonlinearity enters the system as it is proportional 
to square of     (nonlinear term). Thus, the wake with potential   is evolved in the 
plasma as a combined contribution of each term of Eq.(42).  

We can use the information related to the shape of the pulse through the last term of Eq.(42) 
via the coefficient  F  . Using the fourth-order Runge-Kutta method we simulate this 

equation for the above-mentioned three types of the pulse shapes. Here we take different 
profiles for the electric field of the pulse keeping in mind its shape and calculate  zB   with 

the help of Maxwell’s equation. The relation between  zB   and  E   thereby comes out to 

be    1
z

g
B E d

v b
    . 

4.2.1. Results on wakefield in the waveguide 

As mentioned, we solve Eq.(42) numerically and obtain the potential   from which we look 
for the wakefield amplitude for the mentioned three types of the pulse shapes. Figures 14 – 
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16 show the profile of wakefield generated by GL pulse, RG pulse and RT pulse, 
respectively. It can be easily seen that the amplitude of the wakefield is the largest in the 
case of RT pulse and is the least for the case of GL pulse; in other words, the wakefield 
amplitude follows the trend RT RG GLE E E  .  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 14. Variation of wakefield generated by microwave GL pulse in a waveguide for microwave 

intensity 22 /I GW m , frequency 30f GHz , pulse duration 2ns  , plasma density 
17 3

0 4.5 10n m   and waveguide width 0.03b m . 
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Figure 15. Variation of wakefield generated by microwave RG pulse in a waveguide for the same 
parameters as in Fig.14. 

 
Figure 16. Variation of wakefield generated by microwave RT pulse in a waveguide for the same 
parameters as in Fig.14. 
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Figure 17. Dependence of wakefield amplitude on plasma density 0n  for two different microwave 
pulse durations 1.5ns  (solid line graphs, left axis) and 3.0ns  (dashed line graphs, right axis), 
when the other parameters are the same as in Fig.14. 

Dependence of the wakefield amplitude on the plasma density for two different pulse durations 
is shown in Fig.17, from where it is found that the amplitude is increased for the higher plasma 
density in the waveguide for the case of RG pulse. However, the opposite trend is realized for 
the other types of the pulses (GL and RT pulses); the wakefield amplitude remains the largest in 
case of the RT pulse. A comparison of slopes of the graphs yields that the RT pulse shows 
stronger dependence on the plasma density in comparison with the other types of the pulses. 
With regard to the effect of pulse duration, we notice that the larger wakefield is obtained for 
the case of longer pulse durations; this is true for all types of the pulses.  

In Fig.18, the effects of microwave frequency and its intensity are studied on the wakefield 
amplitude, where it is seen that an increase in the frequency leads to an enhancement in the 
wakefield amplitude for the cases of RG pulse and GL pulse; opposite is true for the RT 
pulse, which also shows a strong dependence (slope 0.097 at 9 22 10 /I W m  ) on the 
frequency as compared with the other pulses. With regard to the effect of microwave 
intensity, we observe that the larger wakefield is obtained for the higher microwave 
intensity. This is further evident that the amplitude is modified at a faster rate in the case of 
RT pulse in comparison with the other pulses. Generally, we can conclude that the RT pulse 
is most sensitive to microwave frequency and intensity.  

It is worth noticing from Figs. 14 – 18 that tens of MV/m wakefield is attained with the use 
of moderate intensity microwave pulses. Therefore, in view of the effect of microwave 
intensity (Fig.18), it is expected that the wakefield of the order of GV/m can be generated if 
the microwave pulses of intensity  TW/m2 are available. Since the wakefield of this order is 
generally obtained by ultra high intensity lasers in usual wakefield generation schemes, the 
present mechanism of exciting wakefield in the waveguide by microwave pulses seems to 
be more effective and feasible as it can reduce the cost of accelerator and also it will provide 
an additional controlling parameter (the waveguide width).  
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Figure 18. Variation of wakefield amplitude with microwave frequency f  for two different 

microwave intensities 9 22 10 /I W m   (solid line graphs, left axis) and 9 21 10 /I W m   (dashed 
line graphs, right axis), when the other parameters are the same as in Fig. 14. 

Variation of the wakefield amplitude with the waveguide width is shown in Fig.19, where 
it is observed that the amplitude is decreased with the increase of waveguide width; same 
result was obtained in an analytical calculation [38]. It means the larger wakefield can be 
obtained for the case of plasma filled narrower waveguide. A comparison of the slopes of 
the graphs reveals that the wakefield amplitude changes at a faster rate in the case of RT 
pulse. Therefore, the RT pulse is found to be more sensitive to the waveguide width. 
Thus, we can conclude that a plasma filled narrower waveguide is best suited for an 
effective wakefield excitation and the significant particle acceleration if the RT pulse is 
used.  

 
Figure 19. Variation of wakefield amplitude with waveguide width. The values of intensity, frequency, 
pulse duration and plasma density are given in the caption of Fig. 14. 
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Figure 20. Profile of wakefield WE in a plasma filled waveguide near cutoff conditions when 

6.76f GHz , 0.9ns  , 5.11cf GHz , 291 10 /I W m   and 0.03b m . 

4.2.1.1. Wakefield near cutoff conditions 

This has already been explored that the wakefield of larger amplitude is obtained for the 
smaller waveguide width and the longer pulse duration. For fixed microwave frequency, 
the cutoff frequency cf  gets higher under the effect of decreased width b  and plasma 
density 0n . These effects can be viewed as if the microwave frequency is brought near the 
cutoff frequency cf . Therefore, it is of much importance to investigate the wakefield 
structure near cutoff conditions, i.e. when f  is near cf . These results are presented in 
Figs.20 and 21 for 6.76f GHz  whereas 5.11cf GHz . Fig.20 shows that the amplitude of 
wake wave gets increased under this situation as we move away from the microwave pulse, 
i.e. for decreasing values of  . This is further noticed that various peaks develop along the 
waveguide width during the growth of wakefield amplitude and it becomes unstable. Thus, 
it is plausible that some instability develops near the cutoff conditions. In order to further 
investigate this effect, we show in Fig.21 the maximum distance by which this growth 
occurs. Here we observe that the amplitude gets terminated around 3.7 L  in the plasma 
and the field breaks down. 
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Figure 21. Profile of wakefield corresponding to Fig.20, showing its cutoff around maximum distance 
of 3.7 L  from the microwave pulse. 

These results suggest that the microwave of higher frequency should be employed for 
avoiding any instability in the system and the wakefield can be effectively used for the 
purpose of particle acceleration. The present mechanism of wakefield generation can be 
realized experimentally if we use wider waveguide filled with higher plasma density. The 
high density plasma can be produced in the waveguide under the action of Electron 
Cyclotron Resonance (ECR). However, under such situation short microwave pulses would 
be more effective in order to resonantly excite the plasma wake wave. 

5. Concluding remarks 

The electromagnetic waves were classified based on their frequency and a small region 
(1011Hz to 1013 Hz) that remained the last unexplored region was introduced as the THz 
rays. While explaining the propagation of EM waves, it was shown that their propagation 
velocity depends on the properties of the medium, and unlike the cases of vacuum and 
dielectrics, their electric field and magnetic field vectors do not remain in phase in the case 
of conductors. Very fascinating phenomenon of skin depth was discussed in the conductors 
where the wave vector was found to become a complex quantity and its imaginary part led 
to the attenuation of the wave. It was mentioned that the EM waves can propagate through 
the plasma medium if their frequency is larger than the plasma frequency. In the case of 
plasmas, another interesting phenomenon of wakefield excitation by the laser or microwave 
pulses was talked about in detail. Two case studies were conducted using the laser pulses 
and microwave pulses with different envelopes. It was shown that moderate intensity 
microwave pulses can also generate the wakefield effectively and accelerate the particles to 
sufficiently large energies. Moreover, the high cost laser systems can be replaced with 
microwave systems if the microwave pulses can be tailored properly. 
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6. Applications and future prospects 

The electromagnetic wave and plasma interaction has diverse applications in different fields 
such as nuclear fusion, particle acceleration, heating of ionospheric and laboratory plasmas 
by radio waves etc. along with controlled fusion applications to ITER (International 
Thermonuclear Experimental Reactor), frequency upshifting, resonance absorption, laser 
focusing and defocusing, material processing, generation of X-ray, THz and microwave 
radiations, higher order harmonic generation, laser filamentation  etc. With the inclusion of 
plasma, the performance of some devices such as backward wave oscillator (BWO), 
travelling wave tube (TWT) amplifiers, gyrotrons and other microwave tubes have been 
found to increase.  

The use of laser plasma accelerators has been made in radioisotope production through 
 ,n  reactions with laser accelerated electron bunches in the range tens of MeV [92, 93]. 

The short pulse nature and high charge of the accelerated bunches also has applications in 
the production of coherent THz radiation, which is achieved when femtosecond electron 
bunches cross the plasma vacuum boundary and emit transition radiation [94 – 96]. The 
generation of THz radiation has interesting applications in nonlinear THz spectroscopy, 
material characterization, imaging, topography, remote sensing, chemical and security 
identification [97, 98] etc. Another application of accelecerated electron beams / bunches is in 
the generation of femtosecond X-ray pulses produced by the betatron radiation emitted 
when the electron beam propagates through the plasma. By making an array of nanoholes 
on an alumina target, X-ray emission from laser produced plasma can be greatly enhanced 
even in soft X-ray energy regions (< 0.25 keV). The enhancement increases as the ionization 
level of Al becomes higher and the X-ray wavelength becomes shorter. Over 50 fold 
enhancement was obtained at a soft X-ray wavelength around 6 nm, which corresponds to 
the emission from Al8+,9+  ions. X-ray pulse duration was 17 ps, which is much shorter than 
that obtained by using the prepulse technique [99]. Towards the generation of other types of 
electromagnetic radiation, Tripathi and Liu [82] have proposed a dielectric-lined waveguide 
for the free-electron laser emission in millimeter wavelength band. Farokhi et al. [83]  have 
presented a linear theory for a free electron laser with a three-dimensional helical wiggler 
and axial magnetic field in the collective regime in a configuration consisting of an annular 
electron beam propagating inside a cylindrical waveguide. For the generation of high power 
(140 MW) subnanosecond (75 ps) microwave pulses in the range of 38 – 150 GHz, Yalandin 
et al. [84] have done experiments on coherent stimulated radiation from intense, 
subnanosecond electron bunches moving through a periodic waveguide and interacting 
with a backward propagating TM01 wave. Hayashi et al. [85] have also designed a two-stage 
ferroelectric electron gun and a peak power of 5.9 MW microwave radiation was observed 
when a 100A 450 kV electron beam was used.  

Research directed towards the development of high power electromagnetic radiation 
sources accounts for much of the current interest in the plasma filled waveguides. Plasma 
filled waveguides may also be used for the transportation of electromagnetic energy and 
charged particles, and in the basic study of plasma phenomena. In spite of such extensive 
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work over the years, the understanding of the physics of wave plasma interaction is still an 
active area of research, which also finds additional applications in plasma based focused ion 
beams (FIB), plasma sources for negative ion beams for neutral beam injection, rf-based 
plasma thrusters, etc. With regard to the particle acceleration, we have carried out analytical 
and numerical studies on the wakefield excitation by different types of the pulses in a 
rectangular waveguide filled with homogeneous plasma. Our analyses reveal that moderate 
intensity ( 109 W/m2) microwave pulses can produce up to 100 MV/m wakefield in the 
waveguide if the nanosecond pulses are used. Since the amplitude of resonantly excited 
wakefield changes at a faster rate with the waveguide width, pulse duration and microwave 
intensity and it is larger for the smaller waveguide width, longer pulse duration and the 
higher microwave intensity in the case of rectangular triangular pulse, the significant 
wakefield can be excited in the waveguide and effective particle acceleration can be 
achieved with the use of RT pulses for which the parameters can be optimized using the 
present studies. This theoretical work on the contribution of different microwave and laser 
pulses for the purpose of particle acceleration and the THz generation [100, 101] shall induce 
experimentalists to develop rectangular, rectangular-Gaussian, rectangular-triangular, 
sawtooth and triagular pulses of appropriate lengths for accomplishing various experiments 
on wakefield generation, particle acceleration, and the THz generation. Through such efforts 
our researchers would be able to benfit the society more via the medical, scientific, and 
technological applications of the subject electromagnetic wave and plasma interaction.  

Author details 

Hitendra K. Malik 
Department of Physics, Indian Institute of Technology Delhi, New Delhi, India 

7. References 

[1] V. L. Ginzburg, The propagation of electromagnetic waves in plasmas, Pengamon, New 
York (1970). 

[2] N. G. Denisov, Zh. Eksp. Teor. Fiz. 31, 609 (1956); Engi. Transi. Sov. Phys. JETP 4, 544 
(1957). 

[3] P. Koch and J. Albritton, Phys. Rev. Left. 32, 1420 (1974); J. Aibritton and P. Koch, Phys. 
Fluids 18, 1136 (1975).  

[4]  V. B. Gildenburg, Sov. Phys. JETP 18, 1359 (1964). 
[5] T. H. Stix, Phys. Fluids 1, 308 (1958). 
[6] B. N. Breizman and A. V. Arefiev, Phys. Plasmas 8, 907 (2001); 
[7] A. F. Kuckes, Plasma Phys. 10, 367 (1968) 
[8] M. N. Rosenbluth and C. S. Liu, Phys. Rev. Lett. 29, 701 (1972). 
[9] C. E. Clayton, C. Joshi, C. Darrow and D. Umstadter, Phys. Rev. Lett. 54, 2343 (1985). 
[10] W. Yu and Z. -Z. Xu, Phys. Rev. A. 36, 285 (1987). 
[11] R. P. H. Chang, M. Porkolab and B. Grek, Phys. Rev. Lett. 28, 206 (1972) 
[12] A. B. Kitsenkov, I. Panchenko and K. N. Stepanov, Plasma Phys. 16 1109 (1974). 



 
Electromagnetic Waves and Their Application to Charged Particle Acceleration 109 

[13] R. Fedosejevs, X. F. Wang and G. D. Tsakiris, Phys. Rev. E 56, 4615 (1997)  
[14] C. E. Max and J. Arons Phys. Rev. Lett. 33, 209 (1974) 
[15] P. K. Kaw, G. Schmidt and T. Wilcox, Phys. Fluids 16, 1522 (1973) 
[16] D. J. Nicholas and S. G. Sajjadi, J. Phys. D: Appl. Phys. 19, 737 (1986) 
[17] D. A. Jones, E. L. Kane, P. Lalousis, P. R. Wiles and H. Hora, Appl. Phys. B 27, 157 

(1982) 
[18] T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979). 
[19] P. Chen, J. M. Dawson, R. W. Huff and T. Katsouleas, Phys. Rev. Lett. 54, 693 (1985). 
[20] J. B. Rosenzweig, D. B. Cline, B. Cole, H. Figueroa, W. Gai, R. Konecny, J. Norem, P. 

Schoessow and J. Simpson, Phys. Rev. Lett. 61, 98 (1988). 
[21] J. B. Rosenzweig, P. Schoessow, B. Cole, W. Gai, R. Konecny, J. Norem and J. Simpson, 

Phys. Rev. A 39, 1586 (1989). 
[22] K. Nakajima, D. Fisher, T. Kawakubo, H. Nakanishi, A. Ogata, Y. Kato, Y. Kitagawa, R. 

Kodama, K. Mirna, H. Shiraga, K. Suzuki, K. Yamakawa, T. Zhang, Y. Sakawa T. Shoji, 
Y. Nishida, N. Yugarni, M. Downer and T. Tajima, Phys. Rev. Lett. 74, 4428 (1995).  

[23] H. K.Malik, S. Kumar and Y. Nishida Electron. Opt. Comm. 280, 417 (2007). 
[24] K. V. Lotov, Laser Part. Beams 19, 219 (2001). 
[25] A. J. W. Reitsma and D. A. Jaroszynski, Laser Part. Beams 22, 407 (2004). 
[26] A. F. Lifschitz, J. Faure, Y. Glinec, V. Malka and P. Mora, Laser Part. Beams 24, 255 

(2006). 
[27] K. Flippo, B. M. Hegelich, B. J. Albright, I. Yin, D. C. Gautier and S. Letzring, M. 

Schollmeier, J. Schreiber, R. Schulze, J. C. Fernandez. Laser Part. Beams 25, 3 (2007). 
[28] P. V. Nickles, S. Ter-avetisyan, M. Schnuerer, T. Sokollik, W. Sandner, J. Schreiber, D. 

Hilscher, U. Jahnke, A. Andreev and V. Tikhonchuk, Laser Part. Beams 25, 347 (2007). 
[29] C. T. Zhou, M. Y. Yu and X. T. He, Laser Part. Beams 25, 313 (2007). 
[30] Y. Nishida, T. Okazaki, N. Yugami and T. Nagasawa, Phys. Rev. Lett. 66, 2328 (1991). 
[31] D. W. Aossey, J. E. Williams, H.-S. Kim, J. Cooney and Y.-C. Hsu and K. E. Lonngren, 

Phys. Rev. E 47, 2759 (1993). 
[32] B. B. Balakirev, V. I. Karas, I. V. Karas and V. D. Levchenko, Laser Part. Beams 19, 597 

(2001). 
[33] T. B. Zhang, J. L. Hirshfield, T. C. Marshall and B. Hafizi, Phys. Rev. E 56, 4647 (1997) . 
[34] S. Y. Parka and J. L. Hirshfield, Phys. Rev. E 62, 1266 (2000). 
[35] C. Jing, W. Liu, I. Xiao, W. Gai and P. Schoessow, Phys. Rev. E 68, 016502 (2003). 
[36] Y. Nishida, S. Kusaka and N. Yugami, Physica Scripta T52, 65 (1994). 
[37] Z. M. Sheng, K. Mima, Y. Sentoku, K. Nishihara and J. Zhang, Phys. Plasmas 9, 3147 

(2002). 
[38] H.K. Malik, J. Appl. Phys. 104, 053308 (2008). 
[39] R. J. Kingham and A. R. Bell, Phys. Rev. Lett. 79, 4810 (1997). 
[40] N. E. Andreev, M. V. Chegotov and M. E. Veisman, IEEE Trans. Plasma Sci. 28, 1098 

(2000). 
[41] B. Cros, C. Courtois, G. Malka, G. Matthieussent, J. R. Marques, F. Dorchies, F. 

Amiranoff, S. Rebibo, G. Hamoniaux, N. Blanchot and J. L. Miquel, IEEE Trans. Plasma 
Sci. 28, 1071 (2000). 



 
Wave Propagation Theories and Applications 110 

[42] P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting, C. I. Moore, D. F. Gordon, 
A. Zigler, D. Kaganovich and T. M. Antonsen Jr., Phys. Rev. E  63, 056405 (2001). 

[43] P. Manz, M. Ramisch and U. Stroth, Phys. Rev. Lett. 103, 165004 (2009). 
[44] T. Happel, F. Greiner, N. Mahdizadeh, B. Nold, M. Ramisch and U. Stroth, Phys. Rev. 

Lett. 102, 255001 (2009). 
[45] U. Stroth, Plasma Phys. Control. Fusion 40, 9 (1998). 
[46] U. Stroth, F. Greiner, C. Lechte, N. Mahdizadeh, K. Rahbarnia and M. Ramisch, Phys. 

Plasmas 11, 2558 (2004). 
[47] P. Manz, M. Ramisch, U. Stroth, V. Naulina and B. D. Scott, Plasma Phys. Control. 

Fusion 50, 035008 (2008). 
[48] M. Ramisch, E. Häberle, N. Mahdizadeh and U. Stroth, Plasma Sources Sci Technol. 17, 

024007 (2008).  
[49] F. Aziz and U. Stroth, Phys. Plasmas 16, 032108 (2009). 
[50] H. D. Hochheimer, K. Weishaupt and M. Takesada, J. Chem. Phys. 105, 374 (1996). 
[51] F. Widulle, J. T. Held, M. Huber, H. D. Hochheimer, R. T. Kotitschke and A. R. Adams, 

Rev. Sci. Instrum. 68, 3992 (1997). 
[52] A. Asenbaum, O. Blaschko and H. D. Hochheimer, Phys. Rev. B 34, 1968 (1986). 
[53] A. B. Garg, V. Vijayakumar, B. K. Godwal, A. Choudhury and H. D. Hochheimer, Solid 

State Comm. 142, 369 (2007).  
[54] R. Singh and M. P. Bora, Phys. Plasmas 7, 2335 (2000).  
[55] N. Singh and R. Singh, Phys. Plasmas 11, 5475 (2004). 
[56] R. Singh, V. Tangri, P. Kaw and P. N. Guzdar, Phys. Plasmas 12, 092307 (2005). 
[57] N. Chakrabarti, R. Singh, P. K. Kaw and P. N. Guzdar, Phys. Plasmas 14, 052308 (2007). 
[58] M. Starodubtsev and C. Krafft, Phys. Rev. Lett. 83, 1335 (1999) 
[59] M. Starodubtsev and C. Krafft, Phys. Plasmas 6, 2598 (1999) 
[60] A. K. Attri, U. Kumar and V. K. Jain, Nature 411, 1015 (2001). 
[61] S. H. Kim, E. Agrimson, M. J. Miller, N. D’Angelo, R. L. Merlino and G. I. Ganguli, 

Phys. Plasmas 11, 4501 (2004). 
[62] S. C. Sharma and M. P. Srivastava, Phys. Plasmas 8, 679 (2001). 
[63] Y. Sakawa, C. Joshi, P. K. Kaw, F. F. Chen and V. K. Jain, Phys. Fluids B 5, 1681 (1993). 
[64] A. Neogi and R. K. Thareja, Phys. Plasmas 6, 365 (1999). 
[65] T. A. Peyser, C. K. Manka, B. H. Ripin and G. Ganguli, Phys. Fluids B 4, 2448 (1992). 
[66] C. J. McKinstrie and E. A. Startsev, Phys. Rev. E 54, R1070 (1996). 
[67] A. Pukhov, Phys.Rev. Lett. 86, 3562 (2001). 
[68] M. Y. Yu, W. Yu, Z. Y. Chen, J. Zhang, Y. Yin, L. H. Cao, P. X. Lu and Z. Z. Xu, Phys. 

Plasmas, 10, 2468 (2003). 
[69] H. Suk, J. Appl. Phys. 91, 487 (2002). 
[70] Y. Sentoku, T. E. Cowan, A. Kemp and H. Ruhl, Phys. Plasmas 10, 2009 (2003). 
[71] K. P. Singh and V. K. Tripathi, Phys. Plasmas 11, 743 (2004). 
[72] M. Kado, H. Daido, A. Fukumi, Z. Li, S. Orimo, Y. Hayashi, M. Nishiuchi, A. Sagisaka, 

K. Ogura, M. Mori, S. Nakamura, A. Noda, Y. Iwashita, T. Shirai, H. Tongu, T. 
Takeuchi, A. Yamazaki, H. Itoh, H. Souda, K. Nemoto, Y. Oishi, T. Nayuki, H. 
Kiriyama, S. Kanazawa, M. Aoyama, Y. Akahane, N. Inoue, K. Tsuji, Y. Nakai, Y. 



 
Electromagnetic Waves and Their Application to Charged Particle Acceleration 111 

Yamamoto, H. Kotaki, S. Kondo, S. Bulanov, T. Esirkepov, T. Utsumi, A. Nagashima, T. 
Kimura and K. Yamakawa, Laser Part. Beams 24, 117 (2006). 

[73] A. Karmakar and A. Pukhov, Laser Part. Beams 25, 371 (2007). 
[74] J. J. Xu, Q. Kong, Z. Chen, P. X. Wang, W. Wang, D. Lin and Y. K. Ho, Laser Part. Beams 

25, 253 (2007). 
[75] Y. Nishida and T. Shinozaki, Phys. Rev. Lett. 65, 2386 (1990). 
[76] Y. Nishida and N. Sato, Phys. Rev. Lett. 59, 653 (1987). 
[77] Y. Nishida, M. Yoshizumi and R. Sugihara, Phys. Fluids 28, 1574 (1985). 
[78] C.G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane and H. C. 

Kapteyn, Phys. Rev. Lett. 83, 2187 (1999). 
[79] X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le V. d'Yerville, D. 

Cassagne and C. Jouanin, Appl. Phys. Lett. 79, 2312 (2001). 
[80] J. L. Hirshfield, M. A. LaPointe, A. K. Ganguly, R. B. Yoder and C. Wang Phys. Plasmas 

3, 2163 (1996). 
[81] E. Carlsten, Phys. Plasmas 9, 5088 (2002). 
[82] V. K. Tripathi and C. S. Liu, IEEE Trans. Plasma Sci. 17, 583 (1989). 
[83] B. Farokhi, Z. Family and B. Maraghechi, Phys. Plasmas 10, 2566 (2003). 
[84] M. I. Yalandin, V. G. Shpak, S. A. Shunailov, M. R. Oulmaskoulov, N. S. Ginzburg, I. V. 

Zotova, Y. V. Novozhilova, A. S. Sergeev, A. D. R. Phelps, A. W. Cross, S. M. Wiggins 
and K. Ronald, IEEE Trans. Plasma Sci. 28, 1615 (2000). 

[85] Y. Hayashi, X. Song, J. D. Ivers, D. D. Flechtner, J. A. Nation and L. Schächter, IEEE 
Trans. Plasma Sci. 29, 599 (2001). 

[86] R. B. Yoder, T. C. Marshall and J. L. Hirshfield, Phys. Rev. Lett. 86, 1765 (2001). 
[87] S. Kumar and H. K. Malik, J. Plasma Phys. 72, 983 (2006). 
[88] H. K. Malik, Opt. Comm. 278, 387 (2007). 
[89] A.K. Aria and H. K. Malik, The Open Plasma Phys. J. 1, 1 (2008). 
[90] A.K. Aria, H. K. Malik and K.P. Singh, Laser Part. Beams 27, 41 (2009). 
[91] S.V. Bulanov, T.J. Esirkepov, N.M. Naumova, F. Pegoraro, I.V. Pogorelsky, A.M. 

Pukhov, IEEE Trans. Plasma Sci. 24, 393 (1996). 
[92] W. P. Leemans, D. Rodgers, P. E. Catravas, C. G. R. Geddes, G. Fubiani, E. Esarey, B. A. 

Shadwick, R. Donahue and A. Smith, Phys. Plasmas 8, 2510 (2001). 
[93] M. I. K. Santala, M. Zepf, F. N. Beg, E. L. Clark, A. E. Dangor, K. Krushelnick, M. 

Tatarakis, I. Watts, K. W. D. Ledingham, T. McCanny, I. Spencer, A. C. Machacek, R. 
Allott, R. J. Clarke and P. A. Norreys, Appl. Phys. Lett. 78, 19 (2001). 

[94] W. P. Leemans, C. G. R. Geddes, J. Faure, C. Tóth, J. V. Tilborg, C. B. Schroeder, E. 
Esarey, G. Fubiani, D. Auerbach, B. Marcelis, M. A. Carnahan, R. A. Kaindl, J. Byrd and 
M. Martin, Phys. Rev. Lett. 91, 074802 (2003). 

[95] C. B. Schroeder, E. Esarey, J. V. Tilborg and W. P. Leemans, Phys. Rev. E 69, 016501 
(2004). 

[96] W. P. Leemans, J. V. Tilborg, J. Faure, C. G. R. Geddes, C. To´th, C. B. Schroeder, E. 
Esarey, G. Fubiani and G. Dugan, Phys. Plasmas 11, 2899 (2004). 

[97] Y. C. Shen, T. W. P. F. Today, B. E. Cole, W. R. Tribe, and M. C. Kemp, Appl. Phys. Lett. 
86, 241116 (2005). 



 
Wave Propagation Theories and Applications 112 

[98] H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, Opt. Express 14, 9130 (2006). 
[99] T. Nishikawa, H. Nakano, N. Uesugi, M. Nakao and H. Masuda, Appl. Phys. Lett. 75, 

4079 (1999).  
[100] A.K. Malik, H.K. Malik and S. Kawata, J. Appl. Phys. 107, 113105 (2010).  
[101] A.K. Malik, H.K. Malik and Y. Nishida, Phys. Lett. A 375, 1191 (2011).  



Chapter 5 

Radio Wave Propagation Phenomena  
from GPS Occultation Data Analysis  

Alexey Pavelyev, Alexander Pavelyev, Stanislav Matyugov,  
Oleg Yakovlev, Yuei-An Liou, Kefei Zhang and Jens Wickert  

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/55480 

1. Introduction 

The aim of this book chapter is to reconsider the fundamental principle of radio-occultation 
(RO) remote sensing and to find new applications of RO method.  

The RO remote sensing can be performed with any two cooperating satellites located on 
opposite sides with respect to the Earth’s limb and moving to radio shadow. Several RO 
missions are working now aboard the Low Earth Orbit satellites. These missions provide 
global monitoring of the atmosphere and ionosphere of the Earth at different altitudes with 
high spatial resolution and accuracy. Their data are very important for meteorology, 
weather prediction. The RO data can be used to detect the climate changes, connections 
between the ionospheric, atmospheric processes, and solar activity, and to estimate 
conditions for radio navigation and radio location.  

Up to now the RO inverse problem solution was based on the assumptions that the 
atmosphere and ionosphere are spherically symmetric and that the influence of turbulent 
and irregular structures on the retrieved vertical profiles of refractive index is insignificant 
[1,2]. The vertical profiles of refractive index are usually determined by measurement of the 
Doppler shift of radio wave frequency [1–3]. Information contained in the amplitude part of 
the radio-holograms was almost not addressed earlier, and this fact impeded separation of 
the contributions from layers and turbulent (small-scale) structures.  

A new important relationship between the second-order time derivative (acceleration) of the 
phase path (eikonal), Doppler frequency, and intensity variations of the radio occultation 
(RO) signal was revealed by theoretical considerations and experimental analysis of the 
radio-holograms recorded onboard of the CHAMP and FORMOSAT-3 satellites [4–6]. Using 
the detected relationship, a possibility of determining the altitude, position, and inclination 
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of plasma layers in the ionosphere from the RO data has been revealed [4–8]. The proposed 
calculation technique is simpler than the phase-screen [9] and back-propagation methods 
[10, 11]. The detected relationship is also important for estimation of the total attenuation of 
radio waves in a satellite communication link by combining the analysis of information 
contained in the amplitude and phase channels of the radio-holograms. The mentioned 
relationship makes it possible to convert the eikonal acceleration (or the time derivative of 
the Doppler frequency shift) into the refractive attenuation.  

The total absorption of radio waves in the decimeter wavelength range at a frequency of 930 
MHz was earlier determined experimentally [12, 13] in the “MIR” orbital station–
geostationary satellites communication link. In those papers, attenuation was removed from 
the amplitude data with the use of the time dependence of the derivatives of the phase and 
Doppler frequency shifts. Measurements of the total absorption for determining the water 
content in the stratosphere and troposphere will be performed in the future radio-
occultation missions [14] at three frequencies near the water-vapor absorption line at the 
wavelength of 1.35 cm. For analysis and processing of these measurement data, a technique 
[15, 16] using the integral Fourier operators (Canonical Transform (CT) and Full Spectrum 
Inversion Fourier analysis (FSI)) is proposed. In [16, 17] a radio-holographic technique of 
the total absorption measurements has been previously proposed. Following this 
technique, the refractive attenuation effect on the amplitude of the field transformed by 
an integral Fourier operator is ruled out by using the relationship between the refractive 
attenuation and the second-order time derivative of the phase difference of the recorded 
and reference signals.  

Unlike the methods used in [15–17], the eikonal acceleration/intensity technique does not 
use any integral transform and can be directly employed for determining the total 
absorption of radio waves in the case of significant refractive attenuation under the 
condition of single path propagation. Moreover, the combined analysis of the eikonal 
acceleration and radio wave intensity makes radio vision of the atmospheric and 
ionospheric layers possible, i.e., allows the layers to be detected by observing correlated 
variations in the eikonal acceleration and intensity against the background of an 
uncorrelated contribution of turbulent inhomogeneities and small-scale structures and 
permits one to measure the layer parameters.  

The book chapter is organized as follows. In section 2 the basic rules are given for describing 
radio waves propagation in a spherically symmetric medium including a new relationship 
for the refractive attenuation. In section 3 an advanced eikonal /intensity technique is 
introduced and applied to find the total absorption from analysis of the RO data. In section 4 
a locality principle and its applications to determining the location, slope, and height of 
plasma layers in the ionosphere are described. Comparison with the back-propagation 
radio-holographic method is carried out. In section 5 the seasonal changes of the bending 
angle during four years of observations in Moscow and Kamchatka areas are described. 
Conclusions and references are given in section 6 and section 7, respectively.  
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2. Basic rules for radio waves propagation in a spherically symmetric 
medium 

To obtain basic relationships describing the radio wave propagation in a spherically 
symmetric medium it is necessary to use a formula [18] for electromagnetic field E in an 
inhomogeneous medium that follows from Maxwell equations: 

 2 2 2
0

grad grad k n 


 
     

 

EE E   (1) 

where 0k is the wave number of radio wave in free space, n ,   are the refractive index and 
dielectric permittivity of medium, respectively. If vector E is perpendicular to grad  , then 
(1) can be transformed to a homogeneous wave equation: 

 
2 2 2

0 0E k n E     (2) 

where ( )E r  is a component of the field E . Solution of the eqn. (2) can be presented in the 
form [18,19]: 

  0( ) ( ) exp ( )aE E ik rr r    (3) 

where ( )aE r , ( )r  – are the complex amplitude and phase path (eikonal) of radio wave. The 
eikonal ( )r  can be described by relationship: 

 ( ) ( ) r n dl   r    (4) 

where 0   is the wavelength in free space, and integration in (4) is fulfilled along a ray 
trajectory of radio wave. After substitution (3) into (2) one can obtain: 

   
2 2 2 2 2

0 02 2 2
0 02
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a a a

a a
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                 

r r r

r r
 (5) 

Two terms in the curly brackets of equation (5) formally differ by a factor – the imaginary 
unit i . Therefore to fulfill equation (5) these terms must be zero separately [18]: 

  22 2 2 2
0 0( ) ( )  ( ) ( ) 0a a aE E n E      r r r r    (6) 

 22 ( )   ( )  0a aE E     r r   (7) 

Under the geometric optics assumptions [18,19]:  
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the next equations are valid [18,19]: 

 2 2( )  ( );      ( ); ( )n n n        0r r l r   (9) 

 2( ) 2( ( ) ) 0a aE E     r r    (10) 

where 0l  is a unit vector oriented along the radio ray. The first and second relationships (9) are 
the eikonal equations. Formula (10) connects variations of the eikonal  and gradient of 
amplitude ( )aE r . Relationship (10) is known as a transfer equation for the field amplitude [19]. 

It follows from the relationships (9) that the ray equation has a form [18,19]: 

  0 grad n n
l





l  (11)  

where l  is an element of the length of the radio ray. In the case of spherical symmetry with a 
center located at the center of the Earth the gradient of the refractivity grad n  and vector r  
have the same directions, and the impact parameter p  is constant along the radio ray [18, 19]: 

 ( )sin constrn r p     (12)  

where   is the angle between directions to the center of spherical symmetry and tangent to 
the radio ray.  

One can obtain a relationship for the refractive attenuation of radio wave by multiplying 
equation (10) by ( )aE r :  

  2 2( ) 2 ( ) ( ) 0a a aE E E     r r r    (13) 

It follows from (13) 

  2
0div ( ) ( ) 0aE n r r l   (14) 

According to the Gauss theorem the next relationship is valid along a ray tube:  

 2( ) ( )an E A const r r  (15) 

where A  is the cross section square of a ray tube.  

The relationships (11), (12), and (15) present basic rules describing the ray direction and 
power conservation laws in the spherically symmetric medium. From (15) one can obtain 
important formula for the refractive attenuation when the transmitter and receiver are 
located in a medium with arbitrary values of the refraction index. 

In the case of spherical symmetric medium one can consider according to [18,20] a ray tube 
having at point G  in the plane of Figure 1 the angular size d . This tube in the figure plane 
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is bounded by lines GL  and 1GL  (dotted line in Figure 1). The circle of radius R , with center 
at point O , intersects with the dotted line 1GL at 1L , so that the arc 1LL Rd . From the 
geometry (Figure 1) it follows that vector 2LL  whose magnitude is 2 1cosLL Rd   
perpendicular to the line 1GL . The side walls of the ray tube are located in the planes which 
are intersecting with straight line OG . The dihedral angle between these planes is equal to
d . The size of the ray tube in the plane perpendicular to the figure plane at point 1L is 
equal to sinR d  . Therefore the cross section of the ray tube may be described by the 
relationship: 

 
Figure 1. Ray tube in the radio occultation scheme. The center of spherical symmetry coincides with 
Earth’s center O. 

  22
1cos sindpdA R d

dp d
  


     (16) 

where LR R  is the distance from point 1L  to the center of spherical symmetry, 1 ,   are 
the angles between the direction to the center of spherical symmetry, tangent to the radio 
ray, and the direction to the transmitter of radio wave, respectively. d  is the angular size of 

the ray tube. The value dp
d

 can be obtained from (12): 

 2 2 2( ) cos ( )dp n D D n D D p
d



     (17) 

where D  is the distance from transmitter to the center of spherical symmetry. After 
substitution of (16), (17) in (15) with accounting for (12) one can obtain: 

  22 2 2 2 2 2 2( ) ( ) ( ) sina
dE R d n D D p n R R p const C
dp
    r   (18) 

The refractive attenuation ( )X r  can be defined as a ratio of intensities of radio wave in the 
medium and in free space: 
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  (19) 

where 0( )E r  is the radio field emitted by the same transmitter in free space. The radio field 

0( )E r  can be described by a relationship: 

 2
0 2

0

( ) TC
E

R
r   (20) 

where 0R  is the distance from the transmitter to the current point r , and TC  is constant 
which can include the transmitter’s power and antenna gain. Substitution (19), (20) in (18) 
gives: 

  22 2 2 2 2 2
2
0

( ) ( ) ( ) sinT
X dC R n D D p n R R p d C

dpR
    

r   (21) 

The next relationships connect central angle , impact parameter p , bending angle ( )p , 
and distance 0R : 

 1 1( ) sin sin
( ) ( )

p pp
n R R n D D

          (22) 

 1 1( ) sin sin
( ) ( )

p pp
n R R n D D

         (23) 

 
0

0

sin sin , if 0R R
R

     (24) 

Formula (23) is valid when the tangent point on the ray trajectory, where the ray is 
perpendicular to the gradient of refractivity, is absent [20]. Equations (22)-(24) allow 
transforming the formula (21): 

 

 

2 2 2 2 2 2 2 2 2 2 2 2

0 0
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 

    
  

 

r
  (25) 

where d  is the solid angle occupied by the ray tube. 

Constant C  can be determined from (25) by estimating the refractive attenuation near the 
transmitter, when 0 0R   (in equation (25) one should choose the lower sign). When 0 0R   

( )X r is assumed to be equal to unity, i.e. 2 2
0 0( ) ( ),  0aE E R r r  . This requires that the 

production of the antenna gain and emitted power along the ray GTL TC  (20) does not 
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change after the installation of the transmitter from free space in a medium with the 
refractive index ( )n D . Under these conditions one can obtain from (25) when 0 0R  : 

 ( )TC C n D d    (26) 

Thus the refractive attenuation can be evaluated from (25) and (26) as: 
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r   (27) 
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 
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 

r   (28) 

The refractive attenuation ( )X r  represented by (27) and (28) satisfies the mutuality principle 
and does not depend on changing locations of the transmitter and receiver. 

Previously refractive attenuation ( )pX r has been defined as a ratio of the power flows in the 

medium and in free space. The magnitude of ( )pX r  has been obtained in the form [20]: 

 0

2 2 2 2
( )p

s

pR
X

dp D p R p
dp



 

r   (29) 

where sp  is the impact parameter corresponding to the line of sight GL . The difference 
between ( )pX r  (29) and ( )X r  (28) consists in accounting for the refractivity near the 

transmitter and receiver.  

Equations (28) for the refractive attenuation generalize the relationship (29) for the case 
when the transmitter and receiver are located in a spherically symmetric inhomogeneous 
medium. This relationship can be appropriate for RO data analysis during experiments 
provided in the planetary and Earth’s atmospheres and ionospheres. 

3. Total absorption 

A new important relationship between the second-order time derivative (acceleration) of the 
phase path (eikonal), Doppler frequency, and intensity variations of the radio occultation 
(RO) signal has been established by theoretical considerations and experimental analysis of 
the radio-holograms recorded onboard of the CHAMP and FORMOSAT-3 satellites [4, 6-8]. 
The detected relationship makes it possible to convert the eikonal acceleration (or the time 
derivative of the Doppler frequency shift) measured using the RO phase data into the 
refractive attenuation and then exclude it from the RO amplitude data to obtain the total 
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absorption. The method of measuring of the total absorption from joint analysis of the RO 
amplitude and phase variations is described below. 

Layout of a RO experiment in the transionospheric link using the high-stability, 
synchronized by atomic-clock, radio signals of GPS navigation system is shown in Figure 2. 
Point O  is the center of spherical symmetry of the Earth’s atmosphere. The radio waves 
emitted by a GPS satellite located at point G  enter the receiver input onboard a low-orbit 
satellite (point L ) upon passage along the GTL  ray, where T  is the perigee of the ray. At 
point T , the distance h  from the ray to the Earth’s surface is minimal and the gradient of 
the refractive index ( )N h  is perpendicular to the trajectory GTL  (Figure 2). Projection of the 
point T  on the Earth’s surface determines the geographic coordinates of the studied region. 
Records of signals along the trajectory of a low-orbit satellite at two frequencies, 1f  1575.42 
MHz and 2f  1227.6 MHz, are one-dimensional radio-holograms, which contain the 
amplitudes 1( )A t  and 2( )A t , 

 
Figure 2. Main geometrical parameters describing the RO experiment conditions. 

and the eikonal increments 1( )t  and 2( )t  of a radio field. The vertical velocity of the 
radio occultation ray in the perigee amounts to about 2 km/s, which is significantly greater 
than the velocities of motion of layers in the ionosphere and the atmosphere. Thus, the RO 
data are the instantaneous one-dimensional radio-holograms of the ionosphere and 
atmosphere. In the case of global spherical symmetry of the ionosphere and atmosphere, the 
following relations between the phase-path increments ( )t  and the refractive attenuation 

( )X t  of radio waves [4-8] are fulfilled: 

 
2

2
( ) ( ) 1      ddF t d tm ma X

dt dt
 

       (30) 

where  is the wavelength, ( )dF t  is the Doppler frequency of RO signal. In the RO 
experiments, parameter m  can be determined from the orbital data.  

Equations (30) relate the refractive attenuation ( )X t and the eikonal acceleration a  in a form 
similar to the classical-dynamics equation. Equations (30) determine equivalence of the 
acceleration of the eikonal a  to the time derivative of the Doppler shift ( )dF t and the 
refractive attenuation ( )X t . Thus, Eq. (30) make it possible to convert the eikonal 
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acceleration and/or time derivative of the Doppler shift ( )dF t into the refractive attenuation 
( )X t . This is important for estimation of the total absorption in the atmosphere.  

The attenuation of intensity of radio waves ( )aX t can be determined from the amplitude 
data in the form of a ratio of the intensity ( )aI t  of a radio signal propagating across the 
atmosphere to its intensity ( )sI t in free space: 

 
( )

( )       
( )

a
a

s

I t
X t

I t
   (31) 

The experimental quantity ( )aX t is the product of the refractive attenuation ( )pX t and the 

total absorption coefficient ( )t and depends on the gain calibration errors of transmitter 
and receiver. However, the eikonal acceleration depends only on the refractive attenuation

( )pX t . This makes it possible to determine the atmospheric absorption ( )t  for a 

sufficiently stable level of the amplitude from the relations where ( )X t is the refractive 
attenuation of radio waves which was converted from the eikonal data. Parameter m can be 
found from the data describing the relative motion of the GPS satellite and the low-orbit 
satellite with respect to the spherical-symmetry center - point O (Figure 2) in the GOL plane. 
The quantity ( )X t calculated from Eq. (1) can be used to remove the refractive attenuation 
effect from the amplitude data: 

 
( )

1
( )

aX t
X t

    (32) 

Eqs. (30) - (32) permit one to estimate the total absorption of radio waves   along the ray 
GTL by amplitude and phase measurements of the radio-holograms.  

The results of estimation of the total absorption   as a function of the altitude in the 
atmosphere for the experiment onboard the CHAMP satellite (No. 0159 at 14:54 UT) are 
shown in Figure 3. The experiment has been performed in June 16, 2003. Experiment 
corresponds to a polar region with geographical coordinates 83.0 N 258.6 W. The refractive 
attenuations ( )aX h  and ( )X h , which were calculated from the RO amplitude and phase data 
using Eqs. (1) and (2) are shown in Figure 3 on the left (curves 1 and 2, respectively). Smooth 
curves 3 on the left in Figure 3 show the approximation obtained by a least-squares method. 
Slow trends in the refractive attenuations ( )aX h  are practically coinciding and vary from 0 
dB at altitudes greater than 34 km to  (10–15) dB at altitudes of about 5 km as seen in 
Figure 3 (left panel). This is experimental proof of the fulfillment of the relations described 
by Eqs. (1) that have been used for calculation of the refractive attenuation ( )X h from the 
RO phase-channel data of the satellite radio-holograms. Significant correlation between the 
high-frequency part of the variations in ( )X h  and ( )aX h takes place (Figure 3). Good 

correspondence between the variations in ( )X h  and ( )aX h exists at altitudes of 5 to 32 km 
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(Figure 3, left panel). At altitudes greater than 30 km, variations in ( )aX h are greater than 
those in ( )X h . This difference can be related to possible variations in the receiver 
(transmitter) gain or, which is more probable, to the ionospheric scintillation effect. The 
scintillation index S4 was equal to 2.7% in the experiment, and such a value corresponds to 
moderately disturbed conditions in the ionosphere. Relationships between the refractive 
attenuations retrieved from the amplitude and phase variations are important for estimation 
of the altitude dependence of the total absorption in the atmosphere. This dependence is 
shown by curve 1 in Figure 3 (right panels). Smooth curve 2 corresponds to the total 
absorption  found by a least-squares method, its value nearly corresponds to the 
absorption in atmospheric oxygen in accordance with [21]. Calculations show that the 
influence of the absorption in atmospheric oxygen can be tangible at altitudes less than 15 
km. Experimental data agree, on the average, with this conclusion.  

 
Figure 3. Left. Comparison of the refractive attenuation ( )X h retrieved from the eikonal data and 

attenuation ( )aX h found from the intensity variations of the RO signal. Right. Difference of the 

refractive attenuations aX X  (curve 1) and absorption coefficient   found by a least-squares method 
(curve 2). 

Obtaining more exact information on total absorption requires averaging of significant 
variations in the experimental values of  . For obtaining the dependence ( )h , the vertical 

profiles ( )X h  and ( )aX h  were approximated by polynomials using a least-squares method. 
In Figure 4, left panel, curves 1–5 correspond to the resulting vertical profiles ( )X h  and 

( )aX h , and curves 6–10, Figure 4, middle panel, are related to the dependences ( )h for five 
radio-occultation sessions performed using the CHAMP satellite in June 16, 2003. For 
convenience, curves 1–4, 6, 7, 9, 10 were displaced for comparison along the vertical axis. All 
sessions (No. 122, 02:27 LT, 77.6 N 141.0 W; No. 173, 17:35 LT, 80.9 N 337.1 W; No. 0030, 
20:59 LT, 77.9 N 83.5 W; No. 0159, 21:40 LT, 83.0 N 258.6 W; and No. 0203, 16:56 LT, 76.3 N 
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37.9 W) correspond to the north polar regions. At altitudes between 12 and 30 km, the 
profiles ( )X h  and ( )aX h  almost coincide. At altitudes less than 12 km, splitting of the 

curves ( )aX h  and ( )X h  (e.g., the curves a and p, Figure 4, left panel), which begins at 
different heights, is observed. This effect is notable for all curves 6–10 in Figure 4 (middle 
panel). The differences at the initial height of splitting can be related to slow variations in 
the radio signal amplitude. The existence of splitting is probably a signature of the presence 
of small, but tangible integral atmospheric absorption, whose magnitude is, on the average, 
close to the values mentioned in [21] and to the magnitude 0.0096   0.0024 dB/km of 
absorption per unit length measured in [12, 13, 22] (curves 6–10). The total absorption is 
varied within the limits 0.034 – 0.081 in the altitude range 12–5 km (Figure 4, middle panel, 
curves 6–10). The total absorption is near zero at the altitudes greater 12-15 km. The 
estimated value of the absolute statistical and systematic errors in the total absorption  is 
 0.01. 

 
Figure 4. Left and middle panels. Comparison of the refractive attenuation ( )X h  (index “p”) retrieved 

from the eikonal data and attenuation ( )aX h  (index “a”) found from the intensity variations of the RO 
signal (curves 1-5). Curves 6-10 in the middle panel describe the total absorption  calculated using Eq. 
(3). Curves 6,7, and 9,10 are displaced for convenience of comparison. The minimal and maximal values 
of parameter are: curve 6 -0.01, 0.062; curve 7 -0.001, 0.043; curve 8 -0.01, 0.081; curve 9 -0.0064, 0.0336; 
curve 10 -0.002, 0.046. Right panel. Averaged values of the total absorption in the Earth’s atmosphere 
found for five days (Curves 1 – 5 correspond to found from CHAMP RO data averaged during 
February 24; June 16; May 03; November 30; July 07, 2003, respectively). 

In Figure 4 (right panel) the averaged values of the total absorption  in the Earth’s 
atmosphere are presented for five different days. These values have been found by the 
introduced eikonal/intensity method from CHAMP RO data for five days: February 24; June 
16; May 03; November 30; July 07, 2003, respectively. According to Figure 4 (right panel), the 
maximal values of the total absorption  are containing for different days in the range 0.06 – 
0.14 and correspond to the altitudes interval 6 km – 8 km. Averaging significantly reduces 
the statistical error of measurements, however the systematic errors remain. The systematic 
errors can be estimated from Figure 4 using negative values of the total absorption   as 
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0.01. Analysis of experimental data shows that additional attenuation as compared with the 
theoretical dependence can exist at altitudes smaller than 8 km. This can be related to the 
absorption effect in clouds and water vapor.  

The introduced method is a perspective tool for investigation of seasonal and annual 
variations and geographical distributions of the total absorption from RO data. Also this 
method is, possibly, may be applied to study the influence of the tropical hurricanes and 
typhoons on the altitude profiles of water vapor in the stratosphere and tropopause.  

4. Locality principle and RO remote sensing  

A possibility to find the total absorption from joint analysis the RO amplitude and phase 
data described in section 3 is an important consequence of general locality principle valid in 
the of RO remote sensing of spherical symmetric atmospheres and ionospheres of the Earth 
and planets. Up to now this principle is implicit unformulated property of the RO method.  

Below the fundamental principle of local interaction of radio waves with a spherically 
symmetric medium is formulated and introduced in the RO method of remote sensing of the 
atmosphere and ionosphere of the Earth and planets.  

In accordance with this principle, the main contribution to variations of the amplitude and 
phase of radio waves propagating through a medium makes a neighborhood of a tangential 
point where gradient of the refractive index is perpendicular to the radio ray.  

A necessary and sufficient condition (a criterion) is established to detect from analysis of RO 
data the displacement of the tangential point from the radio ray perigee.  

This criterion is applied to the identification and location of layers in the atmosphere and 
ionosphere by use of GPS RO data. RO data from the CHAllenge Minisatellite Payload 
(CHAMP) are used to validate the criterion introduced when significant variations of the 
amplitude and phase of the RO signals are observed at RO ray perigee altitudes below 80 km.  

The detected criterion opens a new avenue in terms of measuring the altitude and slope of 
the atmospheric and ionospheric layers. This is very important for the location 
determination of the wind shear and the direction of internal wave propagation in the lower 
ionosphere, and possibly in the atmosphere.  

The new criterion provides an improved estimation of the altitude and location of the 
ionospheric plasma layers compared with the back-propagation radio-holographic method 
previously used.  

4.1 Application of GPS RO method to study the atmosphere and ionosphere 

The radio occultation (RO) method employs the highly-stable radio waves transmitted at 
two GPS frequencies 1f  1575.42 MHz and 2f  1227.60 MHz by the GPS satellites and 
recorded at a GPS receiver onboard low Earth orbiting (LEO) satellite to remote sense the 
Earth’s ionosphere and neutral atmosphere [4,5,10,11,17,23-42,46,47,52-56,59-61]. When 
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applied to ionospheric investigations the RO method may be considered as a global tool and 
can be compared with the global Earth- and space-based radio tomography [42,43]. The RO 
method delivers a great amount of data on the electron density distribution in the upper and 
lower ionosphere that are important sources for modernizing the current information over 
the morphology of the ionosphere and ionospheric processes [44,45]. The RO method has 
been actively used to study the global distribution of sporadic E-layers in dependence of 
latitude, longitude, altitude and local time [5, 27-32,39-41,45-47]. These investigations have 
produced useful data on climatology and the formation process of sporadic E-layers which 
depend mainly on the Earth’s magnetic field and meteor impact according to the theory of 
the wind shear mechanism of plasma concentration [48-51]. The thermospheric wind and 
atmospheric tides seem to be the main energy sources for this mechanism [39].  

Therefore the spatial distributions of sporadic E layers are important for investigating the 
connections of natural processes in the neutral and ionized components of the ionosphere. 
The location and intensity of sporadic E-layers plays a critical role for the quality of radio 
communications in the HF frequency band. The RO measurements in the atmosphere can be 
affected significantly by ionospheric contributions since the RO signals propagate through 
two different parts of the ionosphere.  

Usually the ionospheric influence in the RO measurements may be described through a 
relatively slow change in the excess phase without noticeable variations in the amplitude of 
RO signals. This effect can be effectively reduced by a number of different methods of 
ionospheric correction [10,52,53].  

However disturbed ionosphere may significantly change not only the phase but also the 
amplitude of the RO signals. Strong amplitude and phase frequency dependent variations in 
the RO signals are often surprisingly observed within the altitudes of the RO ray perigee 

( )h T between 30 and 80 km above the main part of the neutral atmosphere and below the E-
layer of the ionosphere. The effects of strong phase and amplitude variations of the RO 
signals at a low altitude provide a good source of information for the remote sensing of the 
atmosphere and ionosphere including detecting and studying the internal gravity waves 
propagating in the atmosphere and ionosphere [54]. Accurate knowledge of spatial location, 
height and inclination of the sporadic E-layers is important for the estimation of the off-
equatorial height-integrated conductivity [44,45]. The RO low altitude amplitude variations 
have been interpreted as a contribution from the inclined ionospheric layers displaced 
relative to the RO ray perigee, and equations for the determination of the height and slope 
of inclined plasma layers from the known displacement of layers have been developed [27].  

The altitudes of sporadic E-layers have been evaluated as the height of the RO radio ray 
perigee in recent times [28,39-41]. A relationship between the eikonal (phase path) and 
amplitude variations in the GPS/MET RO data has been analyzed in [53] and conclusions 
have been made that (i) the amplitude variations in distinction to the phase of RO signal 
have a strong dependency on the distance from observation point to the location of an 
ionospheric irregularity and (ii) the location of the irregularities in the low ionosphere may 
be determined by measuring the distance between the observation point up to a phase 
screen which should be located perpendicularly to the RO ray trajectory at its perigee. 
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A radio-holographic back-propagation method has been suggested and applied for location 
of the irregularities in E- and F-layers of the ionosphere [10,11]. A relationship between the 
derivatives of the phase, eikonal, Doppler frequency on time and intensity of radio waves 
propagating through the near Earth’s space has been detected from both theoretical 
considerations and experimental analysis of the RO radio-holograms [4,5,31,36-38,47]. The 
introduced eikonal acceleration technique can de used for locating layers in the ionosphere 
and atmosphere. 

The aim of this section is to demonstrate the possibility of identifying the contributions and 
measuring parameters of the inclined plasma layers by means of an analytical criterion. A 
test of a suggested method is provided by use of CHAMP RO data.  

4.2. Criterion for layer locating  

The scheme of RO experiments is shown in Figure 2. A navigational satellite G emitted 
highly-stable radio waves which after propagation through the ionosphere and atmosphere 
along the radio ray GTL arrived to a receiver onboard the Low Earth Orbital (LEO) satellite
L . The amplitudes and phase variations of the RO signals are recorded as a function of 
time, sent to the ground stations with orbital data and analyzed with an aim to find the 
physical parameters of the neutral atmosphere and ionosphere along the trajectory of the 
RO radio ray perigee – point T  (Figure 2). The receiver onboard LEO records the amplitude 

1 2( ),  ( )A t A t and the excess phase path 1 2( ),  ( )t t   of the GPS transmitted radio wave 
signals as a function of time t  at two GPS frequencies.  

The global spherical symmetry of the ionosphere and atmosphere with a common centre of 
symmetry is the cornerstone assumption of the RO method. Under this assumption a small 
area centered at tangent point T  (Figure 2) where the RO ray is perpendicular to the 
gradient of refractivity, makes a significant contribution to the amplitude and phase 
variations of RO signals despite the prolonged path GTL  (Figure 2). Under the global 
spherical symmetry condition the tangent point coincides with the RO ray perigee T . The 
size of this area along the ray GTL is equal to the horizontal resolution of the RO method 

 1/2
2 2h f el   , where  1/2

2fl d is the size of the Fresnel zone,  is the wavelength, e

is the distance TO , 2d  is the distance TL  which is nearly equal to DL (Figure 2). The 
magnitude of h corresponds to the minimal horizontal length of a layer estimated by the 
RO method. 

The quiet ionosphere introduces regular trends in the excess phases at two GPS frequencies 
which can be removed by the ionospheric correction procedure [25,53]. The contributions in 
the phase and amplitude variations of RO signals of the intensive sporadic E-layers at the 
altitude interval 90-120 km is significantly greater than the impact of the F-layer turbulent 
structures [25]. Impact of a regular layer on the RO signal depends on position relative to 
the RO ray perigee. The length, cl  , of coherent interaction of the RO signal with a layer 
having the vertical width l  depends on the elevation angle   between the local horizon 
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direction and ray trajectory: 
sinc

ll  
 . For the RO ray perigee the elevation angle,  , is 

zero, and the corresponding value cl  is described by relationship: 

  1/22(2 )c el l   (33) 

The ratio G of the lengths cl  and cl  is equal to: 

 2
2 sinc e

c

l
G

l l


    (34) 

Under spherical symmetry condition sin  is about 0.25 at the altitude of ionospheric F- 
layer 250 km, and one can obtain from (34): 

 
2

1/2
2 0.57 100.5 eG

l l
 

    (35) 

If the vertical width l  is about one kilometer, the contribution to the phase variations of a 
layer disposed in the RO ray perigee differs by about a hundred times on the impact of the 
similar layer located in the F-region. Therefore as a rule the RO method is effective tool for 
layers detection and measurements of their parameters with high vertical resolution and 
accuracy along of the trajectory of the RO ray perigee.  

The next connection between the excess phase path (eikonal) ( )t  acceleration a  and the 
refractive attenuation of electromagnetic waves ( )pX t  have been detected and validated 

[4,5,31,36-38]:  

 
2

2
2 2 02

( )1 ( ) ,  ,  (1 / ) / ( / )p s
d tX t ma a m d d R dp dt

dt


        (36) 

where 2d , 0R  are the distances along the straights lines DL  and GL , respectively, , sp p are 
the impact parameters corresponding to the ray GTL  and the straight line GL  (Figure 1). 
Note, that the distance 2d  is nearly equal to distance TL  within an accuracy corresponding 
to the horizontal resolution of the RO method (about 100-300 km). Parameters m  and dps /dt 
may be evaluated from the orbital data. The first formula (36) has been derived under 
condition [37]: 

   1,2 s
s s

dR dp
p p p

dt dt
   (37) 

where 1 2,R R  are the distances ,OG OL , respectively, (Figure 1). Condition (37) holds for RO 
studies of the atmospheres and ionospheres of the Earth and planets because the module of 
difference sp p  is always well below the magnitudes of , sp p . If absorption is absent the 
magnitude ( )pX t  describes the refractive attenuation determined from the amplitude data: 



 
Wave Propagation Theories and Applications 

 

128 

 ( ) ( )p aX t X t   (38) 

 0( ) /aX t I I  (39) 

where 0 ,I I  are the intensities of the RO signals measured before and after the immersion of 
the RO ray in the atmosphere, respectively. It should be noted that the total absorption in 
the atmosphere can be determined by excluding the refractive attenuation found from 
measurements of the eikonal acceleration at the same frequency by use of the first Eq. (36).  

 1 ( ) / ( )a pX t X t     (40) 

Eqn. (36) and (40) are the basis of the proposed method for determining the total absorption 
by measuring the time dependence of the intensity and eikonal of the RO signal at one 
frequency [31]. This method is much simpler than the previously used method based on 
estimation of the refractive attenuation on the first derivative of the bending angle on the 
impact parameter. When the total absorption is absent, it follows from (36) and (38), if the 
center of symmetry is located at point O : 

 1 ( ) 1 ( )p aX t X t ma     (41) 

Relationship (41) establishes equivalence of the values ( ), ( )p aX t X t  in the case of the 

spherical symmetry with centre O . Criterion (38) is a necessary and sufficient condition to 
ensure that the tangential point coincides with the radio ray perigee. This criterion is valid 
when the total absorption is absent and the requirement of the global spherical symmetry is 
fulfilled. In this case variations of the refractive attenuations found from the phase and 
amplitude variations of the RO signal should be the same at any time and can be attributed 
to the influence of the medium near the ray perigee (the locality principle). Therefore the RO 
method is based on an implicit locality principle and the RO method results correspond to 
the trajectory of motion of the RO ray perigee in the case of a spherically symmetric 
medium.  

However the locality principle has more general meaning. Therefore it is necessary to 
extend the theory of the RO method to develop an appropriate technique to find the 
locations of the tangent points on the RO ray. This is an aim of the last part of this section.  

In some cases the centers of spherical symmetry in the two parts of the ionosphere located 
on the path GTL  (Figure 2) do not coincide with that of the neutral atmosphere 
[4,31,32,46,47]. In particular, this effect can be caused by the displacement of the centre of 
spherical symmetry O of an ionospheric part of the ray GTL from the point O  (Figure 2). In 
this case according to the derivation made previously [37] the inequality (37) is also valid 
after changing the distances 1,2R to 1,2R and impact parameters , sp p to , sp p  because 

smallness of the difference sp p   as compared with any of the values , sp p  . Therefore the 
identity (38) is valid also in the new coordinate system with centre at point O  (Figure 2): 
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 ( ) ( )p aX t X t     (42) 

where ( )pX t  - is a new value of the refractive attenuation relevant to a new center of 

spherical symmetry: 

 
2

2
2 2 02

( )1 ( ) ,  ,  (1 / ) / ( / )p s
d tX t m a a m d d R dp dt

dt
          (43) 

where m  - is a new value of the parameter m relevant to a new center of spherical 

symmetry O , 2 d   is the distance D L , respectively (Figure 2). As compared with formula 

(36) the first equation (43) is different with new values of the refractive attenuation ( )pX t

and parameter m . The refractive attenuation ( )aX t found from the amplitude data (39) and 
the eikonal acceleration a do not depend on location of the spherical symmetry centre. 
Identity (42) extends the criterion (38) to general case in which the centre of spherical 
symmetry is shifted to an arbitrary point.  

This allows one to formulate the locality principle for remote sensing of layered spherically 
symmetric medium in the absence of absorption. A certain point of the radio ray is 
tangential if and only if the refractive attenuations found from the second derivative of the 
eikonal on time and intensity variations of the radio waves passed through the medium are 
equal. In this case both the intensity and the second derivative of the eikonal variations are 
mainly influenced by a small neighbourhood of the tangential point.  

The principle of locality allows one to determine the location of a tangential point and to 
find the altitude, slope and displacement of a layer from the radio ray perigee. According to 
Eqn. (36), (43) it follows: 

 1 ( ) (1 )a p
mX t X
m


    (44) 

where the refractive attenuation pX  is determined from Eq. (33) using measured value a ; 

coefficients m  , m - correspond to the centres of spherical symmetry O  and O . It follows 
from (36), (43), (44): 

 
2

2 2 0
2

2 2 0

(1 / )( / )
( ) 1 (1 ) 1 (1 )

(1 / )( / )
s

p a p p
s

d d R dp dtmX X t X X
m d d R dp dt

            
    

   (45) 

If the displacement of the center of spherical symmetry satisfies the following conditions: 

  2 0 2 0 / ,  / 1;   s sdp dp
d R d R

dt dt


    (46) 

then one can find from (45): 
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 2 2

2 2
( ) (1 ) (1 )p a p p

d d dX X t X X
d d
 

       (47) 

where d is the distance DD  (Figure 2). In the case of small refraction effect the distance d  is 
approximately equal to the length of arc TT . Relationship (47) establishes a natural 
connection between the displacement of the tangential point from the radio ray perigee d  
and variations of the refractive attenuations ( )aX t and pX . 

Let us consider the refractive attenuation variations as the analytical signals in the form: 

 1 ( ) ( )Re exp ( ) ;  1 ( ) ( )Re exp ( )p p p a a aX t ma A t j t X t A t j t           
 (48) 

where ( )pA t , ( )aA t ; ( )p t , ( )a t  are, correspondingly, the amplitudes and phases of the 

analytical signals, relevant to the functions 1 ( )pX t  and 1 ( )aX t . The amplitudes and 

phases ( )pA t , ( )aA t ; ( )p t , ( )a t  describe atmospheric (ionospheric) modulations of the 

refractive attenuation variations 1 ( )pX t  and 1 ( )aX t . The phases ( )p t , ( )a t  differ from 

the excess phase path (eikonal) ( )t . In the case when the variations 1 ( )pX t  and 1 ( )aX t

can be described by a narrowband process the functions ( )pA t , ( )aA t ; and ( )p t , ( )a t can 

be found by the numerical Hilbert transform or by other methods of the digital data 
analysis.  

After substitution (48) in (44) one can obtain: 

 ( )Re exp ( ) ( )Re exp ( )  a a p p
mA t j t A t j t
m

 
       

  (49) 

The ratio m
m


 is supposed to be nearly constant during the RO measurement event. For 

fulfilling (49) the phases ( )p t  and ( )a t should be equal, but the amplitudes ( )aA t  and 

( )pA t  are different. In this case one can obtain from (49) under the conditions (46) an 

alternative relationship for the displacement d  in the form:  

 2 2
2 2 2 2 2;  ;  a p a

s
p p

A A A
d d d d d R p m m

A A


         (50) 

Equation (50) establishes a rule: location of a tangent point on the ray trajectory can be 
fulfilled using the analytical amplitudes of the refractive attenuation variations ,a pA ; the 

displacement d  is positive or negative depending on the sign of difference a pA A , the 

tangent point T is located on the parts GT  or TL , respectively. The phases ( )p t  and ( )a t

should be equal within some accuracy determined by a quality of measurements. From the 
last equation (50) one can find the coefficient m  if the magnitude m  is known.  
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Note, that equation (50) is valid when the distance of one of the satellites from the ray 
perigee T is many times greater than the corresponding value for the second one. This 
condition is fulfilled for the planetary RO experiments provided by use of the 
communication radio link spacecraft-Earth and GPS occultations [31]. 

Correction to the layer height h and its inclination  with respect to the local horizontal 
direction can be obtained from the displacement d  [27]: 

 / ,  0.5ed h d      (51) 

where e  is the distance TO  (Figure 1).  

Condition of the spherical symmetry with new center O  justifies application of the Abel’s 
transform for solution of the inverse problem. For the Abel’s transform the next formula is 
used [55]: 

 

 0

2
0 0 0

0
0 0 00

0

( ) 1 ( ) ( )( )1( ) ln 1  ;  
( )

1p
e

dN p N p dN pp p d pN p dp
p p dp dh dpdN p

r h
dp




                       
 

    (52) 

where 0p is the magnitude of the impact parameter p corresponding to ray GTL in the 

initial instant of time 0t , 0( )N p  and 0( )dN p
dh

are the refractivity and its vertical gradient. the 

derivative of the bending angle ( )p  on the impact parameter p  ( )d p
dp
 can be found from 

the refractive attenuation X  by use of equation obtained previously [20]:  

 0
2 2 2 2
1 2

1 1
Rd

dp X R p R p

  
  
   

 (53) 

where 0R is the distance GL  (Figure 1). from (36), (52), (53) one can obtain the modernized 
formula for the Abel inversion: 

 
0

2

0 2 20 0 2

( ) ( )1( ) ln 1  
( )

xt
s

t

dpp t p t m aN p dt
p p dtR p t

 
         
    

   (54) 

Factor m  in (54) can be estimated from the last equation (50). Magnitude m a  in (54) may 
be changed by the value 1 aX  to use directly the RO amplitude data for the Abel inversion.  

Note, that equation (52) provides the Abel’s transform in the time domain 0 ,  xt t where a 
layer contribution does exist. The linear part of the regular trend due to influence of the 
upper ionosphere is removed because the eikonal acceleration a  in (54) contains the second 
derivative on time. However the influence of the upper ionosphere is existing because it 
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contributes in the impact parameter ( )p t . Also nonlinear contribution of the upper 
ionosphere remains in the eikonal acceleration a . Equation (54) gives approximately that 
part of the refractivity altitude distribution which is connected with influence of a sharp 
plasma layer. The electron density vertical distribution in the earth’s ionosphere ( )eN h is 
connected at GPS frequencies with the refractivity ( )N h  via relationship: 

 
2( )( )

40.3e
N h fN h    (55) 

where f  is carrier frequency [Hz], ( )eN h is the electron content 3
el

m
 
 
 

 . 

4.3. Analysis of CHAMP experimental data 

To consider a possibility to locate the plasma layers we will use a CHAMP RO event 005 
(November 19, 2003, 0 h 50 m UT, 17.3 S, 197.3 W) with strong quasi-regular amplitude and 
phase variations. The refractive attenuations of the CHAMP RO signals ,  a pX X  found from 

the intensity and eikonal data are shown in Figure 5 (left panel) as functions of the RO ray 
perigee altitude h . The eikonal acceleration a  has been estimated by double differentiation of 
a second power least square sliding polynomial over a sliding time interval 0.5 t s  . This 
time interval corresponds approximately to the vertical size of the Fresnel’s zone of ~1 km 
since the vertical component of the radio ray was ~2.1 km/s. The refractive attenuation pX  is 

derived from the evaluated magnitude a  using equation (36); m  value is obtained from the  

 
Figure 5. Left plot: the refractive attenuations ,  a pX X  found from the intensity and eikonal ro data at 

frequency 1f  (curves 1 and 2, respectively). Right plot: the amplitudes ,  a pA A of analytical signals 

corresponding to the variations of the refractive attenuations ,  a pX X  (curves 1 and 2). 
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Figure 6. Left: evaluation of the plasma layer displacement from the RO perigee d . Right: results of 
restoration of the vertical gradients of the electron density. 

orbital data. The refractive attenuation aX  is derived from the ro amplitude data by a least 
square method with averaging in the same time interval of 0.5 s. in the altitude ranges of 42-
46 km and 98-106 km, the refractive attenuations variations ,  a pX X  are strongly connected 

and may be considered as coherent oscillations caused by sporadic layers (Figure 5, left 
panel). Using the Hilbert numerical transform, the amplitudes ,  a pA A of analytical signals 

related to 1 and 1a pX X   have been computed and are shown in Figure 5 (right panel). In 

the altitude range of 42-46 km, the amplitudes and a pA A  are nearly identical, but the 

magnitude of aA  is about 1.5 times greater than that of pA . Accordingly, a plasma layer is 

displaced from the RO ray perigee T  in the direction to the satellite G (Figure 2). A similar 
form of variations of the refractive attenuations 1 and 1a pX X   allows locating the 

detected ionospheric layer. The displacement d  corresponding to a plasma layer recorded at 
the 44 km altitude of the RO ray perigee is shown in Figure 6 (left). The curves 1 and 2 in 
Figure 6 (left) correspond to the amplitudes ,  a pA A . Curve 3 describes the displacement d  

found from the amplitudes ,  a pA A using equation (50). The changes of d  are concentrated in 

the altitude range of 720-1500 km when the functions ,  a pA A  vary near their maximal 

values of 0.46 and 0.69 in the ranges of 0.2 0.46 and 0.2 0.69p aA A     respectively. The 

statistical error in the determination of the ratio a p

p

A A
A


 in equation (50) is minimal when 

pA  is maximal. Point a  in Figure 6 (left panel) marks the maximum value of pA , and the 

points b and c denote the corresponding values 0.67aA   and 940 d km  respectively, the 
plasma is displaced from the RO ray perigee T in direction to the navigational satellite G
(Figure 2). If the relative error in the measurements of pA  is 5%, then, according to Figure 6 



 
Wave Propagation Theories and Applications 

 

134 

(left) the accuracy in the estimation of d  is about 120 km . The inclination of a plasma layer 
to a local horizontal direction calculated using eqns. (51) is approximately equal to 

10.4 0.2     . 

The vertical gradient edN
dh

 of the electron density distribution ( )eN h  for the given RO event 

is shown in Figure 6 (right). Curves 1 and 2 correspond to the vertical gradient edN
dh

 

retrieved using eq. (52) and (54) respectively. Curve 3 is related to the vertical gradient edN
dh

 

retrieved using the refractive attenuation aX  and formula (54). The real altitude of the 
ionospheric layers is indicated on the horizontal axis in Figure 6 (right). Two ionospheric 
layers are seen (curves 1, 2, and 3 in Figure 6, right). The first layer is located on the line GT  
at the 120-130 km altitudes at a distance ~ 950 km from point T . The second layer is located 
near the RO perigee at the 98-108 km altitudes (Figure 5 and Figure 6, right). From the 
comparison of the refractive variations ,  a pX X  (Figure 5, left) and the vertical gradients of 

the electron content (Figure 6, right) the width of the sporadic E-layers is nearly equal to the 
altitude interval of the amplitude variations of the RO signals. From Figure 6 (right), the 
variations of the vertical gradient of the electron density are concentrated in the interval 

6 6

3 3
1.1 10 ( ) 1.1 10el dN h el

dhcm km cm km
 

   . These magnitudes of ( )eN h  are typical for intensified 

sporadic E-layers [45]. The height interval of the amplitude variations is nearly equal to the 
height interval of the variations in the electron density and its gradient.  

The second example of the identification and location of sporadic plasma layer in the lower 
ionosphere is shown in Figure 7 for CHAMP RO event 211 (July 04 2003, 10 h 54 m LT, 2.1 
N, 145.6 W) with intensive sporadic e layers. The refractive attenuations and a pX X  of the 

CHAMP RO signals at 1f  obtained from the intensity and eikonal data are shown in Figure 
7 (a) as functions of the RO ray perigee altitude h . The refractive attenuations variations 

,  a pX X  are strongly correlated and can be considered as coherent oscillations caused by a 

single sporadic e-layer. as shown in Figure 7 (b), the amplitudes ,  a pA A  corresponding to 

1,  1a pX X   are attained from the Hilbert numerical transform and the magnitude aA  is 

about 1.3 times greater than pA . This means that a corresponding plasma layer is displaced 

from the RO ray perigee T  in the direction to the satellite g (Figure 1). The displacement d  
of the tangent point can be determined from the amplitude variations ,  a pA A . The 

displacement d , the correction of the altitude h , the corrected height h of the plasma layer 
maximum, and the slope of the plasma layer relative to the horizontal direction  are shown 
in Figure 7, c, d. Curves 1, 2 and 3 in Figure 7 (d) are the amplitudes ,  a pA A  and the 

corrected height h of the plasma layer maximum on the RO ray perigee altitude h  
respectively. Curves 1, 2 and 3 in Figure 4 (c) are the displacement d  (its values are marked  
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Figure 7. Panels a-d: identification and location of a layer in the lower ionosphere. Panel e: distribution 
of the electron density in the identified sporadic Es layer. Panel f: distribution of the gradient of electron 
density. 

at the left vertical axis), the layer slope   [degrees] (right vertical axis), and the correction 
h  respectively. the changes of d , h , and  are concentrated in the ranges of 240-400 km, 

5-15 km, and 2.2…3.2 when the altitude of the ro ray perigee changes in the range of 109.6-
110.4 km. From these changes the average values of d , h , and   are determined, i.e. 

350 50 kmd km  ; 10 5 h km km   , and 3.1  0.3. It is concluded that the detected 
sporadic layer is displaced from the ro ray perigee by 350 km in the direction to the gps 
satellite and the altitude of which is 10 km greater than the height of the point T . The height 

distribution of the electron density ( )eN h  and its altitude gradient 
( )edN h

dh



 recalculated from 
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the modernized Abel inversion equation (54) is shown in Figure 7, e, f. Note, that the function 
( )eN h represents the sporadic E-layer contribution with the approximation 0( , ) 0xN t p  . This 

suggests that the above calculation reflects the high-frequency part ( )eN h  and with the 
magnitude of the vertical spatial periods below 10 km. The maximal value of the electron 
density is located at the height of 119.2 km (Figure 7 e). The maximal gradient of the electron 
content ~ 6 31.4 10  [ / ]el cm km  is observed at the altitude of 119.0 km (Figure 7 f). The altitude 
dependent quantity ( )eN h  demonstrates the wave-like structure that is possibly related to the 
wind shears in the vertical distribution of horizontal wind in the neutral gas [50].  

The introduced method appears to have a considerable potential to resolve the uncertainty 
between the part GT  and LT  of the ray trajectory and determine the location of the 
inclined layers. This method accurately indicates the locations of the maximal values and 
direction of the gradient of the electron density including the distance, altitude and slope. 
According to existing theory, the maximum of the electron content in sporadic E-layers are 
usually connected with influence of the wind shear [45]. Therefore the RO method is capable 
to locate the wind shear in the lower ionosphere. The gradient of the electron content can 
correspond to the wave fronts of different kinds of wave influencing on the ionospheric 
plasma distribution [50]. In the case of the internal gravity waves (GW) the inclination of the 
wave vector to the vertical direction can be used to find the angular frequency of GW [54]. 
Therefore the introduced criterion and technique extended the applicable domain of RO 
method. Additional validation of this method through analyzing the CHAMP data and 
comparison with ground-based ionosonde information is the task for the future work.  

4.4. Comparison of the eikonal acceleration/intensity technique with  
back-propagation radio-holographic methods 

The analytic technique can be compared with the radio-holographic approach for locating 
plasma structure in the ionosphere introduced previously [10,11]. In general the radio-
holographic back-propagation may be carried out using a Green function ( )G r  as a 
reference signal and a complex field ( )l  measured along a part of orbital trajectory of a 
LEO satellite ( L L ) (Figure 2) [30]:  

 1/2 1/2
0( ) / (2 ) ( ) ( ) cos  

LL

C ik r G l dl   



     r  (56) 

where r  is the distance CC (Figure 2), ( )C is the radio fields restored by a back-
propagation method at point C ,   is the angle between the vector r , connecting the 
observation point C  and current integration element dl  with center C , and normal n  to 
the curve L L  (Fig.1).  

The Green function ( )G r  is a solution of the scalar wave equation: 

 2 2
0( ( )) ( , ) 4 ( )k n r G      r r r r   (57) 
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where, 0k  is the module of the wave vector in the free space, , r r are the vectors indicating 
the coordinates of a point in a medium and a source of the field, ( )n r is the spatial 
distribution of the refraction index. It is supposed below that ( )n r depends only on a radial 
coordinate r  of layered structures relative to a centre of spherical symmetry.  

To obtain the optimal values of the vertical resolution and accuracy in measuring physical 
parameters in the atmosphere and ionosphere, usually the Green function ( )G r  in (56) may 

be chosen in the form depending on the model of a layered medium ( )mn r [30]. As the 

simplest case of a reference signal, the Green function ( )G r  describing spherical waves in 

the free space can be selected [56]: 

 1/2
0( ) exp( / 4)exp( ) /G i ik r r r   (58) 

The Green function ( )G r corresponding to radio waves emitted by a point source in a 

spherical symmetric layered medium has been suggested [30]: 

 0( ) ( , )exp( ( ))G GG A ik  r r r  (59) 

where, ( )G r , ( , )GA r  are the eikonal and amplitude of the Green function ( )G r .  

The complex wave field ( )l  at the orbital trajectory L L  in the wave-optics approximation 
is given by relationship [30]: 

 1/2
0( )= ( )exp ( )  l X p ik p      (60) 

where, p is the impact parameter depending on the location of the element dl , ( )X p  is the 

refractive attenuation along ray GTL . The eikonal ( )p  and distance CC r  are presented 

by the following relationships: 

      2 2 2 2
L Gp R p R p p p p           (61) 

  2 2
1 12 cos cR R RR     r    (62) 

where,  p  is the bending angle,  p  is the main refractivity part depending on the 

distribution of the vertical gradient of refractivity along the radio ray GTL , GR , R , and 1R  are 
the distances OG , OC , and OC , respectively, O  is the spherical symmetry center, c  is the 
central angle with the vertex at O  between directions OG  and OC  (Figure 2). The bending 
angle  p  is the negative derivative of the main refractivity part  p  with respect to p : 

    d p
p

dp


    (63) 
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The central angle   (Figure 2) is connected with the impact parameter p  of the ray GTL  by 
the following equation: 

   1 1

1
sin sin

g

p pp
R R

           (64) 

The back-propagated field ( )C  may be evaluated by stationary phases. In the case of 
circular orbits of the transmitting and receiving satellites the integration along the curve L L  
for obtaining the field ( )C  may be provided on the central angle  . The phase of the back-
propagated field in point C  is equal to: 

      2 2 2 2 ( )L G Gp R p R p p p p         r  (65) 

The form of the eikonal ( )G r  depends on the Green functions eqns (58) and (59) used for 

the back propagation:  

 ( )G r r  (66) 

    2 2 2 2 2
1( ) ( )G b m b b m b bR p n R R p p p p       r   (67) 

where, the refraction index ( )mn R  in point C  and the bending angle  m bp  are 

corresponding to the refractivity distribution in a medium for which Green function ( )G r  

(i.e. equation (59)) is known. For Green function (58) ( ) 1,  0m mn R   . The central angle 

c   is connected with the impact parameter bp  of the back-propagated ray CC  (Figure 
2) by: 

   1 1

1
sin sin

( )
b b

c m b
m

p p
p

n R R R
          (68) 

The stationary phase method can be applied to evaluate the back-propagating field. For the 
stationary point, the following equation holds: 

 0






 (69) 

After substitution (65)-(68) into (69) one obtains:  

 ( ) ( )
0 G b c b

b b
b b

p pp pp p p p
p p p p

  
    

       
      

        

r   (70) 

From equation (70) the impact parameters ,  bp p  related to ray GTL  and the back 
propagated ray CC  are identical in the stationary point C . Therefore the field ( )C  is 
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back-propagating in the occultation plane along the tangents to the occultation rays at any 
point of the orbital trajectory L L  (Figure 2). The back-propagated rays are the straight lines 
or curves depending on the form of Green functions (58) or (59) used. The stationary phase 
method gives the next expression for the back-propagated field ( )C :  

  
1/22

1/2
0 2( )=A ( , ) ( )cos  exp ( ( ) ( ))  G GC X p ik p  




     

r r   (71) 

 
1

1/2 0
2 2 2 2

1

( )
s G

pR
X p

pp R p R p







 
 (72) 

 
2

2

( )

( )

c

b

c

b

p p

p p

 

 

 


  


 
 

  (73) 

The derivatives 
( )

, c

bp p
   

 
can be found from the relationships (64), (68) as follows: 

 
2 2 2 2

1

1 1

G
p p R p R p

  
  

   
   (74) 

 
2 2 2 2 2

1

( ) 1 1

( )
c m

b b m b b
p p n R R p R p

    
  

   
 (75) 

From (64)-(75) the following formula for
1/22

2



 




 can be derived:  

 

 

2 2 2 2 2 2 2 2 2
1 1 0

2 2 2 2 2 2 2

( )

( )

m
m G

b

m
L m G x

b

n R R p R p R p R p R
p p

R p n R R p R p R
p p

 


 

              
  

        

r
  (76) 

 
2 2 2 2 2

2 2 2 2 2 2 2 2 2
0 1 0 1

( )  

;  ( )

x m G

G m

R n R R p R p

R R p R p R R p n R R p

   

          r r
  (77) 

Under condition:  

 ( )mn R R p  (78)  
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the next relationship follows from eqns (72), (76), (77): 

 
 

 
2 2 2 2

1
10 2 2

0 0 11/2
2 2 2 2 2 2

1G

G L s G

R p R p
R X

p R pR R p
X const

R p R p p R p







     
       

  

r
r

 (79) 

where, sp  is the impact parameter corresponding to the straight line GL  (Figure 2).) Factor 
1/2X  in (79) is independent of the refractive angles   and m . Therefore the amplitude 

variations are minimal at the geometric places in space determined by condition (78). 
According to [11] this corresponds to the position of a layer which can be estimated by 
finding the location of the minimum of the amplitude modulation of the 2-D back-
propagating electromagnetic field. This property can be used as a main condition for 
locating layered structures in atmosphere and ionosphere. The accuracy of the location 
determination depends on: (i) the form of Green function used for the back-propagation; (ii) 
the structure and form of the (ionospheric) irregularities. 

The simplest form of the Green function (58) has been used [10,11] to locate plasma layers in 
the E- and F- regions in the ionosphere. In this case ( ) 1mn R  , the back-propagated rays are 
straight lines, and condition (78) has the following form: 

 R p  (80)  

From condition (80) the curve BB  in Figure 2 indicates the place, where the amplitude of 
the back-propagated field is constant. The curve BB  may be approximated by a straight 
line because the bending angle is small in the RO case. The inaccuracy in the determination 
of distance T L  by back-propagation may be evaluated as the distance of the curve BB  to a 
new ray perigee T  / 2T B p   (Figure 2). The proposed technique gets the length T L  as 
the sum TL d . The systematic inaccuracy of this technique is equal to the difference 
T L TL d    which usually is smaller than that of the considered back-propagation method. 
For a more complex form of the Green function (59) the back-propagated rays are curved. If 
the Green function (59) corresponds to a real refractivity distribution in layered structures, 
then condition (78) gives an accurate location of the ray perigee T  (Figure 2).  

4.5. Locality principle and its importance for RO remote sensing  

Locality principle allowed designing new analytic technique for locating the inclined 
layered structures (including sporadic Es layers) in the ionosphere. The location of the 
ionospheric layers including their altitude, displacement from the RO ray perigee and slope 
relative to the horizontal direction can be determined using the introduced criterion that 
compares the refractive attenuations found from the RO amplitude and phase data. 
Depending on the sign of the refractive attenuations the displacement of a plasma layer 
from the RO ray perigee should be positive (in the direction to a GPS satellite and vise 
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versa). The magnitude of the displacement can be found from a ratio of the refractive 
attenuation’s difference to the magnitude of the refractive attenuation from the RO phase 
data. The altitude and slope of a plasma layer can be found from the known value of its 
displacement.  

Therefore the standard estimation of a layer’s altitude as a height of RO ray perigee should 
be revised due to underestimation of the altitude of inclined plasma structures in the lower 
ionosphere.  

The current radio-holographic back-propagation method implicitly uses the relationship 
between the eikonal acceleration and intensity variations of RO signals to locate 
irregularities in the ionosphere. The accuracy of this method depends on the form of the 
Green function used for the back-propagation. If the Green function corresponding to the 
propagation in the free space is used, then the inaccuracy of back-propagation method is 
proportional to the bending angle. The analytic technique is simpler and more precise than 
the previously published back-propagation method.  

By use of the introduced criterion the RO method is capable to locate and determine the 
direction and magnitude of the gradient of electron density in the lower ionosphere. The 
gradient of the electron content indicates the direction of the different kinds of wave fronts 
in the ionosphere. In the particular case of the internal gravity waves (GW) the inclination of 
the wave vector to the vertical direction can be used to find the angular frequency and the 
parameters of GW.  

The introduced criterion and technique extended the applicable domain of RO method to 
remote sense the waves in the lower ionosphere. This conclusion has a general importance 
for the planetary and terrestrial radio occultation experiments in a broad range of 
frequencies.  

5. Bending angle: Seasonal changes 

The RO method has important radio meteorological application. Previously the radio 
meteorological parameters (refractive angle, refractive attenuation, phase path excess, total 
absorption, and other) have been recalculated from the temperature, humidity and pressure 
delivered from the current meteorological observations. Nowadays the RO method directly 
measured the bending angle, refractive attenuation, phase path excess, total absorption, etc.) 
from the amplitude and phase delay of RO signal. Thus the RO radio meteorological 
observation are very important for estimation of condition for radio wave propagation, 
radio navigation, and radio climate in the near Earth space.  

In this section the seasonal change of the bending angles as an important radio 
meteorological parameter will be considered.  

Atmospheric refraction caused by gradients of the refractive index of air leads to a deviation 
of the direction of radio wave propagation from straight line connecting transmitter and 
receiver. Practical problems require to study variations of the bending angle, refractive 
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attenuation and other radio parameters as functions of the coordinates of transmitter and 
receiver. When the altitude of a radio link is low, changes in the vertical profiles of 
temperature, pressure and humidity introduce main contribution in the refraction effects. 
Meteorological parameters depend on the climate and weather in different geographical 
positions, which was the cause of origin of radio meteorology – a branch of radio science 
which used the weather information for analysis of the electromagnetic waves propagation 
conditions in radio communication and radar applications [38,57,58]. The vertical and 
horizontal distributions of the pressure, temperature, and humidity found from 
meteorological measurements are approximated by use of different models to find the 
altitude and spatial dependences of the refractive index, bending angle, refractive 
attenuation and absorption of radio waves. However the meteorological measurements are 
local, and relevant parameters are variable, which inevitably leads to discrepancy between 
the measured and calculated values of the bending angles.  

The innovative RO method is a new important tool for direct measurements of the radio 
meteorological parameters and for investigation of radio climate of the Earth at different 
altitudes in the atmosphere with a global coverage. In contrast to previously used 
goniometric methods with a narrow antenna pattern or interferometers for measuring 
refraction effects and their variations in radio links, the RO method directly determines with 
high accuracy the bending angle from measurements of the Doppler frequency of radio 
wave. The measured bending angle does not depend on the wavelength, orbits of satellites, 
and characteristics of the transmitting and receiving devices. The measured bending angle is 
delivered with high accuracy without any assumptions concerning the structure of the 
atmosphere, and can be regarded as an independent quantitative radio meteorological 
parameter in different regions of the Earth. It is essential that the spatial and temporal 
distributions of refractive properties can be obtained over a long period of time, which will 
contain daily, seasonal, and long-term radio climatic changes in the atmosphere. This 
information can be applied for detailed analysis of radio wave propagation conditions along 
the Earth’s surface.  

The aim of this section is to establish the applicability of the bending angle as an indicator of 
the global state of the atmosphere. The annual and seasonal variations of the refractive 
parameters above Russia and some territories are analyzed and discussed.  

5.1. Method of measurement 

In determining the angle of refraction by the radio occultation method, the measured 
parameters of coherent radio waves with the frequencies 1f  1575.42 MHz and 2f  1227.60 
MHz radiated by GPS satellites and received after transmission through the atmosphere 
were used. The radio waves were received by low earth orbit satellites FORMOSAT-3. A 
constellation of ~30 GPS satellites orbiting the Earth at a height of 20 000 km and of 6 low-
earth-orbit satellites orbiting the Earth at a height of 800 km provided from 1400 to 1800 
atmospheric soundings in various regions of the Earth. The measurements of the 
atmospheric component of the phase path increment and, respectively, of the Doppler shift 
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of the signal frequency, determined by the atmospheric refraction, were performed with a 
sampling frequency of 50 Hz. The mean time of sensing the atmosphere in the altitude 50 – 0 
km interval was 90 s. Owing to refraction, the rate of changing of the height of the ray 
perigee decreases as the ray descends into denser layers of the atmosphere; therefore, the 
step of the measurement of the Doppler shift of the signal was ~50 m for stratosphere and ~5 
m for the lower troposphere. 

In analyzing the space–time variations of the bending angle, the results of 4252 occultation 
atmospheric soundings performed from June 2006 to July 2010 in the region of European 
Russia with coordinates of 50°N to 60°N and 30°E to 40°E were used. The extent of this 
region is 1100 km along the meridian and ~600 km along the latitude circle. In this region, 
three to seven measurement sessions were conducted every day.  

The method for determining the bending angle ( )h as a function of the minimum ray path 
height is based on the relation between the atmospheric component of Doppler frequency 
shift af and ( )h . This relation is most simple for the occultation sensing, when one of the 

satellites is at a large distance from the ray path perigee. In this case 1
1 ( )af V h   , where 

  is the wavelength, 1V  is the projection of the vector of the satellite velocity in the 
occultation plane on the perpendicular to the straight line connecting the satellites. The 
accuracy of determining the angle of refraction depends on the error of the frequency shift 
measurement, which is affected by the errors of measuring the atmospheric phase path 
increment, coordinates, velocities of the navigation and low earth orbit satellites, and also by 
the influence of the ionosphere and multipath propagation. The contribution of these errors 
is analyzed in detail in study [59]. This contribution can be minimized by improving the 
receiving equipment installed on the low earth orbit satellite and the procedures for 
measuring and processing the raw data. At present, the instrumental error of the bending 
angle measurements is no more than 75 10  rad.  

The sources of systematic error are related to the effect of the ionosphere and multipath 
propagation. The influence of the ionosphere is eliminated using two frequency ionospheric 
correction [53]. However, the ionospheric correction cannot completely remove the bending 
angle fluctuations caused by small scale electron concentration irregularities. In sensing the 
upper stratosphere, the bending angle errors caused by this factor can be as high as 63 10
rad, but they rapidly decrease as the height decreases [55]. Below 30 km, this error 
component can be ignored. Of greater importance to meteorological applications are the 
refractive angle errors caused by multipath in sensing the lower troposphere. To solve this 
problem, several radio-holography methods for processing occultation data have been 
developed. The number of publications on this subject is very large, the descriptions of these 
methods and references to the original publications are given in [38,60].  

The refractive angle is determined from the measurements of the signal frequency, a 
quantity that can be measured with a maximum accuracy. The results of the analysis made 
in [61] show that, in the middle latitude atmosphere, at heights of 5 to 30 km, the 
discrepancy between the measured and calculated (with the use of various models of the 
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atmosphere) bending angles does not exceed ±1%. The height profile of the bending angle 
may contain inaccuracies related to the errors in height measurements. At the initial stage of 
data processing, the dependence of the refractive angle ( )p  on the impact parameter 

( ) ( )e ep h n h     is determined where e  is the Earth’s radius. The height of the 
atmospheric layer is determined as the height above the surface of the geoid described by 
reference ellipsoid WGS84 (World Geodetic System 1984). The error of the height evaluation 
in our data does not exceed ±100 m. It is necessary to study the variability of the refractive 
angle height profiles at different time periods and in various regions of the Earth. As an 
example such an analysis is performed using a vast region of Russia.  

5.2. Mean bending angle vertical profile  

In analyzing space–time refraction variations, one should eliminate the influence of the 
regular component. To this end, a model of the bending angle vertical profile ( )h derived, 
e.g., from long term observations is required. It is clear that regional models of ( )h are in 
better agreement with the measurement results than the global model. The variability of the 
parameters of these models for different regions is of interest for radio-meteorology. As an 
example, the vertical profiles ( )h for the middle latitudes of Russia are described in this 
section. The mean vertical profile of ( )h  and ranges of variations of the refractive angle at 
different heights were obtained by averaging the data of 8711 measurement sessions 
performed during a four year period. In addition to the data obtained in the region with 
сoordinates of 50°N to 60°N and 30°E to 40°E, the results of 4459 atmospheric soundings 
performed in the same latitude belt of 50°N to 60°N but at a longitude of 160°E to 170°E 
were used. A second region includes Kamchatka’s eastern coast and the adjacent water area 
of the Bering Sea and is characterized by marine climate. The use of the measurement data 
obtained in the two regions allowed deriving analytical dependence ( )h  suitable for 
analyzing the space–time variations of the refractive angle observed in the regions that are 
in different climatic conditions. The performed analysis showed that, in the altitude range 
from 0 to 50 km, the mean vertical profile of the refractive angle ( )a h is described by  

  2 3
1( ) expa h a bh ch d       (81) 

If the bending angle is expressed in milliradians and the height is expressed in kilometers, 
the coefficients in the exponent (81) have the values given in Table 1.  
 

h , km a  b km-1 c  km-2 1d  km-3 
 12.4 
 12.4 

3.226 
3.611 

–0.154 
–0.166 

3.765 × 10–3 
4.128 × 10–4 

–1.487 × 10–3 
–6.374 × 10–6 

Table 1. Coefficients in equation (1)  

The height profiles of the refractive angles measured in the two regions and calculated with 
model (1) are compared in Table 2. Root mean square values of m  significantly exceed the 
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measurement errors and characterize essential refraction variations caused by the difference 
of the meteorological conditions.  
 

h, km m , mrad m  , mrad 
a  , mrad m a   , mrad 

0.2 
0.4 
0.6 
0.8 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
12 
14 
16 
18 
20 
25 
30 

23.96 
23.57 
23.03 
22.50 
21.95 
19.94 
16.16 
13.99 
12.26 
10.88 
9.76 
8.82 
7.99 
7.17 
5.36 
3.83 
2.81 
2.07 
1.51 
0.69 
0.31 

2.19 
2.25 
2.23 
2.19 
2.15 
1.91 
1.43 
0.98 
0.64 
0.45 
0.38 
0.35 
0.32 
0.34 
0.42 
0.21 
0.15 
0.11 
0.08 
0.04 
0.02 

24.41 
23.68 
22.98 
22.30 
21.65 
18.75 
16.32 
14.28 
12.25 
11.06 
9.76 
8.63 
7.64 
6.75 
5.25 
3.87 
2.82 
2.06 
1.50 
0.68 
0.31 

–0.45 
-0.11 
 0.06 
 0.20 
 0.29 
 0.19 
-0.16 
-0.29 
-0.29 
-0.18 
-0.01 
 0.18 
 0.35 
 0.41 
 0.11 
-0.04 
-0.01 
 0.01 
 0.01 
 0.002 
-0.003 

Note: h  is the height of the ray perigee relative to the Earth’s surface, m , a are the bending angles determined by 

averaging from the measured data and calculated with model (1), respectively, m  is the rms value of the bending 

angle for the four year period. 

Table 2. Comparison of the averaged height profiles and variations of the refractive angle  

Of interest is the distribution of these variations. The refractive angle disturbances at the 
corresponding heights are distributed, with respect to the mean value of m  in accordance 
with a near normal law. In 90% of the measurements, for heights h  = 0.2, 1, 4, and 8 km, the 
mean refractive angles are 23.88 ± 3.63, 22.12 ± 3.72, 13.98 ± 1.71, and 8.76 ± 0.51 mrad, 
respectively. It follows from Table 2 that the largest absolute and relative variations m , m

/ m  of the refractive angle are observed in the troposphere at altitudes below 8 km. These 
variations are due to weather changes in the regions being sounded. In the stratosphere 
above 14 km, relative refractive angle variations m / m  are approximately half the same 
one in the troposphere. Model (81) of the refractive angle altitude profile is in good 
agreement with the experimental data, since its deviation from the mean bending angle, m , 
is several times smaller than the observed rms variations m . At heights above 14 km, the 
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deviation of the experimental data from the model data is no more than 1%. Note that 
analytical model (1) with the coefficients listed in Table 1 does not describe the individual 
features of the refraction that are, e.g., related to the influence of the tropopause. This factor 
is responsible for the marked difference between m  and a  over the altitude interval from 
9 to 12 km, heights that are typical for the tropopause in the midlatitudes. It should also be 
noted that this model is not intended for deriving meteorological parameters, e.g., a 
temperature–height profile. The model describes a significant decrease in refraction over the 
height interval from 0 to 30 km. The model can be used in detecting small regional and 
seasonal variations of the vertical profile.  

5.3. Seasonal and diurnal bending angle variations  

The bending angle rapidly decreases from ~24 mrad to ~0.3 mrad as the ray perigee height 
h  increases from h  = 0.2 km to h  = 30 km. In analyzing small bending angle disturbances, 
caused by various factors, it is necessary to eliminate the component related to a rapid 
decrease in the atmospheric density occurring with an increase in height. To this end, it is 
possible to use obtained approximation of mean height profile of the bending angle a  (81) 
and consider the refractive angle disturbances observed in individual measurement sessions 
in reference to this approximation. The most significant refractive angle disturbances are 
observed in the troposphere and lower stratosphere. Therefore, in analyzing the 
disturbances in angle  , we will restrict our consideration to a height interval of 0 to 14 km 
and compare the observational results obtained in summer and in winter.  

As an illustration of slow disturbances in the height profile of the bending angle, let us 
consider the vertical profiles of the deviations of the refractive angles, observed in 
individual measurement sessions, from the values calculated with model (81), i.e., 

( ) ah     ). Profile ( )h  allows detecting influence of regular layered structures of 
various nature on the refraction.  

Shown in Figure 8 are four profiles ( )h obtained in morning, in January 2007. The 
conditions for measurements are determined by the day of the year (DOY) counted from 
January 1, by the Universal Time Coordinated (UTC) expressed in hours and minutes, and 
by the geographic latitude and longitude of the region (Table 3). The time and the 
coordinates of the region are usually given for the moment when the straight satellite to 
satellite line touches the Earth’s surface. This moment corresponds to the ray perigee height 
h  ~ 13 km. The local time (LT) in the region being sounded is, on the average, three hours 
later than the UTC. The winter night is characterized by a stationary state of the troposphere 
with layered structures and pronounced maximums of ( )h  at heights of 1.5–2.7 km and 
3.5–4 km, which correspond to significant vertical gradients of refractivity. The maximum 
values of ( )h  are as high as 4 mrad, and the thickness of the layers is 0.7 to 1.5 km. 
Stronger disturbances were observed in July 2010. In summer daytime, the deviations of the 
refractive angle from the mean values are 4–10 mrad at heights of 0.7 to 5 km. It seems likely 
that this phenomenon is due to a higher content of water vapor and significant variations in 



 
Radio Wave Propagation Phenomena from GPS Occultation Data Analysis 

 

147 

the vertical distribution of water vapor in summer as compared to winter. For the height 
interval of 9 to 14 km, depending on the season and time of day, smooth refractive angle 
deviations from mean values ( )h , caused by the temperature inversion in the tropopause, 
are recorded. Unlike the refractive angle disturbances in the lower troposphere, which are, 
as a rule, related to the variations in humidity, the temperature inversion in the tropopause 
results in an insignificant increase of angle   in a range of 0.6 to 1.3 mrad. With a narrow 
tropopause, the position of the local maximum of ( )h  is close to the height of the 
minimum temperature, which is determined from the occultation sounding data and 
meteorological sounder measurements.  
 

Curves 
in Figure 
4 

Date 
January 
2007 

UTC, 
h, min 

N, deg E, degr. Curves 
in Figure
4 

Date 
January 
2007 

UTC, 
h, min 

N, deg E, deg 

1 
2 
3 
4 

01 
01 
06 
10 

04:34 
04:44 
05:10 
04:05 

57.34 
53.99 
54.03 
58.03 

39.9 
39.31 
34.66 
33.55 

5 
6 
7 
8 

10 
20 
19 
20 

04:17 
16:19 
06:26 
06:41 

58.29 
56.51 
53.41 
57.54 

41.71 
42.56 
35.62 
41.76 

Table 3. Coordinates and time of experiments  

In addition to slow (seasonal and diurnal) variations in the refractive angle, significant rapid 
fluctuations caused by atmospheric irregularities are observed. Using the results of 200 
measurement sessions, the fluctuations of the bending angle observed in winter and in 
summer without separating them in time of day were analyzed. It is necessary to eliminate 
the regular and slow variations in order to estimate the rapid fluctuations. To this end, a 
filtering procedure was used that involves subtraction of function ( )S h  obtained by 
smoothing the refractive angle in the sliding window h  2 km.  

Changes in the conditions of refraction in regions with different climates and on different 
time scales will have both individual and general laws. To detect these patterns let us look at 
the changes of refraction in a homogeneous area of the climatic conditions at different time 
intervals and analyze the seasonal and annual changes. To reduce the influence of spatial 
factors let us to limit the area in which the seasonal variations in the angle of refraction are 
investigated, and to select the cell size of approximately 400x400 km2, extending in latitude 
from 54.0 N to 58.0 N and longitude from 35.0 E to 41.0 E. The center of this area is located 
in the vicinity of Moscow. In the period from January 1, 2007 and November 30, 2009 in this 
area was carried out 1232 RO soundings of the atmosphere. In each month of the year from 
25 to 29 soundings at different times of day were held. Let us consider the seasonal changes 
of the bending angle at two altitudes: in the middle stratosphere at 15 km, and in the upper 
troposphere at 9 km (Figure 8). Note that the most accurate radio occultation measurements 
in the stratosphere and upper troposphere have been provided at these altitudes. At the 
altitude 17 km in the middle stratosphere, there is a positive trend, i.e. strengthening of 
refraction with time. This increase is nearly equal to 0.07. mrad during four years. In 
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contrast to the stratospheric region in the upper troposphere at an altitude of 9 km in the 
period under review there was a negative trend in refraction, whose value is amounted to 
0.11 mrad. When reducing the height, this trend is weakening and at the altitude 4 km the 
long-term trend of refraction is practically not observed. 

 
Figure 8. Left panel. Examples of the refractive angle variations obtained in January 2007. Middle 
panel. Examples of the refractive angle variations obtained in July 2010. Right panel. Annual changes of 
the bending angle at the 9 km and 15 km altitudes from FORMOSAT-3 RO data in Moscow region. 

The future task is to investigate the trends as functions of time and geographical position in 
different climatic zones for longer periods. However it is clear is that the angle of refraction 
is a sensitive indicator of the state of the troposphere – stratosphere system. Seasonal changes 
in the refractive properties observed in the stratosphere and the troposphere are evident, but 
they manifest themselves in different ways. In the stratosphere, there are quasi-harmonic 
changes with a period of 12 ± 0.5 months and the amplitude of about 0.12 mrad relative to the 
average trend. Maximum values of the bending angle occur in late July - early August, and the 
minimal during February - March. Seasonal changes in the upper troposphere also contain a 
component with a period of 12 ± 0.5 months, but they are opposite to the phase variations in 
the stratosphere. Their amplitude is in average 0.23 mrad. The maximum refraction occurs in 
March near the vernal equinox, and the minimum - in August. The influence of a weak quasi-
monochromatic component is seen in the middle troposphere at an altitude of 4 km in the 
bending angle variations. Maximum values of the bending angle is ~ 15 mrad are observed, 
usually in late summer - early autumn, and in the rest of the year they are 3-5 mrad. This 
behavior corresponds to refraction in the middle and lower troposphere due to weather 
changes, which essentially smoothes the effect of changing seasons of the year. 

6. Conclusions 

The fundamental principle of local interaction of radio waves with a spherically symmetric 
medium is formulated and introduced in the RO method of remote sensing of the 
atmosphere and ionosphere of the Earth and planets.  
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In accordance with this principle, the main contribution to variations of the amplitude and 
phase of radio waves propagating through a medium makes a neighborhood of a tangential 
point where gradient of the refractive index is perpendicular to the radio ray.  

A necessary and sufficient condition (a criterion) is established to detect from analysis of RO 
data the displacement of the tangential point from the radio ray perigee.  

This criterion is applied to the identification and location of layers in the atmosphere and 
ionosphere by use of GPS RO data. RO data from the CHAllenge Minisatellite Payload 
(CHAMP) are used to validate the criterion introduced when significant variations of the 
amplitude and phase of the RO signals are observed at RO ray perigee altitudes below 80 km.  

The new criterion provides an improved estimation of the altitude and location of the 
ionospheric plasma layers compared with the back-propagation radio-holographic method 
previously used.  

The detected criterion opens a new avenue in terms of measuring the altitude and slope of 
the atmospheric and ionospheric layers. This is important for the location determination of 
the wind shear and the direction of internal wave propagation in the lower ionosphere, and 
possibly in the atmosphere.  

The locality principle makes it possible to convert the eikonal acceleration (or the time 
derivative of the Doppler shift) into refractive attenuation. This is important for estimation 
of the total absorption of radio waves on the satellite-to-satellite transionospheric 
communication paths. This dependence is also important for measuring the water vapor 
content and atmospheric gas minorities in the future radio-occultation missions in view of 
the possibility to remove the refractive attenuation effect from the amplitude data. The 
advantages of the proposed method were tested by analysis of the CHAMP satellite radio-
occultation data.  

The obtained results indicate that measurements of the total absorption on radio occultation 
paths can potentially be used for monitoring of the atmospheric-oxygen content provided 
that the transmitter and receiver gain calibration is substantially improved. It follows from 
the above analysis that the comparison of the refractive attenuations retrieved from the 
amplitude and phase variations of a radio-occultation signal is necessary for the detection of 
layered structures in the atmosphere. 

The total absorption, refractive attenuation, bending angle, bending angle, and index of 
refraction are important radio meteorological parameters which can be measured directly 
with a high accuracy by the radio occultation method. The prolonged radio occultation data 
base is very important for determination of the radio climate changes at different altitudes 
in the atmosphere with a global coverage.  
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1. Introduction

Vegetation is an indispensable feature of most outdoor wireless channel environments. The
interaction between radio waves and vegetation has been researched for several decades.
Because of the complex structure of the foliage, composed of randomly oriented trunks,
branches, twigs and leaves, the involved physical process in the propagation of the radio wave
through vegetation is complex. Accurate modeling of the propagation of radio waves through
tree foliage, generally requires accurate electromagnetic description of the tree geometry,
including its branches and leaves, valid over a wide range of frequencies. Originally empirical
models were developed to describe the propagation of radio waves in the vegetation. In other
approaches this interaction is analyzed using ray-based techniques. More recently theoretical
–statistical and analytical– approaches became favorable. As it is discussed in the next section,
major disadvantage of all these models is that the final outcome is basically presented by
providing an excess attenuation to that caused by free space propagation.

1.1. Existing approaches

Empirical models have been developed to characterize the the propagation of radio waves
in the vegetation for years. Their significant advantage is their simplicity. The drawback is
that, like any other empirical model, the formulated model is strictly related to the specific
measured data set and fails to give any indication as to the physical processes involved in the
propagation within the channel. These models usually provide either the mean attenuation
of the propagation signal caused by vegetation or calculate the link budget. Parameters
in these models, e.g. frequency, incident angles, direct-path length through vegetation and
other parameters associated with the specific environment under which measurements were
performed, are usually computed through regression curves fitted to measurement data.
Among many, the modified exponential decay model suggested in [1], and the COST 235
model [2] can be mentioned. These models are expressed as equations in exponential forms
to give the specific attenuation as a function of path length and operating frequency. The
attenuation of trees as a function of vegetation depth has been shown to be more accurately
represented by dual slope attenuation functions [3]-[7]. To accommodate this dual slope, an
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empirical nonzero gradient model was developed to follow the dual gradient of the measured
attenuation curve [8]. The initial slope describes the loss experienced by the coherent
component, whereas the second slope describes the dominance of the incoherent component,
which occurs at a much reduced rate. An important disadvantage of the semi-empirical
vegetated radio channel models, common to other approaches such as radiative transfer
theory, is that their little account of the dynamic effects in the channel and no account of
the wideband effects of the vegetation medium.

Another approach in the the analysis and prediction of the vegetated radio channel is
ray-tracing [9]-[16]. These have to be carefully designed and used, taking into account the
frequency of the radio wave, the dimension of interacting objects and their distance to the
sources to fulfill the far field condition. Therefore in different frequencies the mechanisms
by which the wave propagates can vary dramatically. The scattering has been modeled
deterministically in many different ways depending on the electrical density of the vegetative
medium. At lower frequencies, where individual components of the vegetation (trunks,
branches, twigs and leaves or needles) and their separations are small by comparison with
the radio wavelength, considering the vegetation as a homogeneous dielectric slab, the
propagation has been modeled in terms of a lateral wave at treetop heights [9]. At frequencies
above 200 [MHz] or so, a single slab becomes inadequate. As the scale of the changes
in density and structure of the vegetation become greater than the order of a wavelength,
and layered representations of the vegetation should be used [10]. A full-wave analysis of
the radiowave propagating along mixed paths inside a four-layered forest model applicable
to frequencies up to 3 [GHz] was proposed in [11], [12], which consists of four isotropic
and homogeneous dielectric. The first layer is the semi-infinite free-space, whereas the
second layer represents the forest canopy. The third and fourth layers model the trunk
and the semi-infinite ground plane, respectively. As the distance between the transmitter
and the receiver is very long, the radio wave propagation through the stratified forest is
characterized by the lateral wave that mainly propagates on top of the canopy along the
air-canopy interface. For short distances, however, such a propagation is denominated by
the direct or coherent component. When the receiver is at a clearing distance from the dense
vegetated area the edge of the forest is treated as a source of diffraction [14], and the uniform
theory of diffraction (UTD) associating a double-diffracted component over the canopy and a
transmission component which includes the exact calculation of refraction angles is also used
[15].

To model the incoherent component which is the dominant propagation mechanism for
long distances inside vegetation, theoretical models, which are more complicated but more
generic and applicable to any arbitrary foliage wave propagation scenario, are used. Two
major approaches, namely the radiative transfer theory and the analytical theory, have been
pursued to develop these models [17],[18]. These two methods are closely related as they are
addressing the same problem of the wave propagation in randomly distributed particles. In
fact, the radiative transfer theory can be derived from analytical approach by applying some
approximations [17], and they have proven equivalent for the application of radar in the forest
canopies [19].

In the method of radiative transfer theory, the vegetation medium is modeled as a statistically
homogeneous random medium of scatterers which is characterized by parameters such as
the absorption cross-section per unit volume, the scatterer cross-section per unit volume
and the scattering function of the medium [20]. The scattering function (phase function) is
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characterized by a narrow forward lobe and an isotropic background. The model considers a
plane wave incident from an air half space upon the planar interface of a vegetation half space.
The basic equation of the radiative energy transfer theory is expressed in terms of the specific
intensity for which the radiative transfer theory gives the specific value at a given point within
the vegetation medium as a sum of a coherent component and an incoherent component. The
coherent component is reduced in intensity due to absorption and scattering of the incident
wave, and the incoherent component due to the scattered wave. Each scatterer is assumed
to have a directional scattering profile, or phase function. As the constituents of the tree are
relatively large compared to the wavelength at micro- and millimeter wave frequencies, the
scattering function is assumed to consist of a strongly scattering forward lobe, which can be
assumed to be Gaussian with an isotropic background level. The radiative transfer theory
predicts the dual slope nature of the measured attenuation versus vegetation depth curves
and provides a physical interpretation. The equation based on the radiative transfer theory
allows the prediction of the attenuation curves in which the received signal is reduced linearly
by scattering and absorption of the incident signal. As the receiver is moved deeper into
the vegetation, and the direct coherent component is reduced further still, the isotropically
scattered component becomes significant. Due to the increase of scattering volume as we
move deeper into the medium, the scattering signal level tends to be maintained, leading
in turn to an attenuation rate which is significantly reduced at these depths. The model
however requires four input parameters namely the ratio of the forward scattered power to
the total scattered power, the beam-width of the phase function, the combined absorption and
scattering coefficient, and the albedo. These are extracted from path-loss measurement data
so that the approach makes itself a semi-empirical model in essence. Direct computation of
these parameters, such as the albedo and the phase function, is very difficult, because the
vertical profile of the foliage is inhomogeneous, i.e. the distinction exists between the trunk
layer and the crown layer, whereas the radiative transfer approach is generally applied to
a homogeneous medium. In order to overcome this limitation, an improved version of the
discrete radiative transfer is proposed for isolated vegetation specimens [21],[22]. However
this requires discretization of the foliage into small cells which is numerically intractable for
large propagation distances.

The alternative approach in the problem of wave propagation in randomly distributed
particles is the analytical approach [17]. This is usually in the format of Foldy-Lax
solution for point scatterers [18],[23], which has been widely used to estimate the signal
attenuation in the the foliage [24]-[32]. In this approach the Born approximation is applied
to account only the first term in the equation as considering higher terms can complicate
the computations prohibitively [18]. It predicts the exponential decay of the radio field
corresponding to the linear foliage path-loss (in dB) versus the wave propagation distance.
In [24]-[30], the inhomogeneous forest structure was represented by using a realistic-looking
fractal tree model. The statistics of the received field are then obtained through a Monte
Carlo technique which generates random forest structures according to prescribed statistical
botanical features, such as tree height, branch and leaf orientation angles, and tree locations.
Another approach is to model leaves as flat circular lossy dielectric discs, and branches as
finitely long circular lossy dielectric cylinders [31],[32]. The disadvantage of the analytical
approach stems from the fact that Born approximation accounts only for single scattering,
which has been shown to overestimate the foliage path-loss at high frequencies or over
long distance propagation where the multiple-scattering effects become important [28],[29].
Another concern with this method is the required computation time. Computing foliage
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path-loss over long distances in a forested environment can be prohibitively time-consuming
even with the single-scattering model. This difficulty can be circumvented by treating the
forest as a statistically homogeneous medium along the direction of wave propagation and
only analyzing the wave propagation behaviors in a typical block of forest, which can then
be reused for all forest blocks [30]. Furthermore a main concern in Born approximation is
its validity is restricted to scatterers with a dielectric permittivity close to unity and that the
effect of multiple scattering from the discrete scatterers are not negligible [33]. To overcome
these limitations the Feynman diagrams are converted to the set of expanded green functions
presented in integral operator form is suggested as an alternative to Born approximation
[33],[34].

To benefit from the ray-tracing and theoretical approaches at the same time, the model
proposed in [35] combines the effects of three individual propagation modes, i.e. diffraction
from the side and top of the foliage, ground reflection and direct (through vegetation)
propagation. In this approach the extent of the vegetation is modeled as rectangular
hexahedrons (boxes). The loss experienced by the diffracted waves over the vegetation as
well as those around the vegetation are treated as double isolated knife-edge diffraction.
If the ground reflection is passed through vegetation, the path loss due to propagation
through vegetation is added to the reflection loss. The values for the permittivity and
conductance of the ground are obtained from ITU-R recommendations [36]. For the direct
through vegetation propagation component the radiative transfer approach is adopted and
the necessary parameters for specific geometries, species and frequencies are measured and
provided in tables [35]. This model was adopted by ITU-R and later works published as
recommendations of ITU-R have improved the tables of parameters for some kind of trees
[37].

While the above mentioned models mostly ignore the channel dynamics over time,
narrowband analysis of the wind effect on an isolated tree in the anechoic chamber is reported
in [38]-[40].

1.2. Directional analysis of the vegetation radio channel

Either if the interaction between radio signal and foliage is modeled based on diffraction
theories and ray-tracing, radiative transfer theory, analytical theory, statistical, or empirical
approaches, it is usually aimed to provide an excess attenuation to that caused by free space
propagation. On the other hand, as these models are strongly dependent on measurements
for their evaluation and modifications, a considerable number of experiments have been
accomplished to analyze the foliage influence on the propagation channel as well as to
evaluate the proposed models. The ultimate target in most of these experiments however is to
measure the attenuation of the radio wave caused by the vegetation. The problem is that even
though such a result proves useful for specific purposes, it provides only limited knowledge
about the interactions in the channel. On the other hand, the assumption of homogeneous
media of randomly distributed scattering points is widely used in analytical and statistical
approaches, an assumption to be examined yet. Obviously with a high-resolution spatial
analysis of the vegetation radio channel, the existing methods and their assumptions can be
further evaluated and if necessary modified. Moreover, such an analysis can be used in design
and performance analysis of modern wireless systems equipped with multiple-antenna
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technologies to improve the capacity. Never the less, and in spite of such significant benefits,
such measurements and analyses are rarely reported due to practical limitations.

Few recent reports address –indirectly in most cases– the spatial characteristics of the radio
channel in vegetation. The delay power spectrum of the received signal through a single
isolated tree for different angle-of-incidents is evaluated for a wideband signal in [41]. The
spatial correlation of a multiple antenna system operated in the forest is evaluated in [42]. The
scattering effect of the foliage in suburban scenarios is examined by directive antennas [43],
and delay spread of the received signal as a result of scattering by trees was observed [44]. In
a recent publication, the delay and angular spread of the wireless channel for the application
in positioning of mobile users is reported [45].

In this chapter the directional radio channel in dense vegetation is investigated. An
experimental approach is necessary because of the complexity of the underlying phenomena.
The methodology used for this purpose, is the directional analysis of a carefully captured
measurement data. First the measurement campaign and setup parameters as well as the
signal model are introduced in section 2, and then two analysis methods for the measured
data are discussed. In the first approach, the experimental data is analyzed by calculating
the received signal dispersion in delay and azimuth-of-arrival of the propagated waves
which is done using a Capon beam-forming technique [46]. One advantage of such analysis
is that no presumption on the distribution of the dispersed signal was necessary. In the
second approach, a high-resolution parameter estimation technique was adopted to acquire a
more accurate knowledge of the channel, particularly to identify the involving propagation
mechanisms. Results of the analysis by each method, including the multipath cluster
identification and propagation mechanism determination are presented in section 3. Section 4
provides discussions on the findings of the chapter, the analysis and results, and argues how
the directional analysis, aiming at the identification of dominant propagation mechanisms in
the channel, can meaningfully improve the insight toward the problem. Section 5 sums up
important conclusions of the chapter.

2. Method

2.1. Experimental investigation

As it was expressed, to clarify the influence of the vegetation on the radio channel, and
specifically to re-examine those fundamental assumptions usually presumed in such studies
we had to gather a set of experimental data with necessary resolution in delay and spatial
domains. For this propose a dense vegetated area was chosen in the southern Kanagawa,
Japan. A schematic of the measurement scenario is illustrated in Fig. 1 where the height
of the base-station antenna could be altered and the mobile-station antenna height is fixed.
The employed channel sounder is a double-directional sounder at the center frequency of
2.22 [GHz]. The sounder specifications and the measurement set-up parameters are found
in Table 1. At the transmitter a sleeve and a slot antenna are used to send the vertically
and horizontally polarized signal in different time slots. The cylindrical array antenna at
the receiver switches the vertical and horizontal patch antenna feeds, 96 elements for each
polarizations. The transmitter antennas are mounted on a measurement bucket capable to
elevate up to 15 [m]. Measurements were performed on the 4, 6, 9, 12 and 15 [m] of the
transmitter antenna heights. The receiver antenna array is installed on the roof-top of a
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fc 2.22 [GHz]

Tx signal OFDM, 2048 FFT points

Number of subcarrier 897

Tx signal bandwidth 50 MHz

Tx power 30 [dBm]

Tx antenna sleeve, slot (different time slots)

Tx antenna height 15, 12, 9, 6, 4 [m]

Rx antenna Cylindrical array (4 ring stacked)
96 elements V/H

Rx antenna height 3.5 [m] (installed on the van’s roof-top)

Tx-Rx separation 100 [m]

Tallest trees height 10 [m]

Table 1. Specifications of Experiment

Vegetation Area

100 m

10
 m

Tx

Rx

Figure 1. Measurement scenario.

measurement van which carries the receiver system. The van is parked deep in the vegetation
area with a transmitter to receiver horizontal distance of about 100 [m]. Here we only report
the static channel that is the measurement van has been parked during the measurement. The
tallest trees are mostly Japanese cedar whereas in lower layers of the vegetation several kinds
of trees are found as it can be seen in Fig. 2. No significant scattering other than trees is
observable around the receiver.

With such a measurement setup we are able to achieve a more accurate analysis of the
radio channel. Two different analysis methods are introduced in next sections and then the
interpretations are compared.

2.2. Analysis approaches

A major part of the reported experiments regarding the interaction of radio with vegetations
targeting the spatial analysis use directional antennas or an array antenna with beam-forming
scheme. A good reason for this is the simplicity of such measurements, compared to more
complicated ones concluding in high-resolution analysis. An important but less obvious
reason is that since in case of propagation through vegetation we know little about the
distribution of effective scatterers, beam-forming as a robust approach seems the appropriate
candidate for the analysis. This is expressed in contrast to the model based estimation
methods although the resolution of the beam-forming is inferior. In this section two methods
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Figure 2. Different types of trees in the foliage.

for the analysis of the measurement data are presented. First we introduce a Capon
beam-former to analyze and provide the spread of the received radio signals. In the next
step a high-resolution SAGE algorithm is introduced for the analysis of the multidimensional
measurement data.

2.2.1. Signal model

Assuming multipath in the channel, the signal observed at the output of the receiver array can
be represented in vector notation as [48]

Y(t) .
= [Y1(t), · · · , YNr(t)]

T

=
L

∑
l=1

s(t;θl) +

√
N0

2
w(t), (1)

where Y(t) is the Nr dimensional vector of received signals at the receiver array with Nr
antenna elements and s(t;θl) is the contribution of the lth multipath to the received signal,
again a vector with Nr elements and it is assumed that L multipath are successfully received
by the receiver. The Nr dimensional complex, temporally and spatially white noise is denoted
by w(t) and N0 is a positive constant.

The parametric characteristic of the lth propagation wave is described by vector θl which is
represented for the current directional and polarimetric measurement as

θl
.
= [Ωrl , τl , Al ]. (2)

Here the subscript ’l ’ indicates the correspondence to the lth path and the parameters are
angle-of-arrival Ωrl = [ϕrl , ϑrl ] with ϕrl indicating the azimuth-of-arrival for the propagation
wave calculated in degrees, counter clockwise with its origin along the direction of receiver
toward the transmitter, and ϑrl being the elevation-of-arrival of the propagation wave
computed in degrees from the horizon with increasing values upward, so called coelevation.
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Other parameters are excess-delay τl and complex magnitude Al is the vector to represent the
weights for the co- and cross-polarization components according to

Al
.
=

[
αvl
αhl

]
. (3)

It is observed that due to the static measurement scenario Doppler-frequency of the
propagation multipath is not considered, otherwise its value is expected to be zero or
negligible. The contribution of the lth multipath to the received signal can therefore be
expressed in vector notation as

s(t;θl)
.
= [s1(t;θl), · · · , sNr (t;θl)]

T

= Cr(Ωrl)Alu(t− τl). (4)

The matrix Cr(Ω) in (4) is defined as Cr(Ω)
.
= [crv(Ω), crh(Ω)] (v and h subscripts indicate

V- and H-polarizations) where the Nr dimensional-vector receiver array radiation pattern for
the propagation wave impinging from direction Ωrl = [ϕrl , ϑrl ] at the receiver is denoted as
crpr (Ωrl) and is defined as

crpr(Ω)
.
= [ fnr,pr(Ω) exp{j2πλ−1Ω · rnr)}; nr = 1, · · · , Nr]

T, (5)

for the receiver polarization pr ∈ {v, h} and fnr,pr(Ω) denotes the radiation pattern for the
nrth element of the array. The transmitted signal at any arbitrary time instance t is an impulse
train in the frequency domain which is obtained as

u(t) =
B

∑
b=−B

δ( fc + b fs), (6)

where fc is the center frequency of the sounding signal, fs is the DFT frequency shift and the
signal bandwidth is therefore equal to (2B + 1) fs. The energy of the signal is assumed as P. A
delayed version of such a signal is represented as

u(t− τ) = e−j2π fsτ u(t). (7)

Thus the signal model (4) can be represented as

s(t;θl) = e−j2π fsτl Cr(Ωrl) Al u(t). (8)

It is assumed that each snapshot of the sounding signal is transmitted during Ts (sounding
signal duration), in I consecutive intervals each longer than transmitted signal duration.

2.2.2. Beam-forming

Capon beam-former, or minimum variance distortionless response (MVDR) beam-former, is
proved optimum for estimating an unknown random plane-wave signal, being received in the
presence of noise, to provide a minimum variance unbiased estimate [49]. This is equivalent
to passing the signal through a distortionless filter which minimizes the output variance.
A significant advantage of this algorithm when used in the parameter estimation context
is that the provided spatial spectral estimate does not rely on any underlying signal model
[49]. The approach employed in this section was previously used to estimate the azimuth of
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the distributed source components in [50]. Following the same method, the first and second
moments of the azimuth-of-arrival and excess-delay spread of the received radio waves are
calculated.

We consider the directional but stationary scenario where the L multipath are received in Dm
received signal clusters at each measurement m (at each specific transmitter antenna height)
as

Ym(t) =
Dm

∑
d=1

∑
l∈Cm,d

s(t;θl) +

√
N0

2
w(t), m = 1, · · · , M , (9)

where Cm,d is the set of multipath in dth cluster of mth measurement. It is observed that
the definition of cluster is dependent to the resolution of the analysis scheme. Hence in the
next section where high-resolution algorithm is used, a distinct definition for the multipath
cluster is employed. Furthermore, in the beam-forming analysis of the signal we neglect the
elevation-of-arrival ϑr of the received signal because of low resolution of the analysis in this
dimension and therefore the propagation in azimuth plane only is considered. In the current
analysis although the resolution is not enough to separate multipath, but the delay spread is
already available by performing the inverse discrete Fourier transform on the measured data
samples with the resolution τres = ((2B + 1) fs)

−1 and the azimuth-power spectrum at each
delay is computed by a Capon beam-forming due to its better resolution in comparison to the
conventional approach. The Capon spectrum is obtained as [49]:

Pm(ϕr, τk)

∣∣∣∣
pt pr

=
1

cH
rpr(ϕr, 0) R−1

Ympt
(τk) crpr (ϕr, 0)

, (10)

where RYmpt
is the received signal covariance matrix for the measurement m and transmitter

antenna polarization of pt, crpr (ϕr, 0) is the receiver array response in the azimuth plane for
the polarization pr and τk = (k− 1)τres is a specific delay within the range. Figure 3 presents
a sample of computed delay-azimuth-power spectrum for the transmitter antenna height of
15 [m] (m = 1), where the transmitted signal and the receiving antenna feeds are in vertical
polarization (pt pr = vv). The figure indicates –and it is the case for most measured data
in this campaign– that the radio signal is received as a cluster of multipath with probably
a Gaussian or von-Mises spread in the azimuth, and an exponential spread along the delay.
We therefore modify the signal model to Dm = 1 for all values of m and drop the index d
in the beam-forming data analysis. In the analysis the normalized spectrum Ṗm(ϕr, τ) to the
minimum value of the spectrum within a support around the considered multipath cluster is
used which is calculated for each measurement m at polarization combination pt pr. The size of
the support shall be selected large enough to include the diffuse components but not so large
to have any multipath from other clusters in. It is noticed however that in a beam-forming
approach the array antenna response could not be de-embedded from the measured data.
Another disadvantage is low spatial resolution resulting in the single cluster presumption.

2.2.3. High-resolution parameter estimation

A space-alternative generalized EM algorithm (SAGE) was employed to estimate the vector of
parameters θl for each propagation wave within the resolution of the system [51]. Observation
of the estimated paths indicates a large cross polarization ratio in most cases and therefore
the results presented here does not discuss the cross polarization of the multipath. Thus
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Figure 3. delay-azimuth-power spectrum of the received waves for transmitter antenna height of 15 m,
VV case.

the subscript indicating the polarization of the complex magnitude αpr l , i.e. pr ∈ {v, h}, is
dropped in further discussions.

Several tens of multipath are detected at each measurement points, while this number could
reach well beyond 100 in a couple of measurements. The array calibration indicates that array
response for extreme elevation-of-arrival values is highly unreliable. Hence we have neglected
those estimated multipath impinging with too high or too low elevation-of-arrival, i.e. we
consider the acceptable range of elevation-of-arrival as ϑrl ∈ (−75◦, 75◦).

3. Analysis

3.1. Moments of radio wave spread –beam-forming

Having the delay-azimuth-power spectrum of the measured data computed we can obtain
the mean values ϕ̄m and τ̄m, and the standard deviations σϕm and στm for each measurement
m simply as:

ϕ̄m(τk) =
∑ϕr∈Φ ϕrṖm(ϕr, τk)

∑ϕr∈Φ Ṗm(ϕr, τk)
, (11)

σϕm (τk) =

(
∑ϕr∈Φ(ϕr − ϕ̄r)2 Ṗm(ϕr, τk)

∑ϕr∈Φ Ṗm(ϕr, τk)

)1/2

, (12)

τ̄m(ϕrq) =
∑τ∈Ξ τkṖm(ϕrq, τ)

∑τ∈Ξ Ṗm(ϕrq, τ)
, (13)

στm (ϕrq) =

(
∑τ∈Ξ(τ− τ̄)2Ṗm(ϕrq, τ)

∑τ∈Ξ Ṗm(ϕrq, τ)

)1/2

, (14)

where Ξ = {0, τres, · · · , Ts} , Φ = {−ϕmax, · · · ,−ϕres, 0, ϕres, · · · , ϕmax}, with ϕres being the
sampling resolution of the beam-forming.

The mean and standard deviation values of the excess-delay and azimuth-of-arrival for
the direct path, ϕ̄m|τk=0, τ̄m|ϕq=0, στm |ϕq=0, σϕm |τk=0, are obtained for all combinations of
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m htm pt pr ϕ̄m [ ◦] σϕm [ ◦] τ̄m[ns] στm [ns]

1 15 VV 0.6 16.6 1.8 3.6

1 15 HV 5.6 17.6 3.7 7.9

1 15 VH 1.2 10.3 1.1 0.7

1 15 HH 1.3 9.0 1.0 0.4

2 12 VV 13.8 13.8 8.7 13.2

2 12 HV 13.6 22.3 19.9 15.7

2 12 VH 17.8 13.8 8.6 13.8

2 12 HH 1.8 12.4 1.7 3.3

3 9 VV -0.3 10.8 1.1 0.5

3 9 HV 10.6 6.7 1.2 2.0

3 9 VH 8.7 13.1 2.3 5.9

3 9 HH 5.0 8.4 1.0 0.3

3 6 VV 7.0 9.0 1.0 0.3

4 6 HV -0.8 5.7 1.0 0.2

4 6 VH 11.2 9.6 1.4 3.5

4 6 HH -5.7 6.6 1.3 0.6

5 4 VV 0.4 10.4 1.0 0.3

5 4 HV 3.0 17.5 1.6 1.5

5 4 VH 5.7 22.1 1.2 1.4

5 4 HH -0.7 5.1 1.0 0.1

Table 2. Radio Signal Spread Estimated Moments

transmitter antenna height htm and transmitter-receiver polarizations pt pr are presented in
Table 2. Considering the delay resolution of the measurement, 20 [ns], the small values
for the standard deviation of excess-delay στ agrees with the previously reported results.
This is because the dispersion is caused due to scatterings by leaves and branches along the
propagation path.

To get a sense of azimuth standard deviations it is necessary to obtain the azimuth resolution
for the current analysis. Figure 4 shows the Capon spectrum for a single path measured in the
anechoic chamber. While the Rayleigh resolution is slightly larger than the theoretical value
11.5◦ it shall not be confused with the resolution of the standard deviation. The computed
standard deviation for the Capon spectrum of Fig. 4 is σϕ = 4.8◦. This means any deviation
larger than this value is caused by the dispersion of the radio wave while propagating through
foliage.
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Figure 4. Capon spectrum of a single path in the azimuth.

3.2. Multipath cluster identification –high-resolution analysis

A simple manual cluster identification algorithm was applied to the estimated multipath. As
the purpose is to identify dominant propagation mechanisms, only those clusters conveying
significant power are discussed. Each cluster carries a total power calculated as

gm,c = ∑
l∈Cm,c

gl ,
m = 1, · · · , M

c = 1, · · · , C
, (15)

where gl = |αl |2 is the estimated path-gain, M indicates the number of measurements, C is the
number of identified clusters and Cm,c represents the set of estimated mutilpath in cth cluster
of measurement m . The mean and standard deviation of the estimated parameters for each
cluster can be obtained as

x̄m,c =
∑l∈Cm,c

gl xl

gm,c
,

m = 1, · · · , M

c = 1, · · · , C
, (16)

σxm,c =

(
∑l∈Cm,c

(xl − x̄m,c)gl

gm,c

)1/2

,
m = 1, · · · , M

c = 1, · · · , C
. (17)

Here x is a substitute variable for the estimated path parameters except for the path
magnitude, i.e. x ∈ {τ, ϕr, ϑr}.

Table 3 displays most significant clusters identified for each measurement. In this table
different number of clusters are presented for each measurement with the specifications of the
measurement such as the measurement index m, transmitter antenna height htm, polarizations
of transmit and received signal pt pr and receive signal noise level σ2

n; as well the specifications
of the clusters are exhibited as the index of the cluster for each measurement c, number
of multipath in the cluster Lm,c, cluster’s associated power gm,c followed the average and
standard deviation of excess-delay, azimuth- and elevation-of arrival of the cluster.

One observation is that significant clusters are of mixed polarization combinations, that is the
channel acts random interactions with the radio wave in terms of polarization. Also notable
is that there could be found almost no significant cluster associated with back scattering.
Moreover it is observed that for the measurement number 2 with the transmit antenna height
of ht2 = 12 [m] the received signal is weaker compared to other measurements. Hence
the number of estimated multipath as well as identified clusters are smaller. In the next
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subsection these strictly identified clusters are grouped to recognize what we call propagation
mechanisms.

3.3. Propagation mechanisms –high-resolution analysis

With the strict classification of multipath in the previous section we have derived clusters in
the Table 3 which can not be so informative when it comes to the propagation mechanism
analysis. In this section those clusters are further arranged in groups of related clusters
to provide a better knowledge of the channel. Here we are specifically interested in
clusters with close mean angle-of-arrival (ϕ̄m,c, ϑ̄m,c) to identify propagation mechanisms
in the channel. It is observed that clusters with different excess-delays could exist in the
same group, hence those clusters belonging to the same group may not represent identical
propagation mechanism in the strict sense, e.g. both multiple-scattering and single-scattering
multipath could be included in the same group, but as long as we are interested in the final
interaction of the propagation wave in the channel the current approach suits. As an example
consider clusters C1,1, C1,4, C1,5, clearly their close mean angle-of-arrival values hint their last
interaction to the channel coming from the same source. By rearrangement of the clusters in
such groups within each measurement, we further examined any existing link between these
groups among all measurements and found the following classes of received multipath:

A. The foliage close to the receiver in the direction of transmitter scatters a great amount of
radio energy. The clusters with a mean azimuth-of-arrival value in the interval ϕ̄m,c ∈
(−6◦, 10◦) and with a slight positive elevation-of-arrival belong to this class. This class
includes clusters C1,1, C1,4, C1,5, C2,2, C3,1, C3,2, C3,4, C3,6, C4,1, C4,2, C4,4, C4,7, C4,8, C4,11,
C5,1, C5,3, C5,5, C5,15.

B. Scattering from the foliage close to the receiver and with azimuth-of-arrival values in the
interval ϕ̄m,c ∈ (17◦ , 30◦) and with slight positive values of elevation-of-arrival can be
associated to this class. Clusters in this class are C1,2, C1,3, C1,6, C1,8, C1,9, C2,1, C2,3, C3,3,
C3,5, C3,7, C4,3, C4,9, C4,10, C5,6, C5,9, C5,10.

C. Third class of identified clusters represents the foliage located in the azimuth-of-arrival
in the interval ϕ̄m,c ∈ (−40◦,−16◦) and again with slight positive values of
elevation-of-arrival. This class of clusters include C1,11, C3,9, C4,5, C4,6, C5,2, C5,7, C5,14.

Few clusters remain unclassified conveying minor radio energy compared to these three
classes of clusters. It is important to remember that this classification was done among
different measurements particularly in terms of transmitter antenna heights. Figure 5
schematically illustrates top view of the radio channel and three major classes of identified
clusters. It can be said that major propagation mechanisms in this channel are associated
with one of these classes. Class A represents the forward scattering component. Even though
there is no line-of-sight from the foliage to the transmitter in any of the measurements, this
class introduces the most powerful propagation mechanism in the channel. The radio signal
finds its way through the leaves and in between tree trunks to reach to this foliage and be
rescattered toward the receiver. It is observed that strongest clusters in all measurements,
except measurement 2, are put in this class.

To describe the scatterings from classes B and C it is noticed that even though the
measurement area is densely vegetated, the density of foliage is not homogeneous
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m htm pt pr σ2
n [dB] c Lm,c gm,c [dB] τ̄m,c [ns] στm,c [ns] ϕ̄m,c [◦] σϕm,c [

◦] ϑ̄m,c [◦] σϑm,c [
◦]

1 15 VV 3.6 1 12 73.8 20 13.1 -3 3.9 26 12.2

1 15 VV 3.6 2 6 49.3 20 10.4 27 6.1 9 9.9

1 15 HH 3.9 3 2 48.7 20 4.9 23 0.0 1 0.0

1 15 HV 3.8 4 1 48.1 0 0.0 -6 0.0 26 0.0

1 15 VH 3.6 5 3 45.6 20 12.7 -1 1.4 12 2.5

1 15 VV 3.6 6 1 38.3 60 0.0 28 0.0 3 0.0

1 15 HH 3.9 7 1 37.4 40 0.0 -139 0.0 1 0.0

1 15 VH 3.6 8 3 34.4 40 10.0 27 5.0 6 10.3

1 15 HV 3.8 9 2 34.3 0 9.8 24 0.5 13 7.8

2 12 VV 2.6 1 5 50.4 40 10.0 17 7.9 2 3.8

2 12 VV 2.6 2 1 32.4 0 0.0 -1 0.0 19 0.0

2 12 HV 2.7 3 2 27.5 20 4.5 19 6.3 1 0.0

3 9 HV 2.4 1 11 65.0 20 9.6 -3 6.8 6 9.0

3 9 VH 2.5 2 2 57.8 20 0.0 5 6.7 11 0.0

3 9 HV 2.4 3 4 55.9 40 11.8 23 5.6 3 0.8

3 9 VH 2.5 4 3 45.5 40 8.7 10 0.9 11 0.0

3 9 HV 2.4 5 2 43.7 0 4.6 23 2.3 7 9.6

3 9 HV 2.4 6 5 45.5 60 7.8 1 3.8 2 5.2

3 9 HV 2.4 7 2 34.6 80 5.0 21 1.0 1 0.0

3 9 HV 2.4 8 2 34.5 60 8.5 -60 5.1 3 0.0

4 6 HH 2.6 1 7 70.6 20 8.3 -2 4.6 8 6.5

4 6 VV 2.4 2 4 64.5 0 8.8 8 7.5 3 1.5

4 6 HH 2.6 3 4 60.2 40 7.5 19 5.5 2 3.1

4 6 HV 2.4 4 3 54.2 20 8.5 -6 3.4 1 0.5

4 6 VV 2.4 5 2 49.4 0 7.6 -16 5.3 10 9.8

4 6 VV 2.4 6 5 48.0 40 14.2 -40 7.7 1 5.2

4 6 HH 2.6 7 3 42.9 100 5.0 -2 1.3 11 0.0

4 6 VV 2.4 8 3 42.5 60 5.0 5 2.6 1 0.0

4 6 VH 2.4 9 2 42.5 0 4.6 19 0.5 5 0.0

4 6 HH 2.6 10 1 41.0 20 0.0 30 0.0 5 0.0

4 6 HH 2.6 11 4 40.8 60 9.1 0 5.6 11 0.0

5 4 VV 2.8 1 10 77.3 20 8.0 0 5.1 9 3.6

5 4 VV 2.8 2 4 57.6 20 4.8 -29 2.0 30 7.4

5 4 HV 2.6 3 6 57.5 20 4.6 1 8.6 29 5.9

5 4 VV 2.8 4 3 54.2 20 0.0 -101 2.7 32 1.7

Table 3. Identified Clusters
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m htm pt pr σ2
n [dB] c Lm,c gm,c [dB] τ̄m,c [ns] στm,c [ns] ϕ̄m,c [◦] σϕm,c [

◦] ϑ̄m,c [◦] σϑm,c [
◦]

5 4 HH 2.7 5 2 53.8 40 0.0 1 3.7 13 4.5

5 4 VV 2.8 6 3 50.4 20 8.7 27 3.2 9 2.5

5 4 HH 2.7 7 3 46.5 40 9.5 -28 5.6 20 4.2

5 4 VV 2.8 8 3 43.8 20 0.0 145 7.4 5 2.0

5 4 HH 2.7 9 3 40.2 40 9.3 34 5.8 9 3.4

5 4 VV 2.8 10 2 38.8 80 9.3 20 0.9 5 1.4

5 4 VV 2.8 11 2 36.8 20 0.0 98 5.9 7 0.5

5 4 VV 2.8 12 3 36.6 20 8.7 46 3.1 33 9.8

5 4 HH 2.7 13 1 35.4 60 0.0 3 0.0 -40 0.0

5 4 HV 2.6 14 2 35.2 20 7.7 -18 0.8 28 8.4

5 4 VH 2.8 15 3 34.3 20 9.7 0 4.6 17 4.5

5 4 VV 2.8 16 2 33.9 40 0.0 -98 4.4 29 4.4

Table 3. Identified Clusters (Continued).

RxTx
1

2

3

Figure 5. Schematic top view of the radio channel and three major classes of received multipath. No
line-of-sight exists between transmitter and antenna and these classes.

everywhere. This produces airy spaces within the dense vegetation which act similar to
canyons to conduct radio signals. Figure 6 displays such spaces in the vegetation viewed
from the measurement 4 transmitter antenna position, ht4 = 6 [m]. When these guided
signals arrive to one or more foliage with line-of-sight toward the receiver they make strong
clusters of received propagation waves. It seems this is what happens in case of multipath
classes B and C. Notable is that strong clusters from measurements with higher transmit
antenna contribute to class B whereas those from measurements with lower antenna height,
e.g. measurement 5, appear strongly in class C.

Again it is reminded that there is not any line-of-sight from the transmitter to the foliages
associated with any of classes, however the configuration of foliage within the vegetation area
causes the radio signal to be nonuniformly received in format of clusters. The significant point
in the classification process is that clusters from every transmitter height, and from a variety
of polarization combinations are taking part in each multipath class. The interpretation can be
that even if the interactions of multipath to the vegetation is of random nature and number,
when it comes to the angle-of-arrival the receiving radio signal can be from a deterministic
selected number of directions.
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Figure 6. Airy spaces within dense vegetated area. Viewed from transmitter antenna location at ht4 = 6
[m].

4. Discussion

Typical measurements for the analysis of the interaction between radio waves and vegetation,
as well to evaluate the existing models, generally target only the field attenuation along
distance. Moreover, measurement schemes and facilities usually do not acquire enough
resolution to support an accurate analysis of the active mechanisms and basically provide
limited insight into the physical phenomena which in reality is complex. There are nearly
universal assumptions, e.g. vegetation as a homogeneous media of randomly distributed
scatterers, used in most corresponding studies which have never been evaluated. In
this chapter the directional radio channel in dense vegetation is investigated through the
analysis of appropriate measurement data. Two different analysis methods are used for the
comparison of results.

First the dispersions in delay and azimuth-of-arrival of the received waves are derived by
using a beam-forming. Investigating the mean delay values in the Table 2 shows that in
some cases components other than the direct path have been involved in the analysis. The
interpretation of some large spreads in azimuth and the distance of the mean azimuth values
from zero shall be related to this fact. The main conclusion of the analysis however is to
confirm the received signal spatial spread due to interaction with foliage, and to provide
rough estimates of this spread. It is observed that even though the beam-forming approach
is robust, easy to implement and does not require any presumption regarding the received
signal, its spatial resolution proves limited. Hence the received signal energy through
different propagation mechanisms can not be accurately separated. Moreover the array
antenna response is included in the channel and can not be de-embedded.

For the propagation mechanisms to be distinguished, high resolution parameter estimation
of the measured data is necessary. The well known SAGE algorithm is used to identify
received propagation multipath, which are then grouped in clusters using a simple clustering
algorithm. Specifically looking at the measured receiving radio signal with high resolution
in angular domain, three major classes of received multipath associated with separate
final scattering foliage are identified. Thus contrary to the widely assumed homogeneous
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random scattering media it was observed that the radio waves in the vegetated channel are
received from distinct directions in clusters of multipath. The identified classes of multipath
correspond to two significant propagation mechanisms other than forward scattering by
the foliage obstructing the line-of-sight –normally used as the main mechanism in different
approaches. It seems airy spaces in the vegetated area can have crucial influence in directing
the radio signal toward specific directions, to be redirected to the receiver by a foliage with
the line-of-sight toward the receiver.

The significant point is that by beam-forming analysis of the measurement data it is not
possible to identify those propagation mechanisms, although limited insight regarding
the spatial spread of the direct received path achieved. Thus appropriate measurements
assisted with high-resolution data analysis can meaningfully change our understanding of
the vegetation wireless channel and substantially modify corresponding models.

It is now well known that in most practical wireless channels the diffuse scattering plays a
considerable role in terms of carrying the radio energy [52],[53]. In comparison to the specular
component, the estimation and modeling of which is rather straightforward, the estimation
and modeling of the diffuse component can be rather complicated. Nevertheless, due to
the random shape and direction of trees and branches in any foliage, it is expected that a
major part of energy is transferred by means of diffuse component. Further high-resolution
investigation and modeling of the radio channel including the diffuse component is left as a
future task.

5. Conclusion

In this chapter the radio channel in dense vegetation is investigated through the directional
analysis of carefully gathered measurement data. By looking at the measured receiving radio
signal with high resolution in angular domain, three major classes of received multipath
associated with separate final scattering foliage are identified. The identified classes
of multipath correspond to two significant propagation mechanisms other than forward
scattering by the foliage obstructing the line-of-sight which is normally considered as the main
mechanism in such channels. The airy spaces in the vegetated area is probably accounted for
directing the radio signal toward specific directions. These are redirected toward the receiver
by a foliage in its line-of-sight. Thus contrary to the widely assumed homogeneous random
scattering media it was observed that the radio waves in the vegetated channel are received
from distinct directions in clusters of multipath. Results of the high-resolution analysis are
in contrast to the beam-forming analysis of the measured data which is also presented in
the chapter for comparison. This proves that state-of-the-art measurements assisted with
high-resolution analysis can modify our understanding and modelings of the phenomena.
Moreover to fully analyze and understand these channels, the diffuse component also has to
be estimated and modeled which is left as a future task.
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1. Introduction 

Optical wave propagation and interaction are important effects usable in designing and 
implementing various photonic devices ranging from passive splitters to active switches to 
light amplifiers. The material aspects are crucial as strong effects are desirable for efficient 
and robust devices. Electronics has its silicon that is an amazing rather universal material 
that makes it possible to implement microelectronics chips of unthinkable performance and 
functionalities. Photonics does not have such a common material, and therefore one has to 
choose suitable material system for a given application. However, with silicon being the best 
technologically mastered material, attempts have been made to employ it also in the 
implementation of photonic functions. Examples include electro-optic modulators and, of 
course, high speed photodetectors. 

Recently we have investigated physical effects in silicon that are usable for photonic 
functionalities1. Since silicon is a cubic material, it does not possess the classical electro-optic 
effect exploited in other material systems (e.g. GaAs, InP) for high-speed switching and 
modulation. On the other hand, as basically all materials, silicon does possess the third-
order nonlinear effect, originally known as the Kerr effect, discovered by J. Kerr in 18752. 
This is one of the most interesting phenomena for potential exploitation. The two facts, i.e. 
universality of silicon and the existence of a nonlinear effect in it, led to our thorough 
exploration of the possibilities that Kerr effect3 in silicon can offer in terms of potential 
future photonic devices4. As expected, the theoretical, numerical and design studies have 
been dominated by the optical wave propagation issues5. The results are general enough to 
apply to a wide range of materials that do not possess the classical linear electro-optic effect. 

This chapter describes the original results obtained from those studies. Optical wave 
propagation in a nonlinear medium with a Kerr-type nonlinearity (third-order 
susceptibility) is analyzed theoretically. New features are found where not only waves and 
their polarization interactions are present as a result of the nonlinearity of the medium, but 
also an interplay between the optical and electrical Kerr effects contributes to the resulting 
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functionality. Several novel wave propagation effects are discovered and discussed. They 
include cross-polarized wave conversion, optical multistability, nonlinear tunability of 
periodic structures, ultra-fast electro-optic switching, and a new photorefractive effect. 
Possible applications of these functionalities are addressed as well. The fine physical and 
mathematical details of our unified treatment are well reviewed in6. 

2. Electro-optic effects 

Electro-optic effects are reviewed7 pertaining to cubic (e.g. silicon) and isotropic (e.g. glass) 
materials; therefore, the well-studied and widely exploited (e.g. lithium niobate, gallium 
arsenide or indium phosphide) linear electro-optic phenomenon is not discussed here. 

2.1. Electro-absorption 

The Franz-Keldysh effect in semiconductors alters the absorption spectrum of a material. 
The effect is due to field-induced tunneling between valence and conduction band states. 
The electric field affects the overlap of electron and hole wavefunctions, which leads to 
increased absorption at energies lower than the bandgap. This electro-optic effect is thus 
normally referred to as electro-absorption. The associated electro-refraction effect is coupled 
via the Kramer-Kronig relation. Both effects depend on the applied electric field, the 
wavelength, and the carrier density.  

Electro-absorption has been used in switches and modulators in various materials including 
III-V semiconductors. Electro-refraction is quite weak; for example in an undoped silicon at 
the telecommunication wavelength of 1.55 µm, where it is caused mostly by indirect gap 
electro-absorption, the value of the refractive index change is8 Δn = 1.5 x 10-6 at Vapp = 10 
V/µm. The effect is polarization dependent and it is a factor of two stronger when the optical 
field is parallel to the applied field. It is a pure electric-field effect and as such, its speed is 
high (sub-picosecond range) and determined by the tunneling speed between the 
conduction and valence bands. 

2.2. Quantum-confined Stark effect 

The quantum-confined Stark effect is the similar phenomenon occurring in semiconductor 
quantum-well structures. In quantum wells when close to the exciton resonances, 
absorption changes and Kramer-Kronig-related refractive index changes behave in a Kerr-
like fashion while the medium response is enhanced due to the electron-hole confinement. 
The quantum well confinement increases the overlap of electron and hole wave-functions 
while the applied electric field reduces this overlap. This results in a corresponding 
reduction in optical absorption. The direct change in the light intensity resulting from this 
electro-absorption effect has been used in efficient bulk as well waveguide modulators. 
Waveguide modulators achieve better performance overall due to the confinement of light. 
Device details are beyond the scope of this chapter and can be found in literature9. 
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2.3. Free-carrier plasma dispersion effect 

Injection of charge carriers into an undoped material or removal of free carriers from a 
doped material, changes the refractive index (generally optical properties, e.g. absorption). 
Generally, three carrier effects are involved: free-carrier absorption, Burstein-Moss band-
filling (shifting the absorption spectrum to shorter wavelengths), and Coulombic interaction 
of carriers with impurities (shifting the absorption spectrum to longer wavelengths).  

The refractive index increases when carriers are depleted from a doped material and it 
decreases when they are injected into an undoped material. This is the largest effect 
compared to the electro-refraction and the Kerr effects (see below). It is polarization 
independent, but generally the slowest of all effects. In the injection case, the switch-off time 
is limited by minority carrier lifetime (tens of picoseconds at best due to recombination). In 
the depletion mode, the response time is determined by carrier sweep-out (picoseconds at 
best due to carrier drift over a finite distance of a sample or a device).  

A change in refractive index is always accompanied by a change in absorption, therefore a 
trade-off is required when utilizing this effect for applications. The residual linear loss is 
usually negligible at the telecommunications wavelength; the two-photon absorption is 
normally a concern10. Successful devices have been implemented using this effect in 
combination with a Mach-Zehnder waveguide configuration, one example being a reverse-
biased pn junction (silicon)11, the other being a forward-biased pn junction (indium 
phosphide)12, and the third one being a MOS capacitor (fully compatible with standard 
CMOS)13. The designs exploited the free-carrier plasma dispersion effect in efficient ways.  

2.4. Kerr effect 

This effect is a pure electric field phenomenon and it is of interest in this work. It is a 
quadratic electro-optic effect caused by displacement of bound electrons under the influence 
of an external electric field. It is basically a nonlinear polarization generated in a medium, 
which results in changes of its refractive index. It exists in crystals, glasses, gasses, basically 
all materials including the isotropic ones, i.e. also in the cubic silicon and silicon 
nanocrystals. It is one of the several different phenomena (e.g. self-focusing, soliton 
generation, four-wave mixing, phase conjugation, etc.) associated with the third-order 
nonlinearity in a given material, usually described by the third-order susceptibility, χ(3).  

The susceptibility χ(3) is, generally, dispersive. Depending on the frequency region, it 
describes the nonlinear response in a phenomenological way, which means that it includes 
combination of all physical effects that contribute to the response in that particular 
frequency range and usually on different time scales. Normally, the resonant effects are the 
strongest and thus may dominate the behavior and the values of χ(3). On the other hand, in a 
lossless medium and/or far away from any resonant frequencies (absorption lines) of a 
material, the dispersion of χ(3) is insignificant and the response is instantaneous; thus χ(3) can 
be considered dispersion-less. This was shown using the classical anharmonic oscillator 
model14, whereby, basically, the electro-optic Kerr effect (DC Kerr effect) is a quasi-static 
limit of the optical one (AC Kerr effect).    
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The AC Kerr effect is responsible for what is generally known as all-optical effects (e.g. self-
phase and cross-phase modulation, four-wave mixing). The corresponding refractive index 
change, Δn,  is a linear function of light intensity, I:  

 Δnopt = nNL I =  3 χ(3) Z0 /4(nL)2,    (1) 

where nNL is the nonlinear refractive index coefficient, nL is the linear refractive index, and Z0 
is the free space impedance. The external-electric-field-controlled refractive index change is 
a result of the DC Kerr effect and can be described by: 

 Δnext =  3 χ(3)/8 nL = nL nNL/2 Z0.   (2) 

The pure Kerr effect is very fast, well in the sub-picosecond range. It is polarization 
dependent; there is a factor of one-third involved whereby parallel optical and electrical 
fields display a stronger interaction. The Kerr effect makes an isotropic material behave as a 
uniaxial crystal once the voltage is applied, with an optical axis being in the direction of the 
external field. The Kerr effect depends on the bandgap energy, thus it is much stronger in, 
for example, semiconductors than in silica glass. At wavelengths far enough away from the 
band-edge the effect may be considered as a pure Kerr effect in a moreless lossless medium, 
although multi-photon absorption might have to be considered in some cases.  

In order to avoid large absorption losses required to obtain enhanced resonant 
nonlinearities, it is preferable to propagate waves at around a half-gap wavelength, as 
successfully exploited in the past in the III-V semiconductor technology15. At that 
wavelength range in semiconductors, the nonlinear refractive index, arising from the real 
part of the third-order susceptibility, is still relatively large to be usable. At the same time 
the two-photon absorption that contributes to the imaginary part of the third-order 
susceptibility, is relatively low to obtain reasonable propagation lengths. The real and 
imaginary parts are related by causality expressed by the well-known Kramers-Kronig 
relation.  

Since the Kerr effect is bound-electron related, it is very fast and usually dominant. The 
refractive index change is positive. However, for higher intensities, the nonlinear two-
photon absorption will start generate more free carriers as intensities increase. The free-
carrier refraction is negative and slow; therefore, it is desirable to avoid such ranges of 
optical intensities that may lead to large nonlinear losses of propagating waves. A strong 
and low-loss interaction of propagating waves is the key to designing and developing 
efficient and robust optoelectronic devices such as switches or modulators.  

The fundamental problem with the third-order nonlinearity is that the effect is very weak in 
most materials. The promise of the development of new materials that fall under the 
umbrella of nanotechnology is quite attractive. Materials are being developed on the 
nanometer scale, thus promising a potential to open a new world of scalability and 
integration. Reducing the size of the optical material structures to a nanoscale leads to 
significant (orders of magnitudes) enhancements of the third-order optical susceptibility due 
to the confinement effect. Combined with optical waveguide enhancing effects (e.g. 
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photonic crystals or high-contrast slot waveguides), a much stronger nonlinear interaction 
of propagating waves and modes is achieved. It is this promise that led us to the studies of 
nonlinear wave propagation in the Kerr media, with integrated optoelectronics and 
nanophotonics being the main area for potential applications. 

3. Optical wave propagation in nonlinear media 

The interaction of a light wave with a propagating medium and additionally with an 
applied external electric field is described by the nonlinear wave equation. When 
considering the general vector nonlinear wave equation, the polarization components are 
mutually coupled nonlinearly thus yielding coupled differential equations. Finding 
solutions to such a nonlinear system, which possess physical meaning, is a challenging 
problem even with today’s available powerful computing technology. In order to obtain at 
least an approximate analytical solution that would offer an insight into the complexity of 
the problem, simplifying assumptions have to be made3. 

In a third-order nonlinear medium, the relationship between the nonlinear polarization and 
the electric field vector of an optical wave is governed by a fourth-ranked susceptibility 
tensor, (3) . For materials of interest here (cubic, isotropic), the tensor is much simpler 
having most of its components zero. The wave propagation can then be simplified to the 
point that after neglecting second-order coupling between the polarization components, 
nonlinear wave equations can be solved as individual scalar equations (Helmholz 
equations). Such a scalar equation can be solved approximately for some situations, the most 
known being the spatial soliton in optical fibers16. For this approximate case specifically, the 
equation is in literature incorrectly called the nonlinear Schrödinger equation due to its 
similar form. However, Schrödinger himself did not derive any nonlinear equation. In 1925 
he formulated a linear motion equation for a free particle17.  

In the Cartesian coordinates (x, y, z) with z being the propagation direction, the optical wave 
field components solution can be written in a form:   
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where (0)xe and , (0)y ze  are the field’s initial amplitudes, k0 =  ω/c is the free-space 

wavevector, c is the speed of light in vacuum, nL is the linear refractive index, nNL is the 
nonlinear index coefficient that describes the Kerr-like all-optical effects, nEXT is what we call 
the nonlinear electrical index coefficient that describes the Kerr electrical effect. It is related 
to the original Kerr constant, K, by nEXT = 2π K/k0. With I being the intensity of the 
propagating optical wave, the second term in the exponents of Eq. (1) represents known all-
optical effects of self-phase and cross-phase modulation. The third term in the exponents is a 
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new addition to the mutual wave interaction control via an applied external electric field. 
Obviously, both effects now being incorporated into the overall interaction of the 
propagating waves, interplay between the all-optical and electro-optic phenomena 
significantly affects the propagation properties. 

The second-order correction16 to the solutions above yields more complex field expressions 
that, however, provide interesting insight into the waves/components interaction: 
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In Eq. (2), only the transversal x-component is shown; the transversal y-component is 
symmetrically identical. The parameter Φ = k0 χ(3)(Eext)2/4nL and is a determining factor in the 
overall propagation interaction; when Φ = 0, only all-optical effects of self-phase and cross-
phase modulation remain with the waves amplitude being constant. Eq. (2) clearly indicates 
periodic exchange of power between both components along the propagation path, as the 
second multiplicative term is an amplitude rather than a phase term. 

The power densities of both components, px and py, with the total power being pT, can then 
be found as: 
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The function f =Z0 [1-cos(2Φz)]/nL(Eext)2 (Z0 = 377 Ω) is the key variable controlling the 
interaction. As can be seen form Eq. (3), the power exchange is controlled by both, the 
optical power in the interacting waves (all-optical effect) and the applied external electric 
field (electrical Kerr effect). It should be pointed out that the nonlinear susceptibility of 
various materials is not a unique quantity as several physical effects contribute to a material 
response on different time scales18. Also, the third-order susceptibility possesses normally 
real and imaginary parts that correspond to the nonlinear phase and loss, respectively. A 
summary of nonlinear parameters of a number of materials relevant to the optical wave 
propagation issues is given in19.                

4. Re-configurable all-optical switching 

The power exchange described by Eq. (3) represents basically cross-polarized wave 
conversion controlled optically as well as electrically. The optical control is obtained via the 
optical Kerr effect whereby the intensity of the wave changes the refractive index of the 
material. In silicon nanocrystal, for example, Δn = 2 x 10-6 at an intensity of 106 W/cm2. The 
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price paid for this all-optical control is absorption that leads to the total power loss. Linear 
absorption is usually negligible since it is desirable that the waves propagate in the 
transparent region of a given material. The nonlinear absorption however can and does play 
a negative role due to two-photon or even three-photon absorption. The more common two-
photon absorption coefficient causes the nonlinear absorption increase with a square of the 
intensity thus becoming detrimental at higher wave power densities such as those in optical 
waveguides and optical fibers. 

The electrical control is achieved via the electrical Kerr effect whereby bound electrons in 
the material are displaced by an electric field, which leads to changes in refractive index 
with the square of the voltage. In silicon nanocrystal, for example, Δn = 4.2 x 10-5 at an 
electric field of 10 V/m. The attractiveness in exploiting this electro-optic control is in its 
extremely high speed in the subpicosecond range. An example of electrically controlled 
periodic power exchange in silicon nanocrystal20 is shown in figure 1.  The applied electric 
field values are Eext(1) = 0.8 V/m, Eext(2) =2 V/m,  Eext(1) =3 V/m, respectively. The total optical 
power is 0.11 W/cm2.    

 
Figure 1. Electrically controlled cross-polarized wave-conversion power exchange 

5. Electrically controlled optical multistability 

Waves propagating in a resonator filled with an optical Kerr medium that is also subject to 
an external electric field establish nonlinear behaviour characterized by hysteresis. The 
shape and the size of the hysteresis transfer function of such a nonlinear optical resonator21 
are controlled by the electric field as well as by the power inside the resonator. Interplay 
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between self-modulation optical and quadratic electro-optic effects is conveniently 
described using the concept of an effective nonlinear refractive index22, neff = nL + 3 χ(3) (Eext)2 
+3 χ(3) (Eopt)2/4. The transfer function of the resonator is written as: 
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It is controlled by the phase parameter, γ, which is a function of the intensity, the electric 
field, and the wavelength. Figure 2 is an example of the nonlinear behaviour of the input-
output characteristic as it depends on the external electric field. A material with χ(3) = -9 x 10-

16 cm2/V2 (silicon) was used and Eext 1, 2, 3, 4, 5 = 0.5, 0.8, 7, 8, 9 V/m, respectively. 

 
Figure 2. Input-output characteristic of optical nonlinear resonator for different external electric fields 

The dashed lines are the unstable optical outputs for given dc electric fields that cause the 
multistabilities. The electric field controls the required optical input for bistable switching as 
well as the corresponding output values. Some outputs, which are unstable, become stable, 
and vice versa, for different biases. This is a tuning property that combined with the 
previously discussed switching/power-exchange behavior suggests electrically controlled 
tunable reconfigurability. One can construct a phase diagram of all possible stable optical 
outputs for a given input as a function of the external electric field 23.  

The analysis concludes that the dependence of the system output evolution on the external 
electric field exhibits a hysteresis-like character as much as with respect to the optical 



 
Optical Wave Propagation in Kerr Media 183 

input/output intensity levels. For example, the value of the optical output, at a certain 
electric field, depends on the history of that field. Such an optically stored electric hysteresis 
control is a novel feature that can be potentially utilized in the future applications. For 
example, this hysteresis effect can be used to store an electrical signal (information) optically 
since the optical system remembers and stores the action of the past electrical signal 
behavior. 

6. Electrically tunable Bragg grating 

The rich dispersion properties of Bragg gratings offer many interesting wave propagation 
features when a nonlinear Kerr medium is incorporated into a grating structure. The key 
feature is the well-known dispersion property of Bragg gratings whereby their dispersive 
response is very strong when the operating wavelength is sufficiently close to the Bragg 
resonance24 and even if the refractive index changes are very small. An electronically 
tunable Bragg grating can be constructed based on the third-order nonlinearity discussed 
here. The nonlinear wave propagation characteristics become interesting and attractive for 
potential applications.   

A homogenous electrical field is known to control, via the Kerr quadratic electro-optic effect, 
the average refractive index and the birefringence25. An inhomogeneous (spatially profiled) 
electric field bias has been proposed to mediate a linear electro-optic waveguide, by which 
an effective electro-optic grating is induced26. We proposed a novel scheme in which a 
spatially modulated electric field is applied to a Kerr-nonlinear periodic structure27. It was 
found that several phenomena, including the modulation instability gain, the amplitude 
(and the width) of the gap soliton, and the band gap, can be efficiently electrically 
controlled, as long as a proper spatial profile of the electric field is formed.  

This can be explained by noting that the electrical spatial profile needs to be designed to act 
as an extension of the linear perturbation of the periodic structure. An illustrative example 
of an electrical field bias that has a quasi square-wave shape, which is further modulated by 
a slow profile, was studied. It was found that, besides the functionality of the periodic part 
in inducing/controlling all above mentioned phenomena, the slow part of the spatial 
electrical bias was able to manipulate the linear and nonlinear switching parameters of the 
band gap. The action of this inhomogeneous electric field is facilitated via the Kerr quadratic 
electro-optic effect such that the structure’s coupling coefficient as well as the average 
refractive index are controlled.  

The effective average refractive index, ത݊௘௙௙, and the effective coupling coefficient, ߢ௘௙௙, of 
the nonlinear grating were derived27 showing as they depend on the character of the applied 
electric field, including its period and shape. The bandwidth of the main reflectivity peak of 
the grating, Δωgap, was found to be approximately: 

 ∆ ௚߱௔௣ = ଶ௖௡ത೐೑೑ หߢ௘௙௙ห.   (7) 
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It can be seen from Eq. (5) that the band gap width is electrically controlled through the 
effective coupling coefficient ߢ௘௙௙ and the effective average refractive index ത݊௘௙௙. The 
controllability through the coupling coefficient is more significant. The reason is that the 
perturbation in the refractive index, which causes the coupling dynamics, is much smaller 
than the linear refractive index and thus it is more sensitive to a small change in the 
refractive index that is induced by the electric field. For example, for a fiber Bragg grating at 1550 = ߣ nm, with nNL = 2.6 x 10-16 cm2/W and grating linear refractive index variations of n1 = 
10-4, the periodically shaped applied electric field will initiate the band gap width change of 
287.5 MHz for a field value of 1 V/µm. As a comparison, if the applied field is spatially 
constant, the bandwidth of the band gap will change by only 15 kHz for the same 1 V/µm. 
The average refractive index is not as sensitive to the external electric field as the grating 
coupling coefficient is.  

We note that intensive optical excitations can detune themselves (totally or partially) out 
from a band gap of a periodic medium28. As the external electric field also controls the 
periodic structure dispersion properties, one possesses a Bragg grating band gap that has a 
dually controllable reflection/transmission characteristic. Using a silicon nanocrystal 
material29, figure 3 shows a full simulation of a Bragg grating in a waveguide subjected to an 
electric field.  Both the optical and electrical controls are demonstrated.  

 
Figure 3. The transmitivity of 5-mm nonlinear waveguide with grating, as function of external electric 
field and input optical power density; waveguide filled with silicon nanocrystal 

7. Kerr switch 
The Kerr nonlinearity is usually weak in most materials, although some new materials being 
developed with nanotechnologies offer promise of significantly enhanced third-order 
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nonlinear coefficients. Silicon nanocrystals can serve as a good example of such a promising 
material with a stronger nonlinearity of at least one order of magnitude larger than in the 
bulk counterpart19. In order to obtain strong interaction of propagating waves, it is not only 
the material’s nonlinearity that is important. The interaction can be drastically enhanced 
when optical waves are confined to within a small interaction volume, possibly on the order 
of less than the wavelength of the waves. Photonic crystal structures, nanoresonators or slot 
optical waveguides offer such enhanced light confinement.  

A combination of all nonlinear interaction enhancing approaches is demonstrated in a Kerr 
switch design7 where a ring nanoresonator structure coupled with a slot waveguide filled 
with silicon nanocrystal is used. For a nominal design wavelength of 1.55 = ߣ µm and the  

resonator’s length of 38 µm, the free spectral range of 15.5 nm was obtained with the 
linewidth of 0.043 nm. The transmission characteristics are shown in figure 4 for zero 
refractive index change and for a 10 dB extinction ratio, respectively.  

This shift in figure 4 requires an effective index change of Δneff = 1.9 x 10-5, which in turn calls 
for the material index change of ΔnSi-nc = 3.8 x 10-5. Taking an experimental value for silicon 
nanocrystal as χ(3) = 2 x 10-14 cm2/V2 (29% of Si in SiO2), the refractive index change for a 
voltage of 1V/100 nm is ΔnSi-nc = 4.2 x 10-5. The nonlinear loss coefficient is β2 = 70 cm/GW. 
Taking the power inside the waveguide as 4 mW and with the cross-section being 4 x 10-10 
cm2, the nonlinear absorption per one round trip is less than 0.03 dB. This is less than in30, 
where the loss is due to free carriers. The Kerr effect is as fast as sub-picoseconds. The 
practical speed of the switch is limited by the capacitance of the electrical contacts onto the 
resonator/waveguide configuration. For realistic parameters chosen7, the capacitance is 
approximately 0.01pF, which with 50 Ω yields a theoretical bandwidth of 300 GHz.   

 
Figure 4. The spectra of Kerr switch. 
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8. Electrically induced birefringence 
Polarization dynamics of ultra-short pulses propagating in an electrically biased silicon 
waveguide31 showed interesting features related to wave propagation in nonlinear media. 
An external electric filed applied to a cubic material induces birefringence via the quadratic 

electro-optic effect (DC Kerr effect). Transmitted optical pulse polarization can thus be 
controlled by adjusting the magnitude of the external electric field. When studying 
propagation of waves in semiconductor materials, the free-carrier induced susceptibility 
needs to be accounted for by including the free-carrier index changes and the free-carrier 
absorption into the analysis31, 32. The birefringence coefficient as it depends on the applied 
external electric field can be written as: 

  κeff = [Δβ + ε0 k0 c nL nNL (Eext)2]/2,  (8) 

where Δβ is the material linear birefringence. Figure 5 illustrates the electrical-control effect 
by showing the polarization component transmission coefficient of a 6-mm long waveguide 
as it changes with the input optical power of a 70-fs long Gaussian pulse. 

It should be pointed out that the quantities Eext1 and Eext2 are amplitudes of the electric field 
that has, generally, a certain profile along the propagation direction (along the waveguide). 
Shaping the electric field offers an additional control parameter. The temporal profile of the 
ultra-short pulse can be governed by a field profile properly designed31; an example of a 
profile is an exponential dependence such that: 

 
Figure 5. Fig. 5: Transmission coefficient of an electrically induced birefringence waveguide; Eext1=12.5 
V/µm, Eext2=0 V/µm, Δβ=2x10-5k0. 
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ሻݖ௘௫௧ሺܧ  = ቆ ୼ఉఌబ௞బ௡ಽ௡ಿಽ ൫݁ఈሺ௅ି௭ሻ − 1൯ቇଵ/ଶ,   (9) 

where L is the length of the electric field profiling along the propagation direction, and α  
is a design parameter determining the rate of decay of the exponential profile. Figure  
6 illustrates the effect of a properly designed spatial profile of the control electric field  
for a Gaussian 70-fs pulse traveling along a 2-cm long waveguide. The azimuths of the pulse 
are chosen within the polarization instability regime. The field shape design parameter  
α = 57.5 m-1.  

   
Figure 6. Transmission of Gaussian pulse through electric-field profiled nonlinear waveguide 

9. Photorefractive effect in silicon 

The crystal symmetry in cubic or isotropic materials, e.g. silicon or glass, etc., can be broken 
via the third-order nonlinearity by applying an external electric field. This causes such 
materials behave as if they possessed the linear electro-optic effect. The photorefractive 
effect has been known since the early 1960's33; it was observed in many electro-optic crystals, 
including ܱܾܰ݅ܮଷ, ܲ݊ܫ ,ݏܣܽܩ, or 34݁ܶ݀ܥ. The photorefractive effect is an automatically phase-
matched nonlinear phenomenon, whereby interfering light modes can generate a spatially 
phase-shifted electric field in a host material. This spatially phase-shifted electric field, in 
turn, couples the interfering light modes in a phase-matched fashion.  

It is therefore interesting to investigate the existence and properties of the photorefractive 
effect in materials without the natural linear electro-optic effect, and exploit the third-order 
nonlinearity to establish it6. The detailed and complex spatio-temporal nonlinear analysis of 
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two contra-propagating waves, including the free carriers in a semiconductor, shows that 
the photorefractive effect can lead to gain or loss of one of the waves (signal or probe). The 
power exchange with the other wave (pump) is controlled by the polarity of the external 
electric field. This is electronically controlled unidirectional power transfer. It may also be 
considered as a parametric process. 

Figure 7 shows an example of such power transfer in a silicon waveguide at λ = 1.55  
µm with an effective cross-section of 0.3 µm2, linear loss of 0.57 cm-1, and an n-doping of 1019 
cm-3.   

 
Figure 7. Net signal gain in electrically induced photorefractive silicon waveguide 

As can be seen in the figure, the net signal gain can be achieved despite material losses. 
Also, as is expected in any photorefractive medium, the net signal gain increases with 
decreasing input signal power for a constant pump power.  

If the frequency detuning, Ω, is different from zero, gain enhancement will be experienced 
at a certain frequency detuning, i.e. at which the amplitude of the photo-induced space 
charge electric field is maximized6. The net signal gain versus frequency detuning is 
exhibited in figure 8. 
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.  
Figure 8. Net signal gain enhancement versus frequency detuning; Eext = 25 V/µm  

10. Discussion 
This work focused on investigating optical wave propagation properties and associated 
potential devices functionalities in Kerr-type media with applied external electric field. The 
assisting external fields induce a quadratic electro-optic effect in a centro-symmetric (cubic, 
isotropic) third-order nonlinear materials (e.g. glass, silicon, silicon nanocrystal). If the 
optical field of propagating waves is sufficiently intense, the all-optical effects start to 
appear as well. The interplay between these two effects (the Kerr electro-optic and all-
optical effects) was the main focus with the goal to demonstrate phenomena potentially 
useful in the design of novel photonic devices. Although the few presented numerical 
examples are for silicon, silicon nanocrystal or silicon nanowires, chosen due to the silicon’s 
attractiveness in its integreability with standard microelectronics technologies, the obtained 
results are applicable to a variety of other optical materials, including silica glass, GaAs 
bulk, CdTe bulk, GaAs and InP quantum wells, CdTe nanocrystal, CdS nanocrystal,  poly 
(β-pinene), fullerene-containing polyurethane films, natural rubber, and many others.  

Optical waves propagating in an electro-optic-Kerr-effect-induced birefringence 
medium were studied showing electrical and optical control of power exchange 
between their components. The birefringence is proportional to the square of an applied 
external electric field. The concept of an effective refractive index containing nonlinear 
optical as well as electrical dependencies was introduced to model Kerr nonlinear wave 
propagation behaviour when the material is subjected to external electric fields The 
wave properties suggest that one can exploit them in designing novel photonic devices, 
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such as, for example, an optically controlled electro-optical switch or an electronically 
controlled all-optical modulator.  

An optical Fabry–Pérot resonator filled with a Kerr nonlinear material and subjected to an 
external electric field was investigated. As expected, the optical input-output transfer function 
displays hysteresis that is controlled by the applied electric field. The stability analysis revealed 
electronically-tunable optical multi-stability of the resonator. This means that the state of the 
optical intensity implies a desired information for a given external electric field. Such a feature 
offers a new functionality whereby electrical information can be stored optically.  

When a Bragg grating is made in a Kerr material, the electrically induced control of the 
spatial inhomogeneity is established. As a result, the modulation instability gain was found 
to be electrically controlled. This suggests a possible realization of an electrically controlled 
pulse generator. Also, the amplitude and the width of the gap soliton can be, in such a case, 
electrically adjustable, and thus a tunable soliton channel is possible. The external electric 
field having a spatial profile modulated by a slow varying profile makes it possible to 
control the nonlinear grating band gap electrically very efficiently compared to other known 
means, the reason being that by profiling the electric field one gains a direct control over the 
grating coupling coefficients.  

Ultra-short optical pulses propagating in a nonlinear Kerr medium while an external electric 
field was applied, was studied. A silicon waveguide was considered. Several realistic effects 
were taken into account, including large linear loss, nonlinear anisotropy, two-photon 
absorption, and associated free carriers. It was shown that the silicon waveguide can be 
used as a practical platform for all-optical applications, including polarization switching and 
pulse shaping. A properly designed of the external electric spatial profile was shown to help 
achieve polarization instability regime, which is important for realizing sensitive 
polarization discriminating devices.  

The new photorefractive effect in cubic materials (e.g. silicon nanocrystal) was established 
and investigated. As cubic materials do not possess the linear electro-optic effect, the 
photorefractive effect is not readily obtained. We demonstrated that a proper external 
electric field can assist in realizing the effect in such materials and structures, for example in 
silicon waveguides. Despite the linear and nonlinear losses, it was shown that a weak signal 
counter-propagating with a strong pump can experience a net gain. One may suggest that 
integrated photorefractive devices that are optically and electronically controlled can be 
designed based on this new phenomenon. 

The four-wave mixing (FWM) phenomenon was not examined in this work. However, since 
it is a nonlinear process that takes place in a third-order nonlinear medium, resulting in the 
generation of a new optical wave with a new frequency (parametric process), it is realizable 
in the Kerr media considered here. As it is known, a readily efficient FWM process cannot 
be achieved because of the phase-mismatching dilemma. One way to achieve efficient FWM 
is to utilize a nonlinear periodic structure35. Based on the work presented here, a properly 



 
Optical Wave Propagation in Kerr Media 191 

profiled external electric field could be employed to achieve a tunable quasi-phase matching 
operation. It is thus interesting to investigate the FWM phenomenon in the presence of an 
external electric field, as this is very important in realizing tunable devices for all-optical 
communications and processing. 

As a conclusion, owing to its potential for integration with micro-electronics, the silicon-
based technology is considered one of the most important means for photonic applications. 
The dual electro-optical and all-optical functionality studied here in materials of the same 
symmetry as silicon and its derivatives, resulting from the Kerr effect, offers a promise and a 
potential for realizing technologically compatible and implementation friendly electrically-
controlled all-optical devices and/or optically controlled electro-optical devices that can be 
readily integrated onto a common material platform.   

11. Conclusion      

Optical wave propagation in a Kerr-type nonlinear medium has been analyzed theoretically and 
studied numerically. New features were found where not only waves and their polarization 
interactions are present as a result of the nonlinearity of the medium, but also an interplay 
between the optical and electrical Kerr effects contributes to the resulting functionality. Several 
novel wave propagation effects were discovered. They include cross-polarized wave conversion, 
optical multistability, nonlinear tunability of periodic structures, ultra-fast electro-optic 
switching, and a new photorefractive effect. Possible applications of such novel functionalities 
were discussed. Examples utilizing silicon as the common semiconductor material were given.  
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1. Introduction

Various methods for the analysis of wave propagation in the curved waveguides have been
studied in the literature. Two interesting methods of investigation of propagation along
the curved waveguides are based on the ray model and the mode model. A review of the
hollow waveguide technology [1-2] and a review of IR transmitting, hollow waveguides,
fibers and integrated optics [3] were published. The first theoretical analysis of the problem
of hollow cylindrical bent waveguides was published by Marcatili and Schmeltzer [4], where
the theory considers the bending as a small disturbance and uses cylindrical coordinates to
solve Maxwell equations. They derive the mode equations of the disturbed waveguide using
the ratio of the inner radius r to the curvature radius R as a small parameter (r/R � 1). Their
theory predicts that the bending has little influence on the attenuation of a hollow metallic
waveguide. Marhic [5] proposed a mode-coupling analysis of the bending losses of circular
metallic waveguide in the IR range for large bending radii. In the circular guide it is found that
the preferred TE01 mode can couple very effectively to the lossier TM11 mode when the guide
undergoes a circular bend. For circular waveguides, the microwave approximation has been
used for the index of refraction and the straight guide losses, and the results indicate very
poor bending properties due to the near degeneracy of the TE01 and TM11 modes, thereby
offering an explanation for the high losses observed in practice.

Miyagi et al. [6] suggested an improved solution, which provided agreement with the
experimental results, but only for r/R � 1. A different approach [5,7] treats the bending
as a perturbation that couples the modes of a straight waveguide. That theory explains
the large difference between the metallic and metallic-dielectric bent waveguide attenuation.
The reason for this difference is that in metallic waveguides the coupling between the TE
and TM modes caused by the bending mixes modes with very low attenuation and modes
with very high attenuation, whereas in metallic-dielectric waveguides, both the TE and TM
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modes have low attenuation. Hollow waveguides with both metallic and dielectric internal
layers were proposed to reduce the transmission losses. Hollow-core waveguides have two
possibilities. The inner core materials have relative refractive indices greater than one (namely,
leaky waveguides) or the inner wall material has a relative refractive index of less than one.
A hollow waveguide can be made, in principle, from any flexible or rigid tube (plastic, glass,
metal, etc.) if its inner hollow surface (the core) is covered by a metallic layer and a dielectric
overlayer. This layer structure enables us to transmit both the TE and TM polarization with
low attenuation [5,7].

A method for the electromagnetic (EM) analysis of bent waveguides [8] is based on the
expansion of the bend mode in modes of the straight waveguides, including the modes
under the cutoff. A different approach to calculate the bending losses in curved dielectric
waveguides [9] is based on the well-known conformal transformation of the index profile
and on vectorial eigenmode expansion combined with perfectly matched layer boundary
conditions to accurately model radiation losses. An improved ray model for simulating
the transmission of laser radiation through a metallic or metallic dielectric multibent hollow
cylindrical waveguide was proposed [10-11]. It was shown theoretically and proved
experimentally that the transmission of CO2 laser radiation is possible even through bent
waveguide.

The propagation of EM waves in a loss-free inhomogeneous hollow conducting waveguide
with a circular cross section and uniform plane curvature of the longitudinal axis was
considered [12]. For small curvature the field equations can be solved by means of an
analytical approximation method. In this approximation the curvature of the axis of the
waveguide was considered as a disturbance of the straight circular cylinder, and the perturbed
torus field was expanded in eigenfunctions of the unperturbed problem. An extensive survey
of the related literature can be found especially in the book on EM waves and curved
structures [13]. The radiation from curved open structures is mainly considered by using
a perturbation approach, that is by treating the curvature as a small perturbation of the
straight configuration. The perturbative approach is not entirely suitable for the analysis
of relatively sharp bends, such as those required in integrated optics and especially short
millimeter waves. The models based on the perturbation theory consider the bending as a
perturbation (r/R � 1), and solve problems only for a large radius of curvature.

Several methods of investigation of propagation were developed for study of empty curved
waveguide and bends [14-17]. The results of precise numerical computations and extensive
analytical investigation of the angular propagation constants were presented for various
electromagnetic modes which may exit in waveguide bends of rectangular cross section [14].
A new equivalent circuit for circular E-plane bends, suitable for any curvature radius
and rectangular waveguide type was presented in Ref. [15]. An accurate and efficient
method of moments solution together with a mode-matching technique for the analysis
of curved bends in a general parallel-plate waveguide was described in the case of a
rectangular waveguides [16]. A rigorous differential method describing the propagation of
an electromagnetic wave in a bent waveguide was presented in Ref. [17].

Several methods of propagation along the toroidal and helical waveguides were developed,
based on Maxwell’s equations. The method for the analysis of EM wave propagation along
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the toroidal waveguide [18] has been derived with arbitrary profiles, and with rectangular
metal tubes. An improved approach has been derived for the propagation of EM field along a
toroidal dielectric waveguide with a circular cross-section [19]. The meaning of the improved
approach is that the method employs helical coordinates (and not cylindrical coordinate, such
as in the methods that considered the bending as a perturbation). Thus the Laplacian of
the wave equations is based on the metric coefficients in the case of the helical waveguide
with a circular cross section. The method for the propagation of EM field along a helical
dielectric waveguide with a circular cross section [20] has been proposed. The method for
the propagation of EM field along a helical dielectric waveguide with a rectangular cross
section has been proposed [21]. It is very interesting to compare between the mode model
methods for wave propagation in the curved waveguide with a rectangular cross section and
with a circular cross section. The methods [18-19] have been derived for one bending of the
toroidal waveguide (approximately a plane curve) in the case of small values of step angle of
the helix. The methods [20-21] have been derived for one bending of the helical waveguide
(a space curved waveguide) for an arbitrary value of the step’s angle of the helix. These
methods were generalized from a toroidal dielectric waveguide (approximately a plane curve)
with one bending to a helical waveguide (a space curved waveguide for an arbitrary value of
the step’s angle of the helix) with one bending. The two above methods employ toroidal or
helical coordinates (and not cylindrical coordinates, such as in the methods that considered
the bending as a perturbation (r/R� 1)), and the calculations are based on using Laplace and
Fourier transforms, and the output fields are computed by the inverse Laplace and Fourier
transforms. Laplace transform on the differential wave equations is needed to obtain the
wave equations (and thus also the output fields) that are expressed directly as functions of the
transmitted fields at the entrance of the waveguide at ζ = 0+. Thus, the Laplace transform is
necessary to obtain the comfortable and simple input-output connections of the fields.

This chapter presents two improved methods for the propagation of EM fields along a helical
dielectric waveguide with a circular cross section and a rectangular cross section. The two
different methods employ helical coordinates (and not cylindrical coordinates, such as in the
methods that considered the bending as a perturbation). The calculations are based on using
Laplace and Fourier transforms, and the output fields are computed by the inverse Laplace
and Fourier transforms. Laplace transform on the differential wave equations is needed to
obtain the wave equations and the output fields that are expressed directly as functions of the
transmitted fields at the entrance of the waveguide. Thus, the Laplace transform is necessary
to obtain the comfortable and simple input-output connections of the fields. The output power
transmission and the output power density are improved by increasing the step’s angle or the
radius of the cylinder of the helix, especially in the cases of space curved waveguides. These
methods can be a useful tool to improve the output results in all the cases of the hollow helical
waveguides in medical and industrial regimes (by the first method) and in the microwave
and millimeter-wave regimes, for the diffused optical waveguides in integrated optics (by the
second method).

2. The derivation of the two different methods

This chapter presents two improved methods for the propagation of EM fields along a helical
dielectric waveguide with a circular cross section (by the first method) and a rectangular
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cross section (by the second method). A general scheme of the helical coordinate system (r,
θ, ζ) is shown in Fig. 1(a) and the circular helical waveguide is shown in Fig. 1(b), where
0 ≤ r ≤ a + δm , and 2a is the internal diameter of the cross-section. A general scheme
of the helical coordinate system (x, y, ζ) is shown in Fig. 1(c) and the rectangular helical
waveguide is shown in Fig. 1(d), where 0 ≤ x ≤ a, 0 ≤ y ≤ b, and a and b are the dimensions
in the cross section. In these figures, R is the radius of the cylinder, and ζ is the coordinate
along the axis of the helical waveguide.

It is very interesting to compare between the mode model methods for wave propagation
in the helical waveguide with a circular cross section and in the helical waveguide with a
rectangular cross section. These the two kinds of the different methods enable us to solve
practical problems with different boundary conditions. The two methods employ helical
coordinates (and not cylindrical coordinates, such as in the methods that considered the
bending as a perturbation (r/R )). The calculations are based on using Laplace and Fourier
transforms, and the output fields are computed by the inverse Laplace and Fourier transforms.
Laplace transform on the differential wave equations is needed to obtain the wave equations
(and thus also the output fields) that are expressed directly as functions of the transmitted
fields at the entrance of the waveguide at ζ = 0+. Thus, the Laplace transform is necessary
to obtain the comfortable and simple input-output connections of the fields. The derivation for
a helical waveguide with a circular cross section is given in detail in [20]. The derivation for
a helical waveguide with a rectangular cross section is given in detail in [21]. Let us repeat
these difference methods, in brief.

2.1 Formulation of the problem for the helical coordinate system (r, θ, ζ) and for
the helical coordinate system (x, y, ζ).

We start by finding the metric coefficients from the helical transformation of the coordinates.
The helical transformation of the coordinates is achieved by two rotations and one translation,
and is given in the form:⎛⎝ X

Y
Z

⎞⎠ =

⎛⎝ cos(φc) −sin(φc) 0
sin(φc) cos(φc) 0

0 0 1

⎞⎠⎛⎝ 1 0 0
0 cos(δp) −sin(δp)
0 sin(δp) cos(δp)

⎞⎠⎛⎝ r sin θ

0
r cos θ

⎞⎠+

⎛⎝ Rcos(φc)
Rsin(φc)
ζsin(δp)

⎞⎠ , (1)

where ζ is the coordinate along the helix axis, R is the radius of the cylinder, δp is the step’s
angle of the helix (see Figs. (2(a))-(2(b))), and φc = (ζ cos(δp))/R. Likewise, 0 ≤ r ≤ a + δm ,
where 2a is the internal diameter of the cross-section of the helical waveguide, and δm is the
thickness of the metallic layer, as shown in Fig. 3(a).

Figure 2(a) shows the rotations and translation of the orthogonal system (X, ζ, Z) from point
A to the orthogonal system (X,Y,Z) at point K. Figure 2(b) shows the deployment of the helix
depicted in Fig. 2(a).

According to Equation (1), the helical transformation of the coordinates with a circular cross
section becomes

X = (R + r sin θ) cos(φc) + r sin(δp) cos θ sin(φc), (2a)

Y = (R + r sin θ) sin(φc)− r sin(δp) cos θ cos(φc), (2b)
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Figure 1. (a) A general scheme of the helical coordinate system (r, θ, ζ). (b) The circular helical
waveguide. (c) A general scheme of the helical coordinate system (x, y, ζ). (d) The rectangular helical
waveguide.
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Figure 2. (a) Rotations and translation of the orthogonal system (X, ζ, Z) from point A to the orthogonal
system (X,Y,Z) at point K. (b) Deployment of the helix.

Z = r cos θ cos(δp) + ζ sin(δp), (2c)

where φc = (ζ/R) cos(δp), R is the radius of the cylinder, and (r, θ) are the parameters of the
cross-section. Note that ζ sin(δp) = Rφc tan(δp).
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The metric coefficients in the case of the helical waveguide with a circular cross section,
according to Eqs. (2a)-(2c) are:

hr = 1, (3a)

hθ = r, (3b)

hζ =

√
(1 +

r
R

sin θ)
2
cos2(δp) + sin2(δp)(1 +

r2

R2 cos2θcos2(δp))

=

√
1 +

2r
R

sin θcos2(δp) +
r2

R2 sin2θcos2(δp) +
r2

R2 cos2θcos2(δp)sin2(δp)

� 1 +
r
R

sin θcos2(δp). (3c)

Note that the third and the fourth terms in the root of the metric coefficient hζ are negligible
in comparison to the first and the second terms when (r/R)2 � 1.

The metric coefficients, and the helical transformation in the case of the helical coordinate
system (x, y, ζ) are given from the above equations for the helical coordinate system (r, θ, ζ)
and according to Fig. 1(a), where r sin θ = x, and r cos θ = y. Thus, the metric coefficients in
the case of the helical waveguide with a rectangular cross section are:

hx = 1, (4a)

hy = 1, (4b)

hζ � 1 +
x
R

cos2(δp). (4c)

3. Solution of the wave equations for the helical coordinate system (r, θ, ζ)
and for the helical coordinate system (x, y, ζ).

The two kinds of the different methods enable us to solve practical problems with different
boundary conditions. The two methods employ helical coordinates (and not cylindrical
coordinates, such as in the methods that considered the bending as a perturbation (r/R �
1)). The calculations are based on using Laplace and Fourier transforms, and the output
fields are computed by the inverse Laplace and Fourier transforms. Laplace transform on the
differential wave equations is needed to obtain the wave equations (and thus also the output
fields) that are expressed directly as functions of the transmitted fields at the entrance of the
waveguide at ζ = 0+. Thus, the Laplace transform is necessary to obtain the comfortable and
simple input-output connections of the fields.

3.1 Solution of the wave equations for the helical coordinate system (r, θ, ζ).

The derivation is based on an arbitrary value of the step’s angle of the helix (δp). The
derivation is based on Maxwell’s equations for the computation of the EM field and the
radiation power density at each point during propagation along a helical waveguide, with
a radial dielectric profile. The longitudinal components of the fields are developed into the
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Fourier-Bessel series. The transverse components of the fields are expressed as a function
of the longitudinal components in the Laplace transform domain. Finally, the transverse
components of the fields are obtained by using the inverse Laplace transform by the residue
method, for an arbitrary value of the step’s angle of the helix (δp).

The derivation is given for the lossless case to simplify the mathematical expressions. In a
linear lossy medium, the solution is obtained by replacing the permitivity ε by εc = ε −
j(σ/ω) in the solutions for the lossless case, where εc is the complex dielectric constant, and
σ is the conductivity of the medium. The boundary conditions for a lossy medium are given
after the derivation. For most materials, the permeability μ is equal to that of free space (μ =
μ0). The wave equations for the electric and magnetic field components in the inhomogeneous
dielectric medium ε(r) are given by

∇2E + ω2μεE +∇
(

E · ∇ε

ε

)
= 0, (5a)

and
∇2H + ω2μεH +

∇ε

ε
× (∇× H) = 0, (5b)

respectively. The transverse dielectric profile (ε(r)) is defined as ε0(1 + g(r)), where
ε0 represents the vacuum dielectric constant, and g(r) is its profile function in the
waveguide. The normalized transverse derivative of the dielectric profile (gr) is defined as
(1/ε(r))(∂ε(r)/∂r).

From the transformation of Eqs. (3a)-(3c) we can derive the Laplacian of the vector E
(i.e., ∇2E), and obtain the wave equations for the electric and magnetic fields in the
inhomogeneous dielectric medium. It is necessary to find the values of∇ · E,∇(∇ · E),∇× E,
and ∇× (∇× E) in order to obtain the value of∇2E, where∇2E = ∇(∇ · E)−∇× (∇× E).
All these values are dependent on the metric coefficients (3a,b,c).

The ζ component of∇2E is given by

(∇2E)ζ = ∇2Eζ +
2

Rh2
ζ

[
sin θ

∂

∂ζ
Er + cos θ

∂

∂ζ
Eθ

]
− 1

R2h2
ζ

Eζ , (6)

where

∇2Eζ =
∂2

∂r2 Eζ +
1
r2

∂2

∂θ2 Eζ +
1
r

∂

∂r
Eζ +

1
hζ

[
sin θ

R
∂

∂r
Eζ +

cos θ

rR
∂

∂θ
Eζ +

1
hζ

∂2

∂ζ2 Eζ

]
, (7)

and in the case of hζ = 1 + (r/R) sin θcos2(δp).

The longitudinal components of the wave equations (5a) and (5b) are obtained by deriving
the following terms [

∇(E · ∇ε

ε
)

]
ζ

=
1
hζ

∂

∂ζ

[
Er gr

]
, (8)
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and [
∇ε

ε
× (∇× H)

]
ζ

= jωε

[
∇ε

ε
× E

]
ζ

= jωεgrEθ . (9)

The longitudinal components of the wave equations (5a) and (5b) are then written in the form(
∇2E

)
ζ

+ k2Eζ +
1
hζ

∂

∂ζ

(
Er gr

)
= 0, (10)

(
∇2H

)
ζ

+ k2Hζ + jωεgrEθ = 0, (11)

where (∇2E)ζ , for instance, is given in Eq. (6). The local wave number parameter is k =

ω
√

με(r) = k0
√

1 + g(r), where the free-space wave number is k0 = ω
√

μ0ε0.

The transverse Laplacian operator is defined as

∇2
⊥ ≡ ∇2 − 1

h2
ζ

∂2

∂ζ2 . (12)

The Laplace transform

ã(s) = L{a(ζ)} =
∫ ∞

ζ=0
a(ζ)e−sζdζ (13)

is applied on the ζ-dimension, where a(ζ) represents any ζ-dependent variables, where ζ =
(Rφc)/ cos(δp).

The next four steps are given in detail in Ref. [19], as a part of our derivation. Let us repeat
these four steps, in brief.

1). By substituting Eq.(6) into Eq.(10) and by using the Laplace transform (13), the longitudinal
components of the wave equations (Eqs. (10)-(11)) are described in the Laplace transform
domain, as coupled wave equations.

2). The transverse fields are obtained directly from Maxwell’s equations, and by using the
Laplace transform (13), and are given by

Ẽr(s) =
1

s2 + k2h2
ζ

{
− jωμ0

r

[
r
R

cos θcos2(δp)H̃ζ + hζ
∂

∂θ
H̃ζ

]
hζ + s

[
sin θ

R
cos2(δp)Ẽζ + hζ

∂

∂r
Ẽζ

]

+sEr0 − jωμ0Hθ0 hζ

}
, (14a)

Ẽθ(s) =
1

s2 + k2h2
ζ

{
s
r

[
r
R

cos θcos2(δp)Ẽζ + hζ
∂

∂θ
Ẽζ

]
+ jωμ0hζ

[
sin θ

R
cos2(δp)H̃ζ + hζ

∂

∂r
H̃ζ

]

+sEθ0 + jωμ0Hr0 hζ

}
, (14b)

200 Wave Propagation Theories and Applications



Analyzing Wave Propagation in Helical Waveguides Using Laplace, Fourier, and Their Inverse Transforms, and Applications 9

H̃r(s) =
1

s2 + k2h2
ζ

{
jωε

r

[
r
R

cos θcos2(δp)Ẽζ + hζ
∂

∂θ
Ẽζ

]
hζ + s

[
sin θ

R
cos2(δp)H̃ζ + hζ

∂

∂r
H̃ζ

]

+sHr0 + jωεEθ0hζ

}
, (14c)

H̃θ(s) =
1

s2 + k2h2
ζ

{
s
r

[
r
R

cos θcos2(δp)H̃ζ + hζ
∂

∂θ
H̃ζ

]
− jωεhζ

[
sin θ

R
cos2(δp)Ẽζ + hζ

∂

∂r
Ẽζ

]

+sHθ0 − jωεEr0hζ

}
. (14d)

Note that the transverse fields are dependent only on the longitudinal components of the
fields and as function of the step’s angle (δp) of the helix.

3). The transverse fields are substituted into the coupled wave equations.

4). The longitudinal components of the fields are developed into Fourier-Bessel series, in order
to satisfy the metallic boundary conditions of the circular cross-section. The condition is that
we have only ideal boundary conditions for r=a. Thus, the electric and magnetic fields will be
zero in the metal.

5). Two sets of equations are obtained by substitution the longitudinal components
of the fields into the wave equations. The first set of the equations is multiplied by
cos(nθ)Jn(Pnmr/a), and after that by sin(nθ)Jn(Pnmr/a), for n 	= 0. Similarly, the second set of
the equations is multiplied by cos(nθ)Jn(P

′
nmr/a), and after that by sin(nθ)Jn(P

′
nmr/a), for

n 	= 0.

6). In order to find an algebraic system of four equations with four unknowns, it is
necessary to integrate over the area (r, θ), where r = [0, a], and θ = [0, 2π], by using the
orthogonal-relations of the trigonometric functions.

7). The propagation constants βnm and β
′
nm of the TM and TE modes of the hollow waveguide

[22] are given, respectively, by βnm =
√

k2
o − (Pnm/a)2 and β

′
nm =

√
k2

o − (P′
nm/a)2, where the

transverse Laplacian operator (∇2
⊥) is given by −(Pnm/a)2 and −(P′

nm/a)
2

for the TM and TE
modes of the hollow waveguide, respectively.

The separation of variables is obtained by using the preceding orthogonal-relations. Thus the
algebraic equations (n 	= 0) are given by

αn
(1)An + βn

(1)Dn =
1
π
̂(BC1)n, (15a)

αn
(2)Bn + βn

(2)Cn =
1
π
̂(BC2)n, (15b)

βn
(3)Bn + αn

(3)Cn =
1
π
̂(BC3)n, (15c)

βn
(4)An + αn

(4)Dn =
1
π
̂(BC4)n. (15d)
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Further we assume n
′
=n=1. The elements (αn

(1), βn
(1), etc), on the left side of (15a) for n=1 are

given for an arbitrary value of the step’s angle (δp) by:

α1
(1)mm

′
= π

(
s2 + β

2
1m′

)[(
s2 + k0

2

)
G(1)mm

′

00 + k0
2G(1)mm

′

01

]

+π
1

R4 k0
2s2

(
1
4

cos4(δp)G
(1)mm

′

02 +
1
2

cos4(δp)G
(1)mm

′

03

)

+πk0
2

{
s2G(1)mm

′

01 +G(1)mm
′

05 +
1

R2

(
G(1)mm

′

00 +G(1)mm
′

01

)
+

3
2R2 β2

1m′ cos4(δp)

(
G(1)mm

′

02 +G(1)mm
′

03

)

+
1

4R4 cos4(δp)

(
G(1)mm

′

02 + G(1)mm
′

03

)
+

1
8R4 cos8(δp)

(
G(1)mm

′

06 + G(1)mm
′

07

)}

+πs2

[
G(1)mm

′

08 +
1

2R2 cos2(δp)G
(1)mm

′

00 +
1

4R2

(
cos4(δp)β2

1m′ G
(1)mm

′

02 + cos2(δp)G
(1)mm

′

09

)

+
1

2R2

P1m′

a
cos2(δp)

(
G(1)mm

′

10 +
1
2

cos2(δp)G
(1)mm

′

11

)]

+πk0
4cos4(δp)

[
3

2R2

(
G(1)mm

′

03 + G(1)mm
′

04

)
+

1
8R4 cos8(δp)

(
G(1)mm

′

07 + G(1)mm
′

12

)]
, (16a)

β1
(1)mm

′
= −jωμ0πs

{
G(1)mm

′

13 +

(
1
2

cos2(δp) +
3
4

cos4(δp)

)
1

R2 G(1)mm
′

14

+

(
1
2
+ cos2(δp)

)
1

R2 G(1)mm
′

15 − 1
2R2 G(1)mm

′

00 − cos2(δp)
1

R2

P
′
1m′

a
G(1)mm

′

16

}
, (16b)

where the elements of the matrices (G(1)mm
′

00 , etc.) are given in [20]. Similarly, the rest of the
elements on the left side in Eqs. (15a)-(15d) are obtained. We establish an algebraic system of
four equations with four unknowns. All the elements of the matrices in the Laplace transform
domain are dependent on the step’s angle of the helix (δp), the Bessel functions; the dielectric
profile g(r); the transverse derivative gr(r); and (r, θ).

The elements of the boundary conditions (e.g., ̂(BC2)1) at ζ = 0+ on the right side in (15b) are
dependent on the step’s angle δp as follows :

̂(BC2)1 =
∫ 2π

0

∫ a

0
(BC2) sin θ J1(P1mr/a)rdrdθ,

where

(BC2) =

[(
s2 + k2h2

ζ

)(
sEζ0 + E

′
ζ0

)]
+ jωμ0Hθ0 sgrh2

ζ
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+
2
R

hζ sin θ

(
jωμ0Hθ0 s + k2Er0 hζ

)
+

2
R

hζ cos θ

(
− jωμ0Hr0 s + k2Eθ0 hζ

)
+ k2h3

ζ Er0 gr ,

and for hζ = 1 + (r/R) sin θcos2(δp).

The boundary conditions at ζ = 0+ for TEM00 mode in excitation become to:

̂(BC2)1 = 2π

{∫ a

0
Q(r)(k(r) + js)J1m(P1mr/a)rdr

}
δ1n

+
4jsπ

R2 cos2(δp)

{∫ a

0
Q(r)k(r)J1m(P1mr/a)r2dr

}
δ1n

+
9π

2R2 cos4(δp)

{ ∫ a

0
Q(r)k2(r)J1m(P1mr/a)r3dr

}
δ1n

+
3jsπ

2R2 cos4(δp)

{ ∫ a

0
Q(r)k(r)J1m(P1mr/a)r3dr

}
δ1n

+
8π

R2 cos2(δp)

{ ∫ a

0
Q(r)k2(r)J1m(P1mr/a)r2dr

}
δ1n (17)

where :
Q(r) =

E0
nc(r) + 1

gr exp (−(r/wo)
2).

Similarly, the remaining elements of the boundary conditions at ζ = 0+ are obtained. The
matrix system of Eqs.(15a)-(15d) is solved to obtain the coefficients (A1, B1, etc).

According to the Gaussian beams [23] the parameter w0 is the minimum spot-size at the plane
z=0, and the electric field at the plane z=0 is given by E = E0 exp[−(r/wo)

2]. The modes
excited at ζ = 0 in the waveguide by the conventional CO2 laser IR radiation (λ=10.6 μm) are
closer to the TEM polarization of the laser radiation. The TEM00 mode is the fundamental and
most important mode. This means that a cross-section of the beam has a Gaussian intensity
distribution. The relation between the electric and magnetic fields [23] is given by E/H =√

μ0/ε0 ≡ η0, where η0 is the intrinsic wave impedance. Suppose that the electric field is
parallel to the y-axis. Thus the components of Ey and Hx are written by the fields Ey = E0

exp[−(r/wo)
2] and Hx = −(E0/η0) exp[−(r/wo)

2].

After a Gaussian beam passes through a lens and before it enters to the waveguide, the waist
cross-sectional diameter (2w0) can then be approximately calculated for a parallel incident
beam by means of w0=λ/(π θ) � (f λ)/(π w). This approximation is justified if the parameter
w0 is much larger than the wavelength λ. The parameter of the waist cross-sectional diameter
(2w0) is taken into account in our method, instead of the focal length of the lens (f). The initial
fields at ζ = 0+ are formulated by using the Fresnel coefficients of the transmitted fields [24]
as follows

E+
r0
(r) = TE(r)(E0e−(r/wo)

2
sin θ), (18a)
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E+
θ0
= TE(r)(E0e−(r/wo)

2
cos θ), (18b)

H+
r0

= −TH(r)((E0/η0)e
−(r/wo)

2
cos θ), (18c)

H+
θ0
= TH(r)((E0/η0)e−(r/wo)

2
sin θ), (18d)

where E+
ζ0

= H+
ζ0

= 0, TE(r) = 2/[(n(r) + 1], TH(r) = 2n(r)/[(n(r) + 1], and n(r) = [εr(r)]1/2.
The index of refraction is denoted by n(r).

The transverse components of the fields are finally expressed in a form of transfer matrix
functions for an arbitrary value of δp as follows:

Er(r, θ, ζ) = E+
r0(r)e

−jkhζ ζ − jωμ0

R
hζ cos2 θcos2(δp)∑

m′
Cm

′
S1 (ζ)J1(ψ)

− jωμ0

R
hζ sin θ cos θcos2(δp)∑

m′
Dm

′
S1 (ζ)J1(ψ) +

jωμ0

r
h2

ζ sin θ ∑
m′

Cm
′

S1 (ζ)J1(ψ)

− jωμ0

r
h2

ζ cos θ ∑
m′

Dm
′

S1 (ζ)J1(ψ) +
1
R

sin θ cos θcos2(δp)∑
m′

Am
′

S2 (ζ)J1(ξ)

+
1
R

sin2 θcos2(δp)∑
m′

Bm
′

S2 (ζ)J1(ξ) + hζ cos θ ∑
m′

Am
′

S2(ζ)
dJ1
dr

(ξ)

+hζ sin θ ∑
m′

Bm
′

S2 (ζ)
dJ1
dr

(ξ), (19)

where hζ = 1 + (r/R) sin θcos2(δp), R is the radius of the cylinder, δp is the the step’s angle,
ψ = [P

′
1m′ (r/a)] and ξ = [P1m′ (r/a)]. The coefficients are given in the above equation, for

instance

Am
′

S1 (ζ) = L−1

{
A1m′ (s)

s2 + k2(r)h2
ζ

}
, (20a)

Am
′

S2 (ζ) = L−1

{
sA1m′ (s)

s2 + k2(r)h2
ζ

}
, (20b)

where
m
′
= 1, ...N, 3 ≤ N ≤ 50. (20c)

Similarly, the other transverse components of the output fields are obtained. The first fifty
roots (zeros) of the equations J1(x) = 0 and dJ1(x)/dx = 0 may be found in tables [25-26].

The inverse Laplace transform is performed in this study by a direct numerical integration in
the Laplace transform domain by the residue method, as follows

f (ζ) = L−1[ f̃ (s)] =
1

2π j

∫ σ+j∞

σ−j∞

f̃ (s)esζds = ∑
n

Res[esζ f̃ (s); Sn]. (21)

By using the inverse Laplace transform (21) we can compute the output transverse
components in the real plane and the output power density at each point at ζ=(R φc)/cos(δp).
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The integration path in the right side of the Laplace transform domain includes all the
singularities according to Eq.(21). All the points Sn are the poles of f̃ (s) and Res[esζ f̃ (s); Sn]
represent the residue of the function in a specific pole. According to the residue method, two
dominant poles for the helical waveguide are given by

s = ±j k(r)hζ = ±j k(r)

(
1 +

r
R

sin θcos2(δp)

)
.

Finally, knowing all the transverse components, the ζ component of the average-power
density Poynting vector is given by

Sav =
1
2

Re

{
Er Hθ

∗ − Eθ Hr
∗
}

, (22)

where the asterisk indicates the complex conjugate.

The total average-power transmitted along the guide in the ζ direction can now be obtained by
the integral of Eq.(22) over the waveguide cross section. Thus, the output power transmission
is given by

T =
1
2

∫ 2π

0

∫ a

0
Re

{
Er Hθ

∗ − Eθ Hr
∗
}

rdrdθ . (23)

3.2 Solution of the wave equations for the helical coordinate system (x, y, ζ).

The method is based on Fourier coefficients of the transverse dielectric profile and those
of the input wave profile. Laplace transform is necessary to obtain the comfortable and
simple input-output connections of the fields. This model is useful for the analysis of
dielectric waveguides in the microwave and the millimeter-wave regimes, for diffused optical
waveguides in integrated optics. The output power transmission and the output power
density are improved by increasing the step’s angle or the radius of the cylinder of the helical
waveguide, especially in the cases of space curved waveguides.

We assume that for most materials, the permeability μ is equal to that of free space
(μ = μ0). The wave equations for the electric and magnetic field components in the
inhomogeneous dielectric medium ε(x, y) are given by the wave equations (5a) and (5b),
respectively. The transverse dielectric profile (ε(x, y)) is defined as ε0(1 + χ0 g(x, y)),
where ε0 represents the vacuum dielectric constant, g(x, y) is its profile function in the
waveguide, and χ0 is the susceptibility of the dielectric material. The normalized transverse
derivatives of the dielectric profile g(x, y) are defined as (1/ε(x, y))[(∂/∂x)ε(x, y)] and
(1/ε(x, y))[(∂/∂y)ε(x, y)], respectively. From the helical transformation of Eqs. 1 we can
derive the Laplacian of the vector E (i.e.,∇2E), and obtain the wave equations for the electric
and magnetic fields in the inhomogeneous dielectric medium. It is necessary to find the values
of ∇ · E, ∇(∇ · E), ∇ × E, and ∇ × (∇ × E) in order to obtain the value of ∇2E, where
∇2E = ∇(∇ · E) −∇× (∇× E). All these values are dependent on the metric coefficients
(4a,b,c).
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The components of ∇2E are given by

(∇2E)x = ∇2Ex − 1
R2h2

ζ

cos2(δp)Ex − 2
1

Rh2
ζ

cos2(δp)
∂

∂ζ
Eζ , (24a)

(∇2E)y = ∇2Ey, (24b)

(∇2E)ζ = ∇2Eζ − 1
R2h2

ζ

cos2(δp)Eζ + 2
1

Rh2
ζ

cos2(δp)
∂

∂ζ
Ex, (24c)

where

∇2 =
∂2

∂x2 +
∂2

∂y2 +
1
h2

ζ

∂2

∂ζ2 +
1

Rhζ
cos2(δp)

∂

∂x
, (24d)

and for hζ = 1 + (x/R)cos2(δp) .

The wave equations (5a) and (5b) are written in the form

(∇2E)i + k2Ei + ∂i(Exgx + Eygy) = 0, (25a)

(∇2H)i + k2Hi + ∂i(Hxgx + Hygy) = 0, (25b)

where i=x, y, ζ. The local wavenumber parameter is given by k = ω
√

με(x, y) =
k0
√

1 + χ0 g(x, y), and the free-space wavenumber is given by k0 = ω
√

μ0ε0. The expression
(∇2E)x, for instance, is given according to Eq. (24a).

The transverse Laplacian operator is defined according to Eq. (12), where

h2
ζ = 1 +

2x
R

cos2(δp) +

(
x
R

)2

cos4(δp).

The metric coefficient hζ is a function of x, thus we defined

hζ = 1 + pζ (x) , pζ(x) = cos2(δp)(x/R), (26a)

h2
ζ = 1 + qζ(x) , qζ(x) = cos2(δp)(2/R)x. (26b)

The Laplace transform (Eq. (13)) is applied on the ζ-dimension, where a(ζ) represents any
ζ-dependent variables and ζ = (Rφc)/ cos(δp). Laplace transform on the differential wave
equations is needed to obtain the wave equations (and thus also the output fields) that are
expressed directly as functions of the transmitted fields at the entrance of the waveguide
at ζ = 0+. Thus, the Laplace transform is necessary to obtain the comfortable and simple
input-output connections of the fields.

By substitution of Eqs. (24a)-(24c) into Eqs. (25a), by using the Laplace transform (13), and
multiply by h2

ζ , Eqs. (5a) are described in the Laplace transform domain in the form

h2
ζ

(
∇2
⊥ +

s2

h2
ζ

+ k2

)
Ẽx + h2

ζ ∂x

(
Ẽxgx + Ẽygy

)
+ hζ

1
R

cos2(δp)∂x

(
Ẽx

)
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− 2
R

cos2(δp)sẼζ =

(
sEx0 + E

′
x0

)
− 2

R
cos2(δp)Eζ0 , (27a)

h2
ζ

(
∇2
⊥+

s2

h2
ζ

+ k2

)
Ẽy + h2

ζ∂y

(
Ẽxgx + Ẽygy

)
+ hζ

1
R

cos2(δp)∂x

(
Ẽy

)
=

(
sEy0 + E

′
y0

)
, (27b)

h2
ζ

(
∇2
⊥ +

s2

h2
ζ

+ k2

)
Ẽζ + sh2

ζ

(
Ẽxgx + Ẽygy

)
+ hζ

1
R

cos2(δp)∂x

(
Ẽζ

)
+

2
R

cos2(δp)sẼx =

(
sEζ0 + E

′
ζ0

)
+

2
R

cos2(δp)Ex0 + h2
ζ

(
Ex0 gx + Ey0 gy

)
, (27c)

where the transverse Laplacian operator is defined according to (12), Ex0 , Ey0 , Eζ0 are
the initial values of the corresponding fields at ζ = 0, i.e. Ex0 = Ex(x, y, ζ = 0) and
E
′
x0

= ∂
∂ζ Ex(x, y, ζ)|ζ=0.

A Fourier transform is applied on the transverse dimension

ḡ(kx , ky) = F{g(x, y)} =
∫

x

∫
y

g(x, y)e−jkxx−jkyydxdy, (28)

and the differential equation (27(a)) is transformed to an algebraic form in the (ω, s, kx, ky)
space, as follows

k2
ζ

˜̄Ex + s2 ˜̄Ex + k2
oχo ḡ ∗ ˜̄Ex + jkx

(
ḡx ∗ ˜̄Ex + ḡy ∗ ˜̄Ey

)
− 2

R cos2(δp)s ˜̄Eζ + q̄ζ∗
(

k2
ζ

)
˜̄Ex +

k2
oχoq̄ζ∗

(
ḡ ∗ ˜̄Ex

)
+ jq̄ζ∗

[
kx

(
ḡx ∗ ˜̄Ex + ḡy ∗ ˜̄Ey

)]

+ 1
R cos2(δp)

(
jkx

)
˜̄Ex +

1
R cos2(δp)j p̄ζ∗

(
kx

˜̄Ex

)

=

(
sĒx0 + Ē

′
x0

)
− 1

sR cos2(δp)

(
sĒζ0 + Ē

′
ζ0

)
, (29)

where kζ =
√

k2
o − k2

x − k2
y. Similarly, the other differential equations are obtained. The

asterisk symbol denotes the convolution operation ḡ ∗ Ē = F{g(x, y)E(x, y)}. The method
of images is applied to satisfy the conditions n̂× E = 0 and n̂ · (�× E) = 0 on the surface of
the ideal metallic waveguide walls, where n̂ is a unit vector perpendicular to the surface. The
metric coefficient hζ is a function of x (Eqs. (26a) and (26b)). Thus the elements of the matrices
P(0) and Q(0) are defined as:

p̄ζ
(o)
(n,m)

=
1

4ab

∫ a

−a

∫ b

−b
pζ(x) e−j(n π

a x+m π
b y) dxdy, (30a)

q̄ζ
(o)
(n,m)

=
1

4ab

∫ a

−a

∫ b

−b
qζ(x) e−j(n π

a x+m π
b y) dxdy, (30b)
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and the matrices P(1) and Q(1) are defined as:

P(1) =

(
I + P(0)

)
, Q(1) =

(
I + Q(0)

)
, (30c, d)

where I is the unity matrix.

Equation (29) and similarly, the two other equations are rewritten in a matrix form as follows

K(0)Ex +
k2

oχ0

2s
Q(1)GEx +

jkox

2s
Q(1)N

(
GxEx + GyEy

)

− 1
R

cos2(δp)Eζ + Q(0)K1(0)Ex +
1

2sR
cos2(δp)jkoxP(1)NEx = Êx0 −

1
sR

cos2(δp)Ēζ0 , (31a)

K(0)Ey +
k2

oχ0

2s
Q(1)GEy +

jkoy

2s
Q(1)M

(
GxEx + GyEy

)

+Q(0)K1(0)Ey +
1

2sR
cos2(δp)jkoxP(1)NEy = Êy0 , (31b)

K(0)Eζ +
k2

oχ0

2s
Q(1)GEζ +

1
2

Q(1)

(
GxEx + GyEy

)
+

1
R

cos2(δp)Ex

+Q(0)K1(0)Eζ+
1

2sR
cos2(δp)jkoxP(1)NEζ = Êζ0+

1
sR

cos2(δp)Ex0 +
1
2s

Q(1)

(
GxEx0+GyEy0

)
,

(31c)
where the initial-value vectors, Êx0 , Êy0 , and Êζ0 are defined from the terms (sĒx0 + Ē

′
x0
)/2s,

(sĒy0 + Ē
′
y0
)/2s, and (sĒζ0 + Ē

′
ζ0
)/2s, respectively.

The elements of the diagonal matrices K(0), M, N and K(1) are defined as

K(0)
(n,m)(n′,m′) =

{[
k2

o − (nπ/a)2 − (mπ/b)2 + s2
]

/2s
}

δnn′δmm′ , (32a)

M(n,m)(n′,m′) = mδnn′δmm′ , (32b)

N(n,m)(n′,m′) = nδnn′δmm′ , (32c)

K(1)
(n,m)(n′,m′) =

{[
k2

o − (nπ/a)2 − (mπ/b)2
]

/2s
}

δnn′δmm′ , (32d)

where δnn′ and δmm′ are the Kronecker delta functions.

The modified wave-number matrices are defined as

Dx ≡ K(0) + Q(0)K1(0) +
k2

oχ0

2s
Q(1)G +

jkox

2s
Q(1)NGx +

1
2sR

cos2(δp)jkoxP(1)N, (33a)

Dy ≡ K(0) + Q(0)K1(0) +
k2

oχ0

2s
Q(1)G +

1
2sR

cos2(δp)jkoxP(1)N +
jkoy

2s
Q(1)MGy, (33b)
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Dζ ≡ K(0) + Q(0)K1(0) +
k2

oχ0

2s
Q(1)G +

1
2sR

cos2(δp)jkoxP(1)N. (33c)

Thus, Eqs. (31a)-(31c) result in

DxEx = Êx0 −
jkox

2s
Q(1)NGyEy − 1

sR
cos2(δp)Eζ0 +

1
R

cos2(δp)Eζ , (34a)

DyEy = Êy0 −
jkoy

2s
Q(1)MGxEx, (34b)

DζEζ= Êζ0+
1
2s

Q(1)

(
GxEx0+GyEy0

)
−1

2
Q(1)

(
GxEx+GyEy

)
+

1
sR

cos2(δp)Ex0−
1
R

cos2(δp)Ex.

(34c)

After some algebraic steps, the components of the electric field are formulated as follows:

Ex =

{
Dx + α1Q(1)M1Q(1)M2 +

1
R

cos2(δp)D−1
ζ

·
(
− 1

2
Q(1)Gx +

1
2

α2Q(1)M3Q(1)M2 − 1
R

cos2(δp)I

)}−1

(
Êx0 −

1
sR

cos2(δp)Eζ0 − α3Q(1)M1 Êy0 +
1
R

cos2(δp)D−1
ζ

(
Êζ0 +

1
sR

cos2(δp)Ex0+

1
2s

Q(1)(GxEx0 + GyEy0)−
1
2

Q(1)M3Êy0

))
, (35a)

Ey = Dy
−1

(
Êy0 −

jkoy

2s
Q(1)MGxEx

)
, (35b)

Eζ = D−1
ζ

{
Êζ0 +

1
2s

Q(1)

(
GxEx0 + GyEy0

)
− 1

2
Q(1)

(
GxEx + GyEy

)

− 1
R

cos2(δp)Ex +
1

sR
cos2(δp)Ex0

}
, (35c)

where:

α1 =
koxkoy

4s2 , α2 =
jkoy

2s
, α3 =

jkox

2s
, M1 = NGyDy

−1, M2 = MGx, M3 = GyDy
−1.

These equations describe the transfer relations between the spatial spectrum components of
the output and input waves in the dielectric waveguide. Similarly, the other components of
the magnetic field are obtained. The transverse field profiles are computed by the inverse
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Laplace and Fourier transforms, as follows

Ey(x, y, ζ) = ∑
n

∑
m

∫ σ+j∞

σ−j∞

Ey(n, m, s)ejnkoxx+jmkoyy+sζds. (36)

The inverse Laplace transform is performed in this study by a direct numerical integration on
the s-plane by the method of Gaussian Quadrature. The integration path in the right side of
the s-plane includes all the singularities, as proposed by Salzer [27-28]

∫ σ+j∞

σ−j∞

esζ Ey(s)ds =
1
ζ

∫ σ+j∞

σ−j∞

epEy(p/ζ)dp =
1
ζ

15

∑
i=1

wiEy(s = pi/ζ), (37)

where wi and pi are the weights and zeros, respectively, of the orthogonal polynomials of
order 15. The Laplace variable s is normalized by pi/ζ in the integration points, where
Re(pi) > 0 and all the poles should be localized in their left side on the Laplace transform
domain. This approach of a direct integral transform does not require as in other methods, to
deal with each singularity separately.

The ζ component of the average-power density of the complex Poynting vector is given by

Sav =
1
2

Re

{
Ex Hy

∗ − EyHx
∗
}

, (38)

where the asterisk indicates the complex conjugate. The active power is equal to the real part
of the complex Poynting vector. The total average-power transmitted along the guide in the
ζ direction is given by a double integral of Eq. (38). A Fortran code is developed using NAG
subroutines [29]. Several examples computed on a Unix system are presented in the next
section.

4. Numerical results

An example of the circular cross section of the helical waveguide is shown in Fig. 3(a). An
example of the rectangular dielectric slab of the helical waveguide is shown in Fig. 3(b), and
an example of the rectangular cross section with a circular dielectric profile of the helical
waveguide is shown in Fig. 3(c). The results of the output transverse components of the
fields and the output power density (|Sav|) (e.g., Fig. 4(a)) show the behavior of the solutions
for the TEM00 mode in excitation, for the straight waveguide (R → ∞). The result of the
output power density (Fig. 4(a)) is compared also to the result of published experimental
data [30] as shown also in Fig. 4(b). This comparison shows good agreement (a Gaussian
shape) as expected, except for the secondary small propagation mode. The experimental
result (Fig. 4(b)) is affected by the additional parameters (e.g., the roughness of the internal
wall of the waveguide) which are not taken theoretically into account. In this example with
the circular cross section (Fig. 3(a)), the length of the straight waveguide is 1 m, the diameter
(2a) of the waveguide is 2 mm, the thickness of the dielectric layer [d(AgI)] is 0.75 μm, and the
minimum spot-size (w0) is 0.3 mm. The refractive indices of the air, the dielectric layer (AgI)
and the metallic layer (Ag) are n(0) = 1, n(AgI) = 2.2, and n(Ag) = 13.5− j75.3, respectively.
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The value of the refractive index of the material at a wavelength of λ=10.6 μm is taken from
the table compiled by Miyagi, et al. [6]. The toroidal dielectric waveguide is demonstrated
in Fig. 4(c). The experimental result is demonstrated in Fig. 4(d). This experimental result
was obtained from the measurements of the transmitted CO2 laser radiation (λ=10.6 μm)
propagation through a hollow tube covered on the bore wall with silver and silver-iodide
layers (Fig. 3(a)), where the initial diameter (ID) is 1 mm (namely, small bore size).
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(a) (b) (c)

Figure 3. (a) An example of the circular cross section of the helical waveguide. (b) An example of the
rectangular dielectric slab of the helical waveguide. (c) An example of the rectangular cross section with
a circular dielectric profile of the helical waveguide.

The output modal profile is greatly affected by the bending, and the theoretical and
experimental results (Figs. 4(c)-4(d)) show that in addition to the main propagation mode,
several other secondary modes and asymmetric output shape appear. The amplitude of the
output power density (|Sav|) is small as the bending radius (R) is small, and the shape is
far from a Gaussian shape. This result agrees with the experimental results, but not for all
the propagation modes. The experimental result (Fig. 4(d)) is affected by the bending and
additional parameters (e.g., the roughness of the internal wall of the waveguide) which are
not taken theoretically into account. In this example, a=0.5 mm, R=0.7 m, φ=π/2, and ζ=
1 m. The thickness of the dielectric layer [d(AgI)] is 0.75 μm (Fig. 3(a)), and the minimum
spot size (w0) is 0.2 mm. The values of the refractive indices of the air, the dielectric layer
(AgI) and the metallic layer (Ag) are n(0) = 1, n(AgI) = 2.2, and n(Ag) = 13.5 − j75.3,
respectively. In both theoretical and experimental results (Figs. 4(c)-4(d)) the shapes of the
output power density for the curved waveguide are not symmetric. The output modal profile
is greatly affected by the bending, and the theoretical and experimental results (Figs. 4(c)-4(d))
show that in addition to the main propagation mode, several other secondary modes and
asymmetric output shape appear. The amplitude of the output power density (|Sav|) is small
as the bending radius (R) is small, and the shape is far from a Gaussian shape. This result
agrees with the experimental results, but not for all the propagation modes. The experimental
result (Fig. 4(d)) is affected by the bending and additional parameters (e.g., the roughness
of the internal wall of the waveguide) which are not taken theoretically into account. In
this example, a=0.5 mm, R=0.7 m, φ=π/2, and ζ= 1 m. The thickness of the dielectric layer
[d(AgI)] is 0.75 μm (Fig. 3(a)), and the minimum spot size (w0) is 0.2 mm. The values of the
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refractive indices of the air, the dielectric layer (AgI) and the metallic layer (Ag) are n(0) = 1,
n(AgI) = 2.2, and n(Ag) = 13.5 − j75.3, respectively. In both theoretical and experimental
results (Figs. 4(c)-4(d)) the shapes of the output power density for the curved waveguide are
not symmetric.
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Figure 4. The output power density for R → ∞, where a=1 mm, w0 = 0.3 mm, and the length of the
straight waveguide is 1 m. (a) theoretical result; (b) experimental result. The output power density for
the toroidal dielectric waveguide, where a=0.5 mm, w0 = 0.2 mm, R = 0.7 m, φ = π/2, and ζ =1 m; (c)
theoretical result; (d) experimental result. The other parameters are: d(AgI)= 0.75 μm, λ = 10.6 μm, n(0) =
1, n(AgI) = 2.2, and n(Ag) = 13.5 - j 75.

Figures 5(a)-(b) show the results of the output power density as functions of the step’s angle
(e.g., δp =0.4, 0.8) and the radius of the cylinder (e.g., R=0.7 m). For these results ζ= 1 m,
where a=1 mm, w0 = 0.3 mm, nd =2.2, and n(Ag) = 13.5 - j 75.3 (Fig. 3(a)). Fig. 5(a) shows that
in addition to the main propagation mode, several other secondary modes appear, where δp =
0.4 and R=0.7 m. By increasing only the step’s angle from δp = 0.4 to δp = 0.8 where R = 0.7 m,
the amplitude of the output power density is greater (e.g., (|Sav| = 0.7 W/m2) and also the
output shape is changed (Fig. 5(b)).

Let us compare the second theoretical model (e.g., Eq. 35(b)) with the known analytical theory
[22] for the rectangular dielectric slab (Fig. 3(b)). For the given dimensions a and d, we find
the values Λ and Ω according to the next transcendental equation for a dielectric slab (Fig.
3(b)).

According to our theoretical model we can calculate Ey0(n, m) and g(n, m) as follows:

Ey0(n, m) =
1

4ab

∫ a

−a

∫ b

−b
Ey(x, y, z = 0)e−j(n π

a x+m π
b y)dxdy,
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Figure 5. The results of the output power density as functions of the step’s angle (δp) and the radius of
the cylinder (R), where ζ= 1 m, a=1 mm, w0 = 0.3 mm, nd =2.2, and n(Ag) = 13.5 - j 75.3: (a). δp = 0.4, and
R = 0.7 m; (b). δp = 0.8, and R = 0.7 m.

and

g(n, m) =
1

4ab

∫ a

−a

∫ b

−b
g(x, y)e−j(n π

a x+m π
b y)dxdy.

The known solution for the dielectric slab modes based on transcendental equation [22] is
given as follows ⎧⎪⎪⎨⎪⎪⎩

Ey1 = j kz
ε0

sin(νx) 0 < x < t

Ey2 = j kz
ε0

sin(νt)
cos(μ(t−a/2)) cos [μ(x− a/2)] t < x < t + d

Ey3 = j kz
ε0

sin [ν(a− x)] t + d < x < a

, (39)

where ν ≡
√

k2
o − k2

z and μ ≡
√

εrk2
o − k2

z result from the transcendental equation(
a
d
− 1

)
dμ

2
tan

(
dμ

2

)
− (tν) cot(tν) = 0.
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Figure 6. (a). A comparison between amplitude results of the theoretical model and the transcendental
equation (a=2b=2 cm, d=3.3 mm, εr= 9, and λ= 6.9 cm; (b). The convergence of our theoretical results.
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Eqs. (39) were substituted as the initial fields into the Eq. (35(b)) at z = 0+ in the practical case
of the straight waveguide (by letting R→ ∞ or by taking δp = π/2) with the symmetrical slab
profile (Fig. 3(b)). The result of the comparison between the theoretical model with the known
solution [22] is shown in Fig. 6(a), where εr = 9, d=3.3 mm, and λ = 6.9 cm. The convergence
of the numerical results as a function of the matrix order is shown in Fig. 6(b). The comparison
is demonstrated for every order (N=1, 3, 5, 7, and 9). The order N determines the accuracy of
the solution, and the convergence of the solution is verified by the criterion

C(N) ≡ log

{
max(|SN+2

av − SN
av|)

|max(SN+2
av )−min(SN

av)|

}
, N ≥ 1, (40)

for the Ey component of the fields (instead of Sav), where the number of the modes is equal
to (2N + 1)2. The method of this model is based on Fourier coefficients, thus the accuracy of
the method is dependent on the number of the modes in the system. Further we assume N =
M. If the value of the criterion is less then -2, then the numerical solution is well converged.
When N increases, then Ey(N) approaches Ey. The value of the criterion between N=7 and
N=9 is equal to -2.38 � -2, namely a hundredth part. The comparison between the theoretical
mode-model and the known model [22] has shown good agreement. Note that we have two
ways to compare between the results of our mode model with the other methods. The first
way is to compare between the results of the output fields for every order (N=1, 3, 5, 7, and 9)
with the final solution of the known method. The second way is to compare between the
results of the output fields (according to our model) for every two orders (N=1,3, N=3,5,
N=5,7, and N=7,9), until our numerical solution is well converged. This way is efficient in
the cases that we have complicated problems that we cannot compare with the final solution
of the known method.

The geometrical shape of a circular dielectric profile loaded rectangular waveguide is
demonstrated in Fig. 3(c) for an inhomogeneous dielectric profile in the cross section. The
radius of the circle is denoted as r1 and the dimensions of the waveguide in the cross-section
are denoted as a and b. The refractive index of the core (dielectric profile) is greater than that
of the cladding (air). The results of the solution in this case will demonstrate for r1 = 0.5 mm
and for a=b=2 cm. Let us assume that the center of the circle located at the point (a/2, b/2), as
shown in Fig. 3(c).

Figures 7(a)-(b) show the results of the output power density (Sav) as functions of the step’s
angle (δp=1) and the radius of the cylinder (R=0.5 m). The other parameters are: ζ = 15 cm,
a=b= 2 cm, r1 = 0.5 mm, and λ = 3.75 cm. The output fields are dependent on the input wave
profile (TE10 mode) and the circular dielectric profile of the rectangular cross section (Fig.
3(c)). Fig. 7(c) shows the output amplitude and the Gaussian shape of the central peak in
the same cross section of Figs. 7(a-b), where y=b/2 = 1 cm, and for five values of εr =2, 5,
6, 8, and 10, respectively. By changing the value of the parameter εr of the core in the cross
section (Fig. 3(c)) with regard to the cladding (air) from 2 to 10, the output transverse profile
of the power density (Sav) is changed. For small values of εr, the half-sine (TE10) shape of the
output power density appears, with a little influence of the Gaussian shape in the center of
the output profile.
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Figure 7. The results of the output power density as functions of the step’s angle (δp= 1) and the radius
of the cylinder (R=0.5 m), where ζ= 15 cm, a=b= 2 cm, r1 = 0.5 mm, λ = 3.75 cm: (a). εr = 6; (b). εr = 10.
(c). The output amplitude and the Gaussian shape of the central peak in the same cross section where
y=b/2 = 1 cm, and for different values of εr. (d). The output profile for N=1, 3, 5, 7 and 9, where εr = 10.

On the other hand, for large values of εr (e.g., εr=10) the Gaussian shape of the output power
density appears in the center of the output profile (Fig. 7(b)), with a little influence of the
half-sine (TE10) shape in the center of the output profile. By increasing only the parameter
εr from 2 to 10, the result of the output power density shows a Gaussian shape and the
amplitude of the output power density is changed from 1.6 W/m2 to 1 W/m2, as shown
in Fig. 7(c). In this case, the output Gaussian profile increases with increasing the value of
εr . These examples demonstrate the influence of the dielectric profile for an inhomogeneous
cross section, for arbitrary step’s angle and the radius of the cylinder of the helical waveguide.
Figure 7(d) shows an example for the output profiles with εr = 10, and for the same other
parameters of Figs. 7(a)-(c). The output results are demonstrated for every order (N=1, 3, 5,
7, and 9). By increasing only the parameter of the order from N=1 to N=9, then the output
profile approaches to the final output profile.

The other main contributions of the proposed methods are demonstrated in Fig. 8(a) and in
Fig. 8(b), in order to understand the influence of the step’s angle (δp) and the radius of the
cylinder (R) on the output power transmission, for helical waveguide with a circular cross
section (Fig. 3(a)) and with a rectangular cross section (Fig. (3(c)), respectively.
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Figure 8(a) shows the influence of the step’s angle (δp) and the radius of the cylinder (R) on
the output power transmission for helical waveguide with a circular cross section (Fig. 3(a)).
Six results are demonstrated for six values of δp (δp =0.0, 0.4, 0.7, 0.8, 0.9, 1.0), where ζ = 4 m,
a=1 mm, w0 = 0.06 mm, nd =2.2 and n(Ag) = 13.5− j75.3. Figure 8(b) shows the influence of
the step’s angle (δp) and the radius of the cylinder (R) on the output power transmission for
helical waveguide with a rectangular cross section with a circular dielectric profile (Fig. 3(c)).
The output fields are dependent on the input wave profile (TE10 mode) and the dielectric
profile (Fig. 3(c). Six results are demonstrated for six values of δp (δp =0, 0.4, 0.7, 0.8, 0.9,
1.0), where ζ = 15 cm, a=b=2 cm, r1 = 0.5 mm, λ = 3.75 cm, and εr = 10. For an arbitrary
value of R, the output power transmission is large for large values of δp and decreases with
decreasing the value of δp. On the other hand, for an arbitrary value of δp, the output power
transmission is large for large values of R and decreases with decreasing the value of R. For
small values of the step’s angle, the radius of curvature of the helix can be approximated by
the radius of the cylinder (R). In this case, the output power transmission is large for small
values of the bending (1/R), and decreases with increasing the bending. Thus, these two
different methods can be a useful tool to find the parameters (δp and R) which will give us the
improved results (output power transmission) of the curved waveguide in the cases of space
curved waveguides.
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Figure 8. The results of the output power transmission of the helical waveguide as a function of 1/R,
where R is the radius of the cylinder. Six results are demonstrated for six values of δp (δp =0.0, 0.4, 0.7,
0.8, 0.9, 1.0) (a) for circular cross section (Fig. 3(a)), where ζ = 4 m, a=1 mm, w0 = 0.06 mm, nd =2.2, and
n(Ag) = 13.5− j75.3. (b) for a rectangular cross section with a circular dielectric profile (Fig. 3(c)), where
a=20 mm, b=20 mm, r1 = 0.5 mm, λ = 3.75 cm, and εr = 10.

5. Conclusions

Two improved methods have been presented for the propagation of EM fields along a helical
dielectric waveguide with a circular cross section and a rectangular cross section. The two
different methods employ helical coordinates (and not cylindrical coordinates, such as in the
methods that considered the bending as a perturbation), and the calculations are based on
using Laplace and Fourier transforms. The output fields are computed by the inverse Laplace
and Fourier transforms. An example of the circular cross section of the helical waveguide is
shown in Fig. 3(a). An example of the rectangular dielectric slab of the helical waveguide is
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shown in Fig. 3(b), and an example of the rectangular cross section with a circular dielectric
profile of the helical waveguide is shown in Fig. 3(c).

The results of the output transverse components of the fields and the output power density
(|Sav|) (e.g., Fig. 4(a)) for the circular cross section (Fig. 3(a)) show the behavior of the
solutions for the TEM00 mode in excitation, for the straight waveguide. The result of the
output power density (Fig. 4(a)) is compared also to the result of published experimental
data [30] as shown also in Fig. 4(b). This comparison shows good agreement (a Gaussian
shape) as expected, except for the secondary small propagation mode. The experimental result
(Fig. 4(b)) is affected by the additional parameters (e.g., the roughness of the internal wall of
the waveguide) which are not taken theoretically into account.

The toroidal dielectric waveguide is demonstrated in Fig. 4(c), and the experimental result is
demonstrated in Fig. 4(d). This experimental result was obtained from the measurements of
the transmitted CO2 laser radiation (λ=10.6 μm) propagation through a hollow tube covered
on the bore wall with silver and silver-iodide layers (Fig. 3(a)), where the initial diameter (ID)
is 1 mm (namely, small bore size). The output modal profile is greatly affected by the bending,
and the theoretical and experimental results (Figs. 4(c)-4(d)) show that in addition to the main
propagation mode, several other secondary modes and asymmetric output shape appear. The
amplitude of the output power density (|Sav|) is small as the bending radius (R) is small,
and the shape is far from a Gaussian shape. This result agrees with the experimental results,
but not for all the propagation modes. The experimental result (Fig. 4(d)) is affected by the
bending and additional parameters (e.g., the roughness of the internal wall of the waveguide)
which are not taken theoretically into account. In both theoretical and experimental results
(Figs. 4(c)-4(d)) the shapes of the output power density for the curved waveguide are not
symmetric. Fig. 5(a) shows that in addition to the main propagation mode, several other
secondary modes appear, where δp = 0.4 and R=0.7 m. By increasing only the step’s angle, the
amplitude of the output power density is greater and also the output shape is changed (Fig.
5(b)).

Figure 6(a) shows the comparison between the theoretical model with the known solution[22]
for the rectangular dielectric slab (Fig. 3(b)), for every order (N=1, 3, 5, 7, and 9), where the
order N determines the accuracy of the solution. The comparison has shown good agreement.
Note that we have two ways to compare between the results of our mode model with the
other methods. The first way is to compare between the results of the output fields for every
order (N=1, 3, 5, 7, and 9) with the final solution of the known method. The second way is
to compare between the results of the output fields (according to our model) for every two
orders (N=1,3, N=3,5, N=5,7, and N=7,9), until our numerical solution is well converged. This
way is efficient in the cases that we have complicated problems that we cannot compare with
the final solution of the known method.

Figures 7(a)-(b) show the results of the output power density (Sav) as functions of the step’s
angle (δp=1) and the radius of the cylinder (R=0.5 m). The output fields are dependent on
the input wave profile (TE10 mode) and the circular dielectric profile of the rectangular cross
section (Fig. 3(c)). For small values of εr , the half-sine (TE10) shape of the output power
density appears, with a little influence of the Gaussian shape in the center of the output profile.
On the other hand, for large values of εr (e.g., εr=10) the Gaussian shape of the output power
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density appears in the center of the output profile (Fig. 7(b)), with a little influence of the
half-sine (TE10) shape in the center of the output profile. By increasing only the parameter εr
from 2 to 10, the result of the output power density shows a Gaussian shape and the amplitude
of the output power density is changed, as shown in Fig. 7(c). In this case, the output Gaussian
profile increases with increasing the value of εr. These examples demonstrate the influence
of the dielectric profile for an inhomogeneous cross section, for arbitrary step’s angle and the
radius of the cylinder of the helical waveguide. Figure 7(d) shows an example for the output
profiles with εr = 10. The output results are demonstrated for every order (N=1, 3, 5, 7, and
9). By increasing only the parameter of the order from N=1 to N=9, then the output profile
approaches to the final output profile.

The other main contributions of the proposed methods are demonstrated in Fig. 8(a) and in
Fig. 8(b), in order to understand the influence of the step’s angle (δp) and the radius of the
cylinder (R) on the output power transmission, for helical waveguide with a circular cross
section (Fig. 3(a)) and with a rectangular cross section (Fig. 3(c)), respectively. Six results are
demonstrated for six values of δp (δp =0.0, 0.4, 0.7, 0.8, 0.9, 1.0), in all case. For an arbitrary
value of R, the output power transmission is large for large values of δp and decreases with
decreasing the the value of δp. On the other hand, for an arbitrary value of δp, the output
power transmission is large for large values of R and decreases with decreasing the value of
R. For small values of the step’s angle, the radius of curvature of the helix can be approximated
by the radius of the cylinder (R). In this case, the output power transmission is large for small
values of the bending (1/R), and decreases with increasing the bending. Thus, these two
different methods can be a useful tool to find the parameters (δp and R) which will give us the
improved results (output power transmission) of the curved waveguide in the cases of space
curved waveguides.

The output power transmission and the output power density are improved according to the
two proposed methods by increasing the step’s angle or the radius of the cylinder of the helix,
especially in the cases of space curved waveguides. These methods can be a useful tool to
improve the output results in all the cases of the hollow helical waveguides in medical and
industrial regimes (by the first method) and in the microwave and millimeter-wave regimes
(by the second method), for the diffused optical waveguides in integrated optics.
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Chapter 9 

Transient Responses on  
Traveling-Wave Loop Directional Filters 
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1. Introduction 

In design consideration of microwave and millimeter-wave planar circuits, efficient 
simulation tools have been required for visualizing the operation characteristics of passive 
circuit components. Also, to clarify the signal propagation in the circuit system is very 
important in terms of engineering and educational effects. Microwave simulators are widely 
used as the supporting tool of microwave circuit design and development. For analyzing the 
circuit components on planar circuits, several numerical techniques are described about the 
3-D electromagnetic field analysis modeling [1]. Nowadays, the method of moments (MoM) 
[2] and the finite-difference time-domain method (FDTD) [3],[4] are mostly used among 
microwave engineers, and the SNAP simulator [10] is SPICE like one. On the other hand, 
there are various microwave circuit components using parallel coupled lines and loop 
resonators [5]. A square loop line with parallel coupled lines is used as ring resonators and 
traveling-wave loop directional filters. Here, in order to solve the transient problem of the 
microwave circuit components composed of transmission lines, we provide a numerical 
analysis method introduced systematic mixed even and odd modes modeling for coupled 
lines. This method based on a modified central difference method [8] can be applied to the 
time domain analysis of the microwave circuit components constructed with the parallel 
tightly coupled lines. For ring resonators and traveling-wave loop directional filters 
composed of such components [6],[7], to clarify the circuit operation, the transient behavior 
of the voltage and current waves of transmission line networks will be represented with 
dynamic expressions. In order to elucidate the mechanism of the circuit operation, the 
behavior of propagating signals on the transmission line network has been represented in 
[9]. In this article, we describe the utilization of the modified central difference method 
incorporating internal boundary treatments. Using this simulation technique, the time and 
frequency domain properties of the ring resonator and traveling-wave multi-loop 
directional coupler filters are analyzed and demonstrated. 
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For obtaining accurate operation characteristics of circuit components, simulation 
techniques with processing multiple reflections are required. The transient behavior of the 
voltage and current waves on the ring resonator and traveling-wave loop directional filters 
is demonstrated to obtain the power division and isolation properties of the directional 
couplers by using a numerical analysis model. The represented transient phenomena 
include the effects of multiple reflection waves caused by line discontinuities and parallel 
coupling. The operating mechanism of the circuit components can be easily confirmed by 
the visualization of the computed voltage and current solutions. The transient responses 
along the transmission lines are represented with the variations of the instantaneous voltage 
and current distributions including all the multiple reflections. Additionally, using the input 
and output responses extracted from the voltage and current solutions for a Gaussian pulse 
excitation, the frequency responses are obtained by using the fast Fourier transform. 

 
Figure 1. (a) A ring resonator and (b) traveling-wave loop directional filter. 

2. Modeling 

2.1. Modeling of a single transmission line 

The configuration of a ring resonator and traveling-wave loop directional filter is shown in 
Figure 1. By applying numerical even- and odd-mode analysis model to parts of parallel 
coupled lines, the solution of the whole system can be solved by single transmission line 
analysis, with the assumption of TEM mode propagation. The 1-D modeling of the single 
transmission line has reported in [8]. Telegrapher's equations can be generally written by 
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where V(x,t), I(x,t) are the line voltage and current at any time t and at distance x, 
respectively. L, R, C and G are the inductance, resistance, capacitance and conductance per 
unit length of the line, respectively. According to the above assumption, the characteristic 
impedance and phase velocity of the secondary constant parameters are described by 

0 /Z L C  and 1 /pv LC , respectively. To solve the transmission line equations, the 
modified central difference approximation is applied to (1). The difference equations can be 
described as follows: 

  1, 1, , +1 +1, -1, +1, -1,

1, 1, , +1 +1, -1, +1, -1,

2 ( )0 01 1 1
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The derived update equations in the case of lossless line are as follows: 
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 (3) 

where the suffices i,j,i+1,i-1, etc. denote the position at i=ix (0 i l),j=jΔt(Δt=Δx/vp) on the 
(x-t) plane. l is the line length. 

2.2. Modeling of coupled transmission lines 

Here, as shown in Figure 2, we carry out the even- and odd-mode numerical analysis for the 
parts of the coupled lines in Figure 1. In the considered parallel coupled lines model, Z0e and 
Z0o, respectively, are the even- and odd-mode equivalent impedances decided as follows: 

 0 0 (1 ) / (1 )e cZ Z k k    (4) 

 0 0 (1 ) / (1 )o cZ Z k k    (5) 

where Z0c and k are the characteristic impedance and coupling coefficient, respectively. The 
line voltages and currents for each equivalent impedance line are obtained by using (3).  

2.3. Boundary treatments 

In this modeling, the boundary treatments of both the sides of the coupled line need to 
calculate at each of time step. For the voltages and currents at the boundaries of the coupled 
line part as shown in Figure 3, the following scattering matrices expressed by the reflection 
coefficient are used to compute the reflected and transmitted quantities. 
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Figure 2. An equivalent circuit model of a basic coupled line. 

 
Figure 3. Four ports boundary at left side discontinuity of Figure 2 (b) 
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where Vpi+, Vpi-, Ipi+, Ipi- (i=1, 3, e, o) denote the incident and reflected voltages, and currents 
from each line at the left side discontinuity, and the reflection coefficient is 
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 0 0 0 0 0 0 0 0( ) / ( ) ( ) / ( )a e c e c o c o cZ Z Z Z Z Z Z Z         (8) 

Similarly, be done to the right side one. Further, the boundary treatments for each port of 
the coupled lines with mismatched load are carried out as follows:  

 pk k pk k pk (1 )V V V       (9) 

 pk k pk k pk  (1 )I I I        (10) 

where k = (Zpk-Z0c)/(Zpk+Z0c) , (k=1 to 4). These boundary treatments need to be performed at 
each time step. 

Here, the initial conditions of each transmission line are given as follows: Ve(x,t=0)=0, 
Ie(x,t=0)=0 and Vo(x,t=0)=0, Io(x,t=0)=0. Then, for Port1 excitation, the boundary conditions at 
each port of the circuit component are also given as follows: Vport1(t)= e(t)Z0/(Zs+Z0), 
Iport1(t)=Vport1(t)/Z0, Vport2(t)=0, Iport2(t)=0, Vport3(t)=0, Iport3(t)=0, Vport4(t)=0 and Iport4(t)=0. The 
obtained voltage and current solutions of the ring resonator and traveling-wave loop 
directional filters are demonstrated dynamically. 

As a final processing, the line voltage and current solutions of the coupled transmission 
lines are numerically computed by the following equations. 

       1 , , , 2e oV x t V x t V x t   (11) 

       1 , , , 2e oI x t I x t I x t   (12) 

       2 , , , 2e oV x t V x t V x t   (13) 

       2 , ,  , 2e oI x t I x t I x t   (14) 

where Ve(x,t), Vo(x,t) and Ie(x,t), Io(x,t) are the even- and odd-mode line voltages, and 
currents, respectively. 

Algorithm 
 

Preprocessing: Decision of line parameters 
 

Step 1. Set initial values 
V(x, t=0), I(x, t=0): 0<x<l  

Step 2. t=t +Δt if t > tn then exit 
Step 3. Calculate update equations 

V(x,t), I(x,t) : 0<x<l 
Step 4. Boundary treatments 
Step 5. Go to Step2 
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Postprocessing: Visualization of results 

The solutions of the basic coupled lines as shown in Figure 2 are computed by the numerical 
even and odd modes analysis. The voltage and current solutions of the equivalent even- and 
odd-mode impedance lines of uniform parallel coupled lines are shown in Figure 4 
(a)(b)(e)(f). Consequently, by synthesizing these solutions, namely using equations (11)-(14), 
the solutions for the drive line and sense line are obtained as shown in Figure 4 (c)(d)(g)(h). 
Subsequently, Figure 5 and Figure 6 show the input and output voltage waveforms 
extracted from the voltage solutions of the basic coupled lines with and without matched 
loads, respectively, from 0 to 800 time steps. The used design parameters as follows: Z0=50Ω, 
Z0c=50Ω, k=0.707, Z0e=120Ω, Z0o=20.8Ω, lc=40mm, Δx=1mm, Δt=3.33ps, εr=1, for ei=sin(2πfct): fc 
=1.875GHz).  

 
 
 

 

(a) (b)

(c) (d)
Voltage 
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Figure 4. Transient solutions of the even-mode and odd-mode equivalent lines and the solution of the 
basic coupled line synthesized with their solutions: Voltage (upper) and Current (lower). 

 

 
Figure 5. Input and output responses of the basic coupled lines with matched loads: MCD (dotted line) 
and SNAP (solid line). (Z0=50Ω, Z0c=50Ω, k=0.707, lc=40mm). 

(e) (f)

(g) (h)
Current 
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Figure 6. Input and output responses of the basic coupled lines with mismatched loads: MCD (dotted 
line) and SNAP (solid line). (Z0=50Ω, Z0c=60Ω, k=0.707, lc=40mm). 

3. Wave propagation in the transmission line networks 

In this section, several simulation results are shown for representing the wave propagation 
along the transmission line network. The transient voltage and current responses of the ring 
resonator and traveling-wave multi-loop directional coupler filters are analyzed and 
demonstrated with the time domain analysis. 

3.1. Transient behavior of ring resonator filter 

First, it is shown that the transient voltage and current responses of the ring resonator filter 
in Figure 1 (a) are demonstrated in the time domain. The designed parameters for this band 
stop filter (BSF) were used as follows: Z0=50Ω, Z01= Z03=55Ω, Z02=35.4Ω, Z0e=130Ω, Z0o=40.9Ω, 
l=40mm, Δx=1mm, Δt=3.33ps, εr=1, for a sinusoidal wave (ei=sin(2πfct): fc center frequency 
1.875GHz) excitation. The variations of the instantaneous voltage and current distributions 
of the transmission line in the transient region are represented by the dynamic expression as 
shown in Figure 7. Also, Figure 8 shows the voltage and current distributions at steady state 
after 5000 time steps, to represent the standing wave at the center frequency. This figure 
represents the difference of the resonance phenomena in loop line between BSF and all-pass 
ring resonator. Figure 9 shows the input and output responses, in which the transmission 
zero and full-pass into port 2, respectively, are observed. In the case of the BSF, from the 
observed responses, it considerably takes much more CPU time up to steady state region. 
The designed parameters for the case of all-pass were used as follows: Z0=50Ω, Z01=Z03=50Ω, 
Z02=50Ω, Z0e=120.7Ω, Z0o=20.8Ω, l=40mm, Δx=1mm, Δt=3.33ps, εr=1. 

3.2. Time responses of traveling-wave multi-loop directional filters 

Next, we show the time responses for the traveling-wave double-loop 3dB directional coupler 
as shown in Figure 1 (b). Figure 10 shows the variation of instantaneous voltage and current 
distributions on the directional coupler in the steady state after 1500 time steps. The isolation 
at port 4 and the equal power division into ports 2 and 3 are observed for the 3-dB coupler at 
the center frequency. Note that the envelope denotes the standing waves on the transmission 
lines, in which they appear at only the coupled line area. In Figure 11, the input and output 
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voltage waveforms at each port are represented for 2000 time steps. The CPU time took in a 
few seconds. The following designed parameters were used: Z0=50Ω, Z011=Z031=Z012=Z032=50Ω, 
Z0e1=Z0e2=Z0e3=120.7Ω, Z0o1=Z0o2=Z0o3=20.8Ω, l=40mm, Δx=1mm, Δt=3.33ps, εr=1 at fc =1.875GHz. 

 
Figure 7. Transient behaviors of voltage and current on the ring resonator BSF from 0 to 600 time steps. 

(a) Voltage (b) Current 
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Figure 8. Variation of instantaneous voltage and current distributions on the ring resonator BSF (upper) 
and all-pass (lower) at steady state after 5000 time steps. Red lines denote a snapshot of the plot. 

 

 
Figure 9. Input and output voltage waveforms of the ring resonator BSF (upper) and all-pass (lower) 
from 0 to 6000 time steps. 

Time step 

Time step 
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Figure 10. Variation of the instantaneous voltage and current distributions on the double-loop 3-dB 
directional coupler after 1500 time steps. Red lines denote a snapshot of the plot. 

 
Figure 11. Input and output voltage waveforms of the double-loop directional coupler for sinusoidal 
wave excitation at the center frequency. 

Figure 12 shows the time responses for the traveling-wave triple-loop directional filter. The 
variation of instantaneous voltage and current distributions on the directional filter in the 
steady state are illustrated after 3000 time steps. The isolation at ports 4 and 2, and full 
power into port 3 is observed for the directional filter at the center frequency fc. The input 
and output voltage waveforms at each port for 4000 time steps are represented in Figure 13. 
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Additionally, at dual frequencies fa and fb, near equal power division into ports 2 and 3 are 
represented. The following parameters were used: Z0=50Ω, Z011=Z031=Z012=Z032=Z013=Z033=50Ω, 
Z0e1=Z0e2=Z0e3=Z0e4=120.7Ω, Z0o1=Z0o2=Z0o3= Z0o4=20.8Ω, l=40mm, Δx=1mm, Δt=3.33ps, εr=1 at fc 
=1.875GHz. 

 

 
Figure 12. Variation of the instantaneous voltage and current distributions on the traveling-wave triple-
loop directional filter after 3000 time steps at the center frequency. Red lines denote a snapshot of the 
plot. 
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Figure 13. Input and output voltage waveforms of the traveling-wave triple-loop directional filter for fa 
(=1.72GHz), fc(=1.875GHz) and fb(=2.03GHz) frequencies. (See Figure 16 (b)) 

4. Frequency responses 

As an application of this method, it is shown that frequency responses are obtained from the 
transient responses by the fast Fourier transform technique. Using the input and output 
responses extracted from the transient pulse solutions, we obtain each voltage Vpn(t) and 
current Ipn(t) as the response quantities at port n. By using the FFT technique, S parameters 
for port 1 input of the coupler are given by 

    1 [ / ]n pn inS FFT V t FFT V t     (15) 

where Vin(t)=(Vp1(t)+Ip1(t)Z0)/2 is the incident voltage at port 1. Then, the return loss S11 and 
insertion loss S21 are obtained. This simulation was carried out with a Gaussian pulse ei(t) 
=exp(-((t-t0)/)2) excitation, where t0 is the initial delay time and  is the pulse width 
parameter. 

Figure 14 (a) illustrates the voltage pulse responses at each port for one loop resonator filter. 
Figure 14 (b) shows the return loss and insertion loss of the frequency characteristics, which 
has the characteristic of very sharp notch filter at the center frequency. The same line 
parameters in the previous section were used. 

Figure 15 (a) illustrates the voltage pulse responses at each port for the traveling-wave 
double-loop 3-dB directional coupler. And, Figure 15 (b) shows the return loss and insertion 
loss of the frequency characteristics, which has the characteristic of band pass filter with 3dB 
coupling at the center frequency. Similarly, the result of the traveling-wave triple-loop 



 
Wave Propagation Theories and Applications 234 

directional filter is shown in Figure 16. It can be seen that from the frequency response, the 
sharp skirt characteristics compared with double-loop resonators is obtained. The simulated 
results of the present method are in good agreement with those of S-NAP design software 
package [10]. 

Thus, by using the presented simulation tool, the circuit designers can efficiently obtain the 
design parameters to improve the properties of the ring resonator and traveling-wave loop 
directional filters in both the time and frequency domains. Also, by the visual expression of 
the solutions, the signal propagation can be make it easy to understand the operation 
characteristics on the microwave circuit components composed of the coupled transmission 
lines. Finally, the implemented program is of compact algorithm by the Visual BASIC 
language, and considerably saves CPU time. 

 

 
Figure 14. (a) Input and output voltage responses of the ring resonator BSF from 0 to 4000 time steps 
for a Gaussian excitation. (b) S-parameters by present method (dotted lines), and SNAP simulator (solid 
lines). 

(a)

(b)
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Figure 15. (a) Input and output responses of the traveling-wave double-loop directional coupler for a 
Gaussian pulse excitation. (b) S-parameters of this coupler: presented method (dotted lines), and SNAP 
simulator (solid lines). 

(a)

(b) 
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Figure 16. (a) Input and output responses of the traveling-wave triple-loop directional filter for a 
Gaussian pulse excitation. (b) S-parameters of this filter: presented method (dotted lines), and SNAP 
simulator (solid lines). 

(a)

(b)
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5. Conclusion 

Visualizing the signal propagation in transmission line circuits is very important for 
understanding the operation mechanism of the circuit systems. It has been shown that the 
presented time domain simulation method can analyze and demonstrate the transient 
behaviors of the voltage and current waves of the ring resonator and traveling-wave loop 
directional filters by dynamic expression. Moreover, we have shown the frequency 
responses of the multi-loop coupled line filters by using the FFT technique. As a brief test 
tool, this method introduced the systematic mixed even and odd modes model for the part 
of parallel coupled lines is useful to confirm the operation characteristics of the circuit 
components consisted of loop resonator with coupled lines. This run can process on a small 
size PC system sufficiently. 
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1. Introduction 

Since several years, digital wireless transmissions are experiencing a significant increase 
with the development of digital TV, satellite communications, mobile phones, internet, 
wireless local area networks and automation in various domains. The transportation field as 
a whole is a major actor of these changes. Technologies and systems for wireless 
communications are increasingly used in the field of guided transport (underground, 
conventional trains, high speed trains, tramways, etc.) to ensure communications between 
trains and between a train and the infrastructure. These systems answer the key operational 
needs for safety and comfort, such as control and command of the trains, traffic 
management, maintenance, security and information for passengers and crew members. We 
can distinguish two main families of systems: low-data rate reliable transmissions, for traffic 
control and command, and robust high data rate transmissions, for video surveillance, 
remote diagnostic or embedded multimedia applications. Consequently, the radio coverage 
prediction of these wireless systems is mandatory to optimize the deployment of the radio 
access points in order to ensure the robustness and reliability of radio links and to minimize 
the antennas positioning phase duration. Indeed, minimum field strengths are generally 
required to ensure Key Performance Indicators (KPI) related to the requirements of 
dependability and Quality of Service (QoS). 

For underground applications, these systems operate in complex environments, such as 
tunnels, where the usual laws for predicting the propagation in free space are no longer 
valid. Like the telecommunication operators, railway manufacturers or guided transport 
operators should invest in planning tools to deploy their radio communication systems. 
However, to our knowledge, no general model for predicting free propagation in tunnel 
exists, as easy to use as well known existing models in the world of mobile phones, such as 
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statistical models derived from Okumura-Hata, Cost231, etc. The tunnel case is usually 
solved with heavy measurement campaigns that are time consuming and costly. Thus, the 
development of specific and efficient propagation models for tunnels is very relevant for 
railway industry to allow both fast responses to tenders, and quick deployments of their 
wireless communication systems in these specific environments. The tunnels can be 
rectangular, circular or arch-shaped. In addition, they may be straight or curved, with only 
one or two tracks. 

Several methods to model radio wave propagation in tunnels have been published in the 
literature and will be presented in this chapter with their advantages and drawbacks. 
Among them, only few works are dedicated to non rectangular cross section and curved 
tunnels. Hence, we focus on a new method recently developed. The structure of the chapter 
is as follows. Section 2 presents the context of the works and why deployments of wireless 
telecommunication systems are needed for transport applications. Existing techniques to 
model radio wave propagation in tunnel are presented in section 3 with their respective 
advantages and drawbacks. The fourth and fifth sections are respectively devoted to the 
design and the evaluation of a propagation prediction model for curved tunnel with a 
rectangular or a circular cross section. Finally, section 6 concludes and presents some 
perspectives to these works. 

2. Wireless telecommunication systems needs for transport applications 

The growing of wireless networks including cellular (GSM, GPRS, EDGE, UMTS, etc.) saw 
the arrival on the market of a number of software tools dedicated to radio systems planning, 
for industrial and telecom operators. These tools allow the identification of sites to set up 
base stations from the definition of the characteristics of areas to cover, possibly by 
imposing the location of some sites (favorite sites). Most of these tools are very heavy to 
handle, dedicated to radio engineers, optimized and enriched by in-house phone operators 
to take into account the different propagation environments encountered. 

Like the general public telecommunications world, the widespread use of wireless 
communication systems in the field of transport requires the use of software tools for 
planning and optimization for the efficient deployment of these systems. Some existing tools 
in the world of telecommunications are specifically adapted, for example for the 
deployment of GSM-R infrastructures in various European countries. But to our knowledge, 
no module specifically dedicated to the metro tunnels is currently sold. 

Thus, in most cases, the industrials perform measurement campaigns that are time 
consuming and costly. These experimentations require free access to the operational sites, 
which is a difficult task to achieve: 

 In the case of a line under construction, site access depends on the progress of the 
construction that may experiences significant delays. Indeed, the development of a 
wireless communication system is the final step of the overall transportation system; 
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 In the case of a line already in operation, access to the site has to be done outside the 
hours of operation of the metro, which leads to very short ranges that occur most often 
during night. 

To limit the measurement campaigns, it is necessary that the railway industrials possess 
planning tools to determine the field strength regardless of the environment encountered: 
consideration of tunnels with different cross and longitudinal sections and building 
materials for example. Propagation models must meet the best compromise between 
accuracy and computation time and have to be simple to use. 

For outdoor areas, predictive models of the radio coverage are the well-known statistical 
models, such as free space attenuation, Okumura-Hata model or 2-rays model. These 
models work well because the deployment is in Line-Of-Sight (LOS) and distances between 
transmitter and receiver are weak. The measurement campaigns are easy to implement and 
generally there are few constraints for the positioning of access points that are most often 
located on existing poles (signaling, lighting, etc.). 

In tunnel areas, the prediction of radio coverage is currently based on intensive use of 
feedback on measurements and implementation of engineering rules. 

Configurations of complex tunnels, such as curved tunnels of circular cross section are more 
frequently encountered in the modern metro lines and it becomes necessary to refine the 
prediction process of the radio coverage for deployment based on more sophisticated tools, 
such as the method presented in this chapter. 

3. Existing techniques to model radio wave propagation in tunnel 

Methods based on simulation and measurement of radio wave propagation in tunnels were 
presented in the literature. Analyses based on measurements at 900 MHz and 1800 MHz 
represent the first approach (Hwang et al., 1998), (Zhang & Hwang, 1998a), (Zhang et. al, 
1998), (Zhang & Hong, 2004), in order to characterize propagation in wide rectangular 
tunnels. In (Zhang & Hwang, 1998b), (Lienard & Degauque, 1998), statistical characteristics 
of propagation channel in tunnels are performed from measurement results. However, 
analyses performed from the measurements presented in these papers are specific to a given 
shape of tunnel. Radio wave propagation modeling in generic tunnels is thus a major 
research field. 

Some authors have proposed methods based on the modal theory to provide all the modes 
propagating in tunnel. Approximate and exact solutions have been determined for straight 
rectangular tunnels and straight circular tunnels respectively (Laakman & Steier, 1976), 
(Emslie et al., 1975), (Mahmoud, 1974), (Dudley & Mahmoud, 2006), (Dudley et al., 2007). 
The modal theory considers tunnels as oversized waveguides. It provides good results but it 
is limited to canonical geometries, which are not the main cases according to the generally 
encountered tunnels. 
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Several papers present results based on an exact resolution of Maxwell’s equations using 
numerical techniques such as integral methods or the resolution of the Vector Parabolic 
Equation (Chang et al., 2009), (Reutskiy, 2008), (Popov, 2000), (Bernardi et al., 2009). One 
more time, these kinds of techniques are limited, mostly due to the computational 
complexity. Indeed, these methods are based on a volume discretization of the propagation 
environment with a scale that should be smaller than the wavelength. Consequently, the 
complexity is prohibitive for operational environments. 

Finally, frequency asymptotic techniques based on the ray concept, being able to handle 
complex tunnel geometries in a reasonable computation time, seem to be a good solution. A 
first simple approach based on a 2-rays model was proposed in (Zhang, 2003), (Ahmed et 
al., 2008). This method suffers from lack of accuracy due to approximations on the number 
of rays considered in the model. In (Mahmoud, 1974), a model based on a Ray Tracing, 
based on image method, takes into account multiple reflections, but only for the case of 
straight rectangular tunnels. In (Mariage et al., 1994), the authors use this method and adds 
diffraction phenomenon in order to analyze the coupling between indoor and outdoor. In 
(Agunaou et al., 1998), works are purchased by considering changes of tunnel sections, but 
still only in straight rectangular tunnels. However, tunnels in real environments, such as 
metro ones, can have non rectangular cross section. Furthermore, they can be curved. Ray 
Tracing is no longer valid with curved surfaces since the source image is no more unique. 
Consequently, only a few studies deal with the case of non-rectangular cross sections and 
curved tunnels. 

The first intuitive approach for curved surfaces consists of a tessellation of the curved 
geometry into multiple planar facets, as proposed in (Chen & Jeng, 1996), (Torres et al., 
1999), (Baranowski et al., 1998), (Masson et al., 2010). Unfortunately, the surface curvature is 
not taken into account in this type of techniques. Furthermore, one of the major drawbacks 
of this approach is the impossibility to identify an optimal number of facets for a given 
tunnel cross section and a given frequency (Masson et al., 2010). In (Wang & Yang, 2006), a 
ray-tube tracing method is used to simulate wave propagating in curved road tunnels. An 
analytical representation of curved surfaces is proposed. Comparisons with measurement 
results are performed in straight arch-shaped and curved tunnels. The paper lacks of 
information. Consequently, we focused on the works presented in (Didascalou et al., 2000), 
(Didascalou et al., 2001). A Ray Launching combined with a ray-density normalization is 
presented. The surface curvature is taken into account. Comparisons with measurements are 
performed respectively in a scaled tunnel (with 20 cm reduced diameter dimension, and 
then higher frequency at 120 GHz for compensating the former), and in curved subway 
tunnels at 900 MHz and 1800 MHz. The method provides good results but exhibits two 
main defaults: the geometric shapes of the tunnels are not all flexible, and the computation 
time is high due to the large number of rays launched at transmission. To overcome these 
drawbacks, we developed a method to model the electromagnetic propagation in tunnels 
with curved geometry, either for the cross section or the main direction. The main 
advantage of this new method is its best compromise between accuracy and computation 
time for applications at 5.8 GHz. It is presented in the next section. 
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4. Design of a propagation prediction model for non rectangular cross 
section and curved tunnels 

The aim of the developed method is to model radio wave propagation in non rectangular 
cross section and curved tunnels. The problem to be solved consists in taking into account 
the presence of curved surfaces which induces divergence of rays by reflection on surfaces. 
An adaptation of the Ray Launching technique and a correction on paths trajectories have to 
be performed. 

The method consists of three main steps. First step consists of an adaptation of a classical Ray 
Launching technique for the consideration of curved surfaces. Developments on emission, 
reception and intersection between rays and curved surfaces are performed. Second step is to 
correct the received paths trajectories after the Ray Launching step. It consists of a 
minimization of the paths length, a choice of optimized paths and an adapted algorithm for 
the Identification of Multiple Rays (IMR). Last step consists in taking into account the 
divergence of rays for the Electric Field calculation in the presence of curved surfaces. 

We consider four kinds of tunnel geometry encountered in operational cases, illustrated in 
Figure 1: 

 the straight rectangular tunnel; 
 the straight circular tunnel; 
 the curved rectangular tunnel; 
 the curved circular tunnel. 

For tunnels with circular cross section, a floor and/or a roof can be added in the model of the 
environment to take into account arch-shaped sections for example. All these configurations 
lead us to consider three kinds of elementary geometry: The plane for the straight 
rectangular tunnel and the additional floor/roof, the cylinder for the straight circular tunnel 
and the walls of the curved rectangular one, and finally the torus according to the curved 
circular tunnel. All these components are quadrics, which is important for the simplicity of 
intersection computation with rays. 

4.1. Ray launching for curved surfaces 

4.1.1. Emission 

Since no a priori information on privileged propagation direction is available, we chose to 
implement a Ray Launching technique based on a uniform distribution of rays radiated 
from the transmitter. There are different techniques to obtain a uniform distribution. 

We consider a stochastic Monte Carlo method (Didascalou et al., 2000) in order not to skew the 
results. Instead of using random sequences, the method consists in using quasi-random 
sequences (Morokoff & Caflisch, 1995) to regularly cover all the space. Indeed, quasi-random 
sequences allow minimizing the discrepancy, which corresponds to a measure of the gap 
between a reference situation, generally perfect uniformity, and a given configuration. 
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Figure 1. Four kinds of treated tunnels 

Figure 2 illustrates the distribution of 512 rays computed from a random sequence 
compared to ones obtained from two quasi-random sequences, namely Halton (Halton, 
1960) and Hammersley (Hammersley, 1964). The Hammersley sequence allows us to obtain 
the best uniform distribution. 

In order to prove it, we present in Figure 3 the histogram of the angles between each ray and 
its nearest neighbor. So, the most uniform sequence is the one which provides the highest 
peak for a given angle value in its histogram, it will then minimize the discrepancy. It 
appears again that the best one is the Hammersley sequence. Therefore, we chose to use it to 
trace the rays radiated from the transmitter. 

 
Figure 2. Comparison of the distribution of 512 rays at transmission between the use of a random 
sequence and 2 quasi-random sequences: Halton and Hammersley 

Random Halton Hammersley
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Figure 3. Histogram of minimum angles between two rays launched at transmission 

4.1.2. Reception 

The Ray Launching technique requires a reception sphere to determine which rays 
contribute to the received power. Indeed, the probability that a given ray meets a receiver 
point is always zero. The reception sphere radius, denoted as rR, depends on the path length 
r and the transmission angle  (Seidl & Rappaport, 1994): 

 
3R
rr 

  (1) 

The main drawback of a reception sphere is that it should receive a collection of rays 
whereas an only one is predicted by Geometrical Optics. These rays are called multiple rays, 
as illustrated in Figure 4. If all of them are added together the result will be an 
overestimation of the received power. Thus, it is necessary to discriminate them. This can be 
performed with an Identification of Multiple Rays (IMR) algorithm (Iskander & Yun, 2002). 
Classical criteria include the number of reflections, the path length and the transmission 
angle. In case of curved surfaces, multiple rays are much more scattered and distant from 
each other. A specific treatment of the rays and an adapted IMR are so needed and proposed 
in section 4.2. 
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Figure 4. Illustration of multiple rays by using a reception sphere 

4.1.3. Intersection ray/curved surface 

We have shown that besides planar surfaces, both cylindrical and toroidal surfaces have to 
be taken into account in the considered tunnel configurations. These geometrical objects 
belong to the quadrics family and can thus be easily expressed in an analytical form. 

In Cartesian coordinates, the equation of a cylinder with the axial direction along the y-axis 
and centered at the origin is given by: 

 2 2 2
cx z r   (2) 

with rc the radius of the cylinder. 

In a same way, the equation of a torus around the z-axis and centered at the origin is as 
follows: 

 2 2 2 2 2 2 2 2 2( ) 4 ( ) 0t t tx y z R r R x y        (3) 

with Rt and rt the radiuses of the torus. 

The definition of a ray being as follows: 

 x xx d t di   ,  

 y yy d t di   , (4) 

 z zz d t di     

with (dx, dy, dz) the origin of the ray and (dix, diy, diz) the direction vector of the ray, the 
intersection of a ray with a cylinder and a torus leads to the resolution of respectively, a 
quadratic equation and an equation of degree 4. 

4.2. Optimized IMR and final choice of corrected rays  

The section 4.1.2 has shown that using a reception sphere leads to take multiple rays into 
account. The multiple rays are determined by classical IMR algorithms based on similarity 
criterion according to geometrical characteristics of the rays. Then, the choice of the retained 
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ray is randomly realized among the identified multiple rays, without any physical 
considerations. So, they lead to a bad approximation of the real ray. To enhance this 
approach, we propose here to add a correction algorithm of the trajectories of multiple rays 
that makes them converge to the correct geometrical one. The ambiguous choice of the ray 
for a correct field calculation is thus avoided. 

4.2.1. Correction algorithm of the paths trajectories 

The general principle is as follows. Once a ray is launched from the transmitter using the 
Hammersley quasi-random sequence, its propagation is recursively computed, by 
calculating its intersection with the curved surfaces, until it reaches the reception sphere. 
Either it undergoes the fixed maximum number of reflections, or it goes outside the tunnel. 
So, a contributive ray (a path), i.e. one that has reached the reception sphere, presents some 
geometrical approximations since it does not go through the exact receiver position, as it has 
been explained in section 4.1.2. Using the Fermat Principle, indicating that the path followed 
by a wave between two points is always the shortest one, we propose to reduce the 
geometrical approximation involved in each path: The correction algorithm consists, for a 
given path, in minimizing its length assuming that it reaches the center of the reception 
sphere. 

While the path length function is not linear, we propose to use the well-known Levenberg-
Marquardt algorithm (Marquardt, 1963). Nevertheless, the algorithm is efficient only if the 
starting point (i.e. the initial ray) is near the solution. By using the Ray Launching, it can be 
assumed that the paths caught by the reception sphere are close to the real paths existing 
with a Geometrical Optics meaning, i.e. the shortest. Thus the received rays represent a good 
initialization of the algorithm. The principle of the Levenberg-Marquardt algorithm consists 
in finding the best parameters of a function which minimize the mean square error between 
the curve to approximate and its estimation. 

Applied to propagation in tunnels, the objective becomes a path length minimization. The 
criterion to minimize is then the total path length J given by: 

 1 1
2

N

k k N
k

J EP P P P R


  
  

 (5) 

With E the transmitter position, R the receiver position and Pk the kth interaction point 
position of the considered path, as illustrated in Figure 5. 

The vectors defined in (5) depend on the coordinates of the interaction points along the 
path. The iterative algorithm requires the inversion of a Hessian matrix which contains the 
partial derivatives of the J criterion to minimize with respect to parameters. To keep 
computation time and numerical errors reasonable, the matrix dimensions and thus the 
number of parameters have to be minimized. Local parametric coordinates (u, v) from the 
given curved surface are used instead of global Cartesian coordinates (x, y, z). The 
parameters vector can be written as: 
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 1 1 N Nu v u v      (6) 

Where (uk,vk) correspond to coordinates of the reflection point Pk. 

 
Figure 5. Principle of optimization of paths 

4.2.2. Validation of corrected trajectories 

Since the Levenberg-Marquardt algorithm is a numerical method, its convergence cannot be 
guaranteed. So, we have to proceed to a validation test on the corrected paths, which can be 
incoherent in the case of an algorithm divergence. 

This test consists in checking if the Geometrical Optics laws are respected, specifically the 
Snell-Descartes ones. For each reflection point, we verify if the angle of reflection r equals 
the angle of incidence i, as illustrated in Figure 6. If not, the path is discarded. For instance 
an unphysical path 

LMrd


 computed by the Levenberg-Marquardt algorithm different from 

okrd


 (by considering i = r) is shown in figure 6. The path 
LMrd


 is thus eliminated. 

 
Figure 6. Validation criterion of corrected paths 

4.2.3. Final choice of the correct ray 

Section 4.1.2 indicates that the Ray Launching algorithm leads to the existence of multiple 
rays corresponding to the same contribution according to Geometrical Optics. They must be 
identified and only one ray has to be kept. However, the correction technique previously 
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presented allows obtaining multiple rays very close to the real path, and consequently very 
close to each other. Nevertheless, due to numerical errors, they cannot be strictly equal to 
each other. Thus, the choice of the final ray can be done on the base of the reflection points 
localization: If the reflection points of two candidate paths are at a given maximal inter-
distance, the paths are considered to be equal and one of the two is removed, it does not 
matter which. 

4.3. Electric field calculation 

In the case of a curved surface, Electric Field can be computed after reflection by classical 
methods of Geometrical Optics as long as the curvature radiuses of surfaces are large 
compared to the wavelength (Balanis, 1989). 

It can be expressed as follows (Figure 7): 

 1 2

1 2

( ) ( )
( )( )

r r
jkrr i

r rE P e RE Q
r r
 

 


 

 
 (7) 

With 1r and 2r the curvature radiuses of the reflected ray, r the distance between the 
considered point P and the reflection point Q, k=2/ with  the wavelength, and R the 
matrix of dyadic reflection coefficients. 

 
Figure 7. Reflection on a curved surface 

Unlike the case of planar surfaces, the curvature radiuses of the reflected ray are different 
from those of the incident ray. Indeed, the following relation holds (Balanis, 1989): 
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1,21,2 1 2

1 1 1 1 1
2r i i f  

 
     

 
 (8) 

With 1i and 2i the curvature radiuses of the incident ray and f1,2 a function depending on 
1i, 2i and the curvature radiuses R1,2 of the curved surface (Balanis, 1989). 

5. Performance analysis in curved tunnels 

This section is dedicated to the performance analysis of the method presented in section 4 in 
tunnels presenting non rectangular cross section and/or curved longitudinal section. This 
evaluation is performed from measurement results obtained in real tunnel environments. 
Performances are evaluated in narrow band by using a comparison of received narrow band 
powers. First part of the section is dedicated to analyses in a straight arch-shaped tunnel. 
Second and third parts of the section focus on rectangular and circular curved tunnels. 

5.1. Performance analysis in a straight arch-shaped tunnel 

5.1.1. Configuration 

Measurements were first performed in a straight arch-shaped tunnel, the tunnel of Roux. It 
consists of a two-way road tunnel located in Ardèche in France, and is illustrated in Figure 
8. The straight section has a length of 3325 m. The arch-shaped cross section has a maximal 
height and width of 5.8 m and 8.3 m respectively. 

 
Figure 8. Illustration of the Tunnel of Roux 

The measurements were performed at 5.8 GHz. The transmitter was located at a fixed 
position at the center of the section, at a height of 4.8 m. It consists of a horn antenna (10.1 
dBi gain at 5.8 GHz), vertically polarized. The receiver was moving along the longitudinal 
axis of the tunnel thanks to a go-kart allowing a very small and regular velocity, compatible 
with the acquisition rate. It is illustrated in Figure 9. The receiving antenna was vertically 
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polarized and had the same characteristics than the transmitting one. It was located in the 
middle of the two tracks, 2.4 m from the sidewall, at a height of 4.1 m. Figure 10 illustrates 
the antennas configuration of measurements. 

 
Figure 9. Go-kart used at reception 

 
Figure 10. Antennas configuration of measurements in the Tunnel of Roux 

5.1.2. Comparison between simulation and measurement loss 

Figure 11 presents the comparison between measurements and simulations in terms of 
normalized received power (Pr) with respect to the transmitted one (Pt), versus the distance 
between transmitter and receiver along the longitudinal tunnel axis in the Tunnel of Roux. 
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A quite good concordance between simulations and measurements is highlighted. A 
detailed analysis is performed in the following. 

 
Figure 11. Comparison between measurements and simulations loss in the Tunnel of Roux – 5.8 GHz 

5.1.3. Statistical analysis of results 

Statistical analysis of slow and fast fading is performed on simulation and measurement 
results. The procedure to extract these data is as follows. First step consists in smoothing 
signals by using a running mean. The window's length is 40  on the first 50 m, and 100  
elsewhere, according to the literature (Lienard & Degauque, 1998).  

Then, the analysis of slow fading can be performed by the computation of the mean and 
standard deviation of the error between measurements and simulations. Results are 
illustrated in Table 1. The slow fading analysis highlights a good agreement between results 
both for the mean and the standard deviation. Indeed, the values are in the range of 4/6 dB, 
which generally, from a practical point of view, illustrates good agreement.  
 

 Mean (dB) Standard deviation (dB)
5.8 GHz 5.35 6.86 

Table 1. Mean and standard deviation (in dB) of the error between simulations and measurements in 
the Tunnel of Roux – 5.8 GHz 

Second step consists of an analysis of fast fading. The data are extracted by the smoothing 
procedure as above. The Cumulative Density Functions (CDF) are computed from measured 
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and simulated data and the Kolmogorov-Smirnov (KS) criterion is applied. Comparisons 
with theoretical distributions of Rayleigh, Rice, Nakagami and Weibull are performed. 
Results are given in Table 2. It appears that the Weibull distribution better minimizes the 
KS criterion, for both measurements and simulations. This study is very useful to 
reproduce statistically fast fading variations in order to realize studies on system 
performance. 

 Measurements Simulations

Rayleigh 0.22 0.24 

Rice 0.22 0.24 

Nakagami 0.05 0.06 

Weibull 0.03 0.02

Table 2. KS criteria of the simulations and measurements compared to theoretical distributions in the 
Tunnel of Roux – 5.8 GHz 

All the analysis carried out according to measurement and simulation results leads us to a 
quite good matching between measurements and simulations in terms of slow and fast 
fading. The developed method provides good performances in a straight arch-shaped 
tunnel. 

Furthermore, it has to be noticed that results presented in this part do not depend on the 
location in the tunnel, while the cross section is similar. This kind of results can be found in 
literature (Lienard et al., 2007). On the other hand, position of antennas in the cross section 
can have a big impact on the received power. 

5.2. Performance analysis in curved tunnels 

5.2.1. Curved rectangular tunnel 

5.2.1.1. Configuration 

Measurements were performed in a curved rectangular tunnel by an ALSTOM-TIS  
team. The measurement procedure is as follows. The transmitter is located on a side near 
the tunnel wall. It is connected to the radio modem delivering a signal at the  
required frequency. Two receivers, separated by almost 3 m, are placed on the train roof. 
They are connected to a radio modem placed in the train. Tools developed by ALSTOM-
TIS allow us to carry out field measurements and to take into account a simple spatial 
diversity by keeping the maximum level of the two receivers. Measurements were 
performed at 5.8 GHz. The measurements configuration is depicted in Figure 12. The 
curved rectangular tunnel has a curvature radius equal to 299 m, a width of 8 m and a 
height of 5 m. 
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Figure 12. Antennas configuration of measurements in the curved rectangular tunnel 

5.2.1.2. Comparison between simulations and measurements 

Figure 13 presents the comparison between measurements and simulations in the 
configuration of Figure 12, in terms of normalized received power (Pr) with respect to the 
transmitted one (Pt), versus the distance between transmitter and receiver along the 
longitudinal tunnel axis in the curved rectangular tunnel. 

One more time, a quite good concordance between simulations and measurements is 
highlighted. An analysis is presented below. 

 
Figure 13. Comparison between measurements and simulations in the curved rectangular tunnel – 5.8 
GHz 
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5.2.1.3. Statistical analysis of results 

For these measurements, analysis of fast fading was not possible because of the lake of 
measured data (spatial sampling greater than /2). We only present a slow fading analysis, 
as it was performed in the section 5.1.3. Mean and standard deviation values of the error 
between simulations and measurements are presented in Table 3. It can be observed values 
around 2 dB which represents a quite good concordance between measurements and 
simulations in the case of the curved rectangular tunnel. 
 

 Mean (dB) Standard deviation (dB)
5.8 GHz 2.15 2.55 

Table 3. Mean and standard deviation (in dB) of the error between simulations and measurements in 
the curved rectangular tunnel – 5.8 GHz 

5.2.2. Curved circular tunnel 

5.2.2.1. Configuration 

Measurements were finally performed in a curved circular tunnel. As for the curved 
rectangular tunnel, the measurements were also realized by an ALSTOM-TIS team. The 
same measurement procedure was followed. Measurements were performed at 5.8 GHz. 
The measurements configuration is depicted in Figure 14. The curved circular tunnel has a 
curvature radius equal to 1000 m and a radius of 2.6 m.  

 
Figure 14. Antennas configuration of measurements in the curved circular tunnel 

5.2.2.2. Comparison between simulations and measurements 

Figure 15 presents the comparison between measurements and simulations in terms of 
normalized received power (Pr) with respect to the transmitted one (Pt), versus the distance 
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between transmitter and receiver along the longitudinal tunnel axis in the curved circular 
tunnel. 

It appears a relative good concordance between simulations and measurements. We analyze 
these results in the following section. 

 
Figure 15. Comparison between measurements and simulations in the curved circular tunnel – 5.8 GHz 

5.2.2.3. Statistical analysis of results 

As for the curved rectangular tunnel, analysis of fast fading was not performed in this case. 
Mean and standard deviation values of the error between simulations and measurements 
are presented in Table 4. It can be observed values around 6 dB which represents a relative 
good concordance between measurements and simulations in the case of the curved 
rectangular tunnel. However, some different behaviors can be observed on few areas, such 
as between 50 and 100 m or 150 and 200 m. These differences are due to problems that can 
remain in the correction algorithm and lead to a bad estimation of the received power. 
 

 Mean (dB) Standard deviation (dB)
5.8 GHz 5.35 6.80 

Table 4. Mean and standard deviation (in dB) of the error between simulations and measurements in 
the curved circular tunnel – 5.8 GHz 

A global remark can be added for the case of curved tunnels (with rectangular or circular 
cross section). As for the case of results presented in section 5.1, results are not dependent of 
the location in the tunnel while the cross section is similar and also while the curvature 
radius is the same. In this case also, position of antennas in the cross section can have a big 
impact on the received power. 
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6. Analysis and discussion 

Modeling of radio wave propagation in non rectangular and/or curved tunnels was 
presented. A first part is dedicated to the presentation of the requirements of wireless 
telecommunication systems for transport applications. These systems lead to the need for 
industrial of models to predict radio propagation in particular environments such as 
tunnels. As presented in details in (Masson, 2010), no such tools are marketed in transport 
domain and specific tools have to be developed for transport applications in tunnels. 

Second part presents the methods to model radio wave propagation in tunnels. Three kinds 
of models are presented. Methods based on the modal theory provide all the modes 
propagating in tunnel. These methods provide good results but are limited to canonical 
geometries, such as rectangular and circular straight tunnels. Some papers are based on the 
exact resolution of Maxwell’s equations. These kinds of techniques are also limited due to 
the computational complexity. Finally, frequency asymptotic methods based on the ray 
concept leads to the best compromise between accuracy and computation time. However, 
tunnels in real environments can have non-rectangular cross section and can also be curved. 
Only a few studies deal with these cases. 

The developed method is presented in the third part where each step of the method is 
detailed. This one is based on a Ray Launching technique combined with an optimized IMR 
technique based on a correction of paths trajectories. It consists in a minimization of the total 
distance of the considered path in order to make it converge to the real one, existing in 
Geometrical Optics meaning. The technique is based on the well-known Levenberg-
Marquardt algorithm. A validation of computed paths after correction is realized by 
verifying the angles of incidence and reflection. A new IMR algorithm is also developed 
leading on comparison of reflection points. 

Last part is devoted to the evaluation of the method in three different geometries of tunnels: 
the straight arch-shaped tunnel, the curved rectangular tunnel and the curved circular 
tunnel. This evaluation is performed from measurements realized in real environments, at 
5.8 GHz. For the case of the straight arch-shaped tunnel, a slow fading study was realized 
and lead to a mean and standard deviation between measurements and simulations of about 
5-6 dB, which represents a quite good agreement between simulations and measurements. A 
fast fading study was also performed. The data were extracted by a smoothing procedure. 
The CDF were computed from measured and simulated data and the KS criterion was 
applied. Comparisons with theoretical distributions of Rayleigh, Rice, Nakagami and 
Weibull were performed. It appeared that the Weibull distribution better minimizes the KS 
criterion, for both measurements and simulations. This kind of study is very useful to 
reproduce statistically fast fading variations in order to realize studies on system 
performance. For the case of curved rectangular and circular tunnels, similar studies on 
slow fading were realized and lead to a mean and standard deviation between 
measurements and simulations of about 3-6 dB, which represents a good agreement of 
results, validating the method. 
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There exist many perspectives to this work. As it was seen in the previous section, in some 
areas, bad estimation of the received power is obtained in the case of a curved circular 
tunnel. These errors can be due to imperfection of correction algorithm that could be 
improved to obtain reliable results. 

Right now, the method is able to treat empty tunnels. The following step will consist in 
taking into account the presence of trains in the tunnel. The phenomenon of masking train 
will also be investigated. In this case, diffraction has to be taken into account in the Ray 
Launching technique. The diffraction phenomenon would also allow taking into account 
complex geometries such as station, crossing, etc. 

7. Conclusion 

The chapter was dedicated to the radio wave propagation modeling in non rectangular 
and/or curved tunnels. It was shown that classical methods (modal theory, rigorous 
methods, asymptotic methods) to model propagation in these kinds of tunnels can not be 
used. Specific treatments on Ray Launching, based on a correction of paths trajectories, have 
to be implemented. They were presented, evaluated and discussed. 
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1. Introduction

Electromagnetic wave propagation in confined environments, such as mine, road or railway
tunnels, has inadmissible quality due to multi-path and high scattering effects of receivable
signals. The ever-increasing work difficulties and the large demand for systems operating in
these scenarios, requires more and more innovative wireless systems to guarantee a reliable
communication. From the radiating element point of view, some investigations have been
given over to the development of novel technologies to provide radio communication in
these environments. In 1956, a paper [46] disclosed what is now generally known as the
leaky-feeder principle for propagation of VHF or UHF signals through a tunnel. Leaky coaxial
cables (LCXs) have been employed since then [18, 38]. Nevertheless, high cost, maintenance
and installation difficulties are the main disadvantages of leaky feeders. These problems are
easily solved in short tunnels, but in the case of longer tunnels the leaky feeder solution
becomes too expensive. For these reasons, solutions that are based on the use of distributed
antennas are becoming more interesting [6].

Antenna design for these scenarios is a challenge : Current tunnel cross-sections can have
arbitrary shapes and antennas have to operate close to tunnel walls. These antennas have
to be discreet and small and propose higher operating frequencies. Moreover, possible
interference among systems may be suffered due to the growing number of wireless
systems working simultaneously. Contrary to free-space applications, the specifications
and parameters involved for antennas working in these environments have not yet been
thoroughly established. The understanding and modeling of radio-wave propagation are
essential steps toward deriving optimum radio communication systems and deployment in
these scenarios. Various studies have been done considering several models to find or analyze
radiation characteristics and positioning of antennas in tunnels [21, 27, 28] or simply to model
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the wave-propagation in these environments [13, 15, 19, 34, 41, 57]. The models used to
study the wave-propagation in these environments are limited due to the intrinsic principles,
applicability and assumptions on which they are based. Asymptotic methods are mostly
used [55]. However, asymptotic methods cannot predict well the fields for antennas associated
with systems which are strongly affected by the surrounding environment. Near-field
considerations have to be accounted for and, thus full-wave methods should be used.

The problem of antenna operation in tunnel environments has been addressed very briefly.
From the positioning point of view, the U.K. guidance (GK/GN06602) on train rooftop
antenna positioning as well as some manufacturers provide some obstruction, separation,
installation and maintenance specifications for train antennas. Alternative solutions offer
improvements in the channel capacity by means of the transmit, receive or spatial
diversity, i.e., by using multiple antennas in the transmission/reception located at different
positions [44, 45, 56]. A modal interpretation of the principles of these solutions are studied
in [37, 43]. The determination of field specifications to excite correct modes to avoid causing
interference between systems, can be also analyzed by using the modal interpretation. Due
to multi-modal propagation in these environments, different positions and types of excitation
are involved. A modal approach is considered to provide a straightforward description of the
wave propagation and the degrees of freedom in these environments [1, 54]. These modes
may be combined in some way to produce a desired effect, e.g., the maximization of the
transfered power by the modes. Thus, modal-based analysis and optimization techniques
for mode-weight adjustment are used to determine correct co-excitation of these modes, and
fulfill the desired specifications. This approach is often used in adaptive array theory [26, 47].
However, to the best of the authors’ knowledge, no such treatment has been reported to deal
with multi-modal propagation in tunnel environments.

This chapter is organized as follows : Section II introduces the modal approach for guiding
structures. It is based on a full-wave method, namely the Transmission Line Matrix (TLM)
method. These methods has been hampered by their large computational time when
compared to asymptotic methods when large size environments are considered. Thus, a
suitable 2.5 D TLM implementation to reduce the computational time and to include lossy
dielectric walls of tunnels is briefly presented [2]. The computation cost is reduced compared
to typical solutions by using the concept of Surface Impedance Boundary Condition (SIBC).
Section III is devoted to the description of a methodology for the determination of antenna
field specifications and positioning in operational scenarios at high frequencies. Section IV
presents the validation of this methodology for a simple canonical case. Lastly, section V
describes the analysis and results for a real scenario representative of tunnel environments.
Finally, discussions and conclusions are developed.

2. Modeling approach for guiding structures

The high complexity of today’s relevant EM problems has popularized the use of numerical
approaches to approximate exact solutions [30]. The main limitation of these methods is the
high computation time when electrical-large structures are considered. With the increasing
performance of computers, research in electromagnetic modeling through numerical methods
has been continuously advancing. New techniques have merged and the capability of the
existing methods has been improved. A modal approach based in the Transmission Line Matrix
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(TLM) method, is considered to analyze the wave propagation in tunnels. A reduced TLM
formulation, is employed to find the mode field distribution of the uniform guiding structure.
Adequate boundary conditions are additionally used to to limit the computation volume. The
modeling approach can be applied for a tunnel with arbitrary cross section, including lossy
walls.

2.1. Brief overview

The modal approach is a rigorous technique, allowing us to have an appropriate physical
insight of the propagation in tunnel environments. It allows us to express the fields in terms
of modes and generalize the applicability of our algorithm for tunnels with arbitrary cross
section. This theory is based on functional analysis. The total fields in a guiding structure,
traveling in the ±z direction, can be expanded by the sum of a set of linearly-independent
functions Ψ. Their mutual orthogonality is not necessarily required. The space spanned by
these functions is given by:

�Eguided (�r) = ∑N
n=1 wn (�r)Ψ�E (�r) = ∑N

n=1 wn (�r) Ên (x, y) e−(αn±jβn)z

�Hguided (�r) = ∑N
n=1 wn (�r) Ψ�H (�r) = ∑N

n=1 wn (�r) Ĥn (x, y) e−(αn±jβn)z,
(1)

where �Eguided and �Hguided are the total guided- electric and magnetic fields, respectively, N
is the total number of modes. Ên (�r) and Ĥn (x, y) are the normalized mode profiles, wn (�r)
are the mode weight coefficients. Finally, α and β are the attenuation and phase constants,
respectively. Considering a particular guiding structure, these modes are solutions for the
fields which satisfy both Maxwell’s equations and the boundary conditions of the waveguide.

To fully characterize the modes, field profiles and the attenuation and phase constants have
to be determined. A modal approach based on the TLM method is employed to this end.
The TLM is a time-domain explicit algorithm based on local wave decomposition. The
computational domain is simulated by a network of interconnected transmission-lines. All
fields components are computed at the center of the nodes (connexions) by linear combination
of impulse voltages traveling in the transmission-lines at discrete time Δt. The explicit scheme
means that voltages at a later time from the system are calculated at the current time. The
method is carried out basically through two processes: scattering and connection. In the
scattering process, voltage pulses kVi are incident upon the node from each of the link-lines
(halfway between two nodes) at each time step k. These pulses are then scattered to produce
a set of scattered voltages, kVr , which become incident on adjacent nodes at the next time step
k + 1. In the connection process, pulses are simply exchanged among immediate neighbors.
A simplified approach based on this method and by using the procedure described in [39, 58],
is briefly introduced in the next subsection.

2.2. EM Modeling of arbitrary cross-section over-sized waveguides: The 2.5-D
TLM approach

The simplification of guiding problems in TLM was first introduced in [29] to obtain the
dispersion properties of guiding structures. They proposed the reduction of the calculation
region by introducing the field dependence along the propagation direction z, which can be
expressed by the terms e−jβz, where β is the phase constant. Two points along the longitudinal
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distance of the guide can be characterized by the phase difference β (z2 − z1). Then, it is
possible to find a relationship between the reflected voltages of the node at the time kΔt and
the incident ones at the time (k + 1)Δt. The Symmetrical Condensed Node (SCN), shown in
Fig. 1, constitutes the most widely used TLM node for 3D structures. The expressions relating
to these voltages for this node are given by equations (2, 5), where kVr

4 , kVr
2 , kVr

9 , kVr
8 are the

reflected voltages at the time kΔt and k+1Vi
4, k+1Vi

2, k+1Vi
9, k+1Vi

8 are the incident voltages at
the time (k + 1)Δt respectively, on lines 4, 2 9 and 8.

Figure 1. The TLM node for guiding structures.

k+1Vr
8 = e−jβΔz

k Vr
4 (2)

k+1Vr
9 = e−jβΔz

k Vr
2 (3)

k+1Vr
2 = e−jβΔz

k Vr
9 (4)

k+1Vr
4 = e−jβΔz

k Vr
8 (5)

Note that the characteristic parameter β must be imposed at the beginning of each calculation.
Then, the resulting fields correspond to the solution of the fields for this value. Two traveling
waves are injected in opposite directions in some of the nodes forming a standing wave. A
time-domain signal, such as a Dirac or a Gaussian pulse is usually employed to analyze the
structure in a wide-frequency range. After a considerable number of time step iterations, the
response is taken at some nodes and correspond to the superposition of the modal fields. By
performing a Fast Fourier Transform (FFT), the response in frequency domain can be obtained.
The peaks in the spectrum correspond to the modes. Several β values have to be imposed
if the response of the modes for different phase constants is desired. Based on this idea,
a 2.5 Dimensional SCN for guiding structures formulation was employed to determine the
fields [39, 58]. The term 2.5D is used as the 3D computational domain is reduced to a 2D mesh
in the guide cross-section. However, cells are 3D ones and account for all 6 electromagnetic
field components.

In addition to the reduced node for guiding structures, the concept of Surface Impedance
Boundary Condition (SIBC) is also considered to efficiently model the tunnel walls, while
reducing the computational domain, as seen in Fig. 2 and explained below.
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Figure 2. 2.5 D TLM approach for guiding structures.

2.3. SIBC boundary conditions to model the tunnel walls

Tunnels are made with dielectric walls and may contain other materials (trains, cars,
objects etc.). For volumic methods, such as TLM, Finite Difference Time Domain (FDTD)
or Finite Element Method (FEM), the limitation of the computational domain within
dielectric materials is usually achieved by using Perfect Matched Layer (PML) as boundary
conditions. However, this technique is too expensive in terms of complexity and consequently
computation time, when dealing with very large electrical objects. Since we are interested only
in the EM fields within the hollow region of the tunnel, an appropriate boundary conditions,
namely, the Surface Impedance Boundary Conditions (SIBC), constitutes the mathematical
artifice to limit the computation volume. For detailed description of its formulation, validation
and results obtained with the TLM method, the reader is referred to [2, 3, 58]. Here, an
introduction of this concept is briefly presented.

Boundary conditions in TLM are simulated by introducing a relationship between incident
and reflected voltages at the boundary. Its expression depends on the nature of the materials
on both sides. An interface of air and a lossy dielectric, as in the case of tunnel walls, can be
simulated by introducing a reflection coefficient Γ, given by [10]:

k+1Vi
armj = ΓkVr

armj =
Zs− Z0

Zs− Z0
Vr

armj, (6)

Γ is in general complex and would alter the shape of the excitation pulses, which normally
cannot be accounted for in the TLM method [10]. Vi

armj and Vr
armj represent the incident and

reflected voltages of the j-arm of the node, respectively, and Zs correspond to the Surface
Impedance of a lossy dielectric [50]. Thus, the SIBC concept allows the efficient modeling
of lossy dielectrics, replacing one medium by a local reflection coefficient at the interface.
This avoids meshing and calculating fields beyond the interface. For tunnel wall modeling
applications, these field values are not required for mode parameter computation. However,
the presence of the the dielectric beyond the interface is accounted for by the SIBC. This
approach is applied in the next sections to study the radio wave propagation for waveguide
with arbitrary cross-section. However, it is limited to walls of permittivity er >> 1 but
without any restrictions on the conductivity σ. However, the problem of finding antenna
specifications is examined and thoroughly discussed first.
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3. Methodology to find antenna field specifications and positioning

3.1. Justification of the choice

One of the most important properties of an antenna is that it radiates or receives radio waves
in a way related to field distribution. In the simplest scenario of a wireless propagation
channel, radio waves propagate in free space, expand spherically from the TX to the RX
antenna. Antennas are then designed according to a desired radiation pattern and considering
far fields. A more complicated situation occurs if the radio waves propagate through
more complex environments, such as tunnels. Waves find several paths through a complex
environment with a variety of several scattering obstacles. Antenna specifications for these
environments are needed.

Modal theory is usually employed to study the correct excitation in guiding structures [11,
40, 51]. In the particular case of radio-wave propagation in tunnel environments, the modal
theory has been employed in the past. Some of these approaches have considered canonical
geometries and excitation sources [15–17, 43]. Thus, in the next subsections, a methodology to
find the field specifications and positioning in these scenarios, based on some recent research,
is discussed.

3.2. Basic principles

In this subsection, essential principles used with this methodology to obtain the field
specifications and antenna positioning in confined environments, are described. These
principles make use of field modal expansion, the mode orthogonality. They will allow the
optimum antenna positioning for mode excitation.

3.2.1. Modal expansion of the fields

The modal expansion (1) is only valid for closed source-free regions. Inside the source region,
besides the discrete mode series expansion, an additional term is needed to account for the
fields of the sources [4]. Additionally, for open waveguides, there is a continuous part of the
spectrum related to radiation modes [4, 59]. Thus, the total fields for wave-guiding structures
can be generally expressed by (7):

�E (�r) = �Eguided (�r) + �Esources (z) + �Eradiated (�r) , (7)

where �Esources (z) and �Eradiated (�r) are orthogonal complements of the functions Ψ�E and Ψ�H .
An analogous expression can be written for the magnetic fields. Inside the source region,
the weight coefficients wn (�r) in (1) represent the mode amplitude and take into account
the z-dependence of the modes and the exciting sources, if any. They depend on the
coordinate z as a result of the source actions, modeling the transverse field components of
the sources. However, for source-free regions and assuming that modes are orthogonal, they
are constants wn (�r) = wn. The longitudinal components of the source are modeled by the
term �Esources (�r) [4].

From the point of view of the fields, modes can be excited and, hence, treated separately.
However, from the point of view of the total power carried by the modes, they may
be coupled. This point will be discussed in the next subsection by means of the
quasi-orthogonality relationship in hollow waveguides.
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3.2.2. Quasi-orthogonality relation for hollow-lossy waveguides

Mode orthogonality is directly related to the properties of functions defined on Hilbert spaces
H. The elements of these spaces are defined with an inner product. Consider a set of functions
Ψ1, Ψ2, Ψ3...ΨN in a Hilbert space H. The inner product of Ψk(r) and Ψl(r) for k not necessarily
equal to l is defined by:

< Ψk(r), Ψl(r) >=
∫

S
Ψk(r) ·Ψ∗l (r)dr, (8)

where ∗ indicates the conjugate. The functions Ψk(r) and Ψl(r) are said to be orthogonal if
their inner product for k �= l is zero. Otherwise they are said to be non-orthogonal.

The existence of the orthogonality property allows us to simplify the analysis of a given
waveguide. This property plays a key role in solving problems of excitation and scattering
in waveguides [40]. The orthogonality between modes means that each mode carries its
own power independently of other modes. In lossless waveguides with perfectly electric or
magnetic walls, the orthogonality is an inherent property. In waveguides with lossy dielectric
walls, such as tunnels, orthogonality no longer holds and so-called quasi-orthogonality can
prevail. A complete treatment of this problem can be found in [4]. To better understand this
consequence, consider the k-th and l-th modes propagating in a source-free region. The curl
Maxwell equations applied to these modes are given by:

∇× �Ek,l = −σm�Hk,l = −jωμ�Hk,l
∇× �Hk,l = σe�Ek,l = (σc + jωε)�Ek,l ,

(9)

where σm and σe are the electric and magnetic conductivities, respectively. Using Maxwell’s
equations, one finds:

∇.
(
�E∗k × �Hl + �El × �H∗k

)
= −2

(
�E∗k σe�El + �H∗k .σm �Hl

)
(10)

Application of the two-dimensional divergence theorem:∫
S
∇.FdS =

∂

∂z

∫
S

ẑ.FdS +
∮

L
n̂.Fdl (11)

into (10) yields:

∂

∂z

∫
S

(
�E∗k × �Hl + �El × �H∗k

)
.ẑdS = −2

∫
S

(
�E∗k σe�El + �H∗k .σm �Hl

)
dS− 2

∮
L

Zs H̃∗k .H̃ldl, (12)

where S is a closed surface with interface contour L, Zs denotes the surface impedance, H̃
denotes the tangential component of �H at the boundaries and:

�Eξ = Êξ (x, y) e−γξz

�Hξ = Ĥξ (x, y) e−γξz (13)

where γ is the propagation constant and ξ is equal to either k or l. Substitution of (13) into
equation (12) yields to:

(γ∗k + γl)
∫

S

(
Ê∗k × Ĥl + Êl × Ĥ∗k

)
.ẑdS = 2

∫
S

(
Ê∗k σeÊl + Ĥ∗k .σm Ĥl

)
dS + 2

∮
L

Zs
ˆ̃H∗k . ˆ̃Hldl (14)
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The real (time-averaged) total power transmitted P (z) and dissipated Q (z) can be calculated
by equations (15).

P (z) = 1
2 Re

{∫
S

(
�E∗ × �H

)
.ẑ�dS

}
= 1

4

∫
S

(
�E∗ × �H + �E× �H∗

)
.ẑ�dS

Q (z) = 1
2

∫
S

(
�E∗σe�E + �H∗k σm �Hl

)
dS +

∮
L Zs H̃∗k .H̃ldl

(15)

Substitution of the modal expansion (1) yields to the expression (16) and (17).

P (z) =
1
2

N

∑
k=1

N

∑
l=1

Pkl =
1
2

N

∑
k=1

N

∑
l=1

Re
{

w∗k wl

∫
S

(
Êk × Ĥ∗l

)
.ẑ�dS

}
(16)

Q (z) =
1
2

N

∑
k=1

N

∑
l=1

Qkl =
1
2

N

∑
k=1

N

∑
l=1

w∗k wl

[∫
S

(
Ê∗k σe Êl + Ĥ∗k .σm Ĥl

)
dS +

∮
L

Zs
ˆ̃H∗t . ˆ̃Htdl

]
(17)

Finally, by comparing expressions (16), (17) and (14), the quasi-orthogonality relation (18), can
be obtained.

(γ∗k + γl) Pkl = Qkl . (18)

Every single mode carries a real self-power flow Pk = Pkk and self-power loss Qk = Qkk. If
self powers are coupled to each other, i.e. Qkl �= 0, it leads to the non-orthogonality between
modes. Then, equation (18) allows us to analyze the cases where the non-orthogonality
between modes occurs. It is worth noting that, for a hollow-dielectric waveguide, such a
tunnel, the surface integral in Q (z) vanishes, and the expression reduces to:

Q (z) =
1
2

N

∑
k=1

N

∑
l=1

w∗k wl

∮
L

Zs
ˆ̃H∗k , ˆ̃Hldl (19)

where L represent a closed contour around the surface of the hollow-waveguide. In this case,
modes are non-orthogonal due to the fact that fields do not vanish at the boundaries leading
to Qkl �= 0. Another interesting case occurs when a waveguide with perfectly electric walls
and loaded with a lossy dielectric, is considered. In this case, the expression (18) reduces to:

Q (z) =
1
2

N

∑
k=1

N

∑
l=1

w∗k wl

[∫
S

(
Ê∗k σe Êl + Ĥ∗k .σm Ĥl

)
dS

]
, (20)

The field components are obtained by multiplying the expressions for the fields for
an unloaded waveguide with eαz, where α is the attenuation constant [7]. Evaluating
expression (20) for this case leads to zero. Thus, the modes remains orthogonal even when
losses are present in the waveguide. However, the integration surface S can be chosen such
that the integral in (20) does not vanish, obtaining the non-orthogonality between modes.
This simple case will be considered later to evaluate our methodology for waveguides with
non-orthogonal modes.

The direct consequence of the non-orthogonality of modes is that the total power is not
additive, i.e., it is incorrect to state that the total power loss is the sum of the power
loss of the modes propagating independently [4, 59]. Thus, the powers of the modes in
lossy-hollow-dielectric waveguides, such as tunnels, are in general, mutually coupled and
this fact has to be considered.
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3.2.3. Optimum positioning for mode excitation

In the most general case, a wave-guiding structure can be excited by a current source or by an
external field. Several modes can be excited and the main objective consists in deriving the
weight coefficients due to a given source. For lossless waveguides, the orthogonality property
implies that there is no power exchange between modes. The formalism for determining
these coefficients is well-known and is usually done by considering current sheets [40, 51]. In
practice, such currents are approximated by probes or loops. The orthogonality in this case
simplifies the analysis and modes can be selectively excited or excluded.

Nevertheless, in lossy-dielectric waveguides, energy exchange between modes can take place.
The theory that describes the interaction between them is known as the Coupled Mode Theory.
This theory allows us to determine the mode amplitudes. The problem of the weight
calculation is rather complicated and lies outside the scope of this chapter. The reader is
referred on this point to the works described in [4, 35, 59]. The mutual coupling between
modes causes the mode amplitudes to be coupled and the resulting coefficients are no longer
constant but become dependent on the propagation direction. The desired set of the equations
of mode excitation for k = 1, 2, ..., can be written in the form (21).

Σl Nkl
dwl (z)

dz
eγlz = Rk (z) , (21)

where:
Nkl =

∫
S

(
Ê∗k × Ĥl + Êl × Ĥ∗k

)
.ẑdS (22)

Rk (z) = −
∫

Ss

(
Je
a.Ê∗k + Jm

a .Ĥ∗k
)

dS−
∫

Cs

(
Je
b.Ê∗k + Jm

b .Ĥ∗k
)

dl, (23)

Ss and Cs correspond to the surface and contour for the source, respectively. Je
a, Je

b, Jm
a , Jm

b
are electric and magnetic currents to model the source. The subscripts a and b denotes the
external bulk and surface sources. The ideal excitation position can be studied by considering
two modes, the resulting expression for the mode amplitude of one of the modes is given by:

w1 (z) =
∫

e−γ1z
(

N22R1 − N12R2

N11N22 − N12N21

)
dz, (24)

where N12 and N21 are the coupling factors between the modes, γ1 is the propagation constant
of the first mode, R1 and R2 correspond to the excitation terms (23) for the first two modes.
In [43], it was demonstrated that these values can be relatively small. By comparing (24)
and (23), it can be noted that the ideal excitation for a given mode is predominantly dominated
by R1. In fact, the dot product in (23) indicates that the excitation should coincide with the
mode profile. As a result, to maximize the excitation of a given eigenfunction, the source
should be located in regions where it is predominant and avoid those where it vanishes. In a
more general case, the eigenfunction of the electric and magnetic field should be maximized.
Thus, a proper excitation should be placed in regions where the power is maximum. This
analysis may be extended for the expression of the weight coefficient for all modes, which is
given by:

w(z) =
∫

e−γzN−1Rdz, (25)

where w(z) is a vector containing the mode amplitudes, e−γz is a vector containing the
exponential terms of the mode propagation constant, N is a matrix of the coupling factors
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given by (22) and R is a matrix with the source terms given by (23). Appropriate mode
excitation should be located in regions where the sum of the mode field profiles is maximum
and avoid those where it vanishes. More generally speaking, locations where the total power
carried by the modes maximizes, correspond to those where the electric and magnetic fields
are simultaneously better excited.

3.2.4. Optimum field excitation for mode excitation

Field specifications for correct mode excitation has mainly been studied in the literature for
applications in optical communications. The selective mode excitation in a hollow waveguide
is studied in [42, 48, 49]. A linearly polarized input light is converted to a TE01-like profile
to excite this mode in a circular waveguide. Several papers on the design of mode converters
can be consulted by the interested reader in [24, 36]. A Gaussian beam launched axially into a
circular fiber is used in [20], for exciting low-order modes. Finally, only canonical cases have
been reported for the integration of antennas in guiding structures [9, 12, 14, 22, 23, 51].

An optimum source excitation in dielectric waveguides, such as tunnels, is still to be
determined and its characteristics are determined by the nature of the weight coefficients
given by (1). As mentioned before, multi-modal propagation in these environments can
cause detrimental effects to the received power. A similar problem arises in adaptive array
theory where the array output power has to be minimized by choosing adequate weight
coefficients of an N-element array. Optimization techniques are employed to find a proper
set of coefficients. A complete treatment of this problem can be found in [26, 47]. Optimum
mode coefficients for correct mode excitation in tunnels can be determined by following a
similar optimization procedure as in adaptive array theory. The total power carried out by the
modes, given by (16), must be optimized. The power must be restricted to a given range, and
only finite values of the weight coefficients should be considered. The problem can be stated
into different ways. First, by maximizing the transmitted power through M receivable modes
in Rx, such that its value is bounded. Its formulation can be expressed mathematically as the
maximization of:

P (x, y, z) = wHPΔTxw (26)

subject to the constrains:
wH

TxPΔTxwTx ≤ δmaxTx

w (x, y, z)H w (x, y, z) = c.
(27)

The second choice consist of maximizing the received power through M transmittable modes
in Tx, such that its value is higher than a given threshold. The problem can be reduced to the
maximization of:

P (x, y, z) = wHPΔRxw (28)

subject to the constrains:
wH

RxPΔRxwRx ≥ δminRx

w (x, y, z)H w (x, y, z) = c,
(29)

Equation (26) and (28) are the matrix form of (16) in Tx and Rx. The vector w contains the
weight coefficients and wH denotes the conjugate transpose of w. P is a hermitian N × N
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matrix (i.e. P = PH) formed from the cross-Poyinting powers of the N modes in the structure,
P is a non-diagonal matrix, the (l, k) element of this matrix is given by:

PΔΩ (x, y, z)(l,k) ≈
1
2
�
{(

�El (x, y, z)× �H∗k (x, y, z)
)
· ˆΔΩ

}
ΔΩ

(30)

Hence, P = PΔTx or P = PΔRx correspond to the power densities in Wm−2 for an element of
area ΔΩ and represent the evaluation of (30) in Tx or Rx. The terms δmaxTx = PmaxTx/AeTx
and δminRx

= PminRx
/AeRx are the maximum and minimum powers densities in Tx and Rx,

respectively. PmaxTx and PminRx correspond to the maximum and minimum powers that can be
transmitted and received in an effective area AeTx in Tx and AeRx in Rx. These power densities
will be clear later on. The first constraint in (27) ensures that the power density (or simply the
power) is bounded, whereas in (29), it ensures that the power is higher than a given threshold.
In general, only one of these problem has to be solved, however the treatment of both will be
considered here for better understanding. The third constraint avoids the solution w = 0
insuring that the weight coefficient vector has a nonzero magnitude and that c is necessarily
a real constant. Finding w optimum to satisfy (27) can be accomplished by the method of
Lagrange Multipliers. The partial derivative of the unconstrained problem (31) with respect
to each variable yields a system of equations to find the values of the weight coefficients.
However, w is a complex vector and it is not clear how the derivative operates on the real and
imaginary parts. A complex gradient operator defined in [5] is rather employed to this end.
This operator or its complex conjugate are suitable for determining stationary points of a real
function, such as P. The necessary Kuhn–Tucker conditions [53], to maximize the following
cost function:

ΛΔΩ = wHPΔΩw + λ
(

c−wHw
)
+ ρ

(
δ−wH

ΩPΔΩwΩ

)
(31)

are given by:
∇w∗ΛΔΩ = PΔΩw− λw∓ ρPΔΩwΩ = 0

∇λΛΔΩ = c−wHw = 0
ρ∇ρΛΔΩ = ρ

(
δ−wH

ΩPΔΩwΩ
)

= 0(
δ∓wH

ΩPΔΩwΩ
) ≥ 0

ρ ≥ 0,

(32)

where ∇ν denotes the complex gradient operator with respect to ν, Ω = Tx or Rx and δ =
δmaxTx or δ = −δminRx .

The first, third and fifth equation in (32) are satisfied for PΔΩw = λw, ρ = 0. Thus, the
optimum vector is an eigenvector of the Poyinting matrix PΔΩ. The eigenvectors are usually
scaled so that the norm of each is 1, satisfying the second equation in (32), i.e. wHw = c = 1.
Lastly, the fourth equation in (32) are satisfied for δmaxTx −w (x, y, zTx)

H PΔTxw (x, y, zTx) =

δmaxTx − λ ≥ 0 or w (x, y, zRx)
H PΔRxw (x, y, zRx) − δminRx

= λ − δminRx
≥ 0. Thus, at

each position on the propagation direction z, the optimum solution corresponds to the
eigenvector(s) associated to δminRx ≤ λ or λ ≤ δmaxTx :

PΔΩw = λw (33)

The sufficient condition for (26) to have a constrained relative maximum, is that the
determinant of the Hessian matrix formed by the second partial derivatives of (31), is positive
definite. The application of this condition in this case leads to zero. Thus, the critical point is
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called a saddle point. The characteristic of a saddle point is that it corresponds to a relative
minimum or maximum. By considering the solution of the problem (26) or (28) subject only
to the second constraint in (27) or (29), it is possible to discriminate further. In this case, the
optimum solution vector can be found using (33) and the determinant of the Hessian matrix
is given by (34). Thus, the eigenvectors of PΔΩ correspond to the maxima of (26).

H =

∣∣∣∣ 0 −w
−w 0

∣∣∣∣ = w2 > 0 (34)

The additional constraint can be included in the solution by examining the norm of the
eigenvectors of PΔΩ. It is noteworthy that the equality in the first constraint in (27) or (29)
can be reached by evaluating the weight vectors (35) or (36) at zTx or zRx, respectively.

wopt→δmaxTx
(z) =

√
δmaxTx

λmaxTx

wmax (z) , (35)

wopt→δminRx
(z) =

√
δminRx

λmaxRx

wmax (z) , (36)

where λmax(z) and wmax(z) correspond to the z-dependent maximum eigenvalues and
eigenvectors of (33). The first term on the right-hand side of (35) and (36) normalizes the
eigenvalues to the maximum or minimum desired powers. These magnitudes are modified so
that wH

TxwTx = δmaxTx/λmaxTx and wH
RxwRx = δminRx/λmaxRx, which still satisfies the second

equation in (32). In other words, optimal weight vectors in (35) and (36) ensure that the
maximum and minimum powers in (33) coincide with the desired output power densities
δmaxTx or δminRx at Tx and Rx, by modifying their norm. Thus, these vectors correspond to the
maxima of (26). It should be noted that all the eigenvectors of (33) are solutions and here, only
the maximum one was considered. Finally, the optimum fields at zTx and zRx can be found by
using (1). They can be written in the matrix form:

�Eopt (z) = ∑N
n=1 wopt

n (z) Ên (x, y) e−γz = woptΨ�E
�Hopt (z) = ∑N

n=1 wopt
n (z) Ĥn (x, y) e−γz = woptΨ�H

(37)

3.3. Assumptions

In this subsection, the assumptions considered in this methodology are examined. First,
to apply the modal theory, fields in these structures are assumed to vary as e−(jωt±jβ)z.
Electromagnetic waves propagate along a uniform infinitely long structure and field solutions
must satisfy the boundary conditions. Tunnel walls are supposed infinitely thick and hence
fields are considered to be at negligible levels when they reach the end of the wall. As a result,
the term in (7) corresponding to the radiated fields, is assumed to be zero. The geometry
of a hollow dielectric waveguide with arbitrary cross-section is shown in Fig. 3. Tunnels are
assumed to be straight. Corners and objects can be simulated as long as the tunnel cross
section remains constant.

To calculate the mode parameters, a few points over the cross-section should be excited by
considering the 2.5-Dimensional TLM approach for guiding structures. Then, the source term
in (7) should be considered. These sources are employed to obtain all the possible modes
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Figure 3. Geometry of an uniform section infinitely long hollow waveguide.

that can be excited, but their description is not needed. Since this term depends on the
z-field component of the source, it can be neglected by exciting the structure only by the
transversal components. This means that the guide is excited on a slice of the tunnel and
remains applicable for Transversal-Electric (TE), Transversal-Magnetic (TM) and hybrid mode
excitation. It is due to the fact that at least the value of one transversal component is non-zero.

The modal expansion (1), allow us to obtain all the modes that propagate in the structure.
However, assuming that the objective is to design the transmitter antenna, in a more realistic
scenario, only the modes excited by this antenna (source) and captured by the receiver should
be considered. This can be accomplished by exciting the structure in the transmitter region,
as shown in Fig. 3. AeTx is the area where the power would be radiated if the source is placed
somewhere in Tx. For an unloaded tunnel it corresponds to the whole tunnel cross-section.
The excitation is simulated by an electric field probe concentrated in a differential of area ΔS in
Tx. The power density of the i-th element has to be calculated over ΔS to apply the restrictions
given by (27).

Finally, the orthogonality property for the modal functions in (1) is not mandatory. Its
existence guarantees that the total power is the addition of individual modal power. However,
as explained before, in general for lossy hollow-dielectric waveguides, such as tunnels,
modes are non-orthogonal and the weight coefficients depend on z. Thus, these cross-power
interactions have to be considered.

3.4. Algorithm flow chart

The antenna synthesis problem can be stated as the inverse of the analysis problem, i.e., given
a set of design specifications, such as required fields, type of excitation and positioning,
determine an optimum antenna. Optimization techniques can be employed to solve a
constrained problem and fulfill the design requirements. The flow chart in Fig. 4 illustrates the
process for finding the optimum field specifications and positioning in tunnel environments.
It is divided into five steps. The first one, concerns the definition of the inputs to simulate the
tunnel. The characteristic parameters of the modes α, β, Ê (x, y) and Ĥ (x, y), are calculated
at this point. In the second step, the modes are discriminated by their power carried through
the tunnel, so that only modes among those with the highest power, are considered. Then, in
the third step, an optimization procedure on the weight coefficients is carried out to obtain an
optimal vector that maximizes the transmitted power by the modes. In the fourth step, the
optimum weight coefficients to maximize the mean power along the propagation direction are
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obtained. Finally, the optimum fields specifications, type of excitation and source positioning
are determined by using the optimum weights.

Figure 4. Flowchart of the process for determining the field specifications and positioning in tunnel
environments.

3.4.1. Description

Finding antenna design specifications is a synthesis problem. It is of the utmost importance
for correct antenna integration in over-sized guiding structures considered here. The
fundamental problem facing antenna engineers is to improve the power reception in a certain
desired region by using all possible parameters, so that the communication system meets the
required specifications. An optimization algorithm is proposed and described below. It is
divided into five steps.

The starting point is to solve this electromagnetic problem with the 2.5-Dimensional TLM
for guiding structures. It consists in defining the geometry of the structure and constitutive
parameters of the involved materials. The solution region is divided into a number of
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elementary nodes and their maximum size is defined by the minimum signal wavelength
(or maximum frequency). Its value must be much smaller than the minimum wavelength to
avoid the so-called numerical dispersion errors; a rule of thumb is to consider this value as
one-tenth of the wavelength at the maximum frequency. The analysis is restricted to regions
where the transmitter (Tx) and receiver (Rx) are usually located, and only the fields in these
regions should be sampled. The sampling step is defined by the operation frequency and it
should be chosen small enough to guarantee that fields are almost constant, for instance by
considering a value of one-tenth of the wavelength at the operation frequency. Then, by using
the previous entries in the 2.5-D TLM for guiding structures, the characteristic parameters for
the modes can be calculated.

It is worth to remember that this study is meant to define the main factors affecting
radio communication in tunnel environments, and to establish some criteria to diminish
the undesired effects. Multi-modal propagation is one of the most detrimental factors
degrading communication in tunnel environments. The problem of mode excitation has
already been studied by means of modal theory [15]. High-order modes are responsible
for rapid fluctuations in power, and their effects should be mitigated as much as possible.
Moreover, a high number of modes leads to a considerable calculation time. Thus, in the
second step of the proposed methodology, the number of considered modes is reduced. The
strategy is straightforward: Assuming that the transmitter Tx is placed at z = 0, modes are
classified by their power contribution in Rx located at z along the longitudinal distance. Since
the calculation domain has been discretized, the (l, k) element of the matrix of crossed powers
with dimensions N× N and given by (30), is approximated by using:

PΩ(z)(l,k) ≈
1
2
�
{ xmaxΩ

∑
x=xminΩ

ymaxΩ

∑
y=yminΩ

(
�E(x, y)l × �H(x, y)∗k

)
· �ΔΩ

}
, (38)

where ΔΩ is the approximation of the differential element of area in Ω and (x, y) correspond
to the coordinates in the region for the receiver where the power has to be optimized. A
singular-value decomposition (SVD) of (38), PΩ = UΣV, is done at each point along the
z-direction. U and V are unitary matrices composed of eigenvectors of PH

ΩPΩ, and Σ is a
diagonal matrix containing the singular values of PΩ. The choice of the number of selected
modes M is made at this stage. We look at the ratio of the various singular values with respect
to the largest one. Consider the ratio for the i-th singular value ς i, given by:

ς i =
i-th Singular Value

Maximum Singular Value
≈ 10−u (39)

A threshold value for the parameter u, indicating the number of significant digits that pertains
to the i-th mode, is established. The first M modes with singular values along z above this
threshold, where M ≤ N, are considered. Hence, those have some significant contribution
to the response at Ω, while others should be neglected. This technique is usually employed
to best estimate the order of significant poles in a function that can be expressed as a sum of
complex exponentials, as in (1). Note that the procedure accounts for the interaction among all
modes. A similar parameter is used in MIMO systems for confined environments as a figure
of merit to evaluate its performances [56].

In the third step, the set of optimum weight coefficients to excite the modes is defined by using
the optimization procedure presented in subsection 3.2.4. In practice, the maximum power
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density that can be transmitted by Tx and/or the minimum power density that can be detected
at Rx, denoted as δmaxTx and δminRx

, respectively, are defined by the industrial specifications.
The optimum weight coefficients for all the distances 0 ≤ z ≤ Zmax are calculated by
using (33). The approximation is done in a differential element of area in Tx or Rx where
the excitation is concentrated and (x, y) correspond to the coordinates where it is located.
Equation (33) is evaluated for all the points in Ω. A set of the optimum weight coefficients
for each point in the (x, y)-plane, are obtained. The upper limit for the weight amplitudes can
be found by scaling the power density using (35) or (36), so that the extreme values in Tx or
Rx are satisfied. For Ω = Tx, the weight amplitudes in (35) have to be scaled with respect to
the maximum eigenvalue in Tx, and for Ω = Rx, the weights in (36) have to be scaled with
respect to the maximum eigenvalue in Rx. It should be noticed that, according to the previous
step, the number of contributing modes is M and only the most contributing eigenvalues
and eigenvectors are considered, so that the amplitudes of the remaining eigenvectors can be
adjusted such that PminRx ≤ wH

RxPΔRxwRx in (27) or wH
TxPΔTxwTx ≤ PmaxTx for (29).

Hitherto, the optimum weight coefficients were calculated at each point in Ω, obtaining a set
of values that depends on the (x, y, z) position. The z-dependence of these coefficients is due
to the non-orthogonality between modes. The (x, y)-dependence indicates which coefficients
should be used if the structure is excited in the (x, y)-plane. Thus, the fourth step consists
in finding the optimum position in the (x, y)-plane to calculate these coefficients. In doing
so, the mean of the total power is calculated at each point (x, y) in Ω for the distances z
along the axis of the tunnel. This procedure is repeated for all the points in Ω, obtaining
a matrix containing the means for all the points (40). Next, the criterion is similar to that
already explained. It consists in finding the positions where the mean of the power in Ω
versus distance is maximum.

P̄(x, y) =
zmax

∑
z=zmin

zP̄(x, y, z) (40)

Lastly, in the fifth step, the field specifications to excite the tunnel and the best transmitter
location are determined. The total fields are calculated by using the optimum weight
coefficients obtained in the third step at the position where the mean (40) is maximum and
by using the mode characteristic parameters obtained in the first step. Expression (37) gives
the optimum fields at any cross section z ≥ 0. This expression can also be employed to define
the privileged polarization by evaluating the total field components separately, and observing
the predominant one. Finally, points where the matrix (40) is maximized belong to the best
excitation points for the M considered modes according to subsection 3.2.3 and ,thus, the best
source location.

3.5. Validation

The first three stages are essentially the core of the methodology presented in the previous
subsection: The modal approach, the non-orthogonality between modes and an optimization
technique were employed to determine the optimum weight coefficients. To validate
these steps, the study of a simple theoretical ”reference solution” for a canonical geometry
was considered. A metallic-rectangular waveguide was studied in this subsection to help
understand the treatment of a realistic scenario.

A dielectric-loaded WR-90 rectangular waveguide was considered as an exact field solution
exists. The loading lossy material has a conductivity of σ = 0.01Sm−1 and a relative dielectric
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constant equals to the unity. The waveguide has a width w = 2.286 cm and height h = 4 cm
and the operation frequency was chosen at f = 14 GHz. The objective consists in maximizing
the power conducted by the first two modes in a region on the left side over the cross-section
of the guide. Figure 5 illustrates the geometry of the waveguide and the cutoff frequencies of
the first three mode. For the sake of simplicity, the gray region represent the possible locations
for the transmitter and receiver, and consequently, where the power has to be maximized. As
it was explained at the end of section 3.2.2, it should be pointed out that because only a part
of the cross-section of the waveguide is considered, the orthogonality property is destroyed,
so that this example serves as validation case of a real tunnel environment.

Figure 5. a) Geometry of the rectangular waveguide and region where the power has to be maximized
and b) Cutoff frequencies of the first three modes.

Regarding the first step of the proposed methodology, the exact expression for the fields can
be found in [51] for this case. So, the 2.5-D TLM is not required to determine the mode
characteristic parameters. For the second step, it can be demonstrated that the matrix of
crossed powers is given by:

P =

⎡⎣P1,1 P1,2 P1,3
P2,1 P2,2 P2,3
P3,1 P3,2 P3,3

⎤⎦ = �

⎡⎢⎣ 0.162ςe−2α10zβ10 0.157ςe−(γ10+γ∗20)zβ20 0
0.157ςe(γ∗10+γ20)zβ10 ςe−2α20zβ20 0

0 0 −3ςh2

2w2 e−2(α01)zβ01

⎤⎥⎦ ,

(41)
where:

ς =
μωw3h
32π3 , (42)

ω is the angular frequency, μ = μ0 is the permeability inside the waveguide, w and h are
the waveguide dimensions and γ10 = α10 + jβ10 and γ20 = α20 + jβ20 are the propagation
constant of the first and the second modes, respectively; α10, α20 and β10, β20 are their
corresponding attenuation and phase constants. Lastly, the Pl,k-element in (41) can be
calculated by using (30). For reasons that will become clear later, one can consider the first two
singular values of P. Additionally, it is worth noting that the term P3,3 is zero for frequencies
below 14.8 GHz. In that case, the matrix (41) has only two non-zero singular values. Thus, the
number of significant modes is set to M = 2 and only the terms P1,1, P1,2, P1,1 and P2,2 in (41),
are considered.

The third step is to obtain the solution for the constrained problem (26). The maximum
power density that can be transmitted by Tx or the minimum detectable power density in
Rx location, may be specified. Suppose that the maximum and minimum desired power
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densities are δmaxTx = 1 Wm−2 and δminRx = 10 μWm−2, respectively. Equations (35) and (36)
are employed to calculate the optimum weight coefficients and the results are shown in Fig. 6.
These coefficients fulfill the power constraints at the maximum and minimum distances. Any
choice for the weight amplitudes between the solutions for the maximum and minimum
powers could be considered. By observing these figures, one can intuitively suppose that
they can be approximated by a sum of complex exponentials due to their dependence with
the modes. The Matrix Pencil method is a very popular technique to estimate the parameters
of a sum of complex exponentials [25]. By using this method, the weight coefficients can be
determined and are listed in (43) for the case of δmaxTx . This result demonstrates that some
coupling between non-orthogonal modes exists. Similar results can be obtained for δminRx

.

Figure 6. Optimum weight coefficients satisfying the maximum and the minimum required power
densities.

wOpt−δmax
TE10 ≈ −50.4e−0.03z + 10.1e−5.09z+

(5.9− j2.2)e−2(α20+j(β10−β20))z + (5.9 + j2.2)e−2(α20+j(β10−β20))z+

(−9− j2.3)e−(α10+α20)−j(β10−β20)z + (−9 + j2.3)e−(α10+α20)+j(β10−β20)z

wOpt−δmax
TE20 ≈ (20.7− j1.6)e−(α10−j(β10−β20))z + (20.7 + j1.6)e−(α10+j(β10−β20))z

(43)

Figure 7 illustrates the amplitudes of the inner terms of the matrix P as a function of the
longitudinal distance. The fluctuations observed in the crossed terms coincide with those of
the weight amplitudes, confirming the mutual dependence between modes, as shown in (43).
Finally, the black curves in Fig. 7 illustrate the constrained solutions for the maximum power
at z = 0 and minimum one at z = zzmax = 50 cm. It is interesting to observe that the influence
of the crossed terms P12 and P12 is higher at closer distances to the source, i.e. at z = 0. This is
due to the strong coupling close to Tx, as can be seen in Fig. 6.

To verify this result, the intersection of the curves for the total power (26) and the
constraints (27) has to be found. Different weight amplitudes w were considered in the power
function at the maximum and minimum distances and the points for which the constraints
were achieved were plotted. It is important to note that, thanks to the fact that only two
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Figure 7. Optimum power density conducted by the modes and terms of the matrix P versus distance.

modes were considered, a 3D plot of the power versus the amplitudes of both modes can be
obtained, as shown in Fig. 8. This result confirms that the solution given by equations (35)
and (36) maximize (27) the power at Tx and Rx and their values correspond to PmaxTx and
PminRx.

Figure 8. Optimum weight coefficients satisfying the maximum and the minimum required power
densities.

4. Results for a rectangular tunnel

The determination of optimum-field specifications and antenna positioning in tunnel
environments following the basic principles and procedure outlined in the previous
subsections is now straightforward. Multi-modal propagation is experimented in these
scenarios and the correct excitation of these modes determines the efficiency of a given source.
Tunnels are made with dielectric walls and contain other materials (trains, cars, objects etc.).
The use of a full-wave approach for mode parameters calculation now becomes evident due
to the necessity of modeling the tunnels walls, near-fields and arbitrary cross sections. The
calculation time is the main disadvantage of full-wave methods compared with commonly
used ray tracing techniques. The reduced 2.5-D TLM node and the SIBC concept avoid large
region meshing and hence, reduce the required computer cost. In this section, the source
optimization procedure is applied in the case of a real tunnel environment.
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First of all, the wave propagation in a rectangular tunnel with transverse dimension w = 7m
× h = 5m was considered. The tunnel walls were modeled by a lossy dielectric with εr = 12
and σ = 0.02Sm−1. The central operating frequency and the maximum frequency to simulate
for the 2.5 D TLM for guiding structures were established at 2.4 GHz and 3 GHz, respectively.
Thus, for 2.5-D TLM simulation the mesh size was set to Δl = 0.009 m. The regions for the
Tx and Rx were discretized by taking samples at each λ/10 at the operation frequency, i.e.,
ΔS = c0/ fop. The tunnel transverse section and the zones in which the transmitter (Tx) and
receiver (Rx) can be located, are shown in (Fig. 9).

Figure 9. Schema of the rectangular tunnel with w = 7m and b = 5m. Rx denotes the position for the
receiver (fixed) and Tx position of the receiver (to be optimized).

This tunnel was simulated using the 2.5-D TLM for guiding structures and the time-domain
SIBC implementation. The transversal field components of the electric field were excited in
Tx in order to calculate the field specifications for the transmitter. The attenuation and phase
constants, and the field profiles of the modes were determined at the operation frequency.
Figure 10 shows the attenuation and phase constant up to 3 GHz and Fig. 11 shows the field
profiles of the first two modes. Slight discrepancies are observed for the mode profiles and
the phase constant β. The discrepancies in the attenuation constant α for low frequencies are
explained by two facts: First, the comparison was made with a commonly used theory, namely
Marcatilli’s theory, which neglects the fields on the corners. Secondly, because the calculation
of the attenuation constant α is derived from β. One can show that errors on β can produce
large calculation error on α. However at the operation frequency, this error can be considered
to be negligible.

In the next step, the matrix of crossed powers PΩ of dimensions N× N was calculated for the
first N =32 modes and a singular value decomposition of PΩ was carried out. So, the region
of the receiver was sampled at one-tenth of the wavelength of the operation frequency and the
(l, k)-element of (30) was approximated by the Riemmann sum (38). The choice of the M best
modes to carry the power was made at this stage. The normalized amplitudes of the singular
values were calculated and only those accurate up to 4 significant digits were considered. The
amplitudes were obtained for the first 1,000 m in the tunnel, which constitute the maximum
distance between Tx and Rx. The singular values for PΔRx are shown in Fig. 12, the value
M was set to 11. The remaining singular values for which the ratio in equation (39) is below
10−u = 10−4 are neglected and are not be used in the calculation of the reduced matrix P of
dimension M × M. One can note that the propagation in the tunnel is mainly dominated by
the first two modes.
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Figure 10. a) Attenuation constant in dB/km, and b) Dispersion curves for the Ey
11 and Ex

11 modes,
calculated in the frequency range from 0.4 GHz to 3 GHz with Marcatilli’s theory [31, 33] and the
procedure in this paper [3].

Figure 11. Field configuration in dBV/m of the Ey
11 and Ex

11 modes: a) Calculated with Marcatilli’s
theory and b) Calculated with the procedure in this paper [3].

Figure 12. Normalized amplitudes of the first eleven singular values versus distance.

Next, the matrix PΔΩ of dimensions M× M was calculated at each point on the cross section
of the tunnel and all distances along the z-direction. The optimum weight coefficients that

281
Electromagnetic Wave Propagation Modeling for 

Finding Antenna Specifi cations and Positions in Tunnels of Arbitrary Cross-Section



22 Will-be-set-by-IN-TECH

maximize the cost functions (26) and (28) subject to the constrains (27) and (29), respectively,
were calculated for all points. The power density specifications were defined to be 0 dB Wm−2

at zTx = 0 and -40 dBWm−2 at zRx = 1, 000 m. This can be accomplished by scaling the weight
coefficients, as explained in subsection 3.2.4. Then, for each pair of coordinates (x, y), the field
evolution was calculated along z and the mean power was obtained by using (40). Figure 13
shows the mean power for different positions in Tx and Rx. It is interesting to note that the
mean power is maximum for positions close to the center for both Tx and Rx. The evolution of
the normalized weight coefficients as a function of the longitudinal distance for points where
the mean power is maximized in Tx and Rx, were computed (see Fig. 14). To satisfy the
condition at zTx = 0 and zRx = 1, 000 m, the levels should be increased or decreased by 26.78
dB or -35.53 dB, respectively.

Figure 13. Mean of the power at z = 0 for Tx and z = zmax for Rx.

Figure 14. Normalized optimum weight coefficients for the non-zero valued modes in dB versus
distance to satisfy the required specifications in Tx and Rx.

Using these coefficients, the optimum power in Tx and Rx were calculated. The best and
worst case for the mean power were also computed and compared. As expected, the required
specifications were satisfied, as illustrated in Fig. 15. Moreover, from this figure, one can
observe that, by correctly locating the source, improvements in the received power of the
order of the order of 10 dB, can be obtained.

Finally, the optimum electric fields were obtained by using the optimum weight coefficients
in (37). By way of illustration, the three field components of the electric field that satisfy
the power density specifications in Tx were calculated. They were computed for the overall
tunnel cross section at z = 0, as shown in Fig. 16. Intuitively, one could expect that optimum
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Figure 15. Power versus distance for the best and worst points in Tx and Rx.

fields are most influenced by the lowest attenuated modes. This result can be confirmed by
observing that the points where the x-component of the electric field in Fig. 16 is minimum at
corners, and the z-component is minimum at half of the width as it occurs for the Ex

11 mode.
This observation can also be confirmed as the x-component is maximum at one-third, as well
as one-quarter of the width as for both Ex

21 and Ex
31 modes.

Figure 16. Optimum electric fields at z = 0 for optimum excitation of the rectangular tunnel.

It is important to clarify the fact that the weight coefficients vary along the longitudinal
distance is due to the non-orthogonality between modes. Note that this variation does
not imply that the tunnel must be excited with different weights at each point. Therefore,
coefficients should be given only at z = 0. Finally, the optimum positions to locate the
transmitter are those where the mean power is maximum, i.e., for the points close to the white
regions in Fig. 13.

5. Analysis and discussion

A procedure for determining the optimum antenna field specification and location in guiding
structures was developed and presented in details. The understanding and modeling of
radio-wave propagation through the 2.5 D TLM for guiding structures, were essential steps
toward deriving this approach. Radio wave propagation inside tunnels was traditionally
modeled using ray tracing and ray launching techniques based on geometrical optics
(GO) [13, 15, 19, 34, 41, 57]. However, the analysis can be rather complicated at long ranges
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due to the fast growing number of contributing rays and breaks down completely at and
near caustics [32]. Moreover, the main disadvantage consist in that near-field effects cannot
be modeled, and as a result, antenna performances cannot be guaranteed by using these
methods. This explains why full-wave techniques are preferred. In the past, full-wave
techniques, such us Finite Element Method (FEM), were employed to analyze the wave
propagation in these structures [8]. However, these solutions were very limited due to
the complexity of the resulting Electromagnetic problem and computation burden. The
fundamental strength of the proposed approach is the simplification of the calculation to
deal with this electromagnetic problem. Nowadays other recent attempts to deal with these
structures are emerging and they are still under development [52, 55].

The modal representation of the fields and the non-orthogonality between modes were
the main assumptions involved in developing this methodology. A metallic-rectangular
waveguide was considered to validate this procedure. The validation was done by
comparing the power density obtained with the optimum weight coefficients obtained with
our procedure and comparing with those obtained for different combinations of the weight
amplitudes. The results confirm that this approach allows us to obtain optimal weight
coefficients to excite the modes. Lastly, the study of a rectangular tunnel was considered. The
characteristic parameters of the modes were computed and the most contributing modes in
Ω were determined. The resulting modes are coupled to each other and an isolated excitation
of them is not possible, as observed in Fig. 14. This fact can also be seen in Fig. 6 for the
validation case. In Fig. 14, one can observe that the amplitude of the first mode is almost
constant. Thus it can be considered quasi-orthogonal due to its independence with the other
modes. Large fluctuations are observed for higher order modes, which is in agreement with
the theory. Analysis of the elements of the weight vector w with the corresponding mode
functions Ψ�E (�r) and Ψ�H (�r) in (1) reveals that, for a correct excitation of the structure, modes
Ey

11, Ey
12 and Ey

13 should vanish and only the modes Ex
11, Ex

21, Ex
31, Ex

12, Ex
22, Ex

23 and Ex
13 must be

considered. Regarding this figure, it can be noted that the wave-propagation is predominantly
dominated by the first three modes. This result is in agreement with the works in [43] for a
rectangular tunnel. The weighted sum of these coupled modes constitute the optimum fields
to excite the structure. On the one hand, from these results of the optimum fields, one can
conclude that, for this case, an excitation by the x-component of the electric field is preferred.
In [15], it was also verified that, for rectangular tunnels, the vertically polarized modes are
much more affected than the horizontally polarized ones. In practice, these fields are difficult
to generate and they are usually approximated with dipoles or loops. Consequently, a deeper
study to link these solutions with typical antennas are currently under investigation. On
the other hand, from the result for the optimum positions, one can conclude that there is a
significant influence of the first mode and the transmitting source should be located as close
as possible to the center.

Generalization of these concepts to analyze arbitrary-shaped tunnels may be possible by
using the procedure outlined in this chapter. Full characterization of propagation in different
railway scenarios (several tunnel cross-section and dimensions, loaded and unloaded tunnels)
may be analyzed with the 2.5-Dimensional TLM for guiding structures. Useful information,
such as field distribution, mode propagation characteristics (attenuation and phase constants)
and depolarization effects for various scenarios, can be obtained. The treatment of a more
realistic scenario where different cross sections are present, can be studied by establishing a
common region to calculate the source specifications. This region should correspond to the
biggest possible common area for all the cases considered. A well-adapted antenna for these
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environments should match as well as possible all results obtained for each case. Loaded
or unloaded tunnels with different cross sections may be then analyzed with the proposed
procedure.

6. Conclusions

A methodology for finding optimum antenna field specifications and positioning in tunnel
environments has been presented and discussed. A TLM approach suitable for the analysis
of radio-wave propagation in tunnels was employed and briefly presented. By this approach,
the phase constant, attenuation constant and field profiles can be determined. The concept of
Surface Impedance Boundary Condition (SIBC) was additionally employed to reduce the TLM
computational domain. Combined techniques can be applied to electrically large uniform
guiding structures such as lossy tunnels with arbitrary cross-section.

The optimality criterion of the proposed methodology is the maximization of the power
density in a given region, as required in industrial applications. The optimum field
specifications and positioning in a guiding structure are obtained by means of the modal fields
and the optimum weight coefficients satisfying the power density requirements. A metallic
waveguide was used to validate this approach and results for a rectangular tunnel with lossy
dielectric walls were obtained. Results in terms of field distribution and positioning allow
us to analyze the relevant modes and the coupling between them, as well as the privileged
polarizations and enhancements in the performances by using a proper excitation.

Concerning future work, results of this approach were presented for a Single Input and Single
Output (SISO) system. However, the procedure can be extended for Multiple Input Multiple
Output (MIMO) systems to further improve communication system in tunnels.
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1. Introduction 
Efficient models are the key of successful designs. Widely used in modern wireless 
communication systems, active devices such as field-effect transistors (FETs) require up-to-
date models to achieve reliable circuit/system design especially in terms of noise 
performance since most of communication systems operate in noisy environments. [1]-[2]. 
Among existing FET modeling techniques, the full-wave modeling approach can be 
considered as the most reliable but is computationally expensive in terms of CPU time and 
memory [3]-[5]. On the other side, circuit equivalent models are fast but cannot accurately 
integrate EM effects. Therefore, a hybrid transistor model, called the semi-distributed model 
(Sliced model) has been proposed [6]. With the assumption of a quasi transverse 
electromagnetic (TEM) approximation, this model can be seen as a finite number of 
cascaded cells, each of them representing a unit transistor equivalent circuit. However, this 
model presents some limitations. In fact, in mm-wave frequencies, it cannot precisely take 
into account some EM effects that can significantly degrade the overall device behavior, like 
the wave propagation and the phase cancellation phenomena. To efficiently include such 
effects more general distributed models need to be developed. In this chapter, a new 
distributed FET model is proposed. In this model[7]- [8], each infinitely unit segment of the 
device electrodes was divided into two parts namely, active and passive. The passive part 
describes the behavior of the transistor as a set of three coupled transmission lines while the 
active part that can be modeled by an electrical equivalent distributed circuit whose 
elements are all per-unit length. 

To demonstrate the efficiency of our model in terms of noise, we applied the Laplace 
transformation to the device as an active multi-conductor transmission line structure and 
successfully compared its simulated response to measurements. Furthermore, by easily 
including the effects of scaling, the proposed algorithm is suitable for integration in 
computer-aided-design (CAD) packages for MMIC design.  
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2. Signal modeling of high-frequency  FET  

A typical millimeter-wave field effect transistor (FET) is shown in Fig.1. It consists on three 
coupled electrodes (i.e., three active transmission lines).  

 
Figure 1. (a) 3D structure of FET used in millimeter-wave frequency. (b) a segment of distributed model 
along the wave propagation direction. 

In the lower part of the microwave spectrum, the longitudinal electromagnetic (EM) field is 
very small in magnitude as compared to the transverse field [9]-[10]. Therefore, a quasi-TEM 
mode can be considered to obtain the generalized active multi-conductor transmission line 
equation. An equivalent circuit of a section of the transistor is shown in Fig. 2. Each segment 
is represented by a 6-port equivalent circuit which combines a conventional FET small-
signal equivalent circuit model with a distributed circuit to account for the coupled 
transmission line effect of the electrode structure where the all parameters are per unit 
length. By applying Kirchhoff’s current laws to the left loop of the circuit in Fig. 2 with the 

→condition Δx  0, we obtain the following system of equations [11]-[12]: 
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with 

11 dp ds dgC C C C    22 gp dgC C C   33 sp dsC C C      12 dgC C      13 dsC C  

where Vd, Vg, and Vs, are the drain, gate and source voltages, respectively, V’g is the voltage 
across gate-source capacitor, while Id, Ig, and Is are the drain, gate and source currents, 
respectively. These variables are time-dependant and function of the position x along the 
device width. Also, Mds, Mgd, and Mgs represent the mutual inductances between drain-
source, gate-drain and gate-source, respectively; In the above system, we have an extra 
unknown parameter, i.e., the gate-source capacitance voltage Vg’. Therefore, the following 
equation should be included to complete the system of equations 
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which can be then reformatted into two matrix equations  
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3. Noise modeling of high-frequency FETs 

The transmission line structure, exciting by noise equivalent sources distributed on the 
conductors as a new noise model of the high-frequency FET is shown in Fig. 3. 
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Figure 2. The different parts of a segment in the distributed model. 

 
Figure 3. Differential subsection of an excited transmission line 

Applying Kirchhoff’s laws in time domain leads to  
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where  
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Note that vectors nv  and nj  are the linear density of exciting voltage and current noise 
sources, respectively. To evaluate the noise sources, we considered a noisy FET subsection 
with gate width x , as shown in Fig. 4. Thus, the unit-per-length noise correlation matrix for 
chain representation of the transistor (CAUPL) can be deduced as  

 11 12

21 22

C C
C C


  

   
  

n n
UPL

n n

v v
CA

j j
    (11) 

Where    denotes the ensemble average and + the transposed complex conjugate. 

According to the correlation matrix definition, we can calculate nv  and nj   knowing 
(CAUPL), to completely describe the proposed FET noise model. Indeed, by solving (11), the 
noise parameters of the transistor can be obtained. 

4. The FDTD formulation 

The FDTD technique was used to solve the above equations. Applications of the FDTD 
method to the full-wave solution of Maxwell’s equations have shown that accuracy and 
stability of the solution can be achieved if the electric and magnetic field solution points are 
chosen to alternate in space and be separated by one-half the position discretization, 
e.g.,x/2, and to also be interlaced in time and separated by t/2 [13]. To incorporate these 
constraints into the FDTD solution of the transmission-line equations, we divided each line 
into Nx sections of length x, as shown in Fig. 5. Similarly, we divided the total solution time 
into segments of length t. In order to insure the stability of the discretization process and to 
insure second-order accuracy, we interlaced the Nx + 1 voltage points, V1, V2 … VNx+1 and the 
Nx current points, I1, 12 ... INx. Each voltage and adjacent current solution points were 
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separated by x/2. In addition, the time points are also interlaced, and each voltage time 
point and adjacent current time point were separated by t/2 . Then, (10) can lead to  
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Applying the finite difference approximation to (7) gives 
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with 
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(( 1) , )  and (( 1 / 2) , ) for the drain electrode (a)

(( 1) , ) and (( 1 / 2) , ) for the gate electrode (b)
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  (19) 

and where k, m and n are integers. Solving these equations give the required recursion 
relations 
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Superposing all the distributed noise sources is equivalent to a summation in (20) and (21) 
over the gate width for m = 1…. Nx+1. Because of its simplicity, the leap-frog method was 
used to solve the above equations. First the voltages along the line were solved for a fixed 
time using (20) then the currents were determined using (21). The solution starts with an 
initially relaxed line having zero voltage and current [13]. 

 
Figure 4. Noise-equivalent voltage and current sources 
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5. Noise correlation matrix of transistor  

To find the noise correlation matrix for admittance representation of the transistor as a noisy 
six-port active network (as in Fig. 2), the values of port currents should be determined when 
they are all assumed short-circuited simultaneously. Equation (20) for k = 0 and k = Nx +1 
becomes 
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By considering Fig. 3, this equation requires that we replace Δx with Δx/2 only for k = 1 and 
k = Nx+1.  

 
Figure 5. Relation between the spatial and temporal discretization to achieve second-order accuracy in 
the discretization of the derivatives. 

 
Figure 6. Voltage and current solution points. Spatial discretization of the line showing location of the 
interlaced points 
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In order to determine the transistor noise parameters, we set the input voltage source as 
zero ( 0sV  ) [8]- [9]. Referring Fig. 6 we denoted the currents at the source point (x = 0) as I0 
and at the load point (x = L) as INx+1. By substituting this notation into (22) we obtain 
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Similarly, we imposed the terminal constraint at x = L by substituting INx+1 into (23) as follow: 
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  (25)  

To determine the currents I1 and INx at short-circuited ports (x=0 and x=L), we set 

1 1 0NxV V   . The finite difference approximation of (21) for k = 1 and k = Nx can be then 
written as (26) and (27), respectively. 
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Replacing 1/2
1
nI   and 1/2n

NxI   into (26) and (27), respectively, leads to short-circuit currents at 
input and output terminals. 
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Finally, the currents of the short-circuited ports can be determined as 
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The admittance noise correlation matrix of the six-port FET noise model is then equal to  
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   (31) 

6. CAD algorithms for noise analysis of mm-wave FETs 

6.1. Multi-port network connection 

In Fig. 7, a noisy multiport sub-network S of scattering matrix [S] is embedded in a noisy 
sub-network T of scattering matrix [T], with respective noise wave correlation matrices 
noted [Cs] and [Ct]. Let [Snet] and [Cnet] be the scattering and noise wave correlation matrices 
of the total network called N. The scattering matrix [T] of the embedding network T can be 
partitioned into sub-matrices that satisfy  
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  (32) 

where subscript i designates the internal waves at the connections between the two-
networks S and T while subscript e designates the external waves at the Snet terminals. The 
noise wave correlation matrix of network T is similarly partitioned such that 

 [ ] e e e i
t

i e i i

c c c c
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c c c c
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 (33) 

The resulting noise wave correlation matrix is then given by [12]: 

 1 1[ ] [ ]| ([ ] ) [ ] [ ]| ([ ] )net ei ii s ei iiC I T T C I T T
             (34) 

where [I] is the identity matrix and [ ] the connection matrix expressed as 
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 [ ] [ ][ ]i ib a   (35) 

The scattering matrix of the total network N is then given by the well known expression [11] 

 1[ ] [ ] [ ]([ ] [ ]) [ ]net ee ei ii ieS T T T T     (36) 

Note that this result gives a complete noise characterization of the network. A direct 
calculation of the new scattering matrix is now possible using (36). Note that the order of the 
matrix to be inverted was reduced by an amount equals to the number of the external ports. 

 
Figure 7. A multiport sub-network S is embedded into a sub-network T. The resulted network N is 
characterized by the scattering and correlation matrices [Snet] and [Cnet], respectively. 

6.2. Scattering and correlation noise matrices  

According to the algorithm described above, let us consider the network shown in Fig. 8. In 
this figure, the ports of the transistor model are numbered from 1 to 24. Ports 23 and 24 are 
external ports while the rest are internal ports. Since most of the FETs are symmetrical, we 
can split their geometry into two identical parts. Figure 5 can be then decomposed into two 
equal parts of w/2 each (where w is the gate width) of respective scattering matrix [S(1)] and 
[S(2)]. Ports 13, 14 and 15 (the drain, the gate and the source) are terminated by the respective 
impedances Zd, Zg, and Zs, whose reflection coefficients can be expressed as 

 (3) 1
1

d

d

Z
S

Z





 (37) 

 (4) 1

1
g

g

Z
S

Z





 (38) 

 (5) 1
1

1
s

s

Z
S

Z


  


 (39) 



 
Wave Propagation Theories and Applications 300 

 
Figure 8. Circuit model of the half structure of a FET with specific internal and external ports 

Let us now consider open circuit ports at x = w/2. We have then, 

 
(6) (7) (8) 1S S S    (40) 

The only remaining components in Fig. 8 are the 3-port elements S (9) and S (10). Referring to 
that figure, we can observe that these components basically form the gate line and the drain 
line, respectively, in the transmission line model. Based on [12], their scattering matrix can 
be written as  

 (9) (10)
1 2 2

1[ ] [ ] [ ] 2 1 2
3

2 2 1
conS S S

 
     
  

 (41) 

 
Figure 9. Connection of the series network 

In order to define [ ]sC , we need to know the noise correlation matrices in the form of 
scattering matrices for all circuit elements. The correlation noise matrix for the 6-port 
network representing half of the transistor gate width, i.e., w/2, can be computed using the 
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techniques described in [9] and [10]. As a result, we can use the proposed CAD algorithm to 
obtain the scattering and noise correlation matrices of the half-circuit structure.  

The scattering matrix of a device is usually computed by partitioning its ports into two 
groups namely, external and internal ports. Thus, by separating the incoming and outgoing 
waves in (34), the computation of the connection matrix leads to the resulting scattering 
matrix  
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Then, [ sC ] can be written as 
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Note that based on the proposed algorithm, a designer can easily obtain the scattering 
matrices of any microwave transistor, highlighting the ease of implementation of the 
proposed model into existing commercial simulators. 

7. Numerical results  
The proposed approach was used to model a sub micrometer-gate GaAs transistor (NE710) 
[14]. The device has a 0.3 μm × 280 μm gate. The first step consisted to characterize the 
transistor. In this work, we used a bench from Focus microwave that consists on a probing 
station, the HP 8340B synthesized signal generator, the Agilent 8565EC spectrum analyzer, 
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the CMMT1808 tuners, the Anritsu ML2438A power meter, and the Agilent ML2438A 
power supplies (Fig. 10). 

The intrinsic equivalent circuit model (Fig. 11) was obtained using well-known hot and cold 
modeling techniques [13]. After removing the extrinsic components via de-embedding 
methods, a hot modeling technique was utilized to obtain the intrinsic elements. Then, an 
optimization was performed by varying the values of the intrinsic FET elements in the 
vicinity of 10% of their mean value until the error between measured and modeled S-
parameters was found acceptable (i.e., less than 2%). The obtained values of the extrinsic 
and intrinsic elements are summarized in Table 1. 

 
Figure 10. Load-pull bench used to characterize the device 

 
Figure 11. Small-signal equivalent circuit of a FET 
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Figure 12 shows a good fitting between measured and modeled data for various dc and 
pulsed voltages while Fig.13 shows the experimental load-pull characteristics of the 
transistor. When matched, it has an output power of 16 dBm with a 10% PAE at 10GHz. In 
Fig.10, the output RF power is shown as a function of the complex output impedance 
matching conditions of the device. The transistor S-parameters over a frequency range of 1-
26GHz are plotted in Fig.14. As expected, compared to measurements, our proposed model 
is more accurate than the slice model [7], especially at the upper part of the frequency 
spectrum, when the device physical dimensions are comparable to the wavelength. This is 
due to the fact that our model is based on the full-wave equation while the slice model is 
based on an electrical equivalent circuit model. Figure 15 shows the noise figure obtained 
for three different frequencies. Thus, the proposed wave analysis can be applied for accurate 
noise analysis of FET circuits. To further prove the accuracy of the proposed wave approach 
in noise analysis, our results were successfully compared to measurements (Fig. 16). 

For larger widths, the thermal noise of the gate increases due to the higher gate resistance 
while for smaller gate widths, the minimum noise figure increases as the capacitances do not 
scale proportionally with the gate width due to an offset in capacitance at gate width zero 
[2]. Therefore, we highlighted these effects of gate width on a transistor noise performance 
by simulating the minimum noise figure and the normalized equivalent noise admittance 
for three values of the gate width, e.g., 140, 280 and 560 μm (Fig. 17). These values were 
selected based on the device we modeled. In fact, the NE710 has a gate width of 280 μm, so 
we took half of that value as well as its double to bound the device behavior and highlight 
the effect of gate width on a FET performance.  

 
Figure 12. I-V curves for the NE710  
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Figure 13. Output power as function of load impedance for an optimized structure at 10 GHz 

 
 

Lumped Model Values Numerical Values 

Lg 0.383 nH 

Ld 0.434 nH 

Ls 0.094 nH 

Rd 1.77 ohm 

Rs 1.74 ohm 

Rg 3.29 ohm 

Cpgs 0.078 pF 

Cpds 0.092 pF 

Cds 0.005 pF 

Cgd 0.033 pF 

gm 41 mS 

Ri 7.3 ohm 

Rds 231 ohm 

Cgs 0.216 pF 

 
Table 1. Values of the lumped elements (The transistor was biased at Vds = 3 V and Ids = 10 mA) 
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Figure 14. NE710: Comparison between the measured S-parameters and those generated by the sliced 
and the proposed model. 

 
Figure 15. Noise figure circles for three different frequencies versus the source admittance 
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Efficient CAD Tool for Noise Modeling of RF/Microwave Field Effect Transistors 307 

 
Figure 16. a. Normalized equivalent noise admittance and noise figure: Comparison between the 
proposed method and measurements;  b. Amplitude and phase of the optimum reflection coefficient: 
Comparison between the proposed method and measurements  
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Figure 17. Minimum noise figure and normalized equivalent noise admittance of the transistor for 
three different values of gate width (µm) 

8. Discussions 

The transistor modeling approach presented in this chapter is mainly developed for 
computer-aided design implementation, making it suitable for any FET circuit topology up 
to the millimeter-wave range and thus, can be easily implemented and used in commercial 
software. As illustrated in Fig.18, the proposed model was implemented in ADS [15] and the 
results obtained from the code we developed have been successfully compared with those 
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obtained by the same model after being implemented in the ADS library and used as an 
internal device. This step shows that the proposed model can be used in any microwave 
integrated circuit design performed by a commercial simulator. It has also to be noted that 
even if the proposed model is suitable for any FET structure, large-gate width devices have 
been targeted in the present work. In fact, this specific type of transistors can handle high 
output power levels, making them suitable for power amplifier design. 

 
Figure 18. Comparison between simulated minimum noise figure obtained from our developed code 
and from ADS using our model  

9. Conclusion 

Using a new CAD algorithm, the noise modeling and analysis of microwave FET have 
efficiently been studied. In fact, since only half of a FET length is used, instead of the whole 
structure, the computation time will be significantly affected. Besides, the implementation of 
this CAD technique in modern microwave and mm-wave simulators is straightforward and 
will give more reliable results for circuit performance like low-noise amplifiers. Also, as for 
practical applications, large gate periphery devices are used to generate sufficient output 
power levels. With the increase of the device gate periphery, the self-heating effect and the 
defect trapping effect will both be more profound. 
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Chapter 13 

A Numerical Model Based on Navier-Stokes 
Equations to Simulate Water Wave Propagation 
with Wave-Structure Interaction 
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1. Introduction 

The interaction between waves and structures is a very important subject of the coastal 
engineering. Many numerical models have been developed over recent decades to analyze 
these types of cases, which involve phenomena that combine reflection, shoaling, refraction, 
diffraction, breaking and wave-wave interaction. These non-linear effects provide harmonic 
generation, including energy transferences with high complexity. 

Models based on the Laplace equation assume the potential flow, in which the movement is 
irrotational and the flow is incompressible. Models based on the boundary element 
technique [1,2,3] and spectral methods [4,5] are some examples. This theory applies neither 
to viscous flows nor to situations in which there are flow separations, vortex generations 
and turbulences. 

Other models, called depth-integrated models [6], based on a Boussinesq-type equation for 
variable depth, consider polynomial approximations for the vertical velocity distribution 
and vertical integration in the resulting equations at a certain depth. The simplified 
hypotheses, that include slight non linearity and dispersion, limit the applicability of this 
type of models to shallow and intermediate waters. Several researches have been developed 
to extend the applicability of these equations, including high order terms, to deeper water 
and strong non linearity cases in the last decades. Wave propagation phenomena, such as 
breaking, bottom friction and run-up, have also been included in these extended Boussinesq 
equation [7,8,9,10,11,12,13,14]. The accuracy of these type of models has recently been 
improved by the implementation of the multi-layer concept, in which the water column is 
divided into layers and a velocity profile is adopted to each one [15,16]. Although the 
accuracy has been improved significantly, the simplified hypotheses, related to the vertical 
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integration along each layer, limit the use of these models to depths without strong 
variations.      

Many efforts have been carried out to develop non hydrostatic models to prevent the 
difficulties of the Boussinesq models [17]. The non hydrostatic models capture the free 
surface movement using a function on the horizontal plane, requiring lower vertical 
discretization by comparison with those that use classic methods to describe the free surface. 
In some of these models, the pressure and velocity fields are decomposed by hydrostatic 
and non-hydrostatic pressure to improve their efficiency. 

The numerical solution of the fully Navier-Stokes equations to determine the tridimensional 
velocity and pressure fields and the free surface position demands high computational cost, 
due to the large horizontal scale of many coastal engineering problems. However, in cases in 
which there are flow separation, vortex shedding and turbulence, these models provide 
more real results. There are several methods to capture the free surface movements, such as 
the arbitrary lagrangian eulerian (ALE) [22,46], the marked and cell [25], the volume of fluid 
[26,27] and the level-set methods [28]. 

This text describes a code (in Fortran 90 language) that integrates the Navier-Stokes 
equations using a fractional method to simulate 3D incompressible flow problems with free 
surface, named FLUINCO [29]. The model employs a semi implicit two-step Taylor Galerkin 
method to discretize the Navier-Stokes equations in time and space; uses the ALE method 
and a mesh velocity distribution technique to deal with free surface movement. 

To show the applicability of the code, two study cases are analyzed: the wave propagation 
over a submerged horizontal cylinder and submerged trapezoidal breakwaters. In Section 2, 
the numerical model is described. Section 3 presents study cases, their results and 
discussion. Finally, Section 4 concludes the analysis.  

2. Numerical model 

2.1. Governing equations 

The algorithm is based on the continuity equation, given by: 

 2
1 i

i

p U
t t xc

 
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      (i =1,2,3),  (1) 

and momentum equations, that are represented by the following equations according to the 
ALE formulation: 

 w
ij iji i

j
j j i j

f pU U
t x x x x

  
   
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

   (i,j =1,2,3),  (2) 

where  is the specific mass, p is the pressure, vi iU  ,  v v vj i j iijf U  , vi are the 
velocity components, wi the reference system velocity components and ij is the viscous 
stress tensor (i,j.=1,2,3). 
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2.2. Semi-implicit two-step Taylor-Galerkin method 

Basically, the algorithm consists of the following steps [30]: 

a. Calculate non-corrected velocity at t/2, obtained by time discretization of Eq. (2), 
where the pressure term is at t instant, according to Eq. (3). 

 1/2 w2

n n n n
ij ijn n n i

i ji i
j j i i

f pt UgUU
x x x x
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 

     (i,j =1,2,3),       (3)  

where gi are the gravity acceleration components. 

b. Update the pressure p at t+t, obtained by time discretization of Eq. (1), given by the 
Poisson equation: 
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,      (4)  

where 1n np p p   and i = 1,2,3. 

c. Correct the velocity at t+t/2, adding the pressure variation term from t to t+t/2, 
according to the equation: 
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d. Calculate the velocity at t+t using variables updated in the previous steps as follows: 
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2.3. Space discretization 

The classical Galerkin weighted residual method is applied to the space discretization by 
using a tetrahedron element. In the variables at t+t/2 instant, a constant shape function PE 
is used, and in the variables at t and t+t, a linear shape function N is employed. By 
applying this procedure to Eq. (3), (4), (5) and (6), the following expressions in the matrix 
form are obtained [29]: 
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where variables with upper bars at n and n+1 instants indicate nodal values, while those at 
n+1/2 instant represent constant values in the element. The matrices and vectors from Eq. (7) 
to (10) are volume and surface integrals that can be seen in detail in [30]. 

Equation (8) is solved using the conjugated gradient method with diagonal pre-conditioning 
[31]. In Eq. (10), the consistent mass matrix is substituted by the lumped mass matrix, and 
then this equation is solved iteratively. 

The scheme is conditionally stable and the local stability condition for the element E is given 
by  

 E Et h u         (11) 

where hE is the characteristic element size,  is the safety factor and u is the fluid 
velocity.  

2.4. Mesh movement 

The free surface is the interface between two fluids, water and air, where atmospheric 
pressure is considered constant (generally the reference value is null). In this interface, the 
kinematic free surface boundary condition (KFSBC) is imposed. By using the ALE 
formulation, it is expressed as: 

 ( ) ( )
3v vs s

i
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  (12)                          

where  is the free surface elevation, ( )
3vs  is the vertical fluid velocity component and ( )vs

i  
(i=1,2) are the horizontal fluid velocity components in the free surface. The eulerian 
formulation is used in the x1 and x2 directions (horizontal plane) while the ALE formulation 
is employed in the x3 or vertical direction. 

The time discretization of KFSBC is carried out in the same way as the one for the 
momentum equations as presented before. After applying expansion in Taylor series, the 
expressions for  at n+1/2 (first step) and n+1 (second step) instants are obtained: 
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Linear triangular elements coincident with the face of the tetrahedral elements on the free 
surface are used to the space discretization by applying the Galerkin method. 

The mesh velocity vertical component w3 is computed to diminish element distortions, 
keeping prescribed velocities on moving (free surface) and stationary (bottom) boundary 
surfaces. The mesh movement algorithm adopted in this paper uses a smoothing procedure 
for the velocities based on these boundary surfaces. The updating of the mesh velocity at 
point i of the finite element domain is based on the mesh velocity of the points j that belong 
to the boundary surfaces, and is expressed in the following way [32]: 
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where ns is the total number of points belonging to the boundary surfaces and aij are the 
influence coefficients between the point i inside the domain and the point j on the boundary 
surface given by the following expression: 
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ij
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   (16)  

with dij being the distance between points i and j. In other words, aij represents the weight 
that every point j on the boundary surface has on the value of the mesh velocity at points i 
inside the domain. When dij is low, aij has a high value, favouring the influence of points i, 
located closer to the boundary surface containing point j. 

The free surface elevation, the mesh velocity and the vertical coordinate are updated 
according to the following steps: 

1. Calculate n+1/2 and 1/2n
iU  , Eq. (13) and  Eq. (3), respectively. 

2. Calculate p , Eq. (4). 

3. Calculate 1/2n
iU  , Eq. (3). 

4. Calculate 1n
iU  , Eq. (6). 

5. Calculate n+1, Eq. (14). 
6. Update the mesh velocity w3 and the vertical coordinate x3: 

 Calculate the mesh velocity in the free surface at t + Δt: 1( )
3
nS 

w  =  1n n t    . 
 Calculate the mesh velocity in the interior of the domain at n+1 e n+1/2 by using Eq. 

(13) and 
1

31/2 3
3

 )(w w  w 2

n n
n


 

 , respectively. 
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 Update the vertical coordinates in the interior of the domain: 
1/2

3 3 3     w 2
n n n t

x x 
  , 1 1/2

3 3 3    twn n nx x    . 

2.5. Wave generation and radiation conditions 

The wave generation is considered imposing the free surface elevation and the fluid velocity 
components to each time step directly, considering the linear wave equations [33]. 

The Flather’s radiation condition [34] is used to deal with open boundaries. In this method, 
the Sommerfeld condition to free surface elevation is combined with one-dimensional 
version of the continuity equation. Then, the normal velocity of the boundary can be 
expressed by: 

 gu
h

  ,       (17) 

where g is the gravity acceleration and h is the depth. 

3. Study cases 

3.1. Submerged cylinder 

The interaction among regular waves and submerged circular cylinders, with their axes 
parallel to the crests of the incident waves, has been studied analytically, 
experimentally and numerically by many authors.  The presence of an obstacle near the 
free surface may cause reflected and modified transmitted waves. These phenomena 
depend on the characteristics of the incident wave, the obstacle geometry and the depth. 
Many studies of this interaction are available to provide a good example to validate 
numerical codes. 

The first study was developed by [35] and, after that, by [36]. Considering a linear behavior, 
these authors showed that (a) the cylinder does not reflect any energy, regardless of its ray, 
depth or wave frequency; (b) the transmitted waves are out of phase, but their amplitudes 
are the same. Chaplin [37] studied the nonlinear forces and characteristics of the reflected 
and transmitted waves experimentally. He showed that the reflection is negligible up to the 
third order. This author and Schonberg and Chaplin [38] presented many experimental and 
numerical studies concerning the nonlinear interaction among waves and submerged 
cylinders. A detailed review of analyses for this case can be found in Paixão Conde et al. 
[39]. 

This case considers a 5.2 m long and 0.425 m deep channel with a submerged cylinder of r = 
0.025m positioned 1.60 m from the wave generator (Figure 1). The cylinder center is 0.075 m 
(3r) from the free surface. The frequency wave is f = 1.4Hz; its amplitude is a = 0.0119 m and 
its wavelength is L=0.796 m, characterizing a deep water case.  
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Figure 1. Geometry of the horizontal cylinder case. 

Table 1 shows the period, the frequency and the wavelength for the fundamental frequency 
and its 2nd, 3rd and 4th harmonics, according to the linear wave theory. 
 

 Fundamental 2nd harmonic 3rd harmonic 4th harmonic 
T (s) 0.7143 0.3571 0.2381 0.1786 
f(Hz) 1.4 2.8 4.2 5.6 
L(m) 0.796 0.199 0.0885 0.0498 

Table 1. Period, frequency and wavelength of the fundamental frequency and its 2nd, 3rd and 4th 
harmonics in the horizontal cylinder case. 

The mesh, with 173900 nodes and 515623 elements, has one layer of elements in the 
transversal direction. The average element size on the cylinder boundary is 0.0015.m (105 
divisions in the circumference). The element size diminishes from the ends to the region 
near the cylinder and from the bottom to the free surface. The element sizes on the end 
where the wave generator is located and on the opposite end are 0.015 m (53 points per 
fundamental wavelength) and 0.02 m (40 points per fundamental wavelength), respectively. 
On the bottom, 0.0015m is also used.  

The initial conditions are: null velocity components in all domain and hydrostatic pressure 
(null on the free surface). The wave is generated by imposing the surface elevation and the 
velocity components. The non-slip condition is imposed to the bottom and to the cylinder 
wall. The time step is 0.0002s, which satisfies the Courant condition. 

Figure 2 shows the free surface elevation obtained by the code and experimental tests, 
where xc is the horizontal coordinate of the cylinder center. In general, there is agreement 
between numerical and experimental results [39]. We can notice the free surface disturbance 
downstream the cylinder. When (x-xc)/L is above 1.7, the numerical results are smoother 
than the experimental ones, showing the necessity of a refinement in this region. 

Figure 3 shows a comparison among numerical and experimental results in terms of free 
surface elevation on four gauges located at (x-xc)/L equal to  -0.503, 0.0692, 0.509 and 1.264 
(there is only a numerical result on the first gauge). We can observe the similarity among 
numerical and experimental results. 

Figure 4 shows the streamlines and the velocity modulus distribution at the same instant 
used in Figure 2. Recirculation and separation cannot be observed at downstream. Due to 
the oscillatory flow behavior, there is no time for recirculation productions. We can notice 
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the flow acceleration near the cylinder due to the boundary layer effect. The viscous effects 
have only local influence, without modifying the velocity field far from it. 

 
Figure 2. Free surface elevation in the submerged cylinder case (Numerical  ; Experimental ■). 

 
Figure 3. Free surface elevations on the gauges located at (x-xc)/L equal to -0.503, 0.0692, 0.509 and 
1.264 in the horizontal cylinder case (Numerical  ; Experimental ●). 

In Figures 5 and 6, velocity component profiles, u and v, on the same gauge positions are 
presented. These profiles were constructed at the same instant as that used in Figure 2. 
According to the linear theory, the maximum value for both horizontal and vertical 
components is equal to 0.105 m/s. For horizontal components, these values occur on the crest 
and the trough, while for vertical ones, these values occur on upward and downward zero-
crossings. When one component is the maximum, another is null, because the phase 
difference is 90 degrees. 

Gauge 1 ((x-xc)/L = -0.503) is located upstream, near the wave crest; no significant 
disturbance in u and v profiles is observed. The horizontal velocity component is positive 
and its maximum value is similar to the theoretical value in the crest. The wave trough 
passes by gauge 2; the vertical velocity component presents low values and the horizontal 
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velocity component has negative values, reaching the maximum absolute value close to the 
theoretical ones (0.105 m/s). Gauge 3 is located near the first crest upstream, resulting in 
high horizontal component values. Finally, gauge 4 is on a region between the trough and 
upward zero-crossing. Both component profiles are negative and the vertical component 
magnitude shows how close the gauge is to upward zero-crossing. 

The non-slip boundary condition on the bottom does not change the general behavior of the 
wave propagation, because this case is considered a deep water one. 

 

 
Figure 4. Streamlines and velocity modulus at the instant in which the free-surface elevation was 
captured (Figure 2) in the horizontal cylinder case. 

 

 
Figure 5. Horizontal velocity components at the same instant used in Figure 2 along the depth on 
gauges located at (x-xc)/L equal to -0.503, 0.0692, 0.509 and 1.264 in the horizontal cylinder case. 

Figure 7 shows the frequency spectra for these four gauges distributed along the channel. In 
all cases, the energy is concentrated on the fundamental frequency and its harmonic waves. 
On gauge 1, the fundamental frequency presents most energy and the second harmonic 
shows a little value. On gauges 2 and 4, located upstream, significant energy up to the third 
harmonic appears, similar to the experimental results.  
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Figure 6. Vertical velocity components at the same instant used in Figure 2 along the depth on gauges 
located at (x-xc)/L equal to -0.503, 0.0692, 0.509 and 1.264 in the horizontal cylinder case. 

 

 
Figure 7. Frequency spectra on gauges located at (x-xc)/L equal to -0.503, 0.0692, 0.509 e 1.264 in the 
horizontal cylinder case. 

3.2. Submerged trapezoidal breakwaters 

Whatever the numerical model characteristics, the simulation of wave propagation over 
submerged breakwaters are important tests to validate wave propagation models. In these 
cases, the harmonic generation [40,41] and the vortex formation, depending on the geometry 
[42], also occur. When waves propagate in deep waters over a submerged obstacle, part of 
the wave energy is transferred from the primary wave component to their harmonics, 
contributing to increase non linearity. Harmonic generation phenomena that occur when 
waves propagate over obstacles, such as natural reefs, were studied theoretically [6], 
experimentally [43,44,45] and numerically [46,23,17,47,48,45,49,50]. In some situations, the 
correct simulation of the flow can only be figured out considering the viscosity effects [51]. 
Huang and Dong [42] studied the interaction between solitary waves and rectangular 
submerged breakwaters using a model based on 2D Navier-Stokes equations and concluded 
that the flow around the breakwater is laminar, without turbulence. The experimental 
studies carried out by Ting and Kim [51] and Zhuang and Lee [52] show that velocity 
fluctuations do not exist around the breakwater. 
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Two different configurations of the trapezoidal breakwaters, with different level of non-
linearity, are used to test the behaviour of the numerical model. In the first case, the 
downstream and upstream slopes are 1:20 and 1:10, respectively [44]. In the second one, 
both slopes are 1:2 [45], where the non-linear effects are more significant. 

3.2.1. Breakwater with slopes 1:20 and 1:10  

Figure 8 shows the channel and the submerged breakwater geometries, and the position of 
the gauges. The channel is 23m in length, 0.4m and 0.1m are the maximum and the 
minimum depths, respectively. In the channel entrance, a monochromatic wave is generated 
with a period of 2.02s and an amplitude of 0.01m. 

Table 2 presents some parameters for this case study, in which H is the wave length, h is the 
depth, k=2/L is the wave number and Ur.=.gHT2/h2 is the Ursell number, where T is the 
wave period. H/h, even on the platform, has small values in comparison with breaking limit 
of approximately 0.8 [33]. The case involves intermediate water for the channel 
(0.314.<.kh.<.3.142) and shallow water for the platform (kh < 0.314). Ursell numbers show 
that the non-linear effects on the platform are more intensive. 

 
Figure 8. Channel geometry for the 1:20 and 1:10 breakwater 

 H/h kh Ur
Channel (h = 0.4m) 0.050 0.674 5.0 
Platform (h = 0.1m) 0.259 0.318 103.6 

Table 2. Wave parameters for the 1:20 and 1:10 breakwater  

Table 3 presents periods, frequencies and wavelengths concerning the fundamental frequency 
and the harmonic components that occur along the wave propagation. The wavelength was 
estimated according to the dispersion equation of the linear theory. These values are references 
to determine discretizations in time and space to be used in the modeling. 
 

 Fundamental 2nd harmonic 3rd harmonic 4th harmonic 
Period (s) 2.02 1.01 0.67 0.50 

Frequency (Hz) 0.50 1.00 1.50 2.00 
Wavelength (m) 3.73 1.46 0.70 0.39 

Table 3. Period, frequency and wavelength concerning the fundamental frequency, and 2nd, 3rd and 4th 
harmonics for the 1:20 and 1:10 breakwater 
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FLUINCO used a mesh with 88700 elements and 37296 nodes. Twenty layers of elements 
were used in vertical direction, where small elements are located near the bottom and the 
free surface. Along the channel, the element sizes vary from x.=.0.08m in the boundary to 
x.=.0.025m around the platform. In the transversal direction, only one layer of elements is 
used, because the behavior of the flow is bi-dimensional. In the entrance of the domain, the 
wave generation condition is imposed while at the end the radiation condition is imposed. 
The velocity components are null on the bottom and the KFSBC is imposed in the free 
surface. The velocity component perpendicular to the surface is null for lateral walls 
(symmetry condition). As an initial condition, the velocity field is null and the pressure one 
is hydrostatic. The time step is 0.003s, a fact that satisfies the Courant stability condition. 

Figure 9 shows the free surface elevations in gauge 3, located downstream the breakwater 
(x=5.7m); in gauge 6, on the platform (x=13.5m); in gauge 8, in the middle of the upstream 
slope (x=15.7m); and in gauge 11, on the upstream and far from the breakwater (x=23m). 
Results obtained by numerical model are compared with the experimental ones presented 
by Dingemans [44]. 

In general, there is good agreement between numerical results and experimental ones in 
gauges 3 and 6. In gauge 6, FLUINCO presents slightly smooth surface deformation. In 
gauges 8 and 11, corresponding to downstream, the nonlinear effects are more significant. 
The deformations in gauge 8 are well represented by FLUINCO; although the results get 
closer to the experimental ones in some regions, there are difficulties in representing the 
deformations related to higher harmonics, possibly due to the lack of an appropriate 
discretization to capture the nonlinear phenomena. 

 
Figure 9. Free surface elevation of the 1:20 and 1:10 breakwater 

Figure 10 shows the frequency spectra obtained by the model in the gauges and a 
comparison with the experimental results. The differences found in the free surface 
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elevation are confirmed in Figure 10, which shows differences in the intensity of harmonic 
components, mainly in gauges located at the end of the channel. The numerical model 
adequately simulate the position of the peaks of the fundamental frequency and the 
harmonic components throughout the domain. However, there are some differences in the 
amplitude of these peaks, especially in gauges 8 and 11. 

Figure 11 presents the streamlines around the upstream slope of the breakwater in eleven 
instants completing one wave period obtained by FLUINCO. We can observe that the flow 
separation and the vortex do not exist at all instants, due to the mild inclination of the 
upstream slope. 

 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 10. Numerical and experimental frequency spectrum in the gauges of the breakwater 1:20 and 
1:10 
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Figure 11. Streamlines of the 1:20 and 1:10 breakwater 

3.2.2. Breakwater with slopes 1:2  

In this case, the length of the channel is 35m and the maximum and the minimum depths are 
0.5m and 0.15m, respectively (See Figure 13). In the entrance of the channel, a 
monochromatic wave is generated with a period of 2.68s, related to a wavelength of 5.66m 
in the channel, and an amplitude of 0.025m.  This problem is case 6 studied by Ohyama et al. 
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[45] who analyzed six different types of waves experimentally. Table 4 shows some 
parameters that characterize the problem, calculated according to the linear theory. The 
Ursell number on the platform is 210, indicating the strong non-linearity in this region. 
Parameter H/h shows that breaking does not even occur on the platform. 

 
Figure 12. Geometry of the channel for the 1:2 breakwater 

 

 H/h kh Ur 
Channel (h = 0.5m) 0.100 0.555 14.1 

Platform (h = 0.15m) 0.355 0.294 210.0 

Table 4. Wave parameters for the 1:2 breakwater 

Table 5 shows periods, frequencies and wavelengths concerning the fundamental frequency 
and the harmonic components that occur along the wave propagation. 

A mesh with 120200 elements and 50526 nodes was used for FLUINCO in this simulation. 
The element sizes along the channel vary between dx=0.08m at the ends and dx=0.01m on 
the platform. The boundary and the initial conditions are similar to the ones in the previous 
case, and 0.002s was the time step. 
 

 Fundamental 2nd harmonic 3rd harmonic 4th harmonic 
Period (s) 2.68 1.34 0.89 0.67 

Frequency (Hz) 0.373 0.746 1.124 1.493 
Wavelength (m) 5.66 2.42 1.22 0.70 

Table 5. Period, frequency and wavelength related to the fundamental frequency, and 2nd, 3rd, and 4th 
harmonics for the 1:2 breakwaters 

Figure 13 shows the free surface elevations in gauges 3 and 5 (gauge positions are indicated 
in Figure 5). Numerical results are compared with the experimental ones presented by 
Ohyama et al. [45]. The FLUINCO model represents the surface deformation recorded in 
gauge 3 well. The deformations of gauge 5 indicate that the nonlinearity increases. In this 
case, FLUINCO captures the variation of the surface elevation more accurately. 

Figure 14 shows frequency spectra obtained in gauges 3 and 5. The fundamental and the 
harmonic waves are well represented by the models, but their amplitudes differ. The 
FLUINCO results are closer for the two gauges. 
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Figure 13. Free surface elevation for the 1:2 breakwater in gauges 3 and 5. 

 

 
Figure 14. 1:2 Breakwater  case. Frequency spectra in gauges 3 and 5. 

Streamlines during one wave period obtained by FLUINCO are presented in Figure 15. 
Unlike the previous case, a vortex, located between the upstream slope and the bottom, 
occurred during part of the wave period. 
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Figure 15. Streamlines of the 1:2 breakwater 

4. Conclusions 
In this text, we showed a model, named FLUINCO, capable of simulating flows on free 
surface. It is based on the semi-implicit two-step Taylor- Galerkin method to integrate 
Navier-Stokes equations in time and space. An ALE formulation is employed to describe the 
free surface movement. The methodology was validated in two study cases: the wave 
propagation over a submerged horizontal cylinder and submerged trapezoidal breakwaters. 
Both study cases showed the application of a Navier-Stokes based code, which considers 
accurately vertical flow effects, in the wave-submerged structure interaction problems. 

In the case of the submerged horizontal cylinder, the free surface elevations and the velocity 
profiles obtained by the model were similar to experimental ones [39]. The numerical results 
presented a slight free surface deformation downstream, possibly because of the lack of 
refinement that caused numerical diffusion. In this case, the viscous effects influenced the 
flow behavior locally whereas the viscosity was not important far from the cylinder. The 
non-slip condition on the bottom did not modify the wave propagation significantly because 
it is a deep water case. 

In the case of trapezoidal breakwater, two analyses were carried out for different upstream and 
downstream slopes. The first analysis deals with upstream and downstream slopes of 1:20 and 
1:10, respectively. The results obtained by the model were compared with Dingemans’ 
experimental data [44]. A comparison of the surface elevations and the energy spectrum for some 
gauges along the channel showed that the model provided good results. Although the FLUINCO 
results have been somewhat smoothed, they were closer to the experimental ones, including the 
ones in the gauges placed downstream, where nonlinear effects are more significant. Streamlines 
over a wave period showed that there was no flow separation in this case. 
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The second analysis consists of two 1:2 breakwater slopes; it showed a strong influence of 
nonlinear effects on the results of the surface elevation and the energy spectrum. The numerical 
results were compared with experimental ones presented by Ohyama et al [45]. The vertical 
velocity field obtained by FLUINCO showed that a vortex of non-turbulent origin was formed in 
the flow. The model obtained results closer to the experimental ones, including the ones 
downstream of the breakwater, where the nonlinearity effects are more significant. Both 
breakwater analyses showed that FLUINCO captures the nonlinear effects of the flow accurately, 
due to the fact that this model considers the influence of the vertical circulation in the flow. 
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1. Introduction 

Presently, the microwave circuit design is the most critical and necessary for modern 
communication systems. The problems with the design of circuits often include a lack of 
equipment and tools used to design and build them. Numerical methods related to 
electromagnetic waves have caused a revolution in microwave engineering; techniques such 
as FDTD (Finite Differential Time Domain) [1], TLM (Transmission Line Matrix) [2], and the 
Moment method [3] have been developed. Each method has respective disadvantages and 
limitations of usage foe both research and education. To perform the electromagnetic wave 
analysis of waveguide structures, several classic approaches can be found in the literature. A 
practical example of computer aid design is that the inductive iris in a rectangular 
waveguide has been analyzed with high accuracy through approximate modeling utilizing 
the full wave Mode Matching Method (MMM) [4] and Transmission Line Matrix (TLM) [5]. 
Therefore, the development and optimization of numerical methods are important for an 
efficient electromagnetic simulation tool [6-7].  

In this chapter, we study and introduce an efficient electromagnetic simulation tool for 
analysis of inductive and capacitive obstacles and rectangular window in waveguides. The 
Wave Iterative Method (WIM) based on iterative procedure and wave propagation theory is 
proposed. This method has been combined with mode matching technique to characterize 
the obstacle in a rectangular waveguide. Also, the compact CAD tool and presenting the 
electromagnetic field distributions included in this topic. 

2. Wave propagation and waveguide 

Several years ago, the characteristics of waves in source-free, homogeneous regions of space 
have been discussed. Accordingly, we present this section by considering the reflection, 
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transmission and incident experienced by electromagnetic waves on stratified dielectric 
surface.  

There are many situations where a wave passes through several layers of different materials. 
One example is the passage of electromagnetic through a free space with transmission line 
mode or TEM. There are several ways use to analyze the correct results, but a very common 
method is an impedance transformation that integrates reflections into a single parameter to 
generate the numerical results.  

iE
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Figure 1. (a) The wave propagation in stratified interface 

Fig.1 shows a stratified dielectric region. When a wave is normally incident from the region 
1 and transmitted into region 2 and region 3 respectively, an infinite number of transmitted, 
reflected waves in the same wavelength are produced at the boundary interface. At a time, 
the all incident waves  iE , reflected waves  rE and transmitted waves  tE can be 

considered to be a single of each wave. We can develop the reflection coefficient expression 
by following the progression of the incident waves and its reflections. Similarly, the 
transmission coefficient expression can be presented by following the progression of the 
incident wave and its transmissions. Finally, we can use the relationship of expressions to 
calculate the properties of boundary interface. 

Waveguides are used to transport electromagnetic energy along a fixed path that carries 
non-TEM modes, often called waveguide modes. Most important of waveguide properties is 
that they can support an infinite number mode of filed generated by diffraction form each 
interface within waveguide [8]. Waveguides are almost operated so that only a single 
propagation mode is present because the presence of more than one propagating mode 
causes dispersion. Typically, they must be operated over smaller bandwidths and smaller 
losses than transmission line, which makes them attractive for many applications. One of 
several examples is to place obstacle element in waveguides to make devices such as 
lumped element, filters, couplers or antenna. Fig.2(a) shows two thin metal fins placed on 
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the top and bottom walls of a waveguide, called a capacitive window. Considering in the 
gap of obstacle, when the electric filed within the window increases, the energy stored 
between two conducting surfaces will increase. We observed that the equivalent circuit of 
obstacle is a shunt capacitor. 

Similarly, Fig.2(b) shows an inductive window which the most magnetic fields can flow 
through in the obstacle width. The equivalent circuit of obstacle is a shunt inductor.  

 
Figure 2. (a) The capacitive and inductive windows 

3. Wave iterative method (WIM)  

An analysis of the electromagnetic wave properties within a waveguide consists of TE and 
TM field components. Most wave analyses are calculated in the spectral domain based on 
the series integration equation to present the electromagnetic field and to analyze the two 
ports network parameters such that the result of the frequency response reflects the 
characteristic of various planar circuits. In this section, we will present the cooperation of 
waves between the real domain and the spectrum domain. 

The calculating concept for the electromagnetic wave propagation in a waveguide is 
based on the Wave Iterative Method (WIM) [9-11]. The operating process, as shown in 
Fig.3, present the amplitude and direction of the incident, reflected, and transmitted 
waves what propagate in the waveguide obstacle. On the obstacle, the waves are 
calculated in the real domain (pixels) and the waves in the free space are calculated in the 
spectrum domain (modes). To alternate between both domains, we use the Fast Fourier 
Transform (FFT) to reduce the computation time and show directly the electromagnetic 
field in the real domain.   
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Figure 3. (a) The wave propagation in the waveguide 

In Fig.3, the first step, the TE10 field which is the dominant mode, propagate into the 
obstacle as iris circuit, and then the higher-mode waves caused by the scatter on the 
conductor surface will be incident and will reflect within the waveguide. An infinite 
numbers of reflected and transmitted waves are produced at the obstacle interface. Finally 
the calculation of waves will use the principle of mode matching at the input and the output 
ports of the waveguide. 

The initial value of dominant mode, 1,0TE  is 

  0
,

2 sin( ),x y
xA

ab a


  ,            (1) 
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where a  and b are the dimension of the waveguide. The reflected waves  ,x yB  in thn  

iteration on the obstacle are 

 ( ) ( 1)
, , ,
n n

x y x y x yB S A = .                (2) 

The scattering parameter  ,x yS  of waves in the real domain for a two-port network is 

defined as 

    
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 (3) 

where CS  is equal to 1 in the conductor area and DS  is equal to 1 for the free space. To 
transform the wave from the real domain to the spectrum domain, we use the Fast Fourier 
Transform (FFT) of the TE/TM modes as 

  ( ) ( )
, ,_ .n n

m n x yB Modal FFT B  (4) 

 

 
 
Figure 4. The electric and magnetic walls around the waveguide 

The basic functions of TE field components in the electric wall [12], as shown in Fig.4(a) for 
an inductive obstacle, are 

 α
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n ym xE
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where  refers to the TE mode and K is the constant value with respect to the x and y 
directions. The equations are defined as 
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where 1  if , 0m n   and  2  if , 0m n  . 

The basic functions of TM field components in the electric-magnetic wall [12], as shown in 
Fig.4(b) for a capacitive obstacle, are 
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where  refers to the TM mode and K is the constant value respect to the x and y directions. 
The equations are defined as 
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                             (10) 

where 1  if , 0m n   and  2   if , 0m n  . 

At the input port of the waveguide, the incident waves  ,x yA of higher-order modes will 

feedback into the obstacle of the waveguide. The equation for incident waves  ,m nA is 

 
( ) ( )

, , , 1,0 ,
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TMn n
m n m n m nA B A =                (11) 

where 1,0A  is an initial exciton source. The reflection coefficient  ,m n of waves in the 

spectrum domain at the input and the output ports of the waveguide can be written as 
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where 0Z  is the intrinsic impedance of the dominant mode and /
,

TE TM
m nY is the TE/TM modes 

admittance with the orders of  m and n which can be expressed as 
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Therefore, considering the waves on the obstacle, the waves  ,m nA  will be transformed by 

using the Inverse Fast Fourier Transform (IFFT) to analyze the basic functions of TE/TM 
field components by using Eq.(5)-(8), to come back to the real domain as 

  ( ) ( )
, ,_ .n n

x y m nA Pixel IFFT B                      (15) 

The implementation of the Wave Iterative method consists of a recurrence relationship of 
wave between the propagation in both sides of the waveguide and the propagation on the 
obstacle. From Eq.(2) and Eq.(11), the total waves at thn  iteration are 

 ( ) ( 1)
, , , 1,0

ˆ ,
TE

TMn n
m n m n m nA SA A =                (16) 

where Ŝ is the spectrum operator of scattering coefficient.  

Considering the wave propagation in the rectangular waveguide with zero thickness 
obstacles, the electromagnetic equivalent circuit of the obstacle section is presented to 
identify the impedance (Z) element and the input and the output sections of the waveguide 
are presented by dominant mode admittance, as shown in Fig.5.  

10
YTE

10
ETE

10
YTE

 
Figure 5. (a) The electromagnetic equivalent circuit of an obstacle 
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At the convergence condition, the reflected wave on the obstacle at thn iteration, is tend 
toward zero, the total waves will be the steady state field. So, we can obtain the input 
reflection coefficient of obstacle circuit of dominant mode , (1,0)in as, 
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B nB
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The input impedance,  1,0inZ of zero thickness obstacles in the rectangular waveguide can be 

written as  
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                     (18) 

Then, the input reactance will be a positive imaginary value for an inductive element and a 
negative imaginary value for a capacitive element. If the input impedance is equal to zero or 
infinity, the obtained element will be a LC series or parallel resonant circuit respectively. 
The net 2.5D electric field distribution on the obstacle by summing the amplitude of the 
incident and the reflected waves of N iterations can be expressed as 

     ( ) ( )
, 0 , ,

1
.

N
n n

x y x y x y
n

E Z A B


=                     (19) 

Similarly, the net 2.5D magnetic fields can be expressed by subtracting the amplitude of the 
incident and the reflected waves of N iterations series as can be expressed as 

     ( ) ( )
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H A B
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4. WCD simulation design 

In this topic, we present a developed simulation program that conducts a numerical analysis 
by using the Wave Iterative Method (WIM), shown in the Fig.6. This developed simulation 
program, called WCD (Waveguide Circuit Design), consists of a main menu, parameter 
setup, and a design and display window, as shown in Fig.7. The WCD is constructed by 
using the GUI (Graphic User Interface) of MATLAB®. The user can setup the initial values 
that are used for calculating of the two ports network, calculate the obstacle characteristics 
and select the display windows of the simulated results. With the simulation program, it is 
possible to analyze and design the waveguide iris, waveguide filter and also visualize the 
2.5D electromagnetic field distribution. 
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Figure 6. Flowchart of WCD simulated process 

The simulated process of the WCD, as shown in Fig.6, is following: 

1. Start the simulation program form the main menu which consists of an inductive, a 
capacitive and a window obstacle bottom, as shown in Fig.7 (a). 

2. Design the waveguide obstacle structure what the user can determinate the desired 
obstacle dimensions, as shown in Fig.7(a). 

3. Set the initial values; such as the size, length, frequency operating, dielectric constant, 
etc., as shown in Fig.7(a). 

4. Calculate the incident wave of the dominant mode. 
5. Calculate the reflected and the transmitted waves on the obstacle surface in the real 

domain and in the free space in the spectrum domain. In this process, an infinite 
number of the transmitted and the reflected waves are produced on the obstacle 
interface. However the reasonable numbers of iteration are determined, the process will 
result in termination. 

6. Present the simulated results; such as the electric and the magnetic field distribution, 
the impedance, the scattering and the admittance parameters, as shown in Fig.7(b). 
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Figure 7. Waveguide Circuit Design (WCD) Tool 

5. Simulation results 

In this chapter, we present the analysis of the inductive, the capacitive obstacles and the 
rectangular window in the waveguide by using the developed WCD simulation and also 
introduce the electromagnetic distribution in the waveguide. The simulated WCD results 
will be compared with the CST simulation. 

5.1. Inductive obstacle analysis 

The vertical obstacle section transforms the inductive equivalent circuit, shown in Fig.8. The 
dimensions of rectangular waveguide consists of a width (a) equal to 6.4 cm., a height (b) 
equal to 3.2 cm. and the usable obstacle width (d) equal to 3.2 cm. and 4 cm. respectively. 
The cutoff frequency of the waveguide is 3.24 GHz. 
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Figure 8. (a) Inductive obstacle structure 

 
 

 
 
 
Figure 9. The inductance of inductive obstacle 

Fig.9 presents the input reactance of the inductive obstacle in frequency range from 2-6 GHz 
following the variation the ratio of obstacle and the waveguide width. We observed that the 
obstacle width increased, the reactance of the inductive obstacle will increase that is 
consistent with the properties of the inductor. 
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Figure 10. Comparison of dB(S11), dB(S21) of the inductive obstacle between the WCD and the CST 
simulation 

Fig.10(a) presents the comparison of dB(S11) and dB(S21) of  the inductive obstacle structure 
between the WCD and the CST simulation In the case of a obstacle width equal to 3.2 cm., 
we can obtain the -3 dB cutoff frequency at 3.15 GHz. and Fig.10(b) presents the comparison 
of dB(S11) and dB(S21) of the inductive obstacle structure between the WCD and the CST 
simulation, at a obstacle width equal to 4.0 cm. We can obtain the -3 dB cutoff frequency at 
4.78 GHz. This comparison revealed good agreement. We observed that the shunt inductive 
circuit is presented as a high pass filter. 
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Figure 11. The 2.5D electromagnetic field illustration 

Fig.11 shows the 2.5D normalized electromagnetic field distributions on the inductive 
obstacle that are agreements with the electromagnetic field theory. The electric field density 
of TE10 fundamental mode, as shown in Fig.11(a) is maximum at the center obstacle and is 
minimum at the discontinuity of boundary obstacle. We observed that the electric field on 
the conducting surface is null. In Fig.11 (b), the amplitude of magnetic field on discontinuity 
of boundary obstacle is peak, and decreases until to zero following the distance on the both 
sides of the conductor. 
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5.2. Capacitive obstacle analysis 

The horizontal obstacle section transforms the capacitive equivalent circuit, shown in Fig.12. 
The dimensions of rectangular waveguide consists of a width (a) equal to 6.4 cm., a height 
(b) equal to 3.2 cm., and the obstacle of iris circuit equal to 0.8 cm. and 0.4 cm. respectively. 

 

 
 

Figure 12. (a) Capacitive obstacle structure 

 

 
 

Figure 13. The capacitance of capacitive obstacle 

Fig.13 presents the input reactance of the capacitive obstacle in frequency range from 2-6 
GHz following the variation the ratio of obstacle and waveguide width. We observed that 
the obstacle width increased, the reactance of the capacitive obstacle will increase that is 
consistent with the properties of the capacitor. 
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Figure 14. Comparison of dB(S11), dB(S21) of capacitive obstacle between the WCD and the CST 
simulation 

Fig.14(a) presents the comparison of dB(S11) and dB(S21) of the capacitive obstacle structure 
between the WCD and the CST simulation. In the case of a width of obstacle structure is 
equal to 0.8 cm., we can obtain the -3 dB cutoff frequency at 3.43 GHz. Fig.14(b) presents the 
comparison of dB(S11) and dB(S21) of capacitive obstacle structure between The WCD and 
the CST simulation, of the obstacle structure width equal to 0.4 cm. We can obtain the -3 dB 
cutoff frequency at 4.82 GHz. This comparison revealed good agreement. We observed that 
the shunt capacitive circuit is presented as a low pass filter. 
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Figure 15. (a) The 2.5D electromagnetic field illustration 
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Fig.15 shows the 2.5D normalized electromagnetic field distributions on the capacitive 
obstacle that are agreements with the electromagnetic field theory. The electric field density 
of TE01 fundamental mode, as shown in Fig.15(a), is minimum at the center obstacle and is 
maximum at the discontinuity of boundary obstacle, and we observed that the electric field 
on the conducting surface is null. In Fig.15(b), the amplitude of magnetic field on the both 
sides of the conducting surface in y direction is maximal and decreases until to zero at the 
obstacle internal edges. 

5.3. Rectangular window analysis 

Finally, we study the rectangular window with a width of window equal to 0.9 cm. and a 
height equal to 0.675 cm., then we compare the analyzed results between the WCD and the 
CST simulation. The rectangular window section in the waveguide transforms the LC shunt 
parallel resonant circuit, as shown in Fig.16. We use the dimensions of rectangular 
waveguide consisting of a width (a) equal to 2.4 cm., a height (b) equal to 1.8 cm., the 
rectangular window dimensions  are determine as in Fig.16. The cutoff frequency of the 
waveguide is 6.25 GHz. After simulating by the WCD tool, the input reactance of the 
rectangular window can be obtained at a resonant frequency of 15.5 GHz. An example of the 
reactance variation on the WCD display window is shown in Fig.17. 


 

Figure 16. (a) The rectangular window structure 
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Figure 17. The reactance of rectangular window  

 
 

 
 
Figure 18. The dB(S11) and dB(S21) parameters of rectangular window  
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Fig.18 shows the dB(S11) and dB(S21) parameters of the operating frequency of 10-18 GHz, 
the rectangular windows is presented as a band pass filter, the -3 dB lower and upper cutoff 
frequency is at 15.25 GHz and at 16.12 GHz respectively. We observed that the center 
frequency is equal to 11 GHz and the bandwidth is equal to 2.98 GHz. 

Fig.19 presents the comparison of dB(S11) and dB(S21) of the rectangular obstacle structure 
between the both simulations, we can obtain the -3 dB lower cutoff frequency at 13.25 GHz. 
and -3 dB upper cutoff frequency at 16.35 GHz. This comparison revealed good agreement.    

We observed that the equivalent circuit at the resonant frequency is a shunt LC circuit. 

 
 
 

 
 
 
 
Figure 19. (a) The rectangular obstacle structure and the comparison of dB(S11), dB(S21) of rectangular 
obstacle between the WCD and CST simulation 
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Figure 20. (a) The 2.5D electromagnetic field illustration 

Fig.20 shows the 2.5D electric and current distributions of TE01 fundamental mode on the 
rectangular window which are agreements with electromagnetic field theory. In Fig.20 (a), 
the normalized electric field peak is at the obstacle edge in x direction and minimum values 
are at the rectangular center window. In Fig.20(b), most current density distributions are 
presented at around conducting edge. The field density distribution can be used to lean 
qualitatively about the obstacle’s operating behavior. 
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For efficiency of calculation, the computation time of the WCD simulation depends on the EM 
algorithm associating a pixel of obstacle structure to a class in an iterative process. In this 
simulation, the calculation at the 10 frequencies steps with 32*64 of cell numbers and 1 mm. of 
cell size will be equal to approximately 45 seconds of computing time, which is less than 2 
times of the CST simulation (run on Pentium IV Processor, 1 GB of RAM at 3.0 GHz of speed). 

6. Conclusion  

The capability of developed WCD simulation based on the Wave Iterative Method (WIM) 
has been presented to the complex description of the 2.5D electromagnetic field and the 
characteristic analysis of the obstacle structures. The WCD simulation is properly conceived 
to apply for the inductive and the capacitive element in the rectangular waveguide without 
resorting to extensive computation times; it appears as an efficient alternative to the CST 
simulation. In the case of wave propagation, the WCD simulation can use shown the 
electromagnetic field distributions on the conducting obstacle. In conclusion, the WCD 
simulation can be used in the waveguide lumped circuit analysis and has proven to be with 
high accuracy and efficacy a useful tool for microwave circuit design and an educational 
aid. 
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1. Introduction 

Multiresolution-based studying has rapidly been developed in many branches of science 
and engineering; this approach allows one to investigate a problem in different resolutions, 
simultaneously. Some of such problems are: signal & image processing; computer aided 
geometric design; diverse areas of applied mathematical modeling; and numerical analysis. 

One of the multiresolution-based schemes reinforced with mathematical background is the 
wavelet theory. Development of this theory is simultaneously done by scientists, 
mathematicians and engineers [1]. Wavelets can detect different local features of data; the 
properties that locally separated in different resolutions. Wavelets can efficiently distinguish 
overall smooth variation of a solution from locally high transient ones separated in different 
resolutions. This multiresolution feature has been interested many researchers, especially 
ones in the numerical simulation of PDEs [1]. Wavelet based methods are efficient in 
problems containing very fine and sharp transitions in limited zones of a computation 
domain having an overall smooth structure. In brief, the most performance of such 
multiresolution-based methods is obtained in systems containg several length scales. 

Regarding wavelet-based simulation of PDEs, two different general approaches have been 
developed; they are: 1) projection methods, 2) non-projection ones. 

In the projection schemes, in general, the wavelet functions are used as solution basis 
functions. There, all of the computations are performed in the wavelet spaces; the results are 
finally re-projected to the physical space [2, 3]. In non-projection schemes, the wavelets are 
only used as a tool to detect high-gradient zones; once these regions are captured, the other 
common resolving schemes (e.g., finite difference or finite volume method) are employed to 
simulate considered problems. In this approach, all computations are completely done in the 
physical domain, and thereby the corresponding algorithms are straightforward and 



 
Wave Propagation Theories and Applications 354 

conceptually simple [4]. There are some other schemes that incorporate these two general 
approaches. They use wavelets as basis functions in a wavelet-based adapted grid points, 
e.g. [5].  

The advantages of the wavelet-based projection methods are:  

1. Wavelets provide an optimal basis set; it can be improved in a systematic way. To 
improve an approximation, wavelet functions can locally be added; such improvements 
do not lead to numerical instability [3]. 

2. Most of the kernels (operators) have sparse representation in the wavelet spaces and 
therefore speed of solutions is high. The band width of the sparse operators can also be 
reduced by considering a pre-defined accuracy. This leads to inherent adaptation which 
no longer needs to grid adaptation [6-8].The matrix coefficients can easily be computed 
considering wavelet spaces relationship [6-8].  

3. The coupling of different resolution levels is easy [3]. The coupling coefficients can 
easily be evaluated considering multiresolution feature of the wavelet spaces [6-8]. 

4. Different resolutions can be used in different zones of the computation domain. 
5. The numerical effort has a linear relationship with system size [3]. In the wavelet 

system, the fast algorithms were developed [9]. Another considerable property of the 
wavelet transform is its number of effective coefficients: it is much smaller than data 
size, itself (in spit of the Fourier transform). These two features leads to fast and 
accurate resolving algorithms. 

The wavelet-based projection methods, however, have two major drawbacks: 1) projection 
of non-linear operators; 2) imposing both boundary conditions and corresponding 
geometries [4, 8]. 

The most common wavelet based projection methods are: the telescopic representation of 
operators in the wavelet spaces [6-8], wavelet-Galerkin [2, 3,10-19], wavelet-Taylor Galerkin 
[20-22], and collocation methods [5,23-26] (in this approach, the wavelet-based grid 
adaptation scheme is incorporated with the wavelet-based collocation scheme). Some efforts 
have been done to impose properly boundary conditions in these methods. Some of which 
are: 1) wavelets on an interval [11, 27], 2) fictitious boundary conditions [12, 13, 28, 29], 3) 
reducing edge effects by proper extrapolation of data at the edges [14], 4) incorporation of 
boundary conditions with the capacitance matrix method [2, 15]. 

Regarding non-projection approaches, the common method is to study a problem in 
accordance with the solution variation; i.e., using different accuracy in different 
computational domains. In this method more grid points are concentrated around high-
gradient zones to detect high variations, the adaptive simulation. In this case, only the 
important physics of a problem are precisely studied, a cost-effective modeling. Once the 
grid is adapted, the solution is obtained by some other common schemes, (e.g., the finite 
difference [4, 30- 38], or finite volume [39-43] method) in the physical space. The wavelet 
coefficients of considerable values concentrate in the vicinity of high-gradient zones. The 
coefficients have a one to one correspondence with their spatial grid points, and thereby, by 
considering points of considerable coefficient values, the grid can be adapted. For this 



 
Wavelet Based Simulation of Elastic Wave Propagation 355 

purpose, the points of small enough coefficient values are omitted from the computing grid. 
In these grid-based adaptive schemes, the degrees of freedom are considered as point values 
in the physical space; this feature leads to a straightforward and easy method. In some cases 
the two approaches, projection and non-projection ones, are incorporated; e.g., adaptive 
collocation methods [5, 23-26], and adaptive Galerkin ones [28, 29]. 

There is also some other approaches using wavelets only to detect local feature locations, 
without grid adaptation. In one approach, spurious oscillation locations are captured by the 
wavelets; thereafter, the oscillations are locally filtered out by a post-processing step [44-45]. 
The filtering can be done by the conjugate filtering method only in the detected points. In 
the other approach, to control spurious oscillations the spectral viscosity is locally added in 
high-gradient/dicontinuous regions; such zones are detcted by the wavelets. This approach 
is suitable for simulation of hyperbolic systems containing discontinuous solutions. There, 
artificial diffusion is locally added only in high-frequency components [46]. In these two 
approaches, the wavelet transforms are used as a tool to detect highly non-uniform localized 
spatial behaviors and corresponding zones.  

The two aforementioned general wavelet based outlooks, projection and non-projection 
ones, have successfully been implemented for simulation of stress wave propagation 
problems. The wavelet-based projection methods were successfully used for simulation of 
wave propagation problems in infinite and semi-infinite medias [12, 47-52]. Another 
important usage is wave propagation in structural engineering elements; e.g. wave 
propagation in the nano-composites [53]. The non-projection methods were also employed 
for wave-propagation problems, one can refer to [35-38]. 

In brief, it should be mentioned that other powerful and common methods exist for 
simulation of wave propagation problems for engineering problems; some of which are: the 
finite difference and finite element schemes, e.g. [54, 55]. These methods are precisely 
studied and relevant numerical strength and drawbacks are investigated. Regarding these 
schemes, some of important numerical features are: 1) source of numerical errors: truncation 
and roundoff errors, [56]; 2) effect of grid/element irregularities on truncation error and 
corresponding dissipation and dispersion phenomena [57]; 3) internal reflections from 
grids/element faces [58-65]; 4) the inherent dissipation property [66, 67]. These features lead 
in general to numerical (artificial) dissipation and dispersion phenomena. In general to 
control these two numerical drawbacks in wave propagation problems, it is desirable to 
refine spatio-temporal discritizations [68]. Considering the spatial domain, this can 
effectively be done by the wavelet theory. In the wavelet-based projection methods, the 
inherent adaptation is used, while in the non-projection ones, the multiresolution-based grid 
adaptation is utilized. 

This chapter is organized as follows. In section 2, the wavelet-based projction method will 
be survived. This section includes: 1) a very brief explanation of main concept of 
multiresolution analysis; 2) in brief review of wavelet-based projection method for solution 
of PDEs and computation of the spatial derivatives; 3) the issues related to a 2D wave 
propagation example. In section 3, the wavelet-based non-projection ones will be presented. 
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It includes: 1) wavelet-based grid adaptation scheme with interpolating wavelets; 2) solution 
algorithm; 3) smoothing splines; 4) an example: wave propagation in a two layered media. 
This chapter ends with a brief conclusion about the presented wavelet-based approaches. 

2. Wavelet based projection method in wave propagation problem 

In the wavelet based projection methods, the wavelets are used as basis functions in 
numerical simulation of wave equations. This section has following sub-sections: 
multiresolution analysis and wavelets; representation of operators in the wavelet spaces; the 
semi group time integration methods; a SH wave propagation problem.  

2.1. Multiresolution analysis and wavelet basis 

In this subsection, wavelet-based multiresolution analysis and wavelet construction 
methods will be survived.  

2.1.1. Multiresolution analysis 

A function or a signal, in general, can be viewed as a set of a smooth background with low 
frequency component (approximation one) and local fluctuations (local details) of variant 
high frequency terms. The word “multiresolution” refers to the simultaneous presence of 
different resolutions in data. In the multiresolution analysis (MRA), the space of functions 
that belong to square integrable space, 2( )L  , are decomposed as a sequence of detail 
subspaces, denoted by  kw , and an approximation subspace, indicated with jv . The 
approximation of ( )f t  at resolution level j , ( )f t , is in jv  and the details ( )kd t  are in kw  
(detail sub-spaces of level k ). The corresponding scale of resolution level j  is usually 
chosen to be of order 2 j  [69, 70]. In orthogonal wavelet systems, the multiresolution 
analysis of 2( )L   is nested sequences of the subspaces  jv  such that: 

i. 2
1 0 1... ... ( )v v v L      

ii.   20 ,v v L
 

   
iii. 1( ) (2 )j jf t v f t v     

iv. 0 0( ) ( )f t v f t k v     

v. Exists a function ( )t , called the scaling function such that set  ( )
k Z

t k


 is a basis of 

0v . 

The sub-space jv  denotes the space spanned by family ,{ ( )}j k t , i.e., ,{ ( )}j j k
k

v span t  where 

/2
, ( ) 2 (2 )j j

j k t t k   . The , ( )j k t  is a scaled and shifted version of the ( )t ; thereby the 

function ( )t  is known as the father wavelet. The scale functions ( , ( )j k t ) are localized in 

both spatial (or time) and frequency (scale) spaces. The function ( )t  is usually designed so 
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that: ( ) 1t dt   & 
2

( ) 1t dt  . The second equation implies that the scaling function ( ( )t

) has unit energy and therefore by multiplying it with data, the energy of signals do not 
alter. The dilated and shifted version of the scale function, , ( )j k t  is usually normalized with 

the coefficient /22 j  to preserve the energy conservation concept; namely, 
2

, ( ) 1j k t dt  . 

Since 1j jv v  , there exist a detail space jw  that are complementary of jv  in 1jv  , i.e., 

1j j jv w v   . The subspace jw  itself is spanned by a dilated and shifted wavelet function 

family, i.e.  , ( )j k t , where /2
, ( ) 2 (2 )j j

j k t t k   ; the function ( )t  is usually referred as 

the mother wavelet. The wavelet function, , ( )j k t  is localized both in time (or space) and 

frequency (scale); it oscillates in such a way that its average to be zero, i.e.: , ( ) 0j k t dt 
.This is because the wavelet function measures local fluctuations; the variations which are 
assumed to have zero medium. Similar to scaling function and for the same reason, energy 

of the wavelet functions are unit, i.e., 
2

, ( ) 1j k t dt  . The approximate and detail subspaces 

satisfy orthogonally conditions as follows: j jv w  & ( j jw w for j j   ). These relations 

lead to: , ,, 0j k j l    & , ,,j k j l kl jj      & , ,,j k j l kl   where 

*( ). ( ) ( ) ( )f t g t f t g t dt    (the inner product). Due to the fact that 0 1v v  and 0 1w v , then 

any function in 0v  or 0w  can be expanded in terms of the basis function of 1v , i.e.: 

( ) 2 (2 )k
k

t h t k    & ( ) 2 (2 )k
k

t h t k   . These important equations are known as: 

dilation equations, refinement equations or two-scale relationships [69-72]. The kh  and kh  are 
called filter coefficients, and can be obtained, in general, by the following relationships: 

1, ,k kh     and 1, ,k kh     . The orthogonality condition of ( )x k   and ( )x k   

leads to relationship: 1( 1)k
k N kh h      where N  is length of the scaling coefficient filters, 

  , 1, ,kh k N  .  

As mentioned before, the multiresolution decomposition of 2( )L   leads to a set of 

subspaces with different resolution levels; i.e., 2
1 ...j j jL v w w     . In this regard, by 

using one decomposition level, a function 
max

( ) Jf x v  (a space with sampling step max1 / 2 J ) 

can be expanded as: 
max max 1max 1,, max ,( ) ( 1, ) ( ) ( 1, ) ( )J l J n

l n
f x c J k x d J n x 



 


 

   
         
   
   

By following the step by step decomposition of approximation space, if the coarsest 

resolution level is min max 1J J  , then the function 
max

( ) Jf x v  can be represented as:  
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max

min
min

1

min , ,( ) ( , ) ( ) ( , ) ( )
J

J l j n
l j J n

f x c J k x d j n x 
 

  

  
         

    

This equation shows that the function ( )f x  is converted into an overall smooth 
approximation (the first parenthesis), and a series of local fluctuating (high-frequency 
details) of different resolutions (the second parenthesis). In the above equation ( , )c j k  and 

( , )d j k  are called the scaling (approximation) and wavelet (detail) coefficients, respectively. 
These transform coefficients are usually stored in an array as follows: 
        max max min min( 1, ) , ( 2, ) , , ( , ) , ( , )d J n d J n d J n c J n   ; this storing style is commonly 

referred as the standard form. 

In the orthogonal wavelet systems, the coefficients ( , )c j k  and ( , )d j k  can be determined by: 
,( , ) ( ), ( )j kc j k f x x   & ,( , ) ( ), ( )j kd j k f x x  . Fast algorithms were developed to these 

coefficient evaluations and relevant inverse transform [9, 69]. 

In the following, the multiresolution-based decomposition procedure is qualitatively 
investigated by an example. Figure 1, illustrates the horizontal acceleration recorded at the 
El-Centro substation ( 1f ) and corresponding wavelet-based decompositions. There, the 

symbol 0a  refers to the approximation space ( 0 0,(0, ) ( )lla c k x


  ) and 0d to 9d  denote 

the detail spaces ( ,( , ) ( )j j nnd d j n x


  ); where, the finest and coarsest resolution levels 

are max 10J   and min 0J  , respectively. The superposition of all projected data, 2f  (i.e., 
9

2 0 0 jjf a d


  ) and the difference 2 1f f  are presented as well. It is clear that 0a  

approximates the overall smooth behavior; the projections 0d - 9d  include local fluctuations 
in different resolutions. There, the frequency content of jd is in accordance with the 

resolution level j . The wavelet used for the decompositions is the Daubechies wavelet of 
order 12 (will be explained subsequently). 

2.1.2. Derivation of filter coefficients 

Considering the above mentioned necessary properties of scaling function and other 
possible assumptions for scaling/wavelet functions, the filter coefficients can be evaluated. 

In orthogonal systems, necessary conditions for the scaling functions are [71]: 

1. Normalization condition: ( ) 1t dt   which leads to 
1

1
N

k
k

h


 ; N  denotes filter length. 

2. Orthogonality condition: 0,( ). ( ) lt t l dt     or equivalently 2 0,
1

N

k k l l
k

h h 


 ; the 

parameter 0,l  denotes the Kronecker delta. For filter set   : 1,2, ,kh k N  where N  is 

an even number, this condition provides / 2N  independent conditions. 
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Figure 1. The El Centro acceleration and corresponding multiresolution representation.  

Essential conditions 1 & 2 provide / 2 1N   independent equations. Other requirements can 
be assumed to obtain the remaining equations. 

One choice is the necessity that the set function  ( )x k  can exactly reconstruct 

polynomials of order upto but not greater than p  [71, 72]. The polynomial can be 

represented as: 1
0 1 1( ) p

pf x x x   
    ; on the other hands: ( ) ( )k

k
f x c x k





  . 

By taking the inner product of the wavelet function ( ( )x ) with the above equation, other 

conditions can be obtained; since: ( ), ( ) ( ), ( ) 0k
k

f x x c x k x  




      , or: 

1
0 1 1( ), ( ) ( ) . ( ) . ( ) 0p

pf x x x dx x x dx x x dx      
        . 

As i coefficients are arbitrary, then it is necessary that each of the above integration to be 

equal to zero: . ( ) 0, 0,1, , 1lx x dx l p     ; these equations lead to p  equations where 

1p   of them are independent [69, 71, 72]. These equations mean that the first p  moments 
of the wavelet function must be equal to zero; this condition in the frequency domain leads 

to relationship 
0

ˆ( ) / 0, 0,1, , 1l l
w

d w dw l p


       . It can be shown that these conditions 

lead to conditions: ( 1) 0, 0,1, , 1
N

k l
k

k
h k l p     . 
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In case that / 2p N , where N  is even (for filter coefficients of length N ) the resulted 
wavelet family is known as the Daubechies wavelets. In this case, for N  scaling filter 
coefficients, N  independent equations exist, and unique results can be obtained. 

In Figure 2 the Daubechies scaling and wavelet functions of order 12 in spatial ( ( )x & 

( ))x  and frequency ( ˆ( )w & ˆ( )w ) domains are illustrated. It is evident that functions 

( )x  & ( )x , and ˆ( )w  & ˆ ( )w  have localized feature. In this figure ( )x  denotes the 

first derivative of the scaling function. 

Other choices can be considered for scaling/wavelet functions construction; some of such 
assumptions are: imposing vanishing moment conditions for both scaling and wavelet 
functions (e.g., Coiflet wavelets), obtaining maximum smoothness of functions, 
interpolating restriction, and/or symmetric condition [69]. To fulfill some of these 
requirements, the orthogonality requirement can be relaxed and the bi-orthogonal system is 
used [69]. For numerical purposes, some other requirements can also be considered; for 
example Dahlke et al. [16] designed a wavelet family which is orthogonal to their 
derivatives. This feature leads to a completely diagonal projection matrix and thereby a fast 
solution algorithm [14]. 

 
Figure 2. The Daubechies scaling and wavelet functions of order 12 in spatial and frequency domains, 
as well as first derivative of the scaling function. 

2.2. Expressing operators in wavelet spaces 

In this subsection, multiresolution analysis of operators will be presented [6-8].  

Assume T  denotes an operator of the following form: 2 2: ( ) ( )T L L  . The aim is to 
represent the operator T in the wavelet spaces; this can be done by projection the operator in 
the wavelet spaces.  
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The projection of the operator in the approximation space of resolution level j  ( jv ) can be 

represented as: 2: ( )j jP L v  where, , ,( )( ) , ( )j j k j kP f x f x   . In the same way, the 

projection of the operator in the detail subspace jw , of resolution j , is: 
2

1: ( ) ;j j j j jQ L w Q P P    where, , ,( )( ) , ( )j j k j kQ f x f x  . The jQ  definition is 

directly resulted from the multiresolution property, i.e., 1j jv v   and 1 1j j jv v w   . 

For representing the operator T  in the multiresolution form, firstly, a signal 
maxJx v  is 

considered, where maxJ  denotes the finest resolution level, where max1 / 2 Jdx  . The data x  
can then be projected into the scaling (approximation) and detail spaces of resolution 

max 1j J   by one step wavelet transform, i.e.: ( ) ( )j jx P x Q x  . 

Considering a linear operator (function) T  and multiresolution feature, the function ( )T x  

can be presented as follows: 
max

( ) ( ) ( ) ( )J j j j j j jT x T T P Q T P T Q TP TQ       . 

However ( )jT P  & ( )jT Q  are no longer orthogonal to each other; so each of them can be re-

projected to jv  and jw  as follows: ( ) & ( )j j j j j j j j j jT P PTP Q TP T Q PTQ Q TQ    . 

By substituting these relationships in the equation 
max

( ) JT x T , we have: 

( ) ( )j j j j j j j jT x Q TQ Q TP PTQ P TP     

Each term of the above equation belongs to either jv  or jw  as follows: 

;j j j jA Q fQ w  ;j j j jB Q fP w  ;j j j jP fQ v   j j j jT P fP v   

In the above equations, jB  and j  represent interrelationship effects of subspaces jv  and 

jw . Using these symbols, the operator T can be rewritten as: 
max 1 ( )J j j j j jT T A B T     

By continuously repeating the above mentioned procedure for operators jT , finally, the 

maxJT  can be expressed in the multiresolution representation as follows: 

max

max min
min

( )
J

J i i i J
i J

T A B T


      

where minJ  denotes the coarsest resolution level (i.e., min1 / 2 Jdx  ). This representation is 
the telescopic form of the operator T . 

The schematic shape of the operator T in telescopic (multiresolution) form is presented in 
Figure 3; this form of representation is known as the Non-Standard form (NS form). In this 
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figure, it is assumed that: min 1J  , max 4J  . There, the coefficients id  and is  are the scale 
and detail coefficients, respectively; these coefficients are obtained from the common 
discrete wavelet transform of data x . The ˆ ˆ&i id s are the NS form of the wavelet coefficients, 
and should be converted to standard form by a proper algorithm (will be discussed). 

The projection of the operator T  in the wavelet space results to set  , ,j j j j Z
A B


 , where j  

denotes resolution levels. This form is called NS from, since both of the scale ( js ) and detail 
( jd ) coefficients are simultaneously appeared in the formulation, see Figure 3. 

 
Figure 3. Schematic shape of a NS form of the operator T . 

The matrix elements of projected operators jA , jB , j , and jT  are '
j , '

j , '
j and '

js , 

respectively; for the derivative operator of order n , /n nd dx , the element definitions are: 

     ( )2 (2 ) (2 ) 2 2
n nj j j j j jn

il i lx i x l dx   





     

     ( )2 (2 ) (2 ) 2 2
n nj j j j j jn

il i lx i x l dx   





     

     ( )2 (2 ) (2 ) 2 2
n nj j j j j jn

il i lx i x l dx   





     
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     ( )2 (2 ) (2 ) 2 2
n nj j j j j jn

il i ls x i x l dx s 





     

Where: 

( ) ( )
n

l n
dx l x dx

dx
  




  ( ) ( ) ,

n

l n
dx l x dx
dx

  



   

( ) ( ) ,
n

l n
dx l x dx
dx

  



  ( ) ( )

n

l n
ds x l x dx
dx

 



   

The coefficients j
il , j

il , j
il and j

ils  are not independent; the coefficients j
il , j

il , j
il  can be 

expressed in terms of j
ils  . This is because there is the two-scale relationship between the 

wavelet (detail) and scale functions; for more details see [6, 7]. This fact, leads to a simple 
and fast algorithm for calculation of jA , jB , j  elements. The NS form of the operator 

/d dx obtained by the Daubechies wavelet of order 12 ( 12Db ) is presented in Figure 4; there 

min 7J  & max 10J  . It is clear that the projected operator is banded in the wavelet space. 

To convert  
min max 1

ˆ ˆ,j j J j J
d s

  
to the standard form  

min
min max 1

,j JJ j J
d s

  

 
 
 

, the vector ˆjs  is 

expanded for min max 1J j J    by the following algorithm [73]: 

1. Set 
max max1 1 0J Jd s    (the initialization step), 

2. For max max min1, 2, ,j J J J      

(2.1.) If max 1j J  then evaluate 1jd  & 1js  from equation 1 1ˆj j j js s d s    , where 

1 1 ˆ( )j j j jd Q s s   and 1 1 ˆ( )j j j js P s s   . 

(2.2.) evaluate 1 1 1
ˆ

j j jd d d    , 

3. At level 
minj J , we have 

min min min
ˆJ J Js s s  . 

The aforementioned telescopic representation is for 1D data. For higher dimensions, the 
extension is straightforward: the method can independently be implemented for each 
dimension. 

2.3. The semi-group time discretization schemes 

The scheme used here for temporal integration is the semi-group methods [74, 75]. These 
schemes have a considerable stability property: corresponding explicit methods have a 
stability region similar to typical implicit ones. 

The semi-group time integration scheme can be used for solving nonlinear equations of 
form: in, L N ( ) d

tu u f u    
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Figure 4. The NS form of operator /d dx  obtained by 12Db ; it is assumed: 

min 7J  & 
max 10J  . 

where: L  and N  represent the linear and non-linear terms, respectively; ( , )u u x t ; dx , 
1,2,3d  ; [0, ]t T . The initial condition is: in0( ,0) ( )u x u x  , and the linear boundary 

condition is: n 1B ( ,0) 0 , [0, ]du x o t T   . 

Regarding the standard semi-group method, the solution of the above mentioned equations 
is a non-linear integral equation of the form: .L ( )L

0
( , ) . ( ,0) N( ( , ))

tt tu x t e u x e u x d     . 

For numerical simulations, the ( , )u x t should be discretized in time; the discretized value at 
time 0nt t n t    ( t  is the time step) will be denoted by ( , )n nu u x t . In the same way the 
discrete form of N( ( , ))u x t  at nt t  is N N( ( , ))n nu x t . 

If the linear operator is a constant, i.e., L q , the discretized form of the above equation is 

[74]: 
1

. .
1 1 1

0
( .N .N )

M
q l t

n n l n m n m
m

u e u t  



    


     , where 1M   is the number of time levels 

considered in the discretization and l M ; the coefficients   and m are functions of .q t . 
It is clear that the explicit solution is obtained when 0  ; for other choices the scheme is 
implicit. For case 1l  & 0   (the explicit method) the coefficients   and m  are presented 
in Table (1). In this table, for linear operator L  the coefficient kQ  is [74]: 

L. 1

0

(L. ) (L. )(L. ); (L. ) ; (L. ) ; 0,1,
!(L. )

t j k
j

k k j jj
k

e E t tQ Q t Q t E t j
kt

 



  
      


   

For 0,1,2j   the above mentioned relations yield: L
0(L ) ;tQ t e  

L 1
1(L ) ( )(L ) ;tQ t e t    I L 2

2(L ) ( L )(L )tQ t e t t      I ; where I  is the identity matrix. 



 
Wavelet Based Simulation of Elastic Wave Propagation 365 

order  2  1  0  M  
1 0  

0  1Q  1 

2 02Q  1 2Q Q  2 

3 2 3/ 2Q Q  2 32( )Q Q   1 2 33 / 2Q Q Q   3 

Table 1. Coefficient values for case 0 & 1l    (the explicit scheme), where  k kQ Q q t  . 

2.4. Simulation of 2D SH propagating fronts 

The governing equation of the SH scalar wave (anti-plane shear wave) is: 

2

2
y y y

y

u u u
f

x x z zt
  

      
               

 

Where ( , )y yu u x z  is the out-of plane displacement;   and   are shear modules and 

density, respectively. By defining a linear operator Ly , the above mentioned equation can 

be rewritten as: 
2

2 L .y y
y y

u f
u

t 


 


 where 1 1Ly x x z z

 
 

      
          

. 

For using the semi-group temporal integration scheme, a new variable /y yv u t    is 

introduced and consequently the above equation will be represented as a system of vectors: 

 &  L .y y y
y y y

u v f
v u

t t 

 
  

 
 

This system can be rewritten in vector notation as follows [48]: 

0 01 where ; ;
L 0

y

y yy

u
fv 

     
                 

I
U LU F U L F  

The simplest explicit semi-group time integration scheme is obtained for case 0 & 1M   ; 

in this case the discretized form of the wave equation is: 1 0. .t
n n ne t 
   LU U F . 

For utilizing the semi-group method the non-linear term te L  is approximated by 

corresponding Taylor expansion [48]: 
2 3 4

2 3 4. ...
2! 3! 4!

t t t te t   
      L I L L L L . 

The coefficient 0  can be evaluated as: 0 1
1( ) ( )( )tQ t e t      LL I L . Similarly, the 0  

can be approximated by its Taylor expansion, i.e.: 
2 3

2 3
0 . ...

2 6 24
t t t   

    I L L L . 
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2.4.1. The absorbing boundary conditions: infinite boundaries 

The absorbing boundaries are usually used for presenting infinite boundaries. The defect of 
numerical simulations is occurrence of artificial boundaries which reflect incoming energies 
to the computation domain. In this study, the absorbing boundary introduced in [76] is used 
to simulate infinite boundaries, where the absorbing boundary condition is considered 
explicitly. Therefore, the wave equation is modified by a damping term ( , ). ( , , )yQ x z u x z t  
where, ( , )Q x z  is an attenuation factor. This factor is zero in computation domain and 
increases gradually approaching to the artificial boundaries. Consequently, the waves 
incoming towards these boundaries are gradually diminished. In general, no absorbing 
boundary can dissipate all incoming energies, i.e. some small reflections will always remain. 

The above mentioned modification, performed for SH wave equation is as follows:  

2

2
1y y y y yu u u u f

Q
t x x z zt

 
 

                            
 

And the modified vector form of the equation is: 0 01; ;
L

y

y yy

u
Q fv 

     
               

I
U L F . 

2.4.2. Free boundaries 

There are different approaches for imposing the free boundary conditions in finite-
difference methods; some of which are: 1) using equivalent surface forces (explicit 
implementation) [48]. In this method the equivalent forces will be up-dated in each time 
step; 2) employing artificial grid points by extending the computing domain (a common 
method); 3) considering nearly zero properties for continuum domain in simulation of the 
free ones [77]; in this case the boundary is replaced with an internal one. In the following 
examples (done by the wavelet based projection method) the third approach will be used. 
The first method are mostly be used for simple geometries. 

2.4.3. Example 

In the following, a scalar elastic wave propagation problem will be considered. The results 
confirm the stability and robustness of the wavelet-based simulations. 

Example: Here scattering of plane SH waves due to a circular tunnel in an infinite media will 
be presented. The absorbing boundary is used for simulation of infinite domain; the 

considered function of ( , )Q x z  is:    2 22 2. .. .( , ) . .x x z zx zb X n b Z nb X b Z
x zQ X Z a e e a e e          
   

 

where: /X x dx ; /Z z dz ; 1 / 128dx dz  ; 10000x za a  ; 0.02x zb b   ; 128;x zn n   

0,1x     ; 0,1z     . In simulations it assumed: max 7J   (the finest resolution level); 
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min 4J  . The Daubechies wavelet of order 12 is considered in calculations. The assumed 

mechanical properties are: 41.8 10 kPa    & 32 /ton m  .  

The plane wave condition is simulated by an initial imposed out-of plane harmonic 
deformation where corresponding wave number is 64 / 12k  . For time integration, the 
simplest form of the semi-group temporal integration method is used. The snapshots of 
results (displacement ( , , )yu x z t ) at different time steps are presented in Figure 5; there the 
light gray circle represents the tunnel. The displacement ( , , 0.0048)yu x z t   is illustrated in 
Figure 6; the total CPU computation time is 569 sec. for two different uniform grids, this 
problem is re-simulated by the finite difference method (with accuracy of order 2 in the 
spatial domain); the grid sizes are 143 143  and 200 200  uniform points. Temporal 
integrations are done by the 4th Runge-Kutta method. Corresponding displacements at 

0.0048t   are illustrated in Figure 7. Considering Figures 6 & 7, it is clear that the 
dispersion phenomenon occurs in the common finite difference scheme. There, in each 
illustration, total CPU computational time presented in the below of each figure. 

 
Figure 5. The snapshots of displacement ( ( , , )yu x z t ) at different times. 
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Figure 6. The displacement ( , , )yu x z t  at time 0.0048t  , obtained by the wavelet-based method. 

 
Figure 7. The displacement ( , , )yu x z t  at 0.0048t  , obtained by the finite difference method; the 

right and the left figures correspond to grids of size 143 143  and 200 200 , respectively.  

3. Wavelet based simulation of second order hyperbolic systems (wave 
equations) 

In this section, wavelet-based grid adaptation method is survived for modeling the second 
order hyperbolic problems (wave equations). The strategy used here is to remove spurious 
oscillations directly from adapted grids by a post-processing method. The employed stable 
smoothing method is the cubic smoothing spline, a kind of the Tikhonov regularization 
method. This section is devoted to the following subsections: interpolating wavelets and 
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corresponding grid adaptation; relevant algorithm for adaptive simulation of wave 
equations; smoothing splines definition; a 2D P-SV wave propagation example. 

3.1. Interpolating wavelets and grid adaptation 

In multiresolution analysis, each wavelet coefficient (detail or scale) is uniquely linked to a 
particular point of underlying grid. This distinctive property is incorporated with 
compression power of the wavelets and therefore a uniform grid can be adapted by grid 
reduction technique. 

In this method a simple criteria is applied in 1D grid, based on the magnitude of 
corresponding wavelet coefficients. The existing odd grid points at level j  should be 
removed if corresponding detail coefficients are smaller than predefined threshold (  ); 
wavelet coefficients and grid points have one-to-one correspondence [69]. 

In this work, Dubuc-Deslauriers (D-D) interpolating wavelet [69] is used to grid adaptation. 
The D-D wavelet of order 2 1M   (with support ( ) [ 2 1,2 1]Supp M M     ), is obtained by 
auto-correlations of Daubechies scaling function of order M  (with M  vanishing moments). 

The D-D scaling function satisfies the interpolating property and has a compact support 
[69]. In the case of the D-D wavelets, the grid points correspond to the approximation and 
detail spaces at resolution j  are denoted by jV  and jW , respectively. These sets are 
locations of the wavelet transform coefficients: the ( , )c j k and ( , )d j k locations belong to jV  
and jW , respectively. These locations are: 

, ,
1

1,2 1 1,2 1

{ [0,1] : / 2 }; , {0,1, ,2 }

{ (0,1) : (2 1) / 2 }; , {0,1, ,2 1}

j j
j j k j k

j j
j j k j k

V x x k j k

W x x k j k
   

    

      

 

 
 

Regarding interpolation property of D-D scaling functions, the approximation coefficients (

min( , )c J k ) at points 
min min,J k Jx V  are equal to sampled values of a considered function ( )f x

at these points, i.e., 
minmin ,( , ) ( )J kc J k f x . The detail coefficients measured at points 

1,2 1j k jx W    (of resolution j ) is the difference of the function at points 1,2 1j kx    (i.e., 

1,2 1( )j kf x   ) and corresponding predicted values (the estimated ones in the approximation 
space). The predicted values are those obtained from the approximation space of resolution 
j  (the corresponding points belong to jV ); the estimated values are denoted by 

1 1,2 1( )j j kPf x   . In the D-D wavelets, a simple and physical concept exist for such estimation; 
the estimation at 1,2 1j kx    is attained by the local Lagrange interpolation by the known 
surrounding grid points  1,2 ,j k j k jx x V    (namely, the even-numbered grid points in 1jV 

). For the D-D wavelet of order 2 1M  , 2M most neighbor points, including in jV , are 
selected in the vicinity of 1,2 1j kx    for interpolation; for points far enough from boundary 
points, the selected points are: 1,2 2{ } { 1, 2, , }j k nx n M M M        . Using such set, the 
estimation at the point 1,2 1j kx    is denoted by 1 1,2 1( )j j nPf x   , and the detail coefficients are: 

, 1,2 1 1 1,2 1( ) ( )j n j n j j nd f x Pf x      . 
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The above mentioned 1D reduction technique can easily be extended to 2D grid points [30, 
34]. The boundary wavelets, introduced by Dohono [78], are also used around edges of 
finite grid points. 

3.2. Wavelet-based adaptive-grid method for solving PDEs 

At the time step ( nt t ), if the solution of PDE is ( , )f x t , then the procedure for wavelet-
based adaptive solution is: 

1. Determining the grids, adapted by adaptive wavelet transform, using 1( , )nf x t   (step
1n ). The values of points without 1( , )nf x t  , are obtained by locally interpolation (for 

example, by the cubic spline method); 
2. Computing the spatial derivatives in the adapted grid using local Lagrange 

interpolation scheme, improved by anti-symmetric end padding method [36]. In this 
regard, extra non-physical fluctuations, deduced by one sided derivatives, are reduced. 
Here, five points are locally chosen to calculate derivatives and therefore a high-order 
numerical scheme is achieved [4, 33]; 

3. Discretizing PDEs in spatial domain first, and then solving semi-discrete systems. The 
standard time-stepping methods such as Runge-Kutta schemes can be used to solve 
ODEs at the time t=tn; 

4. Denoising the spurious oscillations directly performed in non-uniform grid by 
smoothing splines (the post processing stage); 

5. Repeating the steps from the beginning. 

For 1D data of length n, smoothing spline of degree 2 1m  , needs 2 .m n  operations [79], and 
a wavelet transform (employing pyramidal algorithm) uses n operations. Therefore both 
procedures are fast and effective. However for cost effective simulation, the grid is adapted 
after several time steps (e.g. 10-20 steps) based on the velocity of moving fronts. In this case, 
the moving fronts can be properly captured by adding some extra points to the fronts of 
adapted grid at each resolution level (e.g., 1 or 2 points to each end at each level). 

3.3. Smoothing splines 

The noisy data are recommended not to be fitted exactly, causing significant distortion 
particularly in the estimation of derivatives. The smoothing fit is used to remove noisy 
components in a signal; therefore, interpolation constraint is relaxed. The discrete values of 
n  observations ( )j jy y x  where 1,2,...,j n  and 1 2 ... nx x x    are assumed in order to 
determine a function ( )f x , that ( )j j jy f x   . j  are random, uncorrelated errors with zero 
mean and variance 2

j . Here, ( )f x  is the smoothest possible function in fitting the 
observations to a specific tolerance. It is well known that the solution to this problem is 
minimizer, ( )f x ,of the functional:  

22

1

(1 )( ) ( ( ) / ) , 0 1
n

m m
j j j

j

pW y f x d f x dx dx p
p


      
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where, (1 ) /p p    ( 0    ) is a Lagrangian parameter, n is the number of observations,

jW  is weight factor at point jx and m is the derivative order . 

It can be shown that spline of degree 2 1k m  , having 2 2m   continuous derivatives, is an 
optimal solution; where, 2n m . In this chapter the cubic smoothing spline is chosen to 
have a minimum curvature property; hence, 2m   ( 2 1 3m   ) and 2

1[ , ]nf C x x  [80-82].  

According to this formula, the natural cubic spline interpolation is obtained by 1p   and 
the least-squares straight line fit by 0p  . In 1p   the interpolating property is vanished 
while the smoothing property is increased. In the above functional, the errors are measured 
by summation and the roughness by integral. Therefore, the smoothness and accuracy are 
obtained simultaneously. In the mentioned equations, the trade-off between smoothness 
and goodness of fit to the data is controlled by smoothing parameter. 

The p  should be selected properly, otherwise it leads to over smoothed or under smoothed 
results. The former are seen in the scheme presented in Reinsch [80], according to 
Hutchinson-Hoog, [79] and the latter in the scheme offered in Craven-Wahba [83], according 
to Lee [84]. 

The smoothness and accuracy in fitting should be incorporated in such a way that the 
proper adapted grid and accurate solution are obtained simultaneously in adaptive 
simulations. Hence trial-and-error method is effective in finding appropriate range of p . 
This study shows that in { } 1jW  , the approximated proper values of p  are 0.75- 0.95. The 

lower values of p  are applicable for non-uniformly weighed data, i.e. 1jW  . The values 

of { }iW  and p  can be constant or variable in {( , )}i ix y sequence [85]. Here, the constant 
weights and smoothing parameter are studied. The { }jW is assumed as 1  in all considered 

cases.  

Smoothing spline, being less sensitive to noise in the data, has optimal properties for 
estimating the function and derivatives. The error bounds in estimating the function, 
belonging to Sobolev space, and its derivatives are presented by Ragozin [86]. He showed 
that the estimation of function and its corresponding derivatives are converged as the 
interpolating properties and the sampled points are increased [86].  

The smoothing splines work satisfactory for irregular data; this is because the method is a 
kind of Tikhnov regularization scheme [82, 87, 88].  

3.4. Numerical example  

The following example is to study the effectiveness of the proposed method concerning 
some phenomena in elastodynamic problems. Regarding using multiresolution-based 
adaptive algorithm, the simulation of wave-fields can properly be performed in the media 
especially one has localized sharp transition of physical properties. The example of such 
media is solid-solid configurations. In fact, to be analyzed by traditional uniform grid-based 
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methods, these media show major challenges. The main assumptions in the presented 
example are: 1- applying D-D interpolating wavelet of order 3; 2- decomposing the grid 
(sampled at 81 / 2  spatial step in the finest resolution) in three levels; 3- repeating re-
adaptation and smoothing processes every ten time steps. 

Example: In this example, the wave-fields are presented in inclined two-layered media with 
sharp transition of physical properties in solid-solid configuration. The numerical methods 
which do not increase the number of grid points around the interface, have difficulties with 
the problems of layered media. In such problems, the speeds of elastic waves are largely 
different. The incident waves, either P or S, can be reflected and refracted from interface in 
the form of P and S waves.  

Schematic shape of considered computational domain is illustrated in Figure 8. It is 
assumed that the top layer is a soft one, while the other one is a stiff layer. It is considered 
that at point S, the top layer is subjected to an initial imposed deformation ( , , 0)xu x z t   
which is: 2 2( , , 0) exp( 500(( 0.35) ( 0.25) ))zu x z t x z      . In the numerical simulation it is 
assumed that: 0.85p   and 510  . As mentioned before, the absorbing boundary condition 
is considered explicitly for simulation of infinite boundaries. This modification, performed 
for P-SV wave equations, is: 

   
   

, , ,

, , ,

( 2 ) ( ) ( ( , ). )

( 2 ) ( ) ( ( , ). )
x xx x zz z xz x x

z zz z xx x xz z z

u u u u Q x z u

u u u u Q x z u

     

     

     

     

 

 
 

In the above equation, it is assumed that: 
2 2 2. .(1 ) .(1 )( ) ( )x x zb x b x b z

x zQ a e e a e    , where 
30x za a  , and 110, 70x zb b    . The free boundary is imposed by equivalent force in the 

free surface boundary [48]. 

The snapshots of solutions xu  and zu  and corresponding adapted grids are shown in 
Figures 9-11, respectively. In each figure, the illustrations (a) to (d) correspond to times 
0.298, 0.502, 0.658, and 0.886 sec, respectively. It is obvious that, the points are properly 
adapted and most of the energy is confined in the top layer, the soft one. 

4. Conclusion 

Multiresolution based adaptive schemes have successfully been used for simulation of the 
elastic wave propagation problems. Two general approaches are survived: projection and 
non-projection ones. In the first case the solution grid in not adapted, while in the second 
one it is done. the results confirm that the projection method is more stable than the 
common finite differnce schemes; since in the common methods spurious oscillations 
develop in numerical solutions. In the wavelet-based grid adaptation method, it is shown 
that grid points concentrate properly in both high-gradient and transition zones. There, 
for remedy non-physical oscillations the smoothing splines (a regularization method) are 
used. 
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Figure 8. Schematic shape of a inclined two-layered media, solid-solid configuration. The soft layer is 
above a stiff layer. 

 
Figure 9. Snapshots of solution xu  at times: a) 0.298, b) 0.502, c) 0.658, d) 0.886. 
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Figure 10. Snapshots of solution zu  at times: a) 0.298, b) 0.502, c) 0.658, d) 0.886. 

 
Figure 11. Adapted grid points at times: a) 0.298, b) 0.502, c) 0.658, d) 0.886. 
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