

The Machine
Learning Solutions
Architect Handbook

Create machine learning platforms to run solutions
in an enterprise setting

David Ping

BIRMINGHAM—MUMBAI

The Machine Learning Solutions Architect
Handbook
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Publishing Product Manager: Reshma Raman
Senior Editor: Mohammed Yusuf Imaratwale
Content Development Editor: Sean Lobo
Technical Editor: Devanshi Ayare
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Shankar Kalbhor

First published: January 2022

Production reference: 1151221

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-216-8

www.packt.com

http://www.packt.com

Contributors

About the author
David Ping is a senior technology leader with over 25 years of experience in the
technology and financial services industry. His technology focus areas include cloud
architecture, enterprise ML platform design, large-scale model training, intelligent
document processing, intelligent media processing, intelligent search, and data platforms.
He currently leads an AI/ML solutions architecture team at AWS, where he helps global
companies design and build AI/ML solutions in the AWS cloud. Before joining AWS,
David held various senior technology leadership roles at Credit Suisse and JPMorgan. He
started his career as a software engineer at Intel. David has an engineering degree from
Cornell University.

About the reviewers
Kamesh Ganesan is a cloud evangelist, a seasoned technology professional, an author,
and a leader with over 24 years of IT experience in all major cloud technologies,
including AWS, Azure, GCP, Oracle, and Alibaba Cloud. He has over 50 IT certifications,
including many cloud certifications. He has played many roles and architected and
delivered mission-critical and innovative technology solutions that helped his enterprise,
commercial, and government clients to be very successful. He has authored AWS and
Azure books and has reviewed many IT/cloud technology books and courses.

A special thanks to my wife, Hemalatha, for her constant support, and
thanks to my kids, Sachin and Arjun, for their love. Also, my parents for

their unwavering encouragement throughout my life.

Simon Zamarin is an AI/ML specialist solution architect at AWS. He has over 5 years
of experience in data science, engineering, and analytics. His main focus as a specialist
solutions architect is on helping customers get the most value out of their data assets.

Giuseppe Angelo is a principal machine learning specialist solutions architect at Amazon
Web Services. With multiple years of experience in software engineering, software and
system architecture, and machine learning, Giuseppe helps businesses of any size and
industry design solutions that use ML to solve the most challenging problems. Currently,
his areas of specialization are ML architecture, ML industrialization, and MLOps; he
is also passionate about product development and SaaS. Giuseppe holds several AWS
certifications, including AWS Machine Learning Specialty and AWS Solution Architect
Professional. In his spare time, he enjoys skiing and playing football with friends, and
taking care of his two lovely young boys.

Vishakha Gupta is a data scientist at one of the world's largest healthcare organizations,
a Fortune 5 company. She has postgraduate degree (B.Tech. and M.Tech.) from IIIT
Gwalior in information technology with majors in data science. She has previously been
part of organizations such as Nasdaq and BNY Mellon. She is a multi-skilled learner and
has excelled in various domains of data science and web technology. Her work involves
the research and development of enterprise-level solutions based on machine learning,
deep learning, and natural language processing for healthcare - and insurance-related
use cases. Her latest published IEEE research work is on speech prediction through
mute videos.

Preface

Section 1: Solving Business Challenges with
Machine Learning Solution Architecture

1
Machine Learning and Machine Learning Solutions
Architecture

What are AI and ML? � 4
Supervised ML � 5
Unsupervised ML � 6
Reinforcement learning� 8

ML versus traditional software� 10
ML life cycle� 11
Business understanding and ML
problem framing� 13
Data understanding and data
preparation� 14
Model training and evaluation� 14
Model deployment� 15
Model monitoring� 15

Business metric tracking� 15

ML challenges� 16
ML solutions architecture� 16
Business understanding and ML
transformation � 18
Identification and verification of ML
techniques � 18
System architecture design and
implementation� 19
ML platform workflow automation � 20
Security and compliance� 20

Testing your knowledge� 21
Summary� 22

2
Business Use Cases for Machine Learning

ML use cases in financial services�24
Capital markets front office� 24

Capital markets back office operations� 28
Risk management and fraud� 31

Table of Contents

vi Table of Contents

Insurance� 35

ML use cases in media and
entertainment� 37
Content development and production� 38
Content management and discovery� 38
Content distribution and customer
engagement� 39

ML use cases in healthcare and
life sciences� 40
Medical imaging analysis� 40
Drug discovery� 41
Healthcare data management� 43

ML use cases in manufacturing� 44

Engineering and product design� 44
Manufacturing operations – product
quality and yield� 45
Manufacturing operations – machine
maintenance� 46

ML use cases in retail� 46
Product search and discovery� 46
Target marketing� 47
Sentiment analysis� 48
Product demand forecasting� 49

ML use case identification
exercise � 50
Summary� 50

Section 2: The Science, Tools, and
Infrastructure Platform for Machine
Learning

3
Machine Learning Algorithms

Technical requirements � 54
How machines learn� 54
Overview of ML algorithms� 56
Consideration for choosing ML
algorithms� 56
Algorithms for classification and
regression problems � 58
Algorithms for time series analysis � 67
Algorithms for recommendation� 69
Algorithms for computer vision problems�71
Algorithms for natural language
processing problems� 73

Generative model� 81

Hands-on exercise � 83
Problem statement � 83
Dataset description� 83
Setting up a Jupyter Notebook
environment� 83
Running the exercise� 86

Summary� 91

Table of Contents vii

4
Data Management for Machine Learning

Technical requirements� 94
Data management
considerations for ML� 94
Data management architecture
for ML � 96
Data storage and management� 98
Data ingestion� 100
Data cataloging� 103
Data processing� 104
Data versioning� 105
ML feature store� 106
Data serving for client consumption� 107
Authentication and authorization� 108
Data governance� 109

Hands-on exercise – data
management for ML � 111
Creating a data lake using Lake
Formation� 112
Creating a data ingestion pipeline� 113
Creating a Glue catalog� 115
Discovering and querying data in the
data lake� 116
Creating an Amazon Glue ETL job to
process data for ML� 118
Building a data pipeline using Glue
workflows� 121

Summary� 123

5
Open Source Machine Learning Libraries

Technical requirements� 126
Core features of open source
machine learning libraries� 126
Understanding the scikit-learn
machine learning library� 127
Installing scikit-learn� 128
Core components of scikit-learn� 128

Understanding the Apache
Spark ML machine learning
library� 130
Installing Spark ML� 132
Core components of the Spark ML
library� 132

Understanding the TensorFlow
deep learning library� 135
Installing Tensorflow� 137
Core components of TensorFlow� 138

Hands-on exercise – training a
TensorFlow model� 140
Understanding the PyTorch
deep learning library� 143
Installing PyTorch� 143
Core components of PyTorch� 144

Hands-on exercise – building
and training a PyTorch model� 146
Summary� 149

viii Table of Contents

6
Kubernetes Container Orchestration Infrastructure
Management

Technical requirements� 152
Introduction to containers� 152
Kubernetes overview and core
concepts� 154
Networking on Kubernetes� 161
Service mesh� 166

Security and access
management� 167
Network security� 168

Authentication and authorization to
APIs� 168
Running ML workloads on Kubernetes� 173

Hands-on – creating a
Kubernetes infrastructure on
AWS� 174
Problem statement� 174
Lab instruction� 174

Summary� 180

Section 3: Technical Architecture Design
and Regulatory Considerations for
Enterprise ML Platforms

7
Open Source Machine Learning Platforms

Technical requirements� 184
Core components of an ML
platform � 184
Open source technologies for
building ML platforms� 185
Using Kubeflow for data science
environments� 186
Building a model training environment� 189
Registering models with a model
registry� 192
Serving models using model serving
services� 193

Automating ML pipeline workflows� 201

Hands-on exercise – building a
data science architecture using
open source technologies� 205
Part 1 – Installing Kubeflow� 205
Part 2 – tracking experiments and
models, and deploying models� 211
Part 3 – Automating with an ML pipeline�220

Summary� 232

Table of Contents ix

8
Building a Data Science Environment Using AWS ML Services

Technical requirements� 234
Data science environment
architecture using SageMaker� 234
SageMaker Studio� 236
SageMaker Processing� 238
SageMaker Training Service� 239
SageMaker Tuning� 240
SageMaker Experiments� 241
SageMaker Hosting � 241

Hands-on exercise – building a
data science environment using
AWS services� 242
Problem statement � 242
Dataset� 242
Lab instructions� 242

Summary� 258

9
Building an Enterprise ML Architecture with AWS ML Services

Technical requirements� 260
Key requirements for an
enterprise ML platform� 260
Enterprise ML architecture
pattern overview� 262
Model training environment � 264
Model training engine� 265
Automation support � 267
Model training life cycle management� 268

Model hosting environment
deep dive� 268
Inference engine� 269
Authentication and security control� 273

Monitoring and logging� 274

Adopting MLOps for ML
workflows� 274
Components of the MLOps architecture�275
Monitoring and logging� 279

Hands-on exercise – building an
MLOps pipeline on AWS� 289
Creating a CloudFormation template
for the ML training pipeline� 289
Creating a CloudFormation template
for the ML deployment pipeline� 295

Summary� 299

x Table of Contents

10
Advanced ML Engineering

Technical requirements� 302
Training large-scale models
with distributed training � 302
Distributed model training using data
parallelism� 303
Distributed model training using
model parallelism� 309

Achieving low latency model
inference� 318
How model inference works and
opportunities for optimization� 318
Hardware acceleration� 319

Model optimization� 322
Graph and operator optimization� 324
Model compilers� 326
Inference engine optimization� 328

Hands-on lab – running
distributed model training with
PyTorch � 329
Modifying the training script � 329
Modifying and running the launcher
notebook � 331

Summary� 332

11
ML Governance, Bias, Explainability, and Privacy

Technical requirements� 334
What is ML governance and
why is it needed?� 334
The regulatory landscape around
model risk management� 335
Common causes of ML model risks� 336

Understanding the ML
governance framework� 337
Understanding ML bias and
explainability� 338
Bias detection and mitigation� 339
ML explainability techniques� 340

Designing an ML platform for
governance� 342
Data and model documentation � 343

Model inventory� 345
Model monitoring� 345
Change management control� 346
Lineage and reproducibility� 347
Observability and auditing� 347
Security and privacy-preserving ML� 348

Hands-on lab – detecting bias,
model explainability, and
training privacy-preserving
models� 353
Overview of the scenario� 353
Detecting bias in the training dataset� 353
Explaining feature importance for the
trained model� 358
Training privacy-preserving models� 359

Table of Contents xi

12
Building ML Solutions with AWS AI Services

Technical requirements� 364
What are AI services?� 364
Overview of AWS AI services � 365
Amazon Comprehend� 366
Amazon Textract � 368
Amazon Rekognition� 369
Amazon Transcribe� 371
Amazon Personalize� 372
Amazon Lex� 375
Amazon Kendra � 376
Evaluating AWS AI services for
ML use cases� 378

Building intelligent solutions
with AI services � 379
Automating loan document
verification and data extraction� 379

Media processing and analysis
workflow� 381
E-commerce product recommendation� 383
Customer self-service automation with
intelligent search� 385

Designing an MLOps
architecture for AI services� 386
AWS account setup strategy for AI
services and MLOps� 386
Code promotion across environments� 388
Monitoring operational metrics for AI
services� 388

Hands-on lab – running ML
tasks using AI services � 389
Summary� 394

Index
Other Books You May Enjoy

Preface
As artificial intelligence and machine learning (ML) become increasingly prevalent in
many industries, there is an increasing demand for ML solutions architects who can
translate business needs into ML solutions and design ML technology platforms. This
book is designed to help people learn ML concepts, algorithms, system architecture
patterns, and ML tools to solve business and technical challenges, with an emphasis on
large-scale ML systems architecture and operations in an enterprise setting.

The book first introduces ML and business fundamentals, such as the types of ML,
business use cases, and ML algorithms. It then dives deep into data management for ML
and the various AWS services for building a data management architecture for ML.

After the data management deep dive, the book focuses on two technical approaches to
building ML platforms: using open source technologies such as Kubernetes, Kubeflow,
MLflow, and Seldon Core, and the use of managed ML services such as Amazon
SageMaker, Step Functions, and CodePipeline.

The book then gets into advanced ML engineering topics, including distributed
model training and low-latency model serving to meet large-scale model training
and high-performance model serving requirements.

Governance and privacy are important considerations for running models in production.
In this book, I also cover ML governance requirements and how an ML platform can
support ML governance in areas such as documentation, model inventory, bias detection,
model explainability, and model privacy.

Building ML-powered solutions do not always require building ML models or
infrastructure from scratch. In the book's last chapter, I will introduce AWS AI
services and the problems that AI services can help solve. You will learn the core
capabilities of some AI services and where you can use them for building ML-powered
business applications.

xiv Preface

By the end of this book, you will understand the various business, data science, and
technology domains of ML solutions and infrastructure. You will be able to articulate the
architecture patterns and considerations for building enterprise ML platforms and develop
hands-on skills with various open source and AWS technologies. This book can also help
you prepare for ML architecture-related job interviews.

Who this book is for
This book is designed for two primary audiences: developers and cloud architects who are
looking for guidance and hands-on learning materials to become ML solutions architects,
and experienced ML architecture practitioners and data scientists who are looking to
develop a broader understanding of industry ML use cases, enterprise data and ML
architecture patterns, data management and ML tools, ML governance, and advanced ML
engineering techniques.

This book can also benefit data engineers and cloud system administrators looking to
understand how data management and cloud system architecture fit into the overall ML
platform architecture.

This book assumes you have some Python programming knowledge and are familiar
with AWS services. Some of the chapters are designed for ML beginners to learn the
core ML fundamentals, and they might overlap with the knowledge already possessed by
experienced ML practitioners.

What this book covers
Chapter 1, Machine Learning and Machine Learning Solutions Architecture, introduces the
core concepts of ML and the ML solutions architecture function.

Chapter 2, Business Use Cases for Machine Learning, talks about the core business
fundamentals, workflows, and common ML use cases in financial services, media
entertainment, health care, manufacturing, and retail.

Chapter 3, Machine Learning Algorithms, introduces common ML and deep learning
algorithms for classification, regression, clustering, time series, recommendations,
computer vision, natural language processing, and data generation. You will get hands-on
experience of setting up a Jupyter server and building ML models on your local machine.

Chapter 4, Data Management for Machine Learning, covers platform capabilities,
system architecture, and AWS tools for building data management capabilities for ML.
You will develop hands-on skills with AWS services for building data management
pipelines for ML.

Preface xv

Chapter 5, Open Source Machine Learning Libraries, covers the core features of
scikit-learn, Spark ML, and TensorFlow, and how to use these ML libraries for data
preparation, model training, and model serving. You will practice building deep learning
models using TensorFlow and PyTorch.

Chapter 6, Kubernetes Container Orchestration Infrastructure Management, introduces
containers, Kubernetes concepts, Kubernetes networking, and Kubernetes security.
Kubernetes is a core open source infrastructure for building open source ML solutions.
You will also practice setting up the Kubernetes platform on AWS EKS and deploying an
ML workload in Kubernetes.

Chapter 7, Open Source Machine Learning Platform, talks about the core concepts and
the technical details of various open source ML platform technologies, such as Kubeflow,
MLflow, AirFlow, and Seldon Core. The chapter also covers how to use these technologies
to build a data science environment and ML automation pipeline, and provides you with
instructions to develop hands-on experience with these open source technologies.

Chapter 8, Building a Data Science Environment Using AWS Services, introduces
various AWS managed services for building data science environments, including
Amazon SageMaker, Amazon ECR, and Amazon CodeCommit. You will also get
hands-on experience with these services to configure a data science environment for
experimentation and model training.

Chapter 9, Building an Enterprise ML Architecture with AWS ML Services, talks about
the core requirements for an enterprise ML platform, discusses the architecture patterns
for building an enterprise ML platform on AWS, and dives deep into the various core
ML capabilities of SageMaker and other AWS services. You will also learn MLOps and
monitoring architecture with a hands-on exercise using sample ML pipelines for model
training and model deployment.

Chapter 10, Advanced ML Engineering, covers core concepts and technologies for
large-scale distributed model training, such as data parallel and model parallel model
training using DeepSpeed and PyTorch DistributeDataParallel. It also dives deep into
the technical approaches for low-latency model inference, such as using hardware
acceleration, model optimization, and graph and operator optimization. You will
also get hands on with distributed data parallel models training using a SageMaker
training cluster.

Chapter 11, ML Governance, Bias, Explainability, and Privacy, discusses the ML
governance, bias, explainability, and privacy requirements and capabilities for production
model deployment. You will also learn techniques for bias detection, explainability, and
ML privacy with hands-on exercises using SageMaker Clarify and PyTorch Opacus.

xvi Preface

Chapter 12, Building ML Solutions with AWS AI Services, introduces AWS AI services
and architecture patterns for incorporating these AI services into ML-powered business
applications.

To get the most out of this book
Here is a list of the hardware/software requirements for the book:

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/The-Machine-Learning-Solutions-
Architect-Handbook. If there's an update to the code, it will be updated in the
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801072168_ColorImages.pdf.

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801072168_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801072168_ColorImages.pdf

Preface xvii

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as
another disk in your system."

A block of code is set as follows:

import pandas as pd

churn_data = pd.read_csv("churn.csv")

churn_data.head()

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

The following command calculates the various statistics

for the features.

churn_data.describe()

The following command displays the histograms for the

different features.

You can replace the column names to plot the histograms

for other features

churn_data.hist(['CreditScore', 'Age', 'Balance'])

The following command calculate the correlations among

features

churn_data.corr()

Any command-line input or output is written as follows:

 ! pip3 install --upgrade tensorflow

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: An example
of a deep learning-based solution is the Amazon Echo virtual assistant.

Tips or Important Notes
Appear like this.

xviii Preface

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us
at customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read The Machine Learning Solutions Architect Handbook, we'd love to hear
your thoughts! Please click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://www.packtpub.com/support/errata
https://authors.packtpub.com
https://packt.link/r/1-801-07216-7

Section 1:
Solving Business
Challenges with

Machine Learning
Solution Architecture

In Section 1, you will learn about some of the core machine learning fundamentals, its
challenges, and how machine learning can be applied to real-world business problems, to
set the context for the rest of the book.

This section comprises the following chapters:

•	 Chapter 1, Machine Learning and Machine Learning Solutions Architecture

•	 Chapter 2, Business Use Cases for Machine Learning

1
Machine Learning

and Machine
Learning Solutions

Architecture
The field of artificial intelligence (AI) and machine learning (ML) has had a long
history. Over the last 70+ years, ML has evolved from checker game-playing computer
programs in the 1950s to advanced AI capable of beating the human world champion in
the game of Go. Along the way, the technology infrastructure for ML has also evolved
from a single machine/server for small experiments and models to highly complex
end-to-end ML platforms capable of training, managing, and deploying tens of thousands
of ML models. The hyper-growth in the AI/ML field has resulted in the creation of many
new professional roles, such as MLOps engineering, ML product management, and ML
software engineering across a range of industries.

Machine learning solutions architecture (ML solutions architecture) is another
relatively new discipline that is playing an increasingly critical role in the full end-to-end
ML life cycle as ML projects become increasingly complex in terms of business impact,
science sophistication, and the technology landscape.

4 Machine Learning and Machine Learning Solutions Architecture

This chapter talks about the basic concepts of ML and where ML solutions architecture
fits in the full data science life cycle. You will learn the three main types of ML, including
supervised, unsupervised, and reinforcement learning. We will discuss the different
steps it will take to get an ML project from the ideas stage to production and the
challenges faced by organizations when implementing an ML initiative. Finally, we will
finish the chapter by briefly discussing the core focus areas of ML solutions architecture,
including system architecture, workflow automation, and security and compliance.

Upon completing this chapter, you should be able to identify the three main ML types
and what type of problems they are designed to solve. You will understand the role of an
ML solutions architect and what business and technology areas you need to focus on to
support end-to-end ML initiatives.

In this chapter, we are going to cover the following main topics:

•	 What is ML, and how does it work?

•	 The ML life cycle and its key challenges

•	 What is ML solutions architecture, and where does it fit in the overall life cycle?

What are AI and ML?
AI can be defined as a machine demonstrating intelligence similar to that of human
natural intelligence, such as distinguishing different types of flowers through vision,
understanding languages, or driving cars. Having AI capability does not necessarily mean
a system has to be powered only by ML. An AI system can also be powered by other
techniques, such as rule-based engines. ML is a form of AI that learns how to perform a
task using different learning techniques, such as learning from examples using historical
data or learning by trial and error. An example of ML would be making credit decisions
using an ML algorithm with access to historical credit decision data.

Deep learning (DL) is a subset of ML that uses a large number of artificial neurons
(known as an artificial neural network) to learn, which is similar to how a human
brain learns. An example of a deep learning-based solution is the Amazon Echo
virtual assistant. To better understand how ML works, let's first talk about the different
approaches taken by machines to learn. They are as follows:

•	 Supervised ML

•	 Unsupervised machine learning

•	 Reinforcement learning

Let's have a look at each one of them in detail.

What are AI and ML? 5

Supervised ML
Supervised ML is a type of ML where, when training an ML model, an ML algorithm
is provided with the input data features (for example, the size and zip code of houses)
and the answers, also known as labels (for example, the prices of the houses). A dataset
with labels is called a labeled dataset. You can think of supervised ML as learning by
example. To understand what this means, let's use an example of how we humans learn
to distinguish different objects. Say you are first provided with a number of pictures of
different flowers and their names. You are then told to study the characteristics of the
flowers, such as the shape, size, and color for each provided flower name. After you
have gone through a number of different pictures for each flower, you are then given
flower pictures without the names and asked to distinguish them. Based on what you
have learned previously, you should be able to tell the names of flowers if they have the
characteristics of the known flowers.

In general, the more training pictures with variations you have looked at during the
learning time, the more accurate you will likely be when you try to name flowers in
the new pictures. Conceptually, this is how supervised ML works. The following figure
(Figure 1.1) shows a labeled dataset being fed into a computer vision algorithm to train
an ML model:

Figure 1.1 – Supervised ML

6 Machine Learning and Machine Learning Solutions Architecture

Supervised ML is mainly used for classification tasks that assign a label from a discrete
set of categories to an example (for example, telling the names of different objects) and
regression tasks that predict a continuous value (for example, estimating the value of
something given supporting information). In the real world, the majority of ML solutions
are based on supervised ML techniques. The following are some examples of ML solutions
that use supervised ML:

•	 Classifying documents into different document types automatically, as part of
a document management workflow. The typical business benefits of ML-based
document processing are the reduction of manual effort, which reduces costs, faster
processing time, and higher processing quality.

•	 Assessing the sentiment of news articles to help understand the market perception
of a brand or product or facilitate investment decisions.

•	 Automating the objects or faces detection in images as part of a media image
processing workflow. The business benefits this delivers are cost-saving from the
reduction of human labor, faster processing, and higher accuracy.

•	 Predicting the probability that someone will default on a bank loan. The business
benefits this delivers are faster decision-making on loan application reviews and
approvals, lower processing costs, and a reduced impact on a company's financial
statement due to loan defaults.

Unsupervised ML
Unsupervised ML is a type of ML where an ML algorithm is provided with input data
features without labels. Let's continue with the flower example, however in this case,
you are now only provided with the pictures of the flowers and not their names. In this
scenario, you will not be able to figure out the names of the flowers, regardless of how
much time you spend looking at the pictures. However, through visual inspection, you
should be able to identify the common characteristics (for example, color, size, and
shape) of different types of flowers across the pictures, and group flowers with common
characteristics in the same group.

This is similar to how unsupervised ML works. Specifically, in this particular case, you
have performed the clustering task in unsupervised ML:

What are AI and ML? 7

Figure 1.2 – Unsupervised ML

In addition to the clustering technique, there are many other techniques in unsupervised
ML. Another common and useful unsupervised ML technique is dimensionality
reduction, where a smaller number of transformed features represent the original set of
features while maintaining the critical information from the original features so that they
can be largely reproduced in the number of data dimensions and size. To understand this
more intuitively, let's take a look at Figure 1.3:

Figure 1.3 – Reconstruction of an image from reduced features

In this figure, the original picture on the left is transformed to the reduced representation
in the middle. While the reduced representation does not look like the original picture at
all, it still maintains the critical information about the original picture, so that when the
picture on the right is reconstructed using the reduced representation, the reconstructed
image looks almost the same as the original picture. The process that transforms the
original picture to the reduced representation is called dimensionality reduction.

8 Machine Learning and Machine Learning Solutions Architecture

The main benefits of dimensionality reduction are reduction of the training dataset and
that it helps speed up the model training. Dimensionality reduction also helps visualize
high dimensional datasets in lower dimensions (for example, reducing the dataset to three
dimensions to be plotted and visually inspected).

Unsupervised ML is mainly used for recognizing underlying patterns within a dataset.
Since unsupervised learning is not provided with actual labels to learn from, its
predictions have greater uncertainties than predictions using the supervised ML approach.
The following are some real-life examples of unsupervised ML solutions:

•	 Customer segmentation for target marketing: This is done by using customer
attributes such as demographics and historical engagement data. The data-driven
customer segmentation approach is usually more accurate than human judgment,
which can be biased and subjective.

•	 Computer network intrusion detection: This is done by detecting outlier patterns
that are different from normal network traffic patterns. Detecting anomalies in
network traffic manually and rule-based processing is extremely challenging due to
the high volume and changing dynamics of traffic patterns.

•	 Reducing the dimensions of datasets: This is done to visualize them in a 2D or 3D
environment to help understand the data better and more easily.

Reinforcement learning
Reinforcement learning is a type of ML where an ML model learns by trying out different
actions and adjusts its future behaviors sequentially based on the received response from
the action. For example, suppose you are playing a space invader video game for the first
time without knowing the game's rules. In that case, you will initially try out different
actions randomly using the controls, such as moving left and right or shooting the canon.
As different moves are made, you will see responses to your moves, such as getting killed
or killing the invader, and you will also see your score increase or decrease. Through these
responses, you will know what a good move is versus a bad move in order to stay alive and
increase your score. After much trial and error, you will eventually be a very good player
of the game. This is basically how reinforcement learning works.

What are AI and ML? 9

A very popular example of reinforcement learning is the AlphaGo computer program,
which uses mainly reinforcement learning to learn how to play the game of Go. Figure
1.4 shows the flow of reinforcement learning where an agent (for example, the player of
a space invader game) takes actions (for example, moving the left/right control) in the
environment (for example, the current state of the game) and receives rewards or penalties
(score increase/decrease). As a result, the agent will adjust its future moves to maximize
the rewards in the future states of the environment. This cycle continues for a very large
number of rounds, and the agent will improve and become better over time:

Figure 1.4 – Reinforcement learning

There are many practical use cases for reinforcement learning in the real world. The
following are some examples for reinforcement learning:

•	 Robots or self-driving cars learn how to walk or navigate in unknown environments
by trying out different moves and responding to the received results.

•	 A recommendation engine optimizes product recommendations through
adjustments based on the feedback of the customers to different product
recommendations.

•	 A truck delivery company optimizes the delivery route of its fleet to determine the
delivery sequence required to achieve the best rewards, such as the lowest cost or
shortest time.

10 Machine Learning and Machine Learning Solutions Architecture

ML versus traditional software
Before I started working in the field of AI/ML, I spent many years building computer
software platforms for large financial services institutions. Some of the business problems
I worked on had complex rules, such as identifying companies for comparable analysis for
investment banking deals, or creating a master database for all the different companies'
identifiers from the different data providers. We had to implement hardcoded rules in
database stored procedures and application server backends to solve these problems. We
often debated if certain rules made sense or not for the business problems we tried to
solve. As rules changed, we had to reimplement the rules and make sure the changes did
not break anything. To test for new releases or changes, we often replied to human experts
to exhaustively test and validate all the business logic implemented before the production
release. It was a very time-consuming and error-prone process and required a significant
amount of engineering, testing against the documented specification, and rigorous
change management for deployment every time new rules were introduced, or existing
rules needed to be changed. We often relied to users to report business logic issues in
production, and when an issue was reported in production, we sometimes had to open up
the source code to troubleshoot or explain the logic of how it worked. I remember I often
asked myself if there were better ways to do this.

After I started working in the field of AI/ML, I started to solve many similar challenges
using ML techniques. With ML, I did not need to come up with complex rules that
often require deep data and domain expertise to create or maintain the complex rules
for decision making. Instead, I focused on collecting high-quality data and used ML
algorithms to learn the rules and patterns from the data directly. This new approach
eliminated many of the challenging aspects of creating new rules (for example, a deep
domain expertise requirement, or avoiding human bias) and maintaining existing
rules. To validate the model before the production release, we could examine model
performance metrics such as accuracy. While it still required data science expertise to
interpret the model metrics against the nature of the business problems and dataset, it
did not require exhaustive manual testing of all the different scenarios. When a model
was deployed into production, we would monitor if the model performed as expected by
monitoring any significant changes in production data versus the data we have collected
for model training. We would collect new labels for production data and test the model
performance periodically to ensure its predictive power had not degraded. To explain
why a model made a decision the way it did, we did not need to open up source code to
re-examine the hardcoded logic. Instead, we would rely on ML techniques to help explain
the relative importance of different input features to understand what factors were most
influential in the decision-making by the ML models.

ML life cycle 11

The following figure (Figure 1.5) shows a graphical view of the process differences between
developing a piece of software and training an ML model:

Figure 1.5 – ML and computer software

Now that you know the difference between ML and traditional software, it is time to dive
deep into understanding the different stages in an ML life cycle.

ML life cycle
One of the first ML projects that I worked on was a sport predictive analytics problem for
a major sports league brand. I was given a list of predictive analytics outcomes to think
about to see if there were ML solutions for the problems. I was a casual viewer of the
sports; I didn't know anything about the analytics to be generated, nor the rules of the
games in detail. I was given some sample data, but I had no idea what to do with it.

The first thing I started to work on was to learn the sport. I studied things like how the
games were played, the different player positions, and how to determine and identify
certain events. Only after acquiring the relevant domain knowledge did the data start to
make sense to me. I then discussed the impact of the different analytics outcomes with
the stakeholders and assessed the modeling feasibility based on the data we had. We came
up with a couple of top ML analytics with the most business impact to work on, decided
how they would be integrated into the existing business workflow, and how they would be
measured on their impacts.

12 Machine Learning and Machine Learning Solutions Architecture

I then started to inspect and explore the data in closer detail to understand what
information was available and what was missing. I processed and prepared the dataset
based on a couple of ML algorithms I was thinking about using and carried out different
experiments. I did not have a tool to track the different experiment results, so I had to
track what I have done manually. After some initial rounds of experimentation, I felt the
existing data was not enough to train a high-performance model, and I needed to build a
custom deep learning model to incorporate data of different modalities. The data owner
was able to provide additional datasets I looked for, and after more experiments with
custom algorithms and significant data preparations and feature engineering, I was able to
train a model that met the business needs.

After that, the hard part came – to deploy and operationalize the model in production and
integrate it into the existing business workflow and system architecture. We went through
many architecture and engineering discussions and eventually built out a deployment
architecture for the model.

As you can see from my personal experience, there are many different steps in taking a
business idea or expected business outcome from ideation to production deployment.
Now, let's formally review a typical life cycle of an ML project. A formal ML life cycle
includes steps such as business understanding, data acquisition and understanding,
data preparation, model building, model evaluation, and model deployment. Since a
big component of the life cycle is experimentation with different datasets, features, and
algorithms, the whole process can be highly iterative. In addition, there is no guarantee
that a working model can be created at the end of the process. Factors such as the
availability and quality of data, feature engineering techniques (the process of using
domain knowledge to extract useful features from raw data), and the capability of the
learning algorithms, among others, can all prevent a successful outcome.

The following figure shows the key steps in ML projects:

ML life cycle 13

Figure 1.6 – ML life cycle

In the next few sections, we will discuss each of these steps in greater detail.

Business understanding and ML problem framing
The first step in the life cycle is the business understanding step. In this step, you would
need to develop a clear understanding of the business goals and define the business
performance metrics that can be used to measure the success of the ML project. The
following are some examples of business goals:

•	 Cost reduction for operational processes, such as document processing.

•	 Mitigation of business or operational risks, such as fraud and compliance.

•	 Product or service revenue improvements, such as better target marketing, new
insight generation for better decision making, and increased customer satisfaction

Specific examples of business metrics for measurement could be the number of
hours reduced in a business process, an increased number of true positive fraud
instances detected, a conversion rate improvement from target marketing, or the extent
of churn rate reductions. This is a very important step to get right to ensure there is
sufficient justification for an ML project and that the outcome of the project can be
successfully measured.

14 Machine Learning and Machine Learning Solutions Architecture

After the business goals and business metrics are defined, you then need to determine if
the business problem can be solved using an ML solution. While ML has a wide scope of
applications, it does not mean it can solve all business problems.

Data understanding and data preparation
There is a saying that data is the new oil, and this is especially true for ML. Without the
required data, you cannot move forward with an ML project. That's why the next step in
the ML life cycle is data acquisition, understanding, and preparation.

Based on the business problems and ML approach, you will need to gather and
understand the available data to determine if you have the right data and data volume
to solve the ML problem. For example, suppose the business problem to address is
credit card fraud detection. In that case, you will need datasets such as historical credit
card transaction data, customer demographics, account data, device usage data, and
networking access data. Detailed data analysis is then needed to determine if the dataset
features and quality are sufficient for the modeling tasks. You also need to decide if the
data needs labeling, such as fraud or not-fraud. During this step, depending on the
data quality, a significant amount of data wrangling might be performed to prepare and
clean the data and to generate the dataset for model training and model evaluation.

Model training and evaluation
Using the training and validation datasets created, a data scientist will need to run a
number of experiments using different ML algorithms and dataset features for feature
selection and model development. This is a highly iterative process and could require
a large number of data processing and model development runs to find the right
algorithm and dataset combination for optimal model performance. In addition to model
performance, you might also need to consider data bias and model explainability to meet
regulatory requirements.

After the model is trained and before it is deployed into production, the model quality
needs to be validated using the relevant technical metrics, such as the accuracy score. This
is usually done using a holdout dataset, also known as a test dataset, to gauge how the
model performs on unseen data. It is very important to understand what metrics to use
for model validation, as it varies depending on the ML problems and the dataset used. For
example, model accuracy would be a good validation metric for a document classification
use case if the number of document types is relatively balanced. Model accuracy will not
be a good metric to evaluate the model performance for a fraud detection use case – this is
because if the number of frauds is small and the model predicts not-fraud all the time,
the model accuracy could still be very high.

ML life cycle 15

Model deployment
Once the model is fully trained and validated to meet the expected performance metric,
it can be deployed into production and the business workflow. There are two main
deployment concepts here. The first is the deployment of the model itself to be used
by a client application to generate predictions. The second concept is to integrate this
prediction workflow into a business workflow application. For example, deploying the
credit fraud model would either host the model behind an API for real-time prediction or
as a package that can be loaded dynamically to support batch predictions. Additionally,
this prediction workflow also needs to be integrated into business workflow applications
for fraud detection that might include the fraud detection of real-time transactions,
decision automation based on prediction output, and fraud detection analytics for detailed
fraud analysis.

Model monitoring
Model deployment is not the end of the ML life cycle. Unlike software, whose behavior is
highly deterministic since developers explicitly code its logic, an ML model could behave
differently in production from its behavior in model training and validation. This could
be caused by changes in the production data characteristics, data distribution, or the
potential manipulation of request data. Therefore, model monitoring is an important
post-deployment step for detecting model drift or data drift.

Business metric tracking
The actual business impact should be tracked and measured as an ongoing process to
ensure the model delivers the expected business benefits by comparing the business
metrics before and after the model deployment, or A/B testing where a business metric
is compared between workflows with or without the ML model. If the model does not
deliver the expected benefits, it should be re-evaluated for improvement opportunities.
This could also mean framing the business problem as a different ML problem. For
example, if churn prediction does not help improve customer satisfaction, then consider
a personalized product/service offering to solve the problem.

Now that we have talked about what is involved in an end-to-end ML life cycle, let's look
at the ML challenges in the next section.

16 Machine Learning and Machine Learning Solutions Architecture

ML challenges
Over the years, I have worked on many real-world problems using ML solutions and
encountered different challenges faced by the different industries during ML adoptions.

I often get this question when working on ML projects: We have a lot of data – can you
help us figure out what insights we can generate using ML? This is called the business use
case challenge. Not being able to identify business use cases for ML is a very big hurdle
for many companies. Without a properly identified business problem and its value
proposition and benefit, it would be challenging to get an ML project off the ground.

When I have conversations with different companies across their industries, I normally
ask them what the top challenge for ML is. One of the most frequent answers I always get
is about data – that is, data quality, data inventory, data accessibility, data governance, and
data availability. This problem affects both data-poor and data-rich companies and is often
exacerbated by data silos, data security, and industry regulations.

The shortage of data science and ML talent is another major challenge I have heard
from many companies. Companies, in general, are having a tough time attracting and
retaining top ML talent, which is a common problem across all industries. As the ML
platform becomes more complex and the scope of ML projects increases, the need for
other ML-related functions starts to surface. Nowadays, in addition to just data scientists,
an organization would also need function roles for ML product management, ML
infrastructure engineering, and ML operations management.

Through my experiences, another key challenge that many companies have shared is
gaining cultural acceptance of ML-based solutions. Many people treat ML as a threat
to their job functions. Their lack of knowledge of ML makes them uncomfortable in
adopting these new methods in their business workflow.

The practice of ML solutions architecture aims to help solve some of the challenges in ML.
Next, let's take a closer look at ML solutions architecture and its place in the ML life cycle.

ML solutions architecture
When I initially worked as an ML solutions architect with companies on ML projects, the
focus was mainly on data science and modeling. Both the problem scope and the number
of models were small. Most of the problems could be solved using simple ML techniques.
The dataset was also small and did not require a large infrastructure for model training.
The scope of the ML initiative at these companies was limited to a few data scientists or
teams. As an ML architect back then, I mostly needed data science skills and general cloud
architecture knowledge to work on those projects.

ML solutions architecture 17

Over the last several years, the ML initiatives at different companies have become
a lot more complex and started to involve a lot more functions and people at the
companies. I've found myself talking to business executives more about ML strategies
and organizational design to enable broad adoption across their enterprise. I have been
asked to help design more complex ML platforms using a wide range of technologies for
large enterprises across many business units that met stringent security and compliance
needs. There have been more architecture and process discussions around ML workflow
orchestration and operations in recent years than ever before. And more and more
companies are looking to train ML models of enormous size with terabytes of training
data. The number of ML models trained and deployed by some companies has gone up to
tens of thousands from a few dozen models just a couple of years ago. Sophisticated and
security-sensitive customers have also been looking for guidance on ML privacy, model
explainability, and data and model bias. As a practitioner in ML solutions architecture,
I've found the skills and knowledge required to be effective in this function have changed
drastically.

So, where does ML solutions architecture fit in this complex business, data, science, and
technology Venn diagram? Based on my years of experience working with companies of
different sizes and in different industries, I see ML solutions architecture as an overarching
discipline that helps connect the various pieces of an ML initiative covering everything
from the business requirements to the technology. An ML solutions architect interacts
with different business and technology partners, comes up with ML solutions for the
business problems, and designs the technology platforms to run the ML solutions.

From a specific function perspective, ML solutions architecture covers the following areas:

Figure 1.7 – ML solutions architecture coverage

Let's take a look at each of these elements:

•	 Business understanding: Business problem understanding and transformation
using AI and ML

•	 Identification and verification of ML techniques: Identification and verification
of ML techniques for solving specific ML problems

18 Machine Learning and Machine Learning Solutions Architecture

•	 System architecture of the ML technology platform: System architecture design
and implementation of the ML technology platforms

•	 ML platform automation: ML platform automation technical design

•	 Security and compliance: Security, compliance, and audit considerations for the
ML platform and ML models

Business understanding and ML transformation
The goal of the business workflow analysis is to identify inefficiencies in the workflows
and determine if ML can be applied to help eliminate pain points, improve efficiency,
or even create new revenue opportunities.

For example, when you conduct analysis for a call center operation, you want to identify
pain points such as long customer waiting times, knowledge gaps among customer service
agents, the inability to extract customer insights from call recordings, and the lack of
ability to target customers for incremental services and products. After you have identified
these pain points, you want to find out what data is available and what business metrics
to improve. Based on the pain points and the availability of data, you can come up with
some hypotheses on potential ML solutions, such as a virtual assistant to handle common
customer inquiries, audio to text transcription to allow the text analysis of transcribed
text, and intent detection for product cross-sell and up-sell.

Sometimes, a business process modification is required to adopt ML solutions for the
established business goals. Using the same call center example, if there is a business need
to do more product cross-sell or up-sell based on the insights generated from the call
recording analytics, but there is no business process that would act on the insights to
target the customers for cross-sell/up-sell, then an automated target marketing process
or proactive out-reach process by the sales professionals should be introduced.

Identification and verification of ML techniques
Once a list of ML options is identified, determine the need for validating the ML
assumption. This could involve simple Proof of Concept (POC) modeling to validate
the available dataset and modeling approach, or technology POC using pre-built AI
services, or testing of ML frameworks. For example, you might want to test the feasibility
of text transcription from audio files using an existing text transcription service or build
a custom propensity model for a new product conversion from a marketing campaign.
ML solutions architecture does not focus on the research and development of new
machine algorithms, which is usually the job of the applied data scientists and research
data scientists.

ML solutions architecture 19

Instead, ML solutions architecture focuses on identifying and applying ML algorithms
to solve different ML problems such as predictive analytics, computer vision,
and/or natural language processing. Also, the goal of any modeling task here is not
to build production-quality models, but rather to validate the approach for further
experimentations, which is usually the responsibility of full-time applied data scientists.

System architecture design and implementation
The most important aspect of ML solutions architecture coverage is the technical
architecture design of the ML platform. The platform will need to provide the technical
capability to support the different phases of the ML cycle and personas, such as data
scientists and ops engineers. Specifically, an ML platform needs to have the following
core functions:

•	 Data explorations and experimentation: Data scientists use the ML platform for
data exploration, experimentation, model building, and model evaluation. The ML
platform needs to provide capabilities such as data science development tools for
model authoring and experimentation, data wrangling tools for data exploration
and wrangling, source code control for code management, and a package repository
for library package management.

•	 Data management and large-scale data processing: Data scientists or data
engineers will need the technical capability to store, access, and process large
amounts of data for cleansing, transformation, and feature engineering.

•	 Model training infrastructure management: The ML platform will need to provide
model training infrastructure for different modeling training using different types
of computing resources, storage, and networking configurations. It also needs
to support different types of ML libraries or frameworks, such as scikit-learn,
TensorFlow, and PyTorch.

•	 Model hosting/serving: The ML platform will need to provide the technical
capability to host and serve the model for prediction generations, either for
real-time, batch, or both.

•	 Model management: Trained ML models will need to be managed and tracked
for easy access and lookup, with relevant metadata.

•	 Feature management: Common and reusable features will need to be managed
and served for model training and model serving purposes.

20 Machine Learning and Machine Learning Solutions Architecture

ML platform workflow automation
A key aspect of ML platform design is workflow automation and continuous
integration/continuous deployment (CI/CD). ML is a multi-step workflow – it needs
to be automated, which includes data processing, model training, model validation, and
model hosting. Infrastructure provisioning automation and self-service is another aspect
of automation design. Key components of workflow automation include the following:

•	 Pipeline design and management: The ability to create different automation
pipelines for various tasks, such as model training and model hosting.

•	 Pipeline execution and monitoring: The ability to run different pipelines and
monitor the pipeline execution status for the entire pipeline and each of the steps.

•	 Model monitoring configuration: The ability to monitor the model in production
for various metrics, such as data drift (where the distribution of data used in
production deviates from the distribution of data used for model training), model
drift (where the performance of the model degrades in the production compared
with training results), and bias detection (the ML model replicating or amplifying
bias towards certain individuals).

Security and compliance
Another important aspect of ML solutions architecture is the security and compliance
consideration in a sensitive or enterprise setting:

•	 Authentication and authorization: The ML platform needs to provide
authentication and authorization mechanisms to manage the access to the platform
and different resources and services.

•	 Network security: The ML platform needs to be configure for different network
security to prevent unauthorized access.

•	 Data encryption: For security-sensitive organizations, data encryption is another
important aspect of the design consideration for the ML platform.

•	 Audit and compliance: Audit and compliance staff need the information to help
them understand how decisions are made by the predictive models if required,
the lineage of a model from data to model artifacts, and any bias exhibited in
the data and model. The ML platform will need to provide model explainability,
bias detection, and model traceability across the various datastore and service
components, among other capabilities.

Testing your knowledge 21

Testing your knowledge
Alright! You have just completed this chapter. Let's see if you have understood and
retained the knowledge you have just acquired.

Take a look at the list of the following scenarios and determine which of the three ML
types can be applied (supervised, unsupervised, or reinforcement):

1.	 There is a list of online feedback on products. Each comment has been labeled with
a sentiment class (for example, positive, negative, or neutral). You have
been asked to build an ML model to predict the sentiment of new feedback.

2.	 You have historical house pricing information and details about the house, such
as zip code, number of bedrooms, house size, and house condition. You have been
asked to build an ML model to predict the price of a house.

3.	 You have been asked to identify potentially fraudulent transactions on your
company's e-commerce site. You have data such as historical transaction data, user
information, credit history, devices, and network access data. However, you don't
know which transactions are fraudulent.

Take a look at the following questions on the ML life cycle and ML solutions architecture
to see how you would answer them:

1.	 There is a business workflow that processes a request with a set of well-defined
decision rules, and there is no tolerance to deviate from the decision rules when
making decisions. Should you consider ML to automate the business workflow?

2.	 You have deployed an ML model into production. However, you do not see the
expected improvement in the business KPIs. What should you do?

3.	 There is a manual process that's currently handled by a small number of people. You
found an ML solution that can automate this process, however, the cost of building
and running the ML solution is higher than the cost saved from automation. Should
you proceed with the ML project?

4.	 As an ML solutions architect, you have been asked to validate an ML approach for
solving a business problem. What steps would you take to validate the approach?

22 Machine Learning and Machine Learning Solutions Architecture

Summary
In this chapter, we covered several topics, including what AI and ML are, the key steps in
an end-to-end ML life cycle, and the core functions of ML solutions architecture. Now,
you should be able to identify the key differences between the three main types of ML
and the kind of business problems they can solve. You have also learned that business and
data understanding is critical to the successful outcome of an ML project, in addition to
modeling and engineering. Lastly, you now have an understanding of how ML solutions
architecture fits into the ML life cycle.

In the next chapter, we will go over some ML use cases across a number of industries, such
as financial services and media and entertainment.

2
Business Use

Cases for
Machine Learning

As a machine learning (ML) practitioner, I often need to develop a deep understanding
of different businesses to have effective conversations with the business and technology
leaders. This should not come as a surprise since the ultimate goal for any machine
learning solution architecture (ML solution architecture) is to solve practical business
problems with science and technology solutions. As such, one of the main ML solution
architecture focus areas is to develop a broad understanding of different business
domains, business workflows, and relevant data. Without this understanding, it would be
challenging to make sense of the data and design and develop practical ML solutions for
business problems.

In this chapter, you will learn about some real-world ML use cases across several industry
verticals. You will develop an understanding of key business workflows and challenges in
industries such as financial services and retail, and where ML technologies can help solve
these challenges. The learning goal is not for you to become an expert in an industry or
its ML use case and techniques, but to make you aware of real-world ML use cases in the
context of business requirements and workflows. After reading this chapter, you will be
able to apply similar thinking in your line of business and be able to identify ML solutions.

24 Business Use Cases for Machine Learning

In this chapter, we will cover the following topics:

•	 ML use cases in financial services

•	 ML use cases in media and entertainment

•	 ML use cases in healthcare and life sciences

•	 ML use cases in manufacturing

•	 ML use cases in retail

•	 ML use case identification exercis

ML use cases in financial services
The Financial Services Industry (FSI), one of the most technologically savvy industries,
is a front-runner in ML investment and adoption. Over the last several years, I have seen
a wide range of ML solutions being adopted across different business functions within
financial services. In capital markets, ML is being used in front, middle, and back offices
to support investment decisions, trade optimization, risk management, and transaction
settlement processing. In insurance, carriers are using ML to streamline underwriting,
prevent fraud, and automate claim management. And banks are using ML to improve
customer experience, combat fraud, and make loan approval decisions. Next, we will
discuss several core business areas within financial services and how ML can be used to
solve some of these business challenges.

Capital markets front office
In finance, the front office is the business area that directly generates revenue and mainly
consists of customer-facing roles such as sales, traders, investment bankers, and financial
advisors. Front office departments engage their customers with products and services
such as Merger and Acquisition (M&A) and IPO advisory, wealth management, and the
trading of financial assets such as equity (for example, stocks), fixed income (for example,
bonds), commodities (for example, oil), and currency products. Now, let's look at some
specific business functions in the front office area.

ML use cases in financial services 25

Sales trading and research
In sales trading, a firm's sales staff monitors investment news such as earnings reports
or M&A activities and looks for investment opportunities to pitch to their institutional
clients. The trading staff then execute the trades for their clients, also known as agency
trading. Trading staff can also execute trades for the firm they work for, also known
as prop trading. Trading staff often need to trade large quantities of securities. So,
it is crucial to optimize the trading strategy to acquire the shares at favorable prices
without driving up prices. Sales and trading staff are supported by research teams who
focus on researching and analyzing equities and fixed income assets and provide their
recommendations to sales and trading staff.

Another type of trading is algorithmic trading, where a computer is used for trading
securities automatically based on predefined logic and market conditions. Some of the
core challenges in sales trading and research are as follows:

•	 A tight timeline is faced by research analysts to deliver a research report.

•	 Gathering a large amount of market information to collect and analyze to develop
trading strategies and make an informed trading decision.

•	 The markets need to be constantly monitored to adjust the trading strategy.

•	 Achieving the optimal trading at the preferred price without driving the market up
or down. The following diagram shows the business flow of a sales trading desk and
how different players interact to complete a trading activity:

Figure 2.1 – Sales, trading, and research

26 Business Use Cases for Machine Learning

There are many opportunities for ML in sales trading and research. Natural language
processing (NLP) models can automatically extract key entities such as people, events,
organizations, and places from data sources such as SEC filing, news announcements, and
earnings call transcripts. NLP can also discover relationships among discovered entities
and help understand market sentiments toward a company and its stock by analyzing
large amounts of news, research reports, and earning calls to inform trading decisions.

Natural language generation (NLG) can assist with narrative writing and report
generation. Computer vision has been used to help identify market signals from
alternative data sources such as satellite images to understand business patterns such as
retail traffic. In trading, ML models can sift through large amounts of data to discover
patterns such as stock similarity using data points such as company fundamentals, trading
patterns, and technical indicators to inform trading strategies such as pair trading. And in
trade execution, ML models can help estimate trading cost and identify optimal trading
execution strategies to minimize costs and optimize profits. There is a massive amount
of time series data in financial services, such as prices of different financial instruments,
that can be used to discover market signals and estimate market trends. ML has been
adopted for use cases such as financial time series classification and forecasting financial
instruments and economic indicators.

Investment banking
When corporations, governments, and institutions need access to capital to fund
business operations and growth, they engage investment bankers for capital raising
(selling of stocks or bonds) services. The following diagram shows the relationship
between investment bankers and investors. In addition to capital raising, the investment
banking department also engages in M&A advisory to assist their clients in negotiating
and structuring merger and acquisition deals from start to finish. Investment banking
staff take on many activities such as financial modeling, business valuation, pitch book
generation, and transaction document preparation to complete and execute an investment
banking deal. They are also responsible for general relationship management and business
development management activities.

Figure 2.2 – Investment banking workflow

ML use cases in financial services 27

One of the main challenges in an investment banking workflow is searching for and
analyzing large amounts of structured (financial statements) and unstructured data
(annual reports, filing, news, and internal documents). Typical junior bankers spend
many hours searching for documents that might contain useful information and
manually extract information from the documents to prepare pitch books or perform
financial modeling. Investment banks have been experimenting and adopting ML to
help with this labor-intensive process. They are using NLP to extract structured tabular
data automatically from large amounts of PDF documents. Specifically, named entity
recognition (NER) techniques can help with automatic entity extraction from documents.
ML-based reading comprehension technology can assist bankers in finding relevant
information from large volumes of text quickly and accurately using natural human
questions instead of simple text string matching. Documents can also be automatically
tagged with metadata and classified using the ML technique to improve document
management and information retrievals. Other common challenges in the investment
banking workflow that can be solved with ML include linking company identifiers from
different data sources and the name resolution of different variations of company names.

Wealth management
In the wealth management (WM) business, WM firms advise their clients with wealth
planning and structuring services to grow and preserve their clients' wealth. These
institutions differentiate themselves from more investment advisory-focused brokerage
firms in that WM firms bring together tax planning, wealth preserving, and estate
planning to meet their client's more complex financial planning goals. WM firms engage
clients to understand their life goals and spending patterns and design customized
financial planning solutions for their clients. Some of the challenges that are faced by
WM firms are as follows:

•	 WM clients are demanding more holistic and personalized financial planning
strategies for their WM needs.

•	 WM clients are becoming increasingly tech-savvy, and many are demanding new
channels of engagement in addition to direct client-advisor interactions.

•	 WM advisors need to cover increasingly more clients while maintaining the same
personalized services and planning.

28 Business Use Cases for Machine Learning

To offer more personalized services, WM firms are adopting ML-based solutions
to understand client behaviors and needs. For example, WM firms use their clients'
transaction history, portfolio details, conversation logs, investment preferences, and life
goals to build ML models that can make personalized recommendations on investment
products and services. These models recommend the next best action by combining both
the clients' propensity to take an offer and other business metrics such as the expected
medium- or long-term value of the action.

The following diagram shows the concept of the Next Best Action method:

Figure 2.3 – Next Best Action recommendation

To improve client engagement and experience, WM firms build virtual assistants that
can provide personalized answers to clients' inquiries without human intervention and
automatically fulfill client demands. WM firms are equipping Financial Advisors (FAs)
with AI-based solutions that can automate tasks such as transcribing audio conversations
to text for text analysis. ML models are also being used to help assess clients' sentiment
and alert FAs of potential customer churn.

Capital markets back office operations
The back office is the part of financial services companies that handles non-client facing
and support activities. Their main functions include trade settlement and clearance,
record keeping, regulatory compliance, accounting, and technology services. It is
one of the areas for early ML adoption due to the financial benefits and cost-saving
it could bring from ML-based automation and its improved ability to meet regulatory
(for example, anti-money laundering) and internal controls requirements (for example,
trade surveillance). Next, let's take a look at some back office business processes and
where ML can be applied.

ML use cases in financial services 29

Net Asset Value review
Financial services companies that offer Mutual Funds and ETFs need to accurately reflect
the values of the funds for trading and reporting purposes. They use a Net Asset Value
(NAV) calculation, which is the value of an entity's assets minus its liability, to represent
the value of the fund. NAV is the price at which an investor can buy and sell the fund.
Every day, after the market closes, fund administrators must calculate the NAV price with
100% accuracy, and the process consists of five core steps:

1.	 Stock reconciliation
2.	 Reflection of any corporate actions
3.	 Pricing the instrument
4.	 Booking, calculating, and reconciling fees and interest accruals, as well as cash

reconciliation
5.	 NAV/price validation

The following diagram shows the core steps in the NAV review process:

Figure 2.4 – Net Asset Value review process

Step 5 is the most vital because if it is done incorrectly, the fund administrator could be
liable, which can result in monetary compensations to investors. Traditional methods use
fixed thresholds to flag exceptions, such as incorrectly valued stock or corporation actions
not being correctly processed for analysts for review, which could result in large volumes
of false positives and wasted time. Large volumes of data need to be used for investigation
and reviews such as the prices of the instruments, fees and interest, assets (for example,
equities, bonds, and futures), cash positions, and corporate actions data.

The main objective of the NAV validation step is to identify pricing exceptions, which can
be treated as an anomaly detection problem. ML-based anomaly detection solutions have
been adopted to identify potential pricing irregularities and flag these irregularities for
further human investigation. The ML approach has proven to significantly reduce false
positives and save significant amounts of time for human reviewers.

30 Business Use Cases for Machine Learning

Post-trade settlement failure prediction
After the front office executes a trade, several post-trade processes are involved to
complete the trade, such as settlement and clearance. Post-trade settlement is the process
where buyers and sellers compare trade details, approve the transaction, change records
of ownership and arrange for securities and cash to be transferred. Trade settlements
are handled automatically using straight-through processing. However, some trade
settlements fail due to various reasons, such as sellers failing to deliver securities, and
brokers will need to use their reserves to complete the transaction. To ensure the stockpile
is set at the correct level so that valuable capital can be used elsewhere, predicting
settlement failure is critical.

The following diagram shows the workflow for the trade where buyers and sellers buy and
sell their securities at exchange through their respective brokerage firms:

Figure 2.5 – Trading workflow

After the trade is executed, a clearing house such as DTCC would handle the clearance
and settlement of the trades with the respective custodians for the buyer and sellers.

To ensure the right amount of stockpile reserve is maintained to reduce capital
expenditure cost and optimize the buyer and sellers' transaction rates, brokerage houses
have been using ML models to predict trade failure early in the process. This allows the
broker to take preventive or corrective actions.

ML use cases in financial services 31

Risk management and fraud
Risk management and fraud are part of the back office operations of financial services
firms, including investment banks and commercial banks, and they are one of the top
areas for ML adoption in financial services due to their large financial and regulatory
impact.

There are many kinds of fraud and risk management use cases for ML, such as anti-money
laundering, trade surveillance, credit card transaction fraud, and insurance claim fraud.
Let's take a look at a few of them.

Anti-money laundering
Anti-money laundering (AML) is a set of laws and regulations that have been established
to prevent criminals from legitimizing illegally obtained funds legally through complex
financial transactions. Under these laws and regulations, financial institutions are required
to help detect activities that aid illegal money laundering. Financial services companies
devote substantial amounts of financial, technical, and people resources to combat AML
activities. Traditionally, companies have been using rule-based systems to detect AML
activities. However, rule-based systems usually have a limited view as it is challenging
to include a large number of features to be evaluated in a rule-based system. Also, it is
hard to keep the rules up to date with new changes; a rule-based solution can only detect
well-known frauds that have happened in the past.

Machine learning-based solutions have been used in multiple areas of AML, such as the
following:

•	 Network link analysis to reveal the complex social and business relationships among
different entities and jurisdictions.

•	 Clustering analysis to find similar and dissimilar entities to spot trends in criminal
activity patterns.

•	 Deep learning-based predictive analytics to identify criminal activity.

•	 NLP to gather as much information as possible for the vast number of entities
from unstructured data sources.

32 Business Use Cases for Machine Learning

The following diagram shows the data flow for AML analysis, the reporting requirements
for regulators, and internal risk management and audit functions:

Figure 2.6 – Anti-money laundering detection flow

An AML platform takes data from many different sources, including transactions data
and internal analysis data such as Know Your Customer (KYC) and Suspicious Activity
data. This data is processed and fed into different rule and ML-based analytics engines to
monitor fraudulent activities. The findings can be sent to internal risk management and
auditing, as well as regulators.

Trade surveillance
Traders at financial firms are intermediaries who buy and sell securities and other
financial instruments on behalf of their clients. They execute orders and advise clients on
entering and existing financial positions. Trade surveillance is the process of identifying
and investigating potential market abuse by traders or financial organizations. Examples
of market abuse include market manipulation, such as the dissemination of false and
misleading information, manipulating trading volumes through large amounts of wash
trading, and insider trading through the disclosure of non-public information. Financial
institutions are required to comply with market abuse regulations such as Market Abuse
Regulation (MAR), Markets in Financial Instruments Directive II (MiFID II), and
internal compliance to protect themselves, such as damage to their reputations and
financial performance. The challenges in enforcing trade surveillance include the lack of
a proactive approach to abuse detection such as large noise/signal ratios resulting in many
false positives, which increases the cost of case processing and investigations. One typical
approach to abuse detection is to build complex rule-based systems with different fixed
thresholds for decision making.

ML use cases in financial services 33

There are multiple ways to frame trade surveillance problems as ML problems, including
the following:

•	 Framing the abuse detection of activities as a classification problem to replace
rule-based systems

•	 Framing data extraction information such as entities (for example, restricted stocks)
from unstructured data sources (for example, emails and chats) as NLP entity
extraction problems

•	 Transforming entity relationship analysis (for example, trader-trader collaborations
in market abuse) as machine learning-based network analysis problems

•	 Treating abusive behaviors as anomalies and using unsupervised ML techniques for
anomaly detection

Many different datasets can be useful for building ML models for trade surveillance
such as P and L information, positions, order book details, e-communications, linkage
information among traders and their trades, market data, trading history, and details such
as counterparty details, trade price, order type, and exchanges.

The following diagram shows the typical data flow and business workflow for trade
surveillance management within a financial services company:

Figure 2.7 – Trade surveillance workflow

A trade surveillance system monitors many different data sources, and it feeds its
findings to both the front office and compliance department for further investigation
and enforcement.

34 Business Use Cases for Machine Learning

Credit risk
When banks issue loans to businesses and individuals, there is the potential risk that
the borrower might not be able to pay the required payment. As a result, banks suffer
financial loss in both principal and interest from financial activities such as making loans
for mortgages and credit cards. To minimize this default risk, banks go through credit risk
modeling to assess the risk of making a loan by focusing on two main aspects:

•	 The probability that the borrower will default on the loan

•	 The impact on the lender's financial situation

Traditional human-based reviews of loan applications are slow and error-prone, resulting
in high loan processing costs and lost opportunities due to incorrect and slow loan
approval processing.

The following diagram shows a typical business workflow for credit risk assessment and its
various decision points within the process:

Figure 2.8 – Credit risk approval workflow

To reduce credit risk associated with loans, many banks have widely adopted ML
techniques to predict loan default and associated risk scores more accurately and quickly.
The credit risk management modeling process requires the collection of financial
information from borrowers, such as income, cash flow, debt, assets and collaterals,
the utilization of credits, and other information such as loan type and loan payment
behaviors. Since this process involves large amounts of information being extracted
from unstructured data sources (financial statements) and then analyzed, machine
learning-based solutions such as Optical Character Recognition (OCR) and NLP
information extraction and understanding have been widely adopted for automated
intelligence document processing.

ML use cases in financial services 35

Insurance
The insurance industry consists of several sub-sectors based on the insurance product
types offered by the different insurance companies, such as accident and health insurance,
property and casualty insurance, and life insurance. In addition to the insurance
companies that provide coverage through insurance policies, insurance technology
providers are also key players in the insurance industry.

There are two main business processes in most insurance companies: the insurance
underwriting process and the insurance claim management process.

Insurance underwriting
Insurance underwriting is the process of assessing the risk of providing insurance
coverage for people and assets. Through this process, an insurance company establishes
the insurance premium for the risks that it is willing to take on. Insurance companies
normally use insurance software and actuarial data to assess the magnitude of the risk.
The underwriting processes vary, depending on the insurance products. For example, the
steps for property insurance are normally as follows:

1.	 The customer files an insurance application through an agent or insurance company
directly.

2.	 The underwriter at the insurance company assesses the application by considering
different factors such as the applicant's loss and insurance history, actuarial factors
to determine whether the insurance company should take on the risk, and what
the price and premium should be for the risk. Then, they make an additional
adjustment to the policy, such as coverage amount and deductibles.

3.	 If the application is accepted, then an insurance policy is issued.

During the underwriting process, an underwriter has to collect and review a large
amount of data, estimate the risk of a claim based on the data and underwriter's personal
experience, and come up with a premium that can be justified. Human underwriters
would only be able to review a subset of data and could introduce personal bias into the
decision-making process. ML models would be able to act on a lot more data to make
more accurate data-driven decisions on risk factors such as the probability of claims
and the claim's outcome, and it would make decisions much faster than what a human
underwriter can do. To come up with the premium for the policy, an underwriter would
spend a lot of time assessing the different risk factors. ML models can help generate
recommended premiums by using large amounts of historical data and risk factors.

36 Business Use Cases for Machine Learning

Insurance claim management
Insurance claim management is the process where an insurance company assesses
the insured's claims and reimburses the person who's insured for the damage and
loss that they incurred according to the agreement in the policy. The claim processes
for the different insurances are different. The steps for a property insurance claim are
normally as follows:

1.	 The person who is insured files a claim and supplies evidence for the claim, such as
pictures of the damage and a police report for automobiles.

2.	 The insurance company assigns an adjuster to assess the damage.
3.	 The adjuster determines the damage, performs fraud assessment, and sends the

claim for payment approval.

Some of the main challenges that are faced in the insurance claim management process
are as follows:

•	 Time-consuming manual effort is needed for the damaged/lost item inventory
process and data entry.

•	 The need for speedy claim damage assessment and adjustment.

•	 Insurance fraud.

Insurance companies collect a lot of data during the insurance claim process, such as
property details, items damage data and photos, the insurance policy, the claims history,
and historical fraud data.

Figure 2.9 – Insurance claim management workflow

ML use cases in media and entertainment 37

ML can automate manual processes such as extracting data from documents and
identifying insured objects from pictures to reduce manual effort in data collection. In
damage assessment, ML can help assess different damages and the estimated cost for
repair and replacement to speed up claim processing. In the fight for insurance fraud,
ML can help detect exceptions in insurance claims and predict potential fraud for further
investigation.

ML use cases in media and entertainment
The media and entertainment (M&E) industry consists of businesses that engage in the
production and distribution of films, television, streaming content, music, games, and
publishing. The current M&E landscape has been shaped by the increasing adoption of
streaming and over-the-top (OTT) content delivery versus traditional broadcasting.
M&E customers, faced with ever-increasing media content choices, are shifting their
consumption habits and demanding more personalized and enhanced experiences
across different devices, anytime, anywhere. M&E companies are also faced with
fierce competition in the industry, and to stay competitive, M&E companies need to
identify new monetization channels, improve user experience, and improve operational
efficiency. The following diagram shows the main steps in the media production and
distribution workflow:

Figure 2.10 – Media production and distribution workflow

Over the last several years, I have seen M&E companies increasingly adopting ML
in the different stages of the media life cycle, such as content generation and content
distribution, to improve efficiency and spur business growth. For example, ML has
been used to enable better content management and search, new content development,
monetization optimization, and compliance and quality control.

38 Business Use Cases for Machine Learning

Content development and production
In the early planning phase of the film production life cycle, content producers need to
make decisions on the next content based on factors such as estimated performance,
revenue, and profitability. Filmmakers adopt ML-based predictive analytics models to help
predict the popularity and profitability of new ideas by analyzing factors such as casts,
scripts, the past performance of different films, and target audience. This allows producers
to quickly eliminate ideas with small market potential to focus their effort on developing
more promising and profitable ideas.

To support personalized content viewing needs, content producers often segment long
video content into smaller micro-segments around certain events, scenes, or actors, so
that they can be distributed individually or repackaged into something more personalized
to individual preferences. This ML-based approach can be used for creating video clips
by detecting elements such as scenes, actors, and events for the different target audiences
with different tastes and preferences.

Content management and discovery
M&E companies with large digital content assets need to curate their content to create
new content for new monetization opportunities. To do that, these companies need rich
metadata for the digital assets to enable different content to be searched and discovered.
Consumers also need to search for content easily and accurately for different usages,
such as for personal entertainment or research. Without metadata tagging or the ability
to understand the content, it is quite challenging to discover relevant content. Many
companies hire humans to review and tag this content with meaningful metadata for
discovery as part of the digital asset management workflow. Since manual tagging is
very costly and time-consuming, most content is not tagged with sufficient metadata to
support effective content management and discovery.

Computer vision models can automatically tag image and video content for items such as
objects, genres, people, places, or themes. ML models can also interpret the meaning of
textual content such as topics, sentiment, entities, and sometimes video. Audio content
also needs to be transcribed into text for additional text analysis, such as summarization.
Machine learning-based text summarization can help you summarize long text as part of
the content metadata generation. The following diagram shows where ML-based analysis
solutions fit into the media asset management flow:

ML use cases in media and entertainment 39

Figure 2.11 – ML-based media analysis workflow

Machine learning-based content processing is being increasingly adopted by M&E
companies to streamline media asset management workflows, and it has resulted in
meaningful cost savings and enhanced content discovery.

Content distribution and customer engagement
Nowadays, media content such as films and music are increasingly being distributed
through digital video on demand (VOD) and live streaming on different devices,
bypassing traditional media such as DVDs and broadcasting. Consumers nowadays
have a lot of options when it comes to media provider choices. Customer acquisition
and retention are also a challenge for many media providers. M&E companies are
increasingly focusing on customer needs and preferences to improve user experience
and increase retention. They have turned to highly personalized product features and
content to keep users engaged and stay on the platform. One effective way for highly
personalized engagement is the content recommendation engine, and this has become the
primary method to get consumers to consume content and keep them engaged. Content
delivery platform providers use viewing and engagement behavior data and other profile
data to train highly personalized recommendation ML models. And they use these
recommendation models to target individuals based on their preference and viewing
pattern, along with a combination of diverse media content, including videos, music,
and games.

Figure 2.12 – Recommendation ML model training

40 Business Use Cases for Machine Learning

Recommendation technologies have been around for many years and have improved
greatly over the years. Nowadays, recommendation engines can learn patterns using
multiple data inputs, such as those historical interactions users have with content and
watching behaviors, different sequential patterns of the interactions, and the metadata
associated with the users and content. Modern recommendation engines can also learn
from the user's real-time behaviors/decisions and make dynamic recommendation
decisions based on real-time user behaviors.

ML use cases in healthcare and life sciences
Healthcare and life science is one of the largest and most complex industries. Within this
industry, there are several sectors, including the following:

•	 Drugs: These are the drug manufacturers, such as biotechnology firms,
pharmaceutical firms, and the makers of genetics drugs.

•	 Medical equipment: These are the companies that manufacture both standard
products as well as hi-tech equipment.

•	 Managed healthcare: These are the companies that provide health insurance
policies.

•	 Health facilities: These are the hospitals, clinics, and labs.

•	 Government agencies such as CDC and FDA.

The industry has adopted ML for a wide range of use cases, such as medical diagnosis and
imaging, drug discovery, medical data analysis and management, and disease prediction
and treatment.

Medical imaging analysis
Medical imaging is the process and technique of creating a visual representation of
the human body for medical analysis. Medical professionals, such as radiologists and
pathologists, use medical imaging to assist with medical condition assessments and
prescribe medical treatments. However, the industry is facing a shortage of qualified
medical professionals, and sometimes, these professionals have to spend a lot of time
reviewing a large number of medical images to determine whether a patient has a
medical condition.

ML use cases in healthcare and life sciences 41

One ML-based solution is to treat medical imaging analysis as a computer vision
object detection problem. In the case of cancer cell detection, cancerous tissues can be
identified and labeled in the existing medical images as training data for computer vision
algorithms. Once the model has been trained, and its accuracy has been validated to be
acceptable, it can be used to automate the screening of a large number of X-ray images to
highlight the ones that are important for the pathologists to review. The following diagram
shows the process of training a computer vision model using labeled image data:

Figure 2.13 – Using computer vision for cancer detection

To enable more accurate prediction, image data can be combined with non-image data,
such as clinical diagnosis data, to train a joint model to make the prediction.

Drug discovery
Drug discovery and development is a long, complex, and costly process. It consists of key
stages such as the following:

•	 Discovery and development, where the goal is to find a lead compound targeting
a particular protein or gene as a drug candidate through basic research

•	 Preclinical research, where the goal is to determine the efficacy and safety of
the drug

•	 Clinical development, which involves clinical trials and volunteer studies to
fine-tune the drug

•	 FDA review, where the drug is reviewed holistically to either approve or reject it

•	 Post-market monitoring, to ensure the safety of the drug

42 Business Use Cases for Machine Learning

During the drug discovery phase, the main goal is to develop a molecule compound
that can have a positive biological effect on a protein target to treat a disease without
negative effects such as toxicity issues. One area that ML can help with is the process
of compound design, where we can model the molecule compound as a sequence vector
and use the advancements in natural language processing to learn about these patterns.
We can do this using the existing molecule compounds with a variety of molecular
structures. Once the model has been trained, it can be used to generate new compound
suggestions for discovery purposes instead of having these molecules be created by
humans manually to save time. The suggested compounds can be tested and validated
with a target protein for interaction. The following diagram shows the flow of converting
molecule compounds into SMILES representations and training a model that generates
new compound sequences:

Figure 2.14 – Molecule compound generation

In addition to compound design, ML-based approaches have also been adopted in other
stages of the drug discovery life cycle, such as identifying cohorts for clinical trials.

ML use cases in healthcare and life sciences 43

Healthcare data management
Large amounts of patient healthcare data is collected and generated in the healthcare
industry every day. It comes in various formats, such as insurance claim data, doctor's
handwritten notes, recorded medical conversations, and images such as X-rays. Medical
companies need to extract useful information from these data sources to develop
comprehensive views about patients or to support medical coding for medical billing
processes. A significant amount of manual processing, often by people with health domain
expertise, goes into organizing this data and extracting information from these data
sources. This process is both expensive and error-prone. As a result, large amounts of
patient healthcare data remain in its original form and is not comprehensively utilized.

In recent years, deep learning-based solutions have been adopted to help with health
data management, especially with medical information extraction from unstructured
data such as doctor's notes, recorded medical conversations, and medical images. These
deep learning solutions can not only extract text from handwritten notes, images,
and audio files, but they can also identify medical terms and conditions, drug names,
prescription instructions, and the relationship among those different entities and terms.
The following diagram shows the flow of extracting information from unstructured data
sources using ML and using the results for different tasks, such as medical coding and
clinical decision support:

Figure 2.15 – Medical data management

Almost 80% of healthcare data is unstructured data, and advances in ML are helping to
unlock useful insights that are otherwise hidden in text and images.

44 Business Use Cases for Machine Learning

ML use cases in manufacturing
Manufacturing is an industry sector that produces tangible finished products. It includes
many sub-sectors such as consumer goods, electronics goods, industrial equipment,
automobiles, furniture, building materials, sporting goods, clothing, and toys. There
are multiple stages in a typical product manufacturing life cycle, including product
design, prototyping, manufacturing and assembling, and post-manufacturing service
and support. The following diagram shows the typical business functions and flow in the
manufacturing sector:

Figure 2.16 – Manufacturing business process flow

AI and ML have played an essential role in the manufacturing process, such as sales
forecasting, predictive machine maintenance, quality control and robotic automation for
manufacturing quality and yield, and process and supply chain optimization to improve
overall operational efficiency.

Engineering and product design
Product design is the process where a product designer combines their creative power,
the practical needs of market/consumers, and constraints to develop a product that will
be successful once it has been launched. Designers often need to create many different
variations of a new product concept during the design phase that will meet different needs
and constraints. For example, in the apparel industry, fashion designers would analyze the
needs and preferences of customers, such as color, texture, and styles, and develop these
designs and generate the graphics for the apparel.

ML use cases in manufacturing 45

The manufacturing industry has been leveraging generative design ML technology to
assist with new product concept design. For example, ML techniques such as Generative
Adversarial Networks (GANs) have been used to generate new graphics for logo design
and 3D industrial components such as machinery gears. The following diagram shows the
basic concept of a GAN, where a generator model is trained to create fake images that can
fool a discriminator. After the generator becomes good enough to fool the discriminator,
it can be used to generate new images for items such as clothing.

Figure 2.17 – GAN concept for generating realistic fake images

In addition to generative design, ML techniques have also been used to analyze market
requirements and estimate new products' market potentials.

Manufacturing operations – product quality and yield
Quality control is an important step in the manufacturing process to ensure a product's
quality before it is shipped. Many manufactures rely on humans to inspect the
manufactured products, which is highly time-consuming and costly. For example, factory
workers would visually inspect the products for surface scratches, missing parts, color
differences, and deformations.

Computer vision-based technology has been used to automate many aspects of the
manufacturing lines' quality control process. For example, a computer object detection
model can be trained using labeled image data to help identify the objects to be inspected
from the captured images, and then a computer vision-based defective model can be
trained using images labeled with good parts and bad parts to help inspect detected
objects and classify them as either defective or not defective.

46 Business Use Cases for Machine Learning

Manufacturing operations – machine maintenance
Industrial manufacturing equipment and machinery need regular maintenance to
ensure smooth operations. Any unplanned outages due to equipment failures would not
only result in high repair or replacement costs, but they would also disrupt production
schedules, impacting delivering schedules to downstream tasks or customers. While
following a regular maintenance schedule would alleviate this problem to a certain extent,
having the ability to forecast potential problems in advance would further reduce the risk
of any unforeseen failures.

Machine learning-based predictive maintenance analytics help reduce the risk of
potential failures by predicting whether a piece of equipment will likely fail within a time
window using a variety of data, such as telemetry data collected by Internet of Things
(IoT) sensors. The maintenance crew can use the prediction results and take proactive
maintenance actions to prevent disruptive failure.

ML use cases in retail
Retail businesses sell consumer products directly to customers through retail stores
or e-commerce channels. They get supplies through wholesale distributors or from
manufacturers directly. The industry has been going through some significant
transformations. While e-commerce is growing much faster than traditional retail
business, traditional brick-and-mortar stores are also transforming in-store shopping
experiences to stay competitive. Retailers are looking for new ways to improve the overall
shopping experience through both online and physical channels. New trends such as
social commerce, augmented reality, virtual assistant shopping, smart stores, and 1:1
personalization are becoming some of the key differentiators among retail businesses.

AI and ML are a key driving force behind the retail industry's transformation, from
inventory optimization and demand forecasting to highly personalized and immersive
shopping experiences such as personalized product recommendations, virtual reality
shopping, and cashier-less store shopping. In addition, AI and ML are also helping
retailers fight crimes such as fraud and shoplifting.

Product search and discovery
When consumers shop online and need to search for a particular product, they rely on
search engines to find the product on various e-commerce websites. This greatly simplifies
the shopping experience when you know the name or certain attributes of the products to
search for. However, sometimes, you only have a picture of the product and do not know
what correct terms to search for.

ML use cases in retail 47

Deep learning-powered visual search is a technology that can help you quickly identify
and return similar-looking products from a picture of an item. Visual search technology
works by creating a digital representation (also known as encoding/embedding) of the
item's pictures and stores them in a high-performance item index. When a shopper needs
to find a similar-looking item using a picture, the new picture is encoded into a digital
representation, and the digital representation is searched against the item index using
efficient distance-based comparison. The items that are the closest to the target items are
returned. The following diagram shows an architecture for building an ML-based image
search capability:

Figure 2.18 – Image search architecture

Visual search-based recommendations have been adopted by many large e-commerce sites
such as Amazon.com to enhance the shopping experience.

Target marketing
Retailers use different marketing campaigns and advertising techniques, such as direct
marketing email or digital advertisements, to target prospective shoppers with incentives
or discounts based on the shopper's segments. These campaigns' effectiveness heavily
depends on the right customer targeting to achieve a high conversion rate, all while
reducing the campaign's cost or advertising and generating less end user disturbance.

48 Business Use Cases for Machine Learning

Segmentation is one traditional way to understand the different customer segments
to help improve marketing campaigns' effectiveness. There are different ways to do
segmentations with machine learning, such as unsupervised clustering of customers based
on data such as basic demographic data. This allows you to group customers into several
segments and create unique marketing campaigns for each segment.

A more effective target marketing approach is to use highly personalized user-centric
marketing campaigns. They work by creating accurate individual profiles using large
amounts of individual behavior data such as historical transaction data, responses data
to historical campaigns, and alternative textual data such as social media data. Highly
personalized campaigns with customized marketing messages can be generated using
these personal profiles for a higher conversion rate. The ML approach to user-centric
target marketing predicts the conversion rate, such as the click-through rate (CTR),
for different users and sends ads to users with a high conversion rate. This can be a
classification or regression problem by learning the relationship between the user features
and the probability of conversion.

Contextual advertising is another way to reach the target audience by placing
advertisements such as display ads or video ads on web pages that match the
advertisement's content. An example of contextual advertising is to place cooking product
advertisements on cooking recipe sites. Because the ads are highly relevant to the content,
they will likely resonate with the websites' readers and result in a much higher click-
through rate. ML can help with detecting ads from a context so that the ads are placed
correctly. For example, computer vision models can detect objects, people, and themes in
video ads to extract contextual information and match them to the website's content.

Sentiment analysis
Retail businesses often need to understand the perception of their brand from their
consumers' point of view. Positive and negative sentiments toward a retailer could greatly
improve or damage a retail business. As more online platforms are becoming available,
it is easier than ever for consumers to voice their feelings toward a product or business
from their real-life experiences. Retail businesses are adopting different techniques to
assess their customer's feelings and emotions toward their product and brand by analyzing
feedback solicited from their shoppers or monitoring and analyzing their social media
channels. Effective sentiment analysis can help identify areas for improvement, such as
operational and product improvement, as well as for gathering intelligence in relation to
potentially malicious brand reputation attacks.

ML use cases in retail 49

Sentiment analysis is mainly a text classification problem that uses labeled text data
(for example, a product review is labeled either positive or negative). Many different
ML classifier algorithms, including deep learning-based algorithms, can be used to train
a model to detect sentiment in a piece of text.

Product demand forecasting
Retail businesses need to do inventory planning and demand forecasting to optimize retail
revenue and manage inventory costs. This helps them avoid out-of-stock situations while
reducing the cost of stocking inventory. Traditionally, retailers have been using different
demand forecasting techniques such as buyer surveys, collective opinions from multiple
inputs, projections based on past demands, or expert opinions.

Statistical and ML techniques such as regression analysis and deep learning-based
approaches can help produce more accurate and data-driven demand forecasting. In
addition to using historical demand and sales data to model future forecasts, deep
learning-based algorithms can also incorporate other related data such as price, holidays,
special events, and product attributes to train an ML model that's capable of producing
more accurate forecasts. The following diagram shows the concept of building a deep
learning model using multiple data sources to generate forecasting models:

Figure 2.19 – Deep learning-based forecasting model

ML-based forecasting models can generate point forecasts (a number) of probabilistic
forecasts (a forecast with a confidence score). Many retail businesses use ML to generate
baseline forecasts, and professional forecasters review them and make adjustments based
on human expertise and other factors.

50 Business Use Cases for Machine Learning

ML use case identification exercise
In this exercise, you are going to apply what you have learned in this chapter to your line
of business. The goal is to go through a thinking process to business problems that can
potentially be solved with machine learning:

1.	 Think about a business operation in your line of business. Create a workflow of
the operation and identify any known issues, such as a lack of automation, human
errors, and long processing cycles in the workflow.

2.	 List the business impact of these issues in terms of lost revenue, increased cost, poor
customer and employee satisfaction, and potential regulatory and compliance risk
exposure. Try to quantify the business impact as much as possible.

3.	 Pick one or two problems with the most significant impact if the problems can be
solved. Think about ML approaches (supervised machine learning, unsupervised
machine learning, or reinforcement machine learning) to solve the problem.

4.	 List the data that could be helpful for building ML solutions.
5.	 Write a proposal for your idea that includes the problem statement, identified

opportunities and business value, data availability, and implementation and
adoption challenges.

6.	 List the business and technology stakeholders that you will need to work with to
bring your idea to life.

Summary
In this chapter, we covered several ML use cases across multiple industries. You now
should have a basic understanding of some top industries and some of the core business
workflows in those industries. You have learned about some of the relevant use cases, the
business impact that those use cases have, and the ML approaches for solving them.

The next chapter will cover how machines learn and some of the most commonly used
ML algorithms.

Section 2:
The Science, Tools, and

Infrastructure Platform
for Machine Learning

In Section 2, you will learn about the core sciences and technologies for data science
experimentations and ML data science platforms for data scientists.

This section comprises the following chapters:

•	 Chapter 3, Machine Learning Algorithms

•	 Chapter 4, Data Management for Machine Learning

•	 Chapter 5, Open Source Machine Learning Libraries

•	 Chapter 6, Kubernetes Container Orchestration Infrastructure Management

3
Machine Learning

Algorithms
Machine learning (ML) algorithm design is usually not the main focus for a practitioner
of ML solutions architecture. However, ML solutions architects still need to develop a
solid understanding of the common real-world ML algorithms and how those algorithms
solve real business problems. Without this understanding, you will find it difficult
to identify the right data science solutions for the problem at hand and design the
appropriate technology infrastructure to run these algorithms.

In this chapter, you will develop a deeper understanding of how ML works first. We will
then cover some common ML and deep learning algorithms for the different ML tasks,
such as classification, regression, object detection, recommendation, forecasting, and
natural language generation. You will learn the core concepts behind these algorithms,
their advantages and disadvantages, and where to apply them in the real world.
Specifically, we are going to cover the following topics:

•	 How machines learn

•	 Overview of ML algorithms

•	 Hands-on exercise

54 Machine Learning Algorithms

Technical requirements
You need a personal computer (Mac or Windows) to complete the hands-on exercise
portion of this chapter.

You need to download the dataset from https://www.kaggle.com/mathchi/
churn-for-bank-customers. Additional instructions will be provided in the
Hands-on exercise section.

How machines learn
In Chapter 1, Machine Learning and Machine Learning Solutions Architecture, we
briefly talked about how ML algorithms can improve themselves by processing data
and updating model parameters to generate models (analogous to traditional compiled
binary from computer source code). So, how does an algorithm actually learn? In short,
ML algorithms learn by optimizing (for example, minimizing or maximizing) an objective
function (also known as a loss function). You can think of an objective function as a
business metric, such as the difference between the projected sales of a product and the
actual sales, and the goal of optimizing this objective would be to reduce the difference
between the actual sales number and the projected sales number. To optimize this
objective, an ML algorithm would iterate and process through large amounts of historical
sales data (training data) and adjust its internal model parameters until it can minimize
the differences between the projected values and the actual values. This process of finding
the optimal model parameters is called optimization, and the mathematical routines for
performing the optimization are called optimizers.

To illustrate what optimization means, let's use a simple example of training an ML model
to predict the sales of a product using its price as the input variable. Here, we use a linear
function as the ML algorithm, shown as follows:

In this example, we want to minimize the difference between the actual sales and
predicted sales, and we use the following mean square error (MSE) as the loss function
to optimize. The specific optimization task is to find the optimal values for the W and
B model parameters that produce the minimal MSE. In this example, W and B are
also known as weight and bias, respectively. The value of a weight indicates the relative
importance of an input variable and the bias represents the mean value for the output:

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝑾𝑾 ∗ 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 + 𝑩𝑩

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 1
𝑛𝑛 ∑

𝑛𝑛

𝑖𝑖=1

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑖𝑖 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑖𝑖) 2

https://www.kaggle.com/mathchi/churn-for-bank-customers
https://www.kaggle.com/mathchi/churn-for-bank-customers

How machines learn 55

There are many techniques for solving ML optimization problems. One of the preferred
optimization techniques is gradient descent and its various variants, which are
commonly used for the optimization of neural networks and many other ML algorithms.
Gradient descent is iterative and works by calculating the rate of error change (gradient)
contributed to the total error by each input variable and updating the model parameters
(W and B in this example) accordingly at each step to reduce error gradually over many
steps. Gradient descent also controls how much change to make to the model parameters
at each step by using a parameter called learning rate. The learning rate is also known as a
hyperparameter of the ML algorithm. The following figure shows how the W value can be
optimized using gradient descent:

Figure 3.1 – Gradient descent

The main steps in gradient descent optimization include:

1.	 Assigning a random value to W initially.
2.	 Calculating the error (loss) with the assigned W value.
3.	 Calculating the gradient (rate of change) of the error for the loss function. The value

of the gradient can be positive, zero, or negative.
4.	 If the gradient is either positive or negative, updating the W value in the direction

that will reduce the error in the next step. In this example, we move W to the right
to make it bigger.

56 Machine Learning Algorithms

5.	 Repeat Steps 2 to 4 until the gradient is 0, which indicates the optimal value of
W is found as the loss is at a minimal. Finding the optimal value is also called
convergence.

Besides gradient descent, there are other alternative optimization techniques, such as
normal equation, for finding the optimal parameters for ML algorithms such as linear
regression. Instead of the iterative approach used by gradient descent, normal equation
uses a one-step analytical approach for computing the coefficients of linear regression
models. Some other algorithms also have algorithm-specific solutions for model training
optimization, which we will cover in the next section.

Now, we have briefly talked about the fundamentals of how a machine learns. Next, let's
dive into the individual ML algorithms.

Overview of ML algorithms
A large number of ML algorithms have been developed to date, and more are being
researched and invented at an accelerated pace by academia and industry alike. This
section will review some popular traditional and deep learning algorithms and how these
algorithms can be applied to different kinds of ML problems. But first, let's quickly discuss
the considerations when choosing an ML algorithm for the task.

Consideration for choosing ML algorithms
There are a number of considerations when it comes to choosing ML algorithms for
different tasks:

•	 Training data size: Some ML algorithms, such as deep learning algorithms,
can work very well and produce highly accurate models, but they require large
amounts of the training data. Traditional ML algorithms, such as linear models,
can work effectively when the dataset is small but cannot take advantage of large
datasets as effectively as deep learning neural network algorithms. Traditional ML
algorithms require humans to extract and engineer useful input features from the
training data to train the model. When the size of the training data becomes large,
it becomes more difficult to extract and engineer useful features to improve model
performance. This is one of the reasons that traditional ML algorithms cannot take
advantage of large datasets. On the other hand, deep learning algorithms can extract
features automatically from the training data.

Overview of ML algorithms 57

•	 Accuracy and interpretability: Some ML algorithms, such as deep learning
algorithms, can produce highly accurate models, such as computer vision or
natural language processing (NLP) models. However, these can be highly
complex and harder to explain. Some simpler algorithms, such as linear regression
(to be covered later), can be easily interpreted even though the accuracy might not
be as high as deep learning models.

•	 Training time: Different algorithms have different training speeds against the
same dataset. Simple models, such as linear models, are faster to train, while deep
learning models would take longer to train.

There are a couple of quantitative measures for algorithm complexity. Time
complexity describes the compute time/operations needed to run an ML
algorithm, and space complexity is the amount of computing memory needed to
run the algorithm. Big O is a notation for describing time and space complexity,
which defines the estimated upper bound of an algorithm. For example, the time
complexity for linear search is 0(N), and the time complexity for binary search
would be represented by 0(log (N), where N is the number of data samples in the
target list.

•	 Data linearity: For data with linear relationships between the input data and output
data, linear models can work quite well. However, for a dataset with non-linear
relationships (that is, the input variable and output variable do not change
proportionally), linear models may not always be able to capture deeper intrinsic
relationships, and we normally need algorithms such as deep learning neural
networks and decision trees to handle complex datasets.

•	 Number of features: A training dataset can contain a large number of features, and
not all of them are relevant for model training. Some ML algorithms can handle
irrelevant or noisy features well, and some others may get negatively impacted
in training speed or model performance with a lot of irrelevant or noisy features
during training. Different algorithms have different approaches for reducing
the influence of noisy or uninformative features through a technique called
regularization. Some regularization techniques work by adding additional error
terms to the training loss function to reduce the influences of noisy data. Other
methods, such as dropout, randomly remove nodes in neural networks to achieve
regularization.

Now, we have reviewed some key considerations for ML algorithms. Next, let's deep dive
into the different types of algorithms by the problems they solve.

58 Machine Learning Algorithms

Algorithms for classification and regression problems
The vast majority of the ML problems the world currently solves are classification and
regression problems. In the following section, we will take a look at some of the common
classification and regression algorithms.

Linear regression algorithm
Linear regression algorithms are designed for solving regression problems and predict
a continuous value given a set of independent inputs. This kind of algorithm is used
extensively in practical applications, such as estimating the product sales as a function
of the product price or understanding the yield of a crop as a function of rainfall and
fertilizer.

Linear regression uses a linear function of a set of coefficients and input variables to
predict a scalar output. The formula for the linear regression is written as follows:

Here, the Xs are the input variables, Ws are the coefficients, and ε is the error term. The
motivation behind linear regression is that for a dataset where the output has a linear
relationship with its inputs, its output value can be estimated by the weighted sum of
the inputs. The intuition behind linear regression is to find a line or hyperplane that can
estimate the value for a set of input values. Linear regression can work efficiently with
small datasets. It is also highly interpretable, meaning that you can use the coefficient to
understand the strength of the relationship between the input variable and the output
response. However, as it is a linear model, it does not work well when the dataset is
complex, with non-linear relationships. Linear regression also assumes input features
to be mutually independent (no co-linearity), meaning the value of one feature does
not influence the value of another feature. When there is co-linearity among the input
features, it makes it hard to trust the significance of correlated features.

Logistic regression algorithm
A logistic regression algorithm is often used for binary classification tasks. Real-world
examples of using logistic regression include predicting the probability of someone clicking
on an advertisement or whether someone could qualify for a loan.

𝑓𝑓(𝑥𝑥) = 𝑊𝑊1 ∗ 𝑋𝑋1 + 𝑊𝑊2 ∗ 𝑋𝑋2 + ⋯ + 𝑊𝑊𝑛𝑛 ∗ 𝑋𝑋𝑛𝑛 + Ɛ

Overview of ML algorithms 59

Logistic regression models the probability of a set of input data belonging to a class or
event, such as transaction fraud or passing/failing an exam. It is also a linear model as
the linear regression and its output is a linear combination of various inputs. However,
since linear regression does not always produce a number between 0 and 1 (as needed
for probability), logistic regression is used to return a value between 0 and 1 to represent
probability. The intuition behind logistic regression is to find a line or plane/hyperplane
that can cleanly separate two sets of data points as much as possible. The following
formula is the function for the logistic regression, where X is a linear combination of input
variables (B+W1X). Here, the W is the regression coefficient:

Similar to linear regression, logistic regression's advantage is its fast training speed and
its interpretability. Logistic regression is a linear model, so it cannot be used for solving
problems with complex non-linear relationships.

Decision tree algorithm
A decision tree is used extensively in many real-world ML use cases, such as heart
disease prediction, target marketing, and loan default prediction. They can be used for both
classification and regression problems.

The motivation behind a decision tree is that data can be split using rules in a hierarchical
manner, so similar data points will follow a similar decision path. Specifically, it works
by splitting the input data using different features at different branches of the tree. For
example, if age is a feature used for splitting at a branch, then use a conditional check
(such as age > 50) to split the data at a branch. It makes decisions on which feature and
where to split by using various algorithms, such as the Gini purity index (the Gini index
measures the probability of a variable being classified incorrectly) and information gain
(information gain calculates the reduction in entropy before and after the split).

𝑓𝑓(𝑥𝑥) = 1
1 + 𝑒𝑒−𝑋𝑋

60 Machine Learning Algorithms

We are not going to get into the details of specific algorithms in this book, but the main
idea is to try out different tree split options and conditions, calculate the different metric
values (such as information gain) of the different split options, and pick an option that
provides the optimal value (for example, the highest information gain). When doing
a prediction, the input data will traverse the tree based on the branching logic learned
during the learning phase, and the terminal node (also known as the leaf node) will
determine the final prediction. See the following figure (Figure 3.2) for the sample
structure of a decision tree:

Figure 3.2 – Decision tree

The advantages that the decision tree has over linear regression and logistic regression are
its ability to handle large datasets with complex non-linear relationships and co-linearity
among the input features.

A decision tree works well with data without much preprocessing and can use
categorical values and numerical values as it is. It can also handle missing features and
large-scale differences among different features in the dataset. A decision tree is also
easily explainable since it uses conditions to split the data to make decisions, and the
decision path for an individual prediction can be easily visualized and analyzed. It is also
a high-speed algorithm. On the negative side, a decision tree can be prone to outliers
and overfitting. Overfitting is a model training problem where the model memorizes the
training data and does not generalize well on unseen data, especially with large numbers
of features and noise in the data.

Another key drawback for decision trees and tree-based algorithms in general is that
they can't extrapolate outside of the inputs on which they were trained. For example, if
you have a model predicting a housing price based on square footage and your training
data contains ranges from 500 to 3,000 sq ft, a decision tree will not be able to extrapolate
outside of the 3,000 sq ft, while a linear model would pick up the trend.

Overview of ML algorithms 61

Random forest algorithm
A random forest algorithm is used extensively in real-world applications for e-commerce,
healthcare, and finance for classification and regression tasks. Examples of these tasks
include insurance underwriting decisions, disease prediction, loan payment default
prediction, and target marketing.

As we have learned in the preceding decision tree section, a decision tree uses a single
tree to make its decisions, and the root node of the tree (the first feature to split the tree)
has the most influence on the final decision. The motivation behind the random forest
algorithm is that multiple trees can make a better final decision. The way that a random
forest works is to create multiple smaller subtrees, also called weaker learner trees,
where each subtree uses a random subset of all the features to come to a decision, and
the final decision is made by either majority voting (for classification) or averaging
(for regression). This process of combining the decision from multiple models is also
referred to as ensemble learning. Random forest algorithms also allow you to introduce
different degrees of randomness, such as bootstrap sampling (using the same sample
multiple times in a single tree) to make the model more generalized and less prone to
overfitting. The following figure shows how the random forest algorithm processes input
data instances using multiple subtrees and combines the outputs from the subtrees:

Figure 3.3 – Random forest

62 Machine Learning Algorithms

There are several advantages in using a random forest over a regular decision tree, such
as parallelizable processing across multiple machines and the ability to handle outliers
and imbalanced datasets. It is also able to handle a much higher dimension dataset
because each tree uses a subset of the features. A random forest performs well with noisy
datasets (datasets containing meaningless features or corrupted values). It is less prone to
overfitting the data as a result of multiple trees making decisions independently. However,
since it uses many trees to make a decision, the model interpretability does suffer a
bit compared to a regular decision tree that can be easily visualized. It also takes more
memory since it creates more trees.

Gradient boosting machine and XGBoost algorithms
Gradient boosting and XGBoost are also multi-tree-based ML algorithms. They have
been widely used for many use cases such as credit scoring, fraud detection, and insurance
claim prediction. While a random forest aggregates the result at the end by combining the
results from weaker learner trees, gradient boosting aggregates the results from different
trees sequentially.

A random forest builds on the idea of parallel independent weaker learners. The
motivation for gradient boosting is based on the concept of a sequential weaker learner
tree correcting the shortcoming (error) of the previous weaker tree. Gradient boosting has
more hyperparameters to tune than a random forest and can achieve higher performance
when it is tuned correctly. Gradient boosting also supports custom loss functions to give
you the flexibility to model real-world applications. The following figure shows how the
gradient boosting tree works:

Figure 3.4 – Gradient boosting

Overview of ML algorithms 63

Gradient boosting works well with imbalanced datasets, and it is good for use cases such
as risk management and fraud detection where the dataset tends to be imbalanced. One
major shortcoming of gradient boosting is that it does not parallelize as it creates trees
sequentially. It is also prone to noise, such as outliers in the data, and can overfit easily as
a result of this. Gradient boosting is less interpretable than a decision tree, but this can be
easily overcome with tools such as variable importance (feature importance).

XGBoost is an implementation of gradient boosting. It has become very popular as a
result of winning many Kaggle competitions. It uses the same underlying concept to
build and tune the trees, but improves upon gradient boosting by providing support for
training a single tree across multiple cores and multiple CPUs for faster training time,
more powerful training regularization techniques to reduce the complexity of the model,
and combat overfitting. XGBoost is also better at handling sparse datasets. In addition to
XGBoost, there are other popular variations of gradient boosting trees, such as LightGBM
and CatBoost.

K-nearest neighbor algorithm
K-nearest neighbor (K-NN) is a simple classification and regression algorithm. It is also
a popular algorithm for implementing search systems and recommendation systems.

The fundamental assumption that K-NN works under is similar things having close
proximity. The way to determine the proximity is to measure the distances between
different data points. For classification tasks, K-NN first loads the data and their respective
class labels. When we need to classify a new data point, we calculate its distances first,
for example, the Euclidean distance to other loaded data points. We then retrieve the
class labels for the top K (the K in K-NN) closest data points and use majority voting
(the most frequent labels among the top K data points) to determine the class label for
the new data point. The predicted scalar value will be the averaged values of the top K
closest data points for regression tasks.

K-NN is simple to use and there is no need to train or tune the model with
hyperparameters other than choosing the number of neighbors (K). The data points
are simply loaded in the K-NN algorithm. Its results can be easily explainable, as each
prediction can be explained by the properties of the nearest neighbors. In addition to
classification and regression, it can also be used for search. However, the model grows in
complexity as the number of data points increases, and it can become significantly slower
with a large dataset for predictions. It also does not work well when the dataset dimension
is high, and it is sensitive to noisy data and missing data. Outliers will need to be removed,
and missing data will need to be imputed.

64 Machine Learning Algorithms

Multi-layer perceptron (MLP) network
As mentioned in the beginning, an artificial neural network (ANN) mimics how
the human brain learns. The human brain has a huge number of neurons that are
connected in a network to process information. Each neuron in a network processes
inputs (electrical impulses) from another neuron, processes and transforms the inputs,
and sends the output to neurons in the network. The following figure shows a picture
of a human neuron:

Figure 3.5 – Human brain neuron

An artificial neuron works similarly. The following figure shows an artificial neuron,
which is mathematically a linear function plus an action function. An activation function
transforms the output of the linear function, such as compressing the value between
0 and 1 (sigmoid activation), -1 and 1 (tanh activation), or greater than 0 (ReLU). The
idea for the activation function is to learn the non-linear relationship between input
and output. You can also think of each neuron as a linear classifier, for example, logistic
regression. The following figure shows the structure of an artificial neuron:

Overview of ML algorithms 65

Figure 3.6 – Artificial neuron

When you stack a large number of neurons into different layers (input layer, hidden
layers, and output layer) and connect all of the neurons together between two adjacent
layers, we have an ANN called multi-layer perceptron (MLP). Here, the term perceptron
means artificial neuron, and it was originally invented by Frank Rosenblatt in 1957. The
idea behind MLP is that each hidden layer will learn some higher-level representation
(features) of the previous layer, and those higher-level features capture the more important
information in the previous layer. When the output from the final hidden layer is used
for prediction, the network has extracted the most important information from the raw
inputs for training a classifier or regressor. The following figure shows the architecture of
an MLP network:

Figure 3.7 – Multi-layer perceptron

66 Machine Learning Algorithms

During model training, every neuron in every layer would have some influence on the
final output, and their weights (W) are adjusted using a gradient descent to optimize
the training objective. This process is called backpropagation, where the total error is
propagated back into every neuron in every layer, and the weights for each neuron are
adjusted for the portion of the total error associated with each neuron.

MLP is a general-purpose neural network that can be used for classification and
regression. It can be used to solve similar problems as random forest and XGBoost. It
is mainly used for tabular datasets, but can also work with other data formats, such as
images and text. It can model complex nonlinear relationships in the dataset. It is also
computationally efficient, as it is easily parallelizable. MLP normally requires more
training data to train a performant model compared to traditional ML algorithms.

Algorithms for clustering
Clustering is a data mining technique to group items together based on item attributes.
An example of clustering is to create different customer segments based on demographics
data and historical transaction or behavior data. There are many different clustering
algorithms. In this section, we will talk about the K-means clustering algorithm.

K-means algorithm
The K-means algorithm is used extensively in practical real-world applications, such as
customer segmentation analysis, documentation classification based on document attributes,
and insurance fraud detection.

K-means is one of the most popular clustering algorithms. It is used to find clusters of
data points where similar data points belong to the same cluster. It is an unsupervised
algorithm, as it does not require labels. The way it works is to start with random centroids
(the center of clusters) for all K clusters and then find the best centroids by iterating the
assignment of data points to the nearest centroid and moving the centroid to the mean.
Some of the main benefits of using K-means are as follows:

•	 It guarantees convergence.

•	 It scales well with a large dataset.

However, to use K-means, you will need to manually choose the K (the number of
clusters) – not always easy to do. Also, its performance is sensitive to the initial choices
of random values, so you might not always find the optimal centroids. The centroids can
also be easily dragged by outlier data points.

Overview of ML algorithms 67

Algorithms for time series analysis
A time series is a list of sequential data points taken at different points in time. Examples
of time series include daily stock prices over a period of time or weekly product sales
for several months or years. Time series analysis has practical business values for many
businesses, as it can help explain historical behaviors and forecast future business
behaviors. Time series forecasting works under the principle that the future value of a
variable has a dependency on the previous values at different times.

There are several key characteristics associated with time series data including trend,
seasonality, and stationarity. Trend is the overall upward or downward direction of a time
series over time. It helps understand the long-term movement of a time series. Seasonality
helps capture patterns within an interval (usually within a year). It helps understand
the seasonal time-dependent characteristics of a time series to help with forecasting.
Stationarity indicates if the statistical properties (such as mean and variance) remain
constant over time. It is important to understand if a time series is stationary or not, as
forecasting on non-stationary time tends to be misleading. Many forecasting techniques
work based on the assumption that the underlying time series data is stationary.

Now, let's take a look at some popular time series algorithms.

ARIMA algorithm
There are many practical real-world use cases for the autoregressive integrated moving
average (ARIMA) algorithm, such as budget forecasting, sales forecasting, patient visit
forecasting, and customer support call volume forecasting.

ARIMA has been around for decades, and it is an algorithm for time series forecasting
(predicting the value of data in the future). The intuitions behind ARIMA are that the
value of a variable in one period is related to its own values (versus the values of other
variables in a linear regression model) in the previous periods (autoregressive), the
deviation of the variable from the mean (moving average) is dependent on the previous
deviations from the mean, and removing trend and seasonality with differencing
`(the differences between raw data points from one period to another) to allow the time
series to become stationary (statistical properties such as mean and variance are constant
over time). The three components of ARIMA are expressed with the following formulas:

The autoregressive (AR) component is expressed as a regression of previous values
𝑦𝑦𝑡𝑡−1. . . 𝑦𝑦𝑡𝑡−𝑝𝑝 (also known as lags). The constant C represents a drift:

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + ∅1𝑦𝑦𝑡𝑡 − 1 + ∅2𝑦𝑦𝑡𝑡 − 2 + ⋯ + ∅𝑝𝑝𝑦𝑦𝑡𝑡 − 𝑝𝑝 + Ɛ𝑡𝑡,

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + Ɛ𝑡𝑡 + θ1Ɛ𝑡𝑡−1 + θ2Ɛ𝑡𝑡−2 + ⋯ + θ𝑞𝑞Ɛ𝑡𝑡−𝑞𝑞,

68 Machine Learning Algorithms

The moving average (MA) component is expressed as a weighted average of forecasting
errors for the previous time periods, where it represents a constant:

The integrated component (time series differencing) of a time series can be expressed as
the difference between the values in one period from the previous period.

ARIMA is well suited to single time series (univariate) forecasting, as it does not require
other variables to perform forecasting. It performs better than other simple forecasting
techniques, such as simple moving average, exponential smoothing, or linear regression.
It is also highly interpretable. However, ARIMA is mainly an backward-looking algorithm,
so it does not forecast well for unexpected events. Also, ARIMA is a linear-based model,
so it would not work well for time series data with complex non-linear relationships.

DeepAR algorithm
Deep learning-based forecasting algorithms address some of the shortcomings of
traditional forecasting models (for example, ARIMA), such as complex non-linear
relationships or the inability to take advantage of multivariate datasets. Deep
learning-based models also make training a global model possible – meaning
that you can train a single model that works with many similar target time series
(for example, electricity consumption time series of all the customers) instead of
creating one model per time series.

Deep Autoregressive (DeepAR) is an advanced neural network-based forecasting
algorithm that can handle large datasets with multiple similar target time series. It
supports related time series (for example, product prices or holiday schedules) to improve
the accuracy of forecasting models.,This is especially useful for spiky events as a result of
external variables.

DeepAR works by using a neural network called a recurrent neural network (RNN)
to model the target time series, and combines that with other external supporting time
series. At each time period, instead of taking the value of a single variable, the neural
network input will take a single input vector that represents the values for variables
(that is, values of data points for the multiple target time series and the values of data
points for the multiple supporting time series), and jointly learn the patterns of the
combined vectors over time (AR). This approach allows the network to learn the intrinsic
non-linear relationship among all the different time series and extract common patterns
exhibited by these time series. DeepAR trains a single global model that can work with
multiple similar target time series for forecasting.

𝑦𝑦𝑡𝑡
′ = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1

Overview of ML algorithms 69

While DeepAR works well with complicated multivariate datasets, it requires very large
amounts of data to be performant. Real-world practical use cases include large-scale retail
forecasting for thousands or millions of items, with considerations for external events,
such as marketing campaigns or holiday schedules.

Algorithms for recommendation
The recommender system is one of the most adopted ML technologies across industries
such as retail, media and entertainment, finance, and healthcare.

The field of recommendation algorithms has evolved over the years. They work by
predicting a user's preference toward an item mainly based on user or item attribute
similarities or user-item interactions. Next, let's take a look at some common algorithms
for the recommender system.

Collaborative filtering algorithm
Collaborative filtering is a common recommendation algorithm based on the concept
that different people who share a common interest or taste on one set of items will likely
share a common interest on other items. Essentially, it uses the collective experiences of
different people to recommend items to users.

The following figure shows an item-user interaction matrix for movie ratings, and as you
can see, it is a sparse matrix. This means that there are many empty entries in the matrix,
which makes sense since no one would have watched every movie:

Figure 3.8 – User-item interaction matrix for collaborative filtering

70 Machine Learning Algorithms

Matrix factorization is one implementation of the collaborative filtering method. It is
an embedding-based model where vector representations (embeddings) are learned for
all the users (U) and items (V) in the user-item interaction matrix. The way to learn the
embeddings is to ensure the product of the UVT matrix would approximate the original
matrix, so, to predict the value for a missing entry (the likely score a user would give to the
unseen movie) in the original matrix, we just need to calculate the dot product between
the user embedding and the item embedding.

Embedding is an important concept in ML, which I will cover more in the later section
when we talk about algorithms for NLP. The main idea behind embedding is to create a
mathematical representation for different entities in a way that the representations for
similar entities are closer to each other in a multi-dimensional space represented by the
embedding. You can think of embedding as a way to capture the latent semantics of the
different objects.

Multi-arm bandit/contextual bandit algorithm
Collaborative filtering-based recommender systems require prior interaction data for
identified users and items in order to work. When there are no prior interactions, or the
user is anonymous, collaborative filtering will do poorly. This is also known as a cold start
problem. A multi-arm bandit (MAB) based recommendation system is one approach to
overcome the cold start problem. It works based on the concept of trial and error, and it
is a form of reinforcement learning. It is analogous to a gambler who plays multiple slot
machines at the same time evenly and tries to observe which machine provides a better
overall return.

An MAB algorithm does not have any ready-to-use training data to train a model before
it is deployed. It adopts a method called online learning, which means that it trains the
model as the data is incrementally made available. At the beginning of an MAB learning,
the MAB model would recommend all options (for example, products on e-commerce
sites) with equal probabilities to users. As users start to interact (receiving rewards) with
a subset of the items, the MAB model would start to offer items that it has received higher
rewards for (for example, more interactions) more frequently. It continues to recommend
new items at a smaller percentage to see if they would receive any interaction. This is also
called the explore (offer new items) versus exploit (offer items with known good rewards)
tradeoff.

Overview of ML algorithms 71

Algorithms for computer vision problems
Computer vision is the ability for computers to understand visual representations
(for example, images) to perform tasks such as identifying and classifying objects,
detecting text, recognizing faces, and detecting activities. The computer vision tasks
that we are solving today are mainly based on pattern recognition – meaning, we label
images with object names and bounding boxes and train computer vision models to
recognize the patterns from the images and make predictions on new images. Computer
vision technology has many practical uses in the real world, such as content management,
security, augmented reality, self-driving cars, medical diagnosis, sports analytics, and quality
inspection in manufacturing. Next, we will deep dive into a couple of computer vision
neural network architectures.

Convolution neural network
A convolution neural network (CNN) is a type of deep learning architecture that works
well with image data. The way it learns is similar to how the animal visual cortex works.
In the visual cortex context, a visual neuron responds to visual stimulation in a subregion
of a visual field. The different subfields covered by different visual neurons partially
overlap with each other to cover the entire visual field. In the context of a CNN, there
are different filters that interact with the subregions in an image and respond to the
information in a region.

A CNN is made of multiple repeating layers. Within each layer, there are different
sublayers that are responsible for different functions.

The convolutional layer is responsible for extracting features from the input images.
It uses a kind of filter called a convolutional filter, which is a matrix defined by height
and width, to extract features. The convolutional layers convolve the image inputs
(a multidimensional array) and send the output (extracted features) of a convolution
layer to the next layer.

The pooling layer in a CNN reduces the dimensions of the extracted features from the
convolutional layer by combining the multiple outputs into a single output. Two common
pooling layers are max pooling, which takes the max value from the outputs, and average
pooling, which averages the outputs into a single value.

72 Machine Learning Algorithms

After one or multiple convolutional layer/pooling layers, a fully connected layer is used
to combine and flatten the outputs from the previous layer and feed them into an output
layer for image classification. The following figure shows the architecture of a CNN:

Figure 3.9 – CNN architecture

Training CNN-based models can be highly efficient, as it is highly parallelizable. While
it is mainly used for computer vision tasks, we have also seen it applied to non-computer
vision tasks, such as natural language processing.

ResNet
As computer vision tasks become increasingly complex, adding more layers helps
make CNNs more powerful at image classification, as more layers progressively learn
more complex features about the image. However, as more layers are added to a CNN
architecture, the performance of the CNN degrades. This is also known as the vanishing
gradient problem, which means signals from the original inputs (including important
signals) are lost as they are processed by different layers of the CNN.

Residual network (ResNet) helps solve this problem by introducing a layer skipping
technique. So, instead of processing signals layer by layer, ResNet provides another path
for signals to skip layers. You can think of the skip layer connection as a highway that
skips local exits. So, the signals from the earlier layers are carried over without getting lost.
The following figure shows the architecture of ResNet:

Overview of ML algorithms 73

Figure 3.10 – ResNet architecture

ResNet can be used for different computer vision tasks such as image classification, object
detection (detecting all objects in a picture), and producing models with much higher
accuracy than a vanilla CNN network.

Algorithms for natural language processing problems
NLP is the study of the interaction between computer and human languages. Specifically,
it is the processing and analysis of a large amount of natural language data. The goal is for
computers to understand the meaning of human language and extract useful information
for the human language data. NLP is a large data science domain. There are many NLP
tasks, such as document classification, topic modeling, speech to text, text to speech, entity
extraction, language translation, reading comprehension, language generations, and
questions and answering.

ML algorithms cannot process raw text data directly. In order to train NLP models, the
words in an input text need to be converted into numerical representations in the context
of other words, sentences, or documents. Two popular methods for representing words
and their relevance in a text are bag-of-words (BOW) and term frequency–inverse
document frequency (TF-IDF).

BOW is simply the count of a word appearing in a text (document). For example, if the
input documents are I need to go to the bank to make a deposit and
I am taking a walk along the river bank, and you count the number of
appearances for each unique word in each input document, you will get 1 for the word I,
and 3 for the word to in the first document, as an example. If we have a vocabulary for all
the unique words in the two documents, the vector representation for the first document
can be [1 1 3 1 1 1 1 1 1 0 0 0 0 0], where each position represents a unique
word in the vocabulary (for example, the first position represents the word I, and the third
position represents the word to). Now, this vector can be fed into an ML algorithm to train
a model such as text classification. The main idea behind BOW is that a word that appears
more frequently has stronger weights in a text.

74 Machine Learning Algorithms

TF-IDF has two components. The first component, TF, is the ratio of the number of
times a vocabulary word appears in a document over the total number of words in the
document. Using the preceding first document, the word I would have a TF value of
1/11 for the first sentence, and the word walk would have a TF value of 0/11, since walk
does not appear in the first sentence. While TF measures the importance of a word in the
context of one text, the IDF component measures the importance of a word across all the
documents. Mathematically, it is the log of the ratio of the number of documents over the
number of documents where a word appears. The final value of TF-IDF for a word would
be the TF term multiplied by the IDF term. In general, TF-IDF works better than BOW.

While techniques such as BOW and TF-IDF are good representations for NLP tasks, they
don't capture any information on the semantic meaning of the word. They also result in
very large and sparse input vectors. This is where the concept of embedding comes in.

Embedding is the technique of generating low-dimensional representations (mathematical
vectors of real numbers) for words or sentences that captures the semantic meaning
of the text. The intuition behind the technique of embedding is that those language
entities with similar semantic meanings appear more frequently in similar contexts. The
mathematical representations for semantically similar entities are closer to each other
than entities with different semantic meanings in a multi-dimensional space. For example,
if you have a number of words that represent sports such as soccer, tennis, and bike, their
embeddings would be close to each other (measured by distance metrics such as cosine
similarity between those embeddings) in the high-dimensional space represented by the
embeddings. You can think of the embedding vector as representing the inherent meaning
of the word, and each dimension in the vector represents a made-up attribute about the
word. The following diagram is a visual depiction of what it means by being closer in the
multidimensional space:

Figure 3.11 – Embedding representation

Overview of ML algorithms 75

Most of the NLP tasks nowadays rely on embeddings as a prerequisite in order to achieve
good results, as embedding provides more meaningful representations of the underlying
text than other techniques (such as the count of words in a text). There are a number of
ML algorithms for the different NLP tasks. Next, let's take a close look at some of the
algorithms.

Word2Vec
Thomas Mikolov created Word2Vec in 2013. It supports two different techniques for
learning embedding: continuous bag-of-words (CBOW) and continuous-skip-gram.
CBOW tries to predict a word for a given window of surrounding words, and
continuous-skip-gram tries to predict surrounding words for a given word. The training
dataset for Word2Vec could be any running text available, such as Wikipedia. The process
of generating a training dataset for CBOW is to run a sliding window across running text
(for example, a window of five words) and choose one of the words as the target and the
rest as inputs (the order of words is not considered). In the case of continuous-skip-gram,
the target and inputs are reversed. With the training dataset, the problem can be turned
into a multi-class classification problem, where the model will learn to predict the classes
(for example, words in the vocabulary) for the target word and assign each predicted word
with a probability distribution.

A simple one-hidden-layer MLP network can be used to train the Word2Vec embeddings.
The inputs of the MLP network would be a matrix representing the surrounding words,
and the outputs would be probability distributions for the target words. The weights
learned for the hidden layer would be the actual embeddings for the word after it is fully
trained and optimized.

As large-scale word embedding training can be expensive and time-consuming,
Word2Vec embeddings are usually trained as a pre-training task so that they can be
readily used for downstream tasks such as text classification or entity extraction. This
approach of using embeddings as features for downstream tasks is called a feature-based
application. There are pre-trained embeddings (for example, Tomas Mikolov' Word2Vec
and Stanford's GloVe) in the public domain that can be used directly. The embeddings are
a 1:1 mapping between each word and its vector representation.

Recurrent neural networks (RNN) and long short-term
memory (LSTM)
As language comes in the form of word sequences, it needs to be modeled as such to
capture the temporal relationship of the different words in a sequence. An RNN is a neural
network that has been widely used for language-related ML tasks.

76 Machine Learning Algorithms

Unlike MLP or CNNs, where the input data is entered all at once and can be processed
in parallel, an RNN takes and processes one data point input at a time (known as
a token) in the sequence in a unit called the cell, and the output from the cell is used
as an input for the next cell, in addition to the next data point in the input sequence.
The number of cells in the sequence depends on the length of inputs (for example, the
number of words), and each cell would perform the same function. This architecture
allows inter-dependent semantic information (a word appears in a sentence depending
on the previous words in the sentence to establish its semantic meaning) to be passed
from one processing cell to another processing cell. The following figure shows what an
RNN looks like:

Figure 3.12 – An RNN

The ability to learn semantic relationships among character or word sequences makes
RNN a popular algorithm for language modeling, where the goal is to generate the next
language token (for example, character or word) given a preceding sequence of tokens.

An RNN also has the ability to summarize a sequence (for example, a sentence) and
capture the inherent meaning of the sequence into a fixed-length vector representation.
This makes an RNN a good fit for language tasks, such as language translation or
summarization, where the goal is to take the semantic meaning of a sentence in one
language and represent the same meaning in a different language or summarize longer
sentences into more concise shorter sentences. This ability to summarize sentences into
fixed-length vectors also makes an RNN useful for sentence classification.

Overview of ML algorithms 77

When trained with a CNN together, an RNN can be used for image captioning tasks,
where a CNN network summarizes images into fixed-length vectors, and the RNN uses
the vectors to generate sentences that describe the images.

Since an RNN process inputs sequentially, it is hard to parallelize its computations, and
training RNN-based models takes a long time compared to CNNs or MLP. Similar to
the vanishing gradient problem associated with a large number of layers for a vanilla
CNN, vanilla RNNs also suffer from the vanishing gradient problem when the sequence
becomes long. RNN variations like long short-term memory (LSTM) allow additional
hidden values to be passed from one cell to another and saved in the cells to capture
important information in the early part of the long sequence.

For NLP tasks such as summarization and translation, to generate new sentences, the
RNN (also known as the decoder network) needs to reference input tokens directly
as additional inputs. Mechanisms such as the attention mechanism have been used to
directly reference items in the input sequences from the generated outputs.

BERT
Word2Vec generates a single embedding representation for each word in the vocabulary,
and the same embedding is used in different downstream tasks regardless of the context.
As we know, a word could mean totally different things in different contexts (the word
bank can mean a financial institution or the land along a body of water), and this requires
word embeddings that consider context as part of the embedding generation process.

BERT, which stands for Bidirectional Encoder Representations from Transformers,
is a language model that takes context into consideration by the following:

•	 Predicting randomly masked words in sentences (the context) and taking the order
of words into consideration. This is also known as language modeling.

•	 Predicting the next sentence from a given sentence.

Released in 2018, this context-aware embedding approach provides better representation
for words and can significantly improve language tasks such as reading comprehension,
sentiment analysis, and named entity resolution. Additionally, BERT generates embeddings
at subword levels (a segment between a word and a character, for example, the
word embeddings is broken up into em, bed, ding, and s). This allows it to handle the
out-of-vocabulary (OOV) issue, another limitation of Word2Vec, which only generates
embeddings on known words and will treat OOV words simply as unknown.

78 Machine Learning Algorithms

To get word embeddings using BERT, instead of looking up 1:1 mapping as in the case of
Word2Vec, you pass sentences to a trained BERT model and then extract the embeddings
dynamically. In this case, the embeddings generated would be aligned with the context
of the sentences. In addition to providing embeddings for words in the input sentences,
BERT can also return the embeddings for the entire sentence. The following figure shows
the building blocks of a BERT model for learning embeddings using input tokens. This is
also known as pre-training:

Figure 3.13 – BERT model pre-training

Architecturally, BERT mainly uses a building block called a transformer. A transformer
has a stack of encoders and a stack of decoders inside it, and it transforms one sequence
of inputs into another sequence. Each encoder has two components:

1.	 A self-attention layer mainly calculates the strength of the connection between one
token (represented as a vector) and all other tokens in the input sentence, and this
connection helps with the encoding of each token. One way to think about self-
attention is which words in a sentence are more connected than other words in a
sentence. For example, if the input sentence is The dog crossed a busy street, then
we would say the words dog and crossed have stronger connections with the word
The than the word a and busy, which would have strong connections with the word
street. The output of the self-attention layer is a sequence of vectors; each vector
represents the original input token as well as the importance it has with other words
in the inputs.

Overview of ML algorithms 79

2.	 A feed-forward network layer (single hidden layer MLP) extracts higher-level
representation from the output of the self-attention layer.

Inside the decoder, there is also a self-attention layer and feed-forward layer, plus an extra
encoder-decoder layer that helps the decoder to focus on the right places in the inputs.

In the case of BERT, only the encoder part of the transformer is used. BERT can be used
for a number of NLP tasks, including question answering, text classification, named entity
extraction, and text summarization. It achieved state-of-the-art performance in many
of the tasks when it was released. BERT pre-training has also been adopted for different
domains, such as scientific text and biomedical text, to understand domain-specific
languages. The following figure shows how a pre-trained BERT model is used to train a
model for a question-answering task using the fine-tuning technique:

Figure 3.14 – BERT fine-tuning

While BERT's pre-trained embeddings can be extracted for downstream tasks such as text
classification and question answering, a more straightforward way to use its pre-trained
embeddings is through a technique called fine-tuning. With fine-tuning, an additional
output layer is added to the BERT network to perform a specific task, such as question
answering or entity extraction. During fine-tuning, the pre-trained model is loaded,
and you plug in the task-specific input (for example, question/passage pairs in question
answering) and output (start/end and span for the answers in the passage) to fine-tune
a task-specific model. With fine-tuning, the pre-trained model weights are updated.

80 Machine Learning Algorithms

Generative pre-trained transformer
Unlike BERT, which requires fine-tuning using a large domain-specific dataset for the
different downstream NLP tasks, the Generative Pre-trained Transformer (GPT),
developed by OpenAI, can learn how to perform a task with just seeing a few examples
(or no example). This learning process is called few-shot learning or zero-shot learning.
In a few-shot scenario, the GPT model is provided with a few examples, a task description,
and a prompt, and the model will use these inputs and start to generate output tokens
one by one. For example, when using GPT-3 for a translation task, an example of task
definition would be translate English to Chinese. The training data would be a few
examples of Chinese sentences translated from the English sentences. To use the trained
model to translate a new English sentence, you provide the English sentence as a prompt,
and the model will generate the translated text in Chinese. Note that, unlike the
fine-tuning technique, few-shot or zero-shot learning does not update the model
parameter weights.

GPT also uses Transformer as its main building block, and it is trained using next word
prediction – meaning, given a sequence of input words, it predicts the word that should
appear at the end of the sequence. Unlike BERT, which uses the Transformer encoder
block, GPT uses the Transformer decoder block only. Similar to BERT, GPT also uses
masked words to learn embeddings. However, it is different from BERT in that it does not
randomly select masked words and predict the missing words. Instead, it does not allow
the self-attention calculation to have access to words to the right of the target word to be
calculated – this can be called masked self-attention.

The latest version of GPT is GPT-3, and it has shown very impressive results in a number
of traditional NLP tasks, such as language modeling, language translation, and question
answering, as well as many novel use cases, such as generating programming code or ML
code, writing websites, and plot charts.

Latent Dirichlet Allocation algorithm
Topic modeling is the process of discovering common topics from a large number of
documents and determining what top topics a document contains. A topic is usually
presented by the associated top words. For example, a sport-related topic could have top
words such as sport, player, coach, or NHL. Topic modeling is a very important natural
language processing technique for document understanding, information retrieval, and
document tagging and classification. A document can have one or more topics present in
the content. The following figure shows the relationship between a document and various
topics associated with the document:

Overview of ML algorithms 81

Figure 3.15 – Topic modeling

Latent Dirichlet Allocation (LDA) is one of the most popular ML algorithms for topic
modeling. It works by calculating the probability of a word belonging to a topic and the
probability of a topic belonging to a document. Let's explain how this works conceptually
with an example. Say you have a large number of documents, and as you go through these
documents, you want to identify words that frequently appear together in word clusters.
Based on the count of word occurrences in a cluster, you can calculate the probabilities
of different words belonging to a cluster (topic). The words with high probabilities would
be considered top words that represent a topic. With a topic defined, you can then also
calculate the probability of a topic belonging to a document. With LDA, you specify the
number of topics to be discovered as input, and the output of LDA is a list of topics with
top words weighed by their probability and a list of topics associated with each document.

LDA has many practical uses in the real world, such as summarizing a large number of
documents to a list of top topics and automatic document tagging and classification. LDA is
an unsupervised algorithm, and it discovers topics automatically. Its disadvantage is that
it is hard to measure the overall quality of the model (that is, it is difficult to know if the
topics generated are informative or not). You also need to tune the number of topics and
interpret the result with a human-readable name for each topic produced by the model.

Generative model
A generative model is a type of ML model that can generate new data. For example,
BERT and GPT are generative models, as they can generate new text. ML models like
linear regression or MLP are called discriminative models in that they discriminate
between different kinds of data instances, such as classifying something as one class or
the other. Generative models model the joint probability, while a discriminative model
models conditional probability.

82 Machine Learning Algorithms

Generative adversarial network
The generative adversarial network (GAN) is a generative model that tries to generate
realistic data instances, such as images. It works by having a discriminative network
(Discriminator) learning to tell if the instances generated by a Generator network are real
or fake:

Figure 3.16 – Generative adversarial network

During training, the Discriminator network is provided with two data sources – one
from a real source, used as positive examples, and one from the Generator source, the
negative samples. The Discriminator will be trained to distinguish the real sample from
the fake sample as a classifier, and it will optimize its loss to predict real/fake samples
correctly from both sources. On the other hand, the Generator will be trained to produce
fake data that the Discriminator cannot tell is fake or real, and it will be penalized when
the Discriminator was able to tell its generated data is fake. Both networks learn using
backpropagation. To generate data, the Generator is provided with random inputs. During
training, the Generator and Discriminator are trained alternatively to allow both networks
to train as a single connected network.

GAN has had a lot of success recently in generating realistic images that can fool humans.
For example, it can be applied to many applications, such as translating sketches to
realistic-looking images, converting text inputs and generating images corresponding to
the text, and generating realistic human faces.

Now you have completed an overview of the different classic ML algorithms and deep
learning networks. Next, let's practice with a hands-on exercise.

Hands-on exercise 83

Hands-on exercise
In this hands-on exercise, we will build a Jupyter Notebook environment on your local
machine and build and train an ML model in your local environment. The goal of the
exercise is to get some familiarity with the installation process of setting up a local data
science environment, and learn how to analyze the data, prepare the data, and train an ML
model using one of the algorithms we covered in the preceding sections. First, let's take a
look at the problem statement.

Problem statement
Before we start, let's first review the business problem that we need to solve. A retail bank
is experiencing a high customer churn rate for its retail banking business. To proactively
implement preventive measures to reduce potential churn, the bank needs to know
who the potential churners are, so the bank can target those customers with incentives
directly to prevent them from leaving. From a business operation perspective, it is much
more expensive to acquire a new customer than offering incentives to keep an existing
customer.

As an ML solutions architect, you have been tasked to run some quick experiments to
validate the ML approach for this problem. There is no ML tooling available, so you have
decided to set up a Jupyter environment on your local machine for this task.

Dataset description
You will use a dataset from the Kaggle site for bank customers' churn for modeling. You
can access the dataset at https://www.kaggle.com/mathchi/churn-for-
bank-customers. The dataset contains 14 columns for features such as credit score,
gender, and balance, and a target variable column, Exited, to indicate if a customer
churned or not. We will review those features in more detail in later sections.

Setting up a Jupyter Notebook environment
Now, let's set up a local data science environment for data analysis and experimentation.
We will be using the popular Jupyter Notebook on your local computer. Setting up
a Jupyter Notebook environment on a local machine consists of the following key
components:

•	 Python: Python is a general-purpose programming language, and it is one of the
most popular programming languages for data science work.

•	 PIP: PIP is a Python package installer used for installing different Python library
packages, such as ML algorithms, data manipulation libraries, or visualization.

https://www.kaggle.com/mathchi/churn-for-bank-customers
https://www.kaggle.com/mathchi/churn-for-bank-customers

84 Machine Learning Algorithms

•	 Jupyter Notebook: Jupyter Notebook is a web application that can be used for
authoring documents (called notebooks) that contain code, description, and/
or visualizations. It is one of the most popular tools for data scientists to do
experimentation and modeling.

Follow either the Mac or PC instructions given as follows, depending on your machine.

Installing Python 3 on macOS
Python 3 can be downloaded and installed directly from https://www.python.org/
downloads/. An easier way is to install it using a package manager such as Homebrew.
In the following section, we will use Homebrew to install Python3.

Installing Homebrew, Python3, and PIP3
Homebrew can be downloaded by following the instructions at https://brew.sh/.
Installing Homebrew will also install Python 3. The specific steps are listed as follows:

1.	 Open up a terminal window on your Mac machine.
2.	 Inside the terminal window, type and run the following command to start installing

Homebrew:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.
com/Homebrew/install/HEAD/install.sh)"

3.	 Enter your Mac user password when prompted during the installation.
4.	 After the previous script completes, run the following command inside the

Terminal window to get the latest versions of the packages:

brew update && brew upgrade python

5.	 Point to the Homebrew Python by typing and running the following command. It
will make the current Terminal window use the Homebrew Python installation:

alias python=/usr/local/bin/python3

6.	 Verify the Python installation and version by running the following command
inside the Terminal window:

python –version

At the time of writing this book, the latest Python version is 3.9.1.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://brew.sh/

Hands-on exercise 85

7.	 To persist the setting of Homebrew Python for all Terminal windows, type and run
the following command in the Terminal window depending on which shell you
have on your Mac:

echo alias python=/usr/local/bin/python3 >> ~/.bashrc

Or, type and run the following command:
echo alias python=/usr/local/bin/python3 >> ~/.zshrc

Installing Jupyter Notebook on macOS
Now, we are ready to install the Jupyter Notebook on your machine:

1.	 Inside the Terminal window, run the following command:

brew install jupyter

2.	 Start the Jupyter Notebook by running the following command in your Terminal
window:

jupyter notebook

Installing Python3 on a Windows machine
Download the Windows installer for Python 3.9.1 using the following URL:

https://www.python.org/ftp/python/3.9.1/python-3.9.1-amd64.exe

Run the installer and follow the instructions to complete the installation.

Installing PIP3
Follow the given steps to complete the installation:

1.	 Download https://bootstrap.pypa.io/get-pip.py and save it to
a local folder on the PC.

2.	 Open a Command Prompt window and navigate to the folder where the file
is saved.

3.	 Run the following command to install pip:

py get-pip.py

https://www.python.org/ftp/python/3.9.1/python-3.9.1-amd64.exe
https://bootstrap.pypa.io/get-pip.py

86 Machine Learning Algorithms

4.	 The preceding command will print out the directory where the pip utility is
installed. Add the path of the Pip utility to the system path by running the
following command:

set path= %path%;<path to the pip directory>

Installing Jupyter Notebook on Windows
With Python 3 and the pip utility installed, we can now install Jupyter Notebook by
running the following command in the Command Prompt window:

pip install jupyter

Running the exercise
1.	 Now we have installed Python 3 and Jupyter Notebook, let's get started with the

actual data science work. First, download the data files:

(a) �Let's create a folder called MLSALab on your local machine to store all the files.
You can create the folder anywhere on your local machine as long as you can
get to it. I have a Mac, so I created one directly inside the default user
Documents folder.

(b) �Create another subfolder called Lab1-bankchurn under the MLSALab folder.

(c) �Visit the https://www.kaggle.com/mathchi/churn-for-bank-
customers site and download the data file (an archive file) and save it in the
MSSALab/Lab1-bankchurn folder. Create a Kaggle account if you do not
already have one. Extract the archive file inside the folder, and you will see a file
called churn.csv. You can now delete the archive file.

2.	 Launch Jupyter Notebook:

(a) �Inside the Terminal window (or the Command Prompt window for Windows
systems), navigate to the MLSALab folder and run the following command to
start the Jupyter Notebook server on your machine. A browser window will
open up and display the Jupyter Notebook environment (see the following
screenshot). Detailed instructions on how Jupyter Notebook works is out of
scope for this lab. If you are not familiar with how Jupyter Notebook works, you
can easily find information on the internet:

https://www.kaggle.com/mathchi/churn-for-bank-customers
https://www.kaggle.com/mathchi/churn-for-bank-customers

Hands-on exercise 87

Figure 3.17 – Jupyter Notebook
(b) Click on the Lab1-bankchurn folder and you will see the churn.csv file.

3.	 Experimentation and model building: Now, let's create a new data science notebook
inside the Jupyter Notebook environment. To do this, you click on the New
dropdown and select Python 3 (see following screenshot):

Figure 3.18 – Creating a new Jupyter notebook

88 Machine Learning Algorithms

4.	 You will see a screen similar to the following screenshot. This is an empty notebook
that we will use to explore data and build models. The section next to In []: is called
a cell, and we will enter our code into the cell. To run the code in the cell, you click
on the Run button on the toolbar. To add a new cell, you click on the + button on
the toolbar:

Figure 3.19 – Empty Jupyter notebook

5.	 First, let's configure the Jupyter environment to use the right Python library with
the following code block by entering it in the first empty cell and running the cell
by clicking on the Run button in the toolbar. Here, the sys.executable points
to the Python3 location we installed earlier, and the sys.path needs to include
the additional path where the additional library package will be installed. Note, this
code block is only needed for Mac. There is no need to run this code on a PC:

import sys

sys.executable = "/usr/local/bin/python3"

sys.path = sys.path + ['/usr/local/lib/python3.9/site-
packages']

6.	 Add a new cell by clicking on the + button in the toolbar, enter the following code
block inside the first empty cell, and run the cell by clicking on the Run button
in the toolbar. This code block downloads a number of Python packages for
data manipulation (pandas), visualization (matplotlib), and model training
and evaluation (scikit-learn). We will cover scikit-learn in greater detail in
Chapter 5, Open Source Machine Learning Libraries. We will use these packages
in the following sections:

! pip3 install pandas

! pip3 install matplotlib

! pip3 install scikit-learn

Hands-on exercise 89

7.	 Now, we can load and explore the data. Add the following code block in a new cell
to load the Python library packages and load the data from the churn.csv file.
You will see a table with 14 columns, where the Existed column is the target
column:

import pandas as pd

churn_data = pd.read_csv("churn.csv")

churn_data.head()

8.	 You can explore the dataset using a number of tools to understand information with
the commands that follow, such as dataset statistics, the pairwise correlation between
different features, and data distributions. The describe() function returns basic
statistics about the data such as mean, standard deviation, min, and max, for each
numerical column. The hist() function plots the histogram for the selected
columns, and corr() calculates the correlation matrix between the different
features in the data. Try them out one at a time in a new cell to understand the data:

The following command calculates the various statistics
for the features.

churn_data.describe()

The following command displays the histograms for the
different features.

You can replace the column names to plot the histograms
for other features

churn_data.hist(['CreditScore', 'Age', 'Balance'])

The following command calculate the correlations among
features

churn_data.corr()

9.	 The dataset needs transformations in order to be used for model training. The
following code block will convert the Geography and Gender values from
categorical strings to ordinal numbers so they can be taken by the ML algorithm
later. Please note that model accuracy is not the main purpose of this exercise, and
we are performing ordinal transformation for demonstration purposes. Copy and
run the following code block in a new cell:

from sklearn.preprocessing import OrdinalEncoder

encoder_1 = OrdinalEncoder()

encoder_2 = OrdinalEncoder()

churn_data['Geography_code'] = encoder_1.fit_

90 Machine Learning Algorithms

transform(churn_data[['Geography']])

 churn_data['Gender_code'] = encoder_2.fit_
transform(churn_data[['Gender']])

10.	 There are some columns not needed for model training. We can drop them using
the following code block:

churn_data.drop(columns =
['Geography','Gender','RowNumber','Surname'],
inplace=True)

11.	 Now, the dataset has only the features we care about. Next, we need to split the
data for training and validation. We also prepare each dataset by splitting the target
variable, Exited, from the rest of the input features. Enter and run the following
code block in a new cell:

we import the train_test_split class for data split

from sklearn.model_selection import train_test_split

Split the dataset into training (80%) and testing
(20%).

churn_train, churn_test = train_test_split(churn_data,
test_size=0.2)

Split the features from the target variable "Exited" as
it is required for model training

and validation later.

 churn_train_X = churn_train.loc[:, churn_train.columns
!= 'Exited']

 churn_train_y = churn_train['Exited']

churn_test_X = churn_test.loc[:, churn_test.columns !=
'Exited']

 churn_test_y = churn_test['Exited']

12.	 We are ready to train the model. Enter and run the following code block in a new
cell. Here, we will use the random forest algorithm to train the model, and the
fit() function kicks off the model training:

We will use the Random Forest algorithm to train the
model

Summary 91

from sklearn.ensemble import RandomForestClassifier

bank_churn_clf = RandomForestClassifier(max_depth=2,
random_state=0)

 bank_churn_clf.fit(churn_train_X, churn_train_y)

13.	 Finally, we will test the accuracy of the model using the test dataset. Here, we get
the predictions returned by the model using the predict() function, and then
use the accuracy_score() function to calculate the model accuracy using the
predicted values (churn_prediction_y) and the true values (churn_test_y)
for the test dataset:

We use the accuracy_score class of the sklearn library
to calculate the accuracy.

 from sklearn.metrics import accuracy_score

We use the trained model to generate predictions using
the test dataset

churn_prediction_y = bank_churn_clf.predict(churn_test_X)

We measure the accuracy using the accuracy_score class.

 accuracy_score(churn_test_y, churn_prediction_y)

Congratulations! You have successfully installed a Jupyter data science environment on
your local machine and trained a model using the random forest algorithm. You have
validated that an ML approach could potentially solve this business problem.

Summary
This chapter covered a number of ML algorithms for solving different types of ML tasks.
You now should understand what algorithms can be used for the different kinds of
ML problems. You have also created a simple data science environment on your local
machine, used the scikit-learn ML libraries to explore and prepare data, and trained an
ML model.

In the next chapter, we will discuss how data management intersects the ML life cycle and
build a data management platform on AWS for the downstream ML tasks.

4
Data Management

for Machine
Learning

As a practitioner of machine learning (ML) solutions architecture, I often get asked
to help provide architecture advice on data management platforms for ML workloads.
While data management platform architecture is mainly considered a separate technical
discipline, it is an integral part of ML workloads. To design a comprehensive ML platform,
ML solutions architects need to be familiar with the key data architecture considerations
for machine learning and know the technical design of a data management platform
to meet the needs of data scientists and the automated ML pipelines. In this chapter,
we will look at where data management intercepts with ML. We will talk about key
considerations for designing a data management platform for ML. We will then deep dive
into the core architecture components for a data management platform and the relevant
AWS technologies and services for building a data management platform on AWS. Finally,
you will get hands-on and create a data lake with support for data catalog management,
data discovery, and data processing workflows on AWS.

94 Data Management for Machine Learning

Specifically, we will have the following main sections in the chapter:

•	 Data management considerations for ML

•	 Data management architecture for ML

•	 Hands-on exercise - data management for ML

Technical requirements
In this chapter, you will need access to an AWS account and AWS services such as
Amazon S3, Amazon Lake Formation, AWS Glue, and AWS Lambda. If you do not
have an AWS account, follow the official AWS website's instructions to create an account.

Data management considerations for ML
Data management is a broad and complex topic. Many organizations have dedicated data
management teams and organizations to manage and govern the various aspects of a data
platform. Traditionally, the main focus of data management has been meeting the needs
of transactional systems or analytics systems. With the growing adoption of ML solutions,
there are new business and technology considerations for data management platforms.

To understand where data management intersects with the ML workflow, let's bring back
the ML life cycle, as shown in the following figure:

Figure 4.1 – Intersection of data management and the ML life cycle

Data management considerations for ML 95

At a high level, data management intersects with the ML life cycle in three stages: data
understanding and preparation, model training and evaluation, and model deployment.

During the data understanding and preparation stage, data scientists will need to identify
data sources that contain datasets for the modeling tasks and perform exploratory
data analyses, such as data statistics, the correlation between the different features, and
distribution of data samples, to understand the dataset. You also need to prepare the data
for model training and validation, which would normally include the following:

•	 Data validation to detect errors and verify the data quality (for example, data range,
data distribution, data types, or missing/null values)

•	 Data cleaning to fix the data errors

•	 Data enrichment to generate new signals through the joining of different datasets or
data transformation

The data management capabilities required during this stage mainly include the following:

•	 The ability to search for curated data using various metadata such as dataset name,
dataset description, field name, and data owner

•	 The ability to access both raw and processed datasets for exploratory data analysis.

•	 The ability to run queries against the selected dataset to get details, such as statistical
details, data quality, and data samples

•	 The ability to retrieve data from the data management platform to a data science
experimentation or model building environment for further processing and feature
engineering

•	 The ability to run data processing against a large dataset

During the model training and validation stage, data scientists will need to create
a training and validation dataset for formal model training. The data management
capabilities required for this stage include the following:

•	 Data processing capabilities and an automated workflow to process raw/curated
datasets into training/validation datasets of different formats for model training

•	 A data repository for storing and managing the training/validation datasets and
their versioning

•	 The ability to serve the training/validation dataset to the model training
infrastructure to train models

96 Data Management for Machine Learning

During the model deployment stage, the trained models will be used to serve predictions.
The data management capabilities required for this stage include the following:

•	 Serving data needed for the feature processing as part of the input data when
invoking the deployed models

•	 Serving pre-computed features as part of the inputs when invoking the
deployed models

Unlike traditional data access patterns for building transactional or business
intelligence (BI) solutions where developers can work with non-production data in
lower environments for development purposes, data scientists need access to production
data for model developments.

Now, we have discussed the considerations for ML data management. Next, let's deep dive
into the data management architecture for ML.

Data management architecture for ML
Depending on the scope of your ML initiatives, you may want to consider different data
management architecture patterns to support them.

For small-scale ML projects with limited data scope, team size, and cross-functional
dependencies, consider purpose-built data pipelines that meet the project's specific needs.
For example, suppose you only need to work with structured data from an existing data
warehouse and a dataset from the public domain. In that case, you want to consider
building a simple data pipeline that extracts the required data from the data warehouse
and the public domain to a storage location owned by the project team on an as-needed
schedule for further analysis and processing. The following figure shows a simple data
management flow to support a small-scope ML project:

Data management architecture for ML 97

Figure 4.2 – Data architecture for an ML project with limited scope

For large, enterprise-wide ML initiatives, the data management architecture for ML is very
similar to the enterprise architecture for analytics. Both need to support data ingestion
from many different sources and centrally manage the data for various processing and
access needs. Analytics data management mostly works with structured data, where an
enterprise data warehouse is usually the core architecture backend. ML data management
would need to work with structured, semi-structured, and unstructured data for different
ML tasks, where a data lake architecture is usually adopted. ML data management is
usually an integral part of the broader enterprise data management for both analytics and
ML initiatives.

The following figure shows a logical enterprise data management architecture. It consists
of several key components: data ingestion, data storage, data processing, data catalog, data
security, and data access:

Figure 4.3 – Enterprise data management

98 Data Management for Machine Learning

Next, let's discuss each of the key components in detail and what a data management
architecture looks like when built with AWS native services in the cloud.

Data storage and management
ML workloads require data of different formats from many sources, and the size of the
dataset can be very large, especially when dealing with unstructured data. Cloud object
data storage, such as Amazon S3 or Hadoop Distributed File System (HDFS) on a
Hadoop cluster, is usually used as the storage medium for data. Functionally, you can
think of cloud object storage as a file storage system where files of different formats can be
stored. The files can also be organized using folder-like prefixes inside the object storage
to help with the organization of objects. Also, note that prefixes are not physical folder
structures. It is called object storage because each file is an independent object. Each
object is bundled with metadata, and it is assigned with a unique identifier. Object storage
is usually known for unlimited storage capacity, rich object analytics from the object
metadata, API-based access, and low cost.

To effectively manage the large volumes of data in a cloud object storage medium, a
data lake architecture backed up by cloud object storage is the recommended way to
centralize data management and data access. Depending on the scope, the data lake can
be scoped for the entire enterprise or individual line of business. A data lake is meant to
store unlimited amounts of data and manage them in different life cycle stages, such as
raw data, transformed data, curated data, and ML features. The main purpose of the data
lake is to bring different data silos together into a single central repository for central data
management and data access for both analytics needs and ML needs. A data lake can store
different data formats, including structured data from databases, unstructured data such
as documents, semi-structured data such as JSON and XML, and binary formats such as
image, video, and audio. This capability is especially important for ML workloads since
ML deals with data of different formats.

The data lake should be organized by different zones. For example, a landing zone should
be established as the target for the initial data ingestion from different sources. After
data pre-processing and data quality management processing, the data can be moved to
the raw data zone. Data in the raw data zone can be further transformed and processed
to meet different business and downstream consumption needs. To further ensure the
reliability of the dataset for usage, the data can be curated and stored in the curate data
zone. For ML tasks, ML features often need to be pre-computed and stored in an ML
feature zone for reuse purposes.

Data management architecture for ML 99

AWS Lake Formation
AWS Lake Formation is an AWS data management service that simplifies the creation
and management of a data lake on AWS. It provides four core functionalities:

•	 A data source crawler to infer the data structure from data files

•	 The creation and maintenance of a data catalog for the data in the data lake

•	 Data transformation processing

•	 Data security and access control

The following figure shows the core function of AWS Lake Formation:

Figure 4.4 – AWS Lake Formation

Lake Formation integrates with AWS Glue, a serverless Extract, Transform, Load (ETL)
and data catalog service, to provide data catalog management and data ETL processing
functionality. We will cover ETL and data catalog components separately in later sections.

Lake Formation provides centralized data access management capability for managing
data access permissions for the database, tables, or different registered S3 locations. For
databases and tables, the permission can be granularly assigned to individual tables and
columns and database functions, such as creating tables and inserting records.

100 Data Management for Machine Learning

Data ingestion
The data ingestion component is responsible for taking data of different formats
(for example, structured, semi-structured, and unstructured) from different sources
(for example, databases, social media, file storage, or IoT devices) and persisting data
in storage, such as object data storage (for example, Amazon S3), data warehouses,
or other data stores. The ingestion patterns should include both real-time streaming
as well as batch ingestion to support different data sources.

There are different data ingestion technologies and tools for the different kinds of
ingestion patterns. Apache Kafka, Apache Spark Streaming, and Amazon Kinesis/
Kinesis Firehose are some of the common tools for streaming data ingestion. Tools such
as Secure File Transfer Protocol (SFTP) and AWS Glue can be used for batch-oriented
data ingestion. AWS Glue supports different data sources and targets (for example,
Amazon RDS, MongoDB, Kafka, Amazon DocumentDB, S3, and any databases that
support JDBC connections).

When deciding on which tools to use for data ingestion, it is important to assess the tools
and technologies based on practical needs. The following are some of the considerations
when deciding on data ingestion tools:

•	 Data format, size, and scalability: Consider the needs for varying data formats,
data size, and data velocity. ML projects could be using data from different sources
and different formats (for example, tabular data such as CSV and Parquet, semi-
structured data such as JSON/XML, and unstructured data such as documents or
image/audio/video files). Do you need to scale the infrastructure up to handle large
data ingestion volume when needed, and do you need to scale it down to reduce
costs when the volume is low?

•	 Ingestion patterns: Consider the different data ingestion patterns you need to
support. The tool or combination of several tools needs to support batch ingestion
patterns (in other words, moving bulk data at different time intervals) and real-time
streaming (moving data such as sensor data or website clickstreams in real time).

•	 Data preprocessing capability: The ingested data might need to be preprocessed
before it lands in the target data store. So, consider tools with either built-in
processing capability or those that integrate with external processing capability.

•	 Security: The tools need to provide security mechanisms for both authentication
and authorization.

Data management architecture for ML 101

•	 Reliability: The tools need to provide failure recovery capability so critical data is
not lost during the ingestion process. If there is no recovery capability, then make
sure there is a capability for re-running ingestion jobs from the sources.

•	 Support for different data sources and targets: Ingestion tools need to support a
wide range of data sources, such as databases, files, and streaming sources. The tool
should also provide an API for data ingestion.

•	 Manageability: Manageability should be another consideration. Does the tool
require self-management, or is it fully managed? Consider the trade-off before cost
and operational complexity.

There are a number of AWS services for data ingestion into a data lake on AWS. You have
Kinesis Data Streams, Kinesis Firehose, AWS Managed Streaming for Kafka, and AWS
Glue streaming for streaming data requirements. For batch ingestion, you can have AWS
Glue, SFTP, and AWS Data Migration Service (DMS). In the following section, we will
discuss how Kinesis Firehose and AWS Glue can be used for data ingestion management.

Kinesis Firehose
Kinesis Firehose is a fully managed service for loading streaming data into a data lake.
By fully managed, we mean you don't manage the underlying infrastructure; instead, you
interact with the service API for the ingestion, processing, and delivery of the data.

Kinesis Firehose supports the key requirements for scalable data ingestion:

•	 Support for different data sources such as websites, IoT devices, and video cameras
using an ingestion agent or ingestion API.

•	 Support for different delivery targets, including Amazon S3, Amazon Redshift
(an AWS data warehouse service), Amazon ElasticSearch (a managed search
engine), and Splunk (a log aggregation and analysis product).

102 Data Management for Machine Learning

•	 Data processing capabilities through integration with AWS Lambda and Kinesis
Data Analytics. AWS Lambda is a serverless compute service that runs custom
functions written in Python, Java, Node.js, Go, C#, and Ruby. Check the official
AWS documentation for more detail on how Lambda works. The following figure
shows the data flow with Kinesis Firehose:

Figure 4.5 – Kinesis Firehose data flow

Kinesis works by creating delivery streams – that is, the underlying entity in the Firehose
architecture that can accept streaming data from data producers. The delivery stream can
have different delivery targets, such as S3 and Redshift. Depending on the data volume
from the producers, you configure the throughput of the data stream by the number of
shards (for example, each shard can ingest 1 MB/sec of data and can support 2 MB/sec for
data read). Kinesis Firehose provides APIs for increasing and merging shards.

AWS Glue
AWS Glue is a fully managed serverless ETL service that can be used for ingesting data
in batches. It connects to data sources such as transactional databases, data warehouses,
and NoSQL databases, and performs data movement to different targets, such as Amazon
S3, based on schedule or event triggers. If needed, it can also process and transform data
before it delivers the data to the target. It supports a number of processing capabilities
such as the Python shell (for running Python scripts) and Apache Spark (for Spark-based
data processing).

Data management architecture for ML 103

AWS Lambda
AWS Lambda is the serverless compute platform on AWS. It works natively with
many other AWS services, such as Amazon S3. A Lambda function can be triggered
to execute by different events, such as the S3 new file event. Lambda functions
can be developed to move data from different sources, such as a source S3 bucket to
a target landing bucket in the data lake. AWS Lambda is not designed for large-scale
data movement or processing; however, for simple data ingestion and processing jobs,
it is a very effective tool.

Data cataloging
The data catalog is a critical component for data governance and for making the data in
the central data storage discoverable by data analysts and data scientists. This is especially
important for the data understanding and exploration phase of the ML life cycle when
data scientists need to search and understand what data is available for their ML projects.
Some of the key considerations for a data catalog technology include the following:

•	 Metadata catalog: Support for a central data catalog for the data lake metadata
management. Examples of metadata are database names, table schemas, and table
tags. A popular standard for metadata catalogs is the Hive metastore catalog.

•	 Automated data cataloging: The capability to automatically discover and catalog
datasets and infer data schemas from different data sources, such as Amazon S3,
relational databases, NoSQL databases, and logs. This is usually implemented as a
crawler that crawls data sources and automatically identifies metadata, such as data
column names and data types.

•	 Tagging flexibility: The ability to tag metadata entities (for example, databases,
tables, fields) with custom attributes to support data search and discovery.

•	 Integration with other tools: The data catalog can be used by a wide range of data
processing tools to access the underlying data, as well as native integration with data
lake management platforms.

•	 Search: Search capability across a wide range of metadata in the catalog, such as
database/table/field name, custom tags/description, and data type.

There are different technical options for building data catalogs. Here, we will discuss how
AWS Glue can be used for data cataloging.

104 Data Management for Machine Learning

AWS Glue Catalog
In addition to the ETL functionality, AWS Glue also provides a built-in data catalog
feature that integrates natively with AWS Lake Formation. The Glue catalog can be a
drop-in replacement for the Hive metastore catalog, so any Hive metastore-compatible
applications can work with the AWS Glue catalog.

The AWS Glue catalog structures its metadata hierarchy in the form of databases and
tables. Databases are containers for tables that represent the data store. And just like
regular databases, you can have multiple tables in a single database, and the tables can
come from different data stores. However, each table can only belong to a single database.
The databases and their tables can be queried using the SQL language using Hive
metastore-compatible tools.

The AWS Glue catalog has a built-in crawler that can automatically crawl data sources,
discover data schemas, and populate the central data catalog. The crawler supports the
database and table creation for new data sources as well as incremental updates to the
existing databases and tables. The crawler can run on-demand or be run by an event
trigger, such as the completion of an AWS Glue ETL job.

When working together with AWS Lake Formation, the access permission to the
databases and tables in the catalog can be managed through the Lake Formation
entitlement layer.

Data processing
The data processing capability of a data lake provides the data processing frameworks
and the underlying compute resources to process data for different purposes, such as
data error correction, data transformation, data merging, data splitting, and ML feature
engineering. Some of the common data processing frameworks include Python shell
scripts and Apache Spark. The key requirements for data processing technology include
the following:

•	 Integration and interoperability with the underlying storage technology: The
capability to work with the underlying storage natively. This simplifies data access
and movement from the storage to the processing layers.

•	 Integration with the data catalog: The capability to work with the data metastore
catalog for querying the databases and tables in the data catalog.

•	 Scalability: The capability to scale up and scale down the compute resources based
on the data volumes and processing velocity requirements.

•	 Language and framework support: Support for common data processing libraries
and frameworks, such as Python and Spark.

Data management architecture for ML 105

Now, let's take a look at several available AWS services that can provide data processing
capabilities in the data lake architecture.

AWS Glue ETL
In addition to supporting data movement and data catalogs, the ETL features of AWS
Glue can be used for ETL and general-purpose data processing. AWS Glue ETL provides
a number of built-in functions for data transformation, such as the drop of the NULL field
and data filtering. It also provides general processing frameworks for Python and Spark
to run Python scripts and Spark jobs. Glue ETL works natively with the Glue catalog for
accessing the databases and tables in the catalog. Glue ETL can also access the Amazon S3
storage directly.

Amazon Elastic Map Reduce (EMR)
Amazon EMR is a fully managed big data processing platform on AWS. It is designed
for large-scale data processing using the Spark framework and other Apache tools, such
as Apache Hive, Apache Hudi, and Presto. It integrates with the Glue Data Catalog and
Lake Formation natively for accessing databases and tables in Lake Formation.

AWS Lambda
AWS Lambda can also be used for data processing for small data volumes and files.
Lambda can be triggered by real-time events, so it is a good option for lightweight,
real-time data processing.

Data versioning
To establish the lineage for model training, we need to version-control the
training/validation/testing dataset. Data versioning control is a hard problem
as it requires both tools and people following best practices for it to work. During the
model building process, it is very common for a data scientist to get a copy of a dataset,
and perform their own cleansing and transformation to the data, then save the updated
data back as a new version. This creates a huge challenge to data management in terms
of duplication and linking the data to the different upstream and downstream tasks.

Data versioning for the entire data lake is out of scope for this book. Instead, we will
discuss a couple of architecture options for the versioning control of training datasets.

106 Data Management for Machine Learning

S3 partitions
For each newly created or updated dataset, save it in a new S3 partition with a prefix
(for example, the unique S3 folder name) for each dataset. While this approach potentially
creates data duplication, it is a clean and simple way to separate different datasets for
model training. The datasets should be generated by a controlled processing pipeline
to enforce the naming standards and should be made readonly for the downstream
applications to ensure immutability. The following sample shows an S3 partition structure
with multiple versions of a training dataset:

s3://project1/<date>/<unique version id 1>/train_1.txt

s3://project1/<date>/<unique version id 1>/train_2.txt

s3://project1/<date>/<unique version id 2>/train_1.txt

s3://project1/<date>/<unique version id 2>/train_2.txt

In this example, the two versions of the dataset are separated by two different S3 prefixes.

Purpose-built data version tools
There are a number of open source tools, such as DVC, for data versioning control. For
example, DVC works with any Git-compliant code repo and can use S3 as the storage
backend for the training dataset. Each dataset version is associated with a unique commit
ID that can uniquely identify a version of data.

ML feature store
For large enterprises, common reusable ML features such as curated customer profile
data and standardized product sales data should be centrally managed to reduce the
ML project life cycle, especially during the data understanding and data preparation
stages. Depending on the scope, you can build custom feature stores that meet the basic
requirements, such as insertion and lookup of organized features for ML model training.
Or, you can implement commercial-grade feature store products, such as Amazon
SageMaker Feature Store (an AWS ML service that we will cover in later chapters).
SageMaker Feature Store has online and offline capability for training and inference,
metadata tagging, feature versioning, and advanced search.

Data management architecture for ML 107

Data serving for client consumption
The central data management platform needs to provide different methods, such as APIs
or Hive metastore-based methods, for online access of the data. Also, consider data
transfer tools to support data movement from the central data management platform to
other data-consuming environments for different data consumption patterns. Consider
tools that have built-in data serving capabilities or that can be easily integrated with
external data serving tools.

There are several data serving patterns for supplying data to data science environments.
Let's discuss the following two data access patterns.

Consumption via API
With this pattern, the consumption environments/applications can pull data directly
from the data lake using Hive metastore-compliant tools or through direct access to S3.
Amazon services such as Amazon Athena (a big data query tool), Amazon EMR
(a big data processing tool), and Amazon Redshift Spectrum (a feature of Amazon
Redshift are used for querying data lake data indexed in Glue catalogs). This pattern is
good when you don't need to make a copy of the data and only need to select a subset of
the data as part of the downstream data processing tasks.

Consumption via data copy
With this pattern, a subset of the data in the data lake is copied to the storage of the
consumption environment for different processing and consumption needs. For example,
the more recent data can be loaded into Amazon Redshift in an analytics environment or
delivered to S3 buckets owned by a data science environment.

Data pipeline
Data pipelines automate the process of data movement and transformation. For example,
you might need to build a data pipeline that ingests data from the source, performs data
validation and cleansing, enriches the dataset with new data and transformation, and then
performs feature engineering and creates the training/validation/testing dataset for the
ML model training and validation tasks. There are various workflow tools for building
data pipelines, and many data management tools come with built-in data pipeline features.

108 Data Management for Machine Learning

AWS Glue workflows
AWS Glue workflows are a built-in workflow management feature of AWS Glue that
can be used to orchestrate different Glue jobs, such as data ingestion, data processing,
and feature engineering. A Glue workflow is made of two types of components: a trigger
component and a node component. A trigger component can be a schedule trigger, an
event trigger, or an on-demand trigger. A node can be either a crawler job or an ETL
job. A schedule trigger or an on-demand trigger are used to kick off a workflow run,
and an event trigger is a success/failure event emitted after the crawler job or ETL job.
A workflow is a series of triggers and ETL or crawler jobs.

AWS Step Functions
AWS Step Functions is a workflow orchestration tool. It integrates with other AWS
data processing services, such as AWS Glue and Amazon EMR. It can be used to build
a workflow to run the different steps in a workflow, for example, data ingestion, data
processing, or feature engineering.

Authentication and authorization
Data lake access for administration and data consumption needs to be authenticated and
authorized. Federated authentication, or AWS Identity and Access Management (IAM),
authenticates users to verify user identities. For access to data catalog resources and the
underlying data storage, AWS Lake Formation uses both the built-in Lake Formation
access control and AWS IAM. The built-in Lake Formation permission model uses
the database grant/revoke commands to control permission to different resources
(for example, database and tables) and database actions (for example, create table).
When a requestor makes a request to access a resource, both IAM policy and Lake
Formation permissions are enforced and verified before access is granted.

There are several personas involved in the administration of the data lake and
consumption of the data lake resources:

•	 Lake Formation administrator: A Lake Formation administrator has the
permission to manage all aspects of a Lake Formation data lake in an AWS account.
Examples include granting/revoking permissions to access data lake resources by
other users, register data stores in S3, and creating/deleting databases. When you
create Lake Formation, you will need to register an administrator. An administrator
can be an AWS IAM user or IAM role. You can add more than one administrator to
a Lake Formation data lake.

Data management architecture for ML 109

•	 Lake Formation database creator: A Lake Formation database creator has been
granted permission to create databases in Lake Formation. A database creator
can be an IAM user or IAM role.

•	 Lake Formation database user: A Lake Formation database user can be granted
permission to perform different actions against a database. Example permissions
include create table, drop table, describe table, and alter table. A database user can
be an IAM user or IAM role.

•	 Lake Formation data user: A Lake Formation data user can be granted permission
to perform different actions against database tables and columns. Example
permissions include insert, select, describe, delete, alter, and drop. A data user can
be an IAM user or an IAM role.

Running queries against the Lake Formation database and table is done through
supported AWS services such as Amazon Athena and Amazon EMR. When accessing
Lake Formation to run the query through these services, the principals (IAM user, group,
and role) associated with these services are verified for appropriate access permission to
the database, tables, and S3 location of the data by Lake Formation. If access is allowed,
then Lake Formation provides a temporary credential to the service to run the query.

Data governance
Data governance ensures the data assets are trusted, secured, cataloged, and their
access is monitored and audited. Data can be trusted when data flows are identified and
documented and data qualities are measured and reported. To ensure data is protected
and secured, data needs to be classified, and the appropriate access permissions should be
applied. To have visibility into who has done what with which data, you should implement
monitoring and audits.

When data is ingested and then further processed from the landing zone to other zones,
data lineage should be established and documented. For example, when running a data
pipeline with data ingestion and processing tools, such as AWS Glue, AWS EMR, or AWS
Lambda, the following data points can be captured to establish data lineage:

•	 Data source name, location, and ownership details

•	 Data processing job history and details (such as job name, ID, associated processing
script, and owner of the job)

•	 Artifacts generated by the data processing jobs (for example, S3 uri for the
target data)

•	 Data metrics at different stages (for example, number of records, size, schema,
and feature statistics) as a result of the data processing

110 Data Management for Machine Learning

A central data operational data store should be created for storing all the data lineage
and processing metrics. AWS DynamoDB, a fully managed NoSQL database, is a good
technology option for storing this type of data, as it is designed for low latency and high
transaction access:

•	 Data quality: Automated data quality checks should be implemented at different
stages, and quality metrics should be reported. For example, after the source data is
ingested into the landing zone, an AWS Glue quality check job can run to check the
data quality using tools such as the open source Deequ library. Data quality metrics
(such as counts, schema validation, missing data, wrong data type, or statistical
deviations from the baseline) and reports can be generated for reviews. Optionally,
manual or automated operational data cleansing processes should be established to
correct data quality issues.

•	 Data cataloging: Create a central data catalog and run Glue crawlers on datasets
in the data lake to automatically create an inventory of data and populate the
central data catalog. Enrich the catalogs with additional metadata to track other
information to support discovery and data audits, such as the business owner, data
classification, and data refresh date. For ML workloads, data science teams also
generate new datasets (for example, new ML features) from the existing datasets in
the data lake for model training purposes. These datasets should also be registered
and tracked in a data catalog, and different versions of the data should be retained
and archived for audit purposes.

•	 Data access provisioning: A formal process should be established for requesting
and granting access to datasets and Lake Formation databases and tables. An
external ticketing system can be used to manage the workflow for requesting access
and granting access.

•	 Monitoring and auditing: Data access should be monitored, and access history
should be maintained. Amazon S3 server access logging can be enabled to track
access to all S3 objects directly. AWS Lake Formation also records all accesses to
Lake Formation datasets in AWS CloudTrail (AWS CloudTrail provides event
history in an AWS account to enable governance, compliance, and operational
auditing). With Lake Formation auditing, you can get details such as event source,
event name, SQL queries, and data output location.

Now, we have covered the core concepts and architecture patterns for building a data
management platform for ML. Next, let's get hands-on with the architecture and
technologies we have covered and build a simple data lake and data processing pipeline.

Hands-on exercise – data management for ML 111

Hands-on exercise – data management for ML
In this hands-on exercise, you will build a data management platform for a fictitious
retail bank to support an ML workflow. We will build the data management platform on
AWS using various AWS technologies. If you don't have an AWS account, you can create
one by following the instructions at https://aws.amazon.com/console/.

The data management platform we create will have the following key components:

•	 A data lake environment for data management

•	 A data ingestion component for ingesting files to the data lake

•	 A data discovery and query component

•	 A data processing component

The following diagram shows the data management architecture we will build in
this exercise:

Figure 4.6 – Data management architecture for the hands-on exercise

Let's get started with building out this architecture on AWS.

https://aws.amazon.com/console/

112 Data Management for Machine Learning

Creating a data lake using Lake Formation
We will build the data lake architecture using AWS Lake Formation. After you log on to
the AWS Management Console, create an S3 bucket called MLSA-DataLake-<your
initials>. We will use this bucket as the storage for the data lake. If you get a message
that the bucket name is already in use, try adding some random characters to the name
to make it unique. If you are not familiar with how to create S3 buckets, follow the
instructions at the following link:

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-
bucket.html

After the bucket is created, follow these steps to get started with creating a data lake:

1.	 Register Lake Formation administrators: We need to add Lake Formation
administrators to the data lake. The administrators will have full permission to
manage all aspects of the data lake. To do this, navigate to the Lake Formation
management console, click on the Admin and database creators link, and then
click on the Grant button for the Data Lake administrator section and add your
own IAM user ID to the list (the user ID you currently use to log in to the AWS
Management Console). You can find your own user ID in the top-right portion
of the AWS Management Console banner. Note that you will need to log in to the
AWS Management Console using a user ID with administrator rights to register
new Lake Formation administrators.

2.	 Register S3 storage: Next, we need to register the S3 bucket (MLSA-DataLake-
<your initials>) you created earlier in Lake Formation so it will be managed
and accessible through Lake Formation. To do this, you click on the Dashboard
link and then click on Register Location. Browse and select the bucket you created
and click on Register Location. This S3 bucket will be used by Lake Formation to
store data for the databases and manage its access permission.

3.	 Create database: Now, we are ready to set up a database called bank_customer_
db for managing retail customers. Before we register the database, let's first create
a folder called the bank_customer_db folder under the MLSA-DataLake-
<your initials> bucket. This folder will be used to store data files associated
with the database. To do this, you click on the Create database button on the
Lake Formation dashboard and follow the instructions on the screen to create the
database.

You have successfully created a data lake powered by Lake Formation and created
a database for data management. Next, let's create a data ingestion pipeline to move
files into the data lake.

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

Hands-on exercise – data management for ML 113

Creating a data ingestion pipeline
With the database ready, we can now ingest data to the new database. As discussed in the
previous section, there could be many different data sources as other S3 buckets, such as
databases (for example, Amazon RDS), streaming (for example, social media feeds), and
logs (CloudTrail). There are also many different services for building a data ingestion
pipeline, such as AWS Glue, Amazon Kinesis, and AWS Lambda. In this part of the
exercise, we will build an Amazon Lambda function job that will ingest data from other
S3 buckets to this new database:

1.	 Create a source S3 bucket and download data files:

Let's create another S3 bucket, called customer-data-source, to represent the
data source where we will ingest the data from. Now, download the sample data files
from the following link:

https://github.com/PacktPublishing/The-Machine-Learning-
Solutions-Architect-Handbook/tree/main/Chapter04/Archive.
zip

Then, save it to your local machine. Extract the archived files and upload them to
the customer-data-source bucket. There should be two files (customer_
data.csv and churn_list.csv).

2.	 Create Lambda function:

Now, we will create the Lambda function that will ingest data from the customer-
data-source bucket to the MLSA-DataLake-<your initials> bucke:

I.	 To get started, navigate to the AWS Lambda management console, click on the
Functions link in the left pane, and click on the Create Function button in the
right pane. Choose Author from scratch, then enter datalake-s3-ingest
for the function name, and select Python 3.8 as the runtime.

II.	 On the next screen, click on Add trigger, select S3 as the trigger, and select the
customer-data-source bucket as the source. For Event Type, choose the
Put event and click on the Add button to complete the step. This trigger will
allow the Lambda function to be invoked when there is an S3 bucket event, such
as saving a file into the bucket.

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter04/Archive.zip
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter04/Archive.zip
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter04/Archive.zip

114 Data Management for Machine Learning

III.	Next, let's create the function by replacing the default function template with the
following code block. Replace the desBucket variable with the name of the
actual bucket:

import json

import boto3

def lambda_handler(event, context):

 s3 = boto3.resource('s3')

 for record in event['Records']:

 srcBucket = record['s3']['bucket']['name']

 srckey = record['s3']['object']['key']

 desBucket = "MLSA-DataLake-<your initials>"

 desFolder = srckey[0:srckey.find('.')]

 desKey = "bank_customer_db/" + desFolder +
"/" + srckey

 source= { 'Bucket' : srcBucket,'Key':srckey}

 dest ={ 'Bucket' : desBucket,'Key':desKey}

 s3.meta.client.copy(source, desBucket,
desKey)

 return {

 'statusCode': 200,

 'body': json.dumps('files ingested')

 }

IV.	The new function will also need S3 permission to copy files (objects) from one
bucket to another. For simplicity, just add the AmazonS3FullAccess policy to
the execution IAM role associated with the function. You can find the IAM role
by clicking on the Permission tab for the Lambda function.

3.	 Trigger data ingestion:

You can now trigger the data ingestion process by uploading the customer_
detail.csv and churn_list.csv files to the customer-data-source
bucket and verify the process completion by checking the MLSA-DataLake-
<your initials>/bank_customer_db folder for the two files.

You have now successfully created an AWS Lambda-based data ingestion pipeline to
automatically move data from a source S3 bucket to a target S3 bucket. Next, let's create
an AWS Glue catalog using the Glue crawler.

Hands-on exercise – data management for ML 115

Creating a Glue catalog
To allow discovery and querying of the data in the bank_customer_db database, we
need to create a data catalog. Here, we will use an AWS Glue crawler to crawl the files in
the bank_customer_db S3 folder and generate the catalog:

1.	 Grant permission for Glue:

I.	 First, let's grant permission for AWS Glue to access the bank_
customer_db database. We will create a new IAM role for the Glue
service to assume on your behalf. To do this, create a new IAM service
role called AWSGlueServiceRole_data_lake, and attach the
AWSGlueServiceRole and AmazonS3FullAccess IAM managed policies
to it. Make sure you select Glue as the service when you create the role. If you are
not familiar with how to create a role and attach a policy, follow the instructions
at the following link: https://docs.aws.amazon.com/IAM/latest/
UserGuide.

II.	 After the role is created, click on Data permission in the left pane of the
Lake Formation management console and then click the Grant button in
the right pane.

III.	On the new pop-up screen, select AWSGlueServiceRole_data_lake and
bank_customer_db and click on Grant. AWSGlueServiceRole_data_
lake will be used later for configuring the Glue crawler job.

2.	 Configure Glue crawler job:

Launch the Glue crawler by clicking on the Crawler link in the Lake Formation
management console. A new browser tab for Glue will open up. Click on the Add
Crawler button to get started. Enter bank_customer_db_crawler as the name
of the crawler and click on Next. On the next screen, keep Data store and Crawl all
folders checked. On the Add a data store screen, select S3 and enter s3://MLSA-
DataLake-<your initials>/bank_customer_db/churn_list/ for the
include path field.

On the next Add another data store screen, choose Yes, select S3, and then
enter s3://MLSA-DataLake-<your initials>/bank_customer_db/
customer_data/.

On the next Choose an IAM role screen, select Choose existing IAM role, and
select AWSGlueServiceRole_data_lake, which you used earlier.

Select Run on demand as the frequency on the Create a scheduler for this crawler
screen.

https://docs.aws.amazon.com/IAM/latest/UserGuide

https://docs.aws.amazon.com/IAM/latest/UserGuide

116 Data Management for Machine Learning

Choose bank_customer_db on the Configure the crawler's output screen and
select Finish on the final screen to complete the setup.

On the Crawler screen, select the bank_customer_db_crawler job you just
created, click on Run crawler, and wait for the status to say Ready.

Navigate back to the Lake Formation management console and click on the
Tables link. You will now see two new tables created (churn_list and
customer_data).

You have now successfully configured an AWS Glue crawler that automatically discovers
table schemas from data files and creates data catalogs for the new data.

You now have created the Glue Data Catalog for the newly ingested data. You are now
ready to discover and query the data in the data lake.

Discovering and querying data in the data lake
To support the data discovery and data understanding phase of the ML workflow, we will
need to provide data discovery and data query capabilities in the data lake.

By default, Lake Formation already provides a list of tags, such as data type classification
(for example, CSV), for tables in the database to search. Let's add a few more tags for each
table to make it more discoverable:

1.	 Select the customer_data table, click on the Action dropdown, and select Edit.
On the edit screen, add the following tags and hit Save:

	� department: customer

	� contact: joe

2.	 Select the churn_list table, and add the following tags:

	� department: operations

	� contact: jenny

3.	 Let's also add some metadata to the table fields as well. Select the customer_data
table, click on Edit Schema, select the creditscore field, click on Add to add a
column property, and enter the following:

	� description: credit score is the FICO score for each
customer

Hands-on exercise – data management for ML 117

4.	 Follow the same previous steps and add the following column property for the
exited field in the churn_list table:

	� description: churn flag

5.	 We are now ready to do some searches using metadata inside the Lake Formation
management console. Try typing the following words separately in the text box for
Find table by properties to search for tables and see what's returned:

	� FICO

	� csv

	� churn flag

	� operations

	� customer

	� jenny

	� creditscore

	� customerid

Now you have found the table you are looking for, let's query the table and see that
actual data.

6.	 Select the table you want to query and click on the View data button in the Actions
drop-down menu. This should bring you to the Amazon Athena screen. You should
see a query tab already created, and the query is already executed. The results are
displayed at the bottom of the screen. You can run any other SQL query to explore
the data further, such as joining the customer_data and churn_list tables by
the customerid field:

SELECT * FROM "customer_db"."customer_data", "customer_
db"."churn_list" where "customer_db"."customer_
data"."customerid" = "customer_db"."churn_
list"."customerid" ;

You have now learned how to discover the data in Lake Formation and run queries against
the data in a Lake Formation database and tables. Next, let's run a data processing job
using the Amazon Glue ETL service to make the data ready for ML tasks.

118 Data Management for Machine Learning

Creating an Amazon Glue ETL job to process
data for ML
The customer_data and churn_list tables contain features that are useful for
ML. However, they need to be joined and processed so they can be used for training
ML models. One option is for the data scientists to download these datasets and process
them in a Jupyter notebook for model training. Another option is to process the
data using a separate processing engine so that the data scientists can work with the
processed data directly. Here, we will set up an AWS Glue job to process the data in the
customer_data and churn_list tables and transform them into new ML features
that are ready for model training directl:

1.	 First, create a new S3 bucket called MLSA-DataLake-Serving-<your
initials>. We will use this bucket to store the output training datasets from the
Glue job.

2.	 To start creating the Glue job, click on the Jobs link on the Lake Formation console.
Then, click on the Add Job button, and enter customer_churn_process as the
job name.

3.	 Select AWSGlueService_Role as the IAM role, and under the This job runs
section, select the A new script to be authored by you option.

4.	 Click Next to proceed to the next screen, and then click on the Save job and edit
script button.

5.	 On the Script edit screen, copy the following code blocks to the code section,
and then click on Save and then the Run job button. Make sure to replace
default_bucket with your own bucket in the code. The following code block
first joins the churn_list and customer_data tables using the customerid
column as the key, then transforms the gender and geo columns with an index,
creates a new DataFrame with only the relevant columns, and finally saves the
output file to an S3 location using the date and generated version ID as partitions.
The code uses default values for the target bucket, prefix variables, and generates
a date partition and version partition for the S3 location. The job can also accept
input arguments for these parameters.

The following code block sets up default configurations, such as SparkContext
and a default bucket:

import sys

from awsglue.utils import getResolvedOptions

from awsglue.transforms import Join

from pyspark.context import SparkContext

Hands-on exercise – data management for ML 119

from awsglue.context import GlueContext

from awsglue.job import Job

import pandas as pd

from datetime import datetime

import uuid

from pyspark.ml.feature import StringIndexer

glueContext = GlueContext(SparkContext.getOrCreate())

logger = glueContext.get_logger()

current_date = datetime.now()

default_date_partition = f"{current_date.year}-{current_
date.month}-{current_date.day}"

default_version_id = str(uuid.uuid4())

default_bucket = "<your default bucket name>"

default_prefix = "ml-customer-churn"

target_bucket = ""

prefix = ""

day_partition =""

version_id = ""

try:

 args = getResolvedOptions(sys.argv,['JOB_
NAME','target_bucket','prefix','day_partition','version_
id'])

 target_bucket = args['target_bucket']

 prefix = args['prefix']

 day_partition = args['day_partition']

 version_id = args['version_id']

except:

 logger.error("error occured with getting
arguments")

if target_bucket == "":

 target_bucket = default_bucket

if prefix == "":

 prefix = default_prefix

if day_partition == "":

 day_partition = default_date_partition

if version_id == "":

 version_id = default_version_id

120 Data Management for Machine Learning

The following code joins the customer_data and churn_list tables into
a single table using the customerid column as the key:

catalog: database and table names

db_name = "customer_db"

tbl_customer = "customer_data"

tbl_churn_list = "churn_list"

Create dynamic frames from the source tables

customer = glueContext.create_dynamic_frame.from_
catalog(database=db_name, table_name=tbl_customer)

churn = glueContext.create_dynamic_frame.from_
catalog(database=db_name, table_name=tbl_churn_list)

Join the frames to create customer churn dataframe

customer_churn = Join.apply(customer, churn,
'customerid', 'customerid')

customer_churn.printSchema()

The following code block transforms several data columns from string labels to label
indices and writes the final file to an output location in S3:

---- Write out the combined file ----

current_date = datetime.now()

str_current_date = f"{current_date.year}-{current_date.
month}-{current_date.day}"

random_version_id = str(uuid.uuid4())

output_dir = f"s3://{target_bucket}/{prefix}/{day_
partition}/{version_id}"

s_customer_churn = customer_churn.toDF()

gender_indexer = StringIndexer(inputCol="gender",
outputCol="genderindex")

s_customer_churn = gender_indexer.fit(s_customer_churn).
transform(s_customer_churn)

geo_indexer = StringIndexer(inputCol="geography",
outputCol="geographyindex")

s_customer_churn = geo_indexer.fit(s_customer_churn).
transform(s_customer_churn)

s_customer_churn = s_customer_
churn.select('geographyindex',
'estimatedsalary','hascrcard','numofproducts', 'balance',
'age', 'genderindex', 'isactivemember', 'creditscore',
'tenure', 'exited')

Hands-on exercise – data management for ML 121

s_customer_churn = s_customer_churn.coalesce(1)

s_customer_churn.write.option("header","true").
format("csv").mode('Overwrite').save(output_dir)

logger.info("output_dir:" + output_dir)

6.	 After the job completes, check the s3://MLSA-DataLake-Serving-<your
initials>/ml-customer-churn/<date>/<guid>/ location in S3 and see
whether a new CSV file was generated. Open the file and see whether you see the
new processed dataset in the file.

You have now successfully built an AWS Glue job for data processing and feature
engineering for ML. Try creating a crawler to crawl the newly processed data in the
MLSA-DataLake-Serving-<your initials> bucket to make it available in the
Glue catalog and run some queries against it. You should see a new table created with
multiple partitions (for example, ml-customer-churn, date, and GUID) for the
different training datasets. You can query the data by using the GUID partition as
a query condition.

Building a data pipeline using Glue workflows
Now, let's create a pipeline that will first run a data ingestion job, then create a database
catalog for the data and run a data processing job to generate the training dataset:

1.	 To start, click on the Workflows link in the left pane of the Glue management
console.

2.	 Click on Add Workflow and enter a name for your workflow on the next screen.
Then, click on the Add Workflow button.

3.	 Select the workflow you just created and click on Add Trigger. Select the Add New
tab, and then enter a name for the trigger and select the on-demand trigger type.

4.	 On the workflow UI designer, you will see a new Add Node icon show up. Click
on the Add Node icon, select the Crawler tab, and select bank_customer_db_
crawler, then, click on Add.

5.	 On the workflow UI designer, click on the Crawler icon, and you will see a new
Add Trigger icon show up. Click on the Add Trigger icon, select the Add new tab,
and select After ANY event as the trigger logic, and then click on Add.

6.	 On the workflow UI designer, click on the Add Node icon, select the jobs tab, and
select the customer_churn_process job.

122 Data Management for Machine Learning

7.	 On the workflow UI designer, the final workflow should look like the following
diagram:

Figure 4.7 – Glue data flow design

8.	 Now, you are ready to run the workflow. Select the workflow and select Run from
the Actions dropdown. You can monitor the running status by selecting the Run
ID and clicking on View run details. You should see something similar to the
following screenshot:

Figure 4.8 – Glue workflow execution

9.	 Try deleting the customer_data and churn_list tables and re-run the
workflow. See whether the new tables are created again. Check the s3://MLSA-
DataLake-Serving-<your initials>/ml-customer-churn/<date>/
S3 location to verify a new folder is created with a new dataset.

Congratulations! You have completed the hands-on lab and learned how to build a simple
data lake and its supporting components to allow data cataloging, data querying, and data
processing.

Summary 123

Summary
In this chapter, we covered data management considerations for ML and what an
enterprise data management platform could look like for ML. Now, you should know
where data management intersects with the ML life cycle and how to design a data lake
architecture on AWS. To put the learning into practice, you also built a data lake using
Lake Formation. You practiced data ingestion, processing, and data cataloging for data
discovery, querying, and downstream ML tasks. You have also developed hands-on skills
with AWS data management tools, including AWS Lake Formation, AWS Glue, AWS
Lambda, and Amazon Athena.

In the next chapter, we will start covering architecture and technologies for building data
science environments using open source technologies.

5
Open Source

Machine Learning
Libraries

There are multiple technologies available for building machine learning (ML) and data
science solutions, in both open source and commercial product spaces. To maintain
greater flexibility and customization of their machine learning platforms, some
organizations have chosen to invest in in-house data science and engineering teams to
build data science platforms using open source technology stacks. Some organizations,
however, have adopted commercial products to focus their effort on solving business
and data challenges. Some organizations have chosen hybrid architecture to leverage
both open source and commercial products for their machine learning platform. As an
machine learning solution architecture practitioner, I often need to explain to others what
open source machine learning technologies are available and how they can be used for
building machine learning solutions.

126 Open Source Machine Learning Libraries

In the next several chapters, we will focus on various open source technologies for
experimentation, modeling building, and building machine learning platforms. In this
chapter, you will learn about machine learning libraries such as scikit-learn, Spark,
TensorFlow, and PyTorch. We will discuss these machine learning libraries' core
functionalities and how we can apply them to various steps in a machine learning life
cycle, such as data processing, model building, and model evaluation. You will also get
hands-on with a couple of machine learning libraries and learn to use them for model
training.

Specifically, we will be covering the following main topics:

•	 Core features of open source machine learning libraries

•	 Understanding the scikit-learn machine learning library

•	 Understanding the Apache Spark ML machine learning library

•	 Understanding the TensorFlow machine learning library and hands-on lab

•	 Understanding the PyTorch machine learning and hands-on lab

Technical requirements
In this chapter, you will need access to your local machine where you installed the Jupyter
environment from Chapter 3, Machine Learning Algorithms.

You can find the code samples used in this chapter at https://github.com/
PacktPublishing/The-Machine-Learning-Solutions-Architect-
Handbook/tree/main/Chapter05.

Core features of open source machine
learning libraries
At their core, machine learning libraries are just software libraries written in different
programming languages. What makes them different from other software libraries are the
functions they support. In general, most ML libraries have support for the following key
features via different library sub-packages:

•	 Data manipulation and processing: This includes support for different data tasks
such as loading data of different formats, data manipulation, data analysis, data
visualization, and data transformation.

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter05
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter05
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter05

Understanding the scikit-learn machine learning library 127

•	 Model building and training: This covers support for built-in machine learning
algorithms as well as capabilities for building custom algorithms. Most ML libraries
also have built-in support for the commonly used loss functions (such as mean
squared error or cross-entropy) and a list of optimizers (such as gradient descent or
adam) to choose from. Some libraries also provide advanced support for distributed
model training across multiple CPU/GPU devices or compute nodes.

•	 Model evaluation: This includes packages for evaluating the performance of trained
models, such as model accuracy or error rates.

•	 Model saving and loading: This includes support for saving the models to various
formats for persistence, and support for loading saved models into memory for
predictions.

•	 Model serving: This includes model serving features to expose trained machine
learning models behind an API, usually a RESTful API web service.

A machine learning library usually supports one or more programming languages such
as Python, Java, or Scala to meet different needs. Python is one of the most popular
languages for machine learning, and most of the machine learning libraries provide
support for the Python interface. The backend and underlying algorithms for these
libraries are, however, mainly written in compiled languages, such as C++ and Cython,
to optimize performance. Next, we will take a closer look at some of the most common
machine learning libraries.

Understanding the scikit-learn machine
learning library
scikit-learn (https://scikit-learn.org/) is an open source machine learning
library for Python. Initially released in 2007, it is one of the most popular machine
learning libraries for solving many machine learning tasks, such as classification,
regression, clustering, and dimensionality reduction.

scikit-learn is widely used by companies in different industries and academics for
solving real-world business cases such as churn prediction, customer segmentation,
recommendations, and fraud detection.

https://scikit-learn.org/

128 Open Source Machine Learning Libraries

scikit-learn is built mainly on top of three foundational libraries: NumPy, SciPy, and
matplotlib. NumPy is a Python-based library for managing large, multidimensional
arrays and matrices, with additional mathematical functions to operate on the arrays and
matrices. SciPy provides scientific computing functionality, such as optimization, linear
algebra, and Fourier Transform. Matplotlib is used for plotting data for data visualization.
scikit-learn is a sufficient and effective tool for a range of common data processing and
model-building tasks.

Installing scikit-learn
You can easily install the scikit-learn package on different operating systems such as Mac,
Windows, and Linux. The scikit-learn library package is hosted on the Python
Package Index site (https://pypi.org/) and the Anaconda package repository
(https://anaconda.org/anaconda/repo). To install it in your environment,
you can use either the PIP package manager or the Conda package manager. A package
manager allows you to install and manage the installation of library packages in your
operating system.

To install the scikit-learn library using the PIP or Conda package manager,
you can simply run pip install -U scikit-learn to install it from the
PyPI index or run conda install scikit-learn if you want to use a Conda
environment. You can learn more about PIP at https://pip.pypa.io/ and
Conda at http://docs.conda.io.

Core components of scikit-learn
scikit-learn provides a full range of Python classes for machine learning, from
data processing to building repeatable pipelines. The following diagram shows the main
components in the scikit-learning library package:

Figure 5.1 – scikit-learn components

https://pypi.org/
https://anaconda.org/anaconda/repo
https://pip.pypa.io/
http://docs.conda.io

Understanding the scikit-learn machine learning library 129

Now, let's take a closer look at how these components support the various phases of the
machine learning life cycle:

•	 Preparing data: For data manipulation and processing, the pandas library is
commonly used. It provides core data loading and saving functions, as well as
utilities for data manipulations such as data selection, data arrangement, and data
statistical summaries. pandas is built on top of NumPy. The pandas library
also comes with some visualization features such as pie charts, scatter plots, and
boxplots.

scikit-learn provides a list of transformers for data processing and transformation,
such as imputing missing values, encoding categorical values, normalization, and
feature extraction for text and images. You can find the full list of transformers at
https://scikit-learn.org/stable/data_transforms.html. You
also have the flexibility to create custom transformers.

•	 Model training: scikit-learn provides a long list of machine learning
algorithms (also known as estimators) for classification and regression (for example,
logistic regression, K nearest neighbors, and random forest), as well as clustering
(for example, k-means). You can find the full list of algorithms at https://
scikit-learn.org/stable/index.html. The following sample code shows
the syntax for using the RandomForestClassifier algorithm to train a model
using a labeled training dataset:

from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier (max_depth, max_features,
n_estimators

model.fit(train_X, train_y)

•	 Model evaluation: scikit-learn has utilities for hyperparameter tuning and
cross-validation, as well as metrics classes for model evaluations. You can find the
full list of model selection and evaluation utilities at https://scikit-learn.
org/stable/model_selection.html. The following sample code shows the
accuracy_score class for evaluating the accuracy of classification models:

from sklearn.metrics import accuracy_score

acc = accuracy_score (true_label, predicted_label)

https://scikit-learn.org/stable/data_transforms.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/model_selection.html
https://scikit-learn.org/stable/model_selection.html

130 Open Source Machine Learning Libraries

•	 Model saving: scikit-learn can save model artifacts using Python object
serialization (pickle or joblib). The serialized pickle file can be loaded into
memory for predictions. The following sample code shows the syntax for saving a
model using the joblib class:

import joblib

joblib.dump(model, "saved_model_name.joblib")

•	 Pipeline: scikit-learn also provides a pipeline utility for stringing together
different transformers and estimators as a single processing pipeline, and it can
be reused as a single unit. This is especially useful when you need to preprocess
data for modeling training and model prediction, as both require the data to be
processed in the same way:

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestClassifier

pipe = Pipeline([('scaler', StandardScaler()), (RF,
RandomForestClassifier())])

pipe.fit(X_train, y_train)

As you can see, it is quite easy to get started with the scikit-learn machine learning
package to experiment with and build machine learning models. scikit-learn is
well suited for common regression, classification, and clustering machine learning tasks
running on a single machine. However, if you need to train machine learning on large
datasets or multiple machines, then scikit-learn normally would not be the right
option, unless the algorithm (for example, SGDRegressor) supports incremental
training. Next, we will look at some machine learning libraries that can handle machine
learning model training at a large scale.

Understanding the Apache Spark ML machine
learning library
Apache Spark is a distributed data processing framework for large-scale data processing.
It allows Spark-based applications to load and process data across a cluster of distributed
machines in memory to speed up the processing time.

Understanding the Apache Spark ML machine learning library 131

A Spark cluster consists of a master node and worker nodes for running different Spark
applications. Each application that runs in a Spark cluster has a driver program and its
own set of processes, which are coordinated by the SparkSession object in the driver
program. The SparkSession object in the driver program connects to a cluster
manager (for example, Mesos, YARN, Kubernetes, or Spark's standalone cluster manager),
which is responsible for allocating resources in the cluster for the Spark application.
Specifically, the cluster manager acquires resources on worker nodes called executors to
run computations and store data for the Spark application. Executors are configured with
resources such as the number of CPU cores and memory to meet task processing needs.
Once the executors have been allocated, the cluster manager sends the application code
(Java JAR or Python files) to the executors. Finally, SparkContext sends the tasks to
the executors to run. The following diagram shows how a driver program interacts with
a cluster manager and executor to run a task:

Figure 5.2 – Running a Spark application on a Spark cluster

Each Spark application gets its own set of executors, which stay up for the duration of the
application. The executors for different applications are isolated from each other, and they
can only share data through external data storage.

The machine learning package for Spark is called MLlib, which runs on top of the
distributed Spark architecture. It is capable of processing and training models with a
large dataset that does not fit into the memory of a single machine. It provides APIs in
different programming languages, including Python, Java, Scala, and R. From a structure
perspective, it is very similar to that of the scikit-learn library.

132 Open Source Machine Learning Libraries

Spark is highly popular and adopted by companies of all sizes across different industries.
Large companies such as Netflix, Uber, and Pinterest use Spark for large-scale data
processing and transformation, as well as running machine learning models.

Installing Spark ML
Spark ML libraries are included as part of the Spark installation. PySpark is the Python
API for Spark, and it can be installed like a regular Python package using PIP (pip
install pyspark). Note that PySpark requires Java and Python to be installed on
the machine before it can be installed. You can find Spark's installation instructions at
https://spark.apache.org/docs/latest/.

Core components of the Spark ML library
Similar to the scikit-learn library, Spark and Spark ML provide a full range of
functionality for building machine learning models, from data preparation to model
evaluation and model persistence. The following diagram shows the core components
that are available in Spark for building machine learning models:

Figure 5.3 – Core components of Spark ML

Now, let's take a closer look at the core functions supported by the Spark and Spark ML
library packages:

•	 Preparing data: Spark supports Spark DataFrame, a distributed collection of data
that can be used for data join, aggregation, filtering, and other data manipulation
needs. Conceptually, a Spark DataFrame is equivalent to a table in a relational
database. A Spark DataFrame can be distributed (that is, partitioned) across
many machines, which allows fast data processing in parallel. Spark DataFrame
also operates on a model called the lazy execution model. Lazy execution defines
a set of transformations (for example, adding a column or filtering column)
and the transformations are only executed when an action (such as calculating
the min/max of a column) is needed. This allows an execution plan for the
different transformations and actions to be generated to optimize the execution's
performance.

https://spark.apache.org/docs/latest/

Understanding the Apache Spark ML machine learning library 133

To start using the Spark functionality, you need to create a Spark session. A Spark
session creates a SparkContext object, which is the entry point to the Spark
functionality. The following sample code shows how to create a Spark session:

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName('appname').
getOrCreate()

A Spark DataFrame can be constructed from many different sources, such as
structured data files (for example, CSV or JSON) and external databases. The
following code sample reads a CSV file into a Spark DataFrame:

dataFrame = spark.read.format('csv').load(file_path)

There are many transformers for data processing and transformation in Spark, such
as Tokenizer (breaks text down into individual words) and StandardScalar
(normalizes a feature into unit deviation and/or zero mean). You can find a list
of supported transformers at https://spark.apache.org/docs/2.1.0/
ml-features.html.

To use a transformer, first, you must initiate it with parameters, then call the
fit() function on the DataFrame that contains the data, and finally call the
transform() function to transfer the features in the DataFrame:

from pyspark.ml.feature import StandardScaler

scaler = StandardScaler(inputCol="features", outputCol=
"scaledFeatures", withStd=True, withMean=False)

scalerModel = scaler.fit(dataFrame)

scaledData = scalerModel.transform(dataFrame)

•	 Model training: Spark ML supports a large number of machine learning algorithms
for classification, regression, clustering, recommendation, and topic modeling.
You can find a list of Spark ML algorithms at https://spark.apache.org/
docs/1.4.1/mllib-guide.html. The following code sample shows how to
train a logistic regression model:

from pyspark.ml.classification import LogisticRegression

lr_algo = LogisticRegression(maxIter regParam,
elasticNetParam)

 lr_model = lr_algo.fit(dataFrame)

https://spark.apache.org/docs/2.1.0/ml-features.html
https://spark.apache.org/docs/2.1.0/ml-features.html
https://spark.apache.org/docs/1.4.1/mllib-guide.html
https://spark.apache.org/docs/1.4.1/mllib-guide.html

134 Open Source Machine Learning Libraries

•	 Model evaluation: For model selection and evaluation, Spark ML provides utilities
for cross-validation, hyperparameter tuning, and model evaluation metrics.
You can find the list of evaluators at https://spark.apache.org/docs/
latest/api/python/reference/api/pyspark.ml.evaluation.
MulticlassClassificationEvaluator.html?highlight=model%20
evaluation:

from pyspark.ml.evaluation import
BinaryClassificationEvaluator

dataset = spark.createDataFrame(scoreAndLabels, ["raw",
"label"])

evaluator = BinaryClassificationEvaluator()

evaluator.setRawPredictionCol("raw")

evaluator.evaluate(dataset)

evaluator.evaluate(dataset, {evaluator.metricName:
"areaUnderPR"})

•	 Pipeline: Spark ML also supports the pipeline concept, similar to that of scikit-
learn. With the pipeline concept, you can sequence a series of transformation and
model training steps as a unified repeatable step:

from pyspark.ml import Pipeline

from pyspark.ml.classification import LogisticRegression

from pyspark.ml.feature import HashingTF, Tokenizer

lr_tokenizer = Tokenizer(inputCol, outputCol)

lr_hashingTF = HashingTF(inputCol=tokenizer.
getOutputCol(), outputCol)

lr_algo = LogisticRegression(maxIter, regParam)

lr_pipeline = Pipeline(stages=[lr_tokenizer, lr_
hashingTF, lr_algo])

lr_model = lr_pipeline.fit(training)

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html?highlight=model%20evaluation
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html?highlight=model%20evaluation
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html?highlight=model%20evaluation
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html?highlight=model%20evaluation

Understanding the TensorFlow deep learning library 135

•	 Model saving: The Spark ML pipeline can be serialized into a serialization format
called an MLeap bundle, which is an external library from Spark. A serialized
MLeap bundle can be deserialized back into Spark for batch scoring or a Mleap
runtime to run real-time APIs. You can find more details about MLeap at
https://combust.github.io/mleap-docs/. The following code shows the
syntax for serializing a Spark model into MLeap format:

import mleap.pyspark

from pyspark.ml import Pipeline, PipelineModel

lr_model.serializeToBundle("saved_file_path", lr_model.
transform(dataframe))

Spark provides a unified framework for large-scale data processing and machine learning
model training. It is well-suited for classic machine learning tasks. It also has some basic
support for neural network training, such as the multilayer perceptron.

Next, we will take a look at a couple of machine learning libraries that focus on providing
support for deep learning.

Understanding the TensorFlow deep learning
library
Initially released in 2015, TensorFlow is a popular open source machine learning library,
primarily backed up by Google, that is mainly designed for deep learning. TensorFlow
has been used by companies of all sizes for training and building state-of-the-art deep
learning models for a range of use cases, including computer vision, speech recognition,
question-answering, text summarization, forecasting, and robotics.

https://combust.github.io/mleap-docs/

136 Open Source Machine Learning Libraries

TensorFlow is based on the concept of a computational graph (that is, a dataflow graph),
in which the data flow and operations that are performed on the data are constructed as a
graph. TensorFlow takes input data in the form of an n-dimensional array/matrix, which
is known as a tensor, and performs mathematical operations on this tensor, such as add
or matrix multiplication. An example of a tensor could be a scalar value (for example,
1.0), a one-dimensional vector (for example, [1.0, 2.0, 3.0]), a two-dimensional matrix
(for example, [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), or even higher dimensional matrices. The
following diagram shows a sample computational graph for performing a sequence of
mathematical operations on tensors:

Figure 5.4 – Data flow diagram

In the preceding computational diagram, the rectangular nodes are mathematical
operations, while the circles represent tensors. This particular diagram shows a
computational graph for performing an artificial neuron tensor operation, which is to
perform a matrix multiplication of W and X, followed by the addition of b, and, lastly,
apply a ReLU action function. The equivalent mathematical formula is as follows:

In the earlier versions (such as version 1.0) of TensorFlow, all computational graphs are
static, meaning the graph needs to be constructed in advance, and it cannot be modified
when it is being executed. During the construction step of the computational graph, the
mathematical operations defined in the graph are not executed. A separate execution
step is required to perform the operations and get the result. Static graphs are more
performant as they need to be compiled for optimal execution before the actual execution.
The following code constructs a simple graph that adds two constant numbers together.
print(tf.__version__) displays the version of TensorFlow that's been installed:

import tensorflow as tf

print(tf.__version__)

A = tf.constant (1)

𝑓𝑓(𝑥𝑥) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑊𝑊𝑊𝑊 + 𝑏𝑏)

Understanding the TensorFlow deep learning library 137

B = tf.constant (2)

C = tf.add (A, B)

print(C)

If you run the preceding code, you might expect to get an output of 3; however, you will
get a 0 instead because the graph has not been executed. Each statement here only helps
construct the graph. To run the graph, you need to execute the graph using a TensorFlow
session object. If you run the following code, you will see the correct output:

sess = tf.Session()

sess.run(C)

In TensorFlow 2.x, the computational graph can be both static and dynamic. A dynamic
graph is executed when each statement is executed. If you run the same code using
TensorFlow 2.x, you will get an output of 3 on the print(C) statement:

import tensorflow as tf

print(tf.__version__)

A = tf.constant (1)

B = tf.constant (2)

C = tf.add (A, B)

print(C)

A dynamic graph is not as performant as a static graph, but it is much easier for
development and debugging. And in most cases, the performance difference is small.

Installing Tensorflow
TensorFlow can be installed using the pip install --upgrade tensorflow
command in a Python-based environment. After installation, TensorFlow can be used
just like any other Python library package.

138 Open Source Machine Learning Libraries

Core components of TensorFlow
The TensorFlow library provides a rich set of features for different machine learning steps,
from data preparation to model serving. The following diagram shows the core building
blocks of the TensorFlow library:

Figure 5.5 – TensorFlow components

Training a machine learning model using TensorFlow 2.x involves the following
main steps:

•	 Preparing the dataset: TensorFlow 2.x provides a tf.data library for efficiently
loading data from sources (such as files), transforming data (such as changing the
values of the dataset), and setting up the dataset for training (such as configuring
batch size or data prefetching). These data classes provide efficient ways to pass data
to the training algorithms for optimized model training. The TensorFlow Keras
API also provides a list of built-in classes (MNIST, CIFAR, IMDB, MNIST Fashion,
and Reuters News wires) for building simple deep learning models. You can also
feed a NumPy array or Python generator (a function that behaves like an iterator)
to a model in TensorFlow for model training, but tf.data is the recommended
approach.

•	 Defining the neural network: TensorFlow 2.x provides multiple ways to use or
build a neural network for model training. You can use the premade estimators
(the tf.estimator class) such as DNNRegressor and DNNClassifier to
train models. Or, you can create custom neural networks using the tf.keras class,
which provides a list of primitives such as tf.keras.layers for constructing
neural network layers and tf.keras.activation such as ReLU, Sigmoid, and
Softmax for building neural networks. Softmax is usually used as the last output
of a neural network for a multiclass problem. It takes a vector of real numbers
(positive and negative) as input and normalizes the vector as a probability
distribution to represent the probabilities of different class labels, such as the
different types of hand-written digits. For binary classification problems, Sigmoid
is normally used and it returns a value between 0 and 1.

Understanding the TensorFlow deep learning library 139

•	 Defining the loss function: TensorFlow 2.x provides a list of built-in loss functions
such as mean squared error (MSE) and mean absolute error (MAE) for regression
tasks and cross-entropy loss for classification tasks. You can find more details about
MSE and MAE at https://en.wikipedia.org/wiki/Mean_squared_
error and https://en.wikipedia.org/wiki/Mean_absolute_erro
You can find a list of supported loss functions in the tf.keras.losses class.
You can find more details about the different losses at https://keras.io/api/
losses/. If the built-in loss functions do not meet your needs, you can also define
custom loss functions.

•	 Selecting the optimizer: TensorFlow 2.x provides a list of built-in optimizers for
model training, such as the Adam optimizer and the Stochastic Gradient Descent
(SGD) optimizer for parameters optimization, with its tf.keras.optimizers
class. You can find more details about the different supported optimizers at
https://keras.io/api/optimizers/. Adam and SGD are two of the most
commonly used optimizers.

•	 Selecting the evaluation metrics: TensorFlow 2.x has a list of built-in model
evaluation metrics (for example, accuracy and cross-entropy) for model training
evaluations with its tf.keras.metrics class. You can also define custom
metrics for model evaluation during training.

•	 Compiling the network into a model: This step compiles the defined network,
along with the defined loss function, optimizer, and evaluation metrics, into a
computational graph that's ready for model training.

•	 Fitting the model: This step kicks off the model training process by feeding the data
to the computational graph through batches and multiple epochs to optimize the
model parameters.

•	 Evaluating the trained model: Once the model has been trained, you can evaluate
the model using the evaluate() function against the test data.

•	 Saving the model: The model can be saved in TensorFlow SavedModel serialization
format or Hierarchical Data Format (HDF5) format.

•	 Model serving: TensorFlow comes with a model serving framework called
TensorFlow Serving, which we will cover in greater detail in Chapter 7, Open Source
Machine Learning Platform.

The TensorFlow library is designed for large-scale production-grade data processing and
model training. As such, it provides capabilities for large-scale distributed data processing
and model training on a cluster of servers against a large dataset. We will cover large-scale
distributed data processing and model training in a Chapter 10, Advanced ML Engineering.

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_absolute_erro
https://keras.io/api/losses/
https://keras.io/api/losses/
https://keras.io/api/optimizers/

140 Open Source Machine Learning Libraries

Hands-on exercise – training a TensorFlow
model
In this exercise, you will learn how to install the TensorFlow library in your local Jupyter
environment and build and train a simple neural network model. Launch a Jupyter
notebook that you have previously installed on your machine. If you don't remember how
to do this, visit the Hands-on lab section of Chapter 3, Machine Learning Algorithms.

Once the Jupyter notebook is running, create a new folder by selecting the New dropdown
and then Folder. Rename the folder TensorFlowLab. Open the TensorFlowLab
folder, create a new notebook inside this folder, and rename the notebook Tensorflow-
lab1.ipynb. Now, let's get started:

1.	 Inside the first cell, run the following code to install TensorFlow:

! pip3 install --upgrade tensorflow

2.	 Now, we must import the library and load the sample training data. We will use
the built-in fashion_mnist dataset that comes with the keras library to do
so. Next, we must load the data into a tf.data.Dataset class and then call its
batch() function to set up a batch size. Run the following code block in a new cell
to load the data and configure the dataset:

import numpy as np

import tensorflow as tf

tf.enable_eager_execution()

train, test = tf.keras.datasets.fashion_mnist.load_data()

images, labels = train

labels = labels.astype(np.int32)

images = images/256

train_ds = tf.data.Dataset.from_tensor_slices((images,
labels))

train_ds = train_ds.batch(32)

3.	 Let's see what the data looks like. Run the following code block in a new cell to view
the sample data:

from matplotlib import pyplot as plt

print ("label:" + str(labels[0]))

Hands-on exercise – training a TensorFlow model 141

pixels = images[0]

plt.imshow(pixels, cmap='gray')

plt.show()

4.	 Next, we must build a simple MLP network with two hidden layers (one with 100
nodes and one with 50 nodes) and an output layer with 10 nodes (each node
represents a class label). Then, we must compile the network using the Adam
optimizer, use the cross-entropy loss as the optimization objective, and use the
accuracy as the measuring metric. The Adam optimizer is a variation of gradient
descent (GD), and it improves upon GD mainly in the area of the adaptive learning
rate for updating the parameters to improve model convergence, whereas GD
uses a constant learning rate for parameter updating. Cross-entropy measures
the performance of a classification model, where the output is the probability
distribution for the different classes adding up to 1. The cross-entropy error
increases when the predicted distribution diverges from the actual class label. To
kick off the training process, we must call the fit() function. We will run the
training for 10 epochs. One epoch is one pass of the entire training dataset:

model = tf.keras.Sequential([

 tf.keras.layers.Flatten(),

 tf.keras.layers.Dense(100, activation="relu"),

 tf.keras.layers.Dense(50, activation="relu"),

 tf.keras.layers.Dense(10)

 tf.keras.layers.Softmax()

])

model.compile(optimizer='adam',

 loss=tf.keras.losses.
SparseCategoricalCrossentropy(),

 metrics=[tf.keras.metrics.
SparseCategoricalAccuracy()])

model.fit(train_ds, epochs=10)

When the model is training, you should see a loss metric and accuracy metrics are
being reported for each epoch.

5.	 Now that the model has been trained, we need to validate its performance using the
test dataset. In the following code, we are creating a test_ds for the test data:

images_test, labels_test = test

labels_test = labels_test.astype(np.int32)

142 Open Source Machine Learning Libraries

images_test = images_test/256

test_ds = tf.data.Dataset.from_tensor_slices((images_
test, labels_test))

test_ds = train_ds.batch(32)

test_ds = train_ds.shuffle(30)

results = model.evaluate(test_ds)

print("test loss, test acc:", results)

6.	 You can also use the standalone keras.metrics to evaluate the model. Here, we
are getting the prediction results and using tf.keras.metrics.Accuracy to
calculate the accuracy of predictions against the true values in test[1]:

predictions = model.predict(test[0])

predicted_labels = np.argmax(predictions, axis=1)

m = tf.keras.metrics.Accuracy()

m.update_state(predicted_labels, test[1])

m.result().numpy()

7.	 To save the model, run the following code in a new cell. It will save the model in
SavedModel serialization format:

model.save(filepath='model', save_format='tf')

8.	 Open the model directory. You should see that several files have been generated,
such as saved_model.pb, and several files under the variables subdirectory.

Congratulations! You have successfully installed the TensorFlow package in your local
Jupyter environment and trained a deep learning model.

With that, you have learned about TensorFlow and how to use it to train deep learning
models. Next, let's take a look at PyTorch, another highly popular deep learning library
for experimentation and production-grade ML model training.

Understanding the PyTorch deep learning library 143

Understanding the PyTorch deep learning
library
PyTorch is an open source machine learning library that was designed for deep learning
using GPUs and CPUs. It was released in 2016, and it is a highly popular machine learning
framework with a large following and many adoptions. Many technology companies,
including tech giants such as Facebook, Microsoft, and Airbnb, all use PyTorch heavily
for a wide range of deep learning use cases, such as computer vision and natural language
processing.

PyTorch strikes a good balance of performance (using a C++ backend) with ease of use
with default support for dynamic computational graphs and interoperability with the rest
of the Python ecosystem. For example, with PyTorch, you can easily convert between
NumPy arrays and PyTorch tensors. To allow for easy backward propagation, PyTorch
has built-in support for automatically computing gradients, a vital requirement for
gradient-based model optimization.

The PyTorch library consists of several key modules, including tensors, Autograd,
Optimizer, and Neural Network. Tensors are used to store and operate multidimensional
arrays of numbers. You can perform various operations on tensors such as matrix
multiplication, transpose, return max number, and dimensionality manipulation. PyTorch
supports automatic gradient calculation with its Autograd module. When performing
a forward pass, the Autograd module simultaneously builds up a function that computes
the gradient. The Optimizer module provides various algorithms such as SGD and Adam
for updating model parameters. The Neural Network module provides modules that
represent different layers of a neural network such as the linear layer, embedding layer,
and dropout layer. It also provides a list of loss functions that are commonly used for
training deep learning models.

Installing PyTorch
PyTorch can run on different operating systems, including Linux, macOS, and Windows.
You can follow the instructions at https://pytorch.org/ to install it in your
environment. For example, you can use the pip install torch command to install
it in a Python-based environment.

https://pytorch.org/

144 Open Source Machine Learning Libraries

Core components of PyTorch
Similar to TensorFlow, PyTorch also supports the end-to-end machine learning workflow,
from data preparation to model serving. The following diagram shows what different
PyTorch modules are used to train and serve a PyTorch model:

Figure 5.6 – PyTorch modules for model training and serving

The steps involved in training a deep learning model are very similar to that of
TensorFlow model training. We'll look at the PyTorch-specific details in the
following steps:

1.	 Preparing the dataset: PyTorch provides two primitives for dataset and data
loading management: torch.utils.data.Dataset and torch.utils.
data.Dataloader. Dataset stores data samples and their corresponding labels,
while Dataloader wraps around the dataset and provides easy and efficient access
to the data for model training. Dataloader provides functions such as shuffle,
batch_size, and prefetch_factor to control how the data is loaded and fed
to the training algorithm.

As the data in the dataset might need to be transformed before training is
performed, Dataset allows you to use a user-defined function to transform
the data.

2.	 Defining the neural network: PyTorch provides a high-level abstraction for
building neural networks with its torch.nn class. torch.nn provides built-in
support for different neural network layers such as linear layers and convolutional
layers, as well as activation layers such as Sigmoid and ReLU. It also has container
classes such as nn.Sequential for packaging different layers into a complete
network. Existing neural networks can also be loaded into PyTorch for training.

3.	 Defining the loss function: PyTorch provides several built-in loss functions in its
torch.nn class, such as nn.MSELoss and nn.CrossEntropyLoss.

Understanding the PyTorch deep learning library 145

4.	 Selecting the optimizer: PyTorch provides several optimizers with its nn.optim
classes. Examples of optimizers include optim.SGD, optim.Adam, and optim.
RMSProp. All the optimizers have a step() function that updates model
parameters with each forward pass. There's also a backward pass that calculates
the gradients.

5.	 Selecting the evaluation metrics: The PyTorch ignite.metrics
class provides several evaluation metrics such as Precision, Recall, and
RootMeanSquaredError for evaluating model performances. You can learn
more about precision and recall at https://en.wikipedia.org/wiki/
Precision_and_recall. You can also use the scikit-learn metrics
libraries to help evaluate models.

6.	 Training the model: Training a model in PyTorch involves three main steps in each
training loop: forward pass the training data, backward pass the training data to
calculate the gradient, and performing the optimizer step to update the gradient.

7.	 Saving/loading the model: The torch.save() function saves a model in a
serialized pickle format. The torch.load() function loads a serialized model
into memory for inference. A common convention is to save the files with the .pth
or .pt extension. You can also save multiple models into a single file.

8.	 Model serving: PyTorch comes with a model serving library called TorchServe,
which we will cover in more detail Chapter 7, Open Source Machine Learning
Platforms.

The PyTorch library supports large-scale distributed data processing and model training,
which we will cover in more detail in Chapter 10, Advanced ML Engineering.

Now that you have learned about the fundamentals of PyTorch, let's get hands-on through
a simple exercise.

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall

146 Open Source Machine Learning Libraries

Hands-on exercise – building and training
a PyTorch model
In this hands-on exercise, you will learn how to install the PyTorch library in your
local machine and train a simple deep learning model using PyTorch. Launch a Jupyter
notebook that you have previously installed on your machine. If you don't remember how
to do this, visit the Hands-on lab section of Chapter 3, Machine Learning Algorithms. Now,
let's get started:

1.	 Create a new folder called pytorch-lab in your Jupyter notebook environment
and create a new notebook file called pytorch-lab1.ipynb. Run the
following command in a cell to install PyTorch and the torchvision package.
torchvision contains a set of computer vision models and datasets. We will use
the pre-built MNIST dataset in the torchvision package for this exercise:

!pip3 install torch

!pip3 install torchvision

2.	 The following sample code shows the previously mentioned main components. Be
sure to run each code block in a separate Jupyter notebook cell for easy readability.

First, we must import the necessary library packages and load the MNIST dataset
from the torchvision dataset class:

import numpy as np

import matplotlib.pyplot as plt

import torch

from torchvision import datasets, transforms

from torch import nn, optim

transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,),)])

trainset = datasets.MNIST('pytorch_data/train/',
download=True, train=True, transform=transform)

valset = datasets.MNIST('pytorch_data/test/',
download=True, train=False, transform=transform)

trainloader = torch.utils.data.DataLoader(trainset,
batch_size=64, shuffle=True)

Hands-on exercise – building and training a PyTorch model 147

3.	 Next, we must construct an MLP neural network for classification. This MLP
network has two hidden layers with ReLU activation for the first and second layers.
The MLP model takes an input size of 784, which is the flattened dimension of
a 28x28 image. The first hidden layer has 128 nodes (neurons), while the second
layer has 64 nodes (neurons). The final layer has 10 nodes because we have
10 class labels:

model = nn.Sequential(nn.Linear(784, 128),

 nn.ReLU(),

 nn.Linear(128, 64),

 nn.ReLU(),

 nn.Linear(64, 10))

4.	 Let's show a sample of the image data:

images, labels = next(iter(trainloader))

pixels = images[0][0]

plt.imshow(pixels, cmap='gray')

plt.show()

5.	 Now, we must define a cross-entropy loss function for the training process since
we want to measure the error in the probability distribution for all the labels.
Internally, PyTorch's CrossEntropyLoss automatically applies a softmax to
the network output to calculate the probability distributions for the different classes.
For the optimizer, we have chosen the Adam optimizer with a learning rate of
0.003. The view() function flattens the two-dimensional input array (28x28)
into a one-dimensional vector since our neural network takes one-dimensional
vector input:

criterion = nn.CrossEntropyLoss()

images = images.view(images.shape[0], -1)

output = model(images)

loss = criterion(output, labels)

optimizer = optim.Adam(model.parameters(), lr=0.003)

148 Open Source Machine Learning Libraries

6.	 Now, let's start the training process. We are going to run 15 epochs. Unlike the
TensorFlow Keras API, where you just call a fit() function to start the training,
PyTorch requires you to build a training loop and specifically run the forward pass
(model (images)), run the backward pass to learn (loss.backward()),
update the model weights (optimizer.step()), and then calculate the total
loss and the average loss. For each training step, trainloader returns one batch
(a batch size of 64) of training data samples. Each training sample is flattened into
a 784-long vector. The optimizer is reset with zeros for each training step:

epochs = 15

for e in range(epochs):

 running_loss = 0

 for images, labels in trainloader:

 images = images.view(images.shape[0], -1)

 optimizer.zero_grad()

 output = model(images)

 loss = criterion(output, labels)

 loss.backward()

 optimizer.step()

 running_loss += loss.item()

 else:

 print("Epoch {} - Training loss: {}".format(e,
running_loss/len(trainloader)))

When the training code runs, it should print out the average loss for each epoch.

Summary 149

7.	 To test the accuracy using the validation data, we must run the validation dataset
through the trained model and use scikit-learn.metrics.accuracy_
score() to calculate the model's accuracy:

valloader = torch.utils.data.DataLoader(valset, batch_
size=valset.data.shape[0], shuffle=True)

val_images, val_labels = next(iter(valloader))

val_images = val_images.view(val_images.shape[0], -1)

predictions = model (val_images)

predicted_labels = np.argmax(predictions.detach().
numpy(), axis=1)

from sklearn.metrics import accuracy_score

accuracy_score(val_labels.detach().numpy(), predicted_
labels)

8.	 Finally, we must save the model to a file:

torch.save(model, './model/my_mnist_model.pt')

Congratulations! You have successfully installed PyTorch in your local Jupyter
environment and trained a deep learning PyTorch model.

Summary
In this chapter, we covered several popular open source machine learning library
packages, including scikit-learn, Spark ML, TensorFlow, and PyTorch. You should
now be familiar with the core building blocks for each of these libraries and how they can
be used to train a machine learning model. You have also learned to use the TensorFlow
and PyTorch frameworks to build simple artificial neural networks, train deep learning
models, and persist these trained models to files. These model files can be loaded into
model serving environments to generate predictions.

In the next chapter, we will cover Kubernetes and how it can be used as a foundational
infrastructure for building open source machine learning solutions.

6
Kubernetes

Container
Orchestration
Infrastructure
Management

While it is fairly straightforward to build a local data science environment with open
source technologies for individual uses in simple machine learning (ML) tasks, it is
quite challenging to configure and maintain a data science environment for many users
for different ML tasks and track ML experiments. Building an end-to-end ML platform
is a complex process, and there are many different architecture patterns and open source
technologies available to help. In this chapter, we will cover Kubernetes, an open source
container orchestration platform that can serve as the foundational infrastructure for
building open source ML platforms. We will discuss the core concept of Kubernetes, its
networking architecture and components, and its security and access control. You will
also get hands-on with Kubernetes to build a Kubernetes cluster and use it to deploy
containerized applications.

152 Kubernetes Container Orchestration Infrastructure Management

Specifically, we will cover the following topics:

•	 Introduction to containers

•	 Kubernetes overview and core concepts

•	 Kubernetes networking

•	 Kubernetes security and access control

•	 Hands-on lab – building a Kubernetes infrastructure on AWS

Technical requirements
In this chapter, you will continue to use services in your AWS account for the hands-on
portion of the chapter. We will be using several AWS services, including the AWS Elastic
Kubernetes Service (EKS), AWS CloudShell, and AWS EC2. All code files used in this
chapter are located on GitHub:

https://github.com/PacktPublishing/The-Machine-Learning-
Solutions-Architect-Handbook/tree/main/Chapter06.

Let's begin the chapter with a quick introduction to containers.

Introduction to containers
A container is a form of operating system virtualization, and it has been a very popular
computing platform for software deployment and running modern software based on
micro-services architecture. A container allows you to package and run computer software
with isolated dependencies. Compared to server virtualization, such as Amazon EC2 or
VMware virtual machines, containers are more lightweight and portable, as they share
the same operating system and do not contain operating system images in each container.
Each container has its own filesystem, shares of computing resources, and process space
for the custom applications running inside it.

While containers may seem like a relatively new transformative technology, the concept
of containerization technology was actually born in the 1970s with the chroot system
and Unix Version 7. However, container technology did not gain much attraction in the
software development community for the next two decades and remained dormant. While
it picked up some steam and made remarkable advances from 2000 to 2011, it was the
introduction of Docker in 2013 that started a renaissance of container technology.

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter06
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter06
https://github.com/PacktPublishing/Machine-Learning-Solutions-Architect-Handbook

Introduction to containers 153

You can run all kinds of applications inside containers, such as simple programs like data
processing scripts or complex systems like databases. The following diagram shows how
container deployment is different from other types of deployment. Note that a container
runtime can also run in the guest operating system of a virtualized environment to host
containerized applications:

Figure 6.1 – The differences between bare metal, virtualized, and container deployment

Containers are packaged as Docker images, which are made of all the files (such as
installation, application code, and dependencies) that are essential to run the containers
and the applications in them. One way to build a Docker image is the use of a Dockerfile
– that is, a plain-text file that provides specifications on how to build a Docker image.
Once a Docker image is created, it can be executed in a container runtime environment.
The following is an example Dockerfile for building a Docker image to create a
runtime environment based on the Ubuntu operating system (the FROM instruction)
and install various Python packages, such as python3, numpy, scikit-learn and
pandas (the RUN instructions):

FROM ubuntu:18.04

RUN apt-get -y update && apt-get install -y --no-install-
recommends \

 wget \

 python3-pip \

 nginx \

 ca-certificates \

 && rm -rf /var/lib/apt/lists/*

154 Kubernetes Container Orchestration Infrastructure Management

RUN ln -s /usr/bin/python3 /usr/bin/python

RUN ln -s /usr/bin/pip3 /usr/bin/pip

RUN pip --no-cache-dir install numpy==1.16.2 scipy==1.2.1
scikit-learn==0.20.2 pandas flask gunicorn

To build a Docker image from this Dockerfile, you can use the Docker build
command, which is a utility that comes as part of the Docker installation.

Now we have an understanding of containers, next, let's dive into Kubernetes.

Kubernetes overview and core concepts
While it is feasible to deploy and manage the life cycle of a small number of containers
and containerized applications directly in a compute environment, it can get very
challenging when you have a large number of containers to manage and orchestrate across
a large number of servers. This is where Kubernetes comes in. Initially released in 2014,
Kubernetes (K8s) is an open source system for managing containers at scale on clusters of
servers (the abbreviation K8s is derived by replacing ubernete with the digit 8).

Architecturally, Kubernetes operates a master node and one or more worker nodes in
a cluster of servers. The master node, also known as the control plane, is responsible
for the overall management of the cluster, and it has four key components:

•	 API server

•	 Scheduler

•	 Controller

•	 etcd

Kubernetes overview and core concepts 155

The master node exposes an API server layer that allows programmatic control of the
cluster. An example of an API call could be the deployment of a web application on the
cluster. The control plane also tracks and manages all configuration data in a key-value
store called etcd that is responsible for storing all the cluster data, such as the desired
number of container images to run, compute resource specification, and size of storage
volume for a web application running on the cluster. Kubernetes uses an object type called
controller to monitor the current states of Kubernetes resources and take the necessary
actions (for example, request the change via the API server) to move the current states
to the desired states if there are differences (such as the difference in the number of the
running containers) between the two states. The controller manager in the master node
is responsible for managing all the Kubernetes controllers. Kubernetes comes with a set
of built-in controllers such as scheduler, which is responsible for scheduling Pods (units
of deployment that we will discuss in more detail later) to run on worker nodes when
there is a change request. Other examples include Job controller, which is responsible
for running and stopping one or more Pods for a task, and Deployment controller,
which is responsible for deploying Pods based on a deployment manifest, such as a
deployment manifest for a web application. The following figure (Figure 6.2) shows the
core architecture components of a Kubernetes cluster:

Figure 6.2 – Kubernetes architecture

To interact with a Kubernetes cluster control plane, you can use the kubectl
command-line utility, the Kubernetes Python client (https://github.com/
kubernetes-client/python), or access directly using the RESTful API. You can
get a list of supported kubectl commands at https://kubernetes.io/docs/
reference/kubectl/cheatsheet/.

https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/

156 Kubernetes Container Orchestration Infrastructure Management

There are a number of unique technical concepts that are core to the Kubernetes
architecture. The following are some of the main concepts that Kubernetes operates
around:

•	 Namespaces: Namespaces organize clusters of worker machines into virtual
sub-clusters. They are used to provide logical separation of resources owned by
different teams and projects while still allowing ways for different namespaces to
communicate. A namespace can span multiple worker nodes, and it can be used to
group a list of permissions under a single name to allow authorized users to access
resources in a namespace. Resource usage controls can be enforced to namespaces
such as quotas for CPU and memory resources. Namespaces also make it possible
to name resources with identical names if the resources reside in the different
namespaces to avoid naming conflicts. By default, there is a default namespace
in Kubernetes. You can create additional namespaces as needed. The default
namespace is used if a namespace is not specified.

•	 Pods: Kubernetes deploys computing in a logical unit called a Pod. All Pods must
belong to a Kubernetes namespace (either the default namespace or a specified
namespace). One or more containers can be grouped into a Pod, and all containers
in the Pod are deployed and scaled together as a single unit and share the same
context, such as Linux namespaces and filesystems. Each Pod has a unique IP
address that's shared by all the containers in a Pod. A Pod is normally created
as a workload resource, such as a Kubernetes Deployment or Kubernetes Job.

Figure 6.3 – Namespaces, Pods, and containers

Kubernetes overview and core concepts 157

The preceding figure (Figure 6.3) shows the relationship between namespaces, Pods,
and containers in a Kubernetes cluster. In this figure, each namespace contains its
own set of Pods and each Pod can contain one or more containers running in it.

•	 Deployment: A deployment is used by Kubernetes to create or modify Pods that
run containerized applications. For example, to deploy a containerized application,
you create a configuration manifest file (usually in a YAML file format) that specifies
details, such as the container deployment name, namespaces, container image
URI, number of Pod replicas, and the communication port for the application.
After the deployment is applied using a Kubernetes client utility (kubectl), the
corresponding Pods running the specified container images will be created on the
worker nodes. The following example creates a deployment of Pods for an Nginx
server with the desired specification:

apiVersion: apps/v1 # k8s API version used for creating
this deployment

kind: Deployment # the type of object. In this case, it
is deployment

metadata:

 name: nginx-deployment # name of the deployment

spec:

 selector:

 matchLabels:

 app: nginx # an app label for the deployment.
This can be used to look up/select Pods

 replicas: 2 # tells deployment to run 2 Pods matching
the template

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.14.2 # Docker container image
used for the deployment

 ports:

 - containerPort: 80 # the networking port to
communicate with the containers

158 Kubernetes Container Orchestration Infrastructure Management

The following figure shows the flow of applying the preceding deployment
manifest file to a Kubernetes cluster and creates two Pods to host two copies
of the Nginx container:

Figure 6.4 – Creating an Nginx deployment
After the deployment, a Deployment controller monitors the deployed container
instances. If an instance goes down, the controller will replace it with another
instance on the worker node.

•	 Kubernetes Job: A Kubernetes Job is a controller that creates one or more Pods to
run some tasks, and ensures the job is successfully completed. If a number of Pods
fail due to node failure or other system issues, a Kubernetes Job will recreate the
Pods to complete the task. A Kubernetes Job can be used to run batch-oriented
tasks, such as running batch data processing scripts, ML model training scripts, or
ML batch inference scripts on a large number of inference requests. After a job is
completed, the Pods are not terminated, so you can access the job logs and inspect
the detailed status of the job. The following is an example template for running a
training job:

apiVersion: batch/v1

kind: Job # indicate that his is the Kubernetes Job

Kubernetes overview and core concepts 159

resource

metadata:

 name: train-job

spec:

 template:

 spec:

 containers:

 - name: train-container

 imagePullPolicy: Always # tell the job to always
pulls a new container image when it is started

 image: <uri to Docker image containing training
script>

 command: ["python3", "train.py"] # tell the
container to run this command after it is started

 restartPolicy: Never

 backoffLimit: 0

•	 Kubernetes custom resources (CRs) and operators: Kubernetes provides a list of
built-in resources, such as Pods or deployment for different needs. It also allows
you to create CRs and manage them just like the built-in resources, and you can
use the same tools (such as kubectl) to manage them. When you create the
custom resource (CR) in Kubernetes, Kubernetes creates a new API (for example,
<custom resource name>/<version>) for each version of the resource.
This is also known as extending the Kubernetes APIs. To create a CR, you create a
custom resource definition (CRD) YAML file. To register the CRD in Kubernetes,
you simply run kubectl apply -f <name of the CRD yaml file> to
apply the file. And after that, you can use it just like any other Kubernetes resource.
For example, to manage a custom model training job on Kubernetes, you can define
a CRD with specifications such as algorithm name, data encryption setting, training
image, input data sources, number of job failure retries, number of replicas, and job
liveness probe frequency.

160 Kubernetes Container Orchestration Infrastructure Management

A Kubernetes operator is a controller that operates on a custom resource. The operator
watches the CR types and takes specific actions to make the current state match the
desired state, just like what a built-in controller does. For example, if you want to create a
training job for the training job CRD mentioned previously, you create an operator that
monitors training job requests and performs application-specific actions to start up the
Pods and run the training job throughout the life cycle. The following figure (Figure 6.5)
shows the components involved with an operator deployment:

Figure 6.5 – A Kubernetes custom resource and its interaction with the operator

The most common way to deploy an operator is to deploy a CR definition and the
associated controller. The controller runs outside of the Kubernetes control plane, similar
to running a containerized application in a Pod.

Networking on Kubernetes 161

Networking on Kubernetes
Kubernetes operates a flat private network among all the resources in a Kubernetes cluster.
Within a cluster, all Pods can communicate with each other cluster-wide without an
network address translation (NAT). Kubernetes gives each Pod its own cluster private
IP address, and the IP is the same IP seen by the Pod itself and what others see it as. All
containers inside a single Pod can reach each container's port on the localhost. All nodes
in a cluster have their individually assigned IPs as well and can communicate with all Pods
without an NAT. The following figure (Figure 6.6) shows the different IP assignments for
Pods and nodes, and communication flows from different resources:

Figure 6.6 – IP assignments and communication flow

162 Kubernetes Container Orchestration Infrastructure Management

Sometimes you might need a set of Pods running the same application container
(the container for an Nginx application) for high availability and load balancing, for
example. Instead of calling each Pod by its private IP separately to access the application
running in a Pod, you want to call an abstraction layer for this set of Pods, and this
abstraction layer can dynamically send traffic to each Pod behind it. In this case, you
can create a Kubernetes Service as an abstraction layer for a logical set of Pods. A
Kubernetes Service can dynamically select the Pod behind it by matching an app label
for the Pod using a Kubernetes feature called selector. The following example shows
the specification that would create a service called nginx-service that sends traffic
to Pods with the app nginx label on port 9376. A service is also assigned with its own
cluster private IP address, so it is reachable by other resources inside a cluster:

apiVersion: v1

kind: Service

metadata:

 name: nginx-service

spec:

 selector:

 app: nginx

 ports:

 - protocol: TCP

 port: 80

 targetPort: 9376

In addition to using selector to automatically detect Pods behind the service, you can
also manually create an Endpoint and map a fixed IP and port to a service, as shown in
the following example:

apiVersion: v1

kind: Endpoints

metadata:

 name: nginx-service

subsets:

 - addresses:

 - ip: 192.0.2.42

 ports:

 - port: 9376

Networking on Kubernetes 163

While nodes, Pods, and services are all assigned with cluster private IPs, these IPs are not
routable from outside of a cluster. To access Pods or services from outside of a cluster, you
have the following options:

•	 Access from a node or Pod: You can connect to the shell of a running Pod using
the kubectl exe command, and access other Pods, nodes, and services from
the shell.

•	 Kubernetes Proxy: You can start the Kubernetes Proxy to access services by
running the kubectl proxy --port=<port number> command on your
local machine. Once the proxy is running, you can access nodes, Pods, or services.
For example, you can access a service using the following scheme:

http://localhost:<port number>/api/v1/proxy/
namespaces/<NAMESPACE>/services/<SERVICE NAME>:<PORT
NAME>

•	 NodePort: NodePort opens a specific port on all the worker nodes, and any traffic
sent to this port on the IP address of any of the nodes is forwarded to the service
behind the port. The nodes' IPs need to be routable from external sources. The
following figure (Figure 6.7) shows the communication flow using NodePort:

Figure 6.7 – Accessing Kubernetes Service via NodePort

164 Kubernetes Container Orchestration Infrastructure Management

NodePort is simple to use, but it has some limitations, such as one service per
NodePort, a fixed port range to use (3000 to 32767), and you need to know the
IPs of individual worker nodes.

•	 Load balancer: A load balancer is a standard way to expose services to the internet.
With a load balancer, you get a public IP address that's accessible to the internet,
and all traffic sent to the IP address will be forwarded to the service behind the load
balancer. A load balancer is not part of Kubernetes and it is provided by whatever
cloud infrastructure a Kubernetes cluster resides on (for example, AWS). The
following figure (Figure 6.8) shows the communication flow from a load balancer to
services and Pods:

Figure 6.8 – Accessing a Kubernetes service via a load balancer

Networking on Kubernetes 165

A load balancer allows you to choose the exact port to use and can support multiple
ports per service. However, it does require a separate load balancer per service.

•	 Ingress: An Ingress gateway is the entry point to a cluster. It acts as a load balancer
and routes incoming traffic to the different services based on routing rules.

Figure 6.9 – Accessing a Kubernetes service via Ingress

An Ingress is different from a load balancer and NodePort in that it acts as a proxy to
manage traffic to clusters. It works with the NodePort and load balancer and routes
the traffic to the different services. The Ingress way is becoming more commonly used,
especially in combination with a load balancer.

166 Kubernetes Container Orchestration Infrastructure Management

Service mesh
In addition to network traffic management from outside of the cluster, another important
aspect of Kubernetes network management is to control the traffic flow between different
Pods and services within a cluster. For example, you might want to allow certain traffic
to access a Pod or service while denying traffic from other sources. This is especially
important for applications built on microservices architecture, as there could be many
services or Pods that need to work together. Such a network of microservices is also
called a service mesh. As the number of services grows large, it becomes challenging to
understand and manage the networking requirements, such as service discovery, network
routing, network metrics, and failure recovery. Istio is an open source service mesh
management software that makes it easy to manage a large service mesh on Kubernetes,
and it provides the following core functions:

•	 Ingress: Istio provides an Ingress gateway that can be used to expose Pods and
services inside a service mesh to the internet. It acts as a load balancer that manages
the inbound and outbound traffic for the service mesh. A gateway only allows traffic
to come in/out of a mesh – it does not do routing of the traffic. To route traffic from
the gateway to service inside the service mesh, you create an object called Virtual
Service to provide routing rules to route incoming traffic to different destinations
inside a cluster, and you create a binding between virtual services and the gateway
object to connect the two together.

•	 Network traffic management: Istio provides easy rule-based network routing to
control the flow of traffic and API calls between different services. When Istio is
installed, it automatically detects services and endpoints in a cluster. Istio uses an
object called Virtual Service to provide routing rules to route incoming traffic
to different destinations inside a cluster. Istio uses a load balancer called gateway
to manage the inbound and outbound traffic for the network mesh. The gateway
load balancer only allows traffic to come in/out of a mesh – it does not do routing
of the traffic. To route traffic from the gateway, you create a binding between virtual
services and the gateway object.

In order to manage the traffic in and out of a Pod, an Envoy proxy component
(aka sidecar) is injected into a Pod, and it intercepts and decides how to route all
traffic. The Istio component that manages the traffic configurations of the sidecars
and service discovery is called the Pilot. The Citadel component manages
authentication for service to service and end user. The Gallery component is
responsible for insulating other Istio components from the underlying Kubernetes
infrastructure. The following figure shows the architecture of Istio on Kubernetes:

Security and access management 167

Figure 6.10 – Istio architecture

•	 Security: Istio provides authentication and authorization for inter-service
communications.

•	 Observability: Istio captures metrics, logs, and traces of all service communications
within a cluster. Examples of metrics include network latency, errors, and
saturation. Examples of traces include call flows and service dependencies within
a mesh.

Istio can handle a wide range of deployment needs, such as load balancing and
service-to-service authentication. It can even extend to other clusters.

Security and access management
Kubernetes has many built-in security features. These security features allow you to
implement fine-grained network traffic control and access control to different Kubernetes
APIs and services. In this section, we will discuss network security, authentication, and
authorization.

168 Kubernetes Container Orchestration Infrastructure Management

Network security
By default, Kubernetes allows all Pods in a cluster to communicate with each other.
To prevent unintended network traffic among different Pods, network policies can be
established to specify how Pods can communicate with each other. You can think of a
network policy as a network firewall that contains a list of allowed connections. Each
network policy has a podSelector field, which selects a group of Pods enforced by the
network policy and the allowed traffic direction (ingress or egress). The following sample
policy denies all ingress traffic to all Pods, as there are no specific ingress policies defined:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: default-deny-ingress

spec:

 podSelector: {}

 policyTypes:

 - Ingress

Network traffic is allowed if there is at least one policy that allows it.

Authentication and authorization to APIs
Access to Kubernetes APIs can be authenticated and authorized for both users and
Kubernetes service accounts (a service account provides an identity for processes
running in a Pod).

Users are handled outside of Kubernetes, and there are a number of user authentication
strategies for Kubernetes:

•	 X.509 client certificate: A signed certificate is sent to the API server for
authentication. The API server verifies this with the certificate authority to validate
the user.

•	 Single sign-on with OpenID Connect (OIDC): The user authenticates with
the OIDC provider and receives a bearer token (JSON Web Token (JWT))
that contains information about the user. The user passes the bearer token to
the API server, which verifies the validity of the token by checking the certificate
in the token.

•	 HTTP basic authentication: HTTP basic authentication requires a user ID and
password to be sent as part of the API request, and it validates the user ID and
password against a password file associated with the API server.

Security and access management 169

•	 Authentication proxy: The API server extracts the user identity in the HTTP
header and verifies the user with the certificate authority.

•	 Authentication webhook: An external service is used for handling the
authentication for the API server.

Service accounts are used to provide identity for processes running in a Pod. They are
created and managed in Kubernetes. Service accounts need to reside within a namespace,
by default. There is also a default service account in each namespace. If a Pod is not
assigned a service account, the default service account will be assigned to the Pod. A
service account has an associated authentication token, saved as a Kubernetes Secret, and
used for API authentication. A Kubernetes Secret is used for storing sensitive information
such as passwords, authentication tokens, and SSH keys. We will cover secrets in more
detail later in this chapter.

After a user or service account is authenticated, the request needs to be authorized to
perform allowed operations. Kubernetes authorizes authenticated requests using the API
server in the control plane, and it has several modes for authorization:

•	 Attribute-based access control (ABAC): Access rights are granted to users through
policies. Note that every service account has a corresponding username. The
following sample policy allows the joe user access to all APIs in all namespaces.

{

 "apiVersion": "abac.authorization.kubernetes.io/
v1beta1",

 "kind": "Policy",

 "spec": {

 "user": "joe",

 "namespace": "*",

 "resource": "*",

 "apiGroup": "*"

 }

}

The following policy allows the system:serviceaccount:kube-
system:default service account access to all APIs in all namespaces:

{

 "apiVersion": "abac.authorization.kubernetes.io/
v1beta1",

 "kind": "Policy",

170 Kubernetes Container Orchestration Infrastructure Management

 "spec": {

 "user": "system:serviceaccount:kube-system:default",

 "namespace": "*",

 "resource": "*",

 "apiGroup": "*"

 }

}

•	 Role-based access control (RBAC): Access rights are granted based on the role
of a user. RBAC authorizes using the rbac.authorization.k8s.io API
group. The RBAC API works with four Kubernetes objects: Role, ClusterRole,
RoleBinding, and ClusterRoleBinding.

Role and ClusterRole contain a set of permissions. The permissions are additive,
meaning there are no deny permissions, and you need to explicitly add permission to
resources. The Role object is namespaced and is used to specify permissions within a
namespace. The ClusterRole object is non-namespaced, but can be used for granting
permission for a given namespace or cluster-scoped permissions. The following yaml file
provides get, watch, and list access to all Pods resources in the default namespace for the
core API group:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: default

 name: pod-reader

rules:

- apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "watch", "list"]

The following policy allows get, watch, and list access for all Kubernetes nodes across the
cluster:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: nodes-reader

rules:

Security and access management 171

- apiGroups: [""]

 resources: ["nodes"]

 verbs: ["get", "watch", "list"]

RoleBinding and ClusterRoleBinding grant permissions defined in a
Role or ClusterRole object to a user or set of users with reference to a Role or
ClusterRole object. The following policy binds the joe user to the pod-reader role:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: read-pods

 namespace: default

subjects:

- kind: User

 name: joe

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: Role

 name: pod-reader

 apiGroup: rbac.authorization.k8s.io

The following RoleBinding object binds a service account, SA-name, to the
ClusterRole nodes-reader:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: read-secrets-global

subjects:

- kind: ServiceAccount

 name: SA-name

 namespace: default

roleRef:

 kind: ClusterRole

 name: secret-reader

 apiGroup: rbac.authorization.k8s.io

172 Kubernetes Container Orchestration Infrastructure Management

Kubernetes has a built-in feature for storing and managing sensitive information such
as passwords. Instead of storing this sensitive information directly in plain text in a Pod,
you can store this information as Kubernetes Secrets, and provide specific access to them
using Kubernetes RBAC to create and/or read these secrets. By default, secrets are stored
as unencrypted plain-text Base64-encoded strings, and data encryption at rest can be
enabled for the secrets. The following policy shows how to create a secret for storing AWS
access credentials:

apiVersion: v1

kind: Secret

metadata:

 name: aws-secret

type: Opaque

data:

 AWS_ACCESS_KEY_ID: XXXX

 AWS_SECRET_ACCESS_KEY: XXXX

There are several ways to use a secret in a Pod:

•	 As environment variables in the Pod specification template:

apiVersion: v1

kind: Pod

metadata:

 name: secret-env-pod

spec:

 containers:

 - name: mycontainer

 image: redis

 env:

 - name: SECRET_AWS_ACCESS_KEY

 valueFrom:

 secretKeyRef:

 name: aws-secret

 key: AWS_ACCESS_KEY_ID

 - name: SECRET_AWS_SECRET_ACCESS_KEY

Security and access management 173

 valueFrom:

 secretKeyRef:

 name: aws-secret

 key: AWS_SECRET_ACCESS_KEY

 restartPolicy: Never

The application code inside the container can access the secrets just like other
environment variables.

•	 As a file in a volume mounted on a Pod:

apiVersion: v1

kind: Pod

metadata:

 name: pod-ml

spec:

 containers:

 - name: pod-ml

 image: <Docker image uri>

 volumeMounts:

 - name: vol-ml

 mountPath: "/etc/aws"

 readOnly: true

 volumes:

 - name: vol-ml

 Secret:

 secretName: aws-secret

In the previous examples, you will see files in the /etc/aws folder for each
corresponding secret name (such as SECRET_AWS_ACCESS_KEY) that contains the
values for the secrets.

Running ML workloads on Kubernetes
We now know what containers are and how they can be deployed on a Kubernetes cluster.
We also know how to configure networking on Kubernetes to allow Pods to communicate
with each other and how to expose a Kubernetes container for external access outside of
the cluster using different networking options.

174 Kubernetes Container Orchestration Infrastructure Management

Kubernetes can function as the foundational infrastructure for running ML workloads.
For example, you can run a Jupyter Notebook as a containerized application on
Kubernetes as your data science environment for experimentation and model building.
You can also run a model training job as a Kubernetes Job if you need additional
resources, and then serve the model as a containerized web service application or run
batch inferences on trained models as a Kubernetes Job. In the following hands-on
exercise, you will learn how to use Kubernetes as the foundational infrastructure for
running ML workloads.

Hands-on – creating a Kubernetes
infrastructure on AWS
In this section, you will create a Kubernetes environment using the Amazon EKS. Let's
first look at the problem statement in the following section.

Problem statement
As a ML solutions architect, you have been tasked to evaluate Kubernetes
as a potential infrastructure platform for building an ML platform for one business unit
in your bank. You need to build a sandbox environment on AWS and demonstrate that
you can deploy a Jupyter Notebook as a containerized application for your data scientists
to use.

Lab instruction
In this hands-on exercise, you are going to create a Kubernetes environment using the
Amazon EKS. The EKS is a managed service for Kubernetes on AWS that creates and
configures a Kubernetes cluster with both master and worker nodes automatically. The
EKS provisions and scales the control plane, including the API server and backend
persistent layer. The EKS runs the open source Kubernetes and is compatible with all
Kubernetes-based applications.

After the EKS cluster is created, you will explore the EKS environment to inspect some of
its core components, and then you will learn to deploy a containerized Jupyter Notebook
application and make it accessible from the internet.

Hands-on – creating a Kubernetes infrastructure on AWS 175

Let's complete the following steps to get started:

1.	 Launch the AWS CloudShell service.

Log on to your AWS account, select the Oregon region, and launch the AWS
CloudShell. CloudShell is an AWS service that provides a browser-based Linux
terminal environment to interact with AWS resources. With CloudShell, you
authenticate using your AWS console credential and can easily run AWS CLI,
AWS SDK, and other tools.

2.	 Install the eksctl utility.

Run the following commands one by one in the CloudShell terminal. The eksctl
utility is a command-line utility for managing the EKS cluster. We will use the
eksctl utility to create a Kubernetes cluster on Amazon EKS in Step 4:

curl --silent --location "https://github.com/weaveworks/
eksctl/releases/latest/download/eksctl_$(uname -s)_amd64.
tar.gz" | tar xz -C /tmp

chmod +x /tmp/eksctl

sudo mv /tmp/eksctl ./bin/eksctl

export PATH=$PATH:/home/cloudshell-user/bin

3.	 Install the AWS IAM Authenticator.

Inside the CloudShell service, run the following commands one by one to
download the AWS IAM Authenticator software. The AWS IAM Authenticator
software authenticates to the Kubernetes cluster running on Amazon EKS with an
AWS credential:

curl -o aws-iam-authenticator https://amazon-eks.s3.us-
west-2.amazonaws.com/1.19.6/2021-01-05/bin/linux/amd64/
aws-iam-authenticator

chmod +x ./aws-iam-authenticator

sudo mv aws-iam-authenticator ./bin/aws-iam-authenticator

176 Kubernetes Container Orchestration Infrastructure Management

4.	 Build a new EKS cluster.

Run the following command to start creating an EKS cluster in the Oregon
region inside your AWS account. It will take about 15 minutes to complete
running the setup:

eksctl create cluster

The command will launch a cloudformation template and this will create the
following resources:

A.	 An Amazon EKS cluster with two worker nodes inside a new Amazon virtual
private cloud (VPC). Amazon EKS provides fully managed Kubernetes master
nodes, so you won't see the master nodes inside your private VPC.

B.	 An EKS cluster configuration file saved in the /home/cloudshell-user/.
kube/config directory on CloudShell. The config file contains details such
as the API server url address, the name of the admin user for managing the
cluster, and the client certificate for authenticating to the Kubernetes cluster. The
kubectl utility uses information in the config file to connect and authenticate
to the Kubernetes API server.

C.	 EKS organizes worker nodes into logical groups called nodegroup. Run the
following command to look up the nodegroup name. You can look up the
name of the cluster in the EKS management console. The name of the node group
should look something like ng-xxxxxxxx.

eksctl get nodegroup --cluster=<cluster name>

5.	 Install the kubectl utility.

Run the following commands to download the kubectl utility:
curl -LO "https://storage.googleapis.com/kubernetes-
release/release/$(curl -s https://storage.googleapis.com/
kubernetes-release/release/stable.txt)/bin/linux/amd64/
kubectl"

chmod +x ./kubectl

sudo mv ./kubectl ./bin/kubectl

6.	 Explore the cluster.

Hands-on – creating a Kubernetes infrastructure on AWS 177

Now the cluster is up, let's explore it a bit. Try running the following commands in
the CloudShell terminal and see what is returned:

Table 6.1 – kubectl commands

7.	 Deploy a Jupyter Notebook.

Let's deploy a Jupyter Notebook server as a containerized application. Copy and
run the following code block. It should create a file called deploy_Jupyter_
notebook.yaml. We will use a container image from the Docker Hub image
repository:

cat << EOF > deploy_Jupyter_notebook.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: jupyter-notebook

 labels:

 app: jupyter-notebook

spec:

 replicas: 1

 selector:

 matchLabels:

178 Kubernetes Container Orchestration Infrastructure Management

 app: jupyter-notebook

 template:

 metadata:

 labels:

 app: jupyter-notebook

 spec:

 containers:

 - name: minimal-notebook

 image: jupyter/minimal-notebook:latest

 ports:

 - containerPort: 8888

EOF

Now, let's create a deployment by running the following:
kubectl apply -f deploy_Jupyter_notebook.yaml.

Check to make sure the Pod is running by running kubectl get pods.

Check the logs of the Jupyter server Pod by running kubectl logs <name of
notebook pod>. Find the section in the logs that contains http://jupyter-
notebook-598f56bf4b-spqn4:8888/?token=XXXXXXX..., and copy the
token (XXXXXX…) portion. We will use the token for Step 8.

You can also access the pod using an interactive shell by running kubectl exec
--stdin --tty <name of notebook pod> -- /bin/sh. Run ps aux
to see a list of running processes. You will see a process related to the Jupyter
Notebook.

8.	 Expose the Jupyter Notebook to the internet.

At this point we have a Jupyter server running in a Docker container in a
Kubernetes Pod on top of two EC2 instances in an AWS VPC but we can't get to
it because the Kubernetes cluster doesn't expose a route to the container. We will
create a Kubernetes service to expose the Jupyter Notebook server to the internet so
it can be accessed from a browser.

Hands-on – creating a Kubernetes infrastructure on AWS 179

Run the following code block to create a specification file for a new Service. It
should create a file called jupyter_svc.yaml:

cat << EOF > jupyter_svc.yaml

apiVersion: v1

kind: Service

metadata:

 name: jupyter-service

 annotations:

 service.beta.kubernetes.io/aws-load-balancer-type:
alb

spec:

 selector:

 app: jupyter-notebook

 ports:

 - protocol: TCP

 port: 80

 targetPort: 8888

 type: LoadBalancer

EOF

After the file is created, run kubectl apply -f jupyter_svc.yaml to
create the service. A new Kubernetes Service called jupyter-service, as well
as a new LoadBalancer object should be created. You can verify the service by
running kubectl get service. Note and copy the EXTERNAL-IP address
associated with the jupyter-service service.

Paste the EXTERNAL-IP address to a new browser window, and enter the token
you copied earlier into the Password or token field (Figure 6.11) to log in. You
should see a Jupyter Notebook window showing up:

Figure 6.11 – Jupyter login screen

180 Kubernetes Container Orchestration Infrastructure Management

The following diagram shows the environment that you have created after working
through the hands-on exercise.

Figure 6.12 – Jupyter notebook deployment on the EKS cluster

Congratulations, you have successfully created a new Amazon EKS cluster on AWS and
deployed a Jupyter Server instance as a container on the cluster. We will re-use this EKS
cluster for the next chapter. However, if you don't plan to use this EKS for a period of
time, it is recommended to shut down the cluster to avoid unnecessary costs.

Summary
In this chapter, we covered Kubernetes, a container management platform that can serve
as the infrastructure foundation for building open source ML platforms. Now, you should
be familiar with what containers are and how Kubernetes works. You have also learned
how to set up a Kubernetes cluster on AWS using the AWS EKS service and use the cluster
to deploy a containerized Jupyter Notebook application to set up a basic data science
environment. In the next chapter, we will cover a number of open source ML platforms
that work on top of the Kubernetes infrastructure for building ML platforms.

Section 3:
Technical Architecture
Design and Regulatory

Considerations for
Enterprise ML Platforms

In Section 3, we will discuss architecture and business requirements beyond just data
scientists, looking at enterprise ML platforms, security, and governance. We will cover
advanced science and engineering topics for machine learning.

This section comprises the following chapters:

•	 Chapter 7, Open Source Machine Learning Platforms

•	 Chapter 8, Building a Data Science Environment Using AWS ML Services

•	 Chapter 9, Building an Enterprise ML Architecture with AWS ML Services

•	 Chapter 10, Advanced ML Engineering

•	 Chapter 11, ML Governance, Bias, Explainability, and Privacy

•	 Chapter 12, Building ML Solutions Using AI Services and ML Platforms

7
Open Source

Machine Learning
Platforms

In the previous chapter, we covered how Kubernetes can be used as the foundational
infrastructure for running machine learning (ML) tasks, such as running model training
jobs or building data science environments such as Jupyter notebook servers. However,
to perform these tasks at scale and more efficiently for large organizations, you will need
to build ML platforms with the capabilities to support the full data science life cycle. These
capabilities include scalable data science environments, model training services, model
registries, and model deployment capabilities.

In this chapter, we will discuss the core components of an ML platform and additional
open source technologies that can be used for building ML platforms. We will start with
technologies for building a data science environment that can support a large number
of users for experiments, and then discuss other technologies for model training, model
registries, model deployment, and ML pipeline automation.

184 Open Source Machine Learning Platforms

Specifically, we will cover the following topics:

•	 The core components of an ML platform

•	 Open source technologies for building ML platforms

•	 Hands-on exercise – building an ML platform with an open source ML framework

Let's get started by taking a quick look at the technical requirements for this chapter and
reviewing the core components of an ML platform.

Technical requirements
For the hands-on exercise in this chapter, we will continue to use the AWS Kubernetes
environment you created in Chapter 6, Kubernetes Container Orchestration Infrastructure
Management.

The sample source code used in this chapter can be found at https://github.
com/PacktPublishing/The-Machine-Learning-Solutions-Architect-
Handbook/tree/main/Chapter07.

Core components of an ML platform
An ML platform is a complex system as it consists of multiple environments for running
different tasks and has complex workflow processes to orchestrate. In addition, an ML
platform needs to support many roles, such as data scientists, ML engineers, infrastructure
engineers, and operation team members. The following are the core components of an ML
platform:

•	 Data science environment: The data science environment provides data analysis
tools, such as Jupyter notebooks, code repositories, and ML frameworks. Data
scientists and ML engineers mainly use the data science environment to perform
data analysis and data science experiments, and also to build and tune models.

•	 Model training environment: The model training environment provides a separate
infrastructure for different model training requirements. While data scientists
and ML engineers can run small-scale model training directly inside their local
Jupyter environment, they need a separate dedicated infrastructure for large-scale
model training. Running model training in a separate infrastructure also allows
for better control of the environments for more consistent model training process
management and model lineage management. The model training environment is
normally managed by infrastructure engineers and operations teams.

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter07
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter07
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter07

Open source technologies for building ML platforms 185

•	 Model registry: After models are trained, they need to be tracked and managed in
a model registry for model inventory and lineage management, model versioning
control, model discovery, and model life cycle management (such as in the staging
environment or in the production environment). The model registry is especially
important when you have a large number of models to manage. Data scientists can
register models directly in the registry as they perform experiments in their data
science environment. Models can also be registered as part of automated ML model
pipeline executions.

•	 Model serving environment: To generate predictions using trained ML models
for client applications, you will need to host the models in a model serving
infrastructure behind an API endpoint in real time. This infrastructure should also
support batch transform capabilities. There are different types of model serving
frameworks available.

•	 Continuous integration (CI)/continuous deployment (CD) and workflow
automation: Lastly, you need to establish CI/CD and workflow automation
capabilities to streamline the data processing, model training, and model
deployment processes, which in turn will increase the ML deployment velocity,
consistency, reproducibility, and observability.

In addition to these core components, there are other platform architecture factors to
consider, such as security and authentication, logging and monitoring, and governance
and control. In the following sections, we will discuss some open sources technologies
that can be used to build an end-to-end ML platform.

Open source technologies for building ML
platforms
While it is possible to run different ML tasks by creating and deploying different
standalone ML containers in a Kubernetes cluster, this can become quite complex to
manage when you have to do this at scale for a large number of users and ML workloads.
This is where open source technologies such as Kubeflow, MLflow, Seldon Core, GitHub,
and Airflow come in. Next, let's take a closer look at how these open source technologies
can be used for building data science environments, model training services, model
inference services, and ML workflow automation.

186 Open Source Machine Learning Platforms

Using Kubeflow for data science environments
Kubeflow is a Kubernetes-based, open source ML platform that provides a number
of ML-specific components. Kubeflow runs on top of Kubernetes and provides the
following capabilities:

•	 A central UI dashboard

•	 A Jupyter notebook server for code authoring and model building

•	 A Kubeflow pipeline for ML pipeline orchestration

•	 KFServing for model serving

•	 Training operators for model training support

The following figure (Figure 7.1) shows how Kubeflow can provide the various
components needed for a data science environment. Here, we will focus on its support
for Jupyter notebook servers.

Figure 7.1 – A Kubeflow-based data science environment

Open source technologies for building ML platforms 187

Kubeflow provides a multi-tenant Jupyter notebook server environment with built-in
authentication and authorization support. Let's discuss each of these core components
in detail:

•	 Jupyter notebook: As a data scientist, you can use the Kubeflow Jupyter notebook
server to author and run your Python code to explore data and build models inside
the Jupyter notebook. Kubeflow can spawn multiple notebook servers, with each
server belonging to a single Kubernetes namespace that corresponds to a team,
project, or user. Each notebook server runs a container inside a Kubernetes Pod.
By default, a Kubeflow notebook server provides a list of notebook container images
hosted in public container image repositories to choose from. You can also create
custom notebook container images to run custom notebook servers. To enforce
standards and consistency, Kubeflow administrators can provide a list of standard
images for users to use. When creating a notebook server, you select the namespace
to run the notebook server in, specify the Universal Resource Identifier (URI) of
the container image for the notebook server, and specify the resource requirements,
such as the number of CPUs/GPUs and memory size.

•	 Authentication and authorization: You access the notebook server through the
Kubeflow UI dashboard, which provides an authentication service through the
Dex Open ID Connection (OIDC) provider. Dex is an identity service that uses
OIDC to provide authentication for other applications. Dex can federate with other
authentication services such as the Active Directory service. Each notebook is
associated with a default Kubernetes service account (default-editor) that
can be used for entitlement purposes (such as granting the notebook permission to
access various resources in the Kubernetes cluster). Kubeflow uses Istio role-based
access control (RBAC) to control in-cluster traffic. The following YAML file grants
the default-editor service account (which is associated with the Kubeflow
notebook) access to the Kubeflow pipeline service by attaching the ml-pipeline-
services service role to it:

apiVersion: rbac.istio.io/v1alpha1

kind: ServiceRoleBinding

metadata:

 name: bind-ml-pipeline-nb-admin

 namespace: kubeflow

spec:

 roleRef:

 kind: ServiceRole

 name: ml-pipeline-services

 subjects:

188 Open Source Machine Learning Platforms

 - properties:

 source.principal: cluster.local/ns/admin/sa/
default-editor

•	 Multi-tenancy: Kubeflow allows multiple users to access the same Kubeflow
environment with support for resource isolation by users (for example, resources
such as notebook servers). It does this by creating a separate namespace for each
user, and it uses Kubernetes RBAC and Istio RBAC to control access to the different
namespaces and their resources. For team-based collaboration, the owner of a
namespace can grant other users access to the namespace directly by using the
Manage Contributor function inside the Kubeflow dashboard UI.

To add a new Kubeflow user, you create a new user profile, which in turn creates
a new namespace for the profile. The following YAML file, once applied using
kubectl, creates a new user profile called test-user with an email of test-
user@kubeflow.org, and it also creates a new namespace called test-user:

apiVersion: kubeflow.org/v1beta1

kind: Profile

metadata:

 name: test-user

spec:

 owner:

 kind: User

 name: test-user@kubeflow.org

You can run the kubectl get profiles and kubectl get namespaces
commands to verify that the profile and namespaces have been created.

After a user is created and added to the Kubeflow Dex authentication service, the
new user can log in to the Kubeflow dashboard and access the Kubeflow resources
(such as a Jupyter notebook server) under the newly created namespace.

Now we reviewed how Kubeflow can be used to provide a multi-user Jupyter notebook
environment for experimentation and model building. Next, let's see how to build a model
training environment.

Open source technologies for building ML platforms 189

Building a model training environment
As discussed earlier, an ML platform usually provides a separate model training service
and infrastructure to support large-scale and automated model training in an ML
pipeline. This dedicated training service should be accessible from an experimentation
environment (such as a Jupyter notebook) so that data scientists can launch model
training jobs as part of their experiments, and it should also be accessible from an ML
automation pipeline.

In a Kubernetes-based environment, there are two main approaches for model training:

•	 Model training using Kubernetes Jobs

•	 Model training using Kubeflow training operators

You can choose which approach to use depending on your training needs. Now, let's take
a closer look at each one of them in detail:

•	 Model training using Kubernetes Jobs: As we discussed in Chapter 6, Kubernetes
Container Orchestration Infrastructure Management, a Kubernetes Job creates one
or more containers and runs them through to completion. This pattern is well
suited for running certain types of ML model training jobs, as an ML job runs a
training loop to completion and does not run forever. For example, you can package
a container with a Python training script and all the dependencies that train a
model and use the Kubernetes Job to load the container and kick off the training
script. When the script completes and exits, the Kubernetes job also ends. The
following sample YAML file kicks off a model training job if submitted with the
kubectl apply command:

apiVersion: batch/v1

kind: Job

metadata:

 name: train-churn-job

spec:

 template:

 spec:

 containers:

 - name: train-container

 imagePullPolicy: Always

 image: <model training uri>

190 Open Source Machine Learning Platforms

 command: ["python", "train.py"]

 restartPolicy: Never

 backoffLimit: 4

You can query the status of the job using the kubectl get jobs command and
see the detailed training logs using the kubectl logs <pod name> command.

•	 Model training using Kubeflow training operators: A Kubernetes Job
can launch a model training container and run a training script inside the
container to completion. Since the controller for a Kubernetes Job does not
have application-specific knowledge about the training job, it can only handle
generic Pod deployment and management for the running jobs, such as running
the container in a Pod, monitoring the Pod, and handling generic Pod failure.
However, some model training jobs, such as distributed training job in a cluster,
require the special deployment, monitoring, and maintenance of stateful
communications among various Pods. This is where the Kubernetes training
operator pattern can be applied.

Kubeflow comes with a list of pre-built training operators (such as the TensorFlow,
Pytorch, and XGBoost operators) for complex model training jobs. Each Kubeflow
training operator has a custom resource (CR) (for example, TFJob CR for TensorFlow
jobs) that defines the training job's specific configurations, such as the type of Pod in the
training job (for example, master, worker, or parameter server), or runs policies
on how to clean up resources and how long a job should run. The controller for the CR
is responsible for configuring the training environment, monitoring the training job's
specific status, and maintaining the desired training job's specific state. For example,
the controller can set environment variables to make the training cluster specifications
(for example, types of Pods and indices) available to the training code running inside
the containers. The controller can also inspect the exit code of a training process and fail
the training job if the exit code indicates a permanent failure. The following YAML file
sample template represents a specification for running training jobs using the TensorFlow
operator (tf-operator):

apiVersion: "kubeflow.org/v1"

kind: "TFJob"

metadata:

 name: "distributed-tensorflow-job"

spec:

 tfReplicaSpecs:

 PS:

 replicas: 1

Open source technologies for building ML platforms 191

 restartPolicy: Never

 template:

 spec:

 containers:

 - name: tensorflow

 image: <model training image uri>

 command:

 Worker:

 replicas: 2

 restartPolicy: Never

 template:

 spec:

 containers:

 - name: tensorflow

 image: <model training image uri>

 command:

In this example template, the specification will create one copy of the parameter servers
(which aggregate model parameters across different containers) and two copies of the
workers (which run model training loops and communicate with the parameter servers).
The operator will process the TFJob object according to the specification, keep the
TFJob object stored in the system with the actual running services and Pods, and replace
the actual state with the desired state. You can submit the training job using kubectl
apply -f <TFJob specs template> and can get the status of the TFJob with the
kubectl get tfjob command.

As a data scientist, you can submit Kubernetes training jobs or Kubeflow training jobs
using the kubectl utility, or from your Jupyter notebook environment using the Python
(SDK). For example, TFJob object has a Python SDK called kubeflow.tfjob, and
Kubernetes has a client SDK called kubernetes.client for interacting with the
Kubernetes and Kubeflow environments from your Python code. You can also invoke
training jobs using the Kubeflow Pipeline component, which we will cover later in
the Kubeflow pipeline section.

192 Open Source Machine Learning Platforms

Registering models with a model registry
A model registry is an important component in model management and governance, and
it is a key link between the model training stage and the model deployment stage. There
are several open source options for implementing a model registry in an ML platform, and
in this section, we will take a look at the MLflow model registry for model management.

The MLflow model registry
MLflow is an open source ML platform, and it is designed for managing the stages of the
ML life cycle, including experiment management, model management, reproducibility,
and model deployment. It has the following four main components:

•	 Experiment tracking

•	 ML project packaging

•	 Model packaging

•	 Model registry

The model registry component of MLflow provides a central model repository for saved
models. It captures model details such as model lineage, model version, annotation,
and description, and also captures model stage transitions from staging to production
(so the status of the model state is clearly described).

To use the MLflow model registry in a team environment, you need to set up an MLflow
tracking server with a database as a backend and storage for the model artifacts. MLflow
provides a UI and an API to interact with its core functionality, including its model
registry. Once the model is registered in the model registry, you can add, modify, update,
transition, or delete the model through the UI or the API. The following figure shows an
architecture setup for an MLflow tracking server and its associated model registry:

Figure 7.2 – The MLflow tracking server and model registry

Open source technologies for building ML platforms 193

One of the main drawbacks of the MLflow model registry is that it does not support user
permission management, so any user with access to the tracking server will be able to
access and manage all the models in the registry. An external custom entitlement layer
will be implemented to manage user-based access to different resources in the model
registry. The MLflow tracking server does not provide built-in authentication support
either, so an external authentication server, such as Nginx, is needed to provide
authentication support.

Serving models using model serving services
After a model is trained and saved, you can use it for generating predictions by simply
loading the saved model into an ML package and calling the model prediction function
supported by the package. However, for large-scale and complex model serving
requirements, you will need to consider implementing a dedicated model serving
infrastructure to meet those needs. Now, let's take a look at several open source model
serving frameworks.

The Gunicorn and Flask inference engine
Gunicorn and Flask are often used for building custom model-serving web frameworks.
The following figure (Figure 7.3) shows a typical architecture that uses Flask, Gunicorn,
and Nginx as the building blocks for a model serving service.

Figure 7.3 – A model serving architecture using Flask and Gunicorn

194 Open Source Machine Learning Platforms

Flask is a Python-based micro web framework for building web apps quickly. It is
lightweight and has almost no dependencies on external libraries. With Flask, you can
define different invocation routes and associate handler functions to handle different web
calls (such as health check calls and model invocation calls). To handle model prediction
requests, the Flask app would load the model into memory and call the predict function
on the model to generate the prediction. Flask comes with a built-in web server, but it
does not scale well as it can only support one request at a time.

This is where Gunicorn comes in. Gunicorn is a web server for hosting web apps
(such as the Flask apps), and it can handle multiple requests in parallel and distribute
the traffic to the hosted web apps efficiently. When it receives a web request, it will invoke
the hosted Flask app to handle the request (such as invoking the function to generate
model prediction).

In addition to serving prediction requests as web requests, an enterprise inference engine
also needs to handle secure web traffic (such as SSL/TLS traffic), as well as load balancing
when there are multiple web servers. This is where Nginx comes in. Nginx can serve as
a load balancer for multiple web servers and can handle termination for SSL/TLS traffic
more efficiently, so web servers do not have to handle it.

A Flask/Gunicorn-based model serving architecture can be a good option for hosting
simple model serving patterns. But for more complicated patterns, such as serving
different versions of models, A/B testing, or large model serving, this architecture will
have limitations. The Flask/Gunicorn architecture pattern also requires custom code
(such as the Flask app) to work, as it does not provide built-in support for the different
ML models.

Next, let's review some purpose-built model serving frameworks and see how they are
different from the custom Flask-based inference engine.

The TensorFlow Serving framework
TensorFlow Serving is a production-grade, open source model serving framework,
and provides out-of-the-box support for serving TensorFlow models behind a RESTFul
endpoint. It manages the model life cycle for model serving and provides access to
versioned and multiple models behind a single endpoint. There is also built-in support
for canary deployments. A canary deployment allows you to deploy a model to support
a subset of traffic. In addition to the real-time inference support, there is also a batch
scheduler feature that can batch multiple prediction requests and perform a single joint
execution. With TensorFlow Serving, there is no need to write custom code to serve the
model. The following figure (Figure 7.4) shows the architecture of TensorFlow Serving:

Open source technologies for building ML platforms 195

Figure 7.4 – TensorFlow Serving architecture

The API handler provides APIs for TensorFlow Serving. It comes with a built-in,
lightweight HTTP server to serve RESTful-based API requests. It also supports gRPC
(a remote procedure call protocol) traffic. gRPC is a more efficient and fast networking
protocol, but it is more complicated to use than the REST protocol. TensorFlow Serving
has a concept called a servable, which refers to the actual objects that handle a task, such
as model inferences or lookup tables. For example, a trained model is represented as a
servable, and it can contain one or more algorithms and lookup tables or embeddings
tables. The API handler uses the servable to fulfill client requests.

The model manager manages the life cycle of servables, including loading the servables,
serving the servables, and unloading the servables. When a servable is needed to perform
a task, the model manager provides the client with a handler to access the servable
instances. The model manager can manage multiple versions of a servable. This allows
gradual rollout of different versions of a model.

The model loader is responsible for loading models from different sources, such as
Amazon S3. When a new model is loaded, the model loader notifies the model manager
about the availability of the new model, and the model manager will decide what the next
step should be (such as unloading the previous version and loading the new version).

TensorFlow Serving can be extended to support non-TensorFlow models. For example,
models trained in other frameworks can be converted to the ONNX format and served
using TensorFlow Serving. ONNX is a common format for representing models to
support interoperability across different ML frameworks.

196 Open Source Machine Learning Platforms

The TorchServe serving framework
TorchServe is an open source framework for serving trained PyTorch models. Similar to
TensorFlow Serving, TorchServe provides a REST API for serving models with its built-in
web server. With core features such as multi-model serving, model versioning, server-side
request batching, and built-in monitoring, TorchServe can serve production workloads at
scale. There is also no need to write custom code to host PyTorch models with TorchServe.
TorchServe comes with a built-in web server for hosting the model. The following figure
(Figure 7.5) shows the architecture components of the TorchServe framework:

Figure 7.5 – TorchServe architecture

The inference API is responsible for handling prediction requests from client applications
using loaded PyTorch models. It supports the REST protocol and provides a prediction
API, as well as other supporting APIs such as health check and model explanation APIs.
The inference API can handle prediction requests for multiple models.

The model artifacts are packaged into a single archive file and stored in a model store
within the TorchServe environment. You use a command-line interface (CLI) command
called torch-mode-archive to package the model.

The TorchServe backend loads the archived models from the model store into different
worker processes. These worker processes interact with the inference API to process
requests and send back responses.

The management API is responsible for handling management tasks such as registering
and unregistering PyTorch models, checking the model status, and scaling worker process.
The management API is normally used by system administrators.

TorchServe also provides built-in support for logging and metrics. The logging component
logs both access logs and processing logs. The TorchServe metrics collect a list of system
metrics, such as CPU/GPU utilization and custom model metrics.

Open source technologies for building ML platforms 197

KFServing framework
TensorFlow Serving and TorchServe are standalone model serving frameworks for
a specific deep learning framework. In contrast, KFServing is a general-purpose
multi-framework model serving framework that supports different ML models.
KFServing uses standalone model serving frameworks such as TensorFlow Serving
and TorchServe as the backend model servers. It is part of the Kubeflow project and
provides pluggable architecture for different model formats:

Figure 7.6 – KFServing components

As a general-purpose, multi-framework model serving solution, KFServing provides
several out-of-the-box model servers (also known as predictors) for different model types,
including TensorFlow, PyTorch XGBoost, scikit-learn, and ONNX. With KFServing, you
can serve models using both REST and gRPC protocols. To deploy a supported model
type, you simply need to define a YAML specification that points to the model artifact in a
data store. You can also build your own custom containers to serve models in KFServing.
The container needs to provide a model serving implementation as well as a web server.
The following code shows a sample YAML specification to deploy a tensorflow model
using KFServing:

apiVersion: "serving.kubeflow.org/v1alpha2"

kind: "InferenceService"

metadata:

 name: "model-name"

spec:

 default:

198 Open Source Machine Learning Platforms

 predictor:

 tensorflow:

 storageUri: <uri to model storage such as s3>

KFServing has a transformer component that allows the custom processing of the input
payload before it is sent to the predictors, and also allows the transforming of the response
from the predictor before it is sent back to the calling client. Sometimes, you need to
provide an explanation for the model prediction, such as which features have a stronger
influence on the prediction. We will cover more details on model explainability in a later
chapter.

KFServing is designed for production deployment and provides a range of production
deployment capabilities. Its auto-scaling feature allows the model server to scale up/down
based on the amount of request traffic. With KFServing, you can deploy both the default
model serving endpoint and the canary endpoint and split the traffic between the two,
and specify model revisions behind the endpoint. For operational support, KFServing
also has built-in functionality for monitoring (for example, monitoring request data and
request latency).

Seldon Core
Seldon Core is another multi-framework model serving framework for deploying models
on Kubernetes. Compared to KFServing, Seldon Core provides richer model serving
features, for example, model serving inference graphs for use cases such as A/B testing
and model ensembles. The following figure shows the core components of the Seldon
Core framework:

Figure 7.7 – The Seldon Core model serving framework architecture

Open source technologies for building ML platforms 199

Seldon Core provides packaged model servers for some of the common ML libraries,
including the SKLearn server for scikit-learn models, the XGBoost server for XGBoost
models, TensorFlow Serving for TensorFlow models, and MLflow server-based model
serving. You can also build your own custom serving container for specific model serving
needs and host it using Seldon Core.

The following template shows how to deploy a model using the SKLearn server
using Seldon Core. You simply need to change the modelUri path to point to a saved
model on a cloud object storage provider such as Google Cloud Storage, Amazon S3
storage, or Azure Blob storage. To test with an example, you can change the following
modelUri value to an example provided by Seldon Core – gs://seldon-models/
sklearn/iris:

apiVersion: machinelearning.seldon.io/v1alpha2

kind: SeldonDeployment

metadata:

 name: sklearn

spec:

 name: sklearn-model

 predictors:

 - graph:

 children: []

 implementation: SKLEARN_SERVER

 modelUri: <model uri to model artifacts on the cloud
storage>

 name: classifier

 name: default

 replicas: 1

Seldon Core also supports an advanced workflow (also known as an inference graph)
for serving models. The inference graph feature allows you to have a graph with different
models and other components in a single inference pipeline. An inference graph can
consist of several components:

•	 One or more ML models for the different prediction tasks

•	 Traffic routing management for different usage patterns, such as traffic splitting to
different models for A/B testing

•	 A component for combining results from multiple models, such as a model
ensemble component

200 Open Source Machine Learning Platforms

•	 Components for transforming the input requests (such as performing feature
engineering) or output responses (for example, returning an array format as
a JSON format)

To build inference graph specifications in YAML, you need the following key components
in the seldondeployment YAML file:

•	 A list of predictors, with each predictor having its own componentSpecs section
that specifies details such as container images

•	 A graph that describes how the components are linked together for each
componentSpecs section

The following sample template shows the inference graph for a custom canary deployment
to split the traffic into two different versions of a model:

apiVersion: machinelearning.seldon.io/v1alpha2

kind: SeldonDeployment

metadata:

 name: canary-deployment

spec:

 name: canary-deployment

 predictors:

 - componentSpecs:

 - spec:

 containers:

 - name: classifier

 image: <container uri to model version 1>

 graph:

 children: []

 endpoint:

 type: REST

 name: classifier

 type: MODEL

 name: main

 replicas: 1

 traffic: 75

 - componentSpecs:

 - spec:

Open source technologies for building ML platforms 201

 containers:

 - name: classifier

 image: <container uri to model version 2>

 graph:

 children: []

 endpoint:

 type: REST

 name: classifier

 type: MODEL

 name: canary

 replicas: 1

 traffic: 25

Once a deployment manifest is applied, the Seldon Core operator is responsible for
creating all the resources needed to serve an ML model. Specifically, the operator will
create resources defined in the manifest, add orchestrators to the Pods to manage the
orchestration of the inference graph, and configure the traffic using ingress gateways
such as Istio.

Automating ML pipeline workflows
To automate the core ML platform components we have covered so far, we need to build
pipelines that can orchestrate different steps using these components. Automation not
only increases efficiency and productivity – it also helps enforce consistency, enable
reproducibility, and reduce human errors. There are several open source technologies
that can be used for automating ML workflows. In this section, we will take a look at
Apache Airflow and Kubeflow Pipelines.

Apache Airflow
Apache Airflow is an open source software package for programmatically authoring,
scheduling, and monitoring multi-step workflows. It is a general-purpose workflow
orchestration tool that can be used to define workflows for a wide range of tasks, including
ML tasks. First, let's review some core Airflow concepts:

•	 Directed Acyclic Graph (DAG): A DAG defines independent tasks that are
executed independently in a pipeline. The sequences of the execution can be
visualized like a graph.

•	 Tasks: Tasks are basic units of execution in Airflow. Tasks have dependencies
between them during executions.

202 Open Source Machine Learning Platforms

•	 Operators: Operators are DAG components that describe a single task in the
pipeline. An operator implements the task execution logic. Airflow provides a list of
operators for common tasks, such as a Python operator for running Python code,
or an Amazon S3 operator to interact with the S3 service. Tasks are created when
operators are instantiated.

•	 Scheduling: A DAG can run on demand or on a predetermined schedule.

Airflow can run on a single machine or in a cluster. It can also be deployed on the
Kubernetes infrastructure. The following figure shows a multi-node Airflow deployment:

Figure 7.8 – Apache Airflow architecture

The master node mainly runs the web server and scheduler. The scheduler is responsible
for scheduling the execution of the DAGs. It sends tasks to a queue, and the worker nodes
retrieve the tasks from the queue and run them. The metadata store is used to store the
metadata of the Airflow cluster and processes, such as task instance details or user data.

You can author the Airflow DAGs using Python. The following sample code shows how to
author a basic Airflow DAG in Python with two bash operators in a sequence:

from airflow import DAG

from airflow.operators.bash_operator import BashOperator

from datetime import datetime, timedelta

default_args = {

 'owner': myname,

}

Open source technologies for building ML platforms 203

dag = DAG('test', default_args=default_args, schedule_
interval=timedelta(days=1))

t1 = BashOperator(

 task_id='print_date',

 bash_command='date',

 dag=dag)

t2 = BashOperator(

 task_id='sleep',

 bash_command='sleep 5',

 retries=3,

 dag=dag)

t2.set_upstream(t1)

Airflow can connect to many different sources and has built-in operators for many
external services, such as AWS EMR and Amazon SageMaker. It has been widely adopted
by many enterprises in production environments.

Kubeflow Pipelines
Kubeflow Pipelines is a Kubeflow component, and it is purpose-built for authoring and
orchestrating end-to-end ML workflows on Kubernetes. First, let's review some core
concepts of Kubeflow Pipelines:

•	 Pipeline: A pipeline describes an ML workflow, all the components in the workflow,
and how the components are related to each other in the pipeline.

•	 Pipeline components: A pipeline component performs a task in the pipeline. An
example of a pipeline component could be a data processing component or model
training component.

•	 Experiment: An experiment organizes different trial runs (model training)
for an ML project so you can easily inspect and compare the different runs and
their results.

•	 Step: The execution of one component in a pipeline is called a step.

204 Open Source Machine Learning Platforms

•	 Run trigger: You use a run trigger to kick off the execution of a pipeline. A run
trigger can be a periodic trigger (for example, to run every 2 hours), or a scheduled
trigger (for example, run at a specific date and time).

•	 Output artifacts: Output artifacts are the outputs from the pipeline components.
Examples of output artifacts could be model training metrics or visualizations
of datasets.

Kubeflow Pipelines is installed as part of the Kubeflow installation. It comes with its own
UI, which is part of the overall Kubeflow dashboard UI. The Pipelines service manages
the pipelines and their run status and stores them in a metadata database. There is an
orchestration and workflow controller that manages the actual execution of the pipelines
and the components. The following figure (Figure 7.9) shows the core architecture
components in a Kubeflow pipeline:

Figure 7.9 – Kubeflow Pipelines architecture

You author the pipeline using the pipeline SDK in Python. To create and run a pipeline,
follow these steps:

1.	 Create a pipeline definition using the Kubeflow SDK. The pipeline definition
specifies a list of components and how they are joined together in a graph.

2.	 Compile the definition into a static YAML specification to be executed by the
Kubeflow Pipelines service.

3.	 Register the specification with the Kubeflow Pipelines service and call the pipeline
to run from the static definition.

4.	 The Kubeflow Pipelines service calls the API server to create resources to run the
pipeline.

5.	 Orchestration controllers execute various containers to complete the pipeline run.

Hands-on exercise – building a data science architecture using open source technologies 205

Ok, we have now covered a number of open source tools for building ML platforms. Now,
let's put them into practice and use these tools to build a basic ML platform.

Hands-on exercise – building a data science
architecture using open source technologies
In this hands-on exercise, you will build an ML platform using several open source ML
platform software. There are three main parts to this hands-on exercise:

1.	 Installing Kubeflow and setting up a Kubeflow notebook
2.	 Tracking experiments, managing models, and deploying models
3.	 Automating the ML steps with Kubeflow Pipelines

Alright, let's get started with the first part – installing Kubeflow on the Amazon EKS
cluster.

Part 1 – Installing Kubeflow
You will continue to use the Amazon (EKS) infrastructure you created earlier and install
Kubeflow on top of it. To start, let's complete the following steps:

1.	 Launch AWS CloudShell: Log in to your AWS account, select the Oregon region,
and launch AWS CloudShell again.

2.	 Install the kfctl utility: The kfctl utility is a command-line utility for installing
and managing Kubeflow. Run the following commands one by one in the
CloudShell shell environment to install kfctl:

sudo yum search tar

curl --silent --location "https://github.com/kubeflow/
kfctl/releases/download/v1.2.0/kfctl_v1.2.0-0-gbc038f9_
linux.tar.gz" | tar xz -C /tmp

chmod +x /tmp/kfctl

sudo mv /tmp/kfctl ./bin/kfctl

206 Open Source Machine Learning Platforms

3.	 Add environment variables: Add environment variables to allow easier command
executions later. You will need to provide the Amazon EKS cluster name. You can
look up the EKS cluster name in the AWS Management Console:

export CONFIG_URI="https://raw.githubusercontent.
com/kubeflow/manifests/v1.2-branch/kfdef/kfctl_aws.
v1.2.0.yaml"

export AWS_CLUSTER_NAME=<cluster name>

mkdir ${AWS_CLUSTER_NAME} && cd ${AWS_CLUSTER_NAME}

4.	 Download the installation template: The kfctl_aws.yaml file contains
specifications for setting up Kubeflow. Let's download it and modify it with the
cluster details using the following command:

wget -O kfctl_aws.yaml $CONFIG_URI

vim kfctl_aws.yaml

After the Vim text editor is open, remove the # symbol in front of roles and
replace role name with the name of the role for the newly created EKS cluster.
You can look up the role name in the AWS Identity Access Management (IAM)
console. Search for a role that contains the name of the cluster as part of it.

You will also find a username and password pair in the yaml file. The default
user name should be admin@kubeflow.org, and the default password should
be 12341234. Change these to something else to be more secure. Take a note of
the username and password values, as you will need them later to access the
Kubeflow UI.

5.	 Install Kubeflow: Now, we are ready to install Kubeflow using the kfctl utility.
Run the following command to start installing Kubeflow (this is going to take 3-5
minutes to complete):

kfctl apply -V -f kfctl_aws.yaml

When the installation is complete, explore what has been installed by running the
kubectl get namespaces command. You will notice a few namespaces have
been created:

	� Kubeflow: You will find all the Kubeflow-related Pods running in this namespace.

	� Auth: The Dex authentication Pod runs in this namespace.

Hands-on exercise – building a data science architecture using open source technologies 207

	� Istio-system: All Istio-related components, such as Istio Pilot and Istio Citadel,
run in this namespace.

6.	 Launch the Kubeflow dashboard: Look up the Kubeflow dashboard URL using the
following command:

kubectl get ingress -n istio-system

You should see something similar to the following screenshot returned. The URL
under the ADDRESS header is the URL for the Kubeflow dashboard:

Figure 7.10 – Kubeflow dashboard URL
Open up a browser window and copy and paste the dashboard URL to launch the
dashboard. When prompted, enter the username and password from Step 4 to log
into the dashboard.

You will be prompted to select the workspace. Keep the default admin name and
follow the onscreen instructions to complete installation. You will see the following
screen after the dashboard has launched:

Figure 7.11 - Kubeflow dashboard
The Kubeflow dashboard allows you to navigate to different Kubeflow components
from this single interface. We will use this dashboard to configure and manage
notebooks and tracking pipelines.

208 Open Source Machine Learning Platforms

7.	 Scale up the cluster: To run Kubeflow applications such as notebooks and pipelines,
we will need a bigger cluster. Let's scale the cluster to add more Kubernetes worker
nodes. The worker nodes are associated with nodegroups, and we will need the
nodegroup name to scale it up. You can look up the name of nodegroup by
running the following command:

eksctl get nodegroup --cluster=<name of cluster>

Now, let's scale the nodegroup to 4 nodes from the two existing nodes by running
the following command:

eksctl scale nodegroup --cluster=<name of cluster>
--nodes=4 --name=<nodegroup name> --nodes-max=4

The scaling process will take a few minutes. When the process is complete, run the
kubectl get nodes command to confirm you now have 4 worker nodes. You
should see four servers listed in the output.

8.	 Create a new Jupyter notebook: You have now successfully set up Kubeflow on the
EKS cluster. Next, let's use Kubeflow to set up a Jupyter notebook environment for
code authoring and model building:

I.	 On the Kubeflow dashboard home page, select Notebook Server and click
on + NEW SERVER.

II.	 Give the server a name and select a custom image from the dropdown. Select an
image that has CPU with Tensorflow 2.x in its name. Change the CPU
number to 1 and Memory size to 3GB for a more powerful environment.

III.	 Leave everything else as default, and click on Launch at the bottom to launch
the notebook. It will take a few minutes for the notebook to be ready.

9.	 Using the Jupyter notebook: Let's see what we can do with the newly launched
Jupyter notebook. Follow these steps to train a simple model in the Jupyter
notebook:

I.	 Upload the churn.csv file you used earlier from your local machine into the
Jupyter notebook.

II.	 Select File | New | Notebook to create a new notebook. When prompted, select
Python 3 as the Kernel type. Upload the churn.csv file to the folder using
the upload button (the up arrow icon).

Hands-on exercise – building a data science architecture using open source technologies 209

III.	 Enter the following code blocks into different cells and see the execution
results for each step. This is the same exercise we did in Chapter 3, Machine
Learning Algorithms:

! pip3 install matplotlib

import pandas as pd

churn_data = pd.read_csv("churn.csv")

churn_data.head()

The following command calculates the various statistics
for the features.

churn_data.describe()

The following command displays the histograms for the
different features.

You can replace the column names to plot the histograms
for other features

churn_data.hist(['CreditScore', 'Age', 'Balance'])

The following command calculate the correlations among
features

churn_data.corr()

from sklearn.preprocessing import OrdinalEncoder

encoder = OrdinalEncoder()

churn_data['Geography_code'] = encoder.fit_
transform(churn_data[['Geography']])

churn_data['Gender_code'] = encoder.fit_transform(churn_
data[['Gender']])

churn_data.drop(columns =
['Geography','Gender','RowNumber','Surname'],
inplace=True)

we import the train_test_split class for data split

from sklearn.model_selection import train_test_split

Split the dataset into training (80%) and testing
(20%).

churn_train, churn_test = train_test_split(churn_data,
test_size=0.2)

210 Open Source Machine Learning Platforms

Split the features from the target variable "Exited" as
it is required for model training

and validation later.

churn_train_X = churn_train.loc[:, churn_train.columns !=
'Exited']

churn_train_y = churn_train['Exited']

churn_test_X = churn_test.loc[:, churn_test.columns !=
'Exited']

churn_test_y = churn_test['Exited']

We will use the Random Forest algorithm to train the
model

from sklearn.ensemble import RandomForestClassifier

bank_churn_clf = RandomForestClassifier(max_depth=2,
random_state=0)

bank_churn_clf.fit(churn_train_X, churn_train_y)

We use the accuracy_score class of the sklearn library
to calculate the accuracy.

from sklearn.metrics import accuracy_score

We use the trained model to generate predictions using
the test dataset

churn_prediction_y = bank_churn_clf.predict(churn_test_X)

We measure the accuracy using the accuracy_score class.

accuracy_score(churn_test_y, churn_prediction_y)

Congratulations! You have now successfully trained an ML model using the Kubeflow
Jupyter notebook server. In Part 2, let's get hands-on with how to track experiments,
manage models, and deploy models.

Hands-on exercise – building a data science architecture using open source technologies 211

Part 2 – tracking experiments and models, and
deploying models
To train an ML model, you will likely need to run the training many times with different
algorithms, hyperparameters, and data features. Soon, you'll realize that it's becoming
quite difficult to keep track of everything you have done. As we discussed earlier, MLflow
and Kubeflow have experiment tracking features. MLflow tracking can be implemented
anywhere in the training scripts from different data science environments (such as
Kubeflow notebooks or your local machine), while Kubeflow tracks everything in the
context of Kubeflow Pipelines. In this part of the exercise, we'll use MLflow for experiment
tracking and model management. Specifically, we will build the experiment tracking and
model management architecture shown in the following figure (Figure 7.12):

Figure 7.12 – Tracking an experiment and model, deploying the model

To get started, let's set up a central MLflow tracking server so different data science
environments can all use it for tracking. Complete the following steps to start:

1.	 Launch an EC2 instance: We will install the MLflow tracking server on an EC2
instance. You can also install an MLflow tracking server as a container running on
EKS. Launch an EC2 instance in the same AWS region you have been using. If you
don't know how to start an EC2 instance, follow the instructions at https://
aws.amazon.com/ec2/getting-started/.

https://aws.amazon.com/ec2/getting-started/
https://aws.amazon.com/ec2/getting-started/

212 Open Source Machine Learning Platforms

Create an AWS access key pair and add the AWS access key pair info to the EC2
server using the aws configure command. If you don't know how to create an
AWS access key pair, follow the instructions at https://docs.aws.amazon.
com/powershell/latest/userguide/pstools-appendix-sign-up.
html. Make sure the AWS credential has read/write permissions to S3, as the
MLflow server will need to use S3 as the store for artifacts.

2.	 Install the MLflow packages: After the instance is ready, connect to the EC2
instance using the EC2 Instance Connect feature in the AWS console. MLflow can
be easily installed as Python packages. Run the following commands in the EC2
terminal window to install the MLflow packages:

sudo yum update

sudo yum install python3

sudo pip3 install mlflow

sudo pip3 install boto3

3.	 Install a database: MLflow requires a database for storing metadata. In this step,
you will install a database as the backend for storing all the tracking data. There are
many different database options, such as postgresql and sqlite. For simplicity,
we will install a sqlite database as the backend:

sudo yum install sqlite

4.	 Set up the tracking server: Now, we are ready to configure the mlflow server.
First, create a directory called mlflowsvr for storing sqlite database files on the
EC2 server – you can use the mkdir Linux command to create the directory. Next,
create an S3 bucket called mlflow-tracking-<your initials> for storing
the artifacts. After you have created the directory and S3 bucket, run the following
command to configure and start the tracking server:

mlflow server --backend-store-uri sqlite:///mlflowsvr/
mlsa.db \

--default-artifact-root s3://mlflow-tracking --host
0.0.0.0 -p 5000

5.	 Access the tracking server site: To access the site, you will need to open up the
security group for the EC2 server to allow port 5000. Check the AWS instructions
on how to modify the security group rules if you are not familiar with them. By
default, only port 22 is open.

https://docs.aws.amazon.com/powershell/latest/userguide/pstools-appendix-sign-up.html
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-appendix-sign-up.html
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-appendix-sign-up.html

Hands-on exercise – building a data science architecture using open source technologies 213

To access the mlflow tracking server site, look up the public DNS name for the
EC2 and enter it into the browser window. The address should look something like
the following example:

http://<EC2 public DNS url>:5000.

Please note, the MLfLow tracking server does not have built-in security, so the
tracking server is publicly accessible. You should stop/terminate this tracking server
when it is not in use. For secured access to the tracking server, you can set up a
secure reverse proxy server in front of the tracking server, which is out of scope for
this book.

6.	 Use MLflow tracking from the Kubeflow notebook: Now that we are ready to
use the tracking server to track experiments, launch the Jupyter notebook you
created earlier from your Kubeflow dashboard and select Terminal under the
New dropdown on the screen to open up a Terminal console window. Inside the
Terminal window, run the following code block to install the AWS Command
Line Interface (CLI) and configure the AWS CLI environment variables. Provide
the AWS access key pair values when prompted by running the aws configure
command. The MLflow client will use these credentials to upload artifacts to the S3
bucket for the MLflow tracking server:

pip3 install awscli

aws configure

Next, create a new notebook by selecting file->new>notebook, and insert the
next example code block shown. Replace <<tracking server uri>> with
your own tracking server uniform resource indentifier (URI), and run the code.
This code block will install the mlflow client library on the Jupyter notebook,
and it sets up experiment tracking with the mlflow.set_experiment()
function, turns on automatic tracking with the mlflow.sklearn.autolog()
function, and finally, registers the trained model with the mlflow.sklearn.
log_model() function:

! pip3 install mlflow

import pandas as pd

import mlflow

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import OrdinalEncoder

214 Open Source Machine Learning Platforms

churn_data = pd.read_csv("churn.csv")

encoder = OrdinalEncoder()

churn_data['Geography_code'] = encoder.fit_
transform(churn_data[['Geography']])

churn_data['Gender_code'] = encoder.fit_transform(churn_
data[['Gender']])

churn_data.drop(columns =
['Geography','Gender','RowNumber','Surname'],
inplace=True)

Split the dataset into training (80%) and testing
(20%).

churn_train, churn_test = train_test_split(churn_data,
test_size=0.2)

Split the features from the target variable "Exited" as
it is required for model training

churn_train_X = churn_train.loc[:, churn_train.columns !=
'Exited']

churn_train_y = churn_train['Exited']

churn_test_X = churn_test.loc[:, churn_test.columns !=
'Exited']

churn_test_y = churn_test['Exited']

#setting mlflow tracking server

tracking_uri = <tracking server uri>

mlflow.set_tracking_uri(tracking_uri)

mlflow.set_experiment('customer churn')

mlflow.sklearn.autolog()

with mlflow.start_run():

 bank_churn_clf = RandomForestClassifier(max_depth=2,
random_state=0)

 bank_churn_clf.fit(churn_train_X, churn_train_y)

 mlflow.sklearn.log_model(sk_model=bank_churn_

Hands-on exercise – building a data science architecture using open source technologies 215

clf, artifact_path="sklearn-model", registered_model_
name="churn-model")

Now, go back to the tracking server site and refresh the page. Under the
Experiment tab, you should see a new experiment called customer churn. Click on
the customer churn link to see the run detail, and then click on the Model tab. You
will see a model called churn model.

Now, run the same code again in the Jupyter notebook. You will now see a new run,
and a new version of the model is created.

7.	 Deploy the model to Seldon Core: You have successfully trained an ML model and
registered the model in the MLflow model registry. Next, let's deploy this model
using the Seldon Core model serving framework.

Let's download the model artifacts from the model registry and save them
to a deployment bucket in S3. To do this, first, create a new S3 bucket called
model-deployment-<your initial>. We will be using Seldon Core's
SKLearn server package to host the model, and it expects the model name to be
model.joblib. Run the following code block to download the model artifacts
from the model registry, copy the model.pkl file to another directory, and name
it model.joblib:

import mlflow.sklearn

import shutil

model_name = "churn-model"

model_version = <version>

sk_model = mlflow.sklearn.load_model(f"models:/{model_
name}/{model_version}")

mlflow.sklearn.save_model(sk_model, f"{model_name}_
{model_version}")

src = f"{model_name}_{model_version}/model.pkl"

des = f"skserver_{model_name}_{model_version}/model.
joblib"

shutil.copyfile(src, des)

216 Open Source Machine Learning Platforms

Next, run the following code block to upload the model artifacts to the target
S3 bucket:

import boto3

import os

targetbucket = "model-deployment-<your initial>"

prefix = f"mlflow-models/{model_name}_{model_version}"

def upload_objects(src_path, bucketname):

 s3 = boto3.resource('s3')

 my_bucket = s3.Bucket(bucketname)

 for path, dirs, files in os.walk(src_path):

 dirs[:] = [d for d in dirs if not
d.startswith('.')]

 path = path.replace("\\","/")

 directory_name = prefix + path.replace(src_
path,"")

 for file in files:

 my_bucket.upload_file(os.path.join(path,
file), directory_name + "/" + file)

local_dir = f"skserver_{model_name}_{model_version}

upload_objects (local_dir, targetbucket)

The Seldon Core deployment will need access to the S3 bucket to download the
model. To enable access, we create a secret object to store the AWS credential
that we can use to inject into the Seldon Core containers. Let's create the secret
using the following .yaml file and run kubectl apply on the file to set up
the secret. Replace the values for AWS_ACCESS_KEY_ID and AWS_SECRET_
ACCESS_KEY with your own AWS access key pair that has the right access to the
S3 bucket for the models. Run the following code block in CloudShell to create the
file and then run the kubectl apply -f aws_secret.yaml command in
CloudShell to deploy the secret:

cat << EOF > aws_secret.yaml

apiVersion: v1

kind: Secret

Hands-on exercise – building a data science architecture using open source technologies 217

metadata:

 name: aws-secret

type: Opaque

data:

 AWS_ACCESS_KEY_ID: <<your aws access key>>

 AWS_SECRET_ACCESS_KEY: <<you aws secret access key>>

EOF

We will use the Seldon Core SKLearn server to host the model. To do this, we
need to create a deployment .yaml file, as shown in the next code block. Replace
the <<S3 uri of model file>> placeholder with the S3 uri of the model
artifacts we just uploaded. The S3 uri should be something like s3://model-
deployment<your initials>/mlflow-models/sklearn-model/. The
envSecretRefName: aws-secret line tells the deployment to create
environment variables using the information stored in the secret. Run the code
block in the CloudShell to create the .yaml file:

cat << EOF > bank_churn.yaml

apiVersion: machinelearning.seldon.io/v1alpha2

kind: SeldonDeployment

metadata:

 name: bank-churn

spec:

 name: bank-churn

 predictors:

 - graph:

 children: []

 implementation: SKLEARN_SERVER

 modelUri: <<S3 uri of model file>>

 envSecretRefName: aws-secret

 name: classifier

 name: default

 replicas: 1

EOF

After the file is created, run kubectl apply -f bank_churn.yaml to deploy
the model.

218 Open Source Machine Learning Platforms

To check the status of the deployment, run the following commands. The first
command installs the utility for displaying strings in JSON format, and the second
command queries the status:

sudo yum -y install jq gettext bash-completion moreutils

kubectl get sdep bank-churn -o json | jq .status

You can also directly check any logs inside of the running container for their status
by using the following command:

kubectl logs <pod name> -c <container name>

Let's test the new Seldon Core endpoint inside the cluster. To do this, we will run
a Pod inside the cluster and shell into it to test the endpoint. Create the template
in CloudShell with the following code block. This template will create a Pod with
a container running the Ubuntu operating system:

cat << EOF > ubuntu.yaml

apiVersion: v1

kind: Pod

metadata:

 name: ubuntu

 labels:

 app: ubuntu

spec:

 containers:

 - name: ubuntu

 image: ubuntu:latest

 command: ["/bin/sleep", "3650d"]

 imagePullPolicy: IfNotPresent

 restartPolicy: Always

EOF

Run kubectl apply -f ubuntu.yaml to deploy the Pod. After the Pod is
running, run kubectl exec --stdin --tty ubuntu -- /bin/bash to
access the Ubuntu shell. Then, run the following command inside the Ubuntu shell
to install the curl utility:

apt update

apt upgrade

apt install curl

Hands-on exercise – building a data science architecture using open source technologies 219

Now, run the following curl command to call the endpoint:
curl -X POST http://bank-churn-default.default:
8000/api/v1.0/predictions \

 -d '{ "data": { "ndarray":
[[123,544,37,2,79731,1,1,1,57558,1,1]] } }' \

 -H "Content-Type: application/json"

You should see a response similar to the following, which represents the
probabilities for the output labels (0 and 1):

{"data":{"names":["t:0","t:1"],"ndarray":
[[0.8558529455725855,0.1441470544274145]]},"meta":{}}

The following figure (Figure 7.13) shows the data flow for the inference call we
just made:

Figure 7.13 – An model inference data flow with Seldon Core hosted models

In Figure 7.13, the Ubuntu container is where the curl http command is initiated.
The HTTP call hits the bank-churn-default service, which acts as the abstraction
layer for the bank-churn-default-0-classifier-xxxx Pod. And the Pod
runs the Seldon orchestrator container and the Model server container that hosts the
trained model.

Congratulations! You have now successfully configured an MLflow tracking server and
used it from a Jupyter notebook to centrally manage all your experiments, and you've
deployed your model using the Seldon Core SKLearn server. Next, we will dive into how
to automate everything with an automation pipeline.

220 Open Source Machine Learning Platforms

Part 3 – Automating with an ML pipeline
An ML process involves multiple steps, including data preparation, feature engineering,
model training, and model deployment. After a data scientist completes all the
experiments and model-building tasks, the whole process should be automated using an
ML pipeline. There are various architecture and technology options to consider when
you design a pipeline. In this exercise, we will use the Kubeflow Pipelines platform to
orchestrate the steps. Before we start, we will need to add some configurations to allow the
Kubeflow notebook to access the Kubeflow Pipelines service.

Giving permission to the namespace service account to access the
Istio service
The admin Kubernetes namespace is used by the Kubeflow notebook, and it comes
with a number of service accounts, such as default, default-viewer, and
default-editor. When a notebook runs, it will assume the default-editor
service account. The Kubernetes Istio is a service mesh network that controls how
microservices in a Kubernetes cluster interact with each other. For the service accounts
in the admin namespace to access the Kubeflow pipeline component to create and run
an ML pipeline, a servicerolebinding object needs to be created in the Kubeflow
namespace between the default-editor service account and ServiceRole
(ml-pipeline-services) object. Run the following code in the CloudShell terminal
to create a .yaml definition file. Note that admin in the code is the admin namespace
for the notebook environment:

cat << EOF > notebook_rbac.yaml

apiVersion: rbac.istio.io/v1alpha1

kind: ServiceRoleBinding

metadata:

 name: bind-ml-pipeline-nb-admin

 namespace: kubeflow

spec:

 roleRef:

 kind: ServiceRole

 name: ml-pipeline-services

 subjects:

 - properties:

 source.principal: cluster.local/ns/admin/sa/default-
editor

EOF

Hands-on exercise – building a data science architecture using open source technologies 221

Then, run the following command to apply the configuration to the Kubernetes
environment:

kubectl apply -f notebook_rbac.yaml

The Envoy is the Istio proxy that handles all the inbound and outbound traffic of the service
mesh. When the notebook communicates with the ml-pipeline service through the
service mesh, the header information needs to be forwarded the ml-pipeline service to
establish the user identity from the notebook. The following .yaml file enables that. Run
the following in the CloudShell shell environment to create the file:

cat << EOF > notebook_filter.yaml

apiVersion: networking.istio.io/v1alpha3

kind: EnvoyFilter

metadata:

 name: add-header

 namespace: admin

spec:

 configPatches:

 - applyTo: VIRTUAL_HOST

 match:

 context: SIDECAR_OUTBOUND

 routeConfiguration:

 vhost:

 name: ml-pipeline.kubeflow.svc.cluster.local:8888

 route:

 name: default

 patch:

 operation: MERGE

 value:

 request_headers_to_add:

 - append: true

 header:

 key: kubeflow-userid

 value: admin@kubeflow.org

 workloadSelector:

 labels:

222 Open Source Machine Learning Platforms

 notebook-name: david

EOF

After the file is created, run the following code to set up the header filter in the admin
namespace:

kubectl apply -f notebook_filter.yaml

Great! Now, let's create a pipeline that does the following:

•	 Processes data saved in the data lake, creates a training dataset, and saves it in
a training bucket

•	 Runs a model training job

•	 Deploys the model using the Seldon Core model serving component

We will use Kubeflow Pipelines to track the overall pipeline status, and we will continue
to track experiment details and manage models in the MLflow model registry. Specifically,
we are going to build the following architecture:

Figure 7.14 – Automation pipeline with Kubeflow Pipelines

You will create a new notebook for this portion of the exercise. On your Jupyter notebook
screen, select Python 3 under the New dropdown on the screen to create a new blank
notebook. You will install the Kubeflow Pipelines package in the new notebook by
running the following command in a cell:

!python3 -m pip install kfp --upgrade --user

Hands-on exercise – building a data science architecture using open source technologies 223

Now, we are ready to assemble a pipeline, which consists of three main steps:

1.	 Data processing
2.	 Model training
3.	 Model deployment

The following code imports libraries, including Kubeflow Pipelines SDK package
(KFP), into the notebook. We will use a base Docker image (tensorflow/
tensorflow:2.0.0b0-py3) to execute each step (Kubeflow component) in the
pipeline. Copy and run the following code block in a cell to import the libraries:

import kfp

import kfp.dsl as dsl

from kfp import compiler

from kfp import components

from kfp.aws import use_aws_secret

BASE_IMAGE = 'tensorflow/tensorflow:2.0.0b0-py3'

Next, let's define the first component in the workflow – the data processing component.
You will see a @dsl.python_component decorator. This decorator allows you to set
metadata associated with components. The process_data() function is the function
we will run to execute this data processing step. In this function, we will call the GLUE
job that we defined in Chapter 4, Data Management for Machine Learning, to process the
bank churn dataset. As mentioned earlier, there are several ways to create the Kubeflow
components. For simplicity, we are creating a Python function operator component
that allows us to run a Python function (such as process_data()) directly instead
of building a custom container. The components.func_to_container_op()
function takes the process_data() function and adds it to the base container. Run the
following code block to create the process_data_op Kubeflow component:

@dsl.python_component(

 name='data_process_op',

 description='process data',

 base_image=BASE_IMAGE # you can define the base image
here, or when you build in the next step.

)

def process_data(glue_job_name: str, region: str) -> str:

 import os

 import boto3

224 Open Source Machine Learning Platforms

 import time

 print ('start data processing')

 # kick off the Glue Job to process data

 client = boto3.client('glue', region_name= region)

 job_id = client.start_job_run(JobName = glue_job_name)

 #wait for the job to complete

 job_state = "RUNNING"

 while job_state != "SUCCEEDED":

 time.sleep(60)

 status = client.get_job_run(JobName = glue_job_name,
RunId = job_id['JobRunId'])

 job_state = status['JobRun']['JobRunState']

 print ('data processing completed')

 return f"GLUE job id: {job_id['JobRunId']}"

process_data_op = components.func_to_container_op(

 process_data,

 base_image=BASE_IMAGE,

 packages_to_install =['boto3']

)

Next, let's create a model training component. Similar to what we have done before,
we will need to install some packages. Here, we will integrate the model training
component with MLflow to track the experiment metrics and model artifacts. Also,
remember to replace <<your mlflow tracking server url>> with your own
mlflow tracking server URL:

@dsl.python_component(

 name='model_training_op',

 description='model training step',

 base_image=BASE_IMAGE # you can define the base image
here, or when you build in the next step.

)

def train_model(bucket: str, key: str, region: str, previous_

Hands-on exercise – building a data science architecture using open source technologies 225

output: str) -> str :

 import os

 import boto3

 import mlflow

 import pandas as pd

 from sklearn.ensemble import RandomForestClassifier

 from sklearn.model_selection import train_test_split

 s3 = boto3.client('s3', region_name= region)

 response = s3.list_objects (Bucket = bucket, Prefix = key)

 key = response['Contents'][0]['Key']

 s3.download_file ('datalake-demo-dyping', key, "churn.csv")

 churn_data = pd.read_csv('churn.csv')

 # Split the dataset into training (80%) and testing (20%).

 churn_train, churn_test = train_test_split(churn_data,
test_size=0.2)

 churn_train_X = churn_train.loc[:, churn_train.columns !=
'exited']

 churn_train_y = churn_train['exited']

 churn_test_X = churn_test.loc[:, churn_test.columns !=
'exited']

 churn_test_y = churn_test['exited']

 tracking_uri = <<your mlflow tracking server url>>

 mlflow.set_tracking_uri(tracking_uri)

 mlflow.set_experiment('Churn Experiment 3')

 with mlflow.start_run(run_name="churn_run_2") as run:

 bank_churn_clf = RandomForestClassifier(max_depth=2,
random_state=0)

226 Open Source Machine Learning Platforms

 mlflow.sklearn.autolog()

 bank_churn_clf.fit(churn_train_X, churn_train_y)

 mlflow.sklearn.log_model(sk_model=bank_churn_clf,
artifact_path="sklearn-model", registered_model_name="churn-
model")

 print (f"MLflow run id: {run.info.run_id}")

 return f"MLflow run id: {run.info.run_id}"

train_model_op = components.func_to_container_op(

 train_model,

 base_image=BASE_IMAGE,

 packages_to_install =['boto3', 'mlflow', 'scikit-learn',
'matplotlib'],

)

The preceding training step will register the model in the MLflow model registry. We
will need to download a target model version and upload it to the S3 bucket for the
deployment step. Add the following code block to the notebook, which will create a
download_model_op component. Remember to replace model-deployment-
<your initials> with your own bucket name, and replace <<your mlflow
tracking server>> with your own tracking server:

@dsl.python_component(

 name='model_download_op',

 description='model training step',

 base_image=BASE_IMAGE # you can define the base image
here, or when you build in the next step.

)

def download_model(model_version: int, previous_output: str)
-> str :

 import mlflow

 import os

 import shutil

 import boto3

 model_name = "churn-model"

 model_version = model_version

Hands-on exercise – building a data science architecture using open source technologies 227

 tracking_uri = <<your mlflow tracking server>>

 mlflow.set_tracking_uri(tracking_uri)

 mlflow.set_experiment('Churn Experiment 3')

 sk_model = mlflow.sklearn.load_model(f"models:/{model_
name}/{model_version}")

 mlflow.sklearn.save_model(sk_model, f"{model_name}_{model_
version}")

 os.mkdir(f"skserver_{model_name}_release")

 src = f"{model_name}_{model_version}/model.pkl"

 des = f"skserver_{model_name}_release/model.joblib"

 shutil.copyfile(src, des)

 targetbucket = "model-deployment-<your initials>"

 prefix = f"mlflow-models/{model_name}_release"

 def upload_objects(src_path, bucketname):

 s3 = boto3.resource('s3')

 my_bucket = s3.Bucket(bucketname)

 for path, dirs, files in os.walk(src_path):

 dirs[:] = [d for d in dirs if not
d.startswith('.')]

 path = path.replace("\\","/")

 directory_name = prefix + path.replace(src_path,"")

 for file in files:

 my_bucket.upload_file(os.path.join(path, file),
directory_name + "/" + file)

 upload_objects (des, targetbucket)

228 Open Source Machine Learning Platforms

 print (f"target bucket: {targetbucket}, prefix: {prefix} ")

 return f"target bucket: {targetbucket}, prefix: {prefix} "

model_download_op = components.func_to_container_op(

 download_model,

 base_image=BASE_IMAGE,

 packages_to_install =['boto3', 'mlflow', 'scikit-learn'],

)

Now, we're ready to construct the pipeline definition. You construct the pipeline definition
by using the @dsl.pipeline decorator and then defining a function that specifies
the flow of the pipeline. To run the pipeline, we will need to add some extra Kubernetes
permissions to the service account (default-editor) associated with the pipeline in
order to deploy the model to the cluster. The right way to do this is to create a new role
with proper permissions. For simplicity, we will reuse the existing cluster-admin role,
which has all the rights we need to deploy the model. To associate the service account
(default-editor) with cluster-admin, we will create clusterrolebinding.
Run the following code block in your CloudShell shell environment to create a .yaml
file for the clusterrolebinding object, and then run kubectl apply -f
sa-cluster-binding.yaml to establish the binding:

cat << EOF > sa-cluster-binding.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: default-editor-binding

 namespace: admin

subjects:

- kind: ServiceAccount

 name: default-editor

 namespace: admin

roleRef:

 kind: ClusterRole

 name: cluster-admin

 apiGroup: rbac.authorization.k8s.io

EOF

Hands-on exercise – building a data science architecture using open source technologies 229

Next, we need to create a Seldon Core deployment file for the pipeline to use. Create a new
file in your Jupyter Notebook environment called bank_churn_deployment.yaml,
copy the following code to it, and save. Make sure to replace <<S3 uri of model
file>> before you save the file:

apiVersion: machinelearning.seldon.io/v1alpha2

kind: SeldonDeployment

metadata:

 name: bank-churn

spec:

 name: bank-churn

 predictors:

 - graph:

 children: []

 implementation: SKLEARN_SERVER

 modelUri: <<S3 uri of model file>>

 envSecretRefName: aws-secret

 name: classifier

 name: default

 replicas: 1

EOF

Alright, we are now ready to construct the pipeline by running the following code block.
Note that we will use AWS credentials in some of the steps. To securely manage the AWS
credentials and pass them to the component, we need to create a new secret in the admin
namespace before we build the pipeline. Run the following script in the CloudShell
terminal, and then run kubectl apply - f aws_secret_admin.yaml.
Remember to replace <<your AWS access key>> and <<your AWS secret
key>> with your own keys:

cat << EOF > aws_secret_admin.yaml

apiVersion: v1

kind: Secret

metadata:

 name: aws-secret

 namespace: admin

type: Opaque

data:

230 Open Source Machine Learning Platforms

 AWS_ACCESS_KEY_ID: <<your AWS access key>>

 AWS_SECRET_ACCESS_KEY: <<your AWS secret key>>

EOF

Now, construct the pipeline definition by running the following code block in a Jupyter
notebook cell. We will have four steps in this workflow:

•	 precess_data_task

•	 model_training_task

•	 model_download_task

•	 seldondeploy

For simplicity, we added the default values to the pipeline. Remember to replace <<aws
region>> with your region:

@dsl.pipeline(

 name='bank churn pipeline',

 description='Train bank churn model'

)

def preprocess_train_deploy(

 bucket: str = 'datalake-demo-dyping',

 glue_job_name: str = 'customer-churn-processing',

 region: str = <<aws region>>,

 tag: str = '4',

 model: str = 'bank_churn_model',

 model_version: int = 1,

):

 precess_data_task = process_data_op(glue_job_name, region).
apply(use_aws_secret('aws-secret', 'AWS_ACCESS_KEY_ID', 'AWS_
SECRET_ACCESS_KEY', 'us-west-1'))

 model_training_task = train_model_op(bucket,'ml-customer-
churn/data/', region, precess_data_task.output).apply(use_aws_
secret())

 model_download_task = model_download_op(model_version,
model_training_task.output).apply(use_aws_secret())

Hands-on exercise – building a data science architecture using open source technologies 231

 seldon_config = yaml.load(open("bank_churn_deployment.
yaml"))

 deploy_op = dsl.ResourceOp(

 name="seldondeploy",

 k8s_resource=seldon_config,

 action = "apply",

 attribute_outputs={"name": "{.metadata.name}"})

 deploy_op.after(model_download_task)

The pipeline definition needs to be registered with the Kubeflow Pipelines service. To do
this, we need to compile the preceding definition and save it into a file. Run the following
code block in a new cell to compile the definition into a file:

import kfp.compiler as compiler

pipeline_filename = 'bank_churn_pipeline.tar.gz'

compiler.Compiler().compile(preprocess_train_deploy, pipeline_
filename)

Now, we are ready to register and run the pipeline by creating an experiment (which is
used to organize all the end-to-end workflow runs for the different experiments) and run
the pipeline using the run_pipeline() function. Note that we are also using MLflow
to track the details for the model training step of the workflow:

client = kfp.Client()

experiment = client.create_experiment(name='data_experiment',
namespace='admin')

arguments = {'model_version':1}

pipeline_func = preprocess_train_deploy

run_name = pipeline_func.__name__ + '_run'

run_result = client.run_pipeline(experiment.id, run_name,
pipeline_filename, arguments)

232 Open Source Machine Learning Platforms

To monitor the status of the pipeline execution, you can switch to the Kubeflow
Dashboard screen, select Pipelines, select Experiments, expand the section for your
pipeline, and click on the link under the Run name column. You should see a graph
similar to the following figure, which represents the execution graph of your pipeline:

Figure 7.15 – Kubeflow Pipelines workflow execution

Congratulations, you have successfully created a simple ML platform that gives us the
ability to process data, train a model, and deploy a model. You also got to build
a simple ML pipeline to automate the ML steps in the pipeline, which is the key to faster
and more consistent model deployment.

Summary
In this chapter, you learned about the core architecture components of a typical ML
platform and their capabilities. We also discussed various open source technologies such
as Kubeflow, MLflow, TensorFlow Serving, Seldon Core, Apache Airflow, and Kubeflow
Pipelines. You have also built a data science environment using Kubeflow notebooks,
tracked experiments and models using MLflow, and deployed your model using Seldon
Core. And finally, you learned how to automate multiple ML workflow steps using
Kubeflow Pipelines, including data processing, model training, and model deployment.
While these open source technologies provide features for building potentially
sophisticated ML platforms, it still takes significant engineering effort and know-how to
build and maintain such environments, especially for large-scale ML platforms. In the
next chapter, we will start looking into fully managed, purpose-built ML solutions for
building and operating ML environments.

8
Building a

Data Science
Environment Using

AWS ML Services
While some organizations choose to build machine learning (ML) platforms on their
own using open source technologies, many other organizations prefer to use fully
managed ML services as the foundation for their ML platforms. In this chapter, we will
focus on the fully managed ML services offered by AWS. Specifically, you will learn
about Amazon SageMaker, a fully managed ML service, and other related services for
building a data science environment for data scientists. We will cover specific SageMaker
components such as SageMaker Notebook, SageMaker Studio, SageMaker Training
Service, and SageMaker Hosting Service. We will also discuss the architecture pattern for
building a data science environment, and we will provide a hands-on exercise in building
a data science environment.

234 Building a Data Science Environment Using AWS ML Services

After completing this chapter, you will be familiar with Amazon SageMaker, AWS
CodeCommit, and Amazon ECR and be able to use these services to build a data science
environment, which you can then use to build, train, and deploy ML models.

Specifically, we will be covering the following topics:

•	 Data science environment architecture using SageMaker

•	 Hands-on exercise – building a data science environment using AWS services

Technical requirements
In this chapter, you will need access to an AWS account and have the following AWS
services for the hands-on lab:

•	 Amazon S3

•	 Amazon SageMaker

•	 AWS CodeCommit

•	 Amazon ECR

You will also need to download the dataset from https://www.kaggle.com/
ankurzing/sentiment-analysis-for-financial-news.

The sample source code used in this chapter can be found at https://github.
com/PacktPublishing/The-Machine-Learning-Solutions-Architect-
Handbook/tree/main/Chapter08.

Data science environment architecture using
SageMaker
Data scientists use data science environments to iterate different data science experiments
with different datasets and algorithms. They need tools such as Jupyter Notebook for code
authoring and execution, data processing engines for large data processing and feature
engineering, and model training services for large-scale model training. The data science
environment needs to provide utilities that can help you manage and track different
experimentation runs. To manage artifacts such as source code and Docker images, the
data scientists also need a code repository and Docker container repository.

https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-news
https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-news
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter08
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter08
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter08

Data science environment architecture using SageMaker 235

Amazon SageMaker provides end-to-end ML capabilities that cover data preparation and
data labeling, model training and tuning, model deployment, and model monitoring. It
also provides other supporting features such as experiment tracking, a model registry,
a feature store, and pipelines. The following diagram illustrates a basic data science
environment architecture that's using Amazon SageMaker and other supporting services:

Figure 8.1 – Data science environment architecture

Now, let's take a closer look at some of these core components.

236 Building a Data Science Environment Using AWS ML Services

SageMaker Studio
SageMaker Studio is the data science integrated development environment (IDE) for
SageMaker. It provides core features such as hosted notebooks for running experiments,
as well as access to different backend services such as data wrangling, model training,
and model hosting services from a single user interface. It is the main interface for data
scientists to interact with most of SageMaker's functionality. It also provides a Python
SDK for interacting with its backend services programmatically from Python notebooks
or scripts. The following diagram shows the key components of SageMaker Studio:

Figure 8.2 – SageMaker Studio architecture

Data science environment architecture using SageMaker 237

To access the Studio environment, a user can either authenticate via AWS Management
Console first (that is, via IAM mode) and then navigate to the SageMaker management
console to access Studio, or they can authenticate via the Studio environment's single
sign-on (SSO) interface without the need for AWS Management Console access.

SageMaker Studio uses a concept called a domain to segregate different user
environments. A domain is a collection of user profiles, where each profile provides
specifications such as AWS IAM roles to use for Jupyter Notebook, notebook sharing
configuration, and network settings for connecting to AWS. Once a user has been
authenticated, the user is mapped to a user profile to launch the actual Studio
environment. Once inside the Studio environment, the user can create new notebooks
using different ML kernels, such as Python, TensorFlow, or PyTorch. From inside Studio,
the user will also have access to other SageMaker functionality such as Data Wrangler for
data preparation, SageMaker Experiments for experiment tracking, SageMaker AutoPilot
for automated ML model training, SageMaker Feature Store for feature management, and
SageMaker Endpoints for hosting trained ML models.

For each SageMaker domain, an Amazon Elastic File System (EFS) volume is created and
attached to the domain. This EFS volume is used as data storage for all the user data in the
domain. Each user profile is mapped to a directory in the EFS volume.

The notebooks that are created in Studio will be backed by EC2 servers. SageMaker
provides a wide range of CPU and GPU instances for notebooks. Users have the option to
choose different EC2 server types based on their needs.

238 Building a Data Science Environment Using AWS ML Services

SageMaker Processing
SageMaker Processing provides a separate infrastructure for large-scale data processing
such as data cleaning and feature engineering for large datasets. It can be accessed directly
from a notebook environment via the SageMaker Python SDK or Boto3 SDK. SageMaker
Processing uses Docker container images to run data processing jobs. Several built-in
containers, such as scikit-learn containers and Spark containers, are provided out of the
box. You also have the option to use your custom containers for processing. The following
diagram shows the SageMaker Processing architecture:

Figure 8.3 – SageMaker Processing architecture

When a SageMaker Processing job is initiated, the processing container is pulled from
Amazon ECR and loaded into the EC2 compute cluster. The data in S3 is copied over to
the storage attached to the compute nodes for the data processing scripts to access and
process. Once the processing procedure is completed, the output data is copied back to the
S3 output location.

Data science environment architecture using SageMaker 239

SageMaker Training Service
SageMaker Training Service provides a separate infrastructure for model training.
SageMaker provides three main methods for model training:

•	 SageMaker provides a list of built-in containerized algorithms for model training.
With the built-in algorithm, you only need to provide training data stored in S3 and
infrastructure specifications.

•	 SageMaker provides a list of managed framework containers such as containers for
scikit-learn, TensorFlow, and PyTorch. With a managed framework container, in
addition to providing data sources and infrastructure specifications, you also need
to provide a training script that runs the model training loop.

•	 SageMaker allows you to bring your own custom container for model training. This
container needs to contain the model training scripts, as well as all the dependencies
required to run the training loop.

The following diagram shows the architecture of SageMaker Training Service:

Figure 8.4 – SageMaker Training Service architecture

You can use the AWS Boto3 SDK or the SageMaker Python SDK to kick off a training job.
To run the training job, you need to provide configuration details such as the training
Docker image's URL, training script location, framework version, training dataset, and
model output location, as well as infrastructure details such as the compute's instance type
and number, as well as networking details.

240 Building a Data Science Environment Using AWS ML Services

By default, SageMaker tracks all training jobs and their associated metadata, such as
algorithms, input training dataset URLs, hyperparameters, and model output locations.
Training jobs also emit system metrics and algorithm metrics to AWS CloudWatch for
monitoring. Training logs are also sent to CloudWatch logs for inspection and analysis
needs.

SageMaker training jobs also allow you to integrate with the SageMaker debugger service.
The debugger service allows the training job to capture additional details, such as system
metrics (for example, CPU/GPU memory, network, and I/O metrics), deep learning
framework metrics (for example, model training metrics at different neural network
layers), and model training tensors (for example, model parameters) and save them to S3.
Real-time debugger evaluation rules can be configured to monitor these stats and send out
alerts when they meet a certain threshold. Some examples of the built-in evaluation rules
are vanishing gradients and model overfitting.

SageMaker Tuning
To optimize the model's performance, you also need to try different hyperparameters,
such as a learning rate for gradient descent and model training. An algorithm can contain
a large number of hyperparameters, and tuning them manually would be a highly labor-
intensive task. The SageMaker Tuning service works with SageMaker training jobs to tune
model training hyperparameters automatically.

The SageMaker Tuning service supports two types of hyperparameter tuning strategies:

•	 Random search: This is where a random combination of values for the
hyperparameters is used to train a model.

•	 Bayesian search: This is where the hyperparameter search is treated like
a regression problem, where the inputs for regression are the values of the
hyperparameters and the output is the model's performance metric once the model
has been trained using the input values. The Tuning service uses the values that have
been collected from the training jobs to predict the next set of values that would
produce model improvement.

The SageMaker Tuning service works with SageMaker training jobs to optimize the
hyperparameters. It works by sending different input hyperparameter values to the
training jobs and picking the hyperparameter values that return the best model metrics.

Data science environment architecture using SageMaker 241

SageMaker Experiments
You can organize and track your experiments using SageMaker Experiments. SageMaker
Experiments has two core concepts:

•	 Trial: A trial is a collection of training steps involved in a trial run. This can
include trial components such as processing, training, and evaluation. You can
enrich trials and trial components with a set of metadata, such as dataset sources,
hyperparameters, and model training metrics.

•	 Experiment: An experiment is a collection of trials, so you can group all the trials
related to an experiment to easily compare different trial runs.

Now, let's look at SageMaker Hosting.

SageMaker Hosting
As a data scientist builds and experiments with different models, sometimes, there
is a need to host the model behind an API so that it can be used by downstream
applications for integration testing. SageMaker Hosting provides such capabilities.
They are listed as follows:

•	 AWS CodeCommit: AWS CodeCommit is a fully managed code repository for
source code version control. It is similar to any Git-based repository and integrates
with SageMaker Studio UI to allow data scientists to clone code repositories in AWS
CodeCommit, as well as pull and push files from and to the repository. For the
data science environment, you can also use other code repository services such as
GitHub and Bitbucket.

AWS CodeCommit provides three different ways for connections: HTTPS, which
allows a Git client to connect to the repository via the HTTPS protocol; SSH, which
allows a Git client to connect to the repository via the SSH protocol; and HTTPS,
which is the protocol you should use with the Git-remote-codecommit (GRC)
utility. This utility extends Git to pull and push code from AWS CodeCommit.

•	 Amazon ECR: Amazon ECR is a fully-managed Docker container repository
and registry service. SageMaker uses container images for data processing, model
training, and model hosting. These images can be stored in Amazon ECR for
management and access.

242 Building a Data Science Environment Using AWS ML Services

With that, we have discussed the core architecture components of a data science
environment in AWS. Next, we will provide a hands-on exercise where you will
configure a data science environment and perform some data science experiments
and model building.

Hands-on exercise – building a data science
environment using AWS services
In this hands-on exercise, you will create a data science environment using SageMaker
with AWS CodeCommit as the source control.

Problem statement
As an ML Solutions Architect, you have been tasked with building a data science
environment on AWS for the data scientists in the Equity Research department. The
data scientists in the Equity Research department have several NLP problems, such as
detecting the sentiment of financial phrases. Once you have created the environment for
the data scientists, you also need to build a proof of concept to show the data scientists
how to build and train an NLP model using the environment.

Dataset
The data scientists have indicated that they like to use the BERT model to solve sentiment
analysis problems, and they plan to use the financial phrase dataset to establish some
initial benchmarks for the model: https://www.kaggle.com/ankurzing/
sentiment-analysis-for-financial-news.

Lab instructions
Follow these steps to create a data science environment using SageMaker with AWS
CodeCommit as the source control.

Setting up SageMaker Studio
Follow these steps to set up a SageMaker Studio environment:

1.	 To create a SageMaker Studio environment, we need to set up a domain and a user
profile in the respective AWS region. Navigate to the SageMaker management
console once you've logged into AWS Management Console and click on the
Amazon SageMaker Studio link on the left.

https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-news
https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-news

Hands-on exercise – building a data science environment using AWS services 243

2.	 On the right-hand side of the screen, choose the Quick Start option. The Quick
Start option will use IAM mode for authentication. You can keep the default
username or change it to something else. For the execution role dropdown, choose
the Create a new role option, keep all the default options on the pop-up screen
as-is, and create the role. The execution role provides permission to access different
resources, such as S3 buckets, and will be associated with Studio notebooks, which
we will create later.

3.	 Lastly, click on the Create button to set up the domain and user. It will take a few
minutes for the domain to be set up.

Additionally, the following resources are also created behind the scenes:

•	 An S3 bucket for the domain: The name of the domain should look something like
sagemaker-studio-<AWS account number>-XXXX. This bucket can be
used for storing datasets and model artifacts.

•	 Elastic File System volume: This volume is used by the Studio domain for storing
user data. If you navigate to the EFS management console, you should see that a
new filesystem has been created.

Once the setup is completed, you should see the following screen:

Figure 8.5 – Studio setup screen

244 Building a Data Science Environment Using AWS ML Services

To start the Studio environment for the newly created user, click on the Launch app
dropdown and select Studio. It will take a few minutes for the Studio environment to
appear. Once everything is ready, you will see a screen similar to the following:

Figure 8.6 – Studio UI

Now that we have configured the Studio environment, let's set up an Amazon
CodeCommit repository for source code version control.

Setting up CodeCommit
Navigate to the AWS CodeCommit management console, click on the Repositories
link in the left pane, and then click Create repositories to start creating a CodeCommit
repository. Provide a name for the repository and select Create.

Now that we've created a new repository, let's configure the newly created Studio
environment to use this new repository. There are several approaches we can take
to set up authentication credentials to access the CodeCommit repository:

•	 IAM user credential: To do this, create a new IAM user and attach the
AWSCodeCommitPowerUser policy to it for simplicity. Download the AWS
credential to your local machine and look up the IAM credentials in the file. Next,
open a Terminal in Studio by selecting File > New > Terminal from the menu
dropdown. Once the new Terminal window is open, run the AWS Config command
to set up the IAM credential.

Hands-on exercise – building a data science environment using AWS services 245

•	 Studio Notebook execution role: You can also attach the
AWSCodeCommitPowerUser policy to the Studio notebook execution role you
created in the previous section. To do this, look up the SageMaker Execution role
under the Studio username you are using under the Studio control panel. Then, use
the AWS IAM service to attach the policy to the role.

You can use either of the preceding approaches to configure the authentication for
CodeCommit. Once you have done this, you can clone the CodeCommit repository
we created earlier. To do this, select the Git menu dropdown in the Studio UI pick the
Clone a Repository option (see the following screenshot), and paste the HTTPS URL
for the repository. You can copy the HTTPS URL next to the repository name in the
CodeCommit management console:

Figure 8.7 – Clone a Repository

Once you've done this, you should see a new folder in the folder view. Now that we have
created a data science environment, let's use it to perform some experiments and build an
ML model.

Training the BERT model in the Jupyter Notebook
In this part of the hands-on exercise, we will train a financial sentiment analysis NLP
model using the BERT transformer, which we learned about in Chapter 3, Machine
Learning Algorithms. To get started, double-click on the newly cloned folder in the folder
view and create a new notebook to author our code by selecting File > New > Notebook
from the menu dropdown in the folder. When prompted to select a kernel, pick Python 3
(PyTorch 1.6 Python 3.6 GPU Optimized). You can rename the file so that it has a more
meaningful name by selecting File > Rename Notebook from the menu.

246 Building a Data Science Environment Using AWS ML Services

We will use the financial news sentiment dataset for model training. Download the dataset
from Kaggle at https://www.kaggle.com/ankurzing/sentiment-analysis-
for-financial-news. Note that you will need a Kaggle account to download it. Once
it's been downloaded, you should see an archive.zip file.

Next, let's upload the archive.zip file to the Studio notebook. Create a new folder
called data in the same folder where the new notebook is located and upload it to the
data directory using the File Upload utility (the up arrow icon) in Studio UI or drag
it into the data folder. You can unzip the ZIP file using the unzip utility in a Terminal
window. Please note that the Amazon Linux environment does not come with the
unzip utility by default. To install this utility, run sudo yum install unzip in the
Terminal window. You should see several files inside the folder. You will see a file called
all_data.csv inside the data folder.

Now, let's install some additional packages for our exercise. Run the following code block
inside the notebook cell to install the transformer package. The transformer package
provides a list of pre-trained transformers such as BERT. You will use these transformers
to fine-tune an ML task. Note that some of the code block samples are not complete. You
can find the complete code samples at https://github.com/PacktPublishing/
The-Machine-Learning-Solutions-Architect-Handbook/blob/main/
Chapter08/bert-financial-sentiment.ipynb:

!pip install transformers

!pip install ipywidgets

Restart the kernel of the notebook after installing ipywidgets. Next, import some
libraries into the notebook and set up the logger for logging purposes:

import logging

import os

import sys

import numpy as np

import pandas as pd

import torch

from torch.utils.data import DataLoader, TensorDataset

from transformers import AdamW, BertForSequenceClassification,
BertTokenizer

from sklearn.preprocessing import OrdinalEncoder

from sklearn.model_selection import train_test_split

from types import SimpleNamespace

logger = logging.getLogger(__name__)

https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-news
https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-news
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter08/bert-financial-sentiment.ipynb
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter08/bert-financial-sentiment.ipynb
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter08/bert-financial-sentiment.ipynb

Hands-on exercise – building a data science environment using AWS services 247

logger.setLevel(logging.DEBUG)

logger.addHandler(logging.StreamHandler(sys.stdout))

Now, we are ready to load the data file and process it. The following code block loads
the data file and splits the data into train and test datasets. We will select the first two
columns from the file and name them sentiment and article. The sentiment
column is the label column. It contains three different unique values (negative,
neutral, and positive). Since they are string values, we will convert them into
integers (0,1,2) using OrdinalEncoder from the scikit-learn library. We also need to
determine the max length of the article column. The max length is used to prepare the
input for the transformer since the transformer requires a fixed length:

filepath = './data/all-data-v1.tsv'

data = pd.read_csv(filepath, sep="\t",

 header=None, usecols=[0, 1],

 names=["sentiment", "article"])

ord_enc = OrdinalEncoder()

data["sentiment"] = ord_enc.fit_transform(data[["sentiment"]])

data = data.astype({'sentiment':'int'})

train, test = train_test_split(data)

train.to_csv("./data/train.csv", index=False)

test.to_csv("./data/test.csv", index=False)

MAX_LEN = data.article.str.len().max() # this is the max
length of the sentence

Next, we will build a list of utility functions to support the data loading and model
training. We need to feed data to the transformer model in batches. The following
get_data_loader() function loads the dataset into the PyTorch DataLoader class
with a specified batch size. Note that we also encode the articles into tokens with the
BertTokenizer class:

def get_data_loader(batch_size, training_dir, filename):

 logger.info("Get data loader")

 tokenizer = BertTokenizer.from_pretrained("bert-base-
uncased", do_lower_case=True)

 dataset = pd.read_csv(os.path.join(training_dir, filename))

248 Building a Data Science Environment Using AWS ML Services

 articles = dataset.article.values

 sentiments = dataset.sentiment.values input_ids = []

 for sent in articles:

 encoded_articles = tokenizer.encode(sent, add_special_
tokens=True)

 input_ids.append(encoded_articles)

...

 return tensor_dataloader

The following train() function will run the training loop using the
BertForSequenceClassification class. We will use the pre-trained BERT model
for fine-tuning, instead of training from scratch. We will feed one batch of data to the
BERT model at a time. Note that we will also check if there is a GPU device on the server.
If there is one, we will use the cuda device for GPU training, instead of cpu for CPU
training. We need to manually move the data and BERT model to the same target device
using the .to(device) function so that the training can happen on the target device
with the data residing in memory on the same device. The optimizer we're using here is
AdamW, which is a variant of the gradient descent optimization algorithm. The training
loop will run through the number of epochs specified. One epoch runs through the entire
training dataset once:

def train(args):

 use_cuda = args.num_gpus > 0

 device = torch.device("cuda" if use_cuda else "cpu")

 # set the seed for generating random numbers

 torch.manual_seed(args.seed)

 if use_cuda:

 torch.cuda.manual_seed(args.seed)

 train_loader = get_data_loader(args.batch_size, args.data_
dir, args.train_file)

 test_loader = get_data_loader(args.test_batch_size, args.
data_dir, args.test_file)

 model = BertForSequenceClassification.from_pretrained(

 "bert-base-uncased",

 num_labels=args.num_labels,

 output_attentions=False,

 output_hidden_states=False,)

...

 return model

Hands-on exercise – building a data science environment using AWS services 249

We also want to test the model's performance using a separate test dataset during training.
To do this, we will implement the following test() function, which is called by the
train() function:

def test(model, test_loader, device):

 def get_correct_count(preds, labels):

 pred_flat = np.argmax(preds, axis=1).flatten()

 labels_flat = labels.flatten()

 return np.sum(pred_flat == labels_flat), len(labels_
flat)

 model.eval()

 _, eval_accuracy = 0, 0

 total_correct = 0

 total_count = 0

...

 logger.info("Test set: Accuracy: %f\n", total_correct/
total_count)

Now, we have all the functions needed to load and process data, run the training loop,
and measure the model metrics using a test dataset. With that, we can kick off the training
process. We will use the args variable to set up various values, such as batch size, data
location, and learning rate, to be used by the training loop and the testing loop:

args = SimpleNamespace(num_labels=3, batch_size=16, test_batch_
size=10, epochs=3, lr=2e-5, seed=1,log_interval =50, model_dir
= "model/", data_dir="data/", num_gpus=1, train_file = "train.
csv", test_file="test.csv")

model = train(args)

Once you have run the preceding code, you should see training stats for each batch and
epoch. The model will also be saved in the specified directory.

Next, let's see how the trained model can be used for making predictions directly. To do
this, we must implement several utility functions. The following input_fn() function
takes input in JSON format and outputs an input vector that represents the string input
and its associated mask. The output will be sent to the model for prediction:

def input_fn(request_body, request_content_type):

 if request_content_type == "application/json":

250 Building a Data Science Environment Using AWS ML Services

 data = json.loads(request_body)

 if isinstance(data, str):

 data = [data]

 elif isinstance(data, list) and len(data) > 0 and
isinstance(data[0], str):

 pass

 else:

 raise ValueError("Unsupported input type. Input
type can be a string or a non-empty list. \

 I got {}".format(data))

 tokenizer = BertTokenizer.from_pretrained("bert-base-
uncased", do_lower_case=True)

 input_ids = [tokenizer.encode(x, add_special_
tokens=True) for x in data]

 # pad shorter sentence

 padded = torch.zeros(len(input_ids), MAX_LEN)

 for i, p in enumerate(input_ids):

 padded[i, :len(p)] = torch.tensor(p)

 # create mask

 mask = (padded != 0)

 return padded.long(), mask.long()

 raise ValueError("Unsupported content type: {}".
format(request_content_type))

The following predict_fn() function takes input_data returned by input_fn()
and uses the trained model to generate the prediction. Note that we will also use a GPU
if a GPU device is available on the server:

def predict_fn(input_data, model):

 device = torch.device("cuda" if torch.cuda.is_available()
else "cpu")

 model.to(device)

 model.eval()

Hands-on exercise – building a data science environment using AWS services 251

 input_id, input_mask = input_data

 input_id = input_id.to(device)

 input_mask = input_mask.to(device)

 with torch.no_grad():

 y = model(input_id, attention_mask=input_mask)[0]

 return y

Now, run the following code to generate a prediction. Replace the value of the article with
different financial text to see the result:

import json

print("sentiment label : " + str(np.argmax(preds)))

article = "Operating profit outpaced the industry average"

request_body = json.dumps(article)

enc_data, mask = input_fn(request_body, 'application/json')

output = predict_fn((enc_data, mask), model)

preds = output.detach().cpu().numpy()

print("sentiment label : " + str(np.argmax(preds)))

Now, let us look at an alternative way to train the BERT model.

Training the BERT model with SageMaker Training Service
In the previous section, you trained the BERT model directly inside a GPU-based Jupyter
Notebook. Instead of provisioning a GPU-based notebook instance, you can provision a
less costly CPU-based instance and send the model training task to SageMaker Training
Service. To use SageMaker Training Service, you need to make some minor changes to
the training script and create a separate launcher script to kick off the training. As we
discussed in the SageMaker Training Service section, there are three main approaches
to training a model in SageMaker. Since SageMaker provides a managed container for
PyTorch, we will use the managed container approach to train the model. With this
approach, you will need to provide the following inputs:

•	 A training script as the entry point, as well as dependencies

•	 An IAM role to be used by the training job

•	 Infrastructures such as the instance type and number

•	 A data (training/validation/testing) location in S3

252 Building a Data Science Environment Using AWS ML Services

•	 A model output location in S3

•	 Hyperparameters for training the model

When a training job is started, SageMaker Training Service will perform the following
tasks in sequence:

1.	 Launch the EC2 instances needed for the training job.
2.	 Download the data from S3 to the training host.
3.	 Download the appropriate managed container from the SageMaker ECR registry

and run the container.
4.	 Copy the training script and dependencies to the training container.
5.	 Run the training script and pass the hyperparameters as command-line arguments

to the training script. The training script will load the training/validation/testing
data from specific directories in the container, run the training loop, and save the
model to a specific directory in the container. Several environment variables will be
set in the container to provide configuration details, such as directories for the data
and model output, to the training script.

6.	 Once the training script exits with success, SageMaker Training Service will copy
the saved model artifacts from the container to the model output location in S3.

Now, let's create the following training script, name it train.py, and save it in a new
directory called code. Note that the training script is almost the same as the code
in Training the BERT model in the Jupyter Notebook section. We have also added an
if __name__ == "__main__": section at the end. This section contains the code
for reading the values of the command-line arguments and the values of the system
environment variables such as SageMaker's data directory (SM_CHANNEL_TRAINING),
the model output directory (SM_MODEL_DIR), and the number of GPUs (SM_NUM_
GPUS) available on the host. Note that the following code sample is not complete. You
can find the complete code sample at https://github.com/PacktPublishing/
The-Machine-Learning-Solutions-Architect-Handbook/blob/main/
Chapter08/code/train.py:

import argparse

import logging

import os

import sys

import numpy as np

import pandas as pd

import torch

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter08/code/train.py
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter08/code/train.py
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter08/code/train.py

Hands-on exercise – building a data science environment using AWS services 253

from torch.utils.data import DataLoader, TensorDataset

from transformers import AdamW, BertForSequenceClassification,
BertTokenizer

 logger = logging.getLogger(__name__)

logger.setLevel(logging.DEBUG)

logger.addHandler(logging.StreamHandler(sys.stdout))

...

 train(parser.parse_args())

The preceding script requires library packages that are not available in the managed
training container. You can install custom library packages using the requirement.txt
file. Create a requirement.txt file with the following code and save it in the
code directory:

transformers==2.3.0

Next, let's create a launcher notebook for kicking off the training job using SageMaker
Training Service. The launcher notebook will do the following:

•	 Upload the training and test dataset to the S3 bucket and folders.

•	 Set up SageMaker PyTorch Estimator using the SageMaker SDK to configure the
training job.

•	 Kick off the SageMaker training job.

Create a new notebook called bert-financial-sentiment-launcher.ipynb
in the folder where the code folder is located and copy the following code block into the
notebook one cell at a time. When you're prompted to choose a kernel, pick the Python 3
(Data Science) kernel.

The following code specifies the S3 bucket to be used for saving the training and testing
dataset, as well as the model artifacts. You can use the bucket that was created earlier
in Setting up SageMaker Studio section, when the Studio domain was configured. The
training and test dataset we created earlier will be uploaded to the bucket. The get_
execution_role() function returns the IAM role associated with the notebook,
which we will use to run the training job later:

import os

import numpy as np

import pandas as pd

import sagemaker

254 Building a Data Science Environment Using AWS ML Services

sagemaker_session = sagemaker.Session()

bucket = <bucket name>

prefix = "sagemaker/pytorch-bert-financetext"

role = sagemaker.get_execution_role()

inputs_train = sagemaker_session.upload_data("./data/train.
csv", bucket=bucket, key_prefix=prefix)

inputs_test = sagemaker_session.upload_data("./data/test.csv",
bucket=bucket, key_prefix=prefix)

Finally, we must set up the SageMaker PyTorch estimator and kick off the training job.
Note that you can also specify the PyTorch framework version and Python version to set
up the container. For simplicity, we are passing the name of the training file and test file, as
well as max length, as hyperparameters. The train.py file can also be modified to look
them up dynamically:

from sagemaker.pytorch import PyTorch

output_path = f"s3://{bucket}/{prefix}"

estimator = PyTorch(

 entry_point="train.py",

 source_dir="code",

 role=role,

 framework_version="1.6",

 py_version="py3",

 instance_count=1,

 instance_type="ml.p3.2xlarge",

 output_path=output_path,

 hyperparameters={

 "epochs": 4,

 "lr" : 5e-5,

 "num_labels": 3,

 "train_file": "train.csv",

 "test_file" : "test.csv",

 "MAX_LEN" : 315,

 "batch-size" : 16,

 "test-batch-size" : 10

Hands-on exercise – building a data science environment using AWS services 255

 }

)

estimator.fit({"training": inputs_train, "testing": inputs_
test})

Once the training job has been completed, you can go to the SageMaker management
console to access the training job's details and metadata. Training jobs also send outputs
to CloudWatch logs and CloudWatch metrics. You can navigate to these logs by clicking
on the respective links on the training job detail page.

Deploying the model
In this step, we will deploy the trained model to a SageMaker RESTful endpoint so that
it can be integrated with downstream applications. We will use the managed PyTorch
serving container to host the model. With the managed PyTorch serving container,
you can provide an interference script to process the request data before it is sent to the
model for inference, as well as control how to call the model for inference. Let's create a
new script called inference.py in the code folder that contains the following code
block. As you have probably noticed, we have used the same functions that we used in
Training the BERT model in the Jupyter Notebook section for the predictions. Note that
you need to use the same function signatures for these two functions as SageMaker will
be looking for the exact function name and parameter lists. You can find the complete
source code at https://github.com/PacktPublishing/The-Machine-
Learning-Solutions-Architect-Handbook/blob/main/Chapter08/
code/inference.py:

import logging

import os

import sys

import json

 import numpy as np

import pandas as pd

import torch

from torch.utils.data import DataLoader, TensorDataset

from transformers import BertForSequenceClassification,
BertTokenizer

...

def model_fn(model_dir):

 ...

 loaded_model = BertForSequenceClassification.from_

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter08/code/inference.py
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter08/code/inference.py
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter08/code/inference.py

256 Building a Data Science Environment Using AWS ML Services

pretrained(model_dir)

 return loaded_model.to(device)

def input_fn(request_body, request_content_type):

 ...

def predict_fn(input_data, model):

 device = torch.device("cuda" if torch.cuda.is_available()
else "cpu")

 model.to(device)

 model.eval()

 ...

 return y

Next, we need to modify the bert-financial-sentiment-launcher.ipynb file
to create the endpoint. You can deploy trained models from the SageMaker estimator
class directly. Here, however, we want to show you how to deploy a model that's been
trained previously, as this is the most likely deployment scenario:

from sagemaker.pytorch.model import PyTorchModel

model_data = estimator.model_data

 pytorch_model = PyTorchModel(model_data=model_data,

 role=role,

 framework_version="1.6",

 source_dir="code",

 py_version="py3",

 entry_point="inference.py")

predictor = pytorch_model.deploy(initial_instance_count=1,
instance_type="ml.m4.xlarge")

After the model has been deployed, we can call the model endpoint to generate some
predictions:

predictor.serializer = sagemaker.serializers.JSONSerializer()

predictor.deserializer = sagemaker.deserializers.
JSONDeserializer()

result = predictor.predict("The market is doing better than
last year")

print("predicted class: ", np.argmax(result, axis=1))

Hands-on exercise – building a data science environment using AWS services 257

Try out different phrases and see if the model predicts the sentiment correctly. You can
also access the endpoint's details by navigating to the SageMaker management console
and clicking on the endpoint.

To avoid any ongoing costs for the endpoint, let's delete it. Run the following command in
a new cell to delete the endpoint:

predictor.delete_endpoint()

With that, you have finished building the model and finalized your source code. Now, let's
persist the source code to the CodeCommit repository.

Saving the source code to the CodeCommit repository
There are several steps involved in committing a changed file to a source code repository:

1.	 Stage the files for source code control.
2.	 Commit the changes and provide a change summary and description.
3.	 Push the changes to the code repository.

Now, let's save a file to the CodeCommit repository. Click on the Git icon on the left pane
in the Studio environment. You should see a list of files under the untracked section.
For testing purposes, let's push a single file to the repository for now. Hover over a file
until the + sign shows up on the right. Click on the + sign to start tracking the changes
and stage the file. To commit the change to the repository, enter a short sentence in the
summary text box toward the bottom of the left pane and click on Commit. Enter a name
and email when prompted. Click on the Git icon at the top to push the changes to the
repository. To verify this, navigate to the CodeCommit repository and see if a new file has
been uploaded.

Congratulations – you have finished building a basic data science environment and used
it to train and deploy an NLP model to detect its sentiment. If you don't want to keep this
environment to avoid any associated costs, make sure that you shut down any instances of
the SageMaker Studio notebooks.

258 Building a Data Science Environment Using AWS ML Services

Summary
In this chapter, we discussed how a data science environment can provide a scalable
infrastructure for experimentation, model training, and model deployment for testing
purposes. You learned about the core architecture components for building a fully
managed data science environment using AWS services such as Amazon SageMaker,
Amazon ECR, AWS CodeCommit, and Amazon S3. You also practiced setting up a data
science environment and trained and deployed an NLP model using both SageMaker
Studio Notebook and SageMaker Training Service. At this point, you should be able to
talk about the key components of a data science environment, as well as how to build
one using AWS services and use it for model building, training, and deployment. In the
next chapter, we will talk about how to build an enterprise ML platform for scale through
automation.

9
Building an

Enterprise ML
Architecture with
AWS ML Services

To support a large number of fast-moving machine learning (ML) initiatives, many
organizations often decide to build enterprise ML platforms capable of supporting the full
ML life cycle, as well as a wide range of usage patterns, which also needs to be automated
and scalable. As a practitioner, I have often been asked to provide architecture guidance on
how to build enterprise ML platforms. In this chapter, we will discuss the core requirements
for enterprise ML platform design and implementation. We will cover topics such as
workflow automation, infrastructure scalability, and system monitoring. You will learn about
architecture patterns for building technology solutions that automate the end-to-end ML
workflow and deployment at scale. We will also dive deep into other core enterprise ML
architecture components such as model training, model hosting, the feature store, and the
model registry at enterprise scale.

260 Building an Enterprise ML Architecture with AWS ML Services

Specifically, we will cover the following topics:

•	 Key requirements for an ML platform

•	 Enterprise ML architecture pattern

•	 Adopting ML Operations (MLOps) for an ML workflow

•	 Hands-on exercise – building an MLOps pipeline on AWS

Governance and security is another important topic for enterprise ML, which we will
cover in greater detail in Chapter 11, ML Governance, Bias, Explainability, and Privacy.
To get started, let's discuss the key requirements for an enterprise ML platform.

Technical requirements
We will continue to use the AWS environment for the hands-on portion of this chapter.
All the source code mentioned in this chapter can be found at https://github.
com/PacktPublishing/The-Machine-Learning-Solutions-Architect-
Handbook/tree/main/Chapter09.

Key requirements for an enterprise ML
platform
To deliver the business values for ML at scale, organizations need to be able to experiment
quickly with different scientific approaches, ML technologies, and datasets at scale. Once
the ML models have been trained and validated, they need to be deployed to production
with minimal friction. While there are similarities between a traditional enterprise
software system and an ML platform, such as scalability and security, an enterprise ML
platform poses many unique challenges, such as integrating with the data platform and
high-performance computing infrastructure for large-scale model training. Now, let's talk
about some specific enterprise ML platform requirements:

•	 Support for the end-to-end ML life cycle: An enterprise ML platform
needs to support both data science experimentation and production-grade
operations/deployments. In Chapter 8, Building a Data Science Environment
Using AWS ML Services, we learned about the key architecture components that
are needed to build a data science experimentation environment. To enable
production-grade operations and deployment, an enterprise ML platform also
needs to have architecture components for large-scale model training, model
management, feature management, and model hosting with high availability
and scalability.

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter09
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter09
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter09

Key requirements for an enterprise ML platform 261

•	 Support for continuous integration (CI), continuous training (CT), and
continuous deployment (CD): An enterprise ML platform provides CI capabilities
beyond just testing and validating code and components – it also provides such
capabilities for data and models. The CD capability for ML is also more than
just deploying a single piece of software; it is the combination of ML models and
inference engines. CT is unique to ML, whereby a model is monitored continuously,
and automated model retraining can be triggered when data drift or model drift
is detected, or training data is changed. Data drift is a change in data whereby the
characteristics of the data in production are statistically different from the model
training data. Model drift is a change in model performance whereby the model
performance degrades from the performance that was achieved during the model
training stage.

•	 MLOps support: An enterprise ML platform provides capabilities for
monitoring the statuses, errors, and metrics of different pipeline workflows,
processing/training jobs, and model serving engines. It also monitors
infrastructure-level stats and resource usages. The automated alert mechanism
is also a key component of MLOps. Where possible, automated failure recovery
mechanisms should be implemented.

•	 Support for different languages and ML frameworks: An enterprise ML platform
allows data scientists and ML engineers to work on different ML problems using the
programming language and ML libraries of their choice. It needs to support popular
languages such as Python and R, as well as ML packages such as TensorFlow,
PyTorch, and scikit-learn.

•	 Computing hardware resource management: Depending on model training
and inference needs and cost considerations, an enterprise ML platform needs
to support different types of compute hardware, such as CPUs and GPUs. Where
applicable, it should also support specialized ML hardware such as AWS's
inferentia chip.

•	 Integration with other third-party systems and software: An enterprise ML
platform seldomly works in isolation. It needs to provide integration capabilities
with other third-party software or platforms, such as workflow orchestration tools,
container registries, and code repositories.

•	 Authentication and authorization: An enterprise ML platform needs to provide
different levels of authentication and authorization control to govern secure access
to data, artifacts, and ML platform resources. This authentication and authorization
can be a built-in capability of the ML platform or it can be provided by an external
authentication and authorization service.

262 Building an Enterprise ML Architecture with AWS ML Services

•	 Data encryption: For regulated industries, such as financial services and healthcare,
data encryption is a key requirement. An enterprise ML platform needs to provide
capabilities for encrypting data at rest and in transit, often with customer-managed
encryptions keys.

•	 Artifacts management: An enterprise ML platform processes datasets and
produces different artifacts at the different phases of the ML life cycle. To establish
reproducibility and meet governance and compliance requirements, an enterprise
ML platform needs to be able to track, manage, and version-control these artifacts.

With that, we have talked about the key requirements of an enterprise ML platform. Next,
let's discuss how AWS ML and DevOps services, such as SageMaker, CodePipeline, and
Step Functions, can be used to build an enterprise-grade ML platform.

Enterprise ML architecture pattern overview
Building an enterprise ML platform on AWS starts with creating different environments to
enable different data science and operations functions. The following diagram shows the
core environments that normally make up an enterprise ML platform. From an isolation
perspective, in the context of the AWS cloud, each environment in the following diagram
is a separate AWS account:

Figure 9.1 – Enterprise ML architecture environments

Enterprise ML architecture pattern overview 263

As we discussed in Chapter 8, Building a Data Science Environment Using AWS ML
Services, data scientists use the data science environment for experimentation, model
building, and tuning. Once these experiments are completed, the data scientists commit
their work to the proper code and data repositories. The next step is to train and tune the
ML models in a controlled and automated environment using the algorithms, data, and
training scripts that were created by the data scientists. This controlled and automated
model training process will help ensure consistency, reproducibility, and traceability for
model building at scale. The following are the core functionalities and technology options
provided by the training, hosting, and shared services environments:

•	 The model training environment manages the full life cycle of model training,
from computing and storage infrastructure resource provisioning to training
job monitoring and model persistence. From a technology option perspective,
you can build out your training infrastructure using proprietary or open source
technology, or you can choose a fully managed ML service, such as the SageMaker
training service.

•	 The model hosting environment is used for serving the trained models behind
web service endpoints or in batch inference mode. Model hosting environments
can have services such as the SageMaker hosting service, Kubernetes/Kubeflow
container-based model serving, Lambda, or EC2-based model serving running
different model inference engines. Other supporting services such as the online
feature store and API management service can also run in the model hosting
environment.

•	 The shared services environment hosts common services tooling such as workflow
orchestration tools, CI/CD tools, code repositories, Docker image repositories,
and private library package tools. A central model registry can also run in
the shared services environment for model registration and model life cycle
management. Service provisioning capabilities, such as creating resources in
different environments through Infrastructure as Code (IaC) or APIs, also run out
of this environment. Any service ticketing tools, such as ServiceNow, and service
provisioning tools, such as Service Catalog, can also be hosted in this environment.

In addition to the core ML environments, there are other dependent environments,
such as security, governance, monitoring, and logging, that are required in the enterprise
ML platform:

•	 The security and governance environment centrally manages authentication
services, user credentials, and data encryption keys. Security audit and reporting
processes also run in this environment. Native AWS services, such as AWS IAM,
AWS KMS, and AWS Config, can be used for various security and governance
functions.

264 Building an Enterprise ML Architecture with AWS ML Services

•	 The monitoring and logging environment centrally aggregates monitoring and
logging data from other environments for further processing and reporting. Custom
dashboarding and alerting mechanisms are normally developed to provide easy
access to key metrics and alerts from the underlying monitoring and logging data.

With that, you have had an overview of the core building blocks of an enterprise ML
platform. Next, let's dive deep into several core areas. Note that there are different patterns
and services we can follow to build an ML platform on AWS. In this chapter, we will cover
one of the enterprise patterns.

Model training environment
Within an enterprise, a model training environment is a controlled environment with
well-defined processes and policies on how it is used and who can use them. Normally, it
should be an automated environment that's managed by an MLOps team, though it can be
self-service enabled for direct usage by data scientists.

Automated model training and tuning are the core capabilities of the model training
environment. To support a broad range of use cases, a model training environment
needs to support different ML and deep learning frameworks, training patterns
(such as single-node and distributed training), and hardware (different CPUs and GPUs).

The model training environment manages the life cycle of the model training process.
This can include authentication and authorization, infrastructure provisioning, data
movement, data preprocessing, ML library deployment, training loop management
and monitoring, model persistence and registry, training job management, and lineage
tracking. From a security perspective, the training environment needs to provide security
capabilities for different isolation requirements, such as network isolation, job isolation,
and artifacts isolation. To assist with operational support, a model training environment
also needs to be able to training status logging, metrics reporting, and training job
monitoring and alerting.

Next, let's learn how the SageMaker training service can be used in a controlled model
training environment in an enterprise setting.

Model training environment 265

Model training engine
The SageMaker training service provides built-in modeling training capabilities for a
range of ML/DL libraries. In addition, you can bring your own Docker containers for
customized model training needs. The following are a subset of supported options for the
SageMaker Python SDK:

•	 Training TensorFlow models: SageMaker provides a built-in training container for
TensorFlow models. The following code sample shows how to train a TensorFlow
model using the built-in container through the TensorFlow estimator API:

from sagemaker.tensorflow import TensorFlow

tf_estimator = TensorFlow(

 entry_point="<Training script name>",

 role= "<AWS IAM role>",

 instance_count=<Number of instances),

 instance_type="<Instance type>",

 framework_version="<TensorFlow version>",

 py_version="<Python version>",)

tf_estimator.fit("<Training data location>")

•	 Training PyTorch models: SageMaker provides a built-in training container for the
PyTorch model. The following code sample shows how to train a PyTorch model
using the PyTorch estimator:

from sagemaker.pytorch import PyTorch

pytorch_estimator = PyTorch(

 entry_point="<Training script name>",

 role= "<AWS IAM role>",

 instance_count=<Number of instances),

 instance_type="<Instance type>",

 framework_version="<PyTorch version>",

 py_version="<Python version>",)

pytorch_estimator.fit("<Training data location>")

•	 Training XGBoost models: XGBoost training is also supported via a built-in
container. The following code shows the syntax for training a XGBoost model using
the XGBoost estimator:

from sagemaker.xgboost.estimator import XGBoost

xgb_estimator = XGBoost(

266 Building an Enterprise ML Architecture with AWS ML Services

 entry_point=" <Training script name>",

 hyperparameters=<List of hyperparameters>,

 role=<AWS IAM role>,

 instance_count=<Number of instances>,

 instance_type="<Instance type>",

 framework_version="<Xgboost version>")

xgb_estimator.fit("<train data location>")

•	 Training scikit-learn models: The following code sample shows how to train
a scikit-learn model using the built-in container:

from sagemaker.sklearn.estimator import SKLearn

sklearn_estimator = SKLearn(

 entry_point=" <Training script name>",

 hyperparameters=<List of hyperparameters>,

 role=<AWS IAM role>,

 instance_count=<Number of instances>,

 instance_type="<Instance type>",

 framework_version="<sklearn version>")

Sklearn_estimator.fit("<training data>")

•	 Training models using custom containers: You can also build a custom training
container and use the SageMaker training service for model training. See the
following code for an example:

from sagemaker.estimator import Estimator

custom_estimator = Estimator (

 Custom_training_img,

 role=<AWS IAM role>,

 instance_count=<Number of instances>,

 instance_type="<Instance type>")

custom_estimator.fit("<training data location>")

In addition to using the SageMaker Python SDK to kick off training, you can also use the
boto3 library and SageMaker CLI commands to start training jobs.

Model training environment 267

Automation support
The SageMaker training service is exposed through a set of APIs and can be automated
by integrating with external applications or workflow tools, such as Airflow and AWS
Step Functions. For example, it can be one of the steps in an Airflow-based pipeline for an
end-to-end ML workflow. Some workflow tools, such as Airflow and AWS Step Functions,
also provide SageMaker-specific connectors to interact with the SageMaker training
service more seamlessly. The SageMaker training service also provides Kubernetes
operators, so it can be integrated and automated as part of the Kubernetes application
flow. The following sample code shows how to kick off a training job using the low-level
API via the AWS boto3 SDK:

import boto3

client = boto3.client('sagemaker')

response = client.create_training_job(

 TrainingJobName='<job name>',

 HyperParameters={<list of parameters and value>},

 AlgorithmSpecification={...},

 RoleArn='<AWS IAM Role>',

 InputDataConfig=[...],

 OutputDataConfig={...},

 ResourceConfig={...},

 ...

}

Regarding using Airflow as the workflow tool, the following sample shows how to use the
Airflow SageMaker operator as part of the workflow definition. Here, train_config
contains training configuration details, such as the training estimator, training instance
type and number, and training data location:

import airflow

from airflow import DAG

from airflow.contrib.operators.sagemaker_training_operator
import SageMakerTrainingOperator

default_args = {

 'owner': 'myflow',

 'start_date': '2021-01-01'

}

dag = DAG('tensorflow_training', default_args=default_args,

 schedule_interval='@once')

268 Building an Enterprise ML Architecture with AWS ML Services

train_op = SageMakerTrainingOperator(

 task_id='tf_training',

 config=train_config,

 wait_for_completion=True,

 dag=dag)

SageMaker also has a built-in workflow automation tool called SageMaker Pipelines.
A training step can be created using the SageMaker TrainingStep API and become part
of the larger SageMaker Pipelines workflow.

Model training life cycle management
SageMaker training manages the life cycle of the model training process. It uses AWS IAM
as the mechanism to authenticate and authorize access to its functions. Once authorized,
it provides the desired infrastructure, deploys the software stacks for the different model
training requirements, moves the data from sources to training nodes, and kicks off the
training job. Once the training job has been completed, the model artifacts are saved
into an S3 output bucket and the infrastructure is torn down. For lineage tracing, model
training metadata such as source datasets, model training containers, hyperparameters,
and model output locations are captured. Any logging from the training job runs is saved
in CloudWatch Logs, and system metrics such as CPU and GPU utilization are captured
in the CloudWatch metrics.

Depending on the overall end-to-end ML platform architecture, a model training
environment can also host services for data preprocessing, model validation, and model
training postprocessing, as those are important steps in an end-to-end ML flow. There are
multiple technology options available for this, such as the SageMaker Processing service
and AWS Lambda.

Model hosting environment deep dive
An enterprise-grade model hosting environment needs to support a broad range of
ML frameworks in a secure, performant, and scalable way. It should come with a list
of pre-built inference engines that can serve common models out of the box behind
a RESTful API or via the gRPC protocol. It also needs to provide flexibility to host
custom-built inference engines for unique requirements. Users should also have access
to different hardware devices, such as CPU, GPU, and purpose-built chips, for the
different inference needs.

Model hosting environment deep dive 269

Some model inference patterns demand more complex inference graphs, such as traffic
split, request transformations, or model ensemble support. A model hosting environment
can provide this capability as an out-of-the-box feature or provide technology options
for building custom inference graphs. Other common model hosting capabilities include
concept drift detection and model performance drift detection. Concept drift occurs
when the statistical characteristics of the production data deviate from the data that's
used for model training. An example of concept drift is the mean and standard deviation
of a feature changing significantly in production from that of the training dataset.

Components in a model hosting environment can participate in an automation workflow
through its API, scripting, or IaC deployment (such as AWS CloudFormation). For
example, a RESTful endpoint can be deployed using a CloudFormation template or by
invoking its API as part of an automated workflow.

From a security perspective, the model hosting environment needs to provide
authentication and authorization control to manage access to both the control plane
(management functions) and data plane (model endpoints). The accesses and operations
that are performed against the hosting environments should be logged for auditing
purposes. For operations support, a hosting environment needs to enable status logging
and system monitoring to support system observability and problem troubleshooting.

The SageMaker hosting service is a fully managed model hosting service. Similar to
KFServing and Seldon Core, which we reviewed earlier in this book, the SageMaker
hosting service is also a multi-framework model serving service. Next, let's take a closer
look at its various capabilities for enterprise-grade model hosting.

Inference engine
SageMaker provides built-in inference engines for multiple ML frameworks, including
scikit-learn, XGBoost, TensorFlow, PyTorch, and Spark ML. SageMaker supplies these
built-in inference engines as Docker containers. To stand up an API endpoint to serve
a model, you just need to provide the model artifacts and infrastructure configuration.
The following is a list of model serving options:

•	 Serving TensorFlow models: SageMaker uses TensorFlow Serving as the inference
engine for TensorFlow models. The following code sample shows how to deploy
a TensorFlow Serving model using the SageMaker hosting service:

from sagemaker.tensorflow.serving import Model

tensorflow_model = Model(

 model_data=<S3 location of the Spark ML model
artifacts>,

 role=<AWS IAM role>,

270 Building an Enterprise ML Architecture with AWS ML Services

 framework_version=<tensorflow version>

)

tensorflow_model.deploy(

 initial_instance_count=<instance count>, instance_
type=<instance type>

)

•	 Serving PyTorch models: SageMaker hosting uses TorchServe under the hood
to serve PyTorch models. The following code sample shows how to deploy a
PyTorch model:

from sagemaker.pytorch.model import PyTorchModel

pytorch_model = PyTorchModel(

 model_data=<S3 location of the PyTorch model
artifacts>,

 role=<AWS IAM role>,

 framework_version=<PyTorch version>

)

pytorch_model.deploy(

 initial_instance_count=<instance count>, instance_
type=<instance type>

)

•	 Serving Spark ML models: For Spark ML-based models, SageMaker uses MLeap
as the backend to serve Spark ML models. These Spark ML models need to be
serialized into MLeap format. The following code sample shows how to deploy
a Spark ML model using the SageMaker hosting service:

import sagemaker

from sagemaker.sparkml.model import SparkMLModel

sparkml_model = SparkMLModel(

 model_data=<S3 location of the Spark ML model
artifacts>,

 role=<AWS IAM role>,

 sagemaker_session=sagemaker.Session(),

 name=<Model name>,

 env={"SAGEMAKER_SPARKML_SCHEMA": <schema_json>}

)

Model hosting environment deep dive 271

sparkml_model.deploy(

 initial_instance_count=<instance count>, instance_
type=<instance type>

)

•	 Serving XGboost models: SageMaker provides an XGBoost model server for
serving trained XGBoost models. Under the hood, it uses Nginx, Gunicorn, and
Flask as part of the model serving architecture. The entry Python script loads the
trained XGBoost model and can optionally perform pre- and post-data processing:

from sagemaker.xgboost.model import XGBoostModel

xgboost_model = XGBoostModel(

 model_data=<S3 location of the Xgboost ML model
artifacts>,

 role=<AWS IAM role>,

 entry_point=<entry python script>,

 framework_version=<xgboost version>

)

xgboost_model.deploy(

 instance_type=<instance type>,

 initial_instance_count=<instance count>

)

•	 Serving scikit-learn models: SageMaker provides a built-in serving container for
serving scikit-learn-based models. The technology stack is similar to the one for the
Xgboost model server:

from sagemaker.sklearn.model import SKLearnModel

sklearn_model = SKLearnModel(

 model_data=<S3 location of the Xgboost ML model
artifacts>,

 role=<AWS IAM role>,

 entry_point=<entry python script>,

 framework_version=<scikit-learn version>

)

sklearn_model.deploy(instance_type=<instance type>,
initial_instance_count=<instance count>)

272 Building an Enterprise ML Architecture with AWS ML Services

•	 Serving models with custom containers: For custom-created inference containers,
you can follow similar syntax to deploy the model. The main difference is that
a custom inference container image's uri needs to be provided. You can find
detailed documentation on building a custom inference container at https://
docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-
container.html:

from sagemaker.model import Model

custom_model = Model(

 Image_uri = <custom model inference container image
uri>,

 model_data=<S3 location of the ML model artifacts>,

 role=<AWS IAM role>,

 framework_version=<scikit-learn version>

)

custom_model.deploy(instance_type=<instance type>,
initial_instance_count=<instance count>)

SageMaker hosting provides an inference pipeline feature that allows you to create a linear
sequence of containers (up to 15) to perform custom data processing before and after
invoking a model for predictions. SageMaker hosting can support traffic splits between
multiple versions of a model for A/B testing.

SageMaker hosting can be provisioned using an AWS CloudFormation template. There
is also support for the AWS CLI for scripting automation, and it can be integrated into
custom applications via its API. The following are some code samples for different
endpoint deployment automation methods:

•	 The following is a CloudFormation code sample for SageMaker endpoint
deployment. You can find the complete code at https://github.com/
PacktPublishing/The-Machine-Learning-Solutions-Architect-
Handbook/blob/main/Chapter09/sagemaker_hosting.yaml:

Description: "Model hosting cloudformation template"

Resources:

 Endpoint:

 Type: "AWS::SageMaker::Endpoint"

 Properties:

 EndpointConfigName:

 !GetAtt EndpointConfig.EndpointConfigName

 EndpointConfig:

https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-container.html
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/sagemaker_hosting.yaml
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/sagemaker_hosting.yaml
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/sagemaker_hosting.yaml

Model hosting environment deep dive 273

 Type: "AWS::SageMaker::EndpointConfig"

 Properties:

 ProductionVariants:

 - InitialInstanceCount: 1

 InitialVariantWeight: 1.0

 InstanceType: ml.t2.large

 ModelName: !GetAtt Model.ModelName

 VariantName: !GetAtt Model.ModelName

 Model:

 Type: "AWS::SageMaker::Model"

 Properties:

 PrimaryContainer:

 Image: <container uri>

 ExecutionRoleArn: !GetAtt ExecutionRole.Arn

...

•	 The following is an AWS CLI sample for SageMaker endpoint deployment:

Aws sagemaker create-model --model-name <value>
--execution-role-arn <value>

aws sagemaker Create-endpoint-config --endpoint-config-
name <value> --production-variants <value>

aws sagemaker Create-endpoint --endpoint-name <value>
--endpoint-config-name <value>

If the built-in inference engines do not meet your requirements, you can also bring your
own Docker container to serve your ML models.

Authentication and security control
The SageMaker hosting service uses AWS IAM as the mechanism to control access to its
control plane APIs (for example, an API for creating an endpoint) and data plane APIs
(for example, an API for invoking a hosted model endpoint). If you need to support other
authentication methods for the data plane API, such as OpenID Connect (OIDC), you
can put a proxy service as the frontend to manage user authentication. A common pattern
is to use AWS API Gateway to frontend the SageMaker API for custom authentication
management, as well as other API management features such as metering and throttling
management.

274 Building an Enterprise ML Architecture with AWS ML Services

Monitoring and logging
SageMaker provides out-of-the-box monitoring and logging capabilities to assist with
support operations. It monitors both system resource metrics (for example, CPU/GPU
utilization) and model invocation metrics (for example, the number of invocations, model
latencies, and failures). These monitoring metrics and any model processing logs are
captured by AWS CloudWatch metrics and CloudWatch Logs.

Adopting MLOps for ML workflows
Similar to the DevOps practice, which has been widely adopted for the traditional
software development and deployment process, the MLOps practice is intended to
streamline the building and deployment processes of ML pipelines and improve the
collaborations between data scientists/ML engineers, data engineering, and the operations
team. Specifically, an MLOps practice is intended to deliver the following main benefits in
an end-to-end ML life cycle:

•	 Process consistency: The MLOps practice aims to create consistency in the ML
model building and deployment process. A consistent process improves the
efficiency of the ML workflow and ensures a high degree of certainty in the input
and output of the ML workflow.

•	 Tooling and process reusability: One of the core objectives of the MLOps practice
is to create reusable technology tooling and templates for faster adoption and
deployment of new ML use cases. These can include common tools such as code
and library repositories, package and image building tools, pipeline orchestration
tools, the model registry, as well as common infrastructure for model training
and model deployment. From a reusable template perspective, these can include
common reusable scripts for Docker image builds, workflow orchestration
definitions, and CloudFormation scripts for model building and model deployment.

•	 Model building reproducibility: ML is highly iterative and can involve a large
number of experimentations and model training runs using different datasets,
algorithms, and hyperparameters. An MLOps process needs to capture all the data
inputs, source code, and artifacts that are used to build an ML model and establish
model lineage from this input data, code, and artifacts for the final models. This is
important for both experiment tracking as well as governance and control purposes.

Adopting MLOps for ML workflows 275

•	 Delivery scalability: An MLOps process and the associated tooling enable a large
number of ML pipelines to run in parallel for high delivery throughputs. Different
ML project teams can use the standard MLOps processes and common tools
independently without creating conflicts from a resource contention, environment
isolation, and governance perspective.

•	 Process and operations audibility: MLOps enables greater audibility into the
process and the audibility of ML pipelines. This includes capturing the details of
machine pipeline executions, dependencies, and lineage across different steps, job
execution statuses, model training and deployment details, approval tracking, and
actions that are performed by human operators.

Now that we are familiar with the intended goals and benefits of the MLOps practice,
let's look at the specific operational process and concrete technology architecture of
MLOps on AWS.

Components of the MLOps architecture
One of the most important MLOps concepts is the automation pipeline, which executes a
sequence of tasks, such as data processing, model training, and model deployment. This
pipeline can be a linear sequence of steps or a more complex DAG with parallel execution
for multiple tasks. An MLOps architecture also has several repositories for storing
different assets and metadata as part of pipeline executions. The following diagram shows
the core components and tasks involved in an MLOps operation:

Figure 9.2 – MLOps components

276 Building an Enterprise ML Architecture with AWS ML Services

A code repository in an MLOps architecture not only serves as a source code control
mechanism for data scientists and engineers – it is also the triggering mechanism to
kick off different pipeline executions. For example, when a data scientist checks an
updated training script into the code repository, a model training pipeline execution
can be triggered.

A feature repository stores reusable ML features and can be the target of a data
processing/feature engineering job. The features from the feature repository can be a part
of the training datasets where applicable. The feature repository is also used as a part of
the model inference request.

A container repository stores the container images that are used for data processing
tasks, model training jobs, and model inference engines. It is usually the target of the
container building pipeline.

A model registry keeps an inventory of trained models, along with all the metadata
associated with the model, such as its algorithm, hyperparameters, model metrics, and
training dataset location. It also maintains the status of the model life cycle, such as its
deployment approval status.

A pipeline repository maintains the definition of automation pipelines and the statuses
of different pipeline job executions.

In an enterprise setting, a task ticket also needs to be created when different tasks, such
as model deployment, are performed, so that these actions can be tracked in a common
enterprise ticketing management system. To support audit requirements, the lineage of
different pipeline tasks and their associated artifacts need to be tracked.

Another critical component of the MLOps architecture is monitoring. In general, you
want to monitor items such as the pipeline's execution status, model training status,
and model endpoint status. Model endpoint monitoring can also include system/
resource performance monitoring, model statistical metrics monitoring, drift and outlier
monitoring, and model explainability monitoring. Alerts can be triggered on certain
execution statuses to invoke human or automation actions that are needed.

AWS provides multiple technology options for implementing an MLOps architecture.
The following diagram shows where these technology services fit in an enterprise
MLOps architecture:

Adopting MLOps for ML workflows 277

Figure 9.3 – MLOps architecture using AWS services

As we mentioned earlier, the shared service environment hosts common tools for pipeline
management and execution, as well as common repositories such as code repositories and
model registries.

Here, we use AWS CodePipeline to orchestrate the overall CI/CD pipeline. AWS
CodePipeline is a continuous delivery service that integrates natively with different code
repositories such as AWS CodeCommit and Bitbucket. It can source files from the code
repository and make them available to downstream tasks such as building containers
using the AWS CodeBuild service, or training models in the model training environment.
You can create different pipelines to meet different needs. A pipeline can be triggered
on-demand via an API or the CodePipeline management console, or it can be triggered
by code changes in a code repository. Depending on your requirements, you can create
different pipelines. In the proceeding diagram, we can see four example pipelines:

•	 A container build pipeline for building different container images.

•	 A model training pipeline for training a model for release.

•	 A model deployment pipeline for deploying trained models to production.

•	 A development, training, and testing pipeline for model training and deployment
testing in a data science environment.

278 Building an Enterprise ML Architecture with AWS ML Services

A code repository is one of the most essential components in an MLOps environment. It is
not only used by data scientists/ML engineers and other engineers to persist code artifacts,
but it also serves as a triggering mechanism for a CI/CD pipeline. This means that when a
data scientist/ML engineer commits a code change, it can automatically kick off a CI/CD
pipeline. For example, if the data scientist makes a change to the model training script and
wants to test the automated training pipeline in the development environment, he/she can
commit the code to a development branch to kick off a model training pipeline in the dev
environment. When it is ready for production release deployment, the data scientist can
commit/merge the code to a release branch to kick off the production release pipelines.

In this MLOps architecture, we use AWS Elastic Container Registry (ECR) as the central
container registry service. ECR is used to store containers for data processing, model
training, and model inference. You can tag the container images to indicate different life
cycle statuses, such as development or production.

The SageMaker model registry is used as the central model repository. The central model
repository can reside in the shared service environment, so it can be accessed by different
projects. All the models that go through the formal training and deployment cycles should
be managed and tracked in the central model repository.

SageMaker Feature Store provides a common feature repository for reusable features
to be used by different projects. It can reside in the shared services environment or be
part of the data platform. Features are normally pre-calculated in a data management
environment and sent to SageMaker Feature Store for offline model training in the
model training environment, as well as online inferences by the different model
hosting environments.

SageMaker Experiments is used to track experiments and trials. The metadata and
artifacts that are generated by the different components in a pipeline execution can
be tracked in SageMaker Experiments. For example, the processing step in a pipeline
can contain metadata such as the locations of input data and processed data, while the
model training step can contain metadata such as the algorithm and hyperparameters
for training, model metrics, and the location of the model artifact. This metadata can
be used to compare the different runs of model training, and they can also be used to
establish model lineage.

Adopting MLOps for ML workflows 279

Monitoring and logging
The ML platform presents some unique challenges in terms of monitoring. In addition
to monitoring common software system-related metrics and statuses, such as
infrastructure utilization and processing status, an ML platform also needs to monitor
model and data-specific metrics and performances. Also, unlike traditional system-level
monitoring, which is fairly straightforward to understand, the opaqueness of ML models
makes it inherently difficult to understand the system. Now, let's take a closer look at the
three main areas of monitoring for an ML platform.

Model training monitoring
Model training monitoring provides visibility into the training progress and helps
identify training bottlenecks and error conditions during the training process. It enables
operational processes such as training job progress reporting and response, model training
performance progress evaluation and response, training problem troubleshooting, and
data and model bias detection and model interpretability and response. Specifically, we
want to monitor the following key metrics and conditions during model training:

•	 General system and resource utilization and error metrics: These provide
visibility into how the infrastructure resources (such as CPU, GPU, disk I/O, and
memory) are utilized for model training. These can help with making decisions on
provisioning infrastructure for the different model training needs.

•	 Training job events and status: This provides visibility into the progress of a
training job, such as job starting, running, completion, and failure details.

•	 Model training metrics: These are model training metrics such as loss curve and
accuracy reports to help you understand the model's performance.

•	 Bias detection metrics and model explainability reporting: These metrics help
you understand if there is any bias in the training datasets or machine learning
models. Model explainability can also be monitored and reported to help you
understand high-importance features versus low-importance features.

•	 Model training bottlenecks and training issues: These provide visibility
into training issues such as vanishing gradients, poor weights initialization,
and overfitting to help determine the required data, algorithmic, and training
configuration changes. Metrics such as CPU and I/O bottlenecks, uneven load
balancing, and low GPU utilization can help determine infrastructure configuration
changes for more efficient model training.

280 Building an Enterprise ML Architecture with AWS ML Services

There are multiple native AWS services for building out a model training architecture on
AWS. The following diagram shows an example architecture for building a monitoring
solution for a SageMaker-based model training environment:

Figure 9.4 – Model training monitoring architecture

This architecture lets you monitor training and system metrics and perform log capture
and processing, training event capture and processing, and model training bias and
explainability reporting. It helps enable operation processes, such as training progress
and status reporting, model metric evaluation, system resource utilization reporting
and response, training problem troubleshooting, bias detection, and model decision
explainability.

During model training, SageMaker can emit model training metrics, such as training
loss and accuracy, to AWS CloudWatch to help with model training evaluation. AWS
CloudWatch is the AWS monitoring and observability service. It collects metrics and logs
from other AWS services and provides dashboards for visualizing and analyzing these
metrics and logs. System utilization metrics (such as CPU/GPU/memory utilization)
are also reported to CloudWatch for analysis to help you understand any infrastructure
constraints or under-utilization. CloudWatch alarms can be created for a single metric
or composite metrics to automate notifications or responses. For example, you can create
alarms on low CPU/GPU utilization to help proactively identify sub-optimal hardware
configuration for the training job. And when an alarm is triggered, it can send automated
notifications (such as SMS and emails) to support for review via AWS Simple Notification
Service (SNS).

Adopting MLOps for ML workflows 281

You can use CloudWatch Logs to collect, monitor, and analyze the logs that are emitted
by your training jobs. You can use these captured logs to understand the progress of
your training jobs and identify errors and patterns to help troubleshoot any model
training problems. For example, the CloudWatch Logs logs might contain errors such
as insufficient GPU memory to run model training or permission issues when accessing
specific resources to help you troubleshoot model training problems. By default,
CloudWatch Logs provides a UI tool called CloudWatch Logs Insights for interactively
analyzing logs using a purpose-built query language. Alternatively, these logs can also
be forwarded to an Elasticsearch cluster for analysis and querying. These logs can be
aggregated in a designated logging and monitoring account to centrally manage log access
and analysis.

SageMaker training jobs can also send events, such as a training job status changing from
running to complete. You can create automated notification and response mechanisms
based on these different events. For example, you can send out notifications to data
scientists when a training job is either completed successfully or failed, along with a failure
reason. You can also automate responses to these failures to the different statuses, such as
model retraining on a particular failure condition.

The SageMaker Clarify component can detect data and model bias and provide
model explainability reporting on the trained model. You can access bias and model
explainability reports inside the SageMaker Studio UI or SageMaker APIs.

The SageMaker Debugger component can detect model training issues such as
non-converging conditions, resource utilization bottlenecks, overfitting, vanishing
gradients, or conditions where the gradients become too small for efficient parameter
updates. Alerts can be sent when training anomalies are found.

Model endpoint monitoring
Model endpoint monitoring provides visibility into the performance of the modeling serving
infrastructure, as well as model-specific metrics such as data drift, model drift, and inference
explainability. The following are some of the key metrics for model endpoint monitoring:

•	 General system and resource utilization and error metrics: These provide
visibility into how the infrastructure resources (such as CPU, GPU, and memory)
are utilized for model servicing. These can help with making decisions on
provisioning infrastructure for the different model serving needs.

•	 Data statistics monitoring metrics: The statistical nature of data could change
over time, which can result in degraded ML model performance from the original
benchmarks. These metrics can include basic statistics deviations such as mean and
standard changes, as well as data distribution changes.

282 Building an Enterprise ML Architecture with AWS ML Services

•	 Model quality monitoring metrics: These model quality metrics provide visibility
into model performance deviation from the original benchmark. These metrics
can include regression metrics (such as MAE and RMSE) and classification metrics
(such as confusion matrix, F1, precision, recall, and accuracy).

•	 Model inference explainability: This provides model explainability on a per
prediction basis to help you understand what features had the most influence on the
decision that was made by the prediction.

•	 Model bias monitoring metrics: Similar to bias detection for training, the bias
metrics help us understand model bias at inference time.

The model monitoring architecture relies on many of the same AWS services, including
CloudWatch, EventBridge, and SNS. The following diagram shows an architecture pattern
for a SageMaker-based model monitoring solution:

Figure 9.5 – Model endpoint monitoring architecture

Adopting MLOps for ML workflows 283

This architecture works similarly to the model training architecture. CloudWatch
metrics capture endpoint metrics such as CPU/GPU utilization and model invocation
metrics (number of invocations and errors) and model latencies. These metrics help with
operations such as hardware optimization and endpoint scaling.

CloudWatch Logs captures logs that are emitted by the model serving endpoint to help us
understand the status and troubleshoot technical problems.

Similarly, endpoint events, such as the status changing from Creating to InService, can
help you build automated notification pipelines to kick off corrective actions or provide
status updates.

In addition to system and status-related monitoring, this architecture also supports data
and model-specific monitoring through a combination of SageMaker Model Monitor and
SageMaker Clarify. Specifically, SageMaker Model Monitor can help you monitor data
drift and model quality.

For data drift, SageMaker Monitor can use the training dataset to create baseline statistics
metrics such as standard deviation, mean, max, min, and data distribution for the dataset
features. It uses these metrics and other data characteristics, such as data types and
completeness, to establish constraints. Then, it captures the input data in the production
environment, calculates the metrics, compares them with the baseline metrics/constraints,
and reports baseline drifts. Model Monitor can also report data quality issues such as
incorrect data types and missing values. Data drift metrics can be sent to CloudWatch
metrics for visualization and analysis, and CloudWatch Alarms can be configured to
trigger a notification or automated response when a metric crosses a predefined threshold.

284 Building an Enterprise ML Architecture with AWS ML Services

For model quality monitoring, it creates baseline metrics (such as MAE for regression and
accuracy for classification) using the baseline dataset, which contains both predictions and
true labels. Then, it captures the predictions in production, ingests ground truth labels,
and merges the ground truth with the predictions to calculate various regression and
classification metrics before comparing those with the baseline metrics. Similar to data
drift metrics, model quality metrics can be sent to CloudWatch Metrics for analysis and
visualization, and CloudWatch Alarms can be configured for automated notifications
and/or responses. The following diagram shows how SageMaker Model Monitor works:

Figure 9.6 – SageMaker Model Monitor process flow

For bias detection, SageMaker Clarify can monitor bias metrics for deployed models
continuously and raises alerts through CloudWatch when a metric crosses a threshold.
We will cover bias detection in detail in Chapter 11, ML Governance, Bias, Explainability,
and Privacy.

Adopting MLOps for ML workflows 285

ML pipeline monitoring
The ML pipeline's execution needs to be monitored for statuses and errors, so
corrective actions can be taken as needed. During a pipeline execution, there are
pipeline-level statuses/events as well as stage-level and action-level statuses/events. You
can use these events and statuses to understand the progress of each pipeline and stage
and get alerted when something is wrong. The following diagram shows how AWS
CodePipeline, CodeBuild, and CodeCommit can work with CloudWatch, CloudWatch
Logs, and EventBridge for general status monitoring and reporting, as well as problem
troubleshooting:

Figure 9.7 – ML CI/CD pipeline monitoring architecture

CodeBuild can send metrics, such as SuceededBuilds, FailedBuilds, and
Duration metrics. These CodeBuild metrics can be accessed through both the
CodeBuild console and the CloudWatch dashboard.

286 Building an Enterprise ML Architecture with AWS ML Services

CodeBuild, CodeCommit, and CodePipeline can all emit events to EventBridge to report
detailed status changes and trigger custom event processing, such as notifications, or
log the events to another data repository for event archiving. All three services can send
detailed logs to CloudWatch Logs to support operations such as troubleshooting or
detailed error reporting.

Step Functions also provides a list of monitoring metrics to CloudWatch, such as
execution metrics (such as execution failure, success, abort, and timeout) and activity
metrics (such as activity started, scheduled, and succeeded). You can view these metrics
in the management console and set a threshold to set up alerts.

Service provisioning management
Another key component of enterprise-scale ML platform management is service
provisioning management. For large-scale service provisioning and deployment, an
automated and controlled process should be adopted. Here, we will focus on provisioning
the ML platform itself, not provisioning AWS accounts and networking, which should be
established as the base environment for ML platform provisioning in advance. For ML
platform provisioning, there are the following two main provisioning tasks:

•	 Data science environment provisioning: Provisioning the data science
environment for data scientists mainly includes provisioning data science and data
management tools, storage for experimentation, as well as access entitlement for
data sources and pre-built ML automation pipelines.

•	 ML automation pipeline provisioning: ML automation pipelines need to be
provisioned in advance for data scientists and MLOps engineers to use them
to automate different tasks such as container build, model training, and model
deployment.

There are multiple technical approaches to automating service provisioning on
AWS, such as using provisioning shell scripts, CloudFormation scripts, and AWS
Service Catalog. With shell scripts, you can sequentially call the different AWS CLI
commands in a script to provision different components, such as creating a SageMaker
notebook. CloudFormation is the IaC service for infrastructure deployment on AWS.
With CloudFormation, you create templates that describe the desired resources and
dependencies that can be launched as a single stack. When the template is executed, all
the resources and dependencies specified in the stack will be deployed automatically. The
following code shows the template for deploying a SageMaker Studio domain:

Type: AWS::SageMaker::Domain

Properties:

 AppNetworkAccessType: String

Adopting MLOps for ML workflows 287

 AuthMode: String

 DefaultUserSettings:

 UserSettings

 DomainName: String

 KmsKeyId: String

 SubnetIds:

 - String

 Tags:

 - Tag

 VpcId: String

AWS Service Catalog allows you to create different IT products to be deployed on AWS.
These IT products can include SageMakenotebooks, a CodeCommit repository, and
CodePipeline workflow definitions. AWS Service Catalog uses CloudFormation templates
to describe IT products. With Service Catalog, administrators create IT products with
CloudFormation templates, organize these products by product portfolio, and entitle
end users with access. The end users then access the products from the Service Catalog
product portfolio. The following diagram shows the flow of creating a Service Catalog
product and launching the product from the Service Catalog service:

Figure 9.8 – Service Catalog workflow

288 Building an Enterprise ML Architecture with AWS ML Services

For large-scale and governed IT product management, Service Catalog is the
recommended approach. Service Catalog supports multiple deployment options,
including single AWS account deployments and hub-and-spoke cross-account
deployments. A hub-and-spoke deployment allows you to centrally manage all the
products and make them available in different accounts. In our enterprise ML reference
architecture, we use the hub-and-spoke architecture to support the provisioning of data
science environments and ML pipelines, as shown in the following diagram:

Figure 9.9 – The hub-and-spoke Service Catalog architecture for enterprise ML product management

In the preceding architecture, we set up the central portfolio in the shared services
account. All the products, such as creating new Studio domains, new Studio user profiles,
CodePipeline definitions, and training pipeline definitions, are centrally managed in the
central hub account. Some products are shared with the different data science accounts to
create data science environments for data scientists and teams. Some other products are
shared with model training accounts for standing up ML training pipelines.

With that, we have talked about the core components of an enterprise-grade ML platform.
Next, let's get hands-on and build a pipeline to automate model training and deployment.

Hands-on exercise – building an MLOps pipeline on AWS 289

Hands-on exercise – building an MLOps
pipeline on AWS
In this hands-on exercise, you will get hands on with building a simplified version of
the enterprise MLOps pipeline. For simplicity, we will not be using the multi-account
architecture for the enterprise pattern. Instead, we will build several core functions in a
single AWS account. The following diagram shows what you will be building:

Figure 9.10 – Architecture of the hands-on exercise

At a high level, you will create two pipelines using CloudFormation: one for model
training and one for model deployment.

Creating a CloudFormation template for the ML
training pipeline
In this section, we will create two CloudFormation templates that do the following:

•	 The first template creates AWS Step Functions for an ML model training workflow
that performs data processing, model training, and model registration. This will be
a component of the training pipeline.

290 Building an Enterprise ML Architecture with AWS ML Services

•	 The second template creates a CodePipeline ML model training pipeline definition
with two stages:

I.	 A source stage, which listens to changes in a CodeCommit repository to kick
off the execution of the Step Functions workflow that we created

II.	 A deployment stage, which kicks off the execution of the ML model training
workflow

Now, let's get started with the CloudFormation template for the Step Functions workflow:

1.	 Create a Step Functions workflow execution role called AmazonSageMaker-
StepFunctionsWorkflowExecutionRole. Then, create and attach the
following IAM policy to it. This role will be used by the Step Functions workflow to
provide permission to invoke the various SageMaker APIs. Take note of the ARN
of the newly created IAM role as you will need it for the next step. You can find
the complete code sample at https://github.com/PacktPublishing/
The-Machine-Learning-Solutions-Architect-Handbook/blob/
main/Chapter09/AmazonSageMaker-StepFunctionsWorkflowExecut
ionRole-policy.json:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "sagemaker:CreateModel",

 "sagemaker:DeleteEndpointConfig",

 "sagemaker:DescribeTrainingJob",

 "sagemaker:CreateEndpoint",

 "sagemaker:StopTrainingJob",

 "sagemaker:CreateTrainingJob",

 "sagemaker:UpdateEndpoint",

 "sagemaker:CreateEndpointConfig",

 "sagemaker:DeleteEndpoint"

],

 "Resource": [

 "arn:aws:sagemaker:*:*:*"

]

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/AmazonSageMaker-StepFunctionsWorkflowExecutionRole-policy.json
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/AmazonSageMaker-StepFunctionsWorkflowExecutionRole-policy.json
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/AmazonSageMaker-StepFunctionsWorkflowExecutionRole-policy.json
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/AmazonSageMaker-StepFunctionsWorkflowExecutionRole-policy.json

Hands-on exercise – building an MLOps pipeline on AWS 291

 },

...

}

2.	 Copy and save the following code block to a file locally and name it training_
workflow.yaml. You can find the complete file at https://github.com/
PacktPublishing/The-Machine-Learning-Solutions-Architect-
Handbook/blob/main/Chapter09/training_workflow.yaml. This
CloudFormation template will create a Step Functions state machine with a training
step and model registration step. The training step will train the same BERT model
we trained in Chapter 8, Building a Data Science Environment Using AWS ML
Services. For simplicity, we will reuse the same source data and training script as
well to demonstrate the MLOps concepts we have learned about in this chapter.
Note that we are using CloudFormation here to demonstrate managing IaC. Data
scientists also have the option to use the Step Functions Data Science SDK to create
the pipeline using a Python script:

AWSTemplateFormatVersion: 2010-09-09

Description: 'AWS Step Functions sample project for
training a model and save the model'

Parameters:

 StepFunctionExecutionRoleArn:

 Type: String

 Description: Enter the role for Step Function
Workflow execution

 ConstraintDescription: requires a valid arn value

 AllowedPattern: 'arn:aws:iam::\w+:role/.*'

Resources:

 TrainingStateMachine2:

 Type: AWS::StepFunctions::StateMachine

 Properties:

 RoleArn: !Ref StepFunctionExecutionRoleArn

 DefinitionString: !Sub |

 {

 "StartAt": "SageMaker Training Step",

 "States": {

 "SageMaker Training Step": {

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/training_workflow.yaml
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/training_workflow.yaml
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/training_workflow.yaml

292 Building an Enterprise ML Architecture with AWS ML Services

 "Resource":
"arn:aws:states:::sagemaker:createTrainingJob.sync",

...

3.	 Launch the newly created cloud template in the CloudFormation console. Make
sure that you provide a value for the StepFunctionExecutionRoleArn field
when prompted. This is the ARN you took down from the last step. Once the
CloudFormation execution is completed, go to the Step Functions console to test it.

4.	 Test the workflow in the Step Functions console to make sure it works. Navigate
to the newly created Step Functions state machine and click on Start Execution
to kick off the execution. When you're prompted for any input, copy and paste the
following JSON as input for the execution. These are the input values that will be
used by the Step Functions workflow. Make sure that you replace the actual values
with the values for your environment. For the AWS hosting account information for
the training images, you can look up the account number at https://github.
com/aws/deep-learning-containers/blob/master/available_
images.md:

{

 "TrainingImage": "<aws hosting account>.dkr.ecr.<aws
region>.amazonaws.com/pytorch-training:1.3.1-gpu-py3",

 "S3OutputPath": "s3://<your s3 bucket name>/sagemaker/
pytorch-bert-financetext",

 "SageMakerRoleArn": "arn:aws:iam::<your aws
account>:role/service-role/<your sagemaker execution
role>",

 "S3UriTraining": "s3://<your AWS S3 bucket>/sagemaker/
pytorch-bert-financetext/train.csv",

 "S3UriTesting": "s3://<your AWS S3 bucket>/sagemaker/
pytorch-bert-financetext/test.csv",

 "InferenceImage": " aws hosting account>.dkr.ecr. <aws
region>.amazonaws.com/pytorch-inference:1.3.1-cpu-py3",

 "SAGEMAKER_PROGRAM": "train.py",

 "SAGEMAKER_SUBMIT_DIRECTORY": "s3:// <your AWS S3
bucket> /berttraining/source/sourcedir.tar.gz",

 "SAGEMAKER_REGION": "<your aws region>"

}

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Hands-on exercise – building an MLOps pipeline on AWS 293

5.	 Check the processing status in the Step Functions console and make sure that the
model has been trained and registered correctly. Once everything is completed, save
the input JSON in Step 4 to a file called sf_start_params.json. Launch the
SageMaker Studio environment you created in Chapter 8, Building a Data Science
Environment Using AWS ML Services, navigate to the folder where you had cloned
the CodeCommit repository, and upload the sf_start_params.json file into
it. Commit the change to the code repository and verify it is in the repository. We
will use this file in the CodeCommit repository for the next section of the lab.

Now, we are ready to create the CloudFormation template for the CodePipeline training
pipeline. This pipeline will listen to changes to a CodeCommit repository and invoke the
Step Functions workflow we just created:

1.	 Copy and save the following code block to a file called mlpipeline.yaml.
This is the template for building the training pipeline. You can find the complete
file at https://github.com/PacktPublishing/The-Machine-
Learning-Solutions-Architect-Handbook/blob/main/Chapter09/
mlpipeline.yaml:

Parameters:

 BranchName:

 Description: CodeCommit branch name

 Type: String

 Default: master

 RepositoryName:

 Description: CodeCommit repository name

 Type: String

 Default: MLSA-repo

 ProjectName:

 Description: ML project name

 Type: String

 Default: FinanceSentiment

 MlOpsStepFunctionArn:

 Description: Step Function Arn

 Type: String

 Default: arn:aws:states:ca-central-
1:300165273893:stateMachine:TrainingStateMachine2-
89fJblFk0h7b

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/mlpipeline.yaml
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/mlpipeline.yaml
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/mlpipeline.yaml

294 Building an Enterprise ML Architecture with AWS ML Services

Resources:

 CodePipelineArtifactStoreBucket:

 Type: 'AWS::S3::Bucket'

 DeletionPolicy: Delete

 Pipeline:

 Type: 'AWS::CodePipeline::Pipeline'

...

2.	 Similarly, let's launch this cloud template in the CloudFormation console to
create the pipeline definition for execution. Once the CloudFormation template
has been executed, navigate to the CodePipeline management console to verify
that it has been created. The CloudFormation execution will also execute the
newly created pipeline automatically, so you should see that it already ran once.
You can test it again by clicking on the Release changes button in the SageMaker
management console.

We want to be able to kick off the CodePipeline execution when a change is made
(such as a code commit) in the CodeCommit repository. To enable this, we need
to create a CloudWatch event that monitors this change and kicks off the pipeline.
Let's get started:

1.	 Add the following code block to the mlpipeline.yaml file, just before the
Outputs section, and save the file as mlpipeline_1.yaml. You can find the
complete file at https://github.com/PacktPublishing/The-Machine-
Learning-Solutions-Architect-Handbook/blob/main/Chapter09/
mlpipeline_1.yaml:

AmazonCloudWatchEventRole:

 Type: 'AWS::IAM::Role'

 Properties:

 AssumeRolePolicyDocument:

 Version: 2012-10-17

 Statement:

 - Effect: Allow

 Principal:

 Service:

 - events.amazonaws.com

 Action: 'sts:AssumeRole'

 Path: /

 Policies:

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/mlpipeline_1.yaml
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/mlpipeline_1.yaml
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/mlpipeline_1.yaml

Hands-on exercise – building an MLOps pipeline on AWS 295

 - PolicyName: cwe-pipeline-execution

 PolicyDocument:

...

2.	 Now, run this CloudFormation template to create a new pipeline. You can delete the
previously created pipeline by deleting the CloudFormation stack. This will run the
pipeline again automatically. Wait until the pipeline's execution is complete before
you start the next step.

3.	 Now, let's test the automatic execution of the pipeline by committing a change
to the code repository. Find a file in your cloned code repository directory.
Create a new file called pipelinetest.txt and commit the change to the
code repository. Navigate to the CodePipeline console; you should see the
codecommit-events-pipeline pipeline starting to run.

Congratulations! you have successfully used CloudFormation to build a CodePipeline-
based ML training pipeline that automatically runs when there is a file change in a
CodeCommit repository. Next, let's build the ML deployment pipeline for the model.

Creating a CloudFormation template for the ML
deployment pipeline
To start creating a deployment, perform the following steps:

1.	 Copy the following code block to create a file called mldeployment.yaml. This
CloudFormation template will deploy a model using the SageMaker hosting service.
Make sure that you enter the correct model name for your environment:

Description: Basic Hosting of registered model

Parameters:

ModelName:

Description: Model Name

Type: String

Default: <mode name>

Resources:

Endpoint:

Type: AWS::SageMaker::Endpoint

Properties:

EndpointConfigName: !GetAtt EndpointConfig.
EndpointConfigName

296 Building an Enterprise ML Architecture with AWS ML Services

EndpointConfig:

Type: AWS::SageMaker::EndpointConfig

Properties:

ProductionVariants:

InitialInstanceCount: 1

InitialVariantWeight: 1.0

InstanceType: ml.m4.xlarge

ModelName: !Ref ModelName

VariantName: !Ref ModelName

Outputs:

 EndpointId:

Value: !Ref Endpoint

 EndpointName:

Value: !GetAtt Endpoint.EndpointName

2.	 Create a CloudFormation stack using this file and verify that a SageMaker endpoint
has been created. Now, upload the mldeployment.yaml file to the code
repository directory and commit the change to CodeCommit. Note that this file
will be used by the CodePipeline deployment pipeline, which we will create in the
following steps.

3.	 Before we create the deployment pipeline, we need a template config file for passing
parameters to the deployment template when it is executed. Here, we need to pass
the model name to the pipeline. Copy the following code block, save it to a file
called mldeployment.json, upload it to the code repository directory in Studio,
and commit the change to codecommit:

{

 "Parameters" : {

 "ModelName" : <name of the financial sentiment model
you have trained>

 }

}

Hands-on exercise – building an MLOps pipeline on AWS 297

4.	 Now, we can create a CodePipeline pipeline CloudFormation template for automatic
model deployment. This pipeline has two main stages:

I.	 The first stage fetches source code (such as the configuration file we just created
and the mldeployment.yaml template) from a CodeCommit repository.

II.	 The second stage creates a CloudFormation change set (a change set is the
difference between a new template and an existing CloudFormation stack)
for the mldeployment.yaml file we created earlier. It adds a manual
approval step and then deploys the CloudFormation template's
mldeployment.yaml file.

This CloudFormation template also creates supporting resources, including an
S3 bucket for storing the CodePipeline artifacts, an IAM role for CodePipeline to
run with, and another IAM role for CloudFormation to use to create the stack for
mldeployment.yaml.

5.	 Copy the following code block and save the file as mldeployment-pipeline.
yaml. You can find the complete code sample at https://github.com/
PacktPublishing/The-Machine-Learning-Solutions-Architect-
Handbook/blob/main/Chapter09/mldeployment-pipeline.yaml:

Parameters:

 BranchName:

 Description: CodeCommit branch name

 Type: String

 Default: master

 RepositoryName:

 Description: CodeCommit repository name

 Type: String

 Default: MLSA-repo

 ProjectName:

 Description: ML project name

 Type: String

 Default: FinanceSentiment

 CodePipelineSNSTopic:

 Description: SNS topic for NotificationArn

 Default: arn:aws:sns:ca-central-1:300165273893:CodePi
pelineSNSTopicApproval

 Type: String

 ProdStackConfig:

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/mldeployment-pipeline.yaml
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/mldeployment-pipeline.yaml
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter09/mldeployment-pipeline.yaml

298 Building an Enterprise ML Architecture with AWS ML Services

 Default: mldeploymentconfig.json

 Description: The configuration file name for the
production WordPress stack

 Type: String

 ProdStackName:

 Default: FinanceSentimentMLStack1

 Description: A name for the production WordPress
stack

 Type: String

 TemplateFileName:

 Default: mldeployment.yaml

 Description: The file name of the WordPress template

 Type: String

 ChangeSetName:

 Default: FinanceSentimentchangeset

 Description: A name for the production stack change
set

 Type: String

Resources:

 CodePipelineArtifactStoreBucket:

 Type: 'AWS::S3::Bucket'

 DeletionPolicy: Delete

 Pipeline:

.

6.	 Now, let's launch the newly created mldeployment-pipeline.yaml template
in the CloudFormation console to create the deployment pipeline, and then run the
pipeline from the CodePipeline console.

Congratulations! You have successfully created and run a CodePipeline deployment
pipeline to deploy a model from the SageMaker model registry.

Summary 299

Summary
In this chapter, we discussed the key requirements for building an enterprise ML
platform to meet needs such as end-to-end ML life cycle support, process automation,
and separating different environments. We also talked about architecture patterns and
how to build an enterprise ML platform on AWS using AWS services. We discussed the
core capabilities of different ML environments, including training, hosting, and shared
services. You should now have a good understanding of what an enterprise ML platform
could look like, as well as the key considerations for building one using AWS services. You
have also developed some hands-on experience in building the components of the MLOps
architecture and automating model training and deployment. In the next chapter, we will
discuss advanced ML engineering by covering large-scale distributed training and the core
concepts for achieving low-latency inference.

10
Advanced ML

Engineering
Congratulations on making it so far. By now, you should have developed a good
understanding of the core fundamental skills that a machine learning (ML) solutions
architect needs to work effectively across different phases of the ML life cycle. In this
chapter, we will dive deep into several advanced ML topics. Specifically, we will cover
various distributed model training options for large models and large datasets. We will
also discuss the various technical approaches for reducing model inference latency. We
will close this chapter with a hands-on lab on distributed model training.

Specifically, we will cover the following topics in this chapter:

•	 Training large-scale models with distributed training

•	 Achieving low latency model inference

•	 Hands-on lab – running distributed model training with PyTorch

302 Advanced ML Engineering

Technical requirements
You will need access to your AWS environment for the hands-on portion of this chapter.
All the code samples are located at https://github.com/PacktPublishing/
The-Machine-Learning-Solutions-Architect-Handbook/blob/main/
Chapter10.

Training large-scale models with distributed
training
As ML algorithms continue to become more complex and the data that's available for ML
gets increasingly large, model training can become a big bottleneck in the ML life cycle.
Training models with large datasets on a single machine/device can become too slow or is
simply not possible when the model is too large to fit into the memory of a single device.
The following diagram shows how quickly language models have evolved in recent years
and the growth in terms of model size:

Figure 10.1 – The growth of language models

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter10
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter10
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter10

Training large-scale models with distributed training 303

To solve the challenges of training large models with large data, we can turn to distributed
training. Distributed training allows you to train models across multiple devices on a
single node or across multiple nodes so that you can split up the data or model across
these devices and nodes for model training. There are two main types of distributed
training: data parallelism and model parallelism. Before we get into the details of
distributed training, let's quickly review how a neural network trains again:

Figure 10.2 – Deep neural network training

The preceding diagram shows how an artificial neural network (ANN) trains. The
training data is fed to the ANN in a forward pass. The loss (the difference between the
predicted value and the true value) is calculated at the end of the forward pass, and
the backward pass calculates the gradients for all the parameters. These parameters are
updated with new values for the next step until the loss is minimized.

In the next section, we'll look at distributed model training using data parallelism.

Distributed model training using data parallelism
Data parallel distributed training allows you to split a large training dataset into smaller
subsets and train the smaller subsets in different devices and nodes in parallel. This allows
you to run multiple training processes in parallel on the available devices to speed up
training. To use data parallel distributed training, the underlying ML frameworks and/or
algorithms will need to support it.

304 Advanced ML Engineering

As we discussed earlier, one key task in training deep learning (DL) models is to calculate
the gradients concerning the loss function for every batch of the data, and then update
the model parameters with gradient information to minimize the loss gradually. Instead
of running the gradient calculations and parameter updates in a single device, the basic
concept behind data parallel distributed training is to run multiple training processes
using the same algorithm in parallel, with each process using a different subset of
the training dataset. The following diagram shows the main concept behind data
parallelism training:

Figure 10.3 – Data parallelism concept

In the preceding diagram, there are three nodes in a cluster participating in a distributed
data parallelism training job, with each node having two devices. The partial gradients
that are calculated by each device are represented by w0 ~ w5 for each of the devices on
the nodes, while W is the value for a global parameter for the model. Specifically, data
parallel distributed training has the following main steps:

1.	 Each device (CPU or GPU) in every node loads a copy of the same algorithm and
a subset of the training data.

2.	 Each device runs a training loop to calculate the gradients (w0~w5) to optimize its
loss function and exchange the gradients with other devices in the cluster at each
training step.

3.	 The gradients from all the devices are aggregated and the common model
parameters (W) are calculated using aggregated gradients.

Training large-scale models with distributed training 305

4.	 Each device pulls down the newly calculated common model parameters (W) and
continues with the next step of model training.

5.	 Steps 2 to 4 are repeated until the model training is completed.

In a distributed training setting, efficiently exchanging gradients and parameters across
processes is one of the most important aspects of ML system engineering design.
Several distributed training topologies have been developed over the years to optimize
communications across different training processes. In this chapter, we will discuss two of
the most widely adopted topologies for data parallel distributed training.

Parameter server overview
The parameter server (PS) is a topology built on the concept of server nodes and worker
nodes. The worker nodes are responsible for running the training loops and calculating
the gradients, while the server nodes are responsible for aggregating the gradients and
calculating the globally shared parameters. The following diagram shows the architecture
of a PS:

Figure 10.4 – Parameter server architecture

306 Advanced ML Engineering

Here, the server node is called the PS, and it is usually implemented as a key value or
vector store for storing gradients and parameters. As the number of model parameters
to manage can become very large, there could also be multiple server nodes for
managing the global parameters and gradient aggregations. In a multi-parameter server
configuration, there is also a server manager that manages and coordinates all the server
nodes to ensure consistency.

In this architecture, the worker nodes only communicate with the PS nodes to exchange
gradients and parameters, and not with each other. In a multi-server node environment,
each server node also communicates with every other server node to replicate parameters
for reliability and scalability. The gradients and parameters are exchanged so that updates
can be implemented synchronously and asynchronously. The synchronously gradient
update strategy blocks the devices from processing the next mini-batch of data until the
gradients from all the devices have been synchronized. This means that each update has
to wait for the slowest device to complete. This can slow down training and make the
training process less robust in terms of device failure. On the positive side, synchronous
updates do not have to worry about stale gradients, which can lead to higher model
accuracy. Asynchronous updates do not need to wait for all the devices to be synchronized
before processing the next mini-batch of data, though this might lead to reduced accuracy.

Implementing the PS in frameworks
PS distributed training is natively supported by several DL frameworks, such as
TensorFlow. Specifically, TensorFlow supports PS-based distributed training natively
with its ParameterServerStrategy API. The following code sample shows how to
instantiate the ParameterServerStrategy API for TensorFlow:

strategy = tf.distribute.experimental.ParameterServerStrategy(

 cluster_resolver)

In this code sample, the cluster_resolver parameter helps discover and resolve the
IP addresses of workers.

ParameterServerStrategy can be used directly with the model.fit() function
of Keras or a custom training loop by wrapping the model with the strategy.scope()
syntax. See the following sample syntax on how to use scope() to wrap a model for
distributed training:

with strategy.scope()

 model = <model architecture definition>

Training large-scale models with distributed training 307

In addition to PS implementation, which is natively supported within DL libraries, there
are also general-purpose PS training frameworks, such as BytePS from ByteDance and
Herring from Amazon, which work with different DL frameworks. SageMaker uses
Herring under the hood for data parallel distributed training through its SageMaker
Distributed Training library. One of the shortcomings of the parameter-server strategy is
the inefficient use of network bandwidth. The Herring library addresses this shortcoming
by combining AWS Elastic Fabric Adapter (EFA) and the parameter sharding technique,
which makes use of network bandwidth to achieve faster distributed training. EFA takes
advantage of cloud resources and their characteristics, such as multi-path backbones,
to improve network communication efficiency. You can find out more about Herring at
https://www.amazon.science/publications/herring-rethinking-
the-parameter-server-at-scale-for-the-cloud.

AllReduce overview
While the PS architecture is easy to understand and set up, it does come with several
challenges. For example, the PS architecture requires additional nodes for the parameter
servers, and it is also hard to determine the right ratio between server nodes and worker
nodes to ensure the server nodes do not become bottlenecks.

The AllReduce topology tries to improve some of the limitations of parameter servers
by eliminating the server nodes and distributing all the gradient aggregation and global
parameter updates to all the workers, hence why it's called AllReduce. The following
diagram shows the topology of AllReduce:

Figure 10.5 – AllReduce architecture

https://www.amazon.science/publications/herring-rethinking-the-parameter-server-at-scale-for-the-cloud
https://www.amazon.science/publications/herring-rethinking-the-parameter-server-at-scale-for-the-cloud

308 Advanced ML Engineering

In an AllReduce topology, each node sends gradients of parameters to all the other nodes
at each training step. Then, each node aggregates the gradients and performs the reduce
function (such as average, sum, or max) locally before calculating the new parameters
using the next training step. Since every node needs to communicate with every other
node, this results in a large number of networks communicating among the nodes, and
duplicate compute and storage being used as every node has a copy of all the gradients.

A more efficient AllReduce architecture is Ring AllReduce. In this architecture, each node
only sends some gradients to its next neighboring node, and each node is responsible
for aggregating the gradients for the global parameters that it is assigned to calculate.
This architecture greatly reduces the amount of network communication in a cluster and
compute overhead, so it is more efficient for model training. The following diagram shows
the Ring AllReduce architecture:

Figure 10.6 – Ring AllReduce

Implementing AllReduce and Ring AllReduce in frameworks
The AllReduce and Ring AllReduce architectures are natively supported within multiple
DL frameworks, including TensorFlow and PyTorch.

TensorFlow supports AllReduce distributed training across multiple GPUs on one
machine with its tf.distribute.MirroredStrategy API. With this strategy, each
GPU has a copy of the model, and all the model parameters are mirrored across different
devices. An efficient AllReduce mechanism is used to keep these parameters in sync. The
following code sample shows how to instantiate the MirroredStrategy API:

strategy = tf.distribute.MirroredStrategy()

Training large-scale models with distributed training 309

For multi-machine distributed training, TensorFlow uses the tf.distribute.
MultiWorkerMirroredStrategy API. Similar to MirroredStrategy,
MultiWorkerMirroredStrategy creates copies of all the parameters
across all the devices on all the machines and synchronizes them with the
AllReduce mechanism. The following code sample shows how to instantiate the
MultiWorkerMirroredStrategy API:

strategy = tf.distribute.MultiWorkerMirroredStrategy()

Similar to ParameterServerStrategy, MirroredStrategy and
MultiWorkerMirroredStrategy can work with the keras model.fit()
function or a custom training loop. To associate a model with a training strategy, you can
use the same strategy.scope() syntax.

PyTorch also provides native support for AllReduce-based distributed
training via its torch.nn.DataParallel and torch.nn.parallel.
DistributedDataParallel APIs. The torch.nn.DataParallel API
supports single-process multi-threading across GPUs on the same machine, while
torch.nn.parallel.DistributedDataParallel supports multi-processing
across GPUs and machines. The following code sample shows how to initiate a
distributed training cluster and wrap a model for distributed training using the
DistributedDataParallel API:

torch.distributed.init_process_group(...)

model = torch.nn.parallel.DistributedDataParallel(model, ...)

Another popular implementation of the general-purpose Ring AllReduce architecture is
Horovod, which was created by the engineers at Uber. Horovod works with multiple DL
frameworks, including TensorFlow and PyTorch. You can find out more about Horovod at
https://github.com/horovod/horovod.

Distributed model training using model parallelism
Model parallelism is still nascent in its adoption since most of the distributed training
that happens today involves data parallelism that deals with large datasets. However, the
applications of state-of-the-art big DL algorithms such as BERT, GPT, and T5 are driving
the increasing adoption of model parallelism. The qualities of these models are known
to increase with the model's size, and these large NLP models require a large amount of
memory to store the model's states (which includes the model's parameters, optimizer
states, and gradients) and memory for other overheads.

https://github.com/horovod/horovod

310 Advanced ML Engineering

As such, these models can no longer fit into the memory of a single GPU. While data
parallelism helps solve the large dataset challenge, it cannot help with training large
models due to its large memory size requirements. Model parallelism allows you to split
a single large model across multiple devices so that the total memory across multiple
devices is enough to hold a copy of the model. Model parallelism also allows for a larger
batch size for model training as a result of larger collective memory across multiple
devices.

There are two main ways to split the model for model parallel distributed training:
splitting by layers and splitting by tensors. Let's take a closer look at these two approaches.

Naïve model parallelism overview
As an artificial neural network consists of many layers, one way to split the model is
to distribute the layers across multiple devices. For example, if you have an 8-layer
multi-layer perceptron network (MLP) and two GPUs (GPU0, and GPU1), you can
simply place the first four layers in GPU0 and the last four layers in GPU1. During
training, the first four layers of the model are trained as you would normally train
a model in a single device. When the first four layers are complete, the output from the
fourth layer will be copied from GPU0 to GPU1, incurring communication overhead.
After getting the output from GPU0, GPU1 continues training layers five to eight. The
following diagram illustrates splitting a model by layers across multiple devices:

Figure 10.7 – Naïve model parallelism

Training large-scale models with distributed training 311

Implementing model parallelism by splitting requires knowledge about the training task.
It is not a trivial task to design an efficient model parallelism strategy. Here are a few
heuristics that could be helpful for the layer split design:

•	 Place neighboring layers on the same devices to minimize communication
overhead.

•	 Balance the workload between devices.

•	 Different layers have different compute and memory utilization properties.

Training an ANN model is inherently a sequential process, which means that the network
layers are processed sequentially, while the backward process will only start when the
forward process is completed. When you're splitting layers across multiple devices, only
the device currently processing the layers on it will be busy; the other devices will be idle,
wasting compute resources, which results in a waste of hardware resources. The following
diagram shows processing the sequences for the forward and backward passes for one
batch of data:

Figure 10.8 – Naïve model parallelism

In the preceding diagram, F0, F1, and F2 are the forward passes on the different neural
network layers on each device. B2, B1, and B0 are the backward passes for the layers on
each device. As you can see, when one of the devices is busy with either a forward pass or
a backward pass, the other devices are idle. Next, let's look at an approach (pipeline model
parallelism) that can help increase resource utilization.

312 Advanced ML Engineering

Pipeline model parallelism overview
To resolve the resource idling issue, pipeline model parallelism can be implemented.
This improves on naïve model parallelism so that different devices can work in parallel
on the different stages of the training pipeline on a smaller chunk of data batch,
commonly known as a micro-batch. The following diagram shows how pipeline model
parallelism works:

Figure 10.9 – Pipeline model parallelism

With pipeline model parallelism, instead of processing one batch of data with each
full forward and backward pass, the one batch of data is broken down into smaller
mini-batches. In the preceding diagram, after Device 0 completes the forward pass for
the first mini-batch, Device 1 can start its forward pass on the output of the Device 1
forward pass. Instead of waiting for Device 1 and Device 2 to complete their forward
pass and backward passes, Device 0 starts to process the next mini-batch of data. This
scheduled pipeline allows for higher utilization of the hardware resources, resulting in
faster model training.

There are other variations of pipeline parallelism. One example is interleaved parallelism,
where a backward execution is prioritized whenever possible. This improves the
utilization of the devices for end-to-end model training. The following diagram shows
how an interleaved pipeline works:

Figure 10.10 – Interleaved pipeline

Next, let's look at an overview of tensor parallelism, also known as tensor slicing.

Training large-scale models with distributed training 313

Tensor parallelism/tensor slicing overview
As we mentioned earlier, tensor parallelism is another approach to spitting a large model
to make it fit into memory. Before we dive into this, let's quickly review what a tensor is
and how it is processed by an ANN.

A tensor is a multi-dimensional matrix of a single data type such as a 32-bit
floating-point or 8-bit integer. In the forward pass of neural network training, a dot
product is used on the input tensor and weight matrix tensors (the connections between
the input tensors and the neurons in the hidden layer). You can find out more about dot
products at https://en.wikipedia.org/wiki/Dot_product. The following
diagram illustrates a dot product between the input vector and the weight matrix:

Figure 10.11 – Matrix calculation

In this matrix calculation, you get an output vector of [5,11,17]. If there is a single device
for dot product calculation, three separate calculations will be performed sequentially to
get the output vector.

But what if we break up the single weights matrix into three vectors and use a dot product
separately? This can be seen in the following diagram:

Figure 10.12 – Splitting the matrix calculation

https://en.wikipedia.org/wiki/Dot_product

314 Advanced ML Engineering

As you can see, you would get three separate values that are the same as the individual
values in the output vector in the preceding diagram. If there are three separate devices for
performing dot product calculations, we can perform these three dot product calculations
in parallel and combine the values into a single vector at the end if needed. This is the
basic concept of why tensor parallelism works. With tensor parallelism, each device works
independently without the need for any communication until the end, which is when
the results need to be synchronized. This strategy allows for faster tensor processing as
multiple devices can work in parallel to reduce training time and increase the utilization
of computing devices.

Implementing model parallelism training
To implement model parallelism, you can manually design the parallelism strategy by
deciding how to split the layers and tensors, as well as their placements, across different
devices and nodes. However, it is not trivial to do this efficiently, especially for large
clusters. To make the model parallelism implementation easier, several model parallelism
library packages have been developed. In this section, we'll take a closer look at some of
these libraries. Note that the frameworks we will discuss can support both data parallelism
and model parallelism and that both techniques are often used together to train large
models with large training datasets.

Megatron-LM overview
Megatron-LM is an open source distributed training framework developed by Nvidia. It
supports data parallelism, tensor parallelism, and pipeline model parallelism, as well as a
combination of all three for extreme-scale model training.

Megatron-LM implements micro-batch-based pipeline model parallelism to improve
device utilization. It also implements periodic pipeline flushes to ensure optimizer steps
are synchronized across devices. Two different pipeline schedules are supported by
Megatron-LM, as follows:

•	 The default schedule works by completing the forward pass for all micro-batches
first, before starting the backward pass for all the batches.

•	 The interleaved stage schedule works by running multiple different subsets of layers
on a single device, instead of running just a single continuous set of layers. This can
further improve the utilization of devices and reduce idle time.

Training large-scale models with distributed training 315

Megatron-LM implements a specific tensor parallelism strategy for transformer-based
models. A transformer consists mainly of self-attention blocks, followed by a two-layer
MLP. For the MLP portion, Megatron-LM splits the weight matrix by columns. The
matrices for the self-attention heads are also partitioned by columns. The following
diagram shows how the different parts of the transformers can be split:

Figure 10.13 – Tensor parallelism for transformers

Using data parallelism, pipeline model parallelism, and tensor parallelism together,
Megatron-LM can be used to train extremely large transformer-based models
(with a trillion parameters) scaled across thousands of GPUs.

Training using Megatron-LM involves the following key steps:

1.	 Initializing the Megatron library using the initialize_megatron() function.
2.	 Setting up the Megatron model optimizer using the setup_model_and_

optimizer() function by wrapping the original model.
3.	 Training the model using the train() function, which takes the Megatron model

and optimizer as input.

316 Advanced ML Engineering

Megatron-LM has been used for many large model training projects, such as BERT, GPT,
and the Biomedical domain language model. Its scalable architecture can be used to train
models with trillions of parameters.

DeepSpeed overview
DeepSpeed is an open source distributed training framework developed by Microsoft.
Similar to Megatron-LM, DeepSpeed also supports tensor slicing (another name for
splitting tensors) parallelism, pipeline parallelism, and data parallelism.

DeepSpeed implements micro-batch-based pipeline model parallelism, where a batch is
broken into micro-batches to be processed by different devices in parallel. Specifically,
DeepSpeed implements interleaved pipeline parallelism to optimize resource efficiency
and utilization.

Similar to Megatron-LM, DeepSpeed can use data parallelism, pipeline model parallelism,
and tensor parallelism together to train extremely large deep neural networks. This is also
known as DeepSpeed 3D parallelism.

One core capability of the DeepSpeed framework is its Zero Redundancy Optimizer
(ZeRO). ZeRO is capable of managing memory efficiently by partitioning parameters,
optimizer states, and gradients across devices instead of keeping a copy in all devices. The
partitions are brought together at runtime when needed. This allows ZeRO to reduce the
memory footprint by eight times compared to regular data parallelism techniques. ZeRO
is also capable of using CPU and GPU memory together to train large models.

The attention-based mechanism is widely adopted in DL models, such as the transformer
model, to address text and image inputs. However, its ability to address long input
sequences is limited due to its large memory and compute requirements. DeepSpeed helps
alleviate this issue with its implementation of a sparse attention kernel – a technology that
reduces the compute and memory requirements of attention computation via block-sparse
computation.

One major bottleneck in large-scale distributed training is the communication overhead
due to gradients sharing and updates. Communication compression, such as 1-bit
compression, has been adopted as an effective mechanism to reduce communication
overhead. DeepSpeed has an implementation of a 1-bit Adam optimizer, which can
reduce the communication overhead by up to five times to improve the training speed.
1-bit compression works by representing each number using 1 bit, combined with error
compensation, which remembers the error during gradient compression and adds the
error back to next the step to compensate for the error.

Training large-scale models with distributed training 317

To use DeepSpeed, you need to modify your training script. The following steps explain
the main changes you need to make to a training script to run distributed training:

1.	 Use the deepspeed.initialize() function to wrap the model and return
a DeepSpeed model engine. This model engine will be used to run a forward pass
and a backward pass.

2.	 Use the returned DeepSpeed model engine to run the forward pass, backward pass,
and step function to update the model parameters.

DeepSpeed primarily supports the PyTorch framework and requires minor code
changes to adopt model training using PyTorch. DeepSpeed has been used for training
models with hundreds of billions of parameters and has delivered some of the fastest
model training times. You can find out more about DeepSpeed at https://www.
deepspeed.ai.

SageMaker Distributed Training library overview
Amazon's SageMaker Distributed Training (SMD) library is part of the Amazon
SageMaker service offering. SMD supports data parallelism (by using Herring under
the hood) and interleaved pipeline model parallelism. Unlike DeepSpeed and
Megatron-LM, where you need to manually decide on your model partitions,
SageMaker Model Parallel (SMP)

 has a feature for automated model splitting support.

This automated model splitting feature of SMP balances memory and communication
constraints between devices to optimize performance. Automated model splitting
takes place during the first training step, where a version of a model is constructed in
CPU memory. The graph is analyzed, a partition decision is made, and different model
partitions are loaded into different GPUs. The partition software performs framework-
specific analysis for TensorFlow and PyTorch to determine the partition decision. It
considers graph structures such as variable/parameter sharing, parameter sizes, and
constraints to balance the number of variables and the number of operations for each
device to come up with split decisions.

To use SageMaker Distributed Training, you need to make some changes to your existing
training scripts and create SageMaker training jobs. There are different instructions for
TensorFlow and PyTorch. The following are examples for the PyTorch framework:

1.	 Modify the PyTorch training script:

	� Call smp.init() to initialize the library.

	� Wrap the model with smp.DistributedModel().

https://www.deepspeed.ai
https://www.deepspeed.ai

318 Advanced ML Engineering

	� Wrap the optimizer with smp.DistributedOptimizer().

	� Restrict each process to its own device through torch.cuda.set_
device(smp.local_rank()).

	� Use the wrapped model to perform a forward pass and a backward pass.

	� Use the distributed optimizer to update the parameters.

2.	 Create a SageMaker training job using SageMaker PyTorch Estimator and enable
SMP distributed training.

In this section, we reviewed the different distributed training strategies and frameworks
for running distributed training. Distributed model training allows us to train extremely
large models, though running inferences on large models could result in high latency
due to the size of the models and other technological constraints. Next, let's discuss the
various techniques we can use to achieve low latency inference.

Achieving low latency model inference
As ML models continue to grow and get deployed to different hardware devices,
latency can become an issue for certain inference use cases that require low latency and
high throughput inferences, such as real-time fraud detection. To reduce the overall
model inference latency for a real-time application, there are different optimization
considerations and techniques we can use, including model optimization, graph
optimization, hardware acceleration, and inference engine optimization. In this section,
we will focus on model optimization, graph optimization, and hardware optimization. But
first, let's try to understand how model inference works, specifically for DL models, since
that's what most of the inference optimization processes focus on.

How model inference works and opportunities for
optimization
As we discussed earlier in this book, DL models are constructed as computational
graphs with nodes and edges, where the nodes represent the different operations and
edges represent the data flow. Examples of such operations include addition, matrix
multiplication, activation (for example, Sigmoid and ReLU), and pooling. These
operations perform computations on tensors as inputs and produce tensors as outputs.
For example, the c=matmul(a,b) operation takes a and b as input tensors and produces c
as the output tensor. Deep learning frameworks, such as TensorFlow and PyTorch, have
built-in operators to support different operations. The implementation of an operator is
also called a kernel.

Achieving low latency model inference 319

During inference time for a trained model, the DL framework's runtime
will walk through the computational graph and invoke the appropriate kernels (such as
add or Sigmoid) for each of the nodes in the graph. The kernel will take various inputs,
such as the inference data samples, learned model parameters, and intermediate outputs,
from the preceding operators and perform specific computations according to the data
flow defined by the computational graph to produce the final predictions. The size of
a trained model is mainly determined by the number of nodes in a graph, as well as
the number of model parameters and their numerical precisions (for example,
floating-point 32, floating-point 16, or integer 8).

Different hardware providers such as Nvidia and Intel also provide hardware-specific
implementations of kernels for common computational graph operations. CuDNN is the
library from Nvidia for optimized kernel implementations for their GPU devices, while
MKL-DNN is the library from Intel for optimized kernel implementations for Intel chips.
These hardware-specific implementations take advantage of the unique capabilities of
the underlying hardware architecture. They can perform better than the kernels that are
implemented by the DL framework implementation since the framework implementations
are hardware-agnostic.

At this point, you should have a basic understanding of how inference works. Next,
let's discuss some of the common optimization techniques we can use to improve
model latency.

Hardware acceleration
Different hardware produces varying inference latency performance for different ML
models. The list of common hardware for model inference includes the CPU, GPU,
application-specific integrated circuit (ASIC), field-programmable gate array (FPGA),
and edge hardware (such as Nvidia Jetson Nano). In this section, we will review the core
architecture characteristics for some of these pieces of hardware and how their designs
help with model inference acceleration.

Central processing units (CPUs)
A CPU is a general-purpose chip for running computer programs. It consists of four main
building blocks:

•	 The control unit is the brain of the CPU that directs the operations of the CPU; that
is, it instructs other components such as memory.

•	 The arithmetic logic unit (ALU) is the basic unit that performs arithmetic and
logical operations, such as addition and subtraction, on the input data.

320 Advanced ML Engineering

•	 The address generation unit is used for calculating an address to access memory.

•	 Memory management, which is used for all memory components such as main
memory and the local cache. A CPU can also be made up of multiple cores, with
each core having a control unit and ALUs.

The degree of parallel executions in a CPU mainly depends on how many cores it has.
Each core normally runs a single thread at a time, except for hyper-threading
(a proprietary simultaneous multi-threading implementation from Intel). The more
cores it has, the higher the degree of parallel executions. A CPU is designed to handle
a large set of instructions and manage the operations of many other components; it
usually has high performance and a complex core, but they aren't many of them. For
example, the Intel Xeon processor can have up to 56 cores.

CPUs are usually not suited for neural network-based model inference if low latency is
the main requirement. Neural network inference mainly involves operations that can be
parallelized at a large scale (for example, matrix multiplication). Since the total number
of cores for a CPU is usually small, it cannot be parallelized at scale to meet the needs of a
neural network inference. On the positive side, CPUs are more cost-effective and usually
have good memory capacities for hosting larger models.

Graphical processing units (GPUs)
The design of a GPU is the opposite of the design of a CPU. Instead of having a few
powerful cores, it has thousands of less powerful cores that are designed to perform
a small set of instructions highly efficiently. The basic design of a GPU core is like
that of a CPU. It also contains a control unit, ALU, and a local memory cache. However,
the GPU control unit handles a much simpler instruction set, and the local memory is
much smaller.

When the GPU processes instructions, it schedules blocks of threads, and within each
block of threads, all the threads perform the same operations but on different pieces of
data – a parallelization scheme called Single Instruction Multiple Data (SIMD). This
architecture fits nicely with how a DL model works, where many neurons perform the
same operation (mainly matrix multiplication) on different pieces of data.

The Nvidia GPU architecture contains two main components:

•	 The global memory component

•	 The streaming multiprocessor (SM) component

Achieving low latency model inference 321

An SM is analogous to a CPU and each SM has many Computer Unified Device
Architecture (CUDA) cores, special functional units that perform different arithmetic
operations. It also has a small, shared memory and cache, and many registers. A
CUDA core is responsible for functions such as floating-point/integer operations, logic
calculation, and branching. The thread block mentioned previously is executed by the SM.
The global memory is located on the same GPU board. When you're training a ML model,
both the model and the data need to be loaded into the global memory.

In a multi-GPU configuration, low latency and high throughput communication channels
are available, such as the Nvidia NVLink, which provides up to 600 GB/sec bandwidth,
which is almost 10x the bandwidth of PCIe4.

GPUs are well suited for low latency and high throughput neural network model
inferences due to their massive number of CUDA cores for large-scale parallelism.

Application-specific integrated circuit
An application-specific integrated circuit (ASIC) is a primary alternative to a GPU.
ASIC chips are purpose-designed for particular DL architectures for computation and
data flow, so are faster and require less power than the GPUs. For example, Google's
Tensor Processing Unit (TPU) has dedicated Matrix Units (MXUs) designed for efficient
matrix computations, and AWS offers the Inferentia chip, an ASIC designed for model
inference. To speed up model inference, the Amazon Inferentia chip and Google's TPU
chip both use the systolic array mechanism to speed up arithmetic calculations for deep
neural networks. While the general-purpose chips such as CPUs and GPUs use local
registers between different ALU computations to transfer data and results, a systolic array
allows you to chain multiple ALUs to reduce register access to speed up processing. The
following diagram shows how data flows within a systolic array architecture versus a
regular architecture that's used in CPUs and GPUs:

Figure 10.14 – Systolic array processing versus CPU/GPU processing

322 Advanced ML Engineering

The Amazon Inferentia chip can be used directly with Amazon SageMaker for inference
with improved latency. You can do this by selecting one of the supported Inferentia chips
for model deployment.

Model optimization
When you're processing computational graphs for DL model inference, the size of the
neural network (such as its number of layers, neurons, and so on), the number of model
parameters, and the numerical precision of the model parameters directly impact the
performance of model inference. The model optimization approach focuses on reducing
the size of the neural network, the number of model parameters, and the numerical
precisions to reduce inference latency. In general, there are two main approaches to model
optimization: quantization and pruning.

Quantization
Traditionally, deep neural networks are trained with floating-point 32 bit (FP32).
However, for many neural networks, FP32 is not needed for the required precision.

Quantization for DL is a network compression approach that uses lower precision
numbers, such as floating-point 16 bit (FP16) or integer 8 bit (INT8) instead of FP32,
to represent static model parameters and perform numerical computation with dynamic
data inputs/activation, all while having minimal or no impact on model performance.
For example, an INT8 representation takes up four times less space than the FP32
representation, which significantly reduces the memory requirements and computational
costs for neural networks, which means it can improve the overall latency for model
inference.

There are different types of quantization algorithms, including uniform and non-uniform
quantization algorithms. Both approaches map real values in a continuous domain
to discrete lower precision values in the quantized domain. In the uniform case, the
quantized values in the quantized domains are evenly spaced, whereas the non-uniform
case has varying quantized values. The following diagram shows the difference between
a uniform and a non-uniform quantization:

Achieving low latency model inference 323

Figure 10.15 – Uniform and non-uniform quantization

Quantization can be performed both post-training and during training
(quantization-aware training). Post-training quantization takes a trained model,
quantizes the weights, and regenerates a quantized model. Quantization-aware training
involves fine-tuning a full precision model. During training, the higher precision real
numbers are reduced to lower precision numbers.

Quantization support is natively available in DL frameworks, such as PyTorch
and TensorFlow. For example, PyTorch supports both forms of quantization via its
torch.quantization package. TensorFlow supports quantization through the
tf.lite package.

Pruning (also known as sparsity)
Pruning is another network compression technique that eliminates some of the model
weights and neurons that don't impact model performance to reduce the size of the model
to make inference faster. For example, weights that are close to zero or redundant can
usually be removed.

Pruning techniques can be classified into static and dynamic pruning. Static pruning takes
place offline before the model is deployed, while dynamic pruning is performed during
runtime. Here, we will discuss some of the key concepts and approaches for static pruning.

324 Advanced ML Engineering

Static pruning mainly consists of three steps:

1.	 Parameter selection for pruning targeting.
2.	 Pruning the neurons.
3.	 Fine-tuning or retraining if needed. Retraining may improve the model

performance of the pruned neural network.

There are several approaches for selecting the parameters for static pruning, including the
magnitude-based approach, the penalty-based approach, and dropout removal:

•	 Magnitude-based approach: It is widely accepted that large model weights are
more important than small model weights. So, one intuitive way to select weights
for pruning is to look at zero-value weights or the weights within a defined absolute
threshold. The magnitude of the neural network activation layer can also be used to
determine if the associated neurons can be removed.

•	 Penalty-based approach: In the penalty-based approach, the goal is to modify
the loss function or add additional constraints so that some weights are forced to
become zeros or near zeros. The weights that are zeros or close to zeros can then be
pruned. An example of the penalty-based approach is using LASSO to shrink the
weights of features.

•	 Dropout removal: Dropout layers are used in deep neural network training as
regularizers to avoid overfitting data. While dropout layers are useful in training,
they are not useful for inference and can be removed to reduce the number of
parameters without impacting the model's performance.

DL frameworks, such as TensorFlow and PyTorch, provide APIs for pruning models.
For example, you can use the tensorflow_model_optimization package and its
prune_low_magnitude API for magnitude-based pruning. PyTorch provides model
pruning support via its torch.nn.utils.prune API.

Graph and operator optimization
In addition to hardware acceleration and model optimization, there are additional
optimization techniques that focus on the execution optimization of the computational
graph, as well as hardware-specific operator and tensor optimization.

Graph optimization
Graph optimization focuses on reducing the number of operations that are performed
in computational graphs to speed up inference. Multiple techniques are used for graph
optimization, including operator fusion, dead code elimination, and constant folding.

Achieving low latency model inference 325

Operator fusion combines multiple operations in a subgraph into a single operation to
improve latency. In a typical execution of a subgraph with multiple operations, system
memory is accessed for read/write to transfer data between operations, which is an
expensive task. Operator fusion reduces the number of memory accesses, as well as
optimizes the overall computations since the computations are now happening in a
single kernel without the intermediate results being saved to memory. This approach also
reduces the memory footprint due to a smaller number of operations being performed.
The following diagram shows the concept of operator fusion:

Figure 10.16 – Graph operator fusion

In the preceding diagram, the matrix multiplication, add, and ReLU operators are being
fused into a single operator for execution in a single kernel to reduce memory access and
the time needed to start multiple kernels.

Constant folding is the process of evaluating constants at compile time instead of runtime
to speed up processing during runtime. For example, for the following expression, A can
be assigned to a value of 300 at compile time instead of being dynamically calculated
at runtime, which requires a more computational cycle: A = 100 + 200. Dead code
elimination removes the code that does not affect the program's results. This ensures that
the program doesn't waste computation on useless operations.

326 Advanced ML Engineering

Operator optimization
Operator optimization (also known as tensor optimization) focuses on hardware-specific
optimization for a specific model. Different hardware devices have different memory
layouts and computational units and as such, hardware-specific optimization is often
required to take full advantage of the hardware architecture. Multiple techniques have
been developed for operator optimization for different hardware devices, including the
following:

•	 Nested parallelism, which takes advantage of the GPU memory hierarchy and
enables data reuse across threads through shared memory regions.

•	 Memory latency hiding, which overlaps the memory operation with computation
to maximize memory and compute resources.

While graph optimization, operator optimization, and model optimization address
different areas of optimizations, they are often combined to provide end-to-end
optimization.

Model compilers
Manually optimizing end-to-end model performance is non-trivial. Adding the
dimensions of multiple ML frameworks and a wide range of target hardware devices
for optimization makes this a very challenging problem. To simplify the optimization
process for different ML frameworks and different devices, several open source and
commercial products have been developed. We will briefly talk about a few such
packages in this section.

TensorFlow XLA
TensorFlow Accelerated Linear Algebra (XLA) is a DL compiler for TensorFlow. It
compiles a TensorFlow graph into a sequence of execution kernels specifically optimized
for the model. XLA transforms the original TensorFlow graph into an intermediate
representation (IR) before performing several optimizations on the IR, such as operator
fusion for faster computation. The output from the optimization step is then used for
generating hardware-specific code that optimizes the performance of the different target
hardware devices, such as CPUs and GPUs. XLA is used at Google in production for many
accelerators.

Achieving low latency model inference 327

PyTorch Glow
PyTorch Glow is a DL compiler for multiple DL frameworks. Similar to XLA, it also
uses an IR to represent the original computational graph to perform optimizations.
Unlike XLA, PyTorch Glow uses two layers of IRs. The first layer is used for performing
domain-specific optimizations such as quantization, while the second IR layer is used
for memory-related optimization such as memory latency hiding. After the second layer
IR optimization, target device-dependent code is generated for running the models on
different devices.

Apache TVM
Apache Tensor Virtual Machine (TVM) is an open source compiler framework for model
optimization. It optimizes and compiles models built with different frameworks, such
as PyTorch and TensorFlow, for different target CPUs, GPUs, and specialized hardware
devices for accelerated performance. TVM supports optimization at different levels,
including graph optimization and operator optimization targeting specific hardware. It
also comes with a runtime for efficiently executing the compiled models.

One key feature of TVM is AutoTVM, which uses ML to search for the optimal sequences
of code execution for different hardware devices. This ML-based search algorithm can
significantly outperform baseline benchmarks by using vendor-provided optimization
libraries such as cuDNN. This ML-based approach also enables efficient compilation
scaling for a large number of hardware devices.

Amazon SageMaker Neo
Amazon SageMaker Neo is the model compiling feature in SageMaker. It mainly uses
Apache TVM as the underlying compiler library. With SageMaker Neo, you take a model
that's been trained in different ML/DL frameworks such as TensorFlow and PyTorch,
choose the target processors such as Intel, Apple, ARM, and Nvidia, and then SageMaker
Neo compiles an optimized model for the target hardware. Neo also provides a runtime
library for each target platform to load and execute the compiled model. SageMaker Neo
is a managed offering, so you don't need to manage the underlying infrastructure and
processes for model compilation and deployment.

328 Advanced ML Engineering

Inference engine optimization
One common model deployment pattern is to use open source inference engines or
commercial hosting platforms for model serving. So, inference engine optimization is
another approach that helps reduce model latency and inference throughput. In this
section, we will talk about a few considerations. Note that there are no universal rules for
inference engine optimization as they could be engine- and model-specific. It is important
to test and validate different configurations for the final deployment.

Inference batching
If you have a large number of inference requests and there is no strict latency requirement
on a single prediction request, then inference batching is a technique that can help reduce
the total inference time for the requests. With inference batching, instead of running
predictions one at a time for each request, multiple requests are batched together and sent
to the inference engine. This technique reduces the total number of request round-trips,
thus reducing the total inference time. Inference engines such as TensorFlow Serving and
TorchServe provide built-in support for batch inference. You can find the configuration
details for TorchServe and TensorFlow Serving batch inference at https://
pytorch.org/serve/batch_inference_with_ts.html and https://
www.tensorflow.org/tfx/serving/serving_config#batching_
configuration, respectively.

Enabling parallel serving sessions
If your model hosting server has multiple compute cores, you can configure the number
of parallel serving sessions to maximize the utilization of the available cores. For example,
you can configure the TENSORFLOW_INTRA_OP_PARALLELISM setting in TensorFlow
Serving based on the number of cores that can run multiple serving sessions in parallel to
optimize throughput. TorchServe has settings for the number of workers per model and
the number of threads for parallelization optimization.

Picking a communication protocol
Inference engines such as TensorFlow and TorchServe provide support for the gRPC
protocol, which is a faster serialization format than the REST protocol. The gPRC protocol
provides better overall performance but does have performance benchmarks as different
models could behave differently. The REST protocol may be your preferred option based
on specific requirements.

With that, you have learned about the technical approaches to large-scale training and
low latency model inference. Next, let's get some hands-on experience with distributed
training using SageMaker and PyTorch.

https://pytorch.org/serve/batch_inference_with_ts.html
https://pytorch.org/serve/batch_inference_with_ts.html
https://www.tensorflow.org/tfx/serving/serving_config#batching_configuration
https://www.tensorflow.org/tfx/serving/serving_config#batching_configuration
https://www.tensorflow.org/tfx/serving/serving_config#batching_configuration

Hands-on lab – running distributed model training with PyTorch 329

Hands-on lab – running distributed model
training with PyTorch
In this hands-on lab, you will use SageMaker Training Service to run data
parallel distributed training. We will use PyTorch's torch.nn.parallel.
DistributedDataParallel API as the distributed training framework and run the
training job on a small cluster. We will reuse the dataset and training scripts from the
hands-on lab in Chapter 8, Building a Data Science Environment Using AWS Services.

All right, let's get started!

Modifying the training script
First, we need to add distributed training support to the training script. To start,
create a copy of the train.py file, rename the file train-dis.py, and open the
train-dis.py file. You will need to make changes to the following three main
functions. The following steps are meant to highlight the key changes needed. To run
the lab, you can download the modified train-dis.py file from https://github.
com/PacktPublishing/The-Machine-Learning-Solutions-Architect-
Handbook/tree/main/Chapter10.

Modifying the train() function
You need to make some changes to the train() function to enable distributed training.
The following are the key changes that are required:

•	 Process group initialization: To enable distributed training, we need to initialize
and register each training process on each device to be included in the training
group. This can be achieved by calling the torch.distributed.init_
process_group() function. This function will block until all the processes have
been registered. There are a few concepts that we need to be familiar with during
this initialization step:

	� Word size: This is the total number of processes in a distributed training group.
Since we will run one process on each device (CPU or GPU), the world size is also
the same as the total number of devices in a training cluster. For example, if you
have two servers and each server has two GPUs, then the world size is four for
this training group. The torch.distributed.init_process_group()
function uses this information to understand how many processes to include in
the distributed training job.

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter10
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter10
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter10

330 Advanced ML Engineering

	� Rank: This is the unique index that's assigned to each process in the training
group. For example, the ranks for all the processes in a training group with a world
size of four would be [0,1,2,3]. This unique index helps uniquely identify each
process within a training group for communication.

	� Local rank: This uniquely identifies a device in a server node. For example, if
there are two devices in a server node, the local rank for two devices would be
[0,1]. Local rank allows you to select a specific device to load the model and data
for model training.

	� Backend: This is the low-level communication library for exchanging and
aggregating data among the different processes. PyTorch distributed training
supports several communication backends, including NCCL, MPI, and Gloo. You
choose a different backend based on the device and networking configuration. It
uses these backends to send, receive, broadcast, or reduce data during distributed
training. We are not going to get into the technical details of these backends in
this book. If you are interested in how these backends work, you can easily find
internet sources that cover these topics.

•	 Wrap the training algorithm with PyTorch distributed library: To use the
PyTorch distributed library support for training, you need to wrap the algorithm
with the PyTorch distributed training library. You can achieve this with the torch.
nn.parallel.DistributedDataParallel() API. This allows the algorithm
to participate in distributed training to exchange gradients and update global
parameters.

•	 Saving model using a single device: In a multi-device server node, you only want
one device to save the final model to avoid I/O conflicts. You can achieve this by
selecting a device with a specific local rank ID.

Now let's take a look at the next step.

Modifying the get_data_loader() function
To ensure a different subset of training data is loaded into different devices on the
server nodes, we need to configure the PyTorch DataLoader API to load data based on
the rank of the training process. This can be done using the torch.utils.data.
distributed.DistributedSampler API.

Hands-on lab – running distributed model training with PyTorch 331

Adding multi-processing launch support for multi-device server
nodes
For server nodes with multiple devices, we need to spawn several parallel processes
based on the number of devices available. To enable this, we can use torch.
multiprocessing to kick off multiple running processes on each node.

Modifying and running the launcher notebook
We are now ready to modify the launcher notebook to kick off the model training
job. To start, copy the bert-financial-sentiment-Launcher.ipynb file
from chapter 8 and save it as bert-financial-sentiment-dis-Launcher.
ipynb. Open the new notebook and replace the second cell's content with the following
code blocks:

1.	 First, we initialize the Sagemaker PyTorch estimator and set the output directory for
the model:

from sagemaker.pytorch import PyTorch

output_path = f"s3://{bucket}/{prefix}"

2.	 Now, we construct the PyTorch estimator with input parameters. We will use two
instances of the ml.g4dn.12xlarge server, which will mean that we will be
using a total of eight GPUs:

estimator = PyTorch(

 entry_point="train-dis.py",

 source_dir="code",

 role=role,

 framework_version="1.6",

 py_version="py3",

 instance_count=2,

 instance_type= "ml.g4dn.12xlarge",

 output_path=output_path,

 hyperparameters={

 "epochs": 10,

 "lr" : 5e-5,

 "num_labels": 3,

 "train_file": "train.csv",

 "test_file" : "test.csv",

332 Advanced ML Engineering

 "MAX_LEN" : 315,

 "batch_size" : 64,

 "test_batch_size" : 10,

 "backend": "nccl"

 },

)

3.	 Finally, we kick off the training process using the fit() function:

estimator.fit({"training": inputs_train, "testing":
inputs_test})

You can download the revised launcher notebook at https://github.com/
PacktPublishing/The-Machine-Learning-Solutions-Architect-
Handbook/blob/main/Chapter10/bert-financial-sentiment-dis-
launcher.ipynb.

Now, just execute each cell in the new notebook to kick off the distributed training.
You can track the training status directly inside the notebook, and the detail status in
CloudWatch Logs. You should see a total of eight processes running in parallel. Take note
of the total training time and accuracy and see how they compare with the results you got
from Chapter 8, Building a Data Science Environment Using AWS ML Services.

Congratulations! You have successfully trained a BERT model using the PyTorch
distributed training library.

Summary
In this chapter, we discussed several advanced ML engineering topics, including
distributed training for large-scale datasets and large models, as well as techniques and
options for achieving low latency inference. Now, you should be able to talk about how
data parallelism and model parallelism work, as well as the various technology options,
such as the PyTorch distributed library and SageMaker Distributed Training library, for
running data parallel and model parallel distribution training. You should also be able to
talk about the different techniques you can use for model optimization to reduce model
inference latency, as well as the model compiler tools for automated model optimization.

In the next chapter, we will talk about security and governance in ML.

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter10/bert-financial-sentiment-dis-launcher.ipynb
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter10/bert-financial-sentiment-dis-launcher.ipynb
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter10/bert-financial-sentiment-dis-launcher.ipynb
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter10/bert-financial-sentiment-dis-launcher.ipynb

11
ML Governance,

Bias, Explainability,
and Privacy

So far, you have successfully implemented a machine learning (ML) platform. At this
point, you might be thinking that your job is done as an ML Solutions Architect (ML SA)
and that the business is ready to deploy models into production. Well, it turns out that
there are additional considerations. To put models into production, an organization also
needs to put governance control in place to meet both the internal policy and external
regulatory requirements. ML governance is usually not the responsibility of an ML SA;
however, it is important for an ML SA to be familiar with the regulatory landscape and
ML governance framework, especially in regulated industries, such as financial services.
So, you should consider these requirements when you evaluate or build an ML solution.

In this chapter, we will provide an overview of the ML governance concept and some
key components, such as model registry and model monitoring, in an ML governance
framework. We will also discuss where technology solutions fit in the overall ML
governance framework. After reading this chapter, you will understand why ML systems
need to be designed with governance in mind, and what technologies can help address
some of the governance and security requirements.

334 ML Governance, Bias, Explainability, and Privacy

Specifically, we will be covering the following topics:

•	 What is ML governance and why is it needed?

•	 Understanding the ML governance framework

•	 Understanding ML bias and explainability

•	 Designing an ML platform for governance

•	 Hands-on lab – detecting ML bias, model explainability, and training privacy-
preserving models

Technical requirements
You will continue to use the AWS environment you created previously for the hands-on
portion of this chapter. The associated code samples can be found at https://github.
com/PacktPublishing/The-Machine-Learning-Solutions-Architect-
Handbook/blob/main/Chapter11.

What is ML governance and why is it needed?
ML governance is a set of policies, processes, and activities by which an organization
manages, controls, and monitors an ML model's life cycle, dependencies, access, and
performance to avoid or minimize financial risk, reputation risk, compliance risk, and
legal risk.

The stakes in model risk management are high. To put this into context, let's revisit the
impact of the financial crisis in 2007 and 2008 due to inadequate ML governance. Many
of us probably still vividly remember the aftermath of the great recession caused by the
crisis, where millions of people were impacted in terms of their jobs, investments, or both,
and many of the largest financial institutions were brought to their knees and went out
of business. The government had to step in to bail out many institutions such as Fannie
Mae and Freddie Mac. This crisis was caused in large part by the flawed model risk
management process and governance across financial organizations, where they failed to
detect the risk from model failure in addressing complex derivative trading. As a result,
the market was flooded with cheap credit.

To prevent and mitigate future crises like this, many regulatory bodies have issued
guidelines and established formal supervisory guidance on model risk management.

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter11
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter11
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter11

What is ML governance and why is it needed? 335

The regulatory landscape around model risk
management
To ensure organizations implement the proper risk management governance for model
development and use, various countries and jurisdictions have established policies and
guidance for the regulated industries.

In the United States, the Federal Reserve and the Office of Controller and Currency
(OCC) have published the Supervisory Guidance on Model Risk Management (OCC
2011-2012 / SR 11-7). SR 11-7 has become the key regulatory guidance for model
risk management in the US. This guidance establishes the main principles for model
risk management and covers governance, policies and controls, model development,
implementation and use, and model validation processes. In the governance and
policy area, there's guidance on model inventory management, risk rating, roles, and
responsibilities. In the model development and implementation area, it covers topics
such as design processes, data assessment, model testing, and documentation. Finally,
in the validation area, there's guidance on validation procedures, monitoring, and
finding resolutions.

In Europe, European Central Bank (ECB) Banking Supervision launched the Targeted
Review of Internal Models (TRIM) guideline in 2016 to guide the model risk
management framework (MRM). Specifically, the guideline states that an MRM needs
to have a model inventory to have a holistic view of the models and their applications,
a guideline for identifying and mitigating known model deficiencies, definitions of roles
and responsibilities, and definitions of policies, measurement procedures, and reporting.

SR 11-7 and TRIM share several common topics and expectations, indicating that
regulatory bodies in both the US and Europe have similar opinions on how MRM
should be implemented. We are not going to list all the guidelines in this book. If you are
interested, you can find more details on SR 11-7 and TRIMs at the following links:

•	 SR 11-7: https://www.federalreserve.gov/supervisionreg/
srletters/sr1107.htm

•	 TRIM: https://www.bankingsupervision.europa.eu/banking/
tasks/internal_models/html/index.en.html

Most of the major banks in the US generally have well-established MRMs and operations,
partly because of the focus placed by SR 11-7.

https://www.federalreserve.gov/supervisionreg/srletters/sr1107.htm

https://www.federalreserve.gov/supervisionreg/srletters/sr1107.htm

https://www.bankingsupervision.europa.eu/banking/tasks/internal_models/html/index.en.html
https://www.bankingsupervision.europa.eu/banking/tasks/internal_models/html/index.en.html

336 ML Governance, Bias, Explainability, and Privacy

Common causes of ML model risks
To understand how ML governance can help with model risk management, we need to
understand the sources of model risks and the impact they might have. The following are
some common causes that can result in potential model failures or misuse:

•	 Lack of inventory and catalog: Without a clear and accurate inventory of models
running in production, an organization will not be able to explain where and how
certain automated decisions are made by the underlying decision-making systems.
An organization will also be unable to mitigate any erroneous decisions made by
the system.

•	 Lack of documentation: Without clear lineage documentation regarding data and
models, an organization will not be able to explain the behavior of a model
or reproduce the model when required by auditors or regulators.

•	 Defects and bias in training data: ML models can make biased decisions as
a result of training with biased datasets. This can subject an organization to
potential reputational or legal risk.

•	 Inconsistent data distributions: When the distributions of training data
and inference data are different, the model can make incorrect predictions in
production. These data distributions can also change in production over time,
which is known as data drift. Incorrect predictions made from out-of-distribution
errors can result in potential financial, reputation, or legal risks.

•	 Inadequate model testing and validation: Before a model is put into production,
it should be thoroughly tested and validated against established acceptance metrics.
It should also be tested for robustness to identify failure points.

•	 Lack of model interpretability: For certain business applications, there are
requirements for explaining how a decision is made by a model. The inability to
explain the model when required can result in reputational and legal risk.

•	 Inadequate change management process: Without robust and model change
management controls, models can be trained with incorrect data and defective
models can be deployed or changed in production, resulting in model failure.

With that, we are familiar with the regulatory landscape around model risk management
and some of the common causes of model failure and misuse. Next, let's discuss the ML
governance framework.

Understanding the ML governance framework 337

Understanding the ML governance framework
ML governance is complex as it deals with complex internal and regulatory policies.
There are many stakeholders and technology systems involved in the full ML life cycle.
Furthermore, the opaque nature of many ML models, data dependencies, ML privacy, and
the stochastic behaviors of many ML algorithms make ML governance more challenging.

The governance body in an organization is responsible for establishing policies and the
ML governance framework. To operationalize ML risk management, many organizations
set up three lines of defense for their organizational structure:

•	 The first line of defense is owned by the business operations. This line of defense
focuses on the development and use of ML models. The business operations are
responsible for creating and retaining all data and model assumptions, model
behavior, and model performance metrics in structured documents based on
model classification and risk exposure. Models are tested and registered, the
associated artifacts are persisted, and the results can be reproduced. Once the
models have been deployed, system issues, model outputs, model bias, and data
and model drift are monitored and addressed according to the established
procedures and guidelines.

•	 The second line of defense is owned by the risk management function, and it
focuses on model validation. The risk management function is responsible for
independently reviewing and validating the documents that are generated by the
first line. This line of defense introduces standards on controls and documentation,
makes sure that documents are self-contained, that results are reproducible, and
that the limitations of models are well-understood by stakeholders.

•	 The internal audit owns the third line of defense. The third line of defense mainly
focuses on control and processes and less on model artifacts and theories.
Specifically, this line of defense is responsible for auditing the first and second lines
of defense to ensure all the established processes and guidelines are effectively
followed and implemented. This line of defense provides independent validation
of internal controls and reviews the documentation, timeliness, frequency, and
completeness of the model risk management activities.

As an ML SA, you are normally part of the first line of defense, designing solutions that
are compliant with the ML governance framework. In the next section, we will talk about
how ML technology fits in the overall governance framework.

338 ML Governance, Bias, Explainability, and Privacy

Understanding ML bias and explainability
One of the key focus areas for ML governance is bias detection and model explainability.
Having ML models exhibiting biased behaviors not only subjects an organization
to potential legal consequences but could also result in a public relations nightmare.
Specific laws and regulations, such as Equal Credit Opportunity Act, prohibit
discrimination in business transactions, such as credit transactions based on race, color,
religion, sex, nationality origin, marital status, and age. Some other examples of laws
against discrimination include the Civil Rights Act of 1964 and Age Discrimination in
Employment Act of 1967.

ML bias can result from the underlying prejudice in data. Since ML models are trained
using data, if the data contains bias, then the trained model will also exhibit biased
behaviors. For example, if you build an ML model to predict a loan default rate as part
of the loan application review process, and you use race as one of the features in the
training data, then the ML algorithm can potentially pick up race-related patterns and
favor certain ethnic groups over others. Bias can be introduced in different stages of
the ML life cycle. For example, there could be data selection bias as certain groups might
have stronger representation in the data collection stage. There could be labeling bias
where a human makes an intentional or unintentional mistake in assigning labels to
a dataset. Data sources with disinformation can also be a source of bias that results in
biased AI solutions.

The ability to explain the decisions that are made by models helps an organization to
satisfy the compliance and audit requirements of the governance bodies. Furthermore,
model explainability helps an organization understand the cause-and-effect relationships
between the inputs and the ML predictions to make better business decisions. For
example, if you can understand the reasons (such as rewards program) behind strong
customer interest in a financial product, you can adjust your business strategy, such as
doubling down on rewards programs, to increase revenues. Being able to explain model
decisions also helps establish trust with domain experts in the ML models. If domain
experts agree with how the predictions are made by the models, they are more likely to
adopt the models for decision making.

There are various techniques we can use for bias detection and model explainability, and
we will take a closer look at some of them in the next section.

Understanding ML bias and explainability 339

Bias detection and mitigation
To detect and mitigate bias, some guiding principles need to be established on what
is considered fair. For example, a bank's loan approval process should treat similar
people similarly and the process may be considered fair when applicants with similar
qualifications are assessed similarly. The bank also needs to ensure different demographic
subgroups are treated equally for loan approval and measure metrics, such as the rate for
loan rejection to be approximately similar across different demographic subgroups.

Depending on the definition of fairness, bias can be measured using different metrics.
Some of these metrics may even contradict with each other. You need to choose the
metrics that best support the definition of fairness in terms of the social and legal
considerations and inputs from different demographic groups. The following is a list of
some of the bias metrics we must consider:

•	 Class imbalance: This metric measures the imbalanced representations of different
demographic groups, especially disadvantaged groups, in a dataset.

•	 The difference in the positive proportion of observed labels: This metric measures
the differences in positive labels across different demographic groups.

•	 Kullback and Leibler (KL) divergence: This metric compares the probability
distribution in features and labels for the different groups, such as advantaged
and disadvantaged groups.

•	 Conditional demographic disparity in labels: This metric measures if a group
has a bigger proportion of rejected outcomes than accepted outcomes in the
same group.

•	 Recall difference: This metric measures if the ML model is finding more
true positives for one group (advantaged group) than other groups
(disadvantaged groups).

There are several ways we can mitigate bias once it has been detected. The following are
some examples that can be applied:

•	 Remove features: This approach helps mitigate bias by removing features that can
contribute to the bias, such as gender and age.

•	 Rebalance the training data: This approach corrects bias in different
representations for the different groups in the training data.

•	 Adjust the labels in the training data: This approach brings the proportions of
labels closer together for the different subgroups.

340 ML Governance, Bias, Explainability, and Privacy

There are several open source libraries for fairness and bias management, such as the
following:

•	 Fairness (https://github.com/algofairness/fairness-comparison)

•	 Aequitas (https://github.com/dssg/aequitas)

•	 Themis (https://github.com/LASER-UMASS/Themis)

•	 Responsibly (https://github.com/ResponsiblyAI/responsibly)

•	 IBM AI Fairness 360 (https://aif360.mybluemix.net/)

There is also a component in SageMaker for bias detection, which we will cover in greater
detail later in this chapter.

ML explainability techniques
There are two main concepts when it comes to explaining the behaviors of an ML model:

•	 Global explainability: This is the overall behavior of a model across all data points
and is used for model training and/or prediction. This helps us understand how
different input features affect the outcome of model predictions. For example,
after training an ML model for credit scoring, it is determined that income is the
most important feature in predicting high credit scores across the data points for
all loan applicants.

•	 Local explainability: This is the behavior of a model for a single data point
(instance) and specifies which features had the most influence on the prediction
for a single data point. For example, when you try to explain which features
influenced the decision the most for a single loan applicant, it might turn out that
education was the most important feature, even though income was the most
important feature at the global level.

Some ML algorithms, such as linear regression and decision trees, are considered
explainable algorithms that have the built-in ability to explain the model. For example,
the coefficients of linear regression models directly represent the relative importance of
different input features, and the split points in a decision tree represent the rules that are
used for decision making.

https://github.com/algofairness/fairness-comparison
https://github.com/dssg/aequitas
https://github.com/LASER-UMASS/Themis
https://github.com/ResponsiblyAI/responsibly
https://aif360.mybluemix.net/

Understanding ML bias and explainability 341

For black-box models such as neural networks, it is very hard to explain how the decisions
are made in part due to non-linearity and model complexity. One technique for solving
this is to use a white-box surrogate model to help explain the decisions of a black-box
model. For example, you can train a linear regression model in parallel with a black-box
neural network model using the same input data. While the linear regression model might
not have the same performance as the black-box model, it can be used to explain how the
decision was made at a high level.

There are various open source packages, such as local interpretable model-agnostic
explanations (LIME) and SHapley Additive exPlanations (SHAP), for model
explainability. Both LIME and SHAP adopt the surrogate model approach.

LIME
As its name suggests, LIME supports local (instance) explainability. The main idea behind
LIME is to perturb the original data points (tweak the data points), feed them into the
black-box model, and see the corresponding outputs. The perturbed data points are small
changes to the original data point and are weighted based on their proximities to the
original data. Then, it fits a surrogate model, such as linear regression, using the perturbed
data points and responses. Finally, the trained linear model is used to explain how the
decision was made for the original data point.

LIME can be installed as a regular Python package and can be used to explain text
classifiers, image classifiers, tabular classifiers, and regression models. The following are
the explainers that are available in LIME:

•	 Tabular data explainer: lime_tabular.LimeTabularExplainer()

•	 Image data explainer: lime_image.LimeImageExplainer()

•	 Text data explainer: lime_text.LimeTextExplainer()

LIME has some shortcomings, such as a lack of stability and consistency, since LIME uses
random sampling to generate data points for approximation. Also, the linear surrogate
might be inaccurate for local data points that cannot be approximated by a linear model.

SHAP
SHAP is a more popular package and addresses some of the shortcomings of LIME. It
computes the contribution of each feature regarding the prediction using the coalition
game theory concept, where each feature value of each data instance is a player in
the coalition.

342 ML Governance, Bias, Explainability, and Privacy

The basic idea behind the coalition game theory is to form different permutations of
coalitions of players when playing a game, then observe the game results from the
different permutations, and finally calculate the contribution of each player. For example,
if there are three features (A, B, and C) in the training dataset, then there will be eight
distinct coalitions (2^3). We train one model for each distinct coalition for a total of
eight models. We use all eight models to generate predictions in the dataset, figure out
the marginal contribution of each feature, and assign a Shapley value to each feature to
indicate the feature importance. For example, if the model that uses a coalition with only
features A and B generates an output of 50, and the model that uses features A, B, and C
generates an output of 60, then feature C has a marginal contribution of 10. This is just a
generalization of the concept; the actual calculation and assignments are more involved.

SHAP can also be installed like a regular Python package. It can be used to explain tree
ensemble models, natural language models (such as transformers), and deep learning
models. It has the following main explainers:

•	 TreeExplainer: An implementation for computing SHAP values for trees and
ensemble of trees algorithms

•	 DeepExplainer: An implementation for computing SHAP values for deep
learning models

•	 GradientExplainer: An implementation of the expected gradients to approximate
SHAP values for deep learning models

•	 LinearExplainer: Used to explain linear models with independent features

•	 KernelExplainer: A model-agnostic method for estimating SHAP values for any
model because it doesn't make assumptions about the model type

SHAP is widely considered the state-of-the-art model explainability algorithm, and it has
been implemented in commercial offerings such as SageMaker. It can be used to compute
both global feature importance and local explainability for a single instance. It does have
some shortcomings as well, such as slow computation associated with KernelExplainer.

Designing an ML platform for governance
ML technology systems are critical in the overall operations of ML governance processes
and activities. First, these technology systems need to be designed and built to meet the
internal and external policies and guidelines themselves. Second, technology can help
with simplifying and automating ML governance activities. The following diagram shows
the various ML governance touchpoints in an enterprise ML platform:

Designing an ML platform for governance 343

Figure 11.1 – ML platform and ML governance

When an ML platform is built with ML governance in mind, it can capture and supply
information to help with the three lines of defense and let you streamline the model risk
management workflows. The types of tools that are used for ML governance include
online data stores, workflow applications, document sharing systems, and model
inventory databases. Now, let's take a closer look at some of the core ML governance
components and where an ML platform or technology can fit in.

Data and model documentation
One of the key components of ML governance is documentation. All the models
that are used for decision-making should be properly documented. The scope of the
documentation may include the following:

•	 A data overview, including a data quality report on evaluating and assessing the
input data

•	 A model development document, including the methodology and assumptions,
model usage instructions, performance and validation results, and other qualitative
and quantitative analyses

•	 A model validation strategy and report by the second and third lines of defense

•	 Model performance monitoring results and data drift reports

•	 Model implementation and user acceptance testing reports

344 ML Governance, Bias, Explainability, and Privacy

The role of the ML platform in ML governance documentation is usually to provide data
points that feed into the formal risk management documentations or generate some of the
ready-to-use reports. Specifically, an ML platform must be able to track, store, and report
the following data points:

•	 Data quality metrics such as data descriptions, statistics, bias, and errors

•	 Model metrics and validation results in development and testing

•	 Model bias and explainability reports

•	 Model performance monitoring results in production

Amazon SageMaker can produce data and documentation to be included in model risk
documentations. Specifically, SageMaker tracks and produces the following information
that is relevant for ML governance documentation:

•	 Model metrics: SageMaker Training Service tracks model metrics such as training
errors and validation errors.

•	 Data and model bias reports: SageMaker Clarify is the bias detection component
in SageMaker. If you enable SageMaker Clarify, you can get data and model bias
reports for the training data and trained model. The data and model bias reports
provide details such as imbalances in training data and prediction behavior across
different age groups and genders.

•	 Model explainability reports: SageMaker Clarify also provides a model
explainability feature. It uses SHAP to explain the contribution of each input
to the final decision. You can find out more about SHAP at https://shap.
readthedocs.io/en/latest/index.html.

There are various tools for generating data quality reports. For example, AWS Glue
DataBrew can be used to profile input data and generate data quality reports. It reports
data statistics such as data distribution, correlation, and missing values.

These data points are available via SageMaker and the DataBrew UI and API and can
be manually extracted to meet your needs. However, to operationalize the process, you
should implement automated data extraction jobs to extract data points from SageMaker
and DataBrew and store them in a purpose-built data store for model risk management.
Depending on the business requirements, data from the data science environment,
testing environment, or production hosting environment can be extracted for
documentation purposes.

https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html

Designing an ML platform for governance 345

Model inventory
The model registry is an essential component in the ML governance framework. It helps
provide visibility into the available models and their uses, and it is a key tool for both
business operations and risk management to govern the use of ML models. With a model
registry, you can keep a catalog of models in different stages, version control the models,
and associate metadata, such as training metrics, with the models. You can also manage
the approval process for deployment and use this as part of an MLOps pipeline to track
lineage and activities against the model training and deployment life cycle.

There are both open source model registry platforms (such as MLFlow model registry) as
well as managed model registry services available for model registry management. As we
mentioned in Chapter 9, Building an Enterprise ML Architecture with AWS ML Services,
SageMaker has a managed model registry offering. The SageMaker model registry
provides the following key capabilities to support ML governance activities and processes:

•	 Model inventory: All the versions of the different models belong to a respective
model group in the SageMaker registry. You can view all the model groups and
different versions of a model in the registry. Metadata such as model metrics,
training job details, hyperparameters used for training, and training data sources
are important data points for the model review and model audit processes.
Depending on specific business requirements, you can set up a central model
registry for a single enterprise view, or even distributed model registries if that can
meet your governance and audit requirements.

•	 Model approval and life cycle tracking: You can track the approval of models and
model stages directly inside the SageMaker model registry. This helps the business
operations and audits ensure the proper processes are followed.

SageMaker's model registry can be part of an automated MLOps pipeline to help ensure
the consistency and repeatability of model management and model updates.

Model monitoring
Post-deployment model monitoring helps detect model failures so that the appropriate
remediation actions can be taken to limit risk exposure. Models need to be monitored for
system availability and errors, as well as data and model drift and prediction failure.

346 ML Governance, Bias, Explainability, and Privacy

As we mentioned in Chapter 9, Building an Enterprise ML Architecture with AWS ML
Services, SageMaker provides a model monitoring feature for both data drift and model
drift. Specifically, SageMaker Model Monitor supports the following:

•	 Data drift: With SageMaker Model Monitor, you can monitor data quality issues
and data distribution skews (also known as data drift) in production. To use this
feature, you must create a baseline using a baseline dataset, such as a model training
dataset, to gather data statistics, data types, and suggest constraints for monitoring.
SageMaker Model Monitor can capture live inference traffic, calculate data statistics,
examine data types, and verify them against the constraints and trigger alerts. For
example, if a feature's mean and standard deviation changes significantly from the
baseline, an alert can be triggered.

•	 Model performance drift: You can use Model Monitor to detect model
performance changes in production. To use this feature, you can create a model
performance baseline job using a baseline dataset that contains both the inputs and
labels. The baseline job will suggest constraints, which are the metrics thresholds
that Model Monitor will monitor against the metrics to be calculated with the
ground truth data that was collected in production. These metrics can be optionally
sent to CloudWatch for visualization.

•	 Feature attribution drift: When enabled with SageMaker Clarify, SageMaker Model
Monitor can report feature attribution drift. Feature attributions are indicators
of feature importance for the prediction output. Similar to data and model drift,
you can create a SHAP baseline job using baseline data to generate constraint
suggestions. The separate monitoring job is then scheduled to monitor predictions
in production against the baseline.

SageMaker Model Monitoring can be integrated with automated alerting and response
systems to streamline the remediation of model and data issues.

Change management control
To ensure model deployment process consistency to reduce operational risk, as well as
to support auditing, the appropriate change management control needs to be put in
place. This might include documentation about the nature of the change and its impact,
change review and approval, change ticketing, access and activity monitoring, and
backout procedures.

There are purpose-built change management tools for workflows and ticketing
management. The underlying ML infrastructure needs to integrate with the change
management workflow to ensure all the data points are collected and auditable.

Designing an ML platform for governance 347

SageMaker provides features that can support change management control, such as model
approval status change tracking, model deployment logging, and fine-grained activity
logging, such as for the IAM roles that were used for model deployment.

Lineage and reproducibility
One of the key requirements in many ML governance frameworks is to establish lineage
across data and models so that a model can be reproduced when required. The data that's
needed to establish lineage includes training data sources, the algorithm that was used,
hyperparameter configuration, and the model training script. SageMaker provides several
features to help establish lineage:

•	 SageMaker training jobs keep lineage data such as training data sources, training job
containers (contains algorithm and training script), hyperparameter configuration,
and model artifact locations. Historical training job data is immutable in the
SageMaker environment for record retention purposes.

•	 SageMaker Experiment and ML Lineage can contain additional component details,
such as data processing, for more complete lineage tracking.

•	 SageMaker Hosting provides information on the location of the original model
artifact and the inference container to trace the lineage from model to endpoint.

These data points are available by calling the SageMaker API. An external application can
call the SageMaker API directly to extract this data for review purposes. Alternatively,
a data extraction job can be developed to extract these data points and load them into
a purpose-built risk management store for analysis.

Observability and auditing
Auditing mostly focuses on process verification and artifact collection in support of audit
activities. The underlying platform normally serves as an information source for collecting
artifacts. For example, if there is a model risk management policy that requires approval
before a model is deployed into production, then the audit will need to access the system
of record to ensure such data is collected and retained.

SageMaker and other related services can be data sources in support of the overall
audit process. Specifically, it provides the following information that can be relevant for
auditing purposes:

•	 Activity and access audit trail: SageMaker sends all audit trail data to CloudWatch
logs, which can be retained and analyzed for audit purposes.

348 ML Governance, Bias, Explainability, and Privacy

•	 Model approval tracking: Model deployment approvals are tracked in SageMaker's
model registry. This can be provided to an auditor as evidence that the required
approval processes have been followed.

•	 Lineage tracking: SageMaker Experiment and ML Lineage tracking components
can track and retain model lineages such as data processing, model training, and
model deployment. Lineage tracking information helps the auditor verify that the
model can be reproduced using its original data and configuration dependencies.

•	 Configuration changes: System configuration data is captured in AWS CloudTrail
as change events. For example, when a SageMaker endpoint is deleted, there will be
an entry in CloudTrail indicating this change.

Similarly, automated jobs can be implemented to extract this information and feed it
into purpose-built data stores for risk management. An audit is a complex process that
can involve many business functions and technology systems. To support the full audit
process, you will need the support of multiple technology platforms and human processes
to supply the required data.

Security and privacy-preserving ML
ML privacy is becoming increasingly important in ML implementation. To ensure
compliance with data privacy regulations or even internal data privacy controls, ML
systems need to provide foundational infrastructure security features such as data
encryption, network isolation, compute isolation, and private connectivity. With a
SageMaker-based ML platform, you can enable the following key security controls:

•	 Private networking: As SageMaker is a fully managed service, it runs in an
AWS-owned account. By default, the resources in your AWS account communicate
with SageMaker APIs via the public internet. To enable private connectivity to
SageMaker components from your own AWS environment, you can attach them to
a subnet in your virtual private cloud (VPC).

•	 Storage encryption: Data-at-rest encryption can be enabled by providing an
encryption key when you create a SageMaker notebook, a training job, a processing
job, or a hosting endpoint.

•	 Disabling internet access: By default, your SageMaker notebook, training job,
and hosting service have access to the internet. This internet access can be disabled
via configuration.

Designing an ML platform for governance 349

In addition to infrastructure security, you also need to think about data privacy and
model privacy to protect sensitive information from adversarial attacks, such as reverse
engineering sensitive data from anonymized data. There are three main techniques for
data privacy protection in ML:

•	 Differential privacy: Differential privacy allows you to share datasets while
withholding information about individuals within the dataset. This method works
by adding random noises to the computation so that it is hard to reverse engineer
the original data (if it is not impossible). For example, you can add noise to the
training data or model training gradients to obfuscate the sensitive data.

•	 Homomorphic encryption (HE): HE is a form of encryption that allows users to
perform computations on encrypted data without decrypting it first. This leaves
the computation output in an encrypted form that, when decrypted, is equivalent
to the output as if the computation were performed on the unencrypted data. With
this approach, the data can be encrypted before it is used for model training. The
training algorithm will train the model with the encrypted data, and the output can
only be decrypted by the data owner with the secret key.

•	 Federated learning: Federated learning allows model training to take place on edge
devices while keeping data locally on the device, instead of sending the data to a
central training cluster. This protects individual data as it is not shared in a central
location, while the global model can still benefit from individual data.

Each of these topics warrants a separate book, so we will not dive into the details of all
three. We will only provide an introduction to differential privacy in this book to explain
the main intuition and concept behind this method.

Differential privacy
To understand the problem that differential privacy solves, let's take a look at the
real-world privacy breach that happened with Netflix. In 2006, Netflix provided 100
million movie ratings, submitted by 480K users, as data for the Netflix price competition.
Netflix anonymized usernames with unique subscribers' IDs in the dataset, thinking that
this would protect subscribers' identities. Just 16 days later, two university researchers
were able to identify some subscribers' true identities by matching their reviews with data
from IMDb. This type of attack is called a linkage attack, and this exposes the fact that
anonymization is not enough in protecting sensitive data. You can find more information
about this at https://en.wikipedia.org/wiki/Netflix_Prize.

https://en.wikipedia.org/wiki/Netflix_Prize

350 ML Governance, Bias, Explainability, and Privacy

Differential privacy solves this problem by adding noise to the dataset that's used to
compute the dataset, so the original data cannot easily be reverse-engineered. In addition
to protection against linkage attacks, differential privacy also helps quantify privacy loss
as a result of someone running processing against the data. To help understand what this
means, let's look at an example.

Suppose your organization is a regional bank and your customer data repository contains
sensitive data about your customers, including name, social security number, ZIP code,
income, gender, and education. To ensure data privacy, this data cannot be freely shared
by all departments, such as the marketing department. However, the aggregate analysis
of the customer data, such as the number of customers with income over a certain
threshold, can be shared. To enable access to the aggregated data, a data query tool was
built to return only the aggregate data (such as count, sum, average, min, and max) to
the marketing department. Separately, another database contains customer churn data
with unique customer IDs, and a customer support database contains customer names
and unique customer IDs. Both the churn database and customer support database are
accessible to the marketing department. An ill-intentioned analyst wanted to find the
names of customers whose incomes are above a certain threshold for some personal
purpose. This analyst queried the database one day and found out that out of 4,000 total
customers, there were 30 customers with incomes over $1 million in a particular ZIP
code. A couple of days later, they queried the customer data again and found out there
were only 29 customers with incomes over $1 million, out of a total of 3,999 customers.
Since they had access to the churn database and customer support database, they were
able to identify the name of the customer who churned and figured out that this customer
had an income of over $1 million.

To prevent this from happening, the query tool was changed to add a little noise (such as
adding or removing records) to the result without losing meaningful information about
the original data. For example, instead of returning the actual result of 30 customers out
of 4,000 customers in the first query, the result of 31 customers out of 4,001 customers
was returned. And the second query returns 28 out of 3,997 instead of the actual 29 out
of 3,999 figures. This added noise does not significantly change the overall magnitude
of the summary result, but it makes reverse-engineering the original data much
more difficult as you can't pinpoint a specific record. This is the intuition behind how
differential privacy works.

Designing an ML platform for governance 351

The following diagram shows the concept of differential privacy, where computation
is performed on two databases, and noise is added to one of the databases. The goal is
to ensure that Result 1 and Result 2 are as close as possible as that's where it becomes
harder and harder to tell the difference in distribution between Result 1 and Result 2,
even though the two databases are slightly different. Here, the Epsilon (ε) value is the
privacy loss budget, which is the ceiling of how much probability an output distribution
can change when adding/removing a record. The smaller the Epsilon value, the lower the
privacy loss:

Figure 11.2 – Differential privacy concept

ML models are susceptible to privacy attacks. For example, it is possible to extract
information from trained models that directly map to the original training data as
deep learning models may have unintentionally memorized the training data. Also,
overfitted models are more likely to memorize training data. Differential privacy is
one of the techniques that can help minimize the effect of unintended memorization.
Since differential privacy can make the computational outputs of two input datasets
(one with sensitive data, one with sensitive data removed) almost indistinguishable from
a query perspective, the hacker cannot confidently infer whether a piece of sensitive data
is in the original dataset or not.

There are different ways to apply differential privacy to ML model training, such as adding
noise to the underlying training data or adding noise to the model parameters. Also, it is
important to know that differential privacy does not come for free. The higher the privacy
protection (smaller epsilon), the lower the model accuracy.

352 ML Governance, Bias, Explainability, and Privacy

Differential privacy is implemented in TensorFlow Privacy. TensorFlow Privacy provides
a differentially private optimizer for model training and requires minimum code changes.
The following code sample shows the syntax of using the DPKerasSGDOptimizer
object for differential privacy training. The main steps are as follows:

1.	 Install the tensorflow_privacy library package.
2.	 Import tensorflow_privacy. Select your differentially private optimizer:

optimizer = tensorflow_privacy.DPKerasSGDOptimizer(

 l2_norm_clip=l2_norm_clip,

 noise_multiplier=noise_multiplier,

 num_microbatches=num_microbatches,

 learning_rate=learning_rate)

3.	 Select your loss function:

loss = tf.keras.losses.CategoricalCrossentropy(

 from_logits=True,

 reduction=tf.losses.Reduction.NONE)

4.	 Compile your model:

model.compile(optimizer=optimizer, loss=loss,

 metrics=['accuracy'])

PyTorch supports differential privacy with its opacus package. It is also fairly
straightforward to use the opacus package to enable differential privacy training. The
following code sample shows how to wrap an optimizer in the PrivacyEngine object,
and just use the optimizer the same way in a PyTorch training loop:

from opacus import PrivacyEngine

optimizer= torch.optim.SGD(model.parameters(),

 lr=learning_rate)

privacy_engine = PrivacyEngine(

 model,

 sample_rate=sample_rate,

 max_grad_norm=max_per_sample_grad_norm,

 noise_multiplier = noise_multiplier

)

privacy_engine.attach(optimizer)

Hands-on lab – detecting bias, model explainability, and training privacy-preserving models 353

We have covered several governance and security concepts in this chapter. As we
mentioned at the beginning of this chapter, an ML solution architect is normally
not responsible for establishing an ML governance framework or implementing a
privacy-preserving modeling training architecture. However, an ML SA would be
called upon to provide technical guidance on how to support ML governance using the
different ML tools. So, knowing about these tools and how they can be used in the overall
ML governance framework is quite important.

Next, let's get some hands-on experience with using some of the tools we have
talked about.

Hands-on lab – detecting bias, model
explainability, and training privacy-preserving
models
Building a comprehensive system for ML governance is a complex task. In this hands-on
lab, you will learn how to use some of SageMaker's built-in functionality to support
certain aspects of ML governance.

Overview of the scenario
As an ML SA, you have been asked to identify technology solutions that support a
project that has regulatory implications. Specifically, you need to determine the technical
approaches for data bias detection, model explainability, and privacy-preserving model
training. Follow these steps to get started.

Detecting bias in the training dataset
Let's start the hands-on lesson:

1.	 Launch the SageMaker Studio environment:

A.	 Launch the same SageMaker Studio environment that you have been using.
B.	 Create a new folder called chapter11. This will be our working

directory for this lab. Create a new Jupyter notebook and name it bias_
explainability.ipynb. Choose the Python 3 (data science)
kernel when prompted.

C.	 Create a new folder called data under the chapter11 folder. We will use this
folder to store our training and testing data.

354 ML Governance, Bias, Explainability, and Privacy

2.	 Upload the training data:

A.	 We will use the customer churn data (churn.csv) that we used in earlier
chapters. If you don't have it, you can access it from here: https://github.
com/PacktPublishing/The-Machine-Learning-Solutions-
Architect-Handbook/tree/main/Chapter11/data.

B.	 Download the data to your local directory and then upload both files to the
newly created data directory.

3.	 Initialize the sagemaker environment using the following code block:

from sagemaker import Session

session = Session()

bucket = session.default_bucket()

prefix = "sagemaker/bias_explain"

region = session.boto_region_name

Define IAM role

from sagemaker import get_execution_role

import pandas as pd

import numpy as np

import os

import boto3

role = get_execution_role()

s3_client = boto3.client("s3")

4.	 Load the data from the data directory and display the first few rows. The Existed
column is the target:

training_data = pd.read_csv("data/churn.csv").dropna()

training_data.head()

5.	 Split the data into train and test sets (80/20 split):

from sklearn.model_selection import train_test_split

churn_train, churn_test = train_test_split (training_
data, test_size=0.2)

Create an encoding function to encode the categorical features as numeric:
from sklearn import preprocessing

def number_encode_features(df):

 result = df.copy()

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter11/data

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter11/data

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter11/data

Hands-on lab – detecting bias, model explainability, and training privacy-preserving models 355

 encoders = {}

 for column in result.columns:

 if result.dtypes[column] == np.object:

 encoders[column] = preprocessing.
LabelEncoder()

 result[column] = encoders[column].fit_
transform(result[column].fillna("None"))

 return result, encoders

Process the data for the SageMaker xgboost model, which needs the target to be
in the first column. Then, save the files to the data directory:

churn_train = pd.concat([churn_train["Exited"], churn_
train.drop(["Exited"], axis=1)], axis=1)

churn_train, _ = number_encode_features(churn_train)

churn_train.to_csv("data/train_churn.csv",

 index=False, header=False)

churn_test, _ = number_encode_features(churn_test)

churn_features = churn_test.drop(["Exited"], axis=1)

churn_target = churn_test["Exited"]

churn_features.to_csv("data/test_churn.csv",

 index=False, header=False)

Upload the newly created training and test files to S3 to prepare for model training:
from sagemaker.s3 import S3Uploader

from sagemaker.inputs import TrainingInput

train_uri = S3Uploader.upload("data/train_churn.csv",
"s3://{}/{}".format(bucket, prefix))

train_input = TrainingInput(train_uri, content_
type="csv")

test_uri = S3Uploader.upload("data/test_churn.csv",
"s3://{}/{}".format(bucket, prefix))

6.	 Kick off model training using the SageMaker xgboost container:

from sagemaker.image_uris import retrieve

from sagemaker.estimator import Estimator

container = retrieve("xgboost", region, version="1.2-1")

xgb = Estimator(container,role, instance_count=1,

356 ML Governance, Bias, Explainability, and Privacy

 instance_type="ml.m5.xlarge",

 disable_profiler=True,

 sagemaker_session=session,)

xgb.set_hyperparameters(max_depth=5, eta=0.2, gamma=4,

 min_child_weight=6,

 subsample=0.8,

 objective="binary:logistic",

 num_round=800,)

xgb.fit({"train": train_input}, logs=False)

7.	 Create a model from the training job to be used with SageMaker Clarify later:

model_name = "churn-clarify-model"

model = xgb.create_model(name=model_name)

container_def = model.prepare_container_def()

session.create_model(model_name, role, container_def)

8.	 Instantiate the Clarify processor for running bias detection and explainability:

from sagemaker import clarify

clarify_processor = clarify.SageMakerClarifyProcessor(

 role=role, instance_count=1,

 instance_type="ml.m5.xlarge",

 sagemaker_session=session)

9.	 Specify the data configuration. Here, we are using the training data and indicating
the target column for the analysis:

bias_report_output_path = "s3://{}/{}/clarify-bias".
format(bucket, prefix)

bias_data_config = clarify.DataConfig(

 s3_data_input_path=train_uri,

 s3_output_path=bias_report_output_path,

 label="Exited",

 headers=churn_train.columns.to_list(),

 dataset_type="text/csv")

Hands-on lab – detecting bias, model explainability, and training privacy-preserving models 357

10.	 Specify the model configuration. A shadow endpoint will be created temporarily for
the Clarify processing job:

model_config = clarify.ModelConfig(

 model_name=model_name,

 instance_type="ml.m5.xlarge",

 instance_count=1, accept_type="text/csv",

 content_type="text/csv",)

11.	 Specify the threshold. This is the threshold for labeling the prediction. Here, we are
specifying that the label is 1 if the probability is 0.8. The default value is 0.5:

predictions_config = clarify.
ModelPredictedLabelConfig(probability_threshold=0.8)

12.	 Specify which feature we want to detect bias for using the BiasConfig object:

bias_config = clarify.BiasConfig(

 label_values_or_threshold=[1],

 facet_name="Gender",

 facet_values_or_threshold=[0])

13.	 Now, we are ready to run the Clarify bias detection job. You should see the job's
status and bias analysis details in the output of the cell. The report provides various
bias metrics for the Gender feature column against the Existed prediction target:

clarify_processor.run_bias(

 data_config=bias_data_config,

 bias_config=bias_config,

 model_config=model_config,

 model_predicted_label_config=predictions_config,

 pre_training_methods="all",

 post_training_methods="all")

This report is also available in the Studio console. You can navigate to the report by going
to SageMaker Components and Registries | Experiments and trials | Unassigned trial
components. Then, right-click on the latest clarify-bias-XXXX job and select Open in
trial details. Finally, click on the Bias report tab to see the report.

358 ML Governance, Bias, Explainability, and Privacy

Explaining feature importance for the trained model
Next, we will use SageMaker Clarify to help explain the model using feature importance.
Specifically, SageMaker Clarify uses SHAP to explain the predictions. SHAP works by
computing the contribution of each feature to the prediction.

We will continue to use the notebook we have created for bias detection:

1.	 Specify the SHAP configuration. Here, number_samples is the number of
synthetic data points to be generated for computing the SHAP value, while
baseline is the list of rows in the dataset for baseline calculation:

shap_config = clarify.SHAPConfig(

 baseline=[churn_features.iloc[0].values.tolist()],

 num_samples=15,

 agg_method="mean_abs",

 save_local_shap_values=True,)

2.	 Specify data configuration for the explainability job. Here, we must provide details
such as the input training data and the output path for the report:

explainability_output_path = "s3://{}/{}/clarify-
explainability".format(bucket, prefix)

explainability_data_config = clarify.DataConfig(

 s3_data_input_path=train_uri,

 s3_output_path=explainability_output_path,

 label="Exited",

 headers=churn_train.columns.to_list(),

 dataset_type="text/csv")

3.	 Finally, we must run the job to generate the report. You will set the job's status and
final report directly inside the notebook output cell. Here, Clarify computes the
global feature importance, which means it takes all the inputs and their predictions
into account to calculate the contribution for each feature:

clarify_processor.run_explainability(

 data_config=explainability_data_config,

 model_config=model_config,

 explainability_config=shap_config,)

Hands-on lab – detecting bias, model explainability, and training privacy-preserving models 359

The model explainability report is also directly accessible inside Studio UI. You
can navigate to the report by going to SageMaker Components and Registries |
Experiments and trials | Unassigned trial components. Then, right-click on the latest
clarify-explainability-XXXX job and select Open in trial details. Finally, click on the
Model explainability tab. In this example, you will see that age is the most important
feature that influences predictions.

Training privacy-preserving models
In this last part of the hands-on lab, you will learn how to use differential privacy for
privacy-preserving model training:

1.	 Create a new folder called differential privacy under the
chapter 11 folder. Download the notebook at https://github.com/
PacktPublishing/The-Machine-Learning-Solutions-Architect-
Handbook/blob/main/Chapter11/churn_privacy.ipynb and upload it
to the newly created differential privacy folder.

2.	 Run all the cells in the notebook and take note of the training losses at the end. We
are not going to explain all the details in this notebook as this notebook simply
trains the simple neural network using the same churn dataset we have been using.

3.	 Now, we must modify this notebook to implement differential privacy model
training using the PyTorch opacus package. You can also download the modified
notebook from https://github.com/PacktPublishing/The-Machine-
Learning-Solutions-Architect-Handbook/blob/main/Chapter11/
churn_privacy-modified.ipynb.

4.	 Specify the parameters for the opacus package's PrivacyEngine object. Here,
noise_multiplier is the ratio of the standard deviation of Gaussian noise to
the sensitivity of the function to add noise to, while max_per_sample_grad_
norm is the maximum norm value for gradients. Any value greater than this norm
value will be clipped. The sample_rate value is used for figuring out how to build
batches for training:

max_per_sample_grad_norm = 1.5

sample_rate = batch_size/len(train_ds)

noise_multiplier = 0.8

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter11/churn_privacy.ipynb
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter11/churn_privacy.ipynb
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter11/churn_privacy.ipynb
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter11/churn_privacy-modified.ipynb
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter11/churn_privacy-modified.ipynb
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/blob/main/Chapter11/churn_privacy-modified.ipynb

360 ML Governance, Bias, Explainability, and Privacy

5.	 Next, we must wrap the privacy engine around the model and optimizer and kick
off the training process:

from opacus import PrivacyEngine

net = get_CHURN_model()

optimizer = optim.Adam(net.parameters(),

 weight_decay=0.0001, lr=0.003)

privacy_engine = PrivacyEngine(

 net,

 max_grad_norm=max_per_sample_grad_norm,

 noise_multiplier = noise_multiplier,

 sample_rate = sample_rate,

)

privacy_engine.attach(optimizer)

model = train(trainloader, net, optimizer, batch_size)

If you compare the training loss with the training losses you observed earlier
without the privacy engine, you will notice some small degradations in the losses
across all epochs.

6.	 Now, let's measure the potential privacy loss with this model:

epsilon, best_alpha = privacy_engine.get_privacy_spent()

epsilon, best_alpha = privacy_engine.get_privacy_spent()

print(f" ε={epsilon:.2f}, δ= {privacy_engine.target_
delta}")

You should see values for ε and δ. As we discussed earlier, ε is the privacy loss
budget, which measures the probability that output can change by adding or
removing one record from the training data. δ is the probability of failure that
information is accidentally leaked.

Congratulations! You have successfully used SageMaker to detect data and model bias,
explain feature importance for a model, and trained a model using differential privacy.
All these capabilities are highly relevant for ML governance.

Hands-on lab – detecting bias, model explainability, and training privacy-preserving models 361

Summary
In this chapter, we covered the ML governance framework and some of its core
components. Now, you should have a fundamental understanding of the model risk
management framework and its processes and be able to describe the core requirements
for implementing ML governance. You should also be able to identify some of the
technology capabilities in AWS that support model risk management processes, such
as bias detection and model drift detection. The lab section should have provided you
with hands-on experience of using SageMaker to implement bias detection, model
explainability, and privacy-preserving model training. In the next chapter, we are going to
change gear a bit and talk about AI services, including how AI services should be used in
combination with ML platforms to support different ML solutions.

12
Building ML

Solutions with
AWS AI Services

You have come a long way and we are getting close to the finishing line. Up to this point,
we have mainly focused on the skills and technologies required to build and deploy ML
models using open source technologies and managed ML platforms. To solve business
problems with machine learning, however, you don't always have to build, train, and
deploy your ML models from scratch. An alternative option is to use fully managed AI
services. AI services are fully managed APIs or applications with pre-trained models
that perform specific ML tasks, such as object detection or sentiment analysis. Some AI
services also allow you to train custom models with your data for a defined ML task,
such as document classification. AI services promise to enable organizations to build
ML-enabled solutions without requiring strong ML competencies.

364 Building ML Solutions with AWS AI Services

In this final chapter, we are going to switch gears and talk about several AWS AI services
and where they can be used in business applications. Please note that the focus of this
chapter will not be to deep dive into individual AI services, as that warrants dedicated
books. Instead, we will focus on ML use cases that can be powered by AI services, and
the architecture patterns that you can use to deploy these AI services. After reading this
chapter, you should be able to identify some use cases where AI services can be a good fit
and know where to find the additional resources to get a deeper understanding of these
services. Specifically, we are going to cover the following topics:

•	 What are AI services?

•	 Overview of the AWS AI services

•	 Building intelligent solutions using AI services

•	 Designing an MLOps architecture for AI services

•	 Hands-on lab – running ML tasks with AI services

Technical requirements
You will continue to use our AWS environment for the hands-on portion of this
book. The associated code samples can be found at https://github.com/
PacktPublishing/The-Machine-Learning-Solutions-Architect-
Handbook/tree/main/Chapter12.

What are AI services?
AI services are pre-built fully managed services that perform a particular set of ML
tasks out of the box, such as facial analysis or text analysis. The primary target users
for AI services are application developers who want to build AI applications without the
need to build ML models from scratch. In contrast, the target audiences for ML platforms
are data scientists and ML engineers, who need to go through the full ML life cycle to
build and deploy ML models. For an organization, AI services mainly solve the following
key challenges:

•	 Lack of high-quality training data for ML model development: To train
high-quality models, you need a large amount of high-quality curated data.
For many organizations, data poses many challenges in data sourcing, data
engineering, and data labeling.

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter12
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter12
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook/tree/main/Chapter12

Overview of AWS AI services 365

•	 Lack of data science skills for building and deploying custom ML models: Data
science and ML engineering skills are scarce in the market and expensive to acquire.

•	 Slow product time-to-market: Building and deploying custom models and
engineering infrastructure is time-consuming. This can be a hurdle for a quick
time-to-market product delivery goal.

•	 Undifferentiated ML capabilities: Many ML problems can be solved using
commodity ML capabilities that do not provide unique competitive advantages.
Spending resources on building undifferentiated ML capabilities can be a waste
of scarce resources.

•	 System scalability challenge: Managing scalable infrastructure to meet the dynamic
market demands and growth is an engineering challenge.

While AI services can provide a cost-effective way for building ML-enabled products
quickly, they do come with limitations. The main limitations are the lack of customization
flexibility for specific functional and technical requirements. AI services usually focus
on specific ML tasks with a predefined set of algorithms, so you usually don't have the
flexibility to alter the functionality of the AI services. With AI services, you normally do
not have access to the underlying models, thus limiting your ability to deploy the model
elsewhere.

The number of offerings in AI services has grown extensively in recent years, and
we expect this trend to continue at an accelerated pace. Next, we will talk about several
AWS AI services.

Overview of AWS AI services
AWS provides AI services in multiple machine learning domains such as text and vision,
as well as AI services for industrial use cases such as manufacturing anomaly detection
and predictive maintenance. In this section, we will cover a subset of AWS AI services.
The objective of this section will not be to deep dive into individual services, but rather
make you aware of the fundamental capabilities offered by these AI services. This will let
you know where and how these services can be integrated into your applications.

366 Building ML Solutions with AWS AI Services

Amazon Comprehend
NLP has gained significant interest across different industries in solving a range of
business problems, such as automatic document processing, text summarization,
document understanding, and document management and retrieval. Amazon
Comprehend is an AI service that can perform NLP analysis on unstructured text
documents. At its core, Amazon Comprehend provides the following main capabilities:

•	 Entity recognition: Entities are the who, what, where, and when of text analytics.
Entities can be the most important parts of a sentence as they identify the key
components in a text. Examples of entities are proper nouns such as a person, place,
or product. Entities can be used to create document search indexes and identify key
information or relationships across documents.

Comprehend provides APIs (for example, DetectEntities) for detecting
entities with its built-in entity recognition models. It can detect entities such as
people, places, organizations, and dates from the input text.

You can also use Comprehend to train a custom entity recognizer for your custom
entities if the built-in models do not meet your requirements. To train a custom
entity recognizer, you can use the CreateEntityRecognizer API with your
training data in the following two formats:

	� Annotation: You provide the locations of entities (beginning and end offsets of
target characters) in a large number of documents, along with the entity type for
each pair of offsets. This helps Comprehend train on both the entities and the
context they are in.

	� Entity list: You provide a list of entities and their entity types in plaintext and
Comprehend will train to detect these specific entities.

You can evaluate the custom model using the metrics emitted by a Comprehend
custom model training job. Example evaluation metrics include precision, recall,
and F1 scores. Additional details on the evaluation metrics for Comprehend can
be found at https://docs.aws.amazon.com/comprehend/latest/dg/
cer-metrics.html.

Once the model has been trained, you have the option to deploy the model behind
a private prediction endpoint to serve predictions.

•	 Sentiment analysis: Comprehend can detect sentiment in text with its
DetectSentiment API. Sentiment analysis is widely used in many business
use cases, such as analyzing customers' sentiment in customer support calls or
understanding customers' perceptions toward products and services in reviews.

https://docs.aws.amazon.com/comprehend/latest/dg/cer-metrics.html
https://docs.aws.amazon.com/comprehend/latest/dg/cer-metrics.html

Overview of AWS AI services 367

•	 Topic modeling: Topic modeling has a wide range of uses, including document
understanding, document categorization and organization, information retrieval,
and content recommendation. Comprehend can discover common topics among
documents with its StartTopicsDetectionJob API.

•	 Language detection: Comprehend can detect the dominant language that's used in
the text with its DetectDominantLanguage API. This feature can help with use
cases such as routing incoming customer support call to the right channel based on
the language or classifying documents by different languages.

•	 Syntax analysis: Comprehend can perform part-of-speech (POS) analysis of
sentences using its DetectSyntax API. Example POSes include nouns, pronouns,
verbs, adverbs, conjunctions, and adjectives in a sentence. POS analysis can help
with use cases such as checking for the correctness of syntax and grammar in
written text.

•	 Event detection: Comprehend can detect a predefined list of financial events such
as IPO, stock split, and bankruptcy. It also detects augments associated with events
such as the person or company filing for bankruptcy. This relationship helps build
a knowledge graph to help us understand the who-did-what for the different events.
You can find a full list of event and augment types at https://docs.aws.
amazon.com/comprehend/latest/dg/cer-doc-class.html.

•	 Text classification: You can train a custom text classifier using your training data
with Comprehend. Comprehend lets you train multi-class and multi-label classifiers
through its CreateDocumentClassifier API. Multi-class assigns a single
label to a text, whereas multi-label assigns multiple labels to a text. To evaluate
the performance of the custom classifier, Comprehend provides a list of metrics
that includes accuracy, recall, and F1 score. You can find the full list of metrics at
https://docs.aws.amazon.com/comprehend/latest/dg/cer-doc-
class.html.

Comprehend APIs can be invoked using the boto3 library and AWS command-line
interface (CLI). You can find a full list of supported boto3 methods for Comprehend
at https://boto3.amazonaws.com/v1/documentation/api/latest/
reference/services/comprehend.html. The following shows the Python syntax
for invoking Comprehend's entity detection functionality:

import boto3client = boto3.client('comprehend')

response = client.detect_entities(Text='<input text>')

Amazon Comprehend can be a good fit for building intelligent document processing
solutions and other NLP products. It can also serve as a good baseline tool that can be
compared with custom NLP models.

https://docs.aws.amazon.com/comprehend/latest/dg/cer-doc-class.html
https://docs.aws.amazon.com/comprehend/latest/dg/cer-doc-class.html
https://docs.aws.amazon.com/comprehend/latest/dg/cer-doc-class.html
https://docs.aws.amazon.com/comprehend/latest/dg/cer-doc-class.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/comprehend.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/comprehend.html

368 Building ML Solutions with AWS AI Services

Amazon Textract
Many business processes, such as loan application processing, expense processing,
and medical claim processing, require extracting text and numbers from images and
documents. Currently, many organizations largely handle these processes manually and
the process can be highly time-consuming and slow.

Amazon Textract is an optical character recognition (OCR) AI service that's primarily
used for extracting printed text, handwritten text, and numbers from images and PDF
documents. Textract is normally used as a processing step for downstream tasks such as
document analysis and data entries. The core Textract functionalities are as follows:

•	 OCR: OCR is a computer vision task that detects and extracts text data from
PDF documents and images. The OCR component in Textract extracts raw text
from the input documents and provides additional structural information about
the documents. For example, the Textract output contains hierarchical structural
relationships for the different objects in a document such as pages, paragraphs,
sentences, and words. Textract also captures the positional information of the
different objects in the input document. The hierarchical structural information and
object positional data are useful when you're extracting specific information from
different locations in the documents. The OCR APIs are DetectDocumentText
for detecting text synchronously and StartDocumentTextDetection for
detecting text asynchronously.

•	 Table extraction: Many documents contain tabular data structures and need to be
processed as a table. For example, you might have an insurance claim document
that contains a list of claim items and their details in different columns, and you
may want to enter these claim items into a system. The table extraction component
in Textract can extract tables and cells in the tables from a document. To use the
table extraction feature, you can use the AnalyzeDocument API for synchronous
operations and StartDocumentAnalysis for asynchronous operations.

•	 Form extraction: Documents such as paystubs and loan application forms
contain many name-value pairs whose relationships need to be preserved when
they're processed automatically. The form extraction component in Textract
can detect these name-value pairs and their relationships for downstream
processing, such as entering the names in those documents into a system.
The form extraction component shares the same AnalyzeDocument and
StartDocumentAnalysis APIs as the table extraction component.

Overview of AWS AI services 369

The Textract APIs are supported in the boto3 library. The following code sample shows
how to detect text using the boto3 library. The full list of Textract APIs for boto3 can be
found at https://boto3.amazonaws.com/v1/documentation/api/latest/
reference/services/textract.html.

import boto3

client = boto3.client('textract')

response = client.detect_document_text(

 Document={

 'Bytes': b'bytes',

 'S3Object': {

 'Bucket': '<S3 bucket name>',

 'Name': '<name of the file>'}

})

Textract also integrates with the Amazon Augmented AI (A2I) service to enable
human-in-the-loop workflow integration for reviewing low-confidence prediction
results from Textract. You can find more information about the A2I service at
https://aws.amazon.com/augmented-ai.

Amazon Rekognition
Amazon Rekognition is a video and image analysis AI service. It supports a range of
use cases, such as metadata extraction from images and videos, content moderation, and
security and surveillance. The core capabilities of Rekognition are as follows:

•	 Label detection: Label detection can be applied to use cases such as media metadata
extraction for search and discovery, item identification and counting for insurance
claim processing, and brand and logo detection.

Rekognition can detect different objects, scenes, and activities in images and videos,
and assign labels to them such as soccer, outdoor, and playing soccer.
For the common objects that are detected, it also provides bounding boxes for
the objects to indicate their specific positions in the image or videos. To use
Rekognition for label detection, you can call the DetectLabels API.

If Rekognition cannot detect specific objects in your images, you can also train
a custom label detector with your training data using the CreateProject API.
Once the model has been trained, you have the option to deploy a private prediction
endpoint using the StartProjectVersion API.

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/textract.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/textract.html
https://aws.amazon.com/augmented-ai

370 Building ML Solutions with AWS AI Services

•	 Facial analysis and recognition: Facial analysis and recognition are useful for use
cases such as video surveillance and security, automatic people labeling in images
and video for content search, and understanding demographics.

Rekognition can identify and analyze faces in images and videos. For example, you
can perform analysis on faces to detect gender, age, and sentiment. You can also
build an index of faces and assign names to them. Rekognition can map a detected
face to a face in the index if a match is found.

The main APIs for facial analysis and recognition are DetectFaces,
SearchFaces, IndexFaces, and CompareFaces.

•	 Content moderation: Rekognition has APIs (StartContentModeration)
for detecting images and videos with explicit content and scenes, such as violence.
Organizations can use this feature to filter out inappropriate and offensive content
before making the content available to consumers.

•	 Short text detection: Rekognition can detect short text in images and provide
the bounding boxes around the detected text using its DetectText and
StartTextDetection APIs. This feature can be used to detect street names,
the names of stores, and license plate numbers.

•	 Personal protection equipment (PPE) detection: Rekognition provides
a built-in feature for detecting PPE in images and videos using the
DetectProtectiveEquipment API. This feature can be used for automated
PPE compliance monitoring.

•	 Celebrity identification: Rekognition also maintains a celebrity database that can
be used for identifying known celebrities in images and videos. It has a list of APIs
for this feature, including RecognizeCelebrities and GetCelebrityInfo.

You can use the boto3 library to access the APIs. The following code snippet shows
the syntax of using the label detection feature. The full list of supported boto3
APIs for Rekognition can be found at https://boto3.amazonaws.com/v1/
documentation/api/latest/reference/services/rekognition.html:

import boto3

client = boto3.client('rekognition')

response = client.detect_labels(

 Image={

 'Bytes': b'bytes',

 'S3Object': {

 'Bucket': '<S3 bucket name>',

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/rekognition.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/rekognition.html

Overview of AWS AI services 371

 'Name': '<file name>'

 }

 })

Rekognition also has native integration with Amazon Kinesis Video, a video stream
service from AWS. You can build solutions to detect faces in real-time video streams.

Amazon Transcribe
Amazon Transcribe (Transcribe) is a speech-to-text AI service. It can be used to
transcribe video and audio files and streams to text for a range of use cases, such as media
content and meeting subtitling, call analytics, and converting medical conversations into
electronic health records.

Amazon Transcribe supports both real-time transcription and batch transcription and has
the following key capabilities:

•	 Media transcription: Transcribe has pre-trained models for converting media files
or streams into text in different languages, such as English, Chinese, and Spanish.
It also adds punctuation and capitalization to make the transcribed text more
readable. To kick off transcription, you can use the StartTranscriptionJob
and StartMedicalTranscriptionJob APIs for batch transcription, the
StartStreamingTranscription API for streaming transcription, and the
StartMedicalStreamTranscription API for streaming medical input.

•	 Custom models: You can provide your training data to train custom language
models to increase the accuracy of the transcription for industry-specific terms or
acronyms. The API for creating custom models is CreateLanguageModel.

•	 Call analytics: Transcribe provides building analytics capabilities for calls. The
transcripts for calls are displayed in a turn-by-turn format. Some examples
of supported analytics include sentiment analysis, call categorization, issue
detection (the reason behind the call), and call characteristics (talk time,
non-talk time, loudness, interruption). The API for starting a call analytics job is
StartCallAnalyticsJob.

•	 Redaction: Transcribe can automatically mask or remove sensitive personally
identifiable information (PII) data from the transcripts to preserve privacy. When
transcribing with redaction, Transcribe replaces PII information with [PII] in
the transcript. To enable redaction, you can configure the ContentRedaction
parameter in the batch transcription jobs.

372 Building ML Solutions with AWS AI Services

•	 Subtitle: Transcribe can generate out-of-the-box subtitle files in WebVTT and
SubRip format to use as video subtitles. To enable subtitle file generation, you can
configure the Subtitles parameter for the transcription job.

Transcribe has a set of APIs for these different operations. The following code sample
shows how to use the boto3 library to kick off a transcription job:

import boto3

transcribe_client = boto3.client('transcribe')

transcribe_job = transcribe_client.start_transcription_
job(**job_args)

You can find the full list of boto3 APIs for Transcribe at https://boto3.
amazonaws.com/v1/documentation/api/latest/reference/services/
transcribe.html.

Amazon Personalize
Personalized recommendations can help you optimize user engagement and revenues
for many businesses such as e-commerce, financial product recommendation, and media
content delivery. Amazon Personalize allows you to build personalized recommendation
models using your data. You can use Personalize as the recommendation engine to power
product and content recommendations based on individual tastes and behaviors. At a
high level, the Personalize service provides the following three core functionalities:

•	 User personalization: Predicts the items a user will interact with or explore

•	 Similar items: Computes similar items based on the co-occurrence of items and
item metadata

•	 Personalized re-ranking: Re-ranks the input list of items for a given user

Amazon Personalize does not provide pre-trained models for recommendations. Instead,
you need to train custom models using your data with the built-in algorithms provided by
Personalize. To train a personalized model, you need to provide three datasets:

•	 Item dataset: The item dataset contains the attributes of the items you want to
recommend. This dataset helps Personalize learn about the contextual information
about the items for better recommendations. This dataset is optional.

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/transcribe.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/transcribe.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/transcribe.html

Overview of AWS AI services 373

•	 User dataset: The user dataset contains attributes about the users. This allows
Personalize to have a better representation of each user to provide highly
personalized recommendations. This dataset is also optional.

•	 User-item interaction dataset: This is a required dataset, and it provides the
historical interaction between users and items, such as viewing a movie or
purchasing a product. Personalize uses this data to learn the behaviors of individual
users toward different items to generate highly personalized recommendations.

To help understand how Personalize works, let's review some of the main Personalize
concepts:

•	 Dataset group: Dataset group contains the related datasets (item, user, and
interaction dataset) for model training.

•	 Recipe: A recipe is the ML algorithm that's used for model training. Personalize
provides multiple recipes for the three main functionalities.

•	 Solution: A solution represents a trained Personalize model.

•	 Campaign: A Personalize campaign is a hosted endpoint for a trained Personalize
model to handle recommendation and ranking requests.

To train and deploy a custom model using Personalize, you must follow these steps:

1.	 Prepare and ingest the dataset: In this step, you prepare the dataset in the
required format, store it in S3, and then load the dataset into Personalize. There
are three main API actions involved in this step – CreateDatasetGroup,
CreateDataset, and CreateDatasetImportJob. CreateDatasetGroup
creates an empty dataset group. CreateDataset adds datasets (for example,
item dataset, user dataset, and interaction dataset) to a dataset group, and
CreateDatasetImportJob kicks a data ingestion job to load data from S3 to
the Personalize data repository for subsequent model training.

2.	 Pick a recipe for model training: In this step, you choose a recipe (ML algorithm)
to use for the different model training processes. There are multiple recipe options
available for user personalization, related items, and personalized ranking. You can
use the ListRecipes API to get the full list of recipes.

3.	 Create a solution: In this step, you configure a solution with the dataset group and
recipe for the model training job using the CreateSolution API. Then, you use
the CreateSolutionVersion API to kick off the training job.

374 Building ML Solutions with AWS AI Services

4.	 Evaluate the model: In this step, you evaluate the model metrics and determine
if they meet the performance target. If they do not, then consider retraining
the model using higher-quality and/or more data. Personalize outputs several
evaluation metrics for the trained models, such as coverage, mean reciprocal rank,
precision, and normalized discounted accumulative gain. You can find more details
about these metrics at https://docs.aws.amazon.com/personalize/
latest/dg/working-with-training-metrics.html. The performance
metrics are available in the Personalize management console. You can also get the
metrics programmatically using the GetSolutionMetrics API.

5.	 Create a campaign: In this final step, you deploy a solution (trained model) into
the prediction endpoint so that you can use it in your applications. To do this, you
can use the CreateCampaign API. You can provide additional configurations
such as the minimum provisioned transaction per second (minProvisionedTPS)
throughput, as well as item exploration configuration. Item exploration
configuration allows Personalize to show a percentage of random items to users
that are not based on user personalization. The idea is to let users explore items
that they have not interacted with before to gauge interest. The item exploration
configuration is only applicable for user personalization.

You can use the Personalize management console to build Personalize solutions and
campaigns. Alternatively, you can use boto3 to access the personalize API. The
following code sample shows the Python syntax for creating a campaign. You can find the
full list of boto3 APIs for Personalize at https://boto3.amazonaws.com/v1/
documentation/api/latest/reference/services/personalize.html:

import boto3

client = boto3.client('personalize')

response = client.create_campaign(

 name='<name of the campaign>',

 solutionVersionArn='<AWS Arn to the solution>',

 minProvisionedTPS=<provisioned TPS>,

 campaignConfig={

 'itemExplorationConfig': {

 '<name of configuration>': '<value of
configuration>'

 }})

https://docs.aws.amazon.com/personalize/latest/dg/working-with-training-metrics.html
https://docs.aws.amazon.com/personalize/latest/dg/working-with-training-metrics.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/personalize.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/personalize.html

Overview of AWS AI services 375

Personalize also provides several advanced functionalities, such as filters, which allow you
to remove items from your list of items based on rules. You can also optimize the model
training using a business objective such as customer loyalty. This feature allows you to give
recommendations that optimize a certain business outcome.

Amazon Lex
Conversational agents have been broadly adopted across many different industries to
improve the user engagement experience, such as self-service customer support and
automating IT functions.

Amazon Lex (Lex) is a service for building conversational interfaces using voice and
text. You can use Lex to build a virtual conversational agent to handle customer inquiries,
automate IT functions through voice or text commands, or provide general information.

To help understand how Lex works, let's review some of the core Lex concepts:

•	 Intent: Intents are the desired actions, such as booking-a-hotel or get-banking-
information.

•	 Utterance: Utterances are user inputs such as I want to order a small coffee or I like
to book a flight from New York to Beijing.

•	 Prompt: A prompt is a mechanism to get users to provide the required information,
such as can you tell me which size of coffee you would like?

•	 Slots: Slots are required inputs to complete a fulfillment. For example, to fulfill
a coffee order, we will need the coffee's type and the size of the coffee.

•	 Fulfillment: Fulfillment is the mechanism to complete the action, such as getting
the banking information a customer requested.

To use Amazon Lex, you must use the Amazon Lex management console or APIs to build
a Lex bot. The building process involves the following main steps:

1.	 Create an intent for the action to take: The intent represents the main functionality
of the Lex bot.

2.	 Create several sample utterances for the intent: The Lex bot will understand these
utterances in spoken or text format to kick off an interactive session with the bot.

3.	 Create slots: This specifies the required information to collect from the users before
the action can be completed.

4.	 Provide a fulfillment hook: This step connects an intent to a fulfillment function,
such as a Lambda function, that performs custom logic or a built-in connector to an
external service.

376 Building ML Solutions with AWS AI Services

5.	 Build the bot: Build and test if the bot is working as expected using voice and
text inputs.

6.	 Deploy the bot: Deploy the bot to a channel such as Slack or Facebook messenger.
It also provides an API for programmatic integration.

Lex provides APIs for building and running these bots. You can find the full list
of APIs at https://boto3.amazonaws.com/v1/documentation/api/
latest/reference/services/lexv2-models.html and https://boto3.
amazonaws.com/v1/documentation/api/latest/reference/services/
lexv2-runtime.html.

Lex has a built-in monitoring functionality that you can use to monitor the status and
health of the bot. Example monitoring metrics include request latency, missed utterances,
and request counts.

Amazon Kendra
Amazon Kendra is a fully managed intelligent search service. It uses machine learning
to understand your natural language requests and perform natural language
understanding (NLU) on the target data sources to return the relevant information.
Instead of searching for answers using keywords such as IT desk location and
getting a list of documents containing these keywords, you can ask natural language
questions such as Where is the IT desk? and get the location of the IT desk, such as
3rd floor, room 301.

You can use Amazon Kendra to solve several use cases. For example, you can use it
as part of a contact center workflow where customer agents can quickly find the most
relevant information for customer requests. You can also use it within an enterprise for
information discovery across different data sources to improve productivity. At a high
level, Kendra has the following key functionalities:

•	 Document reading understanding: Kendra performs reading comprehension on
the source document and returns the specific information requested by the user in
their questions.

•	 Frequently asked question (FAQ) matching: If you provide a list of FAQs, Kendra
can automatically match the questions to the answers in the list.

•	 Document ranking: Kendra can return a list of documents that contain the
relevant information for the questions asked. To return the list in the order of
semantic relevancies, Kendra uses ML to understand the semantic meaning
of the documents.

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lexv2-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lexv2-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lexv2-runtime.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lexv2-runtime.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lexv2-runtime.html

Overview of AWS AI services 377

To understand how Kendra works, let's review some of the key technical Amazon Kendra
concepts:

•	 Index: An index provides search results for the documents and FAQ lists that it has
indexed. Kendra generates indexes for documents and FAQ lists that allow them to
be searched.

•	 Documents: Documents can be structured (FAQs) and unstructured (HTML,
PDFs) and can be indexed by the Kendra index engine.

•	 Data sources: Data sources are locations where the documents are located.
These can be S3 locations, Amazon RDS databases, and Google Workspaces drives,
among others. Kendra has a list of built-in connectors for connecting to different
data sources.

•	 Queries: Queries are used for getting results from indexes. Queries can be natural
language containing criteria and filters.

•	 Tags: Tags are metadata that can be assigned to indexes, data sources, and FAQs.

There are two main steps in setting up Kendra to perform an intelligent search against
your documents:

1.	 Generate index: The first step is to set up an index for your documents.
2.	 Add documents to index: Once the index has been created, you can add document

sources to the index to be indexed.

Once the index has been created, you use the Kendra query() API to get responses for
your index with queries. The following code snippet shows the Python syntax for querying
an index:

kendra = boto3.client('kendra')

query = '${searchString}'

index_id = '${indexID}'

response=kendra.query(

QueryText = query, IndexId = index_id)

Kendra has built-in connectors for a range of data sources, so you don't have to build
custom code to extract data from those sources. It also has native application integration
with Amazon Lex, which allows Lex to send user queries directly to a Kendra index for
fulfillment.

378 Building ML Solutions with AWS AI Services

Evaluating AWS AI services for ML use cases
To determine if an AI service is a good fit for your use cases, you need to evaluate it across
multiple dimensions:

•	 Functional requirements: Identify the functional requirements for your ML use
cases and test whether the target AI services provide the features you are looking
for. For example, Rekognition is a computer vision service, but it does not support
all computer vision tasks. If you have an instance segmentation computer vision
use case, you will have to build a model using an algorithm that supports it, such as
Mask-RCNN.

•	 Model performance against your data: AWS AI services are trained with data
sources to solve common use cases. To ensure the models perform well against your
data, use your test dataset to evaluate the model metrics for your specific needs.
If the pre-built models do not meet your performance target, then try the custom
model building options if the services support it. If neither option works, then
consider building custom models with your data.

•	 API latency and throughput requirements: Determine your latency and
throughput requirements for your application and test the target AI service's API
against your requirement. In general, AWS AI services are designed for low latency
and high throughput. However, you might have use cases that require extremely
low latency, such as computer vision tasks at the edge. If the AI services cannot
meet your requirements, then consider building models and hosting them in the
dedicated hosting infrastructure.

•	 Security and integration requirements: Determine your security and integration
requirements and validate whether the AI services meet your requirements. For
example, you might have custom requirements around authentication and might
need to develop a custom integration architecture to enable support.

•	 Model reproducibility requirements: Since AI services manage the pre-trained
models and machine learning algorithms for custom models, those models and
algorithms can change over time. If you have strict reproducibility requirements,
such as training a custom model using an old version of an algorithm for
compliance reasons, then verify if the AI service provides such support before
using it.

•	 Cost: Understand your usage pattern requirements and evaluate the cost of using
the AI services. If the cost of developing and hosting a custom model is more
cost-effective, and the operational overhead does not outweigh the cost benefits
of a custom model, then consider the build-your-own option.

Building intelligent solutions with AI services 379

There are other considerations when it comes to adopting AI services, such as monitoring
metrics, versioning the control of APIs for audit requirements, and data types and volume
requirements.

Building intelligent solutions with AI services
AI services can be used for building different intelligent solutions. To determine if you can
use an AI service for your use case, you must identify the business and ML requirements,
then evaluate if an AI service offers the functional and non-functional capabilities you
are looking for. In this section, we will present several business use cases and architecture
patterns that incorporate AI services.

Automating loan document verification and data
extraction
When we apply for a loan from a bank, we need to provide the bank with physical copies
of documentation such as tax returns, pay stubs, bank statements, and photo IDs. Upon
receiving those documents, the bank needs to verify these documents and enter the
information from these documents into loan application systems for further processing.
At the time of writing, many banks still perform this verification and data extraction
process manually, which is time-consuming and error-prone.

To determine if you can use any AI services to solve your problem, you need to identify
the ML problems to be solved. In this particular business workflow, we can identify the
following ML problems:

•	 Document classification: Documentation classification is an ML task where the
documents are classified into different types, such as driver's license, pay stubs,
and bank statements. This process identifies the document types and ensures the
required documents are received and can be further processed based on their types.

•	 Data extraction: Data extraction is the task of identifying the relevant information
from the documents and extracting it. Examples of such information include
customer names and addresses, income information, data of birth details, and
bank balances.

380 Building ML Solutions with AWS AI Services

As we have learned, these two tasks can be performed by the Comprehend and Textract
AI services. The following diagram shows the architecture flow that incorporates these
two services:

Figure 12.1 – The loan document verification and data extraction process

In this architecture, we use a combination of Textract, Comprehend, and Amazon
Augmented AI services to support loan document classification and loan data
processing flow.

Loan document classification workflow
First, we need to train a custom text classification model for classifying the text that
appears in each type of document. Here, we will train a custom classification model
using Comprehend. The training data for Comprehend's custom classifier consists of the
necessary input text and labels. Note that Comprehend has limits on the input text size
and the maximum number of classes, and this limit can change. Check out the official
documentation for the latest limitation details. Once the model has been trained, you
get a private API endpoint for the classifier.

Once the custom model has been trained and deployed, the main flow of the architecture
is as follows:

1.	 Data extraction: Once the documents have been received and digitized as images
or PDFs, Textract can be used to extract text, tabular data, and forms data from the
documents. The output will be in JSON format and stored as files in S3.

Building intelligent solutions with AI services 381

2.	 Human review: To ensure the high accuracy of the extracted data by Textract,
a human-in-the-loop process can be implemented to verify low confidence
predictions and manually correct them. This human-in-the-loop workflow can be
implemented using the Amazon Augmented AI service.

3.	 Document classification: The JSON outputs are processed to generate classification
prediction using the custom Comprehend model that has been trained.

4.	 Update downstream systems: The prediction outputs are passed to downstream
systems for further processing.

There are alternative architecture options available. For example, you can also treat
documents as images and perform image classification using the Rekognition service.
Another option is to train a custom model using your algorithms, such as LayoutLM,
and prepare a training dataset with the output of Textract. It is prudent to validate
multiple options to achieve the optimal price/performance trade-off when deciding
on the right technology.

Loan data processing flow
The loan data processing flow is concerned with processing the JSON outputs from the
data extraction process. The JSON document contains raw text and structure details for
the entire document, and only a subset of text is needed for downstream processing and
storage. The processing scripts can parse the documents using the structures in the JSON
file to identify and extract the specific data points required. Then, it can input those data
points into the downstream databases or systems.

Media processing and analysis workflow
The media and entertainment industry has accumulated a huge number of digital media
assets over the years, and the growth of these new digital assets is accelerating. One key
capability in digital assets management is search and discovery. This capability not only
impacts the user experience but also the effective monetization of media content. To
quickly surface the most relevant content, media companies need to enrich the content
with metadata for indexing and searching.

382 Building ML Solutions with AWS AI Services

In this particular business challenge, we can identify the following ML problems:

•	 Speech-to-text transcription: The audio portion of videos and audio files need to
be transcribed into text transcripts. The transcripts can then be further analyzed for
additional information.

•	 Text NLP analysis: NLP analysis such as entity extraction, sentiment analysis, and
topic modeling can be performed on the transcripts.

•	 Object/people/scene/activity detection: Compute vision tasks can be performed
on video frames and images to extract objects, people, scenes, and activities.

The following diagram shows an architecture that uses Transcribe, Comprehend, and
Rekognition to perform the identified ML tasks:

Figure 12.2 – Media tagging and analysis architecture

In this architecture, we build a pipeline for subtitle and text analysis of video content,
video tagging and analysis, and image tagging and analysis.

For live video sources such as broadcasting, the AWS Elemental services can take live
broadcasting streams, process them, and store them in S3. You can find more details about
the Elemental services at https://aws.amazon.com/elemental-live/. Images
and video file data sources can be ingested into S3 using a variety of different capabilities,
including S3 APIs or higher-level services such as AWS Transfer for Secure File Transfer
Protocol (SFTP).

https://aws.amazon.com/elemental-live/

Building intelligent solutions with AI services 383

As there are multiple parallel processing streams in the pipeline, we can use AWS Step
Functions to orchestrate the parallel execution of different streams. These can generate the
following output streams:

•	 Subtitle and text analysis stream: This stream primarily uses the Amazon
Transcribe and Amazon Comprehend AI services. Transcribe transcribes the audio
portion of the videos and generates both subtitle files and regular transcripts.
The regular transcripts are then used by Comprehend to run text analysis. Some
example metadata that's extracted from this stream can include the entities of
people and places, the language used, and sentiment for different sections of the
transcripts.

•	 Video tagging and analysis stream: This stream identifies objects, scenes, activities,
people, celebrities, and text with timestamps in the different video frames.

•	 Image tagging and analysis stream: This stream identifies objects, scenes, activities,
celebrities, and text in different images.

The outputs from the media processing streams can be further processed and organized as
useful metadata for the different media assets. Once this has been done, they are stored in
a media metadata repository to support content search and discovery.

E-commerce product recommendation
Product recommendation is an important capability in e-commerce. It is a key enabler for
increasing sales, improving engagement experience, and retaining customer loyalty.

In e-commerce product recommendation, multiple functional requirements can be
framed as ML problems:

•	 Recommendations based on customer behaviors and profiles: ML algorithms can
learn the intrinsic characteristics and purchasing patterns of customers from their
past e-commerce interactions to predict the products they will like.

•	 Ability to address recommendations of cold items (items without history): ML
algorithms can explore customers' reactions toward cold items and adjust their
recommendations to balance explore (recommending new items) and exploit
(recommending known items).

•	 Ability to recommend similar items: ML algorithms can learn the intrinsic
characteristics of products based on product attributes and collective interaction
patterns from a group of customers to determine product similarity.

384 Building ML Solutions with AWS AI Services

With these functional requirements in mind, the following architecture diagram
illustrates an e-commerce architecture that uses Amazon Personalize as the
recommendation engine:

Figure 12.3 – e-commerce site and recommendation architecture

In this architecture, we use Personalize as the recommendation engine to power both the
user online experience as well as the user target marketing experience.

The RDS database, DynamoDB, and ElasticSearch are the main data sources for item,
user, and interaction data. Glue ETL jobs are used to transform the source data into the
datasets required for Personalize solution building.

Once a Personalize solution has been evaluated to meet the desired criteria, it is deployed
as a Personalize campaign to serve recommendation requests from customers visiting the
e-commerce website.

Amazon Pinpoint is a managed target marketing service. You can use Pinpoint to manage
user segmentation and send email and SMS marketing campaigns. In this architecture, the
Pinpoint service gets a list of recommended products for a group of target customers and
sends out email or SMS campaigns to these users with personalized recommendations.

Building intelligent solutions with AI services 385

Customer self-service automation with intelligent
search
Good customer service boosts customer satisfaction and builds long-term customer
loyalty. However, customer support is very labor-intensive and can result in poor
customer satisfaction due to long waiting times and unknowledgeable support agents.
The customer self-service capability has been widely adopted by organizations in different
industries to deflect customer support call volumes and improve customer satisfaction.

In a customer self-service scenario, we can identify the following ML problems:

•	 Automatic speech recognition (ASR): This ML task recognizes human speech and
converts it into text, and then uses NLU to understand the meaning of the text.

•	 Natural language understanding (NLU): NLU is a subfield of NLP, and it deals
with intent understanding and reading comprehension. NLU focuses on the
meaning and intent of the text. For example, if the text is Can I get the cash balance
in my savings account?, then the intent here is get account balance. Another example
of NLU is understanding the text and extracting specific information from it based
on the semantic meaning of the question and the text.

•	 Text to speech: This ML task converts text into natural human voices.

The following diagram shows a sample architecture for implementing a self-service
chat functionality for customers to look up customer-related details, as well as general
information and FAQs:

Figure 12.4 – Self-service chat portal with an intelligent virtual assistant

386 Building ML Solutions with AWS AI Services

In this architecture, an Amazon Lex bot is used to provide the text-based conversational
interface for customer engagement. The customer uses the self-service chat portal to
initiate the conversation and the chat portal integrates with the Lex bots via the Lex API.

Lex bots support several different intents, such as looking up account info, update customer
profile, and How do I return a purchase?.

Depending on the intent, the Lex bot will route the fulfillment requests to a different
backend. For customer account-related inquiries, it will use a Lambda function for
fulfillment. For information search-related questions, the Lex bot will send the query
to a Kendra index for fulfillment.

Designing an MLOps architecture for AI
services
Implementing custom AI service models requires a data engineering, model training, and
model deployment pipeline. This process is similar to the process of building, training,
and deploying models using an ML platform. As such, we can also adopt MLOps practice
for AI services when running them at scale.

Fundamentally, MLOps for AI services intends to deliver similar benefits as MLOps
for the ML platform, including process consistency, tooling reusability, reproducibility,
delivery scalability, and auditability. Architecturally, we can implement a similar MLOps
pattern for AI services.

AWS account setup strategy for AI services and MLOps
To isolate the different environments, we can adopt a multi-account strategy for
configuring the MLOps environment for AI services. The following diagram illustrates
a design pattern for a multi-account AWS environment. Depending on your
organizational requirement for separation of duty and control, you may also consider
consolidating these into fewer environments:

Designing an MLOps architecture for AI services 387

Figure 12.5 – MLOps architecture for AI services on AWS

In this multi-account AWS environment, developers use the custom model development
environment to build and test the pipelines for data engineering, model training, and
model deployment. When ready, the pipelines are promoted for formal model building
and testing using production training data in the model development environment. Since
trained AI services models cannot normally be exported, we will need to replicate the
model training workflow in the production environment for model deployment.

The shared services environment hosts CI/CD tools such as AWS CodePipeline and AWS
CodeBuild. You use the CI/CD tools to build different pipelines for data engineering,
model building, and model deployment running in different environments. For example,
a pipeline for the UAT environment could have the following components and steps:

•	 CodePipeline definition: This definition would have a CodeBuild step, a
CloudFormation execution step, and a Step Functions workflow execution step.

•	 CodeBuild step: The CodeBuild step enriches the CloudFormation template with
additional inputs needed to create a Step Functions workflow that orchestrates
data engineering, dataset creation, data ingestion, model training, and model
deployment.

388 Building ML Solutions with AWS AI Services

•	 CloudFormation execution step: This step executes the CloudFormation template
to create the Step Functions workflow.

•	 Step Function workflow execution step: This step kicks off the Step Function
workflow to run the various steps, such as data engineering and model training, in
the workflow. For example, if we build a Step Functions workflow for Personalize
model training and deployment, the workflow will consist of six steps: create dataset
group, create dataset, import dataset, create solution, create solution version, and
create campaign.

In a multi-account environment, there could also be other purpose-built accounts for data
management, monitoring, and security.

Code promotion across environments
Similar to the pattern we use for the ML platform, we can use a code repository as
the mechanism to promote code to different environments. For example, during code
development, a developer creates code artifacts such as data engineering scripts for Glue
ETL jobs, CloudFormation template skeletons, and builds specification files for CodeBuild
to run different commands. When it is ready to promote them for formal model building
and testing, the developer checks the code into a release branch in the code repository.
The code check-in event can trigger a CodePipeline job to run the CodeBuild step in the
shared services and then run a Step Functions workflow step in the model development
environment. When it is ready for production release, a deployment CodePipeline job can
be triggered in the shared services environment to execute a CloudFormation template to
deploy the model in the production environment.

Monitoring operational metrics for AI services
AI services emit operational statuses to CloudWatch. For example, Amazon Personalize
sends metrics such as the number of successful recommendation calls or training job
errors. Rekognition sends metrics such as successful request counts and response time.
Alarms can be configured to send alerts when specified metrics meet a defined threshold.
The following diagram shows a sample monitoring architecture for Amazon Personalize:

Hands-on lab – running ML tasks using AI services 389

Figure 12.6 – Monitoring architecture for Amazon Personalize

With this monitoring architecture, CloudWatch collects metrics from the Personalize
service. A scheduled CloudWatch event triggers a lambda function, which pulls a set of
CloudWatch metrics and sends events to the EventBridge service. EventBridge rules can
be configured to trigger lambda functions to update Personalize configuration, such as
update minProvisionedTPS configuration for Personalize when throttling is detected
or send an email notification when certain errors occur.

You can also adopt similar monitoring architecture patterns to other AI services, such as
Comprehend and Rekognition.

Hands-on lab – running ML tasks using AI
services
In this hands-on lab, you will perform a list of ML tasks using Rekognition, Comprehend,
Textract, and Transcribe. Follow these steps to get started:

1.	 Launch the SageMaker Studio profile you created in Chapter 8, Building a Data
Science Environment Using AWS ML Services. You will create and run new
notebooks in this profile.

390 Building ML Solutions with AWS AI Services

2.	 We need to provide the new notebooks with permission to access AI services. To
do this, find the Studio execution role for the Studio environment and attach the
AdministratorAccess IAM policy to it. We will use this policy for simplicity
here. In a controlled environment, you would need to design a policy to provide the
specific permissions needed to access different services.

3.	 Clone https://github.com/PacktPublishing/The-Machine-
Learning-Solutions-Architect-Handbook into your Studio environment
using the git clone https://github.com/PacktPublishing/
The-Machine-Learning-Solutions-Architect-Handbook command if
you have not already done so.

4.	 Run NLP tasks using Comprehend:

A.	 Open the comprehend.ipynb notebook in the Chapter12 directory. This
notebook performs a list of ML tasks using Comprehend, including language
detection, entities detection, sentiment detection, PII detection, key phrases
detection, and syntax analysis.

B.	 Create some sample text you would like to run NLP analysis on and save it as
comprehend_sample.txt in the data directory.

C.	 Run the following code in the notebook to import the library and set up the
boto3 client for Comprehend:

from pprint import pprint

import boto3 items_to_show = 10

with open('data/comprehend_sample.txt') as sample_file:

 sample_text = sample_file.read()

comprehend_client = boto3.client('comprehend')

D.	 Run the following code in the notebook to detect the dominant language
in the text:

print("detecting dominant language")

languages = comprehend_client.detect_dominant_language(

 Text=sample_text)

lang_code = languages['Languages'][0]['LanguageCode']

pprint(lang_code)

E.	 Run the following code in the notebook to detect entities:

print("Detecting entities using the pre-trained model.")

entities = comprehend_client.detect_entities(

https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook
https://github.com/PacktPublishing/The-Machine-Learning-Solutions-Architect-Handbook

Hands-on lab – running ML tasks using AI services 391

 Text=sample_text, LanguageCode=lang_code)

print(f"The first {items_to_show} are:")

pprint(entities['Entities'][:items_to_show])

F.	 Run the following code in the notebook to detect sentiment:

print("Detecting sentiment in text")

sentiment = comprehend_client.detect_sentiment(

 Text=sample_text, LanguageCode=lang_code)

pprint(sentiment['Sentiment'])

pprint(sentiment['SentimentScore'])

G.	 Run the following code in the notebook to detect PII entities:

print("Detecting pii entities in text")

pii = comprehend_client.detect_pii_entities(

 Text=sample_text, LanguageCode=lang_code)

pprint(pii['Entities'][:items_to_show])

H.	 Run the following code in the notebook to detect key phrases:

print('Dectecting key phrases')

key_phrases = comprehend_client.detect_key_phrases(

 Text=sample_text, LanguageCode=lang_code)

pprint(key_phrases['KeyPhrases'][:items_to_show])

I.	 Run the following code in the notebook to detect syntax:

print('Detecting syntax')

syntax = comprehend_client.detect_syntax(

 Text=sample_text, LanguageCode=lang_code)

pprint(syntax['SyntaxTokens'][:items_to_show])

5.	 Run an audio transcription job using Transcribe:

A.	 Open the transcribe.ipynb notebook in the Chapter12 directory.
This notebook runs a transcription job using a sample audio file in the
data directory.

B.	 Find a sample MP3 audio file that you would like to run transcription on and
save it as transcribe_sample.mp3 in the data directory.

392 Building ML Solutions with AWS AI Services

C.	 Run the following code in the notebook to set up a boto3 client for Transcribe:

from pprint import pprint

import boto3

import time

transcribe_client = boto3.client('transcribe')

s3_resource = boto3.resource('s3')

D.	 Run the following code in the notebook to create an S3 bucket for storing the
audio file:

bucket_name = f'transcribe-bucket-{time.time_ns()}'

bucket = s3_resource.create_bucket(

 Bucket=bucket_name,

 CreateBucketConfiguration={

 'LocationConstraint': transcribe_client.meta.
region_name})

media_file_name = 'data/transcribe_sample.mp3'

media_object_key = 'transcribe_sample.mp3'

bucket.upload_file(media_file_name, media_object_key)

media_uri = f's3://{bucket.name}/{media_object_key}'

E.	 Run the following code in the notebook to kick off the transcription job:

job_name = f'transcribe_job_{time.time_ns()}'

media_format = 'mp3'

language_code = 'en-US'

job_args = {

 'TranscriptionJobName': job_name,

 'Media': {'MediaFileUri': media_uri},

 'MediaFormat': media_format,

 'LanguageCode': language_code}

transcribe_job = transcribe_client.start_transcription_
job(**job_args)

F.	 Navigate to the Transcribe console. Under the Transcription Jobs section, you
will see the newly created transcription job.

G.	 Wait until the status changes to Complete and click on the job link; you will see
the transcripts under the Text tab in the transcription preview section.

Hands-on lab – running ML tasks using AI services 393

6.	 Run computer vision with Rekognition:

A.	 Open the rekognition.ipynb notebook in the Chapter12 directory. This
notebook runs a list of text extraction tasks, including text extraction, table
extraction, and form extraction.

B.	 Save a sample image for analysis as textract_sample.jpeg in the data
directory. Try to use a sample image with text, tables, and forms in it.

C.	 Run the following code in the notebook to set up a boto3 client for Textract:

from pprint import pprint

import boto3

textract_client = boto3.client('textract')

D.	 Run the following code in the notebook to load the image:

document_file_name = 'data/textract_sample.png'

with open(document_file_name, 'rb') as document_file:

 document_bytes = document_file.read()

E.	 Run the following code in the notebook to detect tables and forms:

print('Detecting tables and forms')

feature_types = ['TABLES', 'FORMS']

tables_forms = textract_client.analyze_document(

 Document={'Bytes': document_bytes},

 FeatureTypes=feature_types)

blocks_to_show = 10

pprint(tables_forms['Blocks'][:blocks_to_show])

F.	 Run the following code in the notebook to detect text:

print('Detect text')

text = textract_client.detect_document_text(

 Document={'Bytes': document_bytes})

blocks_to_show = 20

pprint(text['Blocks'][:blocks_to_show])

394 Building ML Solutions with AWS AI Services

7.	 Train a recommendation model using Personalize:

A.	 Open the personalize.ipynb notebook in the Chapter12 directory.
This notebook trains a Personalize model for movie review recommendations
using the movie lens dataset. It goes through the process of creating a dataset
group/dataset, importing the data, building the solution, and creating a
Personalize campaign.

B.	 Follow the instructions in the notebook and run all the cells in sequence to
complete all the steps.

Congratulations! You have successfully used several AWS AI services and their APIs.
As you can see, it is quite straightforward to use AI services with pre-trained models to
perform different ML tasks. Training a custom model using AI services involves some
additional steps, but the underlying infrastructure and data science details are abstracted
away to make it easy for non-data scientists to use these services as well.

Summary
In this chapter, we covered topics surrounding AI services. We went over a list of AWS AI
services and where they can be used to build ML solutions. We also talked about adopting
MLOps for AI services deployment. Now, you should have a good understanding of what
AI services are and know that you don't need to always build custom models to solve ML
problems. AI services provide you with a quick way to build AI-enabled applications when
they are a good fit.

Hopefully, this book has provided you with a good view of what the ML solutions
architecture is and how to apply the various data science knowledge and ML skills to the
different ML tasks at hand, such as building an ML platform. It is exciting to be an ML
solutions architect now, as you have a broad view of the ML landscape to help different
organizations drive digital and business transformation across different industries.

So, what's next? AI/ML is a broad field with many sub-domains, so developing technical
depth in all sub-domains would be challenging. If ML solutions architecture sounds
interesting to you, you can focus on a couple of areas for your future learning while
maintaining a broad understanding of the ML landscape. AI/ML is moving at an
accelerated pace, so expect new and fast innovations and constant changes across the
different disciplines.

Index

A
accuracy 10
accuracy score 14
activation function 64
Active Directory 187
Adam optimizer 139, 141
administration, data lake resources

Lake Formation administrator 108
Lake Formation database creator 109
Lake Formation database user 109
Lake Formation data user 109

Aequitas
reference link 340

agency trading 25
Airbnb 143
Airflow 185
AI services

about 364
challenges, solving 364, 365
evaluating, for ML use cases 378
MLOps architecture, designing for 386
operational metrics, monitoring for 388
overview 365
used, for building intelligent

solutions 379
used, for running ML tasks 389-394

algorithmic trading 25
algorithms, scikit-learn

reference link 129
AllReduce

implementing, in frameworks 308, 309
overview 307, 308

Amazon Augmented AI (A2I) service
reference link 369

Amazon Comprehend
about 366
entity recognition 366
event detection 367
language detection 367
sentiment analysis 366
syntax analysis 367
text classification 367
topic modeling 367

Amazon DocumentDB 100
Amazon Echo virtual assistant 4
Amazon ECR 241
Amazon EKS

used, for creating Kubernetes
environment 174-180

Amazon ElasticSearch 101
Amazon EMR 105

396 Index

Amazon Kendra
about 376
data sources 377
document ranking 376
document reading understanding 376
documents 377
frequently asked question

(FAQ) matching 376
index 377
intelligent search, performing

against documents 377
queries 377
tags 377

Amazon Lex
about 375
fulfillment 375
intent 375
prompt 375
slots 375
utterance 375

Amazon Personalize
about 372
campaign 373
custom model, deploying 373, 374
custom model, training 373, 374
dataset group 373
personalized re-ranking 372
recipe 373
similar items, computing 372
solution 373
user personalization 372

Amazon Pinpoint 384
Amazon RDS 100
Amazon Redshift 101
Amazon Rekognition

about 369
celebrity identification 370
content moderation 370

facial analysis and recognition 370
label detection 369
personal protection equipment

(PPE) detection 370
reference link 370
short text detection 370

Amazon S3 195
Amazon SageMaker Feature Store 106
Amazon SageMaker Neo 327
Amazon Textract

about 368
form extraction 368
OCR 368
table extraction 368

Amazon Transcribe
about 371
call analytics 371
custom models 371
media transcription 371
redaction 371
subtitle 372

Anaconda package repository
reference link 128

anti-money laundering (AML)
about 31
analysis 32
detection flow 32
machine learning-based

solutions, using 31, 32
Apache Airflow

about 201, 202
Directed Acyclic Graph (DAG) 201
operators 202
scheduling 202
tasks 201

Apache Hive 105
Apache Hudi 105
Apache Spark 102, 130

Index 397

Apache Tensor Virtual Machine
(TVM) 327

APIs
authentication 168-173
authorization 168-173

API server 155
application-specific integrated

circuit (ASIC) 319, 321
approaches, for selecting parameters

for static pruning
dropout removal 324
magnitude-based approach 324
penalty-based approach 324

ARIMA algorithm 67, 68
arithmetic logic unit (ALU) 319
artificial intelligence (AI) 4
artificial neural network (ANN) 4, 64, 303
artificial neuron 64, 65
attribute-based access control

(ABAC) 169
auditing purposes, SageMaker

activity and access audit trail 347
configuration changes 348
lineage tracking 348
model approval tracking 348

Auth 206
authentication 187
authorization 187
Autograd 143
automatic speech recognition (ASR) 385
autoregressive (AR) component 67
average pooling 71
AWS

MLOps pipeline, building 289
AWS account setup strategy

for AI services 386-388
for MLOps 386-388

AWS CLI 175

AWS CloudTrail 110
AWS CodeCommit 241
AWS Data Migration Service (DMS) 101
AWS Elastic Container

Registry (ECR) 278
AWS EMR 203
AWS Glue 102
AWS Glue catalog 104
AWS Glue ETL 105
AWS Glue Workflow 108
AWS IAM Authenticator 175
AWS Lake Formation 99
AWS Lambda 103, 105
AWS Managed Streaming for Kafka 101
AWS Management Console 112
AWS SDK 175
AWS services

used, for building data science
environment 242

AWS Step Functions 108
Azure Blob Storage 199

B
backpropagation 66
bag-of-words(BOW) 73
BERT

about 77
fine-tuning 79
model, training in Jupyter

Notebook 245-251
model, training with SageMaker

Training Service 251-255
pre-training 78

bias metrics
class imbalance 339
conditional demographic

disparity, in labels 339

398 Index

difference in positive proportion
of observed labels 339

Kullback and Leibler (KL)
divergence 339

recall difference 339
bias mitigation

examples 339
Big O 57
bootstrap sampling 61
boto3 APIs, Personalize

reference link 374
business goals 13

C
C# 102
C++ 127
canary deployment 194
capital markets back-office operations

about 28
Net Asset Value (NAV) 29
Net Asset Value (NAV) review 29
post-trade settlement failure

prediction 30
capital markets front office

about 24
investment banking 26, 27
sales trading and research 25, 26
wealth management (WM) 27

CatBoost 63
causes, ML model risks

defects and bias, in training data 336
inadequate change management

process 336
inadequate model testing

and validation 336
inconsistent data distributions 336
lack of documentation 336

lack of inventory and catalog 336
lack of model interpretability 336

cell 76
central processing units (CPUs) 319, 320
centroids 66
chroot system 152
classification and regression algorithms

about 58
clustering algorithm 66
decision tree algorithm 59
gradient boosting 62
K-means clustering algorithm 66
K-nearest neighbor algorithm 63
linear regression algorithm 58
logistic regression algorithm 58
multi-layer perceptron

(MLP) network 64
random forest algorithm 61
XGBoost 62

click-through rate (CTR) 48
CloudFormation template

creating, for ML deployment
pipeline 295-298

creating, for ML training
pipeline 289-295

CloudWatch logs 283
CloudWatch metrics 283
clustering

about 6, 66
example 66
K-Means algorithm 66

CodeCommit
setting up 244, 245

CodeCommit repository
source code, saving to 257

CodePipeline ML model training pipeline
deployment stage 290
source stage 290

Index 399

code promotion
across environments 388

code repository 276
cold start problem 70
collaborative filtering 69
communication protocol 328
Computer Unified Device

Architecture (CUDA) 321
computer vision 57, 71
computer vision neural network

architectures
convolution neural network

(CNN) 71, 72
ResNet 72, 73

concept drift detection 269
Conda package manager

reference link 128
configuration details, for TensorFlow

Serving batch inference
reference link 328

configuration details, for TorchServe
reference link 328

considerations, data catalog technology
automated data cataloging 103
integration with other tools 103
metadata catalog 103
search capability 103
tagging flexibility 103

considerations, data ingestion tools
data format 100
data pre-processing capability 100
data scalability 100
data size 100
ingestion patterns 100
manageability 101
reliability 101
security 100

support for different data
sources and targets 101

constant folding 325
container repository 276
containers 152-154
contextual advertising 48
contextual bandit algorithm 70
continuous bag-of-words (CBOW) 75
continuous deployment (CD) 20
continuous integration (CI) 20
continuous integration (CI)/continuous

deployment (CD) 185
continuous-skip-gram 75
controller 155
control plane

about 154, 269
key components 154, 155

convergence 56
convolutional filter 71
convolution neural network (CNN)

about 71
architecture 72

core functions, ML platform
data explorations and

experimentation 19
data management and

large-scale data processing 19
feature management 19
model hosting/serving 19
model management 19
model training infrastructure

management 19
core functions, PyTorch

data preparation 144
evaluation metrics, defining 145
loss function, defining 144
model, loading 145
model, saving 145

400 Index

model serving 145
model, training 145
neural network, defining 144
optimizer, selecting 145

core functions, scikit-learn
data preparation 129
model evaluation 129
model saving 130
model training 129
pipeline utility 130

core functions, Spark ML
data preparation 132, 133
model evaluation 134
model saving 135
model training 133
pipeline 134

core functions, TensorFlow 2.x
data preparation 138
evaluation metrics, selecting 139
loss function, defining 139
model, fitting 139
model, saving 139
model, serving 139
network, compiling into model 139
neural network, defining 138
optimizer, selecting 139
trained model, evaluating 139

credit risk assessment
workflow 34

cross-entropy loss function 147
CSV 100
customer self-service automation

with intelligent search 385, 386
custom resource (CR) 159, 190
custom resource definition (CRD) 159
Cython 127

D
data acquisition 14
data and model bias reports 344
data catalog

about 103
AWS Glue catalog 104
key considerations 103

data drift 261
data extraction 379
data governance

about 109
auditing 110
data access provisioning 110
data cataloging 110
data quality 110
monitoring 110

data ingestion
about 97, 100
triggering 114

data ingestion tools
Apache Kafka 100
Apache Spark Streaming 100
AWS Glue 100, 102
AWS Lambda 103
considerations 100
Kinesis Firehose 100, 101
Secure File Transfer Protocol

(SFTP) 100
data lineage 109
data linearity 57
data management

about 94
capabilities 95, 96
considerations for machine

learning 94-96
intersection with ML lifecycle 95

Index 401

data management architecture, ML
about 96
authentication 108
authorization 108
data catalog 103
data governance 109
data ingestion 100
data pipelines 107
data processing 104
data serving for client consumption 107
data storage and management 98
data versioning 105
enterprise data management 98
machine learning feature store 106
with limited scope 97

data management platform, on AWS
Amazon Glue ETL job, creating 118-121
building 111
data discovery, in data lake 116, 117
data ingestion pipeline,

creating 113, 114
data lake, creating with Lake

Formation 112
data pipeline, building with

Glue Workflow 121, 122
data querying, in data lake 116, 117
Glue catalog, creating 115

data manipulation 126
data parallelism 303
data pipelines

about 107
AWS Glue Workflow 108
AWS Step Functions 108

data plane 269
data preparation 14
data privacy protection

differential privacy 349
federated learning 349

homomorphic encryption (HE) 349
data processing

about 104, 126
Amazon Elastic Map Reduce (EMR) 105
AWS Glue ETL 105
AWS Lambda 105
key requirements 104

data science architecture
building, with open source

technologies 205
data science environment

about 184
building, with AWS services 242

data science environment architecture
with SageMaker 234, 235
with SageMaker Experiments 241
with SageMaker Hosting 241, 242
with SageMaker Processing 238
with SageMaker Studio 236, 237
with SageMaker Training

Service 239, 240
with SageMaker Tuning 240

data science environment,
with AWS services

dataset 242
lab instructions 242
problem statement 242

data science environment with AWS
services, lab instructions

BERT model, training in Jupyter
Notebook 245-251

BERT model, training with SageMaker
Training Service 251-255

CodeCommit, setting up 244, 245
model, deploying 255-257
SageMaker Studio, setting up 242-244
source code, saving to CodeCommit

repository 257

402 Index

data serving for client consumption 107
data serving patterns

about 107
consumption via API 107
consumption via data copy 107

dataset, Kaggle
reference link 83

datasets, for training personalized model
item dataset 372
user dataset 373
user-item interaction dataset 373

data versioning
about 105
purpose-built data version tools 106
S3 partitions 106

decision tree
about 59
advantages 60
working 60

decoder network 77
DeepAR algorithm 68
deep learning (DL) 4
deep learning neural network

algorithms 56
DeepSpeed

overview 316
URL 317

Deequ library 110
deployment 157, 158
Deployment controller 155
Dex 187
differential privacy 349-353
dimensionality reduction 7
Directed Acyclic Graph (DAG) 201
discriminative models 81
Discriminator network 82

distributed model training
with data parallelism 303-305
with model parallelism 309, 310

distributed model training,
running with PyTorch

about 329
get_data_loader() function,

modifying 330
multi-processing launch support, adding

for multi-device server nodes 331
train() function, modifying 329, 330

distributed training
used, for training large-scale

models 302, 303
Docker 152
Dockerfile 153
documentation classification 379
dot products

reference link 313
dropout 57
drug discovery

about 41, 42
key stages 41

DVC 106

E
e-commerce product

recommendation 383
Elastic Fabric Adapter (EFA) 307
Elastic File System (EFS) 237
Elemental services

reference link 382
embedding

about 70, 74
representation 74

ensemble learning 61

Index 403

enterprise ML architecture
pattern 262-264

enterprise ML platform
key requirements 260-262

etcd 155
European Central Bank (ECB) 335
evaluation metrics, Comprehend

reference link 366
evaluators, Spark ML

reference link 134
examples, unsupervised ML

computer network intrusion detection 8
customer segmentation for

target marketing 8
dimensions of datasets, reducing 8

executors 131
experiments

tracking 211-219

F
Facebook 143
Fairness

reference link 340
feature-based application 75
feature repository 276
few-shot learning 80
field-programmable gate

array (FPGA) 319
Financial Advisors (FAs) 28
Financial Services Industry (FSI)

about 24
capital markets back office operations 28
capital markets front office 24
risk management and fraud 31

fine-tuning 79
Flask inference engine 193, 194

floating-point 16 bit (FP16) 322
floating-point 32 (FP32) 322

G
Generative Adversarial Networks

(GANs) 45, 82
generative model 81
generative pre-trained

transformer (GPT) 80
Gini index 59
Gini Purity Index 59
GitHub 185
Git-remote-codecommit (GRC) 241
Glue catalog

creating 115
permission, granting 115

Glue crawler job
configuring 115

Go 102
Google Cloud Storage 199
GPT-3 80
gradient boosting

about 62
working 63

gradient descent (GD) 55, 141
graphical processing units (GPUs) 320
graph optimization 324
gRPC 195, 268
Gunicorn 193, 194

H
Hadoop cluster 98
hardware acceleration 319
healthcare and life sciences

about 40
drug discovery 41, 42

404 Index

healthcare data management 43
medical imaging analysis 40, 41
sectors 40

healthcare data management 43
Herring

reference link 307
Hierarchical Data Format

(HDF5) format 139
Hive metastore catalog 103
holdout dataset 14
Homebrew

download link 84
installing 84

Horovod
about 309
reference link 309

HTTP basic authentication 168
human brain neuron 64
hyperparameter 55

I
IBM AI Fairness 360

reference link 340
inference batching 328
inference engine optimization 328
information gain 59
Infrastructure as Code (IaC) 263
Ingress 165, 166
insurance claim management

about 36
challenges 36
property insurance claim 36
workflow 37

insurance industry 35
insurance underwriting

about 35
property insurance 35

integer 8 bit (INT8) 322
integrated component 68
intelligent solutions

building, with AI services 379
interactive development

environment (IDE) 236
intermediate representation (IR) 326
Internet of Things (IoT) 46
investment banking

about 26
structured data 27
unstructured data 27
workflow 27

Istio 166, 187
Istio Citadel 207
Istio Pilot 207
Istio-system 207

J
Java 102, 127
Job controller 155
JSON 98, 200
JSON Web Token (JWT) 168
Jupyter data science environment

building 83
business problem, reviewing 83
dataset description 83
setting up 86-91

Jupyter Notebook
about 84, 174, 187
BERT model, training 245-251
installing, on macOS 85
installing, on Windows 86

Index 405

K
Kaggle 63
key stages, drug discovery

clinical development 41
discovery and development 41
FDA review 41
post-market monitoring 41
preclinical research 41

KFServing 186, 197, 198
Kinesis Data Analytics 102
Kinesis Firehose

about 101
dataflow 102
key requirements for scalable

data ingestion 101
K-means clustering algorithm

about 66
benefits 66

K-nearest neighbor algorithm
about 63
working 63

Know Your Customer (KYC) 32
kubectl Cheat Sheet

reference link 155
Kubeflow

about 185, 186, 206
installing 205-210
using, for data science

environments 186-188
Kubeflow Pipelines

about 203-205
experiment 203
output artifacts 204
pipeline 203
pipeline component 203
run trigger 204
step 203

Kubeflow Pipelines SDK
package (KFP) 223

Kubernetes
about 154, 155
architecture 156
custom resources 159
Job 158
machine learning workloads 173
networking 161-163
operators 159, 160
Pod 187
Proxy 163

Kubernetes environment
creating, with Amazon EKS 174-180

Kubernetes Python client
reference link 155

Kubernetes, user authentication
strategies 168-170

L
labeled dataset 5
labels 5
Lake Formation administrator

about 108
registering 112

Lake Formation database creator 109
Lake Formation database user 109
Lake Formation data user 109
Lambda function

creating 113
language modeling 77
large-scale models

training, with distributed
training 302, 303

Latent Dirichlet Allocation
(LDA) algorithm 80, 81

406 Index

launcher notebook
modifying 331, 332
running 332

lazy execution 132
leaf node 60
learning rate 55
Lex bot

building 375, 376
LightGBM 63
linear models 56
linear regression 57
linear regression algorithm 58
linkage attack 349
Linux 175
load balancer 164, 165
loan data processing

flow 381
loan document classification

workflow 380, 381
loan document verification

automating 379
local interpretable model-agnostic

explanations (LIME)
about 341
image data explainer 341
tabular data explainer 341
text data explainer 341

logging 279
logistic regression algorithm 58, 59
long short-term memory (LSTM) 77
losses

reference link 139
loss function 54
low latency model inference

achieving 318

M
machine learning feature store 106
machine learning libraries

features 126, 127
machine learning (ML)

about 23
challenges 16
data management architecture 96-98
data management considerations 94-96
reinforcement learning 8, 9
supervised ML 5, 6
unsupervised ML 6-8
versus traditional software 10, 11

machine maintenance, manufacturing
industry sector 46

macOS
Jupyter Notebook, installing on 85
Python 3, installing on 84

manufacturing industry sector
about 44
engineering and product design 44
machine maintenance 46
process flow 44
product quality and yield 45

Market Abuse Regulation (MAR) 32
marketing campaigns and

advertising techniques
centric marketing campaigns 48
click-through rate (CTR) 48
contextual advertising 48
segmentation 48

Markets in Financial Instruments
Directive II (MiFID II) 32

matplotlib 128
matrix factorization 70
Matrix Units (MXUs) 321
max pooling 71

Index 407

mean absolute error (MAE) 139
mean squared error (MSE) 139
media and entertainment (M&E) industry

about 37
content development and production 38
content distribution and customer

engagement 39, 40
content management and

discovery 38, 39
workflow 37

media processing and analysis
workflow 381-383

medical imaging
about 40
analysis 40, 41

Megatron-LM 314, 315
Merger and Acquisition (M&A) 24
Microsoft 143
ML algorithms

about 53
algorithms, for NLP 73
classification and regression

algorithms 58
computer vision neural network

architectures 71
considerations 57
generative model 81
learning 54
overview 56
recommendation algorithms 69
time series algorithms 67

ML algorithms, considerations
about 56
accuracy and interpretability 57
data linearity 57
number of features 57
training data size 56
training time 57

ML algorithms, for NLP tasks
about 75
BERT 77-79
generative pre-trained

transformer (GPT) 80
Latent Dirichlet Allocation

(LDA) algorithm 80, 81
long short-term memory (LSTM) 77
recurrent neural network (RNN) 75, 76
Word2Vec 75

ML-based forecasting models 49
ML-based image search capability 47
ML bias

about 338
bias detection 339
mitigation 339

ML deployment pipeline
CloudFormation template,

creating for 295-298
MLeap

reference link 135
ML explainability

about 338
global explainability 340
local explainability 340

MLFlow 185
MLFlow model registry 192, 193
ML governance

about 334, 337
model risks, causes 336
purpose 334
regulatory landscape, model

risk management 335
MLLib 131
ML life cycle

about 11, 12
business metric tracking 15
business understanding 13

408 Index

data understanding and data
preparation 14

ML problem framing 13
model deployment 15
model evaluation 14
model monitoring 15
model training 14

ML Operations (MLOps)
adopting, for ML workflows 274, 275
delivery scalability 275
model building reproducibility 274
process and operations audibility 275
process consistency 274
tooling and process reusability 274

MLOps architecture
AWS services, using 276-278
components 275, 276
designing, for AI services 386
monitoring 276

MLOps pipeline
building, on AWS 289

ML pipeline monitoring 285, 286
ML pipeline workflows

automating 201
ML platform

about 184
building, with open source

technologies 185
continuous integration (CI)/

continuous deployment (CD) 185
data science environment 184
model registry 185
model serving environment 185
model training environment 184

ML platform, designing for governance
about 342, 343
auditing 347
data and model documentation 343, 344

lineage, establishing 347
management control, modifying 346
model inventory 345
model monitoring 345
observability 347
privacy 349
reproducibility 347
security 348

ML platform workflow automation
about 20
model monitoring configuration 20
pipeline design and management 20
pipeline execution and monitoring 20

ML solutions architecture
about 16, 17, 23
business understanding 18
elements 17, 18
ML platform workflow automation 20
ML techniques identification 18
ML techniques verification 18
ML transformation 18
security and compliance 20
system architecture design and

implementation 19
ML tasks

running, with AI services 389-394
ML training pipeline

CloudFormation template,
creating for 289-295

ML use cases
AI services, evaluating for 378
financial services 24
healthcare and life sciences 40
identification exercise 50
manufacturing 44
media and entertainment

(M&E) industry 37
retail industry 46

Index 409

model approval and lifecycle tracking 345
model building 127
model compilers

about 326
Amazon SageMaker Neo 327
Apache Tensor Virtual

Machine (TVM) 327
PyTorch Glow 327
TensorFlow Accelerated Linear

Algebra (XLA) 326
model drift 261
model endpoint monitoring

about 281-284
key metrics 281

model evaluation 127
model explainability reports 344
model hosting environment

about 268, 269
authentication 273
inference engine 269-273
logging 274
monitoring 274
security control 273

model inference
working 318, 319

model inventory 345
model loading 127
model metrics 344
model monitoring 345
model optimization 322
model parallelism 303, 309
model parallelism training

implementing 314
model performance drift detection 269
model registry 185, 192, 276
model risk management

framework (MRM) 335

models
deploying 211-219
registering, with model registry 192
serving, with model serving services 193
tracking 211-219

model saving 127
model selection and evaluation

utilities, scikit-learn
reference link 129

model serving 127, 185
model serving options

custom containers models 272
PyTorch models 270
scikit-learn models 271
Spark ML models 270
TensorFlow models 269
XGboost models 271

model training
about 127
with Kubeflow training operators 190
with Kubernetes Jobs 189

model training environment
about 184, 264
automation 267
building 189-191
engine 265, 266
life cycle management 268

model training monitoring
about 279
key metrics 279- 281

MongoDB 100
monitoring 279
moving average (MA) component 68
multi-arm bandit (MAB) 70
multi-layer perceptron network

(MLP) 64-66, 310
multi-tenancy 188

410 Index

N
naïve model parallelism 310, 311
named entity recognition

(NER) techniques 27
namespaces 156
natural language generation (NLG) 26
natural language processing (NLP)

about 73
models 26, 57

natural language understanding
(NLU) 376, 385

Net Asset Value (NAV) review process 29
Netflix 132
network address translation (NAT) 161
network policies 168
network security 168
network traffic management 166
Neural Network 143
Next Best Action method 28
Nginx 193
Node.js 102
NodePort 163, 164
normal equation 56
NoSQL databases 102
NumPy 128
Nvidia GPU architecture

global memory component 320
streaming multiprocessor

(SM) component 320

O
objective function 54
object storage 98
observability 167
Office of Controller and

Currency (OCC) 335

online learning 70
ONNX 195
OpenAI 80
OpenID Connect (OIDC) 273
open source technologies

used, for building data science
architecture 205

used, for building ML platforms 185
operational metrics

monitoring, for AI services 388
operator optimization 326
Optical Character Recognition

(OCR) 34, 368
optimization 54
Optimizer 143
optimizers 54
optimizers, Keras

reference link 139
out-of-vocabulary (OOV) 77
overfitting 60
over-the-top (OTT) 37

P
package manager 128
P and L information 33
parallel serving sessions

enabling 328
parameter server

implementing, in frameworks 306, 307
overview 305, 306

Parquet 100
part-of-speech (POS) analysis 367
permission

giving, to namespace service account
to access Istio service 220-232

personally identifiable
information (PII) 371

Index 411

Pinterest 132
PIP 83
PIP3

installing 84, 85
pipeline model parallelism 312
pipeline repository 276
PIP package manager

about 128
reference link 128

Pods 155-157
post-trade settlement

workflow 30
Presto 105
pre-training 78
product demand forecasting 49
product design 44
product recommendation 383
product search and discovery,

retail industry 46, 47
Proof of Concept (POC) 18
prop trading 25
pruning 323
purpose-built data version tools 106
PySpark 132
Python 83, 102, 127, 153, 187
Python 3

download link 84
installing 84, 85
installing, on macOS 84
installing, on Windows 85

Python Package Index
URL 128

Python SDK (Software
Development Kit) 191

Python shell 102

PyTorch
about 19, 143, 190, 196, 197
components 144
installing 143
URL 143

PyTorch Glow 327
PyTorch model

building 146-149
training 146-149

Q
quality control, manufacturing

industry sector 45
quantization 322

R
random forest algorithm

about 61
advantages 62

recommendation algorithms
about 69
collaborative filtering algorithm 69
multi-arm bandit/contextual

bandit algorithm 70
recommender system 69
recurrent neural network

(RNN) 68, 75, 76
Register Location 112
regularization 57
reinforcement learning

about 8
example 9
use cases 9

ReLU 64

412 Index

residual network (ResNet)
about 72
architecture 73

Responsibly
reference link 340

retail industry
about 46
product demand forecasting 49
product search and discovery 46, 47
sentiment analysis 48, 49
target marketing 47

Ring AllReduce
implementing, in frameworks 308, 309

risk management and fraud
about 31
anti-money laundering (AML) 31, 32
credit risk 34
insurance 35
trade surveillance 32, 33

role-based access control (RBAC) 170
Ruby 102

S
S3 bucket

creating 113
S3 partitions 106
S3 storage

registering 112
SageMaker

about 203
data science environment

architecture 234, 235
SageMaker Clarify component 281
SageMaker debugger component 281
SageMaker Distributed

Training library 317
SageMaker Experiments 241, 278

SageMaker, for ML governance
bias, detecting in training

dataset 353-357
feature importance, for trained

model 358, 359
privacy-preserving models,

training 359, 360
scenario 353
using 353

SageMaker Hosting 241
SageMaker Model Monitor

data drift 346
feature attribution drift 346
model performance drift 346

SageMaker model registry 278
SageMaker Pipeline 268
SageMaker Processing 238
SageMaker Studio

about 236, 237
setting up 242-244

SageMaker Training Service
about 239, 240
BERT model, training with 251-255

SageMaker Tuning
about 240
hyperparameters tuning

strategies, types 240
sales trading

about 25
challenges 25

Scala 127
scheduler 155
scikit-learn

about 19, 127, 197
components 128
installing 128
URL 127

SciPy 128

Index 413

sectors, healthcare and life sciences
drugs 40
government agencies 40
health facilities 40
managed healthcare 40
medical equipment 40

Secure File Transfer Protocol (SFTP) 382
security 167
security and compliance, ML

audit and compliance 20
authentication 20
authorization 20
data encryption 20
network security 20

security controls
internet access, disabling 348
private networking 348
storage encryption 348

segmentation 48
Seldon Core 185, 198-201, 216
sentiment analysis 48, 49
service accounts 168
service mesh 166
service provisioning management

about 286-288
data science environment

provisioning 286
ML automation pipeline

provisioning 286
SHapley Additive exPlanations (SHAP)

about 341
DeepExplainer 342
GradientExplainer 342
KernelExplainer 342
LinearExplainer 342
reference link 344
TreeExplainer 342

Sigmoid 138

sigmoid activation 64
Simple Notification Service (SNS) 281
Single Instruction Multiple

Data (SIMD) 320
single sign-on (SSO)

about 237
with OpenID Connect (OIDC) 168

Softmax 138
space complexity 57
Spark application

running, on Spark cluster 131
Spark cluster 131
SparkContext 131
Spark, installation instructions

reference link 132
Spark ML

components 132
installing 132

Spark ML algorithms
reference link 133

SparkSession object 131
sparse matrix 69
Splunk 101
SR 11-7

reference 335
static pruning 324
statistical and ML techniques

deep learning-based approaches 49
regression analysis 49

Stochastic Gradient Descent
(SGD) optimizer 139

straight-through processing 30
subtrees 61
supervised ML

about 5
examples 6

Suspicious Activity data 32

414 Index

T
tags 67
tanh activation 64
Targeted Review of Internal

Models (TRIM) 335
target marketing 47
tensor 313
TensorFlow

about 19, 135, 136, 190
components 138
installing 137

TensorFlow 2.x 137
TensorFlow Accelerated Linear

Algebra (XLA) 326
TensorFlow Keras API 138
TensorFlow model

training 140-142
TensorFlow SavedModel serialization 139
TensorFlow Serving framework 194, 195
tensor parallelism 313, 314
Tensor Processing Unit (TPU) 321
tensor slicing 313
term frequency-inverse document

frequency (TF-IDF)
about 73
components 74

test dataset 14
text to speech 385
Themis

reference link 340
time complexity 57
time series

about 67
key characteristics 67
seasonality 67
stationarity 67
trend 67

time series algorithms
ARIMA algorithm 67, 68
DeepAR algorithm 68

token 76
topic modeling 80, 81
torch-mode-archive 196
TorchServe serving framework 196
trade surveillance

about 32
challenges 33
workflow 33

transformer 78
transformers, scikit-learn

reference link 129
transformers, Spark ML

reference link 133
TRIM

reference 335

U
Uber 132
Ubuntu 153, 218
Universal Resource Identifier (URI) 187
Unix Version 7 152
unstructured data 98
unsupervised ML

about 6, 7
examples 8

user-centric marketing campaigns 48

V
vanishing gradient problem 72
video on demand (VOD) 39
virtual private cloud (VPC) 176, 348
Virtual Service 166
VMWare 152

Index 415

W
weaker learner trees 61
wealth management (WM) business

about 27, 28
challenges 27

Wikipedia 75
Windows

Jupyter Notebook, installing on 86
Python 3, installing on 85

Windows installer for Python
reference link 85

Word2Vec 75

X
X.509 client certificate 168
XGBoost 62, 63, 190, 197
XML 98

Y
YAML 187

Z
Zero Redundancy Optimizer (ZeRO) 316
zero-shot learning 80

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://Packt.com

https://packt.com
https://customercare@packtpub.com
https://www.packt.com

418 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Machine Learning with Amazon SageMaker Cookbook

Joshua Arvin Lat

ISBN: 9781800567030

•	 Train and deploy NLP, time series forecasting, and computer vision models to solve
different business problems

•	 Push the limits of customization in SageMaker using custom container images

•	 Use AutoML capabilities with SageMaker Autopilot to create high-quality models

•	 Work with effective data analysis and preparation techniques

•	 Explore solutions for debugging and managing ML experiments and deployments

https://www.packtpub.com/product/machine-learning-with-amazon-sagemaker-cookbook/9781800567030

Other Books You May Enjoy 419

•	 Deal with bias detection and ML explainability requirements using
SageMaker Clarify

•	 Automate intermediate and complex deployments and workflows using
a variety of solutions

Amazon SageMaker Best Practices

Sireesha Muppala, Randy DeFauw, Shelbee Eigenbrode

ISBN: 9781801070522

•	 Perform data bias detection with AWS Data Wrangler and SageMaker Clarify

•	 Speed up data processing with SageMaker Feature Store

•	 Overcome labeling bias with SageMaker Ground Truth

•	 Improve training time with the monitoring and profiling capabilities of
SageMaker Debugger

•	 Address the challenge of model deployment automation with CI/CD using the
SageMaker model registry

•	 Explore SageMaker Neo for model optimization

•	 Implement data and model quality monitoring with Amazon Model Monitor

•	 Improve training time and reduce costs with SageMaker data and model parallelism

https://packt.link/9781801070522

420

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished The Machine Learning Solutions Architect Handbook, we'd love to hear
your thoughts! If you purchased the book from Amazon, please click here to go straight
to the Amazon review page for this book and share your feedback or leave a review on the
site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1-801-07216-7
https://packt.link/r/1-801-07216-7

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1:
Solving Business Challenges with
Machine Learning Solution Architecture
	Chapter 1: Machine Learning and Machine Learning Solutions Architecture
	What are AI and ML?
	Supervised ML
	Unsupervised ML
	Reinforcement learning

	ML versus traditional software
	ML life cycle
	Business understanding and ML problem framing
	Data understanding and data preparation
	Model training and evaluation
	Model deployment
	Model monitoring
	Business metric tracking

	ML challenges
	ML solutions architecture
	Business understanding and ML transformation
	Identification and verification of ML techniques
	System architecture design and implementation
	ML platform workflow automation
	Security and compliance

	Testing your knowledge
	Summary

	Chapter 2: Business Use
Cases for
Machine Learning
	ML use cases in financial services
	Capital markets front office
	Capital markets back office operations
	Risk management and fraud
	Insurance

	ML use cases in media and entertainment
	Content development and production
	Content management and discovery
	Content distribution and customer engagement

	ML use cases in healthcare and life sciences
	Medical imaging analysis
	Drug discovery
	Healthcare data management

	ML use cases in manufacturing
	Engineering and product design
	Manufacturing operations – product quality and yield
	Manufacturing operations – machine maintenance

	ML use cases in retail
	Product search and discovery
	Target marketing
	Sentiment analysis
	Product demand forecasting

	ML use case identification exercise
	Summary

	Section 2:
The Science, Tools, and Infrastructure Platform for Machine Learning
	Chapter 3: Machine Learning Algorithms
	Technical requirements
	How machines learn
	Overview of ML algorithms
	Consideration for choosing ML algorithms
	Algorithms for classification and regression problems
	Algorithms for time series analysis
	Algorithms for recommendation
	Algorithms for computer vision problems
	Algorithms for natural language processing problems
	Generative model

	Hands-on exercise
	Problem statement
	Dataset description
	Setting up a Jupyter Notebook environment
	Running the exercise

	Summary

	Chapter 4: Data Management for Machine Learning
	Technical requirements
	Data management considerations for ML
	Data management architecture for ML
	Data storage and management
	Data ingestion
	Data cataloging
	Data processing
	Data versioning
	ML feature store
	Data serving for client consumption
	Authentication and authorization
	Data governance

	Hands-on exercise – data management for ML
	Creating a data lake using Lake Formation
	Creating a data ingestion pipeline
	Creating a Glue catalog
	Discovering and querying data in the data lake
	Creating an Amazon Glue ETL job to process data for ML
	Building a data pipeline using Glue workflows

	Summary

	Chapter 5: Open Source Machine Learning Libraries
	Technical requirements
	Core features of open source machine learning libraries
	Understanding the scikit-learn machine learning library
	Installing scikit-learn
	Core components of scikit-learn

	Understanding the Apache Spark ML machine learning library
	Installing Spark ML
	Core components of the Spark ML library

	Understanding the TensorFlow deep learning library
	Installing Tensorflow
	Core components of TensorFlow

	Hands-on exercise – training a TensorFlow model
	Understanding the PyTorch deep learning library
	Installing PyTorch
	Core components of PyTorch

	Hands-on exercise – building and training a PyTorch model
	Summary

	Chapter 6: Kubernetes Container Orchestration Infrastructure Management
	Technical requirements
	Introduction to containers
	Kubernetes overview and core concepts
	Networking on Kubernetes
	Service mesh

	Security and access management
	Network security
	Authentication and authorization to APIs
	Running ML workloads on Kubernetes

	Hands-on – creating a Kubernetes infrastructure on AWS
	Problem statement
	Lab instruction

	Summary

	Section 3:
Technical Architecture Design and Regulatory Considerations for Enterprise ML Platforms
	Chapter 7: Open Source Machine Learning Platforms
	Technical requirements
	Core components of an ML platform
	Open source technologies for building ML platforms
	Using Kubeflow for data science environments
	Building a model training environment
	Registering models with a model registry
	Serving models using model serving services
	Automating ML pipeline workflows

	Hands-on exercise – building a data science architecture using open source technologies
	Part 1 – Installing Kubeflow
	Part 2 – tracking experiments and models, and deploying models
	Part 3 – Automating with an ML pipeline

	Summary

	Chapter 8: Building a
Data Science Environment Using AWS ML Services
	Technical requirements
	Data science environment architecture using SageMaker
	SageMaker Studio
	SageMaker Processing
	SageMaker Training Service
	SageMaker Tuning
	SageMaker Experiments
	SageMaker Hosting

	Hands-on exercise – building a data science environment using AWS services
	Problem statement
	Dataset
	Lab instructions

	Summary

	Chapter 9: Building an Enterprise ML Architecture with AWS ML Services
	Technical requirements
	Key requirements for an enterprise ML platform
	Enterprise ML architecture pattern overview
	Model training environment
	Model training engine
	Automation support
	Model training life cycle management

	Model hosting environment deep dive
	Inference engine
	Authentication and security control
	Monitoring and logging

	Adopting MLOps for ML workflows
	Components of the MLOps architecture
	Monitoring and logging

	Hands-on exercise – building an MLOps pipeline on AWS
	Creating a CloudFormation template for the ML training pipeline
	Creating a CloudFormation template for the ML deployment pipeline

	Summary

	Chapter 10: Advanced ML Engineering
	Technical requirements
	Training large-scale models with distributed training
	Distributed model training using data parallelism
	Distributed model training using model parallelism

	Achieving low latency model inference
	How model inference works and opportunities for optimization
	Hardware acceleration
	Model optimization
	Graph and operator optimization
	Model compilers
	Inference engine optimization

	Hands-on lab – running distributed model training with PyTorch
	Modifying the training script
	Modifying and running the launcher notebook

	Summary

	Chapter 11: ML Governance, Bias, Explainability, and Privacy
	Technical requirements
	What is ML governance and why is it needed?
	The regulatory landscape around model risk management
	Common causes of ML model risks

	Understanding the ML governance framework
	Understanding ML bias and explainability
	Bias detection and mitigation
	ML explainability techniques

	Designing an ML platform for governance
	Data and model documentation
	Model inventory
	Model monitoring
	Change management control
	Lineage and reproducibility
	Observability and auditing
	Security and privacy-preserving ML

	Hands-on lab – detecting bias, model explainability, and training privacy-preserving models
	Overview of the scenario
	Detecting bias in the training dataset
	Explaining feature importance for the trained model
	Training privacy-preserving models

	Chapter 12: Building ML Solutions with AWS AI Services
	Technical requirements
	What are AI services?
	Overview of AWS AI services
	Amazon Comprehend
	Amazon Textract
	Amazon Rekognition
	Amazon Transcribe
	Amazon Personalize
	Amazon Lex
	Amazon Kendra
	Evaluating AWS AI services for ML use cases

	Building intelligent solutions with AI services
	Automating loan document verification and data extraction
	Media processing and analysis workflow
	E-commerce product recommendation
	Customer self-service automation with intelligent search

	Designing an MLOps architecture for AI services
	AWS account setup strategy for AI services and MLOps
	Code promotion across environments
	Monitoring operational metrics for AI services

	Hands-on lab – running ML tasks using AI services
	Summary

	Index
	About Packt
	Other Books You May Enjoy

