

Praise for The Rules of Programming

The Rules of Programming combines great guidance for beginners
with subtle lessons that may teach even the experts. Zimmerman keeps
it fun, too—proving that it’s possible to be both entertaining and
instructive.

Mark Cerny, Lead System Architect, PlayStation 4 and 5

The Rules of Programming provides great insights for both new and
experienced coders. Zimmerman’s style makes it an entertaining read,
and the 21 rules are an important contribution to better software at a
time when technology is pervasive in every part of business and
society.

Paul Daugherty, Group Chief Executive of Technology and CTO,
Accenture

The Rules of Programming is full of pragmatic rules of thumb any
software engineer can use to level up their skills. I was fortunate to
learn these lessons directly from Chris early in my career, and have
successfully applied them across a wide variety of software disciplines.
With this book, you have the opportunity to do the same.

Chris Bentzel, Director of Software, Boston Dynamics

The Rules of Programming
How to Write Better Code

Chris Zimmerman

The Rules of Programming
by Chris Zimmerman
Copyright © 2023 Chris Zimmerman. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Mary Treseler

Development Editor: Sarah Grey

Production Editor: Gregory Hyman

Copyeditor: Charles Roumeliotis

Proofreader: Kim Cofer

Indexer: Potomac Indexing, LLC

Interior Designer: Monica Kamsvaag

Cover Designer: Susan Thompson

December 2022: First Edition

http://oreilly.com/

Revision History for the First Edition

2022-12-09: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098133115 for release
details.
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The
Rules of Programming, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.
The views expressed in this work are those of the author and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.
978-1-098-13311-5
[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098133115

Preface

Welcome to The Rules of Programming, a set of easy-to-remember and
easy-to-apply Rules that will help you write better code. Programming is
hard, but following the Rules makes it a little bit easier.
Here are some tips on reading the book:

All of the Rules stand on their own. If you see an interesting-
looking Rule in the table of contents and want to jump
straight into the middle of the book, feel free. That reading
pattern is fully supported.

That said, I’d suggest starting off with Rule 1, “As Simple as
Possible, but No Simpler”. It’s a good setup for the rest of
the Rules.

The examples in the book are all written in C++. If you’re a
Python or JavaScript programmer, you’ll be happier if you
read Appendix A, “Reading C++ for Python Programmers”,
or Appendix B, “Reading C++ for JavaScript Programmers”,
before getting too far into the Rules. The two appendices act
as Rosetta Stones to translate that C++ into the concepts
you’re used to. If your experience is with some other
language and you find the C++ examples hard to follow, then
I suggest the phenomenal website Rosetta Code.
If you’re a C++ programmer, note that I’ve simplified a few
things in the code examples to make them easier to read for
non-C++ programmers. For example, the examples use
signed integers in a few places where unsigned integers
would be more typical for a C++ program, and I disabled
warnings about implicit conversion between signed and
unsigned values. I also compiled the examples with an
implicit “using std” to avoid a boatload of distracting “std::”
references.

https://oreil.ly/Rr2BL

And finally, I’m capitalizing Rule when I refer to an actual
Rule in the book. If you see rule, it’s just a regular old rule,
not an officially sanctioned one. The distinction between the
two senses of the word was confusing without the
capitalization; I hope that excuses me.

I hope you enjoy what follows! I think you’ll discover a few useful thoughts
that help you sharpen your programming skills.

Girls Who Code
All royalties from this book go to Girls Who Code, an organization working
hard to help young women discover just how rewarding programming can
be. When I graduated from college, over a third of computer science
graduates were women; these days, it’s more like a fifth. I think we’d all be
better off with a more representative gender balance. You probably do, too.
And supporting Girls Who Code through donations or volunteering is a step
toward making that hope a reality.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases,
data types, environment variables, statements, and keywords.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://oreil.ly/rules-of-programming-code.
If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

https://oreil.ly/QyCTX
https://oreil.ly/rules-of-programming-code
mailto:bookquestions@oreilly.com

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.
We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example: “The
Rules of Programming by Chris Zimmerman (O’Reilly). Copyright 2023
Chris Zimmerman, 978-1-098-13311-5.”
If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/rules-of-
programming.
If you have reactions, comments, or questions you’d like to share with the
author, see The Rules of Programming website for pointers. You can also
email bookquestions@oreilly.com to comment or ask technical questions
about this book.
For news and information about our books and courses, visit
https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media
Follow us on Twitter: https://twitter.com/oreillymedia
Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
First off, thanks to my lovely and talented wife Laura, who encouraged me
to spend time writing this book instead of doing all the other useful things I
could have been doing.
A big round of thanks to all of the people who helped develop the Rules in
this book. That includes all Sucker Punch coders past and present, since you
all contributed whether you intended to or not, but especially Apoorva
Bansal, Chris Heidorn, David Meyer, Eric Black, Evan Christensen, James
McNeill, Jasmin Patry, Nate Slottow, Matt Durasoff, Mike Gaffney, Ranjith

https://oreil.ly/rules-of-programming
https://oreil.ly/jTEGo
mailto:bookquestions@oreilly.com
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Rajagopalan, Rob McDaniel, Sam Holley, Sean Smith, Wes Grandmont,
and William Rossiter.
And thanks to the non–Sucker Punchers who provided a view from outside
the forest: Adam Barr, Andreas Fredriksson, Colin Bryar, David Oliver,
Max Schubert, Mike Gutmann, and Seth Fine.
Extra special thanks to the intrepid readers who made it through every
single one of the Rules: Adrian Bentley, Bill Rockenbeck, Jan Miksovsky,
and Julien Merceron. I officially owe you all a favor.
And finally, thanks to everyone on Team O’Reilly who patiently coached
me through my fumbling attempts to write this book: Charles Roumeliotis,
Gregory Hyman, Libby James, Mary Treseler, Sara Hunter, Suzanne
Huston, and very especially Sarah Grey, who did the rest of you a massive
favor by filtering out the least funny of the jokes I kept insisting on adding.

The Story of the Rules

The Rules of Programming were born of exasperation.
I’d spent about a decade running programming teams at Microsoft, then
cofounded the video game company Sucker Punch in 1997. Both companies
have been successful—in large part because of their ability to recruit and
develop top-notch programming teams. At Sucker Punch, that’s led to a 25-
year run of successful games. There were the three Sly Cooper games,
which let kids of all ages experience the thrilling life of the master raccoon
thief Sly Cooper and his pals. There were the five inFamous games, which
gave gamers superpowers and the choice to use them for good or evil. And
then there’s what is to this point our magnum opus, Ghost of Tsushima,
where gamers play a lone samurai fighting back against the 1274 invasion
of Japan.1

A big part of the recruiting strategy at both Microsoft and Sucker Punch has
been hiring smart young programmers, then training them in the ways of
professional developers. This practice has been undeniably successful, but it
also leads to a particular flavor of frustration.
I kept running into one problem over and over again. We’d bring a new
programmer onto the team, often someone fresh out of college. I’d review
some new feature they planned to introduce into the code, usually to solve a
very simple problem—only to discover that they’d written code that
attempted to solve a much bigger problem, one that included the very
simple and concrete problem as a small subcase.
Aargh! We didn’t need that bigger problem solved, certainly not right now!
Invariably, the solution to the bigger problem was a mediocre solution to
the simple problem we did have—more complicated to use, more
complicated to understand, and capable of hiding a lot more bugs. But just
saying that in the code review2—that we didn’t need the bigger problem
solved, that they should only try to solve problems they understand—was
ineffective. They kept doing it.
Out of frustration, I put my foot down. “OK,” I said. “Here’s the new rule.
Until you have three examples of a problem, you’re not allowed to write a
general solution.”

To my surprise and delight, this actually worked! Turning the general
philosophy into a specific rule with specific criteria was an effective way of
getting the message across. Sure, most of our new programmers made the
premature generalization mistake once, but the rule helped them avoid
making it again. It also helped them recognize when it was time to
generalize. Fewer than three examples? Don’t generalize. Three or more?
Start looking for opportunities.
The rule worked because it was easy to remember, and the situations where
it applied were easy to recognize. When coders could see that they had
started moving past the bounds of the well-defined problem at hand, they
could take a step back, count the number of concrete examples of that sort
of problem they’d run into, and make a better decision about whether to
generalize or not. They wrote better code.
Over time, we found other important bits of Sucker Punch philosophy that
could be distilled into easy-to-remember phrases—aphorisms, to be precise.
There’s a long history of aphorisms—those short, pithy statements that
capture some essential truth. I bet you can rattle off quite a few from
memory. Shoot, I could limit you to bird-related aphorisms, and you’d still
be able to come up with at least two! I’ll offer a few:

Don’t count your chickens before they’re hatched.3

A bird in the hand is worth two in the bush.

The early bird catches the worm.

Don’t put all your eggs in one basket.

Aphorisms stick around because they work. They’re viral, in the modern
sense—aphorisms have been “infecting” people with bits of wisdom for
thousands of years.4 It’s not surprising that they’re an effective way of
infecting new team members with the Sucker Punch coding philosophy.
So, bit by bit, what was once a single rule grew into a list of rules: the Rules
of Programming described in this book. They represent many of the most
important aspects of Sucker Punch engineering culture: the things that we
believe have led to our success, the ideas that new coders on the team need
to absorb to be effective. The things that even senior coders like me need
reminding of at least once in a while!

Each of the chapters that follows describes a Rule, with plenty of examples
to illustrate the thought behind it. After reading a chapter, you should have a
clear idea of the coding practice the Rule encourages and the situations
where it applies.
Are the Rules equally contagious in book form? Let’s find out.

1 The eagle-eyed among you may have noticed I left out Rocket: Robot on Wheels, the first
Sucker Punch game. That’s because very few of you have played it; if you’re one of the few,
you have my gratitude.
2 All code committed to the Sucker Punch project gets code reviewed. See Rule 6 for more
details.
3 In its original form, from Thomas Howell’s New Sonnets and Pretty Pamphlets (1570):
“Count not thy chickens that unhatched be….” A small demonstration of the staying power of
a good aphorism.
4 The word aphorism itself was coined by Hippocrates around 400 BCE. Well, strictly
speaking, the word he coined was Ἀφορισμός. That was the title of his book of rules for
medical diagnosis and treatment, some of which are still spot on millennia later, like aphorism
13 from section 6—“a sneezing attack will cure a case of hiccups.” So true.

How to Disagree with the Rules

I hope that you don’t sail smoothly through all 21 Rules.
If you find yourself politely nodding along with each of the Rules and the
examples I use—“Oh yes, that makes sense, this example is familiar, I’ve
had this thought before, I just used different language to describe it”—well,
that’s a failure.
I hope I’ll give you things to think about. A new insight or two, ideally.
Maybe I’ll be able to put a name to a vague feeling you’ve had, or give you
a crisp example of something you’ve been unable to nail down. Maybe I’ll
even give you something entirely new to consider.
But it’s also likely that you’ll run into one or two ideas that you disagree
with. You might think I’m entirely wrong about something—that one of the
Rules is bad advice.
That’s great! Finding a Rule you strongly disagree with is an opportunity.
Rejecting it immediately and reflexively would be a mistake.
I promise that the Rule in question isn’t entirely wrong—but it may be right
for us while simultaneously being wrong for you. Understanding why this is
will help you understand and strengthen your own programming
philosophy. It means understanding the differences between Sucker Punch
and your own team, because those differences are what make a Rule an
important part of our culture but a poor match for yours. The Rules use
examples from the video games we’ve built at Sucker Punch, which should
illuminate some of the things that make video game programming different.
Many of the rest are addressed in the last chapter, “Conclusion: Making the
Rules Your Own”.
Here’s the reconciliation process I’ve found helpful when I’ve run into
some statement of coding philosophy discordant with my experience:

1. Find the truth in the statement, not just the flaws. I may
disagree with the statement, but that’s likely because of my
own assumptions. What are the circumstances under which
the statement would be true?

2. Work the problem from the other side, too. What are the
circumstances under which my own contrary view on the
statement would be false? What’s the difference in
circumstances that changes the truthfulness of the statement?

3. Be mindful that circumstances change. The statement might
be wrong for you now, but right for you on your next project.
You’ve identified a situation where your philosophy would
need to change; be alert to the possibility that you’ve
wandered into exactly that situation.

I’ve gone through this process many times. Here’s an example: test-driven
development (TDD). It’s discordant with our experience at Sucker Punch;
still, the truth in it is obvious to us. You’ll see references in the Rules to the
ways in which our circumstances make TDD an awkward fit, but we know
that those circumstances might change. We’re watchful; if things change, so
will our philosophy.
So I hope that you find value in the Rules you find most objectionable…but
I understand if you choose to follow a different course of action, one
credited to Dorothy Parker:

This is not a novel to be tossed aside lightly. It should be thrown with
great force.

If so, I suggest aiming for something soft.

Rule 1. As Simple as Possible, but No
Simpler

Programming is hard.
I’m guessing you’ve already figured this out. Anyone who picks up and
reads a book titled The Rules of Programming is likely to both:

Be able to program, at least a little

Be frustrated that it’s not easier than it is

There are lots of reasons why programming is hard, and lots of strategies to
try to make it easier. This book looks at a carefully selected subset of
common ways to screw things up and Rules to avoid those mistakes, all
drawn from my many years of making mistakes of my own and coping with
the mistakes of others.
There’s an overall pattern to the Rules, a common theme that most of them
share. It’s best summarized with a quote from Albert Einstein describing the
goals of a physical theorist: “As simple as possible, but no simpler.”1 By
that, Einstein meant that the best physical theory was the simplest one that
completely described all observable phenomena.
Recasting that idea to programming, the best way to implement a solution
to any problem is the simplest one that meets all the requirements of that
problem. The best code is the simplest code.
Imagine that you’re writing code to count the number of bits set in an
integer. There are lots of ways to do this. You might use bit trickery2 to zero
out a bit at a time, counting how many bits get zeroed out:

int countSetBits(int value)
{
 int count = 0;

 while (value)
 {
 ++count;
 value = value & (value - 1);
 }

 return count;
}

Or you might opt for a loop-free implementation, with bit shifting and
masking to count the bits in parallel:

int countSetBits(int value)
{
 value = ((value & 0xaaaaaaaa) >> 1) + (value & 0x55555555);
 value = ((value & 0xcccccccc) >> 2) + (value & 0x33333333);
 value = ((value & 0xf0f0f0f0) >> 4) + (value & 0x0f0f0f0f);
 value = ((value & 0xff00ff00) >> 8) + (value & 0x00ff00ff);
 value = ((value & 0xffff0000) >> 16) + (value & 0x000ffff);

 return value;
}

Or you might just write the most obvious code possible:

int countSetBits(int value)
{
 int count = 0;

 for (int bit = 0; bit < 32; ++bit)
 {
 if (value & (1 << bit))
 ++count;
 }

 return count;
}

The first two answers are clever…and I don’t mean that as a compliment.3
A quick glance isn’t enough to figure out how either example actually
works—they each have a little morsel of “Wait…what?” code tucked inside
the loop. With a little bit of thought you can figure out what’s going on, and
seeing the trick is kind of fun. But untangling things takes some effort.
And that’s with a head start! I told you what the functions did before
showing the code, and the function names hammer their purpose home. If
you hadn’t known that the code counted set bits, untangling either of the
first two examples would have been even more work.
That’s not the case for the final answer. It’s obvious that it’s counting the
bits set. It’s as simple as possible, but no simpler, and that makes it better
than the first two answers.4

Measuring Simplicity

There are many ways to think about what makes code simple.
You might decide to measure simplicity based on how easy code is for
someone else on your team to understand. If a randomly chosen colleague
can read through a bit of code and understand it with no effort, then the
code is appropriately simple.
Or you might decide to measure simplicity by how easy it is to create the
code—not just the time to type it, but the time it takes to get the code fully
functional and bug-free as well.5 Complicated code takes a while to get
right; simple code is easier to get across the finish line.
These two measures have a lot of overlap, of course. Code that’s easy to
write tends to be easy to read, too. And there are other valid measures of
complexity you might use:
How much code is written

Simpler code tends to be shorter, though it’s possible to jam a lot
of complexity into a single line of code.

How many ideas are introduced
Simple code tends to build on the concepts that everyone on your
team knows; it doesn’t introduce new ways of thinking about
problems or new terminology.

How much time it takes to explain
Simple code is easy to explain—in a code review, it’s obvious
enough that the reviewer zooms right through. Complicated code
takes explanation.

Code that seems simple against one measure will seem simple against the
other measures as well. You just need to choose which of the measures
provides the clearest focus for your work—but I recommend starting with
ease of creation and ease of comprehension. If you focus on getting easy-to-
read code working quickly, you’re creating simple code.

…But No Simpler
It’s better for code to be simpler, but it still needs to solve the problem it
intends to solve.

Imagine that you’re trying to count how many ways there are to climb a
ladder with some number of rungs, given the stipulation that you gain one,
two, or three rungs with each step. If the ladder has two rungs, there are two
ways to climb it—either you step on the first rung or not. Similarly, there
are four ways to climb a three-rung ladder—step on the first rung, step on
the second rung, step on the first and second rungs, or step directly to the
top rung. A four-rung ladder can be climbed in seven ways, a five-rung
ladder in thirteen ways, and so on.
You can write simple code to calculate this recursively:

int countStepPatterns(int stepCount)
{
 if (stepCount < 0)
 return 0;

 if (stepCount == 0)
 return 1;

 return countStepPatterns(stepCount - 3) +
 countStepPatterns(stepCount - 2) +
 countStepPatterns(stepCount - 1);
}

The basic idea is that any journey up the ladder has to step to the top rung
from one of the three rungs below it. Adding the number of ways to climb
to each of those rungs gives the number of ways to climb to the top rung.
After that, it’s just a matter of figuring out the base cases. The preceding
code allows negative step counts as a base case to make the recursion
simpler.
Unfortunately, this solution doesn’t work. Well, it does work, at least for
small stepCount values, but countStepPatterns(20) takes about twice as
long to complete as countStepPatterns(19). Computers are really fast, but
exponential growth like this will catch up to that speed. In my test, the
example code started getting pretty slow once stepCount got into the
twenties.
If you’re expected to count the number of ways up longer ladders, then this
code is too simple. The core issue is that all of the intermediate results of
countStepPatterns are recalculated over and over, and this leads to
exponential run times. A standard answer to this is memoization—hanging
onto the calculated intermediate values and reusing them, as in this
example:

int countStepPatterns(unordered_map<int, int> * memo, int rungCount)
{
 if (rungCount < 0)
 return 0;

 if (rungCount == 0)
 return 1;

 auto iter = memo->find(rungCount);
 if (iter != memo->end())
 return iter->second;

 int stepPatternCount = countStepPatterns(memo, rungCount - 3) +
 countStepPatterns(memo, rungCount - 2) +
 countStepPatterns(memo, rungCount - 1);

 memo->insert({ rungCount, stepPatternCount });
 return stepPatternCount;
}

int countStepPatterns(int rungCount)
{
 unordered_map<int, int> memo;
 return countStepPatterns(&memo, rungCount);
}

With memoization in place, each value is calculated once and inserted in the
hash map. Subsequent calls find the calculated value in the hash map in
roughly constant time, and the exponential growth goes away. The
memoized code is a smidgen more complicated, but it doesn’t hit a
performance wall.
You might also decide to use dynamic programming, trading off a bit of
conceptual complexity for better code simplicity:

int countStepPatterns(int rungCount)
{
 vector<int> stepPatternCounts = { 0, 0, 1 };

 for (int rungIndex = 0; rungIndex < rungCount; ++rungIndex)
 {
 stepPatternCounts.push_back(
 stepPatternCounts[rungIndex + 0] +
 stepPatternCounts[rungIndex + 1] +
 stepPatternCounts[rungIndex + 2]);
 }

 return stepPatternCounts.back();
}

This approach runs quickly enough, too, and it’s even simpler than the
memoized recursive version.

Sometimes It’s Better to Simplify the Problem Rather than the
Solution
The problems in the original, recursive version of countStepPatterns
appeared for longer ladders. The simplest code worked perfectly well for
small numbers of rungs, but hit an exponential performance wall for large
numbers of rungs. Later versions avoided the exponential wall at the cost of
slightly more complexity…but they soon run into a different problem.
If I run the previous code to calculate countStepPatterns(36), I get the
right answer, 2,082,876,103. Calling countStepPatterns(37), though,
returns –463,960,867. That’s clearly not right!
That’s because the version of C++ I’m using stores integers as signed 32-bit
values, and calculating countStepPatterns(37) overflowed the available
bits. There are 3,831,006,429 ways to climb a 37-rung ladder, and that
number is too big to fit in a signed 32-bit integer.
So maybe the code is still too simple. It seems reasonable to expect
countStepPatterns to work for all ladder lengths, right? C++ doesn’t have
a standard solution for really big integers, but there are (many) open source
libraries that implement various flavors of arbitrary-precision integers. Or
given a few hundred lines of code, you could implement your own:

struct Ordinal
{
public:

 Ordinal() :
 m_words()
 { ; }
 Ordinal(unsigned int value) :
 m_words({ value })
 { ; }

 typedef unsigned int Word;

 Ordinal operator + (const Ordinal & value) const
 {
 int wordCount = max(m_words.size(), value.m_words.size());

 Ordinal result;
 long long carry = 0;

 for (int wordIndex = 0; wordIndex < wordCount; ++wordIndex)
 {
 long long sum = carry +
 getWord(wordIndex) +
 value.getWord(wordIndex);

 result.m_words.push_back(Word(sum));
 carry = sum >> 32;
 }

 if (carry > 0)
 result.m_words.push_back(Word(carry));

 return result;
 }

protected:

 Word getWord(int wordIndex) const
 {
 return (wordIndex < m_words.size()) ? m_words[wordIndex] : 0;
 }

 vector<Word> m_words;
};

Dropping Ordinal into the last example in place of int produces exact
answers for longer ladders:

Ordinal countStepPatterns(int rungCount)
{
 vector<Ordinal> stepPatternCounts = { 0, 0, 1 };

 for (int rungIndex = 0; rungIndex < rungCount; ++rungIndex)
 {
 stepPatternCounts.push_back(
 stepPatternCounts[rungIndex + 0] +
 stepPatternCounts[rungIndex + 1] +
 stepPatternCounts[rungIndex + 2]);
 }

 return stepPatternCounts.back();
}

So…problem solved? With the introduction of Ordinal, an exact answer
can be calculated for much longer ladders. Sure, adding a few hundred lines
of code to implement Ordinal isn’t great, especially given that the actual
countStep Pat terns function is only 14 lines long, but isn’t that the price
that must be paid to correctly solve the problem?
Probably not. If there isn’t a simple solution to a problem, interrogate the
problem before you accept a complicated solution. Is the problem you’re
trying to solve actually the problem that needs solving? Or are you making
unnecessary assumptions about the problem that are complicating your
solution?
In this case, if you’re actually counting step patterns for real ladders, you
can probably assume a maximum ladder length. If the maximum ladder

length is, say, 15 rungs, then any of the solutions in this section are
perfectly adequate, even the naive recursive example presented first. Add
an assert to one of them noting the built-in limits of the function and
declare victory:

int countStepPatterns(int rungCount)
{
 // NOTE (chris) can't represent the pattern count in an int
 // once we get past 36 rungs...

 assert(rungCount <= 36);

 vector<int> stepPatternCounts = { 0, 0, 1 };

 for (int rungIndex = 0; rungIndex < rungCount; ++rungIndex)
 {
 stepPatternCounts.push_back(
 stepPatternCounts[rungIndex + 0] +
 stepPatternCounts[rungIndex + 1] +
 stepPatternCounts[rungIndex + 2]);
 }

 return stepPatternCounts.back();
}

Or if supporting really long ladders is required—handling the inspection
ladder for a wind turbine, say—then would an approximate count of steps
be enough? Probably, and if so it’s easy to replace integers with floating-
point values. So easy that I’m not even going to show the code.
Look, everything overflows eventually. Solving the extreme boundary cases
for a problem will always lead to an overly complicated solution. Don’t get
trapped into solving the strictest definition of a problem. It’s much better to
have a simple solution for the part of the problem that actually needs to be
solved instead of a complicated solution to a broader definition of the
problem. If you can’t simplify the solution, try to simplify the problem.

Simple Algorithms
Sometimes it’s a poor choice of algorithm that adds complexity to your
code. There are lots of ways to solve any particular problem, after all, some
more complicated than others. Simple algorithms lead to simple code. The
problem is that the simple algorithm isn’t always obvious!
Say you’re writing code to sort a deck of cards. An obvious approach is to
simulate the riffle shuffle you likely learned as a kid—split the deck into
two piles, then fan them into each other, giving the card on each side a

roughly equal chance of ending up next into the recombined deck. Repeat
until the deck is shuffled.6

That might look like this:

vector<Card> shuffleOnce(const vector<Card> & cards)
{
 vector<Card> shuffledCards;

 int splitIndex = cards.size() / 2;
 int leftIndex = 0;
 int rightIndex = splitIndex;

 while (true)
 {
 if (leftIndex >= splitIndex)
 {
 for (; rightIndex < cards.size(); ++rightIndex)
 shuffledCards.push_back(cards[rightIndex]);

 break;
 }
 else if (rightIndex >= cards.size())
 {
 for (; leftIndex < splitIndex; ++leftIndex)
 shuffledCards.push_back(cards[leftIndex]);

 break;
 }
 else if (rand() & 1)
 {
 shuffledCards.push_back(cards[rightIndex]);
 ++rightIndex;
 }
 else
 {
 shuffledCards.push_back(cards[leftIndex]);
 ++leftIndex;
 }
 }

 return shuffledCards;
}

vector<Card> shuffle(const vector<Card> & cards)
{
 vector<Card> shuffledCards = cards;

 for (int i = 0; i < 7; ++i)
 {
 shuffledCards = shuffleOnce(shuffledCards);
 }

 return shuffledCards;
}

This simulated-riffle-shuffle algorithm works, and the code I’ve written
here is a fairly simple implementation of that algorithm. You’ll have to
expend a little energy making sure that all of the index checks are correct,
but it’s not too bad.
But there are simpler algorithms to shuffle a deck of cards. For instance,
you could build a shuffled deck one card at a time. On each iteration, take a
new card and swap it with a random card in that iteration’s deck. You can
do this in place, actually:

vector<Card> shuffle(const vector<Card> & cards)
{
 vector<Card> shuffledCards = cards;

 for (int cardIndex = shuffledCards.size(); --cardIndex >= 0;)
 {
 int swapIndex = rand() % (cardIndex + 1);
 swap(shuffledCards[swapIndex], shuffledCards[cardIndex]);
 }

 return shuffledCards;
}

By the simplicity measures introduced earlier, this version is superior. It
took less time to write.7 It’s easier to read. It’s less code. It’s easier to
explain. It’s simpler and better—not because of the code, but because of the
better choice of algorithm.

Don’t Lose the Plot
Simple code is easy to read—and the simplest code can be read straight
through, top to bottom, just like reading a book. Programs aren’t books,
though. It’s easy to end up with code that’s hard to follow if the flow
through the code isn’t simple. When code is convoluted, when it makes you
jump from place to place to follow the flow of execution, it’s much harder
to read.
Convoluted code can result from trying too hard to express each idea in
exactly one place. Take the riffle-shuffle code from earlier. The bits of code
that deal with the right and left piles of cards look pretty similar to each
other. The logic to move one card or a series of cards to the shuffled pile
could be split into separate functions, then called from shuffleOnce:

void copyCard(
 vector<Card> * destinationCards,

 const vector<Card> & sourceCards,
 int * sourceIndex)
{
 destinationCards->push_back(sourceCards[*sourceIndex]);
 ++(*sourceIndex);
}

void copyCards(
 vector<Card> * destinationCards,
 const vector<Card> & sourceCards,
 int * sourceIndex,
 int endIndex)
{
 while (*sourceIndex < endIndex)
 {
 copyCard(destinationCards, sourceCards, sourceIndex);
 }
}

vector<Card> shuffleOnce(const vector<Card> & cards)
{
 vector<Card> shuffledCards;

 int splitIndex = cards.size() / 2;
 int leftIndex = 0;
 int rightIndex = splitIndex;

 while (true)
 {
 if (leftIndex >= splitIndex)
 {
 copyCards(&shuffledCards, cards, &rightIndex, cards.size());
 break;
 }
 else if (rightIndex >= cards.size())
 {
 copyCards(&shuffledCards, cards, &leftIndex, splitIndex);
 break;
 }
 else if (rand() & 1)
 {
 copyCard(&shuffledCards, cards, &rightIndex);
 }
 else
 {
 copyCard(&shuffledCards, cards, &leftIndex);
 }
 }

 return shuffledCards;
}

The previous version of shuffleOnce was readable top-to-bottom; this one
isn’t. That makes it harder to read. While reading through the shuffleOnce
code you run into the copyCard or copyCards function. Then you have to
track down those functions, figure out what they do, pop back to the
original function, then match the arguments passed from shuffleOnce to

your new understanding of copyCard or copyCards. That’s a lot harder than
just reading the loops in the original shuffleOnce.
So, the don’t-repeat-yourself version of the function took more time to
write8 and is harder to read. It’s more code, too! The attempt to remove
duplication made the code more complicated, not simpler.
Obviously, there’s something to be said for reducing the amount of
duplication in your code! But it’s important to recognize that there’s a cost
to removing the duplication—and for small amounts of code and simple
ideas, it’s better to just leave duplicate copies. The code will be easier to
write and easier to read.

One Rule to Rule Them All
Many of the remaining Rules in this book will return to this theme of
simplicity, of keeping code as simple as possible but no simpler.
At its heart, programming is a struggle with complexity. Adding new
functionality often means making the code more complicated—and as code
gets more complicated, it gets harder and harder to work with, and progress
gets slower and slower. Eventually, you can reach an event horizon, where
any attempt to move forward—to fix a bug or add a feature—causes as
many problems as it solves. Further progress is effectively impossible.
In the end, it will be complexity that kills your project.
That means effective programming is about delaying the inevitable. Add as
little complexity as possible as features are added and bugs fixed. Look for
opportunities to remove complexity, or architect things so that new features
don’t add much to the overall complexity of the system. Create as much
simplicity as possible in how your team works together.
If you’re diligent, you can delay the inevitable indefinitely. I wrote the first
lines of Sucker Punch code 25 years ago, and the codebase has continuously
evolved since then. There’s no end in sight—our code is wildly more
complicated than it was 25 years ago, but we’ve been able to stay in control
of that complexity, and we’re still able to make effective progress.
We’ve been able to manage complexity, and so can you. Stay sharp,
remember that complexity is the ultimate enemy, and you’ll do well.

1 He almost certainly didn’t use those exact words—posterity has done Einstein a favor by
sharpening up his aphorisms. The closest match in the written record is “It can scarcely be
denied that the supreme goal of all theory is to make the irreducible basic elements as simple
and as few as possible without having to surrender the adequate representation of a single
datum of experience.” So, pretty much the same thing, just not as snappy. Also the actual
Einstein quote is a little bit long for a Rule title.
2 Apologies to all non-C++ programmers for the bit twiddling in the next three examples. I
promise the rest of the book is light on bitwise operations.
3 In a plausible alternate universe, this Rule is named “Cleverness Is Not a Virtue.”
4 Modern processors have a dedicated instruction to count the number of bits set in a value
—popcnt on x86 processors, for instance, which executes in a single cycle. You can also get
carried away with SIMD instructions to count lots of bits even faster than popcnt. But all of
these approaches are hard to understand, and which instructions are supported depend on
exactly which processor you have. I’d rather see the simplest countSetBits, unless there was
a really, really good reason to use something more complicated.
5 Bug-free within experimental error, of course. There are always bugs you haven’t found
yet.
6 A deck of cards is pretty well randomized after seven riffle shuffles. After four or five
riffle shuffles the deck isn’t randomized at all. And yes, my family gets annoyed with how
many times I shuffle a deck of cards before dealing the next hand. “We’re here to play cards,
Chris, not watch you shuffle.” A little knowledge is a dangerous thing.
7 As measured experimentally; your mileage may vary. I got a little cute with the indexes
and conditions when writing the riffle-shuffle code, and it took a few tries to get working. The
random selection code worked the first time.
8 Again, experimentally determined. Took a few tries to get it to compile, actually, as I
wavered between using pointers and references.

Rule 2. Bugs Are Contagious

There’s a truism of programming that the earlier you find a bug, the easier it
will be to fix. That’s generally true…but I think it’s even more true to say
that the later you find a bug, the more of a pain in the ass it will be to fix.
Once a bug exists, people will unintentionally write code that relies on that
bug. Sometimes that shaky bit of bug-reliant code is nearby, in the same
system as the bug. Sometimes it’s not nearby—maybe it’s downstream, in a
bit of code that calls your system and depends on the incorrect results your
bug causes. Or it’s upstream—a chunk of code that only works because the
bug caused you to call it in a particular way.
This is a natural thing—it’s impossible to avoid. We notice things that go
wrong, not things that go right. When things go wrong, we investigate to
figure out why. But when things don’t go wrong, we don’t investigate. If
your code works, or at least seems to work, then there’s a natural tendency
to assume that it works in the way you think it works, when very often it
works for reasons you’ve never imagined. And since you don’t investigate,
you never discover the tangled set of circumstances that led to your code
accidentally working.
That’s true for the code you write, and it’s true for the code other people
write that calls your code. When you commit a bug to your team’s
codebase, the codebase will slowly but inevitably accumulate other bits of
code that rely on your bug. These hidden entanglements only become
visible when you fix an obvious bug and some other part of your project
mysteriously stops working.
The sooner you find the bug, the fewer of these entanglements will have
time to sprout. That means fewer dependencies to clean up—which is often
the most time-consuming part of fixing a bug. It’s painfully common to
spend more time dealing with the repercussions of a bug fix than fixing the
bug itself.
It’s useful to think of bugs as being contagious. Each bug in your system
tends to create new bugs, as new code works around the bug or relies on its
incorrect behavior. The best way to stop the resulting contagion is to
eliminate bugs as early as possible, before their evil influence can spread.

Don’t Count on Your Users
OK, so we want to detect problems early. How do we do that?
Here’s one thing you can’t count on—your users. Whether that means
teammates calling your code or customers exercising your feature, users
aren’t a great first line of defense. Sure, sometimes they’ll report a problem,
but more often they’ll assume the behavior they’re observing is the
behavior you intended. That’s where the entanglements come from—
unnoticed issues, sure, but also issues that are noticed but then assumed to
be part of the design.
You can try to ameliorate this. You can write better user-facing
documentation. You can drag your team into a meeting room to explain a
new system or feature. You can maintain an up-to-date internal wiki with
details about how everything fits together, or put a tech note on your
support site. All of these things are worthwhile—they all help, albeit at
nontrivial expense and with varying levels of effectiveness—but they don’t
solve the problem. Fundamentally, your users don’t understand your intent
as well as you do, so they’re going to assume bugs are features no matter
what you do.
A better answer is some sort of continuous automated testing. Most
programmers would agree that automated testing is a Good Thing. At a
minimum, programmers think that automated testing is a Good Thing for
other programmers to do, whether or not they can be bothered to do it
themselves.
There are lots of homegrown variations on the idea of continuous
automated testing, as well as more formalized methodologies like test-
driven development.
Generally speaking, the idea is that your system (or better yet, your whole
project) has a set of tests that you can run quickly and conveniently and that
thoroughly1 exercise the system (or project) and report problems. If the tests
are truly quick and convenient, they’ll get run all the time—like every time
you compile or run the project. Any bugs that pop up that early are easy to
nip in the bud. If the tests are only theoretically quick and convenient,
they’ll tend to get run as part of the commit process—which is still early
enough to avoid the entanglement growth that makes bugs hard to fix.

https://oreil.ly/BjsDY

This sort of testing is expensive. Writing the tests for some bit of code can
take as much time as writing the code itself. Advocates of automated
testing, however, would argue (convincingly!) that this is an illusion. After
all, the hidden cost of writing that bit of code is detecting and diagnosing
problems later, when they’re hard to fix. Coding is debugging, right?
Testing proponents argue that it’s faster to test up front—perhaps even, if
you’re a diehard, writing a test before you write the code it intends to test.
Continuous automated testing isn’t something you can easily adopt as a
personal practice. Making it work requires investing in quite a bit of
infrastructure—you’ll need a nonintrusive testing framework, a testing-
friendly deployment system, and a team that’s philosophically committed to
automated testing. Unless the whole team buys in, you’re swimming against
the tide. But if you’re on a team that buys in, great!
Despite the obvious value in a test-centric approach, we haven’t committed
to it at Sucker Punch. We do have automated tests for many systems, but
collectively they cover only a small part of our codebase. Why is that?

Automated Testing Can Be Tricky
Some projects and some problems lend themselves better to automated
testing than others.
Some things are hard to test, either because it’s hard to cover all possible
inputs or because it’s hard to validate the outputs. Imagine you’re writing a
new lossy audio compression codec. How do you write an automated test
for it?
It’s easy to verify that your compressor doesn’t crash, or to measure how
much compression you see against some set of test files. It’s not as easy to
verify that the decompressed audio actually sounds like the original. You’re
writing an audio compression codec, so you probably have enough signal
processing math to write tests that flag obvious problems, but at some point
you’ll need to slap headphones on human ears and ask people to pick the
compressed sample out of three options. That’s not a test you can run
quickly or conveniently.
Some code is inherently hard to test because its success is hard to measure
—and a lot of the code that gets written at Sucker Punch qualifies. Does a
shopkeeper character act like a real shopkeeper would? Does that facial
animation actually convey disgust, or does the character just look they’re

about to burp? Does it feel like I’m firing a bow here, even though I’m
really holding a controller?
If you’re working on a project that has big chunks of difficult-to-test code,
then you’re forced into a hybrid model. Test what you can test, control what
you can control, and remember that you’re not testing everything. Any
areas that aren’t covered by your automated tests will need to be tested
manually: plan accordingly.
That said, you can structure your code to make it easier to test.
Imagine you’re going to write an external automated test for some bit of
code—that is, some bit of testing code, separate from the code you’re
writing, that will call your code with a set of inputs designed to flex its
capabilities, then check that the outputs match expectations. How can you
structure your code to make this test easier to write?

Stateless Code Is Easier to Test
One important strategy is to reduce the amount of state in your code. It’s a
lot easier to test code that doesn’t rely on state. Any pure function—a bit of
code that relies only on its direct inputs, has no side effects, and has
predictable results—is easy to test. Better this:

int sumVector(const vector<int> & values)
{
 int sum = 0;
 for (int value : values)
 {
 sum += value;
 }
 return sum;
}

Than this:

int reduce(
 int initialValue,
 int (*reduceFunction)(int, int),
 const vector<int> & values)
{
 int reducedValue = initialValue;
 for (int value : values)
 {
 reducedValue = reduceFunction(reducedValue, value);
 }
 return reducedValue;
}

To test sumVector, you just need a set of inputs and the expected outputs for
those inputs. That’s exactly the sort of thing that test-driven development
frameworks excel at. If there’s state involved, the set of inputs required to
thoroughly exercise the code gets a lot more complicated.
Testing reduce is harder—in the apparent pursuit of generality, or maybe as
a half-step toward threading, it repeatedly calls a passed-in function on the
values in vector. You can certainly use reduce to sum the values in the
vector:

int sum(int value, int otherValue)
{
 return value + otherValue;
}

int vectorSum = reduce(0, sum, values);

But testing reduce presents problems. Who knows what the reduce
Func tion function is going to do, right? Does it rely on some bit of external
state? What happens if it has side effects? What if calling that function
removes something from the values vector you’re iterating over? If you’re
testing reduce, you’ve got to anticipate and test all of those things. That’s a
much more complicated set of tests than you’d need for sumVector.
To thoroughly test code, you need to present it with a thorough
representation of all the states it might encounter, then evaluate its outputs
against those states. With a pure function, the arguments to the function are
the only state that matters. But when you bring in side effects, internal state,
or callouts to arbitrary functions, the amount of state that might matter
explodes. This forces a compromise—you can accept less thorough test
coverage, or write an unmanageable number of test cases.
Let’s look at a simple example. Imagine you’re tracking a prioritized list of
characters. Each character has a priority, and it’s easy to get a list of all
characters sorted by that priority. The interface is simple:

class Character
{
public:

 Character(int priority);
 ~Character();

 void setPriority(int priority);
 int getPriority() const;

 static const vector<Character *> & getAllCharacters();

protected:

 int m_priority;
 int m_index;

 static vector<Character *> s_allCharacters;
};

It’s not hard to keep s_allCharacters sorted, with all characters in priority
order. You could do this incrementally, tracking where each character lives
in your prioritized list and being careful to scoot it back and forth in the list
only minimally when its priority changes. That means inserting the
character in the right place when it’s created:

Character::Character(int priority) :
 m_priority(priority),
 m_index(0)
{
 int index = 0;
 for (; index < s_allCharacters.size(); ++index)
 {
 if (priority <= s_allCharacters[index]->m_priority)
 break;
 }

 s_allCharacters.insert(s_allCharacters.begin() + index, this);

 for (; index < s_allCharacters.size(); ++index)
 {
 s_allCharacters[index]->m_index = index;
 }
}

Cleaning up indexes when the character is destroyed:

Character::~Character()
{
 s_allCharacters.erase(s_allCharacters.begin() + m_index);

 for (; index < s_allCharacters.size(); ++index)
 {
 s_allCharacters[index]->m_index = index;
 }
}

And scooting the character back and forth in the list by a minimal amount if
its priority changes:

void Character::setPriority(int priority)
{
 if (priority == m_priority)

 return;

 m_priority = priority;

 while (m_index > 0)
 {
 Character * character = s_allCharacters[m_index - 1];
 if (character->m_priority <= priority)
 break;

 s_allCharacters[m_index] = character;
 character->m_index = m_index;

 --m_index;
 }

 while (m_index + 1 < s_allCharacters.size())
 {
 Character * character = s_allCharacters[m_index + 1];
 if (character->m_priority >= priority)
 break;

 s_allCharacters[m_index] = character;
 character->m_index = m_index;

 ++m_index;
 }

 s_allCharacters[m_index] = this;
}

This works, but testing it is complicated. There’s hidden state that an
external test can’t get at. A test that creates a set of prioritized characters
then checks that allCharacters returns them in the proper order will catch
some bugs, but it will miss some too. The current index could be screwed
up even if the characters are in the right order, and there’s no way to check
that using the methods Character exposes. Incorrect indexes might cause
problems, but there’s no guarantee those problems will show up soon (or
even ever). And with three separate code paths, each trying to keep the
indexes correct, it’s easy to slip up.
It’s simpler to test a stateless version of Character, one that doesn’t try to
maintain state:

class Character
{
public:

 Character(int priority) :
 m_priority(priority)
 {
 s_allCharacters.push_back(this);
 }

 ~Character()
 {
 auto iter = find(
 s_allCharacters.begin(),
 s_allCharacters.end(),
 this);
 s_allCharacters.erase(iter);
 }

 void setPriority(int priority)
 {
 m_priority = priority;
 }

 int getPriority() const
 {
 return m_priority;
 }

 static int sortByPriority(
 Character * left,
 Character * right)
 {
 return left->m_priority < right->m_priority;
 }

 static vector<Character *> getAllCharacters()
 {
 vector<Character *> sortedCharacters = s_allCharacters;

 sort(
 sortedCharacters.begin(),
 sortedCharacters.end(),
 sortByPriority);

 return sortedCharacters;
 }

protected:

 int m_priority;

 static vector<Character *> s_allCharacters;
};

There’s still state here, since you’re tracking all the characters in s_all
Char acters, but it’s not hidden. Writing the test for this version of the code
might not be as simple as writing the tests for a pure function, but it’s a lot
simpler than writing the tests for the incremental version of Character you
started with.
With the prior state-based approach, you had to be paranoid about what
order you did things in. Minus that state, you can just check for expected
outputs and feel pretty safe.

This sort of stateless code is easier to get right in the first place, too. That’s
a hidden advantage of test-driven development—code that’s easier to test
tends to be easier to write. If you’re thinking about how you’re going to test
some bit of code you’re about to write, you’ll end up writing something
simpler.

Audit State You Can’t Eliminate
Let’s say that circumstances force you into keeping some state. Maybe the
call pattern encourages it—say your sorted list of characters sees minor
priority adjustments interleaved with calls to AllCharacters, and all of the
sorting in your stateless implementation is thrashing your memory caches.
If it’s hard to write an external test because you can’t get at some bit of
internal state, write an internal test instead.2 An easy way to do this is to
have an auditing method on your data—in this case, an audit function that
checks whether the internal state is consistent:

void Character::audit()
{
 assert(s_allCharacters[m_index] == this);
}

This is a pretty short audit function, but that’s because I’ve stripped out
anything interesting from this Character class to use it as an example. A
real Character class would be likely to have more internal state and a
longer audit function.
You can also audit the consistency of your array:

void Character::auditAll()
{
 for (int index = 0; index < s_allCharacters.size(); ++index)
 {
 Character * character = s_allCharacters[index];

 if (index > 0)
 {
 Character * prevCharacter = s_allCharacters[index - 1];
 assert(character->m_priority >= prevCharacter->m_priority);
 }

 character->audit();
 }
}

There are advantages to this sort of internal testing, especially if you think
of internal tests as a complement to external tests. Often you can leave
internal tests running all the time, which means they’re running on actual
real-world test cases, not the artificial ones you built for your unit test.
Someone has to call these internal functions for them to be useful,
obviously! A good rule of thumb is calling Character::audit at the end of
any method that updates the character’s state, and calling
Character::auditAll whenever the list changes. You can dial audit
frequency up and down based on need.

Don’t Trust the Caller
In the normal course of programming, you’re going to write code that gets
called by other people on your team. Even if you only work on one-person
projects, some future version of you will call your code—and that future
version of you might as well be a stranger. Future You won’t remember the
details, and other callers never knew them. So don’t trust that the caller is
going to get the details right!
The caller will pass incompatible sets of arguments. They’ll neglect to call
expected initialization functions, and they’ll forget to call shutdown
functions. They’ll provide a callback function that doesn’t actually fulfill
the basic requirements expected of that function. They’ll get it all wrong…
and if you don’t detect the mistakes, they won’t get fixed. An entanglement
will grow instead—this time not from a bug in your code, but from a bug in
the calling code.
It might be counterintuitive, but the easiest place to find those bugs isn’t in
the calling code, it’s in the code being called. The caller might be making
the mistakes, but you’re in a better position to catch them.
Now, with good design, you can often make it impossible for callers to get
the details wrong. That’s the subject of Rule 7, “Eliminate Failure Cases”.
Sometimes you can’t, though. What do you do in those cases?
Here’s an example. You’re writing a rigid-body physics simulator that’s
going to be used by three different video games under development at your
company. You’ll be tracking internal state, like which rigid bodies are in
contact with each other, and that state has to get stored somewhere. You
can’t just call operator new, though, like you would in standard C++ code.

Memory is tight, and your clients have their own custom memory managers
you need to integrate with.
There’s a straightforward answer—have your clients hand over functions to
allocate and free the memory you need as part of an initialization step. I’m
tempted to start with a few bad examples of how to do initialization, but I’ll
skip to a decent one instead. If you’re actually writing a rigid-body physics
simulator, you’re likely to have more initialization parameters than the two
named in the following code snippet. The gravitational constant, for
instance. Collect all of the initialization parameters into a single structure,
which is then passed to a single initialization function:

struct RigidBodySimulator
{
 struct InitializationParameters
 {
 void * (* m_allocationFunction)(size_t size);
 void (* m_freeFunction)(void * memory);
 float m_gravity;
 };

 void initialize(const InitializationParameters & params);
 void shutDown();
};

Expose methods to add and remove new simulated rigid bodies to the
system, and to get and set their current state:

struct RigidBodySimulator
{
 struct ObjectDefinition
 {
 float m_mass;
 Matrix<3, 3> m_momentOfInertia;
 vector<Triangle> m_triangles;
 };

 struct ObjectState
 {
 Point m_position;
 Quaternion m_orientation;
 Vector m_velocity;
 Vector m_angularVelocity;
 };

 ObjectID createObject(
 const ObjectDefinition & objectDefinition,
 const ObjectState & objectState);
 void destroyObject(
 ObjectID objectID);
 ObjectState getObjectState(
 ObjectID objectID) const;

 void setObjectState(
 ObjectID objectID,
 const ObjectState & objectState);
};

The expected usage pattern is pretty obvious, right? Initialize the simulator
before you use it, and shut it down when you’re done. Add objects,
manipulate them, destroy them when you’re done. Nothing complicated.
But you can’t trust the caller to get even the simple details right. They’ll
forget to call initialize, they’ll ask for object state on objects that have
been deleted, or they’ll try to set object state on a random ObjectID that
you’ve never handed out.
It’s tempting to just ignore these cases—to assume that people will get the
details right and let the chips fall where they may—but that’s a huge
mistake. If you don’t detect the error and report it somehow, things will end
in tears. Either callers won’t notice their mistake, or they’ll assume the
observed behavior is a feature.
Imagine you’ve implemented ObjectID as a wrapper around a smaller
integer, which is then used as an index into a linear list of ObjectState
structures:

struct RigidBodySimulator
{
 struct ObjectID
 {
 int m_index;
 };

 ObjectState getObjectState(
 ObjectID objectID) const
 {
 return m_objectStates[objectID.m_index];
 }

 void setObjectState(
 ObjectID objectID,
 const ObjectState & objectState)
 {
 m_objectStates[objectID.m_index] = objectState;
 }

 vector<ObjectState> m_objectStates;
};

This design is simple and easily understood, but it’s is pretty shaky. It lets
easy-to-make mistakes by the caller go unnoticed. Try to get an object’s
state after you destroy it and the results will be undefined.

Actually, that’s a little misleading, though it’s the way people usually talk
about interfaces like this. They mean “undefined” in the sense that the
interface doesn’t promise any particular result when you call
getObjectState for a destroyed object—but, in practice, the results are
completely defined! In the implementation (which I’m not showing you), if
you call getObjectState immediately after destroying that object with
destroyObject, you get the state the object had right before it was deleted.
It would be easy to assume, implicitly or explicitly, that this was the
intended behavior…and from such assumptions do entanglements grow.3

Undefined results are the mark of a poorly designed interface.
Don’t let this incorrect usage go unremarked. Anyone calling
getObjectState after destroyObject should hear about it—but first you
need to detect the problem. One easy fix is to supplement the index in
ObjectID with a “generation” number:

struct RigidBodySimulator
{
 class ObjectID
 {
 friend struct RigidBodySimulator;

 public:

 ObjectID() :
 m_index(-1), m_generation(-1)
 { ; }

 protected:

 ObjectID(int index, int generation) :
 m_index(index), m_generation(generation)
 { ; }

 int m_index;
 int m_generation;
 };

 bool isObjectIDValid(const ObjectID objectID) const
 {
 return objectID.m_index >= 0 &&
 objectID.m_index < m_indexGenerations.size() &&
 m_indexGenerations[objectID.m_index] == objectID.m_generation;
 }

 ObjectID createObject(
 const ObjectDefinition & objectDefinition,
 const ObjectState & objectState)
 {
 int index = findUnusedIndex();

 ++m_indexGenerations[index];
 m_objectDefinitions[index] = objectDefinition;
 m_objectStates[index] = objectState;

 return ObjectID(index, m_indexGenerations[index]);
 }

 void destroyObject(ObjectID objectID)
 {
 assert(isObjectIDValid(objectID));
 ++m_indexGenerations[objectID.m_index];
 }

 ObjectState getObjectState(ObjectID objectID) const
 {
 assert(isObjectIDValid(objectID));
 return m_objectStates[objectID.m_index];
 }

 void setObjectState(
 ObjectID objectID,
 const ObjectState & objectState)
 {
 assert(isObjectIDValid(objectID));
 m_objectStates[objectID.m_index] = objectState;
 }

 vector<int> m_indexGenerations;
 vector<ObjectDefinition> m_objectDefinitions;
 vector<ObjectState> m_objectStates;
};

The generation detects incorrect usage of object IDs. When you create or
destroy an object, you bump its generation version number. If you try to
destroy an object, then get its state, the generations won’t match and this
mismatch will be reported.4 The caller is notified that they’ve made a
mistake and can correct it before it has a chance to fester.
You could easily add code that checks for the other usage mistakes I’ve
identified—forgetting to call initialize, for instance. Or calling it twice.
In the preceding code the interface is redesigned a bit to make it harder to
create invalid object IDs—the only public constructor creates a valid object
ID, so the caller only has easy access to object IDs that are properly
constructed and returned.
There’s a reasonable discussion to be had about how to flag usage errors
like this—you could use asserts, but you could just as easily return error
codes or throw exceptions. Your answer will depend on your team’s
conventions. The important thing is that you flag the error, not how you do
the flagging.

Keeping Your Code Healthy
Code that’s easier to test—or, better yet, continually tests itself—stays
healthier longer. It’s best to think about this from the start, before you write
your first line of code for some new part of the project. You might start with
writing an automated test, as with test-driven development. You might opt
for a stateless implementation of the functionality, or add continual internal
auditing of the functioning of the code.
The result is contagious bugs being discovered early, before they have
chance to multiply. That means fewer problems to fix, and easier fixes to
make when fixes are necessary.
And there’s a hidden benefit! Most of the techniques that make code easier
to test also make the code easier to write—having to write tests for all use
cases nudges you to simplify to fewer use cases. Eliminating state makes
for less fiddly code. Making your interfaces less error-prone makes them
simpler.
It’s a two-way win. So keep things simple, and keep on testing.

1 …although perhaps not completely. I won’t weigh in on what percentage of your codebase
you should aim for covering with automated tests. Keep reading; our percentage at Sucker
Punch is very low.
2 You could also expose the internal state to your testing code somehow—weakening
encapsulation by “friending” your test code, say. It’s more maintainable in my experience to
add internal tests instead.
3 This is also a hole in many automated tests, which rarely test unspecified cases as
thoroughly as they do specified ones. Your automated tests are unlikely to detect this
destroyObject + getObjectState example.
4 One of the standard paradigms for reporting problems in C is the assert macro. One way
or the other, it pops up a message at runtime if the condition it’s passed is false. The message
varies depending on which compiler and operating system you’re using (!), but typically it
includes the line number in the source code where the assert failed and the expression passed
to the assert.

Rule 3. A Good Name Is the Best
Documentation

You can’t write about programming without quoting Shakespeare,
obviously. It’s sort of a cliché at this point. Nevertheless, here’s Romeo and
Juliet, a quick recap: Romeo and Juliet are star-crossed teens in love,
prevented by the enmity between their two families from spending a joyful
life together. It ends poorly for all involved.
Act II, Scene II. Juliet bemoans the situation in the fifth-most famous quote
from the play:

What’s in a name? That which we call a rose
By any other name would smell as sweet

I’ve heard similar arguments made about code, typically by colleagues
frustrated by my persnickety code review attitude toward how stuff is
named. Variables, functions, members, source files, class and structure
names—I’ll quibble about any of them.
People will argue, typically with an eye roll, that the name doesn’t really
matter, that what matters is the thing named. The true meaning of the
variable (or function, or class, whatever) can only be determined by looking
at the code. The truth of a variable is what it represents—how it’s set, how
it’s used, not what it’s named. The functionality doesn’t change if the name
is changed.
So, they declare, just choose something easy to type and get on with coding.
These people are wrong.
The name of a thing is the first and most important documentation you
have. It’s inescapable. It’s always there. Whenever you see any sort of
reference to the thing, it’s by its name. That continual presence is a glorious
opportunity to tell the reader what the thing is, every single time they see it.
This sort of opportunity should never be squandered.
Your goal when choosing the name for something is simple—the name
should encapsulate what’s important about the thing, and guide the reader in
how to think about it. If you’re naming a variable, the name should

immediately tell the reader what the variable represents. If you’re naming a
function, the name should tell the reader what the function does.
Sounds simple, right? So how do things go sideways? As many ways as
there are stars in the sky, actually, but here are a few common failure
modes.

Don’t Optimize for Minimal Keystrokes
The first way things go sideways is overly curt names. Remember that code
is read much more often than it’s written. It’s easy when you’re writing
code to forget this and optimize in favor of names that are easy to type,
instead of spending a bit of extra effort to write code that’s easy to read.
In extremis, this leads to super short variable names. The older the code is,
the more likely you’ll see this style. Or, alternatively, if you run into work
done by a truly ancient programmer—someone who started programming in
the ’60s or ’70s, say—then you’re more likely to see one-letter and two-
letter names.1

I think of this as Numerical Recipes code.2 I’m a big fan of Numerical
Recipes, but the coding style is pretty opaque. To paraphrase:

void cp(
 int n,
 float rr[],
 float ii[],
 float xr,
 float xi,
 float * yr,
 float * yi)
{
 float rn = 1.0f, in = 0.0f;
 *yr = 0.0f;
 *yi = 0.0f;
 for (int i = 0; i <= n; ++i)
 {
 *yr += rr[i] * rn - ii[i] * in;
 *yi += ii[i] * rn + rr[i] * in;
 float rn2 = rn * xr - in * xi;
 in = in * xr + rn * xi;
 rn = rn2;
 }
}

Not immediately obvious what’s going on, right? You could puzzle it out—
the code evaluates a polynomial over complex numbers—but it’s some
work. Things are a lot easier with more appropriate names:

void evaluateComplexPolynomial(
 int degree,
 float realCoeffs[],
 float imagCoeffs[],
 float realX,
 float imagX,
 float * realY,
 float * imagY)
{
 float realXN = 1.0f, imagXN = 0.0f;
 *realY = 0.0f;
 *imagY = 0.0f;
 for (int n = 0; n <= degree; ++n)
 {
 *realY += realCoeffs[n] * realXN - imagCoeffs[n] * imagXN;
 *imagY += imagCoeffs[n] * realXN + realCoeffs[n] * imagXN;
 float realTemp = realXN * realX - imagXN * imagX;
 imagXN = imagXN * realX + realXN * imagX;
 realXN = realTemp;
 }
}

And obviously this particular bit of code is simpler if you have a data type
for complex numbers:

void evaluateComplexPolynomial(
 vector<complex<float>> & terms,
 complex<float> x,
 complex<float> * y)
{
 complex<float> xN = { 1.0f, 0.0f };
 *y = { 0.0f, 0.0f };
 for (const complex<float> & term : terms)
 {
 *y += xN * term;
 xN *= x;
 }
}

Now the structure of the algorithm is clear, if you remember how complex
numbers work. You multiply each term by the domain value x taken to the
Nth power, accumulating the results in the range variable y.

Don’t Mix and Match Conventions
The second way names go wrong is inconsistency. When code doesn’t use
consistent rules about how things are named, it’s easy for the reader to get
confused.
For most projects, some amount of inconsistency is hard to avoid. If you
use any external libraries, then you’ve got trouble—unless all of your
dependencies share the same naming rules, and you’re willing to work

within those rules yourself. Say you’re writing a native Windows app, and
you’re willing to adopt Microsoft’s naming conventions—then your code
can be consistent. Or you’re going to use the C++ standard template
libraries and can live with their conventions: still consistent. Otherwise,
there will be visible seams as things named with competing conventions are
mixed.
Imagine that you’ve got a vector class that pre-allocates storage for a fixed
number of elements. That’s useful and not something the C++ standard
library provides. Imagine your project has a simple naming scheme for
object methods—camel case, starting with a verb. Leaving out a bunch of
details, your class looks like this:

template <class ELEM, int MAX_COUNT = 8>
class FixedVector
{
public:

 FixedVector() :
 m_count(0)
 { ; }

 void append(const ELEM & elem)
 {
 assert(!isFull());
 (void) new (&m_elements[m_count++]) ELEM(elem);
 }
 void empty()
 {
 while (m_count > 0)
 {
 m_elements[--m_count].~ELEM();
 }
 }
 int getCount() const
 { return m_count; }
 bool isEmpty() const
 { return m_count == 0; }
 bool isFull() const
 { return m_count >= MAX_COUNT; }

protected:

 int m_count;
 union
 {
 ELEM m_elements[0];
 char m_storage[sizeof(ELEM) * MAX_COUNT];
 };
};

This is pretty straightforward.3 The append method adds a new element, the
empty method empties out the whole array, and you’ve got some accessors
to check the current number of elements in the vector. But if you write code
that mixes this FixedVector class with a standard C++ container, things
aren’t so rosy:

void reverseToFixedVector(
 vector<int> * source,
 FixedVector<int, 8> * dest)
{
 dest->empty();
 while (!source->empty())
 {
 if (dest->isFull())
 break;

 dest->append(source->back());
 source->pop_back();
 }
}

Here you have two consecutive lines that call an empty method on a vector,
but those two calls do completely different things. The first call empties the
destination vector; the second call checks to see whether the source vector
is empty. It’s pretty easy to see how this would cause confusion!
Obviously you could adopt Standard Template Library (STL) conventions
for the FixedVector class—you could rename it fixed_vector, and use
STL-style names for all of its methods—but that just moves the line of
confusion elsewhere in your project. Now you’re not just asking your
programmers to adapt to and use a foreign set of naming conventions—
you’re asking them to write code with those conventions as well. That’s a
much bigger undertaking.
It’s easy to underestimate the cognitive load of mixing conventions like
this. There’s a real cost to switching back and forth, constantly
reinterpreting what you’re reading in terms of which set of conventions it
must be using. In this example, that means popping back and forth in the
code to figure out which variable has which type, and therefore which set of
conventions it uses. Assuming that you know which conventions are used
by which type, of course!
At Sucker Punch we avoided the specific problem of inconsistency between
our conventions and the standard C++ container conventions by writing our
own version of all the container classes instead of using the STL versions.

That’s a pretty extreme solution, but it does eliminate a lot of cognitive
strain—the container classes work just like all the other code we write, so
single-stepping into a container class’s method doesn’t drop you into a
foreign landscape. Like, say, the STL’s jungle of macros and truly unhinged
template magic. Not to judge, but still.
Even so, we’re not entirely free of foreign conventions, because we use
code we didn’t write, like the PlayStation platform libraries. For most
projects, some degree of mixed conventions is inevitable. The key is to
minimize the mixing where possible. Ring fence the foreign bodies if you
can, in hopes that their conventions won’t leak out into the code everyone
deals with all the time.

Don’t Shoot Yourself in the Foot
Avoid self-inflicted wounds—if the programmers on your team aren’t using
consistent naming conventions, you’re all creating entirely avoidable
problems for yourselves. A jumble of conventions makes even
straightforward code a challenge to sort out:

int split(int min, int max, int index, int count)
{
 return min + (max - min) * index / count;
}

void split(int x0, int x1, int y0, int y1, int & r0, int & r1)
{
 r0 = split(x0, x1, y0, y1);
 r1 = split(x0, x1, y0 + 1, y1);
}

void layoutWindows(vector<HWND> ww, LPRECT rc)
{
 int w = ww.size();
 int rowCount = int(sqrtf(float(w - 1))) + 1;
 int extra = rowCount * rowCount - w;
 int r = 0, c = 0;
 HWND hWndPrev = HWND_TOP;
 for (HWND theWindow : ww)
 {
 int cols = (r < extra) ? rowCount - 1 : rowCount;
 int x0, x1, y0, y1;
 split(rc->left, rc->right, c, cols, x0, x1);
 split(rc->top, rc->bottom, r, rowCount, y0, y1);
 SetWindowPos(
 theWindow,
 hWndPrev,
 x0,
 y0,
 x1 – x0,

 y1 – y0,
 SWP_NOZORDER);
 hWndPrev = theWindow;
 if (++c >= cols)
 {
 c = 0;
 ++r;
 }
 }
}

I feel a little queasy right now. That was rough for me to type; I’m taking
one for the team here.
The algorithm isn’t that complicated—I’m just arranging windows to fill a
target rectangle by dividing them into columns and rows, keeping roughly
the same aspect ratio as the target rectangle. But I’ve made it unnecessarily
hard to figure out what’s going on with the naming choices.
The most obvious problem is the jumble of three or four different naming
styles, which is bad enough. But there’s another issue that pops up even in
more consistently named code—the name of something changing as it’s
passed into a function. The first time I call split, I pass x0 and x1 as the
last two arguments. They’ll receive the right and left sides of the window’s
new rectangle. Inside the split function, though, x0 and x1 mean
something completely different.
That’s a problem. If you’re single-stepping through LayoutWindows, you’ve
got a mental model of what x0 and x1 are. If you single-step into split, you
still see x0 and x1—but now they mean something completely different.
This function is using x and y as generic variable names, just like in algebra
class. They’re not connected in any way with a coordinate system, like x
and y are in the LayoutWindows function. Algebra in one function, Cartesian
coordinates in the next—that’s cognitive load, which slows you down and
creates mistakes.
Some amount of this renaming in function calls is unavoidable. Function
arguments are often the result of expressions, not just passing another
variable. In this example the first two arguments to split are rc->left and
rc->right, which can’t be the names for those concepts inside the split
function. You’ll have to create variable names—but if you’re smart, those
variable names will be left and right, which makes it easier to track
what’s what as you single-step into the function.

Here’s the same function reorganized a bit to make it more consistent and
readable:

int divideRange(int min, int max, int index, int count)
{
 return min + (max – min) * index / count;
}

void layoutWindows(vector<HWND> windows, LPRECT rect)
{
 int windowCount = windows.size();
 int rowCount = int(sqrtf(float(windowCount - 1))) + 1;
 int shortRowCount = rowCount * rowCount - windowCount;

 HWND lastWindow = HWND_TOP;
 int rowIndex = 0, colIndex = 0;

 for (HWND window : windows)
 {
 int colCount = (rowIndex < shortRowCount) ?
 rowCount - 1 :
 rowCount;

 int left = divideRange(
 rect->left,
 rect->right,
 colIndex,
 colCount);
 int right = divideRange(
 rect->left,
 rect->right,
 colIndex + 1,
 colCount);
 int top = divideRange(
 rect->top,
 rect->bottom,
 rowIndex,
 rowCount);
 int bottom = divideRange(
 rect->top,
 rect->bottom,
 rowIndex + 1,
 rowCount);

 SetWindowPos(
 window,
 lastWindow,
 left,
 top,
 right - left,
 bottom - top,
 SWP_NOACTIVATE);

 lastWindow = window;
 if (++colIndex >= colCount)
 {
 colIndex = 0;
 ++rowIndex;
 }

 }
}

Still the same algorithm, but much easier to understand. Consistent naming
patterns make it easier to track what’s going on. It’s easier to identify the
concept represented by a variable solely from its name, without inspecting
the code to infer its meaning—you may not know everything about a
variable named rowIndex, but you can be pretty sure it’s the index of a row.
Which row and of what is not as clear, but knowing it’s a row index is a big
head start.
Consistently naming indexes and counts has some positive side effects.
When you step into the divideRange function, it also uses index and count
as argument names. It’s easy to mentally translate the colIndex and
colCount variables in layoutWindows to the index and count arguments of
divideRange. I’ve minimized the cognitive load, especially compared to the
x0/x1 mess of my first version of this function.
This is common. If you have a consistent set of rules for naming things,
then as you pass between different functions, or different sections of the
codebase, similar things will have similar names. Identical things will
usually have identical names. As you single-step through code, or try to
understand how different bits of code interact with each other, you don’t
have to juggle a bunch of names for a single thing. There’s only one name
—or only a small number of obviously and closely related names, like the
index + count example earlier.

Don’t Make Me Think
Actually, you can go further with rules to create consistency.
The key to consistency is for everything to be as mechanical as possible. If
your team’s conventions for how things are named require judgment calls or
careful thought, then they won’t work. Different programmers will make
different judgment calls, and everyone’s names will be different.
You’d much rather be in a happy spot where everyone just naturally
chooses the same names for the same things, because that makes working
with everyone’s code much easier. And the easiest way to create this level
of consistency is to have mechanical rules that everyone follows.
The Sucker Punch rules for variable naming are especially mechanical. I
haven’t used them for the examples in this book, mostly in the interest of

approachability. Our rules work well for us, but that’s because we all use
them constantly. They’re a little strange-looking if you’re seeing them for
the first time.
Instead, I’ve used gentler conventions for this book’s examples—if I’ve got
a class representing a character, the class is named Character and a
variable holding a character is typically named character, while a vector
full of characters would be named characters.4 Simple conventions chosen
for readability, but consistently used.
The Sucker Punch codebase is similar in spirit, just with a more thorough
set of rules and a little bit more terseness. We use a variant of Microsoft’s
Hungarian standard for variable naming. This is…divisive. Not so much
with Sucker Punch programmers, who adapt pretty quickly, but outside of
the Microsoft ecosystem, the Hungarian naming standard is commonly a
target of derision.5

The core idea of the Hungarian standard is that the type (or sometimes
usage) of a variable mechanically determines all or part of the variable’s
name. If you have an index into an array of factions, then that variable is
named iFaction. If you have a vector of pointers to characters, then the
variable is named vpCharacter.
In many cases, that’s where the story stops. The variable name is entirely
mechanical, and as a result everyone uses exactly the same name for the
variable. That’s what we’re hoping for!
If you have multiple variables with the same type, you tack a qualifier onto
the end of the variable name. If you have two character pointers, they might
be called pCharacter and pCharacterOther. This does introduce judgment
calls, but the conventions we have about common qualifier patterns limit
the inconsistency introduced.
The important thing isn’t the details of our naming conventions—it’s that
we have strict conventions, that they’re as mechanical as we can make
them, and that they’re both well-documented and enforced. That puts us in
a happy place where everyone chooses the same names for the same things,
and working with someone else’s code feels like working with your own.
Figure out which of your own project conventions you can make more
mechanical and do it. You’ll reap the benefits for years to come.

1 I’m of an age where my first programming language was Applesoft Basic, which allowed
long variable names but only paid attention to the first two characters. You read that right;
JUDGE$ and JUROR$ are aliases for the same string variable. Good times. My Basic variables
were all one or two characters, as in the coding example to follow.
2 Numerical Recipes is a classic book explaining all sorts of algorithms for math and
science. The Sucker Punch codebase is littered with ideas adapted from it. 10/10, would
recommend. William H. Press et al., Numerical Recipes: The Art of Scientific Computing, 3rd
ed. (Cambridge University Press, 2007).
3 Well, a zero-sized array isn’t straightforward. Support is compiler-dependent; the compiler
I use supports them but is grouchy about it. I could write the code without a zero-sized array,
but it makes things easier to read and understand, so there you go.
4 Unsurprisingly, the class would be implemented in files named character.h and
character.cpp.
5 I think the negativity misconstrues the advantages of the Hungarian standard. Originally,
using it was a workaround to the lack of type-safe linking in early C compilers. Embedding
type names into variable and function names added a degree of type safety, if only by
convention. That’s unimportant at this point, but it’s the center of most of the derision. There’s
also criticism that code using the convention is hard to read, but that’s like saying Icelandic is
hard to read—sure, if you don’t speak it! The real value of the Hungarian standard for us now
is that following its rules lets us all naturally create the same names for things, and that leads
to an easier-to-work-with codebase.

Rule 4. Generalization Takes Three
Examples

We’re all taught as new programmers that general solutions are preferable
to specific ones. Better to write one function that solves two problems than
to write separate functions for each problem.
You’re unlikely to write this code:

Sign * findRedSign(const vector<Sign *> & signs)
{
 for (Sign * sign : signs)
 if (sign->color() == Color::Red)
 return sign;

 return nullptr;
}

When it would be easy to write this code:

Sign * findSignByColor(const vector<Sign *> & signs, Color color)
{
 for (Sign * sign : signs)
 if (sign->color() == color)
 return sign;

 return nullptr;
}

It’s natural to think in terms of generalization, especially for such a simple
example. If you need to find all the red signs in the world, your natural
instinct as a programmer is to write the code to find signs of an arbitrary
color, then pass in red as that color. Nature abhors a vacuum; programmers
abhor code that only solves one problem.
It’s worth thinking about why this feels so natural. At some level, the
instinct to write findSignByColor instead of findRedSign is based on a
prediction. Given that you’re looking for a red sign, you can confidently
predict that at some point you’ll want to look for a blue sign and write the
code to handle that case too.
In fact, why stop there? Why not write an even more general solution for
finding signs?

You could create a more general interface that lets you query any aspect of
the sign—color, size, location, text—so that searching for a sign by color is
just a special subcase. You might do this by creating a structure defining the
acceptable values for each aspect of a sign:

bool matchColors(
 const vector<Color> & colors,
 Color colorMatch)
{
 if (colors.empty())
 return true;

 for (Color color : colors)
 if (color == colorMatch)
 return true;

 return false;
}

bool matchLocation(
 Location location,
 float distanceMax,
 Location locationMatch)
{
 float distance = getDistance(location, locationMatch);
 return distance < distanceMax;
}

struct SignQuery
{
 SignQuery() :
 m_colors(),
 m_location(),
 m_distance(FLT_MAX),
 m_textExpression(".*")
 {
 ;
 }

 bool matchSign(const Sign * sign) const
 {
 return matchColors(m_colors, sign->color()) &&
 matchLocation(m_location, m_distance, sign->location()) &&
 regex_match(sign->text(), m_textExpression);
 }

 vector<Color> m_colors;
 Location m_location;
 float m_distance;
 regex m_textExpression;
};

Designing the query parameters requires some judgment calls, since each
aspect forces a different query model. In this example, the judgment calls I
made were:

Rather than specifying a single color, you can provide a list
of acceptable colors. An empty list specifies that any color is
acceptable.

Internally, a Location stores latitude and longitude as
floating-point values, so looking for an exact match isn’t
useful. Instead, you would specify a maximum distance from
some location.
You could use a regular expression to match the text or
partial text of the sign, which would handle a lot of obvious
cases.

The actual code to find a matching sign is simple:

Sign * findSign(const SignQuery & query, const vector<Sign *> & signs)
{
 for (Sign * sign : signs)
 if (query.matchSign(sign))
 return sign;

 return nullptr;
}

Finding a red sign with this model is still pretty straightforward—create a
SignQuery, specify red as the only acceptable color, then call findSign:

Sign * findRedSign(const vector<Sign *> & signs)
{
 SignQuery query;
 query.m_colors = { Color::Red };
 return findSign(query, signs);
}

Remember that the design of SignQuery is based on one example: finding a
single red sign. The rest is all conjecture. At this point there aren’t other
examples to build on, so you’re just predicting what other kinds of signs
you’ll need to find.
And that’s the problem—your predictions are likely to be wrong. If you’re
lucky, they’ll only be a little bit wrong…but you probably won’t be lucky.

YAGNI

Most obviously, you’ll anticipate and solve for cases that never occur in
practice. Maybe the first few sign-finding use cases look like this:

Find a red sign.

Find a sign near the corner of Main Street and Barr Street.
Find a red sign near 212 South Water Street.

Find a green sign.

Find a red sign near 902 Mill Street.

You can solve all of these cases with SignQuery and findSign, so in that
sense the code does a decent job predicting the use cases. But I don’t see
any cases where you’re accepting multiple sign colors, and none of the use
cases looks at the sign’s text. All the actual use cases look for a single color,
at most, and some restrict to a location. The SignQuery code solves for
cases that aren’t occurring in practice.
This is a common pattern, common enough that the Extreme Programming
philosophy has a name for it—YAGNI, or “You Ain’t Gonna Need It.” The
work you did to define a list of acceptable colors rather than the single color
in your known use case? Wasted time and effort. The experiments you did
with the C++ regular expression class, figuring out how to distinguish
complete matches from partial? That’s time you’re not getting back.
What’s more, the extra complexity of SignQuery imposes a cost on anyone
using it. It’s pretty obvious how to use the findSignByColor function, but
findSign requires a little more investigation. There are three different
querying models packed into it, after all!
Is a partial match of the regular expression sufficient, or does the expression
need to match the entire text of the sign? It’s not obvious how the three
conditions interact—is this an “and” or an “or”? If you read the code, it’s
clear that a sign matches the query only if all of the conditions match, but
that requires reading the code. Which introduces a new bit of confusion—
which SignQuery fields are required? As written, an empty query straight
out of the constructor matches all signs, so you only need to set fields that
you’re filtering on—but learning this required some investigation.

Given the clear pattern in the real-world use cases, it would have been
better to have just solved the actual problem:

Sign * findSignWithColorNearLocation(
 const vector<Sign *> & signs,
 Color color = Color::Invalid,
 Location location = Location::Invalid,
 float distance = 0.0f)
{
 for (Sign * sign : signs)
 {
 if (isColorValid(color) &&
 sign->color() != color)
 {
 continue;
 }

 if (isLocationValid(location) &&
 getDistance(sign->location(), location) > distance)
 {
 continue;
 }

 return sign;
 }

 return nullptr;
}

Your response at this point might be to accuse me of cheating. Sure, now
that the first few use cases are on the table, it seems like
findSignWithColorNearLocation is a better solution than SignQuery—but
you couldn’t have predicted that after the first use case. Writing
findSignWithColorNearLocation as a general solution wasn’t any more
likely to succeed than writing SignQuery turned out to be. One of the use
cases might have allowed multiple colors or might have referred to the text
of the signs.
That’s exactly my point! No general solution was predictable after one use
case, so it was a mistake to try to write one. Both findSignWithColorNear
Loca tion and SignQuery are mistakes. There’s no winner here, just two
losers.
Here’s the best way to find a red sign:

Sign * findRedSign(const vector<Sign *> & signs)
{
 for (Sign * sign : signs)
 if (sign->color() == Color::Red)
 return sign;

 return nullptr;
}

Yes, I’m serious. I might pass in the color to match, but that’s as far as I’d
go. If you’ve got one use case, write code to solve that use case. Don’t try
to guess what the second use case will be. Write code to solve problems you
understand, not ones you’re guessing at.

An Obvious Objection to This Strategy, in Response to Which I
Double Down
“Wait a second,” you may say at this point. “Doesn’t writing code that
barely meets the requirements of the use case guarantee that you’ll run into
use cases that the code won’t handle? What do you do when the next use
case that pops up doesn’t fit the code you’ve written? That seems
inevitable.”
“And isn’t this an argument for writing more general code? Sure, the first
five use cases we ran into with SignQuery didn’t exercise all of the code we
wrote, but what if the sixth use case did? Wouldn’t we be glad to have the
SignQuery code all written and ready to go when that happened?”
No, not really. Save your effort. When a use case pops up that your code
doesn’t handle, write code to handle it. You might cut and paste your first
effort, making adjustments to handle the new use case. You might start
again from scratch. Both are fine.
The first use case in the list of five was “Find a red sign,” and I wrote code
to do exactly that and no more. The second use case was “Find a sign near
the corner of Main Street and Barr Street,” so now I’ll write code to do
exactly that and no more:

Sign * findSignNearLocation(
 const vector<Sign *> & signs,
 Location location,
 float distance)
{
 for (Sign * sign : signs)
 {
 if (getDistance(sign->location(), location) <= distance)
 {
 return sign;
 }
 }

 return nullptr;
}

The third use case was “Find a red sign near 212 South Water Street,” and
this isn’t handled by either of the two functions I’ve written. This is the
inflection point—now that we’ve got three independent use cases, it’s
starting to make sense to generalize. With three independent use cases, we
can more confidently predict the fourth and fifth.
Why three? What makes three a magic number? Nothing, really, except for
the fact that it’s not one or two. One example isn’t enough to guess the
general pattern. Based on my experience, two usually isn’t either—after two
examples, you’ll just be more confident in your inaccurate generalization.
With three different examples, your prediction of the pattern will be more
accurate and you’re likely to be a little bit more conservative in your
generalization. Nothing like being wrong after examples one and two to
leave you humble!
Still, there’s no requirement that you generalize at this point! It would be
perfectly fine to write a third function without folding the first two
functions into it:

Sign * findSignWithColorNearLocation(
 const vector<Sign *> & signs,
 Color color,
 Location location,
 float distance)
{
 for (Sign * sign : signs)
 {
 if (sign->color() == color &&
 getDistance(sign->location(), location) >= distance)
 {
 return sign;
 }
 }

 return nullptr;
}

This three-separate-functions approach has one important benefit—the
functions are very simple. It’s obvious which one of them to call. If you
have a color and a location, call findSignWithColorNearLocation. If you
just have a color, it’s findSignWithColor; if you just have a location, it’s
findSignNearLocation.1

If your sign-finding use cases continue to check for a single color and/or
location, those three functions will be fine forever. The approach doesn’t
scale very well, of course—with two separate arguments and three separate

findSign functions the approach isn’t a disaster, but with more possible
arguments it quickly becomes ridiculous. If at some point you have a use
case that involves looking at the sign text, you’ll probably shy away from
creating seven variations of the findSign function.
There’s nothing wrong at this point with combining the three findSign
functions into a single function that handles all three cases. Once you have
three separate use cases it’s safer to generalize. But generalize only if you
think it makes the code easier to write and read, based solely on the use
cases you have in hand. Never generalize because you’re worried about the
next use case—only generalize on the use cases you know.
Writing generalized code in C++ for this is a little painful because C++
doesn’t really have optional arguments, only default values for arguments.
That means inventing some way to mark our arguments as “not present.”
One solution is to add Invalid values for color and location to use when we
don’t care about them. Repeating the first version of
findSignWithColorNearLocation:

Sign * findSignWithColorNearLocation(
 const vector<Sign *> & signs,
 Color color = Color::Invalid,
 Location location = Location::Invalid,
 float distance = 0.0f)
{
 for (Sign * sign : signs)
 {
 if (isColorValid(color) &&
 sign->color() != color)
 {
 continue;
 }

 if (isLocationValid(location) &&
 getDistance(sign->location(), location) > distance)
 {
 continue;
 }

 return sign;
 }

 return nullptr;
}

With this function written, all the calls to findSignWithColor and
findSignNearLocation could be replaced with calls to
findSignWithColorNearLocation.

It’s Actually Worse than YAGNI
So far you’ve seen that generalizing prematurely means you’re likely to
write code that never gets exercised, and that’s bad. The less obvious
problem is that generalizing prematurely makes it harder to adapt to
unanticipated use cases. That’s partly because the generalized code you’ve
written is more complicated and therefore takes more work to adjust, but
there’s also something more subtle that happens. Once you’ve established
the template for generalization, you’re likely to extend that template for
future use cases instead of reevaluating it.
Roll back the clock a bit. Imagine that you generalized early with the
SignQuery class, but this time the first few use cases look like this:

Find a red sign.
Find a red “STOP” sign near the corner of Main Street and
Barr Street.

Find all the red or green signs on Main Street.

Find all white signs with text “MPH” on Wabash Avenue or
Water Street.
Find a sign with the text “Lane” or colored blue near 902
Mill Street.

The first two use cases in this list fit SignQuery pretty well, but then things
start to fall apart.
The third use case, “Find all the red or green signs on Main Street,” adds
two new requirements. First, the code needs to return all matching signs
instead of a single sign. That’s not hard:

vector<Sign *> findSigns(
 const SignQuery & query,
 const vector<Sign *> & signs)
{
 vector<Sign *> matchedSigns;

 for (Sign * sign : signs)
 {
 if (query.matchSign(sign))
 matchedSigns.push_back(sign);
 }

 return matchedSigns;
}

The second new requirement is to find all signs along a street, and that’s
trickier. Assuming streets can be represented as a series of line segments
connecting locations, both locations and streets can be packaged into a new
Area struct:

struct Area
{
 enum class Kind
 {
 Invalid,
 Point,
 Street,
 };

 Kind m_kind;
 vector<Location> m_locations;
 float m_maxDistance;
};

static bool matchArea(const Area & area, Location matchLocation)
{
 switch (area.m_kind)
 {
 case Area::Kind::Invalid:
 return true;

 case Area::Kind::Point:
 {
 float distance = getDistance(
 area.m_locations[0],
 matchLocation);
 return distance <= area.m_maxDistance;
 }
 break;

 case Area::Kind::Street:
 {
 for (int index = 0;
 index < area.m_locations.size() - 1;
 ++index)
 {
 Location location = getClosestLocationOnSegment(
 area.m_locations[index + 0],
 area.m_locations[index + 1],
 matchLocation);

 float distance = getDistance(location, matchLocation);
 if (distance <= area.m_maxDistance)
 return true;
 }

 return false;
 }
 break;
 }

 return false;
}

Then the new Area struct can replace the location and maximum distance in
SignQuery:

struct SignQuery
{
 SignQuery() :
 m_colors(),
 m_area(),
 m_textExpression(".*")
 {
 ;
 }

 bool matchSign(const Sign * sign) const
 {
 return matchColors(m_colors, sign->color()) &&
 matchArea(m_area, sign->location()) &&
 regex_match(sign->m_text, m_textExpression);
 }

 vector<Color> m_colors;
 Location m_location;
 float m_distance;
 regex m_textExpression;
};

The fourth use case asks for all speed-limit signs on either of two streets,
which doesn’t fit. It’s easy enough to support a list of areas:

bool matchAreas(const vector<Area> & areas, Location matchLocation)
{
 if (areas.empty())
 return true;

 for (const Area & area : areas)
 if (matchArea(area, matchLocation))
 return true;

 return false;
}

Then you can replace the single area in SignQuery with a list:

struct SignQuery
{
 SignQuery() :
 m_colors(),
 m_areas(),
 m_textExpression(".*")
 {
 ;
 }

 bool matchSign(const Sign * sign) const
 {
 return matchColors(m_colors, sign->color()) &&
 matchAreas(m_areas, sign->location()) &&
 regex_match(sign->m_text, m_textExpression);
 }

 vector<Color> m_colors;
 vector<Area> m_areas;
 regex m_textExpression;
};

Use case five really mixes things up—it’s looking for a sign to mark a point
of historical interest. Those signs are usually blue, so it looks for that, but it
also might be green with particular text. That doesn’t fit the model in
SignQuery.
Again, not impossible. Adding Boolean operations to SignQuery addresses
the new use case:

struct SignQuery
{
 SignQuery() :
 m_colors(),
 m_areas(),
 m_textExpression(".*"),
 m_boolean(Boolean::None),
 m_queries()
 {
 ;
 }

 ~SignQuery()
 {
 for (SignQuery * query : m_queries)
 delete query;
 }

 enum class Boolean
 {
 None,
 And,
 Or,
 Not
 };

 static bool matchBoolean(
 Boolean boolean,
 const vector<SignQuery *> & queries,
 const Sign * sign)
 {
 switch (boolean)
 {
 case Boolean::Not:
 return !queries[0]->matchSign(sign);

 case Boolean::Or:
 {
 for (const SignQuery * query : queries)
 if (query->matchSign(sign))
 return true;

 return false;
 }
 break;

 case Boolean::And:
 {
 for (const SignQuery * query : queries)
 if (!query->matchSign(sign))
 return false;

 return true;
 }
 break;
 }

 return true;
 }

 bool matchSign(const Sign * sign) const
 {
 return matchColors(m_colors, sign->color()) &&
 matchAreas(m_areas, sign->location()) &&
 regex_match(sign->m_text, m_textExpression) &&
 matchBoolean(m_boolean, m_queries, sign);
 }

 vector<Color> m_colors;
 vector<Area> m_areas;
 regex m_textExpression;
 Boolean m_boolean;
 vector<SignQuery *> m_queries;
};

Whew. That was a more demanding set of use cases than the set we saw in
the beginning of this Rule. After making a lot of changes, though, the
QuerySign model can handle a broad range of requests. There are
reasonable requests that still can’t be answered—“find two signs within 10
meters of each other,” say—but it’s easy to imagine that we’ve covered the
important cases. Victory, right?

This Is Not What Success Looks Like
Actually, it’s not clear that extending SignQuery so much has put us in a
good spot, even though I was being scrupulously fair—there’s no YAGNI in
any of the extensions, and I kept everything as neat and tidy as I could.
When you continue to extend a general solution, you can lose sight of the
context. That’s exactly what has happened here.

Let’s compare solving that last use case using SignQuery with doing the
same thing directly. Here’s the SignQuery solution:

SignQuery * blueQuery = new SignQuery;
blueQuery->m_colors = { Color::Blue };

SignQuery * locationQuery = new SignQuery;
locationQuery->m_areas = { mainStreet };

SignQuery query;
query.m_boolean = SignQuery::Boolean::Or;
query.m_queries = { blueQuery, locationQuery };

vector<Sign *> locationSigns = findSigns(query, signs);

And here’s the direct version:

vector<Sign *> locationSigns;
for (Sign * sign : signs)
{
 if (sign->color() == Color::Blue ||
 matchArea(mainStreet, sign->location()))
 {
 locationSigns.push_back(sign);
 }
}

The direct solution is better. It’s simpler, it’s easier to understand, it’s easier
to debug, it’s easier to extend. All the work we did on SignQuery just led us
further and further away from the simplest and best answer. And that’s the
real danger in premature generalization—not just that you’ll implement
features that never get used, but that your generalization establishes a
direction that will be hard to change.
Generalized solutions are really sticky. Once you establish an abstraction to
solve a problem, it’s hard to even conceive of alternatives. Once you use
findSigns to find all the red signs, your instinct will be to use findSigns
whenever you need to find signs of any sort. The very name of the function
tells you to do that!
So if you’ve got a case that doesn’t quite fit, the obvious answer is to extend
SignQuery and findSigns to cover the new case. The same goes for the
next case that doesn’t fit, and the one after that. As the general solution
becomes more expressive, it also becomes more cumbersome...and unless
you’re very careful, you won’t even notice that you’ve extended your
generalization past its natural bounds.

When you’re holding a hammer, everything looks like a nail, right?
Creating a general solution is handing out hammers. Don’t do it until you’re
sure that you’ve got a bag of nails instead of a bag of screws.2

1 Or, if you’re using a language like C++ that supports function overloading, you could call
all three versions of findSign and let the compiler sort things out.
2 You can use a hammer to drive a screw, by the way. You just have to swing the hammer
harder. At the risk of being painfully obvious, the same is true of code. You can get things to
work with an awkward abstraction—you just have to swing the abstraction harder.

Rule 5. The First Lesson of
Optimization Is Don’t Optimize

My favorite programming task is optimization. Usually that means making
some code system run faster, though sometimes I’m optimizing memory
usage or network bandwidth or some other resource.
It’s my favorite task because it’s simple to measure success. For most
coding work, what constitutes success is fuzzy. Books like this one try hard
to define what good code or a good system looks like, but what makes a
line of code good is always imprecise.
That’s not true for optimization. There, the answers are crisper. If you’re
trying to make something run faster, you can measure your success directly.
The same goes for the cost of that success in terms of increased code size or
complexity. No worrying about semi-defined long-term benefits, no trusting
that someone reading your new code a few years from now will understand
it immediately and be swept away in a wave of emotional appreciation for
you as a programmer. Just immediate, tangible results.
I’m not alone in this fondness for optimization. In fact, it’s seductive
enough to have prompted the one programming adage that every
programmer knows:

Premature optimization is the root of all evil.
That’s not the whole quote, by the way. The original version, as written
down by Donald Knuth in 1974, is more nuanced:

We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.

It’s important to note the context.1 In 1974, compilers were much less
sophisticated than they are now. The “small efficiencies” Knuth talks about
were often tricky little bits of code to get the compiler to generate the code
you wanted, like caching end points to eke out a little bit of performance:

int stripNegativeValues(int count, int * data)
{
 int * to = data;

 for (int * from = data, * end = data + count;
 from < end;
 ++from)
 {
 if (*from >= 0)
 *to++ = *from;
 }

 return to - data;
}

Or using macros to avoid the cost of a function call:2

typedef struct
{
 float x, y, z;
} Vector;

#define dotProduct(A, B) (A.x * B.x + A.y * B.y + A.z * B.z)

Fortunately, these days the compiler is smart enough to generate the right
instructions for your source code, at least if you’re writing simple and
straightforward code. The trickier you try to get, the less likely it is that the
compiler will be able to figure out what you mean, so old-school tricks and
extravagant C++ magic often end up generating worse code than just
writing out the simplest expression of your logic.
Having smart compilers hasn’t saved us from ourselves, though. It’s
instinctive in programmers to worry about resources, whether that’s time or
storage or bandwidth—and that can lead to trying to solve performance
problems before they pop up.
Let’s say you’re choosing a random item from a list, something games do a
lot. The items aren’t equally likely—each has a weighted chance of being
chosen:

template <class T>
T chooseRandomValue(int count, const int * weights, const T * values)
{
 int totalWeight = 0;
 for (int index = 0; index < count; ++index)
 {
 totalWeight += weights[index];
 }

 int selectWeight = randomInRange(0, totalWeight - 1);
 for (int index = 0;; ++index)
 {
 selectWeight -= weights[index];
 if (selectWeight < 0)
 return values[index];

 }

 assert(false);
 return T();
}

This is pretty simple. Sum up all the weights, then choose a random number
no larger than the sum. As you subtract weights, one of them will cause the
sum to go negative, selecting that weighted value. The chance of that
happening is proportional to the weight—done!
But it’s easy to look at this and decide it could be faster. The second loop
through the values doesn’t seem necessary. If you hang on to the running
sum of weights, you could divide-and-conquer your way to the answer,
making the second loop much faster:

template <class T>
T chooseRandomValue(int count, const int * weights, const T * values)
{
 vector<int> weightSums = { 0 };
 for (int index = 0; index < count; ++index)
 {
 weightSums.push_back(weightSums.back() + weights[index]);
 }

 int weight = randomInRange(0, weightSums.back() - 1);

 int minIndex = 0;
 int maxIndex = count;

 while (minIndex + 1 < maxIndex)
 {
 int midIndex = (minIndex + maxIndex) / 2;
 if (weight >= weightSums[midIndex])
 minIndex = midIndex;
 else
 maxIndex = midIndex;
 }

 return values[minIndex];
}

This is a rookie mistake. Actually, it’s a whole list of rookie mistakes all
nested inside each other. Yes, the second loop is O(log N) now, not linear,
but that doesn’t really matter when the first loop is still linear. You haven’t
made a dent in overall performance.
Even that isn’t really the issue. Unless you know that you’ve got a lot of
weighted random choices, the simple linear loop is going to be faster. Until
you get to 200(!) or so choices, the linear loop is faster than the binary
search, at least as measured on my PC. That’s a bigger number than you

would have guessed, right? Up until that point, simpler logic and better
memory-access patterns trump algorithmic efficiency.
But that’s not the real issue, either. It doesn’t matter how fast you do the
lookup—the second version allocates memory, which is much slower than
anything else you do. If you actually run the two functions as written
earlier, the first version is twenty times faster than the second one. Twenty
times!
Wait—that’s still not the real issue! The real issue is that it doesn’t matter
how fast chooseRandomValue is, as you would quickly learn with a little bit
of profiling. You might call it hundreds of times every second, but the
profiler would tell you it represents a meaningless fraction of your overall
runtime. The Sucker Punch engine has functions that are called millions of
times every second; if you’re writing a game, you do too. When it comes to
performance, those functions matter, and chooseRandomValue doesn’t.

The First Lesson of Optimization
So that’s the first lesson of optimization—don’t optimize.
Make your code as simple as possible. Don’t worry about how fast it will
run. It’ll be fast enough. And if it’s not, it will be easy to make it fast. That
last bit—that it will be easy to make simple code fast—is the second lesson.

The Second Lesson of Optimization
Imagine you’ve got some simple, solid code that you took ordinary care
writing. Your section of the project is running a little slow, so you
instrument it and discover that this small bit of code is soaking up half of
your performance.
This discovery is great news! If you can fix the performance of that one bit
of code, you can double your overall performance.
This is pretty typical, by the way. The first time you look at the
performance of some bit of code that’s never been optimized, there’s
invariably good news. It’s obvious what you need to work on.
Bad news would be discovering that nothing is obviously slow, but that’s
rare for code that hasn’t survived a few rounds of optimization.
Here’s a rule of thumb—if you’ve never optimized some bit of code, you
can make it five to ten times faster without a lot of work. That may seem

optimistic, but it isn’t. In practice, there’s lots of low-hanging fruit in
unoptimized code.

Putting the Second Lesson to the Test
Let’s put that rule of thumb to the test. Imagine that I was wrong about
choo se RandomValue. It’s getting called so often, and with so many choices,
that it’s actually taking up half of your processor time.
Now, if you were starting with the second implementation, my rule of
thumb would be easy to prove. Just switch to a simpler, no-allocation model
like your first implementation and it runs 20 times faster. Rule of thumb
proven!
That’s too easy, though. Let’s assume you’re starting with the first
implementation, so you don’t have the easy solution of removing memory
allocation. That’s a bit unrealistic, actually—usually the first thing you
discover when you look at performance is that someone is allocating
memory inside a loop, and it’s easy to fix. But let’s assume you got unlucky
and it’s not something simple.
Here’s a five-step process for optimizing something. I’m going to focus on
performance (“processor time,” to be explicit), but the same steps work for
any resource. Just substitute network bandwidth, memory usage, power
consumption, or whatever measurable thing you’re trying to optimize for in
the following steps.

Step 1: Measure and Attribute Processor Time
That is, measure how much processor time is being spent and attribute it to
functions, or objects, or whatever is convenient. In the preceding example, I
must have done this already because I know that chooseRandomValue is
consuming half of my processor time.

Step 2: Make Sure There’s Not a Bug
It’s pretty common to find out that what looks like a performance problem
is actually a bug. In this case, with chooseRandomValue actually soaking up
half of your cycles, I would strongly suspect a bug somewhere. I’d look
pretty hard at whether all of these calls to chooseRandomValue are
appropriate.

Maybe someone is getting a loop condition wrong and a counter is
wrapping all the way around. Instead of a handful of iterations, it’s looping
232 times, plus or minus. That’s a lot of calls to chooseRandomValue! (And
yes, I’ve fixed this exact bug.)

Step 3: Measure Your Data
Don’t even think about optimizing until you know what your data looks
like. How many calls are made to chooseRandomValue? How many options
are you choosing between? Are you repeatedly choosing from a small
number of weighted distributions, or is it less predictable? How many zero
weights are in the list? Do the lists of values you’re choosing from have
repeated values?
Most optimizations exploit some aspect of the data or how you use it. You
can’t make good decisions about optimization without thoroughly
understanding the shape of your data.

Step 4: Plan and Prototype
If your optimization worked perfectly—if it drove processor time all the
way to zero—then what would overall performance look like? In this case,
that would mean that chooseRandomValue ran in zero time. If it did, would
you hit your performance target?
If not, then your plan isn’t good enough. You’ll need to identify other bits
of code that can be optimized. Don’t start working on an optimization until
you know it’s part of a plan that can succeed.
Sometimes it’s hard to project what overall performance will look like with
a perfect optimization. Code interacts with other code in unpredictable
ways. Maybe chooseRandomValue is pulling weight values into the
processor’s data cache, and some other function is also using those values.
In the worst case, you drive chooseRandomValue to zero cycles and overall
performance doesn’t change. The core problem was loading the weight
values into the data cache—you’ve just shifted the blame to a new culprit.
Look for an opportunity to prototype your optimization. In this case, maybe
you can just have chooseRandomValue return the first value in the list of
choices every single time. That’s not correct, but it’s likely to give you a
good idea of what performance would be with a perfectly optimal solution.

Step 5: Optimize and Repeat
Once you’re through the first four steps, you can start thinking about
optimization. You’ve got ideas about how expensive various parts of the
code ought to be, based on how much logic is involved and how much
memory is accessed. Maybe some of this code or memory access could be
simplified or skipped. If there’s not some simple way to speed up the code,
look for things you can exploit in the data. For instance, if most of the
weights passed to chooseRandomValue are zero, you can exploit that. If
there are duplicate values, then that might be something you can work with.
Don’t just dive in, though. A one-step optimization plan of “look for some
bit of code that looks slow and make it faster” is not going to work. Your
instincts are wrong about where the problem is, they’re wrong about what
the data looks like, and they’re wrong about what the right fix will be.3

Once you’ve completed Step 5, measure your performance again. If you’ve
hit your target, great! Declare victory and stop optimizing. Otherwise, back
to Step 1 you go. Some of the steps may go more quickly the second time
through, but it’s worth pausing at each of them to think about what you’ve
learned so far.

Applying the Five-Step Optimization Process
OK, I’m ready to apply the process! I’m setting aside the word processor
and firing up the development environment. I’ll start with the first
implementation of chooseRandomValue, apply the five-step optimization
process, and see how much effort it takes to get a 10x speedup.
The first implementation of chooseRandomValue is a solid example of
taking ordinary care while writing code—it’s optimized for simplicity and
clarity, which is always the place to start. If my rule of thumb is correct,
then I should be able to get a 5x to 10x speedup without too much work.
I admit to a bit of nervousness as I type this. This has the potential to be
really embarrassing.
I’ve already done Step 1—I know that I’m spending half of my cycles in
chooseRandomValue.
For Step 2, I put in a gallant effort but don’t find any bugs. All the callers
have legitimate reasons to call, and they’re not doing anything obviously
wrong.

In Step 3, I discover the problem—I’m making a lot of calls to
chooseRandomValue and in most cases passing long lists of weights and
values. The data looks pretty random, though the weights are small. Most of
the values are less than 5 and none is greater than 15. Interestingly, there are
lots of calls, but they’re all from a small, static number of distributions—
that is, the same lists of thousands of weights and values are getting passed
over and over.
For Step 4, I create a perfect-performance version of chooseRandomValue.
In this case, I substitute a version that returns a random value from the list
while ignoring the weights—hard to imagine anything simpler than that.
You could just return the first value in the list, but that would skip the
random-number generation call that seems inevitable, so returning an
unweighted random choice seems like a better prototype.
I’m testing it now…and the code runs roughly 50 times faster than my
baseline implementation. Looks like there’s room for the 5x to 10x speedup
I predicted. On to Step 5—making the code run faster!
Your first impulse when you need to make code run faster might be to
actually, you know, make the code run faster. Do the same stuff, just do it
faster: unroll a loop, use multimedia instructions to process multiple entries
at once, write some assembly language, move some bit of math outside a
loop.
That’s a bad impulse. Those sorts of optimizations are the last thing you
should try, not the first thing. In the two million or so lines of code in Ghost
of Tsushima, there are only a few dozen places where we’ve done those
sorts of microoptimizations. It’s not that we don’t spend a lot of effort
optimizing—everything we do has to complete in a sixtieth of a second,
after all.4 We sweat bullets to get the game to run that fast. But with rare
exceptions, doing the same thing faster isn’t how we improve performance.
The way to make code run faster is to do less, not to do the same things
faster. Figure out what the code is doing that it doesn’t need to be doing, or
what it’s doing multiple times that could be done once. Eliminate those bits
of code and things will run faster.
In this case, an obvious candidate is calculating the total weight for a
distribution. In the first implementation of chooseRandomValue I’m doing
that on every call…but when I measured the data in Step 3 I discovered that
I was generating random values from a limited number of distributions. I

could easily calculate the total weight once for each distribution, then reuse
it in choose Ran domValue:

struct Distribution
{
 Distribution(int count, int * weights, int * values);

 int chooseRandomValue() const;

 vector<int> m_weights;
 vector<int> m_values;
 int m_totalWeight;
};

Distribution::Distribution(int count, int * weights, int * values) :
 m_weights(),
 m_values(),
 m_totalWeight(0)
{
 int totalWeight = 0;

 for (int index = 0; index < count; ++index)
 {
 m_weights.push_back(weights[index]);
 m_values.push_back(values[index]);

 totalWeight += weights[index];
 }

 m_totalWeight = totalWeight;
}

int Distribution::chooseRandomValue() const
{
 int select = randomInRange(0, m_totalWeight - 1);

 for (int index = 0;; ++index)
 {
 select -= m_weights[index];
 if (select < 0)
 return m_values[index];
 }

 assert(false);
 return 0;
}

Allocating memory is expensive—that’s why the ill-fated first attempt to
optimize chooseRandomValue failed. It allocated memory on every call,
which completely dominated the overall cost of the function. Here, though,
I’m only doing the allocation once per distribution, not once per call. If I
was creating new distributions all the time then these allocations would be a
disaster, but I know from Step 3 (where I measured the data) that I’ve got a

relatively short list of distributions. Allocating a chunk of memory for each
distribution in that short list is fine.
I run the code again…and it’s about 1.7 times faster than the baseline.
Encouraging, but not a complete victory. If you think about the math here,
though, you’ll realize that at best I might have hoped for a 3x speedup. I
walked through the list of weights 1.5 times on average before—all the way
through once to calculate the total weight, then on average halfway through
to look up the random value. Now I’m only doing the lookup.
The difference is the memory access. Before, the full pass through the
weights pulled them all into some level of the data cache, so the second
lookup pass had quick access to them. Now it takes more time for the
second pass to retrieve the values, so I get a 1.7x speedup instead of a 3x
speedup.
There’s an obvious next step—now that memory allocation is plausible, a
binary search makes more sense. That isn’t hard to get right, just a bit
fiddly:

struct Distribution
{
 Distribution(int count, int * weights, int * values);

 int chooseRandomValue() const;

 vector<int> m_weights;
 vector<int> m_values;
 vector<int> m_weightSums;
};

Distribution::Distribution(int count, int * weights, int * values) :
 m_weights(),
 m_values(),
 m_weightSums()
{
 int totalWeight = 0;

 for (int index = 0; index < count; ++index)
 {
 m_weights.push_back(weights[index]);
 m_values.push_back(values[index]);
 m_weightSums.push_back(totalWeight);

 totalWeight += weights[index];
 }

 m_weightSums.push_back(totalWeight);
}

int Distribution::chooseRandomValue() const
{

 int select = randomInRange(0, m_weightSums.back() - 1);

 int minIndex = 0;
 int maxIndex = m_weights.size();

 while (minIndex + 1 < maxIndex)
 {
 int midIndex = (minIndex + maxIndex) / 2;
 if (select >= m_weightSums[midIndex])
 minIndex = midIndex;
 else
 maxIndex = midIndex;
 }

 return m_values[minIndex];
}

Testing this attempt…and it’s about 12 times faster than the baseline. Rule
of thumb validated! Imagine an audible sigh of relief from the author here
as I return, vindicated, to the word processor.
Most of the time a 12x speedup is enough. Once you’ve picked the low-
hanging fruit, move on to other things. Resist the temptation to keep
optimizing. It’s easy to get caught up in the joy of tangible success and
chase more performance wins you don’t need. The function that was a
performance problem is no longer a performance problem. At this point it’s
no different than any other function in the project. It doesn’t need more
optimization.
Look, I’m dealing with that temptation right now. I’ve got more ideas about
how chooseRandomValue could be faster. I’m curious about which ones will
actually work, and I’m fighting the urge to satisfy that curiosity. But the
right thing to do once you hit your performance target is to add your
optimization ideas as comments to the code, then set it aside. Declare
victory and move on.
There’s an obvious question that I haven’t addressed. The first lesson of
optimization was “Don’t optimize,” right? Take ordinary care, write simple
and clear code, and trust that if you need to be able to make the code 5 to 10
times faster it will be easy to do so.
But what if 5 to 10 times faster isn’t enough? What if you make a huge
mistake in your initial design for a system, a mistake big enough that you
need things to be 100 times or 1,000 times faster?

There Is No Third Lesson of Optimization

You might argue that there’s a third lesson of optimization: “But don’t do
anything stupid.” If you’re going to build a high-frequency trading
application where microseconds matter, then don’t build it in Python. If
you’re defining some result structure you’re going to be passing around all
over your C++ code, don’t design it so every copy does a memory
allocation.
Honestly, I think the third lesson doesn’t exist. Programmers worry too
much about performance, full stop.
I get it. I have the same weakness. I’ll build complexity into code for the
sake of performance without a shred of evidence that performance will
matter. I catch myself doing this All. The. Time.
Maybe the third lesson is “Don’t worry about making mistakes, because
you won’t be able to make mistakes you can’t fix.”
If you do write your high-frequency trading app in Python and then run into
trouble, there’s still hope. Convert the stuff that needs to go fast to C++ and
leave the stuff that can go slow in Python. Converting from Python to C++
will get you (another rule of thumb) a 10x speedup, and per our experiment
in this Rule, we can expect an easy 5x to 10x speedup once it’s in C++.
Presto, a 50x to 100x speedup.
This is a pretty frequent upgrade path for us at Sucker Punch, actually—
writing the first version of something in our lovely but relatively slow
scripting language, then converting it to C++ if it becomes a bottleneck. We
get the benefits of trying ideas quickly, knowing that there’s an escape path
to better performance if that proves necessary.
Remember, if you actually make a mistake so bad that you’ll need to find a
100x performance win, then you’re going to know about it early. Mistakes
that bad don’t lurk in the weeds. They’re obvious from the start, so you’re
not going to get in too deep before you discover them. So, again, don’t
worry about them.
Trust in the two lessons of optimization. Write simple and clear code, and
trust that solutions will appear for any performance problems you run into.

1 The origin of the quote is disputed, though Knuth’s version is the first known published
form of it. It’s also attributed to Tony Hoare, who thought it sounded more like something
Edsger Djikstra would have said. All three parties appear to be unsure of the actual origin,

https://oreil.ly/feSrN

attributing it to common folk wisdom at the time. This is the perfect recipe for an unending
argument on the internet.
2 Note the archaic syntax here, which I threw in to take the old-timers down Memory Lane.
3 Unless your instinct is that someone is allocating memory somewhere. Then you’re
probably right.
4 Or thirtieth of a second, depending on the game. I’m not committing us to any specific
performance numbers for future games, mind you.

https://oreil.ly/feSrN

Interlude: In Which the Previous Chapter Is Criticized
I stand behind the message of the previous chapter—the first lesson of
optimization is, in fact, “Don’t optimize.” However! This strongly
expressed point of view, alone among the many strongly expressed points in
this book, prompted immediate dissent from a large subset of my teammates
at Sucker Punch.
It’s only fair to give their well-reasoned objections a hearing! I now present
the opposing points of view in the form of an imagined Socratic dialogue
between me and the many dissenters, whom I’ve merged into a single
character for dramatic purposes. They have all been given a chance to
review this chapter to make sure their views are fairly represented.
The Dissenter: I formally lodge my disagreement with the premise of this
chapter.1

Chris: I thought this chapter was just common sense. Didn’t you see the
Knuth quote? “We should forget about small efficiencies, say about 97% of
the time: premature optimization is the root of all evil!”
The Dissenter: That quote has been used to justify all sorts of code with
atrocious performance, and you’re just encouraging more of it.
Chris: Wow. There’s an emotional undercurrent to that feedback. Perhaps
that’s because you’ve had to spend too much time reworking other people’s
code to fix performance problems that shouldn’t have been there to begin
with? And also waiting for popular video games to boot?
The Dissenter: Yes. And yes.
Chris: And you work on performance-critical parts of our codebase, which
probably leads to a different set of priorities than someone working on, say,
the logic behind our user interface.
The Dissenter: That is true, though I’d note that we both know of a game2

whose user-interface architecture was so ill-conceived that its performance
problems were deemed unfixable. The entire user interface had to be
thrown out and rebuilt, and the game missed its ship date by six months as a
result.
Chris: Yes. Rule 20, “Do the Math”, applies to that case. In retrospect, they
should have realized how bad their architecture was and fixed it much
earlier in the project. Really big performance problems tend to show up
right away—but only if you measure them. I could imagine a fourth rule of

optimization: “Assume your code will be fast enough, but measure it
anyway.”
The Dissenter: I would be slightly mollified by this. The biggest reason our
end-of-project optimization challenges have been manageable is that we
have accurate profiling tools and use them as part of our day-to-day
engineering loop.
Chris: Yes. I think this is the Sucker Punch equivalent to the testing focus a
lot of coding teams have. We don’t have a lot of unit tests because we’re
willing to let a few bugs sneak in, but we’re less willing to be surprised by
performance problems.
The Dissenter: Still, I think your argument for Rule 5 misses an important
point. It would be easy to read it as “Don’t worry about optimization,” but
what you’re really saying is, “Simple code is easy to optimize, so write
simple code.”
Chris: Yes, that’s right. This fits into Rule 1 and the overall theme of the
book: make your code as simple as possible, but no simpler. One of the
benefits of this approach is that your code will be easy to optimize.
The Dissenter: But even given that, when you write simple code, you’re
thinking about how it could be faster if it had to be. This has definitely
come up when I’ve done a code review on your code. Or when you did a
code review on my code. Actually, probably both.
Chris: Absolutely, we all think about that. That’s not the first priority for
code—correctness and simplicity are—but scouting out your escape route
for optimization is good practice, even if it doesn’t prove necessary. And it
usually doesn’t.
The Dissenter: It’s true that optimization often isn’t free. If an optimization
makes the code more complicated, uses more memory, or adds some pre-
processing step, then the performance payoff better be worth it. Faster code
isn’t strictly better code. On that we agree.
Chris: Good!
The Dissenter: I’d also like to say that while simple code may be easy to
optimize, being slow doesn’t make code simple. In fact making code too
complicated is one of the easiest ways to make it slow.
Chris: Absolutely.

The Dissenter: I’ve got to say, this Rule doesn’t really capture what most of
the optimization work I do is like. Generally, I’m not optimizing some bit of
new code—I’m trying to squeeze more performance out of some code that’s
already been optimized. That’s a lot harder.
Chris: Yes. The chapter really is about writing new code.
The Dissenter: Right, but even then, when I’m adding new code to some
system I already know is performance critical, I have to think about
performance from the start. I can’t just write simple code and hope for the
best.
Chris: That’s probably true, or true at least enough of the time to make it a
reasonable first step. Would you agree that worrying about performance
from the start has probably led to at least some code that was more
optimized than it needed to be?
The Dissenter: I grudgingly accept this, but I think it’s uncommon. I still
save time overall by not writing code that immediately needs to be
optimized.
Chris: I’d buy that. Even Knuth’s rule stops at 97%, right? If you’re
confident based on past experience that you’re working in the 3%, then it’s
reasonable to consider performance in your first implementation. Just don’t
get carried away until you’ve measured your code and discovered a
problem. And if everyone on your team thinks they’re working on the 3%,
then you all need to do a better job profiling the code.
The Dissenter: The other thing about working on optimized code is that the
gains are smaller. I’ll buy the idea that you can usually make new code 5 or
10 times faster without a lot of work. But at some point you exhaust the
easy ideas, and then performance gains are a lot harder to find.
Chris: Yes, and at that point the rules change. You’re more likely to halve
your execution time with five small changes than with one big change. But
even then, you’ve got to be alert to the idea that there could be a bigger
algorithmic fix. For example, we spent weeks of effort optimizing the main
draw loop in the first Sly Cooper game. We were eking out tiny fractions of
performance at a time—only to discover that switching to a spatial
partitioning system quintupled its performance.
The Dissenter: That was before my time. Cool story, though.
Chris: How about the five-step optimization process?

The Dissenter: Pretty solid. I was OK with that part of the chapter.
Chris: I can’t believe none of you commented on the brilliant insight of
“Step 2: Make Sure There’s Not a Bug”. I was proud of that step.
The Dissenter: I indicated my appreciation of Step 2 by not criticizing it.
Don’t expect a lot of praise, Chris. None of us want to deal with an even
more self-confident version of you.
Chris: Fair enough.

1 This is a direct quote.
2 Which we will not name.

Rule 6. Code Reviews Are Good for
Three Reasons

One of the biggest changes in the thirty-something years I’ve been
programming full time is the gradual acceptance of code reviews of various
forms.
I’d never even heard of code reviews until the early ’90s. I’m not saying
they didn’t happen, because of course they did, but they weren’t widespread
outside of failure-is-not-an-option situations, like medical-device firmware
or control code in rockets. You know, the sort of thing where bugs kill
people.1

For most programmers 30 years ago, the thought of someone else looking
through your code felt…invasive. Sure, if you’re collaborating with people,
you have to at least look at the interface to your teammate’s code to figure
out how to interface with it, and you’ll probably end up single-stepping
through someone else’s code—but actually walking line-by-line through
code and passing judgment on it felt deeply weird. Like reading someone’s
diary, or (in modern terms) stumbling onto someone’s browsing history.
Anyhow, in the early ’90s I transferred into a team at Microsoft that had a
code review policy. Lucky for me, my project was so inconsequential in
that team’s grand scheme of things that my project team and I were
completely ignored. Among other things, we were left to decide what our
code review process was. I’m not even sure what the actual official code
review process for the big team was; we just did what we thought made
sense and nobody ever checked up on us. I certainly wasn’t going to ask for
guidance, in fear of having some horrible process imposed on us. Much
better to ask for forgiveness than permission.
To my shock, I found code reviews immediately and undeniably useful. I’ve
been doing them with my teams ever since—but not for the reasons I
expected.
The most obvious reason to do code reviews is to detect bugs before they’re
checked into the project. If your code review process is at all rational, the
person doing the review is well-prepared to understand the code that’s being

checked in. Maybe they’ve been part of the implementation of that section
of the code, or they’re an expert in some other bit of code that the new code
relies on, or they’re a frequent user of the code they’re reviewing. In any
case, they might be able to spot problems like an assumption you’ve missed
or broken, a misuse of some bit of code you’re calling, or maybe a change
to the system’s behavior that will break some other bit of code the reviewer
is working on.
Does this happen? Do code reviews actually turn up bugs? Sure, a few—at
least in my experience, given the way we conduct code reviews on my
team.
That’s an important caveat. The value you’re going to get out of code
reviews is going to depend on how much time and effort you invest into
them and how you conduct them. Here’s a quick description of how most
Sucker Punch code reviews work these days:

It’s real time—two people sitting down at the same computer
(at least in pre-pandemic times).
It’s informal. When you have code ready for review, you
walk over to a plausible reviewer’s office and ask them for a
review. Our social contract is that when someone asks for a
review, you agree, barring really pressing circumstances.

The reviewer walks through the change in a diff utility while
the reviewee provides commentary on the changes. It’s a
dialogue, with the reviewer asking questions until they’re
satisfied they understand the changes being made,
suggesting changes, identifying things that need to be tested,
and discussing alternate approaches. Having the reviewee
drive the review is usually a mistake; it’s too easy for the
reviewer to just accept what the reviewee says instead of
thinking things through for themselves.

The reviewee is responsible for taking notes on all the
suggested changes and extra tests to run. The social contract
is that all suggestions are incorporated, at least by default.
Depending on the scope of the change, the code review can
take five minutes or five hours. It’s rare to have a code

review that doesn’t result in at least a change or two before
check-in. A big code review can result in pages and pages of
notes to incorporate.

Usually one code review is enough. After the appropriate
changes are made and extra tests run, the reviewee commits
the code. Sometimes, if it’s a big change with lots of review
notes, the reviewer might re-review the updated changes. If
the original code reviewer isn’t confident they understand
some part of the change, they might suggest that another
person on the team also review the code. But most often it’s
code review + incorporate changes + commit.

With this process, we do find bugs…but again, not in the way that you’d
expect. Here are the three basic ways we find bugs in code reviews, roughly
sorted by how often bugs are found, most common to least common:

Before you ask for a review, you walk through the diff
yourself to make sure you’ve tidied up anything
embarrassing before showing it to someone else. In the
process of self-reviewing, you find a bug: say, an error case
you’ve missed. You fix the problem before anyone sees it.
During the review, you’re talking the reviewer through a
particular section of the code…and being forced to explain
your approach helps you understand why it’s flawed. You
point out the bug to the reviewer, discussion ensues, and you
make a note and move on. Or, if the flaw you’ve discovered
is big enough, you just bail on the code review entirely,
restarting it once you’ve made the wholesale changes you
need.

During the review, the reviewer sees a problem you’ve
missed. Or the way you describe what you’ve done makes it
clear that you’re misunderstanding some bit of code you’re
calling. You discuss the possible issue, agree that it’s a
problem, and make a note.

It’s rare that the reviewer finds a bug just by staring at the code in question
and applying deep insight. The code review process itself tends to surface
them, either during preparation or as a result of talking through the change.
That’s why it’s useful for code reviews to be dialogues—the process of
explaining things and understanding that explanation illuminates any
mismatched assumptions between reviewer and reviewee. That’s good for
finding bugs, but it’s also good for knowing where a comment is needed or
a name needs to be changed.
It’s important to point out the inarguable limitations of our code review
process. Every single bug in our code managed to sneak through a code
review, and we have thousands of bugs! We don’t make exceptions to the
code review requirement—every single line of code that gets checked in has
been reviewed—so every bug was missed by multiple people before it got
checked in. Code reviews find bugs, but they certainly don’t find all of
them.
Code reviews are an inefficient way to find bugs. Yet we’re still doing
them. That’s because finding bugs is only one of the reasons we do code
reviews, and it’s not even the most important reason.

Code Reviews Are About Sharing Knowledge
Here’s a more important reason to do code reviews—properly conducted,
they’re an excellent way to propagate knowledge across your team.
That’s particularly important for the team at Sucker Punch, because we’re
flexible about assignments, with coders moving pretty freely between
different parts of our codebase. That works a lot better if each of the coders
has basic knowledge of how the different parts of the codebase work. Code
reviews are a good way of spreading this knowledge.
Imagine arbitrarily dividing the programmers on your team into “junior”
and “senior” groups, based roughly on familiarity with the codebase. Senior
coders know the codebase well, while junior coders are still learning its ins
and outs. Our code reviews involve two people, so there are four possible
combinations of seniority for the reviewer and reviewee. Only three of them
are useful, as shown in Table 6-1.

Table 6-1. Code review taxonomy
 Senior reviewer Junior reviewer
 Senior reviewee Useful Useful
 Junior reviewee Useful FORBIDDEN

If a senior coder reviews a junior coder’s work, they’re well-positioned to
see problems—not just bugs in the code being reviewed, but general
misunderstandings the junior coder has. Perhaps the junior coder hasn’t
followed the team’s formatting standards correctly, or they’ve generalized
their solution too early, or they’ve written a complicated solution to a
simple problem. None of these are bugs, per se, but violating the Rules of
Programming degrades the quality of the code, so the senior coder should
note this to be fixed in the code review.
If a junior coder reviews a senior coder’s work, they’re less likely to find
problems, but they’re more likely to ask questions in order to figure out
what’s going on. In the process of answering those questions, the reviewee
helps the reviewer understand the context for the code, leaving them with a
better understanding of how all the pieces of the codebase fit together. The
reviewer sees and can ask about examples of good code—correctly
formatted, appropriately engineered, and clearly structured and named.
Think of these two junior–senior interactions as part of the education
process for new coders on your team. To be effective, new people need to
know how all the pieces fit together, how code gets written on your team,
and why things are done the way they are. Code reviews are an excellent
way to transfer all of this informal knowledge to new members of the team.
Useful combination number three is a senior coder reviewing another senior
coder’s code. This is a good chance to find bugs and to check both coders’

assumptions about how the changes fit into the overall scope of things,
discuss future work in the area, identify extra tests that might be run, and
ensure that at least two people understand the lines of code being checked
in.

The Forbidden Code Review
The last combination, a junior coder reviewing another junior coder’s work,
is not useful. In fact, it can be really destructive. All of the benefits I just
discussed evaporate when both coders are junior. There’s no knowledge
transfer, there’s not enough context to find bugs, and there’s no using the
code review as a springboard to talk about future directions. At worst, the
two junior coders reflect half-formed opinions back and forth until they
seem like official team policy. When weird paradigms and conventions pop
up in Sucker Punch code (which happens, despite our best efforts), it’s often
a result of two junior coders ping-ponging reviews back and forth. So we
ban this sort of code review.

The True Value of the Code Review
We find bugs and we transfer knowledge. That’s probably enough to justify
the effort we put into code reviews—which usually amounts to maybe 5%
to 10% of the time spent writing the code in the first place. But there’s one
more important benefit of code reviews, probably the most important one of
all, and it’s entirely social:

Everyone writes better code if they know someone is going to look at
it.

They’ll follow formatting and naming conventions better. They won’t take
shortcuts or leave tasks for later. Their comments will be clearer. They’ll
solve problems the right way, not with hacks and workarounds. They’ll
remember to take out temporary code used to diagnose a problem.
All of this happens before the code review itself—it’s a result of the
pressure we put on ourselves as programmers to do work we’re proud of
and are happy to show to our peers. It’s a healthy form of peer pressure. We
write better code, and over time this results in a healthier codebase and a
more productive team.

Code Reviews Are Inherently Social
Summing up, well-conducted code reviews are good for three reasons:

You’ll find some bugs.

Everyone will understand the code better.

People will write code they’re happy to share.

Look, code reviews are like any process. If you’re going to spend time on
them, you want them to be productive. That means thinking through what
you’re getting out of them and why. Get rid of the parts of the process that
aren’t helping, and double down on the things that work. Either you get
more out of the time you’re spending, or you spend less time to get the
same value.
Unless you’re doing something like pair programming, writing and
debugging code is usually a solitary act. One lone warrior, alone at their
keyboard, triumphing over bugs and recalcitrant libraries.
Code reviews aren’t solitary. Most of their value comes from the social
interactions between the reviewer and reviewee. You realize you’ve got a
bug while explaining a line of code, you explain a section of code well
enough that the reviewer uses it correctly the next time they call it, you
clean up the hack you don’t want anyone to see before asking for a review,
or you learn a simpler way of doing something from the reviewee’s
explanation of the technique they’re using.
Knowing that the value in a code review springs from social interaction,
from two people talking through a change, you should make sure your code
review process encourages that interaction. If the review is quiet—if the
reviewer silently flips through a diff and occasionally grunts while the
reviewee silently watches—then something is wrong. Yes, it’s still a code
review, but you’re missing out on the real value that the review could
provide.
And if all of your code reviews turn into arguments, you’re doing them
wrong! A reviewee who isn’t open to the reviewer’s input won’t learn
anything; neither will a reviewer who doesn’t make the effort to understand
why the reviewee wrote the code the way they did. And, in any case, code
reviews are not the forum for arguing about the project direction, or about

the team’s conventions or philosophy. Work out those issues as a team; you
won’t resolve anything in a series of two-person spats.
A healthy code review strengthens your codebase while it strengthens the
bonds of your team. It’s a professional and open dialogue where both
participants leave having learned something.

1 Real people, not virtual ones. I’m a video game programmer: virtual people die from my
bugs all the time.

Rule 7. Eliminate Failure Cases

That title seems optimistic, doesn’t it? What does it even mean?
Some failure cases are unavoidable, right? If I try to open a file, that file
might not exist, or it might be locked by some other user. No interface-
design cleverness can avoid the possibility of failing to open the file. So
that can’t be it. This must be more about eliminating the failures that
actually are avoidable, not intrinsic to file operations—perhaps usage
mistakes, like writing to a file after you’ve closed the handle to that file, or
calling methods on an object before you’ve fully initialized it.
Maybe I could design systems that make it impossible to make usage
mistakes, but that doesn’t sound easy. And it isn’t. It’s pretty hard to design
a system that’s impossible to misuse. If you expose a feature to users,
they’ll find a bizarre way to use it that eventually causes everything to
explode, like building a functioning 8-bit processor entirely out of
Minecraft blocks.1

And if you expose a feature to other programmers on your team—they will
misuse it. The misuse might be intentional, a desperate attempt to get
something working—say, closing a file handle after calling the filesystem
shutdown routine because that’s the only way to avoid an unwanted
callback. More likely it will be entirely unintentional, a misinterpretation of
how your interface expects to be called.
The key question to ask yourself about your design is: “How hard am I
making it for users of this feature or interface to shoot themselves in the
foot?”
The proper answer, of course, is “Very hard,” but too often we create
features or interfaces that make inadvertent usage easy.
And if it’s easy to misuse a feature or interface, then mistakes are
inevitable. In some sense, mistakes are designed into that feature or
interface. What we’d like to do is to design mistakes out, rather than
designing them in. But first let’s look at some examples of functions that
have failures designed in.

A Function That Makes It Easy to Shoot Myself in the Foot

Every C programmer knows at least one example of a function that’s easy
to get wrong—printf. There’s a fundamental problem with how printf is
designed—it expects the format string it’s given to match the argument
types passed, with unspecified mayhem occurring if the two don’t agree.
This code works because the types agree:

void showAuthorRoyalties(const char * authorName, double amount)
{
 printf("%s is due $%.2f this quarter.\n", authorName, amount);
}

But if we tweak the format string, things fall over:

void showAuthorRoyalties(const char * authorName, double amount)
{
 printf("remit $%.2f to %s this quarter.\n", authorName, amount);
}

Roughly speaking, printf tries to interpret authorName (which is a string)
as a float (uh oh). That’s going to have unpredictable results. Not a crash,
probably—since all 264-bit combinations can be interpreted as doubles,
something will get formatted, even if it’s “NaN.” Next, though, printf
interprets amount (which is a double) as a string (uh oh) and this is very
likely to crash.
Actually, this isn’t what happens when I compile and run the preceding
code. Mismatching arguments like this is such an easy mistake to make that
modern C compilers have hacked in an extra set of checks for printf.
When I try to compile the broken example, I get compile errors (!) for both
arguments. If the format string to printf is a constant, the compiler can
(and does) check for type agreement.
This hack sort of proves my point—the design of printf is so bad that the
compiler has to include special checks to hide the problem. Those special
checks won’t happen for any of the code you’re writing, obviously. If you
roll your own formatting function using a printf-style format string, the
compiler is not going to check for type agreement.2

Shooting Myself in the Foot via a Ricochet
To actually get the crash, I sidestep the compiler’s type-agreement hack:

void showAuthorRoyalties(const char * authorName, double amount)
{
 printf(
 getLocalizedMessage(MessageID::RoyaltyFormat),
 authorName,
 amount);
}

Instead of specifying a format string directly, I’m pulling it from a list. Our
games get translated into lots of languages, so any user-visible string is
going to come from a database of localized strings. The compiler has no
way of knowing what the string is, so it can’t check type agreement like it
does for a literal string.
The net result is a disaster—a bad idea wrapped inside a worse one. I start
with the type shakiness of printf, then make it worse by entirely separating
the format string from its use while keeping the hidden dependence on
parameter order. Inevitably, some poor translator is going to swap the order
of the two parameters in the course of translating that line due to expected
word ordering in their language,3 and our code will crash.
Perhaps we can forgive printf its inadequacies, given that its design dates
back to the beginning of time.4 But requiring separate arguments to match
in some way is widespread, despite being a bad idea. You might write a
routine that expects two array-valued arguments to have the same size:

void showAuthorRoyalties(
 const vector<string> & titles,
 const vector<double> & royalties)
{
 assert(titles.size() == royalties.size());

 for (int index = 0; index < titles.size(); ++index)
 {
 printf("%s,%f\n", titles[index].c_str(), royalties[index]);
 }
}

You could also include arguments whose interpretation depends on another
argument: say, flagging identity matrices in a coordinate-space conversion
function in an (arguably misguided) attempt to avoid the cost of a matrix
inversion and a couple of matrix multiplications:

Point convertCoordinateSystem(
 const Point & point,
 bool isFromIdentity,
 const Matrix & fromMatrix,

 bool isToIdentity,
 const Matrix & toMatrix)
{
 assert(!isFromIdentity || fromMatrix.isZero());
 assert(!isToIdentity || toMatrix.isZero());

 Point convertedPoint = point;
 if (!isFromIdentity)
 convertedPoint *= fromMatrix;
 if (!isToIdentity)
 convertedPoint *= Invert(toMatrix);

 return convertedPoint;
}

At best, you’ll detect these kinds of problems when you run the code—
they’ll sail right through compilation.
When you detect a problem, the alternatives aren’t great. If you return an
error for mismatched arguments, then you’re stuck writing error-handling
code in the caller. Writing error-handling code to account for a mistake you
made in calling the function is a sign that something is seriously wrong.
Alternatively, you could add an assert that the arguments match. Depending
on how you use asserts, the effect of this could range from an immediate
hard crash to a message you can ignore at your own risk. No point along
that spectrum is pleasant.

Enlisting the Compiler’s Aid to Avoid Shooting My Foot
It would be better to design the interface to make incorrect usage
impossible—or at least to make the compiler reject it. You could combine
parallel arrays to eliminate the possibility of mismatched lengths:

void showAuthorRoyalties(const vector<TitleInfo> & titleInfos)
{
 for (const TitleInfo & titleInfo : titleInfos)
 {
 printf("%s,%f\n", titleInfo.m_title.c_str(), titleInfo.m_royalty);
 }
}

You could also collapse related arguments into a single argument:

Point convertCoordinateSystem(
 const Point & point,
 const Matrix & fromMatrix,
 const Matrix & toMatrix)
{
 Point convertedPoint = point;
 if (!fromMatrix.isIdentity())

 convertedPoint *= fromMatrix;
 if (!toMatrix.isIdentity())
 convertedPoint *= Invert(toMatrix);

 return convertedPoint;
}

The localized printf nightmare is trickier to fix. If you want to both make
things type safe and also give correct results when arguments are reordered
during translation, the simple solution of using strings for all the arguments
to the formatting function isn’t quite enough.
If you create helper functions that format a single argument, returning a
field name and the formatted argument, you can solve both problems:

void showAuthorRoyalties(const char * authorName, double amount)
{
 // Eg "{AuthorName} is due {Amount} this quarter."

 printMessage(
 MessageID::RoyaltyFormat,
 formatStringField("AuthorName", authorName),
 formatCurrencyField("Amount", "#.##", amount));
}

Now you can at least detect any lack of agreement between the localized
format string and the arguments you’re passing, though unfortunately not at
compile time. The format string can specify the arguments in whatever
order makes sense for the target language and printMessage will sort
things out. If the format string names a field you’re not providing or doesn’t
name a field you do provide, that can be logged at runtime. Better yet, the
mismatch could be flagged in whatever tool the localization team uses to do
localization, so that they can fix it before the code even runs.

Timing Is Everything
A key point in creating failure-proof interfaces is to detect usage mistakes
as early as possible.
In the worst case, the mistaken usage isn’t detected at all—the feature just
generates incorrect results. It relies on the caller to realize their mistake and
sort things out. They won’t; they’ll just wonder how their foot got full of
holes.
If a mistake is detected when the code runs—well, that’s not great, though
it’s better than continuing blithely on without noting the problem. Ideally

the mistake is reported in some unmissable way.
It would be better if the compiler detected the mistake instead. It’s hard to
miss code that fails to compile.
Or best of all, the design of the system might make it impossible to express
the mistaken idea at all!

A More Complicated Example
Another place where failure is often designed in rather than out is the
construction of complex objects.
Here’s an example. At Sucker Punch, we write a lot of code that draws
visualizations in our game world to help with debugging. For example, we
have code that shows a wireframe outline of the places characters are
allowed to walk. We also have code to draw little markers over the heads of
NPCs that are currently aware of the player, meaning that the AI system is
modeling that the NPC knows exactly where the player is. We have code
that draws little numeric scores above the various places an enemy
swordsman is thinking about moving to in a fight.
Debug drawing like this is more complicated than it sounds. Our debug-
rendering tech supports 30 separate drawing options, all expressed on a
debug-drawing context object. The 30 options determine how the program
will turn simple drawing calls—like a call to draw a triangle when given
three points—into actual drawing primitives. What coordinate space are
those points in? Should the triangle be drawn as a wireframe or opaque?
Should the triangle be visible if it’s behind a wall? And so on, for another
27 options.
We could pass 30 options to a constructor, but that’s pretty unwieldy. If we
did that for an adapted and simplified version of our actual debug-drawing
parameter structure, we might end up with something like this:

struct Params
{
 Params(
 const Matrix & matrix,
 const Sphere & sphereBounds,
 ViewKind viewKind,
 DrawStyle drawStyle,
 TimeStyle timeStyle,
 const Time & timeExpires,
 string tagName,
 const OffsetPolys & offsetPolys,

 const LineWidth & lineWidth,
 const CustomView & customView,
 const BufferStrategy & bufferStrategy,
 const XRay & xRay,
 const HitTestContext * hitTestContext,
 bool exclude,
 bool pulse,
 bool faceCamera);
};

All of these options are used by some bit of Sucker Punch code, but most
callers specify only one or two options. The default choices are usually
correct. We do most of our debug drawing in the same 3D coordinate space
we use for the game itself, for instance. If we wanted to draw a simple
sphere above a character’s head, as in our example showing which NPCs
are aware of the player, we might write something like this:

void markCharacterPosition(const Character * character)
{
 Params params(
 Matrix(Identity),
 Sphere(),
 ViewKind::World,
 DrawStyle::Wireframe,
 TimeStyle::Update,
 Time(),
 string(),
 OffsetPolys(),
 LineWidth(),
 CustomView(),
 BufferStrategy(),
 XRay(),
 nullptr,
 false,
 false,
 false);

 params.drawSphere(
 character->getPosition() + Vector(0.0, 0.0, 2.0),
 0.015,
 Color(Red));
}

This is pretty bad. It’s an inconvenient design to use, and it has too many
inherent failure points. You’re never going to remember the order of 16
arguments, leaving you at the mercy of your IDE to remind you of what
goes where. For arguments with unique types, the compiler will likely bail
you out if you guess wrong, but good luck keeping track of which of the
four random Boolean arguments at the end of the list does what. If you’re
just reading through markCharacterPosition, they’re a total mystery.

And keep your fingers crossed that you’ll never add or remove an argument
from the constructor. A quick review of the Sucker Punch codebase shows
850 or so places where we build debug-rendering parameters. I wouldn’t
want to be the person who removed a parameter from each of them!
Here’s the thing about functions with lots of parameters—they’re unwieldy
to use, and the unwieldiness grows over time. That’s because you’re
fighting a positive feedback loop. The function that’s most likely to grow
another parameter is the one that already has a bunch of parameters. If a
function takes eight arguments, you’ve got pretty strong evidence that at
some point you’ll decide to add a ninth. The worst offenders tend to get
even worse. It’s best to plan an escape route when you feel like a function is
starting to have too many parameters.
The most common workaround for parameter-heavy constructors is to break
the construction process up into multiple calls. The actual constructor fills
in default values, then you call construction-phase-only methods to fill in
any nondefault values. When you’re done, you cap things off with some
sort of commit call.
Let’s imagine we want the character marker to be visible through walls, but
dimmed down by 50%. A phased constructor approach might look like this:

void markCharacterPosition(const Character * character)
{
 Params params;
 params.setXRay(0.5);
 params.commit();

 params.drawSphere(
 character->getPosition() + Vector(0.0, 0.0, 2.0),
 0.015,
 Color(Red));
}

This is much better than the 16-argument version, but we’ve designed in a
new failure point—we’ve introduced ordering requirements. One set of
methods, like setXRay, is called while we’re constructing the params. The
other set of methods, like drawSphere, is called after we’ve fully
constructed the params. We haven’t defined what happens if we call them
out of this expected order—calling setXRay after commit, or calling
drawSphere before commit—so the editor and compiler can’t help us. The
mistake won’t be detected until runtime, in this case probably as an assert
inside setXRay or drawSphere.

Catching mistakes that late isn’t optimal. Better than not catching them at
all, but we’d like to catch them earlier, or design away the possibility.
You might use conventions to help people avoid ordering mistakes. Your
team could define a set of conventions about how to build multiphase
constructors—say, that there are never any arguments to the constructor,
there’s always a commit method, and asserts are used to flag usage
mistakes. If you see a commit method, then you recognize the pattern and
know how to build and use the object. That’s better than no conventions, of
course, but it’s not the best we can do.
In the ideal case, we wouldn’t rely on conventions; we’d get the compiler to
enforce correct usage. It’s better to make an incorrect usage impossible, not
just avoidable.

Making Ordering Mistakes Impossible
One way to do this is to divide the two phases into separate objects—build
the parameters, then draw using those parameters. To spice things up, let’s
add a couple of extra parameters. We’ll draw a solid version of the sphere
instead of the default wireframe, and pulse the sphere’s size a bit to make it
more visible. Separating the phases into objects, that looks like this:

void markCharacterPosition(const Character * character)
{
 Params params;
 params.setXRay(0.5);
 params.setDrawStyle(DrawStyle::Solid);
 params.setPulse(true);

 Draw draw(params);
 draw.drawSphere(
 character->getPosition() + Vector(0.0, 0.0, 2.0),
 0.015,
 Color(Red));
}

With this structure, ordering is implied. You need a Params object to create
a Draw object, so it’s natural to create it first.
There’s an idiomatic C++ trick you can use to make things a little bit more
concise. If you return a reference to the object itself from the set functions,
you can chain the set calls together. You might want to avert your eyes if
you’re squeamish:

void markCharacterPosition(const Character * character)
{
 const Params params = Params()
 .setXRay(0.5)
 .setDrawStyle(DrawStyle::Solid)
 .setPulse(true);

 Draw draw(params);
 draw.drawSphere(
 character->getPosition() + Vector(0.0, 0.0, 2.0),
 0.015,
 Color(Red));
}

Unless you’re used to this idiom, that doesn’t look like C++ code, which is
not a plus. If you’re a believer in the Principle of Least Astonishment—in
this context, the belief that the least surprising expression of an algorithm is
its best expression—then it isn’t great to drop in some code that happens to
be legal but looks really weird.
There is one big plus here, though. Since all the monkeying about with
Params happens in our method chaining, we can make the Params object
constant with C++’s const keyword. That means the compiler will stop us
from mucking with it once it’s built. This fixes a lingering bit of ambiguity
—it isn’t clear what happens if you alter a Params object after constructing
a Draw object from it. Making the Params object const makes this moot.
Still, though, defining two objects is a pain. Separating the classes makes it
clearer to some Sucker Puncher writing debug visualization code that they
shouldn’t call the set functions after the draw functions…but it would be
even better if it were truly impossible, not just clear. Given how I’ve created
the preceding code, we can do exactly that:

void markCharacterPosition(const Character * character)
{
 Draw draw = Params()
 .setXRay(0.5)
 .setDrawStyle(DrawStyle::Solid)
 .setPulse(true);

 draw.drawSphere(
 character->getPosition() + Vector(0.0, 0.0, 2.0),
 0.015,
 Color(Red));
}

Now the weird “method chain” idiom makes more sense! We don’t expose
the Params object to the rest of the code at all. It only exists long enough to

construct the Draw object, so there’s no copy of it for us to accidentally
reference. This is actually pretty tight code—written like this, we’ve
designed out failure.
Like all weird little idioms, this one is best when it’s widely used on your
project. Then it doesn’t seem weird. Everyone on your team recognizes the
idiom when it’s used, and you don’t violate the Principle of Least
Astonishment. If your team isn’t already using this idiom, then don’t
introduce it to solve one object-construction problem. If I saw this in a code
review, I’d reject it on principle, because we don’t use the method chaining
idiom at Sucker Punch, but I can easily imagine another instance of Sucker
Punch somewhere in the multiverse where method chaining is the standard
way to solve problems like this.

Using Templates Instead of Method Chaining
The weird little idiom we do accept at Sucker Punch is using C++ templates
to do this sort of type-safe optional argument stuff. This isn’t the only
problem we have that involves a big bucket of parameters, only a few of
which are used by most callers, so we’ve established conventions about
how to handle those problems.
The code we’d actually write for a Params object might look like this:

void markCharacterPosition(const Character * character)
{
 Draw draw(XRay(0.5), DrawStyle::Solid, Pulse());

 draw.drawSphere(
 character->getPosition() + Vector(0.0, 0.0, 2.0),
 0.015,
 Color(Red));
}

This isn’t better or worse than the method-chaining model, just different.
For us, it’s better because it’s the idiom we use; to a team that uses method
chaining, it would seem opaque and weird. In the end, though, any idiom
that eliminates usage errors—that stops a programmer from shooting
themself in the foot—is a big step up from an idiom that relies on users to
get all the details right on their own.

Coordinated Control of State

This Rule has looked at two common examples so far—argument matching
and complicated constructors—and how we can design interfaces to them to
eliminate usage errors. Here’s a third example that pops up repeatedly in
Sucker Punch games: coordinating all the code that wants to manage the
state of our game’s characters.
Let’s say that we’re deciding whether a character is going to react to some
damaging event, like getting hit with an arrow. Generally, if a character is
hit by an arrow, they need to react. But not always! If the game has
launched into a scripted cut scene with the player walking up to talk to an
NPC, then we’d rather just ignore a stray arrow flying in and hitting the
player. It might look dumb, but it’s better than the alternative—inflicting
damage on the player when they’re not in control is a cardinal sin of game
design. Cut scenes are also pretty fragile, so having the player take damage
could throw off everything else that’s supposed to happen in the cut scene.
Better just to have the arrow bounce off.
The tricky bit is that there are lots of reasons why a character might be
temporarily invulnerable. It’s not just cut scenes! The character might have
just chugged an invulnerability potion. We might make them briefly
invulnerable after getting hit by an arrow to avoid animation issues. Maybe
it’s convenient to make the player invulnerable while we’re testing new
attacks, so we add a debug menu option for player invulnerability. We end
up with dozens of places where characters are temporarily marked
invulnerable.
The most obvious approach is to focus on the character’s invulnerability. At
any point, the character is either invulnerable or not—why not just expose
that? That seems simple:

struct Character
{
 void setInvulnerable(bool invulnerable);
 bool isInvulnerable() const;
};

Then we might make the player invulnerable for cut scenes like this:

void playCelebrationCutScene()
{
 Character * player = getPlayer();
 player->setInvulnerable(true);
 playCutScene("where's chewie's medal.cut");

 player->setInvulnerable(false);
}

This works, but only as long as only one bit of code at a time is monkeying
with the player’s invulnerability. We probably have similar code for the
invulnerability potion:5

void chugInvulnerabilityPotion()
{
 Character * player = getPlayer();
 player->setInvulnerable(true);
 sleepUntil(now() + 5.0);
 player->setInvulnerable(false);
}

It’s easy for these two bits of code to get tangled up, because the design
makes usage errors easy. If the player pops the cork on an invulnerability
potion during a cut scene, then we’ve got trouble. The cut scene starts and
makes the player invulnerable via setInvulnerable, then the potion is
chugged and calls setInvulnerable again. This doesn’t have any effect
since the player is already invulnerable. Five seconds later, the potion wears
off and calls setInvulnera ble (false)…while the cut scene is still rolling.
Not good.
If we were going to generalize based on one example, we might try to fix
the problem like this:

void playCelebrationCutScene()
{
 Character * player = getPlayer();
 bool wasInvulnerable = player->isInvulnerable();
 player->setInvulnerable(true);
 playCutScene("where's chewie's medal.cut");
 player->setInvulnerable(wasInvulnerable);
}

void chugInvulnerabilityPotion()
{
 Character * player = getPlayer();
 bool wasInvulnerable = player->isInvulnerable();
 player->setInvulnerable(true);
 sleepUntil(now() + 5.0);
 player->setInvulnerable(wasInvulnerable);
}

This code tries to restore the original state of the flag to avoid
entanglements. This sort of works—Sucker Punch has shipped games with
solutions like this—but it falls apart once we don’t have strict nesting. That
could happen if the player chugs the invulnerability potion right before the

cut scene starts, for instance, leaving the potion to wear off after the cut
scene starts.
So how to eliminate these usage errors? Well, we could think about
separating the various bits of invulnerability code. If we maintained
separate invulnerability flags for each bit of interested code, then those bits
of code wouldn’t get entangled:

void playCelebrationCutScene()
{
 Character * player = getPlayer();
 player->setInvulnerable(InvulnerabilityReason::CutScene, true);
 playCutScene("it's anti-fur bias, that's what it is.cut");
 player->setInvulnerable(InvulnerabilityReason::CutScene, false);
}

void chugInvulnerabilityPotion()
{
 Character * player = getPlayer();
 player->setInvulnerable(InvulnerabilityReason::Potion, true);
 sleepUntil(now() + 5.0);
 player->setInvulnerable(InvulnerabilityReason::Potion, false);
}

With this approach, we check all of the invulnerability flags instead of a
single flag. The player is invulnerable if any of them is set. As long as
there’s only one bit of code setting each individual flag we don’t have to
worry about the separate bits of code tripping over each other.
This approach can work, but it takes discipline. If someone gets lazy and
reuses an InvulnerabilityReason in a different bit of code, then
everything can come crashing down. And adding a new value to the
InvulnerabilityReason enum every time we have a new bit of code that
wants to tweak invulnerability will quickly get annoying.
We might think about eliminating entanglement by tracking an
invulnerability count. Instead of a single flag, we count how many bits of
code want the character to be invulnerable. If any bit of code wants the
character invulnerable, then they’re invulnerable. This leads to a pretty
simple push-pop model:

void playCelebrationCutScene()
{
 Character * player = getPlayer();
 player->pushInvulnerability();
 playCutScene("I'm getting my own ship.cut");
 player->popInvulnerability();
}

void chugInvulnerabilityPotion()
{
 Character * player = getPlayer();
 player->pushInvulnerability();
 sleepUntil(now() + 5.0);
 player->popInvulnerability();
}

A push-pop model like this works. Once you’re used to the idiom, it’s easy
to understand. It’s easily extended when a new bit of code wants to monkey
with damage, and different bits of code can push and pop the invulnerability
count independently without breaking things.
We’ve still left easy usage mistakes, though. If your code forgets to call pop
In vulnerability, the character stays invulnerable forever. That’s an easy
mistake to make—maybe you add an early exit to your function, not
realizing that cleanup is required. Or maybe you try to fix this by popping
in your early exit case and end up accidentally popping twice, with even
more mysterious results.6

Better to eliminate the usage mistake entirely. The easiest way to do this is
to wrap the push-pop in a constructor-destructor pair. Then the compiler
becomes our ally:

void playCelebrationCutScene()
{
 Character * player = getPlayer();
 InvulnerableToken invulnerable(player);

 playCutScene("see you later, losers.cut");
}

void chugInvulnerabilityPotion()
{
 Character * player = getPlayer();
 InvulnerableToken invulnerable(player);

 sleepUntil(now() + 5.0);
}

This is pretty tight. We’ve made it hard to get things wrong. It’s still
possible to screw things up, of course. If you create an
InvulnerableHandle someplace where it’s not going to be destroyed
(embedded in a structure you’ve stored on the heap, say), things can still go
sideways. In practice, though, we’ve found that object lifetimes are
something our programmers typically get right, and leveraging it to provide
robust management of shared state works really well for us.

Detecting Mistakes Is Good, but Making Them Impossible to
Express Is Better
In these examples, we were able to eliminate most of the ways to screw up,
usually by enlisting the compiler to lend a hand. Anything the compiler
catches makes the programmer’s job easier. The techniques we used aren’t
complicated. We’ve applied them to lots of disparate problems in Sucker
Punch games. And if things are structured so that you can’t even express the
error, even better! But Douglas Adams has something to say about the
matter:7

A common mistake that people make when trying to design something
completely foolproof is to underestimate the ingenuity of complete
fools.

He’s right, of course. There’s no perfect answer, no way to prevent all
possible usage errors. We can stop the user from shooting themselves
directly in the foot, but it’s hard to stop all the possible ricochets. Our goal
isn’t a completely foolproof design—just a design that makes it really easy
to get things right and really hard to get things wrong.
Despite our inability to make our designs completely foolproof, every bit of
foolishness we can prevent makes our systems more robust. So look for
opportunities to eliminate failure cases from your design from the start.

1 No kidding.
2 OK, in very limited cases this isn’t true. If you’re using format strings that exactly match
printf format strings and are willing to dive deep into your compiler’s documentation, you
can probably find a way to leverage the compiler’s printf support for your case. I wouldn’t
recommend this. You’re throwing good money after bad.
3 In this case, Irish. Per an undisclosed translation app, “Tá $%.2f dlite do %s an ráithe
seo.”
4 Literally—the C language and printf were invented very shortly after Unix time value
zero. And printf is still used 50 years later, an unlikely fate for any code I’ve ever written.
5 I adapted these examples from equivalent code written in our scripting language, which
has built-in support for asynchronous programming through co-routines. The sleepUntil call
doesn’t block other code from running; neither does playCutScene in the last example. That
can lead to complications, as we shall see.
6 I’ve made both of these mistakes more than once, for the record.

https://oreil.ly/rjKQT

7 Douglas Adams, Mostly Harmless (Del Rey, 1993).

Rule 8. Code That Isn’t Running
Doesn’t Work

Any big codebase, especially one that’s been around a while, has dead ends
in it: lines of code, or functions, or subsystems, that aren’t getting exercised
any more. Presumably they were added for a reason—at one point, those
lines of code were getting called. Things change, though, and at some point
whatever code was calling no longer needs to. The calls stop coming. The
code has been orphaned.
Sometimes the orphaning is obvious, like a function that isn’t called from
anywhere else in the program. If your language and toolchain are robust
enough, you might even get a warning about this particular kind of dead
code.
More typically, the orphaned code isn’t that obvious. It might still be
mechanical, like a virtual method defined in a base class that is never called
for a particular derived class. Static analysis can’t pick up that sort of thing
up. Or there’s code written to handle some special edge case in a function, a
scenario that requires special conditional handling. At some point, things
change and that scenario can no longer occur. The edge case code is still
sitting there, but it’s never called.
The closer you look at any mature codebase, the more orphaned code you
find—like enumerated values that are defined but never used, or special-
case code targeted at an old version of a library you haven’t used for years.
This sort of evolution of code is both natural and inevitable. The codebase
is a river, winding its way back and forth through its floodplain,
occasionally shifting course. Sometimes when the course changes enough,
an old part of the river is cut off. It still looks like a river, but now it’s a
lake.
Let’s look at a simplified example of code evolution. Imagine you’ve got
some code that tracks all the characters in a game. Through the course of
the game’s development, your requirements for character tracking evolve,
and the code evolves with it. We’ll check in at four points in this evolution.

Step 1: A Simple Beginning
Things start off simple. Your game instantiates an object for each character
in the game, and that object exposes some simple querying methods, mostly
about whether that character considers another character a threat or an ally:

struct Person
{
 Person(Faction faction, const Point & position);
 ~Person();

 bool isEnemy(const Person * otherPerson) const;

 void findNearbyEnemies(
 float maxDistance,
 vector<Person *> * enemies);
 void findAllies(
 vector<Person *> * enemies);

 Faction m_faction;
 Point m_point;

 static vector<Person *> s_persons;
 static bool s_needsSort;
};

You maintain a list of all the characters in the game:

Person::Person(Faction faction, const Point & point) :
 m_faction(faction),
 m_point(point)
{
 s_persons.push_back(this);
 s_needsSort = true;
}

Person::~Person()
{
 eraseByValue(&s_persons, this);
}

A “faction” is assigned to each character, and characters from different
factions are considered enemies:

bool Person::isEnemy(const Person * otherPerson) const
{
 return m_faction != otherPerson->m_faction;
}

You frequently need to find a character’s nearby enemies, so there’s a
method for that:

void Person::findNearbyEnemies(
 float maxDistance,
 vector<Person *> * enemies)
{
 for (Person * otherPerson : Person::s_persons)
 {
 float distance = getDistance(m_point, otherPerson->m_point);
 if (distance >= maxDistance)
 continue;

 if (!isEnemy(otherPerson))
 continue;

 enemies->push_back(otherPerson);
 }
}

You also need to know who a character’s allies are, so there’s a method for
that, too. That method has a little bit of trickery—characters are sorted by
faction, which puts all of the character’s allies together. You can early exit
when you hit the end of the character’s allies:

bool compareFaction(Person * person, Person * otherPerson)
{
 return person->m_faction < otherPerson->m_faction;
}

void Person::findAllies(vector<Person *> * allies)
{
 if (s_needsSort)
 {
 s_needsSort = false;
 sort(s_persons.begin(), s_persons.end(), compareFaction);
 }

 int index = 0;

 for (; index < s_persons.size(); ++index)
 {
 if (!isEnemy(s_persons[index]))
 break;
 }

 for (; index < s_persons.size(); ++index)
 {
 Person * otherPerson = s_persons[index];
 if (isEnemy(otherPerson))
 break;

 if (otherPerson != this)
 allies->push_back(otherPerson);
 }
}

This all works—so you trundle along with a simple faction-based hostility
model. Games can get pretty far with something this simple, by the way—if
you added a function to decide which factions are hostile to which other
factions, you’d have the exact hostility model for Sucker Punch’s inFamous
series of games.
But while the hostility model seems to be sufficient, you soon outgrow the
two query functions we started with, findNearbyEnemies and findAllies.
Both are useful, but new problems arise that they don’t address. Maybe you
want to find all allies to whom the player has a clear line of sight. You could
do this by finding the player’s allies, then filtering out the ones the player
can’t see:

vector<Person *> allies;
player->findAllies(&allies);

vector<Person *> visibleAllies;
for (Person * person : allies)
{
 if (isClearLineOfSight(player, person))
 visibleAllies.push_back(person);
}

You also might create more methods in Person to handle cases like this—
easy enough to add a findVisibleAllies method, right? Then you
wouldn’t need the intermediate list allies; you could skip straight to
visibleAllies. But that approach gets unwieldy as the number of find
functions mounts. If you add a dozen increasingly specialized find functions
to Person, most of which are called from exactly one place, then you’re not
doing yourself any favors.

Step 2: Generalizing a Common Pattern
You’ve accumulated enough examples of this pattern (“find characters that
match a certain set of criteria”) to feel confident generalizing,1 so you add a
template function to the Person class:

template <class COND>
void Person::findPersons(
 COND condition,
 vector<Person *> * persons)
{
 for (Person * person : s_persons)
 {
 if (condition(person))

 persons->push_back(person);
 }
}

That lets you sidestep the extra memory allocations while still having
reasonably legible code:2

struct IsVisibleAlly
{
 IsVisibleAlly(Person * person) :
 m_person(person)
 { ; }

 bool operator () (Person * otherPerson) const
 {
 return otherPerson != m_person &&
 isClearLineOfSight(m_person, otherPerson) &&
 !m_person->isEnemy(otherPerson);
 }

 Person * m_person;
};

player->findPersons(IsVisibleAlly(player), &allies);

Once the template is solid, you sweep through all the calls to
Person::findNearbyEnemies and Person::findAllies in your codebase.
When you find the multistage filtering idiom you used in the first line of
sight example, you convert it to use the new findPersons template.
In this process of doing this sweep, you discover that every single one of
the places you called findAllies was doing extra filtering, so you convert
them all to findPersons. That’s a good thing—the code is simpler, faster,
and easier to read. You’re happy with the results of this step. Your codebase
is easier to read without all the multistage filtering. You keep trundling
forward with a few findNearbyEnemies calls, a lot of findPersons calls,
and zero findAllies calls.
But eventually you decide that your simple hostility model isn’t good
enough. You decide to let players put on disguises. Your goal is to let the
player put on a security guard’s uniform, then walk through a secured area
without getting shot.

Step 3: Adding Disguises
Adding disguises also exposes the shortcomings of the simple hostility
model you’ve used so far. Dividing the world into allies and enemies isn’t
working so well. You really need to add something in between, to reflect the

ambivalence many of the characters feel for each other. A security guard
considers another security guard their ally, but a random tourist falls
somewhere in between being an ally or an enemy.
It’s easy to abstract this more nuanced hostility model into a virtual
interface:

enum class Hostility
{
 Friendly,
 Neutral,
 Hostile
};

struct Disguise
{
 virtual Hostility getHostility(const Person * otherPerson) const = 0;
};

You add a new method on Person to set the character’s current disguise,
using nullptr to indicate the lack of any disguise:

void Person::setDisguise(Disguise * disguise)
{
 m_disguise = disguise;
}

Obviously the isEnemy method is going to have to change a bit:

bool Person::isEnemy(const Person * otherPerson) const
{
 if (otherPerson == this)
 return false;

 if (m_disguise)
 {
 switch (m_disguise->getHostility(otherPerson))
 {
 case Hostility::Friendly:
 return false;

 case Hostility::Hostile:
 return true;

 case Hostility::Neutral:
 break;
 }
 }

 return m_faction != otherPerson->m_faction;
}

And…that’s it, actually. All the other code we’ve written seems to work
fine—no new bugs pop up, and disguises work as expected.
But there’s a problem lurking—the old Person::findAllies method no
longer works. And we have no idea that it’s stopped working, because
nobody is calling it. Adding disguises broke a subtle assumption in
findAllies. It assumes that if we sort the whole list of characters on
faction, then all of our allies will be adjacent to each other in the array. With
disguises, that’s often the case, but not always the case.
You can’t count on code reviews to catch this sort of problem. Code
reviews are good at finding problems in code that has changed, because
that’s what the review focuses on. They’re not good at finding problems in
code that hasn’t changed, because reviewers usually skip over all of that
stuff.
This particular bug is nasty because it’s not even guaranteed to show up
once we start creating and using disguises. As long as your allies form a
contiguous range in the list of characters, everything works fine. And even
when findAllies doesn’t work, it still returns a partial list of allies, so the
failure isn’t necessarily obvious.
It’s entirely possible that this bug will stay hidden forever! I still find
occasional bugs in code I wrote 25 years ago, and I’m pretty sure they
weren’t the last bugs in that code. There are always more bugs still hiding
in old code, waiting for things to change enough that these latent bugs
become active ones. But things might never change in a way that exposes
the latent bugs…so is this really a problem?

Step 4: The Chickens Return Home to Roost
In this case, yes, because many months later your example evolves again.
Someone is writing some debugging code that lists all of the player’s allies.
The Person::findAllies method is perfect for this—so they call it in the
obvious way:

vector<Person *> allies;
player->findAllies(&allies);

for (Person * ally : allies)
{
 cout << ally->getName() << "\n";
}

This code certainly looks fine! If disguises haven’t been set, then it works
perfectly. Even if disguises are being used, this code won’t break in an
obvious way. Even when it doesn’t work perfectly, it will still list allies…it
might not list all the player’s allies, but you’re less likely to notice a
missing ally than an enemy popping up in the ally list. It’s entirely possible
that this change sails through your code review process, too.
But in all those months where nobody was calling findAllies, some code
was written that assumed the results returned from findPersons would be
in a stable order. That was an easy assumption to make—the order was
perfectly stable, after all! So the new code found a couple of nearby allies
and had them follow in single file behind the player, and everything worked
great. Now, for some bizarre reason, on rare and unpredictable occasions
the followers all panic, scrambling to new places in the single file order.
Which is unshippable.
The problem, of course, is that innocuous-looking findAllies call. If new
characters have been added, then findAllies re-sorts the list of characters,
unpredictably scrambling the order of the results of any call to
findPersons. It’s going to be a serious hassle to review all of the places
findPersons is called to look for problems.

Assigning Blame
So where did things go wrong?
It would be easy to point at Step 3 as the problem, because we clearly made
a mistake in that step. We added disguises, but didn’t update findAllies to
match. That was an easy mistake to make, though—the code we wrote
worked perfectly, and nothing seemed to break. No amount of product
testing would find the problem in findAllies since it’s not called
anywhere. Even reviewing findAllies itself might not have helped—the
assumption is a subtle one.3

You might argue that there’s a mistake in Step 4, where we wrote new code
that resurrected the use of the unused findAllies. That’s the name of this
Rule, after all—“Code That Isn’t Running Doesn’t Work.” If I know that
findAllies hasn’t been getting called, then I should definitely assume it
doesn’t work.
That’s not the general assumption you’d make as a programmer, though, at
least not if you’re working in a healthy codebase. When you’re writing

some new bit of code or fixing some problem, you have to assume that the
rest of the codebase pretty much works. If you see a bit of functionality, you
expect it to operate as intended. It’s impossible to make progress otherwise.
The real mistake in this example was made in Step 2. When you orphaned
findAllies, you created a problem. When you stopped calling it, it stopped
working.
Now, that may sound ridiculous. At the point you orphaned it, the function
still worked exactly as intended. Why would you discard perfectly
functional code, throwing away the work it took to get it to that point? It
clearly didn’t stop working until Step 3, right?
Maybe. It’s Schrödinger’s cat, right? Once we got past Step 2, the code
wasn’t running anymore, so you don’t know whether it was working or not.
In this example, it seems simple to spot the mistake—our orphaned function
stopped working in Step 3, and we discovered this (at great cost) in Step 4.
But in the real world, there were dozens of steps between Steps 2 and 4. I
edited out all the ones that didn’t have an effect…but any one of them could
have broken the orphaned function and we wouldn’t have known.
It’s simpler to assume that when we orphan something, it immediately stops
working. Over time, this is almost certainly true. We just won’t know when
it happens.
If we make this assumption, then the mistake in Step 2 wasn’t orphaning
findAllies. It was not deleting findAllies when we orphaned it. When
we stopped calling it, it stopped working. In Step 2, we made Steps 3 and 4
inevitable—the unexercised code was eventually going to break, and
someone would eventually call it again. Much better to delete the orphaned
code immediately.

The Limits of Testing
That’s not the standard answer to this problem, of course. If you work on a
testing-centric team, you may have wondered why the unit tests didn’t catch
the problem. If we have a full and complete set of unit tests, then
findAllies isn’t really orphaned. It’s still getting called by our unit tests,
so we wouldn’t have to assume that it immediately stopped working.
Unit tests are imperfect, though. There are good reasons why some teams
don’t have unit tests for every bit of code. For one, testing is much more

effective for some sorts of code than others. It’s easier to test simple
stateless functions with obvious effects than more complicated, stateful
stuff. If you’re testing the C standard libraries, it’s a lot easier to test strcpy
than it is to test malloc.4 Once things are stateful it’s a lot harder for your
unit tests to exactly replicate the ways in which the codebase actually
exercises things. Use cases will slip past your unit tests.
The test cases for findAllies were written when we wrote findAllies,
long before we thought about adding disguises to the Person class. As a
result, those test cases don’t exercise disguises. The findAllies function
works fine as long as there are no disguises in place, so no problems are
reported. It’s possible that the person adding disguises also realizes that the
unit tests for findAllies need updating, and that they’ll add tests with the
particular kind of disguises that break findAllies, and that the order of
everything will exhibit the problem…but that’s a big ask.
There’s also a cost involved for the unit test. We have to keep the unit tests
for findAllies up-to-date. There’s going to be some cost to running those
tests. And for what? To make sure a function that no one is calling keeps
working?
Ah, you say…but didn’t I just claim that Step 2 (orphaning findAllies)
made Step 3 (breaking findAllies) and Step 4 (tripping over the broken
code) inevitable? When we orphaned the code in Step 2, we made it
inevitable that we would create a bug in the orphaned code, and that
someone would eventually call the orphaned code and trigger the bug.
Surely it would be good to write a solid unit test so that we’re more likely
to detect any bugs we create, and to make it more likely that the orphaned
function still works when someone eventually calls it?
Well—no. That’s the point of deleting the orphaned code in Step 2. Since
the code has been deleted, we don’t have to worry about bugs sprouting in
it, so there’s no Step 3. We also don’t have to worry about coders deciding
to call it—it doesn’t exist, so there’s nothing to call, so there’s no Step 4.
Instead, the coders will call findPersons, which works perfectly:

struct IsAlly
{
 IsAlly(Person * person) :
 m_person(person)
 { ; }

 bool operator () (Person * otherPerson) const
 {
 return otherPerson != m_person &&
 !m_person->isEnemy(otherPerson);
 }

 Person * m_person;
};

vector<Person *> allies;
player->findPersons(IsAlly(player), &allies);

Recognizing that a bit of code has been orphaned and can be safely
removed should spark joy.5 Seriously, this should be the happiest moment
in your week. You’re reducing the amount of code in your project, which
makes everything easier, without reducing functionality in any way. It’s
quick, it’s easy, and everyone is better off.

1 Where “enough” is “at least three,” per Rule 4, “Generalization Takes Three Examples”.
2 You could use a lambda here, too, of course, if your team has joined the Lambda
Generation.
3 If you just shouted “Where’s your unit test?!?” at the book, hang tight. I’ll get there.
4 The standard function strcpy copies a C-style string to a new home. It’s simple and
completely stateless. The standard function malloc is the general-purpose memory allocator
for C. It manages all dynamically allocated objects (plus or minus) in your code. It’s very
complicated and nothing but state.
5 If it helps, remind yourself that you can always retrieve the deleted code from your source
control system. You won’t, but maybe the fact that you could will lead you to do the right
thing.

Rule 9. Write Collapsible Code

I end up spending a lot of time looking through code, trying to figure out
what it’s doing. The subject might be code I’m trying to debug, some bit of
code I’m thinking about calling from some code I’m writing, or some bit of
code that’s calling code I’m responsible for. And frequently the thing the
code is trying to do isn’t what it’s actually doing, which is what makes the
exercise interesting.
At its best, reading code is just like reading any other language. You sail
along through the narrative, top to bottom, eagerly following the twists and
turns of the plot, and reach the end of the code with a full understanding of
what it does and why.
Actually, at its easiest, you sight-read code just like you’d sight-read a
single word:

int sum = 0;

Or maybe:

sum = sum + 1;

There’s no thinking or reasoning involved for these two examples—a
glance at the code is enough to understand it. You can do the same thing for
bigger chunks of code, if they neatly fit some common paradigm:

Color Flower::getColor() const
{
 return m_color;
}

You might even be able to sight-read a whole loop:

int sum = 0;
for (int value : values)
{
 sum += value;
}

That’s pushing things, though. As blocks of code get bigger, it becomes
harder to sight-read them—or if you’re a cynical old programmer like me, it

gets harder to trust your ability to sight-read them, having made the mistake
of glancing at code and thinking I understood it way too many times.
When code gets too big to sight-read, you start reasoning about it. Think
about what your brain is doing when you look at this code:

vector<bool> flags(100, false);
vector<int> results;

for (int value = 2; value < flags.size(); ++value)
{
 if (flags[value])
 continue;

 results.push_back(value);

 for (int multiple = value;
 multiple < flags.size();
 multiple += value)
 {
 flags[multiple] = true;
 }
}

You almost certainly didn’t sight-read this—that is, you didn’t glance at it
and immediately think “Sieve of Eratosthenes”. Instead, you read through
the code, top to bottom, sight-reading a line or so at a time, reasoning
through what each line did and how it fit with the lines that had come
before.
Maybe, in detail, your thought process went something like this:

flags is a vector filled with 100 falses.

Looks like we’re going to collect results in this array.

OK, just a loop over the flags array, kind of fun to start a loop
index at two, not sure what that’s about.

Hmm, skipping if the flags array is set for the current value, not
sure what that’s about either…

Pushing the values we don’t skip into the results array? That
must be the output.

Another loop, this time over the multiples of value.

https://oreil.ly/mgEXO

Ah, OK, we’re marking all the multiples, this is the Sieve of Era-
whatever…Erathosanes? That’s why we started with two instead
of zero or one. I understand this now: the results vector ends up
with a list of prime numbers.

The reasoning process involved some mental juggling—seeing something
you didn’t quite understand, then setting it aside for a moment until you
figured out how it fit together with later code, just like a juggler tosses a
ball into the air knowing that they’ll need to catch it a bit later. In this case,
you juggled two mysteries—why the loop started at two, and why the outer
loop skipped flagged values. The loop over multiples resolved the two
mysteries—you caught the juggled balls and understood the code.
Jugglers can only juggle so many balls—three, in my case. The number of
balls you can mentally juggle is a bit bigger, but it’s still limited. There’s a
surprisingly low limit to how many thoughts you can set aside at once. If
you try to track too many, you’ll start losing track of a random subset of the
things you’re trying to remember.
That’s because “mental juggling” or “cognitive load” is really just short-
term memory.1 To simplify things, there’s a difference between your long-
term memory, the things you remember permanently, and your short-term
memory. Think about memorizing a shopping list, which exercises your
short-term memory—if there are two or three items on your list, you just
remember them. If there are a dozen, you’ll need to write them down.
That’s because there’s a limit to how many things fit in short-term memory.
You may have heard the approximation that you can only fit seven (plus or
minus two) thoughts into your short-term memory. Try to fit any more, and
the new thoughts bump out the old ones. This is just as true when you’re
reading code as it is when you’re trying to remember all of the items on
your shopping list at the grocery store.
For most of us, that seven (plus or minus two) number is a fairly hard
limit.2 Juggling three separate coding thoughts is easy—it takes no special
effort to hold onto a few mysteries about some bit of code you’re reading.
Tracking a dozen thoughts, on the other hand, is pretty much impossible. If
there are a dozen things you don’t understand about some bit of code,

you’re in deep trouble. In programming terms, your cache overflows, and
you lose track of some of the things you’re trying to figure out.

This Is What Failure Feels Like
As programmers, we’ve all had the experience of trying and failing to
figure out how some bit of complicated code works. You look through the
code and see stuff you don’t understand. In an attempt to understand it, you
pop elsewhere in the code, searching for the function that gets called, or the
structures that are defined, or looking for some comment that at least gives
some context. And that search leads to another search. By the time you
actually figure something out about the code, you’ve lost track of where
you were to begin with. You’re forgetting things at approximately the same
rate you’re learning things. Frustrating!

The Role of Short-Term Memory
Good code doesn’t set its reader up for this sort of failure. Code gets written
once but read many times, after all; if you want to write good code, you
need to think about the person reading it later. Don’t ask that person to
juggle too many new ideas at once.
If some bit of code forces the reader to keep more than seven (plus or minus
two) balls in the air, then balls will get dropped. And everything the reader
is trying to fit into their short-term memory counts as a ball. It’s not just
unresolved mysteries, though those obviously count. It’s also the
accumulated facts and connections they’re managing, hoping to see
connections to the unresolved mysteries. If the total count of mysteries and
facts and connections goes above your reader’s limit, then things will get
dropped.
Those drops make the code hard to read. If the reader drops some fact that’s
necessary to solve a mystery, then that mystery won’t get solved. And
neither you nor the reader has control over which thought gets dropped—so
the one fact key to unraveling the mystery goes missing, and the mystery
isn’t resolved.
Let’s count the amount of running thoughts required for the code example:

vector<bool> flags(100, false);
vector<int> results;

for (int value = 2; value < flags.size(); ++value)
{
 if (flags[value])
 continue;

 results.push_back(value);

 for (int multiple = value;
 multiple < flags.size();
 multiple += value)
 {
 flags[multiple] = true;
 }
}

flags is a vector of 100 bools, all false to begin with (+1). Count
= 1.

The result looks like the output of the loop (+1). Count = 2.

It’s a loop with index value starting at two (+1). Count = 3.

We’re skipping values for some reason (+1). Count = 4.

Ah, OK, we’re storing the values into results. Theory confirmed
(+0). Count = 4.

Another loop, this time over multiples of value (+1). Count = 5.

Everything collapses down to “the results vector is full of
primes.” Count = 1.

The thought count stays safely below the limit, even if we’re counting
thoughts conservatively, so there’s no danger of overflowing the reader’s
ability to keep track of things. And the count doesn’t just go up—it can also
go down. When a variable goes out of scope, say, there’s no point in
worrying about it anymore. Or, more importantly, when a whole collection
of ideas collapses into a single thought.
In this example, that happened when you realized that the code generates a
list of prime numbers. You were juggling a bunch of details about the code,
then realized how they fit together. Once you knew how they fit together,
you stopped worrying about the details and just held onto the result. All the
details collapsed into a single thought.

Good code makes this process easy. It’s collapsible. It stays within the
limits of short-term memory. It presents its ideas in small, related chunks,
with each chunk carefully written to fit inside the reader’s short-term
memory, be put together, then collapse down to a single thought.
There are some easy techniques for doing exactly that. Let’s look at a
longer example:

void factorValue(
 int unfactoredValue,
 vector<int> * factors)
{
 // Clear flags marking multiples of primes

 vector<bool> isMultiple;
 for (int value = 0; value < 100; ++value)
 isMultiple.push_back(false);

 // Find primes by skipping multiples of primes

 vector<int> primes;

 for (int value = 2; value < isMultiple.size(); ++value)
 {
 if (isMultiple[value])
 continue;

 primes.push_back(value);

 for (int multiple = value;
 multiple < isMultiple.size();
 multiple += value)
 {
 isMultiple[multiple] = true;
 }
 }

 // Find prime factors of value

 int remainder = unfactoredValue;

 for (int prime : primes)
 {
 while (remainder % prime == 0)
 {
 factors->push_back(prime);
 remainder /= prime;
 }
 }
}

The middle section of this function is exactly the same logic as the last
example—but this version is much easier to understand.3 That’s because it’s
more collapsible.

Good names help immensely. The names primes and isMultiple give you
a head start on collapsing the loop—it’s no surprise that the array ends up
containing prime numbers. You might have spotted the Sieve of
Eratosthenes a lot earlier if the array in the first example had been named
primes—that’s the power of a good name.
The name primes is also a mighty convenient handle for the idea that the
array does in fact hold prime numbers. If the variable had been named xx
instead, you’d have needed to burn a precious short-term memory slot
remembering that xx is an array of primes. Remembering that primes
contains primes is trivial. At worst, it pushes your short-term memory
budget toward seven plus two, instead of seven minus two; at best, it’s so
self-explanatory that it’s free, placing zero burden on your short-term
memory.
The comments also collapse the details, since they tell you what each chunk
of code is trying to do. And the comments have a second function—they
mark the chunks for you. Between each pair of comments there’s a chunky
little code puzzle, small enough to fit inside your short-term memory, which
collapses down to a single thought. The comment at the start of each chunk
tells you what that chunk is going to collapse to. Reading the code in the
chunk just confirms the comment.
This is the power of abstraction. It’s how you manage to understand
complicated things. Sure, you can only remember seven (plus or minus two)
new things at a time, but you can aggregate those things into new concepts,
then build things out of those aggregated concepts. Instead of remembering
all the details, you remember the abstraction—and remembering a simple
abstraction only soaks up one of your short-term memory slots.

Where to Draw the Line
Marking the abstractions with function boundaries can also help readability.
In this case, that might mean splitting the three commented sections of
getFactors into separate functions:

void clearFlags(
 int count,
 vector<bool> * flags)
{
 flags->clear();
 for (int value = 0; value < count; ++value)
 flags->push_back(false);

}

void getPrimes(
 vector<bool> & isMultiple,
 vector<int> * primes)
{
 for (int value = 2; value < isMultiple.size(); ++value)
 {
 if (isMultiple[value])
 continue;

 primes->push_back(value);

 for (int multiple = value;
 multiple < isMultiple.size();
 multiple += value)
 {
 isMultiple[multiple] = true;
 }
 }
}

void getFactors(
 int unfactoredValue,
 const vector<int> & primes,
 vector<int> * factors)
{
 int remainder = unfactoredValue;

 for (int prime : primes)
 {
 while (remainder % prime == 0)
 {
 factors->push_back(prime);
 remainder /= prime;
 }
 }
}

Then factorValue can be rewritten in terms of these three functions:

void factorValue(
 int unfactoredValue,
 vector<int> * factors)
{
 vector<bool> isMultiple;
 clearFlags(100, &isMultiple);

 vector<int> primes;
 getPrimes(isMultiple, &primes);

 getFactors(unfactoredValue, primes, factors);
}

Is this easier to read?
Yes and no! The functions define clear concepts, and once you understand
what they do, the names help fix the concepts in your head.

But instead of a simple linear progression of code, reading top to bottom,
you’re hopping around from function to function. If you start by digging
into factorValue, the first thing you run into is a call to clearFlags. You
have to find that function and read it to see what it does. While you’re
looking at clearFlags, you have to remember where you came from in
factorValue, track which variables correspond to which arguments, then
put everything back together when you pop out of clearFlags.
So there’s more to track, and that makes it harder to collapse the concepts.
Remembering all the contextual details soaks up short-term memory slots,
and you’ve only got seven (plus or minus two) slots to work with.
Remembering where you are in a nested call chain can overload your short-
term memory all by itself.
There’s a thought in programming that abstraction is always a net positive
—that anything that can be pulled into a function should be pulled into a
function. The more functions, the better. Since abstraction is the tool we use
to understand complicated things, it seems to follow that anything that can
be abstracted should be abstracted.

The Cost of Abstraction
This is silly. There’s a cost to abstraction, and a cost to separating out logic
into functions. This cost can outweigh the benefits. Here’s an example:

int sum = 0;
for (int value : values)
{
 sum += value;
}

That’s pretty simple code to understand, if you already know that values is
a vector of integers. It collapses easily—loop over the values, add them all
up, and you’ve got the sum.
You might see this instead:

int sum = reduce(values, 0, add);

Hmm. This is certainly concise. You might infer from the names of sum and
add that it’s calculating some sort of sum, but that’s just a guess. To know
for sure, you’d need to start investigating.

To start with, it’s not clear what the reduce function (or at least something
that looks like a function) is doing, nor is it clear what add is, and the 0
passed as an argument is a mystery too. Searching for reduce in your
codebase produces a lot of hits, but it looks like this is the one that’s
important:

template <class T, class D, class F>
D reduce(T & t, D init, F func)
{
 return reduce(t.begin(), t.end(), init, func);
}

OK, that’s a start. Looks like the first argument to reduce is a container
class, since begin and end are standard bits of C++ iteration goo. You need
to find the four-argument version of reduce:

template <class T, class D, class F>
D reduce(T begin, T end, D init, F func)
{
 D accum = init;
 for (auto iter = begin; iter != end; ++iter)
 {
 accum = func(accum, *iter);
 }
 return accum;
}

Things become a little bit clearer! The reduce function loops over a
collection, successively applying a function (or function-like thing) to each
element and an accumulated value. Popping back out a few levels, you
expect that add will add two values, and it does:

int add(int a, int b)
{
 return a + b;
}

Now the last pieces click into place. This use of reduce is calculating the
sum of the values in the array, just like the simple loop you started with…
but the simple loop is much easier to read and understand. It collapsed
easily, where this more abstracted version of the algorithm required real
effort to collapse. The extra layers of abstraction aren’t helping, they’re just
obscuring what’s going on. You had to find and interpret four separate bits
of code to understand things, stretching your short-term memory to do so.

Use Abstraction to Make Things Easier to Understand
I think there’s a good rule of thumb hidden here for making abstraction
decisions, whether that’s to break logic out as a function, or to use some
general-purpose abstraction to solve your specific problem. The rule is
simple—will this change make the code simpler and easier to understand?
Will the code collapse more easily with the change? If so, create the
function or employ the abstraction. If not, don’t.

The Role of Long-Term Memory
This chapter has been pretty bleak so far! A budget of seven (plus or minus
two) thoughts in short-term memory is pretty stingy. It’s hard to see how
you could build anything even half-complicated with a conceptual budget
that small, even if you’re focused on collapsing thoughts into more abstract
thoughts at every opportunity.
So that can’t be the whole story! I know for certain that I’m completely
familiar with way more than seven (plus or minus two) things in our engine.
There are dozens and dozens4 of methods on the main Sucker Punch
character class, and I know what they all do. What’s going on?
Well, it’s simple. All of the details I know about our game tech are stored in
my long-term memory, and there’s not a fixed budget for that. I am certain
you have quick recall for a truly impressive amount of stuff about your
projects—concepts, facts, names, development history, the person to talk to
when something goes wrong, funny stories about a bug you had to fix in
that one function. All of that lives in your long-term memory.
You use short-term memory to figure stuff out—it’s the working storage for
any reasoning you do, the place the pieces hang out while you try to figure
out how they fit together. Once the puzzle pieces fit together, once the
conclusions have time to settle, once you’ve collapsed the details into the
abstraction, then the result can move into your long-term memory. That’s
where all the details about your project live—you’re not figuring them out
every time afresh, you’re just remembering your conclusions from earlier.
That means that despite the obvious similarity, there’s a big difference
between this code:

sort(
 values.begin(),

 values.end(),
 [](float a, float b) { return a < b; });

And this code:

processVector(
 values.begin(),
 values.end(),
 [](float a, float b) { return a < b; });

I know what sort does. I know the abstraction, it’s in my long-term
memory. I can nearly sight-read it—the only work is looking at the
comparison function to see what the sort order will be. As a result, it
doesn’t really take up a new short-term-memory slot to read sort. I knew
values was a vector of floats; now I know values is a sorted vector of
floats. That’s still one thought in my cache.
My reaction to processVector is entirely different. I haven’t seen it before,
and I don’t know what it does. The name isn’t helpful—it’s a good
demonstration of the power of a weak name. My only recourse is to go look
at the processVector code, maybe by single-stepping into it,5 in order to
start figuring things out. I’m back to my painfully small budget of seven
(plus or minus two) thoughts while I’m collapsing it to something simpler.

Common Knowledge Is Free; New Concepts Are Expensive
Your goal when writing code is to make it easy to understand, so it’s
important to keep the difference between sort and processVector in mind.
A reference to sort doesn’t stress the reader’s short-term memory, because
they already know what sort does. A reference to processVector is
different—in order to understand the code, the reader needs to dive into
processVector to collapse it, and that’s going to stress their cache.
Code that uses abstractions or patterns that everyone on the team
understands is much easier to read than code that invents new abstractions
or patterns.
One takeaway from this is obvious—if you’re writing code, use the
standard abstractions and patterns common on your team. Don’t invent new
ones…unless you’re confident that the newly invented abstraction or
pattern is strong enough that it will become standardized across your team.
For instance, in the Sieve of Eratosthenes example, I kept an array of flags
(imaginatively named isMultiple) marking which integers were known not

to be prime because they were multiples of other numbers. This was a
plain-old C-style array of bool values. It’s easy to see that it would be
possible to abstract this into a “vector of bits” class, eking out a bit of
storage and very slightly better memory-access patterns.
With a BitVector class,6 the Sieve code might look like this:

vector<int> primes;
BitVector isMultiple(100);

for (int value = 2; value < isMultiple.size(); ++value)
{
 if (isMultiple[value])
 continue;

 primes.push_back(value);

 for (int multiple = value;
 multiple < isMultiple.size();
 multiple += value)
 {
 isMultiple[multiple] = true;
 }
}

Is this easy to read? Well, if the BitVector class is a standard part of your
team’s armamentarium, something that everyone knows, then sure! It might
even be easier than the version of the code that stored these flags as a
simple array of bools.
Someone who doesn’t know BitVector is in a different boat. Well, a
reckless programmer might just assume it’s, you know, a vector of bits, and
sail forward. Reckless programmers tend to vote themselves off the island,
though. A prudent programmer would investigate the BitVector class to
make sure they understand it…and it’s not trivial, even in the simplest
possible version that fits the preceding usage pattern:

class BitVector
{
public:

 BitVector(int size) :
 m_size(size),
 m_values()
 {
 m_values.resize((size + 31) / 32, 0);
 }

 int size() const
 {
 return m_size;

 }

 class Bit
 {
 friend class BitVector;

 public:

 operator bool () const
 {
 return (*m_value & m_bit) != 0;
 }

 void operator = (bool value)
 {
 if (value)
 *m_value |= m_bit;
 else
 *m_value *= ~m_bit;
 }

 unsigned int * m_value;
 unsigned int m_bit;
 };

 Bit operator [] (int index)
 {
 assert(index >= 0 && index < m_size);
 Bit bit = { &m_values[index / 32], 1U << (index % 32) };
 return bit;
 }

protected:

 int m_size;
 vector<unsigned int> m_values;
};

A real BitVector class would be more functional than this—and also
bigger and more complicated, of course! Even at this level of functionality
there’s trickiness, like creating a temporary object that wraps the ability to
read and write a single bit, then relies on C++ operators to handle getting
and setting the value.7

That’s clever,8 and it lets us write code that looks like simple array access
even though it compiles to something more complicated. But sorting out the
trick is going to use up slots in the reader’s short-term memory—their goal
is to understand the Sieve code, not sort out the details of this weird
BitVector class. For programmers who haven’t internalized what
BitVector does—for programmers who haven’t collapsed and committed
the BitVector abstraction to long-term memory—its use made the Sieve
code harder to understand, not easier.

So if you were writing the Sieve code,9 would it make sense to introduce a
new BitVector class to handle the array of flags? No, almost certainly not!
It’s unnecessary work, and it makes the code harder to read.
The only justification for introducing BitVector is if you know that it’s
going to be used broadly enough in the codebase that everyone on the team
will add it to their long-term memory, and that using it will have important
advantages over preexisting solutions. And the only way you can know that
is if you’ve identified a lot of places in the codebase where an array of bits
is used, and you have identified (and hopefully measured!) the advantages
and have a good reason for not just using vector<bool>. Then, and only
then, does it make sense to introduce BitVector.
For what it’s worth, we do have a bit vector class at Sucker Punch, used in
roughly 120 places in our fairly large codebase. It’s comfortable tech for
most of the team—they’ve internalized what it does, so a reference to the
bit vector class isn’t going to trigger an investigation. It’s part of our
common knowledge, so it’s safe to use. But it wasn’t introduced based on
one use case—we wrote it based on lots of examples of code working with
large arrays of bits.

Putting It All Together
The best code—which is to say, the easiest code to read and understand—
leverages how short-term and long-term memory work together. It
leverages the standards and conventions of your team, because all of that
stuff is already in everyone’s long-term memory. When new thoughts are
introduced, they pop up in small-to-medium-sized chunks, small enough to
fit inside the reader’s short-term memory. Those chunks have simple, easily
abstracted functionality and carefully chosen names, which makes them
easy to collapse and commit to long-term memory.
The result? A codebase that is easy to read and easy to learn—that makes it
easy to collapse new ideas into simple abstractions, then does the same
thing with those abstractions recursively until the whole codebase is clear.

1 Or maybe working memory, if you’ve chosen that side in the ongoing debate among
cognitive scientists. I’m actually on Team Working Memory, but short-term memory is a more
widely known term, so that’s what I’m using.

2 I have experimentally determined that coffee does not affect the limit.
3 This is not a smart way to factor a number, by the way. It’s just an example. Rule 19 has a
smarter version.
4 Actually there are dozens of dozens. That’s too many methods. We need to do some
housekeeping.
5 Stepping through code in the debugger is an excellent way to understand it better. 10/10,
would recommend. It doesn’t fundamentally change the need for short-term memory, but the
debugger can be a crutch to help you remember or quickly regenerate thoughts, like what all
the variables are and what values they hold.
6 The BitVector class in this chapter is (in spirit, at least) a simplified version of C++’s
vector<bool>.
7 The primary function of C++ sometimes seems to be allowing you to pack a universe of
complexity into every raindrop of code. But I digress.
8 Not a compliment.
9 Please don’t generate prime numbers this way, though. Humanity has invented much
better ways of generating primes in the intervening 2,250 years. Hats off to Eratosthenes,
though! The Sieve is the third or fourth most impressive thing on his resume, and I still know
what it is.

Rule 10. Localize Complexity

Complexity is the enemy of scale.
You know that simpler code is better—as simple as possible, but no simpler,
per Rule 1—but that Rule becomes harder to follow as the scale of your
project increases. It’s easy to keep your code simple for simple problems,
but as code grows and matures it naturally grows more complicated. And as
it grows more complicated, it becomes harder to work with—you lose the
ability to keep all the details in your head. Every time you attempt to fix a
bug or add a new feature, you trip over unpredictable side effects—every
step forward is matched by an unexpected step backward.
Part of the solution is to look for opportunities to keep things simple or
make things simple. That’s Rule 1. But complexity can’t be eliminated
entirely; any moderately functional and long-lived bit of software is going
to have to weather the complexity inherent in the problems the software
solves. But complexity can be managed.
To borrow a sports cliché: you can’t stop complexity, you can only hope to
contain it.
Along those lines, a useful strategy is to isolate any complexity you can’t
eliminate. If the internal details of some bit of code are complicated, but its
external interface is simple, the complexity presents less of a problem.
When you’re inside that bit of code you have to cope with its internal
complexity, but outside the code you don’t have to worry about it.

A Simple Example
Consider the sine and cosine functions in your language of choice. The
external interface is simple—call the function, get the sine or cosine of the
angle passed in. The internal details are complicated, though.
I was many years old before I wondered how these functions were actually
implemented. Until then, as far as I was concerned, they just magically
produced the right answer1…and this blissful ignorance was perfectly OK!
Whatever complexity existed inside of the implementation of the sine and
cosine functions didn’t affect how I used them. They just worked in the way
I expected.

You can draw a circle without knowing the implementation details of sine
and cosine:

void drawCircle(Point center, float radius, Color color)
{
 int count = int(ceil(pi / acos((radius - 1.0) / radius)));
 Point previousPoint = center + Vector(radius, 0.0, 0.0);
 for (int index = 1; index <= count; ++index)
 {
 float angle = 2.0 * pi * index / count;
 Point nextPoint = center +
 radius * Vector(cosf(angle), sinf(angle), 0.0);

 drawLine(previousPoint, nextPoint, color);

 previousPoint = nextPoint;
 }
}

There’s complexity somewhere inside sinf and cosf (the C standard
library’s sine and cosine functions for 32-bit floats), but it doesn’t leak out
through the simple abstraction of those functions into the rest of your code.2
The complexity is safely localized.

Hiding Internal Details
The same rule applies to your own code. Whenever possible, you should
isolate complexity, confining it to clearly defined sections of your code.
Imagine that you’ve got a list of customer records, and you’re writing a
function to return a list of customers who’ve recently purchased something.
The customer records look like this:

struct Customer
{
 int m_customerID;
 string m_firstName;
 string m_lastName;
 Date m_lastPurchase;
 Date m_validFrom;
 Date m_validUntil;
 bool m_isClosed;
};

The complexity here is that not all customer records in your list are valid.
Some customer accounts have expired or haven’t been activated yet, and
other accounts have been closed by the customers. Your function will need
to exclude those invalid customer records:

void findRecentPurchasers(
 const vector<Customer *> & customers,
 Date startingDate,
 vector<Customer *> * recentCustomers)
{
 Date currentDate = getCurrentDate();

 for (Customer * customer : customers)
 {
 if (customer->m_validFrom >= currentDate &&
 customer->m_validUntil <= currentDate &&
 !customer->m_isClosed &&
 customer->m_lastPurchase >= startingDate)
 {
 recentCustomers->push_back(customer);
 }
 }
}

The complexity introduced by invalid customer records isn’t localized—it
has leaked into this unrelated function. Every loop through the customer list
now has to check for invalid customer records. And if the rules determining
validity change, every one of those loops will have to be updated.
The code in the previous example is pretty bad design, honestly. There’s no
reason to duplicate the customer validity check in every loop—one of the
promises of object-oriented design was making it easier to hide exactly this
sort of complexity. At a minimum, the eligibility rule should be
encapsulated:

struct Customer
{
 bool isValid() const
 {
 Date currentDate = getCurrentDate();

 return m_validFrom >= currentDate &&
 m_validUntil <= currentDate &&
 !m_isClosed;
 }

 int m_customerID;
 string m_firstName;
 string m_lastName;
 Date m_lastPurchase;
 Date m_validFrom;
 Date m_validUntil;
 bool m_isClosed;
};

That makes the loop a little bit simpler:

void findRecentPurchasers(
 const vector<Customer *> & customers,
 Date startingDate,
 vector<Customer *> * recentCustomers)
{
 Date currentDate = getCurrentDate();

 for (Customer * customer : customers)
 {
 if (customer->isValid() &&
 customer->m_lastPurchase >= startingDate)
 {
 recentCustomers->push_back(customer);
 }
 }
}

That’s only a half-measure, though. A better solution lies upstream: instead
of looping over all customers, it should loop over valid customers.
Whatever bit of your code provides a list of customers should also provide a
list of valid customers, likely computed from the list of all customers. Then
your code will be appropriately simple:

void findRecentPurchasers(
 const vector<Customer *> & validCustomers,
 Date startingDate,
 vector<Customer *> * recentCustomers)
{
 Date currentDate = getCurrentDate();

 for (Customer * customer : validCustomers)
 {
 if (customer->m_lastPurchase >= startingDate)
 {
 recentCustomers->push_back(customer);
 }
 }
}

With this change, all the complexity is localized to the function that returns
a list of valid customers. Code like findRecentPurchasers doesn’t need to
worry about customer validity, and is easier to write and understand as a
result.

Distributed State and Complexity
Object-oriented design can help localize complexity, but it’s not a panacea.
It’s easy to get in trouble, especially when you’ve distributed state across a
set of objects instead of localizing it in a single object.

Distributing state isn’t necessarily a problem! Sometimes the most natural
way of modeling a system is to create multiple objects that jointly manage
the system’s state. The promise of object-oriented design is that this sort of
multiple-object design can still hang together—each object manages its own
state, with well-defined interactions between the objects.
That promise of an easy-to-understand object-oriented design won’t be
fulfilled without some careful coding, though. It’s easy to end up with
pretty rickety code if you’re trying to do something that depends on the
current state of multiple objects.
Here’s an invented example. You’re building a stealth game, in which part
of the fun is skulking around without getting spotted by your enemies. In
this family-friendly example, the player is trying to sneak up behind other
characters in order to tape “kick me” signs to their backs. To make this
easier, you want to show a little “eye” icon on screen. The eye is closed
when none of the player’s enemies can see them, but opens when an enemy
has a clear line of sight to the player. A closed eye means the player is safe,
while an open eye means they’re at risk of being spotted.
You’ve got a handful of objects and classes to model this: an object for the
player, objects for all the other characters, an object for the eye icon, and an
object that tracks which characters have a clear line of sight to which other
characters. The last object, the awareness manager, provides a way for you
to register a callback function that is called whenever a particular character
is spotted by another character, and a second callback function that is called
when that other character loses sight of the registered character.
Given these objects, an obvious way to implement this feature centers on
the player object. The player object can implement an awareness callback
function, then use that callback to keep count of how many other characters
have spotted the player. If that count is zero, the player object sets the eye
icon to closed; otherwise, it sets it to open.
The awareness manager looks like this:

class AwarenessEvents
{
public:

 virtual void OnSpotted(Character * otherCharacter);
 virtual void OnLostSight(Character * otherCharacter);
};

class AwarenessManager
{
public:

 int getSpottedCount(Character * character);
 void subscribe(Character * character, AwarenessEvents * events);
 void unsubscribe(Character * character, AwarenessEvents * events);
};

The eye icon is even simpler:

class EyeIcon
{
public:

 bool isOpen() const;
 void open();
 void close();
};

Given these objects, the player code is easy to write. Get an initial count
from the awareness manager when the player object is created and
implement the AwarenessEvents interface to catch changes. With an
accurate count of other characters who can see the player, the eye icon can
be opened or closed appropriately:

class Player : public Character, public AwarenessEvents
{
public:

 Player();

 void onSpotted(Character * otherCharacter) override;
 void onLostSight(Character * otherCharacter) override;

protected:

 int m_spottedCount;
};

Player::Player() :
 m_spottedCount(getAwarenessManager()->getSpottedCount(this))
{
 if (m_spottedCount == 0)
 getEyeIcon()->close();

 getAwarenessManager()->subscribe(this, this);
}

void Player::onSpotted(Character * otherCharacter)
{
 if (m_spottedCount == 0)
 getEyeIcon()->open();

 ++m_spottedCount;

}

void Player::onLostSight(Character * otherCharacter)
{
 --m_spottedCount;

 if (m_spottedCount == 0)
 getEyeIcon()->close();
}

This isn’t bad code. There’s not a lot of it, and the code itself is pretty easy
to read. There’s a bit of subtlety in choosing when to compare
m_spottedCount to 0, but it’s not hard to figure out. I think this code is
defensible.

Capacitated?
Like all designs, though, this example evolves. To add a bit of a challenge
for the player, we give it a twist: the eye icon should be open whenever the
player is incapacitated. Or, to put it another way, the eye icon should be
closed when none of the enemies have spotted the player and the player
isn’t incapacitated.
In this case, the Player class has a setStatus method that’s called to mark
changes in the player’s overall well-being. It’s easy enough to insert some
code into setStatus to catch cases where the player becomes incapacitated
or recovers to be fully…um, capacitated? Unincapacitated? Whatever. You
only care about a change in the player’s status when m_spottedCount is
zero, since otherwise the eye icon is already open. Similarly, when the
spotted count’s zero-ness changes, you only have to worry about the eye
icon if the player isn’t incapacitated:

enum class STATUS
{
 Normal,
 Blindfolded
};

class Player : public Character, public AwarenessEvents
{
public:

 Player();

 void setStatus(STATUS status);

 void onSpotted(Character * otherCharacter) override;
 void onLostSight(Character * otherCharacter) override;

protected:

 STATUS m_status;
 int m_spottedCount;
};

Player::Player() :
 m_status(STATUS::Normal),
 m_spottedCount(getAwarenessManager()->getSpottedCount(this))
{
 if (m_spottedCount == 0)
 getEyeIcon()->close();

 getAwarenessManager()->subscribe(this, this);
}

void Player::setStatus(STATUS status)
{
 if (status == m_status)
 return;

 if (m_spottedCount == 0)
 {
 if (status == STATUS::Normal)
 getEyeIcon()->close();
 else if (m_status == STATUS::Normal)
 getEyeIcon()->open();
 }

 m_status = status;
}

void Player::onSpotted(Character * otherCharacter)
{
 if (m_spottedCount == 0 && m_status == STATUS::Normal)
 getEyeIcon()->open();

 ++m_spottedCount;
}

void Player::onLostSight(Character * otherCharacter)
{
 --m_spottedCount;

 if (m_spottedCount == 0 && m_status == STATUS::Normal)
 getEyeIcon()->close();
}

This has added some complexity, especially in how the two overlapping
conditions for showing the health indicator interact with each other. It still
doesn’t seem disastrous, though.
The assumptions the code makes to minimize work—like only updating the
eye icon in CPlayer::setStatus when the spotted count is zero—are more
subtle now. It’s not too hard to figure out what’s going on, but there’s a
price in complexity being paid for a little bit of efficiency.

Things Start to Get Foggy
The design evolves again, surprising absolutely no one. This time you’re
adding weather effects. If the weather is foggy, then the eye icon should be
open, just like when the player has been spotted or is incapacitated.
The weather system, like the awareness system, provides a simple query
and callback API:

enum class WEATHER
{
 Clear,
 Foggy
};

class WeatherEvents
{
public:

 virtual void onWeatherChanged(WEATHER oldWeather, WEATHER newWeather);
};

class WeatherManager
{
public:

 WEATHER getCurrentWeather() const;
 void subscribe(WeatherEvents * events);
};

This fits into the pattern you used for awareness. Implement a weather
callback, add some initialization code, mix some new logic into the existing
checks, and you’ve got a working system:

class Player :
 public Character,
 public AwarenessEvents,
 public WeatherEvents
{
public:

 Player();

 void setStatus(STATUS status);

 void onSpotted(Character * otherCharacter) override;
 void onLostSight(Character * otherCharacter) override;

 void onWeatherChanged(WEATHER oldWeather, WEATHER newWeather) override;

protected:

 STATUS m_status;
 int m_spottedCount;

};

Player::Player() :
 m_status(STATUS::Normal),
 m_spottedCount(getAwarenessManager()->getSpottedCount(this))
{
 if (m_spottedCount == 0 &&
 getWeatherManager()->getCurrentWeather() != WEATHER::Foggy)
 {
 getEyeIcon()->close();
 }

 getAwarenessManager()->subscribe(this, this);
 getWeatherManager()->subscribe(this);
}

void Player::setStatus(STATUS status)
{
 if (status == m_status)
 return;

 if (m_spottedCount == 0 &&
 getWeatherManager()->getCurrentWeather() != WEATHER::Foggy)
 {
 if (status == STATUS::Normal)
 getEyeIcon()->close();
 else if (m_status == STATUS::Normal)
 getEyeIcon()->open();
 }

 m_status = status;
}

void Player::onSpotted(Character * otherCharacter)
{
 if (m_spottedCount == 0 &&
 m_status == STATUS::Normal &&
 getWeatherManager()->getCurrentWeather() != WEATHER::Foggy)
 {
 getEyeIcon()->open();
 }

 ++m_spottedCount;
}

void Player::onLostSight(Character * otherCharacter)
{
 --m_spottedCount;

 if (m_spottedCount == 0 &&
 m_status == STATUS::Normal &&
 getWeatherManager()->getCurrentWeather() != WEATHER::Foggy)
 {
 getEyeIcon()->close();
 }
}

void Player::onWeatherChanged(WEATHER oldWeather, WEATHER newWeather)
{
 if (m_spottedCount == 0 &&
 m_status == STATUS::Normal)

 {
 if (oldWeather == WEATHER::Foggy)
 getEyeIcon()->close();
 else if (newWeather == WEATHER::Foggy)
 getEyeIcon()->open();
 }
}

Again, if you’ve just written code like this, it can feel reasonable. I’ve
certainly written code like this and not felt bad about it!
It’s an evolution of the approach of the first version—look at the state of the
world when the player object is initialized, then track changes in the world’s
state to keep the eye icon up-to-date.
Conceptually, at least, there’s a common, repeated theme that grew out of
the initial implementation—don’t bother updating the eye icon when its
state shouldn’t change. When the weather changes, there’s no need to
update the eye icon unless the spotted count is zero and the player isn’t
incapacitated. If the spotted count is nonzero or the player is incapacitated,
then the eye icon is already open and should remain so.
There are three variations of that idea in the code: for line of sight, player
status, and current weather. The idea is expressed slightly differently for
each of them, but it’s still just one idea, so it doesn’t seem that complicated.
Take a step back, though. It’s easy to see the shared idea when you’re
writing the code—it’s your idea, after all! Imagine a teammate was looking
at the last example. Will the basic idea be obvious to them? Uh…not so
much.
If you know the idea—that is, don’t bother updating the eye icon when its
state shouldn’t change—then you can see how the idea gets expressed in
each of its repetitions. If you’re trying to go the other direction, to infer the
basic idea from all the ways it’s expressed…well, then it’s not so obvious.

Rethinking the Approach
There’s a bigger problem here, though. The user-visible design of this
feature is pretty simple—the eye icon should be closed when three
conditions are met:

No enemy has spotted the player.
The player isn’t incapacitated.

The weather isn’t foggy.

As written earlier, you have five (!) separate implementations of this logic,
all expressing those three conditions in different ways. That’s confusing.
And there’s no simple, straightforward implementation of the rules—no
place where you just check the three conditions. All five implementations
are variations, all using bits of context to minimize the work done.
If your design changes in any way, you need to update each of the five
implementations to match. For example, if you add a new
WEATHER:HeavyFog state for the weather system, then you have to add
checks for it in all the places you checked for WEATHER:Foggy.
More dangerously, what if the methods you’ve added change in some other
way? Maybe you decide the player model should turn his head to look at
any enemy that spots him, which means more code in
CPlayer::onSpotted. Now you have to make sure that you’re not
inadvertently breaking the stealth indicator.
There’s a pretty big problem underlying this code—it fails to localize the
complexity of the design. You’ve got a simple design—the three conditions
outlined at the start of the section—but you’ve scattered the implementation
of that design across five separate implementations, all written slightly
differently. Each condition adds a bit of complexity, and each bit of
complexity interacts with all the other bits of complexity. They get tangled
up very quickly.
If you’ve got a complicated idea, like the rules for when the eye icon is
open or closed, then aim to express that complicated idea in one place.
In this case, that means one straightforward implementation of the three
conditions. Then you can build the rest of the code around that
implementation. Leaving the rest of the system alone, you might end up
with something like this:

enum class STATUS
{
 Normal,
 Blindfolded
};

class Player :
 public Character,
 public AwarenessEvents,
 public WeatherEvents

{
public:

 Player();

 void setStatus(STATUS status);

 void onSpotted(Character * otherCharacter) override;
 void onLostSight(Character * otherCharacter) override;

 void onWeatherChanged(WEATHER oldWeather, WEATHER newWeather) override;

protected:

 void refreshStealthIndicator();

 STATUS m_status;
};

Player::Player() :
 m_status(STATUS::Normal)
{
 refreshStealthIndicator();

 getAwarenessManager()->subscribe(this, this);
 getWeatherManager()->subscribe(this);
}

void Player::setStatus(STATUS status)
{
 m_status = status;

 refreshStealthIndicator();
}

void Player::onSpotted(Character * otherCharacter)
{
 refreshStealthIndicator();
}

void Player::onLostSight(Character * otherCharacter)
{
 refreshStealthIndicator();
}

void Player::onWeatherChanged(WEATHER oldWeather, WEATHER newWeather)
{
 refreshStealthIndicator();
}

void Player::refreshStealthIndicator()
{
 if (m_status == STATUS::Normal &&
 getAwarenessManager()->getSpottedCount(this) == 0 &&
 getWeatherManager()->getCurrentWeather() != WEATHER::Foggy)
 {
 getEyeIcon()->close();
 }
 else
 {
 getEyeIcon()->open();

 }
}

Here, all five implementations of the condition checks are collapsed into a
single method, refreshStealthIndicator. That method is called whenever
there’s a change in the conditions that method checks. There’s still a little
bit of nonlocalized complexity, because the connection between the
conditions you check and the callbacks that detect changes to those
conditions isn’t obvious, but there’s way less of this than before.
And this implementation is linear with the number of conditions. If a new
condition is added, you can add a new check to refreshStealthIndicator,
write a bit of initialization code, and check for changes in the condition in
one or two places. If you had 10 conditions, you’d have 10 times as much
code.
That’s much better than the earlier examples that didn’t localize the
complexity. In computer science terms, the code had quadratic complexity:
every time you added a new condition, you added a new place to check all
the conditions and a new check in each of the existing implementations of
the logic. As a direct result, the number of lines of code implementing your
design increased by the square of the number of conditions in that design.
That’s not good! You’ll quickly run into a wall if your code’s complexity
grows quadratically.

Localized Complexity, Simple Interactions
The thing you want to avoid at all costs is complicated interactions between
different parts of your system. You can accept some complicated details, as
long as the complexity is localized. A component with a simple interface
and simple interactions but some complicated internal details won’t sink
your project. A component with a complicated interface and complicated
interactions might be your death knell, even if the internal details are
simple.
A system built of components with simple interactions tends to have linear
complexity. Each component makes the system a little bit more
complicated, but the complexity stays manageable.
If the interactions between components are complicated, things get out of
control fast.

If adding a new feature entails writing code in a lot of places, that’s a bad
sign. At best, it means the new feature is a misfit with your existing code—
and if every feature you add requires code in lots of places, then you’ve
probably failed to localize complexity. That’s going to end in tears.

1 As I recall, my naive guess the first time my curiosity was piqued amounted to “big tables
and linear interpolation.” I’m a little embarrassed by this guess; I knew what a Taylor series
was at the time.
2 Both sinf and cosf are implementation-dependent and can be surprisingly complicated.
I’ve tried to write short explanations here and failed; the important thing to keep in mind is
that the functions don’t need to calculate an exact value, only a value that’s accurate to the
resolution of a floating-point value, and that modulus math can reduce the angle to a
convenient range for the approximation. Interestingly, there are x86 instructions to calculate
sine and cosine, but modern compilers don’t use them unless explicitly ordered to do so. Those
instructions, introduced in 1987, have known flaws that can’t be fixed for the sake of
backward compatibility. Sigh.

Rule 11. Is It Twice as Good?

Every project eventually hits the natural limits of its architecture—you hit
some problem that just doesn’t fit the way things work. Maybe you need to
add a feature that can’t be expressed in your paradigm. Say you’ve got a
filtering mechanism that lets you specify a set of criteria that all need to be
met, and you run into a case where you need to OR some criteria instead of
ANDing them.
Or the shape of the data has changed. You built the system to solve
problems of some size, and over time it starts to be applied to problems of a
different size or shape, and you’re running into existential performance
problems.
It could be that things are just getting tangled. Your paradigm provides
ways to tweak the core behavior of the system in special cases, which is one
of the reasons it’s lasted as long as it has. But now the extension mechanism
is used in every single case, not just special ones. Every use of the system is
a hopscotch through different exceptional cases, and it’s hard for people to
figure out whether something new works, much less how it works.
Maybe some bit of code is old enough that it just doesn’t fit with the rest of
your codebase. You’ve got a bit of C code in your fairly forward-thinking
C++ project, and you recoil at all of its hand-rolled pointer structures. It
represents an older, alien way of thinking, and everyone wants to rewrite it
in a more modern paradigm.
This sort of thing is natural and inevitable, and shouldn’t cause you to
panic. It’s not even really a problem. It’s just how things go.
If you think you can forestall this—that hitting the natural limits of your
architecture is a sign of poor initial design, and that a better design would
have avoided the problem—then remember the example of Rule 4, that
generalization takes three examples. Your initial design may well have been
poor. But the most likely result of trying to predict the future would have
been a similarly poor but more complicated design that would have hit its
limits even earlier.
You won’t hit architectural limits on every single part of your project,
either. Some parts will happily tick along for years without any rework.

That’s not an accident—if you make good choices in your initial design, the
problems you’re solving stay pretty much the same, you and your
teammates are diligent about keeping things tidy, and whatever exceptional
cases you run into are localized and easily handled, then things can trundle
along with no changes indefinitely.
That’s why futureproofing is so dangerous. Some of the time it’s not
necessary, and the rest of the time it doesn’t work.

Three Paths Forward: Ignore, Tweak, or Refactor
Anyhow, you’ve run into a natural limit of some sort. That doesn’t mean
you’re forced to tear up the code and start again from scratch.
You could just live with the natural limit, for instance. Don’t allow OR
clauses in your filtering, or buy bigger hardware to deal with your
performance problems, or live with some extra complexity and old-
fashioned code.
Small tweaks and exceptional cases might also work. Maybe your filtering
is really an AND-of-ORs, like most websites, and you can handle the one extra
OR in your special case by combining two categories in your UI. Maybe
most of your performance issue springs from recalculating some bit of data,
and a little bit of caching will mostly fix the problem. Maybe every use of
the system runs through the exceptional mechanism, but most of those
exceptions are all the same thing, and you can just fold that case into your
core code path and get rid of a bunch of exceptional cases. Maybe the only
really old-fashioned thing is the use of a set of half-baked macro-driven
functions to deal with allocating C arrays, and it’s not too hard to just
convert them to std::vector.
Or maybe you really do need to make some major changes. Your
architecture was designed to address the problem as you understood it when
work started. The problem has changed, though—or maybe your
understanding of the problem is deeper now. Your current architecture just
can’t solve the problem as you now understand it, and you see a better
approach.
So how do you decide which of these three basic approaches to take? Do
you ignore the issue, tweak things to address it, or do a bigger refactoring?

Gradual Evolution Versus Continual Reinvention

There’s a natural tendency in programmers to handle this question poorly—
to make big changes for the wrong reason at the wrong time and end up
causing more problems than they solve.
More specifically, there are two subspecies of programmers. Type One
programmers think incrementally. They look at each new problem in terms
of the existing solution; they always solve problems by tweaking the current
design. Type Two programmers think of the problem and solution together;
they’re attracted to fixing all the issues with a system, not just the issue at
hand, and jump at the chance to start over with a new design.
Either tendency taken to extremes is a disaster. If all fixes are incremental,
you end up trapped, pushing off requests for improvements to the project,
slowly buried under the weight of years of tweaks and exceptional cases. If
no fixes are incremental, if all changes are ground-up reworks, then you
thrash in place. You’re continually throwing out the things you’ve learned
about the last architecture. Every new architecture brings a new set of
problems and you never make progress.
As in most things, the best results come from striking a balance. Choosing
the right approach—ignore, tweak, or refactor—can be tricky, but knowing
your tendencies and the tendencies of your coworkers can help you make
better decisions. If your response to uncertainty is to make the decision that
is comfortable for you, then you risk choosing the same alternative every
time. If you’re a Type One programmer, the comfortable decision is
incremental, and all problems are solved by tweaking or ignoring. If you’re
a Type Two programmer, the comfortable decision is to rework everything,
so that’s what happens every time. That’s not good; you need to balance the
two.
Some red flags that Type One thinking might be getting out of control:

Describing the issue at hand in terms of the current
architecture. That might be as simple as using internal terms
instead of describing the issue in its own problem space.
Sometimes it’s hard for Type One coders to even think about
the problem except in terms of the existing architecture, and
this shows up in the language they use.

Using words like impossible to describe the issue. That’s
almost certainly not true—at worst, the issue is difficult to
solve without major changes to the system architecture.

Deploying the project schedule as a conversation-stopper.
This is not to imply that schedule concerns aren’t valid—
they obviously are! But if the first and only argument you
make against a big change is that it won’t fit in the schedule,
then you might be stuck in Type One thinking.
It’s been years since the last major change was made to the
system, despite many incremental changes to it.

Some warning signs that Type Two thinking is taking over:

The best reason you’ve got for reworking the system is “we
really need to clean up that bit of code.”

The decision to rework a system is driven by one particular
case, like a single feature that’s hard to implement, or a
dataset that creates poor performance.

The argument for reworking things is driven by performance
or resource issues, but nobody has actually profiled the
system to find the bottleneck.
You present arguments for reworking the system in terms of
the solution, not the issue at hand. Any proposals that aren’t
grounded in the problem are pretty suspect.

Some bright, shiny object—a new language, a new library,
some new language construct—is central to the proposed
reworking.

You might have recognized some of your own thought patterns in there! I
certainly do—I’m Type Two at heart and have to keep that mind when I’m
making decisions. Luckily there are lots of Type Ones on my team who I
can rely on to provide some decision-making balance.
It’s also common to get mixed signals, with Type One and Type Two
warning signs popping up for the same problem. For example, maybe

you’re considering a big change for a system that hasn’t seen fundamental
rework for years, but the impetus for the suggested change appears to be
excitement about deploying a cool new database technology. That’s a Type
One signal (the system’s architecture has been static for a long time) and a
Type Two signal (Squee! A new database!) mixed together.
Recognizing these patterns can help your decision-making process, but they
won’t make the decision for you. You might see some conservative Type
One patterns in your logic, but that doesn’t mean an incremental solution is
wrong! Nor does the presence of Type Two signals mean that reworking
your system is inappropriate. You need something more to help you make
the big decision about whether to embark on major rework or keep making
incremental changes.

A Simple Rule of Thumb
Here’s my simple rule of thumb for making a big change: is it twice as
good?
If you’re confident that after your changes, the reworked system will be
twice as good as the system you’ve got now, then the reward is big enough
to justify the disruption and the new problems that the rework will
inevitably introduce. If not—if the new system isn’t going to be twice as
good as the current one—then it’s better to address the issue incrementally.
Sometimes the answer is obvious. You absolutely need to do something,
and your current architecture absolutely can’t do it. Say you need to rework
your server code to support new legally mandated privacy restrictions.
Those restrictions require a “right to be forgotten,” implying functionality
that your current architecture fundamentally can’t support because it
intermixes data histories in a way that precludes removing an individual’s
old data.
Will a new system be twice as good? In this case, you need to do something
that the reworked system will support and the current system can’t support.
In some sense, the reworked system is infinitely better than the old one.
Since “infinitely” is comfortably larger than “twice,” the decision is clear,
and you set forth on your rework.
More commonly the answer isn’t as obvious, and you need to do some
measurement (if possible) and estimation (if measurement isn’t possible) to
decide whether the new answer is twice as good as the old one.

For instance, when Sucker Punch started work on Ghost of Tsushima, we
realized that the way we physically modeled the ground was going to
struggle with the size of the new game. Our previous games had all
represented the ground as a surface composed of hand-built triangles, but
the new game covered 40 or so times as much ground. The actual ground of
the island of Tsushima was created using a collection of height maps, each a
512 × 512 bitmap representing a uniform grid of heights covering a 200-
meter square.
The incremental solution was to convert the height maps to triangles and
feed them through our normal physics pipeline. This worked fine, but it was
really bulky—there were half a million triangles, and even after some light
optimization we were spending many megabytes of storage keeping track of
all of them.
We had an alternative—we could rework the physics engine to support
height maps directly, but this implied a lot of work. It meant handling the
height maps’ interaction with all of the other basic physics primitive types,
figuring out how to encode the extra information our physics engine needed
about surface types into the height map, adding height map support to all of
our debugging tools, and so on. Getting everything working would end up
taking about three programmer-months of work.
Applying the rule of thumb, then—would the reworked system be twice as
good? On a few axes, absolutely! We already had the height maps for use
by our rendering engine, and we could infer everything else we needed.
Instead of the 20+ megabytes we’d needed to physically model each 200-
meter-by-200-meter square of the game, we would need only a few hundred
bytes to integrate a height map.1

Similarly, basic physics operations (like testing a short line segment) only
needed to query a cell or two in the height map, instead of hopping through
dozens of layers of the binary spatial partitioning tree we use to represent
more free-form geometry. This would be much more than twice as fast.
So, the rule of thumb said that this rework made sense—the new system
would be twice as good on important metrics, and we decided this would be
worth the cost of implementing and dealing with the revised workflows and
new bugs.

Dealing with Fuzzy Benefits

It’s not always easy to quantify the benefits of reworking stuff, but that’s
not a good excuse for side-stepping the “twice as good” rule. If you’re
focused on soft improvements—like a change that will make your
programmers happier, or a rebuilt authoring pipeline that will let your
designers create slicker UX—then figure out how to quantify them.
If you don’t, you’re setting yourself up to make the most comfortable
decision—the one that fits your natural tendency. If you make the
comfortable decision too often, you’ll get yourself in trouble.
Let’s say the goal of some change is merely to make the programmers on
the team happier, like the earlier example of replacing some old-fashioned
code. So why will your programmers be happier? Will they be more
productive because they’re not struggling with the bugs that reliably pop
from the current tangled mess? If so, how much more productive? Twice as
productive?
Or let’s say you’re deciding whether to rebuild your UX authoring pipeline.
How much slicker will the new UX be? Why and how will it be better for
your product’s users, and how can you predict that improvement? Will users
spend more time enjoying your product, which is what we aim for with
games? Or, if you work on more traditional software, will your users be
able to get their tasks done more quickly and effectively?

Rework Is a Good Opportunity to Fix Small Problems
One last thought before we get back to a chapter with actual source code.
Once you’ve decided to rework a system, you might as well tidy up all the
little things that are wrong with it. You wouldn’t embark on major rework
just to fix some bit of old-fashioned code—the benefit isn’t worth the
problems you’d introduce. But if you’ve already decided to tear up that bit
of code, you’re already going to absorb the cost of changing things, and
you’re going to be testing your changes thoroughly anyhow—so you might
as well solve some smaller problems along the way, like replacing that bit
with more modern code.
This is a pretty productive pattern. Note the little problems in your code that
you can’t fix right away. Then, when you’re doing major work in an area,
sweep up all those little problems at the same time.

That doesn’t say you shouldn’t look for incremental improvements. Use
incremental changes to make those improvements. Maybe, over time, you’ll
collect enough small ideas about ways the system could improve that you
can justify major rework. That’s pretty common, actually, especially if you
start to see patterns. If you see a half-dozen small issues with the current
system that could all be addressed by the same bit of rework, then maybe
you’ve found the tipping point where the cumulative value makes the
rework worth the effort. Collectively, the improvement would be major and
justifies major rework.
“Twice as good” is a convenient way to say that major changes require
major improvements. Don’t tear up something to replace it with something
marginally better; that’s a bad strategy. Tear something up to replace it with
something much better. Twice as good.

1 For a complex set of reasons, we eventually ended up making a separate copy of the
height map used by rendering, then converting it to floating point as part of the copy, at a total
cost of about 1 megabyte for each 200-meter-by-200-meter square.

Rule 12. Big Teams Need Strong
Conventions

The most basic idea in this book is that programming is complicated, and
that your productivity as an individual and as a team is gated on that
complexity. The more complicated you make things—or let things become
—the less successful you’ll be. The simpler you keep things, the more
successful you’ll be—so keep things simple!
That advice holds true no matter what sort of project you’re working on, but
it’s truer for some projects than others.
There are projects that are small enough and simple enough that
unnecessary complexity won’t really matter. If you’re writing a hundred
lines of code by yourself in an afternoon and you’re going to throw away
the code when you’re done, then you can write that code just about any way
you’d like and get away with it.
Once you’re on a team, even if it’s a two-person team, that’s less true. You
might try to draw lines between “my code” and “your code,” with each of
you deciding how code gets written on your side of the line…but this won’t
work very well. Unless your two halves are extraordinarily cleanly
separated and remain that way through the life of the project, you’ll be
popping back and forth across the boundary routinely. Even defining the
interface between the two halves gets problematic—for example, who
decides how things in the interface are named, when half of the interface is
on each side of the line?
There’s no good way to extend this my-side-your-side pattern to larger
teams, but that doesn’t stop people from trying. For some programmers,
there’s a strong appeal to making all the decisions about “your” code. It’s
easy to argue that programming is a creative act, and that constraints make
for less creativity. It’s easy to argue that different parts of the projects have
different needs, and so should be treated differently. It’s easy to get attached
to the smallest parts of your programming style, only to find yourself in a
heated argument about where a curly brace goes.

All of these arguments are wrong. Not entirely wrong, but whatever small
kernel of truth exists in each of them is outweighed by the reality of
working on a large team on a large project. Differences in coding style add
complexity, which makes everyone’s jobs harder.

Formatting Conventions
Every bit of code embodies some style and philosophy. Working your way
through some bit of code that uses a foreign style or philosophy is slower
and more error-prone. It’s like reading a foreign language you only mostly
understand; everything is a struggle.
If you’re used to code that looks like this:

/// \struct TREE
/// \brief Binary tree of integers
/// \var TREE::l
/// Left subtree
/// \var TREE::r
/// Right subtree
/// \var TREE::n
/// Data

/// \fn sum(Tree * t)
/// \brief Return sum of all integers in the tree
/// \param t Root of tree (or subtree) to sum
/// \returns Sum of integers in tree

struct TREE { typedef TREE self; self * l; self * r; int n; };
int sum(TREE * t) { return (!t) ? 0 : t->n + sum(t->l) + sum(t->r); }

…then code like this is going to be harder to read, and vice versa:

// Integer tree node

struct STree
{
 STree * m_leftTree;
 STree * m_rightTree;
 int m_data;
};

// Return sum of all integers in tree

int sumTree(STree * tree)
{
 if (!tree)
 return 0;

 return tree->m_data +
 sumTree(tree->m_leftTree) +
 sumTree(tree->m_rightTree);
}

I’m not making a value judgment here—in some sense, this is the same
code; the only differences are naming and formatting. I’m used to
programming in something like the second style, so the first style seems
strange to me. Reading it requires some mental translation. If you’re used to
the first style, you’d have the opposite reaction.
The problem here isn’t the coding style, it’s mixing those styles. If you mix
styles—again, adding complexity—you’re going to struggle when moving
between them. Trying to maintain different styles for different sections of
your code is a bad idea.

Language Usage Conventions
The same is true for use of language features. If you’re used to “basic” C++
code like the previous example, then more “modern” C++ like this is going
to be hard to read:

int sumTree(const Tree * tree)
{
 int sum = 0;
 visitInOrder(tree, [&sum](const Tree * tree) { sum += tree->m_data; });
 return sum;
}

If you’re used to older versions of C++, you might not even recognize this
as legitimate code! There’s a lambda definition in there (it’s the part starting
with [&sum]), and lambdas weren’t added until C++ 11.
Again, I’m not making a value statement here. Lambdas can be useful, and
I understand why C++’s implementation works the way it does. If lambdas
are a standard part of your team’s workflow, and you all have a solid shared
understanding of how and where to use them, then there’s nothing wrong
with the preceding code. If you’re the lone lambda champion on the team,
then the same code is a disaster. The problem here isn’t the use of language
features per se—it’s mixing different expectations about which language
features to use. If you’re used to one set of language features, then adjusting
to a different set saps your energy. That’s especially true when those
transitions are unexpected, leaving you unsure of which set of conventions
is in force for some bit of code you’re looking at.

Problem-Solving Conventions

Programmers don’t run into a lot of problems that have only one solution,
so we all develop our own instincts about how to solve a particular problem
when writing code. That creates problems when your instincts don’t match
up with those of your teammates—you’ll solve the same problem in
different ways. At best, that increases cognitive load as you look at each
other’s code. More likely, it results in reinventing the wheel: you all end up
solving the same problem multiple times in multiple ways, because you
don’t recognize that it has already been solved.
Take error handling. There are lots of ways of handling errors: some
introduced by the language and its libraries, others extrapolated by teams to
meet their own particular needs. Even if you limit yourself to the built-in
parts of C++, you’ll find at least three distinct error-handling models, each
featured at some point in the 50-year evolution of the language.
Even the definition of error itself is up for grabs! You could reasonably
decide that usage mistakes are errors—after all, this is what the operating
system and most libraries do. You could just as easily decide that errors
should be reserved for unavoidable problems, like a missing file, not
entirely avoidable usage mistakes.
At Sucker Punch, for instance, we deal with usage errors as asserts, not as
errors. That’s our convention. Given the many choices about how to handle
errors, we chose one, and we all stick to it.
Sticking to one convention is a challenge, not least because every library or
other dependency drags you into its error-handling model. At a minimum,
you need to deal with the errors the library returns—and then decide how to
propagate them. If you’re dealing with really old-school C-style file
handling, that leads to some unpleasant code:

string getFileAsString(string fileName)
{
 errno = 0;
 string s;
 FILE * file = fopen(fileName.c_str(), "r");
 if (file)
 {
 while (true)
 {
 int c = getc(file);
 if (c == EOF)
 {
 if (ferror(file))
 s.clear();

 break;
 }

 s += c;
 }

 fclose(file);
 }

 return s;
}

In this 1980s-style code, errors are returned with a combination of global
state and special return values. The details aren’t that important—but the
relative lack of conventions here is notable. Every function has a slightly
different idea of how to return errors—fopen returns nullptr on error, getc
returns EOF but sets a global flag, and so on. Using this model means
memorizing a bunch of arbitrary details.
Moving errors onto the objects themselves improves things slightly—and
new, stronger conventions can be introduced:

bool tryGetFileAsString(string fileName, string * result)
{
 ifstream file;
 file.open(fileName.c_str(), ifstream::in);
 if (!file.good())
 {
 log(
 "failed to open file %s: %s",
 fileName.c_str(),
 strerror(errno));

 return false;
 }

 string s;
 while (true)
 {
 char c = file.get();
 if (c == EOF)
 {
 if (file.bad())
 {
 log(
 "error reading file %s: %s",
 fileName.c_str(),
 strerror(errno));

 return false;
 }

 break;
 }

 s += c;

 }

 *result = s;
 return true;
}

The convention here is that functions with names starting with try might
fail. They return true on success and false on failure, and any details
about the failure are reported to a system error log. If you see a try-named
function, you know exactly what to expect. That’s the power of conventions
—they’re a shortcut to understanding, much preferable to reading through
the code to figure out the details for yourself. As in this code, any library
that doesn’t use the convention forces some conversion work, but that’s
work only one coder has to do—the rest of the team can enjoy a consistent
error-handling convention.
I’ve worked on projects that defined a richer error type, instead of returning
a simple bool for success or failure:

struct Result
{
 Result(ErrorCode errorCode);
 Result(const char * format, …);

 operator bool () const
 { return m_errorCode == ErrorCode::None; }

 ErrorCode m_errorCode;
 string m_error;
};

This kind of error reporting lets code propagate errors around while still
allowing detailed, contextual error information. This is a useful model for
projects that deal with lots of errors, especially when combined with a
naming convention like try:

Result tryGetFileAsString(string fileName, string * result)
{
 result->clear();

 ifstream file;
 file.open(fileName.c_str(), ifstream::in);
 if (!file.good())
 {
 return Result(
 "failed to open file %s: %s",
 fileName.c_str(),
 strerror(errno));
 }

 string s;
 while (true)
 {
 int c = file.get();
 if (c == EOF)
 break;

 if (file.bad())
 return Result(
 "error reading file %s: %s",
 fileName.c_str(),
 strerror(errno));

 s += c;
 }

 *result = s;
 return ErrorCode::None;
}

Or you could use exceptions, the third basic error-handling model of the
C++ libraries:

string getFileAsString(string fileName)
{
 ifstream file;
 file.exceptions(ifstream::failbit | ifstream::badbit);
 file.open(fileName.c_str(), ifstream::in);

 string s;
 file.exceptions(ifstream::badbit);
 while (true)
 {
 int c = file.get();
 if (c == EOF)
 break;

 s += c;
 }

 return s;
}

For better or worse, this function hides the actual exceptions, which are
thrown from file.open or file.get. The advantage is that the normal flow
of operation isn’t cluttered with error-handling stuff; the disadvantage is
that the complexity of how errors are detected and handled is hidden and
scattered over multiple functions.1

All four of these styles are viable, as are many others. You could choose
any of them as your convention—well, you’re not going to use the first
style, because that would be silly. But any of the other three could make
sense, depending on your project.

Here’s what doesn’t make sense—mixing different error-handling
conventions in the same project. Inconsistent conventions will leave
everyone on the team slightly confused at all times, and confused
programmers write bugs.
I hid an example of this in the two try-named function conventions. Both
conventions pass back the “actual” return value of the function through a
pointer. But in the first convention, the function leaves the actual return
value unchanged if it fails; in the second convention, it’s cleared in error
cases.
You can make a solid argument for either option—but you can’t mix them
in the same project, because that’s an obvious disaster. The same is true
with mixing exceptions in amongst error codes, which is destined to end in
tears.
You might also be able to argue that your program should have no error
handling. That’s right, no error handling! That’s actually the approach we
take for most of our game code—we don’t define errors, so there’s no error
handling. Usage errors are handled with asserts. Catastrophic problems like
running out of memory just halt the game. Edge cases trigger default
behaviors rather than returning errors.
It’s true that we’re forced to deal with errors at the edges of our code—our
networking code needs to handle packets getting dropped, for instance. But
Sucker Punch programmers can go for months and months without
generating or handling a single error.

Effective Teams Think Alike
Your goal as a team—not as individuals, but as a team—should be to think
as one. The ideal situation would be for everyone on the team to be so in
sync that each of you would write exactly the same code when presented
with a particular problem. And by “exactly,” I mean exactly: same
algorithm, same formatting, same names for everything.
We all know that it’s easier to read and work with your own code than it is
to work with other people’s code. Any bit of code embeds countless
assumptions about how code should be written. When you’re reading your
own code, all of those assumptions feel natural, so you don’t notice them.
When you read other people’s code, you trip over every single one of the
assumptions you don’t share.

If the naming conventions don’t match your expectations, you hit a snag.
Sure, you can figure it out, but it takes time and energy. If the curly braces
are in the wrong place, or the code uses unfamiliar language features or
does common things using more than one convention, like the constructor
example earlier, same thing.
The solution is obvious. If you want to work smoothly and harmoniously as
a team, align your assumptions! Use the same conventions! Stop being
dumb!
The conventions themselves—where the curly brace goes and so on—rarely
matter. You can have a principled discussion about curly brace placement,
but there are lots of good answers to where they go. It doesn’t matter which
style you choose, as long as you all choose the same style and use it
consistently.
Here’s how we deal with this at Sucker Punch. We have a set of coding
standards that set out pretty strict rules for everything we can think of,
including:

How to name everything.

How to format code. If you’re smart, your formatting
conventions will exactly match the output from one of the
many code-formatting tools, which makes following the
convention easy—just run the formatting tool.2

How to use language features, including which to use and
which to avoid.

Conventions for all the common problems we solve. We
have a very standardized way to write a state machine, for
instance, because our game code has lots of state machines.

Where to draw file boundaries, and how code should be
ordered and grouped within those files.
How to represent constants in the code. It’s not enough to
say that you’re going to use a #define or a const instead of
embedding magic numbers in your code—what should your
const be named? Where should you define it? Near the use,

at the top of the source file with the other constants, or
maybe in a project-wide header file?

Everyone follows these conventions, which are gently enforced during our
code review process. It’s an adjustment for many of our new coders to work
within strict standards like these, but it doesn’t take long for the benefits of
strict adherence to the coding standards to become obvious.
At the beginning of every project, we let anyone on the coding team
propose any change they’d like to the coding standards. We debate each
proposed change, then vote. If a proposal wins a majority of the vote, it
goes into effect for the new project. During the last round of voting, for
instance, we approved the use of auto in certain circumstances, which
(depending on your own proclivities) may seem horribly strict or entirely
too permissive.3

Once we’ve made all the changes to our standard, we divvy up our fairly
large codebase and sweep through it like a swarm of hungry locusts,
converting everything to match the new standard. This isn’t cheap, but it
takes less than a week, and at the end we’ve got squeaky-clean compliance
with our team conventions.
Remember our goal: that any Sucker Punch coder, faced with a particular
problem, will write exactly the same solution as any other Sucker Punch
coder. The closer we get to that, the closer we are to the perfect situation—
where working with anyone else’s code is as easy as working with your
own. If I’m looking at some bit of Sucker Punch code and I can’t tell who
wrote it—or even whether I wrote it myself—then I know we’re getting
close to that goal, and we’ve set ourselves up for stress-free programming.4

1 Given the other Rules in this book—most importantly Rule 10, “Localize Complexity”—
it will not surprise you to hear that C++ exceptions are not used at Sucker Punch, and it’s for
this very reason. We do have a few try statements in the codebase, but only when forced to by
external libraries in our toolchain.
2 We are, alas, not this smart. Our formatting conventions are…idiosyncratic.
3 Hence conventions.
4 OK, OK, not actually stress-free. But a lot less stressful.

Rule 13. Find the Pebble That Started
the Avalanche

If I tell you that coding is really debugging, you’ll probably shake your
head ruefully and mutter something along the lines of “Ain’t it the truth,
buddy. Ain’t it the truth.”
Well, not really—nobody talks like that. But you’d certainly agree with the
premise. When you’re turning an idea into a fully working implementation,
you’ll inevitably spend a lot more time in the “getting it to work” phase
than in the “typing it in” phase. Barring extreme circumstances—a simple
idea and a run of incredible luck, say—you’ll spend more time debugging
than coding. This is so obvious it’s rarely even stated.
Here’s the twist.
You know that coding is actually debugging, but how does that affect the
way you approach coding projects? You know that coding is actually
debugging—so what are you going to do about it?
One obvious answer is to write code with fewer bugs. That’s what the rest
of this book is about, so let’s set it aside for now. This Rule is about
something different: writing code that’s easy to debug.

The Lifecycle of a Bug
Let’s take a step back and think about what debugging actually is. There are
four basic stages in the lifecycle of a bug:

1. The bug is detected—you discover the problem.
2. Next it’s diagnosed—you investigate and uncover what’s

causing the errant behavior.

3. Then you fix it, changing your implementation to eliminate
the errant behavior.

4. Finally, you test to make sure that the bug has actually been
fixed and that your fix didn’t cause new problems, then you
commit the fix.

The diagnosis phase is often the longest and most frustrating. That’s
because most bugs arrive with no details. Typically you’ve got a description
of the symptom—the program crashed, or the OK button on a dialog is
always disabled, or a list of all your users swaps the first and last names for
a quarter of the entries. If you’re lucky, the bug report will have some
context, such as what the user was doing when the program crashed.
What you’re missing is why the symptom occurred. What led to the
symptom? What exactly went wrong? Diagnosis is the process of answering
these questions. Until you know what went wrong, you can’t fix the
problem.
The thing you’ve got going for you is that computers are deterministic. If
the computer is presented with exactly the same situation, it will generate
exactly the same result. If you don’t see the same result, then you didn’t
reproduce the situation exactly.
Bugs would be easy to diagnose if you could time travel back to right
before things started going wrong. Then your job would be easy—just step
through the code looking for trouble. If you accidentally step past the
problem, or if you didn’t start early enough, no worries: fire up your time
machine and pop a little further backward in time.
Of course, you can’t actually time travel—or, if you can, you’ll have higher
priorities for your time travel powers than fixing bugs in your code. Instead,
you need to fake the ability to time travel, getting the code back into exactly
the situation that will cause the problem, then break into the debugger right
before things go sideways.
There’s often a gap between things starting to go sideways and the bug’s
symptom showing up, so knowing when to break into the debugger is a bit
of a magic trick. If you’re really lucky, the actual underlying problem and
the symptom are one and the same:

void showObjectDetails(const Character * character)
{
 trace(
 "character %s [%s] %s",
 (character) ? character->name() : "",
 character,
 (character->sourceFile()) ? character->sourceFile() : "");
}

A crash here with a null object is easy to diagnose. The symptom (the
crash) is in the same statement as the actual problem (we’re checking
whether character is null, implying that null objects are supported, but
then dereferencing character with no null check two lines later). With no
gap between symptom and problem, diagnosis is easy.
Or, at some slightly smaller value of “lucky,” the symptom and problem are
neighbors:

int calculateHighestCharacterPriority()
{
 Character * bestCharacter = nullptr;

 for (Character * character : g_allCharacters)
 {
 if (!bestCharacter ||
 character->priority() > bestCharacter->priority())
 {
 bestCharacter = character;
 }
 }

 return bestCharacter->priority();
}

Another null pointer crash, this time if
calculateHighestCharacterPriority is called when no characters exist.
The symptom here (crashing with best Char acter still null) is separated by
a few lines from the problem (the logic of the preceding loop doesn’t handle
an empty characters list).
Here we get the first inkling of the actual process of diagnosing a bug.
Earlier we said that if we could time travel back to the point where things
started going wrong, it would be easy to diagnose the bug. That’s true, and
that’s sort of what we’re doing during diagnosis, but it’s rare to be able to
jump all the way back to the original cause, the point where things started
going wrong, all in one step.
It’s more typical for things to fall apart bit by bit instead of all at once.
Instead of jumping straight back in time to the point where things go wrong,
you’re working backward bit by bit. You identify something that looks
wrong, then work backward to identify when it started looking wrong. That
often leads to something else that looks wrong, another process of working
backward, then more rounds of the same until you land on the pebble whose

tumble started the whole avalanche that led to your eventual symptom.
That’s what diagnosing a bug is.
I understand if this effort to decompose the process of debugging doesn’t
seem useful. You started with an idea of what debugging is like. You’re a
programmer, and coding is debugging, so you’ve debugged code. Why all
this effort to describe a process that’s obvious?
Well, our goal is to make debugging easier, and we can’t do that without a
crisp definition of what debugging is.
If we define debugging as the process of stepping backward in time,
reconstructing the cascade of things going wrong that eventually lead to the
symptom we’ve detected, then we make debugging easier by making it
easier to step backward in time. Eventually, we work backward to the
pebble that started the avalanche, which is where we’d like to fix things.
The easier it is to work backward, the more likely we are to follow the
chain of causation to its source.
That’s the thing about avalanches. We don’t have to work all the way
backward to the original pebble. We can just fix the symptom, and not
worry about diagnosing our way backward to the cause of that symptom.
Faced with the crash in our second example, we could just add a null
pointer check to stomp on the symptom, the crash when called with no
characters:

int calculateHighestCharacterPriority()
{
 Character * bestCharacter = nullptr;

 for (Character * character : g_allCharacters)
 {
 if (!bestCharacter ||
 character->priority() > bestCharacter->priority())
 {
 bestCharacter = character;
 }
 }

 return (bestCharacter) ? bestCharacter->priority() : 0;
}

When working backward is hard, there’s a strong temptation to do exactly
this—to fix the symptom rather than tracing back to its cause. The
temptation is strong because in some sense it works. This code was
crashing, and now it’s not. Your work is done.

If we’d done just a little bit more tracing backward, we’d probably realize
that a better fix would be getting rid of the bestCharacter pointer:

int calculateHighestCharacterPriority()
{
 int highestPriority = 0;

 for (Character * character : g_allCharacters)
 {
 highestPriority = max(
 highestPriority,
 character->priority());
 }

 return highestPriority;
}

Most bugs aren’t as simple as this example. Patching the symptom without
tracing backward to the original problem leaves that original problem still
lying in wait, poised to start an avalanche.
In this example, the pebble is a pointer that’s null, but only in a special case.
We wrote code that missed the special case once. We’re likely to miss that
special case again. Better to get rid of the pebble by eliminating the pointer
entirely.
The temptation to deal with the symptom rather than its cause exists at
every step along the way of your exploration up the causal chain. As you
slowly work your way backward in time from symptom to cause, and to the
cause of that cause, and then the cause of that cause, at any point you can
stomp on a problem and declare victory. This is a victory of sorts—the
eventual symptom that prompted your debugging disappears.
But declaring victory midway through the avalanche means that the pebble
is still there. At some point it will cause another avalanche, whether you’re
the coder who gets buried or someone else is. The easier we make it to take
steps backward in time, the easier it is to resist the temptation to fix
symptoms instead of tracing back to their root causes. That makes it easier
to fix pebbles instead of patching avalanches.1

Minimizing State
Given this definition of debugging, we can spot the opportunities for
improvement:
Pushing symptoms closer to causes makes tracing upstream easier.

If the cause is nearby in the source code, or if it happened more
recently, then discovering the connection gets easier.

Reducing the length of the causal chain shortens the debugging process.
A symptom that has a single cause is easier to fix than a symptom
with a long cascade of symptoms leading to causes leading to
other causes ad nauseum.

Making it easier to hop backward in time helps trace each link.
If it’s easy to reproduce the state that led to the cause of each
symptom, it will be easy to explore the causal chain.

The easiest target here is the last one listed. Reproducing state is hard if
there’s lots of state. If we reduce the amount of state we need to reproduce,
we’ll have an easier time hopping backward up the causal chain.
It’s easy to debug a problem in a pure function—a function that has no side
effects and depends only on its inputs. If the function returns an incorrect
value for some set of inputs, just call it again with the same inputs and it
will return the same output. Repeat as needed.
Say we’re calculating Fibonacci numbers, and we’ve got a bug. Calculating
Fibonacci numbers is a problem that is only ever solved in programming
tests and whiteboard interviews, but hang with me. Here’s the code.2 The
bug report is that getFibonacci returns the wrong value:

int getFibonacci(int n)
{
 static vector<int> values = { 0, 1, 1, 2, 3, 5, 8, 13, 23, 34, 55 };
 for (int i = values.size(); i <= n; ++i)
 {
 values.push_back(values[i - 2] + values[i - 1]);
 }
 return values[n];
}

This is a pure function, so reproducing the problem is easy. The only state it
relies on is its argument, so every time we call getFibonacci(8) we’ll get
the same incorrect result, 23 instead of 21. Once we’re stepping into the
function, it’s pretty obvious what’s wrong—we’re priming the values array
with the wrong value. Diagnosis complete.

That’s our first takeaway, then. If you build your code with pure functions,
you’ll have an easier time reproducing state and an easier time debugging
problems.
Let’s look at a more complicated scenario. Imagine we’ve got a Character
method that returns a “threat” value based on that character’s current
weapon, armor, health level, status effects, and so on. We could write code
to maintain that threat value as state in the character:

struct Character
{
 void setArmor(Armor * armor)
 {
 m_threat -= m_armor->getThreat();
 m_threat += armor->getThreat();
 m_armor = armor;
 }

 void setWeapon(Weapon * weapon)
 {
 m_threat -= weapon->getThreat();
 m_threat += weapon->getThreat();
 m_weapon = weapon;
 }

 void setHitPoint(float hitPoints)
 {
 m_threat -= getThreatFromHitPoints(m_hitPoints);
 m_threat += getThreatFromHitPoints(hitPoints);
 m_hitPoints = hitPoints;
 }

 int getThreat() const
 {
 return m_threat;
 }

protected:

 int m_threat;
 Armor * m_armor;
 Weapon * m_weapon;
 float m_hitPoints;
};

There’s a bug in this code, reported as something like “player doesn’t
appear threatened by an enemy with a +1 Sword of Grievous Wounding.”
Luckily this bug is easy to reproduce manually. If you walk up to the enemy
holding the magic sword, the player character still plays his unconcerned
animation instead of looking ready for action.

The preceding code isn’t where that symptom shows up, of course. The
actual symptom in this case is the player character playing an inappropriate
animation, looking unconcerned when they should be looking threatened.
We’ve already traced a few steps upstream in the causal chain before we hit
our example code, but when we do we find that m_threat doesn’t have the
right value.
So now we need to figure out why it doesn’t have the right value! We’ve
got to do the magic trick of jumping backward in time, reproducing the
state that led to m_threat being set to the wrong value.
And that’s tricky in this case. The code isn’t “nearby,” like it was in the
prior simple examples. Nor is it “recent.” At some point in the past, we set
m_threat to the wrong value, but we’re not sure when.
That’s the problem with stateful code. You don’t detect problems until long
after things have gone sideways, and this delay between cause and
symptom makes diagnosing the problem difficult. In this case, we know
that m_threat has the wrong value, but we’re not sure why or when that
incorrect value was set.
If you follow the advice about audit functions in Rule 2, then diagnosing
the problem is cake. Add a call to the audit function whenever you’re
updating the character’s state:

struct Character
{
 void setWeapon(Weapon * weapon)
 {
 m_threat -= weapon->getThreat();
 m_threat += weapon->getThreat();
 m_weapon = weapon;
 audit();
 }

 void audit() const
 {
 int expectedThreat = m_armor->getThreat() +
 m_weapon->getThreat() +
 getThreatFromHitPoints(m_hitPoints);

 assert(m_threat == expectedThreat);
 }
};

If we do this, then the audit function asserts at the end of setWeapon. Face
palm; we meant to subtract the threat from the old weapon before adding

the threat from the new weapon. It’s no wonder the player character was so
blasé.
Without the help of an audit function, diagnosing the problem is decidedly
not cake. You probably end up placing breakpoints on all the lines where
m_threat is set, then running the code and verifying the state each time you
hit one of those breakpoints. Tedious, and in this case easily avoided—you
shouldn’t have been maintaining m_threat as a bit of state. Don’t add state
unless it’s absolutely necessary.
Contrast with a similar bug in stateless code:

struct Character
{
 void setArmor(Armor * armor)
 {
 m_armor = armor;
 }

 void setWeapon(Weapon * weapon)
 {
 m_weapon = weapon;
 }

 void setHitPoint(float hitPoints)
 {
 m_hitPoints = hitPoints;
 }

 int getThreat() const
 {
 return m_armor->getThreat() -
 m_weapon->getThreat() +
 getThreatFromHitPoints(m_hitPoints);
 }

protected:

 Armor * m_armor;
 Weapon * m_weapon;
 float m_hitPoints;
};

With the stateless code, we have a clear plan of action when we discover
Character::getThreat is returning the wrong value. Walk up to the enemy
with the magic sword, then set a breakpoint on getThreat. Diagnosis is
easy—there’s an errant minus sign where a plus sign was clearly intended.
Reducing the amount of state made diagnosis much easier.
We haven’t eliminated state entirely from Character. The state that remains
—the character’s armor, weapon, and current hit points—is sort of the point

of the Character object. It’s irreducible.
That’s true for a lot of video game code, where we’re modeling real-world
objects with virtual analogs, and those objects have state. Like an object’s
position and velocity, or the player’s current hit points, or what magic gems
are slotted into the player’s magic sword. That’s all state, and it’s not easily
eliminated.
But where you can get rid of state, do. State makes debugging harder, and
coding is debugging. Where possible, build behavior out of pure functions.
It’s easier to get the details correct, and when things go wrong problems are
a lot easier to diagnose.

Dealing with Unavoidable State
When state is unavoidable it makes diagnosing problems more complicated.
Imagine you’re diagnosing a problem—characters sometimes react
inappropriately to arrow impacts. They’re expected to stumble backward,3
but sometimes they stumble forward instead.
Hmm. There’s a suggestive word in that bug description…“sometimes”
tells you that the problem is probably related to the state of the interacting
objects—my guess would be the problem is inside the character, which
probably has the most state, though the arrow is also a possibility.
Diagnosing the problem is going to require reproducing that state.
That might be easy! If the bug is showing up 100% of the time in one of
your unit tests, you’re home free. The unit test is creating the state that
leads to the incorrect behavior, which makes diagnosis straightforward. Set
a breakpoint that fires when the ill-fated arrow hits the character and start
debugging—you might need to explore up the causal stream to find the
pebble that started the avalanche, but the hard part of each step backward in
time is reproducing state, and the unit test is taking care of that for you.
Or maybe you’re slightly less lucky. You don’t have an automated test, but
given a few tries you can reproduce the problem manually, and you can
detect the problem when it occurs.
In the Sucker Punch engine there’s an object that maps every damage
record to an appropriate reaction—that’s where the code decides what a
character does when an arrow thunks into them. We can detect the problem
in the mapping code—we just need to add code that makes sure the impact

velocity of the arrow and the character stumble direction point in the same
direction:

void DamageArbiter::getDamageReaction(
 const Damage * damage,
 Reaction * reaction) const
{
 // All the actual logic for mapping damage to reactions goes here.
 // There's a single function that does this in the Sucker Punch
 // engine. That function is nearly 3000 lines long and is not the
 // purest embodiment of the Rules, though to be fair it's solving
 // a very complicated problem.

 if (damage->isArrow())
 {
 assert(reaction->isStumble());
 Vector arrowVelocity = damage->impactVelocity();
 Vector stumbleDirection = reaction->stumbleDirection();
 assert(dotProduct(arrowVelocity, stumbleDirection) > 0.0f);
 }
}

When this assert fires, you’re in good shape to diagnose the problem.
The getDamageReaction function is relatively pure—it returns the same
Reaction every time for any bit of Damage, and it doesn’t have side effects,
but it also makes decisions based on the state of arbitrary objects in the
world. That sounds like a disaster—do we have to reproduce the state of
every single object in the world in order to reproduce the problem?
That’s why it’s important that we detect the problem early, before we return
from getDamageReaction. That lets us diagnose the problem. The function
has no side effects, so the state of all the objects in the world hasn’t
changed. If we call getDamageReaction again immediately, we should get
the same result.
In the olden days I’d insert code to handle this. When the problem is
detected, break into the debugger to let me start single-stepping, then call
the pure function recursively:

void DamageArbiter::getDamageReaction(
 const Damage * damage,
 Reaction * reaction) const
{
 // All the actual logic for mapping damage to reactions goes here.
 // There's a single function that does this in the Sucker Punch
 // engine. That function is nearly 3000 lines long and is not the
 // purest embodiment of the Rules, though to be fair it's solving
 // a very complicated problem.

 if (damage->isArrow())

 {
 assert(reaction->isStumble());
 Vector arrowVelocity = damage->impactVelocity();
 Vector stumbleDirection = reaction->stumbleDirection();
 if (dotProduct(arrowVelocity, stumbleDirection) <= 0.0f)
 {
 assert(false);

 static bool s_debugProblem = CHRISZ;
 if (s_debugProblem)
 {
 getDamageReaction(damage, reaction);
 }
 }
 }
}

These days, I can be more improvisatory. The IDE we use at Sucker Punch
lets me set the next line to execute whenever I’m stopped on a line in the
debugger. This is not without some danger, since randomly jumping around
in the code can create its own problems, but given some care it works well.
If I realize I’ve hit a problem, especially in a pure function, I can pop
backward in the code to identify the cause of the problem. This ability
transforms diagnosis. A single step backward in time that was difficult to
execute has become easy. If the underlying cause of the problem is local—
recent, and nearby in the code—then it’s easy to find.
Eliminating state doesn’t have to be an all-or-nothing thing. Making some
bit of code completely stateless will make it easier to diagnose problems,
even if nearby code still maintains state. Every little bit of state you
eliminate helps.

Dealing with Unavoidable Delay
In the examples we’ve looked at so far, we could detect the symptom
mechanically. If we crashed, then the problem sort of detected itself. If our
code is self-policing through asserts, then it detects its own problems. In
cases like our arrow example, we noticed the problem through manual
testing, but could translate the problem into an assert in the code.
Detecting symptoms like this isn’t always possible, and this complicates
diagnosis. Sometimes the symptom isn’t immediately apparent.
Here’s a Sucker Punch example—debugging problems in our animation
code. The movement of characters in our games is driven by animations
created by our animation team. Each animation describes where each part
of the character’s body moves as a function of time. Say, at 1.5 seconds into

the animation, the left hand goes exactly here and is oriented exactly like
this; at 1.53 seconds into the animation, it’s moved slightly up and rotated
forward a tiny bit. And so on, for each of the six hundred or so parts of the
character body we manage, every sixtieth of a second as long as the
animation lasts.
Each animation on its own is a pure function. It doesn’t rely on any external
state, or have any side effects. All it cares about is its sole input variable,
the exact time within the animation’s timeline we’re evaluating. If we
repeatedly evaluate the animation with the same input variable, we’ll
repeatedly get the same body position.
It’s not quite that simple, though. When we switch from one animation to
another—when a character who is running decides to jump, say—then we
don’t just cut over to the new animation. That would cause the character’s
body to pop into a new position, which looks bad. Instead, we smoothly
transition from the old animation to the new one.
Smoothing makes things more complicated because it relies on the
character’s current body position as well as the position in the animation
timeline. For us to reproduce a problem in smoothing, we need the position
and orientation of all six hundred or so parts of the character’s body we
manage as well as that single timeline value for the animation.
Wait, it gets worse! While our brains are really good at detecting glitches in
animations, it takes a while for us to realize we’ve seen a problem, and
we’re reevaluating the animation sixty times a second. By the time we
realize that something looked wrong, we’ve reevaluated the animation a
dozen times, and whatever state caused the animation glitch is long lost.
There’s a solution, though it’s an expensive one. Animation smoothing
relies on a lot of state, but at least it’s state we can identify. If we captured
all of that state every time we evaluated the animation, then we could
reevaluate the animation smoothing using that state to diagnose problems.
And in fact that’s what we do. Because glitch-free animation is an absolute
requirement, we’ve invested in debugging animations. We capture all the
character state that affects animation every frame, and have a debugging
tool that lets us scroll back and forth over recent evaluations of the
animation. When we see a glitch, we can pause the game, fire up the
animation debugging tool, scroll backward in time to the glitch, then break

into the debugger to start tracing from symptom to cause up the causal
chain.
With this tool we automated the hard part of debugging—reproducing the
state that led to the problem. If you’ve got code that relies on state, but that
state can be scoped, then capturing the state makes debugging a lot easier.
Think of this technique as creating an executable logfile—a logfile that
doesn’t just describe what happened, but contains all the data necessary to
cause that same thing to happen again. If you’ve built your system out of
pure functions, then building an executable logfile is completely plausible.
You just capture all of the inputs and provide a way to play them back.
This isn’t easy to do, but for crucially important and hard-to-debug
problems like animation quality at Sucker Punch, it’s worth the effort.

1 So how do you know when you’ve found the pebble and not just another symptom? Well,
if you’re not sure why or when the purported pebble occurs, then you probably haven’t found
the pebble and should keep investigating. But don’t obsess about it—every step uphill toward
the actual pebble is helpful.
2 This is not a good way to calculate Fibonacci numbers. Don’t use it on a programming
test.
3 This is movie logic. Arrows don’t have that much energy. They’re not going to knock
anything bigger than a squirrel backward. But it’s what everyone playing video games expects,
so there you go.

Rule 14. Code Comes in Four Flavors

Here’s an incredibly oversimplified but still useful model for thinking about
code. Imagine that there are two kinds of programming problems to be
solved—Easy and Hard.
You’ve already got an idea of what an Easy problem is, but let me give you
some generic examples: Finding the largest and smallest values in an array
of numbers. Inserting a node into a sorted binary tree. Removing odd values
from an array.
Hard problems are also easy to identify: memory allocation, for instance—
implementing the C standard library’s malloc and free. Parsing a scripting
language. Writing a linear-constraints problem solver.
Now, Easy and Hard, as I’ve defined them here, are really only two points
on a spectrum, and they aren’t even the extreme points. Some problems are
trivial, even easier than the Easy examples—summing two numbers, say.
And there are problems much harder than the Hard examples, like creating
a journaling filesystem from scratch.
But they’re two useful points. Between Easy and Hard lie most of the
problems programmers solve every day. For what it’s worth, I’ve written
solutions to all of these examples—except building a journaling filesystem
from scratch, although that sounds like fun.
It seems obvious that you’re going to need to write more code to solve a
Hard problem than to solve an Easy one, and that the code you’ll write will
be more complicated. This is often the case. Solutions to Hard problems are
usually more difficult to write, and end up longer and more complicated
than solutions to Easy problems.
That leads to another oversimplified model. This time, imagine that there
are two kinds of solutions to problems: Simple and Complicated. Simple
solutions are short and easy to understand. Complicated solutions are long
and difficult to understand. Again, these are just two points on a spectrum.
There are obviously Moderately Complicated or Simple-ish solutions, too,
but it’s useful to think about the Simple and Complicated points on that
spectrum.

You’re a programmer, so at this point you’ve figured out how we get to four
flavors of code (Table 14-1), per the Rule title.

Table 14-1. Simple and Complicated solutions
to Easy and Hard problems
 Easy problem Hard problem
 Simple solution Expected Aspirational
 Complicated solution Really, really bad Accepted

It’s obvious that there are Simple solutions to Easy problems, and that there
are Complicated solutions to Hard problems. From personal experience, we
can all attest that it’s distressingly easy to write Complicated solutions to
Easy problems. And, in some cases, it’s possible to write Simple solutions
to Hard problems.
Per Rule 1, we’d like to find solutions that are as simple as possible, so it’s
clear where this Rule is headed! But let’s look at some examples.

Easy Problem, Simple Solution
Let’s start with an example of an Easy problem—finding the largest and
smallest values in an array. Here is a Simple solution to this Easy problem:

struct Bounds
{
 Bounds(int minValue, int maxValue)
 : m_minValue(minValue), m_maxValue(maxValue)
 { ; }

 int m_minValue;
 int m_maxValue;
};

Bounds findBounds(const vector<int> & values)
{
 int minValue = INT_MAX;
 int maxValue = INT_MIN;

 for (int value : values)
 {
 minValue = min(minValue, value);
 maxValue = max(maxValue, value);
 }

 return Bounds(minValue, maxValue);
}

The algorithm is simple—it just loops through the values, tracking the
largest and smallest values it finds. There’s some very minor subtlety about
how to get started—I’m using a fairly standard trick to make sure the first
element sets both minValue and maxValue. Other than that, the code is easy
to follow and understand. It’s appropriately simple.

Easy Problem, Three Complicated Solutions
It’s entirely possible to take exactly the same algorithm and make the code
much more complicated. We’ve all seen code that buries a simple algorithm
under multiple layers of abstractions, like this:

enum EmptyTag
{
 kEmpty
};

template <typename T> T MinValue() { return 0; }
template <typename T> T MaxValue() { return 0; }

template <> int MinValue<int>() { return INT_MIN; }
template <> int MaxValue<int>() { return INT_MAX; }

template <class T>
struct Bounds
{
 Bounds(const T & value)
 : m_minValue(value), m_maxValue(value)
 { ; }
 Bounds(const T & minValue, const T & maxValue)
 : m_minValue(minValue), m_maxValue(maxValue)
 { ; }
 Bounds(EmptyTag)
 : m_minValue(MaxValue<T>()), m_maxValue(MinValue<T>())
 { ; }

 Bounds & operator |= (const T & value)
 {
 m_minValue = min(m_minValue, value);
 m_maxValue = max(m_maxValue, value);

 return *this;
 }

 T m_minValue;
 T m_maxValue;
};

template <class T>
struct Range
{
 Range(const T::iterator & begin, const T:: & end)
 : m_begin(begin), m_end(end)
 { ; }

 const T & begin() const
 { return m_begin; }

 const T & end() const
 { return m_end; }

 T m_begin;
 T m_end;
};

template <class T>
Range<typename vector<T>::iterator> getVectorRange(
 const vector<T> & values,
 int beginIndex,
 int endIndex)
{
 return Range<vector<T>::const_iterator>(
 values.begin() + beginIndex,
 values.begin() + endIndex);
}

template <class T, class I>
T iterateAndMerge(const T & init, const I & iterable)
{
 T merge(init);

 for (const auto & value : iterable)
 {
 merge |= value;
 }

 return merge;
}

void findBounds(const vector<int> & values, Bounds<int> * bounds)
{
 *bounds = iterateAndMerge(
 Bounds<int>(kEmpty),
 getVectorRange(values, 0, values.size()));
}

This is exactly the same algorithm, though there’s a lot to dig through to
convince yourself of that. The code is well-meaning, at least. There’s
nothing egregious here—we’re not exploiting any particularly weird quirks
of C++, with template specialization being as fancy as things get. The
names are all descriptive. You can imagine the justification for each line,
with a little squinting.
And yet…it’s four times as much code, and it’s a lot harder to follow and
understand than the simple example we started with. It’s Complicated code,
at least relative to the problem we’re solving. Our previous example was
appropriately Simple; this example is inappropriately Complicated.
That’s only one way to overcomplicate the solution, obviously. We’ve also
all seen code that oversteps the problem it attempts to solve:

struct Bounds
{
 Bounds(int minValue, int maxValue)
 : m_minValue(minValue), m_maxValue(maxValue)
 { ; }

 int m_minValue;
 int m_maxValue;
};

template <class COMPARE>
int findNth(const vector<int> & values, int n)
{
 priority_queue<int, vector<int>, COMPARE> queue;
 COMPARE compare;

 for (int value : values)
 {
 if (queue.size() < n)
 {
 queue.push(value);
 }
 else if (compare(value, queue.top()))
 {
 queue.pop();
 queue.push(value);
 }
 }

 return queue.top();
}

void findBounds(const vector<int> & values, Bounds * bounds)
{
 bounds->m_minValue = findNth<less<int>>(values, 1);
 bounds->m_maxValue = findNth<greater<int>>(values, 1);
}

Here we’ve chosen to solve a more general problem, finding the Nth largest
(or smallest) number in an array, and then finding the min and max values
as a special case. This sort of overly general approach is almost always
misguided. Yes, there’s not that much extra code, and it’s more fun to write
something clever like this than a simpler solution, but it’s a lot harder to
read.1

Finally, it’s possible to overcomplicate things by getting the algorithm
wrong. That’s hard to do in this case, since the simple solution is pretty
obvious, but we’ve all seen code that misses the easy algorithm:

struct Bounds
{
 Bounds(int minValue, int maxValue)
 : m_minValue(minValue), m_maxValue(maxValue)
 { ; }

 int m_minValue;
 int m_maxValue;
};

int findExtreme(const vector<int> & values, int sign)
{
 for (int index = 0; index < values.size(); ++index)
 {
 for (int otherIndex = 0;; ++otherIndex)
 {
 if (otherIndex >= values.size())
 return values[index];

 if (sign * values[index] < sign * values[otherIndex])
 break;
 }
 }

 assert(false);
 return 0;
}

void findBounds(const vector<int> & values, Bounds * bounds)
{
 bounds->m_minValue = findExtreme(values, -1);
 bounds->m_maxValue = findExtreme(values, +1);
}

So, in all, these are three pretty commonplace ways to make things more
complicated than they need to be: using too much abstraction, adding too
much generality, and choosing the wrong algorithm.

The Cost of Complexity

There’s a real cost to extra complexity. It takes longer to write complicated
code than simple code, and much longer to debug it. Anyone reading the
code has to fight their way through the complexity to understand what’s
going on. Our Simple solution has none of these problems—it’s easy to get
it right the first time, and it’s easy to glance at it and understand both how it
works and that it’s correct.
In fact, this single issue—do you solve Easy problems with Simple
solutions?—is the best discriminator between mediocre programmers and
good ones. When we interview candidates at Sucker Punch, we look for two
things: can the candidate solve Hard problems, and do they write Simple
solutions for Easy problems? Unless the answer is yes to both of these
questions, we’re not interested.
Someone writing Complicated solutions to Easy problems isn’t just making
their own job harder, they’re making it harder for everyone else on the
team. Not only do their solutions take more time to create and introduce
more bugs into the codebase, those solutions are more difficult and
frustrating for everyone else to work with. We can’t afford that.

The Four (But Really Three) Kinds of Programmers
Just like there are four flavors of code—Easy and Hard problems, Simple
and Complicated solutions—there are four kinds of programmers. Given an
Easy problem, do you write a Simple answer or a Complicated solution?
And given a Hard problem, is your solution Simple or Complicated?
Now it turns out that there really aren’t coders who write Simple solutions
to Hard problems but Complicated solutions to Easy ones. That leaves us
with three kinds of programmers, as Table 14-2 makes clear.

Table 14-2. Three kinds of programmers
 Kind of programmer Easy problem Hard problem
 Mediocre Complicated Complicated
 Good Simple Complicated
 Great Simple Simple

The difference between mediocre programmers and good ones is that good
programmers write Simple answers to Easy problems. The difference
between good programmers and great ones is that even as the problem gets
Harder, the great programmer still finds a Simple solution.
At some point, problems get Hard enough that there are no Simple solutions
to be found. The best measure of a programmer, then, is how far along this
spectrum they can go before their solutions start getting Complicated. The
farther along the spectrum they make it and the Harder the problems they
can solve with Simple solutions, the better they are as a programmer.
In fact, you can look at this another way. The core skill of a great
programmer is that they recognize when a problem that seems Hard is
actually Easy, if considered from the right perspective.

Hard Problem, Somewhat Complicated Solutions That Don’t
Work
Consider the problem of checking whether any permutation of a particular
set of letters (let’s say “abc”) appears in a string. That is, given a “permute
string” that represents a set of letters, does some ordering of those letters
appear consecutively in another “search string”? For the permute string abc,
the function should return true if the search string is cabbage or abacus,
but false if the search string is scramble or brackish.
It’s not obvious how to solve this, right? The most obvious thing to do
would be to generate all the permutations of the set of letters, then check
whether any of them appear in the string. Generating permutations
recursively is pretty simple. Grab each character from the permute string in

turn, prepending it to all the permutations of the remaining characters in the
search string. Here’s a first attempt at this:

vector<string> generatePermutations(const string & permute)
{
 vector<string> permutations;

 if (permute.length() == 1)
 {
 permutations.push_back(permute);
 }
 else
 {
 for (int index = 0; index < permute.length(); ++index)
 {
 string single = permute.substr(index, 1);
 string rest = permute.substr(0, index) +
 permute.substr(
 index + 1,
 permute.length() - index - 1);

 for (string permutation : generatePermutations(rest))
 {
 permutations.push_back(single + permutation);
 }
 }
 }

 return permutations;
}

bool findPermutation(const string & permute, const string & search)
{
 vector<string> permutations = generatePermutations(permute);
 for (const string & permutation : permutations)
 {
 if (search.find(permutation) != string::npos)
 return true;
 }

 return false;
}

The logic here is pretty simple, and things seem to work…until the permute
string gets a teensy bit long. At that point things explode. The number of
permutations is factorial in the length of the string, so our findPermutation
function quickly becomes unusable. Give it a list of four characters to
permute, as in our example, and it’s happy as a clam. Give it a dozen and it
disappears into a recursive hole, never to return.2

A naive reaction to this explosion would be to realize that I’m doing extra
work. If any of the characters in the list are duplicated, then I’ll have

duplicate entries in the list of permutations. Maybe eliminating duplicates
from the list of permutations would help:

vector<string> generatePermutations(const string & permute)
{
 vector<string> permutations;

 if (permute.length() == 1)
 {
 permutations.push_back(permute);
 }
 else
 {
 for (int index = 0; index < permute.length(); ++index)
 {
 string single = permute.substr(index, 1);
 string rest = permute.substr(0, index) +
 permute.substr(
 index + 1,
 permute.length() - index - 1);

 for (string permutation : generatePermutations(rest))
 {
 permutations.push_back(single + permutation);
 }
 }
 }

 sort(
 permutations.begin(),
 permutations.end());
 permutations.erase(
 unique(permutations.begin(), permutations.end()),
 permutations.end());

 return permutations;
}

Yeah, not so much. I didn’t add that much code, which is great, and the
code I added is simple, but I didn’t really address the core problem. It’s not
possible to optimize your way out of a factorial mess. Unless all of our sets
of characters to permute are small or are mostly duplicated letters, this code
is still unworkable.

Hard Problem, Somewhat Complicated Solution
A better change is to let go of the idea that we’re going to generate all the
permutations. That approach is doomed.
Instead, we need to invert the way we’re thinking about the problem. Let’s
check each substring of the search string. If we can match each character in

the permute string to a single character in that substring, then we’ve found a
permutation:

bool findPermutation(const string & permute, const string & search)
{
 int permuteLength = permute.length();
 int searchLength = search.length();

 vector<bool> found(permuteLength, false);

 for (int lastIndex = permuteLength;
 lastIndex < searchLength;
 ++lastIndex)
 {
 bool foundPermutation = true;

 for (int searchIndex = lastIndex - permuteLength;
 searchIndex < lastIndex;
 ++searchIndex)
 {
 bool foundMatch = false;

 for (int permuteIndex = 0;
 permuteIndex < permuteLength;
 ++permuteIndex)
 {
 if (search[searchIndex] == permute[permuteIndex] &&
 !found[permuteIndex])
 {
 foundMatch = true;
 found[permuteIndex] = true;
 break;
 }
 }

 if (!foundMatch)
 {
 foundPermutation = false;
 break;
 }
 }

 if (foundPermutation)
 return true;

 fill(found.begin(), found.end(), false);
 }

 return false;
}

This works, though the logic of the nested loops is a little tangled. You
might get twinges of performance anxiety seeing the three nested loops—
our first attempt at this function failed because of performance, after all—
but in practice the N3-ness of this approach isn’t an issue. Unless the

permute string is a thousand characters long, performance won’t be the
problem here.
If there’s an issue here, it’s the complexity of the logic. This is a Simple
example, sized to fit this book, so the problem we’re solving isn’t actually
that Hard. You might hope that we could find a Simple solution to it, and
the preceding solution doesn’t quite qualify. It’s the sort of solution a Good
programmer would write—completely functional, but more complicated
than it needs to be.
Actually, a more typical solution from a Good programmer would include a
spasm of premature optimization to avoid the three nested loops. They
might keep running counts, for instance, then hash the set of counts to
roughly linearize the function:

#define LARGE_PRIME 104729

bool findPermutation(const string & permute, const string & search)
{
 int permuteCounts[UCHAR_MAX] = {};
 int currentCounts[UCHAR_MAX] = {};

 int permuteHash = 0;
 int currentHash = 0;

 for (unsigned char character : permute)
 {
 ++permuteCounts[character];
 permuteHash += character * (character + LARGE_PRIME);
 }

 int permuteLength = permute.length();
 int searchLength = search.length();

 if (searchLength < permuteLength)
 return false;

 for (int searchIndex = 0; searchIndex < permuteLength; ++searchIndex)
 {
 unsigned char character = search[searchIndex];

 ++currentCounts[character];
 currentHash += character * (character + LARGE_PRIME);
 }

 for (int searchIndex = permuteLength;; ++searchIndex)
 {
 if (currentHash == permuteHash)
 {
 bool match = true;

 for (char character : permute)
 {
 if (permuteCounts[character] != currentCounts[character])

 match = false;
 }

 if (match)
 return true;
 }

 if (searchIndex >= searchLength)
 break;

 unsigned char removeCharacter = search[searchIndex - permuteLength];
 unsigned char addCharacter = search[searchIndex];

 --currentCounts[removeCharacter];
 currentHash -= removeCharacter * (removeCharacter + LARGE_PRIME);

 ++currentCounts[addCharacter];
 currentHash += addCharacter * (addCharacter + LARGE_PRIME);
 }

 return false;
}

Again, this is functional, just overly Complicated. Under some conditions,
it will have better performance than the last solution…but that doesn’t
matter. The last solution had perfectly reasonable performance and is easier
to understand.

Hard Problem, Simple Solution
But is there a simpler solution, one that’s easy to read and understand?
What separates Great programmers from Good programmers is finding
those sorts of solutions.
In this case, the algorithm we’re using is fine—checking each substring of
the search string to see whether it’s a permutation of the permute string—
it’s our expression of that algorithm that’s getting tangled. But there’s a
simpler way to think about checking for a match.
If we standardize the order of the letters in the permute string, then
similarly standardize the order of each substring we compare it to, we can
just compare the two standardized strings:

bool findPermutation(const string & permute, const string & search)
{
 int permuteLength = permute.length();

 string sortedPermute = permute;
 sort(sortedPermute.begin(), sortedPermute.end());

 for (int index = permuteLength; index < search.length(); ++index)
 {

 string sortedSubstring = search.substr(
 index - permuteLength,
 permuteLength);
 sort(sortedSubstring.begin(), sortedSubstring.end());

 if (sortedPermute == sortedSubstring)
 return true;
 }

 return false;
}

We haven’t changed the fundamental algorithm here, but expressing it this
way makes it much easier to understand. It’s Simple where the last example
was Complicated. A Great programmer finds simple and clear solutions like
this one—and realizes that simplicity and clarity are almost always the
important issues. The Greatest programmer isn’t the one who can write the
most complicated code: it’s the one who finds the simplest answers to the
most complicated problems.

1 Its performance is atrocious, too, but having told you not to worry about optimization in
Rule 5, I feel duty-bound to demote the performance concern to a footnote. In my defense, the
simplest solution here is the fastest, and that is not uncommon.
2 Well, not “never.” With 4 letters, generatePermutations is so fast it’s hard to measure on
my PC. With 8 letters, it takes about a hundredth of a second. With 12 letters, I had to wait 42
seconds, during which my PC’s fan kicked on full blast in a desperate attempt to stop me from
melting something.

Rule 15. Pull the Weeds

When my daughters were young, we had a Nintendo GameCube. It turns
out that one side effect of having a dad who makes video games for a living
is that your house is fully equipped with every single video game console.
My children did not realize until much later that not everyone’s house was
like this.
Our favorite game was Animal Crossing, a game in which the three of us
shared a small village filled with anthropomorphized animals. You could do
all kinds of things in the village—dig for fossils, design new clothes,
decorate your house, gather seashells, go fishing, make friends with the
animals who lived in the town, or just kick back and listen to KK Slider
play his guitar.
One of the things you sort of needed to do in Animal Crossing was pull
weeds. Every night, a few weeds would pop up in your village, whether
you’d played the game that day or not. Pulling weeds was easy—run over
to the weed, push a button, and pop! The weed’s out of the ground. But you
needed to keep up. The weeds kept growing whether you pulled them or
not. The weeds even grew on days you didn’t play the game! If you stopped
pulling weeds, the weeds took over.
They’re still making Animal Crossing games 20 years later. Tens of millions
of people have played some iteration of the game, and every single one has
had the same experience—you come back to the tidy little village you’ve
worked so hard on after a few weeks away, and it’s completely overgrown
with weeds. Twenty years later, I can still feel the pain.
Your project is like that village. You’ve got to pull the weeds—the little bits
of annoyance that continually sprout in any codebase. Every day, whether
you’re working on the project or not, whether you’re pulling weeds or not,
more weeds are growing. If you don’t pull the weeds, they’ll choke the
project.
So what are the weeds in this metaphor? They’re small problems that are
easy to fix, but also easy to ignore. Think of the weeds in Animal Crossing
—pulling them is as easy as pushing a button. Pulling a weed doesn’t have

side effects. It doesn’t cause problems elsewhere. All that changes is that
you have one less weed.
Here’s a weedy bit of code:

// @brief Remove duplicate integers from a vector
//
// @param values Integer vector to compress

template <class T>
void compressVector(
 vector<T> & values,
 bool (* is_equal)(const T &, const T &))
{
 if (values.size() == 0)
 return;

 int iDst = 1;

 for (int iSrc = 1, c = values.size(); iSrc < c; ++iSrc) {
 // Check for unqiue values
 if (!is_equal(values[iDst - 1], values[iSrc]))
 {
 values[iDst++] = values[iSrc];
 }
 }

 values.resize(iDst);
}

There are a couple of obvious problems with the comments in this code.
The header comment doesn’t match the function, to begin with. It looks like
this started as a function that compressed duplicate values from a vector of
integers, and whoever adapted it into a template forgot to update the
comment. On top of that, the comment itself is too vague—we’re not
removing all duplicate values, we’re removing adjacent duplicates. Unless
the array is sorted, those aren’t the same thing. To complete the trifecta,
there’s a spelling mistake in the second comment. With those problems
fixed:

// @brief Compress sequences of equal values in a vector
//
// For any sequence of values in the vector considered equal, keep only
// the first value in that sequence, removing the duplicates.
//
// @param values Vector to compress
// @param is_equal Comparison function to use

template <class T>
void compressVector(
 vector<T> & values,
 bool (* is_equal)(const T &, const T &))

{
 if (values.size() == 0)
 return;

 int iDst = 1;

 for (int iSrc = 1, c = values.size(); iSrc < c; ++iSrc) {
 // Check for unique values
 if (!is_equal(values[iDst - 1], values[iSrc]))
 {
 values[iDst++] = values[iSrc];
 }
 }

 values.resize(iDst);
}

Fixing these problems is pulling weeds. It’s easy to do. Repairing the
comments won’t cause problems elsewhere. And I’ve made the code better
—fixing the ambiguity of the comment is likely to save somebody a bug at
some point.
I could do more, though. There are some naming and formatting issues
sprinkled in, too. The i and c variables aren’t following standard
conventions—this project uses index and count, not one-letter conventions.
The is_equal argument ought to be isEqual to match the project’s function
naming style. The curly braces aren’t consistent, and this project’s
conventions frown on packing multiple arguments into the for statement.
The conventions also expect blank lines after comments, which the second
comment doesn’t have.
All easy to fix:

// @brief Compress sequences of equal values in a vector
//
// For any sequence of values in the vector considered equal, keep only
// the first value in that sequence, removing the duplicates.
//
// @param values Vector to compress
// @param isEqual Comparison function to use

template <class T>
void compressVector(
 vector<T> & values,
 bool (* isEqual)(const T &, const T &))
{
 int count = values.size();
 if (count == 0)
 return;

 // Copy values that aren't equal to their predecessor

 int destIndex = 1;

 for (int sourceIndex = 1; sourceIndex < count; ++sourceIndex)
 {
 if (!isEqual(values[destIndex - 1], values[sourceIndex]))
 {
 values[destIndex++] = values[sourceIndex];
 }
 }

 values.resize(destIndex);
}

This round of changes was also safe, though not as safe as the comment
changes made in the first round. It’s possible to introduce a bug with these
sorts of changes—mistyping a sourceIndex when you meant destIndex,
say. Unlikely, but possible.

Weed Identification
It’s safety that defines whether an issue you spot is a weed or not. If you can
fix it safely, then it’s a weed that should be pulled. Fixing a spelling
problem in a comment is absolutely safe. For a more substantive mistake in
a comment, like the ambiguity we cleaned up in our first round of changes,
fixing the problem is also safe…as long as you’re actually right about what
the function does!
You can fix naming issues safely, too. Doing a search + replace over a
section of your source code will work, and the compiler will probably catch
any mistakes you make, at least for compiled languages like C++.
In the second round of changes, I moved some variables around when I
renamed them. That was safe-ish, but less safe than the other changes. Still
a weed, probably, but getting less weedy.
There’s a spectrum here, obviously! None of the changes I’ve made so far
are functional—the compiler will generate the same code, more or less.
We’ve improved its readability and consistency without affecting its
functionality.
You can imagine more substantive changes that still don’t affect the code’s
functionality—like changing the name of a class member, which requires
matching changes in many source files, or writing a new expected-usage
comment for a class. As long as the functionality of the code isn’t affected,
it’s a weed. Changes that shouldn’t change functionality as long as you get
the details right, like moving or renaming a variable, are probably still
weeds, but a little more caution is called for.

When you are intentionally changing functionality, it’s not a weed anymore:
it’s a bug, and different rules apply. You pull weeds automatically; fixing
bugs isn’t as automatic, because doing so often introduces new problems.
By definition, fixing a weed doesn’t introduce new problems.
Pulling weeds is easy, and a weed-free codebase is much more pleasant to
work in...so why do most projects have so many weeds?

How Code Gets Weedy
Well, it’s easy to pull a weed, but it’s just as easy to ignore it. We all have
more tasks than time. And the cost of pulling the weed is immediate, though
small, while its benefits are diffused and delayed. It’s tempting to avert your
eyes.
Furthermore, what looks like a weed to one coder may look like a flower to
another.1 You may be confused by a comment and suspect that it’s
incorrect, but not be confident enough in your understanding of the code to
change it. You could take a more thorough look at the code or ask someone
who’s more familiar with it to double-check your suspicion, but (see
previous paragraph) you’ve got a long to-do list, and fixing this random
comment is not on it.
Or you may see some formatting issues in a chunk of code written by a new
member of the team. You could fix them yourself, but it’s easy to reason
that fixing them yourself won’t teach the new team member the right
formatting. Better to let their next code review identify the mistake.
Even though weeds are easy to pull, it’s almost as easy to leave them be.
The factors that make you reluctant to pull them—needing to focus on
important issues, being unsure of whether the weed is actually a weed or
not—they’re all real.
But weeds breed more weeds. You may have a crisply defined set of
naming and formatting conventions, but if your project is full of weedy bits
of nonconforming code, then no one will know what to trust. Do they trust
the conventions, or the code? I know what happens in this case: they shrug
and copy whichever they’re more comfortable with.
The comment that confused you? It’s going to confuse the next person who
sees it, too. And you’d be surprised and how often the process of fixing a
comment—verifying that the function does what you think, checking that

the code around it is making the correct assumptions, talking about the new
comment in a code review—turns up a “real” bug in the code.
Look, pulling weeds is by definition quick. This isn’t something that needs
to be scheduled. If something is going to take appreciable time, it isn’t a
weed.
Our focus at Sucker Punch on weeds works because we all agree what a
weed is. We have strong and strict team conventions, per Rule 12. A lot of
weed pulling fixes something that doesn’t match the conventions. That
strengthens the conventions themselves—not least because the change will
get reviewed, and in the review the two of you will look at the
noncompliant and compliant versions, pre- and post-weed pull, and agree
that it was a weed that needed pulling. If as a code reviewer you think the
reviewee is wasting time on unimportant issues, the problem is that you
don’t agree on what’s important. Fix that.
In the end, it’s simple. If you know something is a weed, pull it. If you
suspect something is a weed, it’s worth a small bit of effort to verify that
and pull the weed.2

This places a counterintuitive imperative on your best, most senior team
members. They’re the ones who will be best at spotting weeds. The person
who wrote your project conventions is best positioned to spot deviations
from those conventions, after all. They’re also likely to be one of the more
senior people on the team. Does it make sense for them to spend a little bit
of time fixing little problems?
Absolutely! Clearing the project of weeds makes everyone’s job easier. It
makes the important stuff more visible.

1 Per the gardener’s maxim, “A weed is just a plant in the wrong place.” Which reminds me
of the time I decided to surprise my wife by weeding her vegetable garden for her. The
surprise in that case was that I pulled out all of the asparagus she’d recently planted. If my
goal was to never be asked to weed anything ever again…mission accomplished.
2 Just be sure it’s not asparagus.

Rule 16. Work Backward from Your
Result, Not Forward from Your Code

Forgive me for the following brief descent into metaphor.
Programming is about bridging gaps. You’ve got some problem you want to
solve, and you’ve got some pile of code and tech to work with. In between,
there’s a gap. You’ll build a bridge across it by extending the code you have
and recombining bits and pieces of it in new ways, solving a bit of the
problem at a time until you’re done.
Sometimes you only have a small gap to cross. The code you have on hand
nearly solves the problem, or just needs to be called in the right way. It
barely even takes programming to build the bridge: you’re just invoking
your code with the right parameters set.
Sometimes the gap is huge. It’s not at all clear how your code can solve the
problem. Sometimes it’s not entirely clear exactly what problem needs to be
solved! That’s particularly likely when you’re working on a video game,
where it’s hard to predict what’s going to be fun before you have it working.
At Sucker Punch it’s depressingly common to solve a tricky problem only
to discover there was no point in solving it because the result isn’t fun to
play.
Every gap has two sides. You’re standing on one side, looking across the
gap at the other. The question here is—are you standing on the side that
holds your existing pile of code, or are you standing on the other side, with
the problem?
In other words, putting the bridge metaphor aside, are you thinking about
the problem in terms of your existing code? Or are you thinking about your
code in terms of the problem?
Probably the former, right? You know your existing code very well,
whereas the problem may be entirely new. It might be described in
completely different language than you’d use for your tech, for example. At
Sucker Punch, we might describe a feature in terms of the emotions it
generates in the player—say, that using an ability in the game should make

the player feel “heavy” or “solid.” It’s not clear how that translates into
loops and data structures!
If you’re programming in a more traditional space, you still have to deal
with problems defined in domain-specific ways: a reference to legal
auditing requirements on the data you’re updating, say, or some bit of
business-school doublespeak about actionable measurables.
It’s natural to try to understand the problem in terms of the tech you have on
hand. In the Sucker Punch example, I might think about our “heavy-
feeling” player ability in terms of the animation system, our sound and
visual effects system, the tech we have for doing haptic feedback, and so
on. I think about how I might put together these different bits of tech to
make the ability feel heavy.
For those more traditional examples, I might think about how we can adapt
our journaling system to handle a set of auditing requirements, or about
how we can use our UX tech to pop together something to let our sales staff
identify and track leads (which, it turns out, is what the new operations exec
meant by “actionable measurables”).

An Example
Let’s say I’m building a system that has lots of parameters that need
adjusting in different production environments. Some of the parameters are
simple—a max number of worker threads we should fire up, or the path of a
logfile. Others are more complicated, like a list of bits of plug-in logic
along with parameters for each of the plug-ins. Depending on the
environment, I might have hundreds of individual parameters to adjust.
Sounds like a config file is in order. As it turns out, I’ve got some JSON
handling code on hand that seems like a good fit. The types and predictable
structure of the parameters fit cleanly, it’s easy to edit and debug the text-
based format, and JSON is extensible enough to make me feel confident
that new parameters will be easy to incorporate. Seems perfect!
Here’s what the interface to my JSON code looks like:

namespace Json
{
 class Value;
 class Stream;

 struct Object

 {
 unordered_map<string, Value> m_values;
 };

 struct Array
 {
 vector<Value> m_values;
 };

 class Value
 {
 public:

 Value() :
 m_type(Type::Null),
 m_str(),
 m_number(0.0),
 m_object(),
 m_array()
 { ; }

 bool isString() const;
 bool isNumber() const;
 bool isObject() const;
 bool isArray() const;
 bool isTrue() const;
 bool isFalse() const;
 bool isNull() const;

 operator const string & () const;
 operator double () const;
 operator const Object & () const;
 operator const Array & () const;

 void format(int indent) const;

 static bool tryReadValue(Stream * stream, Value * value);
 };
};

Using JSON with this interface is straightforward—parse some JSON with
Json::Value::tryReadValue to get a Value, then check its type before
using the appropriate accessor. If a mismatched accessor is called—trying
to convert an array to an object, say—the code asserts and returns a default
value.1

In this simplified example, one of the configurable parameters we support is
a list of blocked servers. Here’s an excerpt from that part of the JSON
config file:

{
 "security" : {
 "blocked_servers" : [
 "www.espn.com",
 "www.theathletic.com",

 "www.xkcd.com",
 "www.penny-arcade.com",
 "www.cad-comic.com",
 "www.brothers-brick.com"
]
 }
}

Apparently whoever configured things decided I shouldn’t waste time at
work, since that’s a good chunk of my list of Chrome bookmarks. Things
are looking good, though: that’s pretty easy JSON to read and write.
Implementing a function to check the list of blocked servers is easy, if I’m
willing to handle a little unpredictability in the config file. It’s just a JSON
file getting edited in a text editor, after all, so I can’t count on it being set up
exactly like I expect. Whoever is editing the file will make mistakes—
misspelled option names, deprecated config options, specifying a number
where a string is expected or a single string when we expect an array.
The JSON parser I’m using will take care of verifying the correctness of the
JSON I pass it, so at least that’s not a worry. And some unpredictability is
part of the design, like making the security and blocked_servers keys
optional. If they’re omitted, then there aren’t any blocked servers. I need to
make sure the code is robust against other forms of unpredictability, though,
like someone sticking a number in the list of blocked servers.
Writing robust code for this file is straightforward, though a bit wordy:

bool isServerBlocked(string server)
{
 if (!g_config.isObject())
 {
 log("expected object for config");
 return false;
 }

 const Object & configObject = g_config;
 const auto & findSecurity = configObject.m_values.find("security");
 if (findSecurity == configObject.m_values.end())
 return false;

 if (!findSecurity->second.isObject())
 {
 log("expected object for config.security");
 return false;
 }

 const Object & securityObject = findSecurity->second;
 const auto & find = securityObject.m_values.find("blocked_servers");
 if (find == securityObject.m_values.end())
 return false;

 if (!find->second.isArray())
 {
 log("expected string array for config.security.blocked_servers");
 return false;
 }

 const Array & blockedServersArray = find->second;
 for (const Value & value : blockedServersArray.m_values)
 {
 if (!value.isString())
 {
 log("expect string array for config.security.blocked_servers");
 continue;
 }

 const string & blockedServer = value;
 if (blockedServer == server)
 return true;
 }

 return false;
}

So…victory, right? I took my existing JSON library and quickly adapted it
to handle a config file. The code I wrote to walk through the parsed JSON
data is a little bit bulky, but it’s easy enough to write and read. The JSON
code is known to be robust, so it makes sense to leverage it to solve this
problem.
I’ve worked forward from the technology to solve the problem and, with
not a whole lot of effort, ended up with something that worked OK. Anyone
who’s used the JSON library will have no problems working with the
config file.

An Annoyance Appears
After a while, though, my team is likely to get a little annoyed with the
amount of code required to delve down into the configuration info. It’s easy
code to read and write, but after you’ve written the same basic code a half
dozen times—check that you’ve got an object, look for the key, handle a
missing key, repeat as needed—you’ll be ready to generalize.
I’ve already taken a step toward this with the errors I’m logging. They
name a list of keys by separating the keys with periods, which is safe as
long as the keys themselves don’t have periods in them. I can accept that
limitation on key names for my config file, leading to a simple function that
walks through nested Objects (assuming I’ve got string splitting and
joining functions to call):

const Value * evaluateKeyPath(const Value & rootValue, string keyPath)
{
 vector<string> keys = splitString(keyPath, ".");

 const Value * currentValue = &rootValue;
 for (unsigned int keyIndex = 0; keyIndex < keys.size(); ++keyIndex)
 {
 if (!currentValue->isObject())
 {
 log(
 "expected %s to be an object",
 joinString(&keys[0], &keys[keyIndex + 1], ".").c_str());
 return nullptr;
 }

 const Object & object = *currentValue;
 const auto & findKey = object.m_values.find(keys[keyIndex]);
 if (findKey == object.m_values.end())
 return nullptr;

 currentValue = &findKey->second;
 }

 return currentValue;
}

That eliminates some of the bulk of isServerBlocked, roughly halving the
amount of code required:

bool isServerBlocked(string server)
{
 const Value * value = evaluateKeyPath(
 g_config,
 "security.blocked_servers");
 if (!value)
 return false;

 if (!value->isArray())
 {
 log("expected string array for security.blocked_servers");
 return false;
 }

 const Array & blockedServersArray = *value;
 for (const Value & value : blockedServersArray.m_values)
 {
 if (!value.isString())
 {
 log("expected string array for security.blocked_servers");
 continue;
 }

 const string & blockedServer = value;
 if (blockedServer == server)
 return true;
 }

 return false;
}

I could simplify things further if I introduce a version of evaluateKeyPath
that verifies it is returning an array:

bool isServerBlocked(string server)
{
 const Array * array = evaluateKeyPathToArray(
 g_config,
 "security.blocked_servers");
 if (!array)
 return false;

 for (const Value & value : array->m_values)
 {
 if (!value.isString())
 {
 log("expected string array for security.blocked_servers");
 continue;
 }

 const string & blockedServer = value;
 if (blockedServer == server)
 return true;
 }

 return false;
}

This all represents real progress—this version of isServerBlocked is half
the size of my first attempt. With hundreds of options to handle, that’s a big
deal. That’s just math.
But despite the improvement, it still feels like we’re writing a lot of
boilerplate code. What’s going wrong?

Choosing a Side of the Gap
In all of these examples—the initial decision to use the JSON library, then
my successive refinements—I’m starting from the technology and working
forward. Our team has a JSON library that we all understand well, and I’m
figuring out how to apply it to our config file problem. Once I’ve got that
bit of tech working, I look to improve it incrementally.
In our bridge metaphor, I’m standing with my technology, looking across a
gap at the problem I’m trying to solve. This is a common pattern—to think
about the problem in terms of the solution you plan to apply.

Here’s the problem with this approach, though. Through the lens of a JSON
file, your config problem starts to adopt the shape of JSON. If you have a
list of similar things, you think of them as a JSON array. You invent short
names for each config option, because it’s obvious that they’re keys in a
JSON object. You group related config options into objects, because that’s a
natural way to organize a big JSON file. If one of your config options is an
enumerated option that says whether to run code locally or remotely, you
think of it as a string instead, because that’s one of the JSON types.
That’s not inevitable. If you’d chosen a different format, you’d think about
the problem differently. At Sucker Punch, one of our config files is written
in a binary format, not as text. We didn’t think about a hierarchy for the
config options, because the serialization tech we use didn’t suggest that.
We’re writing both integers and floating-point values directly, not
converting everything to floating point as JSON does, because that’s more
natural. In short, the tech you’re using strongly influences how you think
about the problem you’re trying to solve.
What if I broke this tendency and thought about the config file problem
without worrying about how I’m going to solve it? How would I think about
things if I were standing on the other side of the gap, the side with the
problem, working backward from the problem instead of forward from the
technology?

Working Backward Instead
Here’s another way to frame that. If reading and writing the config file just
magically happened, what would be the most convenient implementation of
isServerBlocked?
Seems like it would be easiest to just have a global structure that holds all
of the config options.2 Then the list of blocked servers can just be a set of
strings in that structure. Something like this:

struct Config
{
 set<string> m_blockedServers;
};
const Config g_config;

bool isServerBlocked(string serverURL)
{
 return (g_config.m_blockedServers.count(serverURL) > 0);
}

Hmm. That’s a lot simpler than even the simplest version of
isServerBlocked I built on top of our JSON tech. It’s a lot easier to write
and easier to read, with way fewer things to trip up on. It has much better
performance, too, though that’s probably not important in this context.
Actually, simplicity is only the start. If you really think about the config file
problem, it doesn’t take long to see some other issues with my JSON
implementation. Some examples:

My JSON code complains when some supported section of
config.json doesn’t have the expected structure—say, if a
key’s value has the wrong type or a required key is missing.
Unsupported and unrecognized options are silently ignored.
As long as the config file is legal JSON, it can contain all
sorts of apparent config options that aren’t actually hooked
up to anything. That’s not great—common mistakes like
misspelling a config option name will be hard to discover.

Our team will only discover problems with an option in our
implementation when we try to use it. Here,
isServerBlocked will log the issues it recognizes, but only
when we call it to see whether a server is blocked. If the
function isn’t called, then any error in that section of the
config file will go undetected. And if the function is called a
lot, we could be spamming our log with a bunch of duplicate
config-file formatting reports.

At some point, our team is probably going to need to
document the config file. When we do, we’re starting from
scratch. The expected structure of the config file is defined
by all of the bits of code that use it, and they’re scattered all
over our codebase. Figuring out what config options are
allowed is going to take some detective work.

These issues sound familiar…and that’s because we’ve stumbled through a
side door into the ongoing holy war between early-bound and late-bound
solutions. As a programmer, you’ve probably at least dabbled in late-bound
languages—Python, or Lua, or JavaScript—and tried early-bound
languages like C or Java.

To simplify things to the breaking point: in late-bound solutions, you find
out about problems late. With early-bound solutions, you discover at least
some of your problems much earlier. In early-bound languages, you
discover some of your bugs (but rarely all, unfortunately) when you
compile. With late-bound languages, all the bugs appear when your code
runs.
The solutions I built on top of our JSON library were late-bound. Any
problems with the security.blocked_servers key aren’t discovered until
isServerBlocked is called. Contrast that with the solution based on a
global config struct, which was early-bound. When I initialized that Config
struct—presumably loading it from some sort of config file—I ironed out
any problems I found, making it much easier to implement
isServerBlocked.
Maybe I haven’t actually improved things, then—it sounds like I just
moved the problem around. Sure, this implementation of isServerBlocked
is much simpler, but is that because I’ve left out the parsing and validation
code that must live somewhere? Having to write parsing code for the
hundreds of options in our config file doesn’t sound like fun.
There’s nothing stopping me from combining the two approaches—using
our JSON library to read the config file, but using a Config struct when I’m
accessing config options in the code. I just need to write a function to
unpack the data our JSON parser reads into the Config struct. With the right
set of helper functions, that’s not hard:

void unpackStringArray(
 const Value & value,
 const char * keyPath,
 set<string> * strings)
{
 const Array * array = evaluateKeyPathToArray(value, keyPath);
 if (array)
 {
 for (const Value & valueString : array->m_values)
 {
 if (!valueString.isString())
 {
 log("expected %s to be an array of strings", keyPath);
 }

 strings->emplace(valueString);
 }
 }
}

void unpackConfig(const Value & value, Config * config)
{
 unpackStringArray(
 value,
 "security.blocked_servers",
 &config->m_blockedServers);
}

There are hundreds of config file options, but most of them are pretty
simple—simple types, or lists of simple types, accessed through a simple
hierarchical namespace. I can handle just about everything with a dozen or
so “unpack” functions. I’ll have to write a bit of code if I’m dealing with a
list of structured data—in JSON terms, an Array of Objects—but it’s not
tricky code.
Structuring things this way solves some of the problems I touched on
earlier. I discover problems in the config file earlier, since they’re all
reported when the config file is unpacked. I don’t spam our log with
multiple reports of the same problem. If the config file has required options,
then I can write my code to expect that they’re present—and if they’re
missing, our unpackConfig file can report an error and fail at startup time.
I haven’t solved all of my problems, though. I noted earlier the need to
document the config file format somehow, and haven’t made any progress
against that. I’m also not doing anything to detect attempts to set
unrecognized config options.
With the implementation I have now, the supported structure of this config
file is defined by the code that unpacks it, so maybe there’s a way to infer
the structure from the unpacking calls I make. Since I’m unpacking the
entire config file, for instance, I might infer that anything in the JSON file
that doesn’t get unpacked is unsupported. If I track which bits of JSON
have been successfully unpacked, then any bits of the JSON file that
weren’t unpacked can be reported as unrecognized options.
Similarly, I know the name and type of every option in the config file, since
I’m unpacking the whole thing. From the names and types, I can build
minimal documentation listing the supported options and types. Better
minimal documentation than none, after all—and this minimal
documentation has the huge plus of being reliably accurate, since it’s
derived directly from the code!
It’s possible to do both these things—but it’s not simple. I wrote code to
detect and report unrecognized options. It’s not terribly long, but it was too

long to fit in this chapter. And besides, it felt like I was marching forward
from the solution I’d built, not backward from the problem space.

And Now for Something Completely Different
Here’s a wild idea—if the problem is that I’m having a hard time inferring
the structure of the config file from the code I’ve written, why not flip
things around? Define the structure, then infer the code from that.
A word of warning first—this is a pretty long example! I wanted a “nothing
up my sleeve” example of what working backward from your result can
look like, and the code in this example is surprisingly tight given how
functional it is. Alone among the examples in this book, this one is usable
as is. So bear with me for the next few pages!
For this simple example, I might define the structure of the config file like
this, using a global structure to manage all of the config options:

struct Config
{
 Config() :
 m_security()
 { ; }

 struct Security
 {
 Security() :
 m_blockedServers()
 { ; }

 set<string> m_blockedServers;
 };

 Security m_security;
};
Config g_config;

StructType<Config::Security> g_securityType(
 Field<Config::Security>(
 "blocked_servers",
 new SetType<string>(new StringType),
 &Config::Security::m_blockedServers));

StructType<Config> g_configType(
 Field<Config>("security", &g_securityType, &Config::m_security));

It should be pretty obvious what the intent is here, even though the code is a
bit of a C++ template rodeo. Each of the objects in the JSON file is
described with a global variable using the StructType template. Here the
“security” object is described by g_securityType; the

“server.blockedServers” config file option is described as part of
g_securityType. The config file as a whole is described by g_configType.
These descriptors define the translation from JSON objects to C++ structs. I
need to know four bits of information to do this translation—the JSON keys
and types for the object fields, and the C++ types and member pointers for
the matching C++ structs. It’s a little bit tricky to do this sort of
metaprogramming in C++, but it’s feasible.
The hard part is shuffling the C++ type information around to keep things
type safe. To do that, I define a template class that couples a C++ type with
a matching JSON type:

struct UnsafeType
{
protected:

 template <typename T> friend struct StructType;
 virtual bool tryUnpack (const Value & value, void * data) const = 0;
};

template <class T>
struct SafeType : public UnsafeType
{
 virtual bool tryUnpack(const Value & value, T * data) const = 0;

protected:

 virtual bool tryUnpack(const Value & value, void * data) const override
 { return tryUnpack(value, static_cast<T *>(data)); }
};

The SafeType abstract struct provides type-safe unpacking for a particular
C++ type—it ensures that we’re unpacking strings into string variables,
integers into integer variables, and so on. For the most part, I’ll use
SafeType to unpack things. When I get around to handling structs, though,
the code will be a little bit simpler (thanks to the type-unsafe unpacking
interface introduced by UnsafeType), but still type safe (thanks to some
template trickery).
Here are SafeType definitions for some C++ types:

struct BoolType : public SafeType<bool>
{
 bool tryUnpack(const Value & value, void * data) const override;
};

struct IntegerType : public SafeType<int>
{

 bool tryUnpack(const Value & value, void * data) const override;
};

struct DoubleType : public SafeType<double>
{
 bool tryUnpack(const Value & value, void * data) const override;
};

struct StringType : public SafeType<string>
{
 bool tryUnpack(const Value & value, void * data) const override;
};

bool BoolType::tryUnpack(const Value & value, bool * data) const
{
 if (value.isTrue())
 {
 *data = true;
 return true;
 }
 else if (value.isFalse())
 {
 *data = false;
 return true;
 }
 else
 {
 log("expected true or false");
 return false;
 }
}

bool IntegerType::tryUnpack(const Value & value, int * data) const
{
 if (!value.isNumber())
 {
 log("expected number");
 return false;
 }

 double number = value;
 if (number != int(number))
 {
 log("expected integer");
 return false;
 }

 *data = int(number);
 return true;
}

bool DoubleType::tryUnpack(const Value & value, double * data) const
{
 if (!value.isNumber())
 {
 log("expected number");
 return false;
 }

 *data = value;
 return true;

}

bool StringType::tryUnpack(const Value & value, string * data) const
{
 if (!value.isString())
 {
 log("expected string");
 return false;
 }

 *data = static_cast<const string &>(value);
 return true;
}

This is the same sort of code as in earlier instantiations of our Config
example. Here it’s packaged as a type class, but the purpose is the same—
check the types of the JSON values, then convert them into native values.
That lets me handle the common cases, like config values that are known to
be integers. Numeric values in JSON are floating point, so the IntegerType
code checks that the floating-point value is actually an integer.
Moving beyond the simple types, let’s look at lists of strings, like the
blocked servers list in the config file example. I used a C++ set to represent
that list, so I need to create a SetType:

template <class T>
struct SetType : public SafeType<set<T>>
{
 SetType(SafeType<T> * elementType);
 bool tryUnpack(const Value & value, set<T> * data) const override;

 SafeType<T> * m_elementType;
};

template <class T>
SetType<T>::SetType(SafeType<T> * elementType) :
 m_elementType(elementType)
{
}

template <class T>
bool SetType<T>::tryUnpack(const Value & value, set<T> * data) const
{
 if (!value.isArray())
 {
 log("expected array");
 return false;
 }

 const Array & array = value;
 for (const Value & arrayValue : array.m_values)
 {
 T t;
 if (!m_elementType->tryUnpack(arrayValue, &t))
 return false;

 data->emplace(t);
 }

 return true;
}

With hundreds of config file options, I’m likely to have some lists, too. I’ll
leave the VectorType that wraps vector as a proof for the reader—it’s
nearly identical to SetType. The only difference is that it calls the vector’s
push_back() method, where SetType calls the set’s emplace() method.
The last thing to handle is mapping JSON objects to C++ structs—or, more
precisely, mapping JSON key/value pairs into members of C++ structs or
objects. I define a type-safe Field struct to be used by StructType:

template <class S>
struct Field
{
 template <class T>
 Field(const char * name, SafeType<T> * type, T S:: * member);

 const char * m_name;
 const UnsafeType * m_type;
 int S::* m_member;
};

template <class S>
template <class T>
Field<S>::Field(const char * name, SafeType<T> * type, T S::* member) :
 m_name(name),
 m_type(type),
 m_member(reinterpret_cast<int S::*>(member))
 { ; }

I’m handling type safety a bit differently in the Field struct. Type safety is
imposed by the constructor. I require that the SafeType and member pointer
have matching types. I can then safely use the type-unsafe UnsafeType and
integer pointer-to-member values in the Field struct, since I know they
actually have matching types.
StructType is surprisingly straightforward. Given all the other template
wackiness going on here, I’m going to use a variadic template (a template
that takes a variable number of arguments) in the constructor. In for a dime,
in for a dollar:

template <class T>
struct StructType : public SafeType<T>
{
 template <class... TT>

 StructType(TT... fields);

 bool tryUnpack(const Value & value, T * data) const override;

protected:

 vector<Field<T>> m_fields;
};

template <class T>
template <class... TT>
StructType<T>::StructType(TT... fields) :
 m_fields()
{
 m_fields.insert(m_fields.end(), { fields... });
}

The tryUnpack method is pretty simple—loop through the fields of the
JSON object, matching each of them to a field from our StructType.
Building the looping this way makes it easy to report unrecognized options
in the config file, knocking off one of my lingering problems:

template <class T>
bool StructType<T>::tryUnpack(const Value & value, T * data) const
{
 if (!value.isObject())
 {
 log("expected object");
 return false;
 }

 const Object & object = value;
 for (const auto & objectValue : object.m_values)
 {
 const Field<T> * match = nullptr;

 for (const Field<T> & field : m_fields)
 {
 if (field.m_name == objectValue.first)
 {
 match = &field;
 break;
 }
 }

 if (!match)
 {
 log("unrecognized option %s", objectValue.first.c_str());
 return false;
 }

 int T::* member = match->m_member;
 int * fieldData = &(data->*member);

 if (!match->m_type->tryUnpack(objectValue.second, fieldData))
 return false;
 }

 return true;
}

Once I’ve got a Value from the JSON library, I just call tryUnpack on the
StructType I built for the config file:

bool tryStartup()
{
 FILE * file;
 if (fopen_s(&file, "config.json", "r"))
 return false;

 Stream stream(file);
 Value value;
 if (!Value::tryReadValue(&stream, &value))
 return false;

 if (!g_configType.tryUnpack(value, &g_config))
 return false;

 return true;
}

Things are looking good at this point! I’ve got solid, type-safe parsing of
the config file and didn’t have to write a lot of code to get it—all of the type
and unpacking logic is less than 300 lines of C++. That’s a huge example
for a book, but a tiny part of most coding projects. With hundreds of config
options in this example, that cost amortizes out pretty quickly. My
description of the config file schema isn’t self-documenting yet, but that’s
easy to add—tack a description string onto each Field, then write a simple
recursive descent through the type hierarchy to generate the documentation.

Working Forward and Working Backward
This chapter explored two paths for parsing a config file. In the first path,
we started with the format of the config file. We realized we could represent
all of our options in JSON, recognized that we had a JSON parser ready to
go, then just marched forward. And this absolutely worked—it was easy to
parse the config file and easy enough to extract options from it.
In the second path we pivoted to look at the problem from another
perspective: that of the programmers implementing the hundreds of config
options supported, not the programmer parsing the config file. I chose a
solution in the first path that was convenient to implement, but inconvenient
to use. In the second path we worked backward from our desired solution,

rather than forward from our tech, and ended up with a simpler and better
solution.3

1 The eagle-eyed among you have likely spotted by now that this isn’t a fully compliant
JSON handler. Its object handling implies unique keys by using unordered_map, even though
duplicate keys are explicitly allowed in JSON. Moving along.
2 If the idea of a global object freaks you out, my apologies. This particular example—
config options that are read at boot time then never changed, and hundreds of config option
checks scattered through the project—is a great example of why global objects can be a good
thing.
3 If you’re interested in doing something like this, you might also take a look at generated-
code solutions like protocol buffers or C++ reflection magic like clReflect.

https://oreil.ly/qvptL
https://oreil.ly/pOnLe

Rule 17. Sometimes the Bigger
Problem Is Easier to Solve

“Pick the most boring approach to every problem you encounter; if you can
think of an exciting approach to solving a problem, it’s probably a bad
idea.”
If this is how you’d paraphrase most of the advice in this book, I wouldn’t
blame you. A lot of these Rules can be a bit of a buzzkill. They point to
some interesting or clever technique you might use to solve a problem, then
immediately inform you that it would be a bad idea to use that technique.
And it’s true that the simple, boring approach is almost always the best
approach. But only almost!
On some very special occasions, the clouds majestically part and you’re
bathed in the warmth of a single ray of sunlight spearing down from the
heavens to illuminate you at your keyboard.1 And in this brief, glorious
moment, you realize that it would be simpler and easier to solve a more
general version of whatever specific problem you’re working on.
Revel in these occasions, because they don’t come very often. When they
do come, be ready to take advantage. Write the simple code, solve the
general problem, and glory in the moment.

Jumping to Conclusions
Here’s an example. In one of the early Sucker Punch games, the player
bounds through levels as the master raccoon thief Sly Cooper. Sly is very
agile, leaping into the air, then landing on tiny outcroppings or alighting on
thin tightropes strung between buildings. The controls are simple—press
the X button to jump, bend Sly’s midair trajectory (in a physically
impossible but entirely believable way) using one of the controller’s sticks,
then press the O button to land on things like spires or tightropes.
Of course, there was code to make this all happen!2 The trickiest bit of that
code handled choosing the place where Sly lands when the player presses
the O button. The player knows where they want to land when they press O,
and the game needs to guess the player’s intent somehow. When the guess

is correct, the player doesn’t even notice the magic; when the guess isn’t,
the player is very, very frustrated.
Guessing the landing spot the player has in mind is much easier said than
done. Imagine that the player is steering Sly toward a tightrope and there
are no other possible landing spots nearby. The code needs to decide where
on the tightrope the player is trying to land. What’s the algorithm for
choosing this point?
The simple answers don’t work very well. Steering for the point on the
tightrope closest to Sly’s current location doesn’t work very well—if you’re
jumping along the tightrope, you’d get sucked backward to the point you
were over when you pressed the button. To avoid that particular problem,
the code could project Sly’s current trajectory forward, then land on the
point on the tightrope closest to that trajectory. That’s a better solution, but
it still broke badly in common cases. And in fact these seemingly simple
answers weren’t at all easy to implement, given that the tightrope was
actually a cubic curve, not a straight line.
Cue a long sequence of increasingly desperate prototypes, each trying some
new hacky heuristic to solve the problem of landing on a tightrope. This
went on for weeks. Painful, painful weeks.3

Until, one day, the metaphoric clouds opened and a metaphoric beam of
light hit me at the keyboard as I struggled with yet another doomed
prototype. The problem was that I was thinking small, and I needed to think
big.
I’d been looking for an analytic solution, trying (and repeatedly failing) to
find a single magic function that would spit out the best position given the
inputs—Sly’s position and velocity, the player’s input on the controller, and
the geometry of the tightrope. I didn’t want to calculate the best landing
point on the tightrope, I now realized—what I really wanted was to write a
function that would evaluate the appropriateness of every single point on
the tightrope, then choose the best one.
Well, not exactly. I didn’t actually need to evaluate the function for each
individual point on the tightrope—I only needed to find the point that was
most appropriate. I needed to minimize a cost function (measuring
appropriateness) over a domain (a parameter identifying the points along
the tightrope).

In short, I had an optimization problem. If I solved the bigger problem of
finding a local optimum for a function that mapped floats to floats, then
wrote a cost function for Sly landing on a point, I could find the point with
the lowest cost. If the cost function matched what the player had in mind,
then the game would choose the right point on the tightrope.
The golden section optimization algorithm is pretty bulletproof and not hard
to implement:4

float optimizeViaGoldenSection(
 const ObjectiveFunction & objectiveFunction,
 float initialGuess,
 float step,
 float tolerance)
{
 // Track a domain + range pair for the objective function

 struct Sample
 {
 Sample(float x, const ObjectiveFunction & objectiveFunction) :
 m_x(x),
 m_y(objectiveFunction.evaluate(x))
 { ; }
 Sample(
 const Sample & a,
 const Sample & b,
 float r,
 const ObjectiveFunction & objectiveFunction) :
 m_x(a.m_x + (b.m_x - a.m_x) * r),
 m_y(objectiveFunction.evaluate(m_x))
 { ; }

 float m_x;
 float m_y;
 };

 // Get an initial triplet of samples around the initial guess

 Sample a(initialGuess - step, objectiveFunction);
 Sample mid(initialGuess, objectiveFunction);
 Sample b(initialGuess + step, objectiveFunction);

 // Make sure the "a" side has a smaller range value than the "b"
 // side. If we haven't lucked into an initial range bracketing a
 // minimum, we'll travel toward "a" until we find one.

 if (a.m_y > b.m_y)
 {
 swap(a, b);
 }

 // Find a point where the "mid" range value is smaller than the
 // "a" and "b" range values. That guarantees a local minimum
 // somewhere between a and b.

 while (a.m_y < mid.m_y)

https://oreil.ly/0ocWS

 {
 b = mid;
 mid = a;
 a = Sample(b, mid, 2.61034f, objectiveFunction);
 }

 // Loop until we've got a tight enough bracket on the domain

 while (abs(a.m_x - b.m_x) > tolerance)
 {
 // Makes sure the "a" side brackets a bigger domain than the
 // "b" side, so that the golden section is taken out of the
 // bigger side.

 if (abs(mid.m_x - a.m_x) < abs(mid.m_x - b.m_x))
 swap(a, b);

 // Test a point between the "mid" sample (our best guess so
 // far) and the "a" sample. If it's better than the mid
 // sample, it becomes the new mid sample and the old mid
 // sample is the new "b" side. Otherwise, the new sample
 // becomes the new "a" side.

 Sample test(mid, a, 0.381966f, objectiveFunction);

 if (test.m_y < mid.m_y)
 {
 b = mid;
 mid = test;
 }
 else
 {
 a = test;
 }
 }

 // Return the best domain value we found

 return mid.m_x;
}

Once the general-purpose golden section algorithm implementation was
tight, I could implement an objective function for falling to the tightrope.
Tightropes were modeled as Bezier curves, one of many ways to represent a
cubic curve. To simplify the actual code just a bit, the objective function is
the time it takes to fall to the landing point (meaning that points the player
can land on earlier are preferred) times the maximum acceleration needed to
land on that point. The context required to calculate this, like Sly’s current
position and velocity, is part of the object that implements the objective
function:

struct BezierCostFunction : public ObjectiveFunction
{
 BezierCostFunction(

https://oreil.ly/YWuzT

 const Bezier & bezier,
 const Point & currentPosition,
 const Vector & currentVelocity,
 float gravity) :
 m_bezier(bezier),
 m_currentPosition(currentPosition),
 m_currentVelocity(currentVelocity),
 m_gravity(gravity)
 {
 }

 float evaluate(float u) const override;

 Bezier m_bezier;
 Point m_currentPosition;
 Vector m_currentVelocity;
 float m_gravity;
};

The evaluate method isn’t very complicated:

float BezierCostFunction::evaluate(float u) const
{
 // Get point along curve

 Point point = m_bezier.evaluate(u);

 // Calculate how much time it will take to fall to the height
 // of that point

 QuadraticSolution result;
 result = solveQuadratic(
 0.5f * m_gravity,
 m_currentVelocity.m_z,
 m_currentPosition.m_z - point.m_z);

 float t = result.m_solutions[1];

 // Assume we scrub off all horizontal velocity before landing

 Vector finalVelocity =
 {
 0.0f,
 0.0f,
 m_currentVelocity.m_z + t * m_gravity
 };

 // Get immediate and final accelerations...since we're
 // following a cubic curve one of these will be the maximum
 // acceleration

 Vector a0 = (6.0f / (t * t)) * (point - m_currentPosition) +
 -4.0f / t * m_currentVelocity +
 -2.0f / t * finalVelocity;

 Vector a1 = (-6.0f / (t * t)) * (point - m_currentPosition) +
 2.0f / t * m_currentVelocity +
 4.0f / t * finalVelocity;

 // Ignore acceleration in Z, since we know that's gravity

 a0.m_z = 0.0f;
 a1.m_z = 0.0f;

 // Calculate cost function

 return t * max(a0.getLength(), a1.getLength());
}

Running the golden section optimizer on this function produced a landing
point that felt more or less natural. It did require some tuning, and I’ve left
the edge cases out of the evaluate implementation,5 but even the first
results were better than the long string of failed prototypes this solution
replaced. After tuning, it felt completely predictable and natural—and in
practice, players trained themselves to match the cost function, and the
game guessed what they had in mind nearly all the time.6

As a rule, it’s almost always better to solve the specific problem you do
understand rather than trying to solve a general problem you don’t
understand. Generalization takes three examples, per Rule 4. But that truth
isn’t quite universal—sometimes the general problem is easier to solve than
the specific one. In this case, the specific problem of choosing a spot for Sly
to land on the tightrope was hard to solve, at least analytically, while the
general problem was relatively easy to solve.

Finding a Clear Path Forward
Time for another example drawn from the annals of Sucker Punch history…
this one a bit more recent. In Ghost of Tsushima, the player can make a
short, explosive dash, usually to avoid incoming attacks. They deflect a
stick on the controller to choose a direction, then press a button to dash.
Poof! Our samurai hero, Jin Sakai, dodges in that direction and danger is
averted. Or at least that’s what it feels like for players.
Jin doesn’t always dash in exactly the direction the player has chosen. If the
player is fighting enemies in a forest, say, it’s no fun if Jin dashes straight
into a tree—even if, strictly speaking, that’s the direction the player has
chosen. Nobody wants to be a clumsy samurai! Instead, the code chooses a
direction to dash that avoids all the trees, while staying close to the
direction the player has chosen. The player is none the wiser—they feel
graceful instead of clumsy, and everyone’s happy.

The Sucker Punch engine has code to do this sort of pathing through the
game environment—roughly speaking, to try to reach the far end of a
search area while skirting areas the player can’t move through. To
oversimplify the code: it checks the line segments starting from an initial
point to the end of the search area, wraps around any obstructions we
encounter, then straightens out kinks in the resulting path as best it can. To
undersimplify the code, it’s A* over a discovered graph.7

Using this pathing code as is was a great start toward natural-feeling-but-
graceful dashes, but it wasn’t good enough to ship. Jin dodged gracefully
through trees, but blundered clumsily into other characters, whether they
were enemies or allies. The obvious fix was to adjust the pathing checks to
include characters as well as trees. That was not something the existing
pathing code knew how to do! It worked against the fixed obstacles in the
environment, like trees and buildings, but it knew nothing about temporary
obstacles, like an enemy character charging at the player.
It didn’t seem too hard to add that support, though, so that’s what I did.
Remember that at a simple level, the pathing code checks for the
intersection of a path with obstructions. If the path runs into an obstruction,
the pathing code builds a new path that wraps around that obstruction. So
adding support for characters meant two things: checking for intersections
between the path and characters, and wrapping paths around characters.
Neither was too hard, though it was all new code because characters were
represented as circles. And a bonus problem was added—I needed to worry
about the intersections between the space carved out for characters with
environmental obstacles, and the intersections between characters
themselves. All of these intersections were plausible endpoints to the path.
Ugh. This worked, but it meant a lot of new code to handle a lot of new
cases. This made the complicated pathing code even more complicated, all
to handle the special case of player dashes. Then I discovered that the
simple circular obstacle I was carving out for characters didn’t work very
well for moving characters, so I switched to lozenge-shaped obstacles
instead8—and things got worse. The extra complexity I was adding felt
unjustified.
Cue the metaphoric parting of clouds and beam of light. I was adding code
in the wrong place! The pathing code already supported the arbitrary
geometry of the environment, after all. Trees are circular obstacles, just like

a character standing still. If I could just pretend people were temporary
trees, the pathing code could just avoid them, without all the extra
complexity I’d added.
Once I pivoted to this point of view, a clear path forward presented itself.
The underlying representations of trees and buildings and fences and all the
other fixed parts of the environment were just a really big grid, with each
cell marked as passable or impassable. I could introduce temporary
obstructions via a simple interface—all I needed was an extra check for
whether a particular cell in the grid was blocked:

struct GridPoint
{
 int m_x;
 int m_y;
};

struct PathExtension
{
 virtual bool isCellClear(const GridPoint & gridPoint) const = 0;
};

This extension interface could then be passed into the basic calls to the
pathing code, like checking a line segment for obstructions or finding the
best path forward in a given direction. Here’s what the original calls looked
like:

class PathManager
{
public:

 float clipEdge(
 const Point & start,
 const Point & end) const;
 vector<Point> findPath(
 const Point & startPoint,
 float heading,
 float idealDistance) const;
};

And here’s the new version:

class PathManager
{
public:

 float clipEdge(
 const Point & start,
 const Point & end,
 const PathExtension * pathExtension = nullptr) const;

 vector<Point> findPath(
 const Point & startPoint,
 float heading,
 float idealDistance,
 const PathExtension * pathExtension = nullptr) const;
};

The internal details of clipEdge and findPath were barely affected.
Wherever they had previously checked the giant pathing grid, I added an
extra check to the PathExtension interface. That’s less than a dozen lines
of code, total, across these functions and a handful of other similar
functions.
This account leaves out the work to implement the PathExtension
interface, but that work was similarly simple:

struct AvoidLozenges : public PathExtension
{
 struct Lozenge
 {
 Point m_points[2];
 float m_radius;
 };

 bool isCellClear(const GridPoint & gridPoint) const override
 {
 Point point = getPointFromGridPoint(gridPoint);

 for (const Lozenge & lozenge : m_lozenges)
 {
 float distance = getDistanceToLineSegment(
 point,
 lozenge.m_points[0],
 lozenge.m_points[1]);

 if (distance < lozenge.m_radius)
 return false;
 }

 return true;
 }

 vector<Lozenge> m_lozenges;
};

And that was that. A couple of dozen lines of simple code, instead of the
thousand or so lines of nastiness I’d struggled with in my attempt to solve
the problem directly.
The new PathExtension interface was much more general, obviously—it
handled any sort of temporary obstruction you wanted to add to the grid,
with no stipulation about shape or size or way the obstruction was

represented. That’s a step forward from the first attempt, which only added
hardwired support for circles and then lozenges. But this extra generality is
entirely beside the point!
The point isn’t that this solution was more general—it’s that it was simpler
and easier to implement than the more specific, less general solution. In
fact, as I write this, the Sucker Punch codebase has exactly one
implementation of PathExtension—the one I’ve just presented. We haven’t
taken advantage of the extra generality, and that’s perfectly OK.

Recognizing the Opportunity
Most of the time, the specific solution is easier to implement than the
general solution. Solve the problem you understand. Don’t try to solve a
more general problem until you’ve got enough examples to be confident
that the more general problem is worth solving.9

It’s rare to bump into a problem like the examples in this Rule, where the
general problem is simpler and easier to solve than the specific one. These
two examples are separated by 18 years (!), and nearly all of the umpteen
problems we solved in between were solved simply and directly.
While such general solutions are rare, they’re important. These two
examples, along with a handful of others, were important breakthroughs for
Sucker Punch. Sometimes the breakthrough represented a new paradigm, as
in the first example, which prompted us to solve many gameplay problems
via a local optimizer; other times it was just a one-off solution to a hard
problem, as in the second example. They all created better, more successful
products.
That leaves open an important question—what are the clues that a more
general solution will create simpler code? How can you spot these
opportunities in your code?
I did find one common factor as I looked over the quarter-century-long
engineering history of Sucker Punch. In all the examples of the general
solution being the simpler path, a major change in perspective was
necessary. The general solution represented a completely different way of
thinking about the problem, and this new perspective allowed a radically
simpler solution.

In this Rule’s examples, the change in perspective was technical—
switching from an analytic approach to an optimization approach in the first
example and adding the new feature in a completely different part of the
code in the second example.
Sometimes, though, the change in perspective isn’t technical at all. You
might realize that your code targets the wrong user for a feature, for
instance. We’ve often unlocked much simpler approaches by moving a
feature historically used by the programming team to the production team
instead, or vice versa.
But there’s always a moment when you realize you’ve been thinking about
the problem all wrong. And when that realization hits, there’s a chance that
the clouds will part and a beam of sunshine will hit and you’ll get to
experience the infinite joy of solving a single tough problem with a simple,
general solution.

1 You’ll forgive the metaphor. I’ve lived in Seattle for 35 years; I’ve earned a cloud
metaphor.
2 This algorithm is covered by US Patent 7,147,560. Sorry, software patents were in vogue
at that point. Fear not; the patent expires on December 12, 2023, at which point you’re entirely
free to create your own raccoon-agility-centered platformer using the exact algorithm
presented here.
3 Personally suffered through by your author, who wrote the code in question.
4 The algorithm isn’t complicated—you could sort it out from the code that follows without
giving yourself a headache—but if you’ve got better ways to spend the next 10 minutes, take a
look at the Wikipedia explanation. As it turned out, the golden section optimizer helped solve
multiple problems, and we call it from a couple of dozen places in the Sucker Punch codebase.
5 The edge cases aren’t that bad—and were easy enough to handle by adding penalties onto
the cost function. If the evaluate function tries to evaluate a point off the end of the curve, a
penalty is added. Careful construction of the penalty helps point the optimizer back toward the
valid range of the curve. Similarly, if Sly doesn’t jump high enough to reach a point, this adds
a separate penalty.
6 If you try using an optimizer like this to solve problems, remember that it will find a
minimum, but maybe not the minimum you want. Your cost function needs to be constructed
carefully, as does your initial guess.
7 The A* algorithm isn’t that complicated, but nevertheless it’s too much to explain here.
By discovered graph, I mean that the theoretical search space consists of links between any
pair of points in the world. We discover which pairs of points are accessible from each other as
we go, by clipping the line between them against all the obstacles in the world.

https://oreil.ly/XOban

8 Just as a circle is the set of points at some fixed distance from a point, a lozenge is the set
of points at a fixed distance from a line segment. Paper clips and running tracks are lozenge-
shaped—two half-circles connected by parallel lines.
9 Where “enough” is “at least three.”

Rule 18. Let Your Code Tell Its Own
Story

There’s a lot of focus in this book about making your code easier to read,
whether it’s by being careful about hiding the behavior of your code behind
extra abstractions, choosing good names for things, or choosing the
simplest workable approach to a problem. Writing code that’s easy to read
makes everything else go more smoothly, since we all spend a lot more time
reading and debugging code than we spent writing it in the first place.
When you’re debugging a bit of code, it’s much easier to figure out what’s
going wrong when you have a quick way to understand what it’s trying to
accomplish.
That’s especially true for a project you’re working on as part of a team, but
it’s even true for a solo project. If you’ve got a nontrivial solo project going,
one that you’re spending weeks or months or even years on, you’ll end up
needing to refamiliarize yourself with code you wrote long before.
Whatever thoughts you had in your head when you wrote that code will
have faded away; all that’s left will be the code itself. At this point, you’re
in pretty much the same place as a coworker on a group project: you need to
sort out what the code is doing (or trying to do) by reading it.
Here’s another way of thinking about this—Future You is a stranger.
Unless your project will get wrapped up and thrown away in a day or two,
expect to come back to your code as a stranger. Do Future You a favor and
make it easy to read.
Imagine walking someone through some bit of code you’ve written. If your
team does code reviews (and it should; see Rule 6), then you’re probably
used to doing that. You talk about what this code is trying to accomplish,
how it fits into the larger scope of the project, and why you made the
decisions you did. You point out any bits of trickiness or cleverness
(hopefully there aren’t many), note any issues that haven’t been taken care
of yet, walk through how the pieces fit together, and probably narrate the
control flow through the individual functions you’ve written.

In short, you’re telling the story of your code. The better a job you do of
telling that story, the more quickly and completely your audience will
understand that code. And in a perfect world, the code would tell its own
story, without your narration.
That’s a pretty lofty target, especially if your code has to be a little bit
complicated to solve its target problem. Nevertheless, code that tells its own
story is what you should always be shooting for.

Don’t Tell Stories That Aren’t True
So—what does it mean for code to tell its own story? I’ve touched on some
of the important concepts, like choosing good names (Rule 3), and making
the intent of your code as simple and obvious as possible (Rule 1). After all,
it’s much easier to follow a simple story than it is to follow a complicated
one!
I haven’t really addressed formatting or commenting yet in this book—the
code examples accompanying the Rules are largely comment-free. That’s
not a statement on my part—in this book I can write whole paragraphs of
text explaining the code examples, so keeping them comment-free and
compact makes sense. In real code, comments can be a huge help for code
readability.
That doesn’t mean all comments are good, though! It’s entirely possible for
comments to do more harm than good. Some comments are never true to
begin with; others were true when the comment was written, but reality has
since drifted away.
Here’s an example:

void postToStagingServer(string url, Blob * payload)
{
 // Will always get a valid handle back due to Connect::Retry

 ConnectionHandle handle = connectToStagingServer(
 url,
 Connect::Retry | Connect::InternalServer);

 // Post data

 postBlob(handle, payload);
}

This seems pretty simple, but it’s not—the first comment is wrong. When
the code was written, the Connect::Retry flag guaranteed success. Things

got more complicated when the (imaginary, in this case) team decided that
there were no situations in which infinite retry (hanging until a successful
connection was made) was a good strategy. The behavior of
Connect::Retry changed, but this bit of code, which relied on the old
behavior, didn’t change to match.
So now there’s a bug in PostToStagingServer, but one that doesn’t show
up very often, because ConnectToStagingServer almost always works.
Pity the poor programmer who’s trying to debug this, especially if PostBlob
is written to be robust against the empty handle that
ConnectToStagingServer returns in error cases. The poor programmer
reads the code, sees the comment, accepts it, and moves on, missing the
actual problem.
If not for that comment, the bug would have been found sooner, because it
would have been obvious that an error was possible. It’s this sort of
situation that leads some programmers to argue that all comments are bad,
insisting that the problems caused by out-of-date comments outweigh the
benefits of accurate ones.
Remember that code that isn’t running doesn’t work, per Rule 8. If some bit
of code isn’t getting exercised frequently, it will stop working, and you
won’t know that it’s stopped working because it isn’t getting run.
In some sense, comments are code that never runs—the closest they come
to running is when someone reads through and compares the comments to
the actual code. That doesn’t happen very often, and generally isn’t very
thorough when it does, so it shouldn’t be a surprise that comments “stop
working” as the functionality of the code they describe slowly drifts out of
touch with the comment.
The easiest way to avoid this is to change the comment into an assert. Don’t
mention in a comment that one of the arguments to a function is expected to
be non-null—assert that it is. Or in this case, don’t claim that
ConnectToStagingServer always returns a valid handle—assert that it
does. You’ve told the same story, just in a much more effective way.

Make Sure There’s a Point to the Story
Sometimes comments aren’t wrong—they’re just useless. We’ve all seen
less-than-informative comments, often as an unintended result of some
fixed commenting style that all code on your project must follow. Here’s an

example of code that adheres to a project-wide dictate that all functions
must be documented with Doxygen.1 The comment here follows the rule
without actually passing along any information:

/**
* @brief Post payload to staging server
*
* Attempt to post the given payload to the staging server at the
* given address, returning @c true if the post is successful and
* @c false if it fails for some reason.
*
* @param url URL to server
* @param payload Data to post
* @returns true on success
*/
bool tryPostToStagingServer(string url, Blob * payload);

Nothing in that comment is wrong—it’s just not very useful. We can
assume that the “try” at the beginning of the function name is a project
convention that marks functions that return true on success. If that’s the
case, then all of the information in the comment is directly implied by the
function declaration. The comment isn’t adding anything new; it just
restates the function name, then restates it, then restates it again.
If the comment accompanies the declaration of a function rather than its
definition, as in this example, then the space taken up by fixed-format
comments can quickly overwhelm the space devoted to actual function
declarations. That’s the cost of this commenting style—the comments make
it hard to find the actual code. This is exacerbated by whatever
awkwardness pops up in the comment itself as it fits itself to the format—
those @cs in the comment aren’t helping readability.2

There is a potential upside—the point of Doxygen isn’t just the comments,
it’s also the documentation that’s generated from them. That documentation
isn’t as useful as it once was, now that editors are much better at
hyperlinking back and forth within projects, but it can still be useful if done
thoughtfully.
That’s usually not the case, though. Programmers in a hurry write hurried
comments, not thoughtful ones. They aim to meet mechanical standards
before moving on, which produces comments that are correct but
uninformative, like the one in this section. A list of uninformative entries
for individual functions and types doesn’t make for a useful introduction or

reference to the code—you’re not learning anything you wouldn’t learn
from reading through the code.

Telling Good Stories
So what makes a good comment?
The most obvious answer is that a good comment tells the reader something
about the code that isn’t obvious. A comment that recapitulates the obvious,
like the prior example, is correct but not very useful. A good comment, one
that helps the reader understand the code, might explain why the code is
written the way it is, give the expected usage for a function, or mark some
bit of logic that might need further work.
There’s another important role that good comments fill—they punctuate the
code. They tell you what parts of the code fit together and separate bits of
code that represent separate thoughts. In this way, they act like spaces and
punctuation in writing.
Youcanreadsentencesthatdontincludespacingorpunctuation…but it’s a lot
easier to read sentences that do, right? The spaces break up the words.
Punctuation breaks up sentences and clauses. Paragraphs break separate
thoughts.
The same is true of code, with spacing and comments filling the roles that
spacing and punctuation do in normal writing. Here’s an example. (I’m
exaggerating the point here by using a super-compact naming style for
variables and compressing out more whitespace than you’d normally see.)

bool findPermutation(const string & p, const string & s)
{
 int pl = p.length(), sl = s.length();
 if (sl < pl) return false;
 int pcs[CHAR_MAX] = {}, scs[CHAR_MAX] = {};
 for (unsigned char c : p)
 { ++pcs[c]; }
 int si = 0;
 for (; si < pl; ++si)
 { ++scs[static_cast<unsigned char>(s[si])]; }
 for (;; ++si)
 {
 for (int pi = 0;; ++pi)
 {
 if (pi >= pl) return true;
 unsigned char c = p[pi];
 if (pcs[c] != scs[c]) break;
 }
 if (si >= sl) break;
 --scs[static_cast<unsigned char>(s[si - pl])];

 ++scs[static_cast<unsigned char>(s[si])];
 }
 return false;
}

It’s certainly possible to figure out what this function is doing—it has a
descriptive name, at least, so you’ve got a head start. Adding more
descriptive names, spacing to separate thoughts, and comments to explain
those thoughts will make it much easier to read:

// Check whether any permutation of the permute string appears in the
// search string

bool tryFindPermutation(const string & permute, const string & search)
{
 // If the search string is shorter than the permute string, then there's
 // no way it can be a permutation. Exit now to simplify things.

 int permuteLength = permute.length();
 int searchLength = search.length();
 if (searchLength < permuteLength)
 return false;

 // Count how many times each letter shows up in the permute string.
 // We'll compare these counts to running counts we'll keep in the
 // search string.

 int permuteCounts[UCHAR_MAX] = {};
 for (unsigned char c : permute)
 {
 ++permuteCounts[c];
 }

 // Make the same counts for the first possible match in the
 // search string

 int searchCounts[UCHAR_MAX] = {};
 int searchIndex = 0;

 for (; searchIndex < permuteLength; ++searchIndex)
 {
 unsigned char c = search[searchIndex];
 ++searchCounts[c];
 }

 // Loop over the possible matching substrings in the search string

 for (;; ++searchIndex)
 {
 // Check whether the current substring matches the permute string

 for (int permuteIndex = 0;; ++permuteIndex)
 {
 // If we didn't find any character count mismatches after we've
 // checked all the characters in the permute string, then we've
 // found a permutation. Return true to mark that success.

 if (permuteIndex >= permuteLength)

 return true;

 // If the count of this character in the permute string doesn't
 // match the count in this substring of the search string, then
 // the substring isn't a permutation. Move on to the next one.

 unsigned char c = permute[permuteIndex];
 if (permuteCounts[c] != searchCounts[c])
 break;
 }

 // Stop once we've checked all possible substrings in the
 // search string

 if (searchIndex >= searchLength)
 break;

 // Update the running character counts to match the next
 // possible match

 unsigned char drop = search[searchIndex - permuteLength];
 unsigned char add = search[searchIndex];

 --searchCounts[drop];
 ++searchCounts[add];
 }

 // If we make it here, then we're out of substrings and didn't find
 // any matching permutations, since we return immediately once
 // they're found.

 return false;
}

Much easier to follow, right? Read the previous example and you’re in for
some tough sledding figuring what’s going on. Read this example from top
to bottom, and you understand exactly what it’s doing and why.
The extra spacing breaks up the bits of logic, just like spaces break up
words in a sentence. Indentation groups related thoughts. Choosing good
names for variables is a shortcut to understand their purpose—good names
are your first and most important bit of documentation. Comments provide
context and explanation—they focus on the big picture, the “why” to the
code’s “what.”
If you’re used to explaining code or having it explained to you, then reading
code written this way feels familiar. Good comments feel like reading a
story.
You could also think of good code as a song. Songs have music and lyrics,
with each playing complementary roles. Good code is the same way—the
actual code and the comments have separate but related roles. They support
each other. The lines of code are the functioning part; good naming and

formatting make the function of each line clear. The comments support this
with context, explaining how the lines fit together and what the purpose of
each line is.
Your code editor probably color-codes things, with comments showing up
in a different color than lines of code. Since most people’s brains are pretty
good at sorting colors, spacing and color-coding make it easy to focus on
code or comments separately, while still keeping it easy to look at them
together. That’s just like reading sheet music: the music is shown as notes in
a staff, while the lyrics are printed alongside, roughly aligned but separate.
You can focus on the music or the lyrics when reading sheet music.
You’ll be in great shape if you remember that good comments complement
code instead of duplicating it. They pull the bare mechanics of the code into
a story, making it much easier to understand the code. If you can read
through the comments while ignoring the code and still feel like you
understand what’s going on, then you’ve done a top-notch job.

1 Doxygen is a widely used tool that extracts strangely formatted comments from source
code and generates project documentation from them. The idea is that documentation that’s
right next to the code is more likely to stay up-to-date. This is true, though in my experience
only for small values of more and likely. I apologize for the formatting to non-C++
programmers. I wanted to use a real example, and all of these documentation-generating tools
use strange formatting on purpose—because the tool looks for the strange formatting to mark
the text it needs to process.
2 They mark terms that should be typeset in a fixed-width font, like Courier. Hence “c”.

Rule 19. Rework in Parallel

Most of the time, for most of the work you do as a programmer, you’ll only
make brief departures from the main codebase. You’ll investigate a
problem, check out the files you need to fix the problem, test and review
your changes, then commit them back into the main branch. You might
complete the whole cycle in a day, though that’s pretty quick if there’s any
testing to be done; more typically, you’ll spend days with stuff checked out.
Eventually, though, you run into a task where this simple model falls apart.
You’re teaming up on something with another programmer, say. When
you’re working solo, the work in progress only exists on your machine, but
that doesn’t work when you’re partnered with someone. The two of you
need to maintain a shared version of the work in progress.
The standard answer to this is to create a new branch in your source code
control system for the work the two of you have planned. This branch starts
as a copy of the main branch, but quickly diverges from the main branch as
you work. You probably look for occasional chances to integrate changes
from the main branch into your branch to keep up with the work being done
by the rest of the team, resolving any conflicts introduced by changes on the
main branch. Eventually your work is complete; you integrate one last time
from the main branch, do a final test, review your work, and check in.

Bumps in the Road
This approach works—that’s why it’s the standard answer—but it’s not free
of problems.
Integrating changes from the main branch can be hard, for instance. The
rest of the team has no visibility into what you’re doing on your branch, so
it’s easy for them to break your work in progress. This can be a minor
annoyance, as when someone introduces a new call into the system you’re
reworking. It can be more troublesome, as when someone fixes a bug in the
old system that has to be mirrored in your reworked version. Or it can be
truly painful, like someone deciding to reorganize a source file, destroying
all the diffs you’ve been relying on.

If you’re reworking the old system in place, which is typically the case,
then it’s easy to lose sight of how the old system worked. You started with
source code for the old system, which you could consult to understand its
function—but every line you change makes it harder to see which behaviors
were original and which have been added. The workarounds for this—like
keeping a full copy of the original source to consult, or continually referring
to diffs from the original source—are painful.
If you’re part of a big team, then just keeping up with the churn from the
rest of the team can be a challenge. Typically, the core of the work you’re
focused on is confined to a handful of source files, but calls to that core can
be scattered across dozens of files. Every change to any of those dozens of
files is a potential merge conflict. If you’ve got a big team of people
checking in changes to the main branch, then the smaller team working on a
branch can get saturated just integrating changes.
It’s easy to get lost in a tangle of source-code control branches. The
flexibility branching provides is tempting, and it’s easy to get carried away.
The simple branching I described for the standard approach—a single
branch leaving the main branch and rejoining it later—is easy enough to
track. If it gets more complicated than that—throwaway branches for
testing new approaches to the problem, branches for personal backups,
multiple main branches to manage release staging—you can get lost pretty
quick.
We’ve followed this standard branch-and-change approach for a few big
changes at Sucker Punch. The results were painful, so we’ve tried
alternatives. We’ve had pretty good luck with a particular approach, a
duplicate-and-switch model.

Build a Parallel System Instead
Here’s the idea—instead of changing a system in place, we build a parallel
system. The new system is checked in while work is still in progress, but is
only enabled (via a runtime switch) for the small team working on it. Most
of the team uses the old system, never touching the new code paths. When
the new system is ready to go, we use the runtime switch to enable it for
everyone. Once everyone is successfully using the new system, we excise
the old one from the project.
There’s a great aphorism from Kent Beck that applies:

https://oreil.ly/8YWdU

For each desired change, make the change easy (warning: this may be
hard), then make the easy change.

It’s straightforward to apply this aphorism on small projects. The parallel
system technique is a way to apply it to big changes on larger projects,
where the preparatory work spans many bits of code committed from
multiple coders. All the hard work of building the parallel system sets you
up for the cut-over point, which is easy in comparison.

A Concrete Example
Let’s look at a real-world example. It’s going to take a few pages to set up
the context, but we’ll return to the idea of building a parallel system before
too long.
At Sucker Punch we use a stack-based memory allocator in much of our
code, instead of relying on the standard heap allocator in all cases. The
basic idea of a stack allocator is to simplify allocation by not freeing
allocated blocks—at least, not individual blocks. With the standard heap
allocator, each allocated block must later be freed. A stack allocator works
more like variables on the call stack—any block allocated in a function is
automatically freed when the function exits. Stack-based allocation is easier
to use because you don’t have to worry about freeing blocks. It’s also
wicked fast, which is important in a lot of our game programming
scenarios.
Scopes are defined with a “context” object. All stack allocations are
associated with the current context. When a context goes out of scope, all
blocks associated with that context are freed. The blocks have all been
allocated sequentially, so this mass freeing is trivial, just as each allocation
was. We’re just pushing pointers around. Here’s the allocator:

class StackAlloc
{
 friend class StackContext;

public:

 static void * alloc(int byteCount);

 template <class T>
 static T * alloc(int count)
 { return static_cast<T *>(alloc(sizeof(T) * count)); }

protected:

 struct Index
 {
 int m_chunkIndex;
 int m_byteIndex;
 };

 static Index s_index;
 static vector<char *> s_chunks;
};

StackAlloc::Index StackAlloc::s_index;
vector<char *> StackAlloc::s_chunks;

const int c_chunkSize = 1024 * 1024;

void * StackAlloc::alloc(int byteCount)
{
 assert(byteCount <= c_chunkSize);

 while (true)
 {
 int chunkIndex = s_index.m_chunkIndex;
 int byteIndex = s_index.m_byteIndex;

 if (chunkIndex >= s_chunks.size())
 {
 s_chunks.push_back(new char[c_chunkSize]);
 }

 if (s_index.m_byteIndex + byteCount <= c_chunkSize)
 {
 s_index.m_byteIndex += byteCount;
 return &s_chunks[chunkIndex][byteIndex];
 }

 s_index = { chunkIndex + 1, 0 };
 }
}

The stack allocator tracks a list of chunks of memory, where blocks may
have been allocated from the chunks at the start of the list. If a requested
allocation fits in the last chunk with allocated blocks, we add the new block
to that chunk, right after the last allocated block in that chunk. If it doesn’t,
we add it at the beginning of the next chunk, allocating new chunks when
necessary.
The context object is even more trivial. It just remembers the next place
we’d allocate a block:

class StackContext
{
public:

 StackContext()
 : m_index(StackAlloc::s_index)

 { ; }
 ~StackContext()
 { StackAlloc::s_index = m_index; }

protected:

 StackAlloc::Index m_index;
};

This allocation model has a few advantages. It’s much faster than a general
heap allocator, since allocations are simple pointer math and releasing a
context is almost free.1 More importantly, it has great locality, since
consecutively allocated blocks are right next to each other in memory. And
since the blocks are freed automatically, there’s no risk that you’ll forget to
free one.
There are plenty of disadvantages, too,2 but there are two main use cases
where stack-based allocation is a good fit. First, you often need to allocate
some scratch space for a function’s internal logic, and stack-based
allocation is perfect for that. Second, if you’re returning variable-sized data,
then allocating space for that returned data via StackAlloc works really
well.

Stack Allocation in Practice
The original Sucker Punch version of stack allocation looked roughly like
the code in the previous section. Over time, however, we’ve mostly
migrated to using stack-based vectors instead—a quick search of the
codebase turns up a few hundred calls to raw stack-based allocation, but
five thousand uses of stack-based vectors.
Here’s a simplified version of the stack-based vector class, with method
names chosen to match the standard C++ vector:

template <class ELEMENT>
class StackVector
{
public:

 StackVector();
 ~StackVector();

 void reserve(int capacity);
 int size() const;
 void push_back(const ELEMENT & element);
 void pop_back();
 ELEMENT & back();
 ELEMENT & operator [](int index);

protected:

 int m_count;
 int m_capacity;
 ELEMENT * m_elements;
};

Creating the vector is trivial, since it starts with no elements. Destroying it
is almost as simple. There’s no memory to free, so all that’s needed is to call
the destructor for each of the elements in the vector:

template <class ELEMENT>
StackVector<ELEMENT>::StackVector() :
 m_count(0),
 m_capacity(0),
 m_elements(nullptr)
{
}

template <class ELEMENT>
StackVector<ELEMENT>::~StackVector()
{
 for (int index = 0; index < m_count; ++index)
 {
 m_elements[index].~ELEMENT();
 }
}

The basic vector operations are straightforward. Note that if the vector
needs to be resized, the old memory doesn’t need to be freed. The elements
need copying to the new storage, but that’s it:

template <class ELEMENT>
void StackVector<ELEMENT>::reserve(int capacity)
{
 if (capacity <= m_capacity)
 return;

 ELEMENT * newElements = StackAlloc::alloc<ELEMENT>(capacity);

 for (int index = 0; index < m_count; ++index)
 {
 newElements[index] = move(m_elements[index]);
 }

 m_capacity = capacity;
 m_elements = newElements;
}

template <class ELEMENT>
int StackVector<ELEMENT>::size() const
{
 return m_count;
}

template <class ELEMENT>
void StackVector<ELEMENT>::push_back(const ELEMENT & element)
{
 if (m_count >= m_capacity)
 {
 reserve(max(8, m_capacity * 2));
 }

 new (&m_elements[m_count++]) ELEMENT(element);
}

template <class ELEMENT>
void StackVector<ELEMENT>::pop_back()
{
 m_elements[--m_count].~ELEMENT();
}

template <class ELEMENT>
ELEMENT & StackVector<ELEMENT>::back()
{
 return m_elements[m_count - 1];
}

template <class ELEMENT>
ELEMENT & StackVector<ELEMENT>::operator [](int index)
{
 return m_elements[index];
}

Here’s a simple usage example:

void getPrimeFactors(
 int number,
 StackVector<int> * factors)
{
 for (int factor = 2; factor * factor <= number;)
 {
 if (number % factor == 0)
 {
 factors->push_back(factor);
 number /= factor;
 }
 else
 {
 ++factor;
 }
 }

 factors->push_back(number);
}

So far, so good! It’s just a vector with better performance in some well-
defined circumstances, which is a pretty simple thing to get your head
around. That’s why stack vectors are used so widely in our codebase.

A Cloud on the Horizon
But there’s a nagging problem. There are two main use cases for stack
vectors—allocating scratch storage for a routine and returning values from
a routine—and they don’t mesh. Let me explain.
Imagine you’d like to write a function for a video game that returns enemies
within five meters of the player. Imagine further that you’ve got a good
starting point: a function that returns all nearby characters, whatever their
emotional relationship to the player, along with their positions, all in a stack
vector. It should be possible to call that code to get nearby characters, then
filter out everyone except the enemies.
Here’s the code you’d like to write:

void findNearbyEnemies(
 float maxDistance,
 StackVector<Character *> * enemies)
{
 StackContext context;
 StackVector<CharacterData> datas;
 findNearbyCharacters(maxDistance, &datas);

 for (const CharacterData & data : datas)
 {
 if (data.m_character->isEnemy())
 {
 enemies->push_back(data.m_character);
 }
 }
}

But this doesn’t work, at least not with the simple stack allocator defined in
the last section.
The problem is that two stack contexts are getting tangled up. You create a
StackContext and StackVector for the character data returned by
findNearbyCharacters, and this works great. But when you call enemies-
>push_back in the second half of the function, it will allocate memory from
the stack context you created locally, rather than the stack context
associated with the enemies array. The enemies array is probably defined in
the calling function, inside a different stack context.
That’s bad! You’d get unpredictable results if you used the returned array in
the caller. In fact, when the real Sucker Punch stack vector class tries to
allocate memory with a mismatched stack context, it asserts to catch exactly
this kind of bug. It’s possible to work around the stack context tangle, but

I’m not going to show you the code because, frankly, it’s a little
embarrassing.

Making Stack Contexts a Little Smarter
There’s a fairly straightforward way to fix this. The stack allocator defined
earlier is global, like the standard heap allocator—when you allocate a
block, it’s associated with the stack context created most recently. That was
the root cause of the tangled stack contexts we’re trying to untangle. If it
was possible to associate a block with a particular stack context, we could
fix things.
That’s not hard. The easiest way to do this is to move the alloc method to
the StackContext object. If you’re allocating from the current context,
you’ll allocate bytes from a shared stack. In the uncommon case that you’re
allocating from some context that’s not current, you’ll switch to a backup
allocation strategy. You can do this without sacrificing the benefits of stack
allocation if you’re careful with the implementation.
First, here is the restructured StackContext class:

class StackContext
{
public:

 StackContext();
 ~StackContext();

 void * alloc(int byteCount);

 template <class T>
 T * alloc(int count)
 { return static_cast<T *>(alloc(sizeof(T) * count)); }

 static StackContext * currentContext();

protected:

 struct Index
 {
 int m_chunkIndex;
 int m_byteIndex;
 };

 static char * ensureChunk();
 static void recoverChunk(char * chunk);

 struct Sequence
 {
 Sequence() :
 m_index({ 0, 0 }), m_chunks()

 { ; }

 void * alloc(int byteCount);

 Index m_index;
 vector<char *> m_chunks;
 };

 Index m_initialIndex;
 Sequence m_extraSequence;

 static const int c_chunkSize = 1024 * 1024;

 static Sequence s_mainSequence;
 static vector<char *> s_unusedChunks;
 static vector<StackContext *> s_contexts;
};

New functions are created to create big chunks of memory as needed,
reusing them when they’re no longer needed:

char * StackContext::ensureChunk()
{
 char * chunk = nullptr;

 if (!s_unusedChunks.empty())
 {
 chunk = s_unusedChunks.back();
 s_unusedChunks.pop_back();
 }
 else
 {
 chunk = new char[c_chunkSize];
 }

 return chunk;
}

void StackContext::recoverChunk(char * chunk)
{
 s_unusedChunks.push_back(chunk);
}

The code to allocate a new block into the last chunk moves into a new
Sequence object:

void * StackContext::Sequence::alloc(int byteCount)
{
 assert(byteCount <= c_chunkSize);

 while (true)
 {
 int chunkIndex = m_index.m_chunkIndex;
 int byteIndex = m_index.m_byteIndex;

 if (chunkIndex >= m_chunks.size())

 {
 m_chunks.push_back(new char[c_chunkSize]);
 }

 if (m_index.m_byteIndex + byteCount <= c_chunkSize)
 {
 m_index.m_byteIndex += byteCount;
 return &m_chunks[chunkIndex][byteIndex];
 }

 m_index = { chunkIndex + 1, 0 };
 }
}

The stack context methods that are left are simple. Track the current set of
nested stack contexts. When an allocation is made from the topmost stack
context (the typical case), it comes from a global sequence. When an
allocation is made from any other stack context (the exceptional case), a
sequence owned by that stack context is used instead:

StackContext::StackContext() :
 m_initialIndex(s_mainSequence.m_index),
 m_extraSequence()
{
 s_contexts.push_back(this);
}

StackContext::~StackContext()
{
 assert(s_contexts.back() == this);

 for (char * chunk : m_extraSequence.m_chunks)
 {
 recoverChunk(chunk);
 }

 s_mainSequence.m_index = m_initialIndex;
 s_contexts.pop_back();
}

void * StackContext::alloc(int byteCount)
{
 return (s_contexts.back() == this) ?
 s_mainSequence.alloc(byteCount) :
 m_extraSequence.alloc(byteCount);
}

In normal usage, the backup sequence in the stack context isn’t used, so
there’s very little penalty for this new functionality. Allocation is still fast
and easy.
The new stack context code forces a few simple changes to the
StackVector class, which now needs to specify which stack context to
allocate from. Leaving out the stuff that doesn’t change:

template <class ELEMENT>
class StackVector
{
public:

 StackVector(StackContext * context);

protected:

 StackContext * m_context;
 int m_count;
 int m_capacity;
 ELEMENT * m_elements;
};

template <class ELEMENT>
StackVector<ELEMENT>::StackVector(StackContext * context) :
 m_context(context),
 m_count(0),
 m_capacity(0),
 m_elements(nullptr)
{
}

template <class ELEMENT>
void StackVector<ELEMENT>::reserve(int capacity)
{
 if (capacity <= m_capacity)
 return;

 ELEMENT * newElements = m_context->alloc<ELEMENT>(capacity);

 for (int index = 0; index < m_count; ++index)
 {
 newElements[index] = move(m_elements[index]);
 }

 m_capacity = capacity;
 m_elements = newElements;
}

With these new implementations, we’re in good shape. We’ve kept the
positive aspects of stack allocations—lightning-fast allocation and free
operations, plus good locality—while fixing the annoying inability to mix
and match local scratch space and variable-sized return values.

Migrating from Old Stack Contexts to New Ones
Now it’s time to circle back to the main premise of the chapter, which
you’ve likely forgotten in this blizzard of source code. You’ll recall that
we’ve got an old version of stack allocation and a new one, and they’re not
exactly the same.

So how do we get from Point A to Point B? The new stack allocator and
stack array are conceptually the same as the old versions, but their
interfaces have evolved a bit. The thousands of places in our source code
where we’ve used the old model of StackContext and StackVector don’t
match the new interface exactly, so we can’t just drop in the new
implementation. There’s a lot of existing source code that needs slight
changes.
You should be a little nervous about introducing new problems with the
switch to the new implementation. There are likely bugs lurking somewhere
in those thousands of uses of the old model. Somebody somewhere is
relying on the old system’s behavior—allocating memory from the wrong
stack context without realizing it, perhaps, and relying on the old behavior
to keep their code working. That bit of code will break when we switch to a
new model that actually supports out-of-order allocation.
An easy way to address these problems is by building parallel
implementations and using a runtime flag to switch between them.
First, give the two classes different names so that they can coexist in the
same codebase. In C++, wrap the StackAlloc and StackContext classes
with two namespaces—say, OldStack and NewStack—so that the classes
have names like NewStack::StackContext. (You could just as easily
rename the classes to NewStackAlloc and OldStackAlloc.)
Second, create new StackAlloc and StackContext adapter classes. These
adapter classes will delegate to either the old or the new versions of
StackAlloc and StackContext, depending on a new global flag. The
adapter classes support the union of the slightly different interfaces to the
old and new classes.
This is pretty simple:

bool g_useNewStackAlloc = false;

class StackAlloc
{
public:

 static void * alloc(int byteCount);
};

void * StackAlloc::alloc(int byteCount)
{
 return (g_useNewStackAlloc) ?
 NewStack::StackContext::currentContext()->alloc(byteCount) :

 OldStack::StackAlloc::alloc(byteCount);
}

The StackAlloc adapter just consults the runtime flag and calls the right
allocator; simple. The StackContext adapter can be even simpler—since
the old StackContext didn’t have an alloc method, no code has been
written to call it. Any new code calling alloc on the StackContext adapter
is opting into using the new StackContext:

class StackContext
{
public:

 StackContext() :
 m_oldContext(),
 m_newContext()
 { s_contexts.push_back(this); }
 ~StackContext()
 { s_contexts.pop_back(); }

 void * alloc(int byteCount);

 static StackContext * currentContext()
 { return (s_contexts.empty()) ? nullptr : s_contexts.back(); }

protected:

 OldStack::StackContext m_oldContext;
 NewStack::StackContext m_newContext;

 static vector<StackContext *> s_contexts;
};

vector<StackContext *> StackContext::s_contexts;

void * StackContext::alloc(int byteCount)
{
 return m_newContext.alloc(byteCount);
}

Your goal at this point is to minimize intervention in the old code path. As
long as the global flag is false, the code is running through almost exactly
the same logic as before the change. You’ll create old-style StackContexts
as before and StackAlloc works as before, so you shouldn’t find any big
issues while testing.
At this point, assuming testing works out, you could commit your work.
You don’t need to update StackVector first, since it will work as is. It’s
allocating stack memory like any other stack memory user, and you can
switch between the old and new stack memory allocators using the runtime
flag.

The ability to check in partial work to the main branch is a big advantage of
the parallel rework technique. It’s not so important here, with this small
example—you could easily incorporate the next couple of steps into a
single change list and skip the intermediate steps. With a more realistically
sized example, though, being able to migrate to a new solution over a series
of partial steps makes the process much easier to pull off.

Preparing to Migrate StackVector
The next step is to decide how to migrate the StackVector class. One
obvious answer is to follow the model we used for StackContext, where a
new shim StackVector class embeds both an old-style and a new-style
StackVector, switching between the two of them based on the global flag.
That leads to delegation methods like this:

template <class ELEMENT>
size_t StackVector<ELEMENT>::size() const
{
 if (g_useNewStackAlloc)
 return m_oldArray.size();
 else
 return m_newArray.size();
}

As a temporary measure, this isn’t too bad. Creating the delegation
functions is a little mind-numbing, but at least it’s obvious what’s going on
to anyone who stumbles into this code during the migration to the new
system.
The other option is to make the switch where the stack allocator is called.
That works beautifully in this case—the StackVector class allocates stack
memory in exactly one place. If that code can handle both allocating
memory from a global stack (as in the original code) and from an explicit
stack context (which we’re migrating to) then you’ll be in good shape:

template <class ELEMENT>
class StackVector
{
public:

 StackVector();
 StackVector(StackContext * context);

 void reserve(int capacity);

protected:

 bool m_isExplicitContext;
 StackContext * m_context;
 int m_count;
 int m_capacity;
 ELEMENT * m_elements;
};

template <class ELEMENT>
StackVector<ELEMENT>::StackVector()
: m_isExplicitContext(false),
 m_context(StackContext::currentContext()),
 m_count(0),
 m_capacity(0),
 m_elements(nullptr)
{
}

template <class ELEMENT>
StackVector<ELEMENT>::StackVector(StackContext * context)
: m_isExplicitContext(true),
 m_context(context),
 m_count(0),
 m_capacity(0),
 m_elements(nullptr)
{
}

template <class ELEMENT>
void StackVector<ELEMENT>::reserve(int capacity)
{
 if (capacity <= m_capacity)
 return;

 assert(
 m_isExplicitContext ||
 m_context == StackContext::currentContext());

 ELEMENT * newElements = (m_isExplicitContext) ?
 m_context->allocNew<ELEMENT>(capacity) :
 m_context->alloc<ELEMENT>(capacity);

 for (int index = 0; index < m_count; ++index)
 {
 newElements[index] = move(m_elements[index]);
 }

 m_elements = newElements;
}

Having two StackVector constructors lets you track which kind of
allocation is appropriate. All your existing code will use the first
constructor, at least to start with, since it takes the same arguments as the
original version of the class. You’ll eventually migrate to using the second
constructor, but none of that code has been written yet. If the first
constructor is used, then isExplicitContext won’t be set, and reserve
will run exactly as before.

Once again, you’re at a safe point to commit changes. All existing uses of
StackVector will go through the old stack allocation code path if the global
flag is unset. Anyone setting the global flag runs through the new code path,
as does any code that creates a stack array with the new explicit-context
constructor.

Time to Migrate
Now you’re set up to migrate!
At Sucker Punch, we’d do this in a few steps. First, some small number of
first penguins3 set the global flag that switches to the new stack allocation
system. If they don’t discover problems, we then recruit a larger set of
people. When everything looks safe, we check in with the global flag set to
true so that everyone uses the new system. If at any point during this
rollout we detect a problem, it’s simple to switch everyone back to the old
system while we diagnose and fix the problem.
Once everyone is safely using the new system, we can start to tear out the
adapters. The new StackContext class replaces the old one without trouble.
We can tear out the small bit of wiring we added to the StackVector class,
too, since everything goes through the new allocator now.
There’s a policy decision to make about whether to require a context to be
passed to each StackVector. It’s a trade-off between the convenience of
inferring the topmost stack context and the bugs that pop up when a stack
context is accidentally deleted or misplaced. If we decide to require a
context, then we can do that in parts—we don’t have to update all five
thousand (!) places where we create stack arrays at once.
It might seem crazy that we’d consider converting five thousand lines of
code when there’s a reasonable defaulting strategy that avoids the need for
any conversion...but our focus is on the long term. If requiring the context
would make us more efficient by avoiding a whole class of bugs, then it’s
probably worth the effort.
It’s not that hard to convert the code. Just write a little bit of Python to find
all the StackVectors, figure out what stack context was implied (which
isn’t that hard, because it’s nearly always the last StackContext defined),
update the constructor, and check out the changed file. The real cost isn’t
updating the code—it’s figuring out how to test the change.

The compiler will catch almost all the problems, but for this case I’d also
apply this chapter’s strategy recursively. I’d add a special constructor for all
the places where I’ve inferred a context, then assert at runtime that the
constructor passed is topmost on the context stack. Once I verify that I
haven’t changed contexts, I’d switch to the normal constructor. If I’ve got a
good code-coverage test, I’m in great shape.
All that’s left at this point is the code that allocates stack memory directly.
We’ve got two choices: continue to support a global stack allocation that
implicitly uses the current stack context, or convert a few hundred lines of
code to call alloc on the StackContext variable directly. In this case, I’d
convert everything, gaining the robustness of the new allocation model.
Once the last bits of direct allocation are converted, you’re done. All of the
vestiges of the old stack allocation are gone—and you were able to do it bit
by bit, in a series of commits, taking small, safe steps. With this approach,
if you run into any bumps along the way, you can quickly back up to the old
behavior, so the team as a whole isn’t disrupted.

Recognizing When Parallel Rework Is a Good Strategy
This parallel rework strategy is very useful in the right circumstances, but
it’s not a panacea. You’ll still run into the occasional need to fix bugs in two
places. Coders who aren’t running with the new version of the system will
inadvertently break your work. These things will happen less often and be
less disruptive than if you’d gone on off onto your own private branch in
source control, but they will happen.
Parallel rework imposes some overhead, too. Just managing three separate
names for the same concept—original, reworked, and adapter—is a hassle.
You’ll write more code overall, since you’re likely to make copies of some
of the bits of the original solution.
It may be that your new, reworked system is so fundamentally different
from the original version that parallel rework doesn’t make sense. If you
can’t define an adapter layer, something that switches dynamically between
the old and new versions, then you can’t apply the technique as I’ve
described it here.
In a lot of cases, though, parallel rework provides a manageable way to
make major changes to your codebase incrementally and safely. At Sucker

Punch we don’t use it for all changes, but for big rework it’s our go-to
strategy.

1 Yes, the first lesson of optimization is “don’t optimize,” as Rule 5 explains; believe me
when I tell you that we have plenty of data about the importance of quick dynamic-memory
allocation in our games.
2 Most importantly, the blocks only stay around as long as the context. If you want to hold
onto some bit of data for longer than the context’s lifetime, you’re out of luck.
3 In case you’re not familiar with this expression, an explanation. Penguins nest on land, but
hunt at sea. This means diving off ice floes into the ocean, not sure whether a hungry leopard
seal is lurking underneath the waves. Penguins tend to gather in jostling mobs at the water’s
edge, all waiting for one penguin to be brave enough to dive in—or, more likely, to be jostled
in; there is no honor among penguins. Anyhow, if that penguin doesn’t get eaten, the rest of
the penguins follow. Hence, “first penguin.”

Rule 20. Do the Math

This isn’t a very math-y book. Sure, numbers pop up in a few of the Rules
(like Rule 4, “Generalization Takes Three Examples”, and Rule 11, “Is It
Twice as Good?”), but the Rules are more concepts than equations.
It’s sort of surprising that there isn’t more math in computer programming.
Computers are just number processing machines, after all. Everything is
reduced to numbers for processing—words are sequences of characters
represented as numbers, bitmaps are pixels represented by colors
represented by numbers, music is a pair of waveforms represented as a
series of numbers. You’d think that some of that would leak through—that,
as a programmer, you’d be figuring equations at some point. That doesn’t
happen very often, though.
Most of the decisions a programmer makes are squidgy. Deciding whether
the clarity a lengthy comment would add is worth complicating the flow of
logic, say. Choosing between getPriority or calculatePriority as the
name for a function.1 Identifying the right time to switch over to a new
version of some system.
It’s easy to fall into thinking that all decisions are squidgy, not just most
decisions. Some decisions boil down to simple math, though, and you need
to recognize them when they pop up. If you don’t, if you forge ahead
without doing the simple math, you may be in for a painful realization later
on. You may discover that the approach you’ve followed was never going to
work, and that you could have saved yourself a lot of time by just doing the
math. This will make you sad; better to do the math up front.

To Automate or Not to Automate
Here’s a common scenario. You’ve got some process you’ve been doing by
hand, and you’re thinking about automating it. Is the automation work
worth doing?
That’s just a math problem! If you’ll spend less time writing the code than
you’ll spend repeating the task by hand, then it’s worth doing. If not, then it
isn’t.
This may seem obvious, and it is, but that doesn’t mean the math gets done.

I’ve seen this math get skipped way more times than I’ve seen it done. Let
me spin a typical counter-example—a programmer gets annoyed by some
manual process, immediately dives into a two-day project to automate it,
then congratulates themselves every time they run the resulting macro.
Which they do maybe once a week, saving 15 seconds each time.
The two-day automation project may have been fun, but it wasn’t
justifiable, and doing the math before starting would have made this clear.
Look, we’re programmers because we like to program. We’re going to have
a bias toward solving problems by programming—but programming isn’t
the right solution to every problem.
Deciding whether to automate some task is an optimization problem—
you’re just optimizing the work process rather than the program execution.
You apply the same steps as with any optimization, including the absolute
need to measure the process before trying to optimize it.
Let’s look at a concrete automation scenario. Imagine you’re writing a book
about programming. You’re using Visual Studio to edit all of your coding
examples, but you’re using Word to write the book. The code examples are
indented in the source file, but shouldn’t be indented in the book.2 Your
manual process is simple and pretty fast:

1. Select a code block in your editor.

2. Unindent it.
3. Copy it to the clipboard.

4. Undo the unindentation.

5. Switch to Word.
6. Create a paragraph with the right style.

7. Paste the code example into the paragraph.

Is this worth automating? Will you save time overall by automating this
operation? Time to do the math.
There are two sides to the math here: the cost side and the benefit side. The
cost is how much work will be required to implement the automation. The
benefit is how much time you’ll save once the task is automated.

In this concrete scenario, some of the steps will still remain even after
automation. You’ll still switch to your code editor to select the code block,
and you’ll still switch back to Word to paste it in. When you’re doing the
math for the scenario you can ignore the steps that don’t change, since
you’re only interested in the time difference pre- and post-automation.
Everything else can be automated, and once automated will take effectively
zero time.
You can’t do the math without numbers. Where possible, use real numbers
rather than estimates. That means measuring the things that can be
measured—in this case, how long the manual process takes. So time it—
let’s say it takes 6 seconds.3 You look at the chapters you’ve written and
they average 8 code samples, so 8 code samples per chapter goes into the
math. Your publishing contract calls for 20 or so chapters, so that’s the
number to use. You’ve also noted that it’s common to revise code samples,
and this means cutting and pasting them more than once. You think that on
average each example is pasted 3 times; that’s the one estimate in all of this.
That’s enough to do the benefit side of the math:

6 seconds (per copy operation) ×
8 (code samples per chapter) ×
20 (chapters) ×
3 (revisions of each sample) = 48 minutes

OK, so that’s the benefit side of things. On to the cost side.
How long will it take to automate the process? It’s not easy to automate
things in Visual Studio, at least as it comes out of the box, but Word is
surprisingly automatable. If you’ve written Word macros before, and
especially if you’ve written code that manipulates the clipboard, then
you’ve got the basics covered. There’s just some text cleanup to do on top
of the clipboard manipulation.
And that cleanup doesn’t seem bad. Pull the contents of the clipboard into
an array of strings, one per line of text. Detect the minimum amount of
indentation in any string, then rebuild the array subtracting out that
indentation. You’ll probably need to think about how blank lines affect
things, and also should consider that spaces and tabs look pretty much the
same in the text editor but pretty different in Word. And after cleaning up

the lines you have to reassemble them into a text block and insert it in the
document, then bind your new macro to a hot key.
Let’s say your estimate is an hour to get this all working correctly.4

An hour is more than 48 minutes, so the math tells us to not do the
automation. But it seems close; maybe the estimates on the benefit side
were a little off. Maybe it’s an average of 4 revisions per sample instead of
3. That would be enough to push the math positive—if it’s 4 revisions per
sample instead of 3, the math says go ahead. And the fact is, it is really
annoying to do the steps by hand, even if it’s only taking 6 seconds a pop.
Hold on there, cowpoke. Which do you think is more likely—that you were
a little too pessimistic on your estimate of the benefits, or a little too
optimistic on how much time it was going to take to get the code working?
You’re a programmer, you know the answer to this question. You’re much
more likely to miss your estimate on coding time.
If the cost-benefit math for automation looks like a toss-up, then don’t do it.

Look for Hard Limits
If you’ve got hard limits in your problem space or on your solution, then
you should respect them from the start of your design process.
One of the nice things about creating games for video game consoles is that
they present plenty of hard limits. Like the amount of memory in a console
—that’s fixed. The number of bytes you can pack on a Blu-ray disk is fixed.
The size of a UDP networking packet is fixed. Each frame is a sixtieth of a
second, full stop.
Our team will also invent hard limits to clarify our technical design process.
Take available network bandwidth, for example. It varies from customer to
customer, and it can be unpredictable, but we have pretty reliable numbers
on measured network bandwidth for customers around the world. We can
invent a hard limit on network bandwidth that covers nearly all of our
customers; if we stay within that invented hard limit, the game will run well
for almost everyone.5

It may seem strange to rejoice in hard caps like this. Why would having
hard limits be something to celebrate?
Take the hard limit on memory that we work with when doing console
programming. This seems like a bad thing—wouldn’t virtual memory make

programming easier? The answer is yes, of course, but it’s at the cost of
turning a hard limit on memory into a softer limit. If you overflow available
physical memory, virtual memory swaps pages out to disk, trading time for
space. That’s a problem for a video game. Updating the screen once every
couple of seconds when virtual memory starts thrashing isn’t acceptable; we
have a hard limit of a sixtieth of a second for each frame. In the end it’s
simpler to accept a hard limit on memory.
So we identify the hard limits that exist, and invent hard limits out of softer
limits to simplify our design decisions. That’s true for the coding team, but
even more so for all of the Sucker Punchers who aren’t coders. Trade-offs
and soft limits are really hard for people to wrap their heads around. Hard
limits are easier—they turn some parts of the design process into simple
math, and that’s easy to do.6

Consider a network protocol design example. The basic networking design
is fixed—you’re writing a peer-to-peer game, so every connected machine
is communicating directly with the other connected machines. Each
machine is the “authority” for a subset of the characters in the game, and is
responsible for broadcasting to the other machines the state of those
characters. The hard limits you need to respect are 1 Mbps network
bandwidth received and 256 Kbps bandwidth sent—if you stay within those
bounds, nearly all players will get good performance. You need to support
four connected players.
The design you’re considering is for each machine to broadcast in UDP
packets the position and orientation of each character it has authority over
each frame, plus enough information to reconstruct the animations currently
applied to that character. In combination, that’s enough to position and pose
the character on the other machines. If packets get dropped, it’s not that big
a deal, since you’re sending information about each character 60 times a
second.
This is just another math problem! You’ve got a hard limit on network
bandwidth that has to be respected, so you need to figure out how much
data your design would send each second. That means measuring wherever
possible, and estimating where a measurement can’t be made.
In the simplest possible version of this design, you’d use the native
representation for the things you’re going to network. Internally, character
positions are a vector of three 32-bit floating point numbers, and the

character orientation can be boiled down to a compass heading also
represented in floating point. That covers position and orientation, leaving
the information necessary to reconstruct animations in the remote machine.
Luckily, you’ve got a single-player version of the game that you can use for
measurement, and you discover that on average each character blends
together the effects of six animations. You’ll need to send an animation
count, plus enough data to reconstruct each of the active animations. That
means identifying the animation—internally, you do that with a unique 8-
byte identifier. You’ll also need to capture where you are in the timeline for
the animation, internally a 4-byte floating-point number, and any factor
used to blend between the results of two animations, also represented in
floating point.
The math for each character is clear now, in this simple version of the
design. Your floating-point values are all stored in 4 bytes, and you use 4-
byte integers for counts by default.
Position is 12 bytes, plus 4 bytes for orientation, plus 4 bytes for an
animation count. Each animation is an 8-byte identifier, then two 4-byte
floating-point values for the timeline and blend factor. That’s 12 + 4 + 4 + 6
× (8 + 4 + 4) = 116 bytes per character, which doesn’t seem too bad.
There’s more math, though. You broadcast information about each character
once per frame, so you need to multiply by 60 to calculate how many bytes
per second of bandwidth you’re using.
Your peer-to-peer architecture means that you send out three copies of the
character’s data each frame, too—one copy to each of the three peers. You
also receive data from each of the three peers about the characters they have
authority over. The worst case with this design is when a machine ends up
with authority over all the characters—that machine then sends out three
copies for all characters, and receives copies for none.
You’ve got one more fixed point—the number of characters you need to
handle, which your game design team has decided is 30. Now you’ve got
enough numbers to do the math:

30 (frames per second) ×
3 (copies to our peers) ×
30 (characters) ×
116 (bytes per character) ×

8 (bits per byte) = 2.5 Mbps
Uh oh. That’s 10 times your available bandwidth on bits sent. Doing the
math let you know that the simple design you had in mind couldn’t work.
Actually, the dangerous part is that the design will work fine on your
internal 1G network, where it won’t even cause a ripple in available
bandwidth. You’ll only discover the problem when you deploy to the field.
Yikes.
It’s a little bit tough to salvage this simple design.
There’s lots of room to compress the data sent about each character, so
that’s a place to start. Maybe 16 bits is enough for each of the coordinates,
given that multiplayer areas are small, and 8 bits should be enough detail
for heading. Creating a table of all networkable animation names would
mean that 10 bits would be enough to identify an animation, and each
animation could write its own networked state, which is more compressible
than the raw blend weights and time values you sent. Throwing all of these
compression tricks at the problem, you squeeze the bytes per character
down to 16 instead of 116.
The math still doesn’t work out:

30 (frames per second) ×
3 (copies to our peers) ×
30 (characters) ×
16 (bytes per character) ×
8 (bits per byte) = 345 Kbps

Much closer, but still above the hard limit. Something’s going to have to
give—maybe the design team can be persuaded that 24 characters is
enough. On the technical side, maybe you could get away with sending data
about characters every other frame, rather than every frame. Either of these
changes would get the design safely under the hard cap.7

Crucially, the math happens before implementation starts. The math told
you that the initial design couldn’t work. It’s a lot easier to switch to the
design where the math pencils out before all the code is written. Once all
the multiplayer content is built, it’s going to be a lot harder convincing the
design team to reduce the maximum character count to 24!

It’s important to note that doing the math is designed to identify solutions
that won’t work, not to necessarily verify that a solution will work. This
simple network design could fall apart for any number of other reasons—
but at least it won’t fail due to basic math.

When the Math Changes
Let’s go back to the first example, where you had to decide whether to
automate a manual process to cut and paste code samples from Visual
Studio into Word. The process focused on normalizing the indentation of
the code samples, and the math told you that automation wasn’t worth
doing.
Imagine, then, that your first understanding of the problem was incomplete.
Normalizing the indentation isn’t enough. All of the tabs in the code
samples need to be converted to spaces, too, because that’s how the
publisher lays out books.
Does the original math still apply? Not anymore—because the manual
process you measured doesn’t match the new requirement. You’ll need to
tweak the manual process—say, by finding a Visual Studio plug-in that
converts tabs to spaces,8 then adding an extra step to trigger this plug-in on
the selection, then adding an extra undo step—then remeasure.
That tweak affects both halves of the math. The extra two steps—a tabs-to-
spaces conversion, and an extra undo—will slow down the manual process.
Maybe each run through the cut-and-paste process takes 10 seconds now
instead of 6, and that increases the benefit side of the equation.
The tweak also affected the cost side of the manual process, too, because
now you’re spending time to find and install the right extension, then
spending time experimenting to understand exactly how it works. Your
process depends mightily on how the new plug-in interacts with the undo
stack, for instance. It’s only fair to add this to the cost side of the math,
since the time you spend finagling the extension could have been spent on
your automation effort instead.
If you do the math again with these two adjustments and some new
estimates, the balance changes, first for the manual process:

10 seconds (per copy operation) ×
8 (code samples per chapter) ×

20 (chapters) ×
3 (revisions of each sample) = 80 minutes

If you add in 45 minutes to research an appropriate tabs-to-spaces plug-in,
including installation and experimentation, and bump up your estimate of
automation to 90 minutes to include the extra work of doing tabs-to-spaces
conversion, the math changes:

80 minutes + 45 minutes (manual process) > 90 minutes (automated
process)

Now the math tells you to do the automation. You could still cut and paste
code samples with a manual process, but the process will be slower and will
take time to figure out. Better to just automate it.9

When the Math Problem Changes Back into a Word Problem
If you take this chapter to heart, you’ll do a better job identifying problems
that imply a little bit of math. Quantifiable constraints and measurable
solutions are the cue—when you see both of them, you should do the math
to help identify solutions that will never work.
But be wary that there aren’t qualitative problems lurking in all of the
quantitative analysis! Take task automation: it’s not always as simple as just
doing the math.
Your primary goal when automating a task is to reduce the total time
spent…but that may not be your only goal. The manual process might be
error-prone, for instance. Maybe you could quantify how often errors occur,
and how much time they take to fix, but these are tough things to be crisp
about.
Or maybe a manual task that should be completed daily is so annoying that
it’s only done weekly. It doesn’t make sense to focus solely on the time
spent on the task. If automation ensures that the task is done daily, then it
might be worth doing, despite the amount of time saved being small.
And it’s not unreasonable to consider team sanity as a soft goal. A manual
task may not be all that time consuming, but if it’s a constant irritant and it
can be fixed relatively easily, it might be worth doing even if the math
doesn’t quite work out. Don’t be afraid to spend a day now and then just to
make everyone’s lives more pleasant—especially when the math is a close
call anyhow.

On the flip side, if you don’t deeply understand a task, then be wary of
automating it even if the numbers look good! In the preceding examples, I
was automating one of my own tasks. I knew all of its ins and outs. If it had
been someone else’s job to cut and paste code examples into this book,
things would have been a lot fuzzier. I wouldn’t have been sure I knew what
the right approach to automation was, much less that I’d got the math right.
Fundamentally, though, trust the numbers. If there’s quick arithmetic you
can do that verifies the basic sanity of the problem-solving approach you’re
considering, then do the math.

1 It will not surprise you to learn that we have a convention for this at Sucker Punch: “get”
implies that no (or very little) calculation is done, while “calculate” or something similar
implies that work is involved to produce the value. It’s a nice head start on understanding what
a function does.
2 Ahem. This is not a hard scenario for me to imagine.
3 Because that’s how long the manual process took when I timed it.
4 An optimistic estimate, in my opinion.
5 Not everywhere, though. McMurdo Station in Antarctica shares 25 Mbps of bandwidth
between a thousand people in the summer. That’s less than our hard cap; sorry, scientists. Also
it might make sense to cut back on the Netflix, scientists; sorry about that too. Keep up the
good work, though.
6 Well, it’s easy for the coders to do the math, at least. And easy for the coders to explain to
anyone who doesn’t want to do the math.
7 Actually the easiest fix is to miss the ship date for your game by a few years and hope that
your customers’ internet connections get faster. You’d be surprised at how often this turns out
to be the eventual fix for a performance problem.
8 Because the alternative of switching from using tabs to using spaces in your code is
completely unacceptable, naturally. We all have our foibles.
9 I had an excellent time writing the resulting Word macro, by the way. Word macros are
written in Visual Basic for Applications, and Basic was the first programming language I
learned. Good times.

Rule 21. Sometimes You Just Need to
Hammer the Nails

Programming is an inherently creative, intellectually challenging activity.
That’s a big part of why I love it, and you’d probably say the same. Every
problem is different than the ones before, requiring a little bit of cleverness
to solve—though, per the Rules in this book, hopefully not too much
cleverness!
But not every problem has an elegant solution. Even the most exciting
programming assignment has moments of drudgery: tasks that aren’t
interesting, that it’s difficult to get excited about, that nobody wants to do.
It’s easy to work on the exciting stuff instead, putting off the drudgery and
secretly hoping that someone else on your team will take it on instead.
With that setup, the moral of this chapter will come as no surprise—don’t
skip the drudgery. That unlovable task isn’t going anywhere. There’s no
hidden army of code elves who’ll do the work while you’re sleeping. And
half-completed tasks are a slow poison, working to kill your project.
The key is to know the danger signs. You’re a clever person,1 more than
clever enough to rationalize away the necessity of the tasks you don’t enjoy.
That’s especially true if you have a long backlog of more interesting tasks
to get to.
Knowing the sorts of tasks that you personally tend to ignore is a key bit of
self-knowledge. Your list may not match mine, or match your coworkers’—
one programmer’s drudgery is another programmer’s day at the park, to
coin a phrase. Once you can identify which tasks you tend to avoid, you can
be more conscious of giving them the priority they deserve.
That said, this would be a pretty empty chapter without some examples!
They were not hard to find, since I could draw both from the kinds of tasks
I personally dread and from the tasks I’ve seen others avoid.

A New Argument
Imagine that you’ve got a function like this:

vector<Character *> findNearbyCharacters(
 const Point & point,
 float maxDistance);

The function returns all characters within some bounding sphere. Dozens
and dozens of calls to this function are scattered throughout your codebase.
You’ve found a handful of places where the basic behavior of this function
isn’t quite right. In these cases there are a handful of characters you’d like
to exclude from the search, and you’ve decided to add a new argument to
handle the exclusion:

vector<Character *> findNearbyCharacters(
 const Point & point,
 float maxDistance,
 vector<Character *> excludeCharacters);

Now you’re faced with a choice—do you update all the places the old code
was called, adding the new argument? Or do you avoid this work by
specifying a default argument, like this:

vector<Character *> findNearbyCharacters(
 const Point & point,
 float maxDistance,
 vector<Character *> excludeCharacters = vector<Character *>())
{
 return vector<Character *>();
}

Or perhaps avoid the work by having two overloaded versions of the
function?

vector<Character *> findNearbyCharacters(
 const Point & point,
 float maxDistance);
vector<Character *> findNearbyCharacters(
 const Point & point,
 float maxDistance,
 vector<Character *> excludeCharacters);

Overloading and default arguments let you skip the work of updating
existing uses of findNearbyCharacters. That’s good, right? You can get on
with the stuff on your backlog.
Maybe, maybe not. Going through the places the old version of the function
is called isn’t just about converting them—it’s also about looking at how
those pieces of code are using the function. The chances are good that a few

of them are excluding characters from the list—exactly what your new
argument handles. These examples should be converted to use the new
argument.
Imagine that soon thereafter, you run into the need for finer-grained
filtering. Say that you want to find only nearby enemies that pose a threat,
instead of all characters. You decide to add a simple filtering interface:

struct CharacterFilter
{
 virtual bool isCharacterAllowed(Character * character) const = 0;
};

vector<Character *> findNearbyCharacters(
 const Point & point,
 float maxDistance,
 CharacterFilter * filter);

Here’s a filter that accepts threatening enemies, but rejects allies and
incapacitated characters:

struct ThreatFilter : public CharacterFilter
{
 ThreatFilter(const Character * character) :
 m_character(character)
 { ; }

 bool isCharacterAllowed(Character * character) const override
 {
 return !character->isAlliedWith(m_character) &&
 !character->isIncapacitated();
 }

 const Character * m_character;
};

Now you have another set of decisions to make. Add another overloaded
version of findNearbyCharacters? Or maybe two new overloaded
versions: one with filtering and an excluded characters list, the other just
with filtering? That would bring you up to three or four overloaded versions
of the function. Seems complicated—three or four versions of the function
to keep in sync? Confusion about where to set breakpoints? Things are
starting to get out of hand.
It might be better to handle excluded characters with a filter instead.
Implementing a CharacterFilter that checks a list of characters is trivial.
That would keep the number of versions of the function under control, and

you’ll likely find a few more uses of findNearbyCharacters that would be
simpler with a filter:

struct ExcludeFilter : public CharacterFilter
{
 ExcludeFilter(const vector<const Character *> & characters) :
 m_characters(characters)
 { ; }

 bool isCharacterAllowed(Character * character) const override
 {
 return m_characters.end() == find(
 m_characters.begin(),
 m_characters.end(),
 character);
 }

 vector<const Character *> m_characters;
};

Converting to using filters everywhere implies some work. There are
dozens of places where findNearbyCharacters is called. All of the calling
code has to be inspected, and at least some of it will get converted to the
new filter model. That sounds like drudgery to me. Faced with that amount
of work, it’s really tempting to live with three overloaded versions and just
convert the code that has to be converted.
That’s a mistake—or, at best, a reasonable decision made for the wrong
reasons. You’re trading off the short-term cost of inspecting and updating
the existing code against the long-term benefit of a simpler, cleaner model
for finding nearby characters.
As programmers, most of us have a tendency to tie-break in favor of short-
term costs instead of long-term benefits, usually to our later chagrin. If you
think you know what the right solution to a problem is, but you’re reluctant
to do it because of the amount of work involved, just cowgirl up2 and do the
work.

There’s Never Just One Bug
Here’s another example. You stumble onto a bug—some bit of code is
calling another bit of code incorrectly. That’s understandable, because the
second bit of code has doubled down on its poor name choices by omitting
any documentation:

void squashAdjacentDups(

 vector<Unit> & units,
 unsigned int (* hash)(const Unit &));

Seems pretty straightforward—it looks like the function squashes out
adjacent duplicate values using the provided hash function. And that’s
almost what it does:

void squashAdjacentDups(
 vector<Unit> & units,
 int (* hash)(const Unit &))
{
 int nextIndex = 1;

 for (int index = 1; index < units.size(); ++index)
 {
 if (hash(units[index]) != hash(units[nextIndex - 1]))
 {
 units[nextIndex++] = units[index];
 }
 }

 while (units.size() > nextIndex)
 {
 units.pop_back();
 }
}

The problem is that the hash argument to squashAdjacentDups is expected
to return a fully unique value, given how the code is written. That’s not
what a hash function does, though. Given two equivalent objects, the hash
function returns the same hash value, but it also might return that hash
value for another object that isn’t equivalent. You always have to check for
equivalency after the hash values are compared, which squash doesn’t do.
The bug you’ve just fixed is a result of this quirk—the caller passed in a
hash function, not a unique identifier function:

struct Unit
{
 int m_id;
 string m_firstName;
 string m_lastName;
 string m_userName;
};

unsigned int hashUnit(const Unit & unit)
{
 return combineHashes(
 hashString(unit.m_firstName),
 hashString(unit.m_lastName),
 hashString(unit.m_userName));
}

This almost always works, which is why the bug wasn’t caught earlier…but
once two adjacent Units hashed to the same value, things broke.
So should you fix the bug and move on? Nope, not until the drudgery is out
of the way.
First of all, you have to rename the hash argument. Its current name is a lie,
and that’s going to cause more problems. Either use it like a real hash
function, with a separate call to check actual equivalence, or rename the
argument to reflect its actual usage.
Second, you should review all the other places where squashAdjacentDups
is called. Odds are good that at least one of them is going to exhibit exactly
the same bug you just fixed. In fact, there’s a decent chance that all of the
callers of squashAdjacentDups will exhibit the bug. You’ve done the work
to diagnose a pretty subtle bug, so leverage your new understanding to find
the other instances of that bug in the code.
Fixing the name takes very little time—it’s easy to convince yourself to
take that step. Reviewing all the other callers of squashAdjacentDups, on
the other hand, is going to be a slog. But it will pay off—maybe not for you,
but for someone on your team. Short-term pain, long-term benefit. Take
your time, review the other callers, and fix the problems you find.

The Siren Call of Automation
Programmers have a predictable reaction to encountering some bit of
drudgery: they want to automate it.
Automation can take many forms. Perhaps you could fiddle together a
regular expression in your source editor to find all of the calls to
findNearby Charact ers and insert a new argument. Or maybe it would be
better to write some Python code to do this, since that would let you handle
the exceptions more easily. For that matter, you’ve had to deal with this sort
of argument-adding situation before—maybe what the project really needs
is a generalized argument-adding utility app written in Python. That would
be a good project; better get started on it!
Believe me, I get it. It’s more fun to noodle on a regular expression until it
flawlessly handles every variation of whatever bit of drudgery you’re
facing, or to write a bunch of clean-sheet Python code to do the same thing.
It’s certainly a lot more fun than making the same manual edit over and

over again. But it isn’t very smart. You’ll spend less time just making the
edits by hand; do the math, per Rule 20.
Maybe you can get a running start with regular expressions—hey, if there’s
an easy, no-fiddling-required regular expression that solves 80% of the
drudgery, by all means do it! You can sweep up the other 20% of the
drudgery by hand.
Keep in mind that tasks like the examples presented here feel repetitive, but
rarely are they so repetitive that they’re easily automated. There’s judgment
involved, even if it’s as simple as breaking up a function call over multiple
lines or adjusting a comment to match the new function signature.

Managing File Sizes
Code evolves over time—and despite the undeniable joys of deleting code,
you’ll end up adding more code to your project than you end up deleting. In
the process of adding code, your source files get longer and longer, maybe
to the point of being uncomfortably long.
That may be a natural product of your team’s conventions. At Sucker
Punch, by convention the source code for a particular class all resides in a
single source file and a single header file. And, like a lot of teams, despite
our best efforts we’ve ended up with a couple of kitchen-sink classes, like
our main character class. It’s a convenient spot in the class hierarchy to add
features, so lots of features have been added, and lots of features mean lots
of source code. I just checked, and the implementation file for our main
character class is 19,000 lines long. Ouch.
Is this a problem? Yeah, at least a little bit. It’s harder to work in a file that
size. You have to use text search to find anything, as paging through the
code gets you nowhere fast. It takes longer to compile than the other files,
which throws off your build distribution. It’s hard to tell which bits of code
are related to which other bits when they’re separated by thousands of lines.
So why hasn’t it been fixed? Because reducing the number of lines would
involve a lot of drudgery: copying and pasting code to a new file,
refactoring chunks of behavior into separate classes to respect our “one
source file per class” convention, reexamining the header files in the old
and new files to make sure they’re still appropriate, and resolving any
dangling references after the files are moved. That work is zero fun, and
we’re all busy. We’ve collectively decided to whistle past the graveyard,

avoiding the drudgery and ignoring the increasingly unwieldy size of the
file, even though we’d all be happier with a shorter version of the file.
I should note that the Sucker Punch team is well-adjusted, with everyone on
the team showing their commitment every day to a clean and functional
codebase. For the first two examples, everyone on the team would have
chosen the hard path, powering through the drudgery to update code to
match the new argument set or looking for bugs similar to the one that had
just been fixed. But we still have a 19,000-line source file that we’re all
faintly embarrassed about.
Look, it’s hard to dive into the drudgery, even for a disciplined team. The
first step is to recognize that you’re avoiding a task because you don’t want
to do it. The second step is to take a step back to evaluate the long-term
benefits of tackling it—it’s entirely possible that the task is both unpleasant
and not particularly valuable, in which case you certainly shouldn’t do it!
But if it’s going to pay off in the long term, even though it’s going to suck
in the near term, then it’s time for step three: hammer the nails.

There Are No Shortcuts
Imagine that you’ve got a big chunk of wood with a hundred nails sticking
out of it. They make it impossible to use the chunk of wood for anything
else. You could just ignore the nails. You could hope that someone else will
hammer the nails for you. You could spend a lot of time tinkering with a
nail-hammering machine that might work someday.
Or you could just take out your hammer and get to work. Sometimes you
just need to hammer the nails.

1 You’ve made it to the last Rule in the book, which I’m taking as evidence of your wisdom
and insight.
2 Or cowboy up, if that’s your style.

Conclusion: Making the Rules Your Own
The Rules, as I’ve laid them out in this book, distill the lessons we’ve
learned at Sucker Punch over the quarter-century of its existence. They’re
specific to our experience. They reflect the things that we think are
important—our programming culture. And that programming culture
reflects the specific constraints and characteristics of creating the sorts of
video games that Sucker Punch makes.
You’ve read a lot of Rules at this point. I’d guess that you immediately saw
how some of the Rules apply to the work you do, while others feel more
loosely connected to your experience. That’s not a surprise! If the
programming work you do is radically different from the work we do, then
some of our Rules may not make sense for you.
So what makes writing video games like ours different—and how does that
affect the Rules?

First of all, our projects are long. Our last game, Ghost of
Tsushima, took about six years to create. And we weren’t
starting from scratch—most of the code in Ghost is an
evolution (or just a direct copy) of code that ran in earlier
Sucker Punch games. We place a premium on long-term
code quality because we have to—the code we write today
has a good chance of still running ten years from now.

The coding team is big, with 30-odd full-time coders
currently on staff. Depending on your own situation, that
may seem tiny or huge. Personally, I’d define a “small”
programming team as one where one person can know all
the details of all the code. By that standard, Sucker Punch
hasn’t been small for a long time. At this point, nobody
knows all the details of the codebase, and all of us have to
sort things out in unfamiliar code. If our code isn’t easy to
read and understand, we’ll be in deep trouble.
Performance is important for video games, much more so
than for most code. There are websites that measure our
performance to the millisecond! But that doesn’t mean all of
our code needs to run fast. We’re like any project—our

https://oreil.ly/eB0hg

performance is determined by a small subset of our code.
Some of our code needs to run quickly, but most of our code
needs to be created quickly.

We release our games infrequently. That’s not true for all
games—whatever games you’re playing on your mobile
phone are likely updated all the time—but it is for us. That
makes it easier to sign up for big changes to the code. It also
means we face less of a constant quality burden—it’s
important that our code keeps running reliably and correctly,
because otherwise the 80% of Sucker Punch that isn’t on the
coding team is going to be really grumpy, but the changes
we make aren’t showing up in the customer experience until
long after we check them in. We can tolerate a few
temporary bugs in the code if it helps us create the game
more quickly.
Every game for us is a fresh sheet of paper. While we build
on top of the work we’d done for our last game, we’re not
locked into it. We have no backward compatibility or
continuity issues, and that makes it easier to for us to make
major changes.

Our approach to game development is iterative. Our
successes come from trying lots of new ideas to see which
one works, not from designing a game first on paper and
then building it. Ideas we try that sort of work are tweaked
and experimented with; ideas that don’t work are
immediately deleted. We prioritize creating and iterating on
new code quickly…while still remembering that the code
that does survive is likely to be around forever. That’s a
tough combination.

These characteristics have an obvious effect on the Rules. For example, the
fact that we release games infrequently has a huge impact on how we
approach big changes to the code—if we had a weekly release schedule,
we’d need a very different approach.

Use Your Best Judgment

The Rules can send you in contradictory directions, too—maybe your
team’s conventions expect get and set functions to access an object’s
protected state, but that means writing a set function you know is never
called. That’s a conflict between following team conventions (Rule 12) and
deleting code that isn’t called (Rule 8). Use your best judgment in cases like
this—I’d follow team conventions if the set function is simple, but that’s
just me.
You’ll also need to use your best judgment to decide which Rules apply to
your own work. Some of our Rules might be a poor fit if the characteristics
of the work you do differ enough from our projects at Sucker Punch. If
that’s the case, then don’t follow the Rule—this isn’t a dogma, it’s just a set
of useful rules.
But…there’s a chance that a Rule is true for you even if it’s hard to accept. I
accept plenty of things now that I would have rejected ten or fifteen years
ago. Take Rule 10, “Localize Complexity”. In the early years of Sucker
Punch, I designed and built a lot of systems out of tangles of interacting
objects. It took a long time—and a lot of failed architectures—to realize
that my mistake was fundamental. Rule 10 grew out of those failures, and
out of our more recent successes after localizing complexity.

Discuss Amongst Yourselves
This book was never intended to be a complete set of Rules, just a useful
one. Use these Rules as a starting line, not a finish line. Develop your own
set of Rules.
Obviously that will work best if you’re on the same page with the rest of
your team! Everyone on the team choosing their own set of Rules is a
recipe for chaos and strife. That’s probably not your goal.
Here’s an idea—start a book club. Everyone on the team reads a Rule or
two, then you all get together to discuss how the Rules you’ve just read
apply to your own projects. Figure out how you’d amend the Rule to better
match the work you do, if it isn’t a good fit. Or decide to discard it entirely,
if you all think that makes sense!
If you’re like most technical teams, you don’t spend a lot of time talking
about coding philosophy. And when you do, it’s probably in the context of
some particular technical issue you need to sort out, which inevitably leads
to the technical discussion and philosophical one getting all tangled up.

That’s not a recipe for progress. Better to separate the two discussions;
you’re more likely to end up in a happy place that way.
You’ll be much more effective as a team if you’ve aligned your ideas of
how to write code, and the quickest way to get there is to talk about those
ideas. The Rules can be a good starting point for that sort of discussion.
They can provide some structure to your discussion, a framework to come
to some consensus about how to write code. And that’s worthwhile—
investing in developing a shared coding philosophy will pay off many times
over.

Signing Off
So that’s it! No more Rules!
This book has been fun to write; I hope it’s been fun to read.
If you’ve got reactions or comments you’d like to share, see The Rules of
Programming website for pointers. I promise your input won’t be piped
straight to dev/null. The website also points you at the source code
examples used in the book.

https://oreil.ly/jTEGo

Appendix A. Reading C++ for Python
Programmers

The examples in this book are all presented in C++. That’s the language I
do most of my programming in, and it’s the language I’m most proficient
in. That said, I’ve written a reasonable amount of Python, too—it’s the
second-most used programming language at Sucker Punch. At the moment,
we have about 2.8 million lines of C++ in our codebase and about 600,000
lines of Python.
If you’re a Python programmer, you don’t need to learn how to program in
C++ in order to read the examples in this book. Code is code, basically—a
loop is a loop, variables are variables, and functions are functions. There are
some cosmetic differences, but the basic ideas in this book’s C++ examples
translate pretty directly to Python, even when that translation isn’t
immediately obvious!
This chapter is about explaining the translation. You won’t be able to write
C++ code after working your way through this appendix—that’s at least a
whole book’s worth of content—but you should be much more capable of
reading it.

Types
Nothing like an example to show how straightforward reading C++ can be
for a Python programmer! Here’s a simple function that calculates the sum
of an array of numbers, first in Python:

def calculateSum (numbers):

 sum = 0

 for number in numbers:
 sum += number

 return sum

And then in C++:

int calculateSum(const vector<int> & numbers)
{

 int sum = 0;

 for (int number : numbers)
 sum += number;

 return sum;
}

It’s the same code, right? There’s some extra cruft in the C++ version, but
the variables and the logic are the same.
As a Python programmer, you can pretty much ignore the curly braces and
semicolons in this book’s examples. In C++, the curly braces and
semicolons define sections of code, like indentation does in Python. Here,
though, I’m also indenting the C++ to show sections, because that makes it
easier to read; the curly braces and semicolons aren’t adding much value.1

The most confusing bit of C++ for an old-school Python programmer is the
types—the int and const vector<int>& syntax. These type annotations tell
the C++ compiler what kinds of values to expect for the annotated variables
or arguments—in this case, an integer and a list of integers. The compiler
needs to know the types before it can actually compile the code.
There are types in Python, too, of course, even if the language doesn’t force
you to worry about them. In Python the type details are usually sorted out
when the code runs, not when it’s compiled. You can always call
isinstance() to find out what the actual type is for an expression.
There are advantages to knowing about the types earlier in C++, most
importantly that it helps you find bugs earlier, but specifying types does
mean writing a bit more code. Python lets you skip some steps that C++
requires, which makes it easier to just write a little bit of code in Python.
Here’s how you can tell that both of these approaches are appealing: new
versions of C++ let you skip the type annotations in lots of cases, and recent
versions of Python let you add type annotations. Now you can write Python
that looks more like C++:

def calculateSum (numbers: Iterable[int]) -> int:

 sum:int = 0

 for number in numbers:
 sum += number

 return sum

And C++ that looks more like Python:

auto calculateSum(const vector<int> & numbers)
{
 auto sum = 0;

 for (auto number : numbers)
 sum += number;

 return sum;
}

The examples in this book stick to “old-school” C++ and use explicit types.
That’s our policy at Sucker Punch—we think it makes the code easier to
read—so I’ve continued the practice here.

Formatting and Comments
Sometimes the overall structure of the code is the same in C++ and Python,
but the syntax you’ll use to get there has more differences than in the first
example. Here’s a function that shows up in Rule 1—it merges two arrays
into a single array by doing a riffle shuffle.2 First, in Python:

Riffle shuffle two lists into a single list by randomly
choosing a number from one list or the other until both
lists are exhausted

def riffleShuffle (leftValues, rightValues):

 leftIndex = 0
 rightIndex = 0

 shuffledValues = []

 while leftIndex < len(leftValues) or \
 rightIndex < len(rightValues):

 if rightIndex >= len(rightValues):
 nextValue = leftValues[leftIndex]
 leftIndex += 1
 elif leftIndex >= len(leftValues):
 nextValue = rightValues[rightIndex]
 rightIndex += 1
 elif random.randrange(0, 2) == 0:
 nextValue = leftValues[leftIndex]
 leftIndex += 1
 else:
 nextValue = rightValues[rightIndex]
 rightIndex += 1

 shuffledValues.append(nextValue)

 return shuffledValues

The algorithm is simple—choose a value from one list or the other until
you’ve exhausted both lists, appending those values to a list of shuffled
values. In C++ the same code looks like this:

// Riffle shuffle two lists into a single list by randomly
// choosing a number from one list or the other until both
// lists are exhausted

vector<int> riffleShuffle(
 const vector<int> & leftValues,
 const vector<int> & rightValues)
{
 int leftIndex = 0;
 int rightIndex = 0;

 vector<int> shuffledValues;

 while (leftIndex < leftValues.size() ||
 rightIndex < rightValues.size())
 {
 int nextValue = 0;

 if (rightIndex >= rightValues.size())
 {
 nextValue = leftValues[leftIndex++];
 }
 else if (leftIndex >= leftValues.size())
 {
 nextValue = rightValues[rightIndex++];
 }
 else if (rand() % 2 == 0)
 {
 nextValue = leftValues[leftIndex++];
 }
 else
 {
 nextValue = rightValues[rightIndex++];
 }

 shuffledValues.push_back(nextValue);
 }

 return shuffledValues;
}

Again, the structure of the code is the same. The two languages have the
same basic features, so it’s easy to see how the various parts correspond to
each other, but there are lots of small syntactic differences.

Comments
First, comments—there are a few ways to comment C++ code, but the
examples in this book use a double forward slash to mark comments:

// Riffle shuffle two lists into a single list by randomly
// choosing a value from one list or the other until both
// lists are exhausted

Compare to Python’s hash comments:

Riffle shuffle two lists into a single list by randomly
choosing a value from one list or the other until both
lists are exhausted

Indentation and Split Lines
Rules about splitting lines are different, too. In C++, all whitespace is
considered equivalent. Spaces, tabs, and line breaks are interchangeable, so
splitting the condition of the while loop across two lines requires no special
syntax. You’re just exchanging a space for a new line:

while (leftIndex < leftValues.size() ||
 rightIndex < rightValues.size())

Line breaks are important in Python, so the two-line condition requires an
explicit line continuation with a backslash:

while leftIndex < len(leftValues) or \
 rightIndex < len(rightValues):

Indentation is more free-form in C++, too, and that can take getting used to
for a Python programmer. The actual grouping is defined by curly braces or
semicolons—there’s no real meaning to the indentation. In this example, the
two clauses are lined up in the same column, but that’s just to make the
code easier to read.

Boolean Operations
Boolean operations are represented with symbols in C++. In this loop
condition, C++ uses || where Python uses the much more straightforward
or. In the same vein, C++ uses && for Python’s and, and ! for Python’s not.
Sometimes the two languages don’t line up exactly. The C++ function rand
returns a random integer; this example checks whether that random integer
is even or odd to randomly choose a source vector. The % character here
calculates a modulo value, in this case 0 if the random value is even and 1 if
it’s odd:

else if (rand() % 2 == 0)

In Python, the random module’s randrange function is used to do the same
thing:

elif random.randrange(0, 2) == 0:

Lists
What Python calls “lists” are called “vectors” in C++. Python lists and C++
vectors work pretty much the same way, albeit with different names for
everything. C++ uses the particularly lovely name push_back to append an
item to the end of a vector:

shuffledValues.push_back(nextValue);

Python’s append is much clearer:

shuffledValues.append(nextValue)

You also use a size method on a C++ vector to get its length, rather than
calling a global len function like Python does.

Increment Operators
Finally—wow, there were a lot of little details packed into this example—
C++ has a syntactic shortcut for incrementing or decrementing a variable.
This expression retrieves the leftIndex’th value from leftValues,
increments leftIndex, then puts the retrieved value into nextValue:

nextValue = leftValues[leftIndex++];

The same logic takes two lines in Python:

nextValue = leftValues[leftIndex]
leftIndex += 1

So, overall, lots of small differences, but everything in this C++ example
has a pretty close analog in Python.

Classes

Both C++ and Python support classes, and the syntax for doing so isn’t all
that different. The ways the two languages actually implement classes are
very different, but that’s not important for the examples in this book. If you
think of a C++ class as being like a Python class, where all of the instance
attributes are set in __init__, you’ll find the examples easy to follow.
Here’s a Python class implementing a 3D vector concept:

class Vector:

 _vectorCount = 0

 def __init__(self):
 self.x = 0
 self.y = 0
 self.z = 0
 self._length = 0
 Vector._vectorCount = Vector._vectorCount + 1

 def __del__(self):
 Vector._vectorCount = Vector._vectorCount - 1

 def set(self, x, y, z):
 self.x = x
 self.y = y
 self.z = z
 self._calculateLength()

 def getLength(self):
 return self._length

 def getVectorCount():
 return Vector._vectorCount

 def _calculateLength(self):
 self._length = math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)

Any 3D vector class is going to track three coordinates: x, y, and z. This
particular class also caches the length of the vector and counts the number
of vectors that currently exist. There’s no justification for the latter two
features, by the way, other than illustrating a couple of syntactic differences
between Python and C++.
Here’s the C++ equivalent:

class Vector
{
public:

 Vector() :
 m_x(0.0f),
 m_y(0.0f),
 m_z(0.0f),

 m_length(0.0f)
 { ++s_vectorCount; }
 ~Vector()
 { --s_vectorCount; }

 void set(float x, float y, float z);

 float getLength() const
 {
 return m_length;
 }

 static int getVectorCount()
 {
 return s_vectorCount;
 }

protected:

 void calculateLength();

 float m_x;
 float m_y;
 float m_z;
 float m_length;

 static int s_vectorCount;
};

void Vector::set(float x, float y, float z)
{
 m_x = x;
 m_y = y;
 m_z = z;
 calculateLength();
}

void Vector::calculateLength()
{
 m_length = sqrtf(m_x * m_x + m_y * m_y + m_z * m_z);
}

I’ve inadvertently demonstrated one of the benefits of Python here—Python
is typically more concise than C++, with the Python version of this example
clocking in at about half as many lines as the C++ version.
These two versions of the class have the same pieces, but those pieces are
rearranged. Sometimes the rearrangement is obvious. In Python, the
__init__ method is called when an object is created, and __del__ is called
when the object is destroyed:

class Vector:

 def __init__(self):
 self.x = 0
 self.y = 0

 self.z = 0
 self._length = 0
 Vector._vectorCount = Vector._vectorCount + 1

 def __del__(self):
 Vector._vectorCount = Vector._vectorCount - 1

In C++, the class name itself is used for those two methods, with a
prepended tilde (~) to mark the latter method. These two methods are called
the constructor and destructor in C++ land. There’s also special syntax to
initialize the instance variables:

class Vector
{
public:

 Vector() :
 m_x(0.0f),
 m_y(0.0f),
 m_z(0.0f),
 m_length(0.0f)
 { ++s_vectorCount; }
 ~Vector()
 { --s_vectorCount; }
};

Slightly different syntax is used for accessing the class’s variables. In
Python, you need to be explicit about this with the self keyword:

class Vector:

 def getLength(self):
 return self._length

In C++, this is optional. You’re allowed to use this, C++’s equivalent to
self, but the class’s variables are already in scope. The compiler can
implicitly look up member variables for you:

class Vector
{
 float getLength() const
 {
 return m_length;
 }
};

If you see something in C++ that looks like a reference to a variable that
hasn’t been defined yet, it’s probably a class variable.

Visibility
Python and C++ have different ways to manage the bits of internal logic
that users of the class shouldn’t touch. In Python, there’s a convention to
follow: start the name with an underscore. The Python example uses this for
a class variable:

class Vector:

 _vectorCount = 0

There’s also a method:

class Vector:

 def _calculateLength(self):
 self.length = math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)

C++ solves the same problem with syntax, not conventions. The public
keyword at the top of the Vector class marks what follows as being visible
and usable to anyone with an instance of the object. The protected
keyword, a bit further down, hides what follows from any code outside the
class. As a result, users of the class can call the set method, but can’t call
calculateLength. The calculateLength method can only be called from
inside other Vector methods.

Class Vector
{
public:

 void set(float x, float y, float z);

protected:

 void calculateLength();
};

Declarations and Definitions
Next, let’s look at splitting a function’s declaration from its definition. In
Python, all of a class’s methods are defined in the class itself:

class Vector:

 def set(self, x, y, z):
 self.x = x
 self.y = y

 self.z = z
 self._calculateLength()

 def getLength(self):
 return self.length

Many of the examples in this book will do the same thing in C++:

class Vector
{
public:

 float getLength() const
 {
 return m_length;
 }
};

In other cases, though, the examples will split the declaration of the method.
First the code establishes that a method with a given name and type
signature exists:

class Vector
{
public:

 void set(float x, float y, float z);
};

The function is then defined separately:

void Vector::set(float x, float y, float z)
{
 m_x = x;
 m_y = y;
 m_z = z;
 calculateLength();
}

These two forms are typically compiled differently in C++, with methods
defined inside the class compiled inline, meaning that a separate copy of the
function is generated and inserted wherever it’s called, while a single copy
exists for functions with a separate definition. That’s not important for the
examples in this book, though, so don’t worry about the distinction.
The last thing to point out in this example is how C++ deals with class
attributes. In Python, class attributes are defined with statements in the
class, and instance attributes are added in an __init__ method:

class Vector:

 _vectorCount = 0

 def __init__(self):
 self.x = 0
 self.y = 0
 self.z = 0
 self._length = 0

In C++, both class and instance attributes (or “members,” in C++-speak) are
added in the class definition. The static keyword marks any class
attributes; everything that isn’t marked with static is an instance attribute:

class Vector
{
protected:

 float m_x;
 float m_y;
 float m_z;
 float m_length;

 static int s_vectorCount;
};

Function Overloading
There are some features in C++ that don’t have direct analogs in Python.
The converse is true, as well, of course—there are lots of Python features
that C++ doesn’t have—but that’s unimportant here, since we’re focused on
reading C++ code.
One thing that can be confusing to Python programmers is seeing two
functions with the same name. Here’s an example in C++:

int min(int a, int b)
{
 return (a <= b) ? a : b;
}

int min(int a, int b, int c)
{
 return min(a, min(b, c));
}

void example()
{
 printf("%d %d\n", min(5, 8), min(13, 21, 34));
}

It’s not clear how this works—if you try to call the min function, which
version is called? The C++ compiler makes this decision based on the
arguments. If two integers are passed, it calls the first one; if three integers,
it calls the second one. The example function prints 5 and 13.
I snuck a useful bit of C++ syntax into the functions—the question mark
operator, which lets you choose between two values based on an
expression:

return (a <= b) ? a : b;

The Python equivalent to this is similarly funky:

return a if a <= b else b

For what it’s worth, this Python syntax confuses me every time I see it. So
if you want to make a C++ programmer feel just a little bit clueless, make
sure you add lots of ternary expressions to your code.

Templates
Another concept from C++ that has no Python analog is templates. To
simplify things a bit: C++ templates are a way to write one chunk of code
that handles multiple types. The compiler generates new code for each set
of types used with the template.
The first example in this appendix summed an array of integer values. If
you wanted to sum an array of floating-point values, you might write new
code:

float calculateSum(const vector<float> & numbers)
{
 float sum = 0;

 for (float number : numbers)
 sum += number;

 return sum;
}

Or you might write a single version of calculateSum using templates and
let the compiler do the work for you:

template <class T>
T calculateSum(const vector<T> & numbers)

{
 T sum = T(0);

 for (T number : numbers)
 sum += number;

 return sum;
}

The templated version of calculateSum will work for any type that
implements the += operator and supports 0 as a value. That’s true for
integers and floating-point values, but could also easily be arranged for
other types. You could implement += and 0 for the Vector class from a few
sections ago, for instance, and gain the ability to sum an array of Vectors.
In Python, there’s no need for any of this. The Python code I wrote to sum a
list of values works perfectly well for any type that supports addition and
initialization to 0:

def calculateSum (numbers):

 sum = 0

 for number in numbers:
 sum = sum + number

 return sum

When you see the C++ template syntax in the examples, it usually marks
some bit of code that would work fine in Python without any templating at
all.

Pointers and References
There’s one final thing that Python mostly hides from view but that C++
makes programmers worry about, and that’s passing arguments by value
versus passing them by reference. In Python, simple types like numbers or
strings are passed by value—a new copy is made whenever they’re assigned
to a variable or passed as an argument to a function. It’s more complicated
for types like lists or objects. Here’s an example:

def makeChanges (number, numbers):

 number = 3
 numbers.append(21)
 print(number, numbers)

globalNumber = 0

globalNumbers = [3, 5, 8, 13]

print(globalNumber, globalNumbers)
makeChanges(globalNumber, globalNumbers)
print(globalNumber, globalNumbers)

When this code is run it prints out:

0 [3, 5, 8, 13]
3 [3, 5, 8, 13, 21]
0 [3, 5, 8, 13, 21]

Notice how the simple value changes inside makeChanges to 3, then
changes back to 0 when makeChanges returns, but the list changes without
changing back. That’s because 0 was passed by value. A new copy was
made when makeChanges was called. When makeChanges sets number to 3,
it’s only changing the copy.
Python didn’t make a copy of the globalNumbers list—it just passed the
original list. Both numbers and globalNumbers are holding onto the same
list. When 21 is appended, it’s appended to that list. When you print
numbers before returning or globalNumbers after, 21 shows up, because
you’re printing the same list in both cases.
C++, by contrast, makes all of this more explicit. All variables and
arguments are explicitly passed by value or passed by reference. The C++
equivalent to the preceding Python code looks like this:

void makeChanges(int number, vector<int> & numbers)
{
 number = 3;
 numbers.push_back(21);
 cout << number << " " << numbers << "\n";
}

The ampersand in front of numbers is important—it tells the compiler that
this argument is passed by reference, not by value, so the compiler won’t
make a copy of it when makeChanges is called. There’s no ampersand for
number, so the compiler does make a copy of number.
If the ampersands are flipped, then the compiler makes a copy of numbers
but not of number:

void makeChanges(int & number, vector<int> numbers)
{
 number = 3;
 numbers.push_back(21);

 cout << number << " " << numbers << "\n";
}

This version produces different output. Now it’s the simple value that is
permanently changed, while the list pops back to its original value:

0 [3 5 8 13]
3 [3 5 8 13 21]
3 [3 5 8 13]

The examples in this book will often use references to avoid making
expensive copies of bulky values. In most cases, the references will be
marked with the const keyword to mark something that shouldn’t be
altered, despite being passed by reference. That showed up (and was never
explained) in the first C++ example in this appendix:

int calculateSum(const vector<int> & numbers)

With this usage, no copy is made of numbers, but the compiler won’t allow
any changes to numbers either. In practice this is really similar to passing it
by value, but at much lower cost.
As a final note, in a few cases the examples use the other (sigh) C++ syntax
for passing things by reference—pointers. Pointers and references are
almost exactly the same thing, and the differences aren’t really important if
you’re just trying to figure out what the code is doing. The key syntactic
differences are:

Pointers are defined with * instead of &.
Pointers use -> instead of . to get at members.

To convert a pointer to a reference, you use *; to convert a
reference to a pointer, you use &.

Here’s the example code written with pointers:

void example(int number, vector<int> * numbers)
{
 number = 3;
 numbers->push_back(21);
 cout << number << " " << *numbers << "\n";
}

void callExample()

{
 int number = 0;
 vector<int> numbers = { 3, 5, 8, 13 };
 cout << number << " " << numbers << "\n";
 example(3, &numbers);
 cout << number << " " << numbers << "\n";
}

This book’s examples use constant references whenever an argument is
conceptually being passed by value, but actually passing the argument by
value would be expensive. In all other cases, pointers are used.

1 That’s why Guido ditched them.
2 Like a deck of cards. Or poker chips, if you’re trying to look like a professional poker
player.

Appendix B. Reading C++ for
JavaScript Programmers

The examples in this book are all presented in C++. That’s the language I
do most of my programming in, and it’s the language I’m most proficient
in.
If you’re a JavaScript programmer, don’t despair—the Rules are still useful!
You don’t need to learn how to program in C++ in order to read the
examples in this book. Code is code, basically—a loop is a loop, variables
are variables, and functions are functions. There are some cosmetic
differences, but the basic ideas in this book’s C++ examples translate pretty
directly to JavaScript, even when that translation isn’t immediately obvious!
This appendix explains how to do that translation—how to read C++ and
convert it in your head to the JavaScript equivalent. You won’t be able to
write C++ code after working your way through this appendix—that would
take a whole book—but you should be much more capable of reading it.

Types
Time for an example! Here’s a simple function that calculates the sum of an
array of numbers, first in JavaScript:1

function calculateSum(numbers) {

 let sum = 0;

 for (let number of numbers)
 sum += value

 return sum;
}

And then in C++:

int calculateSum(const vector<int> & numbers)
{
 int sum = 0;

 for (int number : numbers)
 sum += number;

 return sum;
}

Um…it’s the same code. Maybe we don’t need an appendix after all.
Or maybe we do. JavaScript syntax was heavily influenced by C syntax,
and I won’t have to explain what curly braces and semicolons mean like I
did in the Python appendix, but there are plenty of quirky differences.
First, everything in C++ is scoped. Imagine a let or const before every
variable defined in the examples, because that’s implicitly true for all
variables in C++.
If you haven’t dabbled in TypeScript yet—if you’ve stuck to straight
JavaScript so far in your programming career—then the explicit types in the
example might be confusing. The int and const vector<int>& type
annotations tell the C++ compiler what kinds of values to expect—in this
case, an integer and a list of integers. The compiler needs to know the types
before it can actually compile the code.
There are types in JavaScript, too, of course, even if the language doesn’t
force you to worry about them. If you do care about the type of an
expression, you can call typeof(), but typically you don’t care. In
JavaScript the type details are usually sorted out when the code runs, not
when it’s compiled. Not always, though—your web browser tries pretty
hard to infer types for everything, because if it can then the JavaScript can
be compiled to a more efficient form and run a lot faster.
C++ skips right to the “run a lot faster” part, even if that adds some extra
steps to writing code. Knowing about types also lets the compiler detect a
whole class of bugs earlier, which is a huge advantage.
Here’s how you can tell that both of these approaches are appealing: new
versions of C++ let you skip the type annotations in lots of cases, and the
increasingly popular TypeScript extension of JavaScript lets you type
annotations. Now you can write JavaScript/TypeScript that looks more like
C++:

function calculateSum(numbers: int[]): int {

 let sum: int = 0;

 for (let number of numbers)
 sum += number;

 return sum;
}

And C++ that looks more like JavaScript:

auto calculateSum(const vector<int> & numbers)
{
 auto sum = 0;

 for (auto number : numbers)
 sum += number;

 return sum;
}

The examples in this book stick to “old-school” C++ and use explicit types.
That’s our policy at Sucker Punch—we think it makes the code easier to
read—so I’ve continued the practice here.

Arrays
Despite the surface similarity between C++ and JavaScript, there’s an
endless list of quirky differences. Here’s a simple example that reverses the
values in an array, first in JavaScript:

function reverseList(values) {

 let reversedValues = []

 for (let index = values.length; --index >= 0;) {
 reversedValues.push(values[index]);
 }

 return reversedValues;
}

And then in C++:

vector<int> reverseList(const vector<int> values)
{
 vector<int> reversedValues;

 for (int index = values.size(); --index >= 0;)
 reversedValues.push_back(values[index]);

 return reversedValues;
}

Again, the code looks very similar. The closest analog to a JavaScript array
in C++ is the vector type. The concepts are the same, but the details are

different. In JavaScript, the length property tells you how many elements
are in the array. C++ doesn’t have properties, just data members and
methods; you get the count of elements in the vector by calling a size()
method.
Similarly, both JavaScript arrays and C++ vectors allow new elements to be
appended. In C++, it’s the push_back() method, whereas in JavaScript it’s
push(). That’s a pretty easy translation.
It’s worth noting that there are big differences lurking beneath the shared
syntax. For instance, the JavaScript array values could be a list array of
anything—maybe even a jumble of entirely different types, like [1, “hello”,
true]. The C++ vector is always a list of integers, no more and no less.
But that won’t be a problem when you read the C++ examples. JavaScript
allows more type flexibility than the C++ examples use, but JavaScript is
completely happy to deal with simply typed lists.

Classes
Both C++ and JavaScript support classes, and the syntax for doing so isn’t
all that different. The ways the two languages actually implement classes
are very different, but that’s not important for the examples in this book. If
you think of a C++ class as being like a JavaScript class where all the fields
are defined with public or private field declarations, you’ll find the
examples easy to follow.
Here’s a JavaScript class implementing a 3D vector concept:

class Vector {

 constructor () {
 ++Vector.#vectorCount;
 }

 set (x, y, z) {
 this.#x = x;
 this.#y = y;
 this.#z = z;
 this.#calculateLength();
 }

 getLength () {
 return this.#length;
 }

 static getVectorCount() {
 return Vector.#vectorCount;

 }

 #calculateLength () {
 this.#length = Math.sqrt(
 this.#x ** 2 +
 this.#y ** 2 +
 this.#z ** 2);
 }

 #x = 0
 #y = 0
 #z = 0
 #length = 0

 static #vectorCount = 0
};

And here is an equivalent C++ class:

class Vector
{
public:

 Vector() :
 m_x(0.0f),
 m_y(0.0f),
 m_z(0.0f),
 m_length(0.0f)
 { ++s_vectorCount; }
 ~Vector()
 { --s_vectorCount; }

 void set(float x, float y, float z);

 float getLength() const
 {
 return m_length;
 }

 static int getVectorCount()
 {
 return s_vectorCount;
 }

protected:

 void calculateLength();

 float m_x;
 float m_y;
 float m_z;
 float m_length;

 static int s_vectorCount;
};

void Vector::set(float x, float y, float z)
{
 m_x = x;

 m_y = y;
 m_z = z;
 calculateLength();
}

void Vector::calculateLength()
{
 m_length = sqrtf(m_x * m_x + m_y * m_y + m_z * m_z);
}

The two versions of the Vector class have the same pieces, but those pieces
are rearranged. The translations are straightforward, for the most part. In
JavaScript you need to be explicit with your access to fields with the this
keyword, or the class name for class fields:

class Vector {

 getLength () {
 return this.#length;
 }

 static getVectorCount() {
 return Vector.#vectorCount;
 }

 #length = 0

 static #vectorCount = 0
};

C++ allows explicit specification in these cases—you’re allowed to specify
this-> and Vector:: to disambiguate normal and static member
references, respectively—but it also allows implicit use of members, and
that’s what the examples all use:

class Vector
{
public:

 float getLength() const
 {
 return m_length;
 }

 static int getVectorCount()
 {
 return s_vectorCount;
 }

protected:

 float m_length;

 static int s_vectorCount;
};

These two examples also show how member visibility is handled in both
languages. Private fields have names with a hashtag (#) prefix in JavaScript.
In C++ the private keyword is used for this—it marks the start of a section
where all methods and members being declared are considered private. All
of the examples in this book use the similar keyword protected.
Moving on to constructors! In JavaScript, a special constructor function is
called when a new Vector is created:

class Vector {

 constructor () {
 ++Vector.#vectorCount;
 }
};

In C++, the class name itself is used for this method. It is nevertheless (and
somewhat confusingly) called the constructor:

class Vector
{
public:

 Vector() :
 m_x(0.0f),
 m_y(0.0f),
 m_z(0.0f),
 m_length(0.0f)
 { ++s_vectorCount; }
};

C++ classes also have an important concept that doesn’t really exist in
JavaScript—the destructor. An object’s constructor is called when an object
is created, and the destructor when it is destroyed. The destructor also uses
the class name, this time with a tilde (~) prepended:

class Vector
{
public:

 ~Vector()
 { --s_vectorCount; }
};

There’s no real equivalent to this in JavaScript—the closest you can come
to this is registering a callback with a FinalizationRegistry object, which

is a recent and (arguably) underbaked addition to JavaScript. This
mechanism doesn’t have quite the same behavior as a C++ destructor. In
C++, the destructor is called immediately when an object goes out of scope.
Here’s an example where a Vector is created as a local variable inside a
function:

void functionA()
{
 printf("%d, \n", Vector::getVectorCount());
 Vector a;
 printf("%d, \n", Vector::getVectorCount());
};

Vector b;
functionA();
printf("%d\n", Vector::getVectorCount());

This code prints “1, 2, 1” when run—the destructor for a is called when
functionA returns, so s_vectorCount is decremented immediately. In
JavaScript, any finalization callback is triggered by garbage collection, and
the timing of garbage collection is implementation-specific. There isn’t a
reliable way to get the same timing in JavaScript, as in the preceding C++
example.
That’s too bad. The lack of a destructor rules out some useful tricks—
Sucker Punch code often uses object lifetimes as a robust way to manage
things, and you’ll see some of this in the C++ examples. Just remember that
the destructor gets called immediately and you’ll be able to follow along.

Declarations and Definitions
Next, let’s look at splitting a function’s declaration from its definition. In
JavaScript, all of a class’s methods are defined in the class itself:

class Vector {

 set (x, y, z) {
 this.#x = x;
 this.#y = y;
 this.#z = z;
 this.#calculateLength();
 }

 getLength () {
 return this.#length;
 }

Many of the examples in this book will do the same thing in C++:

class Vector
{
public:

 float getLength() const
 {
 return m_length;
 }
};

In other cases, though, the examples will split the declaration of the method.
First the code establishes that a method with a given name and type
signature exists:

class Vector
{
public:

 void set(float x, float y, float z);
};

The function is then defined separately:

void Vector::set(float x, float y, float z)
{
 m_x = x;
 m_y = y;
 m_z = z;
 calculateLength();
}

These two forms are typically compiled differently in C++, with methods
defined inside the class compiled inline, meaning that a separate copy of the
function is generated and inserted wherever it’s called, while a single copy
exists for functions with a separate definition. That’s not important for the
examples in this book, though, so don’t worry about the distinction.

Function Overloading
There are other features in C++ that don’t have direct analogs in JavaScript.
The converse is true, as well, of course—there are lots of JavaScript
features that C++ doesn’t have—but that’s unimportant here, since we’re
focused on reading C++ code.
One thing that can be confusing to JavaScript programmers is seeing two
functions with the same name. Here’s an example in C++:

int min(int a, int b)
{
 return (a <= b) ? a : b;
}

int min(int a, int b, int c)
{
 return min(a, min(b, c));
}

void example()
{
 printf("%d %d\n", min(5, 8), min(13, 21, 34));
}

It’s not clear how this works—if you try to call the min function, which
version is called? The C++ compiler makes this decision based on the
arguments. If two integers are passed, it calls the first one; if three integers,
it calls the second one. The example function prints 5 and 13.
In JavaScript, you’d instead write a single min function that supports an
arbitrary number of arguments. Something like this:

function min () {

 if (arguments.length == 0)
 return Infinity;

 let result = arguments[0];
 for (let index = 1; index < arguments.length; ++index) {
 result = Math.min(result, arguments[index])
 }

 return result;
}

This is exactly what Math.min does, of course, so no need to write this
function yourself!

Templates
Another concept from C++ that has no Python analog is templates. To
simplify things a bit: C++ templates are a way to write one chunk of code
that handles multiple types. The compiler generates new code for each set
of types used with the template.
The first example in this appendix summed an array of integer values. If
you wanted to sum an array of floating-point values, you might write new
code:

float calculateSum(const vector<float> & numbers)
{
 float sum = 0;

 for (float number : numbers)
 sum += number;

 return sum;
}

Or you might write a single version of calculateSum using templates and
let the compiler do the work for you:

template <class T>
T calculateSum(const vector<T> & numbers)
{
 T sum = T(0);

 for (T number : numbers)
 sum += number;

 return sum;
}

The templated version of calculateSum will work for any type that
implements the += operator and supports 0 as a value. That’s true for
integers and floating-point values, but could also easily be arranged for
other types. You could implement += and 0 for the Vector class from the
last section, for instance, and gain the ability to sum an array of Vectors.
In JavaScript, there’s no need for any of this. The JavaScript code I wrote to
sum a list of values works perfectly well for any type that supports addition
and initialization to 0:

function calculateSum(number) {

 let sum = 0;

 for (let number of numbers)
 sum += number

 return sum;
}

When you see the C++ template syntax in the examples, it usually marks
some bit of code that would work fine in JavaScript without any templating
at all.

Pointers and References

There’s one final thing that JavaScript mostly hides from view but that C++
makes programmers worry about, and that’s passing arguments by value
versus passing them by reference. In JavaScript, simple types like numbers
or strings are passed by value—a new copy is made whenever they’re
assigned to a variable or passed as an argument to a function. It’s more
complicated for types like lists or objects. Here’s an example:

function makeChanges (number, numbers) {
 number = 3;
 numbers.push(21);
 console.log(number, numbers);
}

let number = 0;
let numbers = [3, 5, 8, 13];

console.log(number, numbers);
makeChanges(number, numbers);
console.log(number, numbers);

When this code is run it prints out:

0 (4) [3, 5, 8, 13]
3 (5) [3, 5, 8, 13, 21]
0 (5) [3, 5, 8, 13, 21]

Notice how the simple value changes inside makeChanges to 3, then
changes back to 0 when makeChanges returns, but the list changes without
changing back. That’s because 0 was passed by value. A new copy was
made when makeChanges was called. When makeChanges sets number to 3,
it’s only changing the copy.
JavaScript didn’t make a copy of the globalNumbers list—it just passed the
original list. Both numbers and globalNumbers are holding onto the same
list. When 21 is appended, it’s appended to that list. When numbers is
logged before returning or globalNumbers after, 21 shows up, because
you’re printing the same list in both cases.
C++, by contrast, makes all of this more explicit. All variables and
arguments are explicitly passed by value or passed by reference. The C++
equivalent to the preceding JavaScript code looks like this:

void makeChanges(int number, vector<int> & numbers)
{
 number = 3;
 numbers.push_back(21);

 cout << number << " " << numbers << "\n";
}

The ampersand in front of numbers is important—it tells the compiler that
this argument is passed by reference, not by value, so the compiler won’t
make a copy of it when makeChanges is called. There’s no ampersand for
number, so the compiler does make a copy of number.
If the ampersands are flipped, then the compiler makes a copy of numbers
but not of number:

void makeChanges(int & number, vector<int> numbers)
{
 number = 3;
 numbers.push_back(21);
 cout << number << " " << numbers << "\n";
}

This version produces different output. Now it’s the simple value that is
permanently changed, while the list pops back to its original value:

0 [3 5 8 13]
3 [3 5 8 13 21]
3 [3 5 8 13]

The examples in this book will often use references to avoid making
expensive copies of bulky values. In most cases, the references will be
marked with the const keyword to mark something that shouldn’t be
altered, despite being passed by reference. That showed up (and was never
explained) in the first C++ example in this appendix:

int calculateSum(const vector<int> & numbers);

With this usage, no copy is made of numbers, but the compiler won’t allow
any changes to numbers either. In practice this is really similar to passing it
by value, but at much lower cost.
As a final note, in a few cases the examples use the other (sigh) C++ syntax
for passing things by reference—pointers. Pointers and references are
almost exactly the same thing, and the differences aren’t really important if
you’re just trying to figure out what the code is doing. The key syntactic
differences are:

Pointers are defined with * instead of &.

Pointers use -> instead of . to get at members.

To convert a pointer to a reference, you use *; to convert a
reference to a pointer, you use &.

Here’s the example code written with pointers:

void example(int number, vector<int> * numbers)
{
 number = 3;
 numbers->push_back(21);
 cout << number << " " << *numbers << "\n";
}

void callExample()
{
 int number = 0;
 vector<int> numbers = { 3, 5, 8, 13 };
 cout << number << " " << numbers << "\n";
 example(3, &numbers);
 cout << number << " " << numbers << "\n";
}

This book’s examples use constant references whenever an argument is
conceptually being passed by value, but actually passing the argument by
value would be expensive. In all other cases, pointers are used.

1 I had to choose a JavaScript version for these examples. For better or worse, I chose ES6.
If you’re stuck on a version earlier than that, my apologies.

Index

A

A* algorithm, Finding a Clear Path Forward

abstraction, best practice for readable code, The Role of Short-Term
Memory-Use Abstraction to Make Things Easier to Understand
Adams, Douglas, Detecting Mistakes Is Good, but Making Them
Impossible to Express Is Better

adapter classes, in parallel reworking of code, Migrating from Old
Stack Contexts to New Ones

allocated memory, Applying the Five-Step Optimization Process, A
Concrete Example, A Concrete Example-Making Stack Contexts a
Little Smarter
Animal Crossing, Pull the Weeds

animation smoothing, relying on state for, Dealing with Unavoidable
Delay-Dealing with Unavoidable Delay

arbitrary-precision integers, Sometimes It’s Better to Simplify the
Problem Rather than the Solution
architecture limits, reaching, Is It Twice as Good?-Rework Is a Good
Opportunity to Fix Small Problems

assessing size of change’s impact, A Simple Rule of Thumb-A
Simple Rule of Thumb

fuzzy benefits, dealing with, Dealing with Fuzzy Benefits

gradual evolution versus continual reinvention, Gradual Evolution
Versus Continual Reinvention-Gradual Evolution Versus
Continual Reinvention
ignore, tweak, or refactor choice, Three Paths Forward: Ignore,
Tweak, or Refactor

rework focus on small problems, Rework Is a Good Opportunity
to Fix Small Problems

Area struct, It’s Actually Worse than YAGNI
arguments

collapsing related arguments into one, Enlisting the Compiler’s
Aid to Avoid Shooting My Foot

mismatched arguments leading to failure, Shooting Myself in the
Foot via a Ricochet-Enlisting the Compiler’s Aid to Avoid
Shooting My Foot

type-safe optional arguments, Making Ordering Mistakes
Impossible-Making Ordering Mistakes Impossible

arrays
JavaScript versus C++, Arrays

solving Easy problems in, Easy Problem, Simple Solution-Easy
Problem, Three Complicated Solutions

StackVector class, Making Stack Contexts a Little Smarter,
Migrating from Old Stack Contexts to New Ones
using to avoid mismatched argument failure, Enlisting the
Compiler’s Aid to Avoid Shooting My Foot

assert macro, Don’t Trust the Caller, Problem-Solving Conventions,
Don’t Tell Stories That Aren’t True

audio compression codec, and automated testing, Automated Testing
Can Be Tricky
audit function, Audit State You Can’t Eliminate, Minimizing State

auditAll function, Audit State You Can’t Eliminate

automated testing, pros and cons of, Don’t Count on Your Users-
Automated Testing Can Be Tricky
automating

not using to skip needed drudgery, The Siren Call of Automation

reproduction of problem in debugging, Dealing with Unavoidable
Delay

testing mathematically, To Automate or Not to Automate-To
Automate or Not to Automate, When the Math Changes-When
the Math Changes

AvoidLozenges struct, Finding a Clear Path Forward

awareness callback function, Distributed State and Complexity-
Distributed State and Complexity

AwarenessEvents interface, Distributed State and Complexity-
Capacitated?

B

Beck, Kent, Build a Parallel System Instead
Bezier curves, Jumping to Conclusions

BezierCostFunction struct, Jumping to Conclusions-Jumping to
Conclusions

binary search as optimization method for memory allocation issue,
Applying the Five-Step Optimization Process
bit trickery, As Simple as Possible, but No Simpler

BitVector class, Common Knowledge Is Free; New Concepts Are
Expensive-Common Knowledge Is Free; New Concepts Are
Expensive

Boolean operations, Python versus C++, Boolean Operations
branch-and-change model to control reworking of code, Rework in
Parallel-Bumps in the Road

bugs (see debugging)

C

C++, An Obvious Objection to This Strategy, in Response to Which I
Double Down

(see also JavaScript, working with C++; Python, working with
C++)

chaining set calls trick, Making Ordering Mistakes Impossible-
Making Ordering Mistakes Impossible
generalized coding challenge, An Obvious Objection to This
Strategy, in Response to Which I Double Down

language use conventions for teams, Language Usage
Conventions

templates for type-safe optional arguments, Using Templates
Instead of Method Chaining

C-style file handling, error returns, Problem-Solving Conventions

caller of code, importance of not trusting, Don’t Trust the Caller-Don’t
Trust the Caller

capacitated versus incapacitated status, containing complexity,
Capacitated?-Capacitated?
Character class, Audit State You Can’t Eliminate

Character struct, debugging chain, Minimizing State-Minimizing State

chooseRandomValue function, The First Lesson of Optimization Is
Don’t Optimize-The First Lesson of Optimization Is Don’t Optimize,
Step 1: Measure and Attribute Processor Time-Applying the Five-Step
Optimization Process
classes

JavaScript versus C++, Classes-Classes

Python versus C++, Classes-Classes

code annoyances, removing, Pull the Weeds-How Code Gets Weedy
code evolution, Code That Isn’t Running Doesn’t Work-Step 4: The
Chickens Return Home to Roost

code reviews, Code Reviews Are Good for Three Reasons-Code
Reviews Are Inherently Social

bug-finding value of, The True Value of the Code Review

to enforce conventions, Effective Teams Think Alike
forbidden code review, The Forbidden Code Review

importance of shared process in real time, Code Reviews Are
Good for Three Reasons, Code Reviews Are About Sharing
Knowledge

limitations in finding orphaned code, Step 3: Adding Disguises
sharing knowledge as benefit of, Code Reviews Are About
Sharing Knowledge

social characteristic of, Code Reviews Are Inherently Social-
Code Reviews Are Inherently Social

Sucker Punch process, Code Reviews Are Good for Three
Reasons-Code Reviews Are Good for Three Reasons

code, working forward from to problem solution (see working
backward from problem)

coding style
need for team consistency in, Formatting Conventions

valuing your own, Conclusion: Making the Rules Your Own-
Discuss Amongst Yourselves

cognitive load
of common knowledge versus new concepts, Common
Knowledge Is Free; New Concepts Are Expensive-Common
Knowledge Is Free; New Concepts Are Expensive

of mixing naming conventions, Don’t Mix and Match
Conventions-Don’t Shoot Yourself in the Foot

from nested call chain, Where to Draw the Line
and reading code, Write Collapsible Code

collapsible code, Write Collapsible Code-Putting It All Together
abstraction, cost and best use of, The Cost of Abstraction-Use
Abstraction to Make Things Easier to Understand

collapsing related arguments into one, Enlisting the Compiler’s
Aid to Avoid Shooting My Foot
improving readability, The Role of Short-Term Memory-Where to
Draw the Line

localizing complexity, Rethinking the Approach-Rethinking the
Approach

memory limits and value of, Write Collapsible Code-The Role of
Short-Term Memory, The Role of Long-Term Memory-Common
Knowledge Is Free; New Concepts Are Expensive

color-coding for readability, Telling Good Stories

comments
avoiding useless, Make Sure There’s a Point to the Story-Make
Sure There’s a Point to the Story

collapsing code details with, The Role of Short-Term Memory
fixing small problems in, Pull the Weeds

nonobvious, Telling Good Stories

providing space and punctuation for code, Telling Good Stories-
Telling Good Stories
Python versus C++, Formatting and Comments-Comments

and telling true code stories, Don’t Tell Stories That Aren’t True-
Telling Good Stories

using asserts instead, Don’t Tell Stories That Aren’t True
commit process, automated testing in, Don’t Count on Your Users

compiler as assistant in eliminating failure cases, Shooting Myself in
the Foot via a Ricochet-Enlisting the Compiler’s Aid to Avoid
Shooting My Foot

complex data type, Don’t Optimize for Minimal Keystrokes

complexity, Localize Complexity-Localized Complexity, Simple
Interactions

and adding new effects, Things Start to Get Foggy-Things Start to
Get Foggy
in capacitated versus incapacitated character status, Capacitated?-
Capacitated?

collapsing implementations in single method, Rethinking the
Approach-Rethinking the Approach

cost of, The Cost of Complexity
and distributed state, Distributed State and Complexity-
Distributed State and Complexity

hiding internal details, Hiding Internal Details-Hiding Internal
Details

isolation of, Localize Complexity-Hiding Internal Details
objects with failure designed in, A More Complicated Example-A
More Complicated Example

in pathing code for character movements around obstacles,
Finding a Clear Path Forward-Finding a Clear Path Forward

programming as continual struggle with, One Rule to Rule Them
All

Complicated solutions to problems, Code Comes in Four Flavors-Hard
Problem, Somewhat Complicated Solution

Config struct, Working Backward Instead-Working Forward and
Working Backward

consistency, importance of
in naming conventions, Don’t Mix and Match Conventions-Don’t
Make Me Think, Weed Identification
in team coding, Formatting Conventions, Effective Teams Think
Alike

constants, representing, Effective Teams Think Alike

constructor-destructor pair, wrapping push-pop in, Coordinated
Control of State
container classes, writing single consistent version, Don’t Mix and
Match Conventions

continuous automated testing, Don’t Count on Your Users

controlled vocabulary for team, Don’t Shoot Yourself in the Foot-
Don’t Shoot Yourself in the Foot, Effective Teams Think Alike
conventions, Big Teams Need Strong Conventions-Effective Teams
Think Alike

code reviews to enforce, Effective Teams Think Alike

fixing small problems regularly, Pull the Weeds-Weed
Identification

formatting, Formatting Conventions
language usage, Language Usage Conventions

multiphase constructor ordering, A More Complicated Example

naming (see naming conventions)
problem solving, Problem-Solving Conventions-Problem-Solving
Conventions

convertCoordinateSystem function, Enlisting the Compiler’s Aid to
Avoid Shooting My Foot

convoluted code, Don’t Lose the Plot-Don’t Lose the Plot
cosf function, A Simple Example

countStepPatterns function, …But No Simpler-…But No Simpler

Customer struct, Hiding Internal Details-Hiding Internal Details

D

DamageArbiter, Dealing with Unavoidable State-Dealing with
Unavoidable State

data measurement, before optimization, Step 3: Measure Your Data
dead code (see orphaned code)

debug-rendering parameters, A More Complicated Example

debugging, Bugs Are Contagious-Keeping Your Code Healthy, Find
the Pebble That Started the Avalanche-Dealing with Unavoidable
Delay

auditing states you can’t eliminate, Audit State You Can’t
Eliminate-Audit State You Can’t Eliminate
automated testing issues with, Automated Testing Can Be Tricky

automating reproduction of problem, Dealing with Unavoidable
Delay

bug detection optimization, Step 2: Make Sure There’s Not a Bug
caller of code, importance of not trusting, Don’t Trust the Caller-
Don’t Trust the Caller

code as, Don’t Count on Your Users

and code reviews, Code Reviews Are Good for Three Reasons,
Code Reviews Are Good for Three Reasons
contagiousness of bugs, Bugs Are Contagious

diagnosis, The Lifecycle of a Bug-Dealing with Unavoidable
State

drawing wireframes for visualization, A More Complicated
Example-A More Complicated Example
and early-bound versus late-bound languages, Working Backward
Instead

facing manual drudgery corrections, There’s Never Just One Bug-
There’s Never Just One Bug

fixing symptoms versus causes, The Lifecycle of a Bug

lifecycle of a bug, The Lifecycle of a Bug-The Lifecycle of a Bug

minimizing state, Minimizing State-Minimizing State
orphaned code, Code That Isn’t Running Doesn’t Work-The
Limits of Testing

and parsing complicated code, The Cost of Complexity

problem detection sources, Don’t Count on Your Users-Don’t
Count on Your Users
stateless code for testing, Stateless Code Is Easier to Test-
Stateless Code Is Easier to Test, The Limits of Testing,
Minimizing State

stepping through code in debugger to learn it, The Role of Long-
Term Memory

unavoidable delays, dealing with, Dealing with Unavoidable
Delay-Dealing with Unavoidable Delay
unavoidable state, dealing with, Dealing with Unavoidable State-
Dealing with Unavoidable State

“weeds” versus bugs, Weed Identification

declarations and definitions
JavaScript versus C++, Declarations and Definitions-Declarations
and Definitions
Python versus C++, Declarations and Definitions-Declarations
and Definitions

dependencies, cleaning up bug, Bugs Are Contagious

disguises, and orphaned code, Step 3: Adding Disguises-Step 3:
Adding Disguises
distributed state in stealth game, Distributed State and Complexity-
Rethinking the Approach

Doxygen, Make Sure There’s a Point to the Story

duplicate-and-switch model for reworking code, Bumps in the Road

(see also parallel system for reworking code)

dynamic programming, …But No Simpler

E

early-bound versus late-bound languages, Working Backward Instead-
Working Backward Instead
Easy problem, Code Comes in Four Flavors, Pull the Weeds-How
Code Gets Weedy

Easy problem, Complicated solutions, Easy Problem, Three
Complicated Solutions-The Four (But Really Three) Kinds of
Programmers

Easy problem, Simple solution, Easy Problem, Simple Solution
edge cases of errors, Problem-Solving Conventions

Einstein, Albert, As Simple as Possible, but No Simpler

entanglements, Bugs Are Contagious-Don’t Count on Your Users,
Don’t Trust the Caller, Don’t Trust the Caller
error-handling models, Problem-Solving Conventions-Problem-
Solving Conventions

evaluateComplexPolynomial function, Don’t Optimize for Minimal
Keystrokes-Don’t Optimize for Minimal Keystrokes

evaluateKeyPath function, An Annoyance Appears-An Annoyance
Appears
exception-style error handling, Problem-Solving Conventions

executable logfile, Dealing with Unavoidable Delay

explanation issue in measuring simplicity, Measuring Simplicity

F

failure cases, eliminating, Eliminate Failure Cases-Detecting Mistakes
Is Good, but Making Them Impossible to Express Is Better

compiler as assistant in, Shooting Myself in the Foot via a
Ricochet-Enlisting the Compiler’s Aid to Avoid Shooting My
Foot

complex objects with failure designed in, A More Complicated
Example-A More Complicated Example
coordinated control of state, Coordinated Control of State-
Coordinated Control of State

detecting usage mistakes early, Timing Is Everything

functions with failure designed in, A Function That Makes It Easy
to Shoot Myself in the Foot
making mistakes impossible to express, Detecting Mistakes Is
Good, but Making Them Impossible to Express Is Better

making mistakes impossible to order, Making Ordering Mistakes
Impossible-Making Ordering Mistakes Impossible

ricochet, failure via, Shooting Myself in the Foot via a Ricochet-
Shooting Myself in the Foot via a Ricochet
templates versus method chaining, Using Templates Instead of
Method Chaining

features, misusing and causing failure cases, Eliminate Failure Cases

Fibonacci numbers debugging example, Minimizing State
Field struct, And Now for Something Completely Different

file boundaries, importance of consistent, Effective Teams Think Alike

file size management, Managing File Sizes-Managing File Sizes
findAllies function, Step 1: A Simple Beginning, Step 3: Adding
Disguises-The Limits of Testing

findNearbyEnemies function, Step 1: A Simple Beginning

findRecentPurchasers function, Hiding Internal Details-Hiding Internal
Details

first penguins for flag switch in parallel rework of code, Time to
Migrate

FixedVector class, Don’t Mix and Match Conventions-Don’t Mix and
Match Conventions
flavors of code, Code Comes in Four Flavors-Hard Problem, Simple
Solution

cost of complexity, The Cost of Complexity

Easy problem, Complicated solutions, Easy Problem, Three
Complicated Solutions-The Cost of Complexity

Easy problem, Simple solution, Easy Problem, Simple Solution
Hard problem, Complicated solutions, Code Comes in Four
Flavors, Hard Problem, Somewhat Complicated Solutions That
Don’t Work-Hard Problem, Somewhat Complicated Solution

Hard problem, Simple solution, The Four (But Really Three)
Kinds of Programmers, Hard Problem, Simple Solution

kinds of programmers, The Four (But Really Three) Kinds of
Programmers

forbidden code review combination, The Forbidden Code Review

foreign naming conventions, Don’t Mix and Match Conventions

formatting of code, Effective Teams Think Alike, Formatting and
Comments-Increment Operators
free function, Code Comes in Four Flavors

function boundaries, and collapsible code, Where to Draw the Line-
Where to Draw the Line

function calls, in performance versus running algorithm, The First
Lesson of Optimization Is Don’t Optimize
functions

ease of testing/debugging with pure, Stateless Code Is Easier to
Test, Minimizing State, Minimizing State

easy ones to get wrong, A Function That Makes It Easy to Shoot
Myself in the Foot

initialization function to take control from callers, Don’t Trust the
Caller-Don’t Trust the Caller
overloading, Function Overloading, Function Overloading-
Function Overloading

renaming challenges in calls, Don’t Shoot Yourself in the Foot-
Don’t Shoot Yourself in the Foot

three functions needed before generalization, An Obvious
Objection to This Strategy, in Response to Which I Double
Down-An Obvious Objection to This Strategy, in Response to
Which I Double Down
try-named, Problem-Solving Conventions-Problem-Solving
Conventions

futureproofing, avoiding, Is It Twice as Good?

G

generalization
adapting to unanticipated use cases, It’s Actually Worse than
YAGNI-It’s Actually Worse than YAGNI

of common problem, Step 2: Generalizing a Common Pattern-
Step 2: Generalizing a Common Pattern
efficiency of avoiding, An Obvious Objection to This Strategy, in
Response to Which I Double Down

and limits of architecture, Is It Twice as Good?-Rework Is a Good
Opportunity to Fix Small Problems

losing context when extending too far, This Is Not What Success
Looks Like-This Is Not What Success Looks Like
perspective-changing problem leading to, Recognizing the
Opportunity

rare situations when preferable, Recognizing the Opportunity

reining in new programmers, The Story of the Rules
Sly Cooper landing scenario to use, Jumping to Conclusions

three-examples rule for going to, Generalization Takes Three
Examples-This Is Not What Success Looks Like, Recognizing the
Opportunity

YAGNI, YAGNI-YAGNI
getDamageReaction function, Dealing with Unavoidable State-Dealing
with Unavoidable State

Ghost of Tsushima, The Story of the Rules, Applying the Five-Step
Optimization Process, A Simple Rule of Thumb-A Simple Rule of
Thumb, Finding a Clear Path Forward-Finding a Clear Path Forward

global objects, Working Backward Instead, And Now for Something
Completely Different
golden section optimization algorithm, Jumping to Conclusions-
Jumping to Conclusions

GridPoint solution to unobstructed path for character, Finding a Clear
Path Forward

H

hammers
driving screws with, This Is Not What Success Looks Like

hammering nails with, There Are No Shortcuts
hard limits, respecting in design process, Look for Hard Limits-Look
for Hard Limits

Hard problem, Code Comes in Four Flavors, The Four (But Really
Three) Kinds of Programmers

Hard problem, Complicated solutions, Code Comes in Four Flavors,
Hard Problem, Somewhat Complicated Solutions That Don’t Work-

Hard Problem, Somewhat Complicated Solution

Hard problem, Simple solution, The Four (But Really Three) Kinds of
Programmers, Hard Problem, Simple Solution
hash value bug, fixing manually, There’s Never Just One Bug-There’s
Never Just One Bug

heap memory allocator, A Concrete Example, A Concrete Example

hidden internal details of code, using to simplify, Hiding Internal
Details-Hiding Internal Details
hostility model, in code evolution example, Step 1: A Simple
Beginning-Step 1: A Simple Beginning

Hungarian naming standard, Don’t Make Me Think-Don’t Make Me
Think

I

increment operators, Increment Operators

incremental versus new design thinking, balancing, Gradual Evolution
Versus Continual Reinvention-Gradual Evolution Versus Continual
Reinvention
indention, Python versus C++, Indentation and Split Lines

inFamous games, The Story of the Rules, Step 1: A Simple Beginning

initialization function, to take control from callers, Don’t Trust the
Caller-Don’t Trust the Caller
initialize function, Don’t Trust the Caller, Don’t Trust the Caller

IntegerType, And Now for Something Completely Different

internal auditing to access internal states, Audit State You Can’t
Eliminate-Audit State You Can’t Eliminate
invulnerability of character, managing by coordinated control of state,
Coordinated Control of State-Coordinated Control of State

isServerBlocked function, An Example-Working Backward Instead

IsVisibleAlly struct, Step 2: Generalizing a Common Pattern

J

JavaScript, working with C++, Reading C++ for JavaScript
Programmers-Pointers and References

arrays, Arrays

classes, Classes
declarations and definitions, Declarations and Definitions-
Declarations and Definitions

function overloading, Function Overloading-Function
Overloading

pointers and references, Pointers and References-Pointers and
References
templates, Templates-Templates

types, Types-Types

Jin Sakai character, Finding a Clear Path Forward
journaling filesystem, building from scratch, Code Comes in Four
Flavors

JSON
code example approach to a problem, An Example-Working
Backward Instead

translating objects to C++ structs, And Now for Something
Completely Different

junior versus senior code reviewers/reviewees, Code Reviews Are
About Sharing Knowledge

K

Knuth, Donald, The First Lesson of Optimization Is Don’t Optimize

L

language features, consistency in team coding, Effective Teams Think
Alike

late-bound versus early-bound languages, Working Backward Instead-
Working Backward Instead
linearizing a function, Hard Problem, Somewhat Complicated Solution

lists, Python versus C++, Lists

localization and printf problem, Shooting Myself in the Foot via a
Ricochet, Enlisting the Compiler’s Aid to Avoid Shooting My Foot
long-term versus short-term memory, Write Collapsible Code, The
Role of Long-Term Memory-The Role of Long-Term Memory, Putting
It All Together

loop-free implementation, counting bits in integer, As Simple as
Possible, but No Simpler

loops, lack of simplicity in, As Simple as Possible, but No Simpler
lozenge shape, moving along, Finding a Clear Path Forward

M

malloc function, The Limits of Testing, Code Comes in Four Flavors

markCharacterPosition function, A More Complicated Example-
Making Ordering Mistakes Impossible

math, Do the Math-When the Math Problem Changes Back into a
Word Problem

handling changes in, When the Math Changes-When the Math
Changes
looking for hard limits, Look for Hard Limits-Look for Hard
Limits

pros and cons of automating, To Automate or Not to Automate-To
Automate or Not to Automate

members, mapping from JSON to C++, And Now for Something
Completely Different

memoization when coding counting patterns, …But No Simpler-…But
No Simpler
memory

allocation of computer, Applying the Five-Step Optimization
Process, A Concrete Example, Stack Allocation in Practice-
Making Stack Contexts a Little Smarter

common knowledge versus new concepts, Common Knowledge
Is Free; New Concepts Are Expensive-Common Knowledge Is
Free; New Concepts Are Expensive

limits and value of human, Write Collapsible Code-The Role of
Short-Term Memory, The Role of Long-Term Memory-Common
Knowledge Is Free; New Concepts Are Expensive
long-term versus short-term, Write Collapsible Code, The Role of
Long-Term Memory-The Role of Long-Term Memory, Putting It
All Together

method chaining, Making Ordering Mistakes Impossible-Making
Ordering Mistakes Impossible

Minecraft, Eliminate Failure Cases
minimal keystrokes, avoiding, Don’t Optimize for Minimal
Keystrokes-Don’t Optimize for Minimal Keystrokes

mixing and matching, avoiding in naming, Don’t Mix and Match
Conventions-Don’t Shoot Yourself in the Foot

multiphase constructors, ordering conventions, A More Complicated
Example

N

naming conventions, A Good Name Is the Best Documentation-Don’t
Make Me Think

changing names when passed into a function, Don’t Shoot
Yourself in the Foot-Don’t Shoot Yourself in the Foot

controlling vocabulary for team, Don’t Shoot Yourself in the
Foot-Don’t Shoot Yourself in the Foot, Effective Teams Think
Alike
fixing small naming inconsistencies globally, Weed Identification

maintaining consistent rules for, Don’t Make Me Think-Don’t
Make Me Think

and making code readable, Don’t Make Me Think, The Role of
Short-Term Memory, Telling Good Stories
minimal keystrokes, avoiding, Don’t Optimize for Minimal
Keystrokes-Don’t Optimize for Minimal Keystrokes

mixing and matching, avoiding, Don’t Mix and Match
Conventions-Don’t Shoot Yourself in the Foot

nested call chain, cognitive overload from, Where to Draw the Line
network protocol design, hard limits example, Look for Hard Limits-
Look for Hard Limits

number of ideas introduced, and simplicity, Measuring Simplicity

Numerical Recipes code, Don’t Optimize for Minimal Keystrokes

O

object-oriented design, and localizing complexity, Distributed State
and Complexity-Distributed State and Complexity
ObjectID struct, Don’t Trust the Caller-Don’t Trust the Caller

objects
basing errors in, Problem-Solving Conventions-Problem-Solving
Conventions

defining scopes within, A Concrete Example-A Concrete
Example

with failure designed in, A More Complicated Example-A More
Complicated Example

global, Working Backward Instead, And Now for Something
Completely Different
translating JSON to C++ structs, And Now for Something
Completely Different

unit testing challenge for stateful, The Limits of Testing

optimization, The First Lesson of Optimization Is Don’t Optimize-
There Is No Third Lesson of Optimization

applying five-step process, Applying the Five-Step Optimization
Process-Applying the Five-Step Optimization Process
automating as work process, To Automate or Not to Automate

avoiding over-optimization, Applying the Five-Step Optimization
Process

five-step process, Putting the Second Lesson to the Test-Applying
the Five-Step Optimization Process
golden section optimization algorithm, Jumping to Conclusions-
Jumping to Conclusions

not optimizing as first choice, The First Lesson of Optimization Is
Don’t Optimize-The First Lesson of Optimization

performance factor, The First Lesson of Optimization Is Don’t
Optimize, Applying the Five-Step Optimization Process-
Applying the Five-Step Optimization Process, Interlude: In
Which the Previous Chapter Is Criticized-Interlude: In Which the
Previous Chapter Is Criticized

optimizeViaGoldenSection function, Jumping to Conclusions-Jumping
to Conclusions

ordering mistakes, making impossible, Making Ordering Mistakes
Impossible-Making Ordering Mistakes Impossible

Ordinal struct, Sometimes It’s Better to Simplify the Problem Rather
than the Solution-Sometimes It’s Better to Simplify the Problem

Rather than the Solution

orphaned code, Code That Isn’t Running Doesn’t Work-The Limits of
Testing

adding disguises, Step 3: Adding Disguises-Step 3: Adding
Disguises
consequences of, Step 3: Adding Disguises-Step 3: Adding
Disguises

generalizing a common pattern, Step 2: Generalizing a Common
Pattern-Step 2: Generalizing a Common Pattern

identifying the culprit, Step 4: The Chickens Return Home to
Roost-The Limits of Testing
testing’s limits, The Limits of Testing-The Limits of Testing

overloading of functions, A New Argument-A New Argument

P

parallel arrays, to avoid mismatched argument failure, Enlisting the
Compiler’s Aid to Avoid Shooting My Foot

parallel system for reworking code, Rework in Parallel-Recognizing
When Parallel Rework Is a Good Strategy

concrete example, A Concrete Example-A Concrete Example
migrating from old stack contexts, Migrating from Old Stack
Contexts to New Ones-Time to Migrate

recognizing when to apply strategy, Recognizing When Parallel
Rework Is a Good Strategy

smarter stack contexts, Making Stack Contexts a Little Smarter-
Making Stack Contexts a Little Smarter
stack allocation, Stack Allocation in Practice-Stack Allocation in
Practice

stack vector use case conflict, A Cloud on the Horizon

StackVector migration, Preparing to Migrate StackVector-Time to
Migrate

versus traditional branching, Build a Parallel System Instead
parameter-adjustment config file example, An Example-An
Annoyance Appears

Params struct, A More Complicated Example

Parker, Dorothy, How to Disagree with the Rules
PathExtension interface, Finding a Clear Path Forward

pathing code for character movements, Finding a Clear Path Forward-
Finding a Clear Path Forward

PathManager class, Finding a Clear Path Forward
penguins, antisocial behavior of, Time to Migrate

performance factor, and optimization, The First Lesson of
Optimization Is Don’t Optimize, The First Lesson of Optimization Is
Don’t Optimize, Applying the Five-Step Optimization Process-
Applying the Five-Step Optimization Process, Interlude: In Which the
Previous Chapter Is Criticized-Interlude: In Which the Previous
Chapter Is Criticized

permute string search example, Hard Problem, Somewhat Complicated
Solutions That Don’t Work-Hard Problem, Simple Solution
Person struct, Step 1: A Simple Beginning-Step 4: The Chickens
Return Home to Roost

pointers
JavaScript versus C++, Pointers and References-Pointers and
References

Python versus C++, Pointers and References-Pointers and
References

Principle of Least Astonishment, Making Ordering Mistakes
Impossible

printf function, A Function That Makes It Easy to Shoot Myself in the
Foot

problems
and code annoyances, Pull the Weeds-How Code Gets Weedy
conventions for problem solving, Problem-Solving Conventions-
Effective Teams Think Alike

debugging (see debugging)

focus on overall before details, Sometimes the Bigger Problem Is
Easier to Solve-Recognizing the Opportunity
JSON approach to, An Example-Working Backward Instead

solving within simplicity principle, …But No Simpler-Sometimes
It’s Better to Simplify the Problem Rather than the Solution

types of, Code Comes in Four Flavors-Hard Problem, Simple
Solution
working backward from (see working backward from problem)

processor time, measure and attribute, Putting the Second Lesson to
the Test

processVector versus sort functions, The Role of Long-Term Memory
profiling in day-to-day engineering, Interlude: In Which the Previous
Chapter Is Criticized, Interlude: In Which the Previous Chapter Is
Criticized

programmers, kinds of, The Four (But Really Three) Kinds of
Programmers

prototyping an optimization, Step 4: Plan and Prototype
pure functions, ease of testing/debugging with, Stateless Code Is
Easier to Test, Minimizing State, Minimizing State

push-pop model for invulnerability entanglements, Coordinated
Control of State

Python, working with C++, Reading C++ for Python Programmers-
Pointers and References

classes, Classes-Classes

declarations and definitions, Declarations and Definitions-
Declarations and Definitions
formatting and comments, Formatting and Comments-Increment
Operators

function overloading, Function Overloading

for optimum performance, There Is No Third Lesson of
Optimization
pointers and references, Pointers and References-Pointers and
References

templates, Templates-Templates

types, Types-Types
visibility, Visibility

Q

quadratic complexity, Rethinking the Approach

qualifiers, using consistent name for, Don’t Make Me Think

R

readability
and abstraction best practice, The Role of Short-Term Memory-
Use Abstraction to Make Things Easier to Understand

best use for short- and long-term human memory, Putting It All
Together
collapsible code, The Role of Short-Term Memory-Where to
Draw the Line

color-coding for, Telling Good Stories

creating space and comment punctuation, Telling Good Stories-
Telling Good Stories
impact on cognitive load, Write Collapsible Code

naming conventions, Don’t Make Me Think, The Role of Short-
Term Memory, Telling Good Stories

reasoning through longer code, Write Collapsible Code-Write
Collapsible Code
reduceFunction function, Stateless Code Is Easier to Test

refactoring a system, Three Paths Forward: Ignore, Tweak, or
Refactor, Rework Is a Good Opportunity to Fix Small Problems

(see also parallel system for reworking code)

references
JavaScript versus C++, Pointers and References-Pointers and
References
Python versus C++, Pointers and References-Pointers and
References

Result struct, Problem-Solving Conventions

riffle-shuffling cards, simple algorithms, Simple Algorithms-Don’t
Lose the Plot
RigidBodySimulator struct, Don’t Trust the Caller-Don’t Trust the
Caller

S

safety issue in fixing small problems, Weed Identification

SafeType struct, And Now for Something Completely Different-And
Now for Something Completely Different

scopes, defining within context object, A Concrete Example-A
Concrete Example

senior versus junior code reviewers/reviewees, Code Reviews Are
About Sharing Knowledge

setStatus method, Capacitated?
SetType struct, And Now for Something Completely Different

Shakespeare, William, A Good Name Is the Best Documentation

short-term memory
failure in tracking code, This Is What Failure Feels Like-The Role
of Short-Term Memory
versus long-term, Write Collapsible Code, The Role of Long-
Term Memory-The Role of Long-Term Memory, Putting It All
Together

shorter code, and simplicity, Measuring Simplicity

showAuthorRoyalties function, A Function That Makes It Easy to
Shoot Myself in the Foot-Shooting Myself in the Foot via a Ricochet
shuffleOnce function, Simple Algorithms-Don’t Lose the Plot

shuffling cards, simple algorithms, Simple Algorithms-Don’t Lose the
Plot

Sieve of Eratosthenes, Common Knowledge Is Free; New Concepts
Are Expensive-Common Knowledge Is Free; New Concepts Are
Expensive
SignQuery struct, Generalization Takes Three Examples-YAGNI, It’s
Actually Worse than YAGNI, It’s Actually Worse than YAGNI-It’s
Actually Worse than YAGNI

simplicity, As Simple as Possible, but No Simpler-One Rule to Rule
Them All

versus convoluted code, Don’t Lose the Plot-Don’t Lose the Plot

Easy problem, Simple solution, Easy Problem, Simple Solution
as first optimization step, Step 5: Optimize and Repeat, Applying
the Five-Step Optimization Process, Interlude: In Which the
Previous Chapter Is Criticized

Hard problem, Simple solution, The Four (But Really Three)
Kinds of Programmers, Hard Problem, Simple Solution

hiding internal details of code, Hiding Internal Details-Hiding
Internal Details
and localizing complexity, Localized Complexity, Simple
Interactions

measuring, Measuring Simplicity

and optimization decision, The First Lesson of Optimization Is
Don’t Optimize, The First Lesson of Optimization, Interlude: In
Which the Previous Chapter Is Criticized
solving the problem within, …But No Simpler-Sometimes It’s
Better to Simplify the Problem Rather than the Solution

sinf function, A Simple Example

Sly Cooper character, The Story of the Rules, Jumping to Conclusions-
Jumping to Conclusions
social characteristic of code reviews, Code Reviews Are About
Sharing Knowledge-Code Reviews Are Inherently Social

sort versus processVector functions, The Role of Long-Term Memory

sorting characters, stateful versus stateless testing, Stateless Code Is
Easier to Test-Stateless Code Is Easier to Test
source files, Pull the Weeds, Managing File Sizes-Managing File Sizes

split lines, Python versus C++, Indentation and Split Lines

StackAlloc class, A Concrete Example-A Concrete Example,
Migrating from Old Stack Contexts to New Ones-Migrating from Old
Stack Contexts to New Ones
StackContext class, A Concrete Example-A Concrete Example,
Making Stack Contexts a Little Smarter-Migrating from Old Stack
Contexts to New Ones, Time to Migrate

stacks

memory allocation, A Concrete Example, Stack Allocation in
Practice-Making Stack Contexts a Little Smarter

migrating from old contexts to new ones, Migrating from Old
Stack Contexts to New Ones-Time to Migrate
smarter contexts, Making Stack Contexts a Little Smarter-Making
Stack Contexts a Little Smarter

StackVector migration, Preparing to Migrate StackVector-Time to
Migrate

use case conflict, A Cloud on the Horizon
StackVector class, Stack Allocation in Practice-A Cloud on the
Horizon, Making Stack Contexts a Little Smarter, Preparing to Migrate
StackVector-Time to Migrate

Standard Template Library (STL) conventions, Don’t Mix and Match
Conventions

state
in animation smoothing, Dealing with Unavoidable Delay-
Dealing with Unavoidable Delay
auditing states you can’t eliminate, Audit State You Can’t
Eliminate-Audit State You Can’t Eliminate

coordinated control of, Coordinated Control of State-Coordinated
Control of State

dealing with unavoidable, Dealing with Unavoidable State-
Dealing with Unavoidable State
distributing in stealth game, Distributed State and Complexity-
Rethinking the Approach

minimizing in debugging, Minimizing State-Minimizing State

sorting characters, Stateless Code Is Easier to Test-Stateless Code
Is Easier to Test

stateful objects, unit testing challenge with, The Limits of Testing

stateless code for testing, Stateless Code Is Easier to Test-Stateless
Code Is Easier to Test, The Limits of Testing, Minimizing State

STATUS class, stealth game, Rethinking the Approach-Rethinking the
Approach
stealth game example, distributing state, Distributed State and
Complexity-Rethinking the Approach

STL (Standard Template Library) conventions, Don’t Mix and Match
Conventions

story, code as, Let Your Code Tell Its Own Story-Telling Good Stories
strcpy function, The Limits of Testing

StructType template, And Now for Something Completely Different,
And Now for Something Completely Different-And Now for
Something Completely Different

structure first, inferring code from it second, And Now for Something
Completely Different-Working Forward and Working Backward
subjective elements in test evaluation, Automated Testing Can Be
Tricky

Sucker Punch coding philosophy, The Story of the Rules-The Story of
the Rules, How to Disagree with the Rules-How to Disagree with the
Rules, One Rule to Rule Them All, Code Reviews Are Good for Three
Reasons-Code Reviews Are Good for Three Reasons, Effective Teams
Think Alike, Conclusion: Making the Rules Your Own-Discuss
Amongst Yourselves

sumVector function, Stateless Code Is Easier to Test-Stateless Code Is
Easier to Test

T

TDD (test-driven development), How to Disagree with the Rules,
Don’t Count on Your Users, Stateless Code Is Easier to Test
teams, coding

code review benefits for teamwork, Code Reviews Are Inherently
Social

controlling vocabulary for, Don’t Shoot Yourself in the Foot-
Don’t Shoot Yourself in the Foot, Effective Teams Think Alike
effective teams thinking alike, Effective Teams Think Alike-
Effective Teams Think Alike

formatting conventions, Formatting Conventions

language use conventions, Language Usage Conventions
problem solving conventions, Problem-Solving Conventions-
Problem-Solving Conventions

templates
JavaScript versus C++, Templates-Templates

versus method chaining, Using Templates Instead of Method
Chaining
Python versus C++, Templates

variadic, And Now for Something Completely Different

test-driven development (TDD), How to Disagree with the Rules,
Don’t Count on Your Users, Stateless Code Is Easier to Test
testing

automated pros and cons, Don’t Count on Your Users-Automated
Testing Can Be Tricky

automating mathematical, To Automate or Not to Automate-To
Automate or Not to Automate, When the Math Changes-When
the Math Changes

easier as better, Keeping Your Code Healthy
orphaned code and limits of, The Limits of Testing-The Limits of
Testing

pure functions for, Stateless Code Is Easier to Test, Minimizing
State, Minimizing State

stateless code for, Stateless Code Is Easier to Test-Stateless Code
Is Easier to Test, The Limits of Testing, Minimizing State

three-separate-functions approach, An Obvious Objection to This
Strategy, in Response to Which I Double Down-An Obvious Objection
to This Strategy, in Response to Which I Double Down
tightrope landing example, Jumping to Conclusions-Jumping to
Conclusions

time to code
dealing with unavoidable delays, Dealing with Unavoidable
Delay-Dealing with Unavoidable Delay

as measure of simplicity, Measuring Simplicity
translatability of code, as simplicity, Measuring Simplicity

try-named functions, Problem-Solving Conventions-Problem-Solving
Conventions

“Twice as good” rule for changing code, A Simple Rule of Thumb-
Rework Is a Good Opportunity to Fix Small Problems
type safety, And Now for Something Completely Different-And Now
for Something Completely Different

types
JavaScript versus C++, Types-Types

Python versus C++, Types-Types

U

undefined results, and poor design of interface, Don’t Trust the Caller
unit tests, The Limits of Testing, Dealing with Unavoidable State

usage mistakes, detecting early, Timing Is Everything

use cases
allowing to lead code rather than anticipating, An Obvious
Objection to This Strategy, in Response to Which I Double

Down-An Obvious Objection to This Strategy, in Response to
Which I Double Down

and preventing failure cases, Eliminate Failure Cases-Detecting
Mistakes Is Good, but Making Them Impossible to Express Is
Better
three use cases before generalizing principle, An Obvious
Objection to This Strategy, in Response to Which I Double Down

V

variables
choosing good names for readability, Telling Good Stories

Hungarian naming standard, Don’t Make Me Think-Don’t Make
Me Think

importance of meaningful-length names, Don’t Optimize for
Minimal Keystrokes

variadic template, And Now for Something Completely Different

vector class example of naming inconsistency, Don’t Mix and Match
Conventions-Don’t Mix and Match Conventions

VectorType, And Now for Something Completely Different
video gaming, The Story of the Rules, Conclusion: Making the Rules
Your Own-Discuss Amongst Yourselves

visibility, Python versus C++, Visibility

W

Weather class, Things Start to Get Foggy-Things Start to Get Foggy

“weeding” of code annoyances, Pull the Weeds-How Code Gets
Weedy
word problem, moving from math back to, When the Math Problem
Changes Back into a Word Problem, A New Argument

working backward from problem, Work Backward from Your Result,
Not Forward from Your Code-Working Forward and Working
Backward

defining structure and inferring code from it, And Now for
Something Completely Different-And Now for Something
Completely Different

early-bound versus late-bound languages, Working Backward
Instead-Working Backward Instead
versus problem in terms of solution you want to apply, An
Example-An Annoyance Appears

working memory (see short-term memory)

Y

YAGNI (You Ain’t Gonna Need It), YAGNI-YAGNI

About the Author
Chris Zimmerman cofounded the video game studio Sucker Punch
Productions in 1997 and led the coding team through 20-plus years of
successful video games, including three Sly Cooper games and five
inFamous games, culminating in 2020’s Game of the Year candidate Ghost
of Tsushima. He split his time between designing and writing code, like the
melee combat in Ghost, and the day-to-day work of building and managing
a 20-something-person coding team. Prior to Sucker Punch, Chris spent
roughly a decade at Microsoft, but the things he worked on there were
much less interesting. He graduated from Princeton in 1988, and as a result
owns more orange clothing than you do.

Colophon
The cover design and original cover art are by Susan Thompson. The cover
fonts are Guardian Sans and Gilroy Semibold. The text fonts are Scala Pro,
Benton Sans, and Minion Pro; the heading font is Benton Sans; and the
code font is Ubuntu Mono.

Table of Contents
Preface

Girls Who Code
Conventions Used in This Book
Using Code Examples
O’Reilly Online Learning
How to Contact Us
Acknowledgments

The Story of the Rules
How to Disagree with the Rules
1. As Simple as Possible, but No Simpler

Measuring Simplicity
…But No Simpler
Sometimes It’s Better to Simplify the Problem Rather than the
Solution
Simple Algorithms
Don’t Lose the Plot
One Rule to Rule Them All

2. Bugs Are Contagious
Don’t Count on Your Users
Automated Testing Can Be Tricky
Stateless Code Is Easier to Test
Audit State You Can’t Eliminate
Don’t Trust the Caller
Keeping Your Code Healthy

3. A Good Name Is the Best Documentation
Don’t Optimize for Minimal Keystrokes
Don’t Mix and Match Conventions
Don’t Shoot Yourself in the Foot
Don’t Make Me Think

4. Generalization Takes Three Examples
YAGNI
An Obvious Objection to This Strategy, in Response to Which I
Double Down
It’s Actually Worse than YAGNI

This Is Not What Success Looks Like
5. The First Lesson of Optimization Is Don’t Optimize

The First Lesson of Optimization
The Second Lesson of Optimization
Putting the Second Lesson to the Test

Step 1: Measure and Attribute Processor Time
Step 2: Make Sure There’s Not a Bug
Step 3: Measure Your Data
Step 4: Plan and Prototype
Step 5: Optimize and Repeat

Applying the Five-Step Optimization Process
There Is No Third Lesson of Optimization

Interlude: In Which the Previous Chapter Is Criticized
6. Code Reviews Are Good for Three Reasons

Code Reviews Are About Sharing Knowledge
The Forbidden Code Review
The True Value of the Code Review
Code Reviews Are Inherently Social

7. Eliminate Failure Cases
A Function That Makes It Easy to Shoot Myself in the Foot
Shooting Myself in the Foot via a Ricochet
Enlisting the Compiler’s Aid to Avoid Shooting My Foot
Timing Is Everything
A More Complicated Example
Making Ordering Mistakes Impossible
Using Templates Instead of Method Chaining
Coordinated Control of State
Detecting Mistakes Is Good, but Making Them Impossible to
Express Is Better

8. Code That Isn’t Running Doesn’t Work
Step 1: A Simple Beginning
Step 2: Generalizing a Common Pattern
Step 3: Adding Disguises
Step 4: The Chickens Return Home to Roost
Assigning Blame
The Limits of Testing

9. Write Collapsible Code

This Is What Failure Feels Like
The Role of Short-Term Memory
Where to Draw the Line
The Cost of Abstraction
Use Abstraction to Make Things Easier to Understand
The Role of Long-Term Memory
Common Knowledge Is Free; New Concepts Are Expensive
Putting It All Together

10. Localize Complexity
A Simple Example
Hiding Internal Details
Distributed State and Complexity
Capacitated?
Things Start to Get Foggy
Rethinking the Approach
Localized Complexity, Simple Interactions

11. Is It Twice as Good?
Three Paths Forward: Ignore, Tweak, or Refactor
Gradual Evolution Versus Continual Reinvention
A Simple Rule of Thumb
Dealing with Fuzzy Benefits
Rework Is a Good Opportunity to Fix Small Problems

12. Big Teams Need Strong Conventions
Formatting Conventions
Language Usage Conventions
Problem-Solving Conventions
Effective Teams Think Alike

13. Find the Pebble That Started the Avalanche
The Lifecycle of a Bug
Minimizing State
Dealing with Unavoidable State
Dealing with Unavoidable Delay

14. Code Comes in Four Flavors
Easy Problem, Simple Solution
Easy Problem, Three Complicated Solutions
The Cost of Complexity
The Four (But Really Three) Kinds of Programmers

Hard Problem, Somewhat Complicated Solutions That Don’t
Work
Hard Problem, Somewhat Complicated Solution
Hard Problem, Simple Solution

15. Pull the Weeds
Weed Identification
How Code Gets Weedy

16. Work Backward from Your Result, Not Forward from Your Code
An Example
An Annoyance Appears
Choosing a Side of the Gap
Working Backward Instead
And Now for Something Completely Different
Working Forward and Working Backward

17. Sometimes the Bigger Problem Is Easier to Solve
Jumping to Conclusions
Finding a Clear Path Forward
Recognizing the Opportunity

18. Let Your Code Tell Its Own Story
Don’t Tell Stories That Aren’t True
Make Sure There’s a Point to the Story
Telling Good Stories

19. Rework in Parallel
Bumps in the Road
Build a Parallel System Instead
A Concrete Example
Stack Allocation in Practice
A Cloud on the Horizon
Making Stack Contexts a Little Smarter
Migrating from Old Stack Contexts to New Ones
Preparing to Migrate StackVector
Time to Migrate
Recognizing When Parallel Rework Is a Good Strategy

20. Do the Math
To Automate or Not to Automate
Look for Hard Limits
When the Math Changes

When the Math Problem Changes Back into a Word Problem
21. Sometimes You Just Need to Hammer the Nails

A New Argument
There’s Never Just One Bug
The Siren Call of Automation
Managing File Sizes
There Are No Shortcuts

Conclusion: Making the Rules Your Own
Use Your Best Judgment
Discuss Amongst Yourselves
Signing Off

A. Reading C++ for Python Programmers
Types
Formatting and Comments

Comments
Indentation and Split Lines
Boolean Operations
Lists
Increment Operators

Classes
Visibility
Declarations and Definitions
Function Overloading
Templates
Pointers and References

B. Reading C++ for JavaScript Programmers
Types
Arrays
Classes
Declarations and Definitions
Function Overloading
Templates
Pointers and References

Index
About the Author

	Preface
	Girls Who Code
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	The Story of the Rules
	How to Disagree with the Rules
	1. As Simple as Possible, but No Simpler
	Measuring Simplicity
	…But No Simpler
	Sometimes It’s Better to Simplify the Problem Rather than the Solution
	Simple Algorithms
	Don’t Lose the Plot
	One Rule to Rule Them All

	2. Bugs Are Contagious
	Don’t Count on Your Users
	Automated Testing Can Be Tricky
	Stateless Code Is Easier to Test
	Audit State You Can’t Eliminate
	Don’t Trust the Caller
	Keeping Your Code Healthy

	3. A Good Name Is the Best Documentation
	Don’t Optimize for Minimal Keystrokes
	Don’t Mix and Match Conventions
	Don’t Shoot Yourself in the Foot
	Don’t Make Me Think

	4. Generalization Takes Three Examples
	YAGNI
	An Obvious Objection to This Strategy, in Response to Which I Double Down
	It’s Actually Worse than YAGNI
	This Is Not What Success Looks Like

	5. The First Lesson of Optimization Is Don’t Optimize
	The First Lesson of Optimization
	The Second Lesson of Optimization
	Putting the Second Lesson to the Test
	Step 1: Measure and Attribute Processor Time
	Step 2: Make Sure There’s Not a Bug
	Step 3: Measure Your Data
	Step 4: Plan and Prototype
	Step 5: Optimize and Repeat

	Applying the Five-Step Optimization Process
	There Is No Third Lesson of Optimization

	Interlude: In Which the Previous Chapter Is Criticized
	6. Code Reviews Are Good for Three Reasons
	Code Reviews Are About Sharing Knowledge
	The Forbidden Code Review
	The True Value of the Code Review
	Code Reviews Are Inherently Social

	7. Eliminate Failure Cases
	A Function That Makes It Easy to Shoot Myself in the Foot
	Shooting Myself in the Foot via a Ricochet
	Enlisting the Compiler’s Aid to Avoid Shooting My Foot
	Timing Is Everything
	A More Complicated Example
	Making Ordering Mistakes Impossible
	Using Templates Instead of Method Chaining
	Coordinated Control of State
	Detecting Mistakes Is Good, but Making Them Impossible to Express Is Better

	8. Code That Isn’t Running Doesn’t Work
	Step 1: A Simple Beginning
	Step 2: Generalizing a Common Pattern
	Step 3: Adding Disguises
	Step 4: The Chickens Return Home to Roost
	Assigning Blame
	The Limits of Testing

	9. Write Collapsible Code
	This Is What Failure Feels Like
	The Role of Short-Term Memory
	Where to Draw the Line
	The Cost of Abstraction
	Use Abstraction to Make Things Easier to Understand
	The Role of Long-Term Memory
	Common Knowledge Is Free; New Concepts Are Expensive
	Putting It All Together

	10. Localize Complexity
	A Simple Example
	Hiding Internal Details
	Distributed State and Complexity
	Capacitated?
	Things Start to Get Foggy
	Rethinking the Approach
	Localized Complexity, Simple Interactions

	11. Is It Twice as Good?
	Three Paths Forward: Ignore, Tweak, or Refactor
	Gradual Evolution Versus Continual Reinvention
	A Simple Rule of Thumb
	Dealing with Fuzzy Benefits
	Rework Is a Good Opportunity to Fix Small Problems

	12. Big Teams Need Strong Conventions
	Formatting Conventions
	Language Usage Conventions
	Problem-Solving Conventions
	Effective Teams Think Alike

	13. Find the Pebble That Started the Avalanche
	The Lifecycle of a Bug
	Minimizing State
	Dealing with Unavoidable State
	Dealing with Unavoidable Delay

	14. Code Comes in Four Flavors
	Easy Problem, Simple Solution
	Easy Problem, Three Complicated Solutions
	The Cost of Complexity
	The Four (But Really Three) Kinds of Programmers
	Hard Problem, Somewhat Complicated Solutions That Don’t Work
	Hard Problem, Somewhat Complicated Solution
	Hard Problem, Simple Solution

	15. Pull the Weeds
	Weed Identification
	How Code Gets Weedy

	16. Work Backward from Your Result, Not Forward from Your Code
	An Example
	An Annoyance Appears
	Choosing a Side of the Gap
	Working Backward Instead
	And Now for Something Completely Different
	Working Forward and Working Backward

	17. Sometimes the Bigger Problem Is Easier to Solve
	Jumping to Conclusions
	Finding a Clear Path Forward
	Recognizing the Opportunity

	18. Let Your Code Tell Its Own Story
	Don’t Tell Stories That Aren’t True
	Make Sure There’s a Point to the Story
	Telling Good Stories

	19. Rework in Parallel
	Bumps in the Road
	Build a Parallel System Instead
	A Concrete Example
	Stack Allocation in Practice
	A Cloud on the Horizon
	Making Stack Contexts a Little Smarter
	Migrating from Old Stack Contexts to New Ones
	Preparing to Migrate StackVector
	Time to Migrate
	Recognizing When Parallel Rework Is a Good Strategy

	20. Do the Math
	To Automate or Not to Automate
	Look for Hard Limits
	When the Math Changes
	When the Math Problem Changes Back into a Word Problem

	21. Sometimes You Just Need to Hammer the Nails
	A New Argument
	There’s Never Just One Bug
	The Siren Call of Automation
	Managing File Sizes
	There Are No Shortcuts

	Conclusion: Making the Rules Your Own
	Use Your Best Judgment
	Discuss Amongst Yourselves
	Signing Off

	A. Reading C++ for Python Programmers
	Types
	Formatting and Comments
	Comments
	Indentation and Split Lines
	Boolean Operations
	Lists
	Increment Operators

	Classes
	Visibility
	Declarations and Definitions
	Function Overloading
	Templates
	Pointers and References

	B. Reading C++ for JavaScript Programmers
	Types
	Arrays
	Classes
	Declarations and Definitions
	Function Overloading
	Templates
	Pointers and References

	Index
	About the Author

