
Intelligent Systems Reference Library 109

Achim Zielesny

From Curve Fitting
to Machine Learning
An Illustrative Guide to Scientific Data
Analysis and Computational Intelligence

 Second Edition

Intelligent Systems Reference Library

Volume 109

Series editors

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

Lakhmi C. Jain, Bournemouth University, Fern Barrow, Poole, Australia, and
University of Canberra, Canberra, Australia
e-mail: jainlc2002@yahoo.co.uk

About this Series

The aim of this series is to publish a Reference Library, including novel advances
and developments in all aspects of Intelligent Systems in an easily accessible and
well structured form. The series includes reference works, handbooks, compendia,
textbooks, well-structured monographs, dictionaries, and encyclopedias. It contains
well integrated knowledge and current information in the field of Intelligent
Systems. The series covers the theory, applications, and design methods of
Intelligent Systems. Virtually all disciplines such as engineering, computer science,
avionics, business, e-commerce, environment, healthcare, physics and life science
are included.

More information about this series at http://www.springer.com/series/8578

http://www.springer.com/series/8578

Achim Zielesny

From Curve Fitting
to Machine Learning
An Illustrative Guide to Scientific Data
Analysis and Computational Intelligence

Second Edition

123

Achim Zielesny
Institut für biologische und chemische
Informatik

Westfälische Hochschule
Recklinghausen
Germany

ISSN 1868-4394 ISSN 1868-4408 (electronic)
Intelligent Systems Reference Library
ISBN 978-3-319-32544-6 ISBN 978-3-319-32545-3 (eBook)
DOI 10.1007/978-3-319-32545-3

Library of Congress Control Number: 2016936957

© Springer International Publishing Switzerland 2011, 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

To my parents

Preface

Preface to the first edition

The analysis of experimental data is at heart of science from its beginnings. But it

was the advent of digital computers in the second half of the 20th century that rev-

olutionized scientific data analysis twofold: Tedious pencil and paper work could

be successively transferred to the emerging software applications so sweat and tears

turned into automated routines. In accordance with automation the manageable data

volumes could be dramatically increased due to the exponential growth of computa-

tional memory and speed. Moreover highly non-linear and complex data analysis

problems came within reach that were completely unfeasible before. Non-linear

curve fitting, clustering and machine learning belong to these modern techniques

that entered the agenda and considerably widened the range of scientific data anal-

ysis applications. Last but not least they are a further step towards computational

intelligence.

The goal of this book is to provide an interactive and illustrative guide to these

topics. It concentrates on the road from two-dimensional curve fitting to multidi-

mensional clustering and machine learning with neural networks or support vector

machines. Along the way topics like mathematical optimization or evolutionary al-

gorithms are touched. All concepts and ideas are outlined in a clear cut manner

with graphically depicted plausibility arguments and a little elementary mathemat-

ics. Difficult mathematical and algorithmic details are consequently banned for the

sake of simplicity but are accessible by the referred literature. The major topics are

extensively outlined with exploratory examples and applications. The primary goal

is to be as illustrative as possible without hiding problems and pitfalls but to ad-

dress them. The character of an illustrative cookbook is complemented with specific

sections that address more fundamental questions like the relation between machine

learning and human intelligence. These sections may be skipped without affecting

the main road but they will open up possibly interesting insights beyond the mere

data massage.

vii

viii Preface

All topics are completely demonstrated with the aid of the computing platform

Mathematica and the Computational Intelligence Packages (CIP), a high-level func-

tion library developed with Mathematica’s programming language on top of Math-

ematica’s algorithms. CIP is open-source so the detailed code of every method is

freely accessible. All examples and applications shown throughout the book may

be used and customized by the reader without any restrictions. This leads to an

interactive environment which allows individual manipulations like the rotation of

3D graphics or the evaluation of different settings up to tailored enhancements for

specific functionality.

The book tries to be as introductory as possible calling only for a basic mathe-

matical background of the reader - a level that is typically taught in the first year of

scientific education. The target readerships are students of (computer) science and

engineering as well as scientific practitioners in industry and academia who deserve

an illustrative introduction to these topics. Readers with programming skills may

easily port and customize the provided code. The majority of the examples and ap-

plications originate from teaching efforts or solution providing. The outline of the

book is as follows:

• The introductory chapter 1 provides necessary basics that underlie the discus-

sions of the following chapters like an initial motivation for the interplay of data

and models with respect to the molecular sciences, mathematical optimization

methods or data structures. The chapter may be skipped at first sight but should

be consulted if things become unclear in a subsequent chapter.

• The main chapters that describe the road from curve fitting to machine learning

are chapters 2 to 4. The curve fitting chapter 2 outlines the various aspects of

adjusting linear and non-linear model functions to experimental data. A section

about mere data smoothing with cubic splines complements the fitting discus-

sions.

• The clustering chapter 3 sketches the problems of assigning data to different

groups in an unsupervised manner with clustering methods. Unsupervised clus-

tering may be viewed as a logical first step towards supervised machine learning

- and may be able to construct predictive systems on its own. Machine learning

methods may also need clustered data to produce successful results.

• The machine learning chapter 4 comprises supervised learning techniques, in

particular multiple linear regression, three-layer feed-forward neural networks

and support vector machines. Adequate data preprocessing and their use for re-

gression and classification tasks as well as the recurring pitfalls and problems are

introduced and thoroughly discussed.

• The discussions chapter 5 supplements the topics of the main road. It collects

some open issues neglected in the previous chapters and opens up the scope with

more general sections about the possible discovery of new knowledge or the

emergence of computational intelligence.

The scientific fields touched in the present book are extensive and in addition

constantly and progressively refined. Therefore it is inevitable to neglect an awful lot

of important topics and aspects. The concrete selection always mirrors an author’s

Preface ix

preferences as well as his personal knowledge and overview. Since the missing parts

unfortunately exceed the selected ones and people always have strong feelings about

what is of importance the final statement has to be a request for indulgence.

Recklinghausen, April 2011 Achim Zielesny

Preface to the second edition

The first edition was friendly reviewed as a useful introductory cookbook for the

novice reader. The second edition tries to keep this character and resists the temp-

tation to heavily expand topics or lift the discussion to more subtle academic lev-

els. Besides numerous minor additions and corrections throughout the whole book

(together with the unavoidable introduction of some new errors) the only substan-

tial extension of the second edition is the addition of Multiple Polynomial Regres-

sion (MPR) in order to support the discussions concerning the method crossover

from linear and near-linear up to highly non-linear machine learning approaches.

As a consequence several examples and applications have been reworked to im-

prove readability and line of reasoning. Also the construction of minimal predictive

models is outlined in an updated and more comprehensible manner.

The second edition is based on the extended version 2.0 of the Computational In-

telligence Packages (CIP) which now allows parallelized calculations that lead to an

often considerably improved performance with multiple (or multicore) processors.

Specific parallelization notes are given throughout the book, the description of CIP

is accordingly extended and reworked examples and applications make now use of

the new functionality.

With this second edition the book hopefully strengthens its original intent to pro-

vide a clear and straight introduction to the fascinating road from curve fitting to

machine learning.

Recklinghausen, February 2016 Achim Zielesny

Acknowledgements

Certain authors, speaking of their works, say, "My book", "My commentary", "My

history", etc. They resemble middle-class people who have a house of their own, and al-

ways have "My house" on their tongue. They would do better to say, "Our book", "Our

commentary", "Our history", etc., because there is in them usually more of other people’s

than their own.

Pascal

Acknowledgements to the first edition

I would like to thank Lhoussaine Belkoura, Manfred L. Ristig and Dietrich Woer-

mann who kindled my interest for data analysis and machine learning in chemistry

and physics a long time ago.

My mathematical colleagues Heinrich Brinck and Soeren W. Perrey contributed

a lot - may it be in deep canyons, remote jungles or at our institute’s coffee kitchen.

To them and my IBCI collaborators Mirco Daniel and Rebecca Schultz as well as the

GNWI team with Stefan Neumann, Jan-Niklas Schäfer, Holger Schulte and Thomas

Kuhn I am deeply thankful.

The cooperation with Christoph Steinbeck was very fruitful and an exceptional

pleasure: I owe a lot to his support and kindness.

Karina van den Broek, Mareike Dörrenberg, Saskia Faassen, Jenny Grote, Jen-

nifer Makalowski, Stefanie Kleiber and Andreas Truszkowski corrected the manuscript

with benevolence and strong commitment: Many thanks to all of them.

Last but not least I want to express deep gratitude and love to my companion

Daniela Beisser who not only had to bear an overworked book writer but supported

all stages of the book and its contents with great passion.

Every book is a piece of collaborative work but all mistakes and errors are of

course mine.

xi

xii Acknowledgements

Acknowledgements to the second edition

Kolja Berger implemented the code for parallelized CIP calculations with strong

commitment and Marie Theiß carefully rechecked the updated CIP version 2.0 com-

mands throughout the whole book: Many thanks to both of them.

For additional support and helpful discussions I am deeply grateful to Karina

van den Broek, Karolin Kleemann, Christoph Steinbeck, Andreas Truszkowski, my

mathematical colleagues Heinrich Brinck and Soeren W. Perrey, and my companion

Daniela Beisser who again accompanied all efforts with great encouragement and

passion.

As a final remark I simply have to repeat myself: Every book is a piece of col-

laborative work but all mistakes and errors are again mine.

Contents

1 Introduction . 1

1.1 Motivation: Data, models and molecular sciences 2

1.2 Optimization . 6

1.2.1 Calculus . 10

1.2.2 Iterative optimization . 14

1.2.3 Iterative local optimization . 16

1.2.4 Iterative global optimization . 20

1.2.5 Constrained iterative optimization . 31

1.3 Model functions . 37

1.3.1 Linear model functions with one argument 38

1.3.2 Non-linear model functions with one argument 40

1.3.3 Linear model functions with multiple arguments 41

1.3.4 Non-linear model functions with multiple arguments 43

1.3.5 Multiple model functions . 44

1.3.6 Summary . 44

1.4 Data structures . 45

1.4.1 Data for curve fitting . 45

1.4.2 Data for machine learning . 45

1.4.3 Inputs for clustering . 47

1.4.4 Inspection, cleaning and splitting of data 48

1.5 Scaling of data . 54

1.6 Data errors . 55

1.7 Regression versus classification tasks . 56

1.8 The structure of CIP calculations . 58

1.9 A note on reproducibility . 59

2 Curve Fitting . 61

2.1 Basics . 65

2.1.1 Fitting data . 65

2.1.2 Useful quantities . 66

2.1.3 Smoothing data . 68

xiii

xiv Contents

2.2 Evaluating the goodness of fit . 70

2.3 How to guess a model function . 76

2.4 Problems and pitfalls . 88

2.4.1 Parameters’ start values . 89

2.4.2 How to search for parameters’ start values 93

2.4.3 More difficult curve fitting problems . 97

2.4.4 Inappropriate model functions . 107

2.5 Parameters’ errors . 112

2.5.1 Correction of parameters’ errors . 112

2.5.2 Confidence levels of parameters’ errors 113

2.5.3 Estimating the necessary number of data 114

2.5.4 Large parameters’ errors and educated cheating 118

2.5.5 Experimental errors and data transformation 132

2.6 Empirical enhancement of theoretical model functions 135

2.7 Data smoothing with cubic splines . 143

2.8 Cookbook recipes for curve fitting . 154

3 Clustering . 157

3.1 Basics . 160

3.2 Intuitive clustering . 163

3.3 Clustering with a fixed number of clusters . 178

3.4 Getting representatives . 185

3.5 Cluster occupancies and the iris flower example 194

3.6 White-spot analysis . 206

3.7 Alternative clustering with ART-2a . 209

3.8 Clustering and class predictions . 220

3.9 Cookbook recipes for clustering . 228

4 Machine Learning . 229

4.1 Basics . 237

4.2 Machine learning methods . 242

4.2.1 Multiple linear and polynomial regression (MLR, MPR) . . . 243

4.2.2 Three-layer feed-forward neural networks 246

4.2.3 Support vector machines (SVM) . 251

4.3 Evaluating the goodness of regression . 256

4.4 Evaluating the goodness of classification . 260

4.5 Regression: Entering non-linearity . 264

4.6 Classification: Non-linear decision surfaces . 282

4.7 Ambiguous classification . 286

4.8 Training and test set partitioning . 298

4.8.1 Cluster representatives based selection 299

4.8.2 Iris flower classification revisited . 304

4.8.3 Adhesive kinetics regression revisited 316

4.8.4 Design of experiment . 320

4.8.5 Concluding remarks . 335

Contents xv

4.9 Comparative machine learning . 336

4.10 Relevance of input components and minimal models 349

4.11 Pattern recognition . 355

4.12 Technical optimization problems . 373

4.13 Cookbook recipes for machine learning . 378

4.14 Appendix - Collecting the pieces . 380

5 Discussion . 407

5.1 Computers are about speed . 407

5.2 Isn’t it just ...? . 417

5.2.1 ... optimization? . 418

5.2.2 ... data smoothing? . 418

5.3 Computational intelligence . 429

5.4 Final remark . 434

A CIP -Computational Intelligence Packages . 437

A.1 Basics . 437

A.2 Experimental data . 439

A.2.1 Temperature dependence of the viscosity of water 439

A.2.2 Potential energy surface of hydrogen fluoride 440

A.2.3 Kinetics data from time dependent IR spectra of the

hydrolysis of acetanhydride . 441

A.2.4 Iris flowers . 448

A.2.5 Adhesive kinetics . 449

A.2.6 Intertwined spirals . 451

A.2.7 Faces . 452

A.2.8 Wisconsin Diagnostic Breast Cancer (WDBC) data 455

A.2.9 Wisconsin Prognostic Breast Cancer (WPBC) data 456

A.2.10 QSPR data . 457

A.3 Parallelized calculations . 458

References . 461

Index . 467

Chapter 1

Introduction

This chapter discusses introductory topics which are helpful for a basic understand-

ing of the concepts, definitions and methods outlined in the following chapters. It

may be skipped for the sake of a faster passage to the more appealing issues or only

browsed for a short impression. But if things appear dubious in later chapters this

one should be consulted again.

Chapter 1 starts with an overview about the interplay between data and models

and the challenges of scientific practice especially in the molecular sciences to mo-

tivate all further efforts (section 1.1). The mathematical machinery that plays the

most important role behind the scenes is dedicated to the field of optimization, i.e.

the determination of the global minimum or maximum of a mathematical function.

Basic problems and solution approaches are briefly sketched and illustrated (section

1.2). Since model functions play a major role in the main topics they are catego-

rized in an useful manner that will ease further discussions (section 1.3). Data need

to be organized in a defined way to be correctly treated by corresponding algo-

rithms: A dedicated section describes the fundamental data structures that will be

used throughout the book (section 1.4). A more technical issue is the adequate scal-

ing of data: This is performed automatically by all clustering and machine learning

methods but may be an issue for curve fitting tasks (section 1.5). Experimental data

experience different sources of error in contrast to simulated data which are only ar-

tificially biased by true statistical errors. Errors are the basis for a proper statistical

analysis of curve fitting results as well as for the assessment of machine learning out-

comes. Therefore the different sources of error and corresponding conventions are

briefly described (section 1.6). Machine learning methods may be used for regres-

sion or classification tasks: Whereas regression tasks demand a precise calculation

of the desired output values a classification task requires only the correct assignment

of an input to a desired output class. Within this book classification tasks are tackled

as adequately coded regression tasks which is sketched in a specific section (1.7).

The Computational Intelligence Packages (CIP) offer a largely unified structure for

different types of calculations which is summarized in a following section to make

their use more intuitive and less subtle. In addition a short description of Mathemat-

ica’s top-down programming and proper initialization is provided (section 1.8). This

© Springer International Publishing Switzerland 2016
A. Zielesny, From Curve Fitting to Machine Learning, Intelligent Systems
Reference Library 109, DOI 10.1007/978-3-319-32545-3_1

1

2 1 Introduction

chapter ends with a note on the reproducibility of calculations reported throughout

the book (section 1.9).

1.1 Motivation: Data, models and molecular sciences

Essentially, all models are wrong, but some are useful.

G.E.P. Box

Science is an endeavor to understand and describe the real world out there to

(at best) alleviate and enrich human existence. But the structures and dynamics of

the real world are very intricate and complex. A humble chemical reaction in the

laboratory may already involve perhaps 1020 molecules surrounded by 1024 solvent

molecules, in contact with a glass surface and interacting with gases ... in the atmo-

sphere. The whole system will be exposed to a flux of photons of different frequency

(light) and a magnetic field (from the earth), and possibly also a temperature gra-

dient from external heating. The dynamics of all the particles (nuclei and electrons)

is determined by relativistic quantum mechanics, and the interaction between par-

ticles is governed by quantum electrodynamics. In principle the gravitational and

strong (nuclear) forces should also be considered. For chemical reactions in biolog-

ical systems, the number of different chemical components will be large, involving

various ions and assemblies of molecules behaving intermediately between solution

and solid state (e.g. lipids in cell walls) [Jensen 2007]. Thus, to describe nature,

there is the inevitable necessity to set up limitations and approximations in form of

simplifying and idealized models - based on the known laws of nature. Adequate

models neglect almost everything (i.e. they are, strictly speaking, wrong) but they

may keep some of those essential real world features that are of specific interest (i.e.

they may be useful).

The dialectical interplay of experiment and theory is a key driving force of mod-

ern science. Experimental data do only have meaning in the light of a particular

model or at least a theoretical background. Reversely theoretical considerations may

be logically consistent as well as intellectually elegant: Without experimental evi-

dence they are a mere exercise of thought no matter how difficult they are. Data

analysis is a connector between experiment and theory: Its techniques advise possi-

bilities of model extraction as well as model testing with experimental data.

Model functions have several practical advantages in comparison to mere enu-

merated data: They are a comprehensive representation of the relation between the

quantities of interest which may be stored in a database in a very compact manner

with minimum memory consumption. A good model allows interpolating or ex-

trapolating calculations to generate new data and thus may support (up to replace)

expensive lab work. Last but not least a suitable model may be heuristically used to

explore interesting optimum properties (i.e. minima or maxima of the model func-

1.1 Motivation: Data, models and molecular sciences 3

tion) which could otherwise be missed. Within a market economy a good model is

simply a competitive advantage.

The ultimate goal of all sciences is to arrive at quantitative models that describe

nature with a sufficient accuracy - or to put it short: to calculate nature. These cal-

culations have the general form

answer = f (question) or output = f (input)

where input denotes a question and output the corresponding answer generated

by a model function f. Unfortunately the number of interesting quantities which can

be directly calculated by application of theoretical ab-initio techniques solely based

on the known laws of nature is rather limited (although expanding). For the over-

whelming number of questions about nature the model functions f are unknown or

too difficult to be evaluated. This is the daily trouble of chemists, material’s sci-

entists, engineers or biologists who want to ask questions like the biological effect

of a new molecular entity or the properties of a new material’s composition. So in

current science there are three situations that may be sensibly distinguished due to

our knowledge of nature:

• Situation 1: The model function f is theoretically or empirically known. Then

the output quantity of interest may be calculated directly.

• Situation 2: The structural form of the function f is known but not the values of

its parameters. Then these parameter values may be statistically estimated on the

basis of experimental data by curve fitting methods.

• Situation 3: Even the structural form of the function f is unknown. As an ap-

proximation the function f may be modelled by a machine learning technique on

the basis of experimental data.

A simple example for situation 2 is the case that the relation between input and

output is known to be linear. If there is only one input variable of interest, denoted

x, and one output variable of interest, denoted y, the structural form of the function

f is a straight line

y = f (x) = a1 + a2x

where a1 and a2 are the unknown parameters of the function which may be sta-

tistically estimated by curve fitting of experimental data. In situation 3 it is not only

the values of the parameters that are unknown but in addition the structural form

of the model function f itself. This is obviously the worst possible case which is

addressed by data smoothing or machine learning approaches that try to construct a

model function with experimental data only.

Situations 1 to 3 are widely encountered by the contemporary molecular sciences.

Since the scientific revolution of the early 20th century the molecular sciences have

a thorough theoretical basis in modern physics: Quantum theory is able to (at least in

principle) quantitatively explain and calculate the structure, stability and reactivity

4 1 Introduction

of matter. It provides a fundamental understanding of chemical bonding and molecu-

lar interactions. This foundational feat was summarized in 1929 by Paul A. M. Dirac

with famous words: The underlying physical laws necessary for the mathematical

theory of a large part of physics and the whole of chemistry are thus completely

known ... it became possible to submit molecular research and development (R&D)

problems to a theoretical framework to achieve correct and satisfactory solutions -

but unfortunately Dirac had to continue ... and the difficulty is only that the exact

application of these laws leads to equations much too complicated to be soluble.

The humble "only" means a severe practical restriction: It is in fact only the small-

est quantum-mechanical systems like the hydrogen atom with one single proton in

the nucleus and one single electron in the surrounding shell that can be treated by

pure analytical means to come to an exact mathematical solution, i.e. by solving the

Schroedinger equation of this mechanical system with pencil and paper. Nonetheless

Dirac added an optimistic prospect: It therefore becomes desirable that approximate

practical methods of applying quantum mechanics should be developed, which can

lead to an explanation of the main features of complex atomic systems without too

much computation [Dirac 1929]. A few decades later this hope begun to turn into

reality with the emergence of digital computers and their exponentially increasing

computational speed: Iterative methods were developed that allowed an approximate

quantum-mechanical treatment of molecules and molecular ensembles with growing

size (see [Leach 2001], [Frenkel 2002] or [Jensen 2007]). The methods which are

ab-initio approximations to the true solution of the Schroedinger equation (i.e. they

only use the experimental values of natural constants) are still very limited in appli-

cability so they are restricted to chemical ensembles with just a few hundred atoms

to stay within tolerable calculation periods. If these methods are combined with ex-

perimental data in a suitable manner so that they become semi-empirical the range

of applicability can be extended to molecular systems with several thousands of

atoms (up to more than a hundred thousand atoms by the writing of this book [Clark

2010/2015]). The size of the molecular systems and the time frames for their simu-

lation can be even further expanded by orders of magnitude with mechanical force

fields that are constructed to mimic the quantum-mechanical molecular interactions

so that an atomistic description of matter exceeds the million-atoms threshold. In

1998 and 2013 the Royal Swedish Academy of Sciences honored these scientific

achievements by awarding the Nobel prize in chemistry with the prudent comment

in 1998 that Chemistry is no longer a purely experimental science (see [Nobel Prize

1998/2013]). This atomistic theory-based treatment of molecular R&D problems

corresponds to situation 1 where a theoretical technique provides a model function

f to "simply calculate" the desired solution in a direct manner.

Despite these impressive improvements (and more is to come) the overwhelm-

ing majority of molecular R&D problems is (and will be) out of scope of these

atomistic computational methods due to their complexity in space and time. This

is especially true for the life and the nano sciences that deal with the most com-

plex natural and artificial systems known today - with the human brain at the top.

Thus the molecular sciences are mainly faced with situations 2 and 3: They are a

predominant area of application of the methods to be discussed on the road from

1.1 Motivation: Data, models and molecular sciences 5

curve fitting to machine learning. Theory-loaded and model-driven research areas

like physical chemistry or biophysics often prefer situation 2: A scientific quantity

of interest is studied in dependence of another quantity where the structural form

of a model function f that describes the desired dependency is known but not the

values of its parameters. In general the parameters may be purely empirical or may

have a theoretically well-defined meaning. An example of the latter is usually en-

countered in chemical kinetics where phenomenological rate equations are used to

describe the temporal progress of the chemical reactions but the values of the rate

constants - the crucial information - are unknown and may not be calculated by

a more fundamental theoretical treatment [Grant 1998]. In this case experimental

measurements are indispensable that lead to xy-error data triples (xi,yi,σi) with an

argument value xi, the corresponding dependent value yi and the statistical error σi

of the yi value (compare below). Then optimum estimates of the unknown param-

eter values can be statistically deduced on the basis of these data triples by curve

fitting methods. In practice a successful model function may at first be only empiri-

cally constructed like the quantitative description of the temperature dependence of

a liquid’s viscosity (illustrated in chapter 2) and then later be motivated by more the-

oretical lines of argument. Or curve fitting is used to validate the value of a specific

theoretical model parameter by experiment (like the critical exponents in chapter 2).

Last but not least curve fitting may play a pure support role: The energy values of

the potential energy surface of hydrogen fluoride could be directly calculated by a

quantum-chemical ab-initio method for every distance between the two atoms. But

a restriction to a limited number of distinct calculated values that span the range of

interest in combination with the construction of a suitable smoothing function for

interpolation (shown in chapter 2) may save considerable time and enhance practical

usability without any relevant loss of precision.

With increasing complexity of the natural system under investigation a quantita-

tive theoretical treatment becomes more and more difficult. As already mentioned

a quantitative theory-based prediction of a biological effect of a new molecular en-

tity or the properties of a new material’s composition are in general out of scope

of current science. Thus situation 3 takes over where a model function f is simply

unknown or too complex. To still achieve at least an approximate quantitative de-

scription of the relationships in question a model function may be tried to be solely

constructed with the available data only - a task that is at heart of machine learning.

Especially quantitative relationships between chemical structures and their biologi-

cal activities or physico-chemical and material’s properties draw a lot of attention:

Thus QSAR (Quantitative Structure Activity Relationship) and QSPR (Quantitative

Structure Property Relationship) studies are active fields of research in the life, ma-

terial’s and nano sciences (see [Zupan 1999], [Gasteiger 2003], [Leach 2007] or

[Schneider 2008]). Cheminformatics and structural bioinformatics provide a bunch

of possibilities to represent a chemical structure in form of a list of numbers (which

mathematically form a vector or an input in terms of machine learning, see below).

Each number or sequence of numbers is a specific structural descriptor that describes

a specific feature of a chemical structure in question, e.g. its molecular weight, its

topological connections and branches or electronic properties like its dipole mo-

6 1 Introduction

ments or its correlation of surface charges. These structure-representing inputs alone

may be analyzed by clustering methods (discussed in chapter 3) for their chemical

diversity. The results may be used to generate a reduced but representative subset

of structures with a similar chemical diversity in comparison to the original larger

set (e.g. to be used in combinatorial chemistry approaches for a targeted structure

library design). Alternatively different sets of structures could be compared in terms

of their similarity or dissimilarity as well as their mutual white spots (these topics

are discussed in chapter 3). A structural descriptor based QSAR/QSPR approach

takes the form

activity/property= f (descriptor1,descriptor2,descriptor3, ...)

with the model function f as the final target to become able to make model-based

predictions (the methods used for the construction of an approximate model func-

tion f are outlined in chapter 4). The extensive volume of data that is necessary for

this line of research is often obtained by modern high-throughput (HT) techniques

like the biological assay-based high-throughput screening (HTS) of thousands of

chemical compounds in the pharmaceutical industry or HT approaches in materials

science all performed with automated robotic lab systems. Among others these HT

methods lead to the so called BioTech data explosion that may be thoroughly ex-

ploited for model construction. In fact HT experiments and model construction via

machine learning are mutually dependent on each other: Models deserve data for

their creation as well as the mere heaps of data produced by HT methods deserve

models for their comprehension.

With these few statements about the needs of the molecular sciences in mind

the motivation of this book is to show how situations 2 (model function f known, its

parameters unknown) and 3 (model function f itself unknown) may be tackled on the

road from curve fitting to machine learning: How can we proceed from experimental

data to models? What conceptual and technical problems occur along this path?

What new insights can we expect?

1.2 Optimization

Clear["Global‘*"];

<<CIP‘Graphics‘

At the beginning of each section or subsection the global Clear command clears all earlier variables and

definitions and thus cares for a proper initialization. Then the necessary CIP packages are loaded, e.g. the

Graphics package for this section. A proper initialization prevents possible code interferences due to earlier

definitions. Note that Mathematica has a top-down programming style: Once a variable is assigned it keeps its

value.

1.2 Optimization 7

Optimization means a process that tries to determine the optima, i.e. the minima

and maxima of a mathematical function. A plethora of important scientific prob-

lems can be traced back to an issue of optimization so they are essentially optimiza-

tion problems. Optimization tasks also lie at heart of the road from curve fitting to

machine learning: The methods discussed in later chapters will predominantly use

mathematical optimization techniques to do their job. It should be noticed that the

following optimization strategies are also utilized for the (common) research situa-

tion where no direct path to success can be advised and a kind of educated trial and

error is the only way to progress.

A mathematical function may contain ...

• ... no optimum at all. An example is a 2D straight line, a 3D plane (illustrated

below) or a hyperplane in many dimension. But also non-linear functions like the

exponential function may not contain any optimum.

pureFunction=Function[{x,y},1.0+2.0*x+3.0*y];

xRange={-0.1,1.1};

yRange={-0.1,1.1};

labels={"x","y","z"};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]

All CIP based calculations are scripted as shown above: First all variables are defined with intuitive names

and then passed to specific CIP functions to calculate results or create graphical illustrations. All variables

remain valid until the next global Clear command. Note that Mathematica allows the definition of pure functions

which may be used like normal variables. If a specific function definition is to be passed to a CIP method a

pure function is commonly used. The CIP methods internally use pure functions for distinct function value

evaluations. Pure functions are a powerful functional programming feature of the Mathematica computing

platform to simplify many operations in an elegant and efficient manner.

8 1 Introduction

• ... exactly one optimum, e.g. a 2D quadratic parabola, a 3D parabolic surface

(illustrated below) or a parabolic hyper surface in many dimensions.

pureFunction=Function[{x,y},xˆ2+yˆ2];

xRange={-2.0,2.0};

yRange={-2.0,2.0};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]

1.2 Optimization 9

• ... multiple up to an infinite number of optima like a 2D sine function, a curved

3D surface (illustrated below) or a curved hyper surface in multiple dimensions.

pureFunction=Function[

{x,y},1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)ˆ2]*Exp[-y]*Sin[7.0*y])];

xRange={-0.1,1.1};

yRange={-0.1,1.1};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]

10 1 Introduction

The sketched categorization holds for functions with one argument

y = f (x)

as well as functions with multiple arguments

y = f (x1,x2, ...,xM) = f (x) with x = (x1,x2, ...,xM)

i.e. from 2D curves f (x) up to M-dimensional hyper surfaces f (x1,x2, ...,xM).
If no optimum exists there is obviously nothing to optimize. For a curve or hyper

surface that contains exactly one optimum the optimization problem is usually suc-

cessfully solvable by analytical methods which are able to calculate the optimum

position directly. It is the last category of non-linear functions with multiple optima

that cause severe problems - and unfortunately the overwhelming majority of prac-

tical applications belong to this drama: The following sections try to reveal some of

its tragedy and ways to hold forth a hope again.

1.2.1 Calculus

Clear["Global‘*"];

<<CIP‘Graphics‘

1.2 Optimization 11

The standard analytical procedure to determine optima is known from calculus:

An example function of the form y = f (x) with one argument x may contain one

minimum and one maximum:

function=1.0+1.0*x+0.4*xˆ2-0.1*xˆ3;

pureFunction=Function[argument,function/.x -> argument];

argumentRange={-2.0,5.0};

functionValueRange={0.0,6.0};

labels={"x","y","Function with one minimum and one maximum"};

CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]

Note that the function is defined twice for different purposes: First as a normal symbolic function and in addition

as a pure function. The normal function is used in subsequent calculations, the pure function as an argument

of the CIP method Plot2dFunction.

To calculate the positions of the optima the first derivative

firstDerivative=D[function,x]

1.+0.8x−0.3x2

D is Mathematica’s operator for partial differentiation to a specified variable which is x in this case.

and their (two) roots are determined:

roots=Solve[firstDerivative==0,x]

{{x →−0.927443},{x → 3.59411}}

Solve is Mathematica’s command to solve (systems of) equations. The Solve command returns a list in curly

brackets with two rules (also in curly brackets) for setting the x value to solve the equation in question, i.e.

12 1 Introduction

assigning -0.927443 or 3.59411 to x solves the equation. Also note that the number of digits of the result values

is a standard output only: A higher precision could be obtained on demand and is used for internal calculations

(usually the machine precision supported by the hardware).

Then the second derivative

secondDerivative=D[function,{x,2}]

0.8−0.6x

D may be told to calculate higher derivatives, i.e. the second derivative in this case.

is used to analyze the type of the two detected optima:

secondDerivative/.roots[[1]]

1.35647

roots[[1]] denotes the first expression of the roots list above, i.e. the rule {x → -0.927443}: This means that

the value -0.927443 is to be assigned to x. The /. notation applies this rule to the secondDerivative expres-

sion before, i.e. the x in secondDerivative gets the value -0.927443 and then secondDerivative is numerically

evaluated to 1.35647. These Mathematica specific notations seem to be a bit puzzling at first but they become

convenient and powerful with increased usage.

A value larger zero indicates a minimum at the first optimum position and

secondDerivative/.roots[[2]]

−1.35647

a value smaller zero a maximum at the second optimum position. The determined

minimum and maximum points

minimumPoint={x/.roots[[1]],function/.roots[[1]]};

maximumPoint={x/.roots[[2]],function/.roots[[2]]};

may be displayed for visual validation:

points2D={minimumPoint,maximumPoint};

CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

Method signatures may contain variables and options. Options are set with an arrow as shown in the

Plot2dPointsAboveFunction method above. In contrast to variables the options must not be specified: Then

their default values are used.

1.2 Optimization 13

Unfortunately this analytical procedure fails in general. Lets take a somewhat

more difficult function with multiple (or more precise: an infinite number of) op-

tima:

function=1.0-Cos[x]/(1.0+0.01*xˆ2);

pureFunction=Function[argument,function/.x -> argument];

argumentRange={-10.0,10.0};

functionValueRange={-0.2,2.2};

labels={"x","y","Function with multiple optima"};

CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]

The first derivative may still be obtained

firstDerivative=D[function,x]

0.02xCos[x]

(1.+0.01x2)2 + Sin[x]

1.+0.01x2

14 1 Introduction

but the determination of the roots fails

roots=Solve[firstDerivative==0,x]

The equations appear to involve the variables to be solved for in an essentially non-algebraic way.

Solve

[
0.02xCos[x]

(1.+0.01x2)2 + Sin[x]

1.+0.01x2 == 0,x

]

since this non-linear equation can no longer be solved by analytical means. This

problem becomes even worse with functions that contain multiple arguments

y = f (x1,x2, ...,xM) = f (x)

i.e. with M-dimensional curved hyper surfaces. The necessary condition for an

optimum of a M-dimensional hyper surface y is that all partial derivatives become

zero:

∂ f (x1,x2,...,xM)
∂xi

= 0 ; i = 1, ...,M

Whereas the partial derivatives may be successfully evaluated in most cases the

resulting system of M (usually non-linear) equations may again not be solvable by

analytical means in general. So the calculus-based analytical optimization is re-

stricted to only simple non-linear special cases (linear functions are out of question

since they do not contain optima at all). Since these special cases are usually taught

extensively at schools and universities (they are ideal for examinations) there is the

ongoing impression that the calculus-based solution of optimization problems also

achieves success in practice. But the opposite is true: The overwhelming majority of

scientific optimization problems is far too difficult for a successful calculus-based

treatment. That is one reason why digital computers revolutionized science: With

their exponentially growing calculation speed (known as Moore’s law which - suc-

cessfully - predicts a doubling of calculation speed every 18 months) they opened up

the perspective for iterative search-based approaches to at least approximate optima

in these more difficult and practically relevant cases - a procedure that is simply not

feasible with pencil and paper in a man’s lifetime.

1.2.2 Iterative optimization

Clear["Global‘*"];

<<CIP‘Graphics‘

1.2 Optimization 15

In general the optima of curves and hyper surfaces may only be approximated

by iterative step-by-step search procedures - but without any guarantee of success!

There are two basic types of iterative optimization strategies:

• Local optimization: Beginning at a start position the iterative search method

tries to find at least a local optimum (which may not necessarily be the next

neighbored optimum to the start position). This local optimum is in general dif-

ferent from the global optimum, i.e. the lowest minimum or the highest maximum

of the function.

• Global optimization: The iterative search method tries to find the global opti-

mum inside an a priori defined search space.

Global iterative optimization is usually far more computational demanding than

local optimization and therefore slower. Both optimization strategies may fail due

to two sources of problems:

• Function related problems: The function itself to optimize may not contain any

optima (e.g. a straight line or a hyperplane) or may otherwise be ill-shaped.

• Iterative search related problems: The search algorithm may encounter numer-

ical problems (like division by zero) or simply not find an optimum of required

precision within the allowed maximum number of iterations. Whereas in the lat-

ter case an increase of the number of iterations should help this solution would

fail if the search algorithm is trapped in oscillations around the optimum. Prob-

lems are often caused by an inappropriate start position or search space, e.g. if

the search algorithm relies on second derivative information but the curvature of

the function to be optimized is effectively zero in the search region.

As an example for an unfavorable start position for a minimum detection consider

the following situation:

function=1.0/xˆ12-1/xˆ6;

pureFunction=Function[argument,function/.x -> argument];

xStart=6.0;

startPointForOptimization={xStart,pureFunction[xStart]};

points2D={startPointForOptimization};

argumentRange={0.5,7.0};

functionValueRange={-0.3,0.2};

labels={"x","y","Where to go for the minimum?"};

CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

16 1 Introduction

The start position (point) is fairly outside the interesting region that contains the

minimum: Its slope (first derivative)

D[function,x]/.x -> xStart

0.0000214326

and its curvature (second derivative)

D[function,{x,2}]/.x -> xStart

−0.0000250037

are nearly zero with the function value itself being nearly constant. In this situ-

ation it is difficult for any iterative algorithm to devise a path to the minimum and

it is likely for the search algorithm to simply run aground without converging to the

minimum.

In practice it is often hard to recognize what went wrong if an optimization fail-

ure occurs. And although there are numerous parameters to tune local and global

optimization methods for specific optimization problems that does not guarantee to

always solve these issues in general. And it becomes clear that any a priori knowl-

edge about the location of an optimum from theoretical considerations or practical

experience may play a crucial role. Throughout the later chapters a number of stan-

dard problems are discussed and strategies for their circumvention are described.

1.2.3 Iterative local optimization

Clear["Global‘*"];

1.2 Optimization 17

<<CIP‘Graphics‘

Iterative local optimization (or just minimization since maximizing a function f

is identical to minimizing − f or f−1) is in principle a simple issue: From a given

start position just move downhill as fast as possible by appropriate steps until a

local minimum is reached within a desired precision. Thus local optimization meth-

ods differ only in the amount of functional information they evaluate to set their

step sizes along their chosen downhill directions (see [Press 2007] for details). The

evaluation part determines the computational costs of each iteration whereas the di-

rectional part determines the convergence speed towards a local minimum where

both parts often oppose each other: The more functional information is evaluated

the slower a single iteration is performed but the number of iterative steps may be

reduced due to more appropriate step sizes and directions.

• Some methods do only use function value evaluations at different positions to

recognize more or less intelligent downhill paths with adaptive step sizes, e.g.

the Simplex method.

• More advanced methods use (first derivative) slope/gradient information in

addition to function values which allows steepest descent orientations: The so

called Gradient method and the more elaborate Conjugate-Gradient and Quasi-

Newton methods belong to this type of minimization techniques: The latter two

families of methods can find the (one and global) minimum of a M-dimensional

parabolic hyper surface with at most M steps (note that this statement just

describes a characteristic feature of these algorithms since the optimum of a

parabolic hyper surface may simply be calculated with second derivative infor-

mation by analytical means).

• Also (second derivative) curvature information of the function to be minimized

may be utilized for a faster convergence near a local minimum as implemented

by the so called Newton methods (which were already invented by the grand old

father of modern science). If a parabolic hyper surface is under investigation a

Newton step leads directly to the minimum, i.e. the Newton method converges

to this minimum in one single step (in fact each Newton step assumes a hyper

surface to be parabolic and thus calculates the position of its supposed minimum

analytically. This assumption is the more accurate the nearer the minimum is

located. Since a Newton method has to evaluate an awful lot of functional in-

formation for each iterative step which takes its time it is only effective in the

proximity of a minimum).

For special types of functions to be minimized like a sum of squares specific

combination methods like Levenberg-Marquardt are helpful that try to switch be-

tween gradient steps (far from a minimum) and Newton steps (near a minimum) in

an effective manner. And besides these general iterative local minimization tech-

niques there are numerous specific solutions for specific optimization tasks that try

to take advantage of their specific characteristics. But note that in general there is

nothing like the best iterative local optimization method: Being the most effective

and therefore fastest method for one minimization problem does not mean to be

18 1 Introduction

necessarily superior for another. As a rule of thumb Conjugate-Gradient and Quasi-

Newton methods have shown to exert a good compromise between computational

costs (function and first derivatives evaluations) and local minimum convergence

speed for many practical minimization problems. For the already used multiple op-

tima function

function=1.0-Cos[x]/(1.0+0.01*xˆ2);

pureFunction=Function[argument,function/.x -> argument];

argumentRange={-10.0,10.0};

functionValueRange={-0.2,2.2};

startPosition=8.0;

startPoint={startPosition,function/.x -> startPosition};

points2D={startPoint};

labels={"x","y","Function with multiple optima"};

CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

a local minimum may be found from the specified start position (indicated point)

with Mathematica’s FindMinimum command that provides a unified access to dif-

ferent local iterative search methods (FindMinimum uses a variant of the Quasi-

Newton methods by default, see comments on [FindMinimum/FindMaximum] in

the references):

localMinimum=FindMinimum[function,{x,startPosition}]

{0.28015,{x → 6.19389}}

FindMinimum returns a list with the function value at the detected local minimum and the rule(s) for the

argument value(s) at this minimum

Start point and approximated minimum may be visualized (the arrow indicates

the minimization path):

1.2 Optimization 19

minimumPoint={x/.localMinimum[[2]],localMinimum[[1]]};

points2D={startPoint,minimumPoint};

labels={"x","y","Local minimization"};

arrowGraphics=Graphics[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,

pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange];

Show[functionGraphics,arrowGraphics]

Mathematica’s Show command allows the overlay of different graphics which are automatically aligned.

From a different start position a different minimum is found

startPosition=2.0;

localMinimum=FindMinimum[function,{x,startPosition}]

{0.,{x → 9.64816×10−12}}

again illustrated as before:

startPoint={startPosition,function/.x -> startPosition};

minimumPoint={x/.localMinimum[[2]],localMinimum[[1]]};

points2D={startPoint,minimumPoint};

arrowGraphics=Graphics[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,

pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange];

Show[functionGraphics,arrowGraphics]

20 1 Introduction

In the last case the approximated minimum is accidentally the global minimum

since the start position was near this global optimum. But in general local optimiza-

tion leads to local optima only.

1.2.4 Iterative global optimization

Clear["Global‘*"];

<<CIP‘Graphics‘

An optimization of a function usually targets the global optimum of the scientifi-

cally relevant argument space. An iterative local search may find the global optimum

but is usually only trapped in a local optimum near its start position as demonstrated

above. Global optimization strategies try to circumvent this problem by sampling a

whole a priori defined search space: They need a set of min/max values for each ar-

gument x1,x2, ...,xM of the function f (x1,x2, ...,xM) to be globally optimized where

it is assumed that the global optimum lies within the search space that is spanned

by these M min/max intervals [x1,min, x1,max] to [xM,min, xM,max]. The most straight-

forward method to achieve this goal seams to be a systematic grid search where the

function values are evaluated at equally spaced grid points inside the a priori defined

argument search space and then compared to each other to detect the optimum. This

grid search procedure is illustrated for an approximation of the global maximum of

the curved surface f (x,y) already sketched above

function=1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)ˆ2]*Exp[-y]* Sin[7.0*y]);

pureFunction=

Function[{argument1,argument2},

function/.{x -> argument1,y -> argument2}];

with a search space of the arguments x and y to be their [0, 1] intervals

1.2 Optimization 21

xMinBorderOfSearchSpace=0.0;

xMaxBorderOfSearchSpace=1.0;

yMinBorderOfSearchSpace=0.0;

yMaxBorderOfSearchSpace=1.0;

and 100 equally spaced grid points at z = 0 inside this search space (100 grid

points means a 10×10 grid, i.e. 10 grid points per dimension):

numberOfGridPointsPerDimension=10.0;

gridPoints3D={};

Do[

Do[

AppendTo[gridPoints3D,{x,y,0.0}],

{x,xMinBorderOfSearchSpace,xMaxBorderOfSearchSpace,

(xMaxBorderOfSearchSpace-xMinBorderOfSearchSpace)/

(numberOfGridPointsPerDimension-1.0)}

],

{y,yMinBorderOfSearchSpace,yMaxBorderOfSearchSpace,

(yMaxBorderOfSearchSpace-yMinBorderOfSearchSpace)/

(numberOfGridPointsPerDimension-1.0)}

];

The grid points are calculated with nested Do loops in the xy plane.

This setup can be illustrated as follows (with the grid points located at z = 0):

xRange={-0.1,1.1};

yRange={-0.1,1.1};

labels={"x","y","z"};

viewPoint3D={3.5,-2.4,1.8};

CIP‘Graphics‘Plot3dPointsWithFunction[gridPoints3D,pureFunction,

labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D]

22 1 Introduction

The function values at these grid points are then evaluated and compared

winnerGridPoint3D={};

maximumFunctionValue=-Infinity;

Do[

functionValue=pureFunction[gridPoints3D[[i, 1]],

gridPoints3D[[i, 2]]];

If[functionValue>maximumFunctionValue,

maximumFunctionValue=functionValue;

winnerGridPoint3D={gridPoints3D[[i, 1]],gridPoints3D[[i, 2]],

maximumFunctionValue}

],

{i,Length[gridPoints3D]}

];

to evaluate the winner grid point

winnerGridPoint3D

{1.,0.222222,6.17551}

that corresponds to the maximum detected function value

maximumFunctionValue

6.17551

which may be visually validated (with the winner grid point raised to its function

value indicated by the arrow and all other grid points still located at z = 0):

1.2 Optimization 23

Do[

If[gridPoints3D[[i,1]] == winnerGridPoint3D[[1]] &&

gridPoints3D[[i,2]] == winnerGridPoint3D[[2]],

gridPoints3D[[i]] = winnerGridPoint3D

],

{i,Length[gridPoints3D]}

];

arrowStartPoint={winnerGridPoint3D[[1]],winnerGridPoint3D[[2]],0.0};

arrowGraphics3D=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{arrowStartPoint,winnerGridPoint3D}]}}];

plotStyle3D=Directive[Green,Specularity[White,40],Opacity[0.4]];

functionGraphics3D=CIP‘Graphics‘Plot3dPointsWithFunction[

gridPoints3D,pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics3D,arrowGraphics3D]

The winner grid point of the global grid search does only approximate the global

optimum with an error corresponding to the defined grid spacing. To refine the ap-

proximate grid search maximum it may be used as a start point for a following local

search since the grid search maximum should be near the global maximum which

means that the local search can be expected to converge to the global maximum (but

note that there is no guarantee for this proximity and the following convergence in

general). Thus the approximate grid search maximum is passed to Mathematica’s

FindMaximum command (the sister of the FindMinimum command sketched above

which utilizes the same algorithms) as a start point for the post-processing local

search

24 1 Introduction

globalMaximum=FindMaximum[function,{{x,winnerGridPoint3D[[1]]},

{y,winnerGridPoint3D[[2]]}}]

{6.54443,{x → 0.959215,y → 0.204128}}

to determine the global maximum with sufficient precision. The improvement

obtained by the local refinement process may be inspected (the arrow indicates the

maximization path from the winner grid point to the maximum point detected by

the post-processing local search in a zoomed view)

globalMaximumPoint3D={x/.globalMaximum[[2,1]],

y/.globalMaximum[[2,2]],globalMaximum[[1]]};

xRange={0.90,1.005};

yRange={0.145,0.26};

arrowGraphics3D=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{winnerGridPoint3D,globalMaximumPoint3D}]}}];

points3D={winnerGridPoint3D,globalMaximumPoint3D};

functionGraphics3D=CIP‘Graphics‘Plot3dPointsWithFunction[points3D,

pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics3D,arrowGraphics3D]

and finally the detected global maximum (point in diagram below) may be visu-

ally validated:

1.2 Optimization 25

xRange={-0.1,1.1};

yRange={-0.1,1.1};

points3D={globalMaximumPoint3D};

CIP‘Graphics‘Plot3dPointsWithFunction[points3D,pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D]

Although a grid search seams to be a rational approach to global optimization

it is only an acceptable choice for low-dimensional grids, i.e. global optimization

problems with only a small number of function arguments as the example above.

This is due to the fact that the number of grid points to evaluate explodes (i.e. grows

exponentially) with an increasing number of arguments: The number of grid point

is equal to NM with N to be number of grid points per argument and M the number

of arguments. For 12 arguments x1,x2, ...,x12 with only 10 grid points per argu-

ment the grid would already contain one trillion
(
1012

)
points so with an increasing

number of arguments the necessary function value evaluations at the grid points

would become quickly far too slow to be explored in a man’s lifetime. As an al-

ternative the number of argument values in the search space to be tested could be

confined to a manageable quantity. A rational choice would be randomly selected

test points because there is no a priori knowledge about any preferred part of the

search space. Note that this random search space exploration would be comparable

to a grid search if the number of random test points would equal the number of sys-

tematic grid points before (although not looking as tidy). For the current example

20 random test points could be chosen instead of the grid with 100 points:

26 1 Introduction

SeedRandom[1];

randomPoints3D=

Table[

{RandomReal[{xMinBorderOfSearchSpace,xMaxBorderOfSearchSpace}],

RandomReal[{yMinBorderOfSearchSpace,yMaxBorderOfSearchSpace}],

0.0},

{20}

];

CIP‘Graphics‘Plot3dPointsWithFunction[randomPoints3D,pureFunction,

labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D]

The generation of random points can be made deterministic (i.e. always the same sequence of random points is

generated) by setting a distinct seed value which is done by the SeedRandom[1] command.

The winner random point is evaluated

winnerRandomPoint3D={};

maximumFunctionValue=-Infinity;

Do[

functionValue=pureFunction[randomPoints3D[[i, 1]],

randomPoints3D[[i, 2]]];

If[functionValue>maximumFunctionValue,

maximumFunctionValue=functionValue;

winnerRandomPoint3D={randomPoints3D[[i, 1]],randomPoints3D[[i, 2]],

maximumFunctionValue}

],

{i,Length[randomPoints3D]}

];

1.2 Optimization 27

and visualized (with only the winner random point shown raised to its functions

value indicated by the arrow):

Do[

If[randomPoints3D[[i,1]] == winnerRandomPoint3D[[1]] &&

randomPoints3D[[i,2]] == winnerRandomPoint3D[[2]],

randomPoints3D[[i]] = winnerRandomPoint3D

],

{i,Length[randomPoints3D]}

];

arrowStartPoint={winnerRandomPoint3D[[1]],winnerRandomPoint3D[[2]],

0.0};

arrowGraphics3D=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{arrowStartPoint,winnerRandomPoint3D}]}}];

plotStyle3D=Directive[Green,Specularity[White,40],Opacity[0.4]];

functionGraphics3D=CIP‘Graphics‘Plot3dPointsWithFunction[

randomPoints3D,pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics3D,arrowGraphics3D]

But if this global optimization result

winnerRandomPoint3D

{0.29287,0.208051,4.49892}

28 1 Introduction

is refined by a post-processing local maximum search starting from the winner

random point

globalMaximum=FindMaximum[function,

{{x,winnerRandomPoint3D[[1]]},{y,winnerRandomPoint3D[[2]]}}]

{4.55146,{x → 0.265291,y → 0.204128}}

only a local maximum is found (point in diagram below) and thus the global

maximum is missed:

globalMaximumPoint3D={x/.globalMaximum[[2,1]],

y/.globalMaximum[[2,2]],

globalMaximum[[1]]};

points3D={globalMaximumPoint3D};

Plot3dPointsWithFunction[points3D,pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D]

This failure can not be traced to the local optimum search (this worked perfectly

from the passed starting position) but must be attributed to an insufficient number of

random test points before: If their number is raised the global sampling of the search

space would improve and the probability of finding a good test point in the vicinity

of the global maximum would increase. But then the same restrictions apply as

mentioned with the systematic grid search: With an increasing number of parameters

1.2 Optimization 29

(dimensions) the size of the search space explodes and a random search resembles

more and more to be simply looking for a needle in a haystack.

In the face of this desperate situation there was an urgent need for global opti-

mization strategies that are able to tackle difficult search problems in large spaces.

As a knight in shining armour a family of so called evolutionary algorithms emerged

that rapidly drew a lot of attention. These methods also operate in a basically random

manner comparable to a pure random search but in addition they borrow approved

refinement strategies from biological evolution to approach the global optimum:

These are mutation (random change), crossover or recombination (a kind of random

mixing that leads to a directional hopping towards promising search space regions)

and selection of the fittest (amplification of the optimal points found so far). The

evolution cycles try to speed up the search towards the global optimum by suc-

cessively composing parts (schemata) of the optimum solution. Mathematica offers

an evolutionary-algorithm-based global optimization procedure via the NMinimize

and NMaximize commands with the DifferentialEvolution method option (see com-

ments on [NMinimize/NMaximize] for details). The global maximum search

globalMaximum=NMaximize[{function,

{xMinBorderOfSearchSpace<x<xMaxBorderOfSearchSpace,

yMinBorderOfSearchSpace<y<yMaxBorderOfSearchSpace}},

{x,y},

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{6.54443,{x → 0.959215,y → 0.204128}}

Note the deactivation of the PostProcess in the Method definition: NMaximize automatically applies a local

optimization method to refine the result of a global search - the same was done in the grid and random search

examples above. The deactivation suppresses this refinement to get the pure result of the evolutionary algorithm.

now directly leads to a result of sufficient precision (compare global maximum

location above). But it should be noted that evolutionary algorithms in spite of their

popularity belong to the methods of last resort: They may be extremely computa-

tionally expensive, i.e. time-consuming. Evolutionary algorithms are regarded to be

very effective since they imitate the successful biological evolution. This widespread

view neglects the fact that natural evolution needed eons to develop life - and liv-

ing organisms are by no means optimum solutions. If the evolutionary algorithm is

applied to the multiple-optima function already demonstrated above

function=1.0-Cos[x]/(1.0+0.01*xˆ2);

pureFunction=Function[argument,function/.x -> argument];

with an appropriate search space (not too small, not too large)

xMinBorderOfSearchSpace=-10.0;

xMaxBorderOfSearchSpace=15.0;

30 1 Introduction

the global minimum (point in diagram below) inside the search space (marked as

a background in diagram below)

globalMinimum=NMinimize[{function,

xMinBorderOfSearchSpace<x<xMaxBorderOfSearchSpace},x,

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{5.16341×10−10,{x →−0.0000318188}}

is also approximated successfully:

minimumPoint={x/.globalMinimum[[2]],globalMinimum[[1]]};

points2D={minimumPoint};

argumentRange={-12.0,17.0};

functionValueRange={-0.2,2.2};

labels={"x","y","Global minimization"};

functionGraphics=CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,

pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange];

searchSpaceGraphics=Graphics[{RGBColor[0,1,0,0.2],

Rectangle[{xMinBorderOfSearchSpace,functionValueRange[[1]]},

{xMaxBorderOfSearchSpace,functionValueRange[[2]]}]}];

Show[functionGraphics,searchSpaceGraphics]

But note: If the search space is inadequately chosen (i.e. the global minimum is

outside the interval)

xMinBorderOfSearchSpace=50.0;

xMaxBorderOfSearchSpace=60.0;

globalMinimum=NMinimize[{function,

xMinBorderOfSearchSpace<x<xMaxBorderOfSearchSpace},x,

Method -> {"DifferentialEvolution","PostProcess" -> False}]

1.2 Optimization 31

{0.9619,{x → 50.2272}}

or the search space is simply to large

xMinBorderOfSearchSpace=-100000.0;

xMaxBorderOfSearchSpace=100000.0;

globalMinimum=NMinimize[{function,

xMinBorderOfSearchSpace<x<xMaxBorderOfSearchSpace},x,

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{0.805681,{x → 19.2638}}

the global minimum may not be found within the default maximum number of

iterations.

1.2.5 Constrained iterative optimization

Clear["Global‘*"];

<<CIP‘Graphics‘

With the global optimization examples of the previous section the field of con-

strained optimization was already touched since the a priori defined search space

was a constraint of the search (but in fact it was not intended to constrain the opti-

mization procedure: Defining a search space was just a precondition for the global

optimization methods to work at all). In general optimization tasks are called un-

constrained if they are free from any additional restrictions. If the optimization is

subject to one or several constraints the field of constrained optimization is entered.

If the function under investigation is not only to be globally minimized but the x

value is restricted to lie in an defined interval

function=1.0-Cos[x]/(1.0+0.01*xˆ2);

pureFunction=Function[argument,function/.x -> argument];

xMinConstraint=2.0;

xMaxConstraint=11.0;

constraint=xMinConstraint<x<xMaxConstraint;

constrainedGlobalMinimum=NMinimize[{function,constraint},x,

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{0.28015,{x → 6.19386}}

the constrained global minimum (point in diagram below) may differ from the

unconstrained one (the constraint is marked as a background in diagram below):

constrainedMinimumPoint={x/.constrainedGlobalMinimum[[2]],

constrainedGlobalMinimum[[1]]};

32 1 Introduction

points2D={constrainedMinimumPoint};

argumentRange={-12.0,17.0};

functionValueRange={-0.2,2.2};

labels={"x","y","Constrained global minimization"};

functionGraphics=CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,

pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange];

constraintGraphics=Graphics[{RGBColor[1,0,0,0.1],

Rectangle[{xMinConstraint,functionValueRange[[1]]},

{xMaxConstraint,functionValueRange[[2]]}]}];

Show[functionGraphics,constraintGraphics]

But not only may the unconstrained and constrained global optimum differ: The

constrained global optimum may in general not be an optimum of the unconstrained

optimization problem at all: This can be illustrated with the following example taken

from the Mathematica tutorials. The 3D surface

function=

-1.0/((x+1.0)ˆ2+(y+2.0)ˆ2+1)-2.0/((x-1.0)ˆ2+(y-1.0)ˆ2+1)+2.0;

pureFunction=Function[{argument1,argument2},

function/.{x -> argument1,y -> argument2}];

xRange={-3.0,3.0};

yRange={-3.0,3.0};

labels={"x","y","z"};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]

1.2 Optimization 33

contains two optima: A local and a global minimum. Depending on the start po-

sition of the iterative local minimum search method initiated via the FindMinimum

command

startPosition={-2.5,-1.5};

localMinimum=FindMinimum[function,{{x,startPosition[[1]]},

{y,startPosition[[2]]}}]

{0.855748,{x →−0.978937,y →−1.96841}}

the minimization process approximates the local minimum

startPoint={startPosition[[1]],startPosition[[2]],

function/.{x -> startPosition[[1]],y -> startPosition[[2]]}};

minimumPoint={x/.localMinimum[[2,1]],y/.localMinimum[[2,2]],

localMinimum[[1]]};points3D={startPoint,minimumPoint};

arrowGraphics=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

plotStyle3D=Directive[Green,Specularity[White,40],Opacity[0.4]];

functionGraphics=CIP‘Graphics‘Plot3dPointsWithFunction[points3D,

pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics,arrowGraphics]

34 1 Introduction

or (with another start point)

startPosition={-0.5,2.5};

localMinimum=FindMinimum[function,{{x,startPosition[[1]]},

{y,startPosition[[2]]}}]

{−0.071599,{x → 0.994861,y → 0.992292}}

arrives at the global minimum:

startPoint={startPosition[[1]],startPosition[[2]],

function/.{x -> startPosition[[1]],y -> startPosition[[2]]}};

minimumPoint={x/.localMinimum[[2,1]],y/.localMinimum[[2,2]],

localMinimum[[1]]};points3D={startPoint,minimumPoint};

arrowGraphics=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=CIP‘Graphics‘Plot3dPointsWithFunction[points3D,

pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics,arrowGraphics]

1.2 Optimization 35

If now the constraint is imposed that

x2 + y2 > 4.0

(the constraint removes a circular argument area around the origin (0,0) of the xy

plane) the constrained local minimization algorithm behind the FindMinimum com-

mand is activated (see comments on [FindMinimum/FindMaximum] for details).

The constrained local minimization process from the first start position

startPosition={-2.5,-1.5};

constraint=xˆ2+yˆ2>4.0;

localMinimum=FindMinimum[{function,constraint},

{{x,startPosition[[1]]},{y,startPosition[[2]]}}]

{0.855748,{x →−0.978937,y →−1.96841}}

still results in the local minimum of the unconstrained surface

startPoint={startPosition[[1]],startPosition[[2]],

function/.{x -> startPosition[[1]],y -> startPosition[[2]]}};

minimumPoint={x/.localMinimum[[2,1]],y/.localMinimum[[2,2]],

localMinimum[[1]]};points3D={startPoint,minimumPoint};

regionFunction=Function[{argument1,argument2},

constraint/.{x -> argument1,y -> argument2}];

arrowGraphics=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=Plot3dPointsWithFunction[points3D,pureFunction,

labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionPlotStyle3D -> plotStyle3D,

36 1 Introduction

GraphicsOptionRegionFunction -> regionFunction];

Show[functionGraphics,arrowGraphics]

but the second start position

startPosition={-0.5,2.5};

localMinimum=FindMinimum[{function,constraint},

{{x,startPosition[[1]]},{y,startPosition[[2]]}}]

{0.456856,{x → 1.41609,y → 1.41234}}

leads to a new global minimum since the one of the unconstrained surface is

excluded by the constraint:

startPoint={startPosition[[1]],startPosition[[2]],

function/.{x -> startPosition[[1]],y -> startPosition[[2]]}};

minimumPoint={x/.localMinimum[[2,1]],y/.localMinimum[[2,2]],

localMinimum[[1]]};points3D={startPoint,minimumPoint};

arrowGraphics=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=Plot3dPointsWithFunction[points3D,pureFunction,

labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionPlotStyle3D -> plotStyle3D,

GraphicsOptionRegionFunction -> regionFunction];

Show[functionGraphics,arrowGraphics]

1.3 Model functions 37

An evolutionary-algorithm-based constrained global search in the displayed ar-

gument ranges via NMinimize directly approximates the constrained global mini-

mum

Off[NMinimize::cvmit]

localMinimum=NMinimize[{function,constraint},

{{x,xRange[[1]],xRange[[2]]},{y,yRange[[1]],yRange[[2]]}},

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{0.456829,{x → 1.41637,y → 1.41203}}

The Off[NMinimize::cvmit] command suppresses an internal message from NMinimize. Internal messages are

usually helpful to understand problems and they advise to interpret results with caution. In this particular case

the suppression eases readability.

with sufficient precision (compare above).

In general it holds that the more dimensional the non-linear curved hyper surface

is and the more constraints are imposed the more difficult it is to approximate a

local or even the global optimum with sufficient precision. The specific optimization

problems that are related to the road from curve fitting to machine learning will be

discussed in the later chapters where they apply.

1.3 Model functions

Since model functions play an important role throughout the book a basic catego-

rization is helpful. A good starting point is the most prominent model function: The

straight line.

38 1 Introduction

1.3.1 Linear model functions with one argument

Clear["Global‘*"];

<<CIP‘Graphics‘

The well-known functional form of the straight line is

y = f (x) = a1 +a2x

pureFunction=Function[x,1.0+2*x];

argumentRange={0.0,5.0};

functionValueRange={0.0,12.0};

labels={"x","y","Straight line"};

CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]

The straight line is linear in two ways: It describes a linear relation between

argument x and function value y and is itself linear in its parameters a1 and a2, i.e. a1

and a2 have exponent 1. A general model function which is linear in its parameters

can be defined as follows:

y = f (x) = a1g1(x)+a2g2(x)+ ...+aLgL(x) = ∑L
v=1 avgv(x)

This general linear function consists of L parameters a1 to aL that are each mul-

tiplied by a function gv(x). The functions gv(x) depend on x and do only have fixed

and known internal parameters. Note that the general linear function does not nec-

essarily describe a linear relation between argument x and function value y: This

1.3 Model functions 39

relation may be highly non-linear, e.g. for a gv(x) that is equal to ex. From the point

of view of the general linear function the straight line is just a special case with

L = 2 ; g1(x) = x0 = 1 ; g2(x) = x

that leads to

y = f (x) = a1 + a2x

Another well-known example of this type of linear model functions are polyno-

mials

y = f (x) = a1 + a2x+ a3x2 + ...+aLxL−1 = ∑L
v=1 avxv−1

e.g. the quadratic parabola

y = f (x) = ∑3
v=1 avxv−1 = a1 + a2x+ a3x2

pureFunction=Function[x,11.0-15.0*x+5.0*xˆ2];

argumentRange={0.0,3.0};

functionValueRange={-1.0,12.0};

labels={"x","y","Quadratic parabola"};

CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]

Model functions that are linear in their parameters make up an important special

case for curve fitting procedures to experimental data: It can be shown that they lead

to optimization problems with only one global optimum which in principle may be

40 1 Introduction

calculated with pencil and paper by means of analytic calculation strategies (e.g. see

[Hamilton 1964], [Barlow 1989], [Bevington 2002], [Brandt 2002] or [Press 2007]).

Again, note that the term linear model function denotes a function that is linear in

its parameters only. It does not necessarily mean a linear dependence of the function

value y on the argument x. This subtle difference often causes some misunderstand-

ings in scientific practice as far as non-linear fits are concerned.

1.3.2 Non-linear model functions with one argument

Clear["Global‘*"];

<<CIP‘Graphics‘

A model function that is not linear in its parameters is called a non-linear model

function, e.g.

y = f (x) = a1ea2x

To recognize the non-linearity in parameters of the example function a power

series expansion is helpful (in this case around x = 0 with a display up to the 4th

power):

Series[Subscript[a, 1]*Exp[Subscript[a, 2]*x],{x,0,4}]

a1 +a1a2x+ 1
2

a1a2
2x2 + 1

6
a1a3

2x3 + 1
24

a1a4
2x4 +O[x]5

The cross terms like a1a2 or a1a2
2 and the higher powers of a2 like a2

2, a3
2, a4

2

etc. now become directly obvious. A prominent example is the exponential decay

model that describes radioactive processes of disintegration or chemical first-order

kinetics:

pureFunction=Function[x,1.0*Exp[-8.0*x]];

argumentRange={0.0,1.0};

functionValueRange={0.0,1.5};

labels={"x","y","Exponential decay"};

CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]

1.3 Model functions 41

Nature (fortunately) is not linear (otherwise living organisms would not exist)

so non-linear model functions play a predominant role in science. But compared

to linear models non-linear model functions may cause severe problems in data

analysis procedures. They often lead to optimization problems with multiple optima

so analytic calculation strategies are no longer applicable in general: Only iterative

strategies can be followed that may disastrously fail.

So far only one dimensional model functions with one argument x are discussed.

One dimensional model functions play the central part in curve fitting methods

where the structural form of the model function is often known but not the values of

its parameters (see chapter 2).

1.3.3 Linear model functions with multiple arguments

Clear["Global‘*"];

<<CIP‘Graphics‘

Model functions with multiple arguments x1 to xM may be linear in their param-

eters and are generally written in the form (that utilizes the general linear function

with one argument from above):

y = f (x1,x2, ...,xM) =
(
∑L

v=1 a1vg1v (x1)
)
+ ...+

(
∑L

v=1 aMvgMv (xM)
)

y = f (x1,x2, ...,xM) = ∑M
u=1

(
∑L

v=1 auvguv (xu)
)

The multidimensional analog of the straight line is the hyperplane that is derived

from the general linear model function with

L = 2

y= f (x1,x2, ...,xM)=∑M
u=1

(
∑2

v=1 auvguv (xu)
)
=∑M

u=1 (au1gu1 (xu)+au2gu2 (xu))

42 1 Introduction

y = f (x1,x2, ...,xM) = ∑M
u=1 au1gu1 (xu)+∑M

u=1 au2gu2 (xu)

and

au = au1 ; gu1 (xu) = xu ; aM+1 = ∑M
u=1 au2 ; gu2 (xu) = 1

that leads to

y = f (x1,x2, ...,xM) = ∑M
u=1 auxu + aM+1

A 3D plane with M = 2

y = f (x1,x2) = a1x1 + a2x2 + a3

is visualized below:

pureFunction=Function[{x,y},1.0+2.0*x+3.0*y];

xRange={-0.1,1.1};

yRange={-0.1,1.1};

labels={"x","y","z"};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]

What holds for one dimensional linear model functions still holds for their mul-

tidimensional analogs: Model fitting procedures to experimental data lead to opti-

1.3 Model functions 43

mization problems with one global optimum with analytic calculation strategies for

its position (see Multiple Linear and Polynomial Regression in chapter 4).

1.3.4 Non-linear model functions with multiple arguments

Clear["Global‘*"];

<<CIP‘Graphics‘

Non-linear model functions with multiple arguments x1 to xM like

y = f (x1,x2, ...,xM) = a1 sin(x1)+ exp
{

∑M
u=2 aux2

u

}

(where exp{x} denotes ex) may be viewed as curved hyper surfaces with possi-

ble multiple minima and maxima in comparison to linear hyperplanes. The already

shown curved 3D surface may again be taken as an example:

pureFunction=Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)ˆ2]*Exp[-y]* Sin[7.0*y])];

xRange={-0.1,1.1};

yRange={-0.1,1.1};

labels={"x","y","z"};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]

44 1 Introduction

It is these kinds of curved hyper surfaces that answer the most subtle questions

about nature but on the other hand they cause the worst data analysis problems. Ma-

chine learning methods usually lead to this kind of surfaces to optimize (see chapter

4): They require iterative optimization techniques which in turn need considerable

computational power to be applied with success.

1.3.5 Multiple model functions

In a last step multiple model functions may be collected together to generate an

output vector y (the answer) for an input vector x (the question)

y1 = f1 (x1,x2, ...,xM)
y2 = f2 (x1,x2, ...,xM)

...

yN = fN (x1,x2, ...,xM)

which may be written in an abbreviated vector notation:

y = f (x)

Note that the output vector y and the function vector f are of dimension N

whereas the input vector x is of (maybe different) dimension M. Model function

collections of this kind play the crucial role in machine learning methods where

function collections are constructed to describe experimental data in multiple di-

mensions (see chapter 4).

1.3.6 Summary

The Holy Grail of the sciences to calculate nature with

output = f (input)

may now be written in mathematical detail:

y = f (x)

Questions about nature are asked with adequately defined input vectors x that are

submitted to model functions f to give the answer in form of an adequately defined

output vector y. This is a rather general scheme: Nearly everything can be adequately

1.4 Data structures 45

coded in input/output vectors, e.g. molecules, pharmacological effects, material’s

properties etc. The details of this kind of coding may be subtle and difficult and are

the realm of specific areas of science like cheminformatics or bioinformatics. The

proper coding is an essential precondition to any data analysis: If the interesting

parts of the world are not adequately coded then any association of them by model

functions must inevitably fail.

1.4 Data structures

Data structures describe the organization of data that will be used for curve fitting,

clustering and machine learning throughout this book. In general algorithms de-

serve adequate data structures and vice versa. The interplay of algorithms and data

structures is at heart of computer science.

1.4.1 Data for curve fitting

Clear["Global‘*"];

For curve fitting methods a xy-error data structure is used. This data structure

consists of xy-error data triples (xi,yi,σi) with an argument value xi, a corresponding

dependent value yi and the statistical error σi of the yi value. In Mathematica data

are stored in lists which are defined by curly brackets. The whole xy-error data

structure is a single list with nested sublists that represent the single xy-error data

triples. Here is an example of a xy-error data structure with 3 xy-error data triples:

xyErrorData={

{Subscript[x,1],Subscript[y,1],Subscript[\[Sigma],1]},

{Subscript[x,2],Subscript[y,2],Subscript[\[Sigma],2]},

{Subscript[x,3],Subscript[y,3],Subscript[\[Sigma],3]}

}

{{x1,y1 ,σ1} ,{x2,y2,σ2} ,{x3,y3,σ3}}

1.4.2 Data for machine learning

Clear["Global‘*"];

<<CIP‘DataTransformation‘

46 1 Introduction

<<CIP‘Utility‘

When it comes to machine learning a data set structure is used. A data set is a list

of input/output (I/O) pairs, e.g. the following data set with 3 I/O pairs:

dataSet={ioPair1,ioPair2,ioPair3};

Each I/O pair consists of an input vector (abbreviated input) and an output vector

(abbreviated output):

ioPair1={input1,output1};

ioPair2={input2,output2};

ioPair3={input3,output3};

Each input and each output is a vector with a defined number of components, e.g.

each input may consist of 3 components and each output of 2 components

input1={Subscript[in,11],Subscript[in,12],Subscript[in,13]};

output1={Subscript[out,11],Subscript[out,12]};

input2={Subscript[in,21],Subscript[in,22],Subscript[in,23]};

output2={Subscript[out,21],Subscript[out,22]};

input3={Subscript[in,31],Subscript[in,32],Subscript[in,33]};

output3={Subscript[out,31],Subscript[out,32]};

where the first index indicates the I/O pair and the second index the component.

The whole data set combines to:

dataSet

{{{in11, in12, in13} ,{out11,out12}} ,{{in21, in22, in23} ,{out21,out22}} ,{{in31, in32, in33} ,{out31,out32}}}

Data sets do not contain statistical errors since the machine learning methods

discussed in this book are not statistically based and therefore do not take errors

into account. But for a proper assessment of a machine learning result it is helpful

to know the data errors. The inputs of a data set can be isolated with

inputs=CIP‘Utility‘GetInputsOfDataSet[dataSet]

{{in11, in12, in13} ,{in21, in22, in23} ,{in31, in32, in33}}

and the outputs accordingly:

inputs=CIP‘Utility‘GetOutputsOfDataSet[dataSet]

1.4 Data structures 47

{{out11,out12} ,{out21,out22} ,{out31,out32}}

A data set that contains outputs with more than one output component like the

one sketched above may be split in multiple data sets, i.e. a list of data sets

dataSetList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[dataSet];

where each split data set now contains a single output component:

dataSetList[[1]]

{{{in11, in12, in13} ,{out11}} ,{{in21, in22, in23} ,{out21}} ,{{in31, in32, in33} ,{out31}}}

dataSetList[[2]]

{{{in11, in12, in13} ,{out12}} ,{{in21, in22, in23} ,{out22}} ,{{in31, in32, in33} ,{out32}}}

This splitting is used for several machine learning methods and graphical illus-

trations. As a 3D data set those data sets are denoted that contain inputs with two

components and outputs with one component: They may be illustrated by three di-

mensional graphics in contrast to data sets with higher dimensional inputs or out-

puts.

1.4.3 Inputs for clustering

Clear["Global‘*"];

The inputs of a data set are defined as the list of inputs of all I/O pairs:

input1={Subscript[in,11],Subscript[in,12],Subscript[in,13]};

input2={Subscript[in,21],Subscript[in,22],Subscript[in,23]};

input3={Subscript[in,31],Subscript[in,32],Subscript[in,33]};

inputs={input1,input2,input3}

{{in11, in12, in13} ,{in21, in22, in23} ,{in31, in32, in33}}

The inputs data structure may be used for clustering tasks.

48 1 Introduction

1.4.4 Inspection, cleaning and splitting of data

Clear["Global‘*"];

<<CIP‘Utility‘

<<CIP‘ExperimentalData‘

<<CIP‘DataTransformation‘

<<CIP‘Graphics‘

<<CIP‘CalculatedData‘

The Computational Intelligence Packages (CIP) provide several functions for in-

spection, cleaning and splitting of data. As an example the adhesive kinetics re-

gression data set and the iris flower classification data set (provided by the CIP

ExperimentalData package, see Appendix A) are inspected. The adhesive kinetics

data set

regressionDataSet=CIP‘ExperimentalData‘GetAdhesiveKineticsDataSet[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents"},regressionDataSet]

Number of IO pairs = 73

Number of input components = 3

Number of output components = 1

consists of 73 I/O pairs. Each input vector is of dimension 3, the output vector is

of dimension 1. The iris flower data set

classificationDataSet=

CIP‘ExperimentalData‘GetIrisFlowerClassificationDataSet[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents","ClassCount"},classificationDataSet]

Number of IO pairs = 150

Number of input components = 4

Number of output components = 3

Class 1 with 50 members

Class 2 with 50 members

Class 3 with 50 members

consists of 150 I/O pairs with input vectors of dimension 4 and output vectors of

dimension 3 (coding for 3 classes, see coding of classes for classification tasks in

a following section) where 50 I/O pairs belong to each class. The pure iris flower

inputs

inputs=CIP‘ExperimentalData‘GetIrisFlowerInputs[];

CIP‘Graphics‘ShowInputsInfo[{"InputVectors",

"InputComponents"},inputs]

1.4 Data structures 49

Number of input vectors = 150

Number of input components = 4

consist of 150 input vectors of dimension 4. Alternatively the iris flower inputs

may be directly obtained from the full classification data set:

inputsFromDataSet=

CIP‘Utility‘GetInputsOfDataSet[

CIP‘ExperimentalData‘GetIrisFlowerClassificationDataSet[]];

CIP‘Graphics‘ShowInputsInfo[{"InputVectors",

"InputComponents"},inputsFromDataSet]

Number of input vectors = 150

Number of input components = 4

Data set cleaning operations are often necessary to avoid fatal (or even worse:

subtle) errors during data analysis. If a data set is well formed

input1={10.,11.,12.,13.}; output1={101.,102.};

ioPair1={input1,output1};

input2={20.,21.,22.,23.}; output2={201.,202.};

ioPair2={input2,output2};

input3={30.,31.,32.,33.}; output3={301.,302.};

ioPair3={input3,output3};

dataSet={ioPair1,ioPair2,ioPair3};

MatrixForm[CIP‘DataTransformation‘CleanDataSet[dataSet]]

⎛
⎝ {10.,11.,12.,13.} {101.,102.}

{20.,21.,22.,23.} {201.,202.}
{30.,31.,32.,33.} {301.,302.}

⎞
⎠

a CleanDataSet operation does not affect its structure or values. If components

are integer instead of real numbers

input1={10,11,12,13}; output1={101.,102.};

ioPair1={input1,output1};

input2={20.,21.,22.,23.}; output2={201.,202.};

ioPair2={input2,output2};

input3={30.,31.,32.,33.}; output3={301.,302.};

ioPair3={input3,output3};

dataSet={ioPair1,ioPair2,ioPair3};

MatrixForm[CIP‘DataTransformation‘CleanDataSet[dataSet]]

⎛
⎝ {10.,11.,12.,13.} {101.,102.}

{20.,21.,22.,23.} {201.,202.}
{30.,31.,32.,33.} {301.,302.}

⎞
⎠

they are converted to real numbers. If an input or output component value is not

defined, i.e. is NaN (Not a Number),

input1={10.,NaN,12.,13.}; output1={101.,102.};

50 1 Introduction

ioPair1={input1,output1};

input2={20.,21.,22.,23.}; output2={201.,202.};

ioPair2={input2,output2};

input3={30.,31.,32.,33.}; output3={301.,302.};

ioPair3={input3,output3};

dataSet={ioPair1,ioPair2,ioPair3};

MatrixForm[CIP‘DataTransformation‘CleanDataSet[dataSet]]

⎛
⎝ {10.,12.,13.} {101.,102.}

{20.,22.,23.} {201.,202.}
{30.,32.,33.} {301.,302.}

⎞
⎠

the whole corresponding column is removed. If only the corresponding I/O pair

is to be removed the RemoveNonNumberIoPairs operation should be applied:

input1={10.,NaN,12.,13.}; output1={101.,102.};

ioPair1={input1,output1};

input2={20.,21.,22.,23.}; output2={201.,202.};

ioPair2={input2,output2};

input3={30.,31.,32.,33.}; output3={301.,302.};

ioPair3={input3,output3};

dataSet={ioPair1,ioPair2,ioPair3};

MatrixForm[CIP‘DataTransformation‘RemoveNonNumberIoPairs[dataSet]]

(
{20.,21.,22.,23.} {201.,202.}
{30.,31.,32.,33.} {301.,302.}

)

If an input component is identical in all I/O pairs

input1={10.,11.,12.,13.}; output1={101.,102.};

ioPair1={input1,output1};

input2={20.,11.,22.,23.}; output2={201.,202.};

ioPair2={input2,output2};

input3={30.,11.,32.,33.}; output3={301.,302.};

ioPair3={input3,output3};

dataSet={ioPair1,ioPair2,ioPair3};

MatrixForm[CIP‘DataTransformation‘CleanDataSet[dataSet]]

⎛
⎝ {10.,12.,13.} {101.,102.}

{20.,22.,23.} {201.,202.}
{30.,32.,33.} {301.,302.}

⎞
⎠

the whole corresponding column is removed (the removal of redundant informa-

tion is favorable for clustering or machine learning operations). The WPBC classi-

fication data set (see Appendix A)

classificationDataSet=

CIP‘ExperimentalData‘GetWPBCClassificationDataSet[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents","ClassCount"},classificationDataSet]

Number of IO pairs = 198

Number of input components = 32

1.4 Data structures 51

Number of output components = 2

Class 1 with 151 members

Class 2 with 47 members

has missing (NaN) values which have to be removed prior to use (in this case by

removal of the corresponding I/O pairs

cleanedClassificationDataSet=

CIP‘DataTransformation‘RemoveNonNumberIoPairs[classificationDataSet];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents","ClassCount"},cleanedClassificationDataSet]

Number of IO pairs = 194

Number of input components = 32

Number of output components = 2

Class 1 with 148 members

Class 2 with 46 members

to obtain a cleaned data set with a reduced number of valid I/O pairs). Large

data sets may be split in (two) smaller data sets along one input component: As an

example a 3D data set (generated around a 3D function)

pureOriginalFunction=

Function[{x, y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)ˆ2]*Exp[-y]*Sin[7.0*y])];

xRange={0.0, 1.5};

yRange={0.0, 1.5};

numberOfDataPerDimension=100;

standardDeviationRange={0.1, 0.1};

dataSet3D=

CIP‘CalculatedData‘Get3dFunctionBasedDataSet[pureOriginalFunction,

xRange,yRange,numberOfDataPerDimension,standardDeviationRange];

labels={"x","y","z"}; pointSize=0.005;

plotStyle3D=Directive[Green,Specularity[White,40],Opacity[0.4]];

CIP‘Graphics‘Plot3dDataSetWithFunction[

dataSet3D,pureOriginalFunction,labels,

GraphicsOptionPointSize -> pointSize,

GraphicsOptionPlotStyle3D -> plotStyle3D

]

52 1 Introduction

with 10.000 I/O pairs, 2 input components and 1 output component

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents"},dataSet3D]

Number of IO pairs = 10000

Number of input components = 2

Number of output components = 1

is split along input component 1 (which means a split along the x axis)

component=1;

splitInfo=

CIP‘DataTransformation‘SplitDataSet[dataSet3D,component];

dataSetSplitInfo1=splitInfo[[1]];

dataSetSplitInfo2=splitInfo[[2]];

splitDataSet3D1=dataSetSplitInfo1[[1]];

splitDataSet3D2=dataSetSplitInfo2[[1]];

to obtain two smaller subsets with 5.000 I/O pairs each:

CIP‘Graphics‘Plot3dDataSetWithFunction[

splitDataSet3D1,pureOriginalFunction,labels,

GraphicsOptionPointSize -> pointSize,

GraphicsOptionPlotStyle3D -> plotStyle3D

]

1.4 Data structures 53

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents"},splitDataSet3D1]

Number of IO pairs = 5000

Number of input components = 2

Number of output components = 1

CIP‘Graphics‘Plot3dDataSetWithFunction[

splitDataSet3D2,pureOriginalFunction,labels,

GraphicsOptionPointSize -> pointSize,

GraphicsOptionPlotStyle3D -> plotStyle3D

]

54 1 Introduction

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents"},splitDataSet3D2]

Number of IO pairs = 5000

Number of input components = 2

Number of output components = 1

1.5 Scaling of data

In principal data values should be confined to an order of magnitude around 1 by

use of appropriate units, i.e. have values like 0.58, 1.47 or 3.61 but not 10255.24

or 0.00046. This not only makes them easier to comprehend it is also a virtue for

numeric computing since computers do only calculate with a finite number of digits:

Values that differ orders of magnitude may lead to severe calculation errors due to

numerical problems.

Curve fitting methods use xy-error data without any scaling throughout this book.

So all data should be reasonably scaled in advance. In contrast all clustering and ma-

chine learning methods scale the data as part of their algorithms, e.g. all minimum

and maximum values of all single components of inputs and outputs are determined

and then a linear transformation for each component from its [min, max] interval to

interval [0, 1] is performed (in fact interval [0.05, 0.95] is used in CIP to allow very

cautious extrapolations). If outputs of fitted models are calculated the inverse linear

1.6 Data errors 55

transformation is performed. So there is no need for a data preprocessing as far as

clustering or machine learning is concerned.

An often neglected subtlety of data transformation may be noticed: If the x and

y values of xy-error data are transformed it is essential to also transform the errors

by correct error propagation. This is especially important for non-linear transforma-

tions. Since the neglect of errors belongs to the most frequent mistakes in practical

data analysis its consequences are outlined in the curve fitting chapter 2.

1.6 Data errors

Experimental data are biased by errors in principal. There are three sources of errors

that may be distinguished in practice:

• Gross errors: These kind of errors are introduced by experimental mistakes or

simply bad work. They are completely avoidable by proper performance. Nev-

ertheless gross errors are abundant in available experimental data. Usually it is

tried to identify affected data as outliers but this may be very difficult especially

for high dimensional data sets.

• Systematic errors: They introduce systematic shifts to data. Their cause may be

found in subtle calibration problems or specific data preprocessing procedures

(a scientific quantity is rarely measured directly). An example from the area of

chemical spectra analysis is given in Appendix A and chapter 2. Systematic er-

rors are often difficult to be detected, their avoidance needs a deep understanding

and careful inspection of the measurement process.

• Statistical errors: These errors originate from the nature of the specific measure-

ment process and can not be avoided in principal. They may only be reduced by

replacing a measurement process with an improved one. So statistical errors are

an intrinsic property of every measurement and therefore every measured datum

must be attributed with its statistical error.

On the contrary simulated data are artificially constructed to only contain de-

fined statistical errors without any systematic or gross errors. So they may play an

important role for a proper assessment of a data analysis method.

Somewhere in between experimental and simulated data are calculated data, e.g.

data that were produced with a fundamental theory of nature. These data do not con-

tain errors in the statistical sense but are somehow biased by the usually approximate

calculation method. In practice calculated data are treated like simulated data.

Experimental data for curve fitting tasks used to statistically estimate parameters

for model functions y= f (x) must provide their corresponding errors. This necessity

is embodied in the xy-error triple data structure for curve fitting. Each xy-error data

triple consists of an argument value xi, a corresponding dependent value yi and the

statistical error σi of the yi value: (xi,yi,σi). The errors of the xi values are usually

not taken into account, i.e. all xi values are considered to be error-free since their

errors propagate to corresponding bigger errors σi of the dependent yi values. The

56 1 Introduction

errors σi are mandatory for the statistical assessment of curve fitting methods though

often neglected. The statistical error must be reported or at least be estimated since

every measurement is biased: There are no infinite precise measurements possible in

this universe. Before starting any data analysis procedure there should always be a

clear understanding of all related errors of all quantities. Machine learning methods

on the contrary do in general not take data errors explicitly into account since they

lack a thorough statistical basis due to the missing model function. But also for the

assessment of their results the knowledge of at least the approximate size of the

data’s errors is helpful. If a machine learning method describes experimental data

better than expected from their errors the learning procedure failed: A simple so

called overtrained look-up table for the training data was constructed without any

power of predictability (see chapter 4).

1.7 Regression versus classification tasks

Clear["Global‘*"];

<<CIP‘DataTransformation‘

If a machine learning technique is set up to perform a regression task it should

build model functions f that map input vectors x onto output vectors y

y = f (x)

where the output vectors y consists of continuous components with each having

a specific scientific meaning.

A classification setup is somewhat different: The machine learning method is

trained to assign an input vector x to a specific class i. To achieve this goal in terms

of the general regression formulation above there must be an adequate coding of

the output y. Throughout this book the following coding is chosen: The number of

components of the output vector y is set equal to the number of desired classes.

Each component yk of output vector y codes one class. As an example the coding of

3 classes leads to the following output vectors:

Class 1 : y =

⎛
⎝1.0

0.0
0.0

⎞
⎠ ; Class 2 : y =

⎛
⎝0.0

1.0
0.0

⎞
⎠ ; Class 3 : y =

⎛
⎝0.0

0.0
1.0

⎞
⎠

If this coding is chosen a regression task may be performed with these output

vectors. A corresponding data set is called a classification data sets to indicate the

coding of its output vectors. To assign an input vector x to a specific class the max-

imum component of the output vector y is determined: The attributed class then

1.7 Regression versus classification tasks 57

corresponds to the position of the maximum component in the output vector y: If a

trained machine learning method calculates the output vector

y =

⎛
⎝0.2

0.5
0.3

⎞
⎠

for an input vector x then this input vector is assigned to class 2 since component

2 (0.5) is the maximum component of output vector y. Note that it is not necessary

for a correct classification that the machine learning method achieves a high preci-

sion mapping onto the desired output vectors y for each class. It is sufficient when

the class detection component is the maximum component. The value of 0.5 of the

previous example differs considerably from the desired output component value of

1.0 but is absolutely sufficient for a correct classification in this case. Therefore in

general a classification task is somewhat less demanding than a regression task for

a machine learning method. If a regression task fails it may be at least feasible to

classify the data onto different regions of interest.

The I/O pairs of classification data sets like

input1={Subscript[in,11],Subscript[in,12],Subscript[in,13]};

output1={0.0,1.0};

ioPair1={input1,output1};

input2={Subscript[in,21],Subscript[in,22],Subscript[in,23]};

output2={0.0,1.0};

ioPair2={input2,output2};

input3={Subscript[in,31],Subscript[in,32],Subscript[in,33]};

output3={0.0,1.0};

ioPair3={input3,output3};

input4={Subscript[in,41],Subscript[in,42],Subscript[in,43]};

output4={1.0,0.0};

ioPair4={input4,output4};

classificationDataSet={ioPair1,ioPair2,ioPair3,ioPair4};

MatrixForm[classificationDataSet]

⎛
⎜⎝

{in11, in12, in13} {0.,1.}
{in21, in22, in23} {0.,1.}
{in31, in32, in33} {0.,1.}
{in41, in42, in43} {1.,0.}

⎞
⎟⎠

may be sorted ascending according to their class memberships

sortResult=CIP‘DataTransformation‘SortClassificationDataSet[

classificationDataSet];

sortedClassificationDataSet=sortResult[[1]];

MatrixForm[sortedClassificationDataSet]

⎛
⎜⎝

{in41, in42, in43} {1.,0.}
{in11, in12, in13} {0.,1.}
{in21, in22, in23} {0.,1.}
{in31, in32, in33} {0.,1.}

⎞
⎟⎠

with information about the inputs to class relations:

58 1 Introduction

classIndexMinMaxList=sortResult[[2]]

{{1,1},{2,4}}

classIndexMinMaxList contains two elements, i.e. there are two classes: Class 1 with min/max elements {1, 1}

and class 2 with min/max elements {2, 4}. In other words: Class 1 contains one input (with index 1), class 2

contains three inputs (with indices 2, 3 and 4).

Classification task are often connected to pattern recognition: The input vector

x codes a pattern (e.g. a MRI created digital image) that is mapped onto a specific

class with a specific meaning (e.g. tumor tissue): So the pattern may be recognized.

Machine learning methods provide strong pattern recognition abilities in principal

(see chapter 4).

1.8 The structure of CIP calculations

The structure of calculations with the Computational Intelligence Packages (CIP)

is largely unified: With Get methods data are retrieved or simulated (with the CIP

ExperimentalData and CalculatedData package) that are then submitted to a Fit

method (of the CIP CurveFit, Cluster, MLR, MPR, SVM or Perceptron package).

The result of the latter is a comprehensive info data structure (curveFitInfo, clus-

terInfo, mlrInfo, mprInfo, svmInfo or perceptronInfo) that can be passed to Show

methods for evaluation purposes like inspection of the goodness of fit or to Cal-

culate methods for model related calculations. The straight forward and intuitive

scheme Get-Fit-Show-Calculate may easily be remembered and is used through-

out the book. Other CIP packages perform auxiliary tasks like the Graphics package

that provides standardized 2D and 3D diagrams.

CIP methods use a lot of default settings which are unfortunately necessary for

the algorithms to work but the important intricacies may be changed by options

which are outlined in detail throughout the book. This will be crucial for success

in data analysis applications since the default settings are not generally applicable:

They are adequate in one case and lead to a disastrous failure in another.

Note that CIP is open-source and thus available in source code: You may inspect

every detail of the implemented methods and even change or improve them. More

details about CIP are provided in Appendix A.

The Mathematica program code used throughout the book is initialized at the

beginning of each section with

Clear["Global‘*"];

which deletes all prior definitions. This has to be taken into account if code is

extracted since it works top-down only.

1.9 A note on reproducibility 59

1.9 A note on reproducibility

It is a main goal of an interactive cookbook to be properly reproduced on a reader’s

computer system. Deviations in computational speed are inevitable due to hardware

differences so that all reported calculation periods do only have a relative meaning

(especially when it comes to parallelized calculations). In addition differences con-

cerning the calculation results may be detected for different versions of the Math-

ematica computing platform: They may range from small numerical deviations in

comparison with the reported values up to completely different outcomes of calcu-

lations in the case that small numerical deviations leads to qualitatively different

decisions under the hood. These changes may be attributed to the constant improve-

ment of the complex basic algorithms of the Mathematica system which are heavily

utilized by CIP, e.g. an earlier convergence problem may no longer show up after the

implementation of an additional safeguard in a newer version. These possible differ-

ences should always be taken into account by comparing the reported book’s results

with the (emphatically wanted) personal hands-on recalculations by the reader.

Chapter 2

Curve Fitting

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

Two-dimensional curve fitting starts with experimental xy-error data (points in

diagram below) which consist of data triples (xi,yi,σi) with an argument value xi, a

corresponding dependent value yi and the (not illustrated) statistical error σi of the

yi value (again note that xy-error data are generated by experimental setups which

specify a xi value and measure a corresponding yi value for that fixed xi value where

the errors of all xi values are not taken into account, i.e. all xi values are considered

to be error-free since their errors propagate to corresponding bigger errors σi of the

dependent yi values):

pureModelFunction=Function[x,1.0+1.0*x+0.4*xˆ2-0.1*xˆ3];

argumentRange={-2.0,5.0};

numberOfData=100;

standardDeviationRange={0.5,0.5};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureModelFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

© Springer International Publishing Switzerland 2016
A. Zielesny, From Curve Fitting to Machine Learning, Intelligent Systems
Reference Library 109, DOI 10.1007/978-3-319-32545-3_2

61

62 2 Curve Fitting

Curve fitting tries to adjust a smooth and balancing model function f (x) (solid

line in diagram below)

modelFunction=a1+a2*x+a3*xˆ2-a4*xˆ3;

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3,a4};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,modelFunction,

argumentOfModelFunction,parametersOfModelFunction];

labels={"x","y","Curve fitting"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

that describes the data adequately (all details will be outlined in a minute). In

more mathematical terms curve fitting is a data analysis procedure which tries to

construct a linear or non-linear model function

y = f (x)

2 Curve Fitting 63

from experimental xy-error data. Besides the rare case that the model function

f (x) is completely known (then there is nothing to be fitted: The quantity of interest

may be directly calculated in this holy grail situation) three different scenarios may

be distinguished:

• Scenario 1: The structural form of the model function f (x) is theoretically or

empirically known but not the values of its parameters, e.g. the structural form

is known to be a straight line but the values of its parameters (i.e. of slope and

intercept) are unknown.

• Scenario 2: The structural form of the model function f (x) is unknown but it

may be somehow guessed.

• Scenario 3: The structural form of the model function f (x) is unknown and there

is no idea what it is about.

Scenario 1 demands a how-to procedure to estimate the unknown parameters of

the structurally known model function in an optimum way whereas scenario 2 needs

a construction strategy that combines trial and error as well as good guesses in ad-

dition (in two dimensions a good guess is quite often feasible in contrast to higher

dimensional machine learning problems). For scenario 3 at least some criteria may

be derived that allow the construction of something that is smooth and balancing.

For scenario 1 (and scenario 2 after the good guess) the estimation of optimum val-

ues for the unknown parameters of the model function is the essential step to achieve

a good fit. If the statistical distribution of the experimental xy-error data is known

this may be performed on a solely statistical ground which then defines the criterion

of optimization (see [Hamilton 1964], [Barlow 1989], [Bevington 2002] or [Brandt

2002]). For all further discussions a Gaussian (normal) distribution of experimental

errors is always assumed which is the most common case in practice (thanks to the

central limit theorem). In addition each data triple (xi,yi,σi) of the xy-error data is

assumed to be statistically independent of each other, i.e. the values of a data triple

are by no means influenced by the values of other data triples (which leads to a so

called maximum likelihood estimation). Note that this latter assumption is a seri-

ous and hard to achieve precondition since a lot of natural (and social) phenomena

are subtly correlated to each other. So special care has to be taken for experimental

setups to achieve true independence.

If the model function could be successfully fitted to the data it may be used

twofold: For interpolation purposes to calculate function values within the experi-

mental argument range [xmin, xmax] as well as for extrapolation purposes to calculate

function values outside this argument range. The latter is possible since the struc-

tural form of the model function is a priori known. This is a clear difference to

mere data smoothing or machine learning methods that have no initial idea about

the model function: Their constructed model functions can not be used for extrapo-

lation purposes in principle (multiple linear regression will be an exception but this

method is usually not accounted to fall into the machine learning reign).

When a model function is to be guessed (scenario 2) some general considerations

should be taken into account. First the number of parameters should be considerably

smaller than the number of data (of course this should apply to scenario 1 too): Oth-

64 2 Curve Fitting

erwise a simple look-up table would be easier to create. The number of parameters

should be as small as possible or in other words: The model function with fewer

parameters that describes the data satisfactorily is preferred to the model function

with more parameters. This is a well-known utilization of Occam’s razor - one of

the philosophical principles of scientific practice that states that the explanation of

any phenomenon should make as few assumptions as possible.

In the case that there is no idea of the functional form of a model function (sce-

nario 3) a convincing data smoothing procedure is outlined that uses smoothing

cubic splines. It should be clear that this smoothing model function can not be used

for extrapolation purposes as mentioned before.

Chapter 2 starts with an outline of necessary basics: The criteria and quantities

for curve fitting and data smoothing are intuitively derived with arguments of plau-

sibility only (section 2.1). To tackle scenario 1 quantities and diagrams to assess the

goodness of fit are illustrated by means of a perfect straight line fit to simulated data

(section 2.2). The empirical construction of a model function for real experimental

data on the basis of trial and error in combination with educated guesses is outlined

to illustrate scenario 2 as a next step. The extrapolation problem is addressed in

particular (section 2.3). Problems and pitfalls of curve fitting tasks are discussed in

detail afterwards: They are at heart of this chapter since they are often the hurdle

that prevents practitioners from successful data analysis. Fitting non-linear model

functions requires adequate start values for all parameters that allow the fitting pro-

cedure to succeed: Problems and search strategies are sketched. The extraction of a

model function from experimental data may be challenging up to ambiguous which

is discussed for difficult curve fitting problems. Model functions themselves may

be inappropriately constructed that may lead to fatal pitfalls. A more subtle kind of

inappropriateness of a model function is exemplified by an effort to extract infor-

mation from data that they simply do not contain (section 2.4). The estimation of

parameters’ errors, possible corrections and the influence of confidence levels are

demonstrated afterwards. Parameters’ errors are influenced by the precision of data

as well as their number: An iterative method for the estimation of the necessary

number of data to achieve a desired parameters’ precision is suggested. Experimen-

tal data of relatively low precision may lead to large parameter errors for specific

model functions: This prevents support or rejection of underlying theoretical con-

siderations. In this context there is a strong temptation for educated cheating which

means putting up unjustified statements that seem to be advised by the data analy-

sis procedure - an illustrative example is shown. The discussion of the influence of

experimental errors on the fitted optimum parameters’ values and the related possi-

ble problems of data transformations complement this topic (section 2.5). It is often

necessary to enhance theoretical model functions by empirical parameters to suc-

cessfully describe experimental data. An example is discussed that also makes use

of the dangerous removal of outliers (section 2.6). Mere data smoothing without any

knowledge of a model function (scenario 3) is demonstrated to create a smooth and

balancing description of data (section 2.7). Finally the whole chapter is summarized

with a few cookbook recipes for successful curve fitting and data smoothing (section

2.8).

2.1 Basics 65

2.1 Basics

A curve fitting procedure may be derived with mathematical statistics (see [Hamil-

ton 1964], [Barlow 1989], [Bevington 2002], [Brandt 2002] and [Press 2007])

whereas this section follows an intuitive approach that only uses arguments of plau-

sibility - but of course comes to the same results: How is a model function to be fit?

How may data satisfactorily be smoothed?

2.1.1 Fitting data

At first sight it is obvious that a good fit should minimize the so called residuals, i.e.

the deviations between experimental values yi and their corresponding calculated

function values f (xi):

yi − f (xi) −→ minimize!

Since positive and negative residuals should be treated equally they may be

squared to get rid of the sign:

(yi − f (xi))
2 −→ minimize!

The absolute value or a higher even power of the residuals could be taken as

well with respect to plausibility but this would lead to other statistics so the square

is taken for statistically independent and normally distributed deviations (behind

the scenes: The square stems from the square in the exponential term of a normal

distribution where the minimum postulation leads to maximum likelihood). The sum

of squared residuals of all K xy-error data triples

∑K
i=1 (yi − f (xi))

2 −→ minimize!

may be calculated as a quantity to be minimized for a good fit. But so far the

errors σi of the experimental values yi are neglected. The smaller a single error σi

the more precise its corresponding experimental value yi. If each residual is divided

by its corresponding error an individual weight is attributed: The resulting fraction

yi− f (xi)
σi

is the bigger the smaller the error σi is. With the weighted sum of squares

∑K
i=1

(
yi− f (xi)

σi

)
2 −→ minimize!

66 2 Curve Fitting

a plausible minimization quantity is finally achieved: It becomes smaller the

smaller the residuals are, i.e. the better the model function f (x) describes the data.

Each single residual is weighted with its error σi: The smaller an error σi the more

the corresponding residual (yi − f (xi)) is taken into account (i.e. the more it con-

tributes to the sum). This minimization process is known in statistics as the method

of least squares and the weighted sum of squares is called χ2 ("chi-square"):

χ2 = ∑K
i=1

(
yi− f (xi)

σi

)
2

If the L parameters a1 to aL of the model function f are explicitly written

χ2 (a1, ...,aL) = ∑K
i=1

(
yi− f (xi,a1,...,aL)

σi

)
2

it becomes obvious that the quantity χ2 is a function of these parameters: The

parameters a1 to aL of the model function f are the variables of the quantity χ2

which is to be minimized. Thus minimization of χ2 (a1, ...,aL) means finding values

for the parameters a1 to aL so that the value of χ2 (a1, ...,aL) becomes a global

minimum in parameters’ value regions that have scientific meaning. The values of

the parameters a1 to aL at the global minimum of χ2 (a1, ...,aL) are then called the

optimum estimates for the true parameter values in a statistical sense. Note that

the functional form of f is assumed to be true as a precondition of all statistical

procedures: Only parameter values can be estimated but not the structural form of

the function f itself.

In summary a linear or non-linear curve fitting procedure is a mere global min-

imization of the quantity χ2 (a1, ...,aL). The global minimum may be calculated

analytically in the case that the model function f is linear in its parameters: Then

χ2 (a1, ...,aL) is a parabolic hyper surface and possesses exactly one minimum. But

it may only be approximated with an iterative search strategy in the case that f is

non-linear in its parameters (compare chapter 1 and [FitModelFunction] in the ref-

erences). In the latter case the quantity χ2 (a1, ...,aL) may contain multiple minima

and the minimization procedure may fail (e.g. get stuck in a local minimum, exceed

the defined maximum number of iterations etc.). Failure will be explicitly explored

and discussed in subsequent sections.

2.1.2 Useful quantities

There are a number of related statistical quantities that will prove to be useful for

further discussions. If the model function describes the data well the residuals (yi −
f (xi)) should be comparable in size to the errors σi on average (otherwise the errors

σi would not be true errors but systematically too large or too small on average).

This means that the fractions

2.1 Basics 67

yi− f (xi)
σi

≈ 1

should be close to 1 on average. So the sum of squares evaluates approximately

to

χ2 = ∑K
i=1

(
yi− f (xi)

σi

)
2 ≈ ∑K

i=1(1)
2 = ∑K

i=1 1 = 1+ 1+ ...+ 1 = K

With this result in mind a statistical quantity named χ2
red ("reduced chi-square")

can be defined as

χ2
red (a1, ...,aL) =

χ2(a1,...,aL)
K−L

= 1
K−L ∑K

i=1

(
yi− f (xi ,a1,...,aL)

σi

)
2 ≈ 1 for K � L

which evaluates to a value close to 1 for a good fit since the number of data K

should be considerably larger than the number of parameters of the model function

L, i.e. K � L. The denominator (K − L) is called degrees of freedom since the

parameter values are deduced from the data. The residuals of a fit may be condensed

into the single statistical quantity σfit called the standard deviation of the fit. If all

errors σi are identical (i.e. equal to σ) the standard deviation of the fit is defined as

σfit =
√

1
K−L ∑K

i=1 (yi − f (xi,a1, ...,aL))2 for σi = σ ; i = 1, ...,K

In general with individual errors σi the standard deviation of the fit is expressed

as

σfit =

√
1

K−L ∑K
i=1

(
yi− f (xi,a1,...,aL)

σi

)
2/
√

1
K ∑K

i=1
1

σ 2
i

where the latter equation reduces to the previous one in the case of equal σi. The

statistical standard deviation of the fit is similar to a purely empirical quantity called

the rrroot mmmean sssquared eeerror (RMSE). In this context the RMSE of a fit is simply

defined as

RMSE =
√

1
K ∑K

i=1 (yi − f (xi))2

A RMSE may readily be generalized to machine learning applications for prob-

lems in multiple dimensions. The quantities χ2
red (a1, ...,aL), σfit and RMSE respec-

tively may be used to assess the goodness of a fit. As far as the data’s errors are

concerned a situation quite often encountered in practice is the following: The pre-

cise statistical errors σi of the yi values are unknown, but weights wi for the yi values

are available. The relation of the weights wi and their corresponding statistical errors

σi can be written as

68 2 Curve Fitting

σi =
α
wi

where the factor α is used to calculate a statistical error from its corresponding

weight. Weights are defined to be the heavier the bigger they are: Statistical errors

lead to higher weights the smaller they are. Therefore weights and errors are in-

versely proportional by the constant factor α . If only weights are known the factor

α is unknown. But a reasonable estimate of α may be obtained from the χ2
red value

(which should be close to 1 as mentioned before):

χ2
red (a1, ...,aL) =

χ2(a1,...,aL)
K−L

= 1
K−L ∑K

i=1

(
yi− f (xi ,a1,...,aL)

σi

)
2 ≈ 1

1
K−L ∑K

i=1

(
yi− f (xi,a1,...,aL)

α
wi

)
2 = 1

α2(K−L) ∑K
i=1 w2

i (yi − f (xi,a1, ...,aL))
2 ≈ 1

α ≈
√

1
(K−L) ∑K

i=1 w2
i (yi − f (xi,a1, ...,aL))2

In practice it is common to correct the errors σi of the xy-error data with this

method: The original errors σoriginal,i of the xy-error data are assumed to be weights

only

wi =
1

σoriginal,i

and are transformed after the fit into the corrected errors σcorrected,i:

σcorrected,i =
α
wi

= α
1

σoriginal,i

= ασoriginal,i

These corrected errors σcorrected,i are then used for the derivation of further sta-

tistical quantities related to the fit - above all the estimation of errors σa1
, ...,σaL

of

the model function’s parameters a1, ...,aL.

2.1.3 Smoothing data

When it comes to mere data smoothing statistics is no longer helpful. As already

pointed out statistics is not able to guess a model function in principal - it may only

estimate optimum values of a structurally known model function’s parameters and

related quantities with a bunch of statistical preconditions (like independent and nor-

mally distributed data). Therefore data smoothing comprises a set of techniques that

somehow construct a smooth and balancing interpolating model function from ex-

perimental xy-error data (extrapolation is of course not possible). There is no objec-

tive way to smooth data so there is nothing like the best smoothing technique. With

data smoothing we are back to the jungle where everything is allowed that leads to

a satisfactory result. Among the numerous techniques for smoothing experimental

2.1 Basics 69

xy-error data the smoothing cubic splines method is sketched in the following (see

[Reinsch 1967] and [Reinsch 1971]). This method seems to produce satisfactory

results accepted by experimental scientists in general - but this technique is by no

means better or superior to others. Data smoothing with cubic splines, i.e. cubic

polynomials

y = f (x) = a1 + a2x+ a3x2 + a4x3,

uses the already sketched χ2
red value

χ2
red =

χ2

K
= 1

K ∑K
i=1

(
yi− f (xi)

σi

)
2

as a reasonable first control parameter: Good data smoothing should lead to a

smoothing model function with

χ2
red ≈ 1

For convenience the same notation is used for data smoothing as for statistically

fitting model functions. But data smoothing is not statistically based. Quantities like

χ2
red have no longer any statistical meaning but are simply used as helpful quantities

for the smoothing task. Therefore χ2
red is set to

χ2

K
since there are no statistical de-

grees of freedom for data smoothing. The same applies to quantities like σfit: They

also use the number of data K instead of the degrees of freedom within this con-

text. The cubic splines are constructed from data point to data point, i.e. for K data

points (K − 1) cubic splines have to be used. These cubic splines must be adjusted

to achieve the initially defined χ2
red value together with the constraint of a criterion

of smoothness: The resulting smoothing model function (composed of the piece-

wise cubic splines) should posses the smallest overall curvature possible to achieve

the predefined χ2
red value. Since the curvature is measured by the second derivative

f ”(x) of the model function the integral of the square of the second derivative over

the argument interval [x1, xL] is to be minimized

∫ xL
x1

(
d2 f (x)

dx2

)2

dx −→ minimize!

where the xy-error data are assumed to be sorted ascending according to their

argument values xi. The square of the second derivative is used for equal treatment of

positive and negative curvature. Both criteria are of course contradicting each other:

The smaller the χ2
red value the larger the curvature integral value and vice versa.

With this mutual interplay a satisfactory smooth and balancing model function may

be constructed.

70 2 Curve Fitting

2.2 Evaluating the goodness of fit

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

A simple example is used to demonstrate the curve fitting procedure and the

evaluation of the goodness of fit. One thousand (xi,yi,σi) data triples

numberOfData=1000;

are simulated around the straight line y = f (x) = 1+ 2x

pureOriginalFunction=Function[x,1.0+2.0*x];

in the argument range [2, 5]

argumentRange={2.0,5.0};

with a relative error of 5% of the function value (since the straight line is con-

stantly increasing a minimum argument value of 2.0 leads to a minimum function

value of 5.0: A relative error of 5% for 5.0 is an absolute value of 0.25. A maximum

argument value of 5.0 corresponds to a function value of 11.0 with a 5% relative

error of 0.55)

errorType="Relative";

standardDeviationRange={0.05,0.05};

using the CIP CalculatedData package. All data are normally distributed around

their function values, the relative error denotes the standard deviation of the normal

distribution used for the data generation (i.e. for a y value of 5 a standard deviation

of 0.25 is used, for a y value of 11 a standard deviation of 0.55 respectively):

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType];

Here is a plot of the mere simulated data:

labels={"x","y","Simulated data"};

pointSize=0.01;

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels,

GraphicsOptionPointSize -> pointSize]

2.2 Evaluating the goodness of fit 71

Curve fitting procedures are performed with the CIP CurveFit package. For a fit

the model function itself, the argument and the parameters of the model function

must be defined

modelFunction=a1+a2*x;

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2};

and submitted together with the xy-error data to the FitModelFunction method to

produce a result captured in a curveFitInfo data structure (see [FitModelFunction]

for algorithmic details):

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

If no error messages are thrown the fit procedure was successful and results can

be inspected. The function plot with the fitted straight line and the simulated data

painted above provides a first impression:

labels={"x","y","Simulated data and model function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,

GraphicsOptionPointSize -> pointSize,

CurveFitOptionLabels -> labels];

72 2 Curve Fitting

The fit looks perfect which is also affirmed by inspection of the residuals, i.e.

the deviations between the data and the model function: The residuals plot for the

relative residuals

CIP‘CurveFit‘ShowFitResult[{"RelativeResidualsPlot"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];

exhibits statistically distributed residuals predominantly in the expected value

range of ± 5% without any systematic deviation patterns. Residuals plots are prob-

ably the most important goodness-of-fit visualizations: If they look good the fit in

general is good (but compare comments on educated cheating below). Note that the

index of an residual corresponds to the x value of its data triple: Residual with in-

dex 1 corresponds to the data triple with the smallest x-value, the residual with the

highest index to the data triple with the maximum x-value. The standard deviation

of the fit σfit

2.2 Evaluating the goodness of fit 73

CIP‘CurveFit‘ShowFitResult[{"SDFit"},xyErrorData,curveFitInfo];

Standard deviation of fit = 3.699×10-1

lies well within the range of (absolute) simulated errors from 0.25 to 0.55. The

value of χ2
red

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 9.955×10-1

is close to 1 as expected. The fitted model function is:

CIP‘CurveFit‘ShowFitResult[{"ModelFunction"},xyErrorData,

curveFitInfo];

Fitted model function:

1.01901+1.98941x

Note that the estimated optimum parameter values are not identical to the true pa-

rameter value of 1.0 and 2.0 used for the data generation. The errors of the simulated

data are propagated to corresponding errors of the estimated optimum parameter’s

values so the latter are also not exact but biased by errors:

CIP‘CurveFit‘ShowFitResult[{"ParameterErrors"},xyErrorData,

curveFitInfo];

Value Standard error Confidence region

Parameter a1 = 1.01901 0.0454137 {0.973574, 1.06445}
Parameter a2 = 1.98941 0.014094 {1.9753, 2.00351}

The estimated optimum value of parameter a1 is 1.02, its standard error is 0.05:

So the parameter value lies with a standard statistical probability of 68.3% in the

confidence region 1.02 ± 0.05, i.e. interval [0.97, 1.07]. Within linear statistics an

awful lot of additional statistical quantities could be deduced. Within the scope of

this book the discussion is restricted to basic quantities that play the most important

role for evaluation and analysis purposes and those quantities and diagrams that may

readily be generalized to machine learning applications for problems with more

dimensions. The empirical root mean squared error RMSE should also lie within

the range of (absolute) simulated errors from 0.25 to 0.55

CIP‘CurveFit‘ShowFitResult[{"RMSE"},xyErrorData,curveFitInfo];

74 2 Curve Fitting

Root mean squared error (RMSE) = 4.044×10-1

and is similar to σfit as expected. The mean, median, standard deviation and max-

imum values of the (absolute) relative residuals do correspond perfectly to the sim-

ulated errors:

CIP‘CurveFit‘ShowFitResult[{"RelativeResidualsStatistics"},

xyErrorData,curveFitInfo];

Definition of ’Residual (percent)’: 100*(Data - Model)/Data

Out 1 : Residual (percent): Mean/Median/Maximum Value = 4.01 / 3.28 / 2.27×101

Out 1 means output component 1: In two-dimensional curve fitting there is only

one output component whereas machine learning problems with more dimensions

may contain several output components. Another frequently used diagram is the

model-versus-data plot: The output (function value) of the model function is plotted

against the corresponding data value:

CIP‘CurveFit‘ShowFitResult[{"ModelVsDataPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo,

GraphicsOptionPointSize -> pointSize];

Out 1 : Correlation coefficient = 0.973565

A statistical (Pearson) correlation coefficient was calculated in addition that con-

denses the agreement between data and output values into a single quantity (where

a value closer to one means a desired high correlation between both quantities and a

value closer to zero an unwanted low correlation which thus motivates a closer look

2.2 Evaluating the goodness of fit 75

at the used model function with respect to its appropriateness). In an alternative dia-

gram all model function values are sorted in ascending order and are jointly plotted

with the corresponding data values above:

CIP‘CurveFit‘ShowFitResult[{"SortedModelVsDataPlot"},xyErrorData,

curveFitInfo];

The data line above should statistically/randomly crawl around the model line

below (the model function outputs) as shown in this perfect example. If the statis-

tical distribution of relative residuals is approximated by the frequency of relative

residuals within a number of interval bins (default: 20 bins) that cover the whole

range of relative residual values a normal distribution around zero is approximated

as expected

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsDistribution"},xyErrorData,

curveFitInfo];

76 2 Curve Fitting

since a normal distribution was used to generate the data. The width of the ap-

proximated Gaussian bell curve corresponds perfectly to the 5% value of the stan-

dard deviation used for the data generation above. All plots reveal an excellent and

very convincing model function fit. In the next section it is shown how the sketched

quantities and diagrams may be utilized to construct a model function for real ex-

perimental data.

2.3 How to guess a model function

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

As a practical example a model function for the temperature dependence of the

viscosity of water is to be constructed. The viscosity of a liquid is a dynamic prop-

erty which is the result of the specific molecular interactions describable in the reign

of quantum theory. But the dynamics of these interactions is too complex to be cal-

culated ab-initio on the grounds of today’s science. Moreover water is not a simple

liquid in chemical terms although it is so well-known from everyday life: The water

molecules form specific dynamic supramolecular structures due to their ability to

create hydrogen bonds - specific weak quantum-mechanical interactions that also

hold our DNA strands together. The experimental data are provided by the CIP Ex-

perimentalData package (see Appendix A for reference):

xyErrorData=CIP‘ExperimentalData‘GetWaterViscosityXyErrorData[];

They describe the temperature dependence of the viscosity η of water in the

temperature range from 293.15 to 323.15 K (20 to 50 degree Celsius) with a very

2.3 How to guess a model function 77

small estimated experimental error of 0.0001
(
10−4

)
cP (centi-Poise is the scientific

unit of viscosity) as is illustrated by the mere data plot:

labels={"T [K]","\[Eta] [cP]","Viscosity of water"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

The dependence of the viscosity on the temperature is distinct but not dramati-

cally non-linear as may be shown by an initial straight-line fit:

η = f (T) = a1 + a2T

modelFunction=a1+a2*T;

argumentOfModelFunction=T;

parametersOfModelFunction={a1,a2};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

labels={"T [K]","\[Eta] [cP]","Data above model function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

78 2 Curve Fitting

But the residuals (i.e. the deviations between data and linear model) are orders of

magnitude larger than the experimental errors and they reveal a distinct systematic

deviation pattern:

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.991451

Thus a linear straight line is only a poor model for the data. Note that the popular

correlation coefficient is very close to 1 which indicates a high correlation between

data and machine output: This is often cited by practitioners as a convincing good-

ness of fit criterion but it is a number which has to be judged with caution (see

discussion below). An improvement may be attempted by introduction of a third

parameter to build a (non-linear) quadratic parabola

η = f (T) = a1 + a2T + a3T 2

2.3 How to guess a model function 79

as a model function:

modelFunction=a1+a2*T+a3*Tˆ2;

parametersOfModelFunction={a1,a2,a3};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

The function plot looks better and the residuals are reduced by an order of mag-

nitude but are still beyond acceptability:

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.999888

80 2 Curve Fitting

In principal the degree of the fit polynomial could be raised with additional pa-

rameters to improve the fit but this strategy is generally a poor one: The high-order

polynomials tend to oscillate and may not be predictive for extrapolation or even

interpolation purposes (also compare below). Since the viscosity is decreasing with

increasing temperature a two-parameter inversely proportional approach seems to

be a plausible alternative trial:

η = f (T) = a1 +
a2
T

modelFunction=a1+a2/T;

parametersOfModelFunction={a1,a2};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

Unfortunately there is no real improvement but it might be a good idea to shift

the data along the T axis with a third parameter in addition:

η = f (T) = a1 +
a2

a3−T

modelFunction=a1+a2/(a3-T);

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,1.0},{a2,-10.0},{a3,250.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

Note that start parameters had to be introduced to perform a successful fit: This necessity is addressed in the

next sections to ease the current discussion.

2.3 How to guess a model function 81

For the first time the function plot seems to be convincing. The residuals plot

shows a dramatic improvement

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.999998

with residuals in the order of the experimental error. But an unlovely systematic

deviation pattern can still be detected: This indicates that the true functional form is

still missed. As another alternative a two-parameter decaying exponential function

may be tried

η = f (T) = a1 exp{a2T}

modelFunction=a1*Exp[a2*T];

parametersOfModelFunction={a1,a2};

82 2 Curve Fitting

startParameters={{a1,0.1},{a2,-0.001}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

again with a poor result

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.998755

so the use of an inverse argument in the exponential may be a choice

2.3 How to guess a model function 83

η = f (T) = a1 exp
{

a2
T

}

modelFunction=a1*Exp[a2/T];

parametersOfModelFunction={a1,a2};

startParameters={{a1,0.1},{a2,1000.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

that actually offers a better outcome:

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.999704

84 2 Curve Fitting

The introduction of the exponential function with a reciprocal argument pro-

duced the best two-parameter fit so far (this is also a historical result obtained by

Andrade, see [Andrade 1934]: Note that the fitted model function can be linearized

by a logarithmic transformation - the only feasible solution for non-linear problems

in the precomputing era). Since shifting along the T axis with a third parameter was

successful earlier it is tried again with the new functional form:

η = f (T) = a1 exp
{

a2
a3−T

}

modelFunction=a1*Exp[a2/(a3-T)];

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

From visual inspection the fit looks perfect and the residuals plot

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

2.3 How to guess a model function 85

Out 1 : Correlation coefficient = 1.

reveals residuals that satisfactorily correspond to the experimental error of 0.0001

cP (this model function was historically found by Vogel after laborious linearization

work, see [Vogel 1921]). Since a systematic pattern of deviations is still obvious

two nearby improvements are finally tested which do not increase the number of

parameters. First the initial factor is divided by T to try a combination with the

inversely proportional approach tested earlier

η = f (T) = a1
T

exp
{

a2
a3−T

}

modelFunction=a1/T*Exp[a2/(a3-T)];

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

86 2 Curve Fitting

Out 1 : Correlation coefficient = 1.

ShowFitResult[{"SDFit"},xyErrorData,curveFitInfo];

Standard deviation of fit = 3.321×10-5

and in addition the shift along the T axis is generalized:

η = f (T) = a1
a3−T

exp
{

a2
a3−T

}

modelFunction=a1/(a3-T)*Exp[a2/(a3-T)];

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 1.

CIP‘CurveFit‘ShowFitResult[{"SDFit"},xyErrorData,curveFitInfo];

Standard deviation of fit = 2.937×10-5

The latter model function produces an absolutely convincing result: Systematic

deviation patterns are vanished and the residuals are even below the estimated ex-

perimental error. This is also revealed by the χ2
red value of

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare"},xyErrorData,

curveFitInfo];

2.3 How to guess a model function 87

Reduced chi-square of fit = 8.625×10-2

which is considerably below 1 (this finding will be discussed in a subsequent

chapter in combination with parameter errors). The optimum description of the data

achieved by empirical construction may now be stated:

CIP‘CurveFit‘ShowFitResult[{"ModelFunction"},xyErrorData,

curveFitInfo];

Fitted model function:

− 19.3098e
− 200.831

179.802−T

179.802−T

For a satisfactory description of the data a three-parameter model function is

necessary compared to the two-parameter results (this view is also supported by the

historical trend from Andrade to Vogel, see above). The final model function may

be used for interpolation and extrapolation purposes. If the correlation coefficient

is again inspected for the sketched trial and error model generation procedure its

relative value corresponds to the true goodness of fit of each model (the better the

model the closer is the correlation coefficient to one). But note that its absolute

value is always very near to 1 so care has to be taken if a guessed model function

is only cited with its correlation coefficient without any further information (which

quite often occurs in practice) since this does not necessarily mean a good fit. For

the water-viscosity data it is finally possible to precisely show what is meant by

reasonable extrapolation with the following plot:

pureFunction=Function[x,CIP‘CurveFit‘CalculateFunctionValue[x,

curveFitInfo]];

argumentRange={263.0,383.0};

plotRange={0.0,3.0};

plotStyle={{Thickness[0.005],Black}};

labels={"T [K]","\[Eta] [cP]","Extrapolation problems"};

extrapolationGraphics=

CIP‘Graphics‘PlotXyErrorDataAboveFunctions[xyErrorData,

{pureFunction},argumentRange,plotRange,plotStyle,labels];

intervalGraphics=Graphics[{RGBColor[0,1,0,0.2],

Rectangle[{273.15,0.0},{373.15,3.0}]}];

Show[extrapolationGraphics,intervalGraphics]

88 2 Curve Fitting

The model function does not know that liquid water undergoes phase transitions

if the temperature is lowered or raised beyond the illustrated background region in

the diagram: Below 273.15 K water is solid matter (ice) with a practically infinite

viscosity, above 373.15 K water is gaseous (vapor) with a dramatically reduced

viscosity. To calculate a viscosity at 260 K is possible

argument=260;

CIP‘CurveFit‘CalculateFunctionValue[argument,curveFitInfo]

2.94556

but this value is not of this world. Whereas extrapolations around the data argu-

ment range may be helpful and sufficiently precise any large-scale extrapolations

should always be regarded with suspicion. In summary it should be noted that the

outlined construction strategy is very common for an educated guess of a model

function. A combination of experience with mere trial and error is very often suc-

cessful in two-dimensional curve fitting.

2.4 Problems and pitfalls

Linear as well as non-linear curve fitting was shown to be an optimization task

(again note that the terms linear and non-linear denote the linearity or non-linearity

of the model function with regard to its parameters a1 to aL, not the linear or non-

linear dependence of the function value y on the argument value x): The global

minimum of the χ2 (a1, ...,aL) surface is to be found. As discussed in chapter 1

minimization procedures may fail. Failure leads to wrong estimates for the parame-

ters’ values and the parameters’ errors or even a crash (i.e. an internal termination)

of the whole fitting procedure.

Linear curve fitting implies the minimization of a parabolic χ2 (a1, ...,aL) hyper

surface that contains only one global minimum which can be calculated directly

2.4 Problems and pitfalls 89

by analytical means (see [Hamilton 1964], [Bevington 2002] or [Brandt 2002] for

details). But this calculation involves a matrix inversion which can be a numer-

ically ill-conditioned operation, i.e. problems may occur because computers can

only calculate with a finite number of digits. These numerical problems can be tack-

led with state-of-the-art algorithms so failure usually happens in consequence of

the implementation of deficient algorithms with missing safeguards against numeri-

cal instabilities. Since CIP is based on Mathematica which provides state-of-the-art

algorithms linear curve fitting almost always works without problems. But there

should be some awareness if alternative software applications are used as black

boxes for linear curve fitting to avoid unnoticed pitfalls: There is a lot of dangerous

stuff around - may it be commercial or free.

The situation with non-linear curve fitting is fundamentally different: Since

χ2 (a1, ...,aL) may be an arbitrarily difficult and complex curved hyper surface for a

non-linear model function it may possess a plethora of minima. There is no way

to directly calculate the global minimum by analytical means in principle. The

χ2 (a1, ...,aL) hyper surface can only be searched by iterative local minimization

procedures that start at user-defined parameters’ values and explore their surround-

ings (compare chapter 1 and [FitModelFunction] in the references). In addition to

these principal issues the numerical problems sketched for linear curve fitting may

be encountered as well or even in a more serious manner. So in practice there may be

an evil mixture of problems - some that can be avoided by state-of-the-art software

and others that can only be attributed to the nature of the fitting problem and may

be tackled by specific strategies. Some practical problems together with possible

solution strategies are outlined in the following.

2.4.1 Parameters’ start values

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

The necessity of adequate parameters’ start values may be illustrated by an ex-

ample. Fifty xy-error data triples

numberOfData=50;

are simulated around the non-linear Gaussian-peak shaped function

y = f (x) = 1
2
x+ 3exp

{
−(x− 4)2

}

90 2 Curve Fitting

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)ˆ2]];

in the argument range [1.0, 7.0]

argumentRange={1.0,7.0};

with an absolute standard deviation of 0.5

standardDeviationRange={0.5,0.5};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

and finally plotted for visual inspection:

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

If the data are fitted with the corresponding model function with three parameters

and the CIP default settings

modelFunction=a1*x+a2*Exp[-(x-a3)ˆ2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

2.4 Problems and pitfalls 91

Fitted model function:

5.53945e−(−25.4806+x)2 +0.681816x

the achieved result is simply wrong. What happened? Internally the FitModel-

Function method generates random parameters’ start values for the local minimiza-

tion procedure - and these start values are simply inadequate in this case (but they

may work perfectly in other fitting procedures). So start values for the parameters

must be provided by hand. Since the true parameter values are 0.5, 3.0 and 4.0 (see

above) everything works fine if parameters’ start values are specified near the solu-

tion:

startParameters={{a1,0.4},{a2,3.1},{a3,3.9}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

92 2 Curve Fitting

Fitted model function:

3.01029e−(−4.09318+x)2 +0.495279x

A perfect fit is the result. It is well-known to practitioners that fitting Gaussian-

peak shaped model functions requires a good guess for the parameter value in the

exponential term: This start value may be deduced from the mere data in this case:

The maximum is around x = 4 so use a value around 4 as a start value for parameter

a3.

The worst case occurs if a3 is chosen to be very unfavorable: Then the whole

fitting procedure may crash (i.e. may internally be terminated) as shown in the fol-

lowing example:

startParameters={{a1,0.4},{a2,3.1},{a3,-3.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

Underflow occurred in computation.

A value was calculated during the minimization process that was smaller than the

smallest allowed value of the Mathematica system and therefore an underflow error

message (and subsequent error messages) were generated. Note that this behavior

can not simply be traced to a bad algorithm: The default Levenberg-Marquardt al-

gorithm used by FitModelFunction for two-dimensional non-linear curve fitting is

a state-of-the-art algorithm for this purpose. But it may fail in principle: It can not

safeguard every possible calculation. It might be a good idea to simply change the

minimization algorithm: An alternative minimization algorithm will usually gener-

ate a different outcome. That is why a library of algorithms is most often a severe ad-

vantage. But not in this case: If the algorithm is changed from Levenberg-Marquardt

to Conjugate-Gradient

method={"ConjugateGradient"};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionMethod -> method];

The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal

but was unable to find a sufficient decrease in the norm of the residual.

a similar problem as before occurs in the line search subroutine of this algorithm.

Another switch to the mere Gradient algorithm

method={"Gradient"};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionMethod -> method];

2.4 Problems and pitfalls 93

CIP‘CurveFit‘ShowFitResult[{"ModelFunction"},xyErrorData,

curveFitInfo];

Fitted model function:

13.0817e−(1.36437+x)2 +0.681692x

does not help either: The minimization procedure seems to have converged (since

there are no error messages) but it stopped somewhere over the rainbow: The result

is simply wrong. So the only practical solution is to provide good parameters’ start

values by hand, i.e. by ...

• ... knowledge: Parameters may be known to lie within defined intervals by ex-

perience or they may have a scientific meaning (i.e. they are theoretically well-

defined) so that their values are approximately known in advance. In some cases a

start value for a parameter may be deduced by visual inspection as in the example

above for parameter a3 in the exponential term.

• ... trial and error: Not a promising strategy but often the only practical pos-

sibility: It may be very exhaustive and disappointing but science is often more

devoted to mere trial and error than scientists like to tell.

In the next section the trial and error case is tackled with more strategic ap-

proaches but these also can not solve the problem in principle.

2.4.2 How to search for parameters’ start values

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

To get good parameters’ start values a global search of the parameter space is

necessary: A huge task! In chapter 1 different strategies for a global search were

discussed like a grid or a random search. CIP implements a purely random search

strategy as an option for the GetStartParameters method of the CIP CurveFit pack-

age with search type "Random":

searchType="Random";

For the curve fitting task outlined of the last subsection

numberOfData=50;

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)ˆ2]];

argumentRange={1.0,7.0};

standardDeviationRange={0.5,0.5};

94 2 Curve Fitting

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

modelFunction=a1*x+a2*Exp[-(x-a3)ˆ2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

a parameters’ search space is defined by the individual intervals of each parame-

ter

parameterIntervals={{0.0,10.0},{0.0,10.0},{0.0,10.0}};

with a 100 random trial points:

numberOfTrialPoints=100;

If the GetStartParameters method is called with these settings

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,CurveFitOptionSearchType -> searchType,

CurveFitOptionNumberOfTrialPoints -> numberOfTrialPoints]

{{a1,0.670859},{a2,7.48994},{a3,8.29601}}

the resulting parameters’ start values correspond to the smallest value of χ2 (a1,a2,a3)
that was detected by random. These start values are now used as an input for the

model function fit by setting the CurveFitOptionStartParameters option with the re-

sult:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

2.4 Problems and pitfalls 95

Fitted model function:

97.9599e−(−17.502+x)2 +0.681816x

The result is still not correct: 100 trial points do not lead to sufficiently precise

parameters’ start values since the random grid is too coarsely meshed. Therefore

their number is increased tenfold to 1000 and the search is repeated:

numberOfTrialPoints=1000;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,CurveFitOptionSearchType -> searchType,

CurveFitOptionNumberOfTrialPoints -> numberOfTrialPoints]

{{a1,0.679172},{a2,1.7166},{a3,4.48335}}

With the new start values

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

96 2 Curve Fitting

Fitted model function:

3.01029e−(−4.09318+x)2 +0.495279x

a successful fit is finally obtained: The determined start values were precise

enough for the local minimization algorithm to converge to the global minimum

of χ2 (a1,a2,a3). Although this may seem promising it again should be noticed that

a random search is a rather limited option in general: Since the parameter space be-

comes really large with an increasing number of parameters a random search within

tolerable periods of time will be likely to fail. The glimmer of hope of chapter 1 in

this desperate situation were evolutionary algorithms. Method GetStartParameters

uses the differential-evolution algorithm via Mathematica’s NMinimize command

as its default global search strategy (see [NMinimize/NMaximize] in the references)

which also proofs to be successful for the current task:

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals]

{{a1,0.460666},{a2,3.67567},{a3,4.12436}}

A fit with the obtained start parameters

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

2.4 Problems and pitfalls 97

Fitted model function:

3.01029e−(−4.09318+x)2 +0.495279x

shows that the evolutionary search was able to determine start values in the prox-

imity of the global minimum of χ2 (a1,a2,a3) which were close enough for a suc-

cessful local refinement.

2.4.3 More difficult curve fitting problems

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

Extracting the correct model function from experimental data may be arbitrarily

difficult up to impossible due to the nature of the curve fitting problem. To demon-

strate an example fifty xy-error data triples

numberOfData=50;

with a very high precision (absolute standard deviation of 0.001)

standardDeviationRange={0.001,0.001};

are generated in an argument range [1, 8]

argumentRange={1.0,8.0};

98 2 Curve Fitting

around a model function with two Gaussian peaks in close proximity (around

x = 4 and x = 5.5)

y = f (x) = 1
2
x+ 3exp

{
−(x− 4)2

}
+ 2exp

{
−(x− 5.5)2

}

pureOriginalFunction=

Function[x, 0.5*x+3.0*Exp[-(x-4.0)ˆ2]+2.0*Exp[-(x-5.5)ˆ2]];

where the smaller one around x = 5.5 appears to be the shoulder of the other:

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

With the previous discussions in mind it should be obvious that a successful

curve fitting procedure needs very good start values for the parameters in this case.

Again at least start values for the parameters in the exponentials could be obtained

by mere visual inspection of the generated data (peaks around x = 4 and x = 5.5)

but a more general strategy is explored that uses the advised start-parameter search

on the basis of an evolutionary algorithm with the GetStartParameters method of the

CIP CurveFit package. With the 5-parameter model function

modelFunction=a1*x+a2*Exp[-(x-a3)ˆ2]+a4*Exp[-(x-a5)ˆ2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3,a4,a5};

and a well defined parameters’ search space

2.4 Problems and pitfalls 99

parameterIntervals=

{{0.0,10.0},{0.0,10.0},{0.0,10.0},{0.0,10.0},{0.0,10.0}};

the proposed parameters’ start values for the fit procedure are:

maximumNumberOfIterations=10;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.443407},{a2,4.81041},{a3,4.83269},{a4,0.0454534},{a5,4.45465}}

A fit with these parameters’ start values

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

Fitted model function:

−0.173247e−(−42.6798+x)2 +3.33414e−(−4.38782+x)2 +0.584755x

leads to an unsatisfying result. Obviously the parameters’ start values search was

not successful - remember that there is no guarantee for an evolutionary strategy

to succeed. This failure might be attributed to the applied setting of the internal

number of iterations (i.e. the number of generations for evolution) to only 10. In

this particular case the parameter space should be explored more thoroughly with

an increased number of iterations (note that this number must always be restricted

to balance between accuracy and speed):

100 2 Curve Fitting

maximumNumberOfIterations=100;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.535511},{a2,1.39872},{a3,5.55438},{a4,2.80221},{a5,4.13868}}

With the improved parameters’ start values the curve fitting procedure

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

Fitted model function:

2.00039e−(−5.49993+x)2 +2.99947e−(−4.00006+x)2 +0.5x

is successful: A perfect fit is obtained. The sketched curve fitting problem will

certainly become more difficult if the two Gaussian peaks are moved together, e.g.

y = f (x) = 1
2
x+ 3exp

{
−(x− 4)2

}
+ 2exp

{
−(x− 4.5)2

}

pureOriginalFunction=

Function[x, 0.5*x+3.0*Exp[-(x-4.0)ˆ2]+2.0*Exp[-(x-4.5)ˆ2]];

where the two peaks now are closely neighbored around x = 4 and x = 4.5. After

xy-error data generation as before a visual inspection shows

2.4 Problems and pitfalls 101

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above Original Function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

that the shoulder becomes invisible and only one merged peak appears. Note that

without an a priori knowledge about the two existing peaks (the data are artificial)

only one peak would be anticipated. If again the parameters’ start value search is

used with an insufficient number of iterations

maximumNumberOfIterations=20;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.554496},{a2,4.20733},{a3,4.10765},{a4,3.44001},{a5,9.99968}}

the results are dubious, i.e. values are too close to the search boundaries. A fit

with these start values give evidence for this assessment:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction",

"AbsoluteResidualsPlot"},xyErrorData,curveFitInfo];

102 2 Curve Fitting

Fitted model function:

158.045e−(−58.0059+x)2 +4.8003e−(−4.19422+x)2 +0.508776x

The second Gaussian peak is sent to infinity. This leads to a systematic devia-

tion pattern of the residuals which is a clear indication that something is missed. A

further refinement of the parameters’ space exploration becomes necessary with an

additional increase of the number of iterations:

maximumNumberOfIterations=100;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.505924},{a2,4.76675},{a3,4.18593},{a4,0.125418},{a5,5.46316}}

The following fit

2.4 Problems and pitfalls 103

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction",

"AbsoluteResidualsPlot"},xyErrorData,curveFitInfo];

Fitted model function:

2.00853e−(−4.49914+x)2 +2.99136e−(−3.99927+x)2 +0.500001x

now leads to a satisfactory result. This successful outcome was invoked by a con-

tinuously intensified brute-force strategy that led to an enhanced thoroughness of

parameters’ space exploration. In summary it is a remarkable fact that data analysis

is able to reveal invisible peaks that would not be assumed by mere visual inspec-

tion but only if they are known to be there. On the other hand subtle interpretation

problems will emerge if things become slightly more difficult in the case of less pre-

cise data. For an illustration low-precision data are generated with a high absolute

standard deviation of 0.6 around the last example function:

104 2 Curve Fitting

standardDeviationRange={0.6,0.6};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

The thorough parameters’ start value search with again a large number of evolu-

tionary steps

maximumNumberOfIterations=100;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.512016},{a2,4.55652},{a3,4.28594},{a4,0.302777},{a5,3.01461}}

and a following fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"SDFit","ModelFunction"},xyErrorData,curveFitInfo];

2.4 Problems and pitfalls 105

Standard deviation of fit = 5.478×10-1

Fitted model function:

4.25758e−(−4.37855+x)2 +0.725734e−(−3.3966+x)2 +0.49908x

lead to a result of good quality with effectively two different peaks. But the pre-

cision of peak detection is no longer satisfying. Moreover this result is no longer

convincing if alternatives are taken into consideration. This can be shown with an

alternative fit of the corresponding model function with one Gaussian peak which

would be assumed by mere visual inspection:

modelFunction=a1*x+a2*Exp[-(x-a3)ˆ2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

With adequate start values

parameterIntervals={{0.0,10.0},{0.0,10.0},{0.0,10.0}};

106 2 Curve Fitting

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals]

{{a1,0.523746},{a2,5.85935},{a3,4.12508}}

the alternative one-peak fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"SDFit","ModelFunction"},xyErrorData,curveFitInfo];

Standard deviation of fit = 5.527×10-1

Fitted model function:

2.4 Problems and pitfalls 107

4.65303e−(−4.27207+x)2 +0.511526x

leads to a result of comparable quality (the standard deviations of the fits are

nearly identical and the residuals patterns are equally good): The latter model func-

tion should be preferred according to Occam’s razor since it contains less parameters

(unless the existence of two peaks is certainly known in advance). Depending on the

precision of the data and the nature of the fitting problem severe ambiguities can ap-

pear in data analysis. In the last case peaks may be found or may be argued for

that can not be supported by the mere data in the light of alternative models. So all

data analysis procedures are prone to be misused for the sake of a scientist’s mere

opinion and not the truth (where the scientist is always assumed to pursue the most

noble intentions). As a rule of thumb an adequate distrust is indicated for statements

like it is clearly shown by thorough data analysis that .. Curve fitting should always

be data driven and it should not be tried to get more out of them than possible. The

old and latent tendency to overstretch data analysis once led to the famous sentence

by John von Neumann: With four parameters I can fit an elephant, and with five I

can make him wiggle his trunk ([Dyson 2004]).

2.4.4 Inappropriate model functions

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

Model functions may be unfavorable up to simply wrong. An example of the

latter is demonstrated as follows: Fifty fairly precise data

numberOfData=50;

with an absolute standard deviation of 0.01

standardDeviationRange={0.01,0.01};

are generated in the argument range [1, 5]

argumentRange={1.0,5.0};

around function

y = f (x) = 2exp{−1.5x}

108 2 Curve Fitting

pureOriginalFunction=Function[x,2.0*Exp[-0.75*x]];

to give

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

For the fit we use an empirical model function constructed without to much med-

itation:

y = f (x) = a1 exp{−a2x+ a3}

modelFunction=a1*Exp[-a2*x+a3];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

The result

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ModelFunction"},xyErrorData,curveFitInfo];

2.4 Problems and pitfalls 109

Fitted model function:

1.91781e0.0463659−0.752542x

appears to be a perfect fit. So what is wrong with the model function? The answer

is that it contains redundant parameters since parameters a1 and a3 essentially mean

the same: They are both mere prefactors to the exponential term

y = f (x) = a1 exp{−a2x+ a3}= a1 exp{a3}exp{−a2x}

and therefore they are arbitrary. Only their product is the true prefactor used to

generate the data. All infinite other combinations of values resulting to the same

prefactor would be valid as well. Although redundant parameters can always be

avoided by proper inspection of the model function they do occur easily if non-

mathematicians (i.e. the overwhelming majority of scientists) construct difficult em-

pirical models. Usually the fitting algorithms simply crash if redundant parameters

are defined in a model function. It is only due to Mathematica’s algorithmic safe-

guards that lead to an arbitrary but correct result. A more subtle problem occurs if

the model function is correct but simply inappropriate to the data since it tries to

110 2 Curve Fitting

extract information which is simply not there. This may be shown with fifty fairly

precise data with an absolute standard deviation of 0.1

standardDeviationRange={0.1,0.1};

in the argument range [1, 7]

argumentRange={1.0,7.0};

around one Gaussian peak:

y = f (x) = 1
2
x+ 3exp

{
−(x− 4)2

}

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)ˆ2]];

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

A model function with two Gaussian peaks is prepared

modelFunction=a1*x+a2*Exp[-(x-a3)ˆ2]+a4*Exp[-(x-a5)ˆ2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3,a4,a5};

which inevitably tries to extract two Gaussian peaks from the data which just

contain one peak. After an successful search for parameters’ start values

2.4 Problems and pitfalls 111

parameterIntervals=

{{0.0,10.0},{0.0,10.0},{0.0,10.0},{0.0,10.0},{0.0,10.0}};

startParameters=GetStartParameters[xyErrorData,modelFunction,

argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals]

{{a1,0.533351},{a2,0.764096},{a3,4.36781},{a4,2.40032},{a5,3.9497}}

the following fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ModelFunction"},xyErrorData,curveFitInfo];

Fitted model function:

112 2 Curve Fitting

2.50893e−(−4.01878+x)2 +0.489941e−(−4.01878+x)2 +0.499246x

shows what happened: The same peak was found twice with arbitrary prefactors

that only have meaning as a sum. Again note: If alternative software to CIP/Mathe-

matica is used the fitting algorithms usually crash if a model function is inappropri-

ate as outlined in the latter example.

2.5 Parameters’ errors

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘CurveFit‘

The second most important information that may be extracted from a successful

curve fitting procedure in accordance with the optimum estimates of the parameters’

values are estimates of the parameters’ errors.

2.5.1 Correction of parameters’ errors

Since the xy-error data are biased by errors these errors propagate to the errors

of the estimated parameters’ values: The parameters’ errors therefore are deduced

from the data’s errors. This is certainly the best procedure if the data’s errors are

true experimentally obtained errors, e.g. each y value is measured multiple times

and then reported as the statistical mean yi with the statistical standard deviation of

the mean σi for an argument value xi. But often the reported errors σi can only be

regarded as rough estimates of the true errors. Moreover these estimates are usually

overestimated since scientists tend to be cautious: A bigger error is the better error

if the error is not known precisely. Then of course the resulting parameters’ errors

of a model function fit are also overestimated. As an example the water-viscosity

data are inspected again (compare above):

xyErrorData=CIP‘ExperimentalData‘GetWaterViscosityXyErrorData[];

modelFunction=a1/(a3-T)*Exp[a2/(a3-T)];

argumentOfModelFunction=T;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare","ParameterErrors"},

xyErrorData,curveFitInfo];

Reduced chi-square of fit = 8.625×10-2

2.5 Parameters’ errors 113

Value Standard error Confidence region

Parameter a1 = -19.3098 0.108964 {-19.4208, -19.1989}
Parameter a2 = -200.831 1.86845 {-202.734, -198.929}
Parameter a3 = 179.802 0.445257 {179.348, 180.255}

The χ2
red value of 0.086 indicates that the fitted residuals are fair below the cor-

responding errors σi of the yi values since χ2
red should be close to 1 for a good fit

with good data’s errors. Consequently the data’s errors should be decreased for a re-

sulting χ2
red value near 1. A correction for the data’s errors may be calculated when

they are assumed to be only weights of the yi values and not their true statistical

errors (see above). The FitModelFunction method can be told to estimate param-

eters’ errors with the corrected and not the original errors by changing the option

CurveFitOptionVarianceEstimator from its default value to "ReducedChiSquare":

varianceEstimator="ReducedChiSquare";

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare","ParameterErrors"},

xyErrorData,curveFitInfo];

Reduced chi-square of fit = 8.625×10-2

Value Standard error Confidence region

Parameter a1 = -19.3098 0.0320015 {-19.3424, -19.2772}
Parameter a2 = -200.831 0.548743 {-201.39, -200.272}
Parameter a3 = 179.802 0.130767 {179.669, 179.935}

The parameters’ standard errors and their confidence regions are reduced by more

than a factor of 3 in comparison to the result before. The outlined error correction is

often used as a standard procedure for curve fitting. But in practice it simply depends

on the problem and the scientist’s mood to use the cautious (higher) error estimates

for all subsequent derivations as well.

2.5.2 Confidence levels of parameters’ errors

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘CurveFit‘

Another important option that may be modified for the estimation of parameters’

errors is their level of confidence which affects the width of their confidence regions.

With the default setting of 68.3% the parameters’ confidence regions correspond to

the standard errors, i.e. a confidence region spans the interval [ai −σai
, ai +σai

]

where σai
is the standard error of parameter ai. In many cases a higher confidence

114 2 Curve Fitting

level of e.g. 95% or 99% is required. This may be specified with option CurveFi-

tOptionConfidenceLevel of method FitModelFunction. Here a confidence level of

99.9%

confidenceLevelOfParameterErrors=0.999;

is used for the water-viscosity fit for with the corrected errors (see previous sec-

tion):

xyErrorData=CIP‘ExperimentalData‘GetWaterViscosityXyErrorData[];

modelFunction=a1/(a3-T)*Exp[a2/(a3-T)];

argumentOfModelFunction=T;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

varianceEstimator="ReducedChiSquare";

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator,

CurveFitOptionConfidenceLevel -> confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare","ParameterErrors"},

xyErrorData,curveFitInfo];

Reduced chi-square of fit = 8.625×10-2

Value Standard error Confidence region

Parameter a1 = -19.3098 0.0320015 {-19.4274, -19.1922}
Parameter a2 = -200.831 0.548743 {-202.847, -198.815}
Parameter a3 = 179.802 0.130767 {179.321, 180.282}

Note that the standard errors are not affected since they are related to the standard

confidence level of 68.3% but the confidence regions increased considerably: Now

it can be assured with a probability of 99.9% that the parameters’ values are within

the denoted regions.

2.5.3 Estimating the necessary number of data

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

An practically important issue related to the parameters’ errors is the following:

A theoretical model function with well-defined parameters is known. A specific

measurement process with its intrinsic measurement errors is available. How many

experimental data in a defined argument range must be measured to get a reasonable

statement about a parameters’ value with a specific level of confidence? To get an

2.5 Parameters’ errors 115

impression the Gaussian-peak shaped model function is taken again as an example.

If a measurement process imposes an absolute error of 0.5 on each measurement the

following parameters’ errors and confidence regions are obtained for fifty (xi,yi,σi)
data triples in the argument range [1.0, 7.0] with a confidence level of 68.3%:

numberOfData=50;

standardDeviationRange={0.5,0.5};

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)ˆ2]];

argumentRange={1.0,7.0};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

modelFunction=a1*x+a2*Exp[-(x-a3)ˆ2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.4},{a2,2.9},{a3,4.1}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"ModelFunction","ReducedChiSquare",

"ParameterErrors"},xyErrorData,curveFitInfo];

Fitted model function:

3.01029e−(−4.09318+x)2 +0.495279x

Reduced chi-square of fit = 8.17×10-1

Value Standard error Confidence region

Parameter a1 = 0.495279 0.0205374 {0.474521, 0.516038}
Parameter a2 = 3.01029 0.196361 {2.81182, 3.20877}
Parameter a3 = 4.09318 0.0528048 {4.0398, 4.14655}

116 2 Curve Fitting

If the number of data is increased the parameters’ values will become more pre-

cise and the parameters’ errors and their related confidence regions are reduced:

numberOfData=1500;

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

pointSize=0.01;

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels,GraphicsOptionPointSize -> pointSize]

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"ModelFunction","ReducedChiSquare",

"ParameterErrors"},xyErrorData,curveFitInfo];

Fitted model function:

2.97527e−(−3.99917+x)2 +0.502659x

Reduced chi-square of fit = 9.819×10-1

Value Standard error Confidence region

Parameter a1 = 0.502659 0.00374083 {0.498917, 0.506401}
Parameter a2 = 2.97527 0.0352989 {2.93996, 3.01058}
Parameter a3 = 3.99917 0.00966191 {3.9895, 4.00883}

As a second alternative another measurement process may be available with a de-

creased intrinsic error that it imposes on the data (here the absolute error is reduced

by a factor of 10 from 0.5 to 0.05):

numberOfData=50;

standardDeviationRange={0.05,0.05};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

2.5 Parameters’ errors 117

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"ModelFunction","ReducedChiSquare",

"ParameterErrors"},xyErrorData,curveFitInfo];

Fitted model function:

2.99923e−(−4.00939+x)2 +0.499635x

Reduced chi-square of fit = 8.163×10-1

Value Standard error Confidence region

Parameter a1 = 0.499635 0.0020301 {0.497583, 0.501687}
Parameter a2 = 2.99923 0.01941 {2.97961, 3.01885}
Parameter a3 = 4.00939 0.00529798 {4.00403, 4.01474}

Improved estimates of the parameters’ values as well as decreased parameters’

errors and smaller confidence regions are the result. Unfortunately the latter possi-

bility of an alternative measurement process with increased precision is only rarely

encountered in practice. So the only method of choice is usually to increase the

number of data which means more time and more money. To estimate this crit-

ical quantity in advance the simulation of the necessary number of experimental

data is always helpful and indicated. The CIP CurveFit package provides the Get-

NumberOfData method to fulfill this task: This method tries to detect the necessary

number of data necessary to achieve a desired width of the confidence region of

a specified parameter for a specified confidence level by an iterative process. If a

width of the confidence region of 0.01 for parameter a3 is desired

118 2 Curve Fitting

desiredWidthOfConfidenceRegion=0.01;

indexOfParameter=3;

the necessary number of data for the latter example would be

numberOfData=CIP‘CurveFit‘GetNumberOfData[

desiredWidthOfConfidenceRegion,indexOfParameter,

pureOriginalFunction,argumentRange,standardDeviationRange,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters]

57

For a halved confidence region of 0.005

desiredWidthOfConfidenceRegion=0.005;

the number of data must be increased to about 221:

numberOfData=CIP‘CurveFit‘GetNumberOfData[

desiredWidthOfConfidenceRegion,indexOfParameter,

pureOriginalFunction,argumentRange,standardDeviationRange,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters]

221

Note that there is a strong non-linear relation between the necessary number of

data and the width of a confidence region: To half the width of a confidence region

in value there is a considerable increase of the number of data necessary in general.

2.5.4 Large parameters’ errors and educated cheating

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘CurveFit‘

For specific model functions very precise experimental data are necessary to es-

timate its parameters’ values with a sufficient precision. A good example are power

laws that play an important role in different areas of science like critical phenomena

or the analysis of biological (scale-free) networks. A power law of the form

y = f (x) = a1|x− a2|
−a3

2.5 Parameters’ errors 119

that diverges at x = a2 with a so called critical exponent a3 will be discussed in

the following. Power law fits are often used to prove or reject a specific theoretical

prediction whereupon the critical exponent a3 enjoys the highest attention: There-

fore this parameter is to be estimated with an utmost precision. For a power law fit

a search for parameters’ start values is not necessary in most cases since all param-

eters are approximately known in advance from theory or visual inspection of the

data: The critical exponent a3 comes from theory, the location of the divergence a2

may be directly deduced from the data so only the prefactor a1 is in question. As an

example fifty high precision normally distributed data

numberOfData=50;

will be generated around the power law

y = f (x) = 2
∣∣x− 10|−0.63

pureOriginalFunction=Function[x,2.0*Abs[x-10.0]ˆ(-0.63)];

in the argument range [8.0, 9.9]

argumentRange={8.0,9.9};

with a relative standard deviation of 0.1%:

errorType="Relative";

standardDeviationRange={0.001,0.001};

The arguments will be spaced by a logarithmic scale to push more data into the

divergence region (as is usually performed by a proper design of experiment):

argumentDistance="LogLargeToSmall";

The xy-error data are generated with method GetXyErrorData of the CIP Calcu-

latedData package:

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance];

The model function to fit is set in accordance

120 2 Curve Fitting

modelFunction=a1*Abs[x-a2]ˆ(-a3);

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

The necessary start parameters are chosen to be near the true parameters:

startParameters={{a1,1.9},{a2,9.99},{a3,-0.6}};

A high confidence level of 99.9% is advised for the confidence region of the

parameters:

confidenceLevelOfParameterErrors=0.999;

For these simulated data a perfect fit results:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo];

2.5 Parameters’ errors 121

Standard deviation of fit = 1.78×10-3

Reduced chi-square of fit = 8.514×10-1

Value Standard error Confidence region

Parameter a1 = 2.0006 0.000557139 {1.99864, 2.00255}
Parameter a2 = 10.0004 0.000295439 {9.99932, 10.0014}
Parameter a3 = 0.630468 0.000458764 {0.628857, 0.632078}

The critical exponent a3 is found to be in a small confined interval [0.629, 0.632]

around 0.63 with a high probability of 99.9%. If a theoretical model would predict

the value of 0.63 this fit would rightly be regarded as a strong experimental evidence

(by cautious scientists) up to a convincing experimental proof (by more enthusiastic

ones). Unfortunately experimental data for power law fits are often far less precise.

This has a dramatic influence on the confidence region of the critical exponent a3 as

shown in the next example. The relative error of the data is increased by a factor of

100 to 10%:

standardDeviationRange={0.1,0.1};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance];

The corresponding fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo];

122 2 Curve Fitting

Standard deviation of fit = 1.779×10-1

Reduced chi-square of fit = 8.512×10-1

Value Standard error Confidence region

Parameter a1 = 2.0764 0.0830715 {1.78482, 2.36797}
Parameter a2 = 10.0444 0.043694 {9.89101, 10.1977}
Parameter a3 = 0.68482 0.0580304 {0.481139, 0.888501}

again looks perfect but the confidence region of the critical exponent a3 is found

to be nearly as large (0.89−0.48= 0.41) as the absolute value of the parameter itself

(0.68): So its evidence for support or rejection of a specific theoretical prediction

almost vanished. The bitter truth is that simply nothing can be deduced from the

data - a result that most principal investigators hate since it means wasted time

and money. And that’s where the educated cheating starts. Let’s say the theoretical

prediction of the critical exponent a3 is 0.73 (remember that the data were generated

with a true value of 0.63): Simply fix parameter a3 to 0.73

modelFunction=a1*Abs[x-a2]ˆ(-0.73);

parametersOfModelFunction={a1,a2};

2.5 Parameters’ errors 123

startParameters={{a1,1.9},{a2,9.99}};

and fit parameters a1 and a2 only:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo];

Standard deviation of fit = 1.772×10-1

Reduced chi-square of fit = 8.445×10-1

Value Standard error Confidence region

Parameter a1 = 2.13617 0.0487269 {1.96538, 2.30696}
Parameter a2 = 10.0775 0.017931 {10.0146, 10.1403}

124 2 Curve Fitting

A very good looking fit is the result with a very convincing residuals plot which

may easily be published to be in perfect agreement with the theoretical prediction

of 0.73. But with about the same evidence it could be argued for a critical exponent

a3 of value 0.53:

modelFunction=a1*Abs[x-a2]ˆ(-0.53);

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo];

Standard deviation of fit = 2.008×10-1

Reduced chi-square of fit = 1.083

2.5 Parameters’ errors 125

Value Standard error Confidence region

Parameter a1 = 1.95121 0.0335399 {1.83365, 2.06877}
Parameter a2 = 9.95776 0.00900621 {9.92619, 9.98933}

The fit again is convincing and in perfect agreement with ... The situation be-

comes only somewhat better if the number of data is increased. For a fivefold data

boost

numberOfData=250;

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance];

and a fit with the complete 3-parameter model function

modelFunction=a1*Abs[x-a2]ˆ(-a3);

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,1.9},{a2,9.99},{a3,-0.6}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

pointSize=0.01;

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];

126 2 Curve Fitting

Standard deviation of fit = 1.92×10-1

Reduced chi-square of fit = 9.885×10-1

Value Standard error Confidence region

Parameter a1 = 1.96714 0.0222953 {1.89289, 2.0414}
Parameter a2 = 9.97971 0.0120999 {9.93941, 10.02}
Parameter a3 = 0.602932 0.0193802 {0.538389, 0.667475}

numberOfIntervals=10;

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsDistribution"},xyErrorData,

curveFitInfo,NumberOfIntervalsOption -> numberOfIntervals];

the estimated value of the critical exponent a3 improves and its confidence region

inevitably shrinks. The distribution of the residuals looks like a distorted bell curve.

But the evidence for both false theoretical predictions with values 0.73 and 0.53

would still be convincing: Theoretical prediction 0.73

2.5 Parameters’ errors 127

modelFunction=a1*Abs[x-a2]ˆ(-0.73);

parametersOfModelFunction={a1,a2};

startParameters={{a1,1.9},{a2,9.99}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];

Standard deviation of fit = 2.028×10-1

Reduced chi-square of fit = 1.103

Value Standard error Confidence region

Parameter a1 = 2.10871 0.0216214 {2.03671, 2.18072}
Parameter a2 = 10.067 0.00791856 {10.0406, 10.0934}

128 2 Curve Fitting

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsDistribution"},xyErrorData,

curveFitInfo,NumberOfIntervalsOption -> numberOfIntervals];

looks approximately as good as the 3-parameter-fit and theoretical prediction

0.53:

modelFunction=a1*Abs[x-a2]ˆ(-0.53);

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];

2.5 Parameters’ errors 129

Standard deviation of fit = 1.991×10-1

Reduced chi-square of fit = 1.063

Value Standard error Confidence region

Parameter a1 = 1.92718 0.0147138 {1.87818, 1.97618}
Parameter a2 = 9.94512 0.00372884 {9.93271, 9.95754}

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsDistribution"},xyErrorData,

curveFitInfo,NumberOfIntervalsOption -> numberOfIntervals];

So a lot more experimental data would be needed to really make clear decisions.

With the aid of the GetNumberOfData method of the CIP CurveFit package the

necessary number of data for a desired width of a parameters’ confidence region

may be estimated (see the previous section). For a desired confidence region width

of 0.04 for parameter a3

130 2 Curve Fitting

desiredWidthOfConfidenceRegion=0.04;

indexOfParameter=3;

the number of data must be increased to

modelFunction=a1*Abs[x-a2]ˆ(-a3);

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,1.9},{a2,9.99},{a3,-0.6}};

numberOfData=CIP‘CurveFit‘GetNumberOfData[

desiredWidthOfConfidenceRegion,indexOfParameter,

pureOriginalFunction,argumentRange,standardDeviationRange,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance]

3344

The corresponding fit with this estimated number of data

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance];

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];

2.5 Parameters’ errors 131

Standard deviation of fit = 1.912×10-1

Reduced chi-square of fit = 9.798×10-1

Value Standard error Confidence region

Parameter a1 = 1.99724 0.00747252 {1.97263, 2.02185}
Parameter a2 = 9.99805 0.00417287 {9.98431, 10.0118}
Parameter a3 = 0.628188 0.00604781 {0.60827, 0.648106}

numberOfIntervals=30;

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsDistribution"},xyErrorData,

curveFitInfo,NumberOfIntervalsOption -> numberOfIntervals];

finally allows estimates within the required precision. For many experimental se-

tups however the necessary increase of data would be completely out of reach due

to restrictions in time and money. Therefore the sketched kind of educated cheat-

ing is unfortunately more widespread than it ought to be (and even worse is often

132 2 Curve Fitting

combined with an elimination of outliers after the fit: A "very successful strategy"

to tune the data). In most cases experimentalists do not even have a bad conscience

since the final plots look good. Therefore a clear trend can be detected for experi-

mental data analysis to follow theoretical predictions (this can be superbly shown in

the field of critical phenomena where the theoretical predictions changed over the

decades and the experimental data analysis with them in close accordance). But it

should not be forgotten that cheating simply has nothing to do with science - and in

the end someone will detect it regardless how educated it was hidden.

2.5.5 Experimental errors and data transformation

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘CurveFit‘

The errors σi of the yi values do not only influence the errors of the parameters

of the fitted model function but they also influence the parameters’ values them-

selves. This is often ignored but obvious if it is remembered that curve fitting means

minimization of χ2 (a1, ...,aL):

χ2 (a1, ...,aL) = ∑K
i=1

(
yi− f (xi,a1,...,aL)

σi

)
2 −→ minimize!

Since the errors σi are part of the sum of squares they contribute to the determi-

nation of the minimum location of χ2 (a1, ...,aL). Only in the special case that all

errors σi are equal

σi = σ

they are a mere factor σ that can be factored out of the sum and therefore does

not influence the minimum. The influence of the errors σi can be illustrated with the

following (artificial) example of twenty simulated data

numberOfData=20;

around the function

y = f (x) = 2e−
1
x

pureOriginalFunction=Function[x,2.0*Exp[-1.0/x]];

2.5 Parameters’ errors 133

in the argument range [1.0, 8.0]

argumentRange={1.0,8.0};

with a relative standard deviation of 5%

standardDeviationRange={0.05,0.05};

errorType="Relative";

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType];

that are fitted with corrected estimates of parameters’ errors for comparison pur-

poses:

modelFunction=a1*Exp[-a2/x];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2};

varianceEstimator="ReducedChiSquare";

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","SDFit",

"ReducedChiSquare","ParameterErrors"},xyErrorData,curveFitInfo];

Standard deviation of fit = 7.272×10-2

Reduced chi-square of fit = 1.122

Value Standard error Confidence region

Parameter a1 = 1.93972 0.0396424 {1.89894, 1.98049}
Parameter a2 = 0.92742 0.051963 {0.873972, 0.980868}

If the errors σi are asymmetrically enlarged by different factors from 10.0 (ten-

fold increase) to 1.0 (no change)

134 2 Curve Fitting

minFactor=1.0;

maxFactor=10.0;

errorTransformationFactors=Table[i,{i,maxFactor,minFactor,

-(maxFactor-minFactor)/(Length[xyErrorData]-1)}];

newXyErrorData=Table[{xyErrorData[[i,1]],xyErrorData[[i,2]],

xyErrorData[[i,3]]*errorTransformationFactors[[i]]},

{i,Length[xyErrorData]}];

the estimated optimum values of the parameters become clearly different:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[newXyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","SDFit",

"ReducedChiSquare","ParameterErrors"},xyErrorData,curveFitInfo];

Standard deviation of fit = 8.842×10-2

Reduced chi-square of fit = 1.659

Value Standard error Confidence region

Parameter a1 = 1.83037 0.0368555 {1.79246, 1.86828}
Parameter a2 = 0.787937 0.107727 {0.67713, 0.898743}

The parameter estimates changed by around 5-10% of their absolute values al-

though the xi and yi values were not changed at all. Also the values of corrected

parameters’ errors increased due to the increase of the data’s errors.

As far as the popular data transformations are considered the outlined context

may play a more or less pronounced role. It is still common in lab data analysis

to linearize model functions to a straight line if possible (despite the existence of

non-linear curve fitting software). For the model function above linearization may

be easily performed by simple application of the natural logarithm

y = f (x) = a1e−
a2
x

2.6 Empirical enhancement of theoretical model functions 135

ln(y) = ln
(

a1e−
a2
x

)
= lna1 − a2

1
x

which results in a straight line

y = f (x) = a1 + a2x

with the necessary non-linear data transformations:

xi →
1
xi

; yi → ln(yi)

If data are transformed it is often forgotten that the errors σi must be transformed

too according to standard error propagation:

σi →

√(
∂ ln(yi)

∂yi

)
2σ2

i =
(

∂ ln(yi)
∂yi

)
σi =

σi

yi

Note that the neglect of this error transformation is perhaps the second most

frequent mistake in lab data analysis. (The most frequent mistake is the lab journal’s

report of a mean in combination with the standard deviation of a single measurement

and not the correct standard deviation of the mean.) In summary each data triple of

the xy-error data must be transformed as follows:

(xi,yi,σi)→
(

1
xi
, ln(yi) ,

σi
yi

)

Standard error propagation assumes vanishingly small errors since it belongs to

linear statistics (with Taylor series expansions up to the first derivative only). There-

fore the transformed errors and the original errors do only correspond in an approx-

imate manner. This may have more or less influence on the estimated values of the

parameters after linearization depending on the specific fit problem.

2.6 Empirical enhancement of theoretical model functions

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘DataTransformation‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

Suppose there is a well-defined theoretical model function but the x and y quanti-

ties it associates can not be measured directly. Preprocessing steps are necessary to

construct the data in question which may introduce systematic errors. An example

136 2 Curve Fitting

is outlined in Appendix A that shows the extraction of kinetics data for a chem-

ical reaction (in this case the hydrolysis of acetanhydride) from time dependent

infrared (IR) spectra: There are two different methods advised to extract the data:

One straight forward method denoted 1 and one more elaborate method denoted 2.

The results are provided by the CIP ExperimentalData package. The data produced

by method 1 are as follows:

xyData=

CIP‘ExperimentalData‘GetAcetanhydrideKineticsData1[

];

errorValue=1.0;

xyErrorData=CIP‘DataTransformation‘AddErrorToXYData[xyData,

errorValue];

labels={"Time [min]","Absorption",

"Kinetics of hydrolysis of acetanhydride 1"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

Note that a standard weight of 1.0 was added as an error to the xy data to ob-

tain xy-error data since the preprocessing method did not yield any error estimate.

All estimates for parameters’ errors thus need a correction deduced from χ2
red (see

previous sections).

The hydrolysis of acetanhydride in water is a reaction of (pseudo) first-order

which is theoretically described by a simple exponential decay:

y = f (x) = a1e−a2x

But a direct fit of this model function

modelFunction=a1*Exp[-a2*x];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2};

varianceEstimator="ReducedChiSquare";

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

2.6 Empirical enhancement of theoretical model functions 137

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionVarianceEstimator -> varianceEstimator];

labels={"Time [min]","Absorption","Data 1 above Model Function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

fails completely. Due to preprocessing method 1 the data do not direct to a zero

absorption with increasing time (acetanhydride vanishes with reaction progress) but

to a constant value above zero (a so called background caused by the extraction

process, see Appendix A). Therefore the theoretical model function must be en-

hanced by (at least) an empirical constant background parameter a3 that takes this

deficiency into account:

y = f (x) = a1e−a2x + a3

modelFunction=a1*Exp[-a2*x]+a3;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.4},{a2,0.1},{a3,0.2}};

The enhanced fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ParameterErrors"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

138 2 Curve Fitting

Value Standard error Confidence region

Parameter a1 = 0.378912 0.00979157 {0.368856, 0.388968}
Parameter a2 = 0.112982 0.00687499 {0.105921, 0.120043}
Parameter a3 = 0.168445 0.0051983 {0.163106, 0.173783}

leads to an improved description of the data but reveals a strong systematic devi-

ation pattern of the residuals. In contrast to method 1 the more elaborate preprocess-

ing method 2 tries to estimate the background contribution in advance (see details

in Appendix A):

xyData=

CIP‘ExperimentalData‘GetAcetanhydrideKineticsData2[

];

errorValue=1.0;

xyErrorData=CIP‘DataTransformation‘AddErrorToXYData[xyData,

errorValue];

labels={"Time [min]","Absorption",

"Kinetics of Hydrolysis of Acetanhydride 2"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

2.6 Empirical enhancement of theoretical model functions 139

Now the absorption values seem to direct to zero. But a direct fit of the pure

theoretical model

modelFunction=a1*Exp[-a2*x];

parametersOfModelFunction={a1,a2};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionVarianceEstimator -> varianceEstimator];

labels={"Time [min]","Absorption","Data 2 above Model Function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ParameterErrors"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

140 2 Curve Fitting

Value Standard error Confidence region

Parameter a1 = 0.377157 0.0104281 {0.366413, 0.387901}
Parameter a2 = 0.121256 0.00534371 {0.11575, 0.126761}

still suggests the use of an additional constant background parameter a3

modelFunction=a1*Exp[-a2*x]+a3;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.4},{a2,0.1},{a3,0.2}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ParameterErrors"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

2.6 Empirical enhancement of theoretical model functions 141

Value Standard error Confidence region

Parameter a1 = 0.38797 0.00863007 {0.379061, 0.396878}
Parameter a2 = 0.106077 0.00623914 {0.0996363, 0.112517}
Parameter a3 = -0.0174831 0.00606562 {-0.0237445, -0.0112218}

which results in a estimated value for a3 that is at least close to zero (so the

background correction of the more elaborate preprocessing method was not in vain).

The visual inspection of the data also suggests to treat the first two points as outliers:

If they are removed from the xy-error data

xyErrorData=Drop[xyErrorData,2];

labels={"Time [min]","Absorption",

"Kinetics of Hydrolysis of Acetanhydride 2"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

the remaining data do not only look better but lead to an improved fit

modelFunction=a1*Exp[-a2*x]+a3;

parametersOfModelFunction={a1,a2,a3};

142 2 Curve Fitting

startParameters={{a1,0.4},{a2,0.1},{a3,0.2}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator];

labels={"Time [min]","Absorption","Data 2 above Model Function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ParameterErrors"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

Value Standard error Confidence region

Parameter a1 = 0.453659 0.00879298 {0.444541, 0.462778}
Parameter a2 = 0.134134 0.00371886 {0.130277, 0.13799}
Parameter a3 = -0.00662982 0.00180625 {-0.00850296, -0.00475667}

with significantly smaller residuals and a further decreased background param-

eter a3. There is still a clear systematic deviation pattern of the residuals but this

is probably the best we can get. Always keep in mind that the introduction of new

empirical parameters and the removal of apparent outliers are dangerous procedures

that are an ideal basis for educated cheating: In the end you can obtain (nearly) any

2.7 Data smoothing with cubic splines 143

result you like to get and this is not the objective of science which claims to describe

the real world out there. But careful and considerate use of these procedures may

extract information from data that would otherwise be lost.

2.7 Data smoothing with cubic splines

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

<<CIP‘ExperimentalData‘

<<FunctionApproximations‘

Data smoothing with cubic splines is controlled by the specified χ2
red value (see

above). Depending on the χ2
red value there are two smoothing extremes: A small

χ2
red value enforces small residuals and restricts the smoothing function to close

proximity of the data points whereas a high χ2
red value allows for larger residuals but

forces the curvature of the smoothing function to minimize towards a straight line.

This may be demonstrated with fifty simulated xy-error data around the Gaussian-

peak shaped function:

numberOfData=50;

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)ˆ2]];

argumentRange={1.0,7.0};

standardDeviationRange={0.1,0.1};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above Original Function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData

,pureOriginalFunction,labels]

144 2 Curve Fitting

A small χ2
red value of 0.01

reducedChiSquare=0.01;

leads to mere interpolation between the data without smoothing

curveFitInfo=

CIP‘CurveFit‘FitCubicSplines[xyErrorData,reducedChiSquare];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","CorrelationCoefficient"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 1.×10-2

Out 1 : Correlation coefficient = 0.999973

and small residuals. Note that the correlation coefficient that indicates the agree-

ment of data and machine output is (almost) one which means a perfect correlation:

2.7 Data smoothing with cubic splines 145

Since the data are erroneous this outcome indicates a so called overfitting of the data

(which is to be avoided for convincing smoothing). A high χ2
red value of 100

reducedChiSquare=100.0;

leads to a straight line

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[xyErrorData,

reducedChiSquare];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","CorrelationCoefficient"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 1.×102

Out 1 : Correlation coefficient = 0.683152

146 2 Curve Fitting

without adequate data description and a small correlation coefficient (which is as

unfavorable as a perfect correlation for erroneous data). In practice a χ2
red value is

initially chosen that is around 1 to produce a smooth and balancing model function

with a convincing residuals plot

reducedChiSquare=1.0;

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[xyErrorData,

reducedChiSquare];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","CorrelationCoefficient"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 1.001

Out 1 : Correlation coefficient = 0.997407

and a reasonable high correlation coefficient. Since the smoothing cubic splines

procedure tries to minimize the overall curvature over the whole argument range

2.7 Data smoothing with cubic splines 147

the curved peak region of the current example is comparatively poorly described:

A systematic deviation pattern of positive residuals is visible in this middle region

of the residuals plot. In this case the χ2
red value should be lowered which enforces

smaller residuals to describe the peak region more precisely:

reducedChiSquare=0.6;

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[xyErrorData,

reducedChiSquare];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","CorrelationCoefficient"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 6.×10-1

Out 1 : Correlation coefficient = 0.998401

This results in an overall acceptable fit. Note that the correlation coefficient is

not too valuable for a goodness-of-smoothing discussion since a higher value does

148 2 Curve Fitting

not imply better smoothing due to the increased tendency towards overfitting. The

smoothing model function may be finally compared (overlayed) with the original

Gaussian-peak shaped function that was used for the simulated data generation

pureSmoothingFunction=Function[x,CalculateFunctionValue[x,

curveFitInfo]];

pureFunctions={pureOriginalFunction,pureSmoothingFunction};

plotRange={0.0,5.0};

plotStyle={{Thickness[0.005],Black},{Thickness[0.005],Blue}};

labels={"x","y","Original + smoothing cubic splines"};

CIP‘Graphics‘Plot2dFunctions[pureFunctions,argumentRange,plotRange,

plotStyle,labels]

to demonstrate their close proximity and thus a successful model approxima-

tion by mere data smoothing. The cubic splines based smoothing model function

may be used for interpolating calculations of function values and derivatives. Cal-

culations outside the data’s argument range are possible but useless since the cubic

splines may have an arbitrary value there: As already mentioned reasonable extrap-

olations are in principle out of reach if the structural form of the model function

is not known. For publishing purposes the internal representation of the smoothing

model function is somewhat lengthy: For each (xi,yi,σi) data triple of the xy-error

data a cubic polynomial with 4 parameters is constructed so that the 50 data triples

require 200 parameters for the cubic splines. To achieve a more condensed repre-

sentation the smoothing function may be approximated by a rational function which

is constructed by mere trial and error (in this case with a numerator of order 8 and a

denominator of order 4):

rationalFunction=FunctionApproximations‘RationalInterpolation[

CalculateFunctionValue[x,curveFitInfo],{x,8,4},

{x,argumentRange[[1]],argumentRange[[2]]}]

2.7 Data smoothing with cubic splines 149

0.492884−0.61194x+0.646898x2−0.467755x3+0.204442x4−0.0524233x5+0.00768635x6−0.000597131x7+0.0000192755x8

1−0.866354x+0.295339x2−0.0462791x3+0.0028032x4

This condensed representation

pureRationalFunction=Function[argument,

rationalFunction/.x -> argument];

pureFunctions={pureOriginalFunction,pureSmoothingFunction,

pureRationalFunction};

plotStyle={{Thickness[0.005],Black},{Thickness[0.005],Blue},

{Thickness[0.005],Red}};

labels={"x","y","Original + splines + rational function"};

CIP‘Graphics‘Plot2dFunctions[pureFunctions,argumentRange,plotRange,

plotStyle,labels]

is of sufficient precision as shown by the final overlay. Another application of

data smoothing is the representation of calculated data. This sounds absurd since

calculated data can be calculated so there seems to be no need for data smooth-

ing. But data calculation may be computationally very expensive in many cases. For

example ab-initio quantum-chemical calculations for molecular properties are very

time-consuming and therefore require a considerable percentage of the world’s over-

all available computational power. If for example the potential energy surface (PES)

of the diatomic molecule hydrogen fluoride is to be described the Schroedinger

equation has to be solved for every desired distance between hydrogen and fluoride:

Every single calculation may take from seconds up to minutes or hours depending

on the level of approximation. The CIP ExperimentalData package contains a set of

high precision single point calculations for hydrogen fluoride (see Appendix A):

xyErrorData=CIP‘ExperimentalData‘GetHydrogenFluoridePESXyErrorData[];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of hydrogen fluoride (HF)"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

150 2 Curve Fitting

The data are reported with a very small absolute error of 10−6. So a very pre-

cise model function that is very near a pure interpolating function is in need. The

standard approach with high-degree polynomials

modelFunction=

A0+A1*R+A2*Rˆ2+A3*Rˆ3+A4*Rˆ4+A5*Rˆ5+A6*Rˆ6+A7*Rˆ7+A8*Rˆ8+A9*Rˆ9;

argumentOfModelFunction=R;

parametersOfModelFunction={A0,A1,A2,A3,A4,A5,A6,A7,A8,A9};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of HF: Polynom fit"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","AbsoluteResidualsStatistics",

"CorrelationCoefficient"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

2.7 Data smoothing with cubic splines 151

Reduced chi-square of fit = 3.262×104

Definition of ’Residual (absolute)’: Data - Model

Out 1 : Residual (absolute): Mean/Median/Maximum Value = 1.4×10-4 / 1.35×10-4 / 5.97×10-4

Out 1 : Correlation coefficient = 0.999998

leads to the well-known systematic oscillations (compare above) around the data

that are beyond the required precision. A rational function fit is a little better

modelFunction=

A0+A1*Rˆ-1+A2*Rˆ-2+A3*Rˆ-3+A4*Rˆ-4+A5*Rˆ-5+A6*Rˆ-6+A7*Rˆ-7+

A8*Rˆ-8+A9*Rˆ-9;

argumentOfModelFunction=R;

parametersOfModelFunction={A0,A1,A2,A3,A4,A5,A6,A7,A8,A9};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of HF: Rational function fit"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","AbsoluteResidualsStatistics",

"CorrelationCoefficient"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

152 2 Curve Fitting

Reduced chi-square of fit = 5.16×103

Definition of ’Residual (absolute)’: Data - Model

Out 1 : Residual (absolute): Mean/Median/Maximum Value = 5.69×10-5 / 5.55×10-5 / 2.35×10-4

Out 1 : Correlation coefficient = 1.

but also beyond acceptability. Data smoothing with cubic splines and a χ2
red value

of 1 however

reducedChiSquare=1.0;

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[xyErrorData,

reducedChiSquare];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of HF: Smoothing cubic splines"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","AbsoluteResidualsStatistics",

"CorrelationCoefficient"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

2.7 Data smoothing with cubic splines 153

Reduced chi-square of fit = 1.

Definition of ’Residual (absolute)’: Data - Model

Out 1 : Residual (absolute): Mean/Median/Maximum Value = 1.92×10-7 / 1.99×10-8 / 7.57×10-6

Out 1 : Correlation coefficient = 1.

achieves an acceptable interpolation with residuals well within the required order

of magnitude: Deviations are only more pronounced in the divergence region at

small interatomic distances. Also note that a correlation coefficient of effectively

one does not indicate overfitting in this situation since the data errors are very small.

A check of the smoothing model function is a calculation of the minimum energy

distance between hydrogen and fluoride that is known to be 0.917 Angstrom:

argumentRange={0.65,1.3};

functionValueRange={-100.35,-100.2};

CIP‘Graphics‘Plot2dFunction[Function[arg,CalculateFunctionValue[arg,

curveFitInfo]],argumentRange,functionValueRange,labels]

154 2 Curve Fitting

FindMinimum[CIP‘CurveFit‘CalculateFunctionValue[x,curveFitInfo],

{x,0.5,1.5}]

{−100.343,{x → 0.917413}}

This correct result together with a vanishing derivative value at the minimum

(which ought to be 0)

CIP‘CurveFit‘CalculateDerivativeValue[1,0.917,curveFitInfo]

−0.000933712

assures an overall satisfactory model function that may be successfully used for

interpolation purposes.

2.8 Cookbook recipes for curve fitting

As demonstrated in the previous sections curve fitting can be a challenging task. In

this last section some cookbook recipes for curve fitting and data smoothing sum-

marize different aspects outlined above.

• The data: Start with a thorough (visual) inspection of the data to avoid the GIGO

(garbage-in/garbage-out) effect. Data analysis is not magic, it can not extract in-

formation out of nothing. Are the data reasonably scaled and distributed? Are the

reported errors convincing? If no errors are available apply the standard weight

1.0 and correct errors with χ2
red. There are additional subtle problems with data

that contain outliers, i.e. single data points with extraordinarily large errors. Out-

liers usually indicate experimental failure. If outliers can be easily detected they

should always be removed from the data since they tend to mask themselves in a

fitting procedure (they draw the model towards them to become invisible). Data

which are known to be prone to contain outliers may deserve a completely dif-

ferent statistical treatment like the so called robust estimation which is beyond

this introduction (see [Hampel 1986] or [Rousseeuw 2003] for further reading).

• The model function: Is a well-defined model function available? Does the num-

ber of data well exceed the number of parameters? Then go on. If no model

function is known it might be worth to try to construct one by educated trial and

error: This is quite often successful. Avoid model functions with redundant or

highly similar parameters. If an educated guess seems to be unfeasible try data

smoothing.

• Linear or non-linear model function: Is the model function linear in its param-

eters? Then the fit will work without further considerations. If not: Are param-

eters’ start values approximately known in advance? Then try these values for

local minimization. Otherwise an extensive start values search may be advised.

2.8 Cookbook recipes for curve fitting 155

Don’t give up too early if things are difficult. The parameters’ start values are

often the most difficult part of the game.

• Problems with the fitting procedure: If the fitting procedure crashes try to use

an alternative minimization algorithm. If nothing helps there seems to be a se-

vere problem with the model function or the parameters’ start values. Do you

use professional curve fitting software? A lot of programs do use (too) simple

algorithms without appropriate safeguards that fail needlessly.

• Goodness of fit: Are the fitted parameters’ values reasonable? Otherwise the

minimization procedure sent you somewhere over the rainbow. Is the data plot

above the fitted model function convincing, i.e. smooth and balancing? If not the

fit failed. Is the residuals plot well within experimental errors and free of system-

atic deviation patterns? Then probably everything worked well. Other goodness

of fit quantities may be used to support your assessment.

• Parameter errors: Is the χ2
red value close to 1? If not the reported experimental

errors are poor and should be corrected. Do you need high confidence? Then ad-

just the parameters’ confidence level in accordance. Are the parameters’ errors

too large to make any decisions? Try to avoid strategies of educated cheating

unless your career or PhD is in danger (then you should at least provide a con-

vincing residuals plot because this is what most reviewers believe in).

• Data transformation for linearization: If possible simply avoid it and use non-

linear curve fitting software. Final diagrams may then be linearized for your au-

dience.

• Data smoothing: Adjust the set screws until you like the result with a convincing

residuals plot. Then apply the smoothing model for interpolation (but never for

extrapolation) purposes.

This chapter sketched general curve fitting issues with a broad range of applica-

tions. For many specific curve fitting tasks elaborate specific solutions already exist

that avoid problems outlined in the previous sections. Thus the scientific literature

should always be consulted in advance (which is of course a mandatory and sensible

advice for all scientific endeavours to avoid a reinvention of the wheel).

Chapter 3

Clustering

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘Cluster‘

A clustering method tries to partition inputs into different groups/clusters (see

chapter 1 for terminology). For an introductory example the following 1000 two-

dimensional inputs are clustered (the details of construction are outlined in a

minute):

standardDeviation=0.05;

numberOfCloudInputs=500;

centroid1={0.3,0.7};

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition2];

inputs=Join[inputs1,inputs2];

labels={"x","y","Inputs to be clustered"};

plotStyle={PointSize[0.01],Blue};

points2DWithPlotStyle={inputs,plotStyle};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

© Springer International Publishing Switzerland 2016
A. Zielesny, From Curve Fitting to Machine Learning, Intelligent Systems
Reference Library 109, DOI 10.1007/978-3-319-32545-3_3

157

158 3 Clustering

By visual inspection two distinct clusters are visible. They may be (correctly)

detected by a clustering method

clusterInfo=CIP‘Cluster‘GetClusters[inputs];

which leads to a clustering result that can be illustrated by different coloring

for each detected cluster and the display of their particular centroids (points in the

middle of the two clouds):

indexOfCluster=1;

inputsOfCluster1=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.01],Red}};

indexOfCluster=2;

inputsOfCluster2=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.01],Green}};

properties={"CentroidVectors"};

centroids2D=

CIP‘Cluster‘GetClusterProperty[properties,clusterInfo][[1]];

centroids2DBackground={centroids2D,{PointSize[0.035],White}};

centroids2DWithPlotStyle1={centroids2D,{PointSize[0.03],Black}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,centroids2DBackground,

centroids2DWithPlotStyle1};

labels={"x","y","Colored clusters and their centroids"};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

3 Clustering 159

The determined centroids

centroids2D

{{0.298944,0.69648},{0.698944,0.29648}}

are an optimum solution for this clustering task: The mean (euclidean) distance

of all inputs to their particular corresponding centroid becomes a minimum (com-

pare next section for details). Also note that the detected centroids are very close

to the centroids used for the (above) construction of the clouds of inputs. In princi-

ple there are two extremes of clustering depending on the inputs and the clustering

method used: Either the clustering process results in one single cluster that contains

all inputs or the resulting number of clusters is equal to number of inputs, i.e. each

cluster contains one single input. In both extreme cases clustering does not make

any sense. A useful clustering result is somewhere in between: In general the num-

ber of clusters should be considerably smaller than the number of inputs but at least

two. Different clustering methods differ in the way they try to achieve this goal and

therefore may lead to different outcomes.

Clustering techniques are usually attributed to the unsupervised machine learn-

ing methods since the method is not told in which cluster a specific input is to be

put: This decision is to be made by the clustering algorithm itself. If a method is

told in a supervised manner to which group a specific input belongs the process is

called (supervised) classification and the group is called a class. Classification tasks

are discussed at the end of this chapter and predominantly in the machine learn-

ing chapter 4. Within the scope of this book clustering methods are separated into

an own chapter since a clustering method does not really learn anything: It simply

partitions.

The final number of clusters may be specified in advance or may be left open for

the clustering method to decide itself. Open-categorical clustering without a fixed

number of clusters seems to be the natural choice but sometimes it is sensible to

assure a predefined number of clusters. If the number of clusters is not fixed a clus-

tering methods checks various numbers clusters according to an internal decision

160 3 Clustering

criterion to determine the optimum number. It should be noted that there is nothing

like the best or objective clustering since there is no objective way to partition in-

puts in general. Depending on the inputs to be clustered and the intentions of the

scientists there may be intuitively correct up to totally arbitrary clustering results.

This is outlined in the next sections.

Chapter 3 starts with an introduction on some basics of clustering: The parti-

tioning of inputs into a fixed number of clusters is shown to be a global optimiza-

tion task. The heuristic k-means approach is sketched and the mean-silhouette-width

method for the determination of an appropriate number of clusters is explained (sec-

tion 3.1). Then three intuitive situations for partitioning inputs are tackled: Unam-

biguous, reasonable and senseless clustering (section 3.2). The number of clusters

may be a priori fixed: Corresponding examples are outlined and their consequences

discussed (section 3.3). Getting a small number of representatives from a large num-

ber of inputs is an important application of clustering methods. The advantages of

cluster-based representatives in comparison to randomly chosen ones are pointed

out with different examples (section 3.4). Cluster occupancies of joined sets of in-

puts and an application to the famous iris flower inputs are described as a next step

(section 3.5): They also allow the detection of white spots (empty space regions) in

comparing different sets of inputs (section 3.6). Since there are numerous clustering

methods in use an alternative to the CIP k-medoids default method is demonstrated:

ART-2a based clustering. It leads to different results due to a different view of the

world (section 3.7). Unsupervised learning may be used to construct a class predic-

tor for new inputs. This aspect prepares the entry to supervised machine learning in

chapter 4 (section 3.8). With final cookbook recipes for clustering this chapter ends

(section 3.9).

3.1 Basics

As already indicated a clustering task is in fact an optimization task. This may be

motivated as follows: Consider a number N of inputs that are to be partitioned into

k clusters. What would be an optimum clustering result in this case?

Cluster number i with Ni inputs may be described by a so called centroid ci that

is the center of mass of its inputs input(i)
1

to input(i)
Ni

:

ci =
1
Ni

∑
Ni
u=1 input(i)

u
with u : Index of the input and i : Index of the cluster

The notation input(i)
u

denotes the uth input of cluster i. All inputs input(i)
1
, ..., input(i)

Ni

that are assigned to cluster number i possess the property that their (euclidean) dis-

tances d
(i)
1,i , ...,d

(i)
Ni ,i

to the clusters’ centroid ci

d
(i)
u,i =

∣∣∣input(i)
u
− ci

∣∣∣ with u : Index of the input and i : Index of the cluster

3.1 Basics 161

is less than or equal to their distances to any other centroid c j of other clusters,

i.e.

d
(i)
u,i ≤ d

(i)
u, j with j �= i and

j : Index of another cluster different from i and u : Index of the input

where d
(i)
u, j is the (euclidean) distance of the uth input of cluster i to another

cluster’s centroid c j:

d
(i)
u, j =

∣∣∣input(i)
u
− c j

∣∣∣ with j �= i and

u : Index of the input and i, j : Index of the cluster

Again: What would be an optimum clustering result for partitioning N inputs into

k clusters? The k centroids c1 to ck must be chosen to globally minimize the overall

mean distance of the inputs to their corresponding cluster centroids, i.e.

d̄i =
1
Ni

∑
Ni
u=1 d

(i)
u,i =

1
Ni

∑
Ni
u=1

∣∣∣input(i)
u
− ci

∣∣∣ with

u : Index of the input and i : Index of the cluster

d = ∑k
i=1 d̄i −→ minimize! with

d̄i : Mean distance of all inputs of cluster i to the centroid of cluster i

Optimum positions of the k centroids c1 to ck correspond to the global minimum

of d which thus is a function of the components of the centroids:

d = d (c1, ...,ck) = d
(
c1,1, ...,c1,v, ...,ck,1, ...,ck,v

)
−→ minimize!

with ci,v : vth component of centroid i

In practice this global optimization procedure is rarely performed since its overall

computational costs are considerable. To speed up clustering tasks mainly heuris-

tic local optimization methods are used. But increased speed leads to decreased

accuracy in general so these methods may fail to converge to the sketched global

optimum. A simple and widely used heuristic approach is the so called k-means

clustering (see [MacQueen 1967]). To partition inputs into k clusters this method

starts with k randomly chosen points in the input’s space, the initial centroids. Then

it alternates between two steps ...

162 3 Clustering

• Step 1: Assign each input to its nearest centroid. After all inputs are assigned k

clusters are formed.

• Step 2: Calculate the center of mass of the inputs of each cluster (see above).

These k center of mass points become the new centroids for the next iteration.

Return to Step 1.

... until the assignment of all inputs remains unchanged: In this case the algo-

rithm is deemed to have converged. Since k-means clustering converges quite fast

in practice it is usually run multiple times with different initial centroids to scan

for an optimum clustering result (which by no means is guaranteed to be equal to

the real global optimum described before). Note that there are lots of alternatives

to k-means clustering available, e.g. the more robust but slower partitioning around

medoids method (abbreviated k-medoids) which is used as the default by the CIP

GetClusters method (see [Kaufman 1990] and [GetClusters] in the references).

After the problem of partitioning inputs into k clusters is solved the issue remains

how to choose k, i.e. what is the best or the optimum number of clusters for a given

set of inputs? A criterion is in need that allows to assess the overall clustering quality

for a chosen number of clusters. One such quality measure is the so called mean

silhouette width (see [Rousseeuw 1987]). Consider the following setup: The inputs

are clustered by some method (e.g. k-means or k-medoids) into k clusters. For a

single input u that is assigned to cluster i two quantities are calculated: The mean

(euclidean) distance au,i between this input u and all other inputs that are assigned

to the same cluster i

au,i =
1
Ni

∑
Ni
v=1

∣∣∣input(i)
u
− input(i)

v

∣∣∣
and the mean distance bu, j between this input u and all inputs that are assigned

to another cluster j which is nearest to input u

bu, j =
1

Nj
∑

Nj

v=1

∣∣∣input(i)
u
− input(j)

v

∣∣∣ where j �= i

i.e. the mean distance bu, j that is the smallest for any other cluster j. With these

two quantities au,i and bu, j the silhouette width s(u) is calculated for the single input

u according to:

s(u) =

⎧⎪⎪⎨
⎪⎪⎩

1−
au,i

bu, j
if au,i < bu, j

0 if au,i = bu, j
bu, j

au,i
− 1 if au,i > bu, j

The silhouette width s(u) may vary from −1 to 1. A s(u) value near 1 means that

au,i � bu, j, i.e. the mean distance of input u to the other inputs of its own cluster is

far smaller than the mean distance to the inputs of its nearest cluster: This indicates

a good clustering. A s(u) value near −1 means the opposite: A poor clustering

3.2 Intuitive clustering 163

because input u should be assigned to its nearest cluster and not to the currently

assigned cluster. A s(u) value around 0 means that input u is on the border between

its own and its nearest cluster. If the silhouette width is calculated for all inputs the

mean silhouette width s̄k for a partitioning approach with k clusters may be obtained:

s̄k =
1
N ∑N

w=1 s(w) with N : Number of inputs

The nearer the value of s̄k is to 1 the better the overall clustering of the inputs may

be appraised. And with the mean silhouette width s̄k the desired decision quantity

is obtained that may be used to compare clustering results for different numbers of

classes k1 and k2: If

s̄k1
> s̄k2

then k1 is the more appropriate number of classes. Silhouette widths and their in-

terpretation will be discussed throughout the whole chapter. Again note: Clustering

is an important issue so there are numerous families of clustering methods with an

even higher number of variants ready for use. The same holds for decision criteria

to obtain optimum cluster numbers. This introduction just scratched the surface.

3.2 Intuitive clustering

Clear["Global‘*"];

<<CIP‘Cluster‘

<<CIP‘Graphics‘

<<CIP‘CalculatedData‘

Clustering is an intuitive task if the data can be visualized, i.e. in the case that the

inputs are of dimension two or three. In the following inputs of dimension two are

used for simplicity (but all results may be easily generalized to an arbitrary number

of dimensions: Just use the same CIP methods with higher dimensional inputs).

There are three situations for intuitive clustering that may be distinguished:

• Clustering is unambiguous or objective: The inputs are clearly structured or

grouped and may unambiguously assigned to separated clusters (like the intro-

ductory example above).

• Clustering is overall reasonable but ambiguous in detail: The distribution of

inputs still exhibits obvious structures and clusters of inputs can be detected.

But an unambiguous assignment of all inputs is no longer possible since the

clusters are too closely neighbored. The clustering method thus has to generate a

reasonable separation between the clusters to assign the inputs.

• The inputs are unstructured and do not reveal any reasonable clusters. This

may be the case if the inputs are uniformly distributed.

164 3 Clustering

Every clustering method must prove to generate convincing results in these three

situations. In the following clustering tasks are discussed with the help of so called

Gaussian clouds. A Gaussian cloud of arbitrary dimension consists of vectors that

are normally distributed around a center (centroid). Here is an example of a Gaussian

cloud in two dimensions: A centroid must be defined

centroid1={0.3,0.7};

together with a standard deviation of the normal distribution (which determines

the size of the cloud) and the number of random cloud inputs:

standardDeviation=0.05;

numberOfCloudInputs=5000;

The inputs of the cloud are generated with a CIP CalculatedData package method

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

and may be illustrated by the corresponding diagram:

labels={"x","y","Gaussian cloud in two dimensions"};

points2DWithPlotStyle={inputs1,{PointSize[0.01],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

Note that the distortions of the symmetrical cloud result from the unequal golden

aspect ratio of the diagram, i.e. one unit has different lengths on the x and the y axis.

It is often useful to inspect the frequency distribution of each single component of

3.2 Intuitive clustering 165

the inputs: Therefore a number of intervals between the minimum and maximum

component values are defined and the frequency of the component values in each

interval bin is counted. This may be performed with a CIP Cluster package method:

indexOfComponentList={1,2};

numberOfIntervals=20;

CIP‘Cluster‘ShowComponentStatistics[inputs1,indexOfComponentList,

ClusterOptionNumberOfIntervals -> numberOfIntervals]

Min / Max = 1.13×10-1 / 5.01×10-1

Mean / Median = 3.×10-1 / 2.99×10-1

Min / Max = 5.4×10-1 / 8.99×10-1

Mean / Median = 7.×10-1 / 7.×10-1

"In 1" and "In 2" denote the first and the second component of an input vector.

166 3 Clustering

In the case of Gaussian clouds the frequency distribution of each component

should be a normal distribution: The above approximations would converge to a

perfect bell-shaped normal distribution if the number of cloud inputs and the number

of intervals would be increased to infinity.

As an example for unambiguous or objective clustering two clearly separated

Gaussian clouds are generated:

standardDeviation=0.05;

numberOfCloudInputs=500;

centroid1={0.3,0.7};

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

The two clouds are joined to form a single set of inputs

inputs=Join[inputs1,inputs2];

for the clustering process:

labels={"x","y","Inputs to be clustered"};

points2DWithPlotStyle={inputs,{PointSize[0.01],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

The euclidean distance of the centers of the Gaussian clouds is

EuclideanDistance[centroid1,centroid2]

3.2 Intuitive clustering 167

0.565685

Clustering tasks are performed with the CIP Cluster package. Unsupervised

open-categorical clustering without an a priori specification of the number of de-

sired clusters with the default CIP GetClusters method (see [GetClusters] in the

references for details)

clusterInfo=CIP‘Cluster‘GetClusters[inputs];

leads to the following (expected) result:

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 2

Cluster 1 : 500 members (50.%) with distance = 0.

Cluster 2 : 500 members (50.%) with distance = 0.565685

Two clusters are detected with each containing exactly 50% of the inputs: The

detected euclidean distance of the center of mass centroids of both clusters perfectly

agrees with the predefined centers used for cloud generation. The result may also be

visualized in the space of the inputs with differently colored clusters:

indexOfCluster=1;

inputsOfCluster1=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=2;

inputsOfCluster2=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

labels={"x","y","Clusters in different colors"};

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.01],Red}};

168 3 Clustering

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.01],Green}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

The number of detected clusters is the result of a scan with different clustering

approaches where each approach used a different predefined fixed number of clus-

ters: The different clustering results were then evaluated according to an internal

decision criterion to determine the optimum number of clusters which in this case

is obviously 2 (GetClusters uses the mean silhouette width as a default decision cri-

terion - compare the previous section). This scan with different fixed numbers of

clusters may be illustrated by a silhouette plot to visualize the optimization proce-

dure:

minimumNumberOfClusters=2;

maximumNumberOfClusters=10;

silhouettePlotPoints=CIP‘Cluster‘GetSilhouettePlotPoints[

inputs,minimumNumberOfClusters,maximumNumberOfClusters];

CIP‘Cluster‘ShowSilhouettePlot[silhouettePlotPoints]

3.2 Intuitive clustering 169

For two clusters the highest value is obtained with a mean silhouette width over

0.7 which indicates strongly structured inputs that may be well partitioned into sep-

arated clusters. We may also have a look at the different silhouette widths of each of

the two optimum clusters. A plot of the sorted individual silhouette widths of each

input of cluster 1

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

and cluster 2

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

170 3 Clustering

confirm the assessment of good clustering (note that the number of displayed

individual silhouette widths is reduced for a better overview). The height of the

rectangle corresponds to the mean silhouette width of the cluster and indicates with

a mean value greater 0.7 a well separated good cluster.

The demonstrated unambiguous clustering is no longer possible if two enlarged

Gaussian clouds are generated that overlap each other to a certain extent:

centroid1={0.3,0.7};

standardDeviation=0.175;

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

inputs=Join[inputs1,inputs2];

labels={"x","y","Input Vectors"};

points2DWithPlotStyle={inputs,{PointSize[0.01],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

3.2 Intuitive clustering 171

The euclidean distance between the cloud centers is unchanged

EuclideanDistance[centroid1,centroid2]

0.565685

and a structured distribution of the inputs is still visible but each input may no

longer be unambiguously assigned to its specific cloud:

clusterInfo=CIP‘Cluster‘GetClusters[inputs];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 2

Cluster 1 : 507 members (50.7%) with distance = 0.

Cluster 2 : 493 members (49.3%) with distance = 0.574959

There are two clusters detected with the first cluster being a little bigger than the

second. The euclidean distance between the centers of mass is also a little different

from the predefined center distance used for the inputs generation. The separation

between the two clusters becomes visible by different coloring of the different clus-

ters:

indexOfCluster=1;

inputsOfCluster1=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=2;

inputsOfCluster2=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

labels={"x","y","Clusters in different colors"};

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.01],Red}};

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.01],Green}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

172 3 Clustering

points2DWithPlotStyle2};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

The silhouette plot confirms

silhouettePlotPoints=CIP‘Cluster‘GetSilhouettePlotPoints[inputs,

minimumNumberOfClusters,maximumNumberOfClusters];

CIP‘Cluster‘ShowSilhouettePlot[silhouettePlotPoints]

that two clusters are still the best number of clusters but note that the value of

the mean silhouette width decreased in comparison to the unambiguous clustering

example before: This demonstrates a deteriorated overall clustering because of the

ambiguities due to the two overlapping clouds. But a mean silhouette width between

0.5 and 0.7 still indicates reasonably structured inputs where clustering is useful. If

the individual silhouette widths of the two optimum clusters are inspected

3.2 Intuitive clustering 173

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

the minimum values around zero attract attention: Silhouette widths around zero

correspond to inputs that are at the borderline between the clusters and thus may not

unambiguously be assigned. This finding nicely confirms the intuition and the above

174 3 Clustering

statements in a more quantitative manner. For a mean silhouette value between 0.5

and 0.7 clustering is still helpful.

If the two Gaussian clouds are further enlarged so that they nearly completely

overlap the distribution of the inputs looses any structure:

centroid1={0.3,0.7};

standardDeviation=0.5;

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

inputs=Join[inputs1,inputs2];

labels={"x","y","Input Vectors"};

points2DWithPlotStyle={inputs,{PointSize[0.01],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

Clustering leads to

clusterInfo=CIP‘Cluster‘GetClusters[inputs];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 3

3.2 Intuitive clustering 175

Cluster 1 : 353 members (35.3%) with distance = 0.

Cluster 2 : 327 members (32.7%) with distance = 0.932919

Cluster 3 : 320 members (32.%) with distance = 0.99795

a somewhat arbitrary result with 3 clusters of similar size

indexOfCluster=1;

inputsOfCluster1=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

indexOfCluster=2;

inputsOfCluster2=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

indexOfCluster=3;

inputsOfCluster3=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

labels={"x","y","Clusters in different colors"};

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.01],Red}};

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.01],Green}};

points2DWithPlotStyle3={inputsOfCluster3,{PointSize[0.01],Black}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,points2DWithPlotStyle3};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

176 3 Clustering

due to a silhouette plot that reveals a first maximum at 3 clusters:

silhouettePlotPoints=CIP‘Cluster‘GetSilhouettePlotPoints[inputs,

minimumNumberOfClusters,maximumNumberOfClusters];

CIP‘Cluster‘ShowSilhouettePlot[silhouettePlotPoints]

From an intuitive view this clustering result does not make sense. This view is

supported by the small value of the mean silhouette width around 0.33. A mean sil-

houette width between 0.25 and 0.50 indicates only weakly or artificially structured

inputs where clustering can not reveal any structural insights (a value below 0.25

simply means no structure). Only higher values indicate an overall reasonable clus-

tering as was shown in the examples before. This assessment is also supported by

the individual cluster inspection

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

3.2 Intuitive clustering 177

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

indexOfCluster=3;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

178 3 Clustering

that indicates an enlarged fraction of inputs tending towards a silhouette width

around zero where clustering becomes arbitrary.

3.3 Clustering with a fixed number of clusters

Clear["Global‘*"];

<<CIP‘Cluster‘

<<CIP‘Graphics‘

<<CIP‘CalculatedData‘

A clustering process may be forced to produce an a priori fixed number of clus-

ters. To get an impression of the consequences of this forced clustering a few exam-

ples are outlined. If the two truly separated input clouds of the last section

standardDeviation=0.05;

numberOfCloudInputs=500;

centroid1={0.3,0.7};

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

inputs=Join[inputs1,inputs2];

labels={"x","y","Inputs to be clustered"};

points2DWithPlotStyle={inputs,{PointSize[0.01],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

3.3 Clustering with a fixed number of clusters 179

with two optimum or natural clusters are forced to be partitioned into 3 clusters

numberOfClusters=3;

clusterInfo=

CIP‘Cluster‘GetFixedNumberOfClusters[inputs,numberOfClusters];

the following result is obtained:

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 3

Cluster 1 : 500 members (50.%) with distance = 0.

Cluster 2 : 271 members (27.1%) with distance = 0.561643

Cluster 3 : 229 members (22.9%) with distance = 0.573776

180 3 Clustering

The inputs are split into one large and two smaller neighbored clusters of similar

size:

indexOfCluster=1;

inputsOfCluster1=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=2;

inputsOfCluster2=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=3;

inputsOfCluster3=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

labels={"x","y","Clusters in different colors"};

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.01],Red}};

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.01],Green}};

points2DWithPlotStyle3={inputsOfCluster3,{PointSize[0.01],Black}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,points2DWithPlotStyle3};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

In fact the second optimum or natural cluster has simply been split in two halves.

The silhouette widths inspection reveals one good cluster

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

3.3 Clustering with a fixed number of clusters 181

with a high mean silhouette width which is identical to the first natural cluster

and two poor clusters

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

indexOfCluster=3;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

182 3 Clustering

with only small mean silhouette widths (compare the discussion in the previous

section). If the inputs are partitioned into 4 clusters

numberOfClusters=4;

clusterInfo=

CIP‘Cluster‘GetFixedNumberOfClusters[inputs,numberOfClusters];

the result may already be anticipated:

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 4

Cluster 1 : 282 members (28.2%) with distance = 0.

Cluster 2 : 218 members (21.8%) with distance = 0.0842652

Cluster 3 : 265 members (26.5%) with distance = 0.568283

3.3 Clustering with a fixed number of clusters 183

Cluster 4 : 235 members (23.5%) with distance = 0.587472

The inputs are split into four small clusters of similar size

indexOfCluster=1;

inputsOfCluster1=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=2;

inputsOfCluster2=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=3;

inputsOfCluster3=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=4;

inputsOfCluster4=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

labels={"x","y","Clusters in different colors"};

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.01],Red}};

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.01],Green}};

points2DWithPlotStyle3={inputsOfCluster3,{PointSize[0.01],Black}};

points2DWithPlotStyle4={inputsOfCluster4,{PointSize[0.01],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,points2DWithPlotStyle3,

points2DWithPlotStyle4};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

which are each the half of the two optimum natural clusters. The silhouette

widths now reveal 4 poor clusters:

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

184 3 Clustering

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

indexOfCluster=3;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

3.4 Getting representatives 185

indexOfCluster=4;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

The demonstrated partitioning of inputs into an increasing number of clusters

seems to be useless since the clustering quality simply decreases the more unnatural

the clustering becomes. But the next section outlines an important application of

this procedure.

3.4 Getting representatives

Clear["Global‘*"];

186 3 Clustering

<<CIP‘Graphics‘

<<CIP‘Cluster‘

<<CIP‘CalculatedData‘

One important application of forced clustering with a fixed number of clusters

is the generation of a reduced number of representatives of a full set of inputs with

a similar spatial diversity as the full set: This means that the few representatives

should cover a similar input space as the full set of inputs. A purely random distri-

bution of 5000 inputs is used for an introductory example:

SeedRandom[1];

inputs=Table[{RandomReal[{0.05,0.95}],RandomReal[{0.05,0.95}]},

{5000}];

argumentRange={0.0,1.0};

functionValueRange={0.0,1.0};

labels={"x","y","Inputs"};

allInputVectorsWithPlotStyle={inputs,{PointSize[0.01],Green}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

A look at the statistics for each component of the inputs with the corresponding

CIP Cluster package method

indexOfComponentList={1,2};

numberOfIntervals=5;

argumentRange={0.0,1.0};

functionValueRange={0.0,30.0};

CIP‘Cluster‘ShowComponentStatistics[inputs,indexOfComponentList,

ClusterOptionNumberOfIntervals -> numberOfIntervals,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

3.4 Getting representatives 187

Min / Max = 5.01×10-2 / 9.5×10-1

Mean / Median = 5.06×10-1 / 5.06×10-1

Min / Max = 5.01×10-2 / 9.5×10-1

Mean / Median = 4.99×10-1 / 5.01×10-1

shows an approximated uniform distribution. If a number of 20 representatives

is desired (0.4 % of the total inputs) it seems to be a good choice to simply select

twenty inputs by chance. This can be performed by a corresponding method of the

CIP Cluster package:

numberOfRepresentatives=20;

randomRepresentatives=CIP‘Cluster‘GetRandomRepresentatives[inputs,

numberOfRepresentatives];

labels={"x","y","Random representatives"};

argumentRange={0.0,1.0};

functionValueRange={0.0,1.0};

randomRepresentativesBackground={randomRepresentatives,

{PointSize[0.025],White}};

188 3 Clustering

randomRepresentativesWithPlotStyle={randomRepresentatives,

{PointSize[0.02],Black}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle,

randomRepresentativesBackground,

randomRepresentativesWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

The chosen random representatives (enlarged points) are a satisfactory descrip-

tion of the input’s space in this example. Note that randomly chosen inputs are not

strictly equally spaced (this would be a single specific random result of very low

probability), i.e. randomly chosen inputs always seem to cluster a little bit. An al-

ternative to random selection is the application of a cluster-based selection. Forced

clustering seems to be a sensible method: The inputs are partitioned to a number of

clusters that is equal to the desired number of representatives. Then for each cluster

an input is chosen that is closest to the center of mass centroid of that cluster:

clusterRepresentatives=CIP‘Cluster‘GetClusterRepresentatives[inputs,

numberOfRepresentatives];

labels={"x","y","Cluster representatives"};

clusterRepresentativesBackground={clusterRepresentatives,

{PointSize[0.025],White}};

clusterRepresentativesWithPlotStyle={clusterRepresentatives,

{PointSize[0.02],Black}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle,

clusterRepresentativesBackground,

clusterRepresentativesWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

3.4 Getting representatives 189

The forced clusters may in addition be visualized by different coloring:

numberOfClusters=numberOfRepresentatives;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

inputsOfClusterList=Table[

GetInputsOfCluster[inputs,indexOfCluster,clusterInfo],

{indexOfCluster,

First[GetClusterProperty[{"NumberOfClusters"},clusterInfo]]}];

colorList={Blue,Green,Red,Yellow,Pink,Orange,Cyan,Magenta};

colorIndex=Length[colorList];

points2DWithPlotStyleList=Table[

colorIndex++;If[colorIndex>Length[colorList],colorIndex=1];

{inputsOfClusterList[[i]],

{{PointSize[0.01],colorList[[colorIndex]]}}},

{i,Length[inputsOfClusterList]}];

points2DWithPlotStyleList=Join[points2DWithPlotStyleList,

{clusterRepresentativesBackground,

clusterRepresentativesWithPlotStyle}];

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

190 3 Clustering

The cluster-based representatives seem to be more equally spaced as it is desired

for representatives. But for this example the random and the cluster-based selection

of representatives provide comparable results with the cluster-based selection just

to be a bit favorable. This finding fundamentally changes if the full set of inputs has

different densities in the input’s space. Here is an illustrative example:

centroid1={0.3,0.7};

standardDeviation=0.05;

numberOfCloudInputs=470;

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

centroid3={0.5,0.5};

standardDeviation=0.05;

numberOfCloudInputs=10;

cloudDefinition3={centroid3,numberOfCloudInputs,standardDeviation};

inputs3=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition3];

centroid4={0.8,0.8};

cloudDefinition4={centroid4,numberOfCloudInputs,standardDeviation};

inputs4=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition4];

centroid5={0.2,0.2};

cloudDefinition5={centroid5,numberOfCloudInputs,standardDeviation};

inputs5=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition5];

inputs=Join[inputs1,inputs2,inputs3,inputs4,inputs5];

labels={"x","y","Inputs"};

allInputVectorsWithPlotStyle={inputs,{PointSize[0.01],Green}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

3.4 Getting representatives 191

The majority of inputs (97%) is confined to 2 natural clusters. The component

statistics of the inputs also show a distribution with two distinct peaks in both di-

mensions:

indexOfComponentList={1,2};

numberOfIntervals=25;

CIP‘Cluster‘ShowComponentStatistics[inputs,indexOfComponentList,

ClusterOptionNumberOfIntervals -> numberOfIntervals]

Min / Max = 1.7×10-1 / 8.77×10-1

Mean / Median = 5.×10-1 / 5.06×10-1

Min / Max = 1.12×10-1 / 8.76×10-1

Mean / Median = 4.97×10-1 / 5.26×10-1

If 20 representatives are randomly chosen

192 3 Clustering

numberOfRepresentatives=20;

randomRepresentatives=CIP‘Cluster‘GetRandomRepresentatives[inputs,

numberOfRepresentatives];

labels={"x","y","Random representatives"};

randomRepresentativesBackground={randomRepresentatives,

{PointSize[0.025],White}};

randomRepresentativesWithPlotStyle={randomRepresentatives,

{PointSize[0.02],Black}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle,

randomRepresentativesBackground,

randomRepresentativesWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

it is very likely that they are only taken from these two natural high density

regions as shown above. Thus the data space with a lower density of inputs will be

completely neglected with a high probability. In this case a cluster-based selection

becomes a distinct advantage

clusterRepresentatives=CIP‘Cluster‘GetClusterRepresentatives[inputs,

numberOfRepresentatives];

labels={"x","y","Cluster representatives"};

clusterRepresentativesBackground={clusterRepresentatives,

{PointSize[0.025],White}};

clusterRepresentativesWithPlotStyle={clusterRepresentatives,

{PointSize[0.02],Black}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle,

clusterRepresentativesBackground,

clusterRepresentativesWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

3.4 Getting representatives 193

since it leads to representatives that cover the whole space of inputs:

numberOfClusters=numberOfRepresentatives;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

inputsOfClusterList=Table[

GetInputsOfCluster[inputs,indexOfCluster,clusterInfo],

{indexOfCluster,

First[GetClusterProperty[{"NumberOfClusters"},clusterInfo]]}];

colorList={Blue,Green,Red,Yellow,Pink,Orange,Cyan,Magenta};

colorIndex=Length[colorList];

points2DWithPlotStyleList=Table[

colorIndex++;If[colorIndex>Length[colorList],colorIndex=1];

{inputsOfClusterList[[i]],

{{PointSize[0.01],colorList[[colorIndex]]}}},

{i,Length[inputsOfClusterList]}];

points2DWithPlotStyleList=Join[points2DWithPlotStyleList,

{clusterRepresentativesBackground,

clusterRepresentativesWithPlotStyle}];

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

194 3 Clustering

Again note: In two dimensions the representation problem is comparatively sim-

ple and could be solved by mere visual inspection. For inputs of higher dimensions

this possibility is completely lost but a random or cluster-based selection is still

possible with the same methods outlined above. The required number of represen-

tatives that are necessary for a good representation of a full set of inputs depends on

number of issues: How diverse is the full data space? Which representation accu-

racy is in demand? How many representatives can be handled in further processing

steps? These issues will be addressed in the cross validation oriented discussion in

the machine learning chapter 4.

3.5 Cluster occupancies and the iris flower example

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘Cluster‘

<<CIP‘Graphics‘

Another important application of clustering is the comparison of the spatial di-

versity of different sets of inputs. To compare the spatial diversity the different sets

of inputs are joined and clustered as a union. Then the occupancy of a cluster with

respect to each set of inputs is evaluated. As an example the famous iris flower data

are used (see Appendix A). They consist of three sets of inputs for three iris flower

species under investigation: Iris setosa (species 1), iris versicolor (species 2) and iris

virginica (species 3). Each set of inputs consists of fifty measurements of the sepal

length and width and the petal length and width so each input is of dimension four.

Therefore the inputs can not simply be visually inspected. To get a feeling for the

data the sepal and petal length and width components are analyzed. The iris flower

data are available with the CIP ExperimentalData package:

inputsOfSpecies1=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies1[];

inputsOfSpecies2=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies2[];

inputsOfSpecies3=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies3[];

To get the full 150 iris flower inputs the single inputs of the three species (with

50 inputs each) are joined:

inputs=Join[inputsOfSpecies1,inputsOfSpecies2,inputsOfSpecies3];

For later use a list of the minimum and maximum index of each species in the

full set of inputs is defined. Inputs 1 to 50 belong to species 1 (or class 1), inputs 51

to 100 to species 2 (or class 2) and inputs 101 to 150 to species 3 (or class 3):

classIndexMinMaxList={{1,50},{51,100},{101,150}};

3.5 Cluster occupancies and the iris flower example 195

The first 2 components of an input are sepal length and sepal width. The fre-

quency distributions of these first two components are as follows: The sepal length

(In 1) shows one wide peak

indexOfComponentList={1};

numberOfIntervals=6;

argumentRange={40.0,80.0};

functionValueRange={0.0,30.0};

CIP‘Cluster‘ShowComponentStatistics[inputs,indexOfComponentList,

ClusterOptionNumberOfIntervals->numberOfIntervals,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

Min / Max = 4.3×101 / 7.9×101

Mean / Median = 5.84×101 / 5.8×101

and the same is true for the sepal width (In 2):

indexOfComponentList={2};

argumentRange={20.0,45.0};

functionValueRange={0.0,45.0};

CIP‘Cluster‘ShowComponentStatistics[inputs,indexOfComponentList,

ClusterOptionNumberOfIntervals->numberOfIntervals,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

196 3 Clustering

Min / Max = 2.×101 / 4.4×101

Mean / Median = 3.06×101 / 3.×101

Both components alone will not be able to differentiate between the three species.

A plot of the sepal width (In 2) against the sepal length (In 1) reveals more insight:

labels={"In 1","In 2","Iris flower species 1, 2, 3"};

points2DWithPlotStyle1={inputsOfSpecies1[[All,{1,2}]],

{PointSize[0.02],Red}};

points2DWithPlotStyle2={inputsOfSpecies2[[All,{1,2}]],

{PointSize[0.02],Green}};

points2DWithPlotStyle3={inputsOfSpecies3[[All,{1,2}]],

{PointSize[0.02],Black}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,points2DWithPlotStyle3};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

3.5 Cluster occupancies and the iris flower example 197

The species 1 inputs fill the upper left part and are separated from the other two

species whereas the species 2 and 3 inputs occupy nearly the same space on the

lower right. This finding becomes more pronounced by the analysis of the latter

two components: The petal length and width. The petal length (In 3) shows two

frequency peaks:

indexOfComponentList={3};

argumentRange={10.0,70.0};

functionValueRange={-2.0,35.0};

CIP‘Cluster‘ShowComponentStatistics[inputs,indexOfComponentList,

ClusterOptionNumberOfIntervals -> numberOfIntervals,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

Min / Max = 1.×101 / 6.9×101

Mean / Median = 3.76×101 / 4.35×101

One sharp peak at the left and a wider peak at the right. The petal width (In 4) is

similarly distributed:

indexOfComponentList={4};

argumentRange={0.0,25.0};

functionValueRange={-2.0,35.0};

CIP‘Cluster‘ShowComponentStatistics[inputs,indexOfComponentList,

ClusterOptionNumberOfIntervals -> numberOfIntervals,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

198 3 Clustering

Min / Max = 1. / 2.5×101

Mean / Median = 1.2×101 / 1.3×101

A plot of the petal width (In 4) against the petal width (In 3)

labels={"In 3","In 4","Iris flower species 1, 2, 3"};

points2DWithPlotStyle1={inputsOfSpecies1[[All,{3,4}]],

{PointSize[0.02],Red}};

points2DWithPlotStyle2={inputsOfSpecies2[[All,{3,4}]],

{PointSize[0.02],Green}};

points2DWithPlotStyle3={inputsOfSpecies3[[All,{3,4}]],

{PointSize[0.02],Black}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,points2DWithPlotStyle3};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

shows that the inputs of species 1 are clearly separated from the others but the

inputs of species 2 and 3 do have overlap. So it can be deduced that clustering

3.5 Cluster occupancies and the iris flower example 199

methods will not be able to differentiate perfectly between the three species. If the

full inputs of all three species are clustered by the CIP default method

clusterInfo=CIP‘Cluster‘GetClusters[inputs];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 2

Cluster 1 : 99 members (66.%) with distance = 0.

Cluster 2 : 51 members (34.%) with distance = 39.6076

two clusters are detected. The bigger cluster 1

indexOfCluster=1;

CIP‘Cluster‘GetIndexListOfCluster[indexOfCluster,clusterInfo]

{51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,75,76,77,78,79,80,81,82,

83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,

110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,

133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150}

consists of all indices of inputs that belong to species 2 and species 3 except one.

The smaller cluster 2

indexOfCluster=2;

CIP‘Cluster‘GetIndexListOfCluster[indexOfCluster,clusterInfo]

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,

35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,74}

200 3 Clustering

contains all indices of inputs that belong to species 1 and 1 input from species 2

(index 74). This finding may be graphically illustrated by so called cluster occupan-

cies. For each cluster the percentage of inputs of the three species is obtained

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo]

{{0.,98.,100.},{100.,2.,0.}}

and may be visualized by a bar chart:

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

Cluster 1 contains 100% of the inputs from species 3 and 98% from species 2:

One input (2%) is missing. Cluster 2 contains 100% of the inputs from species 1

and the single input from species 2 (the 2%). The silhouette plots for both clusters

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

3.5 Cluster occupancies and the iris flower example 201

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

show that cluster 2 is a good cluster with only one exceptionally small silhouette

value (that should correspond to the single input from species 2) in comparison to

the acceptable cluster 1 (from the viewpoint of silhouettes). If the number of clusters

is forced to be 3 (the natural choice for 3 species)

numberOfClusters=3;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 3

202 3 Clustering

Cluster 1 : 57 members (38.%) with distance = 0.

Cluster 2 : 43 members (28.6667%) with distance = 17.5241

Cluster 3 : 50 members (33.3333%) with distance = 33.0051

the resulting cluster occupancies are:

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo]

{{0.,90.,24.},{0.,10.,76.},{100.,0.,0.}}

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

The clustering process now partitions the full inputs into three groups that mainly

represent the three species: But whereas cluster 3 now consists only of inputs from

3.5 Cluster occupancies and the iris flower example 203

species 1 (the species that was expected to separate) the clusters 1 and 2 are domi-

nated by species 2 and 3 respectively but still consist of inputs from the other species

due to the overlap of their inputs in space. An inspection of the cluster’s silhouette

widths

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

204 3 Clustering

indexOfCluster=3;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

confirms that cluster 3 is a good cluster and clusters 1 and 2 are only poor. The

situation remains similar if the number of fixed clusters is further increased:

numberOfClusters=6;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 6

Cluster 1 : 29 members (19.3333%) with distance = 0.

Cluster 2 : 19 members (12.6667%) with distance = 6.94575

Cluster 3 : 27 members (18.%) with distance = 13.4926

Cluster 4 : 25 members (16.6667%) with distance = 14.305

Cluster 5 : 28 members (18.6667%) with distance = 40.1159

Cluster 6 : 22 members (14.6667%) with distance = 41.9742

Two clusters (5 and 6) are spatially more separated from the others with larger

distances

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo]

{{0.,14.,44.},{0.,38.,0.},{0.,0.,54.},{0.,48.,2.},{56.,0.,0.},{44.,0.,0.}}

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

and contain all inputs of species 1. Two other cluster (2 and 3) do only contain

inputs of one species: Cluster 2 only inputs from species 2 and cluster 3 only those

of species 3. But there are still two overlap clusters (1 and 4) that contain inputs from

species 2 as well as species 3. In summary it becomes clear that simple clustering is

not able to distinguish between the iris flower species 2 and 3 due to their overlap.

3.5 Cluster occupancies and the iris flower example 205

206 3 Clustering

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘Cluster‘

Cluster occupancies may be used to systematically reveal white spots in a specific

set of inputs in comparison to an alternative set, i.e. spatial areas where a specific set

of inputs does not contain a relevant number of data but the alternative set of inputs

does. The following example shows two set of inputs (A and B) of different size and

different spatial distribution:

centroid1={0.3,0.7};

standardDeviation=0.05;

numberOfCloudInputs=200;

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

centroid3={0.3,0.3};

cloudDefinition3={centroid3,numberOfCloudInputs,standardDeviation};

inputs3=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition3];

inputsA=Join[inputs1,inputs2,inputs3];

centroid1={0.35,0.65};

standardDeviation=0.05;

numberOfCloudInputs=50;

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.75,0.25};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

centroid3={0.7,0.7};

cloudDefinition3={centroid3,numberOfCloudInputs,standardDeviation};

inputs3=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition3];

inputsB=Join[inputs1,inputs2,inputs3];

argumentRange={0.0,1.0};

functionValueRange={0.0,1.0};

labels={"x","y","Inputs A and B"};

inputsAwithPlotStyle={inputsA,{PointSize[0.01],Green}};

inputsBwithPlotStyle={inputsB,{PointSize[0.01],Red}};

points2DWithPlotStyleList={inputsAwithPlotStyle,

inputsBwithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

3.6 White-spot analysis

3.6 White-spot analysis 207

If the input sets A and B are joined

inputs=Join[inputsA,inputsB];

classIndexMinMaxList={{1,Length[inputsA]},{Length[inputsA]+1,

Length[inputsA]+Length[inputsB]}}

{{1,600},{601,750}}

the first 600 inputs belong to inputs A and the next 150 inputs to inputs B. If

the joined inputs are partitioned into four clusters (the natural choice from visual

inspection)

numberOfClusters=4;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 4

208 3 Clustering

Cluster 1 : 250 members (33.3333%) with distance = 0.

Cluster 2 : 50 members (6.66667%) with distance = 0.385247

Cluster 3 : 200 members (26.6667%) with distance = 0.390721

Cluster 4 : 250 members (33.3333%) with distance = 0.565685

the expected result is obtained: Two of the four clusters are equally occupied

(cluster 1 and 4)

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo]

{{33.3,33.3},{0.,33.3},{33.3,0.},{33.3,33.3}}

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

whereas clusters 2 and 3 do only contain inputs of one set. An inputs set is said

to contain a white spot if it occupies a detected cluster less than a threshold value

in comparison to another set of inputs. With a white spot threshold of 80% a white

spot is detected for inputs A (index 1) in cluster 2

threshold=80.0;

indexOfInputs=1;

CIP‘Cluster‘GetWhiteSpots[clusterOccupancies,indexOfInputs,

threshold]

{2}

and for inputs B (index 2) in cluster 3:

3.7 Alternative clustering with ART-2a 209

indexOfInputs=2;

CIP‘Cluster‘GetWhiteSpots[clusterOccupancies,indexOfInputs,

threshold]

{3}

White spots or gaps detected in this way may advise further research strategies

or indicate subtle problems.

3.7 Alternative clustering with ART-2a

Clear["Global‘*"];

<<CIP‘Graphics‘

<<CIP‘Cluster‘

<<CIP‘ExperimentalData‘

<<CIP‘CalculatedData‘

As already mentioned there are numerous different clustering techniques avail-

able based on entirely different principles. As an alternative to the k-medoids clus-

tering this section describes ART-2a clustering that is derived from neural-network-

based Adaptive Resonance Theory (ART, see [Carpenter 1991] and [Wienke 1994]

for details). ART-2a belongs to the open-categorical clustering techniques and is

guided by a so called vigilance parameter: Depending on an a priori defined vigi-

lance a corresponding number of clusters is created. The vigilance parameter can be

varied between 0 (rough clustering with little vigilance and a small number of result-

ing clusters) and 1 (fine clustering with high vigilance and many resulting clusters).

The CIP default value is 0.1 which means low vigilant/relatively rough clustering.

If the number of clusters is a priori fixed for this method the corresponding vigi-

lance parameter that produces this a priori defined number of clusters is determined

by an iterative procedure. To get a quick insight about how ART-2a works equally

distributed two-dimensional inputs

SeedRandom[1];

inputs=Table[{RandomReal[{0.05,0.95}],RandomReal[{0.05,0.95}]},

{5000}];

argumentRange={0.0,1.0};

functionValueRange={0.0,1.0};

labels={"x","y","Inputs"};

allInputVectorsWithPlotStyle={inputs,{PointSize[0.01],Green}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

210 3 Clustering

are forced to be grouped into three clusters:

numberOfClusters=3;

clusterMethod="ART2a";

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters,ClusterOptionMethod -> clusterMethod];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"ART2aDistanceDiagram","ART2aClusterStatistics"},clusterInfo]

Number of clusters = 3

Cluster 1 : 1712 members (34.24%) with angle = 0.

Cluster 2 : 1681 members (33.62%) with angle = 44.9804

Cluster 3 : 1607 members (32.14%) with angle = 90.

ART-2a produces 3 clusters of similar size. The difference between the clusters

is expressed in an angle value where a value of 0 means identity and a value of

90 means orthogonal clusters with maximum separation. This at first sight strange

terminology becomes clear if the 3 clusters are visualized:

3.7 Alternative clustering with ART-2a 211

inputsOfClusterList=Table[

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo],

{indexOfCluster,numberOfClusters}];

colorList={Blue,Green,Red};

colorIndex=Length[colorList];

points2DWithPlotStyleList=Table[

colorIndex++;If[colorIndex>Length[colorList],colorIndex=1];

{inputsOfClusterList[[i]],{PointSize[0.01],

colorList[[colorIndex]]}},{i,Length[inputsOfClusterList]}];

labels={"x","y","Clusters in different colors"};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

The three cluster angles of approximately 0, 45 and 90 degree are now intuitive:

ART-2a has only a radial view of the world. All inputs are projected internally to

a unit hypersphere around the origin so only radial differences between them are

taken into account (moreover the inputs are initially transformed so that the max-

imum angle between clusters is 90 degree and not 180). Therefore ART-2a will

be rather restricted for low dimensional clustering like the 2D example above. But

when it comes to high dimensional clustering tasks in hugh spaces this restriction

will become less important and ART-2a can demonstrate its strength: Speed! ART-

2a is a dramatically faster clustering method compared to k-medoids or k-means.

And speed becomes a critical parameter if very large data volumes with millions or

billions of inputs are to be clustered. If the iris flower inputs

inputsOfSpecies1=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies1[];

inputsOfSpecies2=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies2[];

inputsOfSpecies3=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies3[];

inputs=Join[inputsOfSpecies1,inputsOfSpecies2,inputsOfSpecies3];

classIndexMinMaxList={{1,50},{51,100},{101,150}};

are clustered with ART-2a and the CIP default vigilance parameter of 0.1

212 3 Clustering

clusterInfo=CIP‘Cluster‘GetClusters[inputs,

ClusterOptionMethod -> clusterMethod];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"ART2aDistanceDiagram","ART2aClusterStatistics"},clusterInfo]

Number of clusters = 3

Cluster 1 : 95 members (63.3333%) with angle = 0.

Cluster 2 : 5 members (3.33333%) with angle = 31.7532

Cluster 3 : 50 members (33.3333%) with angle = 90.

3 clusters are obtained. With a scan of the sensitivity of the resulting number of

clusters to the chosen vigilance parameter (which may vary between 0 and 1)

minimumVigilanceParameter=0.01;

maximumVigilanceParameter=0.99;

numberOfScanPoints=30;

art2aScanInfo=CIP‘Cluster‘GetVigilanceParameterScan[inputs,

minimumVigilanceParameter,maximumVigilanceParameter,

numberOfScanPoints];

CIP‘Cluster‘ShowVigilanceParameterScan[art2aScanInfo]

3.7 Alternative clustering with ART-2a 213

a clear plateau for 3 clusters can be detected, i.e. 3 clusters is the natural choice of

the method for a wide range of vigilance values. A check of the cluster occupancies

of the 3 clusters

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo]

{{0.,90.,100.},{0.,10.,0.},{100.,0.,0.}}

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

shows that species 1 is clearly separated into one cluster (3). One small cluster

(2) contains only some members of species 2 but the biggest cluster (1) contains

214 3 Clustering

nearly all members of species 2 and 3. So ART-2a is not able to distinguish between

these two species. A look at the silhouette widths of the clusters

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

3.7 Alternative clustering with ART-2a 215

indexOfCluster=3;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

show one good cluster (3) for the separable species 1, one medium cluster (2)

with only a few fairly separable inputs of species 2 and a very poor cluster (1) with

the mixed species 2 and 3 inputs. If the number of clusters is enforced to be six

numberOfClusters=6;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters,ClusterOptionMethod -> clusterMethod];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"ART2aDistanceDiagram","ART2aClusterStatistics"},clusterInfo]

Number of clusters = 6

Cluster 1 : 62 members (41.3333%) with angle = 0.

216 3 Clustering

Cluster 2 : 5 members (3.33333%) with angle = 28.647

Cluster 3 : 33 members (22.%) with angle = 34.761

Cluster 4 : 1 members (0.666667%) with angle = 69.9521

Cluster 5 : 5 members (3.33333%) with angle = 73.796

Cluster 6 : 44 members (29.3333%) with angle = 90.

the situation does not improve significantly:

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo]

{{0.,58.,66.},{0.,10.,0.},{0.,32.,34.},{2.,0.,0.},{10.,0.,0.},{88.,0.,0.}}

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

Inputs of species 1 now purely occupy three neighbored clusters (4 to 6) but a bet-

ter separation of species 2 and 3 can not be achieved: They are now both distributed

among two clusters (1 and 3). Compared to the CIP k-medoids default clustering of

the iris flower inputs before the ART-2a based clustering is inferior with respect to

the separation of species 2 and 3: A result that is expected from its radial view of the

world for a problem with only 4 dimensions. A final example shows that things can

change if clustering is performed in an input’s space with many dimensions. Four

Gaussian clouds

numberOfGaussianClouds=4;

with a small standard deviation of 0.05 and 200 inputs each

3.7 Alternative clustering with ART-2a 217

standardDeviation=0.05;

numberOfCloudInputs=200;

cloudVectorNumberList=Table[

numberOfCloudInputs,{numberOfGaussianClouds}];

are generated in a 50 dimensional input’s space at random positions:

numberOfDimensions=50;

inputs=CIP‘CalculatedData‘GetRandomGaussianCloudsInputs[

cloudVectorNumberList,numberOfDimensions,standardDeviation];

The first 200 inputs belong to cloud 1 (or class 1), the next 200 inputs belong to

cloud 2 (or class 2) etc. so the list with the min/max indices of the inputs for every

cloud (class) is as follows:

classIndexMinMaxList={{1,200},{201,400},{401,600},{601,800}};

The whole setup can no longer be visually inspected because of the 50 dimen-

sions but four small clouds of inputs in a hugh space should be easy to partition. If

we cluster the inputs with the CIP default method with an open number of clusters

clusterInfo=CIP‘Cluster‘GetClusters[inputs];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters"},clusterInfo]

Number of clusters = 4

we get four clusters where each cluster contains the inputs of one specific cloud

as may be shown by the cluster occupancies:

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo];

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

218 3 Clustering

The overall minimum, mean and maximum silhouette values

silhouetteStatistics=CIP‘Cluster‘GetSilhouetteStatistics[inputs,

clusterInfo]

{0.783168,0.823311,0.848463}

reveal a perfect separation of the clusters which may in addition be confirmed by

the individual silhouette widths of the inputs of cluster 1:

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

3.7 Alternative clustering with ART-2a 219

Now consider the ART-2a method: Its application with the default vigilance pa-

rameter of 0.1

clusterMethod="ART2a";

clusterInfo=CIP‘Cluster‘GetClusters[inputs,

ClusterOptionMethod -> clusterMethod];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters"},clusterInfo]

Number of clusters = 4

also leads to four perfect clusters which are identical to those found before (but

of course in another order)

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo];

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

with the same silhouette statistics:

silhouetteStatistics=CIP‘Cluster‘GetSilhouetteStatistics[inputs,

clusterInfo]

{0.783168,0.823311,0.848463}

The sensitivity of the detected number of classes to a change in the vigilance

parameter is extremely low, i.e. there is a wide plateau region for four clusters

minimumVigilanceParameter=0.01;

maximumVigilanceParameter=0.90;

220 3 Clustering

numberOfScanPoints=20;

art2aScanInfo=CIP‘Cluster‘GetVigilanceParameterScan[inputs,

minimumVigilanceParameter,maximumVigilanceParameter,

numberOfScanPoints];

CIP‘Cluster‘ShowVigilanceParameterScan[art2aScanInfo]

which indicates that four clusters are the natural choice. In this case any infe-

riority of the ART-2a method in comparison to the k-medoids method due to its

restricted radial perception of the world does no longer play a crucial role - but its

higher speed in fact does.

3.8 Clustering and class predictions

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘ExperimentalData‘

<<CIP‘Utility‘

<<CIP‘Graphics‘

<<CIP‘Cluster‘

<<CIP‘DataTransformation‘

Clustering can be used to construct a class predictor, i.e. a tool that returns a class

number for an arbitrary input. Predictive tools are the holy grail of machine learning

and will be discussed in detail for supervised learning in chapter 4. But also an

unsupervised learning approach like clustering can be predictive to a certain extent.

To get a clear understanding of how a class predictor may be achieved consider the

following data:

centroidVector1={0.2,0.2};

3.8 Clustering and class predictions 221

numberOfCloudVectors=150;

standardDeviation=0.3;

cloudDefinition1={centroidVector1,numberOfCloudVectors,

standardDeviation};

inputs1=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition1];

centroidVector2={0.8,0.8};

cloudDefinition2={centroidVector2,numberOfCloudVectors,

standardDeviation};

inputs2=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition2];

points2DWithPlotStyle1={inputs1,{PointSize[0.02],Red}};

points2DWithPlotStyle2={inputs2,{PointSize[0.02],Green}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

labels={"x","y","Inputs and their corresponding color classes"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels]

There are two classes of inputs where the inputs’ cloud of class 1 overlaps with

the inputs’ cloud of class 2. A class predictor tries to correctly predict the class that

corresponds to a specific input, i.e.corresponds to the coordinates of a specific point:

inputs=Join[inputs1,inputs2];

labels={"x","y","Inputs to be classified: Class 1 or 2?"};

plotStyle={PointSize[0.02],Blue};

points2DWithPlotStyle={inputs,plotStyle};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

222 3 Clustering

For the current task a predictor with a success rate of 100% is obviously impossi-

ble due to the clouds’ overlap. The best possible result seems to be a success rate of

about 90% correct predictions since the class predictions for the inputs in the over-

lapping region will be ambiguous which inevitably leads to classification errors. A

classification data set for both classes is generated (see chapter 1 for details)

cloudDefinitions={cloudDefinition1,cloudDefinition2};

classificationDataSet=

CIP‘CalculatedData‘GetGaussianCloudsDataSet[

cloudDefinitions];

and sorted ascending according its two classes

sortResult=CIP‘DataTransformation‘SortClassificationDataSet[

classificationDataSet];

sortedClassificationDataSet=sortResult[[1]];

with a corresponding min/max index list for the inputs assignment to their par-

ticular class:

classIndexMinMaxList=sortResult[[2]]

{{1,150},{151,300}}

The length of the min/max list simply is the number of classes:

numberOfClusters=Length[classIndexMinMaxList]

2

As a next step the pure inputs of the classification data set are obtained

3.8 Clustering and class predictions 223

inputs=CIP‘Utility‘GetInputsOfDataSet[sortedClassificationDataSet];

and clustered according to the desired number of classes:

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

The resulting two clusters may be visualized with their centroids

indexOfCluster=1;

inputsOfCluster1=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.02],Red}};

indexOfCluster=2;

inputsOfCluster2=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.02],Green}};

properties={"CentroidVectors"};

centroids2D=

CIP‘Cluster‘GetClusterProperty[properties,clusterInfo][[1]];

centroids2DBackground={centroids2D,{PointSize[0.035],White}};

centroids2DWithPlotStyle1={centroids2D,{PointSize[0.03],Black}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,centroids2DBackground,

centroids2DWithPlotStyle1};

labels={"x","y","Clusters in different colors and their centroids"};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

and the predictivity inspected:

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo];

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

224 3 Clustering

As a result it becomes obvious that cluster 1 contains around 90% of the members

of class 1 and cluster 2 around 90% of the members of class 2. It is this finding that

may be utilized to construct a class predictor. If each cluster is simply characterized

by its centroid

CIP‘Cluster‘GetClusterProperty[{"CentroidVectors"},clusterInfo]

{{{0.182319,0.22501},{0.829217,0.835822}}}

and the centroid of cluster 1 is most predictive for class 1 then it can be assigned

to class 1. The centroid of cluster 2 is most predictive for class 2 so it is assigned to

this class. Now a class assignment for any arbitrary input may be obtained by simply

calculating its nearest centroid with a minimum euclidean distance. The attached

class assignment of this nearest centroid is then the predictive output. All the above

steps are collected in a single general method FitCluster

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet];

that generates a clusterInfo which can be used for class predictions, e.g.

input={0.1,0.5};

CIP‘Cluster‘CalculateClusterClassNumber[input,clusterInfo]

1

input={0.9,0.5};

CIP‘Cluster‘CalculateClusterClassNumber[input,clusterInfo]

2

3.8 Clustering and class predictions 225

Input (0.1, 0.5) belongs to class 1 and input (0.9, 0.5) to class 2. The overall class

prediction success rate for the whole data set

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassification"},classificationDataSet,clusterInfo]

90.7% correct classifications

is around 90% as expected. The predictivity for each single class of the data set

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassificationPerClass"},classificationDataSet,clusterInfo]

is equally good since the classification task is symmetrical. For this specific ex-

ample the class predictor obtained from unsupervised learning is the best we can

get from the data: Also the in general more powerful supervised machine learning

methods will not perform any better in this case as will be shown in chapter 4. If the

iris flower classification problem is revisited

classificationDataSet=

CIP‘ExperimentalData‘GetIrisFlowerClassificationDataSet[];

a clustering-based class predictor may be constructed in the same manner:

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet];

The overall classification success rate

226 3 Clustering

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassification"},classificationDataSet,clusterInfo]

89.3% correct classifications

is found to be about 90% but it is quite different for the three species (classes):

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassificationPerClass"},classificationDataSet,

clusterInfo]

Whereas species (or class) 1 is 100% correctly predicted the results for the other

two species (classes) are clearly worse. This again is expected from the findings

with the iris flower data above that revealed overlap of the inputs for species 2 and

3. If the ART-2a clustering method is used instead of the default k-medoids method

clusterMethod="ART2a";

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet,

ClusterOptionMethod -> clusterMethod];

the overall classification success rate

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassification"},classificationDataSet,clusterInfo]

87.3% correct classifications

is a little inferior as expected and the class-based results

3.8 Clustering and class predictions 227

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassificationPerClass"},classificationDataSet,

clusterInfo]

exhibit a particularly poor prediction for species (class) 2. Note that the correct

classification rates are not necessarily equal to the corresponding cluster occupan-

cies: A class is predicted on the basis of the simple (euclidean) distance of an input

to its nearest cluster centroid whereas a clustering method is not necessarily cen-

troid based (e.g. the default k-medoids method is not and ART-2a isn’t either). The

sketched construction of a class predictor based on unsupervised learning is very ro-

bust, i.e. it works almost always for a classification data set without any problems.

But its predictive quality depends on the success of clustering with regard to the de-

sired class assignments: If this assignment is unambiguous the predictor is perfect

- otherwise the predictivity is limited up to extremely poor. A supervised learning

method is in general able to extract more from the data - with the risk of extracting

too much: Then the supervised learning method overfits the data which inevitably

leads to a loss of predictability. In contrast the robust unsupervised learning is not

prone to overfitting at all. It therefore can be regarded as a good start for a more de-

tailed data analysis as far as a classification task is in question. As a final remark it

should be noticed that the outlined construction process of a clustering-based class

predictor may be modified in numerous ways: A family of variants could be created

easily where each family member could be superior to another for a specific classifi-

cation task. The data analysis community loves this comparison of variants so do not

take this game too serious: It’s usually accompanied by a tremendous effort for only

incremental improvements which are most often not significant to a practitioner in

the lab. Therefore it is the basic ideas that count.

228 3 Clustering

3.9 Cookbook recipes for clustering

Clustering is a common first step in data analysis so the discussed topics may be

condensed into a few cookbook recipes:

• The start: Take the inputs and perform an open-categorical clustering with your

default method of choice. The clustering result suggests an optimum number of

clusters. If you have any feeling or even knowledge about the true number of

clusters you get some insight about success of failure of the clustering method

chosen. Use alternative clustering methods: Do the results coincide? If not, why

not? For example a comparison of k-medoids with ART-2a may reveal interesting

aspects of the structural features of the inputs in question due to the fundamental

differences of both methods. At the end you should at least have a structural

feeling about your inputs - and may it be that there is nothing like a structure.

• Cluster inspection: Assess the quality of the detected clusters e.g. with silhou-

ette widths plots. There may be good as well as poor clusters with all graduations

in between. A closer look at each cluster is also sensible if the number of clusters

is varied to different fixed values.

• Representatives: Clustering may be utilized to get a reduced set of representa-

tives for the whole inputs. Cluster-based representatives have the advantage of

being adequately distributed over the whole inputs’ space so that they cover ap-

proximately the same spatial diversity as the complete inputs. But be aware that

any method of data reduction looses information: This loss may be crucial for

later failure.

• Comparison of inputs: Inputs of different sources may be compared by clus-

tering techniques to reveal similarities as well as white spots. Both may have an

important heuristic relevance and motivate further research.

• Classification tasks: If your final goal is a class predictor on the basis of a clas-

sification data set try pure unsupervised learning to construct one. A clustering-

based class predictor is usually a good start for the more elaborate supervised

machine learning methods. And note: If the clustering-based class predictor per-

forms well there is no need for the more elaborate methods: You are perfectly

done!

A final statement of warning may always be kept in mind: A clustering method

may yield an intuitive, expected and reasonable result in some cases but not in oth-

ers. That means that a clustering process may not be helpful at all or even worse: It

may be misleading! Since clustering always works it always generates a result - no

matter how appropriate this is. A principle problem is the fact that visual inspection

is usually not possible for clustering inputs of dimensions higher than 2 or 3. The

application of a specific clustering method should therefore be validated as thorough

as possible.

Chapter 4

Machine Learning

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘SVM‘

Machine learning methods are applied when K input/output (I/O) pairs

(
x1,y1

)
, ...,

(
xK ,yK

)

of inputs

xk = (xk1,xk2, ...,xkM) ; k = 1, ...,K

and corresponding outputs

y
k
= (yk1,yk2, ...,ykN) ; k = 1, ...,K

are available but the model functions fi that map the input vectors onto the output

vectors

yi = fi (x1, ...,xM) ; i = 1, ...,N

or in compact vector notation

y = f (x)

are completely unknown: Machine learning tries to approximate these unknown

model functions fi on the basis of the provided I/O data. This situation is comparable

© Springer International Publishing Switzerland 2016
A. Zielesny, From Curve Fitting to Machine Learning, Intelligent Systems
Reference Library 109, DOI 10.1007/978-3-319-32545-3_4

229

230 4 Machine Learning

to 2D data smoothing discussed in chapter 2 but now takes place in many more

dimensions. To illustrate an example a function with two arguments f (x,y) is used to

generate 100 normally distributed erroneous data around it (see [Cherkassy 1996]):

pureOriginalFunction=Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)ˆ2]*Exp[-y]* Sin[7.0*y])];

xRange={0.0,1.0};

yRange={0.0,1.0};

numberOfDataPerDimension=10;

standardDeviationRange={0.1,0.1};

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

labels={"x","y","z"};

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureOriginalFunction,labels]

The task of the machine learning process is to create an approximate model func-

tion from the pure I/O data

CIP‘Graphics‘Plot3dDataSet[dataSet3D,labels]

4 Machine Learning 231

without any knowledge about the original function used for the data generation

(which is the fundamental difference to pure curve fitting of chapter 2 where the

model function was at least structurally known). As a possible method for machine

learning a so called support vector machine (with a specific so called kernel func-

tion) is chosen to perform the fitting task :

kernelFunction={"Wavelet",0.3};

svmInfo=CIP‘SVM‘FitSvm[dataSet3D,kernelFunction];

Since no error messages were thrown the successful machine learning result is

condensed in a svmInfo data structure which can be used for further analysis. The

approximated model function may be checked by visual inspection

pureSvm3dFunction=

Function[{x,y},CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureSvm3dFunction,labels]

232 4 Machine Learning

and related quality-of-fit plots

CIP‘SVM‘ShowSvmSingleRegression[{"ModelVsDataPlot",

"AbsoluteSortedResidualsPlot","RMSE"},dataSet3D,svmInfo]

4 Machine Learning 233

Root mean squared error (RMSE) = 9.279×10-2

to be of excellent quality: The residuals (i.e. the deviations between the calculated

values of approximated model function and the initially generated erroneous output

values of the data set) and the RMSE are in perfect agreement with the standard

deviation (error) of 0.1 used above for the data generation. In addition there are

no systematic deviations in the residuals plot. Original and approximated model

function may also be overlayed to reveal only minor deviations:

originalFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureOriginalFunction,xRange,yRange,labels];

approximatedFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureSvm3dFunction,xRange,yRange,labels];

Show[originalFunctionGraphics3D,approximatedFunctionGraphics3D]

234 4 Machine Learning

This confirms the impressive approximation success of the used machine learning

method. But any enthusiasm should be complemented with a direct statement of

warning: If a different support vector machine is used (with an inappropriate kernel

function - and there is in general no way to know a good kernel function in advance)

kernelFunction={"Wavelet",2.0};

svmInfo=CIP‘SVM‘FitSvm[dataSet3D,kernelFunction];

the result is a mere disaster

pureSvm3dFunction=Function[

{x,y},CalculateSvm3dValue[x,y,svmInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,pureSvm3dFunction,

labels]

4 Machine Learning 235

with a completely unsatisfying quality:

CIP‘SVM‘ShowSvmSingleRegression[{"ModelVsDataPlot",

"AbsoluteSortedResidualsPlot","RMSE"},dataSet3D,svmInfo]

236 4 Machine Learning

Root mean squared error (RMSE) = 8.796×10-1

Welcome to machine learning! Always keep in mind that machine learning is

(and unfortunately remains) a lot of laborious trial and error. It opens a space with

fantastic opportunities but may often lead to dramatic failure. Since pairs of inputs

xk = (xk1,xk2, ...,xkM) and corresponding outputs y
k
= (yk1,yk2, ...,ykN) are manda-

tory for machine learning its training (or optimization) process is called supervised

learning where the learning is controlled (or supervised) by the known outputs -

in contrast to the unsupervised clustering of inputs without any control discussed

in chapter 3. Machine learning may address a regression or a classification task

and usually involves multidimensional input and output vectors (i.e. N and M are

usually substantially larger than one). As already mentioned it may be regarded

as a generalization of 2D data smoothing (with N and M equal to one, see chap-

ter 2) to multiple dimensions. Note that errors of the y data are usually not taken

into account since machine learning lacks a sound statistical basis due to the miss-

ing knowledge of the model functions’ structures. In this chapter different machine

learning methods are sketched: Multiple linear and polynomial regression (MLR,

MPR), three-layer feed-forward neural networks (three-layer perceptrons) and sup-

port vector machines (SVM). MLR and MPR are usually not accounted as machine

learning techniques but perfectly fit into this chapter as a (fast) start. Perceptrons and

SVMs are prominent machine learning methods and are widely used (not only) in

science and engineering. For a successful application of machine learning unfortu-

nately a lot of subtleties have to be taken into consideration and a lot can go wrong.

But when these issues can be successfully tackled and the provided data are suitable

machine learning can reveal its magic to the practitioner. It may provide substantial

support in finding intricate relationships and hidden optima.

Chapter 4 starts with a brief sketch of the basic principles of machine learning

(section 4.1). The different machine learning methods used in this chapter, i.e. MLR,

MPR, three-layer perceptrons and SVMs, are summarized afterwards (section 4.2).

The assessment of the goodness of a machine learning result is an essential step

so some quantities and plots are described that are helpful for analyzing the out-

4.1 Basics 237

comes of regression and classification tasks (section 4.3 and 4.4). The necessity

of non-linear machine learning methods is established with a real world modelling

example at the borderline of non-linearity: A fit to adhesive kinetics data (section

4.5). Also the phenomenon of overfitting is encountered and illustrated. Non-linear

decision surfaces for classification tasks are demonstrated afterwards (section 4.6).

Supervised classification does not necessarily aim to be a 100% correct. For am-

biguous data a reduced success rate may be the superior choice. This general insight

is outlined and directs the discussion to the problem of validating predictions (sec-

tion 4.7). The partitioning of a data set into a training and a test set to address the

validation issue evokes basic questions regarding the size and the selection of these

sets. This is explored with a closer look at different selection heuristics and their

success or failure (section 4.8). There are always different methods available for

a specific machine learning task: Comparative aspects are sketched and discussed

(section 4.9). The relevance of each component of an I/O pair’s input can be ana-

lyzed by a successive leave-one-out or component-inclusion strategy. In this way the

number of input components may be reduced which not only simplifies learning but

allows the construction of minimal models (section 4.10). Pattern recognition is an

important application of supervised machine learning. A simple example concern-

ing the detection of face types sketches possible issues and subtleties (section 4.11).

Machine learning as an optimization process is guided by several technical param-

eters. Their crucial influence for successful learning is exemplified (section 4.12).

Final cookbook recipes for machine learning and an appendix with two scientific

applications that collect several pieces described before close this chapter (sections

4.13 and 4.14).

4.1 Basics

Clear["Global‘*"];

<<CIP‘Perceptron‘

<<CIP‘Graphics‘

<<CIP‘CalculatedData‘

<<CIP‘DataTransformation‘

In order to get a principle understanding about how machine learning methods

work the inverse procedure to machine learning is followed and illustrated in two

dimensions for simplicity (it may readily be generalized to an arbitrary number of

dimensions of course). The starting point is an elementary function in form of a so

called bump: A bump has a value greater than zero in its bump region and a value

close to zero elsewhere. Here is an example of a two-dimensional bump around

x = 6:

interval={5.,7.};

pureSigmoid1=Function[x,SigmoidFunction[x-interval[[1]]]];

pureSigmoid2=Function[x,SigmoidFunction[x-interval[[2]]]];

238 4 Machine Learning

pureBump=Function[x,BumpFunction[x,interval]];

pureFunctions={pureSigmoid1,pureSigmoid2,pureBump};

argumentRange={-5.0,20.0};

plotRange={0.0,1.0};

plotStyle={{Thickness[0.001],Orange},{Thickness[0.001],Orange},

{Thickness[0.005],Green}};

labels={"x","y","Sigmoid functions and resulting bump"};

CIP‘Graphics‘Plot2dFunctions[pureFunctions,argumentRange,plotRange,

plotStyle,labels]

The bump is the difference between two sigmoid threshold functions on the left

and right which themselves perform a transition from zero to one at a distinct x

value. Layered feed-forward neural networks (perceptrons) are composed of logical

neurons that work with sigmoid threshold functions: If logical neurons are combined

in a network they are able to produce bumps. By added overlay of several bumps

(or other elementary functions in general) an arbitrarily complex non-linear result

function can be created:

interval1={0.,8.};

pureBump1=Function[x,BumpFunction[x,interval1]];

interval2={11.,13.};

pureBump2=Function[x,BumpFunction[x,interval2]];

interval3={10.,22.};

pureBump3=Function[x,BumpFunction[x,interval3]];

interval4={25.,29.};

pureBump4=Function[x,BumpFunction[x,interval4]];

pureBumpSum=Function[x,BumpFunction[x,interval1]+

BumpFunction[x,interval2]+BumpFunction[x,interval3]+

BumpFunction[x,interval4]];

pureFunctions={pureBump1,pureBump2,pureBump3,pureBump4,pureBumpSum};

argumentRange={-10,40};

plotRange={0.0,1.5};

plotStyle={{Thickness[0.001],Green},{Thickness[0.001],Green},

{Thickness[0.001],Green},{Thickness[0.001],Green},

{Thickness[0.005],Red}};

labels={"x","y","Result function of added bumps"};

CIP‘Graphics‘Plot2dFunctions[pureFunctions,argumentRange,plotRange,

plotStyle,labels]

4.1 Basics 239

As a last step we simulate 100 error-biased data points around the result function.

Since this demonstration is in 2 dimensions xy-error data with the CIP Calculated-

Data package are generated with an error (standard deviation) of 0.025:

numberOfData=100;

standardDeviationRange={0.025,0.025};

simulatedDataArgumentRange={0.0,30.0};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureBumpSum,

simulatedDataArgumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Simulated data around result function"};

pointSize=0.02;

CIP‘Graphics‘PlotXyErrorDataAboveFunctions[xyErrorData,

pureFunctions,argumentRange,plotRange,plotStyle,labels,

GraphicsOptionPointSize -> pointSize]

All machine learning methods try to perform the opposite work flow: They start

with the data (pairs of input/ouput vectors (x,y) in general) and construct a combi-

nation of elementary functions like bumps to produce approximate model functions

240 4 Machine Learning

fi that describe the input/output mapping y = f (x) of the data. The different ma-

chine learning methods only differ in the elementary functions they use and in the

way they construct adequate model functions fi with them in the data region. From

a mathematical point of view the construction process is an optimization procedure.

For a rough schematic picture an approximate model function fi may be written as

a weighted sum of the known elementary functions giv (x) (but note that a specific

machine learning method may not use a simple weighted sum at all, see below):

fi (x) = ∑v civgiv (x)

The optimization procedure then tries to find the optimum coefficients (weights)

c
opt
iv for an optimum combination to obtain an optimum approximated model func-

tion f
opt
i which describes the input/output mapping y = f (x) as good as possible:

f start
i (x) = ∑v cstart

iv giv (x)
Optimization Procedure

→ f
opt
i (x) = ∑v c

opt
iv giv (x)

To perform the optimization the concrete iterative procedure of a machine learn-

ing method has to search for the global optimum of a specific hyper surface that

is determined by the method’s principal setup. This kind of unconstrained or con-

strained non-linear optimization in many dimensions belongs to the most demanding

mathematical tasks known today and the development of new optimization methods

is an active field of research. To close the circle of the example above the simulated

erroneous data are used to approximate the result function with a machine learning

method. Since xy-error data can not be used as an input of CIP machine learning

methods they are transformed to a data set structure by a conversion method from

the CIP DataTransformation package:

dataSet=

CIP‘DataTransformation‘TransformXyErrorDataToDataSet[xyErrorData];

In this form the error-biased data are fitted by a three-layer perceptron (all details

will be discussed in a minute)

numberOfHiddenNeurons=8;

perceptronInfo=

CIP‘Perceptron‘FitPerceptron[dataSet,numberOfHiddenNeurons];

to create an approximated model function in the data region:

purePerceptronFunction=

Function[x,CalculatePerceptron2dValue[x,perceptronInfo]];

AppendTo[pureFunctions,purePerceptronFunction];

AppendTo[plotStyle,{Thickness[0.005],Black}];

labels={"x","y","Approximated model function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunctions[xyErrorData,

pureFunctions,argumentRange,plotRange,plotStyle,labels,

4.1 Basics 241

GraphicsOptionPointSize -> pointSize]

It is apparent that the approximated model function describes the data very well:

There is no visible difference to the original result function inside the data region

(but of course outside). A plot of the absolute sorted residuals support the assess-

ment of a perfect fit:

CIP‘Perceptron‘ShowPerceptronSingleRegression[

{"AbsoluteSortedResidualsPlot","RMSE"},dataSet,perceptronInfo]

Root mean squared error (RMSE) = 2.256×10-2

Also the RMSE is in very good agreement with the standard deviation (error)

of 0.025 used above to generate the normally distributed data. Note again that no

242 4 Machine Learning

information about the original result function was passed to the machine learning

method: It just used the data and a structural hyperparameter for the network topol-

ogy (the number of hidden neurons). From the sketched nature of the model func-

tion construction process performed by machine learning some fundamental insights

may be deduced:

• Universal function approximation: The combination of adequate elementary

functions (like the bumps above) may describe an arbitrarily complex non-linear

result function, i.e. machine learning techniques can in principle model every-

thing no matter how non-linear or complex the model function is ought to be:

In this sense they are computationally universal, i.e. machine learning methods

perform universal function approximation. Although mathematically there are

specific restrictions for different machine learning methods for all practical pur-

poses this fundamental statement remains valid. It explains the power of these

methods and their wide range of applicability.

• Structural Failure: Number or nature of the elementary functions may be inade-

quate for a specific modelling problem so the modelling effort will fail inevitably.

This problem is in close connection to ...

• The problem of overfitting: Think about the simplest solution for a machine

learning method to perfectly describe the input/output mapping of data: Just build

a sharp bump for every datum. Despite the fact that the resulting model function

would be perfect for the (training) data it would be in general completely useless

for predictions. But satisfactory predictions are the final goal of machine learning

methods: A machine learning method that builds a model function that describes

the data well but that has no generalization or prediction abilities is said to overfit

the (training) data.

• Technical Failure: Non-linear optimization techniques as iterative numerical al-

gorithms may fail to find the global or even a local optimum for numerous rea-

sons (compare chapter 1).

• No extrapolation abilities: Since elementary functions like bumps are zero or

have arbitrary values outside the data region where they are constructed it is

obvious that model functions created by machine learning methods can not be

used for extrapolation purposes. So only interpolation may be performed with

success.

Failure and overfitting are severe problems of all machine learning methods:

Some strategies to tackle these issues are discussed throughout this chapter.

4.2 Machine learning methods

Machine learning methods require the a priori definition of two types of parameters

for successful operation:

• Structural hyperparameters: These parameters determine fundamental struc-

tural features of the method like the kernel function for support vector machines

4.2 Machine learning methods 243

or the number of hidden neurons for three-layer feed-forward neural networks.

Within CIP these parameters must be explicitly passed via a method’s signature.

• Technical optimization parameters: They guide the technical details of the op-

timization process like the maximum-number-of-iterations parameter which sets

an absolute upper bound to the number of optimization steps. CIP has default

values for all optimization parameters but they may be modified via options. Un-

fortunately the modification of optimization parameters is often necessary since

the default values can not be optimum choices for all cases.

The setting of parameters is guided by experience and rules of thumb since a the-

oretically based choice is not possible in general. So machine learning is inevitably

a lot of educated trial and error.

4.2.1 Multiple linear and polynomial regression (MLR, MPR)

Clear["Global‘*"];

<< CIP‘ExperimentalData‘

<< CIP‘Graphics‘

<< CIP‘MPR‘

As already mentioned multiple linear regression (MLR) is usually not accounted

as a machine learning technique since this method is not able to construct non-

linear model functions in principal. Thus its applicability is extremely limited but a

valuable point of start to dig into a non-linear regression or classification task. MLR

fits into the general scheme of input/output mapping

y = f (x)

but the model functions fi it is able to construct are restricted to be hyperplanes.

So each MLR model function fi can be written as

yi = fi (x1,x2, ...,xM) = ∑M
h=1 aihxh + aiM+1 ; i = 1, ...,N

the general form a hyperplane in M + 1 dimensions. MLR may be regarded as

the multidimensional analog to fitting a straight line in two dimensions. The model

parameters aih are determined by least squares minimization with the linear model

functions fi (compare the curve fitting chapter 2 and see [Edwards 1976], [Edwards

1979] and [Chatterjee 2000] for details)

∑K
k=1

(
y
(k)
i − fi

(
x
(k)
1 ,x

(k)
2 , ...,x

(k)
M

))
2 −→ minimize!

244 4 Machine Learning

∑K
k=1

(
y
(k)
i −

(
∑M

h=1 aihx
(k)
h + aiM+1

))
2 −→ minimize!

where K denotes the number of I/O pairs of the data set, y
(k)
i is the output com-

ponent i of the I/O pair k and x
(k)
h is the input component h of the I/O pair k. I/O

pair k is
(

x(k),y(k)
)

with input vector x(k) =
(

x
(k)
1 ,x

(k)
2 , ...,x

(k)
M

)
and output vector

y(k) =
(

y
(k)
1 ,y

(k)
2 , ...,y

(k)
M

)
. Note that the inflation of indices is an unlovely necessity

to uniquely characterize every quantity in use: The only ray of hope is that they are

used consistently throughout this chapter - but the situation is even getting harder in

the next subsection.

MLR does not contain any structural hyperparameters since the structure of its

model function is fixed to be a hyperplane. The linear restriction on the other hand

implies that MLR is not prone to overfitting (but compare the appendix of this chap-

ter) - a severe problem of the non-linear methods already mentioned above and dis-

cussed thoroughly below. In addition MLR may be used for extrapolation purposes

which may not be tackled with the non-linear methods in principle.

Multiple polynomial regression (MPR) allows a higher polynomial degree - its

structural hyperparameter - where MPR with a polynomial degree of one is noth-

ing but MLR. Higher polynomial degrees may be used to extend the linear MLR

approach to the non-linear realm. A polynomial degree of two allows the model

functions fi to adopt parabolic shapes (with a single optimum)

yi = fi (x1,x2, ...,xM) = ∑M
h=1 ∑M

l=1 aihlxhxl +∑M
h=1 aihxh + aiM+1 ; i = 1, ...,N

and further increased degrees lead to corresponding polynomial hyper surfaces

(with multiple optima). As for MLR all model parameters are determined by linear

least squares minimization

∑K
k=1

(
y
(k)
i −

(
∑M

h=1 ∑M
l=1 aihlx

(k)
h x

(k)
l +∑M

h=1 aihx
(k)
h + aiM+1

))
2 −→ minimize!

Note that MPR becomes increasingly prone to overfitting for higher polynomial

degrees since the number of model parameters grows (polynomially). As an example

the adhesive kinetics data set (see Appendix A)

dataSet = CIP‘ExperimentalData‘GetAdhesiveKineticsDataSet[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs", "InputComponents",

"OutputComponents"}, dataSet]

Number of IO pairs = 73

Number of input components = 3

Number of output components = 1

4.2 Machine learning methods 245

with input vectors x(k) =
(

x
(k)
1 ,x

(k)
2 ,x

(k)
3

)
which consist of three input components

requires four model parameters

polynomialDegree = 1;

CIP‘MPR‘GetMprNumberOfParameters[dataSet, polynomialDegree]

4

for a MLR approach (with a polynomial degree of one) but already ten model

parameters

polynomialDegree = 2;

CIP‘MPR‘GetMprNumberOfParameters[dataSet, polynomialDegree]

10

for a parabolic MPR approach (with a polynomial degree of two) and remarkable

286 model parameters

polynomialDegree = 10;

CIP‘MPR‘GetMprNumberOfParameters[dataSet, polynomialDegree]

286

for a MPR approach with a polynomial degree of ten.

Due to the linearity in their model parameters a MLR or MPR approach is very

fast on today’s computers (often performed within seconds thus being orders of

magnitude faster than the more powerful non-linear methods like perceptrons or

SVMs). On the other hand MLR and MPR are not computationally universal: Their

range of applicability is extremely (for MLR) up to rather limited (for MPR) in

general. So as a rule of thumb a MLR or MPR based regression or classification

approach should always be a first (fast) step before applying the more powerful

machine learning methods. If MLR or MPR is successful then there is simply no

need for the slower, more subtle and more error-prone methods. If not one may

at least get a feeling of the degree of non-linearity involved in the regression or

classification task in question. Note that for every component of an output vector

one single MLR/MPR minimization is performed, e.g. for outputs of dimension five

(i.e. output vectors with five components) there are five MLR/MPR minimizations to

be performed. With CIP all MLR/MPR tasks are performed with the FitMlr/FitMpr

command (see [FitMlr] and [FitMpr] in the references for implementation details).

246 4 Machine Learning

4.2.2 Three-layer feed-forward neural networks

Clear["Global‘*"];

<<CIP‘Perceptron‘

<<CIP‘Graphics‘

<<CIP‘CalculatedData‘

<<CIP‘DataTransformation‘

Layered feed-forward neural networks (perceptrons) consist of multiple layers

of logical neurons (see [Hertz 1991], [Freeman 1993], [Rojas 1996] and [Murphy

2012]), e.g. a three-layer perceptron consists of three neuron layers denoted input,

hidden and output layer. The neurons interact feed-forward only, i.e. within a three-

layer perceptron each neuron of the input layer is exclusively connected to (all)

the neurons of the hidden layer and each neuron in the hidden layer exclusively to

(all) the neurons of the output layer. Thus the flow of information is restricted to

happen from the input to the hidden and from the hidden to the output layer. The

most simple feed-forward architecture would consist of only two layers (input and

output) with a direct connection of input neurons and output neurons (without any

hidden neurons in between) but this elementary perceptron is not computationally

universal, i.e. it does not accomplish universal function approximation (in practice

it already fails to learn a simple XOR logic). A three-layer perceptron with one

layer of hidden neurons overcomes this fundamental deficiency and may be regarded

as the most shallow computationally universal network. Deep feed-forward neural

networks consist of additional hidden layers which may allow for improved learning

abilities (deep learning) but give rise to additional technical optimization problems

like vanishing gradients. Thus only three-layer perceptrons are discussed throughout

this chapter.

A logical neuron of the hidden or the output layer is mathematically simply char-

acterized: It sums up its weighted inputs wiui (i.e. the outputs from all of its preced-

ing layer neurons), then subtracts a threshold Θ and passes the result to a so-called

activation function g to calculate its own output a:

a = g(∑l wlul −Θ)

The (generally non-linear) activation function may be the sigmoid function

g(x) = 1
1+exp{−x}

already sketched in the previous section so the whole logical neuron acts as a

non-linear threshold element: Its argument

∑l wlul −Θ

4.2 Machine learning methods 247

determines the position of the threshold. If an input x(k) =
(

x
(k)
1 ,x

(k)
2 , ...,x

(k)
M

)
of

the kth I/O pair of the data set is fed into a three-layer perceptron each of the M

neurons of the input layer take their corresponding input component from x
(k)
1 to

x
(k)
M as their output (it may be noticed that again the index overkill starts: These

details may be skipped and only paid attention to by those who want to follow

them. This confusing notation is one of the reasons why mathematicians invented

the more abstract notation of linear algebra - which on the other hand is too abstract

for most scientists). The outputs of the following L hidden layer neurons can then

be computed from the M outputs of the input layer neurons

a
(k)(hidden)
j = g

(
∑M

h=1 w
(input→hidden)
h j x

(k)
h −Θ

(hidden)
j

)
; j = 1, ...,L

where a
(k)(hidden)
j is the output of the jth neuron of the hidden layer for the input

x(k) of the kth I/O pair of the data set. The matrix of weights w
(input→hidden)
h j and the

thresholds Θ
(hidden)
j set the specific connections between the input and the hidden

layer neurons. In a final step the outputs of the N output neurons are calculated with

the L hidden layer neurons outputs

a(k)(hidden) =
(

a
(k)(hidden)
1 ,a

(k)(hidden)
2 , ...,a

(k)(hidden)
L

)

in the same manner

b
(k)(output)
i = g

(
∑L

j=1 w
(hidden→output)
ji a

(k)(hidden)
j −Θ

(output)
i

)
; i = 1, ...,N

where b
(k)(output)
l is the output of the lth neuron of the output layer for the input

x(k) of the kth I/O pair of the data set. By inserting the expression for the a
(k)(hidden)
j

from above the cumulative computational formula for a three-layer-perceptron re-

sults to

b
(k)(output)
i = g

(
∑L

j=1 w
(hidden→output)
ji g

(
∑M

h=1 w
(input→hidden)
h j x

(k)
h −Θ

(hidden)
j

)
−Θ

(output)
i

)

i = 1, ...,N

where every network output b
(k)(output)
i should approximate the corresponding I/O

pairs’s output component y
(k)
i of the data set. The apparent sum of weighted sigmoid

threshold functions within the cumulative computational formula for a three-layer-

perceptron

∑L
j=1 w

(hidden→output)
ji g(...)

248 4 Machine Learning

is the mathematical basis for the internal construction of the bumps mentioned

in the previous section where the network parameters (the weights w and thresholds

Θ) determine their forms and positions. If we remember the basic task of a machine

learning method to approximate the unknown model functions fi (see above)

yi = fi (x1, ...,xM) ; i = 1, ...,N

the concrete approach of a three-layer-perceptron can now be identified: The

unknown model functions are expressed as

fi (x1, ...,xM) = b
(k)(output)
i

fi (x1, ...,xM) = g
(

∑L
j=1 w

(hidden→output)
ji g

(
∑M

h=1 w
(input→hidden)
h j xh −Θ

(hidden)
j

)
−Θ

(output)
i

)

i = 1, ...,N

where it may be shown by rigorous mathematical proof that this approach is

capable of approximating any arbitrarily complex and difficult function to any

desired degree of accuracy (with some negligible restrictions for most practical

purposes): This is what the above mentioned computational universality essen-

tially means. Note that the previous section used the more plausible bump illus-

tration to demonstrate this same finding. The entire computed output of the network

b(k)(output) =
(

b
(output)
1 ,b

(output)
2 , ...,b

(output)
M

)
for an input x(k) =

(
x
(k)
1 ,x

(k)
2 , ...,x

(k)
M

)
can finally be compared to the corresponding output y(k) =

(
y
(k)
1 ,y

(k)
2 , ...,y

(k)
M

)
of the

data set. It is common to define a type of cost function C like the mean squared error

MSE

CMSE = 1
KN ∑K

k=1 ∑N
i=1

(
y
(k)
i − b

(k)(output)
i

)
2

to quantify the difference between the outputs b(k)(output) of the network and the

desired outputs y(k) for the whole data set. Note that the cost function CMSE is a func-

tion of the network parameters, i.e. a function of all the weights w and thresholds Θ
of the network:

CMSE =CMSE(w
(input→hidden)
11 , ...,w

(input→hidden)
ML ,

Θ
(hidden)
1 , ...,Θ

(hidden)
L ,

w
(hidden→output)
11 , ...,w

(hidden→output)
LN ,

4.2 Machine learning methods 249

Θ
(output)
1 , ...,Θ

(output)
N)

The smaller the value of the cost function CMSE the better the perceptron approx-

imates the desired outputs y(k) of the data set. So the network parameters should be

adjusted to minimize CMSE

CMSE =CMSE(network parameters) −→ minimize!

or: Supervised learning with a perceptron is nothing but an unconstrained global

minimization of the hyper surface CMSE (see Appendix A and [FitPerceptron] in the

references for details about the algorithms used by the CIP method FitPerceptron).

The number of internal network parameters of a three-layer perceptron is

(M×L) weights w
(input→hidden)
i j plus

L thresholds Θ
(hidden)
j plus

(L×N) weights w
(hidden→output)
jl plus

N thresholds Θ
(output)
N

so a network with 3 input neurons, 10 hidden neurons and 2 output neurons

contains

(3× 10)+ 10+(10×2)+2= 62

internal network parameters. Hence the minimization of CMSE is an uncon-

strained global minimization problem in 62 dimensions in this case. Since the num-

ber of neurons of the input and output layer is equal to the number of components of

the inputs and outputs of the data set’s I/O pairs the central structural hyperparam-

eter of a three-layer perceptron is the number of neurons of the hidden layer. The

larger this number the more bumps the perceptron is able to create but also the more

internal parameters are to be optimized. Thus the learning task (the unconstrained

global minimization of CMSE) will become more difficult. In general a more difficult

model function to approximate requires an increasing number of hidden neurons.

But an increase of the number of hidden neurons also boosts the network’s tendency

to overfitting. Therefore in practice this central structural perceptron hyperparame-

ter should be kept as small as possible but large enough to fulfill the learning task. To

demonstrate the crucial role of the number of hidden neurons the perfect perceptron

fit of the previous section is performed with a reduced number of hidden neurons.

After restoration of the settings

250 4 Machine Learning

interval1={0.,8.};

pureBump1=Function[x,BumpFunction[x,interval1]];

interval2={11.,13.};

pureBump2=Function[x,BumpFunction[x,interval2]];

interval3={10.,22.};

pureBump3=Function[x,BumpFunction[x,interval3]];

interval4={25.,29.};

pureBump4=Function[x,BumpFunction[x,interval4]];

pureBumpSum=Function[x,BumpFunction[x,interval1]+

BumpFunction[x,interval2]+BumpFunction[x,interval3]+

BumpFunction[x,interval4]];

pureFunctions={pureBump1,pureBump2,pureBump3,pureBump4,pureBumpSum};

argumentRange={-10,40};

plotRange={0.0,1.5};

numberOfData=100;

standardDeviationRange={0.025,0.025};

simulatedDataArgumentRange={0.0,30.0};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureBumpSum,

simulatedDataArgumentRange,numberOfData,standardDeviationRange];

dataSet=CIP‘DataTransformation‘TransformXyErrorDataToDataSet[

xyErrorData];

the training (optimization) with a reduced number of three hidden neurons

numberOfHiddenNeurons=3;

perceptronInfo=

CIP‘Perceptron‘FitPerceptron[dataSet,numberOfHiddenNeurons];

is successful but an adequate fit of the data fails which can be detected by visual

inspection of the approximated model function:

purePerceptronFunction=

Function[x,CalculatePerceptron2dValue[x,perceptronInfo]];

AppendTo[pureFunctions,purePerceptronFunction];

plotStyle={{Thickness[0.001],Green},{Thickness[0.001],Green},

{Thickness[0.001],Green},{Thickness[0.001],Green},

{Thickness[0.005],Red},{Thickness[0.005],Black}};

labels={"x","y","Approximated model function"};

pointSize=0.02;

CIP‘Graphics‘PlotXyErrorDataAboveFunctions[xyErrorData,

pureFunctions,argumentRange,plotRange,plotStyle,labels,

GraphicsOptionPointSize -> pointSize]

4.2 Machine learning methods 251

This failure can not be traced to technical optimization problems in this case: The

resulting model function is the optimum of a perceptron with the defined topology,

i.e. the defined number of hidden neurons. It is the reduced structural complexity

of the perceptron that does not allow the construction of an adequate approximate

model function to successfully describe the data. The network is simply not able

to produce enough bumps. But if three hidden neurons are not enough and eight

hidden neurons are sufficient what is the minimum value of this structural hyper-

parameter for a satisfactory fit? Unfortunately this has to be evaluated by educated

trial and error since there is in general no way to calculate the necessary number of

hidden neurons from theoretical considerations in advance (this is why this problem

remains an active field of research). Finally there are two ways a perceptron training

may be performed: One perceptron is trained for every output component of an out-

put vector, i.e. each single perceptron has only one output neuron that corresponds

to one single component of an I/O pair’s output, or one perceptron is trained with

a complete output layer where each output neuron corresponds to a component of

an I/O pair’s output: Then the number of output neurons is equal to the number of

components of an I/O pair’s output. The first choice (and the default choice in CIP)

is in general more powerful but also computationally more demanding (but may

be especially accelerated by parallelized calculation, see Appendix A). As already

shown within CIP the FitPerceptron command performs all perceptron related ma-

chine learning operations (see [FitPerceptron] in the references for implementation

details).

4.2.3 Support vector machines (SVM)

Clear["Global‘*"];

<<CIP‘Graphics‘

<<CIP‘SVM‘

252 4 Machine Learning

A (regression) support vector machine (SVM) places an a priori defined elemen-

tary function at the position of every input of the data set to be learned. In SVM

terminology an admissible elementary function is called a kernel function since it

must satisfy a specific mathematical condition (Mercer’s condition) to be usable as

a kernel. The already touched Wavelet kernel (with a width parameter of 0.1) may

be illustrated in three dimensions (note the mexican-hat shape)

a=0.1;

pureWaveletKernel3D=

Function[{x,y},CIP‘SVM‘KernelWavelet[{x},{y},a]];

xRange={-0.2,0.2};

yRange={-0.2,0.2};

labels={"x","y","z"};

viewPoint3D={-1.3,-2.5,1.5};

CIP‘Graphics‘Plot3dFunction[pureWaveletKernel3D,xRange,yRange,

labels,GraphicsOptionViewPoint3D -> viewPoint3D]

which reduces to

x=0.0;

pureWaveletKernel2D=Function[y,CIP‘SVM‘KernelWavelet[{x},{y},a]];

argumentRange={-0.7,0.7};

functionValueRange={-0.4,1.1};

labels={"x","z","Wavelet kernel function"};

CIP‘Graphics‘Plot2dFunction[pureWaveletKernel2D,argumentRange,

functionValueRange,labels]

4.2 Machine learning methods 253

if the Wavelet kernel is fixed to a position (in this case to x = 0): Its bump charac-

ter is obvious. The wavelet parameter a controls the width of the bump, i.e. a higher

value of the wavelet width parameter a leads to a widened bump:

a=0.3;

waveletKernel=Cos[1.75*(x-y)/a]* Exp[-(x-y)ˆ2/(2*aˆ2)];

x=0.0;

pureWaveletKernel2D=Function[x1,waveletKernel/.y->x1];

CIP‘Graphics‘Plot2dFunction[pureWaveletKernel2D,argumentRange,

functionValueRange,labels]

The necessary a priori definition of the kernel function with a fixed width pa-

rameter a thus influences the possible smoothness of the resulting model function,

e.g. a higher value for a inevitably leads to a smoother model function. A (regres-

sion) SVM approximates the unknown model functions fi with weighted sums of

the kernel functions g
(kernel)
i

(
x(k),x

)
at all K input positions x(k) of the data set plus

a constant value b (the regression bias):

254 4 Machine Learning

yi = fi (x1,x2, ...,xM) = ∑K
k=1 αikg

(kernel)
i

(
x
(k)
1 ,x

(k)
2 , ...,x

(k)
M ,x1,x2, ...,xM

)
+ bi

i = 1, ...,N

or more compact:

y = f (x) = α ·g(kernel)
(

x(k),x
)
+ b

Since the kernel function must be a priori chosen (it is a precondition to the

method) the task of a (regression) SVM is to determine optimum weights α
opt
ik and

optimum regression biases b
opt
i to approximate the unknown model functions fi (x).

Compared to the perceptron approach above the SVM’s strategy seems to be intu-

itively simple and straightforward - but there is a solid theoretical basis (statistical

learning theory) with a sophisticated mathematical machinery (quadratic program-

ming) behind the scenes (see [Vapnik 1995], [Vapnik 1998], [Schölkopf 1998],

[Gunn 1998], [Schölkopf 1999], [Cristianini 2000], [Schölkopf 2002], [Bishop

2006] and [Murphy 2012] for details). The magic of a SVM comes from the fact

that it allows the definition of a constrained objective function which can be glob-

ally maximized without the risk of being trapped in a local maximum in order to

successfully determine (structurally) optimum values of the parameters α
opt
ik and

b
opt
i . This is a fundamental difference to the (empirical) cost function minimization

process for perceptrons where local minima traps bob up consistently. With having a

theoretically well-defined and working global optimization strategy up one’s sleeve

the only central unknown structural hyperparameter of a SVM is the type of kernel

function to be used. The proper choice of the kernel function decides about success

or failure of this machine learning method (as was shown with the introductory ex-

ample at the beginning of this chapter) - and again the type of kernel function can

not simply be deduced from theoretical considerations in general: Educated trial

and error is the only path to success. Also note that the number of weights αk to

optimize is equal to the number of input vectors in the data set: This means that the

SVM’s optimization task becomes more complex (and therefore more difficult and

time consuming in general) with an increasing data set size. This is different to a per-

ceptron where the number of internal coefficients to optimize is determined solely

by the network topology. On the other hand the number of weights αk of a SVM

does not depend on the dimension of the inputs (i.e. the number of components of

an input vector) but the network topology of a perceptron does since this dimension

determines the number of input neurons. Therefore the number of internal parame-

ters to optimize of a perceptron increases with an increase of the input’s dimension

which leads to a more difficult optimization task in general. Like MLR and MPR

for every component of an I/O pair’s output one single SVM optimization is to be

performed, e.g. for outputs of dimension 5 (an output with 5 components) there are

5 SVM optimizations to be performed (where each optimization may be processed

4.2 Machine learning methods 255

in parallel, see Appendix A). As already demonstrated SVM related computations

with CIP use the FitSvm command (see [FitSvm] in the references for details).

A short intermezzo about machine learning history: Neural networks and sup-

port vector machines ...

In the late 1980s and early 1990s there was a real neural network hype. They

invaded the different scientific communities and attracted a lot of attention of a broad

scientific and non-scientific audience. One reason for this exploding popularity was

(besides their innovative features) that they heavily used a biological terminology

for their description instead of a purely mathematical one: The logical neuron was

almost always motivated on the basis of its biological predecessor and not by its

mathematical features - although a logical and a biological neuron do not have too

much in common. The impression emerged that computers finally started to model

the human brain and human intelligence - an event that nobody wanted to miss. In

this sense the development of SVMs in the late 1990s on the "obscure grounds"

of statistical learning theory may be regarded as a revenge of the mathematicians:

Quadratic programming and kernel tricks is nothing to write home about for non-

specialists. But it was the neural network hype that paved the road for machine

learning applications to a broader community so the emerging SVMs could rapidly

spread through the established channels. The question of computational intelligence

will be addressed in more detail in chapter 5.

What is the best machine learning method? MLR and MPR almost always work

fast (within seconds on today’s computers) and technically without any problems

but are limited for a successful practical application due to their linear/polynomial

nature. The more powerful non-linear methods are computationally universal but

they are comparatively slow and often subject to severe technical and structural

problems. SVMs are more recent and become increasingly popular. They possess

attractive features like the path to successful global optimization and are often ar-

gued to be superior to the somewhat older perceptron-type neural networks: They

seem to be stronger in classification whereas perceptrons gain ground in regression

tasks, SVMs are attributed a reduced tendency to overfitting, the SVM’s structural

risk is preferable to the perceptron’s empirical risk - but honestly there is no final

definite answer to the best-method question: It simply depends ... and thus machine

learning is a vivid and active field of research and there are daily claims of new su-

perior algorithmic variants (e.g. see [Platt 1999], [Joachims 1999], [Keerthi 2002],

[Fan 2005] or [Glasmachers 2006] for SVM related global optimization improve-

ments). They all should be regarded as parts of a growing tool box that stimulates

further progress. For the practitioner the already sketched basic problems of ma-

chine learning play the predominant role: What type of kernel function (SVM) or

network topology (perceptron) is to be used? How can the immense computational

efforts that are necessary to tackle large data sets be reduced (besides simply wait-

ing for Moore’s law, i.e. faster computers, to do the job)? How can overfitting be

avoided and how reliable are machine learning results in practice? How can they be

256 4 Machine Learning

validated? In the following sections several aspects of these issues will be illustrated

and explored.

4.3 Evaluating the goodness of regression

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘MLR‘

In analogy to curve fitting a simple linear example is used to introduce machine

learning and the evaluation of the goodness of a regression result. Therefore error-

biased data are simulated around a plane in three dimensions

z = f (x,y) = 1+ 2x+ 3y

with an x and y argument range of [0, 1] and an absolute standard deviation of

0.2 (which leads to corresponding relative errors from approximately 3% around

point (1, 1) to approximately 20% around point (0, 0)) with the CIP CalculatedData

package:

pureOriginalFunction=Function[{x,y},1.0+2.0*x+3.0*y];

xRange={0.0,1.0};

yRange={0.0,1.0};

numberOfDataPerDimension=20;

standardDeviationRange={0.2,0.2};

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

labels={"x","y","z"};

pointSize=0.02;

CIP‘Graphics‘Plot3dDataSet[dataSet3D,labels,

GraphicsOptionPointSize -> pointSize]

4.3 Evaluating the goodness of regression 257

As a machine learning technique Multiple Linear Regression (MLR) is used

which is perfectly capable of fitting linear data in multiple dimensions:

mlrInfo=CIP‘MLR‘FitMlr[dataSet3D];

The root mean squared error of a machine learning method is defined as

RMSE =

√
1

KN ∑K
k=1 ∑N

i=1

(
y
(k)
i − fi

(
x(k)

))
2

and its value

CIP‘MLR‘ShowMlrSingleRegression[{"RMSE"},dataSet3D,

mlrInfo];

Root mean squared error (RMSE) = 2.043×10-1

and the (absolute) residual statistics

CIP‘MLR‘ShowMlrSingleRegression[

{"AbsoluteResidualsStatistics","RelativeResidualsStatistics"},

dataSet3D,mlrInfo];

Definition of ’Residual (absolute)’: Data - Model

Out 1 : Residual (absolute): Mean/Median/Maximum Value = 1.61×10-1 / 1.28×10-1 / 7.71×10-1

258 4 Machine Learning

Definition of ’Residual (percent)’: 100*(Data - Model)/Data

Out 1 : Residual (percent): Mean/Median/Maximum Value = 5.15 / 4.07 / 3.28×101

correspond perfectly to the standard deviation of 0.2 used for the data simulation.

The model-versus-data plot and the sorted-model-versus-data plot

CIP‘MLR‘ShowMlrSingleRegression[

{"ModelVsDataPlot","SortedModelVsDataPlot",

"CorrelationCoefficient"},dataSet3D,mlrInfo,

GraphicsOptionPointSize -> pointSize];

Out 1 : Correlation coefficient = 0.982142

show the expected behavior: The simulated data in the first diagram scatter

around the diagonal (on the diagonal machine and model output are identical), the

4.3 Evaluating the goodness of regression 259

data line of the second diagram crawls statistically around the model line defined

by the sorted machine learning outputs. A correlation coefficient may be used to

condense the agreement between data and model into a single quantity (with a value

near one meaning a desired high correlation - but compare the discussion in chapter

2 and below). The absolute and relative residuals plots

CIP‘MLR‘ShowMlrSingleRegression[

{"AbsoluteSortedResidualsPlot","RelativeSortedResidualsPlot"},

dataSet3D,mlrInfo,GraphicsOptionPointSize -> pointSize];

show statistically distributed residuals with no systematic deviation patterns

within the expected magnitudes: Excellent! And last but not least the visual 3D

inspection

260 4 Machine Learning

pureMlr3dFunction=

Function[{x,y},CalculateMlr3dValue[x,y,mlrInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,pureMlr3dFunction,

labels,GraphicsOptionPointSize -> pointSize]

is convincing. Note that the latter is usually not available for machine learning

problems in many dimensions: This is a severe disadvantage since human beings

are very powerful in judging visual representations at a glance.

4.4 Evaluating the goodness of classification

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Utility‘

<<CIP‘Graphics‘

<<CIP‘MLR‘

<<CIP‘DataTransformation‘

The goodness of a machine learning method’s classification result may be stated

straight forward: The correctly and incorrectly classified I/O pairs are simply

counted and displayed. In three dimensions it is furthermore possible to visualize

the decision surfaces. Here a perfect classification example with decision surfaces

4.4 Evaluating the goodness of classification 261

that consists of 3D planes is demonstrated: Two clearly separated clouds of two-

dimensional inputs

centroid1={0.2,0.2};

numberOfCloudVectors1=50;

standardDeviation1=0.1;

singleCloudDefinition1={centroid1,numberOfCloudVectors1,

standardDeviation1};

centroid2={0.8,0.8};

numberOfCloudVectors2=50;

standardDeviation2=0.1;

singleCloudDefinition2={centroid2,numberOfCloudVectors2,

standardDeviation2};

cloudDefinitions={singleCloudDefinition1,singleCloudDefinition2};

classificationDataSet=

CIP‘CalculatedData‘GetGaussianCloudsDataSet[

cloudDefinitions];

labels={"x","y","Inputs"};

CIP‘Graphics‘Plot2dPoints[

CIP‘Utility‘GetInputsOfDataSet[classificationDataSet],labels]

are classified (note that this classification task could be perfectly performed by a

mere unsupervised clustering-based class predictor as shown in chapter 3 so it is no

real challenge for supervised machine learning). The inputs are combined with an

adequately coded output for classification, e.g. the first input/output (I/O) pair

ioPair1=classificationDataSet[[1]]

{{0.248568,0.240914},{1.,0.}}

is attributed to class 1: It has a value of 1.0 at position 1 for class 1 in the output

vector and a value of 0.0 at position 2 for class 2. The last I/O pair of the generated

data set

262 4 Machine Learning

ioPair1=classificationDataSet[[Length[classificationDataSet]]]

{{0.891354,0.821637},{0.,1.}}

is attributed to class 2 respectively (with value of 0.0 at position 1 for class 1

and a value of 1.0 at position 2 for class 2). The linear MLR fit generates a decision

surface

mlrInfo=CIP‘MLR‘FitMlr[classificationDataSet];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification","CorrectClassificationPerClass"},

classificationDataSet,mlrInfo]

100.% correct classifications

that allows 100% correct classification of all input vectors for both classes. Since

the output of every I/O pair has dimension two there are two planes, one for every

output, that are combined for decision (a distinct input is attributed to the class that

corresponds to the surface with the higher output value at this point). Both planes

can be visualized independently: The plane for output 1 with the corresponding

subset of data

classificationDataSet3DList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[

classificationDataSet];

indexOfInput1=1;

indexOfInput2=2;

indexOfOutput=1;

input={0.0,0.0};

pureMlr3dFunction=Function[{x,y},

CIP‘MLR‘CalculateMlr3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,mlrInfo]];

labels={"In 1","In 2","Out 1"};

CIP‘Graphics‘Plot3dDataSetWithFunction[

classificationDataSet3DList[[1]],pureMlr3dFunction,labels]

4.4 Evaluating the goodness of classification 263

and the other plane for output 2

indexOfInput1=1;indexOfInput2=2;indexOfOutput=2;input={0.0,0.0};

pureMlr3dFunction=Function[{x,y},

CIP‘MLR‘CalculateMlr3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,mlrInfo]];

labels={"In 1","In 2","Out 2"};

CIP‘Graphics‘Plot3dDataSetWithFunction[

classificationDataSet3DList[[2]],pureMlr3dFunction,labels]

264 4 Machine Learning

illustrate the perfect classification behavior of the machine learning method for

the data in question. Note that the fit process generated just one set of an infinite

number of possible decision surfaces for the data clouds. It should also be noted that

linear decision surfaces will not be powerful in general since they need data that can

be clearly separated by mere planes. The non-linear machine learning methods like

perceptrons and SVMs will be able to construct arbitrarily curved decision surfaces

as will be shown below.

4.5 Regression: Entering non-linearity

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘Graphics‘

<<CIP‘MPR‘

<<CIP‘SVM‘

<<CIP‘Perceptron‘

In this section a model function for an experimental adhesive kinetics data set

is approximated with different approaches and common pitfalls. The experimental

data describe the dependence of a kinetics parameter on the composition of an ad-

hesive polymer mixture and are outlined in detail in Appendix A. The data set is

provided by the CIP ExperimentalData package:

dataSet=CIP‘ExperimentalData‘GetAdhesiveKineticsDataSet[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents"},dataSet]

Number of IO pairs = 73

Number of input components = 3

Number of output components = 1

The 73 I/O pairs are four-dimensional (i.e. contain inputs with three components

and outputs with one component) so the complete data set can not be displayed with

2D or 3D graphics. But due to the experimental measurement setup it is possible to

obtain subsets of data that are suitable for visual inspection in 3D. The experimental

errors of the data are reported to be in the order of 10% to 20% with some outliers

which is an essential information for the assessment of the goodness of regression in

the following. The machine learning task is initially tackled by MLR (multiple linear

regression which is identical to multiple polynomial regression with a polynomial

degree of 1)

polynomialDegree=1;

4.5 Regression: Entering non-linearity 265

which contains 4 model parameters

CIP‘MPR‘GetMprNumberOfParameters[dataSet,polynomialDegree]

4

and leads to a regression result

mprInfo=CIP‘MPR‘FitMpr[dataSet,polynomialDegree];

with obvious systematic deviations between data and model (positive deviations

for small and large output values and negative deviations in between) as is illustrated

by the model-versus-data and relative residuals plot:

CIP‘MPR‘ShowMprSingleRegression[{"ModelVsDataPlot",

"RelativeSortedResidualsPlot"},dataSet,mprInfo];

266 4 Machine Learning

The relative residuals statistics

CIP‘MPR‘ShowMprSingleRegression[{"RelativeResidualsStatistics",

"CorrelationCoefficient"},dataSet,mprInfo];

Out 1 : Relative residuals (100*(Data - Model)/Data):

Mean/Median/Maximum Value in % = 3.44×101 / 2.02×101 / 1.71×102

Out 1 : Correlation coefficient = 0.840707

show that the magnitude of the deviations (over 30%) is obviously above the

reported experimental errors of 10 to 20% and the correlation coefficient is poor in

addition. So it can be deduced that the adhesive kinetics data can not be satisfactorily

modelled by a simple hyperplane. This may also be illustrated by the 3D display of

a subset of the data that corresponds to a specific polymer mass ratio of the mixture:

polymerMassRatio="80";

dataSet3D =

CIP‘ExperimentalData‘GetAdhesiveKinetics3dDataSet[

polymerMassRatio];

indexOfInput1=2;

indexOfInput2=3;

indexOfOutput=1;

input = {80.0,0.0,0.0};

pureMpr3dFunction=

Function[{x,y},

CIP‘MPR‘CalculateMpr3dValue[x,y,indexOfInput1,indexOfInput2,

indexOfOutput,input,mprInfo]];

labels={"In 2","In 3","Out 1"};

CIP‘Graphics‘Plot3dDataSetWithFunction[

dataSet3D,pureMpr3dFunction,labels]

4.5 Regression: Entering non-linearity 267

The linear plane is only a poor approximate description of the data. On the other

hand the adhesive kinetics data are not dramatically non-linear- the true relation

seems to be a slightly curved surface. Thus the linear MLR approach may be slightly

extended into the non-linear region by an a priori/a posteriori data transformation

with a logarithmic/exponential function: The output components are transformed by

a logarithmic function before the MLR fit, the function values of the MLR gener-

ated model functions are then afterwards inversely transformed by an exponential

function (see the CIP code for details):

dataTransformationMode="Log";

mprInfo =

CIP‘MPR‘FitMpr[dataSet,polynomialDegree,

MprOptionDataTransformationMode -> dataTransformationMode];

CIP‘MPR‘ShowMprSingleRegression[{"ModelVsDataPlot",

"RelativeSortedResidualsPlot","RelativeResidualsStatistics",

"CorrelationCoefficient"},dataSet,mprInfo];

268 4 Machine Learning

Out 1 : Relative residuals (100*(Data - Model)/Data):

Mean/Median/Maximum Value in % = 1.84×101 / 1.41×101 / 6.74×101

Out 1 : Correlation coefficient = 0.912715

The systematic deviations between data and model are now confined to the larger

output value region and the residuals statistics are more acceptable with a value

around 18% on average. Also the correlation coefficient increased. The 3D plot of

the subset of data with the approximated model function

pureMpr3dFunction=

Function[{x,y},

CIP‘MPR‘CalculateMpr3dValue[x,y,indexOfInput1,indexOfInput2,

indexOfOutput,input,mprInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[

dataSet3D,pureMpr3dFunction,labels]

4.5 Regression: Entering non-linearity 269

demonstrates the improvement. The adhesive kinetics data seem to be at the bor-

derline for a successful application of a non-linear enhanced MLR approach. To

further improve the modelling result a switch to non-linear machine learning meth-

ods is indicated with a polynomial expansion as a sensible first step. If a general

quadratic polynomial (i.e. a polynomial degree of 2) is chosen

polynomialDegree=2;

CIP‘MPR‘GetMprNumberOfParameters[dataSet,polynomialDegree]

10

the model now contains 10 parameters to be estimated. Compared to pure MLR

the polynomial expansion leads to a clear improvement:

mprInfo=CIP‘MPR‘FitMpr[dataSet,polynomialDegree];

CIP‘MPR‘ShowMprSingleRegression[{"ModelVsDataPlot",

"RelativeSortedResidualsPlot","RelativeResidualsStatistics",

"CorrelationCoefficient"},dataSet,mprInfo];

270 4 Machine Learning

Out 1 : Relative residuals (100*(Data - Model)/Data):

Mean/Median/Maximum Value in % = 1.9×101 / 1.44×101 / 8.85×101

Out 1 : Correlation coefficient = 0.92732

The systematic deviations are less pronounced and the residuals are at the upper

experimental limit. The improvement is also directly visible by the 3D plot of the

subset of data:

pureMpr3dFunction=

Function[{x,y},

CIP‘MPR‘CalculateMpr3dValue[x,y,indexOfInput1,indexOfInput2,

indexOfOutput,input,mprInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[

dataSet3D,pureMpr3dFunction,labels]

4.5 Regression: Entering non-linearity 271

An additional logarithmic/exponential transformation

mprInfo=

CIP‘MPR‘FitMpr[dataSet,polynomialDegree,

MprOptionDataTransformationMode -> dataTransformationMode];

CIP‘MPR‘ShowMprSingleRegression[{"ModelVsDataPlot",

"RelativeSortedResidualsPlot","RelativeResidualsStatistics",

"CorrelationCoefficient"},dataSet,mprInfo];

272 4 Machine Learning

Out 1 : Relative residuals (100*(Data - Model)/Data):

Mean/Median/Maximum Value in % = 1.49×101 / 1.09×101 / 6.08×101

Out 1 : Correlation coefficient = 0.921525

leads to an even improved and overall satisfying result:

pureMpr3dFunction=

Function[{x,y},

CIP‘MPR‘CalculateMpr3dValue[x,y,indexOfInput1,indexOfInput2,

indexOfOutput,input,mprInfo]];

quadraticLogMprGraphics3D=

CIP‘Graphics‘Plot3dDataSetWithFunction[

dataSet3D,pureMpr3dFunction,labels]

4.5 Regression: Entering non-linearity 273

The achieved quadratic-log MPR model is probably near the best we can get for

the adhesive kinetics regression problem - and it is convincing and helpful to the ad-

hesive scientists, e.g. for predictive interpolation calculations. Note that an increase

of the polynomial degree (polynomially) increases the number of model related pa-

rameters to be estimated by the fitting procedure and thus allows the model function

to be more non-linearly curved. This may lead to an unwanted overfitting of the data

as may be illustrated with a polynomial degree of 6 for the current regression task:

polynomialDegree=6;

CIP‘MPR‘GetMprNumberOfParameters[dataSet,polynomialDegree]

84

The number of 84 model parameters now exceeds the number of 73 I/O pairs in

the data set and the corresponding MPR fit

mprInfo=CIP‘MPR‘FitMpr[dataSet,polynomialDegree];

CIP‘MPR‘ShowMprSingleRegression[{"ModelVsDataPlot",

"RelativeSortedResidualsPlot","RelativeResidualsStatistics",

"CorrelationCoefficient"},dataSet,mprInfo];

274 4 Machine Learning

Out 1 : Relative residuals (100*(Data - Model)/Data):

Mean/Median/Maximum Value in % = 3.97 / 3.24 / 1.63×101

Out 1 : Correlation coefficient = 0.998134

leads to a good description of the data (i.e. a kind of look-up table) but to an

unwanted overfitted model without any predictability, i.e. it would be useless or

even misleading for predictive interpolation calculations:

pureMpr3dFunction=

Function[{x,y},

CIP‘MPR‘CalculateMpr3dValue[x,y,indexOfInput1, indexOfInput2,

indexOfOutput,input,mprInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[

dataSet3D,pureMpr3dFunction,labels]

4.5 Regression: Entering non-linearity 275

Since a convincing and predictive model could be achieved by MPR there would

be no need to apply the more powerful non-linear methods. But for comparison re-

sults of SVMs and perceptrons may be finally investigated. Since a SVM needs a

kernel function as its structural hyperparameter (besides several optimization pa-

rameters which will be left unchanged at their default values) the earlier successful

wavelet kernel with a width parameter of 0.1 (see the beginning of this chapter) is

used. After the fit is performed

kernel={"Wavelet",0.1};

svmInfo = CIP‘SVM‘FitSvm[dataSet,kernel];

CIP‘SVM‘ShowSvmSingleRegression[{"ModelVsDataPlot",

"RelativeResidualsStatistics","CorrelationCoefficient"},dataSet,

svmInfo];

276 4 Machine Learning

Out 1 : Relative residuals (100*(Data - Model)/Data):

Mean/Median/Maximum Value in % = 1.67 / 1.43 / 4.74

Out 1 : Correlation coefficient = 0.999977

the result exhibits nearly perfectly modelled data - the diagonal looks like a rope

of pearls with a perfect correlation (indicated by a correlation coefficient of practi-

cally 1) and the relative deviations between data and model around 2% are an order

of magnitude lower than the reported experimental errors. These findings again in-

dicate a clear overfitting of the data which can be well illustrated by the 3D display

of the subset of data together with the overfitted model function (where each data

point seems to have its own bump)

pureSvm3dFunction=

Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,indexOfInput1,indexOfInput2,

indexOfOutput,input,svmInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[

dataSet3D,pureSvm3dFunction,labels]

As already pointed out before this overfitted model function is completely use-

less for any predictive interpolation tasks. If a perceptron is used for non-linear

modelling the number of hidden neurons must be a priori defined as its structural

hyperparameter (again the several default technical optimization parameters are not

touched). If 15 hidden neurons are arbitrarily chosen

4.5 Regression: Entering non-linearity 277

numberOfHiddenNeurons=15;

perceptronInfo=

CIP‘Perceptron‘FitPerceptron[dataSet,numberOfHiddenNeurons];

CIP‘Perceptron‘ShowPerceptronSingleRegression[{"ModelVsDataPlot",

"RelativeResidualsStatistics","CorrelationCoefficient"},dataSet,

perceptronInfo];

Out 1 : Relative residuals (100*(Data - Model)/Data):

Mean/Median/Maximum Value in % = 4.15 / 2.11 / 1.76×101

Out 1 : Correlation coefficient = 0.998328

the result is similar to the SVM approach: A clear overfitting is detected and

visible in the 3D display of the subset of data.

purePerceptron3dFunction=

Function[{x,y},

CIP‘Perceptron‘CalculatePerceptron3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,perceptronInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[

dataSet3D,purePerceptron3dFunction,labels]

278 4 Machine Learning

These failed attempts show that the choice of the structural hyperparameters is

essential: They were simply not adequate for the machine learning task in question.

And this is exactly where the trial and error begins: The kernel function or the num-

ber of hidden neurons respectively has to be adjusted to improve the approximated

model functions and to allow reasonable predictive interpolations. This can be done

by single smart guesses (least computationally demanding if successful), systematic

variation of the structural hyperparameters (more computationally demanding) or an

exhaustive search with e.g. an evolutionary strategy (extremely demanding). Since

the adhesive kinetics data are near linear it can be deduced from experience that for

the SVM based approach the width parameter a of the wavelet kernel should be

increased. A tenfold increase from 0.1 to 1.0

kernelFunction={"Wavelet",1.0};

svmInfo = CIP‘SVM‘FitSvm[dataSet,kernelFunction];

CIP‘SVM‘ShowSvmSingleRegression[{"ModelVsDataPlot",

"RelativeResidualsStatistics","CorrelationCoefficient",

"RelativeSortedResidualsPlot"},dataSet,svmInfo];

4.5 Regression: Entering non-linearity 279

Out 1 : Relative residuals (100*(Data - Model)/Data):

Mean/Median/Maximum Value in % = 1.46×101 / 1.05×101 / 7.58×101

Out 1 : Correlation coefficient = 0.949581

leads to an overall satisfactory modelling result with well-sized non-systematic

deviations. To avoid overfitting for the perceptron approach the number of hidden

neurons has to be decreased - again from experience a very small number of 2 should

be sufficient for a near linear modelling problem:

numberOfHiddenNeurons=2;

perceptronInfo=

CIP‘Perceptron‘FitPerceptron[dataSet,numberOfHiddenNeurons];

CIP‘Perceptron‘ShowPerceptronSingleRegression[{"ModelVsDataPlot",

"RelativeResidualsStatistics","CorrelationCoefficient",

"RelativeSortedResidualsPlot"},dataSet,perceptronInfo];

280 4 Machine Learning

Out 1 : Relative residuals (100*(Data - Model)/Data):

Mean/Median/Maximum Value in % = 1.76×101 / 1.35×101 / 7.×101

Out 1 : Correlation coefficient = 0.949762

RMSE, residuals and the correlation coefficient are comparable to the SVM result

before so again an acceptable result is achieved. This may finally be illustrated by

the 3D overlay of the subset of data and the approximated smooth and balancing

model functions of the quadratic-log MPR, SVM and perceptron approach

pureSvm3dFunction=

Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,indexOfInput1,indexOfInput2,

indexOfOutput,input,svmInfo]];

svmGraphics3D=

CIP‘Graphics‘Plot3dDataSetWithFunction[

dataSet3D,pureSvm3dFunction,labels];

purePerceptron3dFunction=

Function[{x,y},

4.5 Regression: Entering non-linearity 281

CIP‘Perceptron‘CalculatePerceptron3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,perceptronInfo]];

perceptronGraphics3D=

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

purePerceptron3dFunction,labels];

Show[{quadraticLogMprGraphics3D,svmGraphics3D,perceptronGraphics3D}]

which all adequately fit the data - the one to choose for a predictive interpolation

task is thus a mere matter of taste. In practice the quadratic-log MPR approach

would of course be preferred since this fitting procedure clearly outperforms the

two more powerful non-linear methods with regard to performance ...

• MPR:

Print["Time in s: ",

AbsoluteTiming[

CIP‘MPR‘FitMpr[dataSet,polynomialDegree,

MprOptionDataTransformationMode -> dataTransformationMode]][[1]]]

Time in s: 0.0661322

• SVM:

Print["Time in s: ",

AbsoluteTiming[CIP‘SVM‘FitSvm[dataSet,kernelFunction]][[1]]]

282 4 Machine Learning

Time in s: 47.4564

• Three-layer perceptron:

Print["Time in s: ",

AbsoluteTiming[

CIP‘Perceptron‘FitPerceptron[

dataSet,numberOfHiddenNeurons]][[1]]]

Time in s: 60.0174

... due to its linear nature (which is a general rule of thumb: If MLR or MPR lead

to a satisfactory result you are done and saved a lot of time and trouble). Finally

note that a correlation coefficient can indicate a better model (its values for the

adequate quadratic-log MPR, SVM and perceptron models are higher than those

of the linear and linear-log models before) but a higher value (especially one that

is very close to 1, i.e. perfect correlation) may also mean undesired overfitting as

already encountered in chapter 2.

4.6 Classification: Non-linear decision surfaces

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘DataTransformation‘

<<CIP‘Graphics‘

<<CIP‘MLR‘

<<CIP‘SVM‘

A classification task in general requires the construction of non-linear curved

decision surfaces beyond the simplicity of linear planes. A nice example which may

be visually inspected is the classification of intertwined spirals (see Appendix A).

A corresponding classification data set with a defined number of I/O pairs for each

spiral can be obtained from the CIP ExperimentalData package:

numberOfSingleSpiralIoPairs=30;

classificationDataSet60=

CIP‘ExperimentalData‘GetSpiralsClassificationDataSet[

numberOfSingleSpiralIoPairs];

The inputs of the classification data set are 2D points which may be visualized

with their class assignment denoted by their colors:

4.6 Classification: Non-linear decision surfaces 283

classIndex=1;

inputsOfSpiral1=

CIP‘DataTransformation‘GetInputsForSpecifiedClass[

classificationDataSet60,classIndex];

classIndex=2;

inputsOfSpiral2=

CIP‘DataTransformation‘GetInputsForSpecifiedClass[

classificationDataSet60,classIndex];

points2DWithPlotStyle1={inputsOfSpiral1,{PointSize[0.02],Red}};

points2DWithPlotStyle2={inputsOfSpiral2,{PointSize[0.02],Green}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

labels={"x","y","Intertwined spirals"};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

It is obvious that a highly non-linear curved decision surfaces in three dimensions

is necessary to separate the two spirals for a successful classification. Thus linear

MLR as a machine learning method

mlrInfo=CIP‘MLR‘FitMlr[classificationDataSet60];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},classificationDataSet60,mlrInfo]

62.9% correct classifications

is clearly ruled out with only about 63% correct classifications. A non-linear

method is advised and a SVM approach with an adequate kernel function

kernel={"Wavelet",0.1};

svmInfo=CIP‘SVM‘FitSvm[classificationDataSet60,kernel];

CIP‘SVM‘ShowSvmSingleClassification[

{"CorrectClassification"},classificationDataSet60,svmInfo];

100.% correct classifications

284 4 Machine Learning

leads to a perfect 100% correct classifications. The interpolating predictivity of

the SVM classifier may be tested with an enlarged classification data set which

consists of additional I/O pairs within each spiral

numberOfSingleSpiralIoPairs=100;

classificationDataSet200=

CIP‘ExperimentalData‘GetSpiralsClassificationDataSet[

numberOfSingleSpiralIoPairs];

classIndex=1;

inputsOfSpiral1=

CIP‘DataTransformation‘GetInputsForSpecifiedClass[

classificationDataSet200,classIndex];

classIndex=2;

inputsOfSpiral2=

CIP‘DataTransformation‘GetInputsForSpecifiedClass[

classificationDataSet200,classIndex];

points2DWithPlotStyle1={inputsOfSpiral1,{PointSize[0.02],Red}};

points2DWithPlotStyle2={inputsOfSpiral2,{PointSize[0.02],Green}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

to result again in a perfect 100% classification:

CIP‘SVM‘ShowSvmSingleClassification[

{"CorrectClassification"},classificationDataSet200,svmInfo];

100.% correct classifications

Therefore it can be deduced that the decision surfaces of the SVM classifier are

predictive and not overfitted. The latter would also lead to an initial perfect 100%

classification result but to a poor predictivity for new unknown data afterwards (this

problem is discussed in detail below). This finding may be finally verified with a

visual inspection of the decision surface for each class (combined with the data of

4.6 Classification: Non-linear decision surfaces 285

the enlarged classification data set). The highly non-linear decision surface for class

1

classificationDataSet3DList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[

classificationDataSet200];

indexOfInput1=1;indexOfInput2=2;indexOfOutput=1;input={0.0,0.0};

plotStyle3D=Directive[Green,Specularity[White,40],Opacity[0.6]];

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,svmInfo]];

labels={"In 1","In 2","Out 1"};

CIP‘Graphics‘Plot3dDataSetWithFunction[

classificationDataSet3DList[[1]],pureSvm3dFunction,labels,

GraphicsOptionPlotStyle3D -> plotStyle3D]

as well as the decision surface for class 2

indexOfInput1=1;indexOfInput2=2;indexOfOutput=2;input={0.0,0.0};

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,svmInfo]];

labels={"In 1","In 2","Out 2"};

CIP‘Graphics‘Plot3dDataSetWithFunction[

classificationDataSet3DList[[2]],pureSvm3dFunction,labels,

GraphicsOptionPlotStyle3D -> plotStyle3D]

286 4 Machine Learning

allow a perfect assignment of each input to its corresponding class. Note that

perfect decision planes would perfectly model the spirals in 3D (with values to be

exactly one at the spiral positions and zero elsewhere). The machine learning result

is just an approximant with deviations to these ideal curves but close enough to

allow for proper decisions.

4.7 Ambiguous classification

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Utility‘

<<CIP‘Graphics‘

<<CIP‘MLR‘

<<CIP‘SVM‘

<<CIP‘Cluster‘

<<CIP‘DataTransformation‘

Consider the following two overlapping Gaussian clouds where each point is

attributed to its class indicated by color:

centroidVector1={0.2,0.2};

numberOfCloudVectors=50;

standardDeviation=0.3;

cloudDefinition1={centroidVector1,numberOfCloudVectors,

standardDeviation};

inputs1=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition1];

centroidVector2={0.8,0.8};

4.7 Ambiguous classification 287

cloudDefinition2={centroidVector2,numberOfCloudVectors,

standardDeviation};

inputs2=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition2];

points2DWithPlotStyle1={inputs1,{PointSize[0.02],Black}};

points2DWithPlotStyle2={inputs2,{PointSize[0.02],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

labels={"x","y","Inputs and their corresponding color classes"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels]

If the points are to be classified according to their class memberships a decision

line must be constructed to separate the class areas. It is obvious that in the current

case a perfect (100%) correct classification is not desirable since the clouds pene-

trate each other. So an ordinary human solution for the required separation would

look like this

labels={"x","y","Human separation line"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels];

lineGraphics=Graphics[{Thick,

Yellow,Line[{{1.25,-0.3},{-0.55,1.4}}]}];

Show[inputsGraphics,lineGraphics]

288 4 Machine Learning

with the rule: Below the line = class 1, above the line = class 2. The decision line

classifies about 90% of the points in a correct manner (just count) and this is roughly

the best we can reasonably get. If a classification method performs significantly

better this would be suspicious (i.e. indicate overfitting), if it performs significantly

poorer the method would not be appropriate or failed due to technical reasons. To

perform a classification task a classification data set is constructed from the cloud

definitions

cloudDefinitions={cloudDefinition1,cloudDefinition2};

classificationDataSet=

CIP‘CalculatedData‘GetGaussianCloudsDataSet[

cloudDefinitions];

and split to a set of classification data sets with each containing one output com-

ponent of the original data set

classificationDataSet3DList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[

classificationDataSet];

to allow graphical illustrations in the following. Again note that every I/O pair of

the classification data set is attributed to its class by a 0/1 coding at the correspond-

ing position of its output, e.g. the first I/O pair that belongs to class 1 contains a 1 at

position 1 of its output and a 0 at position 2

firstIoPair=classificationDataSet[[1]]

{{0.345704,0.322742},{1.,0.}}

whereas the last I/O pair that belongs to class 2 contains a 0 at position 1 and a 1

at position 2:

4.7 Ambiguous classification 289

lastIoPair=classificationDataSet[[Length[classificationDataSet]]]

{{1.07406,0.86491},{0.,1.}}

As a good start an unsupervised clustering-based class predictor can be con-

structed

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet];

that achieves an overall success rate of about 90% correct predictions

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassification"},classificationDataSet,clusterInfo]

92.% correct classifications

and a satisfying prediction result for both classes (compare chapter 3):

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassificationPerClass"},classificationDataSet,

clusterInfo]

If we compare the cluster separation of the unsupervised learning result with the

human straight line

inputs=CIP‘Utility‘GetInputsOfDataSet[classificationDataSet];

numberOfClusters=2;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

290 4 Machine Learning

indexOfCluster=1;

inputsOfCluster1=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.02],Green}};

indexOfCluster=2;

inputsOfCluster2=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.02],Red}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

labels={"x","y","Clusters and the human separation line"};

clusterGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels];

Show[clusterGraphics,lineGraphics]

we see a very good agreement - and in practice the classification task would

be successfully fulfilled. But for the current context we proceed into the realm of

supervised learning. Since a straight line does the separation job properly the clas-

sification task may be successfully tackled by a linear MLR approach. A MLR clas-

sification results in a success rate

mlrInfo=CIP‘MLR‘FitMlr[classificationDataSet];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},classificationDataSet,mlrInfo]

92.% correct classifications

of about 90% percent correct classifications as expected. The decision surface for

class 1 confirms the proper result:

pureMlr3dFunction=Function[{x,y},

CalculateMlr3dValue[x,y,mlrInfo]];

labels={"In 1","In 2","Out 1"};

CIP‘Graphics‘Plot3dDataSetWithFunction[

classificationDataSet3DList[[1]],pureMlr3dFunction,labels]

4.7 Ambiguous classification 291

Again note that a linear technique has no structural flexibility: It simply succeeds

or fails since there is nothing to be tuned. If a non-linear method like a SVM is used

for the very same classification task things may get more difficult because non-

linear methods are far more flexible, i.e. they allow the construction of complex and

highly non-linear curved decision surfaces as already shown above. Their behavior

is fundamentally guided by their structural hyperparameters - and they deserve ad-

equate structural (as well as technical) parameters’ settings to work properly. If the

following inappropriate wavelet kernel function is arbitrarily chosen for the current

classification task (the wavelet width parameter a is set to a very small value so the

generated model function may be extremely curved)

kernelFunction={"Wavelet",0.05};

svmInfo=CIP‘SVM‘FitSvm[classificationDataSet,kernelFunction];

CIP‘SVM‘ShowSvmSingleClassification[

{"CorrectClassification"},classificationDataSet,svmInfo]

100.% correct classifications

we get a suspicious 100% correct classifications with a SVM’s decision surface

for class 1

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[

classificationDataSet3DList[[1]],pureSvm3dFunction,labels]

292 4 Machine Learning

that is the mathematical analog of a pure look-up table: Every input is nearly

individually classified by its own bump which means pure overfitting (again: This

was possible since a very small wavelet width parameter was chosen which allowed

these small bumps). This overfitted decision surface is of course suboptimal for any

class predictions of new inputs. Thus the powerful non-linear method utterly failed

to perform a simple linear classification task because of its inappropriate structural

settings. In this situation a kind of manual tuning of the kernel function could be

applied to arrive at a classification result of human quality but this is not feasible in

general where visual inspection is not available so the optimum 90% classification

result would not be known in advance. In general the machine learning procedure

itself should be able to come to this decision. As a solution strategy it seems rea-

sonable to facilitate the uselessness of the overfitted decision function to proceed:

Therefore the original data set is split into a training set and a test set where the first

is used for machine learning and the second to evaluate its predictivity after train-

ing. Then it becomes possible to monitor the performance of learning in dependence

of the structural settings (here: the kernel function) used. The test set validates the

training set in each step and overfitting will become apparent by a significant differ-

ence between the classification results for the training and the test set. As a start the

original data set is randomly split into a training and test set of equal size

trainingFraction=0.50;

trainingAndTestSet=CIP‘Cluster‘GetRandomTrainingAndTestSet[

classificationDataSet,trainingFraction];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

trainingSet3DList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[

trainingSet];

4.7 Ambiguous classification 293

what seems to be an unbiased and fair partitioning which may be visually con-

trolled (with the training inputs in green/light gray and the test inputs in red/dark

gray):

inputsOfTrainingSet=CIP‘Utility‘GetInputsOfDataSet[trainingSet];

inputsOfTestSet=CIP‘Utility‘GetInputsOfDataSet[testSet];

trainingPoints2DWithPlotStyle={inputsOfTrainingSet,

{PointSize[0.02],Green}};

testPoints2DWithPlotStyle={inputsOfTestSet,{PointSize[0.02],Red}};

points2DWithPlotStyleList={testPoints2DWithPlotStyle,

trainingPoints2DWithPlotStyle};

labels={"x","y","Training inputs (green), Test inputs (red)"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels]

Training and test data are equally distributed over the input’s space. If again a

MLR classification is performed with the training set

mlrInfo=CIP‘MLR‘FitMlr[trainingSet];

CIP‘MLR‘ShowMlrClassificationResult[

{"CorrectClassification"},trainingAndTestSet,mlrInfo]

Training Set:

94.% correct classifications

Test Set:

90.% correct classifications

we get the expected classification success rates for training and test set (train-

ing/test = 94/90) with a test set result being a bit inferior (90% < 94%) to the train-

ing sets outcome. So the MLR result is predictive. If now the SVM classification

is explored with different kernel functions in a systematic manner (where the first

294 4 Machine Learning

attempt will again be the catastrophic look-up table case from above) the classifi-

cation success for training and test set may be compared for each setting (with the

training result in green/light gray and the test result in red/dark gray):

kernelFunctionList=Table[{"Wavelet",kernelParameter},

{kernelParameter,0.05,2.0,0.05}];

svmInfoList=CIP‘SVM‘FitSvmSeries[trainingSet,kernelFunctionList];

svmSeriesClassificationResult=

CIP‘SVM‘GetSvmSeriesClassificationResult[trainingAndTestSet,

svmInfoList];

CIP‘SVM‘ShowSvmSeriesClassificationResult[

svmSeriesClassificationResult]

Best test set classification with svmInfo index = {16}

For settings with a small index the classification obviously takes place in the

realm of overfitting with distinct differences between training and test set perfor-

mance (100% training success but a clear test failure). For the following settings the

SVM arrives at the expected classification quality of the human solution. The best

SVM solution with the highest test set predictivity

svmInfo=svmInfoList[[16]];

CIP‘SVM‘GetKernelFunction[svmInfo]

{Wavelet,0.8}

yields a classification result

CIP‘SVM‘ShowSvmClassificationResult[{"CorrectClassification"},

trainingAndTestSet,svmInfo]

4.7 Ambiguous classification 295

Training Set:

94.% correct classifications

Test Set:

92.% correct classifications

with a little superior test set predictivity (training/test = 94/92) compared to the

MLR result (training/test = 94/90) above (2% or one I/O pair more is correctly

classified). But this difference is irrelevant: Both methods perform equally well on

the data set. As far as optimum solutions are concerned the classification task is

successfully tackled. But with regard to the outlined strategy of partitioning the

data set into a training and a test set the findings of chapter 3 could be taken into

account: There it was demonstrated that cluster representatives (abbreviated CR in

the following) are a promising description of an input’s space spatial diversity. In

some cases CRs are similar to their random brothers but in general they are often

superior. If the data set is again split half by half into a training and a test set on the

basis of CRs of the I/O pair’s inputs

trainingFraction=0.5;

trainingAndTestSet=CIP‘Cluster‘GetClusterBasedTrainingAndTestSet[

classificationDataSet,trainingFraction];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

trainingSet3DList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[

trainingSet];

the result seems to be not much different from the random partitioning above:

inputsOfTrainingSet=CIP‘Utility‘GetInputsOfDataSet[trainingSet];

inputsOfTestSet=CIP‘Utility‘GetInputsOfDataSet[testSet];

trainingPoints2DWithPlotStyle={inputsOfTrainingSet,

{PointSize[0.02],Green}};

testPoints2DWithPlotStyle={inputsOfTestSet,{PointSize[0.02],Red}};

points2DWithPlotStyleList={testPoints2DWithPlotStyle,

trainingPoints2DWithPlotStyle};

labels={"x","y","Training inputs (green), Test inputs (red)"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels]

296 4 Machine Learning

But if the same kernel function settings are scanned as before

kernelFunctionList=Table[{"Wavelet",kernelParameter},

{kernelParameter,0.05,2.0,0.05}];

svmInfoList=CIP‘SVM‘FitSvmSeries[trainingSet,kernelFunctionList];

svmSeriesClassificationResult=

CIP‘SVM‘GetSvmSeriesClassificationResult[trainingAndTestSet,

svmInfoList];

CIP‘SVM‘ShowSvmSeriesClassificationResult[

svmSeriesClassificationResult]

Best test set classification with svmInfo index = {10,11,12}

a kind of improvement can be recognized: The training and test set curves are

closer together over a wide range of kernel function settings which indicates a more

similar distribution of the training and test set’s inputs. The best SVM settings like

4.7 Ambiguous classification 297

svmInfo=svmInfoList[[11]];

CIP‘SVM‘GetKernelFunction[svmInfo]

{Wavelet,0.55}

perform equally well

CIP‘SVM‘ShowSvmClassificationResult[{"CorrectClassification"},

trainingAndTestSet,svmInfo]

Training Set:

94.% correct classifications

Test Set:

92.% correct classifications

in comparison to their best predecessor before (which also arrived at training/test

= 94/92). A plot of a best SVM’s decision surface for class 1

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

labels={"In 1","In 2","Out 1"};

CIP‘Graphics‘Plot3dDataSetWithFunction[trainingSet3DList[[1]],

pureSvm3dFunction,labels]

shows its similarity to a simple plane in the data region. From this latter (crucial)

point of view the CR based strategy was no real improvement beyond mere cos-

298 4 Machine Learning

metics because the random selection based strategy already achieved the optimum

reasonable outcome of the classification procedure. But the more uniform behavior

of training and test set may be crucial for more challenging machine learning tasks.

The successful outlined validation procedure by partitioning data sets in training

and test sets will be explored more thoroughly next.

4.8 Training and test set partitioning

The validation strategy introduced in the last section with a partitioning of a data set

into a training and a test set rises two questions:

• Question 1: How should a single I/O pair for each set be selected?

• Question 2: How many I/O pairs should each set contain after partitioning?

General guidelines that address these questions may read as follows:

• Guideline 1: Both sets should cover a similar input’s space, i.e. possess a similar

spatial diversity of inputs.

• Guideline 2: The training set should be kept as small as possible but allow for a

high overall predictivity.

Guideline 1 may be taken into account by using a cluster based approach to

get representatives for the training set (compare chapter 3). Then the issue remains

which individual cluster member is to be taken as the representative for the training

set. Unfortunately this leads to an extremely difficult optimization task: Think about

a small data set with just 100 I/O pairs that is partitioned in a training set of 25 I/O

pairs and a test set of 75 I/O pairs respectively. If a cluster based approach is used

the I/O pair’s inputs are split into 25 groups with 4 I/O pairs on average. If now one

member of each cluster is chosen for the training set this evaluates to at least one

quadrillion

ScientificForm[4.0ˆ25,1]

1.×1015

possible different training and test sets just for this small training fraction of 0.25

(in detail: There are 4 choices for a member of the first cluster. Each of these choices

may be combined with the 4 choices of the next cluster which evaluates to 4×4 =

16 combination possibilities for two clusters. Thus 25 clusters evaluate to 425 ≈
1.000.000.000.000.000 possible different training sets). There is no practically fea-

sible way to evaluate the optimum training set within this vast number of possibil-

ities. Even an evolutionary algorithm based strategy would be computationally far

too demanding in most cases. Therefore only heuristic partitioning strategies and

optimization approaches may be applied which by no means guarantee to achieve

4.8 Training and test set partitioning 299

an even tolerable selection. Heuristic strategies are guided by apparently reasonable

ideas for selecting or optimizing representatives. The latter usually involves only a

few trial steps for optimization. The heuristic strategies of the previous section were

a straightforward "50:50/random strategy" at first (i.e. the whole data set was split

into a training and test set of equal size where each I/O pair was randomly chosen to

belong to the training or test set respectively) and a more elaborate "50:50/cluster

representatives (CR) strategy" afterwards (which used cluster representatives for

I/O pair selection). More intricate heuristics are outlined throughout this section. As

a start the general superiority of a CR based selection is illustrated next with a more

difficult classification example.

4.8.1 Cluster representatives based selection

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Utility‘

<<CIP‘Graphics‘

<<CIP‘Cluster‘

<<CIP‘SVM‘

Consider the following inputs with their corresponding color classes:

centroid1={0.3,0.7};

standardDeviation=0.05;

numberOfCloudInputs=60;

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition1];

points2DWithPlotStyle1={inputs1,{PointSize[0.02],Black}};

centroid2={0.7,0.3};cloudDefinition2={centroid2,numberOfCloudInputs,

standardDeviation};

inputs2=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition2];

points2DWithPlotStyle2={inputs2,{PointSize[0.02],Blue}};

centroid3={0.5,0.5};

standardDeviation=0.05;

numberOfCloudInputs=10;

cloudDefinition3={centroid3,numberOfCloudInputs,standardDeviation};

inputs3=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition3];

points2DWithPlotStyle3={inputs3,{PointSize[0.02],Orange}};

centroid4={0.8,0.8};

cloudDefinition4={centroid4,numberOfCloudInputs,standardDeviation};

inputs4=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition4];

points2DWithPlotStyle4={inputs4,{PointSize[0.02],Yellow}};

centroid5={0.2,0.2};

cloudDefinition5={centroid5,numberOfCloudInputs,standardDeviation};

inputs5=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition5];

points2DWithPlotStyle5={inputs5,{PointSize[0.02],Pink}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,points2DWithPlotStyle3,

points2DWithPlotStyle4,points2DWithPlotStyle5};

300 4 Machine Learning

labels={"x","y","Inputs with corresponding color classes"};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

By visual inspection it is expected that a successful machine learning approach

should yield a 100% classification success since the clouds can be unambiguously

separated. Since a 100% success rate can (almost) always be achieved by a non-

linear method as shown in the previous section a validation procedure is crucial to

separate 100% overfitting from 100% predictivity. After generation of the corre-

sponding classification data set

cloudDefinitions={cloudDefinition1,cloudDefinition2,

cloudDefinition3,cloudDefinition4,cloudDefinition5};

classificationDataSet=

CIP‘CalculatedData‘GetGaussianCloudsDataSet[

cloudDefinitions];

and selection of a comparatively small randomly chosen training set with only

25% of the original data set’s I/O pairs

trainingFraction=0.25;

trainingAndTestSet=CIP‘Cluster‘GetRandomTrainingAndTestSet[

classificationDataSet,trainingFraction];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

it becomes visible that the input’s space if no longer satisfactorily covered (with

the training inputs in green/light gray and the test inputs in red/dark gray):

inputsOfTrainingSet=CIP‘Utility‘GetInputsOfDataSet[trainingSet];

inputsOfTestSet=CIP‘Utility‘GetInputsOfDataSet[testSet];

trainingPoints2DWithPlotStyle={inputsOfTrainingSet,

{PointSize[0.02],Green}};

4.8 Training and test set partitioning 301

testPoints2DWithPlotStyle={inputsOfTestSet,{PointSize[0.02],Red}};

points2DWithPlotStyleList={testPoints2DWithPlotStyle,

trainingPoints2DWithPlotStyle};

labels={"x","y","Training inputs (green), Test inputs (red)"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels]

The training inputs are concentrated in the two bigger clusters whereas the inputs

of the three small clusters are under-represented. A systematic exploration of kernel

function settings for a SVM based machine learning approach as in the previous

section (with the training result in green/light gray and the test result in red/dark

gray)

kernelFunctionList=Table[{"Wavelet",kernelParameter},

{kernelParameter,0.05,1.0,0.05}];

svmInfoList=CIP‘SVM‘FitSvmSeries[trainingSet,kernelFunctionList];

svmSeriesClassificationResult=

CIP‘SVM‘GetSvmSeriesClassificationResult[trainingAndTestSet,

svmInfoList];

CIP‘SVM‘ShowSvmSeriesClassificationResult[

svmSeriesClassificationResult]

302 4 Machine Learning

Best test set classification with svmInfo index = {6,7,8,9,10,11,12,13,14}

shows a distinct difference between the training and test set’s results: Whereas

the training set always yields the expected 100% success rate (no matter overfitted

or not) the test set never comes close: The best predictivity is around 90% only. Note

that this can not be attributed to a deficiency of the machine learning method: The

learning procedure itself relies on the training data. If parts of the input’s space are

not covered and thus not trained they are simply unknown to the decision surfaces

so they yield an arbitrary result for corresponding inputs. A training and test set

selection based on cluster representatives (CRs) with the same training fraction

trainingFraction=0.25;

trainingAndTestSet=

CIP‘Cluster‘GetClusterBasedTrainingAndTestSet[

classificationDataSet,trainingFraction];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

inputsOfTrainingSet=CIP‘Utility‘GetInputsOfDataSet[trainingSet];

inputsOfTestSet=CIP‘Utility‘GetInputsOfDataSet[testSet];

trainingPoints2DWithPlotStyle={inputsOfTrainingSet,

{PointSize[0.02],Green}};

testPoints2DWithPlotStyle={inputsOfTestSet,{PointSize[0.02],Red}};

points2DWithPlotStyleList={testPoints2DWithPlotStyle,

trainingPoints2DWithPlotStyle};

labels={"x","y","Training inputs (green), Test inputs (red)"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels]

4.8 Training and test set partitioning 303

reduces this problem as shown: The input’s space coverage is obviously im-

proved. A repeated exploration with the same kernel function settings

kernelFunctionList=Table[{"Wavelet",kernelParameter},

{kernelParameter,0.05,1.0,0.05}];

svmInfoList=CIP‘SVM‘FitSvmSeries[trainingSet,kernelFunctionList];

svmSeriesClassificationResult=

CIP‘SVM‘GetSvmSeriesClassificationResult[trainingAndTestSet,

svmInfoList];

CIP‘SVM‘ShowSvmSeriesClassificationResult[

svmSeriesClassificationResult]

Best test set classification with svmInfo index = {5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}

now leads to a satisfactory 100% success rate for the training as well as the test

set for quite a number of different kernel functions after some overfitting settings

at the beginning. Finally the necessary minimum size of the training set can be

explored by use of a good SVM with an appropriate kernel function

304 4 Machine Learning

kernelFunction={"Wavelet",0.55};

trainingFractionList=Table[trainingFraction,

{trainingFraction,0.05,0.50,0.05}];

svmClassificationScan=

CIP‘SVM‘ScanClassTrainingWithSvm[

classificationDataSet,kernelFunction,trainingFractionList];

CIP‘SVM‘ShowSvmClassificationScan[

svmClassificationScan]

Best test set classification with index = {2,3,4,5,6,7,8,9,10}

The index mentioned in "Best test set classification ..." refers to svmClassificationScan, i.e. svmClassification-

Scan[[2]] corresponds to trainingFractionList[[2]] with a value of 0.1 (= 10%).

where it is found that a CR based training set size of only 10% of the original

data set is necessary to lead to a 100% success rate for the training as well as the

test set classifications. This result addresses the second question above about the

necessary minimum size of a training set with the highest overall predictivity for

this classification task.

4.8.2 Iris flower classification revisited

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘Cluster‘

<<CIP‘MLR‘

<<CIP‘Perceptron‘

The prediction of iris flower species from their sepal and petal size data

4.8 Training and test set partitioning 305

classificationDataSet=

CIP‘ExperimentalData‘GetIrisFlowerClassificationDataSet[];

was already discussed in chapter 3 on the basis of unsupervised learning. There

it was shown that a purely clustering-based class predictor

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet];

leads to an overall success rate of about 90%

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassification"},classificationDataSet,clusterInfo]

89.3% correct classifications

with distinctly different success rates for the three iris flower species (classes):

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassificationPerClass"},classificationDataSet,

clusterInfo]

This result is not overall satisfactory so a supervised learning approach may be

worth an attempt. Since a MLR based classification is not prone to overfitting it may

be directly tried for a large variety of CR based training and test set sizes:

trainingFractionList=Table[trainingFraction,

{trainingFraction,0.01,0.90,0.01}];

mlrClassificationScan=

CIP‘MLR‘ScanClassTrainingWithMlr[

306 4 Machine Learning

classificationDataSet,trainingFractionList];

CIP‘MLR‘ShowMlrClassificationScan[

mlrClassificationScan]

Best test set classification with index = {83}

The result is not promising and reveals an even reduced predictivity in compar-

ison to the purely clustering-based class predictor before. Therefore a non-linear

method is clearly indicated. A three-layer perceptron with only two hidden neurons

numberOfHiddenNeurons=2;

is chosen since it is not very prone to overfitting. A scan with different small CR

based training and test set sizes

trainingFractionList=Table[trainingFraction,

{trainingFraction,0.01,0.30,0.01}];

perceptronClassificationScan=

CIP‘Perceptron‘ScanClassTrainingWithPerceptron[

classificationDataSet,numberOfHiddenNeurons,trainingFractionList];

CIP‘Perceptron‘ShowPerceptronClassificationScan[

perceptronClassificationScan]

4.8 Training and test set partitioning 307

Best test set classification with index = {28}

reveals a training fraction of 0.28 (i.e. a training set with 28% of all I/O pairs of

the data set) to be exceptionally predictive:

index=28;

trainingAndTestSetsInfo=

perceptronClassificationScan[[1]];

trainingAndTestSet=trainingAndTestSetsInfo[[index,1]];

perceptronInfo=trainingAndTestSetsInfo[[index,2]];

The overall prediction success rate arrives at

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification"},trainingAndTestSet,perceptronInfo]

Training Set:

100.% correct classifications

Test Set:

98.1% correct classifications

with iris flower species (class) related success rates of

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassificationPerClass","WrongClassificationPairs"},

trainingAndTestSet,perceptronInfo]

Training Set:

308 4 Machine Learning

All I/O pairs are correctly classified

Test Set:

Wrong I/O pair index = 69; input = {63., 28., 51., 15.}; class desired/machine = 3 / 2

Wrong I/O pair index = 82; input = {61., 26., 56., 14.}; class desired/machine = 3 / 2

This result is a distinct advantage to the pure clustering-based class predictor be-

fore. A small training set with less than a third of the total I/O pairs leads to a high

test set predictivity with only two classification errors. Note that both misclassified

inputs are closely neighbored in the input’s space. With the obtained supervised

learning based class predictor an acceptable solution to the classification seems to

be found. The only dissatisfying incidence of the latter approach is the apparent hop-

ping behavior of the test set predictivity obvious in the training set size scan above.

If training fraction 0.27 is chosen instead of 0.28 with nearly the same training set

size

4.8 Training and test set partitioning 309

index=27;

trainingAndTestSetsInfo=

perceptronClassificationScan[[1]];

trainingAndTestSet=trainingAndTestSetsInfo[[index,1]];

perceptronInfo=trainingAndTestSetsInfo[[index,2]];

the overall predictivity

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification"},trainingAndTestSet,perceptronInfo]

Training Set:

95.% correct classifications

Test Set:

74.5% correct classifications

as well as the class related predictivity

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassificationPerClass"},trainingAndTestSet,

perceptronInfo]

Training Set:

Test Set:

310 4 Machine Learning

drops even below the predictivity level of the purely clustering-based class pre-

dictor. Thus the CR based training set selection led to a very unfavorable training

set for training fraction 0.27 but to a highly predictive one for training fraction 0.28.

This kind of sensitivity of a machine learning result to comparatively small parame-

ter changes is a true burden of the methods in question and quite often encountered.

In the current case the cluster representatives for the training set cover the input’s

space appropriately but are not the best choices for a good predictivity. A heuristic

strategy to improve could be the following: I/O pairs are exchanged between the

training and the test set since a swap of I/O pairs leaves the training and test set

sizes unchanged. Candidates for this swapping procedure would be test set I/O pairs

whose outputs are only poorly predicted with training set I/O pairs in use. After an

exchange the machine learning fit is repeated and the deviations of the I/O pairs of

the test set are re-evaluated. With this updated information at hand the next swap can

be prepared etc. But a repeated unconstrained exchange could easily decrease the

spatial diversity of the training and test sets I/O pair’s inputs, e.g. the test set could

shrink to only a small region of the I/O pairs input’s space: Thus a high predictiv-

ity on the optimized test set would by no means imply a good general predictivity.

To avoid or at least reduce possible spatial diversity losses an exchange could be

confined to I/O pairs that belong to the same cluster. CIP provides a small number

of these spatial diversity preserving training set optimization strategies. The default

heuristics is abbreviated SingleGlobalMax: The single global test set I/O pair with

the maximum deviation between its output and the machine prediction is chosen

and exchanged with the current training set I/O pair of its cluster. Then the machine

learning process is repeated and re-evaluated. This iteration is performed for a spec-

ified number of optimization steps. If the SingleGlobalMax training set optimization

strategy is applied to the poor training fraction of 0.27 with the CR based training

set from above as the first step

trainingFraction=0.27;

numberOfTrainingSetOptimizationSteps=20;

perceptronTrainOptimization=

CIP‘Perceptron‘GetPerceptronTrainOptimization[

4.8 Training and test set partitioning 311

classificationDataSet,numberOfHiddenNeurons,trainingFraction,

numberOfTrainingSetOptimizationSteps];

CIP‘Perceptron‘ShowPerceptronTrainOptimization[

perceptronTrainOptimization]

an improvement due to a decreased RMSE is obvious - but another problem oc-

curred: The training set optimization is trapped in oscillations after step 6. This prob-

lem may be largely suppressed by a so-called blacklist modification of the heuristics

where an I/O pair is not allowed to be exchanged twice for a specified number of

optimization steps (in this case equal to the blacklist length):

numberOfTrainingSetOptimizationSteps=20;

blackListLength=20;

perceptronTrainOptimization=

CIP‘Perceptron‘GetPerceptronTrainOptimization[

classificationDataSet,numberOfHiddenNeurons,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

CIP‘Perceptron‘ShowPerceptronTrainOptimization[

perceptronTrainOptimization]

312 4 Machine Learning

Now a considerable improvement is obtained and the best training set

bestIndex=

CIP‘Perceptron‘GetBestPerceptronClassOptimization[

perceptronTrainOptimization];

trainingAndTestSet=

perceptronTrainOptimization[[3,bestIndex]];

perceptronInfo=

perceptronTrainOptimization[[4,bestIndex]];

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification"},trainingAndTestSet,perceptronInfo]

Training Set:

100.% correct classifications

Test Set:

99.1% correct classifications

leads to class predictions with a satisfactory success rate. If the described training

and test set optimization is applied to the whole training fraction scan before

trainingFractionList=Table[trainingFraction,

{trainingFraction,0.01,0.30,0.01}];

numberOfTrainingSetOptimizationSteps=20;

blackListLength=20;

perceptronClassificationScan=

CIP‘Perceptron‘ScanClassTrainingWithPerceptron[

classificationDataSet,numberOfHiddenNeurons,trainingFractionList,

UtilityOptionOptimizationSteps ->

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

CIP‘Perceptron‘ShowPerceptronClassificationScan[

perceptronClassificationScan]

4.8 Training and test set partitioning 313

Best test set classification with index = {24,25,27,29}

a dramatically improved picture is the result with smooth and high correct class

prediction rates. The minimum training fraction with the highest detected test set

prediction rate

bestIndex=24;

trainingFractionList[[bestIndex]]

0.24

performs excellent on the whole

trainingAndTestSetsInfo=

perceptronClassificationScan[[1]];

trainingAndTestSet=trainingAndTestSetsInfo[[bestIndex,1]];

perceptronInfo=trainingAndTestSetsInfo[[bestIndex,2]];

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification"},trainingAndTestSet,perceptronInfo]

Training Set:

100.% correct classifications

Test Set:

99.1% correct classifications

as well as class specific

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassificationPerClass","WrongClassificationPairs"},

trainingAndTestSet,perceptronInfo]

Training Set:

314 4 Machine Learning

All I/O pairs are correctly classified

Test Set:

Wrong I/O pair index = 105; input = {60., 27., 51., 16.}; class desired/machine = 2 / 3

and is even smaller than the earlier top training fraction of 0.28. It is worth to note

that the successful sketched training set optimization strategy must not be successful

at all in general: There is no guarantee to improve - it is just heuristics. But again:

A systematic training and test set enumeration and evaluation would inevitably fail

due to the practically infinite number of combinations. A training rate of 0.24 for

150 iris flower I/O pairs means 36 clusters with 4 to 5 members each. If one member

of each cluster is chosen for the training set this evaluates to at least

ScientificForm[4.0ˆ36,1]

5.×1021

4.8 Training and test set partitioning 315

possible different training and test sets just for this training fraction. Short cut

heuristics are the only promising alternatives - and also the latter training fraction

scan with 30 training fractions - each with 20 training set optimization steps and 3

perceptron fits for the 3 class output components - required already 1800 perceptron

fits. For difficult machine learning problems one single fit may require hours up to

days so the generation of the sketched training fraction scan would require months

of CPU time on a single computer. On the other hand this kind of computation

is particularly eligible for parallel architectures since there is mostly only a loose

dependence of the individual perceptron fits (see Appendix A for corresponding

parallelized calculations with CIP). This is why multicore architectures and grid

computing play a major role in professional machine learning setups. Finally the

ruled out MLR approach from the beginning of this subsection may be considered

again and also enhanced by training set optimization:

trainingFractionList=Table[trainingFraction,

{trainingFraction,0.01,0.90,0.01}];

numberOfTrainingSetOptimizationSteps=20;

blackListLength=20;

mlrClassificationScan=

CIP‘MLR‘ScanClassTrainingWithMlr[

classificationDataSet,trainingFractionList,

UtilityOptionOptimizationSteps ->

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

CIP‘MLR‘ShowMlrClassificationScan[

mlrClassificationScan]

Best test set classification with index = {89}

But although the training fraction scan is clearly improved the linear MLR results

are still significantly inferior to the non-linear perceptron predictions.

316 4 Machine Learning

4.8.3 Adhesive kinetics regression revisited

Clear["Global‘*"];

<< CIP‘ExperimentalData‘

<< CIP‘Graphics‘

<< CIP‘MPR‘

The adhesive kinetics data have already been successfully modelled by non-

linear machine learning techniques. A specific validation procedure was not nec-

essary for an assessment of the quality of the fit results since the experimental errors

were known in advance and could be compared to the machine errors. In addition

a visual 3D inspection was possible with a subset of I/O pairs. On the other hand it

may be interesting to explore the minimum training set for this regression task. This

is expected to be difficult since the data set

dataSet = CIP‘ExperimentalData‘GetAdhesiveKineticsDataSet[];

is only small

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs"}, dataSet]

Number of IO pairs = 73

and the outputs’ errors are reported to be in the order of 10 to 20%, i.e. the

output values are at the borderline to be only semi-quantitative. So any alteration in

an optimization procedure may cause drastic effects and may be hard to be judged.

As shown before a quadratic-log MPR approach to the whole data set

polynomialDegree = 2;

dataTransformationMode = "Log";

quadraticLogMprInfo =

CIP‘MPR‘FitMpr[dataSet, polynomialDegree,

MprOptionDataTransformationMode -> dataTransformationMode];

CIP‘MPR‘ShowMprSingleRegression[

{"RMSE"}, dataSet, quadraticLogMprInfo];

Root mean squared error (RMSE) = 2.607×102

leads to a satisfying fitting result with a RMSE of about 260 and acceptable

residuals distribution. A scan of different CR based splits of the whole data set into

a training and a test set with a quadratic-log MPR training

trainingFractionList =

Table[trainingFraction, {trainingFraction, 0.3, 0.8, 0.05}];

quadraticLogMprRegressionScan =

CIP‘MPR‘ScanRegressTrainingWithMpr[dataSet, polynomialDegree,

4.8 Training and test set partitioning 317

trainingFractionList,

MprOptionDataTransformationMode -> dataTransformationMode];

CIP‘MPR‘ShowMprRegressionScan[quadraticLogMprRegressionScan]

Best test set regression with index = {11}

which may be improved with a representative selection from each cluster by an

addition of several training set optimization steps (again with the SingleGlobalMax

heuristics and adequate blacklisting) for each training fraction of the quadratic-log

MPR scan

numberOfTrainingSetOptimizationSteps = 20;

blackListLength = 15;

quadraticLogMprRegressionScan =

CIP‘MPR‘ScanRegressTrainingWithMpr[dataSet, polynomialDegree,

trainingFractionList,

MprOptionDataTransformationMode -> dataTransformationMode,

UtilityOptionOptimizationSteps ->

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

CIP‘MPR‘ShowMprRegressionScan[quadraticLogMprRegressionScan]

318 4 Machine Learning

Best test set regression with index = {11}

indicates that already a small training fraction seems to be sufficient for success-

ful model generation, e.g. a training fraction of only 0.4

index = 3;

trainingFractionList[[index]]

0.4

leads to a model with satisfactory residuals distribution for the whole (!) data set

trainingAndTestSetsInfo = quadraticLogMprRegressionScan[[1]];

trainingAndTestSet = trainingAndTestSetsInfo[[index, 1]];

quadraticLogMprFractionInfo = trainingAndTestSetsInfo[[index, 2]];

CIP‘MPR‘ShowMprSingleRegression[{"ModelVsDataPlot",

"RelativeSortedResidualsPlot", "RelativeResidualsStatistics",

"RMSE"}, dataSet, quadraticLogMprFractionInfo];

4.8 Training and test set partitioning 319

Out 1 : Relative residuals (100*(Data - Model)/Data):

Mean/Median/Maximum Value in % = 1.54×101 / 1.27×101 / 5.85×101

Root mean squared error (RMSE) = 2.637×102

which is very similar to the result of the quadratic-log MPR fit of the whole data

set. This similarity may be confirmed by visual inspection of the overlay of both

models:

polymerMassRatio = "80";

dataSet3D =

CIP‘ExperimentalData‘GetAdhesiveKinetics3dDataSet[polymerMassRatio];

indexOfInput1 = 2;

indexOfInput2 = 3;

indexOfOutput = 1;

input = {80.0, 0.0, 0.0};

labels = {"In 2", "In 3", "Out 1"};

pureQuadraticLogMpr3dFunction =

Function[{x, y},

CIP‘MPR‘CalculateMpr3dValue[x, y, indexOfInput1, indexOfInput2,

indexOfOutput, input, quadraticLogMprInfo]];

quadraticLogMpr3dPlot =

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureQuadraticLogMpr3dFunction, labels];

pureQuadraticLogMprFraction3dFunction =

Function[{x, y},

CIP‘MPR‘CalculateMpr3dValue[x, y, indexOfInput1, indexOfInput2,

indexOfOutput, input, quadraticLogMprFractionInfo]];

quadraticLogMprFraction3dPlot =

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureQuadraticLogMprFraction3dFunction, labels];

Show[{quadraticLogMpr3dPlot, quadraticLogMprFraction3dPlot}]

320 4 Machine Learning

In summary this finding means that less than half of the adhesive kinetics data

are in fact necessary to extract a satisfying model function (i.e. more than 50% of

the lab work was not necessary in principle) - but such a clear assessment would be

hard to make without visual inspection and an a priori good fit as a guideline.

4.8.4 Design of experiment

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘SVM‘

<<CIP‘Cluster‘

Scientific lab work usually generates data on the basis of a design of experiment

(DoE), i.e. the setups and conditions for measurement are not chosen randomly

but follow theoretical considerations or a specific systematics, e.g. derived from

mathematical statistics. The DoE may be utilized to extract an optimum training set

from the full data by an adequate procedure. For an example the inputs’ locations for

the chapter’s introductory regression task may be chosen to form a two-dimensional

grid, e.g. a 19×19 grid

pureOriginalFunction=Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)ˆ2]*Exp[-y]* Sin[7.0*y])];

xRange={0.0,1.0};

yRange={0.0,1.0};

numberOfDataPerDimension=19;

4.8 Training and test set partitioning 321

standardDeviationRange={0.1,0.1};

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

labels={"x","y","z"};

viewPoint3D={0.0,0.0,3.0};

CIP‘Graphics‘Plot3dDataSet[dataSet3D,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

where the grid character becomes obvious by 3D inspection of the data set from

above. As a rational choice for an adequate training set the extraction of a sub grid

with a sufficient density is near at hand, e.g. a 10×10 sub grid:

numberOfPointsPerDimension=19;

trainingSet={};

testSet={};

Do[

Do[

If[OddQ[i] && OddQ[k],

AppendTo[trainingSet,

dataSet3D[[(i-1)*numberOfPointsPerDimension+k]]],

AppendTo[testSet,

dataSet3D[[(i-1)*numberOfPointsPerDimension+k]]],

];

dataSet3D,

{k,numberOfPointsPerDimension}

],

{i,numberOfPointsPerDimension}

];

viewPoint3D={0.0,0.0,3.0};

CIP‘Graphics‘Plot3dDataSet[trainingSet,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

322 4 Machine Learning

The remaining I/O pairs are accordingly assigned to the test set:

CIP‘Graphics‘Plot3dDataSet[testSet,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

4.8 Training and test set partitioning 323

This choice seems to be an optimum with regard to similar spatial diversity and

also satisfies intuitive aesthetic aspects. A SVM fit of the training set with the ade-

quate kernel function

kernelFunction={"Wavelet",0.3};

svmInfo=CIP‘SVM‘FitSvm[trainingSet,kernelFunction];

yields satisfactory predictions for the training as well as the test set

trainingAndTestSet={trainingSet,testSet};

CIP‘SVM‘ShowSvmRegressionResult[{"ModelVsDataPlot",

"AbsoluteSortedResidualsPlot","RMSE"},trainingAndTestSet,svmInfo]

Training Set:

Root mean squared error (RMSE) = 8.904×10-2

324 4 Machine Learning

Test Set:

Root mean squared error (RMSE) = 1.508×10-1

The RMSE values again correspond satisfactorily to the value of 0.1 used as the

standard deviation for the calculation of the normally distributed I/O pairs’ outputs.

It may be interesting to compare the DoE-based partitioning to different training

and test set splitting heuristics which completely neglect the DoE knowledge. This

kind of exploration might lead to some insight about success or failure of these

partitioning optimization strategies. The first attempt is a pure CR based training

and test set partitioning with a training fraction equal to the sub-grid partitioning

one. With the current sizes of the training set

Length[trainingSet]

4.8 Training and test set partitioning 325

100

and the test set

Length[testSet]

261

the training fraction is evaluated to be:

trainingFraction=

N[Length[trainingSet]/(Length[trainingSet]+Length[testSet])]

0.277008

The CR based training set for this training fraction

trainingAndTestSet=CIP‘Cluster‘GetClusterBasedTrainingAndTestSet[

dataSet3D,trainingFraction];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

can be visually inspected to demonstrate a good spatial diversity but with inputs

clearly different to those of the sub-grid before:

CIP‘Graphics‘Plot3dDataSet[trainingSet,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

326 4 Machine Learning

The SVM fit with the same kernel function

svmInfo=CIP‘SVM‘FitSvm[trainingSet,kernelFunction];

produces RMSE values for training and test set

CIP‘SVM‘ShowSvmRegressionResult[{"RMSE"},trainingAndTestSet,svmInfo]

Training Set:

Root mean squared error (RMSE) = 9.118×10-2

Test Set:

Root mean squared error (RMSE) = 1.975×10-1

which are a little inferior to those of the DoE-based fit before. So a further re-

finement with additional training set optimization steps on the basis of a distinct I/O

pair exchange heuristics could lead to improvements. Note that this assumption is

a kind of pure hope since none of all possible heuristics guarantees improvement.

The AllClusterMax training set optimization strategy generates a training set in ev-

ery iteration step which consists of the single maximum deviating I/O pairs of each

cluster. So each optimization step may form a completely new training set. The

application of this heuristics to the current regression task

numberOfTrainingSetOptimizationSteps=20;

deviationCalculationMethod="AllClusterMax";

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

4.8 Training and test set partitioning 327

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]

does not lead to any improvement to the pure CR based training set of step one.

As a variant the AllClusterMean strategy can be examined where the training set

in every iteration is formed by the clusters’ I/O pairs which are nearest their corre-

sponding cluster-specific mean deviation (and thus do not simply correspond to the

cluster’s maximum deviation). This more balancing global strategy

numberOfTrainingSetOptimizationSteps=20;

deviationCalculationMethod="AllClusterMean";

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]

328 4 Machine Learning

is able to achieve improvements in comparison to the pure CR based training set

of step one. More reserved heuristics do only change one single I/O pair in every

training set optimization step and not the training set as a whole. The SingleGlob-

alMean strategy evaluates the cluster with the maximum deviating I/O pair and re-

places this cluster’s training set member with the cluster’s test set I/O pair which is

nearest its cluster-specific mean deviation. The application of the strategy

numberOfTrainingSetOptimizationSteps=20;

deviationCalculationMethod="SingleGlobalMean";

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]

4.8 Training and test set partitioning 329

shows improvements but is trapped in an oscillation after a few steps. Single I/O

pair exchange strategies are known to be prone to this kind of behavior as already

discussed above. Therefore these strategies are enhanced by blacklisting to suppress

oscillations: A single I/O pair is not allowed to be exchanged twice for a number of

optimization steps (which may be defined by the blacklist length where the blacklist

is removed after it arrived its maximum length). If the blacklist length is chosen

to be equal to the number of optimization steps, i.e. no I/O pair is allowed to be

exchanged twice,

numberOfTrainingSetOptimizationSteps=20;

deviationCalculationMethod="SingleGlobalMean";

blackListLength=20;

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod,

UtilityOptionBlackListLength -> blackListLength];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]

the oscillation is successfully suppressed but only an early improvement is

achieved after three optimization steps since all further optimization trials fail. A

reduced blacklist length

numberOfTrainingSetOptimizationSteps=25;

deviationCalculationMethod="SingleGlobalMean";

blackListLength=10;

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod,

330 4 Machine Learning

UtilityOptionBlackListLength -> blackListLength];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]

allows a re-entry of already exchanged I/O pairs and leads to the best improve-

ment in step 17 found so far. Finally the SingleGlobalMax strategy is explored (the

CIP default strategy) which evaluates the cluster with the maximum deviating I/O

pair and replaces this cluster’s training set member with this maximum deviating

I/O pair. A non-blacklisted application of this strategy

numberOfTrainingSetOptimizationSteps=20;

deviationCalculationMethod="SingleGlobalMax";

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[

dataSet3D,kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]

4.8 Training and test set partitioning 331

leads to only a minor improvement in step 2 and oscillations afterwards. A full

blacklisting

numberOfTrainingSetOptimizationSteps=20;

deviationCalculationMethod="SingleGlobalMax";

blackListLength=20;

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod,

UtilityOptionBlackListLength -> blackListLength];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]

does not improve further. So a reduced blacklist length again

numberOfTrainingSetOptimizationSteps=20;

332 4 Machine Learning

deviationCalculationMethod="SingleGlobalMax";

blackListLength=10;

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod,

UtilityOptionBlackListLength -> blackListLength];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]

leads to the best result - in this case the best training/test set combination found so

far for the current regression task. The latter optimization result reveals a nice "per

aspera ad astra" (through difficulties to the stars) result: The small improvement in

step 2 is followed by a number of apparently unfavorable steps with increased test

RMSE values but after the blacklist reset in step 11 a long RMSE value drop down

is found which arrives at an improved RMSE minimum. This best training and test

set partitioning

index=CIP‘SVM‘GetBestSvmRegressOptimization[

svmTrainOptimization];

trainingAndTestSetList=svmTrainOptimization[[3]];

svmInfoList=svmTrainOptimization[[4]];

trainingAndTestSet=trainingAndTestSetList[[index]];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

svmInfo=svmInfoList[[index]];

still contains an absolutely satisfying spatial diverse training set

CIP‘Graphics‘Plot3dDataSet[trainingSet,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

4.8 Training and test set partitioning 333

with RMSE values

CIP‘SVM‘ShowSvmRegressionResult[{"RMSE"},trainingAndTestSet,svmInfo]

Training Set:

Root mean squared error (RMSE) = 1.065×10-1

Test Set:

Root mean squared error (RMSE) = 1.438×10-1

and deviation plots for training and test set

CIP‘SVM‘ShowSvmRegressionResult[{"ModelVsDataPlot",

"AbsoluteSortedResidualsPlot","RMSE"},trainingAndTestSet,svmInfo]

Training Set:

334 4 Machine Learning

Root mean squared error (RMSE) = 1.065×10-1

Test Set:

4.8 Training and test set partitioning 335

Root mean squared error (RMSE) = 1.438×10-1

that are even slightly superior to the DoE-based sub grid result above. But note

that it was a kind of educated good luck that led to this excellent final result. In

summary a training and test set partitioning could be achieved by mere CR based

partitioning with some following optimization steps which is comparable to the

DoE-based sub grid approach. But the latter has the crucial advantage of being

computationally far less expensive: That is why experimental scientists and data an-

alysts should closely collaborate at very early project stages to design experiments

together. So at best the machine learning process(es) can already accompany and

support experimental work during its performance. This becomes even more impor-

tant for modern miniaturized, parallelized and automated lab processes by intensive

use of robotics. Otherwise the traditional "experiments first-data analysis second"

procedure may give away an awful lot.

4.8.5 Concluding remarks

The partitioning of a data set into a training and a test set is a crucial step for suc-

cessful machine learning: If a small training set possesses a high predictivity for a

test set whose inputs cover a comparable input space a convincing result is usually

obtained in agreement with the two guidelines sketched at the beginning of this sec-

tion. But in general machine learning results should be treated with caution. There

is a wide range for educated cheating: Almost always something can be learned and

then predicted and thus machine learning results are often dubious. Proper validation

is essential and far more demanding than mere data fitting. It is interesting to note

that commercial machine learning applications are far more trustworthy than many

academic reports since the first are inevitably assessed in practice with a painful

penalty for deceits where the latter are often produced by harassed students under

pressure with a fire and forget mentality.

336 4 Machine Learning

With the discussed partitioning of data into a training and a test set the domain

of cross validation was touched: This scientific field uses more elaborate partition-

ing schemes and operations upon them to validate data but faces the unfortunate

drawback that these methods often require astronomic computational resources or

time periods beyond all bearings. So in most cases the sketched or similar valida-

tion heuristics underlie practically feasible validation procedures - and as shown

they may lead to helpful results for the practitioner despite their non-optimal and

preliminary character. Nevertheless their deficiencies have to be kept in mind and a

report of machine learning results should always point them out in clear cut words.

4.9 Comparative machine learning

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘MLR‘

<<CIP‘MPR‘

<<CIP‘SVM‘

<<CIP‘Perceptron‘

When machine learning is to be applied to a set of data a decision has to be made

about the method to use. In general the best method for the data in question can

not a priori be determined by theoretical considerations as already pointed out ear-

lier. Thus experience, educated guesses and a lot of trial and error are necessary to

proceed. And there is more than one way to skin a cat. Several machine construc-

tion processes may be performed and compared afterwards. This approach may be

sketched in an illustrative manner with the chapter’s introductory 3D data set gen-

erated on the basis of a true function:

pureOriginalFunction=Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)ˆ2]*Exp[-y]* Sin[7.0*y])];

xRange={0.0,1.0};

yRange={0.0,1.0};

labels={"x","y","z"};

numberOfDataPerDimension=10;

standardDeviationRange={0.1,0.1};

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

trainingSet=dataSet3D;

testSet={};

trainingAndTestSet={trainingSet,testSet};

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureOriginalFunction,labels]

4.9 Comparative machine learning 337

An initial linear MLR trial

mlrInfo=CIP‘MLR‘FitMlr[dataSet3D];

can be directly ruled out by visual inspection of the overlay of the approximated

linear model function and the true function

originalFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureOriginalFunction,xRange,yRange,labels];

pureMlr3dFunction=Function[{x,y},

CalculateMlr3dValue[x,y,mlrInfo]];

approximatedMlrFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureMlr3dFunction,xRange,yRange,labels];

Show[originalFunctionGraphics3D,approximatedMlrFunctionGraphics3D]

338 4 Machine Learning

since the machine learning problem is strongly non-linear: So non-linear methods

are clearly advised. MPR needs an a priori specification of the polynomial degree

as its structural hyperparameter: Since an adequate polynomial degree is usually

not known in advance (given that one exists at all for the problem in question) a

reasonable range of values is scanned:

polynomialDegreeList=

Table[polynomialDegree,{polynomialDegree,1,15}]

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

mprInfoList=CIP‘MPR‘FitMprSeries[dataSet3D, polynomialDegreeList];

mprSeriesRmse=

CIP‘MPR‘GetMprSeriesRmse[trainingAndTestSet,mprInfoList];

CIP‘MPR‘ShowMprSeriesRmse[mprSeriesRmse]

4.9 Comparative machine learning 339

Best training set regression with mprInfo index = {15}

The continuously decreasing RMSE with increasing polynomial degree shows

that a polynomial degree of 9 (which corresponds to index 9 in polynomialDegreeL-

ist and mprInfoList)

mprInfoIndex=9;

polynomialDegreeList[[mprInfoIndex]]

9

mprInfo=mprInfoList[[mprInfoIndex]];

CIP‘MPR‘ShowMprSingleRegression[{"RMSE"},dataSet3D,mprInfo];

Root mean squared error (RMSE) = 8.53×10−2

leads to a model with a RMSE value near 0.1 (the value that was used for the

data generation around the true function). The resulting approximated MPR model

function adequately approximates the true function which is again demonstrated by

their overlay:

pureMpr3dFunction=

Function[{x,y},CalculateMpr3dValue[x,y,mprInfo]];

approximatedMprFunctionGraphics3D=

CIP‘Graphics‘Plot3dFunction[pureMpr3dFunction,xRange,yRange,

labels];

Show[originalFunctionGraphics3D,approximatedMprFunctionGraphics3D]

340 4 Machine Learning

Support vector regression needs an a priori specification of the kernel function

which is not known in general. If a type of kernel function is arbitrarily chosen its

parameters are in question: These have to be scanned over a range of reasonable

values to construct an adequate kernel. The wavelet kernel was already shown to

be successful at the introduction of this chapter. A systematic scan of its kernel

parameter in a range between 0.1 and 1.0 in steps of 0.1

kernelFunctionList=Table[{"Wavelet",kernelParameter},

{kernelParameter,0.1,1.0,0.1}]

{{Wavelet,0.1},{Wavelet,0.2},{Wavelet,0.3},{Wavelet,0.4},{Wavelet,0.5},{Wavelet,0.6},

{Wavelet,0.7},{Wavelet,0.8},{Wavelet,0.9},{Wavelet,1.}}

svmInfoList=CIP‘SVM‘FitSvmSeries[dataSet3D,kernelFunctionList];

svmSeriesRegressionResult=

CIP‘SVM‘GetSvmSeriesRmse[trainingAndTestSet,svmInfoList];

CIP‘SVM‘ShowSvmSeriesRmse[svmSeriesRegressionResult]

4.9 Comparative machine learning 341

Best training set regression with svmInfo index = {1}

shows a continuously increasing RMSE value from values below 0.1 (which indi-

cates overfitting since the data are better approximated than they should be accord-

ing to the standard deviation of 0.1 used for their generation) to values considerably

above 0.1 (which means an only poor approximation of the true function). A good

machine learning result with a RMSE around 0.1 for a wavelet parameter of 0.3

svmInfoIndex=3;

svmInfo=svmInfoList[[svmInfoIndex]];

CIP‘SVM‘GetKernelFunction[svmInfo]

{Wavelet,0.3}

thus determines an adequate kernel function (a kind of bump, compare above):

a=0.3;

x=0.0;

pureWaveletKernel2D=Function[y,CIP‘SVM‘KernelWavelet[{x},{y},a]];

argumentRange={-1.0,1.0};

functionValueRange={-0.4,1.1};

labels={"x","z","Wavelet kernel function"};

CIP‘Graphics‘Plot2dFunction[pureWaveletKernel2D,argumentRange,

functionValueRange,labels]

342 4 Machine Learning

The overlay of the true function with the approximated model function shows the

convincing result for this kernel:

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

approximatedFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureSvm3dFunction,xRange,yRange,labels];

Show[originalFunctionGraphics3D,approximatedFunctionGraphics3D]

The analog procedure may be performed for a Gaussian radial basis function

(RBF) kernel. A scan of its parameter

4.9 Comparative machine learning 343

kernelFunctionList=Table[

kernelFunction={"GaussianRBF",kernelParameter},

{kernelParameter,1.0,15.0,1.0}]

{{GaussianRBF,1.},{GaussianRBF,2.},{GaussianRBF,3.},{GaussianRBF,4.},{GaussianRBF,5.},

{GaussianRBF,6.},{GaussianRBF,7.},{GaussianRBF,8.},{GaussianRBF,9.},{GaussianRBF,10.},

{GaussianRBF,11.},{GaussianRBF,12.},{GaussianRBF,13.},{GaussianRBF,14.},{GaussianRBF,15.}}

svmInfoList=CIP‘SVM‘FitSvmSeries[dataSet3D,kernelFunctionList];

svmSeriesRegressionResult=

CIP‘SVM‘GetSvmSeriesRmse[trainingAndTestSet,svmInfoList];

CIP‘SVM‘ShowSvmSeriesRmse[svmSeriesRegressionResult]

Best training set regression with svmInfo index = {15}

recommends a value of 14.0 for a RMSE value around 0.1

svmInfoIndex=14;

svmInfo=svmInfoList[[svmInfoIndex]];

CIP‘SVM‘GetKernelFunction[svmInfo]

{GaussianRBF,14.}

to form an adequate Gaussian RBF kernel function:

beta=14.0;

x=0.0;

pureWaveletKernel2D=Function[y,

CIP‘SVM‘KernelGaussianRbf[{x},{y},beta]];

argumentRange={-1.0,1.0};

functionValueRange={-0.1,1.1};

labels={"x","z","Gaussian RBF kernel function"};

344 4 Machine Learning

CIP‘Graphics‘Plot2dFunction[pureWaveletKernel2D,argumentRange,

functionValueRange,labels]

The overlay is again convincing:

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

approximatedFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureSvm3dFunction,xRange,yRange,labels];

Show[originalFunctionGraphics3D,approximatedFunctionGraphics3D]

4.9 Comparative machine learning 345

As a third alternative a universal Fourier kernel function may be chosen and its

parameter scanned:

kernelFunctionList=Table[

kernelFunction={"UniversalFourier",kernelParameter},

{kernelParameter,0.1,0.9,0.1}]

{{UniversalFourier,0.1},{UniversalFourier,0.2},{UniversalFourier,0.3},{UniversalFourier,0.4},

{UniversalFourier,0.5},{UniversalFourier,0.6},{UniversalFourier,0.7},{UniversalFourier,0.8},

{UniversalFourier,0.9}}

svmInfoList=CIP‘SVM‘FitSvmSeries[dataSet3D,kernelFunctionList];

svmSeriesRegressionResult=

CIP‘SVM‘GetSvmSeriesRmse[trainingAndTestSet,svmInfoList];

CIP‘SVM‘ShowSvmSeriesRmse[svmSeriesRegressionResult]

Best training set regression with svmInfo index = {9}

A value of 0.7 for a RMSE value around 0.1

svmInfoIndex=7;

svmInfo=svmInfoList[[svmInfoIndex]];

CIP‘SVM‘GetKernelFunction[svmInfo]

{UniversalFourier,0.7}

now leads to a successful kernel function

q=0.7;

x=0.0;

pureWaveletKernel2D=Function[y,

CIP‘SVM‘KernelUniversalFourier[{x},{y},q]];

346 4 Machine Learning

argumentRange={-1.0,1.0};

functionValueRange={0.0,3.0};

labels={"x","z","Universal Fourier kernel function"};

CIP‘Graphics‘Plot2dFunction[pureWaveletKernel2D,argumentRange,

functionValueRange,labels]

with an excellent overlay result:

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

approximatedFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureSvm3dFunction,xRange,yRange,labels];

Show[originalFunctionGraphics3D,approximatedFunctionGraphics3D]

4.9 Comparative machine learning 347

If the three adequate kernel functions are compared they are similar in principal

(i.e. bump-like) but in detail notably different. Nevertheless they lead to approxi-

mated model functions of comparable quality. A perceptron based approach raises

the question for the necessary number of hidden neurons to build a sufficient number

of adequate bumps. Thus a scan of perceptron fits with different numbers of hidden

neurons

numberOfHiddenNeuronsList=Table[numberOfHiddenNeurons,

{numberOfHiddenNeurons,2,20}]

{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}

perceptronInfoList=CIP‘Perceptron‘FitPerceptronSeries[

dataSet3D,numberOfHiddenNeuronsList];

perceptronSeriesRmse=CIP‘Perceptron‘GetPerceptronSeriesRmse[

trainingAndTestSet,perceptronInfoList];

CIP‘Perceptron‘ShowPerceptronSeriesRmse[perceptronSeriesRmse]

348 4 Machine Learning

Best training set regression with perceptronInfo index = {14}

suggests at least 12 hidden neurons

perceptronInfoIndex=11;

perceptronInfo=perceptronInfoList[[perceptronInfoIndex]];

CIP‘Perceptron‘GetNumberOfHiddenNeurons[perceptronInfo]

12

to be a minimum sufficient number (but compare the discussion in section 4.12).

The overlay result

purePerceptron3dFunction=Function[{x,y},

CIP‘Perceptron‘CalculatePerceptron3dValue[x,y,

perceptronInfo]];

approximatedFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

purePerceptron3dFunction,xRange,yRange,labels];

Show[originalFunctionGraphics3D,approximatedFunctionGraphics3D]

4.10 Relevance of input components and minimal models 349

shows a satisfying approximation quality which is apparently a bit inferior to the

successful SVM based results before. The initial statement that there is more than

one way to skin a cat finally becomes obvious: For the current example a number

of explored non-linear methods performed comparably well and it is just a matter

of taste which one to choose (where the fast MPR approach would in practice be

preferred due to its superior fitting performance).

4.10 Relevance of input components and minimal models

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘Perceptron‘

<<CIP‘Graphics‘

<<CIP‘DataTransformation‘

Adequate inputs are a necessary basis for all machine learning tasks since some-

thing is to be learned for specific inputs. An input itself is a mathematical vector

that codes information in an appropriate way for the machine learning task. From

a practitioner’s point of view an input should contain all useful information, i.e.

the input’s components should each have a precise scientific meaning. But if a sin-

gle input component is really meaningful to the machine learning task is hard to

judge in advance. This raises the question of the relevance of input components. A

minimal predictive model with an optimum set of inputs should only contain those

components which are necessary to successfully perform the machine learning task

350 4 Machine Learning

and omit possible redundant or irrelevant components which only boost an input’s

length but do not contribute to improved learning. As an example the well-defined

iris flower inputs are examined.

classificationDataSet=

CIP‘ExperimentalData‘GetIrisFlowerClassificationDataSet[];

An iris flower input consists of four components

CIP‘Graphics‘ShowDataSetInfo[{"InputComponents"},

classificationDataSet];

Number of input components = 4

which are the sepal length (component 1), the sepal width (component 2), the

petal length (component 3) and the petal width (component 4). These four quantities

are meaningful to the biologist and thus the natural basis for a classification effort.

It was shown above that a small perceptron with only two hidden neurons

numberOfHiddenNeurons=2;

leads to a satisfying classification result:

perceptronInfo=

CIP‘Perceptron‘FitPerceptron[classificationDataSet,

numberOfHiddenNeurons];

trainingAndTestSet={classificationDataSet,{}};

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification"},trainingAndTestSet,perceptronInfo]

Training Set:

99.3% correct classifications

The relevance of a specific input component may be determined by omission

of this component with a re-evaluation of the machine learning task. If this is per-

formed for all components (with a successive leave-one-out strategy) the least rele-

vant component becomes obvious which is the component that leads to a minimum

change for the worse (e.g. for a RMSE decrease) in comparison to the earlier ma-

chine learning result. After removal of this minimum impact component this process

may be repeated for the second component etc. until the one single most meaningful

component is reached. If this strategy is applied to the iris flower classification

perceptronInputRelevanceClass=

CIP‘Perceptron‘GetPerceptronInputRelevanceClass[trainingAndTestSet,

numberOfHiddenNeurons];

CIP‘Perceptron‘ShowPerceptronInputRelevanceClass[

perceptronInputRelevanceClass]

4.10 Relevance of input components and minimal models 351

Input component list = {1,2,3}

the result is a relevance ranking of the four input components where the first

component of the “Input component list” is the minimum impact component with

lowest relevance etc. and the one component that survived the successive removal

process (not shown in the “Input component list”) is the most relevant and meaning-

ful component (which is component 4 - the petal width - in this case), in a nutshell:

Relevance of component 4 > 3 > 2 > 1. A second finding is the insignificance of

component 1 (the sepal length) for the classification task (since the classification

success is unchanged after removal of this component) and the comparatively small

impact of all 3 minor impact components of the “Input component list” on the pre-

diction performance (see the diagram above): The maximum impact component 4

alone already leads to 96% correct classifications. The heuristic successive leave-

one-out strategy for the input components relevance determination may be reversed

to a successive component-inclusion strategy: In a first step all single input compo-

nents are scanned for the one that leads to the best classification result with maxi-

mum predictivity. Then this single best input component is fixed and the remaining

input components are scanned for the next most relevant component so that a pair

of two relevant input components is achieved. This procedure is continued to get a

relevant triple etc.

perceptronInputComponentRelevanceListForClassification=

CIP‘Perceptron‘GetPerceptronInputInclusionClass[trainingAndTestSet,

numberOfHiddenNeurons];

CIP‘Perceptron‘ShowPerceptronInputRelevanceClass[

perceptronInputComponentRelevanceListForClassification]

352 4 Machine Learning

Input component list = {4,3,2,1}

For the iris flower classification task the resulting relevance ranking given in the

“Input component list” is identical to the one obtained before by the leave-one-

out strategy (both strategies perfectly mirror each other). But note that in general

different heuristics of systematic input relevance determination do not necessarily

coincide and above all do not lead to optimum subsets of relevant input components

(i.e. those with the highest predictability) but may be regarded as a sensible (fast)

heuristic choice only. A true optimum input component subset search (with e.g.

an evolutionary search strategy) would be computationally far more demanding.

Finally the high predictivity of component 4 (the petal width) may be visualized.

First the petal width values for the three iris flower species (classes) are obtained for

the classification data set

classIndex=1;

class1SubSet=

CIP‘DataTransformation‘GetSpecificClassDataSubSet[

classificationDataSet,classIndex];

class1SubSetInputs=class1SubSet[[All,1]];

class1SubSetPetalWidths=class1SubSetInputs[[All,4]];

classIndex=2;

class2SubSet=

CIP‘DataTransformation‘GetSpecificClassDataSubSet[

classificationDataSet,classIndex];

class2SubSetInputs=class2SubSet[[All,1]];

class2SubSetPetalWidths=class2SubSetInputs[[All,4]];

classIndex=3;

class3SubSet =

CIP‘DataTransformation‘GetSpecificClassDataSubSet[

classificationDataSet,classIndex];

class3SubSetInputs=class3SubSet[[All,1]];

class3SubSetPetalWidths=class3SubSetInputs[[All,4]];

and visualized as colored points

4.10 Relevance of input components and minimal models 353

class1SubSetPetalWidthPoints=

Table[{class1SubSetPetalWidths[[i]],1.2},{i,

Length[class1SubSetPetalWidths]}];

class2SubSetPetalWidthPoints=

Table[{class2SubSetPetalWidths[[i]],1.2},{i,

Length[class2SubSetPetalWidths]}];

class3SubSetPetalWidthPoints=

Table[{class3SubSetPetalWidths[[i]],1.2},{i,

Length[class3SubSetPetalWidths]}];

class1SubSetPoints2DWithPlotStyle=

{class1SubSetPetalWidthPoints,

{PointSize[0.03],Opacity[0.3,Black]}};

class2SubSetPoints2DWithPlotStyle=

{class2SubSetPetalWidthPoints,

{PointSize[0.03],Opacity[0.3,Blue]}};

class3SubSetPoints2DWithPlotStyle=

{class3SubSetPetalWidthPoints,

{PointSize[0.03],Opacity[0.3,Red]}};

points2DWithPlotStyleList={class1SubSetPoints2DWithPlotStyle,

class2SubSetPoints2DWithPlotStyle,

class3SubSetPoints2DWithPlotStyle};

labels={"Petal width [mm]","Output",

"Class 1 (black), 2 (blue), 3 (red)"};

argumentRange={0.0,26.0};

functionValueRange={-0.1,1.3};

pointGraphics=

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,

labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

at an output y-value of 1.2 above. The points are displayed with a high level of

transparency so a more intense color means more iris flower data with this distinct

petal width value. Mixed colors indicate class overlaps that prevent simple and clear

separations. The perceptron fit with the training set with the removed input compo-

nents 1 to 3

354 4 Machine Learning

inputComponentsToBeRemoved={1,2,3};

reducedTrainingSet=

CIP‘DataTransformation‘RemoveInputComponentsOfDataSet[

classificationDataSet,inputComponentsToBeRemoved];

reducedTrainingAndTestSet={reducedTrainingSet,{}};

perceptronInfo=

CIP‘Perceptron‘FitPerceptron[reducedTrainingSet,

numberOfHiddenNeurons];

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification"},reducedTrainingAndTestSet,

perceptronInfo]

Training Set:

96.% correct classifications

yields a high prediction rate of 96% as already shown above. Since there is now

only one input component (the petal width) and three output components (one for

each class) the decision lines of each output component may be displayed in addition

where each decision line is colored according to its corresponding class (i.e. iris

flower species):

reducedTrainingSetList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[

reducedTrainingSet];

perceptronInfo=

CIP‘Perceptron‘FitPerceptron[reducedTrainingSetList[[1]],

numberOfHiddenNeurons];

pureClass1Function=

Function[x,

CIP‘Perceptron‘CalculatePerceptron2dValue[x,perceptronInfo]];

plotStyle={Thick,Black};

class1Graphics=

CIP‘Graphics‘Plot2dFunction[pureClass1Function,argumentRange,

functionValueRange,labels,

GraphicsOptionLinePlotStyle -> plotStyle];

perceptronInfo=

CIP‘Perceptron‘FitPerceptron[reducedTrainingSetList[[2]],

numberOfHiddenNeurons];

pureClass2Function=

Function[x,

CIP‘Perceptron‘CalculatePerceptron2dValue[x,perceptronInfo]];

plotStyle={Thick,Blue};

class2Graphics=

CIP‘Graphics‘Plot2dFunction[pureClass1Function,argumentRange,

functionValueRange,labels,

GraphicsOptionLinePlotStyle -> plotStyle];

perceptronInfo=

CIP‘Perceptron‘FitPerceptron[reducedTrainingSetList[[3]],

numberOfHiddenNeurons];

pureClass3Function=

Function[x,

CIP‘Perceptron‘CalculatePerceptron2dValue[x,perceptronInfo]];

plotStyle={Thick,Red};

class3Graphics =

CIP‘Graphics‘Plot2dFunction[pureClass3Function,argumentRange,

functionValueRange,labels,

GraphicsOptionLinePlotStyle -> plotStyle];

4.11 Pattern recognition 355

Show[pointGraphics,class1Graphics,class2Graphics,class3Graphics]

Note that for each petal width value the winner output is the decision line with

the highest output value. Thus it becomes obvious that a petal width of less than

about 6 mm is attributed to the class 1 (iris setosa, black), values between about 6

and 17 mm are assigned to the class 2 (iris versicolor, blue) and values above 17 mm

belong to the class 3 (iris virginica, red). Since the petal width allows for this simple

partitioning scheme its success is explained. The information of components 1 to 3

may be regarded as a refinement of this rough picture which leads to an improved

predictivity.

The sketched strategies for minimal model construction by input component rel-

evance analysis may in general provide valuable insights into dependencies of sci-

entific quantities which in turn may substantially contribute to a scientist’s under-

standing of a problem as well as motivate further investigations. If a possible input

component is already known to be more or less redundant (i.e. its information is al-

ready contained in other input components) it should of course be omitted from the

very beginning: The computational effort is increased with every additional input

component and should be kept as small as possible. Also the proneness to overfit-

ting increases with an increased length of the inputs and a minimal predictive model

is a virtue on its own (compare the appendix of this chapter for examples and a more

detailed discussion).

4.11 Pattern recognition

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

356 4 Machine Learning

<<CIP‘Utility‘

<<CIP‘Cluster‘

<<CIP‘DataTransformation‘

<<CIP‘MLR‘

The recognition of patterns belongs to the most prominent and most demanding

applications of machine learning, e.g. the classification of biological tissues or medi-

cal images. For simplicity the discussion in this section is confined to the recognition

of digital grayscale images with different face types. Digital images are composed

of pixels (picture elements) in a rectangular arrangement with a defined width and

height (in pixels): A 640×480 digital image consists of

640*480

307200

307200 pixels arranged in 480 rows with 640 pixels in each row. Each pixel

contains a specific color information. A grayscale pixel may contain 256 possible

shades of gray ranging from black (with value 0) to white (with value 255). Thus

a digital image can be represented as a matrix of numbers. Pattern recognition is

demonstrated in the following for the intuitive problem of face detection (i.e. classi-

fication) with grayscale images of cat, dog and human faces. An image classification

data set is obtained from the CIP ExperimentalData package (see Appendix A):

imageClassificationDataSet1=

CIP‘ExperimentalData‘GetFacesWhiteImageDataSet[];

The data set contains

imageInputs1=CIP‘Utility‘GetInputsOfDataSet[

imageClassificationDataSet1];

Length[imageInputs1]

18

18 I/O pairs: The faces of 6 cats (class 1), 6 dogs (class 2) and 6 humans (class

3)

GraphicsGrid[

Table[

Image[imageInputs1[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]

4.11 Pattern recognition 357

Note that an above display pixel is not equal to an image pixel since the images are automatically scaled for

better visibility.

with each class shown in one row. Each input is a 30×30 grayscale image

Dimensions[imageInputs1[[1]]]

{30,30}

which contains 30×30 = 900 pixels where each pixel contains a specific shade

of gray (out of 256 possible values). Thus each input may be coded as a vector

with 900 components where each component contains the grayscale value of its

corresponding pixel. If the image classification data set is transformed in this way

to a classification data set (with the rows of the rectangular pixel matrix structure

concatenated to form a mere vector)

classificationDataSet1=

CIP‘DataTransformation‘ConvertImageDataSet[

imageClassificationDataSet1];

inputs1=CIP‘Utility‘GetInputsOfDataSet[classificationDataSet1];

clustering and machine learning tasks may be performed. An initial clustering of

the inputs into 3 classes (the natural choice)

numberOfClusters=3;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs1,

numberOfClusters];

yields 3 asymmetric classes

CIP‘Cluster‘ShowClusterResult[

{"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

358 4 Machine Learning

Cluster 1 : 12 members (66.6667%) with distance = 0.

Cluster 2 : 5 members (27.7778%) with distance = 1787.3

Cluster 3 : 1 members (5.55556%) with distance = 2525.37

where the data set’s class assignments do not correspond to the detected clusters:

sortResult=CIP‘DataTransformation‘SortClassificationDataSet[

classificationDataSet1];

classIndexMinMaxList=sortResult[[2]]

{{1,6},{7,12},{13,18}}

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo];

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

4.11 Pattern recognition 359

Cluster 1 contains the majority of cats and dogs with two humans. Cluster 2 is

human dominated with just one dog and cluster 3 consists of only one cat. Cats and

dogs are detected to be more similar since they are predominantly joined in one

cluster. It becomes clear that a mere clustering of image inputs can not satisfactorily

group the three types of faces. Thus supervised learning is advised. A linear MLR

approach

mlrInfo1=CIP‘MLR‘FitMlr[classificationDataSet1];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},classificationDataSet1,mlrInfo1]

100.% correct classifications

already yields a perfect 100% correct face detection (note that a MLR approach

is not prone to overfitting thus a partitioning in training and test set is not neces-

sary. But the success of a linear method is an exception chosen for simplicity: In

general non-linear machine learning is necessary with all the difficulties discussed

in previous sections). To dig a little deeper into the subtleties of pattern recognition

consider the following image classification data set:

imageClassificationDataSet2=

CIP‘ExperimentalData‘GetFacesGrayImageDataSet[];

imageInputs2=CIP‘Utility‘GetInputsOfDataSet[

imageClassificationDataSet2];

GraphicsGrid[

Table[

Image[imageInputs2[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]

It is identical to the one before with the difference that now the background of

each image is not white but gray. If this data set is classified with the MLR predictor

achieved before

360 4 Machine Learning

classificationDataSet2=CIP‘DataTransformation‘ConvertImageDataSet[

imageClassificationDataSet2];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},classificationDataSet2,mlrInfo1]

33.3% correct classifications

a very poor predictivity of only 33.3% results. This seems puzzling since the

faces are exactly the same but it is quite simple to understand: Humans automatically

separate the background from a body of interest, a difficult operation they are usually

not aware of. Since the machine learning process is expected to work human-like

(the machine is anthropomorphized) it is expected to recognize the faces it learned

also in another context. But the machine did not learn faces: It learned "faces on

a white background" since this was the information which was presented in the

training. And therefore a "face on a gray background" is in general unknown to the

predictor which inevitably leads to a poor prediction performance. If the two image

classification data sets are joined

joinedImageClassificationDataSets12=

Join[imageClassificationDataSet1,imageClassificationDataSet2];

joinedImageInputs12=CIP‘Utility‘GetInputsOfDataSet[

joinedImageClassificationDataSets12];

GraphicsGrid[

Table[

Image[joinedImageInputs12[[(i-1)*6+j]],"Byte"],

{i,6},{j,6}

],

ImageSize->300

]

4.11 Pattern recognition 361

and used to train the (MLR) machine

joinedClassificationDataSets12=

CIP‘DataTransformation‘ConvertImageDataSet[

joinedImageClassificationDataSets12];

mlrInfo12=CIP‘MLR‘FitMlr[joinedClassificationDataSets12];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},joinedClassificationDataSets12,mlrInfo12]

100.% correct classifications

a 100% correct face detection is achieved for the joined data. A third image

classification data set

imageClassificationDataSet3=

CIP‘ExperimentalData‘GetFacesBlackImageDataSet[];

imageInputs3=CIP‘Utility‘GetInputsOfDataSet[

imageClassificationDataSet3];

GraphicsGrid[

Table[

Image[imageInputs3[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]

with the known faces but a black background is now directly a 100% correctly

recognized

classificationDataSet3=CIP‘DataTransformation‘ConvertImageDataSet[

imageClassificationDataSet3];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},classificationDataSet3,mlrInfo12]

100.% correct classifications

by the MLR predictor based on the white and gray background data sets: The

different backgrounds in the training data taught the machine that the background

362 4 Machine Learning

is not that important for face detection. Thus the machine becomes more tolerant to

different backgrounds and more predictive on that score. A prediction on the basis

of the first MLR predictor based only on the white background data set

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},classificationDataSet3,mlrInfo1]

33.3% correct classifications

yields again the expected poor result as before for the gray background data set.

If all three image classification data sets are joined

joinedImageClassificationDataSets123=Join[

imageClassificationDataSet1,imageClassificationDataSet2,

imageClassificationDataSet3];

joinedImageInputs123=CIP‘Utility‘GetInputsOfDataSet[

joinedImageClassificationDataSets123];

GraphicsGrid[

Table[

Image[joinedImageInputs123[[(i-1)*6+j]],"Byte"],

{i,9},{j,6}

],

ImageSize->300

]

4.11 Pattern recognition 363

and trained

joinedClassificationDataSets123=

CIP‘DataTransformation‘ConvertImageDataSet[

joinedImageClassificationDataSets123];

mlrInfo123=CIP‘MLR‘FitMlr[joinedClassificationDataSets123];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},joinedClassificationDataSets123,

mlrInfo123]

100.% correct classifications

a background independent face type MLR predictor with a 100% correct train-

ing detection rate is achieved. Its predictivity may be further explored with blurred

versions of the images used for the training

blurredJoinedImageClassificationDataSets123=

CIP‘DataTransformation‘BlurImageDataSet[

joinedImageClassificationDataSets123];

blurredJoinedImageInputs123=CIP‘Utility‘GetInputsOfDataSet[

blurredJoinedImageClassificationDataSets123];

364 4 Machine Learning

GraphicsGrid[

Table[

Image[blurredJoinedImageInputs123[[(i-1)*6+j]],"Byte"],

{i,9},{j,6}

],

ImageSize->300

]

up to a degree where humans would still be able to recognize the face type with-

out failure. A test with the blurred images

blurredJoinedClassificationDataSets123=

CIP‘DataTransformation‘ConvertImageDataSet[

blurredJoinedImageClassificationDataSets123];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification","CorrectClassificationPerClass"},

blurredJoinedClassificationDataSets123,mlrInfo123]

96.3% correct classifications

4.11 Pattern recognition 365

yields a notable correct detection result over 95% where the two misclassifica-

tions only affect the more similar cats and dogs (with their similarity already shown

by the initial clustering result above). Thus a machine trained with specific faces

is also able to recognize more abstract faces. It may be interesting to reverse the

procedure: The machine is trained with the abstract blurred faces

mlrInfoBlurred123=CIP‘MLR‘FitMlr[

blurredJoinedClassificationDataSets123];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},blurredJoinedClassificationDataSets123,

mlrInfoBlurred123]

100.% correct classifications

and then tested with the specific faces:

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},joinedClassificationDataSets123,

mlrInfoBlurred123]

100.% correct classifications

In contrast to the result before now a 100% correct detection rate for both data

sets is achieved: The blurred faces taught the machine to learn more generalizable

face intrinsic characteristics which then led to an improved prediction result for the

specific ones. Pattern recognition always needs an optimum level of abstraction to

be most predictive. This finding also indicates that the image size could be reduced

to still allow for a successful face recognition. If the image size is reduced from

30×30 images to 20×20 images with a scaling factor of 2/3 for the joined white

and gray background images as a training set

scaleFactor=2/3;

366 4 Machine Learning

reducedJoinedImageClassificationDataSets12=

CIP‘DataTransformation‘ScaleSizeOfImageDataSet[

joinedImageClassificationDataSets12,scaleFactor];

reducedJoinedImageInputs12=CIP‘Utility‘GetInputsOfDataSet[

reducedJoinedImageClassificationDataSets12];

GraphicsGrid[

Table[

Image[reducedJoinedImageInputs12[[(i-1)*6+j]],"Byte"],

{i,6},{j,6}

],

ImageSize->300

]

Note that the display size of the images did not change. The reduced image size appears as a decreased and

more coarse-grained resolution.

Dimensions[reducedJoinedImageInputs12[[1]]]

{20,20}

and the black background images as a test set

reducedImageClassificationDataSet3=

CIP‘DataTransformation‘ScaleSizeOfImageDataSet[

imageClassificationDataSet3,scaleFactor];

reducedImageClassificationInputs3=CIP‘Utility‘GetInputsOfDataSet[

reducedImageClassificationDataSet3];

GraphicsGrid[

4.11 Pattern recognition 367

Table[

Image[reducedImageClassificationInputs3[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]

the face detection

reducedJoinedClassificationDataSets12=

CIP‘DataTransformation‘ConvertImageDataSet[

reducedJoinedImageClassificationDataSets12];

reducedClassificationDataSet3=

CIP‘DataTransformation‘ConvertImageDataSet[

reducedImageClassificationDataSet3];

mlrInfoReduced12=CIP‘MLR‘FitMlr[

reducedJoinedClassificationDataSets12];

trainingAndTestSet={reducedJoinedClassificationDataSets12,

reducedClassificationDataSet3};

CIP‘MLR‘ShowMlrClassificationResult[{"CorrectClassification"},

trainingAndTestSet,mlrInfoReduced12]

Training Set:

100.% correct classifications

Test Set:

100.% correct classifications

keeps being perfect. Even a further reduction to 10×10 images for training

scaleFactor=1/3;

reducedJoinedImageClassificationDataSets12=

CIP‘DataTransformation‘ScaleSizeOfImageDataSet[

joinedImageClassificationDataSets12,scaleFactor];

reducedJoinedImageInputs12=CIP‘Utility‘GetInputsOfDataSet[

reducedJoinedImageClassificationDataSets12];

GraphicsGrid[

Table[

Image[reducedJoinedImageInputs12[[(i-1)*6+j]],"Byte"],

{i,6},{j,6}

],

ImageSize->300

]

368 4 Machine Learning

Dimensions[reducedJoinedImageInputs12[[1]]]

{10,10}

and test

reducedImageClassificationDataSet3=

CIP‘DataTransformation‘ScaleSizeOfImageDataSet[

imageClassificationDataSet3,scaleFactor];

reducedImageClassificationInputs3=CIP‘Utility‘GetInputsOfDataSet[

reducedImageClassificationDataSet3];

GraphicsGrid[

Table[

Image[reducedImageClassificationInputs3[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]

4.11 Pattern recognition 369

is still successful with the (MLR) machine

reducedJoinedClassificationDataSets12=

CIP‘DataTransformation‘ConvertImageDataSet[

reducedJoinedImageClassificationDataSets12];

reducedClassificationDataSet3=

CIP‘DataTransformation‘ConvertImageDataSet[

reducedImageClassificationDataSet3];

mlrInfoReduced12=CIP‘MLR‘FitMlr[

reducedJoinedClassificationDataSets12];

trainingAndTestSet={reducedJoinedClassificationDataSets12,

reducedClassificationDataSet3};

CIP‘MLR‘ShowMlrClassificationResult[{"CorrectClassification"},

trainingAndTestSet,mlrInfoReduced12]

Training Set:

100.% correct classifications

Test Set:

100.% correct classifications

(Humans start having some recognition problems at this state of image reso-

lution: On average they make three classification mistakes as a result of a small

personal survey). Note that a size reduction from 30×30 images to 10×10 images

means a dramatic inputs’ size decrease from inputs with 900 components to inputs

with only 100 components. But also the 100 pixels of the 10×10 images may be

further reduced with a relevance determination of each pixel (i.e. each input com-

ponent, compare the previous section above):

mlrInputRelevanceClass=

CIP‘MLR‘GetMlrInputRelevanceClass[

trainingAndTestSet];

CIP‘MLR‘ShowMlrInputRelevanceClass[

mlrInputRelevanceClass]

370 4 Machine Learning

Removed input component list = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,

51,52,53,55,56,57,58,59,60,61,62,66,67,69,72,70,65,68,71,74,79,81,85,86,89,84,91,76,98,94,88,

78,90,92,54,75,93,83,82,99,80,77,95,63,100,87,97,64,96}

It becomes obvious that the majority of pixels can be discarded without any loss

of predictive success: Only after elimination of more than 70% of the pixels the

predictivity decreases, i.e. about the right 30 pixels are enough. There is of course

a lower border for size reductions, e.g. if the size is reduced to 6×6 images for

training

scaleFactor=1/5;

reducedJoinedImageClassificationDataSets12=

CIP‘DataTransformation‘ScaleSizeOfImageDataSet[

joinedImageClassificationDataSets12,scaleFactor];

reducedJoinedImageInputs12=CIP‘Utility‘GetInputsOfDataSet[

reducedJoinedImageClassificationDataSets12];

GraphicsGrid[

Table[

Image[reducedJoinedImageInputs12[[(i-1)*6+j]],"Byte"],

{i,6},{j,6}

],

ImageSize->300

]

Dimensions[reducedJoinedImageInputs12[[1]]]

4.11 Pattern recognition 371

{6,6}

and test

reducedImageClassificationDataSet3=

CIP‘DataTransformation‘ScaleSizeOfImageDataSet[

imageClassificationDataSet3,scaleFactor];

reducedImageClassificationInputs3=CIP‘Utility‘GetInputsOfDataSet[

reducedImageClassificationDataSet3];

GraphicsGrid[

Table[

Image[reducedImageClassificationInputs3[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]

the machine starts to fail:

reducedJoinedClassificationDataSets12=

CIP‘DataTransformation‘ConvertImageDataSet[

reducedJoinedImageClassificationDataSets12];

reducedClassificationDataSet3=

CIP‘DataTransformation‘ConvertImageDataSet[

reducedImageClassificationDataSet3];

mlrInfoReduced12=CIP‘MLR‘FitMlr[

reducedJoinedClassificationDataSets12];

trainingAndTestSet={reducedJoinedClassificationDataSets12,

reducedClassificationDataSet3};

CIP‘MLR‘ShowMlrClassificationResult[

{"CorrectClassification","CorrectClassificationPerClass"},

trainingAndTestSet,mlrInfoReduced12]

Training Set:

100.% correct classifications

372 4 Machine Learning

Test Set:

66.7% correct classifications

In this case it is the detection of cats which collapses first. Note that the image

size reduction led to an unfavorable 36 pixels (the size reduction eliminated neces-

sary information for face detection) whereas the right 30 pixels before were enough

for a 100% prediction success. In general successful machine learning based pat-

tern recognition needs adequate image preprocessing steps like a segmentation of

relevant objects, rotations and translations, contrast enhancements, filtering tech-

niques, noise suppression, image size reductions, color standardizations, wavelet

transformations, spectral analysis or numerous others. Adequate image preprocess-

ing towards a minimum number of input components is also mandatory to reduce

the computational effort for the machine learning tasks since inputs with hundreds,

thousands or even more input components for pure images complicate internal cal-

culations and the whole optimization process considerably. Thus adequate prepro-

cessing is crucial for successful machine learning. This does not only hold for pat-

4.12 Technical optimization problems 373

tern recognition: Well-prepared data are a virtue to the data analyst whereas in-

put garbage only leads to output garbage no matter how sophisticated the machine

learning method tries to be (the already mentioned GIGO - garbage-in/garbage-out

- effect).

4.12 Technical optimization problems

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘Perceptron‘

All machine learning issues discussed so far did only address structural (hyper-

parameter) problems of machine learning like the choice of a SVM kernel function

or the number of hidden neurons of a perceptron approach. All technical parame-

ters that guide the different machine learning methods were set to adequate default

values and were therefore hidden by parameters which may optionally be changed

but must not be specified in advance. In general these technical parameters must

be properly adjusted for a specific machine learning task performed with a specific

method. This means all sketched structural problems may be additionally spoiled

by technical problems. It is this evil mixture of problems that often leads to a state

of frustration when dealing with practically challenging machine learning tasks. To

demonstrate the influence of technical parameters a fundamental parameter for ev-

ery iterative procedure is chosen as an example: The maximum number of allowed

iterations. This parameter is (or at least should be) essential since iterative proce-

dures may run eternally under certain circumstances: An optimization procedure

may get trapped in an oscillation around an optimum or run towards infinity forever

(only stopped by an inevitable overflow error). Thus in each iterative step the cur-

rent step number is compared to the maximum allowed number of iterations and the

whole iterative process is stopped if this upper bound is exceeded. It is most often

not desired for an iterative procedure to arrive at this upper bound: An optimiza-

tion procedure should ideally stop before according to an a priori precision criterion

(which is another technical parameter that guides the optimization process). For an

illustration the chapter’s introductory 3D data set (generated with a standard devia-

tion of 0.1 on the basis of a true function) is used again

pureOriginalFunction=

Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)ˆ2]*Exp[-y]*Sin[7.0*y])];

xRange={0.0,1.0};

yRange={0.0,1.0};

labels={"x", "y", "z"};

numberOfDataPerDimension=10;

standardDeviationRange={0.1,0.1};

dataSet3D=

CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

374 4 Machine Learning

pureOriginalFunction,xRange,yRange,

numberOfDataPerDimension,standardDeviationRange];

trainingSet=dataSet3D;

testSet={};

trainingAndTestSet={trainingSet,testSet};

CIP‘Graphics‘Plot3dDataSetWithFunction[

dataSet3D,pureOriginalFunction,labels]

where a successful machine learning approach is expected to achieve a corre-

sponding RMSE of about 0.1 that mirrors the data deviations. Above a perceptron

based approach was analyzed to obtain an adequate number of hidden neurons to

properly approximate the original surface with default settings for the minimization

algorithm and all its technical optimization parameters where the default minimiza-

tion is based on Mathematica’s FindMinimum command with the (Polak-Ribiere

variant of the) Conjugate-Gradient method (see [FitPerceptron])

OptionValue[CIP‘Perceptron‘PerceptronOptionsTraining,

PerceptronOptionOptimizationMethod]

FindMinimum

and the default value for the maximum number of iterations is 10000:

OptionValue[CIP‘Perceptron‘PerceptronOptionsOptimization,

PerceptronOptionMaximumIterations]

4.12 Technical optimization problems 375

10000

In the following the hidden neuron scan is repeated

numberOfHiddenNeuronsList=

Table[numberOfHiddenNeurons,{numberOfHiddenNeurons,1,15}]

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

but with a very small number of only 500 maximum iterations and an alterna-

tive Backpropagation plus Momentum (corrected steepest gradient descent) mini-

mization algorithm (where parallelized calculation is used to accelerate the scan of

mutually independent perceptrons, see Appendix A):

CIP‘Utility‘SetNumberOfParallelKernels[0];

maximumNumberOfIterations=500;

optimizationMethod="BackpropagationPlusMomentum";

perceptronInfoList=

CIP‘Perceptron‘FitPerceptronSeries[dataSet3D,

numberOfHiddenNeuronsList,

PerceptronOptionMaximumIterations -> maximumNumberOfIterations,

PerceptronOptionOptimizationMethod -> optimizationMethod,

UtilityOptionCalculationMode -> "ParallelCalculation"];

perceptronSeriesRmse=

CIP‘Perceptron‘GetPerceptronSeriesRmse[trainingAndTestSet,

perceptronInfoList];

CIP‘Perceptron‘ShowPerceptronSeriesRmse[perceptronSeriesRmse]

Best training set regression with perceptronInfo index = {4}

The RMSE of the trained perceptrons is not only almost an order of magnitude

above the desired value of 0.1 but also an increased number of hidden neurons leads

to poorer learning results (where the converse behaviour is expected, i.e. a drop of

376 4 Machine Learning

the RMSE with an increasing number of hidden neurons since the more bumps the

more adequate the model function should be constructed). Thus it can be deduced

that a maximum number of only 500 iterations is simply inadequate for the machine

learning task and stops the minimzation process far too early somewhere over the

rainbow. A tenfold increase to 5000 maximum iterations

maximumNumberOfIterations=5000;

perceptronInfoList=

CIP‘Perceptron‘FitPerceptronSeries[dataSet3D,

numberOfHiddenNeuronsList,

PerceptronOptionMaximumIterations -> maximumNumberOfIterations,

PerceptronOptionOptimizationMethod -> optimizationMethod,

UtilityOptionCalculationMode -> "ParallelCalculation"];

perceptronSeriesRmse=

CIP‘Perceptron‘GetPerceptronSeriesRmse[trainingAndTestSet,

perceptronInfoList];

CIP‘Perceptron‘ShowPerceptronSeriesRmse[perceptronSeriesRmse]

Best training set regression with perceptronInfo index = {4}

improves the learning result but is still not convincing for all but the smallest

perceptrons. Another tenfold increase to 50000 maximum iterations

maximumNumberOfIterations=50000;

perceptronInfoList=

CIP‘Perceptron‘FitPerceptronSeries[dataSet3D,

numberOfHiddenNeuronsList,

PerceptronOptionMaximumIterations -> maximumNumberOfIterations,

PerceptronOptionOptimizationMethod -> optimizationMethod,

UtilityOptionCalculationMode -> "ParallelCalculation"];

perceptronSeriesRmse=

CIP‘Perceptron‘GetPerceptronSeriesRmse[trainingAndTestSet,

perceptronInfoList];

CIP‘Perceptron‘ShowPerceptronSeriesRmse[perceptronSeriesRmse]

4.12 Technical optimization problems 377

Best training set regression with perceptronInfo index = {11}

now leads to a more appealing scan which only seems to to have insufficient

convergence for the biggest perceptrons with more than 11 hidden neurons. Despite

the RMSE decrease to about 0.2 the perceptron approach may be interpreted to fail

to achieve the desired value of about 0.1 thus a perceptron may not be judged as an

adequate approach for the machine learning task in question. But if the same number

of 50000 maximum iterations steps is used with the default Conjugate-Gradient

minimization method (which is generally known to be superior to an even corrected

simple steepest gradient descent)

perceptronInfoList=

CIP‘Perceptron‘FitPerceptronSeries[dataSet3D,

numberOfHiddenNeuronsList,

PerceptronOptionMaximumIterations -> maximumNumberOfIterations,

UtilityOptionCalculationMode -> "ParallelCalculation"];

perceptronSeriesRmse=

CIP‘Perceptron‘GetPerceptronSeriesRmse[trainingAndTestSet,

perceptronInfoList];

CIP‘Perceptron‘ShowPerceptronSeriesRmse[perceptronSeriesRmse]

378 4 Machine Learning

Best training set regression with perceptronInfo index = {13}

trainingPoints2D=perceptronSeriesRmse[[1]];

trainingPoints2D[[13]]

{13.,0.104956}

an overall convincing result is obtained with an RMSE of 0.1 for 13 hidden neu-

rons. The Backpropagation plus Momentum algorithm simply failed to arrive at an

adequate minimum with the set of technical optimization parameters chosen - where

the latter statement is crucial: The algorithm is not only governed by the maximum

number of iterations but also by a minimum and maximum learning rate (which de-

termines the step size decrease during learning) as well as a momentum parameter

(for correction of the steepest descent direction). These additional optional technical

control parameters were set to their default values where alternative more adequate

values could have improved the minimization result.

In summary technical problems may be properly detected and successfully fixed

by adequate algorithm and parameter changes - but some evil potential remains:

Among the worst consequences of technical problems are wrong decisions like an

unfounded statement about the inapplicability of a specific machine learning ap-

proach or even the unnecessary termination of a research effort due to its apparent

failure.

4.13 Cookbook recipes for machine learning

As in the earlier chapters the discussion of supervised machine learning is summa-

rized in a number of cookbook recipes:

• The data: The quality of the data is essential for the success of a machine learn-

ing approach (also compare chapter 5). Since they may usually not be visually

4.13 Cookbook recipes for machine learning 379

inspected due to their multiple dimensions specific care has to be taken. Outliers

may play an evil role since they try to mask themselves even worse in compar-

ison to curve fitting. Adequate data preprocessing may be crucial for a machine

learning approach to be successful at all - the question of proper information

encoding therefore is at heart of scientific disciplines like cheminformatics and

bioinformatics. In practice the data generators (i.e. the lab scientists) and the data

analyzers are often not identical. Therefore the latter should cooperate as closely

as possible with the former to get a feeling about data quality (in fact it is this

separation of scientists due to the inevitable division of labor and professions

which is responsible for a lot of misinterpretation up to complete data analysis

failure).

• The linear and polynomial approach: Nature is essentially non-linear. But a

linear MLR machine learning approach is usually extremely fast (performed

within seconds even for large data sets), not affected by technical or structural

problems (if adequate software is used) and not prone to overfitting. Although a

linear method will most often fail to get a successful result it may at least provide

a feeling for the degree of non-linearity of the machine learning task under con-

sideration. In practice many tasks may only be slightly non-linear and thus may

be successfully tackled by the similarly fast polynomial MPR extension. Alter-

natively a more powerful non-linear method with structural hyperparameters that

allow for near-linear regression or decision surfaces (e.g. realized with a big-

ger width-parameter for a wavelet kernel function or a small number of hidden

neurons) also shows a faster performance. If a fast approach is already successful

you are done! It is often astonishing that a powerful (but slow) non-linear method

with all its subtleties and problems is applied where an extremely fast linear or

polynomial approach would be equally successful.

• Preparing training and test sets: Unless there is a data set with known output

errors for a regression task to assess the quality of a machine learning result the

data must be partitioned into a training and test set. The concrete partitioning is a

crucial step and an inadequate partitioning may spoil all further machine learning

efforts. As outlined there is no ideal way available for a concrete partitioning and

brute force strategies are not feasible. Thus this challenge has to be tackled by

heuristic considerations in combination with related experience. As general rules

of thumb a CR based training set selection is often superior to a purely random

one and a training and test set of at least equal size are desirable. But these are

only crude guidelines since every specific task requires its specific treatment.

• The choice of method: There are numerous machine learning methods and there

is nothing like the single best choice for all purposes. On the other hand there are

many ways to skin a cat: Usually a method is chosen on the basis of personal

preferences or individual experiences. And if this method can be successfully

applied there is no need to investigate alternatives. Only failure may motivate the

evaluation of further methods.

• Setting of structural and technical parameters: Almost all machine learning

procedures start with some default settings of its parameters which is known to

be successful in similar tasks. At first an adjustment of the technical parame-

380 4 Machine Learning

ters is essential and afterwards the structural issues can be tackled with a proper

technical setup. Unfortunately this sequential approach does not always work

since there may be evil entanglements between technical and structural prob-

lems. Again there is no ideal way to solve these issues and in the end simple trial

and error may be the road to success.

• A proper estimation of computational effort: Machine learning tasks may need

considerable computational resources (multicore workstations up to grid com-

puting) and long periods of time (ranging from hours over days and weeks up

to months). Thus an adequate initial estimate of these requirements is indispens-

able. In practice estimates may be deduced from experience with similar tasks

or preliminary investigations. In general machine learning efforts should not be

initiated if there is no proper prospect for them to succeed (also compare chapter

5).

• The interpretation of results: Machine learning procedures may lead to results

ranging from pure bullshit up to valuable and magically seeming insights. Due to

their numerous parameters an awful lot can be tuned and problems can be sub-

tly hidden. Thus there is a wide field for educated cheating already discussed in

chapter 2. As a rule of thumb published machine learning results should always

be regarded with care - again in general commercial applications are more trust-

worthy than academic claims. It is a scientifically venerable attitude to disclose

the encountered and assumed problems for a specific machine learning task. All

validation efforts should be outlined with care and thoroughness. Unfortunately

a lot of publications lack these fundamentals which led machine learning to be-

come somewhat dubious for many practitioners.

If properly applied supervised machine learning can be an extremely valuable

tool to tackle complex and difficult scientific problems that otherwise could not

be mastered. The sketched problems are remarkable but so are the possible bene-

fits. Despite its wide range of applicability due to its universal character supervised

machine learning has of course its limitations that are usually determined by the

provided data: Machine learning is not able to extract something out of nothing - if

it is not in the data it can not be modelled. The foundation of its magic remains the

happenstance that a complex and non-trivial relationship (i.e. a non-linear model/de-

cision function) may be created without further instructions or superior knowledge.

The final next chapter discusses some of its consequences for the generation of new

knowledge and the views of computational intelligence.

4.14 Appendix - Collecting the pieces

Clear["Global‘*"];

<<CIP‘Utility‘

<<CIP‘ExperimentalData‘

<<CIP‘DataTransformation‘

<<CIP‘Graphics‘

4.14 Appendix - Collecting the pieces 381

<<CIP‘Cluster‘

<<CIP‘MLR‘

<<CIP‘MPR‘

<<CIP‘Perceptron‘

<<CIP‘SVM‘

In the following two complete machine learning approaches are outlined that

comprise a number of topics already discussed in this and the previous chapter. This

section contains no new material and is simply redundant from a scientific point of

view. But redundancy is a virtue when trying to dig into a new discipline.

The first application chosen for demonstration from the field of medical deci-

sion support is easy to comprehend, an important area of research and it attracts a

considerable attention (not only) from the machine learning community: The Wis-

consin Diagnostic Breast Cancer (WDBC) data correlate features of cell nuclei ex-

tracted from breast tumor tissue (as input) with the tumor type after diagnosis (as

output), i.e. they map the cell nuclei features onto a diagnosed benign (class 1) or

malignant (class 2) tumor type (see Appendix A for details and [WDBC data] in

the references). Thus the WDBC data may be used to construct a class predictor

that supports the crucial benign/malignant decision in tumor diagnosis. The WDBC

classification data set is available from the CIP ExperimentalData package:

classificationDataSet=

CIP‘ExperimentalData‘GetWDBCClassificationDataSet[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents","ClassCount"},classificationDataSet]

Number of IO pairs = 569

Number of input components = 30

Number of output components = 2

Class 1 with 357 members

Class 2 with 212 members

It consists of 569 I/O pairs (i.e. the diagnoses of 569 different patients with breast

tumors) where each input consists of 30 components and each output of 2 compo-

nents. Each input component describes a single quantity of a feature of a tumor

tissue’s cell nuclei and the two output components denote classes 1 (benign tumor,

coded {1.0, 0.0}) and 2 (malignant tumor, coded {0.0, 1.0}). The number of be-

nign tumor samples (357) exceeds the number of malignant samples (212) thus the

classification data set is asymmetric with the benign class samples being overrepre-

sented:

N[357/212]

1.68396

The first sensible step to construct a benign/malignant class predictor should be

an unsupervised learning trial with a purely clustering-based class predictor. This

382 4 Machine Learning

predictor exploits only the spatial distribution of inputs in the input space to classify

a single input (thus the predictor is unsupervised and not at all prone to overfit

data): If a clustering-based class predictor exhibits a 100% predictive success rate

this means that the inputs of benign and malignant tumors form clearly separated

point clouds in the 30 dimensional input space. If the predictive success rate is less

than a 100% the point clouds of benign and malignant tumors do overlap, i.e. they

penetrate each other in some way. A clustering-based class predictor is constructed

with the FitCluster method of the CIP Cluster package:

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet];

CIP‘Cluster‘ShowClusterSingleClassification[{

"CorrectClassification","CorrectClassificationPerClass",

"WrongClassificationDistribution"},classificationDataSet,

clusterInfo]

85.4% correct classifications

4.14 Appendix - Collecting the pieces 383

The overall predictive success rate of 85% shows that the benign and malignant

point clouds in the input space are structured but they do not form clearly separated

clusters. With a success rate of 99% the predictivity of class 1 benign tumors is

nearly perfect but class 2 malignant predictions with only 61% success are rather

poor (in medial practice this would mean that on average 39 out of 100 woman

with malignant breast tumors would be diagnosed to have a benign tumor: A catas-

trophic result that would lead to a completely inadequate medical treatment. But if

a tumor is predicted to be malignant this would be a comparatively reliable result

since wrong class 2 predictions are rare with only 1% among all wrong predictions).

In conclusion unsupervised learning does not seem to be able to successfully tackle

the benign/malignant decision problem. Before turning to supervised machine learn-

ing methods (which will take the benign/malignant output diagnoses into account

to control the learning process) a purely technical issue may be of interest. The

FitCluster method above was called without any further technical parameters so it

used its internal defaults (i.e. the default k-medoids clustering algorithm). If the

clustering algorithm is changed to ART-2a an unexpected error occurs:

clusterMethod="ART2a";

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet,

ClusterOptionMethod -> clusterMethod];

Infinite expression 1/0 encountered.

If a computational method fails there are two possibilities: The method’s code

contains a bug or the method is not able to arrive at the desired result in principal.

To analyze the ART-2a error it is necessary to have a look at the pure clustering of

the inputs of the WDBC classification data set:

inputs=CIP‘Utility‘GetInputsOfDataSet[classificationDataSet];

Since ART-2a is fundamentally controlled by a vigilance parameter we set this

parameter to a very small value to urge the method to construct only a few large

clusters:

clusterMethod="ART2a";

vigilanceParameter=0.01;

clusterInfo = CIP‘Cluster‘GetClusters[inputs,

ClusterOptionMethod -> clusterMethod,

ClusterOptionVigilanceParameter -> vigilanceParameter];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters"},clusterInfo]

Number of clusters = 9

With a very small vigilance parameter of 0.01 ART-2a detects 9 clusters. If the

dependence of the detected number of clusters on the vigilance parameter is ex-

plored (first over the full range from 0 to 1

384 4 Machine Learning

minimumVigilanceParameter=0.01;

maximumVigilanceParameter=0.99;

numberOfScanPoints=30;

art2aScanInfo = CIP‘Cluster‘GetVigilanceParameterScan[inputs,

minimumVigilanceParameter,maximumVigilanceParameter,

numberOfScanPoints];

CIP‘Cluster‘ShowVigilanceParameterScan[art2aScanInfo]

and then confined to the smaller range from 0 to 0.5)

minimumVigilanceParameter=0.01;

maximumVigilanceParameter=0.5;

numberOfScanPoints=30;

art2aScanInfo = CIP‘Cluster‘GetVigilanceParameterScan[inputs,

minimumVigilanceParameter,maximumVigilanceParameter,

numberOfScanPoints];

CIP‘Cluster‘ShowVigilanceParameterScan[art2aScanInfo]

4.14 Appendix - Collecting the pieces 385

it becomes obvious that the 9-cluster result is the method’s answer over a wide

range of low vigilance. If we force the ART-2a algorithm to reduce the vigilance

parameter towards zero to arrive at exactly 2 clusters (decreasing the vigilance pa-

rameter means fewer and larger clusters)

numberOfClusters=2;

clusterInfo = CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters,ClusterOptionMethod -> clusterMethod];

Infinite expression 1/0 encountered.

the error occurs and that is exactly what happened during the predictor construc-

tion: Also in the limit of a vanishingly small vigilance parameter ART-2a is not able

to detect the desired 2 classes - and in numerical computing with a limited number

of digits a vanishing small value will inevitably be equated with zero and lead to

problems. Thus ART-2a is simply inadequate to construct a clustering-based class

predictor for the particular classification data set in question. This finding empha-

sizes the need for a growing tool box of comparable computational methods where

the one will fail in a particular situation while another may possibly succeed.

When it comes to supervised machine learning it is always advised to start with

a linear method. A Multiple Linear Regression (MLR) method performs very fast

and is not prone to overfitting - but of course limited in principle due to its linear

nature. If MLR is used to construct a benign/malignant class predictor on the basis

of the complete classification data set

mlrInfo=CIP‘MLR‘FitMlr[classificationDataSet];

CIP‘MLR‘ShowMlrSingleClassification[{"CorrectClassification",

"CorrectClassificationPerClass",

"WrongClassificationDistribution"},classificationDataSet,mlrInfo]

96.5% correct classifications

386 4 Machine Learning

a remarkable overall predictive success rate of over 96% is achieved where the

predictivity of benign class 1 tumors with a nearly perfect 99% success rate is again

clearly superior to the malignant class 2 predictions with only 91%. But compared to

the unsupervised learning approach before the supervised learning improves the ma-

lignant class 2 predictivity significantly from a 61% to a 91% success rate! (Again

a malignant prediction is comparatively reliable due to only 10% wrong class 2

predictions among all wrong predictions - and this finding remains valid in the fol-

lowing but is skipped as a subtlety to ease the discussion.) The relative success of

the linear approach suggests that the classification problem in question can be char-

acterized as near-linear, i.e. it probably does not demand highly non-linear curved

decision surfaces. This has to be taken into account when the non-linear methods

will be applied. But before we can get even more from the MLR approach. In gen-

eral it is desirable to construct a minimal predictive model, i.e. a model with the

smallest subset of input components/features that is able to successfully predict the

tumor type. Thus a relevance analysis of the input components is indicated. Since

this analysis is ideally suited for parallelized computation (the relevance of an input

component may be evaluated independently from those of other input components)

the CIP parallel calculation option should be initialised (see Appendix A for details):

CIP‘Utility‘SetNumberOfParallelKernels[0];

If the relevance analysis is restricted to the six most significant input components

only

trainingAndTestSet={classificationDataSet,{}};

numberOfInclusionsPerStepList={1,1,1,1,1,1};

mlrInputComponentRelevanceListForClassification=

CIP‘MLR‘GetMlrInputInclusionClass[trainingAndTestSet,

UtilityOptionInclusionsPerStep -> numberOfInclusionsPerStepList,

UtilityOptionCalculationMode -> "ParallelCalculation"];

CIP‘MLR‘ShowMlrInputRelevanceClass[

mlrInputComponentRelevanceListForClassification]

4.14 Appendix - Collecting the pieces 387

Input component list = {28,21,22,24,15,29}

numberOfComponents=6;

inputComponentInclusionList=

CIP‘MLR‘GetMlrClassRelevantComponents[

mlrInputComponentRelevanceListForClassification,

numberOfComponents]

{28,21,22,24,15,29}

and the classification data set is reduced to these six input components

reducedDataSet=

CIP‘DataTransformation‘IncludeInputComponentsOfDataSet[

classificationDataSet,inputComponentInclusionList];

a MLR fit

mlrInfo=CIP‘MLR‘FitMlr[reducedDataSet];

CIP‘MLR‘ShowMlrSingleClassification[{"CorrectClassification",

"CorrectClassificationPerClass",

"WrongClassificationDistribution"},reducedDataSet,mlrInfo]

97.% correct classifications

388 4 Machine Learning

leads to a classification success comparable to the one with the complete classi-

fication data set (the correct classifications are even slightly improved - a subtlety

which is caused by the fact that within CIP a classification task is internally coded

as a corresponding regression task where a decreased RMSE does not necessarily

lead to an improved classification because classification follows a winner-take-all

principle, see chapter 1). For an additional assessment of the predictive power of

the minimal model the reduced classification data set is split into equally sized and

heuristically optimized training and test sets (by use of the default SingleGlobal-

Max optimization strategy with blacklisting to avoid oscillations - to finally arrive

at comparable training and test inputs that cover a similar input space with a similar

spatial diversity, compare above and chapter 3):

trainingFraction=0.50;

numberOfTrainingSetOptimizationSteps=10;

blackListLength=5;

4.14 Appendix - Collecting the pieces 389

mlrTrainOptimization=

CIP‘MLR‘GetMlrTrainOptimization[reducedDataSet,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

bestOptimization="MinimumDeviation";

bestClassificationStep=CIP‘MLR‘GetBestMlrClassOptimization[

mlrTrainOptimization,

UtilityOptionBestOptimization -> bestOptimization,

UtilityOptionCalculationMode -> "ParallelCalculation"];

optimizedTrainingAndTestSetList=mlrTrainOptimization[[3]];

bestTrainingAndTestSet=

optimizedTrainingAndTestSetList[[bestClassificationStep]];

The training set becomes enriched in the underrepresented malignant class 2 tu-

mor samples

bestTrainingSet=bestTrainingAndTestSet[[1]];

CIP‘Graphics‘ShowDataSetInfo[{"ClassCount"},bestTrainingSet]

Class 1 with 166 members

Class 2 with 118 members

N[166/118]

1.40678

and the test set is reciprocally depleted (compare benign/malignant ratios with

ratio 1.68 of the complete data set above):

bestTestSet=bestTrainingAndTestSet[[2]];

CIP‘Graphics‘ShowDataSetInfo[{"ClassCount"},bestTestSet]

Class 1 with 191 members

Class 2 with 94 members

N[191/94]

2.03191

The MLR classification success for both sets

optimizedMlrInfoList=mlrTrainOptimization[[4]];

bestMlrInfo=optimizedMlrInfoList[[bestClassificationStep]];

CIP‘MLR‘ShowMlrClassificationResult[{"CorrectClassification"},

bestTrainingAndTestSet,bestMlrInfo]

Training Set:

96.8% correct classifications

Test Set:

390 4 Machine Learning

97.9% correct classifications

is comparable and demonstrates a predictivity that corresponds to the findings

for the complete classification data set. It is interestingly enough and not uncommon

that the majority - 80% in this case - of the input components can be omitted with-

out any significant loss of predictivity: The quantities used to describe the cell nuclei

reveal a high mutual redundancy with respect to the classification task although this

may not be obvious to the medicinal scientist - an insight that can motivate fur-

ther investigations: A reduced number of necessary input components/features usu-

ally not only simplifies the computational machine learning process but alleviates

the whole medical diagnosis procedure (but compare additional comments about

method dependencies below).

To investigate possible further improvements the non-linear machine learning

methods must be taken into account. But for non-linear methods overfitting will be-

come a severe problem - again note that a non-linear method will almost always

arrive at a perfect 100% predictor by creating a simply overfitted look-up table for

the data. In addition the non-linear methods require the definition of structural hy-

perparameters for their operation. Since the WDBC data set classification task could

be characterized above as near-linear a Multiple Polynomial Regression (MPR) ap-

proach with a polynomial degree of only 2

polynomialDegree=2;

may be regarded as the first adequate step into non-linearity. But also this humble

MPR fit

mprInfo = CIP‘MPR‘FitMpr[classificationDataSet,polynomialDegree];

CIP‘MPR‘ShowMprSingleClassification[{"CorrectClassification",

"CorrectClassificationPerClass"},classificationDataSet,mprInfo]

100.% correct classifications

4.14 Appendix - Collecting the pieces 391

leads directly to a perfect 100% correct classifications which indicates an un-

wanted overfitted model without predictivity. This result becomes intelligible if the

number of parameters of the MPR model is investigated

CIP‘MPR‘GetMprNumberOfParameters[classificationDataSet,

polynomialDegree]

496

which is similar to the number of I/O pairs of the complete classification data set.

Thus the construction of a minimal predictive model by reduction of the input space

is advised (with a corresponding reduction of MPR parameters) which may again

be performed by a relevance analysis of the input components:

mprInputComponentRelevanceListForClassification=

CIP‘MPR‘GetMprInputInclusionClass[trainingAndTestSet,

polynomialDegree,

UtilityOptionInclusionsPerStep -> numberOfInclusionsPerStepList,

UtilityOptionCalculationMode -> "ParallelCalculation"];

CIP‘MPR‘ShowMprInputRelevanceClass[

mprInputComponentRelevanceListForClassification]

Input component list = {24,28,21,22,25,11}

inputComponentInclusionList=

CIP‘MPR‘GetMprClassRelevantComponents[

mprInputComponentRelevanceListForClassification,

numberOfComponents]

{24,28,21,22,25,11}

392 4 Machine Learning

Note that the detected most relevant input components do not coincide with those

of the MLR approach before which means that the relevance of an input component

in general depends on the machine learning method used and can not be regarded

as an objective characteristic of the specific input feature for the machine learning

task in question - a statement that pours some cold water on the probably too en-

thusiastic statements about the relevance of input components made above. There is

an additional finding that the number of detected relevant MPR input components is

smaller in comparison to the MLR approach (i.e. for MPR only 4 input components

seem to be sufficient for a minimal predictive model whereas 6 input components

were necessary for MLR - but for simplicity the discussion is continued with the

same number of 6 input components). The reduced classification data set (with 6

input components)

reducedDataSet=

CIP‘DataTransformation‘IncludeInputComponentsOfDataSet[

classificationDataSet,inputComponentInclusionList];

leads to a MPR fit with a classification success,

mprInfo=CIP‘MPR‘FitMpr[reducedDataSet,polynomialDegree];

CIP‘MPR‘ShowMprSingleClassification[{"CorrectClassification",

"CorrectClassificationPerClass",

"WrongClassificationDistribution"},reducedDataSet,mprInfo]

96.7% correct classifications

4.14 Appendix - Collecting the pieces 393

training/test set enrichments/depletions

mprTrainOptimization=

CIP‘MPR‘GetMprTrainOptimization[reducedDataSet, polynomialDegree,

trainingFraction,numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

bestClassificationStep=CIP‘MPR‘GetBestMprClassOptimization[

mprTrainOptimization,

UtilityOptionBestOptimization -> bestOptimization,

UtilityOptionCalculationMode -> "ParallelCalculation"];

optimizedTrainingAndTestSetList=mprTrainOptimization[[3]];

bestTrainingAndTestSet=

optimizedTrainingAndTestSetList[[bestClassificationStep]];

bestTrainingSet=bestTrainingAndTestSet[[1]];

CIP‘Graphics‘ShowDataSetInfo[{"ClassCount"},bestTrainingSet]

Class 1 with 166 members

Class 2 with 118 members

N[166/118]

1.40678

bestTestSet=bestTrainingAndTestSet[[2]];

CIP‘Graphics‘ShowDataSetInfo[{"ClassCount"},bestTestSet]

Class 1 with 191 members

Class 2 with 94 members

N[191/94]

2.03191

and a predictive power

394 4 Machine Learning

optimizedMprInfoList=mprTrainOptimization[[4]];

bestMprInfo=optimizedMprInfoList[[bestClassificationStep]];

CIP‘MPR‘ShowMprClassificationResult[{"CorrectClassification"},

bestTrainingAndTestSet,bestMprInfo]

Training Set:

97.5% correct classifications

Test Set:

97.5% correct classifications

which is comparable to the one of the MLR approach but no significant improve-

ment. The MLR and MPR results may serve as a comparison to the prediction results

of the highly non-linear methods which are now being explored. For three-layer per-

ceptrons the crucial structural hyperparameter is the number of hidden neurons. For

a near-linear problem a very small number of hidden neurons is advised so that the

perceptron’s ability to produce bumps is restricted and as a consequence its prone-

ness to overfitting is reduced. If a minimum of 2 hidden neurons is used

numberOfHiddenNeurons=2;

again a suspicious classification success with possible overfitting appears:

perceptronInfo=CIP‘Perceptron‘FitPerceptron[classificationDataSet,

numberOfHiddenNeurons,

UtilityOptionCalculationMode -> "ParallelCalculation"];

CIP‘Perceptron‘ShowPerceptronSingleClassification[{

"CorrectClassification","CorrectClassificationPerClass"},

classificationDataSet,perceptronInfo]

99.6% correct classifications

4.14 Appendix - Collecting the pieces 395

Relevance analysis of the input components

perceptronInputComponentRelevanceListForClassification=

CIP‘Perceptron‘GetPerceptronInputInclusionClass[trainingAndTestSet,

numberOfHiddenNeurons,

UtilityOptionInclusionsPerStep -> numberOfInclusionsPerStepList,

UtilityOptionCalculationMode -> "ParallelCalculation"];

CIP‘Perceptron‘ShowPerceptronInputRelevanceClass[

perceptronInputComponentRelevanceListForClassification]

Input component list = {23,25,2,4,1,7}

inputComponentInclusionList=

CIP‘Perceptron‘GetPerceptronClassRelevantComponents[

perceptronInputComponentRelevanceListForClassification,

numberOfComponents]

{23,25,2,4,1,7}

with corresponding data set reduction

reducedDataSet =

CIP‘DataTransformation‘IncludeInputComponentsOfDataSet[

classificationDataSet,inputComponentInclusionList];

and training/test splitting

perceptronTrainOptimization=

CIP‘Perceptron‘GetPerceptronTrainOptimization[reducedDataSet,

numberOfHiddenNeurons,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength,

UtilityOptionCalculationMode -> "ParallelCalculation"];

396 4 Machine Learning

bestClassificationStep=

CIP‘Perceptron‘GetBestPerceptronClassOptimization[

perceptronTrainOptimization,

UtilityOptionBestOptimization -> bestOptimization,

UtilityOptionCalculationMode -> "ParallelCalculation"];

optimizedTrainingAndTestSetList=perceptronTrainOptimization[[3]];

bestTrainingAndTestSet=

optimizedTrainingAndTestSetList[[bestClassificationStep]];

bestTrainingSet=bestTrainingAndTestSet[[1]];

CIP‘Graphics‘ShowDataSetInfo[{"ClassCount"},bestTrainingSet]

Class 1 with 169 members

Class 2 with 115 members

N[169/115]

1.46957

bestTestSet=bestTrainingAndTestSet[[2]];

CIP‘Graphics‘ShowDataSetInfo[{"ClassCount"},bestTestSet]

Class 1 with 188 members

Class 2 with 97 members

N[188/97]

1.93814

results in a convincing minimal model with excellent predictive success rates,

very good generalization abilities and a slightly improved predictive power com-

pared to the MLR/MPR approach:

optimizedPerceptronInfoList=perceptronTrainOptimization[[4]];

bestPerceptronInfo=

optimizedPerceptronInfoList[[bestClassificationStep]];

CIP‘Perceptron‘ShowPerceptronClassificationResult[{

"CorrectClassification"},bestTrainingAndTestSet,

bestPerceptronInfo]

Training Set:

98.6% correct classifications

Test Set:

98.6% correct classifications

Again note that compared to MLR the number of detected relevant input compo-

nents is decreased (i.e. for the perceptron approach only 4 input components seem

to be sufficient for a minimal predictive model which was also found above for MPR

with a polynomial degree of 2).

4.14 Appendix - Collecting the pieces 397

For sake of completeness a SVM approach is finally investigated where the cru-

cial structural hyperparameter of a SVM - the kernel function - is in need. Again

the near-linear classification problem characterization of the linear MLR approach

is helpful - if we arbitrarily choose a wavelet kernel an adequate width parameter in

a region that corresponds to wider bumps (which do not allow highly non-linear and

very curved decision surfaces) is advised:

kernelFunction={"Wavelet",2.0};

The complete classification data set fit

svmInfo=CIP‘SVM‘FitSvm[classificationDataSet, kernelFunction,

UtilityOptionCalculationMode -> "ParallelCalculation"];

CIP‘SVM‘ShowSvmSingleClassification[{"CorrectClassification",

"CorrectClassificationPerClass"},classificationDataSet,svmInfo]

98.9% correct classifications

again seems to be too (overfitted) perfect. Input component relevance analysis

svmInputComponentRelevanceListForClassification=

CIP‘SVM‘GetSvmInputInclusionClass[trainingAndTestSet,

kernelFunction,

UtilityOptionInclusionsPerStep -> numberOfInclusionsPerStepList,

UtilityOptionCalculationMode -> "ParallelCalculation"];

CIP‘SVM‘ShowSvmInputRelevanceClass[

svmInputComponentRelevanceListForClassification]

398 4 Machine Learning

Input component list = {8,24,22,28,3,21}

inputComponentInclusionList=

CIP‘SVM‘GetSvmClassRelevantComponents[

svmInputComponentRelevanceListForClassification,

numberOfComponents]

{8,24,22,28,3,21}

and the sequence of already established modelling steps

reducedDataSet=

CIP‘DataTransformation‘IncludeInputComponentsOfDataSet[

classificationDataSet, inputComponentInclusionList];

svmTrainOptimization=CIP‘SVM‘GetSvmTrainOptimization[

reducedDataSet,kernelFunction,

trainingFraction,numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength,

UtilityOptionCalculationMode -> "ParallelCalculation"];

bestClassificationStep=CIP‘SVM‘GetBestSvmClassOptimization[

svmTrainOptimization,

UtilityOptionBestOptimization -> bestOptimization,

UtilityOptionCalculationMode -> "ParallelCalculation"];

optimizedTrainingAndTestSetList=svmTrainOptimization[[3]];

bestTrainingAndTestSet=

optimizedTrainingAndTestSetList[[bestClassificationStep]];

bestTrainingSet=bestTrainingAndTestSet[[1]];

CIP‘Graphics‘ShowDataSetInfo[{"ClassCount"},bestTrainingSet]

Class 1 with 169 members

Class 2 with 115 members

N[169/115]

1.46957

4.14 Appendix - Collecting the pieces 399

bestTestSet=bestTrainingAndTestSet[[2]];

CIP‘Graphics‘ShowDataSetInfo[{"ClassCount"},bestTestSet]

Class 1 with 188 members

Class 2 with 97 members

N[188/97]

1.93814

finally leads to a true predictive minimal model which is comparable to the

optimizedSvmInfoList=svmTrainOptimization[[4]];

bestSvmInfo=optimizedSvmInfoList[[bestClassificationStep]];

CIP‘SVM‘ShowSvmClassificationResult[{"CorrectClassification"},

bestTrainingAndTestSet,bestSvmInfo]

Training Set:

97.2% correct classifications

Test Set:

97.9% correct classifications

In summary it can be concluded that the WDBC classification problem could

be successfully tackled by supervised machine learning (further refinements like

additional hyperparameter variations would be time-consuming and the room for

improvement appears to be only small). It was not only possible to construct con-

vincing minimal class predictors of sufficient quality that can successfully support

diagnostic decisions in medical practice but also (unfortunately: method dependent)

insights about the necessary features of a cell nucleus for successful benign/malig-

nant classification could be stimulated.

As a second application the construction of a Quantitative Structure Property

Relationship (QSPR) is briefly investigated. A QSPR model maps features of chem-

ical structures (the input) to a property of interest (the output). The features of a

chemical structure are so called (structural/molecular) descriptors, i.e. characteris-

tic numbers which are calculated for the specific structure. The output quantity of

interest is usually measured experimentally. The following QSPR data set

dataSet=CIP‘ExperimentalData‘GetQSPRDataSet01[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents"},dataSet]

Number of IO pairs = 183

Number of input components = 155

Number of output components = 1

MLR/MPR approach but slightly inferior to the perceptron results before:

400 4 Machine Learning

comprises 183 input/output (I/O) pairs that each represent a single chemical com-

pound. Each input vector consists of 155 components where each component is a

structural descriptor. Each corresponding output vector contains a single experimen-

tally measured value for a compound-related physico-chemical quantity. Since the

number of input components is nearly equal to the number of I/O pairs the useful-

ness of the whole data set is in doubt (“one point per axis”), i.e. also a linear MLR

method is likely to be able to establish a perfect relationship between the molecular

descriptors and the corresponding physico-chemical quantity

mlrInfo = CIP‘MLR‘FitMlr[dataSet];

CIP‘MLR‘ShowMlrSingleRegression[{"ModelVsDataPlot","RMSE"},

dataSet,mlrInfo];

Root mean squared error (RMSE) = 7.145×10−2

but without any predictive power: The model is a pure look-up table. This may

be shown by partitioning of the whole data into a training and a test set of equal size

(with a number of heuristic optimization trials of both sets already sketched above):

trainingFraction=0.5;

numberOfTrainingSetOptimizationSteps=10;

blackListLength=5;

mlrTrainOptimization=CIP‘MLR‘GetMlrTrainOptimization[dataSet,

trainingFraction,numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

bestOptimization="MinimumDeviation";

bestRegressionStep=CIP‘MLR‘GetBestMlrRegressOptimization[

mlrTrainOptimization,

UtilityOptionBestOptimization -> bestOptimization];

trainingAndTestSetList = mlrTrainOptimization[[3]];

mlrInfoList=mlrTrainOptimization[[4]];

trainingAndTestSet=trainingAndTestSetList[[bestRegressionStep]];

bestMlrInfo=mlrInfoList[[bestRegressionStep]];

CIP‘MLR‘ShowMlrRegressionResult[{"ModelVsDataPlot","RMSE"},

4.14 Appendix - Collecting the pieces 401

trainingAndTestSet,bestMlrInfo]

Training Set:

Root mean squared error (RMSE) = 1.618×10−2

Test Set:

Root mean squared error (RMSE) = 5.075

The training data are perfectly “tabulated” but the prediction of the test data is

extremely poor. In cheminformatics it is well known that structural descriptors are

usually calculated with a do-everything-possible attitude in mind so that QSPR input

spaces are often extremely oversized with mutually highly redundant descriptors. If

the relevance of descriptors (input components) is successively evaluated with MLR

402 4 Machine Learning

trainingAndTestSet={dataSet,{}};

numberOfInclusionsPerStepList=Table[1,{10}];

mlrInputComponentRelevanceListForRegression=

CIP‘MLR‘GetMlrInputInclusionRegress[trainingAndTestSet,

UtilityOptionInclusionsPerStep -> numberOfInclusionsPerStepList,

UtilityOptionCalculationMode -> "ParallelCalculation"];

CIP‘MLR‘ShowMlrInputRelevanceRegress[

mlrInputComponentRelevanceListForRegression]

Input component list = {43,102,111,128,67,100,116,97,72,14}

and MPR (with the most modest polynomial degree of 2)

polynomialDegree=2;

mprInputComponentRelevanceListForRegression=

CIP‘MPR‘GetMprInputInclusionRegress[trainingAndTestSet,

polynomialDegree,

UtilityOptionInclusionsPerStep -> numberOfInclusionsPerStepList,

UtilityOptionCalculationMode -> "ParallelCalculation"];

CIP‘MPR‘ShowMprInputRelevanceRegress[

mprInputComponentRelevanceListForRegression]

4.14 Appendix - Collecting the pieces 403

Input component list = {43,102,31,91,140,42,84,120,123,113}

it becomes obvious that (for the MPR approach) only 5 input components (de-

scriptors) out of 155

numberOfComponents=5;

inputComponentInclusionList =

CIP‘MPR‘GetMprRegressRelevantComponents[

mprInputComponentRelevanceListForRegression,numberOfComponents]

{43,102,31,91,140}

are necessary to arrive at an adequate RMSE of 1.0 for at least a semi-quantitative

minimal model

reducedDataSet=

CIP‘DataTransformation‘IncludeInputComponentsOfDataSet[dataSet,

inputComponentInclusionList];

mprTrainOptimization=

CIP‘MPR‘GetMprTrainOptimization[reducedDataSet,polynomialDegree,

trainingFraction,numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

bestRegressionStep=

CIP‘MPR‘GetBestMprRegressOptimization[mprTrainOptimization,

UtilityOptionBestOptimization -> bestOptimization];

optimizedTrainingAndTestSetList=mprTrainOptimization[[3]];

mprInfoList=mprTrainOptimization[[4]];

bestTrainingAndTestSet=

optimizedTrainingAndTestSetList[[bestRegressionStep]];

bestMprInfo=mprInfoList[[bestRegressionStep]];

CIP‘MPR‘ShowMprRegressionResult[{"ModelVsDataPlot","RMSE"},

bestTrainingAndTestSet,bestMprInfo]

Training Set:

404 4 Machine Learning

Root mean squared error (RMSE) = 1.071

Test Set:

Root mean squared error (RMSE) = 1.072

which exhibits equal predictive power for training and test data and thus may be

helpful in practice. But already a magnification of the input space with the 10 most

relevant MPR descriptors out of 155

numberOfComponents=10;

inputComponentInclusionList=

CIP‘MPR‘GetMprRegressRelevantComponents[

mprInputComponentRelevanceListForRegression,numberOfComponents]

{43,102,31,91,140,42,84,120,123,113}

again leads to overfitting with an overall loss of any predictivity:

4.14 Appendix - Collecting the pieces 405

reducedDataSet=

CIP‘DataTransformation‘IncludeInputComponentsOfDataSet[dataSet,

inputComponentInclusionList];

mprTrainOptimization=

CIP‘MPR‘GetMprTrainOptimization[reducedDataSet,polynomialDegree,

trainingFraction, numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

bestRegressionStep=

CIP‘MPR‘GetBestMprRegressOptimization[mprTrainOptimization,

UtilityOptionBestOptimization -> bestOptimization];

optimizedTrainingAndTestSetList=mprTrainOptimization[[3]];

mprInfoList=mprTrainOptimization[[4]];

bestTrainingAndTestSet=

optimizedTrainingAndTestSetList[[bestRegressionStep]];

bestMprInfo=mprInfoList[[bestRegressionStep]];

CIP‘MPR‘ShowMprRegressionResult[{"ModelVsDataPlot",

"RMSE"},bestTrainingAndTestSet,bestMprInfo]

Training Set:

Root mean squared error (RMSE) = 4.194×10−1

Test Set:

406 4 Machine Learning

Root mean squared error (RMSE) = 5.432

Further (minor) improvements may be obtained with adequate hyperparameter-

optimized perceptron or SVM approaches. As a conclusion it may be kept in mind

that careful machine learning may also reveal helpful relationships for unfavorable

data but of course can not overcome the GIGO (garbage-in/garbage-out) effect in

general.

Chapter 5

Discussion

At the end of a tour from curve fitting to machine learning there are two kinds of

questions that usually remain: The first kind is about the numerous details and side

branches of the sketched topics that had to be omitted for the sake of readability

and comprehensibility since limitations are inevitable and a bunch of important and

interesting issues had to be skipped. The second kind of questions addresses the

more abstract and general aspects that arise from the earlier discussions like the

principal capabilities of machine learning. In this final chapter some so far neglected

topics that belong to both kinds of questions are outlined.

First a crucial aspect of computation is discussed: Speed. A proper estimate of

the time period necessary to perform a computational task is essential for almost

all practical applications (section 5.1). After an initial fascination a deeper insight

into machine learning often leads to a notion of disappointment about what can be

expected from these methods in principal thus some basic possibilities and limits

are discussed (section 5.2). The relations of the methods outlined on the road from

curve fitting to machine learning to a possibly emerging computational intelligence

are of general interest and thus briefly sketched (section 5.3). Final remarks close

this chapter (section 5.4).

5.1 Computers are about speed

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘MLR‘

<<CIP‘MPR‘

<<CIP‘Perceptron‘

<<CIP‘SVM‘

<<CIP‘CurveFit‘

© Springer International Publishing Switzerland 2016
A. Zielesny, From Curve Fitting to Machine Learning, Intelligent Systems
Reference Library 109, DOI 10.1007/978-3-319-32545-3_5

407

408 5 Discussion

Performance issues which are related to the road from curve fitting to machine

learning were only marginally mentioned in the previous chapters. But they are

of course at heart of any practical application: If there is not at least a vague es-

timate about the necessary computational resources and corresponding time peri-

ods to come to a successful result a research effort is immediately abandoned. As

pointed out in chapter 1 all methods discussed so far can be mathematically traced

back to optimization problems which can be tackled with particular adequate step-

wise iterative procedures. A question about performance for a specific problem thus

can be divided in two parts: How much time does a single optimization step need?

And how many steps are necessary to arrive at a successful result? Whereas an ap-

proximate answer of the first question is feasible for most practical applications the

second one can not be answered in general: There is no way of knowing the num-

ber of necessary iterations in advance for a non-linear optimization problem (linear

optimization problems can almost always be tackled successfully in short time pe-

riods, see below). Putting both answers together the principal statement about any

question of performance is not satisfying: We do not know! Fortunately there are

a number of practical rules of thumb, a lot of experience with already performed

similar problems as well as procedures of preliminary estimation which turn the sad

general answer into a more optimistic version for many practically relevant situa-

tions. To put it short (and neglecting pathological cases): With today’s computers

curve fitting is usually performed on the fly (this means you can sit in front of your

screen and wait for the result to emerge after a few seconds) whereas clustering and

machine learning are typical batch tasks: They usually consume minutes (for very

small problems like many of those discussed in the previous chapters) up to hours

and days or even longer - they are started and performed in the background without

being constantly monitored or waited for. An important characteristics of a method

of choice concerning its necessary computational time consumption is its behavior

for a varying problem size. This behavior can be experimentally deduced or derived

from theoretical considerations. If for example a number of K data records is to be

searched for a specific entry in a successive manner one after another (a so-called

exact sequential search) the necessary maximum time period can be estimated to be

"the time necessary to detect the entry for a single record" times K (where it is as-

sumed that the entry detection for every single data record consumes the same time

on average). What happens if the number of data records is doubled to 2K? Then

the maximum necessary time period simply doubles too. A sequential search is said

to scale with O(K) (read "order K" where "O" means order), i.e. the dependence

between the data size and the search speed is linear. A sequential search is in fact a

worst case scenario for exact data searching so there are more efficient algorithmic

alternatives available like a binary tree search with O(log2K) or a hash-table search

with O(1). O(log2K) means that you can search 2 (= 21) data records in let’s say

1 second, 4 (= 22) data records in 2 seconds, 8 (= 23) data records 3 seconds and

4.294.967.296 (about 4 billion) data records in 32 seconds:

2ˆ32

5.1 Computers are about speed 409

4294967296

The search period increases only logarithmically with the data size. O(1) indi-

cates that the search speed and the data size are decoupled: The search speed does

no longer depend on the number of records (this is the holy grail of searching - in

fact hashing in this context simply means the calculation of a position in a data ta-

ble with a calculation time that does not depend of the number of the table’s rows

that corresponds to the data size). Note that the scaling behavior says nothing about

the absolute time period necessary to search e.g. 12 data records with the different

methods but it signals that a hash-table search will finally outperform its competitors

for searching large data volumes. The thorough characterization of the interplay be-

tween data structures (like binary trees or hash-tables) and the algorithms that work

upon them is at heart of computer science and every single choice for a practical ap-

plication of a method is a compromise that (hopefully) best fits the specific needs:

The selection of a method is usually based on its most attractive features (like max-

imum search speed) whereas its problems (e.g. additional memory consumption)

must be tolerable. In general each computational method exhibits contradictory fea-

tures (like speed versus memory) so that their comparison by adequate benchmarks

is a difficult and professional science on its own with many traps and subtleties: A

lot of published benchmark results simply compare apples and oranges. Thus great

care is necessary to achieve trustable results that are able to meet the requirements

of scientific validity. To demonstrate the estimation of necessary computational time

periods the already discussed regression problem of chapter 4 may be utilized again:

Normally distributed 3D points are generated at grid positions around a non-linear

surface (here shown with a 10×10 grid with 100 I/O pairs)

pureOriginalFunction=Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)ˆ2]*Exp[-y]* Sin[7.0*y])];

xRange={0.0,1.0};

yRange={0.0,1.0};

numberOfDataPerDimension=10;

standardDeviationRange={0.1,0.1};

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

labels={"x","y","z"};

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureOriginalFunction,labels]

410 5 Discussion

where the number of grid points (and thus the number of I/O pairs of the data set)

is varied. How do the different machine learning methods scale with an increasing

size of the data set? For the machine learning method implementations provided by

the CIP package this may be analyzed by experiment: With Mathematica’s Abso-

luteTiming command the time period consumed by a specific Fit procedure can be

measured and displayed in a number of I/O pairs versus training period diagram. For

a Multiple Linear Regression (MLR) approach to the regression task the following

result is obtained:

xyErrorData={};

rmsePoints2D={};

Do[

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

result=AbsoluteTiming[CIP‘MLR‘FitMlr[dataSet3D]];

rainingPeriod=result[[1]];

mlrInfo=result[[2]];

numberOfIoPairs=numberOfDataPerDimension*numberOfDataPerDimension;

AppendTo[xyErrorData,{numberOfIoPairs,trainingPeriod,1.0}];

AppendTo[rmsePoints2D,{numberOfIoPairs,

CIP‘MLR‘CalculateMlrDataSetRmse[dataSet3D,mlrInfo]}],

{numberOfDataPerDimension,5,100,5}

];

minExponent=1.0;

maxExponent=4.0;

exponentStepSize=0.1;

exponentLabels={"Number of I/O pairs (K)","Training period [s]",

"Training period = O(Kˆexponent)"};

CIP‘CurveFit‘ShowBestExponent[xyErrorData,minExponent,maxExponent,

exponentStepSize,CurveFitOptionLabels -> exponentLabels];

5.1 Computers are about speed 411

Best exponent = 1.

Over a wide range of data set sizes (from K = 25 I/O pairs up to K = 10.000

I/O pairs) the training period scales linear with an increasing number of I/O pairs K

(O(K) which corresponds to a "Best exponent" of 1.0). Each MLR fit is performed

in fractions of a second (with a common notebook computer). This linear scaling

behavior is the best we can expect for a machine learning method and confirms the

general statement already mentioned above that linear methods are fast with today’s

computers. But of course a MLR approach is completely inadequate for a non-linear

regression task which may be revealed by an inspection of the corresponding RMSE

values of the regression results which should lie around 0.1 since the normally dis-

tributed data were generated with a standard deviation of 0.1 (see above):

qualityLabels={"Number of I/O pairs (K)","RMSE",

"Quality of machine learning result"};

functionValueRange2D={0.0,1.2};

CIP‘Graphics‘Plot2dLineWithOptionalPoints[rmsePoints2D,

rmsePoints2D,qualityLabels,

GraphicsOptionFunctionValueRange2D -> functionValueRange2D]

412 5 Discussion

The determined RMSE values are an order of magnitude above expectation and

thus MLR is clearly out of play. Multiple Polynomial Regression (MPR) with an

adequate polynomial degree (compare chapter 4) exhibits a comparable fast perfor-

mance with linear scaling (since the minimization task is also linear in its model

parameters)

polynomialDegree=9;

xyErrorData={};

rmsePoints2D={};

Do[

dataSet3D =

CIP‘CalculatedData‘Get3dFunctionBasedDataSet[pureOriginalFunction,

xRange,yRange,numberOfDataPerDimension,standardDeviationRange];

result=AbsoluteTiming[CIP‘MPR‘FitMpr[dataSet3D,polynomialDegree]];

trainingPeriod=result[[1]];

mprInfo=result[[2]];

numberOfIoPairs=numberOfDataPerDimension*numberOfDataPerDimension;

AppendTo[xyErrorData,{numberOfIoPairs,trainingPeriod,1.0}];

AppendTo[rmsePoints2D,{numberOfIoPairs,

CIP‘MPR‘CalculateMprDataSetRmse[dataSet3D,mprInfo]}],

{numberOfDataPerDimension,5,100,5}

];

CIP‘CurveFit‘ShowBestExponent[xyErrorData,minExponent,maxExponent,

exponentStepSize,CurveFitOptionLabels -> exponentLabels];

5.1 Computers are about speed 413

Best exponent = 1.

but with a far more satisfying result for the machine learning task in question (i.e.

a desired RMSE of about 0.1 after some initial overfitting):

functionValueRange2D={0.0,0.2};

CIP‘Graphics‘Plot2dLineWithOptionalPoints[rmsePoints2D,

rmsePoints2D,qualityLabels,

GraphicsOptionFunctionValueRange2D -> functionValueRange2D]

Next a Support Vector Machine (SVM) approach with an adequate kernel func-

tion and default settings may be explored (compare chapter 4):

kernelFunction={"Wavelet",0.3};

xyErrorData={};

rmsePoints2D={};

Do[

414 5 Discussion

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

result=AbsoluteTiming[CIP‘SVM‘FitSvm[dataSet3D,kernelFunction]];

trainingPeriod=result[[1]];

svmInfo=result[[2]];

numberOfIoPairs=numberOfDataPerDimension*numberOfDataPerDimension;

AppendTo[xyErrorData,{numberOfIoPairs,trainingPeriod,1.0}];

AppendTo[rmsePoints2D,{numberOfIoPairs,

CIP‘SVM‘CalculateSvmDataSetRmse[dataSet3D,svmInfo]}],

{numberOfDataPerDimension,5,20}

];

CIP‘CurveFit‘ShowBestExponent[xyErrorData,minExponent,maxExponent,

exponentStepSize,CurveFitOptionLabels -> exponentLabels];

Best exponent = 3.6

For the data range from K = 25 I/O pairs to K = 400 I/O pairs the training period

is well described to scale with O(K3.6). Compared to a fast MLR or MPR fit which

is performed in fractions of a second a SVM fit is terribly slow (5000 seconds corre-

spond to roughly one and a half hour for a single fit with 400 I/O pairs). With such

a polynomial scaling it may be deduced that a single SVM fit of 1.000 I/O pairs

would require

factor=1000./400.

2.5

timePeriod=5000*factorˆ3.6

135380.

5.1 Computers are about speed 415

hours=timePeriod/(60*60)

37.6055

about one and a half day (38 hours) if an extrapolation is dared. The CIP default

implementation of a SVM becomes prohibitive for larger data sets and is thus rea-

sonably confined to machine learning tasks with only small data set sizes (compare

Appendix A for CIP design goals). Note that these specific findings can not sim-

ply be generalized: There are far more efficient SVM implementations available! In

general a SVM’s training period scales between quadratically (O(K2)) and cubically

(O(K3)) in the number of I/O pairs (see [Joachims 1999]) - nevertheless even with an

efficient implementation and an improved polynomial scaling behavior SVMs are

known to have a large data set problem currently addressed by many R&D efforts.

A final look at the quality of the SVM fits shows their results

functionValueRange2D={0.0,0.2};

CIP‘Graphics‘Plot2dLineWithOptionalPoints[rmsePoints2D,

rmsePoints2D,qualityLabels,

GraphicsOptionFunctionValueRange2D -> functionValueRange2D]

to be satisfying: Again, after some inevitable initial overfitting for the smallest

data sets the RMSE values are distributed around the expected value of 0.1.

A similar perceptron analysis with an adequate number of hidden neurons and

default settings (compare chapter 4)

numberOfHiddenNeurons=12;

xyErrorData={};

rmsePoints2D={};

Do[

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

416 5 Discussion

standardDeviationRange];

result=AbsoluteTiming[CIP‘Perceptron‘FitPerceptron[dataSet3D,

numberOfHiddenNeurons]];

trainingPeriod=result[[1]];

perceptronInfo=result[[2]];

numberOfIoPairs=numberOfDataPerDimension*numberOfDataPerDimension;

AppendTo[xyErrorData,{numberOfIoPairs,trainingPeriod,1.0}];

AppendTo[rmsePoints2D,{numberOfIoPairs,

CIP‘Perceptron‘CalculatePerceptronDataSetRmse[dataSet3D,

perceptronInfo]}],

{numberOfDataPerDimension,5,20}

];

CIP‘CurveFit‘ShowBestExponent[xyErrorData,minExponent,maxExponent,

exponentStepSize,CurveFitOptionLabels -> exponentLabels];

Best exponent = 1.1

leads to a near linear O(K1.1) scaling. In addition a single (default CIP) percep-

tron training is to be about an order of magnitude faster than a (default CIP) SVM

one (again see Appendix A for comments on the CIP design goals). But an inspec-

tion of the regression results reveals that the perceptron fits did not quite yield the

expected RMSE values for most data set sizes:

functionValueRange2D={0.0,0.2};

CIP‘Graphics‘Plot2dLineWithOptionalPoints[rmsePoints2D,

rmsePoints2D,qualityLabels,

GraphicsOptionFunctionValueRange2D -> functionValueRange2D]

5.2 Isn’t it just ...? 417

There is again an initial overfitting for very small data sets but then the RMSE

values rise to about 0.15 which is a above the expected value of 0.1 and the SVM

results (see chapter 4 for more adequate technical perceptron optimization parame-

ters with improved learning results). Thus the perceptron training can not simply be

compared to the more satisfying SVM training before - and this is exactly where the

comparison of apples and oranges usually starts. In conclusion a fair comparison of

methods has to take all these subtle differences (and many others like differences

in memory consumption or the acceleration due to parallelized calculation setups)

into account. As a final rule of thumb it is recommended to always perform initial

investigations concerning speed, scaling behavior, memory consumption etc. be-

fore applying non-linear iterative optimization procedures to real-world problems

in practice.

5.2 Isn’t it just ...?

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘DataTransformation‘

<<CIP‘Graphics‘

<<CIP‘Perceptron‘

<<CIP‘CurveFit‘

<<CIP‘SVM‘

Off[FindMaximum::"lstol"];

The methods described on the road from curve fitting to machine learning are

perceived by practitioners quite differently: Opinions range from "mere technical

tools" (predominantly for curve fitting) up to an esteem of "intelligence" with a

"touch of magic" (often attributed to successful machine learning results). This

finding may be related to the fact that results of curve fitting can be directly inspected

in a visual manner whereas the results of clustering and machine learning are less

418 5 Discussion

intuitive and more complex to grasp. In scientific education the same basic moods

can be observed with students - especially an expectant curiosity about machine

learning which is inspired by rumors regarding their magic capabilities.

5.2.1 ... optimization?

But after the background of the methods is outlined and traced back to mathematical

optimization problems a swing in opinions occurs: "Isn’t it just optimization?" is

a common expression of disappointment. Machine learning seems to loose a lot of

its initial fascination after an explanation of its basic machinery. This may be due

to fact that an optimization task sounds easy: Just walk uphill (for maximization)

or downhill (for minimization) - and your are done (in principal). It is quite com-

mon to the views about modern science that the level of sophistication necessary to

tackle the details is undervalued after a principle understanding is achieved. But the

progress of science is more and more absorbed by details while developing from its

basic foundations in physics and chemistry to an understanding of complex systems

in biology or ecology: "It’s a mere detail that makes you dead or alive" as a friend

summarizes his daily experience as a surgeon with the complex system homo sapi-

ens. As pointed out in chapter 1 it is the details of optimization that lead to success

of failure and there is no general way to avoid the latter. Optimization issues are

deeply connected to the most challenging scientific problems like protein folding

(where the correctly folded biologically active protein conformation is assumed to

be a minimum energy state). Whereas optimization tasks sound easy they should

be regarded with the necessary respect for an extremely difficult and active field of

research.

5.2.2 ... data smoothing?

Another attitude often expressed by practitioners after getting acquainted with ma-

chine learning may be summarized with the question "Isn’t it just data smoothing?"

which implies that machine learning may be useful for a comprehensive description

of data and possible interpolations of new values but not for any new insights. This

issue is a bit more subtle and concerns the principle question: What can you get out

of your data? Possibilities may be sketched with the following example: A relatively

imprecise data set is generated around a 3D function

pureOriginalFunction=Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)ˆ2]*Exp[-y]* Sin[7.0*y])];

xRange={0.0,0.5};

yRange={0.0,0.5};

numberOfDataPerDimension=10;

standardDeviationRange={0.75,0.75};

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

5.2 Isn’t it just ...? 419

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

labels={"x","y","z"};

viewPoint3D={1.9, -3.0, 0.9};

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureOriginalFunction,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

with a maximum in the data range:

FindMaximum[pureOriginalFunction[x,y],{x,0.2},{y,0.2}]

{4.55146,{x → 0.265291,y → 0.204128}}

At the position of the maximum a hole in the data set is generated

reducedDataSet3D={};

Do[

If[!(dataSet3D[[i,1,1]]>0.1&& dataSet3D[[i,1,1]]<0.4 &&

dataSet3D[[i,1,2]]>0.1 && dataSet3D[[i,1,2]]<0.4),

AppendTo[reducedDataSet3D,dataSet3D[[i]]]

],

{i,Length[dataSet3D]}

];

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

pureOriginalFunction,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

420 5 Discussion

which becomes easily visible from above:

viewPoint3D={0.0,0.0,3.0};

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

pureOriginalFunction,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

5.2 Isn’t it just ...? 421

If an approximation of the original function is performed with a three-layer per-

ceptron based on the data set with a hole

numberOfHiddenNeurons=3;

perceptronInfo=CIP‘Perceptron‘FitPerceptron[reducedDataSet3D,

numberOfHiddenNeurons];

purePerceptron3dFunction=Function[{x,y},

CIP‘Perceptron‘CalculatePerceptron3dValue[x,y,perceptronInfo]];

viewPoint3D={1.9, -3.0, 0.9};

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

purePerceptron3dFunction,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

the approximated perceptron model function contains a maximum

FindMaximum[purePerceptron3dFunction[x,y],{x,0.2},{y,0.2}]

{3.96551,{x → 0.326515,y → 0.170616}}

near the true maximum of the original 3D function. If a SVM with an adequate

kernel function is used for the regression task

kernelFunction={"Wavelet",0.5};

svmInfo=CIP‘SVM‘FitSvm[reducedDataSet3D,kernelFunction];

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

pureSvm3dFunction,labels,GraphicsOptionViewPoint3D -> viewPoint3D]

422 5 Discussion

the approximation of the true maximum is even improved:

FindMaximum[pureSvm3dFunction[x,y],{x,0.2},{y,0.2}]

{4.72082,{x → 0.287884,y → 0.190222}}

This means that although the data are considerably error-biased and do not cover

the interesting maximum region a machine learning method may be able to reveal

a maximum which is indicated by the surrounding data. Since optima are often the

primary targets of research and development a machine learning result as the one

illustrated may lead to a true discovery (note that visual inspection is not possible

in general but an exploration of the approximated model surface for optima may

equally work in multiple dimensions). This promising feature has of course its lim-

its: If the data hole is enlarged further

reducedDataSet3D={};

Do[

If[!(dataSet3D[[i,1,1]]>0.05&& dataSet3D[[i,1,1]]<0.45 &&

dataSet3D[[i,1,2]]>0.05 && dataSet3D[[i,1,2]]<0.45),

AppendTo[reducedDataSet3D,dataSet3D[[i]]]

],

{i,Length[dataSet3D]}

];

viewPoint3D={1.9, -3.0, 0.9};

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

pureOriginalFunction,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

5.2 Isn’t it just ...? 423

so that the true maximum is only framed by a few points

viewPoint3D={0.0,0.0,3.0};

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

pureOriginalFunction,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

424 5 Discussion

a machine learning approach is likely to completely fail. A perceptron model fit

with an inadequate number of hidden neurons may lead to an approximated model

function that does not describe the hole region at all,

numberOfHiddenNeurons=10;

perceptronInfo=CIP‘Perceptron‘FitPerceptron[reducedDataSet3D,

numberOfHiddenNeurons];

purePerceptron3dFunction=Function[{x,y},

CIP‘Perceptron‘CalculatePerceptron3dValue[x,y,perceptronInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

purePerceptron3dFunction,labels]

i.e. it leads to a flat valley with a zero gradient without any optimum. A maximum

search must inevitably fail:

FindMaximum[purePerceptron3dFunction[x,y],{x,0.2},{y,0.2}]

Encountered a gradient that is effectively zero. The result returned may not be a maximum;

it may be a minimum or a saddle point.

{0.143304,{x → 0.2,y → 0.2}}

In this specific case a SVM approach with an adequate model function

kernelFunction={"Wavelet",0.5};

svmInfo=CIP‘SVM‘FitSvm[reducedDataSet3D,kernelFunction];

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

5.2 Isn’t it just ...? 425

viewPoint3D={1.9, -3.0, 0.9};

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

pureSvm3dFunction,labels,GraphicsOptionViewPoint3D -> viewPoint3D]

is still able to predict a maximum not too far from the true original one:

FindMaximum[pureSvm3dFunction[x,y],{x,0.2},{y,0.2}]

{3.68395,{x → 0.379893,y → 0.15681}}

But this is just good luck - and explains why machine learning performs astonish-

ingly well for one problem and fails utterly for another. Although the problems and

data sets may seem to be very similar it can be small and subtle differences in the

data that lead to completely different outcomes. A final point may be a closer look

of what was earlier described as "indicated by the surrounding data". Normally

distributed data are generated around a 2D function

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)ˆ2]];

argumentRange={1.0,7.0};

numberOfData=100;

standardDeviationRange={0.1,0.1};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above function"};

functionValueRange={0.0,5.5};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels,

426 5 Discussion

GraphicsOptionFunctionValueRange2D -> functionValueRange]

with a single maximum:

FindMaximum[pureOriginalFunction[x],{x,3.9}]

{5.02091,{x → 4.08392}}

Again data are removed around the maximum

reducedXyErrorData={};

Do[

If[!(xyErrorData[[i,1]]>3.0&&xyErrorData[[i,1]]<5.4),

AppendTo[reducedXyErrorData,xyErrorData[[i]]]],

{i,Length[xyErrorData]}

];

labels={"x","y","Reduced data above function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[reducedXyErrorData,

pureOriginalFunction,labels,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

5.2 Isn’t it just ...? 427

to produce a data hole. A perceptron fit to the data with an adequate number of

hidden neurons

reducedDataSet=

CIP‘DataTransformation‘TransformXyErrorDataToDataSet[

reducedXyErrorData];

numberOfHiddenNeurons=3;

perceptronInfo=CIP‘Perceptron‘FitPerceptron[reducedDataSet,

numberOfHiddenNeurons];

purePerceptron2dFunction=Function[x,

CIP‘Perceptron‘CalculatePerceptron2dValue[x,perceptronInfo]];

labels={"x","y","Reduced data above approximate model"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[reducedXyErrorData,

purePerceptron2dFunction,labels,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

leads to an approximated model function with a maximum very close to the true

original one:

428 5 Discussion

FindMaximum[purePerceptron2dFunction[x],{x,3.9}]

{3.70255,{x → 4.11641}}

It now becomes clear why the data can indicate a maximum: The data blocks

on the left and on the right of the hole are best described by lines with positive

curvature. For a continuous model function these lines must be connected by a line

with negative curvature which inevitably produces a maximum in between. If the

data blocks are further reduced

reducedXyErrorData={};

Do[

If[!(xyErrorData[[i,1]]>2.0&&xyErrorData[[i,1]]<6.0),

AppendTo[reducedXyErrorData,xyErrorData[[i]]]],

{i,Length[xyErrorData]}

];

labels={"x","y","Reduced data above function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[reducedXyErrorData,

pureOriginalFunction,labels,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

so that they no longer advise the maximum in between due to their curvature an

approximated model function

reducedDataSet=

CIP‘DataTransformation‘TransformXyErrorDataToDataSet[

reducedXyErrorData];

numberOfHiddenNeurons=3;

perceptronInfo=CIP‘Perceptron‘FitPerceptron[reducedDataSet,

numberOfHiddenNeurons];

purePerceptron2dFunction=Function[x,

CIP‘Perceptron‘CalculatePerceptron2dValue[x,perceptronInfo]];

labels={"x","y","Reduced data above approximate model"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[reducedXyErrorData,

5.3 Computational intelligence 429

purePerceptron2dFunction,labels,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

will most likely fail to suggest one (in this case a maximum is detected but far

outside the data region without any meaning):

FindMaximum[purePerceptron2dFunction[x],{x,3.9}]

{3.78097,{x → 108.998}}

It may be only a very few data that are crucial for success or failure and they are

not known in advance. In summary data analysis may lead to a discovery of hidden

optima which can not be easily derived from the pure data - but there is of course

no guarantee of success.

5.3 Computational intelligence

Are computers intelligent? Or - more humble - is machine learning a first glimpse

of computational intelligence? And by the way: What at all means to be intelligent?

To put it short: There is no generally accepted definition of intelligence - it is an um-

brella term that comprises an interplay of human behavioral properties like abstract

thought, reasoning, planning, problem solving, communication or learning (see [In-

telligence 2010]). As an intuitive definition one may suggest that intelligent behavior

means to act as an average human being. This is the basis of a famous test for ma-

chine intelligence proposed by Alan Turing in 1950: If a machine’s behavior may

not be distinguished from human behavior then the machine must be attributed to be

intelligent (see [Turing 1950]). But it may be comparatively easy to simulate human

430 5 Discussion

behavior as was early demonstrated by the definitely non-intelligent ELIZA com-

puter program that mimicked a human psychotherapist (see [Weizenbaum 1966])

- and complex tests of human behavior which would be able to reveal fakes like

ELIZA could easily have the catastrophic result to attribute non-humanity to liv-

ing human beings. Thus the situation remains dodgy. In addition the introductory

questions touch old and basic philosophical issues like the famous mind-body prob-

lem. The two major schools of thought that try to resolve this problem are dualism

and monism: Dualism claims that mind and matter are different existing substances

which interact in some way. Unfortunately nothing is said about the nature and

the details of this mind-body interaction which makes this position quite obscure.

Monism on the other hand regards mind as an emerging function of the dynamics

of specifically organized matter so there is just matter as an ontological entity. Un-

fortunately monism is still not able to tell how this emergence of mind from matter

is achieved in detail (this unsatisfying situation may be illustrated with a famous

cartoon by Sydney Harris: There are two persons standing in front of a chalkboard

which shows a mathematical derivation with an intermediate step paraphrased as

Then A Miracle Occurs: One person points at this statement by telling the other I

think you should be more explicit here in step two). In the 20th century the old philo-

sophical problem was complemented with questions about a possible artificial intel-

ligence which may be realized by computational devices as well as questions about

intelligence acceleration as an effect of combining man and machine into cybernetic

organisms (cyborgs). In a situation of vague definitions and fundamental unsolved

problems it is not surprising that there is still a lively discussion of all these fasci-

nating issues (e.g. see [Hofstadter 1981], [Penrose 1991], [Dreyfus 1992], [Penrose

1994], [Churchland 1996], [Kaku 1998], [Koch 2004], [Hawkins 2005], [Baggott

2005], [Kurzweil 2005], [Mitchell 2009], [Kurzweil 2012], [Barrat 2013] or [Ford

2015]).

From a scientific point of view biological systems in general and human brains in

particular are just ordinary pieces of matter that obey the known laws of physics and

chemistry. There is nothing special about them: Concepts like "supernormal vis

vitalis" (specific forces of living systems beyond physics) or "immaterial souls"

besides matter (essential for the dualist view, compare above) are outside any seri-

ous scientific discussion: There is simply no clue for their existence (that is why the

majority of scientists nowadays tends to be monists and materialists with regard-

ing matter as the only ontological entity - at least in their daily scientific work).

But whereas the human brain is ordinary in a pure material sense it is an ex-

tremely intricate piece of matter in a structural sense with a hundred billion nerve

cells (neurons) that form a hundred trillion connections (synapses) for mutual in-

teraction: It is the most complex natural system of the known universe. And al-

though there is an already broad and impressive knowledge about its neurobio-

logical parts and their chemical and physical interactions it is still completely un-

known how the whole system works and achieves its intelligent characteristics (this

miracle is the monists’ problem, compare above): All there is are appealing pro-

posals (like the memory-prediction framework theory etc., see [Hawkins 2005],

[Kurzweil 2012]) but no true "Theory of the Brain"- a challenge that is likely to

5.3 Computational intelligence 431

become the foundational scientific feat of the 21th century with the aid of more

developed computers. Today’s computers are not able to simulate or even repre-

sent such a complex biological structure (see [Kurzweil 2005]): The human brain

is able to update its hundred trillion (1014) synapses about a 100 times a second

(each neuron is a comparatively slow functional unit with a reset time of about

10 ms) which means that the brain performs about 1014 × 100 = 1016 synaptic

transactions per second. If a single synaptic transaction is formally described by

about 1.000 computational calculations a digital computer would need to perform

at least 1016 × 1.000 = 1019 calculations per second to simulate a human brain

(not too mention the necessary computational memory which would be at least

1014 × 10 = 1015 = 1petabyte = 1.000terabyte if every synapse is represented by

only 10 bytes of memory). Compared to the fastest available computers with a per-

formance of about 1015 calculations per second these (more than) rough estimates

illustrate the existing complexity gap between the artificial in-silico machines and

the evolutionary developed biological system. But within the next decades the com-

putational devices may achieve similar (or even higher) levels of complexity as their

biological predecessors - and early attempts to reverse-engineer the mammalian

brain have already started (e.g. see [Blue Brain Project], [Human Brain Project]).

So from a pure materialist’s point of view today’s computers can not be intelligent

due to their insufficient degree of complexity compared to the human brain as a

gold standard - where another interesting question remains currently unanswered

whether human intelligence really needs the brain’s complexity or may be realized

by a simpler architecture. Also note that this view does not necessarily imply that

powerful enough computers automatically produce intelligent behavior. But they are

regarded as the necessary and sufficient tools to successfully tackle the mind-body

problem at leasts from the monist’s point of view.

Computers are often blamed because they are not able to understand simple

daily-life situations. A brief example (inspired by Roger Schank, see [Schank 1977])

is the following message: John went to a restaurant. He ordered lobster. He paid the

bill and left. A proper comprehension of this message could be tested with the ques-

tion: "What did John eat?" A human being is extremely like to reply "Lobster, of

course!" but the best a computer could respond is "I don’t know!" - an answer

that would be taken as an indication of failed understanding. But the computer’s

answer is correct since the message did not at all contain what John really ate. Hu-

mans do not consciously hear, smell, see or feel what they really hear, smell, see

or feel: Every sensual input is automatically interpreted by the brain within a con-

crete situation. This interpretation is among others a function of the historical and

sociocultural context in which the human being is living in. Concerning the above

message an inhabitant of an American or European society knows that someone

usually eats in a restaurant what he orders since it is normally not allowed to bring

in own food etc. Thus the objectively missing contextual piece of information is au-

tomatically filled-in by the neural information processing. To let a computer act as

a human being in daily-life situations an access to a human-comparable contextual

memory would be necessary which is at present technically impossible to achieve

(compare above, an approximation is the aim of the Cyc project, see [Cyc 2010]).

432 5 Discussion

So the failure of the computer system is not a principle one: A human being would

fail as well if it had to act within an unknown context since then the automatic fill-in

could not work adequately. The related unsure feeling in an alien environment is

often experienced by foreigners in their new home countries and this is why cross-

cultural training becomes more and more popular in an increasingly globalized and

flexible world.

The above arguments suggest that contemporary computers are not intelligent in

comparison to an average culturally educated specimen of homo sapiens. But there

is a justified hope to scientifically reveal the miracle of human intelligence and there

is no principal objection against a future human-like machine intelligence with more

developed computational devices.

And if the intelligence discussion is confined to the initial more humble ques-

tion about a first glimpse of computational intelligence exerted by current machine

learning the answer may turn from a simple "no" to a more optimistic outcome. It

is inevitable for a corresponding line of thought to at least come to a preliminary

working definition of what means intelligent and to compare its characteristics with

the current power of machine learning. Besides the semantic ambiguities it has to be

recognized that there is an additional well-known semantic shift of what is regarded

to be intelligent which may be summarized by the following rule of thumb: If a ma-

chine is capable of performing an intelligent operation this operation is no longer

called intelligent. Obviously homo sapiens likes its exceptional status on earth. For

an illustration of emerging computational intelligence different ways of searching

in data are sketched in the following. Searching is valued from being a dull task up

to a challenge of the highest level of intellectual sophistication thus it may be worth

to outline this ascent and its relation to the issue in question.

Let’s start with an exact search: A data item is searched as a complete whole in

a defined volume of data, e.g. a distinct name in a telephone book, a full chemi-

cal structure in a compound database or a complete biological sequence in a set of

sequences. This type of search may be performed in a sequential manner (i.e. the

data item is successively compared one after another to each single data item of the

data volume) or with the data volume in a preprocessed state (e.g. as a binary tree

or a hash-table) to increase the search speed. Although the details of the concrete

computational implementation of an exact search may be very difficult and thus in-

tellectually demanding an exact search is not regarded to be an intelligent operation.

It is a dull task.

The next common step for a search with enhanced options is to soften the data

item comparison to match only partially. For the name search in a telephone book

this may be realized by the well-known wildcard characters like "*" at the begin-

ning or the end of a name (left/right truncation, e.g. "May*" will find "Mayer",

"Maybridge", "Mayfield" etc.). In chemical compound search this kind of struc-

ture retrieval is named substructure search: The structure query defines only a part

of a full chemical structure (a substructure like a benzene ring or a functional chem-

ical unit like a hydroxy group) and each full chemical structure of the database is

checked for an occurrence of this substructure. Substructure searches are important

for many areas of molecular research like chemical synthesis or drug development.

5.3 Computational intelligence 433

Similarly a biological sequence search will only look for the defined parts of the

(base pair or amino acid) sequences of a gene or protein in the volume of sequences

under investigation, e.g. to find highly conserved sequence regions in biological

evolution. The technical implementation of a partial-match search may be very de-

manding (e.g. chemical substructure search is an active field of research for decades

and the development of an adequate sub-graph isomorphism algorithm is a severe

and an intellectually extremely challenging task) but also this kind of search is gen-

erally not attributed to be intelligent. Nonetheless a borderline of intelligence may

come into sight: The latter kind of a defined softened search may retrieve data that

were not primarily anticipated by a user (but of course are part of the user’s defined

solution space if the search performed in a correct manner). This means that emerg-

ing intelligence could be attributed to a computational method that yields results

that are beyond simple anticipation of a human being: To perform the same task a

human being would think that it has to apply its intelligent abilities rather than its

brute labor. This is of course a very weak definition but may be at least operational

for a division between (emerging) intelligent and (predominantly) non-intelligent

computational methods: An exact search was characterized as a boring and dull task

(too) often encountered in daily-life whereas for a partial-match search someone

may feel an upcoming necessity to use his noddle.

If this line is followed then a true computationally intelligent search would be

able to retrieve data that are related to the query in a non-trivial sophisticated man-

ner. These results may only be similar or abstractly associated to what was searched

for and they may reveal connections or insights that were not initially intended.

In other words: Query (input) and answer (output) are related by a non-trivial in-

put/output mapping function f. But the construction of these complex and non-trivial

mapping functions f for an input/output pair obtained by output = f (input) or in a

adequately coded mathematical notation y = f (x) respectively is exactly the goal of

machine learning as discussed in chapter 3 and 4. As a very basic example a name

search could be fuzzy so much that only phonetically similarity is in question, i.e.

query "Meyer" would yield the answers "Mayer", "Maher", "Mayr" etc. More

advanced similarity or associative name searches could involve arising elements

of the elaborate combinated logic used by Sherlock Holmes and his successors to

detect malefactors. A chemical structure search may try to retrieve structures that

are in some way similar to a query structure. As far as topological similarity is in

question such a query could of course yield the results of a corresponding substruc-

ture search but with an enhanced result set that consists of additional structures.

The latter are not true substructures in a topological sense but resemble the query

structure according to a defined measure of similarity. This measure may be defined

quantitatively by an overlap (Tanimoto) coefficient that evaluates a similarity value

in percent on the basis of individual bit vectors for the query and a test structure

of the database: Each bit of a bit vector may encode the appearance (true) or ab-

sence (false) of a specific chemical group (like a benzene ring, a hydroxy group

etc.) in a chemical structure. The Tanimoto coefficient then computes the ratio of

the number of intersected "true"-bits (i.e. bits which are simultaneously true in

both structures) to the number of united "true"-bits of query and test structure. If

434 5 Discussion

the ratio/coefficient is above a specific threshold (commonly 90%) then query and

test structure are regarded to be similar and the test structure is transferred to the

answer set. For more ambitious similarity searches the complexity of the similarity

measure or the similarity detection function similarity value= f (test structure) will

have to be readily increased up to an arbitrary difficult level, e.g. concerning the

similarity in physico-chemical, environmental or pharmaceutical effects. A biologi-

cal sequence related similarity search (a sequence alignment) makes use of scoring

systems with (evolutionary derived) similarity matrices for monomer (base pair or

amino acid) comparisons and specific penalties for alignment gaps. An optimum

(local or global) sequence alignment between query and test sequence for a defined

scoring system can be achieved with specific computational methods (dynamic pro-

gramming): The sequence similarity search operation became so widespread and

popular in molecular biology related research and development that the new verb

"to blast"was established to denote its execution (named after the heuristic BLAST

algorithm which is one of the most popular algorithms used for biological sequence

alignment). As mentioned for chemical structures a biological sequence related sim-

ilarity search may be extended to arbitrary levels of complexity, e.g. concerning the

biological function of sequences or their specific expression under certain circum-

stances. Thus abstractly associated properties of chemical structures or biological

sequences may be revealed by a trained computationally intelligent machine learn-

ing system which would be otherwise the results of attempts of well-educated hu-

man scientists (or simply impossible). And they may reveal completely new insights

(the possible detection of hidden optima discussed above) that were not anticipated

at all. The latest and globally recognized triumph of associative computational intel-

ligence was achieved by IBM’s Watson question answering computer system which

excelled two human champions on the quiz show Jeopardy! in 2011 (see [IBM Wat-

son]).

Computational intelligence which is modestly and preliminary characterized in

the above manner is not yet ready to surpass its human predecessor in general but

rather to accelerate and enhance human intelligence and creativity in many ways:

It’s the combination and hybridization of both man and machine that shapes the

developments at the beginning of the 21th century. And a true man-machine inter-

action on a WYTIWYG (What You Think Is What You Get) basis comes into sight.

5.4 Final remark

In chapter 1 the motivation of this book was stated to show how specific situations

of the interplay between data and models could be tackled: Firstly the situation was

sketched where a model function f is known but not its parameters (denoted situ-

ation 2 in chapter 1) which was discussed on the basis of statistical curve fitting

approaches. The second situation (situation 3 in chapter 1) contained the additional

inconvenience that the model function f itself is unknown which led to attempts of

unsupervised and supervised machine learning. The road from curve fitting to ma-

5.4 Final remark 435

chine learning demonstrated how we can proceed from experimental data to mod-

els: A road that is often stony and full of perils and pitfalls. It was aimed to not

only mention these difficulties but to outline how they can be successfully over-

come. This implies the courage and the honesty to stop any analysis in the case

of inadequate data to avoid the simple GIGO (garbage-in/garbage-out) effect. But

appropriate data analysis and model construction reward all efforts with convinc-

ing results up to possible new insights that were not anticipated before. With a still

exponentially increasing computational power the sketched methods will become

more extensive and faster and thus more widespread and easier to use. Combination

strategies and new heuristics for their application will emerge so that they become

more and more ubiquitous tools (not only) in scientific research and development.

Appendix A

CIP -Computational Intelligence Packages

The Computational Intelligence Packages (CIP) are a high-level function library that

is used for all demonstrations throughout this book (see [CIP]). It is built on top of

the computing platform Mathematica (see [Mathematica]) to exploit its algorithmic

and graphical capabilities. The CIP design goals were neither maximum speed nor

minimum memory consumption but a largely unified and robust access to high-level

functions necessary for demonstration purposes. Thus CIP is not an optimized and

maximum efficient library for scientific application although it may be practically

utilized in many operational areas (see comments below). Since CIP is open-source

the library may be used as a starting point for customized and tailored extensions

(for download location see [CIP]).

A.1 Basics

The unification goal of CIP design primarily addresses the optimization calcula-

tions: Data (with adequate data structures) are submitted to Fit methods provided

by the CurveFit, Cluster, MLR, MPR, SVM or Perceptron packages to perform a

corresponding optimization procedure. The result of the latter is a comprehensive

info data structure, e.g. a curveFitInfo, clusterInfo, mlrInfo, mprInfo, svmInfo or

perceptronInfo. This info data structure can then be passed to corresponding Show

methods for multiple evaluation purposes like visual inspection of the goodness of

fit or to Calculate methods for model related calculations. Similar operations of

different packages are denoted in a similar manner to ease their use. Method sig-

natures do mainly contain only structural hyperparameters where technical control

parameters may be changed via options if necessary. CIP consists of the following

packages:

• Utility: The Utility package is a basic package that collects several general meth-

ods used by other packages like GetMeanSquaredError which is used by all ma-

© Springer International Publishing Switzerland 2016
A. Zielesny, From Curve Fitting to Machine Learning, Intelligent Systems
Reference Library 109, DOI 10.1007/978-3-319-32545-3

437

438 A CIP -Computational Intelligence Packages

chine learning related packages. Thus this package is used to decrease redundant

code.

• ExperimentalData: The ExperimentalData package provides all data used through-

out the book where details are provided below. This package makes use of the

packages Utility, DataTransformation and CurveFit.

• DataTransformation: CIP performs many internal data transformations for dif-

ferent purposes, e.g. all data that are passed to a machine learning method are

scaled before the operation (like ScaleDataMatrix) and re-scaled afterwards (like

ScaleDataMatrixReverse). The DataTransformation package comprehends all

these methods in a single package. It uses the Utility package.

• Graphics: The Graphics package tailors Mathematica’s graphical functions for

application throughout the book. It is used for all graphical representations and

uses itself the Utility and DataTransformation packages.

• CalculatedData: The CalculatedData package complements the Experimental-

Data package with methods for the generation of simulated data like normally

distributed xy-error data around a function with GetXyErrorData. It uses meth-

ods from the Utility and DataTransformation packages.

The packages discussed so far complement and underlie the actual core packages

of CIP. These core packages address curve fitting, clustering, multiple linear and

polynomial regression, three-layer perceptrons and support vector machines:

• CurveFit: The CurveFit package tailors Mathematica’s built in curve fitting

method (NonlinearModelFit) for least-squares minimization and adds a smooth-

ing cubic splines support. Since NonlinearModelFit is an algorithmic state-of-

the-art implementation for curve fitting the CurveFit package is well-suited for

professional data analysis purposes. It uses the Utility, Graphics, DataTransfor-

mation and CalculatedData packages.

• Cluster: The Cluster package tailors Mathematica’s built in FindClusters method

for clustering purposes and adds an adaptive resonance theory (ART-2a) support.

FindClusters is an algorithmic state-of-the-art implementation for k-medoids

clustering thus the Cluster package may be used for professional tasks (see [Get-

Clusters]). It uses the Utility, Graphics and DataTransformation packages.

• MLR and MPR: The MLR and MPR packages tailor Mathematica’s built in Fit

method for multiple linear regression (MLR) and multiple polynomial regression

(MPR). These algorithmic implementations are state-of-the-art so both packages

may be used for professional applications (see [FitMlr] and [FitMpr]). They use

the Utility, Graphics, DataTransformation and Cluster packages.

• Perceptron: The Perceptron package provides optimization algorithms for three-

layer perceptrons. It utilizes Mathematica’s FindMinimum (ConjugateGradi-

ent) or NMinimize (DifferentialEvolution) methods for minimization tasks (see

[FindMinimum/FindMaximum]and [NMinimize/NMaximize]). The package also

provides a Backpropagation plus Momentum minimization and a classical ge-

netic algorithm based minimization. Although the quality of the minimization

algorithms is state-of-the-art the specific calculation setup contains non-optimum

redundancies that decrease performance and increase memory consumption.

A.2 Experimental data 439

Thus the usage of this package is confined to small data sets with about a (few)

thousand I/O pairs for practical application. It uses the Utility, Graphics, Data-

Transformation and Cluster packages.

• SVM: The SVM package provides constrained optimization algorithms for sup-

port vector machines (SVM). It utilizes Mathematica’s FindMaximum (Interior-

Point) or NMaximize (DifferentialEvolution) methods for constrained optimiza-

tion tasks (see [FindMinimum/FindMaximum] and [NMinimize/NMaximize]).

Although these algorithms are robust they do not exploit any specifics of the sup-

port vector objective function to increase optimization convergence speed etc.

Therefore a practical application is advised to only very small data sets with less

than a thousand I/O pairs. The package uses the Utility, Graphics, DataTransfor-

mation and Cluster packages.

A.2 Experimental data

Clear["Global‘*"];

<<CIP‘Utility‘

<<CIP‘DataTransformation‘

<<CIP‘ExperimentalData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

The CIP package ExperimentalData provides mainly experimental and some the-

oretically calculated data which are used throughout the book. They are briefly

sketched in the following.

A.2.1 Temperature dependence of the viscosity of water

The xy-error data describe the temperature dependence of the viscosity η of water

(measured in centi-Poise which is the scientific unit of viscosity) in the temperature

range from 293.15 to 323.15 K (20 to 50 degree Celsius) with a very small estimated

experimental error of 0.0001
(
10−4

)
cP (see [Weast 1975] for reference):

xyErrorData=CIP‘ExperimentalData‘GetWaterViscosityXyErrorData[];

labels={"T [K]","\[Eta] [cP]","Viscosity of water"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

440 A CIP -Computational Intelligence Packages

A.2.2 Potential energy surface of hydrogen fluoride

The xy-error data describe the potential energy of the hydrogen fluoride molecule

(measured in Hartree) as a function of the interatomic distance (measured in

Angstrom). A very small absolute error of 10−6 is assumed for the energy values.

They were calculated with the ab-initio quantum-chemical software package Gaus-

sian using a uMP4/6-311++g(3df, 3pd) model chemistry (see [Gaussian 2003]).

xyErrorData=

CIP‘ExperimentalData‘GetHydrogenFluoridePESXyErrorData[];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of hydrogen fluoride (HF)"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

A.2 Experimental data 441

A.2.3 Kinetics data from time dependent IR spectra of the

hydrolysis of acetanhydride

The hydrolysis of acetanhydride was monitored online by infrared (IR) spectra

which were taken every 2 minutes (see [Meyer 2010]). The list of IR spectra

spectra=CIP‘ExperimentalData‘GetAcetanhydrideHydrolysisIRSpectra[];

Length[spectra]

22

ranges from spectrum 1 (at start = 0 minutes) to spectrum 22 (at the end = 44

minutes). Each spectrum is a list of 2D xy-points where the argument value (x) is

the wave number in 1/cm and the dependent value (y) the corresponding absorption

at this wave number. From the full spectrum

index=1;

time=(index-1)*2;

labels={"Wavenumber [1/cm]","Absorption",

StringJoin["Full IR spectrum (",ToString[time]," min)"]};

pointSize=0.01;

CIP‘Graphics‘Plot2dPoints[spectra[[index]],labels,

GraphicsOptionPointSize -> pointSize]

the acetanhydride absorption peak around 1140 1/cm is used for tracking the

reduction of acetanhydride due to the hydrolysis reaction. The peak has a maximum

height at the beginning of the reaction

partialSpectrum=Select[spectra[[index]],#[[1]]<1500&];

labels={"Wavenumber [1/cm]","Absorption",

StringJoin["Zoomed IR spectrum (",ToString[time]," min)"]};

442 A CIP -Computational Intelligence Packages

CIP‘Graphics‘Plot2dPoints[partialSpectrum,labels,

GraphicsOptionPointSize -> pointSize]

and then decreases with reaction progress

index=11;

time=(index-1)*2;

partialSpectrum=Select[spectra[[index]],#[[1]]<1500&];

labels={"Wavenumber [1/cm]","Absorption",

StringJoin["Zoomed IR spectrum (",ToString[time]," min)"]};

CIP‘Graphics‘Plot2dPoints[partialSpectrum,labels,

GraphicsOptionPointSize -> pointSize]

to an almost complete disappearance at the end of the monitored time period:

A.2 Experimental data 443

index=22;

time=(index-1)*2;

partialSpectrum=Select[spectra[[index]],#[[1]]<1500&];

labels={"Wavenumber [1/cm]","Absorption",

StringJoin["Zoomed IR spectrum (",ToString[time]," min)"]};

CIP‘Graphics‘Plot2dPoints[partialSpectrum,labels,

GraphicsOptionPointSize -> pointSize]

The height of the peak is linearly correlated to the chemical concentration of ac-

etanhydride (Lambert-Beer law). Thus the most straightforward procedure to extract

kinetics data from the spectra is to simply use the maximum peak absorption value

at each time. This method is denoted "method 1" and executed with GetAcetanhy-

drideKineticsData1 of the CIP ExperimentalData package:

kineticsDataMethod1=GetAcetanhydrideKineticsData1[];

Note that the absorption at the end of the reaction with completely vanished

acetanhydride is not zero as expected but has a baseline (background) value above

zero:

labels={"Time [min]","Absorption",

"Measured absorption maxima around 1140 1/cm"};

CIP‘Graphics‘Plot2dPoints[kineticsDataMethod1,labels]

444 A CIP -Computational Intelligence Packages

The non-zero baseline is an unlovely artifact of the measurement process. More

elaborate methods of kinetics data extraction from the spectra try to take the un-

wanted baselines into account to correct the absorption for background indepen-

dence. A possible more elaborated method (denoted "method 2") proceeds as fol-

lows. The peak of each spectrum is isolated in the wave number range 1060 to 1220

1/cm (shown here for the first spectrum at the beginning of the reaction):

index=1;

time=(index-1)*2;

labels={"Wavenumber [1/cm]","Absorption",

StringJoin["IR spectrum (",ToString[time]," min)"]};

partialSpectrum=

Select[spectra[[index]],(#[[1]]<1220 && #[[1]]>1060)&];

CIP‘Graphics‘Plot2dPoints[partialSpectrum,labels]

The absorption values are assumed to be very precise with a small absolute error

of 0.0005 and the spectral data are transformed to xy-error data for curve fitting:

A.2 Experimental data 445

errorOfAbsorption=0.0005;

partialSpectrumData=

CIP‘DataTransformation‘AddErrorToXYData[partialSpectrum,

errorOfAbsorption];

The spectral data are smoothed with cubic splines (compare chapter 2)

reducedChisquare=1.0;

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[partialSpectrumData,

reducedChisquare];

with a convincing result:

labels={"Wavenumber [1/cm]","Absorption",

StringJoin["IR spectrum with smoothing splines (",ToString[time],

" min)"]};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},partialSpectrumData,

curveFitInfo,CurveFitOptionLabels -> labels];

Thus the spectral data may be successfully represented by the smoothing cubic

splines function:

argumentRange={partialSpectrumData[[1,1]],

partialSpectrumData[[Length[partialSpectrumData],1]]};

functionValueRange={0.1,0.55};

pureFunction=Function[internalArgument,

CIP‘CurveFit‘CalculateFunctionValue[internalArgument,

curveFitInfo]];

labels={"Wavenumber [1/cm]","Absorption","Smoothing cubic splines"};

graphics=CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]

446 A CIP -Computational Intelligence Packages

Next the locations of the minimum left of the peak, of the peak maximum and

the minimum right of the peak are determined with the aid of the smoothing cubic

splines model:

roots={};

oldPoint={partialSpectrumData[[1,1]],

CIP‘CurveFit‘CalculateDerivativeValue[1,partialSpectrumData[[1,1]],

curveFitInfo]};

Do[

newPoint=

{i,CIP‘CurveFit‘CalculateDerivativeValue[1,i,curveFitInfo]};

If[oldPoint[[2]]*newPoint[[2]]<= 0,

AppendTo[roots,x/.FindRoot[

CIP‘CurveFit‘CalculateDerivativeValue[1,x,curveFitInfo],

{x,oldPoint[[1]],newPoint[[1]]}]]

];

oldPoint=newPoint,

{i,partialSpectrumData[[1,1]],

partialSpectrumData[[Length[partialSpectrumData],1]],1}

];

The detected locations

roots

{1071.68,1138.07,1200.94}

can be used to construct a connection (linearly interpolated line) between the left

and right minima to approximate the unknown baseline of the peak. The absorption

value may then be corrected with the baseline value at maximum absorption

minimum1={roots[[1]],

CIP‘CurveFit‘CalculateFunctionValue[roots[[1]],curveFitInfo]};

maximum={roots[[2]],

CIP‘CurveFit‘CalculateFunctionValue[roots[[2]],curveFitInfo]};

minimum2={roots[[3]],

CIP‘CurveFit‘CalculateFunctionValue[roots[[3]],curveFitInfo]};

A.2 Experimental data 447

baselineCorrection={

maximum[[1]],

minimum1[[2]]+

(minimum2[[2]]-minimum1[[2]])/(minimum2[[1]]-minimum1[[1]])*
(maximum[[1]]-minimum1[[1]])

};

which may be graphically depicted for illustration:

Show[

graphics,

Epilog -> {Thickness[0.005],PointSize[0.03],RGBColor[1,0,0],

Line[{minimum1,minimum2}],Line[{baselineCorrection,maximum}],

Point[minimum1],Point[maximum],Point[minimum2],

Point[baselineCorrection]}

]

The corrected absorption value is the distance between the linearly interpolated

baseline value at the maximum position and the maximum measured absorption

value. This procedure is applied to all spectra with the GetAcetanhydrideKinetics-

Data2 method of the CIP ExperimentalData package:

kineticsDataMethod2=GetAcetanhydrideKineticsData2[];

A graphical display of the kinetics data demonstrates the improvement in com-

parison to method 1:

labels={"Time [min]","Absorption",

"Corrected absorption maxima around 1140 1/cm"};

CIP‘Graphics‘Plot2dPoints[kineticsDataMethod2,labels]

448 A CIP -Computational Intelligence Packages

The absorption values now seem to drop to zero as it is expected for a vanished

acetanhydride. Note that there is still an obvious deviation of the absorption peak

value of the first spectrum at 0 minutes which could be traced to an initial measure-

ment delay. As a final remark it should be clear that the kinetics data obtained with

both methods are flawed by systematic errors due to their individual data extrac-

tion process: Whereas method 1 completely neglects all baseline issues the more

elaborate method 2 performs an arbitrary linear approximation procedure only.

A.2.4 Iris flowers

The iris flower classification data set (see [Fisher 1936]) consists of measurements

of the length and width of sepal and petal of 50 samples from each of the three

species of iris flowers: Iris setosa (denoted species 1), iris versicolor (species 2) and

iris virginica (species 3). Each input is a vector with 4 components that denote the

sepal length (component 1), the sepal width (component 2), the petal length (com-

ponent 3) and the petal width (component 4) in millimeter. Each output codes the

corresponding species (see chapter 1 for encoding classification data set outputs).

The inputs alone may be accessed for each species separately

inputsOfSpecies1=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies1[];

inputsOfSpecies2=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies2[];

inputsOfSpecies3=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies3[];

or joined:

inputs=CIP‘ExperimentalData‘GetIrisFlowerInputs[];

The complete classification data set with all I/O pairs for all three species can be

accessed with

A.2 Experimental data 449

classificationDataSet=

CIP‘ExperimentalData‘GetIrisFlowerClassificationDataSet[];

A.2.5 Adhesive kinetics

The adhesive kinetics data set describes the dependence of a kinetics parameter

on the composition of an adhesive polymer mixture. The adhesive polymer mixture

contains four components: Methyl methacrylate (MMA), poly(methyl methacrylate)

(PMMA), dibenzoyl peroxide and N,N-diethylol-p-toluidine.Each input vector con-

tains 3 components with the mass ratio of MMA to PMMA in percent (component

1), the mass of dibenzoyl peroxide in gram (component 2) and the mass of N,N-

diethylol-p-toluidine in gram (component 3) - the complete mass of each mixture

was about 20g. The output vector contains 1 component which is the time in seconds

to the maximum temperature as a characteristic property of the exothermic adhesive

hardening reaction (see [Koch 2003]). The adhesive data set comprises 73 different

mixtures

dataSet=CIP‘ExperimentalData‘GetAdhesiveKineticsDataSet[];

Length[dataSet]

73

with a clear design of experiment which may be illustrated by a 3D display of

the inputs

inputs=CIP‘Utility‘GetInputsOfDataSet[dataSet];

labels={"Ratio","C2","C3"};

viewPoint3D={0.6,-3.4,2.0};

CIP‘Graphics‘Plot3dPoints[inputs,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

450 A CIP -Computational Intelligence Packages

where "Ratio" denotes the mass ratio of MMA to PMMA, C2 the mass of diben-

zoyl peroxide (in gram) and C3 the mass of N,N-diethylol-p-toluidine (in gram).

There are 3 MMA:PMMA ratios measured: 80%, 85% and 90%. Since the full adhe-

sive kinetics data set is four-dimensional (3 input components plus 1 output compo-

nent) a three-dimensional data subset with two input components and 1 output com-

ponent may be obtained for each fixed MMA:PMMA ratio, e.g. for MMA:PMMA

= 80%

polymerMassRatio="80";

dataSet3D=

CIP‘ExperimentalData‘GetAdhesiveKinetics3dDataSet[

polymerMassRatio];

labels={"C2","C3","t"};

CIP‘Graphics‘Plot3dDataSet[dataSet3D,labels]

A.2 Experimental data 451

where "t" denotes the time in seconds to the maximum temperature. The ex-

perimental time-to-maximum-temperature errors were reported to be in the order of

10% to 20% with some outliers.

A.2.6 Intertwined spirals

A intertwined spiral classification data set consists of inputs of dimension 2 and

corresponding outputs that code one of the two spiral classes. The inputs of the first

spiral are calculated with

(x,y) =
(
2cos(u)eu/10,1.5sin(u)eu/10

)
; π ≤ u ≤ 3.5π

and those of the second spiral with

(x,y) =
(
2.7cos(u)eu/10,2.025sin(u)eu/10

)
; −π/2 ≤ u ≤ 2.5π

(see [Juillé 1996] and [Paláncz 2004]). The number of points along the spirals

within the defined intervals may be specified:

numberOfSingleSpiralIoPairs=30;

classificationDataSet60=

CIP‘ExperimentalData‘GetSpiralsClassificationDataSet[

numberOfSingleSpiralIoPairs];

classIndex=1;

inputsOfSpiral1=

452 A CIP -Computational Intelligence Packages

CIP‘DataTransformation‘GetInputsForSpecifiedClass[

classificationDataSet60,classIndex];

classIndex=2;

inputsOfSpiral2=

CIP‘DataTransformation‘GetInputsForSpecifiedClass[

classificationDataSet60,classIndex];

points2DWithPlotStyle1={inputsOfSpiral1,{PointSize[0.02],Red}};

points2DWithPlotStyle2={inputsOfSpiral2,{PointSize[0.02],Green}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

labels={"x","y","Intertwined spirals"};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

A.2.7 Faces

There are 3 faces image classification data sets. They contain 18 I/O pairs each

(faces of 6 cats (class 1), 6 dogs (class 2) and 6 humans (class 3)) with the same

faces but different backgrounds (see [Faces 2010]): An image classification data set

with white background

imageClassificationDataSetWhite=

CIP‘ExperimentalData‘GetFacesWhiteImageDataSet[];

imageInputsWhite=

CIP‘Utility‘GetInputsOfDataSet[imageClassificationDataSetWhite];

GraphicsGrid[

Table[

Image[imageInputsWhite[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]

A.2 Experimental data 453

one with gray background

imageClassificationDataSetGray=

CIP‘ExperimentalData‘GetFacesGrayImageDataSet[];

imageInputsGray=

CIP‘Utility‘GetInputsOfDataSet[imageClassificationDataSetGray];

GraphicsGrid[

Table[

Image[imageInputsGray[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]

and one with black background:

imageClassificationDataSetBlack=

CIP‘ExperimentalData‘GetFacesBlackImageDataSet[];

imageInputsBlack=

CIP‘Utility‘GetInputsOfDataSet[imageClassificationDataSetBlack];

GraphicsGrid[

Table[

Image[imageInputsBlack[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]

454 A CIP -Computational Intelligence Packages

Each input of the image classification data sets is a matrix with 30 rows and

columns that code 30×30 grayscale images (with a 30×30 = 900 pixels in total per

image):

Dimensions[imageInputsWhite[[1]]]

{30,30}

Each pixel contains a specific shade of gray (out of 256 possible values), e.g. the

first pixel

imageInputsWhite[[1,1,1]]

255.

codes "white" (255). To use an image classification data set for clustering or ma-

chine learning the (pixel) matrix must be converted to a (pixel) vector by successive

concatenation of the pixel matrix rows. This is performed with a specific method of

the CIP DataTransformation package, e.g. for the faces image classification data set

with white background:

classificationDataSetWhite=

CIP‘DataTransformation‘ConvertImageDataSet[

imageClassificationDataSetWhite];

Each input of the resulting classification data set contains a vector with 900 com-

ponents where each component contains the grayscale value of its corresponding

pixel:

inputsWhite=

CIP‘Utility‘GetInputsOfDataSet[classificationDataSetWhite];

Length[inputsWhite[[1]]]

900

A.2 Experimental data 455

inputsWhite[[1,1]]

255.

A.2.8 Wisconsin Diagnostic Breast Cancer (WDBC) data

The Wisconsin Diagnostic Breast Cancer (WDBC) classification data set (see

[WDBC data] in the references) consists of 569 I/O pairs

classificationDataSet=

CIP‘ExperimentalData‘GetWDBCClassificationDataSet[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents","ClassCount"},classificationDataSet]

Number of IO pairs = 569

Number of input components = 30

Number of output components = 2

Class 1 with 357 members

Class 2 with 212 members

where each input is mapped onto one of two classes. Every I/O pair refers to a

single patient. The 30 components of each input are real-valued quantities that are

computed from a digitally scanned image of a fine needle aspirate of a breast mass.

Fine needle aspiration biopsy is a very safe and minor surgical procedure which is

widely used in the diagnosis of cancer: A thin and hollow needle is inserted into

the tumor tissue to extract cells which are then (after being stained) examined and

digitally scanned under a microscope. The 30 input components describe charac-

teristics of the extracted cell nuclei present in a digital image. Components 1-10

describe the mean, components 11-20 the standard deviation and components 21-30

the maximum ("worst" or "largest") of a feature. The 10 single features that are

computed for each cell nucleus are (1) radius, (2) texture, (3) perimeter, (4) area,

(5) smoothness, (6) compactness, (7) concavity, (8) concave points, (9) symmetry

and (10) fractal dimension. Thus input components 1, 11 and 21 refer to the same

feature (radius) and are the mean, the standard deviation and the maximum of this

feature for all cell nuclei of a digitized image. The two output components code two

classes where class 1 (coded {1.0, 0.0}) denotes the diagnosis of a benign tumor

and class 2 (coded {0.0, 1.0}) the diagnosis of a malignant tumor.

456 A CIP -Computational Intelligence Packages

A.2.9 Wisconsin Prognostic Breast Cancer (WPBC) data

The Wisconsin Prognostic Breast Cancer (WPBC) classification data set (see [WPBC

data] in the references) consists of 198 I/O pairs

classificationDataSet=

CIP‘ExperimentalData‘GetWPBCClassificationDataSet[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents","ClassCount"},classificationDataSet]

Number of IO pairs = 198

Number of input components = 32

Number of output components = 2

Class 1 with 151 members

Class 2 with 47 members

where each input is mapped onto one of two classes and every I/O pair refers to

a single patient. The first 30 components of each input correspond to those of the

WDBC classification data set. Component 31 is the tumor size (i.e. the diameter

of the excised tumor in centimeters) and component 32 the lymph node status (i.e.

the number of positive axillary lymph nodes). The two output components code two

classes where class 1 (coded {1.0, 0.0}) denotes a non-recurrent and class 2 (coded

{0.0, 1.0}) a recurrent tumor.

The WPBC non-recurrent and recurrent regression data sets (see [WPBC non-

recurrent data] and [WPBC recurrent data] in the references) consist of 151 I/O

pairs

regressionDataSet=

CIP‘ExperimentalData‘GetWPBCNonrecurrentDataSet[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents"},regressionDataSet]

Number of IO pairs = 151

Number of input components = 32

Number of output components = 1

and 47 I/O pairs respectively

regressionDataSet=

CIP‘ExperimentalData‘GetWPBCRecurrentDataSet[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents"},regressionDataSet]

Number of IO pairs = 47

Number of input components = 32

Number of output components = 1

A.2 Experimental data 457

where each input corresponds to those of the WPBC classification data set. The

single output component for the non-recurrent data denotes the disease-free time in

months and for the recurrent data the tumor recurrence time in months.

Note that all WPBC data sets have missing numerical values (which are coded as

NaN: Not a Number) thus a cleaning operation is mandatory prior to use.

A.2.10 QSPR data

A Quantitative Structure-Property Relationship (QSPR) is a model that maps fea-

tures of chemical compounds or reactions (the input) to a quantity of interest (the

output). The features are usually structural and molecular descriptors, i.e. charac-

teristic numbers which can be calculated for a specific chemical compound like its

molecular weight, dipole moment or ring count. The (e.g. physico-chemical) output

quantity of interest is usually measured experimentally.

There are two alienated QSPR data sets available taken from academic and indus-

trial research: The first data set comprises 183 input/output (I/O) pairs that each rep-

resent a single chemical compound. Each input vector consists of 155 components

where each component is a calculated structural descriptor. Each corresponding out-

put vector contains a single experimentally measured value for a compound-related

physico-chemical quantity:

regressionDataSet=

CIP‘ExperimentalData‘GetQSPRDataSet01[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents"},regressionDataSet]

Number of IO pairs = 183

Number of input components = 155

Number of output components = 1

(Note that at first glance the usefulness of the whole data set is in doubt since the

number of calculated input components is nearly equal to the number of I/O pairs,

i.e. already a linear method like MLR is likely to be able to establish a perfect rela-

tionship between the molecular descriptors and the corresponding physico-chemical

quantity). The second data set comprises 2169 input/output (I/O) pairs that each

represent a single chemical reaction. Each input vector consists of 130 components

where each component is a calculated structural descriptor. Each corresponding out-

put vector contains a single experimentally measured value for a reaction-related

physico-chemical quantity.

regressionDataSet=

CIP‘ExperimentalData‘GetQSPRDataSet02[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents"},regressionDataSet]

458 A CIP -Computational Intelligence Packages

Number of IO pairs = 2169

Number of input components = 130

Number of output components = 1

A.3 Parallelized calculations

Clear["Global‘*"];

<<CIP‘Utility‘

<<CIP‘ExperimentalData‘

<<CIP‘MLR‘

Several CIP functions (see below) support parallelized calculations which may

lead to considerable performance improvements on computing devices with multi-

ple (or multicore) processors. Note that parallelized calculations always require an

unavoidable computational overhead so that performance gains may be smaller than

expected up to a performance decrease for specific cases.

As an example for a performance improvement with parallelized calculations the

relevance analysis of inputs components is chosen. For the WDBC classification

data set

classificationDataSet=

CIP‘ExperimentalData‘GetWDBCClassificationDataSet[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents"},classificationDataSet]

Number of IO pairs = 569

Number of input components = 30

Number of output components = 2

the relevance of its 30 input components for a predictive MLR model is evaluated

in a heuristic step-by-step fashion: In a first step all single input components are

scanned for the (winner) one that leads to the best linear mapping from input to

output with the best predictivity. Then this single best input component is fixed and

the remaining input components are scanned for the next most relevant feature so

that a pair of two relevant input components is achieved. This procedure is continued

to get a relevant triple etc. It is obvious that such a procedure is well suited for

parallelization since the relevance of each component is evaluated by an independent

single MLR fit. For comparison the non-parallelized sequential calculation (which

is the default for all CIP calculations) is initially performed

trainingAndTestSet={classificationDataSet,{}};

Print["Time in s: ",

AbsoluteTiming[

A.3 Parallelized calculations 459

sequentialMlrInputComponentRelevanceListForClassification=

CIP‘MLR‘GetMlrInputInclusionClass[trainingAndTestSet]

][[1]]

]

Time in s: 206.598

with a relevance result list

numberOfComponents=30;

sequentialInputComponentInclusionList=

CIP‘MLR‘GetMlrClassRelevantComponents[

sequentialMlrInputComponentRelevanceListForClassification,

numberOfComponents

]

{28,21,22,24,15,29,16,11,30,6,8,27,17,14,18,7,1,2,25,4,13,3,20,19,23,26,12,9,5,10}

that shows component 28 to be the most relevant component, component 21 to

be second most relevant component etc. For the parallelized calculation the desired

number of parallel Mathematica kernels has to be specified first (where argument 0

is the default value and leads to the use of all available physical processor cores)

numberOfLaunchedKernels=

CIP‘Utility‘SetNumberOfParallelKernels[0]

8

(where in this case an octacore processor is used) and then the function call is

repeated with the ParallelCalculation option

Print["Time in s: ",

AbsoluteTiming[

parallelizedMlrInputComponentRelevanceListForClassification=

CIP‘MLR‘GetMlrInputInclusionClass[

trainingAndTestSet,

UtilityOptionCalculationMode -> "ParallelCalculation"]

][[1]]

]

Time in s: 71.6658

to come to the same component relevance result as before

parallelizedInputComponentInclusionList=

CIP‘MLR‘GetMlrClassRelevantComponents[

parallelizedMlrInputComponentRelevanceListForClassification,

numberOfComponents

]

460 A CIP -Computational Intelligence Packages

{28,21,22,24,15,29,16,11,30,6,8,27,17,14,18,7,1,2,25,4,13,3,20,19,23,26,12,9,5,10}

but with improved performance. The following CIP functions may be called with

the ParallelCalculation option:

• GetSilhouettePlotPoints

For METHOD = Mlr, Mpr, Perceptron, Svm:

• GetBestMETHODClassOptimization

• GetMETHODInputInclusionClass

• GetMETHODInputInclusionRegress

• GetMETHODInputRelevanceClass

• GetMETHODInputRelevanceRegress

• ScanRegressTrainingWithMETHOD

For METHOD = Cluster, Mlr, Mpr, Perceptron, Svm:

• ScanClassTrainingWithMETHOD

For METHOD = Mpr, Perceptron, Svm:

• FitMETHODSeries

For METHOD = Perceptron, Svm:

• FitMETHOD

• GetMETHODTrainOptimization

Note that a parallelization of function FitMETHOD is only available for Per-

ceptrons and SVMs. Function GetMETHODTrainOptimization is also available for

MLR and MPR but GetMlrTrainOptimization and GetMprTrainOptimization do not

contain a ParallelCalculation option since Perceptrons and SVMs may use internal

parallelization for a single fit but MLR and MPR do not.

References

[Andrade 1934] E. N. da C. Andrade, A Theory of the Viscosity of Liquids. - Part I, Philosophical

Magazine 17 (112), 497-511, 1934.

[Baggott 2005] J. Baggott, A Beginner’s Guide to Reality, New York 2005, Penguin Books.

[Barlow 1989] R. J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical

Sciences, Chichester 1989, Wiley VCH.

[Barrat 2013] J. Barrat, Our Final Invention: Artificial Intelligence and the End of the Human Era,

New York 2013, Thomas Dunne Books.

[Bevington 2002] P. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Phys-

ical Sciences, New York 2002, McGraw-Hill, 3rd Edition.

[Bishop 2006] C. M. Bishop, Pattern Recognition and Machine Learning, New York 2006,

Springer.

[Blue Brain Project] Blue Brain Project, see http://bluebrain.epfl.ch. Found at 2016/01/27.

[Box] Quotation (Chapter 1.1) from Wikiquote: http://en.wikiquote.org/wiki/George E. P. Box.

Found at 2010/01/27.

[Brandt 2002] S. Brandt, Data Analysis: Statistical and Computational Methods for Scientists and

Engineers, New York 1998, Springer, 3rd Edition.

[Carpenter 1991] G. A. Carpenter, S. Grossberg, D. B. Rosen, ART 2-A: An Adaptive Resonance

Algorithm for Rapid Category Learning and Recognition, Neural Networks 4, 493-504, 1991.

[Chatterjee 2000] S. Chatterjee, A. Hadi, B. Price, Regression Analysis by Example, New York

2000, John Wiley & Sons, 3rd Edition. Chapter 3: Multiple Linear Regression, pages 51-84.

[Cherkassy 1996] V. Cherkassy, D. Gehring, F. Mulier, Comparison of adaptive methods for func-

tion estimation from samples, IEEE Trans. Neural Networks 7 (4), 969-984, 1996.

[Churchland 1996] P. M. Churchland, The Engine of Reason, The Seat of the Soul: A Philosophi-

cal Journey into the Brain, Massachusetts 1996, MIT Press.

[CIP] Computational Intelligence Packages (CIP), Version 2.0. Open source library for Mathe-

matica 10 or higher designed by Achim Zielesny. Internet: http://www.gnwi.de. Installation

instructions for the CIP Mathematica packages are provided within the ZIP container avail-

able for download at this internet site.

[Clark 2010/2015] Tim Clark, private communication at the 2010 Beilstein Symposium on Nan-

otechnology in Bolzano, Italy, and at the 2015 German Conference on Chemoinformatics in

Fulda, Germany.

[Cristianini 2000] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines

and other kernel-based learning methods, Cambridge 2000, Cambridge University Press.

[Cyc 2010] The Cyc project, Internet: http://www.cyc.com

[Dirac 1929] P. A. M. Dirac, Quantum mechanics of many-electron systems, Proceedings of the

Royal Society (London) A 123, 714-733, 1929.

[Dreyfus 1992] H. L. Dreyfus, What Computers Still Can’t Do: A Critique of Artificial Reason,

Cambridge 1992, MIT Press.

© Springer International Publishing Switzerland 2016
A. Zielesny, From Curve Fitting to Machine Learning, Intelligent Systems
Reference Library 109, DOI 10.1007/978-3-319-32545-3

461

462 References

[Dyson 2004] Attributed to John von Neumann by Enrico Fermi, quoted by: F. Dyson, A meeting

with Enrico Fermi, Nature 427, 297, 2004.

[Edwards 1976] A. L. Edwards, An Introduction to Linear Regression and Correlation, San Fran-

cisco, CA 1976, W. H. Freeman.

[Edwards 1979] A. L. Edwards, Multiple Regression and the Analysis of Variance and Covari-

ance, San Francisco, CA 1979, W. H. Freeman.

[Faces 2010] The face images are a courtesy of Rebecca Schulz, University of Applied Sciences

Gelsenkirchen, Germany.

[Fan 2005] R. E. Fan, P. H. Chen, C. J. Lin, Working set selection using the second order in-

formation for training support vector machines, Journal of Machine Learning Research 6,

1889-1918, 2005.

[FindMinimum/FindMaximum] The FindMinimum and FindMaximum commands of the Math-

ematica system provide an unified access to different unconstrained and constrained local

optimization algorithms (FindMinimum for minimization, FindMaximum for maximization:

Both commands essentially use the same algorithms since minimization of a function f means

maximization of "− f or f −1"). Constraint optimization is chosen if a constraint is defined

in the command signature otherwise an unconstrained optimization is performed. The default

unconstrained local optimization algorithm used is the BFGS variant of the Quasi-Newton

methods. If the function to be optimized is detected to be a sum of squares the Levenberg-

Marquardt algorithm is used as a default. Other unconstrained local minimization methods

like Conjugate-Gradient or Newton and their variants may be specified with the method op-

tion (see [Press 2007] for algorithmic details). For constrained local optimization there is

the Interior Point method used as a default (see [Mehrotra 1992] and [Forsgren 2002] for

algorithmic details).

[FitMlr] The CIP FitMlr method is build on top of Mathematica’s Fit command which performs

least squares fits with linear combinations of functions. See [Edwards 1976], [Edwards 1979],

[Chatterjee 2000] and [Press 2007] for details.

[FitModelFunction] The FitModelFunction method is build on top of the NonlinearModelFit

command of Mathematica which uses the Levenberg-Marquardt method for iterative uncon-

strained local minimization of χ2 (a1, ...,aL) since this quantity is a sum of squares (compare

chapter 2). See [Bevington 2002], [Brandt 2002] and [Press 2007] for algorithmic details.

[FitMpr] The CIP FitMpr method is build on top of Mathematica’s Fit command which performs

least squares fits with linear combinations of functions. See [Edwards 1976], [Edwards 1979],

[Chatterjee 2000] and [Press 2007] for details.

[FitPerceptron] As a default the CIP method FitPerceptron is build on top of Mathematica’s Find-

Minimum command for an unconstrained local minimization with the (Polak-Ribiere variant

of the) Conjugate-Gradient method (see [FindMinimum/FindMaximum]). Other optimization

methods available through FitPerceptron are an evolutionary algorithm based global mini-

mization with NMinimize (which uses Differential Evolution, see [NMinimize/NMaximize]),

a Backpropagation plus Momentum local minimization or a genetic algorithm based global

minimization (see [Freeman 1993]). The different minimization techniques may be selected

with option OptimizationMethodOption. The (default) option MultiplePerceptronsOption al-

lows to fit a perceptron for every single output component of a data set’s output which can

be especially accelerated by parallelized calculation with the ParallelCalculation option (see

Appendix A).

[FitSvm] The CIP methods FitSvm uses Mathematica’s NMaximize command with an evolu-

tionary algorithm based constrained global maximization method (Differential Evolution, see

[NMinimize/NMaximize]). The SVM code itself is based on the implementation in [Paláncz

2005]. The fit of data sets with multiple output components may be especially accelerated by

parallelized calculation with the ParallelCalculation option (see Appendix A).

[Fisher 1936] R. A. Fisher, The Use of Multiple Measurements in Taxonomic Problems, Annals of

Eugenics 7, 179-188, 1936.

[Ford 2015] M. Ford, Rise of the Robots: Technology and the Threat of a Jobless Future, New

York 2015, Basic Books.

References 463

[Forsgren 2002] A. Forsgren, P. E. Gill, M. H. Wright, Interior Methods for Nonlinear Optimiza-

tion, SIAM Rev. 44 (4), 525-597, 2002.

[Freeman 1993] J. A. Freeman, Simulating Neural Networks with Mathematica, Boston 1993,

Addison-Wesley Longman Publishing Co.

[Frenkel 2002] D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to

Applications, San Diego 2002, Academic Press.

[Gaussian 2003] Gaussian 03, Revision B.05, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.

Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J.

C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.

Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda,

J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.

Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,

O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma,

G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M.

C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V.

Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko,

P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,

A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C.

Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

[Gasteiger 2003] J. Gasteiger, T. Engels, Chemoinformatics, Weinheim 2003, Wiley-VCH.

[Glasmachers 2006] T. Glasmachers, C. Igel, Maximum-Gain Working Set Selection for SVMs,

Journal of Machine Learning Research 7, 1437-1466, 2006.

[GetClusters] CIP GetClusters is build on top of Mathematica’s FindClusters command with a

method specification for partitioning around medoids (see [Kaufman 1990] for details). If the

number of resulting clusters k is not defined in advance the silhouette test is chosen to obtain

the best k value (see [Rousseeuw 1987] and chapter 3).

[Grant 1998] This general inability of computational chemistry to quantitatively predict rate con-

stants for chemical reactions may be regarded as the single biggest unsolved problem in chem-

istry (from: G. H. Grant, W. G. Richards, Computational Chemistry, Oxford 1998) - with se-

vere impacts on modern systems biology in form of an overall lack of kinetics data which are

necessary for a realistic dynamical study and thus an understanding of biological systems.

[Gunn 1998] S. R. Gunn, Support Vector Machines for Classification and Regression, Techni-

cal Report, University of Southampton, Faculty of Engineering, Science and Mathematics,

School of Electronics and Computer Science, 10 May 1998.

[Hamilton 1964] W. C. Hamilton, Statistics in the Physical Sciences, New York 1964, Ronald

Press.

[Hampel 1986] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw and W. A. Stahel, Robust Statis-

tics: The Approach Based on Influence Functions, New York 1986, Wiley.

[Hawkins 2005] J. Hawkins, S. Blakeslee, On Intelligence, New York 2005, Times Books/Henry

Holt and Company.

[Hertz 1991] J. A. Hertz, A. S. Krogh, R. G. Palmer, Introduction To The Theory Of Neural Com-

putation, Redwood City, CA 1991, Addison-Wesley.

[Hofstadter 1981] D. R. Hofstadter, D. C. Dennett, The Mind’s I: Fantasies and Reflections on

Self and Soul, New York 1981, Basic Books.

[Human Brain Project] Human Brain Project, see https://www.humanbrainproject.eu. Found at

2016/01/27.

[IBM Watson] For information about IBM Watson see websites

http://www.ibm.com/smarterplanet/us/en/ibmwatson/ and http://www.research.ibm.com/.

Found at 2016/01/12.

[Intelligence 2010] Intelligence, from Wikipedia: http://en.wikipedia.org/wiki/Intelligence.

Found at 2010/06/02.

[Jensen 2007] F. Jensen, Introduction to Computational Chemistry (2nd edition), Chichester 2007,

John Wiley & Sons Ltd.

464 References

[Joachims 1999] T. Joachims, Making large-Scale SVM Learning Practical, chapter 11 in B.

Schölkopf, C. J. C. Burges, A. J. Smola (editors), Advances in Kernel Methods - Support

Vector Learning, Cambridge, MA 1999, MIT Press.

[Juillé 1996] H. Juillé, J. B. Pollack, Co-evolving Intertwined Spirals, Proceedings of the Fifth

Annual Conference on Evolutionary Programming, San Diego, CA, February 29 - March 2,

1996, MIT Press, 461-468.

[Kaku 1998] M. Kaku, Visions: How Science Will Revolutionize the 21st Century, New York 1998,

Anchor Books.

[Kaufman 1990] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to

Cluster Analysis, New York 1990, John Wiley & Sons.

[Keerthi 2002] S. S. Keerthi, E. G. Gilbert, Convergence of a Generalized SMO Algorithm for

SVM Classifier Design, Machine Learning 46, 351-360, 2002.

[Koch 2003] The adhesive kinetics data were provided in 2003. They are a courtesy of Prof. Dr.

Klaus-Uwe Koch, University of Applied Sciences Gelsenkirchen, Germany. The data were

measured in his polymer laboratory. See also: K.-U. Koch, A. Zielesny, Neuronale Netze

verkuerzen die Klebstoffentwicklung, Adhaesion 1-2, 32-37, 2004.

[Koch 2004] C. Koch, The Quest for Consciousness - A Neurobiological Approach, Englewood,

Colorado 2004, Roberts & Company Publishers.

[Kurzweil 2005] R. Kurzweil, The Singularity Is Near: When Humans Transcend Biology, New

York 2005, Viking Penguin.

[Kurzweil 2012] R. Kurzweil, How to Create a Mind: The Secret of Human Thought Revealed,

New York 2012, Viking Penguin.

[Leach 2001] A. R. Leach, Molecular Modelling: Principles and Applications, Harlow 2001,

Prentice Hall.

[Leach 2007] A. R. Leach, V. J. Gillet, An Introduction to Chemoinformatics, Dordrecht 2007,

Springer.

[MacQueen 1967] J. B. MacQueen, Some Methods for Classification and Analysis of Multivari-

ate Observations, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and

Probability, 281-297, 1967, University of California Press.

[Mathematica] Wolfram Mathematica, Version 10. Mathematica is a registered trademark of Wol-

fram Research, Inc., Internet: www.wolfram.com.

[Mehrotra 1992] S. Mehrotra, On the Implementation of a Primal-Dual Interior Point Method,

SIAM J. Optimization 2, 575-601, 1992.

[Meyer 2010] The acetanhydride hydrolysis IR spectra were provided in 2010. They are a courtesy

of Prof. Dr. Gerhard Meyer, University of Applied Sciences Gelsenkirchen, Germany. The

data were measured in his analytical laboratory.

[Mitchell 2009] M. Mitchell, Complexity: A Guided Tour, New York 2009, Oxford University

Press.

[Murphy 2012] K. P. Murphy, Machine Learning. A Probabilistic Perspective, Cambridge (Mas-

sachusetts) 2012, MIT Press.

[NMinimize/NMaximize] The NMinimize and NMaximize commands of the Mathematica sys-

tem provide access to the Differential Evolution method for constrained global optimization

via their method option (for algorithmic details about Differential Evolution see [Price 1997],

[Storn 1997], [Price 1999] and [Price 2005]). A local refinement of the constrained global

optimization result with the Interior Point method (see [Mehrotra 1992] and [Forsgren 2002])

is performed by default as a post process.

[Nobel Prize 1998/2013] Royal Swedish Academy of Sciences, http://www.nobelprize.org.

Additional background material on the Nobel Prize in Chemistry 1998,

from http://www.nobelprize.org/nobel prizes/chemistry/laureates/1998/advanced-

chemistryprize1998.pdf. Found at 2016/01/26.

[Paláncz 2004] B. Paláncz, L. Völgyesi, Support Vector Classifier via Mathematica, Periodica

Polytechnica Civ. Eng 48 (1-2), 15-37, 2004.

[Paláncz 2005] B. Paláncz, L. Völgyesi, Gy. Popper, Support Vector Regression via Mathematica,

Periodica Polytechnica Civ. Eng 49 (1), 59-84, 2005.

References 465

[Pascal] Quotation (Preface) from Pascal’s Pensees, Introduction by T. S. Eliot, New York 1958,

E. P. Dutton & Co., Inc..

[Penrose 1991] R. Penrose, The Emperor’s new Mind, New York 1991, Penguin Books.

[Penrose 1994] R. Penrose, Shadows of the Mind: A Search for the Missing Science of Conscious-

ness, Oxford 1994, Oxford University Press.

[Platt 1999] J. Platt, Fast training of support vector machines using sequential minimal optimiza-

tion, in B. Schölkopf, C. J. C. Burges, A. J. Smola (editors), Advances in Kernel Methods -

Support Vector Learning, Cambridge, MA 1999, MIT Press.

[Press 2007] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes:

The Art of Scientific Computing, Cambridge 2007, Cambridge University Press, 3rd Edition.

[Price 1997] K. Price, R. Storn, Differential Evolution: Numerical Optimization Made Easy, Dr.

Dobb’s J. 264, 18-24, 1997.

[Price 1999] K. Price, An Introduction to Differential Evolution, 77-106, in: D. Corne, M. Dorigo,

F.Glover (editors), New Ideas in Optimization, London 1999, McGraw-Hill.

[Price 2005] K. Price K., R. Storn, J. Lampinen, Differential Evolution - A Practical Approach to

Global Optimization, Berlin 2005, Springer.

[Reinsch 1967] C. H. Reinsch, Smoothing by Spline Functions, Numer. Math. 10, 177-183, 1967.

[Reinsch 1971] C. H. Reinsch, Smoothing by Spline Functions II, Numer. Math. 16, 451-454,

1971.

[Rojas 1996] R. Rojas, Neural Networks: A Systematic Introduction, Berlin 1996, Springer.

[Rousseeuw 1987] P. J. Rousseeuw, Silhouettes: A Graphical Aid to the Interpretation and Vali-

dation of Cluster Analysis, J. Comput. Appl. Math. 20, 53-65, 1987.

[Rousseeuw 2003] P. J. Rousseeuw, A. M. Leroy, Robust Regression and Outlier Detection, Hobo-

ken 2003, Wiley.

[Schank 1977] R. C. Schank, R. P. Abelson, Scripts, Plans, Goals and Understanding. An Inquiry

into Human Knowledge Structures, New York 1977.

[Schneider 2008] G. Schneider, K.-H. Baringhaus, Molecular Design: Concepts and Applications,

Weinheim 2008, Wiley-VCH.

[Schölkopf 1998] B. Schölkopf, A. J. Smola, A Tutorial on Support Vector Regression, Neuro-

COLT2 Technical Report Series, NC2-TR-1998-030, 1998.

[Schölkopf 1999] B. Schölkopf, C. J. C. Burges, A. J. Smola (editors), Advances in Kernel Meth-

ods - Support Vector Learning, Cambridge, MA 1999, MIT Press.

[Schölkopf 2002] B. Schölkopf, A. Smola, Learning with Kernels: Support Vector Machines, Reg-

ularization, Optimization, and Beyond, Cambridge, MA 2002, MIT Press.

[Storn 1997] R. Storn, K. Price, Differential Evolution: A Simple and Efficient Adaptive Scheme

for Global Optimization over Continuous Spaces, J. Global Optimization 11, 341-359, 1997.

[Turing 1950] A. Turing, Computing Machinery and Intelligence, Mind 59 (236), 433-460, 1950.

[Vapnik 1995] V. Vapnik, The Nature of Statistical Learning Theory, New York 1995, Springer.

[Vapnik 1998] V. Vapnik, Statistical Learning Theory, New York 1998, Wiley.

[Vogel 1921] H. Vogel, Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten,

Physikalische Zeitschrift 22, 645, 1921.

[WDBC data] Wisconsin Diagnostic Breast Cancer (WDBC) data set. Taken at 2011/01/30

from the UCI (University of California at Irvine) machine learning repository at

http://archive.ics.uci.edu/ml. Repository citation: A. Frank, A. Asuncion (2010), UCI Ma-

chine Learning Repository (http://archive.ics.uci.edu/ml), Irvine, CA: University of Califor-

nia, School of Information and Computer Science. First citation in medical literature: W.H.

Wolberg, W.N. Street, and O.L. Mangasarian, Machine learning techniques to diagnose breast

cancer from fine-needle aspirates, Cancer Letters 77 (1994), 163-171.

[WPBC data] Wisconsin Prognostic Breast Cancer (WPBC) data set. Taken at 2011/01/30

from the UCI (University of California at Irvine) machine learning repository at

http://archive.ics.uci.edu/ml. Repository citation: A. Frank, A. Asuncion (2010), UCI Ma-

chine Learning Repository (http://archive.ics.uci.edu/ml), Irvine, CA: University of Califor-

nia, School of Information and Computer Science.

466 References

[WPBC non-recurrent data] Wisconsin Prognostic Breast Cancer (WPBC) non-recurrent data set.

Taken at 2011/01/30 from the UCI (University of California at Irvine) machine learning repos-

itory at http://archive.ics.uci.edu/ml. Repository citation: A. Frank, A. Asuncion (2010), UCI

Machine Learning Repository (http://archive.ics.uci.edu/ml), Irvine, CA: University of Cali-

fornia, School of Information and Computer Science.

[WPBC recurrent data] Wisconsin Prognostic Breast Cancer (WPBC) recurrent data set. Taken

at 2011/01/30 from the UCI (University of California at Irvine) machine learning reposi-

tory at http://archive.ics.uci.edu/ml. Repository citation: A. Frank, A. Asuncion (2010), UCI

Machine Learning Repository (http://archive.ics.uci.edu/ml), Irvine, CA: University of Cali-

fornia, School of Information and Computer Science.

[Weast 1975] R. C. Weast (editor), Handbook of Physics and Chemistry, 56th edition, CRC Press,

1975.

[Weizenbaum 1966] J. Weizenbaum, ELIZA - A Computer Program for the Study of Natural Lan-

guage Communication between Man and Machine, Communications of the ACM 9 (1), 36-45,

1966.

[Wienke 1994] D. Wienke, Y. Xie, P. K. Hopke, An adaptive resonance theory based artificial neu-

ral network (ART -2a) for rapid identification of airborne particle shapes from their scanning

electron microscopy images, Chemometrics and Intelligent Laboratory Systems 25, 367-387,

1994.

[Zupan 1999] J. Zupan, J. Gasteiger, Neural Networks in Chemistry and Drug Design, Weinheim

1999, Wiley-VCH.

Index

ART2a, 210, 219, 226, 383

AbsoluteResidualsPlot, 78, 79, 81–86, 101,

103, 104, 106, 108, 111, 137, 139, 140,

142, 144–147, 150–152

AbsoluteResidualsStatistics, 150–152,

257

AbsoluteSortedResidualsPlot, 232, 235,

241, 259, 323, 333

AbsoluteTiming, 281, 282, 410, 412, 414,

416, 458, 459

AddErrorToXYData, 136, 138, 445

AllClusterMax, 326

AllClusterMean, 327

AppendTo, 21, 240, 250, 321, 410, 412, 414,

416, 419, 422, 426, 428, 446

Arrowheads, 19, 23, 24, 27, 33–36

BackpropagationPlusMomentum, 375

BumpFunction, 238, 250

CalculateClusterClassNumber, 224

CalculateDerivativeValue, 154, 446

CalculateFunctionValue, 87, 88, 148, 153,

154, 445, 446

CalculateMlr3dValue, 260, 262, 263, 290,

337

CalculateMlrDataSetRmse, 410

CalculateMpr3dValue, 266, 268, 270, 272,

274, 319, 339

CalculateMprDataSetRmse, 412

CalculatePerceptron2dValue, 240, 250,

354, 427, 428

CalculatePerceptron3dValue, 277, 281,

348, 421, 424

CalculatePerceptronDataSetRmse, 416

CalculateSvm3dValue, 231, 234, 276, 280,

285, 291, 297, 342, 344, 346, 421, 424

CalculateSvmDataSetRmse, 414

CalculatedDataOptionDistance, 119, 121,

125, 130

CalculatedDataOptionErrorType, 70, 119,

121, 125, 130, 133

ClassCount, 48, 50, 51, 381, 389, 393, 396,

398, 399, 455, 456

CleanDataSet, 49, 50

Clear, 6, 10, 14, 16, 20, 31, 38, 40, 41, 43, 45,

47, 48, 56, 58, 61, 70, 76, 89, 93, 97,

107, 112–114, 118, 132, 135, 143, 157,

163, 178, 185, 194, 206, 209, 220, 229,

237, 243, 246, 251, 256, 260, 264, 282,

286, 299, 304, 316, 320, 336, 349, 355,

373, 380, 407, 417, 439, 458

ClusterOptionMethod, 210, 212, 215, 219,

226, 383, 385

ClusterOptionNumberOfIntervals, 165,

186, 191, 197

ClusterOptionVigilanceParameter, 383

ClusterStatistics, 167, 171, 174, 179, 182,

199, 201, 204, 207, 357

ConjugateGradient, 92

ConvertImageDataSet, 357, 360, 361, 363,

364, 367, 369, 371, 454

CorrectClassificationPerClass, 225–227,

262, 289, 305, 307, 309, 313, 364, 371,

382, 385, 387, 390, 392, 394, 397

CorrectClassification, 225, 226, 262, 283,

284, 289–291, 293, 294, 297, 305, 307,

309, 312, 313, 350, 354, 359–365, 367,

369, 371, 382, 385, 387, 389, 390, 392,

394, 396, 397, 399

CorrelationCoefficient, 74, 78, 79, 81–86,

144–147, 150–152, 258, 266, 267, 269,

271, 273, 275, 277–279

CurveFitOptionConfidenceLevel, 114, 120,

121, 123–125, 127, 128, 130

© Springer International Publishing Switzerland 2016
A. Zielesny, From Curve Fitting to Machine Learning, Intelligent Systems
Reference Library 109, DOI 10.1007/978-3-319-32545-3

467

468 Index

CurveFitOptionLabels, 62, 71, 77, 79, 80,

82–84, 137, 139, 140, 142, 150–152,

410, 412, 414, 416, 445

CurveFitOptionMaximumIterations,

99–102, 104

CurveFitOptionMethod, 92

CurveFitOptionNumberOfTrialPoints, 94,

95

CurveFitOptionSearchType, 94, 95

CurveFitOptionStartParameters, 80,

82–86, 91, 92, 94–96, 99–101, 103, 104,

106, 111–118, 120, 121, 123–125, 127,

128, 130, 137, 140, 142

CurveFitOptionVarianceEstimator, 113,

114, 133, 134, 137, 139, 140, 142

DifferentialEvolution, 29–31, 37

Epilog, 447

EuclideanDistanceDiagram, 167, 171, 174,

179, 182, 199, 201, 204, 207, 357

EuclideanDistance, 166, 171

FindMaximum, 24, 28, 417, 419, 421, 422,

424–426, 428, 429

FindMinimum, 18, 19, 33–36, 154

FindRoot, 446

FitCluster, 224–226, 289, 305, 382, 383

FitCubicSplines, 144–147, 152, 445

FitMlr, 257, 262, 283, 290, 293, 337, 359,

361, 363, 365, 367, 369, 371, 385, 387,

400, 410

FitModelFunction, 62, 71, 77, 79, 80, 82–86,

90–92, 94–96, 99–101, 103, 104, 106,

108, 111–117, 120, 121, 123–125, 127,

128, 130, 133, 134, 136, 137, 139, 140,

142, 150, 151

FitMprSeries, 338

FitMpr, 265, 267, 269, 271, 273, 281, 316,

390, 392, 412

FitPerceptronSeries, 347, 375–377

FitPerceptron, 240, 250, 277, 279, 282, 350,

354, 394, 416, 421, 424, 427, 428

FitSvmSeries, 294, 296, 301, 303, 340, 343,

345

FitSvm, 231, 234, 275, 278, 281, 283, 291,

323, 326, 397, 414, 421, 424

FunctionPlot, 62, 71, 77, 79, 80, 82–84, 90,

91, 94–96, 99–101, 103, 104, 106, 108,

111, 120, 121, 123–125, 127, 128, 130,

133, 134, 137, 139, 140, 142, 144–147,

150–152, 445

GaussianRBF, 343

Gaussian, 164, 343

Get3dFunctionBasedDataSet, 51, 230, 256,

321, 336, 373, 409, 410, 412, 414, 415,

418

GetAcetanhydrideHydrolysisIRSpectra,

441

GetAcetanhydrideKineticsData1, 136, 443

GetAcetanhydrideKineticsData2, 138, 447

GetAdhesiveKinetics3dDataSet, 266, 319,

450

GetAdhesiveKineticsDataSet, 48, 244, 264,

316, 449

GetBestMlrClassOptimization, 389

GetBestMlrRegressOptimization, 400

GetBestMprClassOptimization, 393

GetBestMprRegressOptimization, 403, 405

GetBestPerceptronClassOptimization,

312, 396

GetBestSvmClassOptimization, 398

GetBestSvmRegressOptimization, 332

GetClusterBasedTrainingAndTestSet, 295,

302, 325

GetClusterOccupancies, 200, 202, 205, 208,

213, 216, 217, 219, 223, 358

GetClusterProperty, 158, 189, 193, 223, 224

GetClusterRepresentatives, 188, 192

GetClusters, 158, 167, 171, 174, 199, 212,

217, 219, 383

GetDefinedGaussianCloud, 157, 164, 166,

170, 174, 178, 190, 206, 221, 286, 287,

299

GetFacesBlackImageDataSet, 361, 453

GetFacesGrayImageDataSet, 359, 453

GetFacesWhiteImageDataSet, 356, 452

GetFixedNumberOfClusters, 179, 182, 189,

193, 201, 204, 207, 210, 215, 223, 289,

357, 385

GetGaussianCloudsDataSet, 222, 261, 288,

300

GetHydrogenFluoridePESXyErrorData, 149,

440

GetIndexListOfCluster, 199

GetInputsForSpecifiedClass, 283, 284, 452

GetInputsOfCluster, 158, 167, 171, 175,

180, 183, 189, 193, 211, 223, 290

GetInputsOfDataSet, 46, 49, 223, 261, 289,

293, 295, 300, 302, 356, 357, 359–363,

366–368, 370, 371, 383, 449, 452–454

GetIrisFlowerClassificationDataSet, 48,

49, 225, 305, 350, 449

GetIrisFlowerInputsSpecies1, 194, 211,

448

GetIrisFlowerInputsSpecies2, 194, 211,

448

GetIrisFlowerInputsSpecies3, 194, 211,

448

GetIrisFlowerInputs, 48, 448

GetKernelFunction, 294, 297, 341, 343, 345

Index 469

GetMlrClassRelevantComponents, 387, 459

GetMlrInputInclusionClass, 386, 459

GetMlrInputInclusionRegress, 402

GetMlrInputRelevanceClass, 369

GetMlrTrainOptimization, 389, 400

GetMprClassRelevantComponents, 391

GetMprInputInclusionClass, 391

GetMprInputInclusionRegress, 402

GetMprNumberOfParameters, 245, 265, 269,

273, 391

GetMprRegressRelevantComponents, 403,

404

GetMprSeriesRmse, 338

GetMprTrainOptimization, 393, 403, 405

GetNumberOfData, 118, 130

GetNumberOfHiddenNeurons, 348

GetOutputsOfDataSet, 46

GetPerceptronClassRelevantComponents,

395

GetPerceptronInputInclusionClass, 351,

395

GetPerceptronInputRelevanceClass, 350

GetPerceptronSeriesRmse, 347, 375–377

GetPerceptronTrainOptimization, 310,

311, 395

GetQSPRDataSet01, 399, 457

GetQSPRDataSet02, 457

GetRandomGaussianCloudsInputs, 217

GetRandomRepresentatives, 187, 192

GetRandomTrainingAndTestSet, 292, 300

GetSilhouettePlotPoints, 168, 172, 176

GetSilhouetteStatisticsForClusters,

169, 173, 176, 180, 183, 200, 203, 214,

218

GetSilhouetteStatistics, 218, 219

GetSpecificClassDataSubSet, 352

GetSpiralsClassificationDataSet, 282,

284, 451

GetStartParameters, 94–96, 99–102, 104,

106, 111

GetSvmClassRelevantComponents, 398

GetSvmInputInclusionClass, 397

GetSvmSeriesClassificationResult, 294,

296, 301, 303

GetSvmSeriesRmse, 340, 343, 345

GetSvmTrainOptimization, 326–332, 398

GetVigilanceParameterScan, 212, 220, 384

GetWDBCClassificationDataSet, 381, 455,

458

GetWPBCClassificationDataSet, 50, 456

GetWPBCNonrecurrentDataSet, 456

GetWPBCRecurrentDataSet, 456

GetWaterViscosityXyErrorData, 76, 112,

114, 439

GetWhiteSpots, 208, 209

GetXyErrorData, 61, 70, 90, 94, 98, 101, 104,

108, 110, 115, 116, 119, 121, 125, 130,

133, 143, 239, 250, 425

Graphics3D, 23, 24, 27, 33–36

GraphicsGrid, 356, 359–363, 366–368, 370,

371, 452, 453

GraphicsOptionArgument1Range3D, 21,

23–28, 33–36

GraphicsOptionArgument2Range3D, 21,

23–28, 33–36

GraphicsOptionArgumentRange2D, 12, 15,

18, 19, 30, 32, 186, 188–190, 192, 193,

195, 197, 206, 209, 211, 353

GraphicsOptionFunctionValueRange2D, 12,

15, 18, 19, 30, 32, 186, 188–190, 192,

193, 195, 197, 206, 209, 211, 353, 411,

413, 415, 416, 425–429

GraphicsOptionLinePlotStyle, 354

GraphicsOptionPlotStyle3D, 23, 24, 27,

33–36, 51–53, 285

GraphicsOptionPointSize, 51–53, 70–72,

74, 116, 125, 127, 128, 130, 239, 240,

250, 256, 258–260, 441–443

GraphicsOptionRegionFunction, 35, 36

GraphicsOptionViewPoint3D, 21, 23–28,

252, 321, 322, 325, 332, 419–423, 425,

449

Graphics, 19, 30, 32, 87, 287

IncludeInputComponentsOfDataSet, 387,

392, 395, 398, 403, 405

Infinity, 22, 26

InputComponents, 48–54, 244, 264, 350, 381,

399, 455–458

InputVectors, 48, 49

IoPairs, 48, 50–54, 244, 264, 316, 381, 399,

455–458

KernelGaussianRbf, 343

KernelUniversalFourier, 345

KernelWavelet, 252, 341

LogLargeToSmall, 119

ModelVsDataPlot, 74, 232, 235, 258, 265,

267, 269, 271, 273, 275, 277–279, 318,

323, 333, 400, 403, 405

MprOptionDataTransformationMode, 267,

271, 281, 316, 317

NMaximize, 29

NMinimize, 30, 31, 37

NumberOfClusters, 167, 171, 174, 179, 182,

189, 193, 199, 201, 204, 207, 210, 212,

215, 217, 219, 383

NumberOfIntervalsOption, 126, 128, 129,

131

Opacity, 23, 27, 33, 51, 285, 353

470 Index

OptionValue, 374

OutputComponents, 48, 50–54, 244, 264, 381,

399, 455–458

ParallelCalculation, 375–377, 386, 389,

391, 393–398, 402, 459

ParameterErrors, 73, 112–117, 120, 121,

123–125, 127, 128, 130, 133, 134, 137,

139, 140, 142

PerceptronOptionMaximumIterations,

374–377

PerceptronOptionOptimizationMethod,

374–376

Plot2dFunction, 11, 13, 38–40, 153, 252,

253, 341, 344, 346, 354, 445

Plot2dPointsAboveFunction, 12, 15, 18, 19,

30, 32

Plot3dDataSetWithFunction, 51–53, 230,

231, 234, 260, 262, 263, 266, 268, 270,

272, 274, 276, 277, 280, 281, 285, 290,

291, 297, 319, 336, 374, 409, 419–425

Plot3dDataSet, 230, 256, 321, 322, 325, 332,

450

Plot3dFunction, 7–9, 32, 42, 43, 233, 252,

337, 339, 342, 344, 346, 348

Plot3dPointsWithFunction, 21, 23–28,

33–36

PlotMultiple2dPoints, 157, 158, 164, 166,

168, 170, 172, 174, 175, 178, 180, 183,

186, 188–190, 192, 193, 196, 198, 206,

209, 211, 221, 223, 283, 284, 287, 290,

293, 295, 300–302, 353, 452

PlotXyErrorDataAboveFunctions, 87, 239,

240, 250

PlotXyErrorDataAboveFunction, 90, 98,

101, 104, 108, 110, 115–117, 143,

425–428

PlotXyErrorData, 61, 70, 77, 136, 138, 141,

149, 439, 440

PostProcess, 29–31, 37

RBF, 343

RGBColor, 30, 32, 87, 447

RMSE, 73, 232, 235, 241, 257, 316, 318, 323,

326, 333, 339, 400, 403, 405, 411

RandomReal, 26, 186, 209

RationalInterpolation, 148

ReducedChiSquare, 73, 86, 112–117, 120,

121, 123–125, 127, 128, 130, 133, 134,

136, 144–147, 150–152

RelativeResidualsDistribution, 75, 126,

128, 129, 131

RelativeResidualsPlot, 72, 120, 121,

123–125, 127, 128, 130

RelativeResidualsStatistics, 74, 257,

266, 267, 269, 271, 273, 275, 277–279,

318

RelativeSortedResidualsPlot, 259, 265,

267, 269, 271, 273, 278, 279, 318

RemoveInputComponentsOfDataSet, 354

RemoveNonNumberIoPairs, 50, 51

SDFit, 73, 86, 104, 106, 120, 121, 123–125,

127, 128, 130, 133, 134

ScaleSizeOfImageDataSet, 366–368, 370,

371

ScanClassTrainingWithMlr, 305, 315

ScanClassTrainingWithPerceptron, 306,

312

ScanClassTrainingWithSvm, 304

ScanRegressTrainingWithMpr, 316, 317

ScientificForm, 298, 314

SeedRandom, 26, 186, 209

SetNumberOfParallelKernels, 375, 386, 459

ShowBestExponent, 410, 412, 414, 416

ShowClusterOccupancies, 200, 202, 205,

208, 213, 216, 217, 219, 223, 358

ShowClusterResult, 167, 171, 174, 179, 182,

199, 201, 204, 207, 210, 212, 215, 217,

219, 357, 383

ShowClusterSingleClassification,

225–227, 289, 305, 382

ShowComponentStatistics, 165, 186, 191,

195, 197

ShowDataSetInfo, 48, 50–54, 244, 264, 316,

350, 381, 389, 393, 396, 398, 399,

455–458

ShowFitResult, 62, 71–75, 77–87, 90, 91,

93–96, 99–101, 103, 104, 106, 108,

111–117, 120, 121, 123–131, 133, 134,

137, 139, 140, 142, 144–147, 150–152,

445

ShowInputsInfo, 48, 49

ShowMlrClassificationResult, 293, 367,

369, 371, 389

ShowMlrClassificationScan, 306, 315

ShowMlrInputRelevanceClass, 369, 386

ShowMlrInputRelevanceRegress, 402

ShowMlrRegressionResult, 400

ShowMlrSingleClassification, 262, 283,

290, 359–365, 385, 387

ShowMlrSingleRegression, 257–259, 400

ShowMprClassificationResult, 394

ShowMprInputRelevanceClass, 391

ShowMprInputRelevanceRegress, 402

ShowMprRegressionResult, 403, 405

ShowMprRegressionScan, 317

ShowMprSeriesRmse, 338

ShowMprSingleClassification, 390, 392

Index 471

ShowMprSingleRegression, 265–267, 269,

271, 273, 316, 318, 339

ShowPerceptronClassificationResult,

307, 309, 312, 313, 350, 354, 396

ShowPerceptronClassificationScan, 306,

312

ShowPerceptronInputRelevanceClass, 350,

351, 395

ShowPerceptronSeriesRmse, 347, 375–377

ShowPerceptronSingleClassification, 394

ShowPerceptronSingleRegression, 241,

277, 279

ShowPerceptronTrainOptimization, 311

ShowSilhouettePlot, 168, 172, 176

ShowSilhouetteWidthsForCluster, 169,

173, 176, 177, 180, 181, 183–185, 200,

201, 203, 204, 214, 215, 218

ShowSvmClassificationResult, 294, 297,

399

ShowSvmClassificationScan, 304

ShowSvmInputRelevanceClass, 397

ShowSvmRegressionResult, 323, 326, 333

ShowSvmSeriesClassificationResult, 294,

296, 301, 303

ShowSvmSeriesRmse, 340, 343, 345

ShowSvmSingleClassification, 283, 284,

291, 397

ShowSvmSingleRegression, 232, 235, 275,

278

ShowSvmTrainOptimization, 327–332

ShowVigilanceParameterScan, 212, 220, 384

SigmoidFunction, 237

SingleGlobalMax, 330–332

SingleGlobalMean, 328, 329

Solve, 11, 14

SortClassificationDataSet, 57, 222, 358

SortedModelVsDataPlot, 75, 258

StringJoin, 441–445

ToString, 441–445

TransformDataSetToMultipleDataSet, 47,

262, 285, 288, 292, 295, 354

TransformXyErrorDataToDataSet, 240, 250,

427, 428

UniversalFourier, 345

UtilityOptionBestOptimization, 389, 393,

396, 398, 400, 403, 405

UtilityOptionBlackListLength, 311, 312,

315, 317, 329, 331, 332, 389, 393, 395,

398, 400, 403, 405

UtilityOptionCalculationMode, 375–377,

386, 389, 391, 393–398, 402, 459

UtilityOptionDeviationCalculation,

327–332

UtilityOptionInclusionsPerStep, 386,

391, 395, 397, 402

UtilityOptionOptimizationSteps, 312,

315, 317

Wavelet, 231, 234, 252, 275, 278, 283, 291,

294, 296, 301, 303, 304, 323, 340, 341,

397, 413, 421, 424

WrongClassificationDistribution, 382,

385, 387, 392

WrongClassificationPairs, 307, 313

ab-initio, 3–5, 76, 149, 440

AbsoluteTiming, 410

absorption, 137, 139, 441, 443, 444, 446–448

peak, 441, 448

academic, ix, 335, 380, 457

accuracy, 3, 99, 161, 194, 248

and speed, 99

acetanhydride, 136, 137, 441, 443, 448

activation

function, 246

Adaptive Resonance Theory, 209, 438

ART-2a, 160, 209–211, 214, 216, 219, 220,

226–228, 383, 385, 438

adhesive, 48, 237, 244, 264, 266, 267, 269,

273, 278, 316, 320, 449, 450

kinetics, 48, 237, 244, 264, 266, 267, 269,

273, 278, 316, 320, 449, 450

polymer mixture, 264, 449

algebra, 247

linear algebra, 247

algorithm, vii, viii, 1, 15–17, 23, 29, 35, 45,

54, 58, 59, 89, 92, 96, 98, 109, 112, 155,

159, 162, 242, 249, 298, 374, 375, 378,

383, 385, 409, 433, 434, 438, 439

clustering algorithm, 159, 383

evolutionary algorithm, vii, 29, 37, 96, 98,

298

genetic algorithm, 438

iterative algorithm, 16

iterative numerical algorithm, 242

minimization algorithm, 35, 92, 96, 155,

374, 375, 438

optimization algorithm, 438, 439

search algorithm, 15, 16

alignment, 434

biological sequence alignment, 434

sequence alignment, 434

AllClusterMax, 326

AllClusterMean, 327

amino acid, 433, 434

analysis, vii, 1, 2, 41, 44, 45, 49, 55, 56, 58,

62, 64, 73, 103, 107, 118, 132, 134, 135,

154, 197, 205, 227, 228, 231, 335, 355,

472 Index

372, 379, 386, 391, 395, 397, 415, 429,

435, 438, 458

data analysis, vii, 2, 41, 44, 45, 49, 55, 56,

58, 62, 64, 103, 107, 132, 134, 135, 154,

227, 228, 335, 379, 429, 435, 438

relevance analysis, 355, 386, 391, 394, 397,

458

spectral analysis, 372

statistical analysis, 1

analytical method, 10

Angstrom, 153, 440

approach

iterative search-based approach, 14

search-based approach, 14

approximant, 286

approximation, 2–4, 20, 148, 149, 166, 234,

242, 246, 341, 349, 421, 422, 431, 448

function approximation, 242, 246

universal function approximation, 242, 246

architecture, 246, 315, 431

parallel architecture, 315

ART, 209, 438

ART-2a, 160, 209–211, 214, 216, 219, 220,

226–228, 383, 385, 438

ART-2a, 160, 209–211, 214, 216, 219, 220,

226–228, 383, 385, 438

aspirate, 455

fine needle aspirate, 455

aspiration, 455

assessment, 1, 46, 55, 56, 101, 155, 170, 176,

236, 241, 264, 316, 320, 388

statistical assessment, 56

association, 45

associative, 433, 434

atom, 4, 5

background parameter, 137, 140, 142

Backpropagation, 375, 378, 438

plus Momentum, 375, 378, 438

base pair, 433, 434

baseline, 443, 444, 446–448

basis

statistical basis, 56, 236

behavior

scaling behavior, 409, 411, 415, 417

bell curve, 76, 126

bell-shaped, 166

benchmark, 409

benign, 381–383, 386, 455

benign tumor, 381, 383, 455

benzene, 432, 433

bias

regression bias, 253, 254

binary tree, 408, 409, 432

bioinformatics, 5, 45, 379

structural bioinformatics, 5

biological

effect, 3, 5

evolution, 29, 433

function, 434

sequence, 432–434

sequence alignment, 434

structure, 431

system, 2, 430, 431

tissue, 356

biologically active, 418

biologist, 3, 350

biology, 418, 434

molecular biology, 434

biophysics, 5

biopsy, 455

fine needle aspiration biopsy, 455

BioTech, 6

data explosion, 6

blacklist, 311, 329, 331, 332

length, 311, 329, 331

blacklisting, 317, 329, 331, 388

BLAST, 434

Blue Brain Project, 431

bond, 76

hydrogen bond, 76

bonding, 4

chemical bonding, 4

brain, 4, 255, 430, 431

Blue Brain Project, 431

human brain, 4, 255, 430, 431

Human Brain Project, 431

breast, 381, 383, 455, 456

cancer, 381, 455, 456

mass, 455

WDBC data set, 381, 383, 390, 399, 455,

456, 458

Wisconsin Diagnostic Breast Cancer data

set, 381, 383, 390, 399, 455, 456, 458

Wisconsin Prognostic Breast Cancer data

set, 50, 456, 457

WPBC data set, 50, 456, 457

breast cancer, 381, 455, 456

WDBC data set, 381, 383, 390, 399, 455,

456, 458

Wisconsin Diagnostic Breast Cancer data

set, 381, 383, 390, 399, 455, 456, 458

Wisconsin Prognostic Breast Cancer data

set, 50, 456, 457

WPBC data set, 50, 456, 457

brute-force, 103

bump, 237–239, 242, 248, 249, 251, 253, 276,

292, 341, 347, 376, 394, 397

Index 473

character, 253

byte, 431

CalculatedData, 58, 70, 119, 164, 239, 256,

438

CalculatedData package, 58, 70, 119, 164, 239,

256, 438

calculation, ix, 1–4, 7, 11, 12, 14, 40, 41, 43,

54, 55, 58, 59, 89, 92, 148, 149, 153,

251, 273, 274, 315, 324, 372, 375, 386,

409, 417, 431, 437, 438, 458, 459

CIP calculation, 58, 458

computational calculation, 431

parallel calculation option, 386

parallelized calculation, ix, 59, 251, 315,

375, 417, 458, 459

sequential calculation, 458

single point calculation, 149

speed, 14

calculus, 10, 11

calibration, 55

cancer, 381, 455, 456

breast cancer, 381, 455, 456

WDBC data set, 381, 383, 390, 399, 455,

456, 458

Wisconsin Diagnostic Breast Cancer data

set, 381, 383, 390, 399, 455, 456, 458

Wisconsin Prognostic Breast Cancer data

set, 50, 456, 457

WPBC data set, 50, 456, 457

cat, 336, 349, 356, 359, 365, 372, 379, 452

cell, 2, 381, 390, 399, 430, 455

nucleus, 381, 390, 399, 455

central limit theorem, 63

centroid, 158–162, 164, 167, 188, 223, 224,

227

characteristic

number, 399, 457

charge

surface charge, 6

cheating

educated cheating, 64, 72, 118, 122, 131,

142, 155, 335, 380

chemical

bonding, 4

compound, 6, 400, 432, 457

concentration, 443

diversity, 6

ensemble, 4

first-order kinetics, 40

group, 433

kinetics, 5

reaction, 2, 5, 136, 457

spectrum, 55

structure, 5, 399, 432–434

substructure, 433

synthesis, 432

cheminformatics, 5, 45, 379, 401

chemist, 3

chemistry, 4–6, 418, 430, 440

combinatorial chemistry, 6

physical chemistry, 5

CIP, viii, ix, 1, 6, 7, 11, 48, 54, 58, 59, 70, 71,

76, 89, 90, 93, 98, 117, 119, 129, 136,

149, 160, 162–165, 167, 186, 187, 194,

199, 209, 211, 216, 217, 239, 240, 243,

245, 249, 251, 255, 256, 264, 267, 282,

310, 315, 330, 356, 381, 382, 386, 388,

410, 415, 416, 437–439, 443, 447, 454,

458, 460

CalculatedData package, 58, 70, 119, 164,

239, 256, 438

calculation, 58, 458

Cluster package, 165, 167, 186, 187, 382,

438

CurveFit package, 71, 93, 98, 117, 129, 438

DataTransformation package, 240, 438, 454

ExperimentalData package, 48, 76, 136,

149, 194, 264, 282, 356, 381, 438, 443,

447

function, 7, 458, 460

Graphics package, 6, 58, 438

Perceptron package, 58, 438

SVM package, 439

Utility package, 437, 438

CIP CalculatedData, 70, 119, 164, 239, 256

CIP CurveFit, 58

CIP ExperimentalData, 58

class, 1, 48, 56–58, 159, 160, 163, 194, 217,

219–228, 261, 262, 282, 284–292, 297,

299, 305–310, 312, 313, 315, 352–358,

381–383, 385, 386, 389, 399, 451, 452,

455, 456

coding of classes, 48

predictor, 160, 220, 221, 224, 225, 227, 228,

261, 289, 305, 306, 308, 310, 381, 382,

385, 399

classification, viii, 1, 48–50, 56–58, 159,

222, 225–228, 236, 237, 243, 245,

255, 260–262, 264, 282–288, 290–295,

298–300, 304, 305, 308, 350–352, 356,

357, 359–362, 369, 381, 383, 385–392,

394, 397, 399, 448, 451, 452, 454–458

data set, 48–50, 56, 57, 222, 227, 228,

282, 284, 285, 288, 300, 352, 356,

357, 359–362, 381, 383, 385, 387, 388,

390–392, 397, 448, 451, 452, 454–458

goodness of classification, 260

474 Index

success, 294, 300, 351, 388, 389, 392, 394

supervised classification, 237

task, viii, 1, 48, 56–58, 159, 225, 227,

228, 236, 237, 243, 245, 261, 282, 288,

290–292, 295, 304, 351, 352, 388, 390

CleanDataSet, 49

cleaned, 51

data set, 51

cleaning, 48, 49, 457

cloud, 158, 159, 164, 166, 167, 170, 171,

174, 178, 216, 217, 221, 222, 261, 264,

286–288, 300, 382, 383

Gaussian cloud, 164, 166, 170, 174, 216,

286

point cloud, 382, 383

cluster, 58, 158–163, 165, 167–173, 175, 176,

178–183, 185–189, 191, 194, 199–220,

223, 224, 227, 228, 289, 295, 298, 299,

301, 302, 310, 314, 317, 326–328, 330,

358, 359, 382, 383, 385, 437–439, 460

occupancy, 160, 194, 200, 202, 206, 213,

217, 227

representative, 160, 190, 228, 295, 299, 302,

310

selection, 188, 190, 192, 194

Cluster package, 165, 167, 186, 187, 382, 438

clusterInfo, 58, 224, 437

clustering, vii, viii, 1, 6, 45, 47, 50, 54, 55,

157–164, 166–168, 170, 172, 174, 176,

178, 185, 186, 188, 194, 198, 202, 205,

209, 211, 216, 220, 226–228, 236, 357,

359, 365, 383, 408, 417, 438, 454

algorithm, 159, 383

method, viii, 6, 157–160, 163, 164, 198,

211, 226–228

technique, 159, 209, 228

unsupervised clustering, viii, 236

clustering-based

class predictor, 225, 227, 228, 261, 289,

305, 306, 308, 310, 381, 382, 385

coding, 45, 48, 56, 288

of classes, 48

coefficient, 74, 78, 87, 144, 146, 147, 153, 240,

254, 259, 266, 268, 276, 280, 282, 433

correlation coefficient, 74, 78, 87, 144, 146,

147, 153, 259, 266, 268, 276, 280, 282

Tanimoto coefficient, 433

color, 282, 286, 299, 353, 356, 372

standardization, 372

combination, 5, 17, 64, 85, 87, 88, 109, 135,

239, 240, 242, 298, 314, 332, 379, 434,

435

method, 17

combinatorial, 6

chemistry, 6

compactness, 455

complexity, 4, 5, 251, 431, 434

structural complexity, 251

component, 2, 46, 47, 49–52, 54, 56, 57, 74,

161, 164–166, 186, 191, 194–197, 237,

244, 245, 247, 249, 251, 254, 264, 267,

288, 315, 349–355, 357, 369, 372, 381,

386, 387, 390–392, 395–397, 400, 401,

403, 448–450, 454–459

component-inclusion strategy, 237, 351

input component, 50–52, 237, 244, 245,

247, 349–355, 369, 372, 381, 386, 387,

390–392, 395–397, 400, 401, 403, 450,

455, 457, 458

output component, 47, 49, 52, 57, 74, 244,

247, 251, 267, 288, 315, 354, 381, 450,

455–457

subset, 352

subset search, 352

component-inclusion, 237, 351

strategy, 237, 351

composition

material’s composition, 3, 5

compound, 6, 400, 432, 457

chemical compound, 6, 400, 432, 457

computation, 4, 255, 315, 386, 407

computational

calculation, 431

CIP, viii, ix, 1, 6, 7, 11, 48, 54, 58, 59, 70,

71, 76, 89, 90, 93, 98, 117, 119, 129,

136, 149, 160, 162–165, 167, 186, 187,

194, 199, 209, 211, 216, 217, 239, 240,

243, 245, 249, 251, 255, 256, 264, 267,

282, 310, 315, 330, 356, 381, 382, 386,

388, 410, 415, 416, 437–439, 443, 447,

454, 458, 460

Computational Intelligence Packages, viii,

ix, 1, 6, 7, 11, 48, 54, 58, 59, 70, 71, 76,

89, 90, 93, 98, 117, 119, 129, 136, 149,

160, 162–165, 167, 186, 187, 194, 199,

209, 211, 216, 217, 239, 240, 243, 245,

249, 251, 255, 256, 264, 267, 282, 310,

315, 330, 356, 381, 382, 386, 388, 410,

415, 416, 437–439, 443, 447, 454, 458,

460

cost, 17, 18, 161

device, 430–432

effort, 255, 355, 372, 380

formula, 247

intelligence, vii–ix, 1, 48, 58, 255, 380, 407,

429, 432–434, 437

memory, vii, 431

method, 4, 383, 385, 409, 433, 434

Index 475

power, 44, 149, 435

resource, 336, 380, 408

speed, 4, 59

task, 407

time consumption, 408

time period, 409

universality, 242, 245, 246, 248, 255

Computational Intelligence Packages, viii, ix,

1, 6, 7, 11, 48, 54, 58, 59, 70, 71, 76, 89,

90, 93, 98, 117, 119, 129, 136, 149, 160,

162–165, 167, 186, 187, 194, 199, 209,

211, 216, 217, 239, 240, 243, 245, 249,

251, 255, 256, 264, 267, 282, 310, 315,

330, 356, 381, 382, 386, 388, 410, 415,

416, 437–439, 443, 447, 454, 458, 460

computationally, 29, 149, 242, 245, 246, 251,

255, 278, 298, 335, 352, 433, 434

intelligent, 433, 434

universal, 242, 245, 246, 255

computer, vii, viii, 4, 14, 45, 54, 59, 89, 245,

255, 315, 407–409, 411, 429–432, 434

digital computer, vii, 4, 14, 431

computing, viii, 7, 54, 59, 315, 380, 385, 437,

458

numerical computing, 385

concave, 455

point, 455

concavity, 455

concentration

chemical concentration, 443

condition

Mercer’s condition, 252

confidence

level, 64, 113–115, 117, 120, 155

region, 73, 113–118, 120–122, 126, 129

Conjugate-Gradient, 17, 18, 92, 374, 377, 438

method, 374

ConjugateGradient, 438

constant

rate constant, 5

constrained

global minimum, 31, 37

global optimum, 32

global search, 37

iterative optimization, 31

local minimization, 35

objective function, 254

optimization, 31, 439

constraint, 31, 35–37, 69

consumption

memory consumption, 2, 409, 417, 437, 438

contrast, 1, 12, 47, 54, 63, 138, 227, 236, 365,

372

enhancement, 372

convergence, 17, 18, 23, 59, 377, 439

conversion, 240

cookbook recipe, 64, 154, 160, 228, 237, 378

corrected error, 68, 114

correction

error correction, 113

correlation coefficient, 74, 78, 87, 144, 146,

147, 153, 259, 266, 268, 276, 280, 282

cost

computational cost, 17, 18, 161

cost function, 248, 249, 254

count

ring count, 457

creativity, 434

critical, 5, 117–119, 121, 122, 124, 126, 132,

211

exponent, 5, 119, 121, 122, 124, 126

phenomena, 118, 132

cross validation, 194, 336

crossover, ix, 29

cubic spline, viii, 64, 69, 143, 146, 148, 152,

438, 445, 446

smoothing cubic spline, 64, 69, 146, 438,

445, 446

curvature, 15–17, 69, 143, 146, 428

curve

bell curve, 76, 126

curve fitting, vii–ix, 1, 3, 5–7, 37, 39, 41, 45,

54–56, 61, 62, 64–66, 70, 71, 74, 88, 89,

92, 97, 98, 100, 107, 112, 113, 132, 134,

154, 155, 231, 243, 256, 379, 407, 408,

417, 434, 438, 444

linear curve fitting, 88, 89

non-linear curve fitting, vii, 66, 88, 89, 92,

134, 155

two-dimensional curve fitting, vii, 61, 74, 88

CurveFit package, 71, 93, 98, 117, 129, 438

curveFitInfo, 58, 71, 437

CurveFitOptionConfidenceLevel, 114

CurveFitOptionStartParameters, 94

CurveFitOptionVarianceEstimator, 113

cybernetic, 430

organism, 430

cyborg, 430

data

analysis, vii, 2, 41, 44, 45, 49, 55, 56, 58,

62, 64, 103, 107, 132, 134, 135, 154,

227, 228, 335, 379, 429, 435, 438

BioTech data explosion, 6

classification data set, 48–50, 56, 57, 222,

227, 228, 282, 284, 285, 288, 300,

352, 356, 357, 359–362, 381, 383, 385,

476 Index

387, 388, 390–392, 397, 448, 451, 452,

454–458

cleaned data set, 51

experimental data, vii, viii, 1–4, 6, 39, 42,

44, 55, 56, 64, 76, 97, 114, 117, 118,

121, 129, 132, 264, 435, 439

generation, 70, 73, 76, 100, 148, 231, 233,

339

I/O data, 229, 230

plot, 77, 155

preprocessing, viii, 55, 379

regression data set, 48, 456

scaling of data, 1, 54

set, 46–51, 55–57, 222, 225, 227, 228, 233,

237, 240, 244, 247–249, 252–255, 261,

264, 273, 282, 284, 285, 288, 292, 295,

298–300, 304, 307, 316, 318, 319, 321,

335, 336, 352, 356–362, 365, 373, 379,

381, 383, 385, 387–392, 395, 397, 399,

400, 410, 411, 415–419, 421, 425, 439,

448–452, 454–458

smoothing, viii, 3, 63, 64, 68, 69, 143, 148,

149, 152, 154, 155, 230, 236, 418

structure, viii, 1, 45, 47, 55, 58, 71, 231,

409, 437

transformation, 55, 64, 132, 134, 135, 155,

267, 438

xy-error data, 5, 45, 54, 55, 61, 63, 65, 68,

69, 71, 89, 97, 100, 112, 119, 135, 136,

141, 143, 148, 239, 438

xy-error data triple, 5, 45, 55, 65, 89, 97

data set

classification data set, 48–50, 56, 57, 222,

227, 228, 282, 284, 285, 288, 300,

352, 356, 357, 359–362, 381, 383, 385,

387, 388, 390–392, 397, 448, 451, 452,

454–458

cleaned data set, 51

image classification data set, 356, 357,

359–362, 452, 454

large data set problem, 415

regression data set, 48, 456

data structure

info data structure, 58, 437

DataTransformation package, 240, 438, 454

decay

exponential decay, 40, 136

decision support, 381

medical decision support, 381

decision surface, 237, 260, 262, 264, 282–285,

290–292, 297, 302, 379, 386, 397

decrease, 185, 310, 350, 369, 370, 377, 378,

438, 442, 458

performance decrease, 458

deep, 55, 246

feed-forward neural network, 246

learning, 246

deep learning, 246

degree, 76, 80, 211, 244, 245, 248, 264, 269,

273, 338, 339, 364, 379, 390, 396, 402,

412, 431, 439

of freedom, 67, 69

polynomial degree, 244, 245, 264, 269, 273,

338, 339, 390, 396, 402, 412

degree of freedom, 67, 69

dependence

temperature dependence, 5, 76, 439

descent

steepest descent, 17, 375, 377, 378

steepest gradient descent, 375, 377

descriptor, 5, 6, 399–401, 403, 404, 457

molecular descriptor, 400, 457

redundant descriptor, 401

structural descriptor, 5, 6, 400, 401, 457

design of experiment, 119, 320, 324, 449

detection

face detection, 356, 359, 361, 362, 367, 372

determination

relevance determination, 351, 352, 369

development

and research, 4, 422, 434, 435

deviation

pattern, 72, 78, 81, 86, 102, 138, 142, 147,

155, 259

standard deviation, 67, 70, 72, 74, 76, 90,

97, 103, 107, 110, 112, 119, 133, 135,

164, 216, 233, 239, 241, 256, 258, 324,

341, 373, 411, 455

device

computational device, 430–432

diagnosis, 381, 383, 390, 455

medical diagnosis, 390

dialectical, 2

diatomic molecule, 149

difference

radial difference, 211

differential evolution, 29, 96, 438, 439

DifferentialEvolution, 29, 438, 439

differentiation, 11

digital

computer, vii, 4, 14, 431

grayscale image, 356

image, 58, 356, 455

digitally, 455

scanned, 455

scanned image, 455

dimension

fractal dimension, 455

Index 477

dipole moment, 5, 457

direction

downhill direction, 17

directional hopping, 29

distance

energy distance, 153

euclidean distance, 166, 167, 171, 224

distributed

statistically distributed, 72, 259

distribution

frequency distribution, 164, 166, 195

normal distribution, 65, 70, 75, 76, 164, 166

random distribution, 186

spatial distribution, 206, 382

statistical distribution, 63, 75

diversity, 6, 186, 194, 228, 295, 298, 310, 323,

325, 388

chemical diversity, 6

spatial diversity, 186, 194, 228, 295, 298,

310, 323, 325, 388

DNA, 76

strands, 76

DoE, 320, 324

dog, 356, 359, 365, 452

downhill, 17, 418

direction, 17

dualism, 430

dualist, 430

dynamic

property, 76

ecology, 418

economy, 3

educated cheating, 64, 72, 118, 122, 131, 142,

155, 335, 380

effect

biological effect, 3, 5

pharmaceutical effect, 434

pharmacological effect, 45

effort

computational effort, 255, 355, 372, 380

elementary

function, 237–240, 242, 252

perceptron, 246

ELIZA, 430

empirical

parameter, 64, 142

risk, 255

encoding, 379, 448

energy, 5, 149, 153, 418, 440

distance, 153

potential energy, 5, 149, 440

state, 418

surface, 5, 149, 440

value, 5, 440

engineer, 3

engineering, viii, 236

enhancement

contrast enhancement, 372

ensemble

chemical ensemble, 4

molecular ensemble, 4

entity

molecular entity, 3, 5

new molecular entity, 3, 5

equation

non-linear equation, 14

rate equation, 5

Schroedinger equation, 4, 149

error, ix, 1, 5, 7, 23, 45, 46, 49, 54–56, 61,

63–68, 70, 71, 73, 74, 77, 78, 81, 85–88,

92, 93, 112–118, 121, 132–136, 148,

150, 153–155, 222, 231, 233, 236, 239,

241, 243, 248, 251, 254, 256, 257, 264,

266, 276, 278, 308, 316, 336, 373, 379,

380, 383, 385, 439, 440, 444, 448, 451

corrected, 68, 114

correction, 113

estimation of error, 68

experimental error, 63, 64, 77, 78, 81, 85,

86, 132, 155, 264, 266, 276, 316, 439

mean squared error, 248, 249, 257

message, 71, 92, 93, 231

propagation, 55, 135

root mean squared error, 67, 73, 233, 241,

257, 280, 311, 316, 324, 326, 332, 333,

339, 341, 343, 345, 350, 374–378, 388,

403, 411–413, 415–417

statistical error, 1, 5, 45, 46, 55, 56, 61, 67,

68, 113

trial and error, 7, 63, 64, 87, 88, 93, 148,

154, 236, 243, 251, 254, 278, 336, 380

Error Backpropagation, 375, 378, 438

plus Momentum, 375, 378, 438

error-biased, 239, 240, 256, 422

estimation, 63, 64, 68, 113, 154, 380, 408, 409

of error, 68

robust estimation, 154

euclidean, 159–162, 166, 167, 171, 224, 227

distance, 166, 167, 171, 224

evidence

experimental evidence, 2, 121

evolution, 29, 99, 433

biological evolution, 29, 433

differential evolution, 29, 96, 438, 439

evolutionary

algorithm, vii, 29, 37, 96, 98, 298

search, 97

478 Index

step, 104

strategy, 99, 278

evolutionary-algorithm-based, 29, 37

exchange

unconstrained exchange, 310

exothermic, 449

expansion, 40, 135, 269

experiment, 2, 5, 6, 119, 320, 335, 410, 449

design of experiment, 119, 320, 324, 449

experimental, vii, viii, 1–6, 39, 42, 44, 55, 56,

61, 63–65, 68, 69, 76–78, 81, 85, 86, 97,

114, 117, 118, 121, 129, 131, 132, 154,

155, 264, 266, 270, 276, 316, 335, 435,

439, 451

data, vii, viii, 1–4, 6, 39, 42, 44, 55, 56, 64,

76, 97, 114, 117, 118, 121, 129, 132,

264, 435, 439

error, 63, 64, 77, 78, 81, 85, 86, 132, 155,

264, 266, 276, 316, 439

evidence, 2, 121

failure, 154

measurement, 5, 264

proof, 121

science, 4

scientist, 69, 335

setup, 61, 63, 131

value, 4, 65

ExperimentalData package, 48, 76, 136, 149,

194, 264, 282, 356, 381, 438, 443, 447

experimentalist, 132

exponent, 5, 38, 119, 121, 122, 124, 126

critical exponent, 5, 119, 121, 122, 124, 126

exponential, vii, 7, 40, 65, 81, 82, 84, 92, 93,

98, 109, 136, 267

decay, 40, 136

function, 7, 81, 84, 267

growth, vii

term, 65, 92, 93, 109

exponentially, 4, 14, 25, 435

growing, 14

increasing, 4, 435

extraction

model extraction, 2

extrapolating, 2

extrapolation, 54, 63, 64, 68, 80, 87, 88, 148,

155, 242, 244, 415

face, 29, 237, 336, 356, 359–365, 367, 372,

452, 454

detection, 356, 359, 361, 362, 367, 372

factor

scaling factor, 365

failure

experimental failure, 154

structural failure, 242

technical failure, 242

fake, 430

feature, 2, 4, 5, 7, 17, 228, 242, 255, 381, 392,

399, 409, 422, 455, 457, 458

input feature, 392

relevant feature, 458

structural feature, 228, 242

feed-forward, viii, 236, 238, 243, 246

deep feed-forward neural network, 246

feeling

structural feeling, 228

filtering, 372

technique, 372

FindClusters, 438

FindMaximum, 23, 439

FindMinimum, 18, 23, 33, 35, 374, 438

fine needle, 455

aspirate, 455

aspiration biopsy, 455

first-order kinetics, 40

fit, 40, 58, 63–65, 67–72, 74, 76–78, 80,

84, 87, 92, 94, 96, 99–102, 104–109,

111–114, 119–121, 123–125, 130, 132,

135–137, 139, 141, 147, 151, 154, 155,

236, 237, 241, 243, 249–251, 262, 264,

267, 273, 275, 281, 310, 315, 316, 319,

320, 323, 326, 347, 353, 387, 390, 392,

397, 409–411, 414–416, 424, 427, 437,

438, 458, 460

goodness of fit, 58, 64, 70, 72, 78, 87, 155,

437

MLR fit, 262, 267, 387, 411, 458

non-linear fit, 40

rational function fit, 151

standard deviation of the fit, 67, 72

straight-line fit, 77

FitCluster, 224, 382, 383

FitMETHOD, 460

FitMETHODSeries, 460

FitMlr, 245, 438

FitModelFunction, 66, 71, 89, 91, 92, 113, 114

FitMpr, 245, 438

FitPerceptron, 249, 251, 374

FitSvm, 255

fitting performance, 349

fitting task, 1, 55, 64, 93, 155, 231

flexibility

structural flexibility, 291

flower, 48, 49, 160, 194, 205, 211, 216, 225,

226, 304, 305, 307, 314, 350, 352–354,

448

Index 479

iris flower, 48, 49, 160, 194, 205, 211,

216, 225, 226, 304, 305, 307, 314, 350,

352–354, 448

fluoride, 5, 149, 153, 440

hydrogen fluoride, 5, 149, 440

folding

protein folding, 418

force field, 4

form

structural form, 3, 5, 41, 63, 66, 148

formula, 247

computational formula, 247

formulation, 56

fractal dimension, 455

fraction

training fraction, 298, 302, 307, 308, 310,

312–315, 317, 318, 324, 325

freedom

degree of freedom, 67, 69

frequency, 2, 75, 164–166, 195, 197

distribution, 164, 166, 195

function, viii, 1–7, 9, 11, 13, 15–18, 20, 22, 25,

29, 31, 37–41, 44, 51, 56, 62–76, 79, 81,

84–90, 94, 97, 98, 103, 105, 107–110,

112, 114, 115, 119, 125, 132, 134–137,

143, 146, 148, 150, 151, 153–155, 161,

230, 231, 233, 234, 237–244, 246,

248–255, 264, 267, 268, 273, 275, 276,

278, 283, 291, 292, 296, 301, 303, 320,

323, 326, 336, 337, 339–343, 345, 373,

376, 379, 380, 397, 413, 418, 421, 424,

425, 427, 428, 430, 431, 433, 434,

437–440, 445, 459, 460

activation function, 246

approximation, 242, 246

biological function, 434

CIP function, 7, 458, 460

constrained objective function, 254

cost function, 248, 249, 254

elementary function, 237–240, 242, 252

exponential function, 7, 81, 84, 267

general linear function, 38, 39, 41

kernel function, 231, 234, 242, 252–255,

275, 278, 283, 291–293, 296, 301, 303,

323, 326, 340, 341, 343, 345, 347, 373,

379, 397, 413, 421

linear function, 14, 38, 39, 41

logarithmic function, 267

model function, viii, 1–6, 37–45, 55, 56,

62–69, 71–76, 79, 84–90, 92, 94, 97, 98,

107–110, 112, 114, 115, 118, 119, 125,

132, 134–137, 146, 148, 150, 153–155,

229–231, 233, 236, 239–244, 248–251,

253, 254, 264, 267, 268, 273, 276, 278,

280, 291, 320, 337, 339, 342, 347, 376,

421, 424, 427, 428, 434

non-linear function, 7, 10

objective function, 254, 439

plot, 71, 79, 81

pure function, 7, 11

radial basis function, 342, 343

rational function, 148, 151

rational function fit, 151

sigmoid function, 246

smoothing model function, 64, 69, 148, 153

universal function approximation, 242, 246

functional programming, 7

gain, 255, 458

performance gain, 458

garbage, 373

garbage-in/garbage-out, 154, 373, 406, 435

GIGO, 154, 373, 406, 435

garbage-in/garbage-out, 154, 373, 406, 435

Gaussian, 63, 76, 98, 100, 102, 105, 110, 164,

166, 170, 174, 216, 286, 342, 343, 440

bell curve, 76

cloud, 164, 166, 170, 174, 216, 286

Gaussian-peak shaped, 89, 92, 115, 143, 148

peak, 98, 100, 102, 105, 110

RBF kernel function, 343

gene, 433

general linear function, 38, 39, 41

generalization, 236, 242, 396

ability, 396

generation

data generation, 70, 73, 76, 100, 148, 231,

233, 339

model generation, 87, 318

genetic algorithm, 438

GetAcetanhydrideKineticsData1, 443

GetAcetanhydrideKineticsData2, 447

GetBestMETHODClassOptimization, 460

GetClusters, 162, 167, 168, 438

GetMeanSquaredError, 437

GetMETHODInputInclusionClass, 460

GetMETHODInputInclusionRegress, 460

GetMETHODInputRelevanceClass, 460

GetMETHODInputRelevanceRegress, 460

GetMETHODTrainOptimization, 460

GetNumberOfData, 117, 129

GetSilhouettePlotPoints, 460

GetStartParameters, 93, 94, 96, 98

GetXyErrorData, 119, 438

GIGO, 154, 373, 406, 435

global

constrained global minimum, 31, 37

constrained global optimum, 32

480 Index

constrained global search, 37

constrained local minimization, 35

grid search, 23

iterative global optimization, 20

iterative optimization, 15

maximum, 20, 23, 24, 28, 29

minimization, 66, 249

minimization problem, 249

minimum, 1, 20, 30, 31, 33, 34, 36, 37, 66,

88, 89, 96, 97, 161

optimization, 15, 20, 25, 27, 31, 160, 255

optimization method, 16, 31

optimization problem, 25

optimization procedure, 29, 161

optimization result, 27

optimization task, 160

optimum, 15, 20, 23, 29, 32, 37, 39, 43, 161,

162, 240

sampling, 28

search, 29, 37, 93

search strategy, 96

strategy, 327

global minimization

unconstrained global minimization, 249

goodness

of classification, 260

of fit, 58, 64, 70, 72, 78, 87, 155, 437

of fit quantity, 155

of regression, 256, 264

of smoothing, 147

gradient, 2, 17, 92, 375, 377, 424

method, 17

step, 17

vanishing gradient, 246

Graphics package, 6, 58, 438

grayscale

image, 356, 357, 454

pixel, 356

value, 357, 454

grid, 20–25, 28, 29, 93, 95, 315, 320, 321, 335,

380, 409, 410

global grid search, 23

point, 20–25, 410

random grid, 95

search, 20, 23, 25, 28

ground

statistical ground, 63

group, viii, 159, 202, 298, 359, 432, 433

chemical group, 433

hydroxy group, 432, 433

growing

exponentially growing, 14

growth

exponential growth, vii

hardware, 12, 59

hash-table, 408, 409, 432

search, 408, 409

hashing, 409

heuristic, 160, 161, 228, 298, 299, 310, 351,

352, 379, 400, 434, 458

optimization, 400

partitioning, 298

partitioning strategy, 298

strategy, 299, 310

heuristics, 237, 299, 310, 311, 314, 315, 317,

324, 326, 328, 336, 352, 435

selection heuristics, 237

validation heuristics, 336

hidden

layer, 246, 247, 249

neuron, 242, 243, 246, 249–251, 276, 278,

279, 306, 347, 348, 350, 373–379, 394,

415, 424, 427

optimum, 236, 429, 434

high-throughput, 6

screening, 6

high-throughput screening, 6

homo sapiens, 418, 432

hopping

directional hopping, 29

HT, 6

HTS, 6

human, vii, 2, 4, 255, 260, 287, 289, 292, 294,

356, 359, 360, 364, 369, 429–434, 452

brain, 4, 255, 430, 431

Human Brain Project, 431

intelligence, vii, 255, 431, 432, 434

Human Brain Project, 431

hybridization, 434

hydrogen, 4, 5, 76, 149, 153, 440

bond, 76

fluoride, 5, 149, 440

hydrolysis, 136, 441

reaction, 441

hydroxy, 432, 433

group, 432, 433

hyper surface, 8–10, 14, 15, 17, 37, 43, 44, 66,

88, 89, 240, 244, 249

hyperparameter, 242, 244, 249, 251, 254, 275,

276, 278, 291, 338, 373, 379, 390, 394,

397, 399, 437

structural hyperparameter, 242, 244, 249,

251, 254, 275, 276, 278, 291, 338, 379,

390, 394, 397, 437

hyperplane, 7, 15, 41, 43, 243, 244, 266

hypersphere, 211

Index 481

I/O, 45–48, 50–52, 57, 229, 230, 237, 240,

242–244, 247, 249, 251, 254, 260–262,

264, 273, 282, 284, 288, 295, 298–300,

307, 308, 310, 311, 314, 316, 322, 324,

326–330, 356, 381, 391, 400, 409–411,

414, 415, 433, 439, 448, 452, 455–457

data, 229, 230

pair, 46–48, 50–52, 57, 237, 244, 247, 249,

251, 254, 260–262, 264, 273, 282, 284,

288, 295, 298–300, 307, 308, 310, 311,

314, 316, 322, 324, 326–330, 356, 381,

391, 400, 409–411, 414, 415, 433, 439,

448, 452, 455–457

image, 58, 356, 357, 359–367, 369, 370, 372,

452, 454, 455

classification data set, 356, 357, 359–362,

452, 454

digital grayscale image, 356

digital image, 58, 356, 455

digitally scanned image, 455

grayscale image, 356, 357, 454

medical image, 356

preprocessing, 372

improvement, 4, 24, 59, 78, 80, 81, 85, 227,

255, 269, 270, 296, 297, 311, 312,

326–332, 390, 394, 399, 406, 447, 458

performance improvement, 458

in-silico, 431

increasing

exponentially increasing, 4, 435

independent

statistically independent, 63, 65

industrial, 457

research, 457

industry, viii, 6

pharmaceutical industry, 6

Infinity, 102, 166, 373

info data structure, 58, 437

infrared, 136, 441

(IR) spectrum, 136, 441

input, 1, 3, 5, 6, 44, 46–52, 54, 56–58, 94, 157,

159–167, 169, 171–174, 176, 178, 180,

182, 183, 185–188, 190–195, 197–203,

205–209, 211, 215–218, 220–222,

224–229, 236, 237, 240, 244–249,

252–254, 261, 262, 264, 282, 286, 292,

293, 295, 296, 298–303, 308, 310, 320,

325, 335, 349–355, 357, 359, 369,

372, 373, 381–383, 386–388, 390–392,

395–397, 399–401, 403, 404, 431, 433,

448–451, 454–458

component, 50–52, 237, 244, 245, 247,

349–355, 369, 372, 381, 386, 387,

390–392, 395–397, 400, 401, 403, 450,

455, 457, 458

feature, 392

layer, 246, 247

space, 186, 335, 382, 383, 388, 391, 401,

404

variable, 3

vector, 1, 3, 5, 6, 44, 46–52, 54, 56–58,

94, 157, 159–167, 169, 171–174, 176,

178, 180, 182, 183, 185–188, 190–195,

197–203, 205–209, 211, 215–218,

220–222, 224–229, 236, 237, 240,

244–249, 252–254, 261, 262, 264, 282,

286, 292, 293, 295, 296, 298–303, 308,

310, 320, 325, 335, 349–355, 357,

359, 369, 372, 373, 381–383, 386–388,

390–392, 395–397, 399–401, 403, 404,

431, 433, 448–451, 454–458

input/output, 45–48, 50–52, 57, 229, 230,

237, 240, 242–244, 247, 249, 251, 254,

260–262, 264, 273, 282, 284, 288, 295,

298–300, 307, 308, 310, 311, 314, 316,

322, 324, 326–330, 356, 381, 391, 400,

409–411, 414, 415, 433, 439, 448, 452,

455–457

pair, 433

insight

structural insight, 176

inspection, 48, 55, 58, 72, 84, 90, 93, 98, 100,

103, 105, 109, 119, 141, 154, 158, 176,

180, 194, 203, 207, 228, 231, 250, 259,

264, 284, 292, 300, 316, 319–321, 337,

411, 416, 422, 437

visual inspection, 84, 90, 93, 98, 100, 103,

105, 119, 141, 158, 194, 207, 228, 231,

250, 264, 284, 292, 300, 319, 320, 337,

422, 437

instability

numerical instability, 89

integer, 49

intelligence, vii–ix, 1, 48, 58, 255, 380, 407,

429–434, 437

computational intelligence, vii–ix, 1, 48, 58,

255, 380, 407, 429, 432–434, 437

human intelligence, vii, 255, 431, 432, 434

machine intelligence, 429, 432

interaction, 2, 4, 76, 430, 434

man-machine interaction, 434

molecular interaction, 4, 76

physical interaction, 430

interatomic, 153, 440

interior point, 439

interpolating, 2, 68, 148, 150, 284

482 Index

interpolation, 5, 63, 80, 87, 144, 153–155, 242,

273, 274, 276, 278, 281, 418

interpretation, 103, 163, 380, 431

intertwined spiral, 282, 451

interval, 20, 30, 31, 54, 69, 73, 75, 93, 94, 113,

121, 165, 166, 451

IR, 136, 441

iris

flower, 48, 49, 160, 194, 205, 211, 216, 225,

226, 304, 305, 307, 314, 350, 352–354,

448

setosa, 194, 355, 448

versicolor, 194, 355, 448

virginica, 194, 355, 448

isomorphism, 433

issue

structural issue, 380

iteration, 15, 17, 31, 66, 99, 101, 102, 162,

310, 326, 327, 373–378, 408

maximum number of iterations, 15, 31, 66,

243, 374, 378

number of iterations, 15, 31, 66, 99, 101,

102, 373, 374, 378

iterative

algorithm, 16

constrained iterative optimization, 31

global iterative optimization, 15

global optimization, 20

local minimization, 17

local optimization, 16, 17

local search, 20

numerical algorithm, 242

optimization, 14, 15, 31

optimization procedure, 417

optimization strategy, 15

procedure, 209, 240, 373, 408

process, 117, 373

search, 15

search method, 15, 18

search-based approach, 14

step, 17, 373

strategy, 41

k-means, 160–162, 211

k-medoids, 160, 162, 209, 211, 216, 220,

226–228, 438

kernel, 231, 234, 242, 252–255, 275, 278,

283, 291–293, 296, 301, 303, 323, 326,

340–343, 345, 347, 373, 379, 397, 413,

421, 459

function, 231, 234, 242, 252–255, 275, 278,

283, 291–293, 296, 301, 303, 323, 326,

340, 341, 343, 345, 347, 373, 379, 397,

413, 421

Gaussian RBF kernel function, 343

radial basis function, 343

RBF kernel, 343

trick, 255

wavelet kernel, 252, 253, 275, 278, 291,

340, 379, 397

kernel function

Gaussian RBF kernel function, 343

kinetics, 5, 40, 48, 136, 237, 244, 264, 266,

267, 269, 273, 278, 316, 320, 441, 443,

444, 447–450

adhesive kinetics, 48, 237, 244, 264, 266,

267, 269, 273, 278, 316, 320, 449, 450

chemical first-order kinetics, 40

chemical kinetics, 5

first-order kinetics, 40

knowledge, viii, ix, 3, 16, 25, 56, 64, 93, 101,

228, 231, 236, 324, 380, 430

lab, 2, 6, 134, 135, 227, 320, 335, 379

system, 6

lab work, 2, 320

laboratory, 2, 6, 134, 135, 227, 320, 335, 379

system, 6

Lambert-Beer law, 443

large data set problem, 415

law

Lambert-Beer law, 443

Moore’s law, 14, 255

of nature, 2, 3

physical law, 4

power law, 118, 119, 121

layer

hidden layer, 246, 247, 249

input layer, 246, 247

output layer, 246, 247, 249, 251

learning, vii–ix, 1, 3, 5–7, 37, 44–47, 50,

54–58, 63, 67, 73, 74, 159, 160, 194,

220, 225, 227–231, 234, 236, 237, 239,

240, 242, 243, 245, 246, 248, 249, 251,

254–257, 259–261, 264, 269, 278, 283,

286, 289, 290, 292, 298, 300–302, 305,

308, 310, 315, 316, 335, 336, 338, 341,

349, 350, 356, 357, 359, 360, 372–381,

383, 385, 386, 390, 392, 399, 406–408,

410, 411, 413, 415, 417, 418, 422, 424,

425, 429, 432–435, 438, 454

deep learning, 246

machine learning, vii–ix, 1, 3, 5–7, 37,

44–47, 50, 54–58, 63, 67, 73, 74, 159,

160, 194, 220, 225, 228–231, 234, 236,

237, 239, 240, 242, 243, 245, 248, 251,

254–257, 259–261, 264, 269, 278, 283,

286, 292, 298, 300–302, 310, 315, 316,

Index 483

335, 336, 338, 341, 349, 350, 356, 357,

359, 360, 372–374, 376–381, 383, 385,

390, 392, 399, 406–408, 410, 411, 413,

415, 417, 418, 422, 424, 425, 429,

432–434, 437, 438, 454

statistical learning theory, 254, 255

supervised learning, viii, 220, 227, 236, 249,

290, 305, 308, 359, 386

theory, 254, 255

unsupervised learning, 160, 220, 225, 227,

228, 289, 305, 381, 383, 386

least squares, 66, 243, 244

method of least squares, 66

minimization, 243, 244

leave-one-out, 237, 350–352

strategy, 350–352

length

petal length, 194, 197, 350, 448

sepal length, 194–196, 350, 351, 448

Levenberg-Marquardt, 17, 92

library

structure library, 6

targeted structure library, 6

life, 4, 5, 29, 76

likelihood, 63, 65

maximum likelihood, 63, 65

limitation, 2, 380, 407

linear, viii, ix, 3, 14, 38–43, 54, 62, 63, 66, 73,

78, 88, 89, 135, 154, 236, 243, 244, 247,

256, 257, 262, 264, 267, 278, 279, 282,

283, 290–292, 315, 337, 359, 379, 385,

386, 397, 400, 408, 410–412, 416, 438,

448, 457, 458

algebra, 247

curve fitting, 88, 89

function, 14, 38, 39, 41

general linear function, 38, 39, 41

mapping, 458

MLR, viii, 58, 63, 236, 243–245, 254, 255,

257, 262, 264, 267, 269, 282, 283, 290,

293, 295, 305, 315, 337, 359, 361–363,

369, 379, 385–387, 389, 392, 394, 396,

397, 400, 401, 410–412, 414, 437, 438,

457, 458, 460

model, 41, 78

model function, 38–42, 243, 337

MPR, ix, 58, 236, 243–245, 254, 255,

264, 273, 275, 280–282, 316, 317, 319,

338, 339, 349, 379, 390–392, 394, 396,

402–404, 412, 414, 437, 438, 460

multiple linear regression, viii, 58, 63, 236,

243–245, 254, 255, 257, 262, 264, 267,

269, 282, 283, 290, 293, 295, 305, 315,

337, 359, 361–363, 369, 379, 385–387,

389, 392, 394, 396, 397, 400, 401,

410–412, 414, 437, 438, 457, 458, 460

multiple polynomial regression, ix, 58,

236, 243–245, 254, 255, 264, 273, 275,

280–282, 316, 317, 319, 338, 339, 349,

379, 390–392, 394, 396, 402–404, 412,

414, 437, 438, 460

regression, viii, 63, 243, 257, 264, 385, 410,

438

relation, 38

statistics, 73, 135

transformation, 54

linearity, 88, 245

linearization, 85, 134, 135, 155

liquid, 5, 76, 88

list, 5, 11, 12, 18, 45–47, 194, 217, 222, 441,

459

living organism, 29, 41

local

iterative local minimization, 17

iterative local optimization, 16, 17

iterative local search, 20

maximum, 28, 254

minimization, 154

minimization procedure, 89, 91

minimum, 17, 18, 33, 35, 66, 254

optimization, 15–17, 20

optimization method, 17, 29, 161

optimum, 15, 20, 28, 242

search, 20, 23, 24

logarithm, 134

logarithmic

function, 267

scale, 119

transformation, 84

logarithmic/exponential transformation, 271

logic, 246, 433

logical neuron, 238, 246, 255

look-up table, 56, 64, 274, 292, 294, 390, 400

machine, vii–ix, 1, 3, 5–7, 12, 37, 44–47, 50,

54–58, 63, 67, 73, 74, 78, 144, 159, 160,

194, 220, 225, 228–231, 234, 236, 237,

239, 240, 242, 243, 245, 248, 251, 252,

254–261, 264, 269, 278, 283, 286, 292,

298, 300–302, 310, 315, 316, 335, 336,

338, 341, 349, 350, 356, 357, 359–362,

365, 369, 371–374, 376–381, 383, 385,

390, 392, 399, 406–408, 410, 411, 413,

415, 417, 418, 422, 424, 425, 429, 430,

432–434, 437, 438, 454

intelligence, 429, 432

learning, vii–ix, 1, 3, 5–7, 37, 44–47, 50,

54–58, 63, 67, 73, 74, 159, 160, 194,

484 Index

220, 225, 228–231, 234, 236, 237, 239,

240, 242, 243, 245, 248, 251, 254–257,

259–261, 264, 269, 278, 283, 286, 292,

298, 300–302, 310, 315, 316, 335, 336,

338, 341, 349, 350, 356, 357, 359, 360,

372–374, 376–381, 383, 385, 390, 392,

399, 406–408, 410, 411, 413, 415, 417,

418, 422, 424, 425, 429, 432–434, 437,

438, 454

supervised machine learning, viii, 160, 225,

228, 237, 261, 378, 380, 383, 385, 399,

434

support vector machine, vii, viii, 58, 231,

234, 236, 242, 245, 251–255, 264, 275,

277, 278, 280–284, 291, 293, 294, 296,

297, 301, 303, 323, 326, 349, 373, 397,

406, 413–417, 421, 424, 437–439, 460

unsupervised machine learning, 159

machine learning

non-linear machine learning, ix, 237, 264,

269, 316, 359, 390

malignant, 381–383, 386, 389, 455

tumor, 381, 382, 455

mammalian, 431

man-machine interaction, 434

mapping, 57, 240, 242, 243, 433, 458

linear mapping, 458

mass, 160, 162, 167, 171, 188, 266, 449, 450,

455

ratio, 266, 449, 450

mass ratio

polymer mass ratio, 266

material, 3, 5, 6, 45, 381, 430

material’s

composition, 3, 5

property, 5, 45

scientist, 3

materialist, 430, 431

Mathematica, viii, 1, 6, 7, 11, 12, 18, 19, 23,

29, 32, 45, 58, 59, 89, 92, 96, 109, 374,

410, 437–439, 459

mathematician, 247, 255

mathematics, vii

matrix, 89, 247, 356, 357, 434, 454

matter, 2, 4, 88, 228, 242, 281, 302, 349, 373,

430

maximization, 24, 418

path, 24

maximum, 1, 2, 7, 11, 12, 15, 20, 22–24, 28,

29, 31, 43, 54, 56, 57, 63, 65, 66, 70, 72,

74, 92, 165, 176, 194, 210, 211, 218,

254, 310, 326–330, 351, 373–378, 408,

409, 419, 421–429, 437, 441, 443, 446,

447, 449, 451, 455

global maximum, 20, 23, 24, 28, 29

likelihood, 63, 65

local maximum, 28, 254

number of iterations, 15, 31, 66, 243, 374,

378

maximum-number-of-iterations parameter, 243

mean, 17, 40, 74, 87, 109, 112, 135, 159,

161–163, 168–170, 172, 174, 176, 181,

182, 218, 248, 257, 282, 327, 328, 383,

455

k-means, 160–162, 211

mean-silhouette-width method, 160

root mean squared error, 257

silhouette width, 162, 163, 168–170, 172,

176, 181

squared error, 248, 257

statistical mean, 112

mean silhouette width, 162, 163, 168–170,

172, 176, 181

mean squared error, 248, 249, 257

measure, 61, 162, 433, 434

measurement, 5, 55, 56, 114–117, 135, 194,

264, 320, 444, 448

experimental measurement, 5, 264

mechanics, 2, 4

quantum mechanics, 2, 4

median, 74

medical, 356, 381, 383, 390, 399

decision support, 381

diagnosis, 390

image, 356

practice, 399

treatment, 383

medicinal, 390

medoid, 162

k-medoids, 160, 162, 209, 211, 216, 220,

226–228, 438

partitioning around medoids, 162

memory, vii, 2, 409, 417, 431, 437, 438

computational memory, vii, 431

consumption, 2, 409, 417, 437, 438

versus speed, 409

memory-prediction framework theory, 430

Mercer’s condition, 252

message

error message, 71, 92, 93, 231

methacrylate, 449

method

analytical method, 10

clustering method, viii, 6, 157–160, 163,

164, 198, 211, 226–228

combination method, 17

computational method, 4, 383, 385, 409,

433, 434

Index 485

Conjugate-Gradient method, 374

global optimization method, 16, 31

gradient method, 17

iterative search method, 15, 18

local optimization method, 17, 29, 161

mean-silhouette-width method, 160

minimization method, 377

Newton method, 17

of least squares, 66

optimization method, viii, 16, 17, 29, 31,

161, 240

Quasi-Newton method, 17, 18

search method, 15, 18, 33

Simplex method, 17

methyl, 449

mexican-hat, 252

shape, 252

microscope, 455

mind, 6, 67, 98, 142, 228, 236, 336, 401, 406,

430

mind-body, 430, 431

problem, 430, 431

minimal

model, 237, 349, 355, 388, 396, 399, 403

predictive model, ix, 349, 355, 386, 391,

392, 396

minimization, 17, 18, 33, 35, 66, 88, 89,

91–93, 96, 132, 154, 155, 243–245, 249,

254, 374, 375, 377, 378, 412, 418, 438

algorithm, 35, 92, 96, 155, 374, 375, 438

constrained local minimization, 35

global minimization, 66, 249

iterative local minimization, 17

least squares minimization, 243, 244

local minimization, 154

method, 377

path, 18

problem, 17, 18, 249

procedure, 66, 88, 89, 91, 93, 155

process, 33, 35, 66, 92, 254

quantity, 66

technique, 17

minimum, 1, 2, 7, 11, 12, 15–20, 30, 31,

33–37, 43, 54, 65, 66, 70, 88, 89, 96, 97,

132, 153, 154, 159, 161, 165, 173, 194,

218, 224, 251, 254, 303, 304, 313, 316,

332, 348, 350, 351, 372, 378, 394, 418,

437, 446

constrained global minimum, 31, 37

global minimum, 1, 20, 30, 31, 33, 34, 36,

37, 66, 88, 89, 96, 97, 161

local minimum, 17, 18, 33, 35, 66, 254

training set, 316

misclassification, 365

misclassified, 308

mixing

random mixing, 29

mixture, 89, 264, 266, 373, 449

polymer mixture, 264, 449

MLR, viii, 58, 63, 236, 243–245, 254, 255,

257, 262, 264, 267, 269, 282, 283, 290,

293, 295, 305, 315, 337, 359, 361–363,

369, 379, 385–387, 389, 392, 394, 396,

397, 400, 401, 410–412, 414, 437, 438,

457, 458, 460

fit, 262, 267, 387, 411, 458

mlrInfo, 58, 437

model, viii, ix, 1–6, 37–45, 54–56, 58, 62–69,

71–76, 78, 79, 84–90, 92, 94, 97, 98,

107–110, 112, 114, 115, 118, 119, 121,

125, 132, 134–137, 139, 146, 148,

150, 153–155, 229–231, 233, 236, 237,

239–245, 248–251, 253–255, 258, 259,

264, 265, 267–269, 273–276, 278, 280,

282, 286, 291, 318–320, 337, 339, 342,

347, 349, 355, 376, 386, 388, 391, 392,

396, 399, 400, 403, 412, 421, 422, 424,

427, 428, 434, 435, 437, 440, 446, 457,

458

extraction, 2

function, viii, 1–6, 37–45, 55, 56, 62–69,

71–76, 79, 84–90, 92, 94, 97, 98,

107–110, 112, 114, 115, 118, 119, 125,

132, 134–137, 146, 148, 150, 153–155,

229–231, 233, 236, 239–244, 248–251,

253, 254, 264, 267, 268, 273, 276, 278,

280, 291, 320, 337, 339, 342, 347, 376,

421, 424, 427, 428, 434

generation, 87, 318

linear model, 41, 78

minimal model, 237, 349, 355, 388, 396,

399, 403

minimal predictive model, ix, 349, 355, 386,

391, 392, 396

non-linear model, viii, 40, 41, 43, 62, 64, 89,

154, 243

predictive model, ix, 275, 349, 355, 386,

391, 392, 396

testing, 2

model function, viii, 1–6, 37–45, 55, 56,

62–69, 71–76, 79, 84–90, 92, 94, 97, 98,

107–110, 112, 114, 115, 118, 119, 125,

132, 134–137, 146, 148, 150, 153–155,

229–231, 233, 236, 239–244, 248–251,

253, 254, 264, 267, 268, 273, 276, 278,

280, 291, 320, 337, 339, 342, 347, 376,

421, 424, 427, 428, 434

linear model function, 38–42, 243, 337

486 Index

non-linear model function, viii, 40, 41, 43,

62, 64, 89, 154, 243

model testing, 2

model-versus-data plot, 74, 258

modelling, 237, 242, 269, 276, 279, 398

molecular

biology, 434

descriptor, 400, 457

ensemble, 4

entity, 3, 5

interaction, 4, 76

new molecular entity, 3, 5

property, 149

research, 432

science, viii, 1–4, 6

system, 4

weight, 5, 457

molecule, 2, 4, 45, 76, 149, 440

diatomic molecule, 149

momentum, 375, 378, 438

monism, 430

monist, 430, 431

monomer, 434

Moore’s law, 14, 255

MPR, ix, 58, 236, 243–245, 254, 255, 264,

273, 275, 280–282, 316, 317, 319, 338,

339, 349, 379, 390–392, 394, 396,

402–404, 412, 414, 437, 438, 460

quadratic-log MPR, 273, 280–282, 316,

317, 319

mprInfo, 58, 437

MSE, 248, 249, 257

multicore, ix, 315, 380, 458

multidimensional, vii, 41, 42, 236, 243

multiple linear regression, viii, 58, 63, 236,

243–245, 254, 255, 257, 262, 264, 267,

269, 282, 283, 290, 293, 295, 305, 315,

337, 359, 361–363, 369, 379, 385–387,

389, 392, 394, 396, 397, 400, 401,

410–412, 414, 437, 438, 457, 458, 460

multiple polynomial regression, ix, 58, 236,

243–245, 254, 255, 264, 273, 275,

280–282, 316, 317, 319, 338, 339, 349,

379, 390–392, 394, 396, 402–404, 412,

414, 437, 438, 460

mutation, 29

NaN, 49, 51, 457

Not a Number, 49, 51, 457

nano science, 4, 5

nature, 2, 3, 41, 44, 55, 89, 97, 107, 242, 255,

282, 385, 430

law of nature, 2, 3

near-linear, ix, 379, 386, 390, 394, 397

needle, 29, 455

fine needle, 455

network, vii, viii, 118, 236, 238, 242, 243,

246–249, 251, 254, 255

deep feed-forward neural network, 246

layered feed-forward neural network, 238,

246

neural network, vii, viii, 236, 238, 243, 246,

255

topology, 242, 254, 255

neural, vii, viii, 236, 238, 243, 246, 255, 431

deep feed-forward neural network, 246

layered feed-forward neural network, 238,

246

network, vii, viii, 236, 238, 243, 246, 255

neurobiological, 430

neuron, 238, 242, 243, 246, 247, 249–251,

254, 255, 276, 278, 279, 306, 347, 348,

350, 373–379, 394, 415, 424, 427, 430,

431

hidden neuron, 242, 243, 246, 249–251, 276,

278, 279, 306, 347, 348, 350, 373–379,

394, 415, 424, 427

logical neuron, 238, 246, 255

new molecular entity, 3, 5

Newton

method, 17

step, 17

NMaximize, 29, 439

NME, 3, 5

NMinimize, 29, 37, 96, 438

noise suppression, 372

non-linear, vii–ix, 7, 10, 14, 37, 39–41, 43,

55, 62, 64, 66, 77, 78, 84, 88, 89, 92,

118, 134, 135, 154, 155, 237, 238, 240,

242–246, 255, 264, 267, 269, 275, 276,

281–283, 285, 291, 292, 300, 306, 315,

316, 338, 349, 359, 379, 380, 386, 390,

394, 397, 408, 409, 411, 417

curve fitting, vii, 66, 88, 89, 92, 134, 155

equation, 14

fit, 40

function, 7, 10

machine learning, ix, 237, 264, 269, 316,

359, 390

model, viii, 40, 41, 43, 62, 64, 89, 154, 243

model function, viii, 40, 41, 43, 62, 64, 89,

154, 243

problem, 84

regression, 243

relation, 118

transformation, 55

non-linearity, 40, 88, 237, 245, 264, 379, 390

non-recurrent, 456, 457

Index 487

NonlinearModelFit, 438

normal distribution, 65, 70, 75, 76, 164, 166

normally distributed, 65, 68, 70, 119, 164, 230,

241, 324, 409, 411, 425, 438

Not a Number, 49, 51, 457

notebook, 411

nucleus, 2, 4, 381, 390, 399, 455

cell nucleus, 381, 390, 399, 455

number, 2, 3, 5, 9, 12, 13, 15–17, 25, 28, 31,

46, 49, 51, 54, 56, 63, 64, 66, 67, 69, 75,

78, 85, 89, 95, 96, 99, 101, 102, 104,

114, 116–118, 125, 129, 130, 154, 159,

160, 162–168, 170, 172, 178, 185–188,

194, 201, 204, 206, 209, 212, 215, 217,

219, 220, 222, 223, 228, 237, 242–244,

249–251, 254, 264, 273, 276, 278, 279,

282, 298, 303, 310, 311, 314, 329, 332,

347–349, 356, 372–379, 381, 383, 385,

390–392, 394, 396, 399, 400, 408–411,

415, 424, 427, 433, 441, 444, 451, 456,

457, 459

characteristic number, 399, 457

of iterations, 15, 31, 66, 99, 101, 102, 373,

374, 378

of parameters, 28, 63, 64, 85, 96, 154, 391

numerical, 15, 54, 59, 89, 242, 385, 457

computing, 385

instability, 89

problem, 15, 54, 89

objective, 68, 143, 160, 163, 166, 254, 392,

439

function, 254, 439

objective function, 254, 439

constrained objective function, 254

Occam’s razor, 64, 107

occupancy, 160, 194, 200, 202, 206, 213, 217,

227

ontological, 430

open-categorical, 159, 167, 209, 228

operator, 11

optimization, vii, viii, 1, 6, 7, 10, 14–17, 20,

25, 27, 29, 31, 32, 37, 39, 41, 42, 44, 63,

88, 160, 161, 168, 236, 237, 240, 242,

243, 246, 250, 251, 254, 255, 275, 276,

298, 299, 310–312, 314–317, 324, 326,

328, 329, 332, 335, 372–374, 378, 388,

400, 408, 417, 418, 437–439

algorithm, 438, 439

constrained iterative optimization, 31

constrained optimization, 31, 439

global iterative optimization, 15

global optimization, 15, 20, 25, 27, 31, 160,

255

heuristic optimization, 400

iterative global optimization, 20

iterative local optimization, 16, 17

iterative optimization, 14, 15, 31

local optimization, 15–17, 20

method, viii, 16, 17, 29, 31, 161, 240

parameter, 243, 275, 276, 374, 378, 417

problem, 7, 10, 14, 16, 25, 32, 37, 39, 41,

42, 246, 251, 373, 408, 418

procedure, 29, 31, 161, 168, 240, 316, 373,

417, 437

process, 237, 243, 372, 373

step, 243, 310, 311, 315, 317, 326, 328, 329,

335, 408

strategy, 7, 15, 20, 29, 254, 310, 314, 324,

326, 388

technical optimization parameter, 243, 276,

374, 378

technique, 7, 44, 242

unconstrained optimization, 32

unconstrained optimization problem, 32

optimizing, 299

optimum, 2, 5, 7–18, 20, 23, 28, 29, 32, 33, 37,

39, 41, 43, 63, 64, 66, 68, 73, 87, 112,

134, 159–163, 168, 169, 172, 179, 180,

183, 228, 236, 240, 242–244, 251, 254,

292, 295, 298, 320, 323, 349, 352, 365,

373, 422, 424, 429, 434

constrained global optimum, 32

global optimum, 15, 20, 23, 29, 32, 37, 39,

43, 161, 162, 240

hidden optimum, 236, 429, 434

local optimum, 15, 20, 28, 242

option, 12, 29, 58, 93, 94, 96, 113, 114, 243,

386, 432, 437, 459, 460

parallel calculation option, 386

organism, 29, 41, 430

cybernetic organism, 430

living organism, 29, 41

orthogonal, 210

oscillation, 15, 151, 311, 329, 331, 373, 388

outlier, 55, 64, 132, 141, 142, 154, 264, 379,

451

output, 1, 3, 12, 44, 46–49, 52, 54, 56, 57,

74, 75, 78, 144, 224, 229, 233, 236,

244–249, 251, 254, 258, 259, 261–265,

267, 268, 288, 310, 315, 316, 324,

353–355, 373, 379, 381, 383, 399, 400,

433, 448–451, 455–458

component, 47, 49, 52, 57, 74, 244, 247,

251, 267, 288, 315, 354, 381, 450,

455–457

layer, 246, 247, 249, 251

variable, 3

488 Index

vector, 1, 3, 12, 44, 46–49, 52, 54, 56, 57,

74, 75, 78, 144, 224, 229, 233, 236,

244–249, 251, 254, 258, 259, 261–265,

267, 268, 288, 310, 315, 316, 324,

353–355, 373, 379, 381, 383, 399, 400,

433, 448–451, 455–458

overfit, 227, 242, 382

overfitted, 274, 276, 284, 292, 302, 390, 391,

397

overfitting, 145, 148, 153, 227, 237, 242, 244,

249, 255, 273, 276, 277, 279, 282, 288,

292, 294, 300, 303, 305, 306, 341, 355,

359, 379, 385, 390, 394, 404, 413, 415,

417

overflow, 373

overlap, 170, 174, 198, 203, 205, 221, 222,

226, 353, 382, 433

overlapping, 172, 222, 286

overlay, 19, 149, 238, 280, 319, 337, 339, 342,

344, 346, 348

overlayed, 148, 233

overrepresented, 381

overtrained, 56

package, viii, ix, 1, 6, 48, 58, 70, 71, 76, 93,

98, 117, 119, 129, 136, 149, 164, 165,

167, 186, 187, 194, 239, 240, 256, 264,

282, 356, 381, 382, 410, 437–440, 443,

447, 454

CIP, viii, ix, 1, 6, 7, 11, 48, 54, 58, 59, 70,

71, 76, 89, 90, 93, 98, 117, 119, 129,

136, 149, 160, 162–165, 167, 186, 187,

194, 199, 209, 211, 216, 217, 239, 240,

243, 245, 249, 251, 255, 256, 264, 267,

282, 310, 315, 330, 356, 381, 382, 386,

388, 410, 415, 416, 437–439, 443, 447,

454, 458, 460

CIP CalculatedData package, 58, 70, 119,

164, 239, 256, 438

CIP Cluster package, 165, 167, 186, 187,

382, 438

CIP CurveFit package, 71, 93, 98, 117, 129,

438

CIP DataTransformation package, 240, 438,

454

CIP ExperimentalData package, 48, 76, 136,

149, 194, 264, 282, 356, 381, 438, 443,

447

CIP Graphics package, 6, 58, 438

CIP Perceptron package, 58, 438

CIP SVM package, 439

CIP Utility, 437, 438

Computational Intelligence Packages, viii,

ix, 1, 6, 7, 11, 48, 54, 58, 59, 70, 71, 76,

89, 90, 93, 98, 117, 119, 129, 136, 149,

160, 162–165, 167, 186, 187, 194, 199,

209, 211, 216, 217, 239, 240, 243, 245,

249, 251, 255, 256, 264, 267, 282, 310,

315, 330, 356, 381, 382, 386, 388, 410,

415, 416, 437–439, 443, 447, 454, 458,

460

pair

I/O pair, 46–48, 50–52, 57, 237, 244, 247,

249, 251, 254, 260–262, 264, 273, 282,

284, 288, 295, 298–300, 307, 308, 310,

311, 314, 316, 322, 324, 326–330, 356,

381, 391, 400, 409–411, 414, 415, 433,

439, 448, 452, 455–457

input/output pair, 433

parabola, 8, 39, 78

quadratic parabola, 8, 39, 78

parabolic, 8, 17, 66, 88, 244, 245

parallel, 255, 315, 386, 459

architecture, 315

calculation option, 386

ParallelCalculation, 459, 460

parallelization, ix, 458, 460

parallelized, ix, 59, 251, 315, 335, 375, 386,

417, 458, 459

calculation, ix, 59, 251, 315, 375, 417, 458,

459

parameter, 3, 5, 6, 16, 28, 38–41, 55, 63,

64, 66, 68, 71, 80, 85, 88–91, 93–96,

98–104, 107, 109, 110, 112–120, 123,

129, 132–136, 142, 148, 154, 155, 237,

242–245, 248, 249, 254, 265, 269, 273,

275, 276, 291, 340, 373, 374, 378–380,

383, 391, 412, 417, 434, 437

background parameter, 137, 140, 142

empirical parameter, 64, 142

maximum-number-of-iterations parameter,

243

number of parameters, 28, 63, 64, 85, 96,

154, 391

optimization parameter, 243, 275, 276, 374,

378, 417

parameters’ error, 64, 88, 112–118, 133,

134, 136, 155

parameters’ value, 64, 66, 88, 89, 112, 114,

116–118, 132, 155

space, 93, 96, 99

start parameter, 80, 96, 120

start-parameter search, 98

technical parameter, 237, 373, 379, 383

vigilance parameter, 209, 211, 212, 219,

383, 385

wavelet width parameter, 253, 291, 292

Index 489

width parameter, 252, 253, 275, 278, 291,

292, 397

parameters’ error, 64, 88, 112–118, 133, 134,

136, 155

parameters’ value, 64, 66, 88, 89, 112, 114,

116–118, 132, 155

partition, 157, 160, 161, 217

partitioning, 160–163, 185, 237, 293, 295, 298,

324, 332, 335, 336, 355, 359, 379, 400

heuristic partitioning, 298

random partitioning, 295

partitioning around medoids, 162

partitions, 159, 202

path

maximization path, 24

minimization path, 18

pathological, 408

pattern, 58, 72, 78, 81, 85, 86, 102, 107, 138,

142, 147, 155, 237, 259, 355, 356, 359,

365, 372

deviation pattern, 72, 78, 81, 86, 102, 138,

142, 147, 155, 259

recognition, 58, 237, 355, 356, 359, 365,

372

peak, 98, 100–103, 105, 107, 110, 112, 147,

191, 195, 197, 441, 443, 444, 446, 448

absorption peak, 441, 448

Gaussian peak, 98, 100, 102, 105, 110

penalty, 335, 434

perception

radial perception, 220

perceptron, 58, 236, 238, 240, 245–247, 249,

251, 254, 255, 264, 275, 276, 279, 280,

282, 306, 315, 347, 350, 353, 373–377,

394, 396, 399, 406, 415–417, 421, 424,

427, 437, 438, 460

elementary perceptron, 246

three-layer perceptron, 236, 240, 246, 247,

249, 282, 306, 394, 421, 438

Perceptron package, 58, 438

perceptron-type, 255

perceptronInfo, 58, 437

performance, ix, 55, 281, 292, 294, 335, 349,

351, 360, 379, 407, 408, 412, 431, 438,

458, 460

decrease, 458

fitting performance, 349

gain, 458

improvement, 458

perimeter, 455

peroxide, 449, 450

PES, 5, 149, 440

petabyte, 431

petal, 194, 197, 198, 304, 350–355, 448

length, 194, 197, 350, 448

width, 197, 198, 350–355, 448

pharmaceutical, 6, 434

effect, 434

industry, 6

pharmacological, 45

effect, 45

phase transition, 88

phenomenon, 63, 64, 118, 132, 237

critical phenomena, 118, 132

philosophical, 64, 430

physical, 4, 5, 430, 459

chemistry, 5

interaction, 430

law, 4

physico-chemical, 5, 400, 434, 457

quantity, 400, 457

physics, 3, 4, 418, 430

pixel, 356, 357, 369, 370, 372, 454

grayscale pixel, 356

plane

hyperplane, 7, 15, 41, 43, 243, 244, 266

plateau, 213, 219

platform, viii, 7, 59, 437

plot, 70–72, 74, 76, 77, 79, 81, 84, 87, 124,

132, 146, 147, 155, 168, 169, 172, 176,

196, 198, 200, 228, 232, 233, 236, 241,

258, 259, 265, 268, 270, 297, 333

data plot, 77, 155

function plot, 71, 79, 81

model-versus-data plot, 74, 258

quality-of-fit plot, 232

relative residuals plot, 259, 265

residuals plot, 72, 81, 84, 124, 146, 147,

155, 233, 265

silhouette plot, 168, 172, 176

sorted-model-versus-data plot, 258

Plot2dFunction, 11

Plot2dPointsAboveFunction, 12

PMMA, 449, 450

point, 12, 16, 18, 20–31, 34, 37, 39, 61, 69, 94,

95, 141, 143, 149, 154, 158, 161, 162,

188, 221, 237, 239, 240, 243, 256, 262,

276, 282, 286–288, 297, 336, 349, 352,

353, 381–383, 400, 409, 410, 423, 425,

430, 431, 437, 451, 455

cloud, 382, 383

concave point, 455

grid point, 20–25, 410

interior point, 439

random point, 26–28

random test point, 25, 28

random trial point, 94

Polak-Ribiere, 374

490 Index

polymer, 264, 266, 449

adhesive polymer mixture, 264, 449

mass ratio, 266

mixture, 264, 449

polynomial, ix, 39, 43, 69, 80, 148, 150, 236,

243–245, 264, 269, 273, 338, 339, 379,

390, 396, 402, 412, 414, 415, 438

degree, 244, 245, 264, 269, 273, 338, 339,

390, 396, 402, 412

scaling, 414

post-processing, 23, 24, 28

PostProcess, 29

postprocessing, 23, 24, 28

potential, 5, 149, 378, 440

energy, 5, 149, 440

energy surface, 5, 149, 440

power, 40, 44, 56, 65, 118, 119, 121, 149, 242,

388, 393, 396, 400, 404, 432, 435

computational power, 44, 149, 435

law, 118, 119, 121

predictive power, 388, 393, 396, 400, 404

series, 40

powers, 40

practice, 1, 5, 14, 16, 40, 55, 63, 64, 67, 68, 87,

89, 113, 117, 146, 161, 162, 246, 249,

255, 281, 290, 335, 349, 379, 380, 383,

399, 404, 417

medical practice, 399

practitioner, viii, 64, 78, 92, 227, 236, 255,

336, 349, 380, 417, 418

precision, 5, 12, 15, 17, 24, 29, 37, 57, 64, 97,

105, 107, 117–119, 131, 149, 151, 373

precondition

statistical precondition, 68

predictability, 56, 223, 225, 227, 274, 284,

292, 294, 295, 298, 300, 302, 304, 306,

308–310, 335, 351, 352, 355, 360, 363,

370, 383, 386, 390, 391, 404, 458

prediction, 5, 6, 119, 122, 124, 126, 128, 132,

220, 222, 224, 225, 227, 237, 242, 289,

292, 304, 307, 310, 312, 313, 315, 323,

351, 354, 360, 362, 365, 372, 383, 386,

394, 401

predictive, viii, ix, 80, 220, 224, 227, 273–276,

278, 281, 284, 293, 307, 310, 349, 355,

362, 365, 370, 382, 383, 386, 388,

391–393, 396, 399, 400, 404, 458

minimal predictive model, ix, 349, 355, 386,

391, 392, 396

model, ix, 275, 349, 355, 386, 391, 392, 396

power, 388, 393, 396, 400, 404

system, viii

predictivity, 56, 223, 225, 227, 274, 284,

292, 294, 295, 298, 300, 302, 304, 306,

308–310, 335, 351, 352, 355, 360, 363,

370, 383, 386, 390, 391, 404, 458

predictor, 160, 220–222, 224, 225, 227, 228,

261, 289, 305, 306, 308, 310, 359–363,

381, 382, 385, 390, 399

class predictor, 160, 220, 221, 224, 225,

227, 228, 261, 289, 305, 306, 308, 310,

381, 382, 385, 399

clustering-based class predictor, 225, 227,

228, 261, 289, 305, 306, 308, 310, 381,

382, 385

preprocessing

data preprocessing, viii, 55, 379

image preprocessing, 372

pressure, 335

probability, 28, 73, 114, 121, 188, 192

statistical probability, 73

problem

global minimization problem, 249

global optimization problem, 25

large data set problem, 415

mind-body problem, 430, 431

minimization problem, 17, 18, 249

non-linear problem, 84

numerical problem, 15, 54, 89

optimization problem, 7, 10, 14, 16, 25, 32,

37, 39, 41, 42, 246, 251, 373, 408, 418

regression problem, 273, 409

structural problem, 255, 373, 379, 380

procedure

global optimization procedure, 29, 161

iterative optimization procedure, 417

iterative procedure, 209, 240, 373, 408

local minimization procedure, 89, 91

minimization procedure, 66, 88, 89, 91, 93,

155

optimization procedure, 29, 31, 161, 168,

240, 316, 373, 417, 437

search procedure, 15, 20

statistical procedure, 66

process

iterative process, 117, 373

minimization process, 33, 35, 66, 92, 254

optimization process, 237, 243, 372, 373

radioactive process, 40

processor, ix, 458, 459

program, 58, 155, 430

programming, viii, 1, 6, 7, 254, 255, 434

functional programming, 7

quadratic programming, 254, 255

proof

experimental proof, 121

propagation

error propagation, 55, 135

Index 491

property, 2, 3, 5, 45, 55, 76, 149, 160, 399,

429, 434, 449

dynamic property, 76

material’s property, 5, 45

molecular property, 149

protein, 418, 433

folding, 418

proton, 4

proximity, 17, 23, 97, 98, 143, 148

psychotherapist, 430

pure function, 7, 11

QSAR, 5

QSPR, 5, 399, 401, 457

quadratic

parabola, 8, 39, 78

programming, 254, 255

quadratic-log, 273, 280–282, 316, 317, 319

MPR, 273, 280–282, 316, 317, 319

quality, 105, 107, 162, 185, 227, 228, 233, 235,

292, 294, 316, 347, 349, 378, 379, 399,

415, 438

quality-of-fit, 232

plot, 232

Quantitative Structure Activity Relationship, 5

Quantitative Structure Property Relationship,

5, 399, 401, 457

quantity, 2, 3, 5, 25, 55, 56, 63–69, 73, 74, 76,

117, 135, 155, 162, 163, 236, 244, 259,

350, 355, 381, 390, 399, 400, 455, 457

goodness of fit quantity, 155

minimization quantity, 66

physico-chemical quantity, 400, 457

statistical quantity, 66–68, 73

quantum, 2–4, 76

mechanics, 2, 4

theory, 3, 76

quantum-chemical, 5, 149, 440

quantum-mechanical, 4, 76

Quasi-Newton, 17, 18

method, 17, 18

query, 432–434

radial, 211, 216, 220, 342

basis function, 342, 343

difference, 211

perception, 220

view, 211, 216

radioactive, 40

process, 40

radius, 455

random, 25–29, 91, 93–96, 164, 186, 188, 190,

194, 217, 295, 298, 379

distribution, 186

grid, 95

mixing, 29

partitioning, 295

point, 26–28

representative, 188

search, 29, 93, 96

selection, 188, 298

test point, 25, 28

trial point, 94

ranking

relevance ranking, 351, 352

rate

constant, 5

equation, 5

success rate, 222, 225, 226, 237, 289, 290,

293, 300, 302–305, 307, 312, 382, 383,

386, 396

ratio

mass ratio, 266, 449, 450

rational function, 148, 151

fit, 151

RBF, 342, 343

kernel, 343

reaction, 2, 5, 136, 137, 441–444, 449, 457

chemical reaction, 2, 5, 136, 457

hydrolysis reaction, 441

reactivity, 3

real, 2, 49, 64, 76, 80, 143, 162, 237, 255, 261,

297

reality, 4

recipe

cookbook recipe, 64, 154, 160, 228, 237,

378

recognition, 58, 237, 355, 356, 359, 365, 369,

372, 373

pattern recognition, 58, 237, 355, 356, 359,

365, 372

recombination, 29

record, 408, 409

rectangle, 170

rectangular, 356, 357

recurrent, 456, 457

reduction, 228, 367, 369, 370, 372, 391, 395,

441

redundancy, 381, 390, 438

redundant, 50, 109, 154, 350, 355, 381, 401,

438

descriptor, 401

refinement, 24, 29, 97, 102, 326, 355, 399

region

search region, 15

regression, viii, ix, 1, 43, 48, 56, 57, 63, 236,

237, 243–245, 252–257, 264, 265, 273,

492 Index

316, 320, 326, 332, 340, 379, 385, 388,

390, 409–412, 416, 421, 438, 456

bias, 253, 254

data set, 48, 456

goodness of regression, 256, 264

linear regression, viii, 63, 243, 257, 264,

385, 410, 438

multiple linear regression, viii, 58, 63, 236,

243–245, 254, 255, 257, 262, 264, 267,

269, 282, 283, 290, 293, 295, 305, 315,

337, 359, 361–363, 369, 379, 385–387,

389, 392, 394, 396, 397, 400, 401,

410–412, 414, 437, 438, 457, 458, 460

multiple polynomial regression, ix, 58,

236, 243–245, 254, 255, 264, 273, 275,

280–282, 316, 317, 319, 338, 339, 349,

379, 390–392, 394, 396, 402–404, 412,

414, 437, 438, 460

non-linear regression, 243

problem, 273, 409

support vector regression, 340

task, 1, 56, 57, 255, 273, 316, 320, 326, 332,

379, 388, 410, 411, 421

relation

linear relation, 38

non-linear relation, 118

relationship, 5, 236, 380, 399, 400, 406, 457

Quantitative Structure Activity Relationship,

5

Quantitative Structure Property Relation-

ship, 5, 399, 401, 457

relative residual, 72, 74, 75, 259

plot, 259, 265

relevance, 228, 237, 349–352, 355, 369, 386,

391, 392, 394, 397, 401, 458, 459

analysis, 355, 386, 391, 394, 397, 458

determination, 351, 352, 369

ranking, 351, 352

relevant, 5, 14, 20, 206, 350–352, 372, 392,

396, 404, 408, 458, 459

feature, 458

removal, 50, 51, 64, 142, 350, 351

RemoveNonNumberIoPairs, 50

representation, 2, 148, 149, 194, 260, 438

representative, 6, 160, 185–188, 190, 191, 193,

194, 228, 295, 298, 299, 302, 310, 317

cluster-based representative, 160, 190, 228,

295, 299, 302, 310

random representative, 188

reproducibility, 2, 59

research, 4–7, 209, 228, 240, 251, 255, 378,

381, 408, 418, 422, 432–435, 457

and development, 4, 422, 434, 435

industrial research, 457

molecular research, 432

residual, 65–67, 72, 74, 75, 78, 79, 81, 84–86,

102, 107, 113, 124, 126, 138, 142–144,

146, 147, 153, 155, 233, 241, 257, 259,

265, 266, 268, 270, 280, 316, 318

plot, 72, 81, 84, 124, 146, 147, 155, 233,

265

relative residual, 72, 74, 75, 259

statistics, 266, 268

resolution, 366, 369

resonance, 209, 438

resource

computational resource, 336, 380, 408

result

global optimization result, 27

retrieval, 432

ring

count, 457

risk

empirical risk, 255

structural risk, 255

RMSE, 67, 73, 233, 241, 257, 280, 311, 316,

324, 326, 332, 333, 339, 341, 343,

345, 350, 374–378, 388, 403, 411–413,

415–417

robotic, 6

robotics, 335

robust estimation, 154

root, 11, 12, 14, 257

root mean squared error, 67, 73, 233, 241, 257,

280, 311, 316, 324, 326, 332, 333, 339,

341, 343, 345, 350, 374–378, 388, 403,

411–413, 415–417

rotation, viii, 372

Royal Swedish Academy of Sciences, 4

safeguard, 59, 89, 92, 109, 155

sample, 381, 389, 448

sampling, 20, 28

global sampling, 28

scale, 54, 119, 408, 410, 411, 414, 415

logarithmic scale, 119

scale-free, 118

scaled, 54, 154, 357, 438

ScaleDataMatrix, 438

ScaleDataMatrixReverse, 438

scaling, 1, 54, 365, 409, 411, 412, 414–417

behavior, 409, 411, 415, 417

factor, 365

of data, 1, 54

polynomial scaling, 414

ScanClassTrainingWithMETHOD, 460

scanned

digitally scanned, 455

Index 493

ScanRegressTrainingWithMETHOD, 460

schemata, 29

Schroedinger equation, 4, 149

science, vii, viii, 1–6, 14, 17, 41, 44, 45, 76,

93, 118, 132, 143, 236, 409, 418

experimental science, 4

molecular science, viii, 1–4, 6

nano science, 4, 5

scientist, 3, 69, 93, 107, 109, 112, 113, 121,

160, 247, 273, 335, 355, 379, 390, 430,

434

experimental scientist, 69, 335

material’s scientist, 3

screening

high-throughput screening, 6

search

algorithm, 15, 16

component subset search, 352

constrained global search, 37

evolutionary search, 97

global grid search, 23

global search, 29, 37, 93

grid search, 20, 23, 25, 28

hash-table search, 408, 409

iterative local search, 20

iterative search, 15

local search, 20, 23, 24

method, 15, 18, 33

procedure, 15, 20

random search, 29, 93, 96

region, 15

sequential search, 408

space, 15, 20, 21, 25, 28–31, 94, 98

speed, 408, 409, 432

start-parameter search, 98

strategy, 64, 66, 93, 96, 352

type, 93

search-based approach, 14

searching, 408, 409, 432

seed, 26

segmentation, 372

selection, viii, 29, 188, 190, 192, 194, 237,

298–300, 302, 310, 317, 379, 409

cluster-based selection, 188, 190, 192, 194

heuristics, 237

random selection, 188, 298

semantic, 432

semi-empirical, 4

semi-quantitative, 316, 403

semiempirical, 4

sense

statistical sense, 55, 66

sepal, 194–196, 304, 350, 351, 448

length, 194–196, 350, 351, 448

width, 195, 196, 350, 448

separation, 163, 171, 210, 216, 218, 287, 289,

290, 353, 379

sequence, 5, 26, 398, 432–434

alignment, 434

biological sequence, 432–434

sequential, 380, 408, 432, 458

calculation, 458

search, 408

series

power series, 40

set

data set, 46–51, 55–57, 222, 225, 227, 228,

233, 237, 240, 244, 247–249, 252–255,

261, 264, 273, 282, 284, 285, 288, 292,

295, 298–300, 304, 307, 316, 318, 319,

321, 335, 336, 352, 356–362, 365, 373,

379, 381, 383, 385, 387–392, 395, 397,

399, 400, 410, 411, 415–419, 421, 425,

439, 448–452, 454–458

minimum training set, 316

test set, 237, 292–296, 298, 299, 302–306,

308, 310, 312–316, 322–326, 328, 332,

333, 335, 336, 359, 366, 379, 388, 389,

400

training and test set, 292–294, 296, 298,

299, 302, 305, 306, 310, 312, 314, 315,

324, 326, 332, 333, 335, 359, 379, 388

training set, 292, 293, 298, 300, 302–304,

307, 308, 310–312, 314–317, 320, 321,

323–328, 330, 332, 335, 353, 365, 379,

389

setosa

iris setosa, 194, 355, 448

setting, viii, 11, 26, 58, 90, 94, 99, 113, 243,

249, 291, 292, 294, 296, 301, 303, 374,

379, 413, 415

structural setting, 292

setup, 21, 56, 61, 63, 131, 162, 217, 240, 264,

315, 320, 380, 417, 438

experimental setup, 61, 63, 131

shape

mexican-hat, 252

shift, 55, 80, 86, 432

shifting, 84

shoulder, 98, 101

sigmoid, 238, 246, 247

function, 246

threshold function, 238, 247

silhouette, 162, 163, 168–170, 172–174, 176,

178, 180–183, 200, 201, 203, 214, 218,

219, 228

mean silhouette width, 162, 163, 168–170,

172, 176, 181

494 Index

mean-silhouette-width method, 160

plot, 168, 172, 176

width, 162, 163, 168–170, 172, 176, 178,

181

Simplex, 17

method, 17

simulation, 4, 117, 258

sine, 9

single point calculation, 149

SingleGlobalMax, 310, 317, 330, 388

SingleGlobalMean, 328

slope, 16, 63

smoothing, viii, 3, 5, 63, 64, 68, 69, 143–146,

148, 149, 152–155, 230, 236, 418, 438,

445, 446

cubic spline, 64, 69, 146, 438, 445, 446

data smoothing, viii, 3, 63, 64, 68, 69, 143,

148, 149, 152, 154, 155, 230, 236, 418

goodness of smoothing, 147

model function, 64, 69, 148, 153

software, vii, 89, 112, 134, 155, 379, 440

solution, viii, 1, 2, 4, 14, 15, 17, 29, 84, 89, 91,

93, 155, 159, 242, 287, 292, 294, 295,

308, 433

sorted-model-versus-data plot, 258

space, 4, 15, 20, 21, 25, 28–31, 93, 94, 96, 98,

99, 102, 103, 160, 161, 167, 186, 188,

190, 192–194, 197, 203, 211, 216, 217,

228, 236, 293, 295, 298, 300, 302, 303,

308, 310, 335, 382, 383, 388, 391, 401,

404, 433

input space, 186, 335, 382, 383, 388, 391,

401, 404

parameter space, 93, 96, 99

search space, 15, 20, 21, 25, 28–31, 94, 98

spatial, 186, 194, 206, 228, 295, 298, 310, 323,

325, 332, 382, 388

distribution, 206, 382

diversity, 186, 194, 228, 295, 298, 310, 323,

325, 388

species, 194, 196–203, 205, 213–216, 226,

227, 304, 305, 307, 352, 354, 448

specification, 167, 338, 340

specimen, 432

spectral analysis, 372

spectrum, 55, 136, 441, 443, 444, 447, 448

chemical spectrum, 55

infrared (IR) spectrum, 136, 441

speed, vii, 4, 14, 17, 18, 29, 59, 99, 161, 211,

220, 407–409, 417, 432, 437, 439

accuracy and speed, 99

calculation speed, 14

computational speed, 4, 59

search speed, 408, 409, 432

versus memory, 409

speed versus memory, 409

sphere

hypersphere, 211

spiral, 282–284, 286, 451

intertwined spiral, 282, 451

spline, viii, 64, 69, 143, 146, 148, 152, 438,

445, 446

cubic spline, viii, 64, 69, 143, 146, 148, 152,

438, 445, 446

smoothing cubic spline, 64, 69, 146, 438,

445, 446

split, 47, 51, 52, 180, 183, 288, 292, 295, 298,

299, 388

splitting, 47, 48, 324, 395

standard deviation, 67, 70, 72, 74, 76, 90, 97,

103, 107, 110, 112, 119, 133, 135, 164,

216, 233, 239, 241, 256, 258, 324, 341,

373, 411, 455

of the fit, 67, 72

statistical, 112

standardization, 372

color standardization, 372

start

parameter, 80, 96, 120

start-parameter search, 98

value, 64, 89, 91–101, 104, 105, 110, 119,

154, 155

start-parameter search, 98

state

energy state, 418

statistical

analysis, 1

assessment, 56

basis, 56, 236

distribution, 63, 75

error, 1, 5, 45, 46, 55, 56, 61, 67, 68, 113

ground, 63

learning theory, 254, 255

mean, 112

precondition, 68

probability, 73

procedure, 66

quantity, 66–68, 73

sense, 55, 66

standard deviation, 112

treatment, 154

statistically

based, 46, 69

distributed, 72, 259

independent, 63, 65

statistics, 65, 66, 68, 73, 135, 186, 191, 219,

257, 266, 268, 320

linear statistics, 73, 135

Index 495

residuals statistics, 266, 268

steepest descent, 17, 375, 377, 378

steepest gradient descent, 375, 377

step

evolutionary step, 104

gradient step, 17

iterative step, 17, 373

Newton step, 17

optimization step, 243, 310, 311, 315, 317,

326, 328, 329, 335, 408

size, 17, 378

stepwise, 408

straight line, 3, 7, 15, 37–39, 41, 63, 64, 70,

71, 78, 134, 135, 143, 145, 243, 289, 290

fit, 77

strands

DNA strands, 76

strategy

component-inclusion strategy, 237, 351

evolutionary strategy, 99, 278

global search strategy, 96

global strategy, 327

heuristic partitioning strategy, 298

heuristic strategy, 299, 310

iterative optimization strategy, 15

iterative strategy, 41

leave-one-out strategy, 350–352

optimization strategy, 7, 15, 20, 29, 254,

310, 314, 324, 326, 388

search strategy, 64, 66, 93, 96, 352

structural

bioinformatics, 5

complexity, 251

descriptor, 5, 6, 400, 401, 457

failure, 242

feature, 228, 242

feeling, 228

flexibility, 291

form, 3, 5, 41, 63, 66, 148

hyperparameter, 242, 244, 249, 251, 254,

275, 276, 278, 291, 338, 379, 390, 394,

397, 437

insight, 176

issue, 380

problem, 255, 373, 379, 380

risk, 255

setting, 292

structure, viii, 1–3, 5, 6, 45–47, 49, 55, 58, 71,

76, 163, 174, 176, 228, 231, 236, 240,

244, 357, 399, 409, 431–434, 437

biological structure, 431

chemical structure, 5, 399, 432–434

data structure, viii, 1, 45, 47, 55, 58, 71, 231,

409, 437

library, 6

targeted structure library, 6

subroutine, 92

subset, 6, 52, 262, 264, 266, 268, 270, 276,

277, 280, 316, 352, 386, 450

smallest, 386

component subset, 352

component subset search, 352

substance, 430

substructure, 432, 433

chemical substructure, 433

success

classification success, 294, 300, 351, 388,

389, 392, 394

success rate, 222, 225, 226, 237, 289, 290,

293, 300, 302–305, 307, 312, 382, 383,

386, 396

sum, 17, 65–67, 112, 132, 240, 246, 247, 253

of squares, 17, 65–67, 132

supervised, viii, 159, 160, 220, 225, 227, 228,

236, 237, 249, 261, 290, 305, 308, 359,

378, 380, 383, 385, 386, 399, 434

classification, 237

learning, viii, 220, 227, 236, 249, 290, 305,

308, 359, 386

machine learning, viii, 160, 225, 228, 237,

261, 378, 380, 383, 385, 399, 434

support

decision support, 381

support vector, vii, viii, 231, 234, 236, 242,

251, 252, 255, 340, 413, 438, 439

machine, vii, viii, 58, 231, 234, 236, 242,

245, 251–255, 264, 275, 277, 278,

280–284, 291, 293, 294, 296, 297, 301,

303, 323, 326, 349, 373, 397, 406,

413–417, 421, 424, 437–439, 460

regression, 340

suppression

noise suppression, 372

supramolecular, 76

surface, 2, 5, 6, 8–10, 14, 15, 17, 20, 32,

35–37, 43, 44, 66, 88, 89, 149, 163,

237, 240, 244, 249, 260, 262, 264, 267,

282–285, 290–292, 297, 302, 374, 379,

386, 397, 409, 422, 440

charge, 6

decision surface, 237, 260, 262, 264,

282–285, 290–292, 297, 302, 379, 386,

397

energy surface, 5, 149, 440

hyper surface, 8–10, 14, 15, 17, 37, 43, 44,

66, 88, 89, 240, 244, 249

potential energy surface, 5, 149, 440

unconstrained surface, 35, 36

496 Index

surgeon, 418

SVM, vii, viii, 58, 231, 234, 236, 242, 245,

251–255, 264, 275, 277, 278, 280–284,

291, 293, 294, 296, 297, 301, 303, 323,

326, 349, 373, 397, 406, 413–417, 421,

424, 437–439, 460

SVM package, 439

svmInfo, 58, 231, 437

symmetry, 455

synapse, 430, 431

synthesis, 432

chemical synthesis, 432

system

biological system, 2, 430, 431

lab system, 6

laboratory system, 6

molecular system, 4

predictive system, viii

systematics, 320

table, 56, 64, 274, 292, 294, 390, 400, 409

hash-table, 408, 409, 432

look-up table, 56, 64, 274, 292, 294, 390,

400

Tanimoto coefficient, 433

target, viii, 6, 20, 422

targeted structure library, 6

task

classification task, viii, 1, 48, 56–58, 159,

225, 227, 228, 236, 237, 243, 245, 261,

282, 288, 290–292, 295, 304, 351, 352,

388, 390

computational task, 407

fitting task, 1, 55, 64, 93, 155, 231

global optimization task, 160

regression task, 1, 56, 57, 255, 273, 316,

320, 326, 332, 379, 388, 410, 411, 421

technical, 1, 6, 237, 242, 243, 246, 251, 255,

276, 288, 291, 373, 374, 378–380, 383,

417, 433, 437

failure, 242

optimization parameter, 243, 276, 374, 378

parameter, 237, 373, 379, 383

technique, vii, viii, 2–4, 6, 7, 17, 44, 56, 68,

69, 159, 209, 228, 236, 242, 243, 257,

291, 316, 372

clustering technique, 159, 209, 228

filtering technique, 372

minimization technique, 17

optimization technique, 7, 44, 242

telephone book, 432

temperature, 2, 5, 76, 77, 80, 88, 439, 449, 451

dependence, 5, 76, 439

terabyte, 431

term

exponential term, 65, 92, 93, 109

termination, 88, 378

terminology, 157, 210, 252, 255

test

random test point, 25, 28

test set, 237, 292–296, 298, 299, 302–306,

308, 310, 312–316, 322–326, 328, 332,

333, 335, 336, 359, 366, 379, 388, 389,

400

training and test set, 292–294, 296, 298,

299, 302, 305, 306, 310, 312, 314, 315,

324, 326, 332, 333, 335, 359, 379, 388

testing, 2

model testing, 2

theorem, 63

central limit theorem, 63

theory, 2–4, 55, 76, 119, 209, 254, 255, 430,

438

Adaptive Resonance Theory, 209, 438

ART, 209, 438

learning theory, 254, 255

memory-prediction framework theory, 430

quantum theory, 3, 76

statistical learning theory, 254, 255

three-layer, viii, 236, 240, 243, 246, 247, 249,

282, 306, 394, 421, 438

perceptron, 236, 240, 246, 247, 249, 282,

306, 394, 421, 438

threshold, 4, 208, 238, 246–248, 434

threshold function

sigmoid threshold function, 238, 247

time consumption

computational time consumption, 408

time period, 336, 407–410, 442

computational time period, 409

time-to-maximum-temperature, 451

tissue, 58, 356, 381, 455

biological tissue, 356

tumor tissue, 58, 381, 455

tool, 220, 255, 380, 385, 431, 435

tool box, 255, 385

topological, 5, 433

topology, 242, 251, 254, 255

network topology, 242, 254, 255

training, 56, 236, 237, 242, 250, 251, 292–296,

298–308, 310–318, 320, 321, 323–328,

330, 332, 333, 335, 336, 353, 359–361,

363, 365, 367, 370, 379, 388, 389, 400,

401, 404, 410, 411, 414–417, 432

and test set, 292–294, 296, 298, 299, 302,

305, 306, 310, 312, 314, 315, 324, 326,

332, 333, 335, 359, 379, 388

Index 497

fraction, 298, 302, 307, 308, 310, 312–315,

317, 318, 324, 325

minimum training set, 316

set, 292, 293, 298, 300, 302–304, 307, 308,

310–312, 314–317, 320, 321, 323–328,

330, 332, 335, 353, 365, 379, 389

transformation, 54, 55, 64, 84, 132, 134, 135,

155, 267, 271, 372, 438

data transformation, 55, 64, 132, 134, 135,

155, 267, 438

linear transformation, 54

logarithmic transformation, 84

logarithmic/exponential transformation, 271

non-linear transformation, 55

wavelet transformation, 372

transition

phase transition, 88

translation, 372

transparency, 353

treatment

medical treatment, 383

statistical treatment, 154

tree

binary tree, 408, 409, 432

trial

and error, 7, 63, 64, 87, 88, 93, 148, 154,

236, 243, 251, 254, 278, 336, 380

random trial point, 94

trick

kernel trick, 255

triple, 5, 45, 55, 61, 63, 65, 70, 72, 89, 97, 115,

135, 148, 351, 458

truncation, 432

tumor, 58, 381–383, 386, 389, 455–457

benign tumor, 381, 383, 455

malignant tumor, 381, 382, 455

tissue, 58, 381, 455

type, 381, 386

Turing, 429

two-dimensional, vii, 61, 74, 88, 92, 157, 209,

237, 261, 320

curve fitting, vii, 61, 74, 88

type

search type, 93

tumor type, 381, 386

unbiased, 293

unconstrained, 31, 32, 35, 36, 240, 249, 310

exchange, 310

global minimization, 249

optimization, 32

optimization problem, 32

surface, 35, 36

underflow, 92

unification, 437

union, 194

universal, 242, 245, 246, 255, 345, 380

Fourier kernel, 345

function approximation, 242, 246

universality, 248

computational universality, 242, 245, 246,

248, 255

universe, 56, 430

unsupervised, viii, 159, 160, 167, 220, 225,

227, 228, 236, 261, 289, 305, 381–383,

386, 434

clustering, viii, 236

learning, 160, 220, 225, 227, 228, 289, 305,

381, 383, 386

machine learning, 159

Utility package, 437, 438

validation, 12, 194, 237, 298, 300, 316, 335,

336, 380

cross validation, 194, 336

heuristics, 336

validation heuristics, 336

validity, 409

value

energy value, 5, 440

experimental value, 4, 65

grayscale value, 357, 454

start value, 64, 89, 91–101, 104, 105, 110,

119, 154, 155

vanishing gradient, 246

vapor, 88

variable, 3, 6, 7, 11, 12, 66

input variable, 3

output variable, 3

variant, 18, 163, 227, 255, 327, 374

vector, vii, viii, 5, 44–46, 48, 49, 56–58, 164,

165, 229, 231, 234, 236, 239, 242, 244,

245, 251, 252, 254, 255, 261, 262, 340,

349, 357, 400, 413, 433, 438, 439, 448,

449, 454, 457

input vector, 1, 3, 5, 6, 44, 46–52, 54,

56–58, 94, 157, 159–167, 169, 171–174,

176, 178, 180, 182, 183, 185–188,

190–195, 197–203, 205–209, 211,

215–218, 220–222, 224–229, 236, 237,

240, 244–249, 252–254, 261, 262, 264,

282, 286, 292, 293, 295, 296, 298–303,

308, 310, 320, 325, 335, 349–355, 357,

359, 369, 372, 373, 381–383, 386–388,

390–392, 395–397, 399–401, 403, 404,

431, 433, 448–451, 454–458

output vector, 1, 3, 12, 44, 46–49, 52, 54, 56,

57, 74, 75, 78, 144, 224, 229, 233, 236,

498 Index

244–249, 251, 254, 258, 259, 261–265,

267, 268, 288, 310, 315, 316, 324,

353–355, 373, 379, 381, 383, 399, 400,

433, 448–451, 455–458

support vector, vii, viii, 231, 234, 236, 242,

251, 252, 255, 340, 413, 438, 439

versicolor

iris versicolor, 194, 355, 448

view

radial view, 211, 216

vigilance, 209, 211–213, 219, 383, 385

parameter, 209, 211, 212, 219, 383, 385

virginica

iris virginica, 194, 355, 448

viscosity, 5, 76, 77, 80, 88, 439

visual

inspection, 84, 90, 93, 98, 100, 103, 105,

119, 141, 158, 194, 207, 228, 231, 250,

264, 284, 292, 300, 319, 320, 337, 422,

437

visualization, 72

water, 76, 88, 136, 392, 439

Watson, 434

wavelet, 252, 253, 275, 278, 291, 292, 340,

341, 372, 379, 397

kernel, 252, 253, 275, 278, 291, 340, 379,

397

transformation, 372

width parameter, 253, 291, 292

WDBC data set, 381, 383, 390, 399, 455, 456,

458

weight, 5, 65, 67, 68, 113, 136, 154, 240, 247,

248, 254, 457

molecular weight, 5, 457

What You Think Is What You Get, 434

white spot, 6, 160, 206, 208, 209, 228

width

petal width, 197, 198, 350–355, 448

sepal width, 195, 196, 350, 448

silhouette width, 162, 163, 168–170, 172,

176, 178, 181

width parameter, 252, 253, 275, 278, 291, 292,

397

wavelet width parameter, 253, 291, 292

wildcard, 432

winner, 22–24, 26–28, 355, 458

winner-take-all, 388

winner-take-all, 388

Wisconsin Diagnostic Breast Cancer data set,

381, 383, 390, 399, 455, 456, 458

Wisconsin Prognostic Breast Cancer data set,

50, 456, 457

workstation, 380

WPBC data set, 50, 456, 457

WYTIWYG, 434

XOR, 246

xy-error

data, 5, 45, 54, 55, 61, 63, 65, 68, 69, 71, 89,

97, 100, 112, 119, 135, 136, 141, 143,

148, 239, 438

data triple, 5, 45, 55, 65, 89, 97

	Preface
	Acknowledgements
	Contents
	1Introduction
	1.1 Motivation: Data, models and molecular sciences
	1.2 Optimization
	1.2.1 Calculus
	1.2.2 Iterative optimization
	1.2.3 Iterative local optimization
	1.2.4 Iterative global optimization
	1.2.5 Constrained iterative optimization

	1.3 Model functions
	1.3.1 Linear model functions with one argument
	1.3.2 Non-linear model functions with one argument
	1.3.3 Linear model functions with multiple arguments
	1.3.4 Non-linear model functions with multiple arguments
	1.3.5 Multiple model functions
	1.3.6 Summary

	1.4 Data structures
	1.4.1 Data for curve fitting
	1.4.2 Data for machine learning
	1.4.3 Inputs for clustering
	1.4.4 Inspection, cleaning and splitting of data

	1.5 Scaling of data
	1.6 Data errors
	1.7 Regression versus classification tasks
	1.8 The structure of CIP calculations
	1.9 A note on reproducibility

	2Curve Fitting
	2.1 Basics
	2.1.1 Fitting data
	2.1.2 Useful quantities
	2.1.3 Smoothing data

	2.2 Evaluating the goodness of fit
	2.3 How to guess a model function
	2.4 Problems and pitfalls
	2.4.1 Parameters’ start values
	2.4.2 How to search for parameters’ start values
	2.4.3 More difficult curve fitting problems
	2.4.4 Inappropriate model functions

	2.5 Parameters’ errors
	2.5.1 Correction of parameters’ errors
	2.5.2 Confidence levels of parameters’ errors
	2.5.3 Estimating the necessary number of data
	2.5.4 Large parameters’ errors and educated cheating
	2.5.5 Experimental errors and data transformation

	2.6 Empirical enhancement of theoretical model functions
	2.7 Data smoothing with cubic splines
	2.8 Cookbook recipes for curve fitting

	3Clustering
	3.1 Basics
	3.2 Intuitive clustering
	3.3 Clustering with a fixed number of clusters
	3.4 Getting representatives
	3.5 Cluster occupancies and the iris flower example
	3.6 White-spot analysis
	3.7 Alternative clustering with ART-2a
	3.8 Clustering and class predictions
	3.9 Cookbook recipes for clustering

	4Machine Learning
	4.1 Basics
	4.2 Machine learning methods
	4.2.1 Multiple linear and polynomial regression (MLR, MPR)
	4.2.2 Three-layer feed-forward neural networks
	4.2.3 Support vector machines (SVM)

	4.3 Evaluating the goodness of regression
	4.4 Evaluating the goodness of classification
	4.5 Regression: Entering non-linearity
	4.6 Classification: Non-linear decision surfaces
	4.7 Ambiguous classification
	4.8 Training and test set partitioning
	4.8.1 Cluster representatives based selection
	4.8.2 Iris flower classification revisited
	4.8.3 Adhesive kinetics regression revisited
	4.8.4 Design of experiment
	4.8.5 Concluding remarks

	4.9 Comparative machine learning
	4.10 Relevance of input components and minimal models
	4.11 Pattern recognition
	4.12 Technical optimization problems
	4.13 Cookbook recipes for machine learning
	4.14 Appendix - Collecting the pieces

	5Discussion
	5.1 Computers are about speed
	5.2 Isn’t it just ...?
	5.2.1 ... optimization?
	5.2.2 ... data smoothing?

	5.3 Computational intelligence
	5.4 Final remark

	Appendix A
	CIP -Computational Intelligence Packages
	A.1 Basics
	A.2 Experimental data
	A.2.1 Temperature dependence of the viscosity of water
	A.2.2 Potential energy surface of hydrogen fluoride
	A.2.3 Kinetics data from time dependent IR spectra of the hydrolysis of acetanhydride
	A.2.4 Iris flowers
	A.2.5 Adhesive kinetics
	A.2.6 Intertwined spirals
	A.2.7 Faces
	A.2.8 Wisconsin Diagnostic Breast Cancer (WDBC) data
	A.2.9 Wisconsin Prognostic Breast Cancer (WPBC) data
	A.2.10 QSPR data

	A.3 Parallelized calculations

	References
	Index

